

I

I

I

I

I

I

I

I

I

I

I

-

I

..

•• I
I
I
I
I
I ,,
·I
I
.I
I
I

--
1

VAX DAL Author's Guide

Order Number AA-K763C-TE

December 1985

To order additional copies of this document. contact the Software Distribution
Center. Digital Equipment Corporation. Maynard. Massachusetts O 1754

First Printing . July I 982
Second Printing . July 1984
Third Printing, December 1985

The infonnation in this document is subject to change without notice and should
not be construed as a commitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for any error that may appear in
this document.

The software described in this document is furnished under a license and may be
used or copied only in accordance with the tenns of such license.

No responsibility is assumed for the use or reliability of software on equipment that
is not supplied by DIGITAL or its affiliated companies.

Copyright :c, 1982 1984, 1985 by Digital Equipment Corporation
All Rights Reserved.

The postage-paid READER'S COMMENTS fonn on the last page of this docu­
ment requests your critical evaluation to assist us in preparing future
documentation.

The following are trademarks of Digital Equipment Corporation:

DAL
DEC
DECtalk
DECmate
DECnet
DECUS
DECwriter

!D~DD~D ..

DIBOL
Edusystem
GIGI
MASSBUS
PDP
PDT
PROFESSIONAL

ReGIS
Rainbow
RSTS
RSX
UNIBUS
VAX
VMS
VT

•• I
I
I
I
I
I

..
I
I
I
I
I

--
1

•• I
I
I
I
I
I
f'
I
I
I
I
I

-
I

•• I
I
I
I
I
I
f'
I
I
I
I
I

-
I

Preface

RELATED DOCUMENTS

REFERENCES

CONVENTIONS USED IN THIS MANUAL

Chapter1
Introduction

THE DIGITAL AUTHORING LANGUAGE

• Graphics

• Judging The Student's Response

• Structure Of A Lesson

Chapter 2
Elements of VAX DAL

LESSON

INSTRUCTION

ARGUMENTS

• Keywords

• User-Defined Variables

• Data Types

• Usage Characteristics

Contents

xiv

xiv

xv

1-2

1-2

1-4

1-4

2-1

2-2

2-3

2-3

2-3

2-4

2-5

• System Variables

• Constants

• Functions

• Expressions

• Default

SELECTING NAMES

SYNTAX

• Dot Indentation

LSING THE ELEMENTS OF VAX DI\L

Chapter 3
WritJng on the Screen

SCREEN ADDRESSES

• Row-and-Column Coordinates

• Fine Coordinates

.,

-------------------• NonnaJized Coordinates
-- -------------------

2-6

2-7

2-8

2-8

2-9

2-9

2-l l

2-12

2 - l 2

3-1

3-2

3-4

3-8

• Screen Address Summary ~ 10 ----------------CURRENT ATTRIBUTES 11

• Cwrent Location 3-13

DISPLAYING BLOCKS OF TEXT , 14

DISPLAYING VARIABLES 3-1'

TEXT SIZE 3-I 8

USING COLOR 3-23

DISPLAY MODES 3-24

Chapter4
DefauJt Response Judging

THE RESPONSE-JUDGING BLOCK 4-1

• QUERY 4-2

• RIGHT And WRONG 4-4

DISPLAYING FEEDBACK 4-S

SPECIACATIONS FOR MATCHING 4-7

ii

•' I
I
I
I
I
I

..
I
'I
I
I
I

ea
I

•• Chapter 5
Creating a Simple Lesson

I STRUCTURE OF A LESSON 5-2

• Planning The Lesson 5-2

• Planning Units 5-4 I, LESSON-LEVEL INSTRUCTIONS 5-4

• Lesson-Level Variables 5-5

I • Lesson-Level Control Logic 5-6

DISPLAYING TEXT 5-9

I • Changing Character Sizes 5-9

• Changing The System Prompt Character 5-13

• Using Color 5-15

I • Changing Display Modes 5-15

• Displaying Variables 5-16

I JUDGING THE STUDENTS' RESPONSES 5-17

• Specifying Several Answers 5-18

f' • Specifying Variables As Answers 5-19

• Modifying Response Judging 5-21

SCORING AND GOALS 5-22

I CONTROL LOGIC 5-24

• The LOOP,ENDLOOP Structure 5-25

I • The FOR,ENDFOR Structure 5-27

• The IF,ENDIF Structure 5-29

• The TEST,VALUE,ENDTEST Structure 5-34

I • Combining Structures 5-36

ENDING THE LESSON 5-40

I Chapter 6
Editing, Complllng, and Linking a Lesson

PREPARING A LESSON 6-1

I • Testing And Correcting A Lesson 6-2

• Compiler Errors 6-3

- • Run-time Errors 6-5

iii

I

• Logic Errors 6-6 •• mE VAX DAL COMPD..ER 6-7

• Compiler Switches 6-7 'I -
• Compiler Examples 6-8

THE VAX VMS LINKER 6-9

I Chapter 7
Termlnal Manag ent
DIFFERENCFS BETWEEN TERMINAL MODELS 7-2 I • Software Support Requirements 7-2

• Screen Characteristics 7-3

I • Color Capabilites 7-4

mE VAX DAL TERMINAL MANAGEMENT INSTRUCTIONS 7-6

• Response Display Modifiers 7-6 I --
• DAL Color System Modifiers 7-7

• 1be SET MAXCOLORS Instruction 7-7 I • 1be SET HLS lnsttuction 7-8

• lasuuctions That .Enable Special Function Keys 7-8 .. • The SET FKEY Instruction 7-8

• The SET KEYPAD Instruc:tion 7-IO

• The SET DELETE Instruction 7-10 I • Insuuccions That Save And Restore Terminal States 7-11

• TbeSAVElnstruction 7-12

I • 1be RESTORE lnsttuction 7-13

Chapter 8
Reaponse Judging I MODIFYING WHAT A RF.SPONSE MATCHF.S- nm SPECS INSTRUCTION 8-1

• Arguments To The SPECS Instruction 8-2

I • Using The SPECS Instruction - ANYORDER And EXTRA Keywords 8-4

MODIFYING WHAT A RF.SPONSE MATCHES-TIIE SYN INSTRUCTION 8-4

MODIFYING WHAT TIIE RESPONSE MATCHES- I TifE NOISE INSTRUCTION 8-5

MODIFYING JUDGMENT OF TifE RESPONSE- lllE JUDGE INSTRUCTION 8-6 ea
iv

I

•• • Arguments To The JUDGE Instruction 8-6

• Using The JUDGE Instruction - the CONTINUE Keyword 8-7

I • Using The JUDGE Instruction - the STOP Keyword 8-8

nm RIGJITV AND WRONGV INSTRUCI1ONS 8-8

I • Student Variables 8-9

• Specifying A Tolerance 8-11

• Specifying Units 8-12

I MISCELLANEOUS DISPLAY INSTRUCI1ONS 8-14

• The PROMPT Instruction 8-14

I • The INPtrr Instruction 8-15

Chapter9
Response Processing

I SCORING SYSTEM VARIABLES 9-1

RESPONSE-RELATED SYSTEM VARIABLES 9-S

I, USING SYSTEM VARIABLES 9-9

SYSTEM VARIABLES IN NESTED QUERIES 9-11 ,, USING THE ERRORV SYSTEM VARIABLE 9-14

• Setting ERRORV Values 9-15

• Checking ERRORV Values In A Response-Judging Block 9-16

I • Interpreting ERRORV Values 9-18

• Interpreting ERRORV Values For Expressions 9-18

I • Interpreting ERRORV Values For String Responses 9-20

Chapter10
Graphics

I BASIC GRAPHICS INSTRUCTIONS 10-2

• BOX lM

I I

• CIRCLE 10-5

• CURVE 10-7

• DOT 10-10

I • LINE 10-10

• VECTOR 10-10

- MODIFYING LINE GRAPHICS 10-12

V

I

• PATTERN 10-12 •• • SREF 10-13

TEXT ENHANCEMENT 10-16 ,1 • ITALICS 10-16

• TROTATE 10-17

ERASE 10-19 I I

MODE 10-20

RELATIVE GRAPIBCS 10-23 I • RORIGIN 10-24

• RSIZE 10-26

I • ROTATE 10-28

GRAPmCS SYS'lcM VARIABLES 10-31

GENERAL GRAPIBCS CONSIDERATIONS 10-36 I • Using Color 10-37

• Terminal Line Speed 10-37
II

Chapter 11
Modifying Lesson Flow .. THE UNIT CALLING CHAIN 11-2

UNCONDmONALTRANSFEROFCONTROL 11-3

• The RETURN Instruction 11-3 I • The BACKUP Instruction 11-3

CONDmONALTRANSFEROFCONTROL 11-8

I • The BRANCH Instruction 11-8

• The WHEN Instruction 11-10

• Condition Handlers 11-16 I • The ON Instruction 11-16

• The CDUNIT Instruction 11-19

I • The SIGNAL Instruction 11-20

• The CANCEL Instruction 11-20

• A Condition-Handling Example 11-21 I

--vi

'I

•• Chapter12
The VAX DAL Color Management System

I, THE COMPONENTS OF THE DAL COLOR MANAGEMENT SYSTEM 12-2

• Color Specifications 12-2

• Tenninal Color Palettes 12-3

I • The DAL Color Map 12-3

• The DAL Color Table 12-5

I I
THE VAX DAL COLOR MANAGEMENT INSTRUCTIONS 12-7

• The FCOLOR Instruction 12-7

I • The CCOLOR Instruction 12-8

• The BCOLOR Instruction 12-9

• The MAP Instruction 12-10

I • The SET MAXCOLORS Instruction 12-11

A COLOR MANAGEMENT EXAMPLE 12-11

~ Chapter13
FIie Input/Output In VAX DAL ,. DATA ELEMENTS 13-2

• Records 13-2 - - - -
• Data Fields 13-2

I • Bytes 13-2

FILE STRUC'IURES 13-3

I
• Sequential File Structure 13-3

• Access To Records In Sequential Files 13-3

• Random File Structure 13-4

I • Access To Records In Random Files 13-4

• Indexed File Structure 13-5

1, • Acces11 By Key Value To Records In Indexed Files 13-5

11IE VAX DAL FILE 1/0 INSTRUCTIONS 13-6

• The OPEN Instruction 13-6

I • The GET Instruction 13-7

• The PUT Instruction 13-7

- • The FIND Instruction 13-7

vii

I

• The UPDATE Instruction 13-7 •' • The DELETE Instruction 13-8

• The CLOSE Instruction 13-8 I FILE IO OPERATIONS WITH SEQUENTIAL FILES 13-8

• Reading Records From A Sequential File 13-9

I • Writing Records To A Sequential File 13-IO

FILE I 'O OPERATIONS WITH RANDOM FILES 13-11

• Reading Records From A Random File 13-12 I • Writing Records To A Random File 13-13

FILE LO OPERATIONS WITH INDEXED FILES 13-15 I • Reading Records From An Indexed File 13-17

• Writing Records To An Indexed File 13-19

• Updating Records In An Indexed File 13-20 I
• Deleting Records In An Indexed File 13-24

Chapter14 ~ Parameter Passing In VAX DAL

PASSING DATA TO DAL ROUTINES 14-1 ._
PASSING DATA FROM DAL ROUTINES 14-2

PARAMETER-PASSING EXAMPLES 14-4

Chapter15 I Macros In VAX DAL

DEFINING A VAX DAL MACRO 15-2

I USING PARAMETERS WITH A VAX DAL MACRO 15-3

USING THE , INCLUDE INSTRUCTION 15-4

Appendix A I Instructions

Appendix B

I System Functions

Appendix C
System Variables I Appendix D
Operators --viii

ii

•• Appendix E
Syntax Symbols

I Appendix F
Sample Lessons

MULTIPLY F-1

I ICECREAM F-7

MENU_DRIVER F-11

I Glossary

Index

I Figures

1-1 Text Displays 1-3

I
1-2 Traffic Lesson 1-3

3-1 Row-and-Column Addresses 3-3

3-2 Fine Screen Addresses 3-6

I 3-3 Normalized Screen Coordinates 3-9

3-4 Current Location, Size, and Mode 3-12

~ 3-5 Displaying Variables 3-16

3-6 Text Sizes 3-19

3-7 Changing Text Size 3-22

I 4-1 The QUERY Instruction 4-3

4-2 Response-Judging Block 4-4

I 4-3 Markup 4-6

5-! Lesson Structure 5-3

'I
5-2 Lesson-level Control Logic 5-8

5-3 The Unit Menu 5-10

5-4 The Unit Review 5-13

I 5-5 Changing the Prompt Character 5-14

5-6 Displaying Variables 5-16

I
5-7 Problem Judged Wrong 5-22

5-8 The FOR Instruction 5-29

-
5-9 The Unit Shoscore 5-31

5-IO Nested IF Instructions 5-32

Ix

I

5-11 The TEST Instruction 5-35 •• 5-12 The Unit Instruction 5-38

5-13 The Example Problem 5-39 I 8-1 The RIGHTV Instruction 8-10

8-2 The CONVERT Instruction 8-14

9-1 Using ERRORV to Detect Missing Parentheses 9-17 I
9-2 Using ERRORV to Detect a Misspelled System Function 9-18

10-1 Basic Graphics Instructions Sailboat 10-3 I 10-2 The BOX Instruction 10-5

10-3 The CIRCLE Instruction 10-6

I 10-4 The CURVE Instruction: Three Points 10-8

10-5 The CURVE Instruction: Four Points 10-9

10-6 The VECTOR Instruction 10-11 I
10-7 The PATTERN Instruction 10-12

10-8 Sailboat with Shaded Sail 10-14 1: 10-9 The SREF Instruction 1015

10-10 The SREF and PATTERN Instructions 10-16 .. 10-11 The ITALICS Instruction 10-17

10-12 The TROTATE Instruction IOI

10-1 The MODE Instruction I 10~2 I 10-14 The MODE Instruction 2 10-22

10-15 The RORIGIN Instruction 10-25 I' 16 The RSIZE Instruction 10-27

-17 The ROTATE Instruction 10-29

10-18 Rotated Be RBOX I:
10-19 Rotated Boxes RUNE I

10-20 S stem Variables I 0-35 I 10-21 System 'ariables 2 10-36

I 1-1 , l mt Calling Chain 11--

12-1 Default C,Jor stem: Lesson Startup 12-1~ I
12-2 ,fodified CJlor Map 12-13

Ill
X

I

•• 12-3 Initial Color Table Configuration 12-15

12-4 Final Color Table Configuration 12-17

13-1 Sequential File Organization 13-4

I 13-2 Random File Organization 13-5

Tables

I 3-1 Hori7.ontal Fine Address Units 3-5

3-2 Default Character Heights 3-20

I 3-3 Character Dimensions in Fine Address Units 3-21

3-4 Mode Keywords 3-25

I
3-5 Mode System Constants 3-26

7-1 VAX DAL Software Support Requirements 7-2

7-2 Screen Widths 7-4

I 7-3 TcnninaJ Color Capabilities 7-5

7-4 ASCII Strings Generated by Special Function Keys 7-9

I 7-5 ASCII Strings Generated by Keypad Keys 7~10

7-6 Tenninal Characteristics Saved by the SA VE Instruction 7-12 ,. 9-1 Scoring System Variables 9-2

9-2 Response-Related System Variables 9-6

9-3 Items Saved when Queries arc Nested 9-13

I 9-4 ERRORVValues 9-14

10-1 Graphics System Variables 10-32

, ,

11-1 Time-Related WHEN Keywords 11-11

11-2 String-Related WHEN Keywords 11-11

11-3 Condition-Name Keywords 11-17

I 11-4 IORESULT values 11-18

12-1 DAL-Provided Color Specifications 12-4

I 12-2 Tcnninal Models: Color Table Size 12-6

14-1 Default Parameter-Passing Methods 14-2

14-2 Parameter-Passing Options (Passing Data To External Routines Only) 14-4

I C-1 Graphics and Graphing System Variables C-1

C-2 Response-Related System Variables C-4

- xi

I

C-3 Scoring System Variables C-6 •• C-4 Tuning and Miscellaneous System Variables C-8

0-1 Operators D-1 I E-l Synr.u Symbols B-1

I
I
I
I
I

..
I
I
I
:I
I

-xii

I

I
I
I
I
I ,,
I
I
I
I.
I

-
I

Preface

This manual is an introduction to the DIGITAL Authoring Language (VAX DAL or
DAL) and is intended for new authors. It assumes little knowledge of programming
and explains some programming terms and concepts. The manual also introduces a
subset of VAX DAL. After this introduction, the new author should be able to con­
sult the VAX DAL Reference Manual for information about all instructions.

Experienced authors and programmers may find Chapters 7 through 15 helpful.
These chapters deal with advanced subjects in VAX DAL.

Chapter I describes the authoring process and the capabilities of VAX DAL.

Chapters 2, 3, and 4 explain concepts that apply to writing all lessons. Chapter 2
describes the elements and syntax of the language. Chapter 3 discusses basic con­
cepts and instructions for displaying text, including screen addresses, text sizes,
and color. Chapter 4 discusses response judging and the sequence of events that
occurs during response judging. It explains the basic instructions for reading the
student's response from the keyboard and then judging it.

Chapter 5 illustrates the concepts and instructions discussed in Chapters 2, 3, and 4
by explaining a short lesson in detail. Chapter 5 also introduces the concept of con­
trol logic and the related VAX DAL instructions.

Chapter 6 describes how the VAX DAL compiler and VAX/VMS linker are used to
prepare a lesson for execution.

Chapter 7 discusses terminal management: how authors can tailor terminal charac­
teristics for a lesson. Chapters 8 and 9 deal with modifications to default response
judging and processing. Chapter IO describes the VAX DAL graphics instructions.
Chapter 11 discusses advanced control logic and lesson flow. Chapter 12 describes
the components and function of the DAL color management system. Chapter 13
deals with file input/output operations in VAX DAL, and Chapter 14 describes
parameter passing into and out of VAX DAL routines. Chapter 15 explains how to
use VAX DAL macros.

xiii

Appendix F contains complete listings for the lesson Multiply described in Chapter
5 and for the lesson lcecream used as an example in Chapters 8 and I 0. Appendix F
also contains the lesson Menu-driver, which uses many of the VAX DAL features
described in Chapter 7.

RELATED DOCUMENTS

VAX DAL Reference Manual
Order No. AA-K768C-TE

VAX DAL Pocket Reference
Guide
Order No. AV-D8138-TE

Courseware Authoring System
User's Guide
Order No. AA-K764C-TE

Courseware Authoring System
System Manager's Guide
Order No. AA-K767C-TE

REFERENCES

This manual is a complete reference guide to
the DIGITAL Authoring Language.

This manual is a quick reference guide to the
commands and features of VAX DAL.

This manual explains how to use the C.A.S.
Delivery System to publish lessons.

This manual contains information needed for
overall administrative control of the C.A.S.
Delivery System.

This manual refers to the following books in the VAX VMS documentation set:

EDT Editor Manual
Order No. AA-J726A-TC

Introduction to VAX/VMS
Order No. AA-Y500A-TE

VAX/VMS DCL Dictionary
Order No. AA-2800A-TE

VAX, VMS Linker Reference Manual
Order No.AA-Z420A-TE

xiv

•• I
I
I
I
I
I

..
II
I
I
I
I

-
I

•• I
I
I
I

I
I
I

-
I

CONVENTIONS USED IN THIS MANUAL

The fo11owing printing conventions are used in this manual for the example code.

Uppercase
characters

Lowercase
characters

Brackets {}

Ellipsis ...

@)

CID
m

Uppercase characters are used for all language elements that must
be entered exactly as shown. These elements are instructions, sys­
tem variables, system functions, and keywords.

Lowercase characters are used for the names of variables and con­
stants defined by the author.

Brackets enclose optional arguments.

An ellipsis indicates that the previous element can be repeated.

These symbols represent three nonprinting characters: horizontal
tab generated by the TAB key, space generated by the space bar,
and return generated by the RETURN key.

xv

I

I
I
I
I
I

-
I

'.
I
I
I
I
I ..
I
I
I
I
I

ea
I

•• I
I
I
I
I

I
I
I
I
I

-
I

1
Introduction

A computer-aided-instruction (CAI) lesson is a special kind of computer program.
CAI lessons provide students with the opportunity to learn and apply new informa­
tion and skills. CAI lessons can be written for students at any educational level. A
CAI lesson is a type of instructional material. As is true of other types of material -
text books, laboratory exercises, games, film strips, and so on - the effectiveness
of a CAI lesson depends largely on how well the lesson is planned and how well the
plan is implemented.

CAI lessons differ from other instructional materials in the method of presentation
and in the methods of structuring material that are possible using a computer. The
method of preparing a CAI lesson is also different. Because the lesson is a special­
ized computer program, it is written as well as executed on the computer. When
students take a lesson, they see a series of visual displays on the monitor and type
responses to these displays on the keyboard. The displays can take a number of
forms. They can explain how to take the lesson or discuss subject matter. In this
case, the students' responses generally indicate that they have read the information
and are ready to continue. Displays can show a problem to be solved or ask a ques­
tion to be answered. In this case, the students' responses are answers that are
judged and scored. The next display can be some kind of feedback based on the
response. Displays can show a game ready for the next move. The students'
responses indicate moves, and the next display updates the game.

Planning a lesson includes deciding what each display includes, what student's
responses should be, and what should happen next. Right answers can be defined,
and an appropriate message can be displayed as feedback. Wrong answers can also
be anticipated; for these the feedback can explain the students' mistakes or miscon­
ceptions. The question can be repeated, or another question can be displayed.

After the lesson is planned, it is written in VAX DAL.

1-1

THE DIGITAL AUTHORING LANGUAGE

Programming a lesson in VAX DAL gives the CAI author complete control over
what is in the lesson. The author chooses the instructional format, designs the
screen displays that the students see, and controls response judging and feedback.

VAX DAL has the following features:

• Graphics

The author can design character fonts; draw lines, circles, curves, and dots;
and plot graphs. DAL also provides relative screen addresses for graphics,
and a capacity to produce full color graphics.

• Flexible Response Judging

The author defines anticipated right answers and wrong answers, and con­
trols both the exactness with which student responses must match and what
happens after a match. The author also controls scoring.

• Structured Lessons

Each lesson consists of independent units that are executed in the order
determined by the lesson. Units can be executed selectively, so that stu­
dents see only the units they need for learning the material.

Graphics

Lessons written in VAX DAL are executed on a terminal connected to a color or
black-and-white monitor that shows the displays. VAX DAL controls placement of
text and graphics on the screen.

VAX DAL provides several ways to enhance text displays. As an author, you can
use alternate character sets to display mathematical symbols, the Greek or Russian
alphabets, or special characters such as game markers. You can modify character
size and proportions to display bigger characters, tall, thin characters, or short, fat
characters. To emphasize a word, you can use italics or simple graphics such as
underlining text or pointing to a word with an arrow. You can divide the screen into
separate areas for different purposes and outline the areas. Figure 1-1 shows some
of the possibilities.

1-2
lntrcx:Jucfion

•• I
I
II
II
I
I

..
I
II
I
I
II

-
II

•• I
I
I

I
I
I

I

-
I

You can eMphasize a word in
several waMs:

"1.ith ITALICS

BM pointing at it ~◄------

b~ underlining
Figure 1-1
Text Displays

MA·S-21 c»-82

You can draw illustrations made up of lines, dots, circles, boxes, and curves, and
draw the same graphic at different locations on the screen. You can shade some
areas in your pictures, and both shade and draw lines in different patterns. Figure
1-2 shows some of the possibilities.

It is harder to
cross the street
when cars are
COMing.

Press RETURN to
see the cars.

Figure 1-2
Traffic Lesson

~ ---------------

MR•S-2110-82

1--3
Introduction

Chapter 3 discusses concepts related to all displays, including screen addresses and
color, and explains how to display text. The display of text is illustrated in the sam­
ple lesson explained in Chapter 5. Chapter IO discusses graphics.

Judging the Student's Response

An important part of computer-aided instruction is collecting and evaluating stu­
dent responses. There are two types of responses: those that answer questions that
are part of the educational purpose of the lesson and should be scored, and those
that do not. Responses that do not provide answers to questions might either select
a subject to be covered next from a menu, ask for instructions to be displayed
again, ask for help, or indicate that the student has read the display and wants to
continue. As the author, you have complete control over response judging. You can
modify how closely the students' responses must match the answers you specify
and what happens after an answer is matched. You can end judging after a response
judged right, after the first response, or after a specified number of responses that
are judged wrong.

Chapter 4 discusses the fundamentals of response judging. Simple response judg­
ing and some modifications are illustrated in the sample lesson discussed in Chap­
ter 5. Chapters 8 and 9 discuss more techniques for modifying and conttolling
response judging.

Structure of a Lesson

As you plan a lesson, some divisions in the material become apparent. A very short
lesson might consist of two displays that explain a concept, followed by three ques­
tions that test whether students understand it.

You also plan different feedback for different anticipated responses. Some antici­
pated responses are specified as right answers. A student who answers all three
questions correctly ends the lesson. Other anticipated responses show different
degrees of mastery and different kinds of misunderstanding. These anticipated
responses are specified as wrong answers. For some, the feedback is simple.
Others indicate that the entire concept needs to be explained again in a different
way. The lesson written in VAX DAL is also divided. A DAL lesson consists of
lesson level and individual units.

1-4.
Introduction

•• I

I
II
II
II
I

ea
I

..
I
I

I
I
..
I
I
I
I
I
1•
I

Each unit contains instructions to perform one part of the lesson. In the lesson
described above, each of the explanatory displays is a separate unit. Each question
display and its response-judging statements make up a separate unit. Simple feed­
back for anticipated responses can be included in the question and response-judg­
ing unit. Feedback that requires more explanation forms another unit.

Lesson level contains instructions that control execution of the units.

Chapter 5 discusses one sample lesson in detail, and illustrates how the require­
ments for the planned lesson are embodied in the structure of the written lesson.

1-5
Introduction

-:
I
I
I
I
I ..
I
I
I
I
I

•1
I

..
I
1.
I
I
I
I

I
I
I
I
I

I

J
I
I
I
I
I
I
~

I
I
I
I
I

Ill
I

•• I
I
I
I
I
I
~
I.
I
I
I
I

I

2
Elements of VAX DAL

This chapter discusses the elements of a lesson written in VAX DAL and defines the
terms used for those elements.

LESSON

To a student, a lesson is a series of displays on the screen that show information and
questions and require a response . To an author, the same lesson is a series of
instructions in VAX DAL that produce the displays, read the student's responses,
evaluate them, then produce the next display depending on what the response was.
The author writes a lesson. Many students execute the lesson. The difference
between the lesson as it is written and the lesson as it executes can be compared to
the difference between a recipe and the cooking process.

A recipe, like a lesson, often includes instructions for different circumstances. For
example, a recipe can state that either six small eggs or five large eggs are required.
The cook decides whether to add small eggs or large eggs depending on the size
available. Likewise, in a lesson the author specifies different actions for anticipated
responses. One student executing the lesson enters a response, and the lesson deter­
mines which specified action to take for this response. Another student executing
the lesson gives a different response. This time, the lesson takes a different speci­
fied action.

Lessons are divided into lesson level and units. Units are subdivisions of the lesson
that can be executed at different times. To continue the cooking analogy, consider a
recipe for lemon meringue pie. The pie recipe has four basic instructions: make a
single crust, prepare the filling, make the meringue, and bake the pie. The instruc­
tion to make the crust refers the cook to a crust recipe on another page. The crust
recipe contains detailed instructions for making pie crust.

2-1

The main pie recipe can be compared to lesson level, and the crust recipe can be
compared to a unit. The crust recipe is written separately and is referred to in the
main recipe. At the main recipe's instruction to make crust, the cook refers to the
crust recipe, executes the instructions for making crust, and returns to the main
recipe for the next instruction.

A VAX DAL lesson as written begins with the lesson-level instructions. Lesson
level ends at the beginning of the first unit. Units can be written in any order.

A VAX DAL lesson as executed also begins with the first lesson-level instruction.
Execution of the lesson ends after the last lesson-level instruction. The units are
executed by DO uniLname instructions at lesson level or in other units. After the
instructions in the executed unit are completed, the lesson control returns to the
next instruction after DO uniLname.

The instructions that make up a VAX DAL lesson are contained in a computer file,
called a source file, that you can read. Before you can execute the lesson you must
compile the lesson source file to produce a file that the computer can read. The
number of units a VAX DAL source file contains cannot exceed 127. If the source
file contains more than 127 units, it must be divided into two or more files that are
compiled separately and then linked together. One of these files must contain the
lesson-level instructions. The other file(s), which are called modules, contain
units.

INSTRUCTION

An instruction in VAX DAL is a word that causes one action. In cooking, mince is
one instruction; chop is another instruction; slice is still another. The cook does
something different in response to each instruction.

In VAX DAL, WRITE is an instruction that causes some text to be displayed on the
monitor screen. AT is an instruction that specifies a location on the screen for the
text. Like WRITE and AT, many instructions are English words. The other instruc­
tions are mnemonic: that is, words invented to make the action the instructions
perfonn easy to remember. For example, the instruction IF begins a series of
instructions that are executed if a condition is true. The ENDIF instruction is mne­
monic. It marks the end of the instructions executed if the condition is true.

2-2
Elements of VAX DAL

•• I
I
I
I
I
I

..
I
I
I
I

I

I
I
i
I
I

-
I

ARGUMENTS

As you can see from the AT and WRITE examples, the instruction alone does not
give complete information. AT requires a location, and WRITE needs some words
to display on the screen. The additional information is called an argument. If you
want to write "Hello, Susie" at the top center of the screen, you use two instructions
with their arguments.

AT 220
WRITE Hello, Susie

The instruction AT with the argument 220 tells the lesson to set the location of row
2, column 20 on the screen, and to use this location when it is next instructed to
write something. The WRITE instruction with the argument "Hello, Susie" then
writes the characters.

VAX DAL is composed of a set of defined instructions. To create a lesson or unit,
you select the appropriate instructions from this set. For each instruction the num­
ber of arguments is fixed, and each argument's function is precisely defined. Some
instructions, such as AT and WRITE, require one argument; others require more
than one; and a few do not require arguments . Arguments can be specified in a
number of ways.

Keywords

Some instructions require keywords. A keyword is a word that has a special mean­
ing when it is used as an argument. For example, the FCOLOR instruction can use
different keywords to select the colors for text and graphics in displays. With the
keyword RED as its argument, the FCOLOR instruction causes subsequent text
and graphics to use the color red. With the keyword YELLOW, FCOLOR draws
text and graphics with the color yellow.

Instructions that require keywords accept only one of the defined keywords.

User-Defined Variables

A variable is a name that identifies information so that you can store the informa­
tion and retrieve it when it is needed . A variable can be compared to a label on a
pigeonhole. You can store information in the pigeonhole, using the variable name
to identify its location for later retrieval. When you include a variable as the argu­
ment for an instruction, you are telling the lesson to use the information currently in
the pigeonhole labeled with the variable name.

2-3
Elements of VAX DAL

Suppose that you would like a lesson to write .. Hello, appropriate name" on the
screen to greet individual students as they enter the lesson. It is easy to do this by
using a variable. You can define your variable as .. firsLname". The first question of
the lesson asks for the student's name. Each student who takes the lesson types a
different name. You store whatever the student types in the variable "firsLname".
For each student the contents of the variable are different. You can now use the
variable "firsLname" as an argument to a WRITE instruction, and display what the
student typed. (Be aware that this technique can produce unexpected results. If an
uncooperative student types .. What's yours''", the lesson displays "Hello, What's
yours'.'"'.)

Data Types
You must define each variable you want to use in a lesson. You must also specify
the kind of information you are going to store in each variable by identifying its
data type. The lesson uses this data type to determine how big the storage area
needs to be and how the variable can be used.

The instruction for defining a variable is:

DEFINE vaioole_nome : data.Jype {,usage_chorocterisflc}

The keywords that select one of the possible data types are INTEGER, REAL,
STRING, BOOLEAN, and RECORD.

2-4

• Integers and Real Numbers

An integer is a whole number. A real number is a number that contains a
decimal point. These two kinds of numbers are stored differently in the
computer. When you define a variable as either an integer or a real number,
you can use it for arithmetic and for more advanced mathematical func­
tions. You can also display it.

• Strings

A character is any one of the letters, digits, punctuation marks, and sym­
bols that can be displayed on the screen or that affect the display but are not
visible, such as spaces, tabs, and carriage returns. A string is a series of
characters.

Inside the computer, characters are stored as codes. When you press a key
on the keyboard, it generates a code. When you use the WRITE instruction
to display a character, the monitor receives a code, and draws the corre­
sponding shape on the screen. The digits that allow you to write numbers
are coded as characters just as letters and punctuation marks are.

The size of a string variable can change dynamically during the execution
of a lesson. You can use the same string variable to store strings containing
different numbers of characters. You can also compare two string variables
to see if they are the same.

Elements of VAX DAL

•• I
I
I
I
i
I

..
I
I
I

I

•• I
I
I
I
,I
I

" I

' I
1·

I

-
I

• Boolean

Boolean variables have one of two values, true or false. The keywords
TRUE and FALSE can be used to assign a value to a Boolean variable.

• Record

The data type RECORD defines a structure that consists of several compo­
nent variables. The component variables in a record structure correspond to
fields of data in records in an external file. Record structures are used in
many file input/output operations. Component variables in record struc­
tures can have any of the data types listed above.

You can define structured arrays and tables composed of elements of the integer,
real, string, and Boolean data types. Arrays are multidimensional while tables are
two-dimensional. Single elements of these data structures are identified by sub­
scripts. Refer to the VAX DAL Reference Manual for more information about
arrays and tables.

Usage Characteristics
A variable is always defined with a data type. It can also be defined with a special
usage characteristic.

The keywords that select one of the usage characteristics are GLOBAL,
EXTERNAL, STUDENT, RESTART, PERMANENT, and FUNCTION.

• Global

Global variables can be referenced by instructions in all of the separately
compiled modules of a lesson .

• External

The external usage characteristic identifies a variable that is also defined as
a global variable in a separately compiled part of the lesson. When a lesson
is assembled from two or more source files, define the same variable more
than once: as a global variable in only one source file, and as an external
variable in the other source file(s). This ensures that the variable can be
referenced by instructions in the separately compiled parts of a lesson. See
the VAX DAL Reference Manual for more information about global and
external variables.

• Student

Student variables are those that students can use in their responses. If "pi"
is defined as a student variable, a student can type "2•pi• 11.2" as a
response. Student variables are global variables by default. Do not define
student variables with the GLOBAL or EXTERNAL usage characteristic.
The VAX DAL Reference Manual explains student variables in more detail.

2-5
Elements of VAX DAL

• Restart

Restart variables are saved in a file if the student stops taking the lesson
before the lesson is finished. When the student finishes the lesson, the
restart variable file contains a record of the student performance. Restart
variables are global variables by default. Do not define restart variables
with the GLOBAL or EXTERNAL usage characteristic. The VAX DAL
Reference Manual explains restart variables in more detail.

• Pennanent

Like restart variables, pennanent variables are saved when the student ends
the lesson. Each lesson has one set of pennanent variables that is refer­
enced during consecutive executions of the lesson. Permanent variables are
global variables by default. Do not define permanent variables with the the
GLOBAL or EXTERNAL usage characteristic. The VAX DAL Reference
Manual explains pennanent variables in more detail.

• Function

The usage characteristic FUNCTION defines the variable as the name of a
user-defined function . User-defined functions are explained in the VAX
DAL Reference Manual.

System Variables

DAL maintains system variables that a lesson can refer to. The values of system
variables are modified by instructions in the lesson. System variables fall into four
different categories.

2-6

• Scoring System Variables

These variables contain information related to student scores. Scoring sys­
tem variables contain information such as the number of correct responses
a student makes, and the number of correct responses a student makes on
the first try.

• Response-Related System Variables

These variables contain infonnation about actual student responses, such
as a student's response time or the number of characters in a response.
Response-related variables also place restrictions on how a question can be
answered; restrictions such as a time limit for answering a question, or the
maximum number of characters allowed in a response.

• Graphics System Variables

lbese variables keep track of graphics information, such as the current cur­
sor location, the current text sire, and the current writing color.

Elements of VAX DAL

•• I
I
I
I
I
I
~

I

' I
I
I

ea
I

•• I
I
I
I
I
I ,
I
I
I
I
t

-

• Miscellaneous System Variables

These variables store generally useful information, such as the amount of
time that has elapsed since the student began the lesson.

Specific system variables are discussed throughout this manual. Appendix C con­
tains a list of all system variables.

Constants

Constants are elements whose values do not change during lesson execution.

The AT and WRITE instructions shown above use constants as arguments to write
"Hello, Susie" at row 2, column 20. To select a different location, you must use a
different row number and/or a different column number. To write a different mes­
sage, you must change the argument to WRITE.

Constants can have the data types integer, real, string, or Boolean. A number with­
out a decimal point, such as 100 or-15, is an integer. A number with a decimal
point and a decimal part, such as 0.5 or 25. 93, is a real number. Most string con­
stants must be enclosed in double quotation marks (" "). A string constant used as
an argument to a WRITE or SPEAK instruction is the exception to this rule.

You can also define a named constant just as you can define a variable. For exam­
ple, in a lesson on calculating the circumference and area of circles, the real num­
ber 3.14159 is used in many calculations. You can enter this constant every time it
is required; but defining the named constant pi is easier. Then whenever you write
"pi" as an argument, the lesson uses the specified number.

Named constants are defined as follows:

DEFINE name= value

The data type of the value determines the data type of the named constant. The
constant pi in the following example is a real number.

DEFINE pi = 3.14159

2-7
Elements of VAX DAL

Functions

A function is a data manipulation that is built in to DAL. For instance, there are
mathematical functions for finding sines and cosines and string functions for find­
ing a character or a word in a student's response.

Functions consist of the function name and arguments. As with instructions, the
number and type of arguments depend on the function. The function INT convens
a real number to an integer. The argument, then, must be a real number. The system
variable SCORE contains the student's score as a real number. The function
INT(SCORE) returns the score as an integer.

Appendix B lists all system functions and their arguments.

Expressions

Expressions are combinations of constants, variables, functions, and operators.
The operators define the relationship of the other elements. When the lesson is exe­
cuted, expressions are evaluated.

Numeric operators perfonn arithmetic. The four numeric operators are:

,.. addition
Slbtraction
multiplication
division

A simple expression is x + y. When this expression is evaluated, the current value
of the variable x is added to the current value of the variable y. The expression can
be used as an argument. The instruction AT x + y first evaluates the expression,
then selects the address defined by the result of the evaluation.

In addition to numeric operators, there are also relational operators. The relational
operator<> means not equal to. The expression SCORE<> 100 is a Boolean
expression. SCORE is a system variable that contains the student's current score.
The expression is true when the score is any number except I 00, and false when the
score is 100.

The relational operator = means equal to. The expression RESPONSE = "Wash­
ington .. is a Boolean expression that is true when ·the string in the system variable
RESPONSE is equal to the string "Washington" and false when it is not. (The sys­
tem variable RESPONSE contains the student's most recent response.) The only
relational operators that can be used with a string are equal to (=) and not equal to
(<>).

2-8
Elements of VAX DAL

•• I
I
I
I
I
I

..
I
I
I
I,
I

-
I

•• I
I
I
I
I
I
~
I
I
I
I
I

-
I

The other relational operators that can be used with integer, real, and Boolean vari­
ables are listed below.

= equal to
<> not equal to
> greater than
> = greater than or equal to
< less than
< = less than or equal to

Boolean expressions are often used to define a condition to be tested.

Parentheses are used in expressions with the usual algebraic function of defining a
quantity.

Appendix D lists all operators and their order of precedence. Expressions are
explained throughout this manual when they appear in the examples.

Default

A default is a value used by the lesson unless one of the instructions in the lesson
overrides it. For example, the default color for the background color on a color
monitor is dark. When you use the instruction BCOLOR, you can override the
default to select a different background color.

SELECTING NAMES

The lesson and any lesson units, modules, variables, or constants require unique
names that you select. The choice of names is restricted by the following rules. If
you do not observe these rules, you cannot compile the lesson (see Chapter 6).

• Lesson name, module names, and unit names

The lesson name and all unit, condition unit, and module names can con­
tain only alphanumeric characters and can be no more than 31 characters
long. Names cannot begin with a dollar sign ($) or with the prefix DAL.
The lesson name, unit names, condition unit names, and module names
must be unique. They cannot be the same as the names of system variables,
user-defined variables, or system functions.

2-9
Elements of VAX DAL

• Variable names and constant names

Variable names cannot be longer than 32 characters. All variable names
must begin with a letter and can contain letters, digits, and the punctuation
mark underscore(-). The name of each variable used in the lesson must be
unique. Variables defined at lesson level can be used at lesson level and in
different units.

The rules for constant names are the same as the rules for variable names.

It is strongly recommended that the lesson name be the same as the name of the
source file containing the lesson instructions.

Although the rules allow you to name variables with the same names as system
variables and system functions, do not use these names. When the lesson is exe­
cuted, the system variables and functions always take precedence. If you use the
same names, your variables are not used.

The rules allow you to define variables with the same name at lesson level and in
different units. Variables defined at lesson level are available throughout the les­
son. Variables defined in one unit are available only in that unit. When a unit exe­
cutes, DAL first references the variables defined in the executing unit. If the
variable is not defined in the unit, the lesson references a lesson-level variable.

Any variables that are used both in the main lesson module and in separately com­
piled modules should be defined more than once. In one module, define the vari­
ables with the usage characteristic GLOBAL; in the other modules, redefine the
same variables with the usage characteristic EXTERNAL.

Generally, it is better to use different names for all variables. Then, as you are
writing the lesson, you always know whether you are using unit-level variables or
lesson-level variables.

Choose variable names that are easy to remember and have a clear relationship to
the infonnation stored in the variable. Relatively Jong variable names using the
underscore character are usually clearer than very short variable names. The varia­
ble name egg_size is clearer than the variable name egsz.

Because the dollar sign is used for many operating system names, it should not be
used in variable names.

2-10
Elements of VAX DAL

•• I
I
I
I
I
I

..
I
I
I
I
I

..
I

'• I
I
I
I
I
I
~
I
I
I
I
I

-
I

SYNTAX

Syntax is the required order and punctuation of DAL elements in a line of code.

Generally, a line of code begins with an instruction. The instruction is followed by
one tab or space character and by the arguments required for that instruction. The
arguments are separated by required punctuation marks. Spaces and tabs can be
used between arguments to make the code more readable. Do not begin a line of
code with a tab or space character.

You can enter comments in your code by beginning a line with either a semicolon or
an exclamation point, or by using two dollar signs after the arguments to an instruc­
tion. The semicolon, exclamation point, or dollar signs cause comments to be
ignored when the lesson is compiled. Since the code itself is abbreviated, com­
ments are a way of making the instructions easier to understand.

You can write instructions, variable names, function names, and keywords in
either uppercase or lowercase characters. Case is ignored. The instruction WRITE
is the same as the instructions Write or write. The variable name }Lcoordinate is
the same as the variable name x_coordinate.

Case is preserved in string constants and in text displayed with the WRITE
instruction.

The example below shows two lines of code. The symbol @ID represents the non­
printing character generated by the TAB key. The symbol CID represents the non­
printing character generated by the space bar. The symbol m represents the
nonprinting character generated by the RETURN key.

FCOLO~AGENTA(IDJ
LINE~00,1~;(ID5()0,1~

Each line begins with an instruction. Either the~ as shown or a CID is required to
separate an instruction and its arguments. The argument MAGENTA is a keyword
that selects magenta as the foreground (writing) color. Them at the end of the line
is required. In the second line, the two constants 300, I 00 are one argument defin­
ing the starting address of a line. The comma is a required syntax element. The CID
is optional, and makes the line easier to read. The second argument is 500, I 00 and
defines the ending address of the line. The semicolon between the arguments is a
required syntax element.

2-11
Elements of VAX DAL

Dot Indentation

Dot indentation is a special syntax element used with some instructions to show the
structure of a series of instructions . When dot indentation is required, the first char­
acter in a line is a period; and the second is a tab character.

For example, the LOOP instruction begins a series of instructions that is repeated
as long as the Boolean expression that is the argument to LOOP is true. The instruc­
tion ENDLOOP marks the end of the instructions to be repeated. The instructions
in between use dot indentation to show that they are inside the loop.

USING THE ELEMENTS OF VAX DAL

This section shows some lines in DAL and explains the elements and syntax.

As the instructions are discussed in the rest of the manual, the arguments they
require and their syntax is also explained. This information is also summarized in
the appendixes for easy reference. Appendix A lists all DAL instructions, includ­
ing those not discussed in this manual. Appendix B lists all system functions .
Appendix C lists system variables. Appendix D lists operators and operator prece­
dence for expression evaluation. Appendix E lists syntax symbols.

The following unit in DAL is a review unit that displays the score for one set of
arithmetic problems.

; Comment. The semicolons define these two
• lines as a comment.
1 Exckrnation poin1s also define lines as comments.
, Commen1s ore useful for authors, but hove no effect
I when the lesson is executed.

UNIT review $$ The dolble dolla sign indicates that
$$ what follows is also a comment. The instruction
$$ UNIT begins a oolt whose name is review.

ERASE $$ The ERASE Instruction erases the saeen.
IF NNO = 0

asE

ENDIF

PAUSE

2-12

AT 1020 $$ 1020 is a constoot, defines place to write.
WRITE Very good;

You got all the problems ~t.

AT 1020
WRITE YOll' score is <<S,INT(SCORE)>>.

$$ PAUSE is oo instruction to pause in the lesson
$$ ootil the student presses the return key.

Elemenfs of VAX DAL

•• I
I
I
I
.
I
I ..
I
I
I
I

I

•• I
I
I
I
I
I ,.
I
I
I
I
I

-
I

The instructions IF, ELSE, and ENDIF are part of a structure that requires dot
indentation as shown. The argument to IF is a Boolean expression consisting of the
system variable NNO, the operator =, and the constant 0. NNO contains the num­
berof wrong answers the student has given. When this expression is evaluated, it is
true if the number of wrong answers is equal to 0. When the expression used as the
argument to IF is true, the instructions between IF and ELSE are executed.

These instructions write the text that is the argument to the WRITE instruction.
There are two tab characters before the second line of text to be displayed. This is
the proper syntax for writing a block of text.

The instructions following ELSE are executed when the argument to IF is false:
that is, when the student gave at least one wrong answer. The argument to WRITE
uses the system variable SCORE (SCORE contains the student's total score). This
is a real number, so the function INT is used to convert it to an integer so that a
decimal point and zeros to the right of the decimal point are not displayed.
INT(SCORE) is the syntax for a function. The S and the double angle brackets
enclosing the function are the required syntax for specifying that the value of a
variable should be displayed.

The instruction ENDIF is the end of the sequence begun by IF. The dot indentation
shows this structure.

2-13
Elements of VAX DAL

•• I
I
I
I
I
I ..
I
I
I
I
I

-
I

:-
1

I

I

I
I
I
I

I
I
I
I
I

-
I

3
Writing on the Screen

All lessons display text on the screen, and many lessons display some form of
graphics. This chapter explains the following basic concepts that apply to all screen
displays:

• Screen addresses

• Current display attributes

• Displaying text on the screen

• Text sizes

• Color

• Modes

Chapter IO explains the graphics instructions used to draw pictures and the instruc­
tions for displaying italics and rotated text.

SCREEN ADDRESSES

Displays on the monitor screen consist of illuminated dots. Line graphics are drawn
by illuminating the dots for a circle, a box, or a line.

Characters are displayed as dots in a character cell. A character cell is like a child's
alphabet block. It is rectangular and consists of dots for the character- that is, for
A, a, B, b, and so on - and dots for the background. The entire character cell is
displayed. Either the dots for the character or the dots for the background can be
illuminated.

All instructions that display text or graphics on the screen require screen addresses.
To display a line, the addresses of the beginning of the line and the end of the line
are required. To draw a circle, the address of its center and the number of dots for
the radius are required. To display text, the address of the top left comer of the
character cell containing the first character in the string is required.

Screen addresses are specified in one of three coordinate systems. Row-and-col­
umn coordinates divide the screen into units the right size for a character cell. Fine
coordinates divide the screen into units the size of a displayable dot. Normalized
coordinates specify addresses as a proportional distance on the screen.

Row-and-Column Coordinates

Figure 3-1 shows the screen and the number of rows and columns. The screen is
divided vertically into 24 rows and horizontally into 80 columns. Rows are num­
bered from Oto 23 and columns from Oto 79. Each position on the grid is specified
by a row number and a column number. Each position is the right size for one size I
character cell. The text in Figure 3-1 is size 1, which is the default character size.

Most of the text in Figure 3-1 is displayed in normal mode. In normal mode, the
dots that make up the character are illuminated in the foreground color. The dots for
the rest of the cell are illuminated in the background color and, therefore, are not
visible. Figure 3-1 displays two characters in inverse mode so that the character
cell is visible. In inverse mode, the dots for the character are illuminated in the
background color and the dots for the rest of the character cell are in the foreground
color.

3-2
Writing on the Screen

•• I
I
I
I
'I
I

..
I
I
I

I

•• I
I
I
I
I
I
~
I
I
I
I
I

-
I

. .. - --- --w -

. _ .. ~~- -

i
~
~ 1inese two cnarac\er ~e1 Is are
~ lilt85e¥1Cl 868.
17 lhis line t egins at
B 1pw 7 colu~ n 9. I I
~ 'he address is 7&9.
11!1
11
12
13
4

LO row 1:i
~6
17
18
19
~
121
122

I DIUNn 191

~3
MA·S-2111-112

Figure 3-1
Row-and-Column Addresses

Text is displayed with the AT and WRITE instructions. The argument to the AT
instruction selects the screen address. The argument to the WRITE instruction
specifies the characters.

Row-and-column addresses are selected with a three- or four-digit number. The
rightmost two digits select a column. For columns below I 0, a leading zero must be
used. The left digit or digits select a row, and a leading zero is not necessary.

The following instructions display the text in Figure 3--1 .

AT
WRITE

AT
WRITE
LINE
AT
WRITE
BOX

7~
This llne begins at
row 7 column 9.
The address Is 7~.
1540
row15
1640;1647
2119
column 19
2119;2228

3-3
Writing on the Screen

AT
WRITE

MODE
AT
WRITE
AT
WRITE
MODE
PAUSE

5-5()

These two character cells are
at 850 and 860.
INVERSE
850
a
860
b
NORMAL

Row-and-column coordinates are usually used with text. Row-and-column coordi­
nates can be used with graphics, and are especially useful when the graphics are
closely related to the text.

With the graphics instructions, row-and-column addresses select the top left comer
of the character cell. The two addresses used with the BOX instruction above select
opposite corners of the box. As you can see from Figure 3--1, one comer of the box
is located at the top left comer of the character cell at row 21, column 19; the oppo­
site comer is located at the top left corner of the character cell at row 22, column
28.

The BOX instruction also illustrates the syntax for graphics instructions. The two
arguments to the BOX instruction specify opposite comers of the box - in this case
the upper left corner and the lower right corner. Because row-and-column
addresses specify the positions on the screen as one integer, there is no punctuation
in a row-and-column address. The semicolon separates the two addresses.

Fine Coordinates

Fine coordinates divide the screen into smaller units than row-and-column coordi­
nates. In fine coordinates, there are 480 vertical units, numbered from Oto 479.
Depending on the terminal model in use, there are either767 horizontal units num­
bered from Oto 766, or 799 horizontal units numbered from Oto 798. Table 3--1
lists the number of horizontal fine address units that each DIGITAL terminal model
supports.

3-4
Writing on the Screen

•• I
I
I
I
I
I

..
I
I
I
I
I

-
I

'• I,
I
I
I
I
I
~
I
I
I
I
I

-
I

Table 3-1: Horizontal Fine Address Units

GIGI (VK100) 767
VT125
DECmate II
DECmate Ill
Professional

VT240 799
VT241
Rairbow

Each horizontal address specifies one displayable dot. However. there are two
addresses for each displayable dot in the vertical direction. Each odd-numbered
address and the even-numbered address below it select the same dot.

The addresses in the horizontal and vertical directions divide the screen into units
of the same size. A line drawn horizontally from x-coordinates Oto I 00 is the same
length as a line drawn vertically from y-coordinates Oto 100. The actual length of
such a line depends on the size of the monitor.

Addresses in fine coordinates are given as two integers separated by a comma. The
first integer specifies the horizontal position (x-coordinate). The second integer
specifies the vertical position (y-coordinate).

Figure 3-2 shows the fine coordinate system.

3-5
Writing on the Screen

Ii' .., >-ulnr :l.lorl ,.J~I
~ ~

I\

The SCf'ej nil(jd esse! of t II! twt po1n s

~ 0t ~nil 1zon1 11 ar 'OW ar II!
I 25.~ and 741.~ I

I.,

11
W"

II! lfw= SCI -een - .35 ""ii -- UT tne l wpo nts c Wll! vert1 ..,a1

~ l"TOW, re 25 id 25, 51.

ll
'3

" lnll CWl~I IT UT flW Cl Cle '9l0W ~5 It :,c.;,, .. "'1.

Its radi~ IS is ~-

/
i,--,-..

'
-~

()
479 " --- ,/

Figure 3-2
Fine Screen Addresses

1be following instructions draw Figure 3-2 except for the grid. The grid lines are
50 units apart .

ERASE
WRITE 0 x-dlrection
AT 082
WRITE 767
AT 500
WRITE V

I
a

r
e
C
t
I

0
n

3-6
Writing on fhe Screen

•• I
I
I
I
I
I

..
I
I
I
I
I

..
I

•• I
I.
I
I
I
I
f'
I
I

I

AT
WRITE
VECTOR
VECTOR
AT
WRITE

VECTOR
VECTOR
AT

2300
479
350,20;25,20:0.05
350,20;695,20:0.05
430
The screen addresses of fhe two points

of the horizontal arrow are
25,20 and 7 40,20.

25,250;25,35:0.07
25,250;25,450:0.07
1010

WRITE The screen addresses of fhe two points of fhe vertical
arrow are 25,35 and 25,450.

AT 1530
WRITE The center of fhe circle below Is at 525,425.

Its radius is 50.
DOT 525,425
CIRCLE 525,425:50

In this example, row-and-column addresses are used with text, and fine addresses
are used with the graphics instructions. The graphics instructions show the syntax
for specifying addresses in fine coordinates.

The DOT instruction illuminates one dot and requires one address as its argument.
The x-coordinate and y-coordinate defining the address are separated by a comma.

The CIRCLE instruction also requires one address - the center of the circle - as
the first argument. The x-coordinate and they-coordinate are again separated by a
comma. The second argument is the radius, and it is given in screen dots. The
colon between the two arguments is the standard syntax for separating addresses
from other arguments to graphics instructions.

The VECTOR instruction draws an arrow. The VECTOR instruction requires three
arguments: the address of the tail of the arrow, the address of the point, and the size
of the arrow head. Each address consists of an x-coordinate and a y-coordinate
separated by a comma. A semicolon separates the two addresses. As with the
CIRCLE instruction, the colon separates the address arguments and other argu­
ments. The last argument to the VECTOR instruction specifies the size of the arrow
head as a proportion of the length of the arrow.

3-7
Writing on the Screen

Normalized Coordinates

With the normalized coordinate system, screen addresses are also specified in
x- and y-coordinates. Each coordinate, however, is a real number between O and
1.0. Normalized coordinates specify locations as a proportion of the total horizon­
tal distance across the screen or the total vertical distance down the screen.

Normalized coordinates are written as real numbers. The lowest number is 0.0.
The address 0.0,0.0 is at the top left comer of the screen.

Normalized fine coordinates are proportional: that is, 0.25 is one-fourth of the dis­
tance across the screen or down the screen and 0. 75 is three-fourths of the
distance.

The instruction LINE 0.0,0.0;0.5,0.0 draws a horizontal line from the top left cor­
ner of the screen to the dot at the top of the screen and half way across. The instruc­
tion LINE 0.0,0.0;0.0,0.5 draws a vertical line from the top left comer to the dot at
the left of the screen and half way down. Because the screen is not square, these
two lines are not the same length.

The instruction BOX 0,0;0. 999,0. 999 draws a box around the outside edge of the
displaying area on the screen. In normalized coordinates, the first two digits to the
right of the decimal point always make a visible difference in the location on the
screen. The x-coordinates 0.15 and 0. 16 specify different locations. The third digit
to the right can make a visible difference. The three y-coordinates 0.753, 0.754,
and 0. 755 specify the same location on the screen. The y-coordinate 0. 756 speci­
fies a different location.

3-a
Writing on the Screen

•• I
I
I
I
I
I

..
I
I
I I

I
I

-
I

I
I
I
I
I
~
I
I,
I
I
I

-

1t,,,,., "-1uracuon
Thia tax •t•rta •t t.1,t e.
The top ef't corner of' th box ia 1t t,12,1 ,2!5,
The bott ~ right corner i at t,32,t, 79.

I ------,
I
I
I

This text starts at e.4,0.4. The c:haracter cell
below is 1t e.!J,e !5.

I
The center of' thE circle is at
&. 79,t. 79, lb radius is 2t,

la,t t.999

I I
I

'- The out I ne of' the screen
1s arawn ~ """ 1ns~ruc~1 ,.,
eox e.e,1t.e;e,999,e,999,

Figure 3-3
Normalized Screen Coordinates

0

MR-S-2113-82

The following instructions draw Figure 3-3 except for the grid. In this figure the
grid in both directions shows the locations of the 0.0, 0.2, 0.4, 0.6, and 0.8 nor­
malized addresses.

ERASE
WRITE
AT
WRITE
AT
WRITE
AT
WRITE
AT
WRITE

MODE
AT
WRITE
MODE

0.0,0.0
076
0.999,0.0
2300
0.0,0.999
2374
0.999,0.999
0.4,0.4
This text starts at 0.4,0.4. The character cell
below is at 0.5,0.5.
INVERSE
0.5,0.5
C
NORMAL

x-direction

3-9
Writing on fhe Screen

AT
WRITE

PATTERN
BOX
PATTERN
AT
WRITE

aRCLE
AT
WRITE

BOX

0.1,0.05
This text stats at 0.1,0.05.
The top left comer ot the box is at 0.12,0.25.
The bottom right comer Is at 0.32,0. 75.

DASH
0.12,0.25;0.32,0. 75
SOLID
0.6,0.6
The center ot the circle Is at
o. 75,0. 75. Its roolus is 20.
0.75,0.75:20
0.3,0.75
The outline ot the screen
is ctawn by the Instruction
BOX 0.0,0.0;0.999,0.999.
0.0,0.0;0. 999,0.999

Screen Address Summary

The syntax of the arguments for screen addresses detennines the coordinate sys­
tem. You are responsible for specifying addresses that are on the screen. DAL dis­
plays text and graphics at the location you specify. There is no check to determine if
this location is visible on the screen.

You can use any of the three coordinate systems with any of the graphics instruc­
tions and with the AT instruction to select a location for writing text. The form of
the arguments to these instructionsdetermines the coordinate system.

In row-and-column coordinates, each address required by the instruction is a three­
or four-digit integer. The two rightmost digits select the column, and the left digit
or digits select the row. Row-and-column coordinates used with graphics instruc­
tions select the dot at the top left comer of the character cell.

In fine coordinates, each address is specified by two integers separated by a
comma. 1be first integer is the x-coordinate. The second integer is the y-coordi­
nate. The instruction AT 100,50 selects the position 100 dots to the right and 50
dots down from the top left comer of the screen. When an instruction requires two
or more addresses, the x- and y-coordinates for each address are separated by a
semicolon. When fine addresses are used for displaying text, the top left comer of
the character cell is at the specified address.

3-10
Writing on the Screen

•• I
I
I
I
I
I ..
I
I
I
I
I

-
I

•• I
I
I
I
I
I
f'
I
I
I
I
I

-
I

To convert from row-and-column addresses to fine addresses, multiply the row
number by 20 to determine the y-coordinate. Multiply the column number by 9 to
determine the x-coordinate. For example, the row-and-column address 1020 con­
verts to the fine address 180,200. Column 20 • 9 equals the x-coordinate. Row IO•
20 equals they-coordinate.

In normalized fine coordinates, each address is specified by two real numbers
(numbers with a decimal point) between 0.0 and 1.0. The first number is the x­
coordinate. The second number is they-coordinate. Normalized coordinates spec­
ify a proportion of the total distance across the screen and down the screen.

The x-coordinate and they-coordinate that select one address must be both integers
or both real numbers. You cannot mix coordinate systems in one address. When an
instruction requires more than one address, however, each address can use a differ­
ent coordinate system.

The following instructions are acceptable:

BOX 0,0; 0.999,0.999

LINE 300; 0,400

SS Fine coordinates (integers) for
SS upper left comer: normalized
SS coordinates (real numbers)
$$ tor lower right.

SS Row and colurm coordinates (one
SS integer) for beglmlng of line;
SS fine (two integers) for end.

The following instruction is not acceptable.

AT 100,0.5

CURRENT ATTRIBUTES

SS x-coordinate is integer; y-coordinate
SS is real number. Mixes fine and
SS noonalized coordinates in one address.

The concept of current values of attributes is important for writing text and graph­
ics on the screen. There are a number of attributes for all displays. The screen itself
is a color - the current background color. The text or graphics is a color - the
current foreground color. Text is a size - the current text size. Displaying anything
on the screen changes the current location. When a lesson begins, these attributes
have a default current value. Instructions in the lesson change the values. Subse­
quent displays then use the new current values.

~11
Writing on the Screen

When a WRITE instruction is executed, the text begins at the current location. The
characters are displayed in the current text size, foreground color, and display
mode.

Figure 3-4 shows some text in different sizes and display modes.

u·s 1ns rue 1on uung ;au
location, text size, cilsplao:, NOde, and

1 t1ng color.This is size 2 text. It beg.ins
t the current location.

b~te OVERLAY ~ode is the de~ault.
b"te REPLACE IIOde ernes the

eel I befoNt writing,

Figure 3--4
Curent Location, Size, and Mode

The following instructions draw Figure 3-4.

WRITE First WRITE instruction using default
location, text size, display mode, crd
writing color.

SIZE 2
WRITE This is size 2 text. It begins

at the ClMTent location.

AT 1010
MODE INVERSE
FCOLOR YEUOW
WRITE Now the display mode is different.
MODE NORMAL

3-12
Writing on 1he Screen

Wl·S-2114-82

•• I
I
I
I
I
I ..
I'
I
I
I

I

•• I
I
I

I
I
f'
I
I
I
I
I

-
I

AT 1502
WRITE be
AT 1504
WRITE the OVERLAY mode is the default.

AT 1702
FCOLOR WHITE
SIZE 1
MODE REPLACE
WRITE be
AT 1703
WRITE the REPLACE mode erases the

cell before writing.
BOX 0,0;0.999,0.999

Consider the idea of the current text size, and look at the order of instructions.
When a lesson begins, size I is the current text size by default. Because there is no
SIZE instruction before the first WRITE instruction, the first text is written in size I
characters. The instruction SIZE 2 changes the current text size to size 2. Because
size 2 is now the current text size, the WRITE instructions following the SIZE 2
instruction write text in size 2 characters. The SIZE I instruction later in the lesson
again changes the current text size to size I . Because the current size is now size I,
the WRITE instructions following the SIZE I instruction write text in size I
characters.

The same idea of a current value applies to the location, the display mode, the writ­
ing color, and other attributes of screen displays.

Current location

The current state of most graphics attributes changes only when the appropriate
instruction is executed. The SIZE instruction changes the current text size; the
FCOLOR instruction changes the current foreground color, and so on. The current
location is the exception. The current location changes whenever a WRITE instruc­
tion or any graphics instruction displays text or graphics on the screen.

When a lesson begins, the current location is the top left corner of the screen. The
AT instruction sets the current location to the address specified. The text displayed
by the next WRITE instruction begins at the current location.

3-13
Writing on the Screen

The instructions that draw Figure 3-4 show how the current location works with
text. Because there is no AT instruction before the first WRITE instruction, the text
specified by the first WRITE instruction begins at the default current location,
which is the top left comer of the screen. As each character is written, the current
location changes. After each character, the current location is the top left corner of
the next character cell.

Between the first and second WRITE instructions, the current text size changes,
but the current location does not. There is no AT instruction. So the text displayed
by the second WRITE instruction begins at the current location, which is the top
left comer of the next character cell to the right of the last character on the screen.

The instructions that draw Figures 3-2 and 3-3 show another instruction that
changes the current location. Both sets of instructions begin with an ERASE
instruction and a WRITE instruction. There is no AT instruction in between. The
ERASE instruction with no arguments erases the entire screen and sets the current
location to 0,0, so the next WRITE instruction begins writing at the top left corner.

All graphics instructions also change the current location. With LINE, BOX,
CURVE, and VECTOR, the current location after the figure is drawn is the last
point displayed. With CIRCLE, the current location is the center of the circle. If
you display text after a graphics instruction, the first text cell begins at the current
location.

DISPLAYING BLOCKS OF TEXT

In the examples above, there are several WRITE instructions that are followed by
more than one line of text. These lines actually contain the characters @ID and ffirn.
If you could see these characters, the instructions to write a block of text would
look like this:

AT~1~
WR!TEO'AIDFirst lineffirn
tm)Secondli~

After you have specified one line of text, you can continue the same block by using
the~ to line up the second and subsequent lines.

~14
Writing on 1he Screen

•• I
I
I
I
I
I

..
I
I
I
I
I

-
I

..
I
I
I
I
I
I ,,
I
I
I
I

I

The AT instruction sets a left margin for a text block as well as specifying the cur­
rent location. In Figure 3-4, the first text block begins at location 000 (row O and
column 00). Because there is no AT between the first two WRITE instructions, the
first character of the second text block is displayed at the current location, which is
the top left corner of the next character cell to the right of the last character on the
screen. The second line of the second block, however, begins at column 00. Since
the left margin has not been reset, the second line of text begins at the current left
margin.

To display a blank line in a text block, the line in the source file must have at least
one character. Use a TAB or a space. Completely blank lines are ignored when the
lesson is compiled.

The syntax for a WRITE instruction inside a structure that requires dot indentation
is shown below. The period is used only on the line with WRITE. Lines of code
that specify text for the rest of the block require the ~ character for spacing, but
cannot have a period. If the WRITE instruction follows dot indentation (as it does
in the example shown below), indent the continuation lines such that the continued
text starts directly below the first line of text.

The following example shows two levels of dot indentation.

LOOP TEST < 10
DO QUESTION
IF SATISFIED = 1

ELSE

ENDIF
ENDLOOP

WRITE Very good.

WRITE You missed that one.
Take a little more time
for the next one.

DISPLAYING VARIABLES

The WRITE instruction can also display the value of a variable or an expression.
The syntax is:

WRITE <<S,varlable_name>>
WRITE <<T,variable_name,TD,RD>>

The double angle brackets indicate that the current value of the variable is to be
displayed. The character following the angle brackets is a format selector. There
are two formats: string format selected by the S, and tabular format selected by the
T.

3-15
Writing on the Screen

Figure 3-5 shows variables displayed in both formats.

STRING FCRiAT

orwtwo
ona, two, ind tl'rft

one
two
thra

Tha answer is one,

t:S in stril\f forut

1 ... 25

real~ in
stril\f forMt
1.!525Mt 71.5""

Figlr'e 3-5
Displaying Vaia:>les

TAaLM FCRiAT

1... 25
1... 25

Tha rulllber 1 ... is too biS to
fit in J character positians
Tlbular fCINllt trunc.tn diSits
after tt. deciul point or adds
nros to Met tt. forNt,

1.!12 1,!I
7t.!lt 7t,!I

MR•S-2117-82

The following instructions draw Figure 3-5. The first five WRITE instructions
show string format with string variables, integer variables, and real variables. The
last three WRITE instructions show tabular format with integer and real variables.

LESSON
ERASE
DEFINE
ASSIGN
ASSIGN
ASSIGN
AT
WRITE
AT
WRITE

~16

wrltplc

strtng1 ,strtng2,string3:strlng
string1 : = ·one·
strlng2 : = iwo·
strlng3 : = "ttYee·
101
STRING FORMAT
301
< <S,strtng1> >< <S,string2> >
<<S,strlng1>>, <<S,string2>>, ald <<S,strlng3>>

Writing on 1he Screen

•• I
I

I
I
I

..
I
I
I
I

I

••
AT 801
WRITE < <S,strlng1 > >

<<S,strlng2>>
<<S,strlng3>>

I AT 1301
WRITE The answer Is < <S,strlng1 > >.

DEFINE lnt1 ,lnt2:lnteger

I ASSIGN int1 := 1000
ASSIGN lnt2 := 25

I
AT 1501
WRITE integers In string format

< <s,lnt1 > >< <s,lnt2> >
<<s,lnt1>> <<s,lnt2>>

I
DEFINE reaI1,real2:real
ASSIGN real1 : = 1.525
ASSIGN real2 : = 70.5

I AT 2001
WRITE real numbers In

string format
<<s,real1>> <<s,real2>>

I AT 140 ,. WRITE TABULAR FORMAT
AT 340
WRITE < <T,lnt1 ,5,0> >< <T,lnt2,5,0> >

< <T,lnt1, 7,0> >< <T,lnt2, 7,0> >

I
AT 640
WRITE The number 1000 is too big to

fit In 3 character posit1ons.
< <T,intt ,3,0> >

I AT 1040
WRITE Tabular format truncates digits

ofter the decimal point or adds

I zeros to meet the format.
<<T,real1,5,2>><<T,real1,10,1>>
<<T,real2,5,2>><<T,reaI2,10,1>>

I
BOX 0,0;0.999,0.999
PAUSE
ENDLESSON

I

- 3-17
Writing on the Screen

I

Variables can be displayed as part of a text string or a text block. In string format,
no spaces are inserted before or after the variable. The first WRITE instruction in
the example displays two lines of text. In the first line, there are no spaces between
the angle brackets for the two variables. In the second line, there are commas,
spaces, and a word between the variables. Figure 3-5 shows the difference in the
two displayed lines.

String format can also be used to display integer and real variables. No spaces are
inserted between variables.

Tabular format specifies spacing for both integer and real variables. For real vari­
ables, tabular format also truncates or adds zeros to the right of the decimal point.

Tabular format requires two arguments after the variable name. The first argument
specifies the total number of columns reserved for the number, including a column
for a minus sign. For real numbers, the total number of columns also includes a
column for the decimal point. The total number of columns begins at the current
location. The number is right justified, and columns on the left are filled with
spaces.

The second argument specifies the number of digits to the right of the decimal
point. For integers, this argument is O; by definition, integers are whole numbers
and have no fractional part. Real numbers either are truncated or have zeros added
to display the specified number of digits.

If the number is too big to be displayed in the specified number of digit positions,
the lesson displays an asterisk in each digit position.

TEXT SIZE

Figure 3-4 shows text in size 1 and size 2. Size 2 characters have the same propor­
tions as size 1 characters. The instruction SIZE 2 has one integer as its argument,
and changes both the height and width of the characters.

Size 1 is the default character size. Whenever the SIZE instruction is executed with
only one argument, resulting text characters have the same proportions as size I
characters.

You can also specify two numbers to change the height and width independently.
This lets you display tall, narrow characters or short, wide ones. Figure 3-6 shows
some possible text sizes.

3-18
Writing on the Screen

•• I
I
I
I

I
..

I
, ,

I
I
I

-
I

•• I
I
I
I
I
I
f'
I
I
I
I
I

-
I

These characters are the defau lt size L

I I I I I
This is size 2.

I I I I I

S i z e 4 , 9 -+----+---+---+---+----1---+---1= -

Figure 3-<>
Text Sizes

I I I I

SIZE
5 -----------------4 I

5 _. 5 --------

MA•S-2115-82

The two fonnats for the SIZE instruction are:

SIZE size
SIZE x-slze,y-size

If the SIZE instruction is executed with only one value as its argument, the value
specifies the x-size (width) of subsequent text characters. The height of the charac­
ters is calculated from the default y-size associated with that x-size. Default y-sizes
associated with x-sizes I through 16 are listed in the table below.

~19
Writing on the Screen

Table 3-2: Default Character Heights

0

2
3

s
6
7

2

s
6
8
9

2

9
0

12
3

If the SIZE instruction is executed with two arguments, the first argument specifies
x-size, and the second specifies y-size for subsequent characters.

The two ways of specifying size do not result in characters that are the same dimen­
sion. This is true even when the same integer is used for size and for both x-size and
y-size. The width of the characters is the same, but the character heights are differ­
ent. Figure~ shows characters specified as SIZE 5 and SIZE 5,5. The size 5
characters have the same height:width proportions as the default size I characters.
The size 5,5 characters are shorter in proportion to the width.

Text character height and width are calculated in the same units as fine addresses.
Width is the value specified as the x-size multiplied by 9 units. Height is the value
specified as the y-size multiplied by 10 units. Using these formulas, the instruction
SIZE 3,4 produces text characters 27 (3 * 9) units wide and 40 (4 * 10) units high.
The instruction SIZE 4 produces characters 36 units wide and 60 units high
(because the default y-size associated with size 4 is 6). Character dimensions in fine
address units (pixels) are listed in the table below.

3-20
Writing on fhe Screen

•• I
I
I
I
I
I

..
I
I
I
I

I

•• I
I
I
I
I

I
I
I
I
I

-
I

Table 3-3: Character Dimensions In Fine Address Units

n

0 9 0 0 9 0
1 9 2 20 9 10
2 18 3 30 18 20
3 27 5 50 27 30
4 36 6 60 36 40
5 45 8 80 45 50
6 54 9 90 54 60
7 63 11 110 63 70
8 72 12 120 72 80
9 81 14 140 81 90

10 90 15 150 90 100
11 99 17 170 99 110
12 108 18 180 108 120
13 117 20 200 117 130
14 126 21 210 126 140
15 135 23 230 135 150
16 144 24 240 144 160
17 I 170
18 I 180
19 I 190
20 I 200
21 I 210
22 I 220
23 I 230
24 I 240
25 144 250

Remember that row and column addresses specify locations that are the right size
for size I characters. After you select a different size, the horizontal spacing and
the vertical spacing for the next text or text block is appropriate for the new size.
When you use the AT instruction to set a new current location, you must calculate
the location so that you do not write over text you have already displayed.

3-21
Writing on the Screen

Figure 3-7 shows text in three sizes. The grid on this figure marks every IO col­
umns and every 5 rows.

This size 1 text begins at location 101. I
The character cell (5 at liian 145. ,

15 This size 2 text begins at
location 515. The character
cell is at location 710.

--~•otice that the address 710-+-------1
re~ers to rows and colu~ns
~or size 1 characters.

Flgu'e ~7
Changing Text Size

MR-S-2116-82

Look at the size I text and the size 2 text in the center of the figure. Three rows of
size I text require the same vertical space as two rows of size 2 text. This relation­
ship can be calculated from Table 3-3. Each size I character is 20 units high. Each
size 2 character is 30 units high. Multiplying the number of units per row by the
number of rows results in 60 units in both cases.

The inverse characters at the bottom of Figure 3-7 are size 3. Size 3 characters are
50 units high. These characters are displayed at row 19. To display more characters
below them, you need to calculate the row. The rows in row-and-column addresses
are 20 units high, so each size 3 character uses two and one-half rows. You have
two choices. You can use three rows and specify row 22, or you can calculate the
address in fine coordinates.

The row-and-column address of the size 3 character X is 19 I 0. In fine coordinates,
the address of the top left comer of the character cell is 90,380. The x-coordinate
equals the column* 9. They-coordinate equals the row* 20.

3-22
Writing on the Screen

•• I
I
I
I
I
I

..
I
I
I
I
I

ea
I

•• I
I:
I
I

I
I

-
I

Size 3 characters are 27 units wide. To display the next character to the right of the
X, add 27 to the x-coordinate. The address is 117,380. Size 3 characters are 50
units high. To display the next character below the X, add 50 to they-coordinate.
The address is 90,430.

USING COLOR

Two current colors are al ways used for displaying text and graphics on the monitor.
The color of the screen is the background color, and the writing color is the fore­
ground color.

The default background color is DARK. The instruction BCOLOR changes the
background color. The entire screen changes color as soon as BCOLOR is
executed.

The instruction FCOLOR sets a new current foreground color. After an FCOLOR
instruction is issued, the text and graphics that follow are displayed on the screen in
the current foreground color. Text and graphics already on the screen do not change
color.

At lesson startup, the VAX DAL color system is initialized with the eight colors
listed below.

Color Name Number

DARK 0
BLUE I
RED 2
MAGENTA 3
CYAN 4
GREEN 5
YELLOW 6
WHITE 7

Each of the DAL-provided colors can be specified either by name or by number in
an FCOLOR or BCOLOR instruction. If the lesson is displayed on a black-and­
white monitor, the colors and numbers select shades of gray from darkest to
lightest.

Chapter 12 in this manual discusses how to use VAX DAL instructions to take full
advantage of the color capabilities of a terminal. This may involve using as many
as 56 additional colors.

~23
Writing on the Screen

The CCOLOR instruction clears DAL's internal color table. The DAL color table
limits the number of colors available for use to the number of colors that can be
supported on the tenninal screen at the same time. CCOLOR is useful for tenninals
that can employ only a limited number of colors simultaneously. If you specify
three writing colors and a background color on a four-color tenninal, and you want
to use a color you have not already specified, you can use the CCOLOR instruction
or an FCOLOR instruction with a table-sloLnumber argument to stop using one of
the current colors and start using the new color. To stop using a color, execute a
CCOLOR instruction with the same parameters that the BCOLOR and FCOLOR
instructions use.

CCOLOR also accepts the keyword ALL to clear the entire color table. After a
CCOLOR ALL is issued, there is no current writing color. A new color must be
specified; otherwise, results are unpredictable.

The color DARK specifies that the screen is not illuminated. On both black-and­
white and color monitors, the student can alter the screen from black to gray with
the brightness and contrast controls on the monitor.

DISPLAY MODES

The current display mode affects the way text and graphics are displayed on the
screen.

The MODE instruction selects the current display mode. The argument to the
MODE instruction is a keyword that describes the mode. Three mutually exclusive
pairs of keywords are explained here. Two other modes are explained in Chapter
10.

Table 3-4 summarizes three mutually exclusive pairs of keywords used as argu­
ments to the MODE instruction.

3-24
Writing on the Screen

I
I
I

..

I

•• I
I
I
'I
I

I
I
I
I
I

-
I

Table 3-4: Mode Keywords

NORMAL INVERSE

OVERLAY REPLACE

FIXED.BUNK

The keyword NORMAL displays graphics and the dots for
characters In the foreground color, with the rest of the char·
acter cell In the background color. The keyword INVERSE dis­
plays graphics and the dots for characters In the
background color, with the rest of the character cell in the
foreground color. The keyword INVERSE must be used with
care with graphics. In some cases, graphics are not dis
played when the INVERSE mode IS In effect. The default IS
NORMAL.

The keyword OVERLAY displays text and graphics over any
thing already displayed. The keyword REPLACE first erases
the dots for the new graphics or text, then displays the new
graphics or text. The default Is OVERLAY

The keyword BLINK causes text and graphics to alternate
between the foreground color and DARK. The keyword FIXED
does not blink the display. The default is FIXED. Note that blink
mode does not work on all types of terminals.

In addition to using the MODE instruction with keywords, authors can use system
constants with the MODE instruction to change display modes. For example, a
MODE INVERSE instruction has the same effect as a MODE M_INVERSE
instruction. The following system constants can be used instead of the MODE
keywords:

3-25
Writing on the Screen

Table 3-5: Mode System Constants

NORMAL M_Normal

INVERSE M_lnverse

OVERLAY M_Ovef1ay

REPLACE M_Reploce

FIXED M fixed

BLINK M-8 nk

All figures in this chapter except 3-2 and 3-5 show both inverse and normal
modes.

The difference between the grids in Figures 3-1, 3-2, and 3-3 and the grids in
Figures 3-6 and 3-7 illustrate overlay mode and replace mode.

In Figures 3-1, 3-2, and 3-3, the grids are displayed first, then the rest of the illus­
tration is drawn in overlay mode. Notice that the characters and the grid are both
displayed, even when the characters are on the grid lines. In Figures 3-6 and 3-7,
the text is displayed in replace mode. Notice that the grid is erased under the char­
acter cells.

Figure ~ also shows how overlay mode can be used to write a circumflex over a
word.

There are three current modes selected by one keyword from each of the pairs listed
in Table~- Displays are in fixed, normal, and overlay modes, or blink, normal,
and replace modes, or any other combination of one mode from each of the mutu­
ally exclusive pairs. Remember that blink mode does not work on every type of
terminal.

3-26
Writing on 1he Screen

•• I
I
I
I
I
I

..
I
I
I
I

I

•• I
I
I
I
I
I ..
I
I
I
1 1

I

-
I

•• I
I
I
I

I
I

I
..

4
Default Response Judging

With the AT and WRITE instructions explained in Chapter 3, you can display
explanations and questions for the student to answer. This chapter explains the
instructions that read the student's response and judge it. This chapter discusses
default response judging. The complete lesson in Chapter 5 and all of Chapter 8
discuss modifications to the default response-judging process.

THE RESPONSE-JUDGING BLOCK

A response-judging block reads the student's response from the keyboard and
judges it.

In the response-judging block, you specify as many anticipated right answers and
wrong answers as are appropriate for the question. After each right or wrong
answer, you can include instructions that are executed only if the response matches
that answer. These are called response-contingent instructions. Then you indicate
the end of the block.

The QUERY instruction begins a response-judging block; the ENDQ instruction
ends it. The RIGHT instruction specifies right answers. The WRONG instruction
specifies wrong answers.

4-1

The following instructions show a response-judging block.

QUERY
RIGHT Harriet Beecher Stowe

response-contingent Instructions
RIGHT Louisa Moy Alcott

response-contingent Instructions
WRONG Aimee Senl>le McPherson

response-contingent Instructions
ENDQ
next instruction

Only one response-judging block is allowed at lesson level and in each unit.

QUERY

When the QUERY instruction is executed, the lesson displays the default prompt
character, the right angle bracket (>), then pauses until the student types a
response. The response ends with the default delimit character (m'J, which is trans­
mitted by the RETURN key.

The location of the prompt character depends on the argument to the QUERY
instruction. When QUERY has no argument, the prompt character is displayed at
the left margin and one line below the last displayed text. An asterisk (*) as the
argument displays the prompt character one space to the right of the last displayed
text. A screen address as the argument displays the prompt character at that
address.

4-2
Default Response Judging

•• I
I

I ..
I
11

I
I
I

-

•• I
1,

I
I

I
I
I

I

Figure 4-1 shows the arguments to QUERY and their results.

Here is ii quution. Hera is ilf10ther c,Jation.
The instruction
llERY •
disp 1 aiis U• pra1pt

The pmip\ character
below is displii!t-' bid
the instruction IIERY,
>student's response c:harac:ter to the right)raponH

Figure~1

Here is the third -,iution, The
pmip\ character is dispJ..,-, bid
the instruction Ot.£RY 192!5

>n>U11r response

The QUERY lnstructlon

MR-S-2118-82

Figure 4-1 also shows responses. Each character of the response is echoed as the
student types it. The echoed response begins in the character position to the right of
the prompt character. The prompt character and the student's response are dis­
played in the current text size.

When the student presses the RETURN key, the response is read.

4-3
Default Response Judging

RIGHT and WRONG

The RIGHT instruction specifies anticipated right answers. The WRONG instruc­
tion specifies anticipated wrong answers.

The response is compared to each specified right and wrong answer in the order
they are specified. The first match determines what happens next, and all following
RIGHT and WRONG instructions are ignored. If the response matches a right
answer, it is scored with a value of I. Any response-contingent instructions follow­
ing the RIGHT instruction are executed. The lesson goes to the ENDQ instruction
and continues from that point.

If the response matches a wrong answer, any response-contingent instructions fol­
lowing the WRONG instruction are executed. Then the lesson erases the student's
old response and returns to the QUERY instruction. The QUERY instruction dis­
plays the prompt character and waits for a new response. Judging is repeated.

If the response matches none of the anticipated answers, the response is judged
wrong. The lesson erases the old response and returns to the QUERY instruction.

By default, a response-judging block ends only when the student enters a response
judged right.

Figure ~2 shows the transfer of control after responses judged right and responses
judged wrong.

,-+IIERY
I RIGHT
I
I •

I •

RIGHT

,. -·~ I
I •
I •

ENOO

one
responsa-cont1ngwrt
instructi0n5
two
response-continga,t
1nstructions
three
response-cont in!Jent
instruct ions

response-contingent
instructiCl'IS

Figlwe 4-2
Response-Judging Block

4-4
Default Response Judging

IJisp/4!1 p,r111110t dw' 11d l,l,IJ t l'or ~­
Is re,or,ns, ""'·"
JES.• £neut, ,wpons,-r:ontill,fl!r1t instructims.
Ao.• Tt!Sf JVKt IISWr,
Jsr,spons,twl
J'FS.• Ex«.YJte ,wpons,-r:ontin.,ent instructims.
Ao.· Tt!St ntUt 4'1SMN',

Isrnponse fhfw"
fFS.• Ex«.YJte ~IJ~t instnK'tJms.
Ao.' Test /IIIXt ons,,,er.
.4'&' resptnSe Mldles.
£xea1te ,~t:011tin.,ent instrut:tions.

MR•S-2119-82

•• I
I
I
I
.I
I

..
I
I
II

I
I

-
I

•• I
ii

I
I
I
I
~
.I
I
I
I
I

-
I

Several RIGHT instructions and WRONG instructions can be included in one
response-judging block. Several answers can also be specified with one RIGHT or
WRONG instruction.

The response-judging block above shows one argument to each of the RIGHT
instructions and to one WRONG instruction. The other WRONG instruction has no
argument. The response "one" matches the answer specified by the first RIGHT
instruction. The response "two" matches the answer specified by the second
RIGHT instruction.

Because each RIGHT and WRONG instruction can be followed by response-con­
tingent instructions that are executed only when the response matches that specified
answer, specifying each anticipated answer separately allows the feedback to be
different for each response. Several answers can also be specified with one RIGHT
or WRONG instruction. The answers are separated by a vertical bar (I) as shown
below.

RIGHT Plato I Aristotle I Socrates
response-contingent Instructions

In this case, the same response-contingent instructions are executed if the response
matches any one of the three answers.

The RIGHT and WRONG instructions can have no argument. In this case, any
response matches. It is often useful to use WRONG with no argument at the end of
a response-judging block. Then feedback can be displayed for a response that did
not match any of the anticipated answers.

DISPLAYING FEEDBACK

DAL lessons do not display any feedback automatically, nor do they pause in a
response-judging block except at the QUERY instruction.

Two instructions provide simple feedback. The MARKUP instruction displays the
word OK after a response is judged right or the word NO after a response is judged
wrong. The PAUSE instruction stops execution of the lesson until the RETURN
key is pressed so the student has time to read the feedback.

The following response-judging block uses MARKUP and PAUSE.

4-5
Default Response Judging

QUERY
RIGHT Socrates I Aristotle I Plato

MARKUP
PAUSE

WRONG
MARKUP
PAUSE

ENDQ

If the student's response is Socrates, Aristotle, or Plato, the word OK is displayed
two spaces to the right of the response. The lesson pauses until the student presses
the RETURN key, then continues at the ENDQ insttuction.

If the student's response is anything else, the word NO is displayed. The lesson
pauses until the student pre ses the RETURN key. The response is judged wrong,
so the lesson erases the response and the word NO. Control returns to the QUERY
instruction, which displays the prompt character and pauses until the student enters
a new response.

The PAUSE instruction can be used any place in the lesson. It is not restricted to
response-judging blocks. All answers do not require the PAUSE instruction. After
a response matches a right answer, instructions following the ENDQ instruction
can display feedback. Because of the default processing, the PAUSE insttuction is
usually included in the response-contingent instructions after WRONG. Figure ~3
shows the results of the MARKUP instruction.

,._ • ,,. flhilQMlfher,
>Willai11 J-.s t«l

Nae • ,,_ philQSOfNf',
>Aristotl• (IC

MR•S-2120Q

You can display any feedback you want by using AT and WRITE instructions after
each RIGHT and WRONG instruction. In this case, you must also erase the
feedback.

The following response-judging block displays the student's response as part of the
feedback for a wrong answer.

4-6
Default Response Judging

•• I
I
I
I
I
I

..
I
I
I
I
I

-
I

•• I
I
I
I
I
I
f'
I
I

I

-
I

QUERY
RIGHT Aristotle I Plato I Socrates

MARKUP
PAUSE

WRONG
AT 1510
WRITE <<$,RESPONSE>> is not a Greek philosopher.

Press RETURN and try again.
PAUSE
ERASE 1510:2480

ENDQ

The system variable RESPONSE contains the student's response. If the response is
wrong, the preceding instructions display the response and the rest of the text, then
pause. When the student presses the RETURN key, the lesson erases the screen
from row 15, column 10 to row 24, column 80.

Because the student's response matched a wrong answer, the response is erased
automatically. The prompt is displayed again, and the lesson waits for a new
response . If the student's new response is not one of the three names specified as
right answers, the response is erased, the prompt is displayed, and so on.

After the student enters a response, the lesson changes the current location. When
WRITE is used without a preceding AT in response-contingent instructions, the
text begins two rows below the first character of the response. The spacing is
appropriate for the current text size.

SPECIFICATIONS FOR MATCHING

The student's response and the specified answer do not need to be identical to be
judged as matching.

By default, differences in uppercase and lowercase characters are ignored. Most
punctuation marks in the specified answer and the response are ignored. The excep­
tions are the apostrophe, the hyphen, the dollar sign, and the underscore. These
punctuation marks are considered part of the word. A spelling tolerance test is
applied to each word in the response, so that mistyped or misspelled responses
match if they meet the requirements of the tolerance test.

By default,the response cannot contain fewer words, more words, or the same
words in a different order.

The instruction line below specifies a right answer.

RIGHT Louisa May Alcott

4-7
Default Response Judging

The following responses match. although they are not identical:

Louise Moy Alcot (misspelled)
loulsa May alcott (different uppercase letters)
Louise may. Alcott (misspelled ood has punctuation)

The following responses do not match:

Mrs. Louise May Alcott (extra word)
Moy Louisa Alcott (words in different order)
Louisa Alcott (missing word)

The SPECS instruction can be used to modify default response judging. See Chap­
ter 8 in this guide for more information about the SPECS instruction.

4--8
Default Response Judging

•• I
I
I
I
I
I ..
I
I
I
II
I

-

•• I

I
I
I
fl

5
Creating a Simple Lesson

This chapter presents one lesson written in VAX DAL. The chapter explains the
division of a lesson into lesson-level instructions and units, and traces the control
logic that determines the order in which instructions are executed. The chapter also
discusses defining variables, assigning values to the variables, and using system
variables.

The lesson uses the graphics instructions explained in Chapter 3 and the response­
judging instruction explained in Chapter 4. The specific uses of these instructions
in the sample lesson are explained.

The lesson used throughout this chapter as an example is named Multiply. This
lesson lets students choose whether to review multiplication tables or to practice
multiplication problems. The complete listing of the lesson is in Appendix F.

You should execute the lesson before reading this chapter. This will make the infor­
mation presented here easier to understand. You will be able to compare the dis­
plays to the VAX DAL instructions that create them, and follow the sequence of
instructions in the lesson by seeing what happens on the screen.

Complete lesson units are listed in the text of this chapter, and each unit includes all
the instructions needed for the function of the unit. As you read the chapter, there
may at first be a number of instructions in the lesson units that you do not recognize
and do not understand. This is because the chapter is organized by topics to help
you learn VAX DAL, and only those instructions that illustrate the topic being
explained are discussed in detail. As you read and accumulate information, more of
the instructions in each unit will become familiar.

STRUCTURE OF A LESSON

The lesson Multiply lets students choose whether they want to review their multi­
plication tables or practice multiplication problems. Students who choose to
review can then choose to review all the multiplication tables or just one. Students
who choose to practice see 25 multiplication problems and give answers. The les­
son then displays the score for the set of problems. After students have finished
reviewing or practicing, they can choose again. The lesson ends when students
choose to quit.

When students practice more than once, the lesson displays the score for the current
set of problems and the score for the previous set.

Lessons are generally divided into lesson-level instructions and a number of units.
Each unit consists of instructions to perform one function, such as displaying a
menu or displaying and judging a problem.

Dividing the lesson into units has two advantages:

• A series of instructions that are needed a number of times in the lesson can
be written once as a unit. The unit is then called by a DO instruction at a
higher level. All the instructions in the unit are executed, then control
returns to the instruction following the DO instruction. Since units are writ­
ten once but can be executed any number of times, units save time and help
prevent mistakes.

• Units clarify the structure of a lesson and simplify writing it by dividing the
lesson into smaller pieces.

When writing a lesson, place lesson-level instructions at the beginning. The first
instruction must be the LESSON instruction. Lesson level ends at the first UNIT
instruction. Each unit begins with a UNIT instruction and ends at the next UNIT
instruction. Units can be written in any order.

When students take the lesson, execution begins at the LESSON instruction and
continues through the lesson-level instructions. Units are executed by DO instruc­
tions at lesson level or in other units. A DO instruction in one module can execute a
unit in a second, separately compiled module only if the modules are linked
together after they are compiled (see Chapter 6).

Planning the Lesson

The lesson Multiply divides structurally into three units: one for practicing, one for
reviewing, and one for ending the lesson. The names of the units are practice,
{Cview, and quit. Since the only function of the unit quit is to display a message,
quit is not divided into other units.

5-2
Creating a Simple Lesson

•• I
I
I
I
I

•• I
I
I
I
I
I
f'
I
I

I

LESSON
DEFINE
ASSIGN
DEFINE
DEFINE

DO
SCORE

multlply
go_on:BOOLEAN
go_on : = TRUE
done_once:BOOLEAN
x, y,z:INTEGER

lntro1
FALSE

$$ True until student quits.

$$ Used In unit practice.
$$ Used fOf all multiplication.

$$ Display title page.
$$ Tum off scoring.

: Set up loop. Lesson returns here after each practice Of
: review. Loop Is broken and lesson ends when student chooses to QJlt.
LOOP go_on $$ Begin loop.

DO menu $$ Display Instructions and choices.
QUERY
RIGHT

RIGHT

RIGHT

WRONG

ENDQ
ENDLOOP

; End of lesson level.

practice
DO
quit
DO
ASSIGN
REVIEW
DO

SIZE
WRITE
SIZE

practice

QJlt
go_on : = FALSE

review
$$ Anything else Is wrong.

1 $$ Display errOf message
YOU MUST TYPE ONE OF THE WORDS ABOVE
2 $$ and retun to beginning

$$ of QUERY block.
$$ end of loop

The first instruction, as required, is LESSON. The argument to LESSON is the
name of the lesson.

Lesson-Level Variables

The DEFINE instruction defines the names and data types of variables. The syntax
is:

DEFINE varlable_name{, ... }:datcL1ype{,usage characteristic}

Chapter 2 explains the data types and usage characteristics.

5-5
Creating a Simple Lesson

Variables defined at lesson level can be used at lesson level and in any unit. The five
lesson-level variables are:

• go-<>n

The variable go-<>n is used only at lesson level. As its name suggests, the
variable is used to test whether the student wants to go on. The variable
go-0n is defined as Boolean, which means that it has one of two possible
values, true or false. The instruction ASSIGN go_on : = TRUE assigns the
initial value true to go-0n.

• done-once

The Boolean variable done-0nce is used in the unit practice to test whether
the student has practiced once. When Boolean variables are defined, they
are assigned the value FALSE. FALSE is the right initial value for
done-0nce. Although this variable is used in only one unit, it is defined at
lesson level so that it is initialized only once. The reason this is important is
explained when the control logic for the unit practice is explained.

• x,y,z
These three integer variables are used in the units review and practice. At
any time, they contain the values for the current multiplication problem or
the current times table display. All problems and displays correspond to the
form X * y = Z.

Integer variables (and real variables) are initialized as zero.

lesson-Level Con ro Logi

The next instruction, 00 intro I , executes the instructions in the unit named intro I .
This unit displays the title page for the lesson, with the border around the outside
and the word MULTIPLICATION. After the last instruction in the unit introl is
executed, control returns to the instruction following the 00 instruction.

When a lesson begins, the responses to all queries are scored. In Multiply, how­
ever, only the practice problems should be scored. The SCORE instruction deter­
mines whether responses are scored; its argument is a Boolean expression. SCORE
FALSE turns off scoring. SCORE TRUE turns it on. The SCORE FALSE instruc­
tion, then, stops scoring.

Because the unit practice controls the practice problems, the unit also turns scoring
on and off.

5-6
CreaHng a Simple Lesson

•• I
I
I
I
I
I

..
I
I
I
I
I

•
I

•• I
I

I
I
i,
I
I

•

The unit review divides into two units, the unit revone to display one times table,
and the unit revall to repeat the display 12 times. These units have both of the
advantages listed above. The division clarifies the structure of the unit review. The
units revone and revall also are repetitive. Unit review calls unit revone when the
student chooses to review one times table. Unit review calls unit revall when the
student chooses to review all the times tables. Unit revall then calls unit revone 12
times.

The multiplication problems are also repetitive. Unit prac I displays one problem,
judges the student's response, and displays feedback. Unit practice calls unit prac I
25 times.

Figure 5-I shows the structure of the lesson described above. Lesson level, unit
prac I, and unit review use response-judging blocks. The QUERY instructions and
the DO instructions to call other units are shown in Figure 5-1. Summaries of the
other functions the lesson and the units must perform are shown in italics.

/Jef'.ine v1r.idb/es.
Loqo uni.ii student
c/Jooses to 'fll.it.

/J.ispll,!I cllo.itYS.
QUERY
RIGHT review

UNIT review
OIERY
RIGHT .
RIGHT .
ENDO

• DO review • ___ _
RIGHT qu1t
, DO quit UNIT qu1t
RIGHT practice ~ - - - - - : /JJspll!f MSS~.
, DO practice L-_
ENDO -4-, .

, I.NIT practice~ ll-ut prac:1
End loqo 11d Md lnsm. ; DJ's,/>fil!/ Jnstroet.ims ii' /JJ's,/>fil!/ proOll!lll.

Figure~1
Lesson Structure

, /'Jrst tJNe. C4/a//1te .r
I ror 1!5 t.iAeS: lll'.RY

r:.ter,1te IIUJIOllrs 1111 RICHTV z
, DO pracl ENOO
, ____ Sho,/ s,v~ ◄ - - - - - - - - -

MR-S-2121-112

5-3
Creating a Simple Lesson

Planning Units

One restriction must be considered in planning units. Each unit can contain only
one response-judging block. The units planned for Multiply meet this restriction.
There is only one QUERY instruction in lesson level, one in the unit review, and
one in the unit prac l .

The subject matter of a lesson generally suggests a natural division into units. For
the lesson Multiply, these units are shown by name in Figure S-1. The unit practice
calls two other units, instruc and shoscore. The unit instruc displays the instruc­
tions the first time the student chooses to practice, and calls unit prac l to display
and judge a sample problem. The unit practice calls shoscore to display the stu­
dents' scores.

During lesson planning it becomes clear which additional units might be useful.
For example, lesson-level instructions can be simplified here by making a unit of
the menu that shows the student's three main choices.

Because the instructions in return perform a function that is repeated frequently, the
author is able to write the lesson more efficiently by including these instructions in
one unit. Students taking the lesson need time to read the screen, and must be able
to indicate when they are ready to continue. The unit return displays the message
PRESS RETURN, pauses, and erases the screen. This unit is executed after each
times table, after the feedback for each problem, after the display of instructions,
and after the display of scores.

The lesson Multiply also displays a title page. The title page is in the unit intro l.

The structure of the lesson shown in Figure S-l suggests other units as well. Some
of the summaries shown in italics, for example, could be organized into individual
units.

LESSON-LEVEL INSTRUCTIONS

The LESSON instruction is the first element in a lesson. Its argument is the lesson
name.

Lesson level ends at the first UNIT instruction. After the last lesson-level instruc­
tion is executed, the lesson ends.

The following instructions are the lesson-level instructions for Multiply.

5--4
Creating a Simple Lesson

•• I
I
I
I·
a
I

..

•• I
I
I
I
I
I ,,
I
I
I
I
I
•
I

The rest of the instructions are part of the control logic for the lesson. The require­
ments are that students can choose to review or to practice, and that they can do this
until they decide to quit. In Figure 5-1, the control logic at lesson level is described
as a loop. The instruction LOOP begins the loop. The instruction ENDLOOP ends
it.

The syntax of the LOOP structure is:

LOOP Boolean expression
Instructions

ENDLOOP

When a LOOP instruction is executed, its argument is tested. If the argument is
true, the instructions between LOOP and ENDLOOP are executed. At the
ENDLOOP instruction, control is passed back to the LOOP instruction; its argu­
ment is tested again, and so on, until the argument is false. When the argument is
false, control is passed to the instruction after ENDLOOP. At some point in the
loop, the value of the expression being tested must change. Otherwise, the loop
never ends.

In this LOOP instruction, the argument is the Boolean variable go_on. The first
time the LOOP instruction is executed, the Boolean variable go_on is true because
the ASSIGN instruction above assigned the value TRUE to go-0n. So the instruc­
tions between LOOP and ENDLOOP are executed at least once.

Figure 5-2 shows the LOOP instruction and the way this loop controls execution of
the other units in the lesson.

~7
Creating a Simple lesson

r-+ LOCF go_on II LaJO 1ii1.i/e p_m .1s lrw.
00 NenU •

4
_____ ,_,_Ui_'«'ll_l_e_,11.il M!f1tl 11d r,/um.

-"--- ♦ Ol£RY
. RIQfT practice

I RIQfT
DO practice

4
II £r«ute llflit pr«tic. 11d r,fum.

c,11t

DO quit 4 II E,n,t:ute 111il fllil 11d r,lum.
ASSICN go_on ::: FALSE # Ch.np ,-.,Jue 111' $tJ-m.

RIQfT rev1ew . . DO review 4 # £K«ule u,u·t rev.1w 11d Ntvm .
~

I -- -- -._ __ ENDO

- ENDLIXF

Figure ~2

SIZE 1
WRITE YOO IIJST TYPE 11£ CF TI£ IDDS ABOVE
SIZE 2

Lesson-level Control Logic

MR-S-2122-82

One of the specified right answers in the lesson-level response-judging block is
quit. The response-contingent instruction ASSIGN go_on : = FALSE changes the
value of the variable that controls the loop. When students choose to quit, the loop
ends. Because the instruction ENDLOOP is also the last instruction at lesson level,
the lesson ends.

In the loop are a 00 instruction and a response-judging block. The 00 menu
instruction calls the unit menu, which displays the three choices.

The response-judging block beginning with QUERY and ending with ENDQ reads
and judges the response. If the response is practice, the response-contingent
instruction DO practice calls the unit practice. If the response is review, the
response-contingent instruction 00 review calls the unit review. If the response is
quit, the response-contingent instructions call the unit quit, then assign a new value
to the variable go-0n. After any response that matches one of the right answers, the
rest of the specified answers are ignored. The lesson goes to the instruction follow­
ing ENDQ. The ENDLOOP instruction returns to the LOOP instruction.

The WRONG instruction in the response-judging block is an error-checking
instruction. When either RIGHT or WRONG has no argument, any response
matches.

5-a
Creating a Simple Lesson

•• I
I
I
I
I
I ..
I
I
I
I
I

•
I

'• I
I
I

I

Because of the system defaults, students can use uppercase or lowercase letters and
can misspell any of the responses. Students who read the instructions will probably
type "practice" or "review" or "quit", and there will be no attempt to match the
argument to WRONG. If, however, students type anything except one of these
three words, the response matches the argument to WRONG. The response-contin­
gent instructions display a message explaining what to do, and the lesson erases the
response. Because the response matches an answer specified as wrong, the lesson
returns to the QUERY instruction and waits for another response.

DISPLAYING TEXT

The AT and WRITE instructions are discussed in Chapter 3. This section shows
more examples of these instructions and explains how to change the prompt
character.

Changing Character Sizes

There are three character sizes in this lesson. Because the lesson is for fairly young
children, size I is used very little. The review multiplication tables are size 2. This
is bigger than size I and easier to read. Size 3 is too big for a complete multiplica­
tion table to fit on the screen at once. Size 3 is used for the practice problems.

The explanatory text in the unit menu is a combination of sizes. This is a compro­
mise between large characters and the information that needs to be shown at one
time.

Here is the unit menu, which displays the students' choices. Figure 5-3 shows the
display.

UNIT menu $$ Display three main choices.
FCOLOR RED
ERASE
BOX
AT
SIZE
WRITE

AT
WRITE
AT
WRITE
SIZE

0,0;0.999,0. 999
210
2

$$ For manual illustrations.

This lesson lets you review your
multipllcation tables or practice
some multiplication problems.
820
Do you want to
1125
PRACTICE
1

5-9
Creating a Simple Lesson

AT
WRITE
SIZE
AT
WRITE
SIZE
AT
WRITE
SIZE
AT
WRITE

1332
OR
2
1427
REVIEW
1
1632
OR
2
1729
QUIT

This lesson lets ~ou review ~our
Multiplication tables or pract1ce
soMe Multiplication probleMs.

Do ~ou want to

PRACTICE
~

REVIEW
OR

QUIT
>practive

MR-S-2123-82

Fig,Je 5-3
The Unit Menu

Figure 5-3 also shows a prompt character and a response. The unit menu is exe­
cuted by the DO menu instruction in the lesson-level loop. The prompt character is
displayed by the QUERY instruction following the DO menu instruction at lesson
level. The default specifications for matching responses and specified answers are
in effect, so this response matches the answer practice even though it is misspelled.

5-10
Creating a Simple Lesson

•• I
I
I
I
I
I

..
I
I
I
I
I

•
I

i
I
I

I

The first instruction in the unit is the UNIT instruction. This instruction marks the
beginning of a unit; the argument is the unit name.

The ERASE instruction erases the screen. The FCOLOR instruction changes the
current foreground color to red. The BOX instruction outlines the screen.

The SIZE 2 instruction changes the current text size to size 2, and the AT 210
instruction sets the current location. The first three lines of text begin at row-and­
column address 210.

Because the first three lines are a text block displayed by one WRITE instruction,
both the column spacing and the row spacing are appropriate for size 2 characters.

The argument to the next AT instruction specifies the address in row-and-column
coordinates. Row-and-column coordinates specify units the right size for size I
characters. Because the text is size 2, the address for the next line of text must be
calculated to indent the line and space the rows properly.

Each size 2 character is 30 units high; three rows therefore require 90 units. Since
each row in row-and-column units is 20 units high, the three lines already displayed
use four and one-half rows. The lines started at row 2. Specifying row 8 for the next
line leaves one and one-half rows between the lines of text.

Each size 2 character is 18 units wide. Each column is 9 units wide. Selecting col­
umn 20 for the next line indents the line an additional 10 columns, which is
equivalent to five size 2 characters.

The row-and-column addresses for the rest of the display are calculated the same
way.

The unit menu ends after displaying the word quit. Control returns to lesson level.
The next instruction following DO menu is QUERY. The current text size is still
size 2. The prompt character displayed by the QUERY instruction and the student's
response, therefore, are size 2.

The response-judging block in the unit review shows another use of text in different
sizes.

The unit review follows.

5-11
Creating a Simple Lesson

UNIT
ERASE
BOX
SIZE
AT
WRITE

QUERY

review $$ Select to review one or all tables.

0,0;0.999,0.999 $$ For manual illustrations.
2
510
Type ALL to review all
the multiplication tables.

Type a rumber to review
that multlplicafion table.

RIGHT all
ERASE
BOX 0,0;0.999,0.999 $$ For manual illustrations.
DO revall $$ Review all.

RIGHT 1 I 2 I 3 1415161 7 I 8 19110 111112
ASSIGN x : = NUMBER(RESPONSE)
ERASE

WRONG

ENDQ

BOX 0,0;0.999,0.999 $$ For mcnJOI illustrations.
DO revone $$ Review chosen one.

SIZE
WRITE

SIZE

1
'1bu must type ALL or a number from 1 to 12.
Try again.
2

Figure 5-4 shows the text displayed by the unit review with a student's response
typed in. The response shown does not match any specified right answer. The
WRONG instruction in the response-judging block has no argument. Any response
that did not match one of the specified right answers matches here. The response­
contingent instructions display an error message.

5-12
Creating a Simple Lesson

•• I
I
I
I
I

..
i

'• I
I
I
I
I
I
~
I
I
I
I
I

•
I

Figure 5--4

T~pe ALL to review all
the Multiplication tables.

T~pe a nuMber to review
that Multiplication table.
>

Yau IIWit titpe M..I. or• l'Ulber f'rON 1 to 12,
Tf'!I .gain,

The Unit Review

MR·S-2124-82

The error message is displayed at the default location for a response-contingent
WRITE instruction. This line begins two rows below the last line written (which is
the student's response), and in the same column as the first character of the
response.

The instruction SIZE I sets the current text size to size I before the line is dis­
played. The DO return instruction executes the unit return. The SIZE 2 instruction
sets the current text size back to size 2. After executing the response-contingent
instructions for a response judged wrong, the lesson erases the response and dis­
plays the prompt character again. The prompt character and the response are dis­
played in the current text size. Because the response-contingent SIZE I changed
the current text size, the instruction SIZE 2 is necessary. Without this instruction,
the prompt character and the next response would be displayed in size I.

Changing the Syste.m Prompt Character

The instructions below are from the unit prac 1, and display one multiplication
problem. The WRITE instruction displays the two variables x and yin string for­
mat. {Displaying variables is explained in Chapter 3.)

~13
Creating a Simple Lesson

PROMPT"=.
AT 820
WRITE < <S.x> > x < <S,y> >
QUERY *

Figure 5-5 shows a problem.

11 X 12

Figu'e 5--5
Chcr,glng 1he Prompt Character

132

MR•S-212S-82

The instruction PROMPT specifies the prompt character. The argument can be a
string constant, variable, or expression. The argument in this case is a string con­
stant, and as such is enclosed in double quotation marks(..). There is a space char­
acter after the equal sign (=).

After this instruction is executed, the QUERY instruction displays an equal sign
and a space. Another PROMPT instruction later in the unit changes the prompt
character back to the angle bracket (>).

The asterisk(*) argument to the QUERY instruction displays the prompt one space
to the right of the last text displayed. There is a space after the angle brackets for the
variable y. This space does not show in the instructions, but it does show in Figure
5-5.

5-14
Creating a Simple Lesson

•• I
I
I
I
I
I

..
I
I

I

'• I
I
, ,

I
I

I

The WRITE instruction displays 11 x 12 and the space between the 12 and the
equal sign. The QUERY instruction displays the equal sign and the space following
it. Changing the prompt character and changing its default location make the dis­
play look like a multiplication problem.

Using Color

This lesson uses several foreground colors. Some of the color is decorative and
some is functional. The most obvious functional use of color is in the unit prac I .
The multiplication problem and the students' response are blue. If the response is
right, the unit displays "you 're right" and repeats the problem and answer. If the
response is wrong, the unit displays "no, the answer is" and repeats the problem
with the right answer. The two kinds of feedback look much alike, and color is used
to distinguish them. If the response is right, the feedback is blue. If it is wrong,
however, the feedback is red.

Changing Display Modes

The unit return shows another text writing effect, the inverse mode. In inverse
mode, the foreground and background colors for the text cells are changed. Here is
the unit.

UNIT
SIZE
AT
WRITE
MODE
WRITE
PAUSE
ERASE
MODE
BOX

return
1
2060
PRESS
INVERSE
RETURN

NORMAL
0,0;0.999,0.999

$$ Display press return and
$$ wait at pause.

The default display mode is normal, and no instructions any place else in the lesson
change it. The word PRESS, therefore, is displayed in normal mode. This word is
followed by a space that does not show in the example. The instruction MODE
INVERSE changes the current mode to inverse, then the word RETURN is dis­
played. For this word, the foreground and background colors of the dots for the
character and the rest of the character cell are reversed.

The PAUSE instruction stops execution of the lesson until the student presses the
RETURN key. Then the instruction MODE NORMAL changes the current display
mode back to normal.

5-15
Creating a Simple Lesson

Displaying Variables

The units revone and prac I display the contents of variables to show students the
times tables and the multiplication problems.

Three variables, x, y, and z, are defined at lesson level. At any time, these variables
contain the numbers for the current display.

In unit prac 1, the system prompt character is changed to an equal sign followed by
a space. The WRITE instruction that displays one problem is:

WRITE < <S,x> > x < <S,y> >

The prompt character follows the display. Figure 5-5 shows one problem after the
student has typed the response.

The instruction that displays one line of a times table is:

WRITC <<T,x,2,0>> x <<T,y,2,0>> = <<T,z,3,0>>

A complete times table is shown in Figure 5--6.

Figure~
Displaying Variables

5-16

9
9
9
9
9
9
9
9
9
9
9
9
9

Creating a Simple Lesson

)(

)(

)(

)(

)(

)(

)(

)(

)(

)(

)(

)(

)(

0 = 0
1 = 9
2 = 18
3 = 27
4 = 36
5 = 45
6 = 54
7 = 63
8 = 72
9 = 81

10 = 90
11 = 99
12 = 108 PRESS lilll

MR-$-2126-82

•' I
I
I
I
I
I

..
I
I
I
I
I

•
I

'• I
I
I
I
I

I
l

' I
I

•
I

The numbers for the problem are displayed in string format. The times table is dis­
played in tabular format. The different formats are needed because of the columns
in the times tables.

The double angle brackets are the syntax for displaying the contents of a variable.
The argument S before the variable name selects string format. For integer vari­
ables, string format converts the number to digits and displays the digits beginning
at the current location. Although the problems use both I-digit numbers and 2-digit
numbers, string format spaces the number appropriately.

The problem l(]!)x(]!)I(]!) requires six positions. The problem
12(:IDx(ID 1200 requires eight positions. Since only one problem is displayed at a
time, this difference is acceptable. In the times tables, however, 13 problems are
displayed at the same time. In string format, the multiplication signs and the equal
signs would not line up.

The tabular format is a better choice for the multiplication tables.

The T argument before the variable name selects tabular format. Tabular format
requires two arguments after the variable name. The first argument defines the total
number of positions required by the variable. For the variables x and y, this number
is 2. These variables are always a number from Oto 12, and never require more than
two positions. For the variable z, this number is 3. The value of z in some times
tables is over 100; therefore, z requires three positions.

The last argument in tabular format is the number of positions to the right of the
decimal point. Since these variables are all integers, this argument is zero.

You can see how this works in Figure 5--6.

The WRITC instruction is a variation of the WRITE instruction. The instruction
WR ITC, which can also be spelled WRITEC, inserts a carriage return at the begin­
ning of the line. For an explanation of how the values of the variables x, y, and z are
changed for the times tables and why the WRITC instruction is used, see the sec­
tion of this chapter that deals with the FOR instruction.

JUDGING THE STUDENTS' RESPONSES

The lesson Multiply contains three response-judging blocks: one at lesson level,
one in the unit review, and one in the unit prac I .

5-17
Creating a Simple Lesson

Specifying Several Answers

The response-judging block at lesson level executes one of three units, depending
on the student's response. The response-judging block in the unit review is similar,
but also specifies a number of right answers with one RIGHT instruction.

The complete unit is shown above. The response-judging block is repeated below.

QUERY
RIGHT

RIGHT

WRONG

ENDQ

all
ERASE
BOX 0,0;0.999,0.999 $$ For mooual illustrations.
DO revall $$ Review all.
112 131415161 7 I 819110111112
ASSIGN x : = NUMBER(RESPONSE)
ERASE
BOX
DO

0,0;0.999,0.999
revone

SIZE 1

$$ For mooual illustrations.
$$ Review chosen one.

WRITE You must 1ype All or a number from 1 to 12.
Try again.

SIZE 2

The ENDQ instruction is the last instruction in the unit.

The second RIGHT instruction specifies t 2 right answers. The vertical bar (I) sep­
arates the answers. This syntax specifies that t and 2 and 3, and so on up to 12, are
all right answers. The response selects the multiplication table for the number the
student enters. The same response-contingent instructions are executed for any of
the numbers.

The variable x is defined at lesson level and can be used in any unit. The response­
contingent instructions assign a value to this variable. The system variable
RESPONSE is a string variable containing the student's response. The string in
RESPONSE changes after every response.

The data type of x is integer, and a string cannot be assigned to an integer variable.
The instruction ASSIGN x : = RESPONSE does not work. The system function
NUMBER converts a string to either an integer or a real number, depending on the
use of the function. The arguments of functions are enclosed in parentheses. The
function NUMBER has one argument; the argument is the string to be converted.

5-18
Creating a Simple Lesson

I
I
I ..
I
I
I
I
I

-
I

'• I
I
I
I.
I

-p
I
I
I
I
I

•
I

The instruction ASSIGN x : = NUMBER(RESPONSE) first evaluates the function
and converts the characters in the variable to a number. Because the variable x is
defined as integer, the number in integer form is assigned to x. After this instruc­
tion, x contains the number the student choose.

Then the DO revone instruction calls the unit revone to display one times table.
How revone uses the variable xis explained when the FOR instruction is discussed.

Specifying Variables as Answers

The RIGHTV and WRONGV instructions can specify answers as the current con­
tents of a variable. (Other uses of RIGHTV and WRONGV are discussed in Chap­
ter 8.) Only the specification of the answer is different; the judging process is the
same.

This lesson uses random numbers in the problems, so that students can repeat the
practice set any number of times without seeing the same problems in the same
order. You saw how the problems are displayed in the discussion of displaying vari­
ables. The numbers are generated in the unit practice.

The following example shows part of the unit practice.

DEFINE
SEED
FOR

ENDFOR

c:INTEGER $$ Counter for problems.

C : = 1,25 $$ Do 25 problems.
ASSIGN x: = RANDOMU(0,13) $$ Assign values to x and y.
LOOP x = old..x

ASSIGN x : = RANDOMU(0, 13)
ENDLOOP
ASSIGN old..x : = x
ASSIGN y:=(RANDOMU(0,13))
LOOP y = old_y

ASSIGN y : = RANDOMU(0,13)
ENDLOOP
ASSIGN old_y : = y
DO prac1 $$ Display problem.
DO return

The FOR instruction repeats the instructions between FOR and the ENDFOR
instruction 25 times for the 25 practice problems. The two LOOP instructions pre­
vent x and y from having the same values for two successive problems. The FOR
instruction and the LOOP instructions are explained in detail in the section about
control logic .

5-19
Creating a Simple Lesson

The instructions ASSIGN x: = RANDOMU(O. 13) and ASSIGN
y: = RANOOMU(0, 13) assign values to x and y. The values are generated by the
RANOOMU system function.

The RANOOMU function generates random numbers. The two arguments define
the range of possible values. The first argument is included in the range, but the
second argument is not. Because 0 and 13 are integers, the function generates inte­
gers from 0 (included in the range) up to (but not including) 13.

Because these two instructions are inside the FOR structure, two random numbers
are generated each time the unit practice cans the unit prac 1 . The SEED instruction
(outside the FOR structure) seeds the random number generator so that each
sequence of random numbers starts with a different number.

After generating the two random numbers and assigning them to x and y. the unit
practice calls the unit prac 1. which displays the problem and judges the response.

Here is the unit prac 1.

UNIT proc1
ASSIGN z: = x•y
PROMPT ·=.
FCOl.OR BLUE
SIZE 3
AT 820

$$ lnt prac1 displays ood judges one problem.
SS Calculate right answer tor these
ss two numbers.

$$ Display CllTent problem.
WRITE < <S,x> > x < <s.y> >
QUERY •
RIGHTV Z SS The axrent value ot Z is right.

WRONG

5-20

1120
2
You're right,
1420
3

AT
SIZE
WRITE
AT
SIZE
WRITE <<S,x>> X <<S,y>> = <<S.z>>

SS Anything else is a wrong answer.
AT 1120
SIZE 2
FCOl.OR RED
WRITE NO, the right answer is
SIZE 3
AT 1420 SS Display the right answer.
WRITE <<S,x> > x <<S,y> > = <<S.z>>
.lJDGE STOP $$ Stop judging, do not repeat query.

Oeating a Simple Lesson

•• I
I
I
I
I

I
I
I
I
I

-
I

'• I
I
I
I
I
I
f'
I
I
I
I
I

-

The first instruction is the name of the unit, as usual. The second instruction solves
the problem. This instruction first evaluates the expression x*y by multiplying the
two numbers currently in x and y. Then it assigns the result to the variable z. The
variable z now contains the product of the two numbers generated in the unit
practice.

Because the numbers are generated by the lesson, you cannot use the instruction
RIGHT to specify the answer. The arguments to RIGHT must be text strings. The
instruction RIGHTV accepts a variable name as its argument. When the lesson is
executed, the student's response is converted to the same data type as the specified
variable, then compared to the current value of the variable.

The lesson uses variables to display the problem, calculate the answer, and specify
the answer. The student sees the current value of the variables, multiplies them,
and types a response.

The variables x, y, and z are also displayed in the feedback for responses judged
right and responses judged wrong. The two WRITE instructions in the response­
judging block use the string fonnat.

Modifying Response Judging

By default, the student must enter a response judged right before response judging
stops. To have response judging end after the first response whether the response is
right or wrong, the default process must be modified. The JUDGE instruction mod­
ifies the response-judging process. The arguments to JUDGE are keywords. The
JUDGE instruction with the argument STOP stops judging. The next instruction
executed is the instruction after the ENDQ.

After judging the response and displaying the feedback, unit prac I ends. Control
returns to the instruction following the DO prac I instruction in the unit practice.
The next instruction in practice is DO return, which displays the PRESS RETURN
message and pauses.

Figure 5-7 shows the screen after a student has entered a response judged wrong.

5-21
Creating a Simple Lesson

1 X 4 1
NO, the right answer is

1 X 4 4

PRESS lilm

MR•S-2127-82

Figle5-7
Problem Judged Wrong

SCORING AND GOALS

The lesson Multiply scores only the practice problems and keeps a separate score
for each set of problems. There are two system variables for scoring. The variable
SCORE contains the total score for all scored queries. The variable SCORES is an
array, each element of which contains the score for one goal.

The unit practice controls both scoring and the goal structure of the lesson.

The unit practice follows.

5-22
Creating a Simple Lesson

•• I

I
I
I

..
I
I
I
,I

I

'• I

I
I
I
I
I

-
I

UNIT
DEFINE
ASSIGN
ASSIGN
ERASE

practice $$ Displays 25 problems and scores them.
olcLx,old_y:INTEGER
old_x : = 3 $$ Used to see if current x and y are
olc:Ly : = 4 $$ same as x and y for lost problem.

BOX 0,0;0. 999 ,0. 999 $$ For manual illustrations.
FCOLOR RED
SIZE 2

; The IF block is executed only the first time the student chooses
; to practice. The variable done_once Is defined at lesson level and
; is assigned the value TRUE in this unit.
; IF done_once = FALSE $$ If this Is the first time

$$ display Instructions do lnstruc
ENDIF

SCORE TRUE $$ Begin scoring.

DEFINE
SEED
FOR

ENDFOR

SCORE
DO
GOAL

c:INTEGER $$ Counter for problems.

c : = 1,25 $$ Do 25 problems.
ASSIGN X:=RANDOMU(0,13) $$ Assign values to x ood y.
LOOP x = old_x

ASSIGN X := RANDOMU(0,13)
ENDLOOP
ASSIGN old_x : = x
ASSIGN V:=(RANDOMU(0,13))
LOOP y = olc:Ly

ASSIGN y := RANDOMU(0,13)
ENDLOOP
ASSIGN old_y : = y
DO proc1 $$ Display problem.
DO return

FALSE $$ Stop scoring.
shoscore $$ Display score for practice.
GOAL+ 1 $$ Increment goal for next time.

At lesson level, the instruction SCORE FALSE turns scoring off. The students'
responses at lesson level and in the unit review are not scored. The first time that the
unit practice is executed, the unit instruc displays instructions and a practice prob­
lem. This problem is not scored either. After the unit instruc returns, the instruction
SCORE TRUE turns scoring on. Then the FOR loop executes the unit pracl 25
times. Each of the 25 problems is scored. The SCORE FALSE instruction after the
ENDFOR turns scoring off. When the unit returns to lesson level, scoring is off,
and is not turned on again unless the student chooses to practice again.

~23
Creating a Simple Lesson

The variable SCORE contains the total score for all responses. After the first set of
problems, SCORE contains a number from 0 to 25. After the second set of
problems, SCORE contains a number from Oto 50, and so on, as long as the stu­
dent chooses to practice.

One of the requirements for Multiply, however, is that students see their score for
each set of practice problems. This requirement is met with the GOAL instruction,
the GOAL variable, and the SCORES array. Making each set of practice problems
a different goal stores the scores for each set in an element of the array SCORES.
The index to this array is a goal number. The score for goal I is stored in
SCORES(I); the score for goal 2 is stored in SCORES(2), and so on.

When a lesson begins, the current goal is goal I by default. The GOAL instruction
begins a new goal and defines a new goal number. The system variable GOAL con­
tains the current goal number. When a lesson begins, the value of this variable is I.
The argument to the GOAL instruction 1s a number that is assigned to the variable
GOAL.

The last instruction in the unit practice is GOAL GOAL+ I . The argument is an
expression using the system variable GOAL. The first time the unit is executed, the
value of the variable GOAL is I. Evaluating the expression GOAL+ I reads the
current value of the variable GOAL and adds one to it. Then the GOAL instruction
stores the value of the expression in the system variable GOAL. After the student
completes the first set of practice problems, the current goal is goal 2. The current
value of the variable GOAL is 2.

If the student chooses to practice again, the score for the second set of problems is
stored in SCORES(2). At the end of the unit practice, the system variable GOAL is
incremented again. Now the current goal is goal 3. If the student practices again,
the score is stored in SCORES(3).

The scores stored in the SCORES array are displayed in the unit shoscore.

CONTROL LOGIC

You have seen how the LOOP instruction and a response-judging block are used as
control logic at lesson level. This section explains three more control logic struc­
tures: the FOR,ENDFOR structure; the IF,ELSE,ENDIF structure; and the
TEST, VALUE,ENDTEST structure.

Both the LOOP structure and the FOR structure repeat a series of instructions. The
two structures end the repetition differently.

5-24
Creating a Simple Lesson

•' I
I
I
I
I
I

..
I
I
I
I
I

•
I

~­I
I
I
I
I

I
I
I
I
I

•
I

The LOOP instruction tests the value of a Boolean variable or expression. If the
expression is true, the instructions between LOOP and ENDLOOP are executed.
Then the expression is tested again. If the expression is still true, the instructions
are executed again, and so on. The repetition ends when the value of the Boolean
expression is false. (This form of repetition is often called conditional iteration.)

The FOR instruction tests the value of a variable called the counter, and executes
the instructions between FOR and ENDFOR if the value of the counter is less than
or equal to an ending value. The ENDFOR instruction increments the counter; the
FOR instruction tests the counter again, and so on, until the counter reaches the
specified ending value. Then the FOR loop ends. The repetition ends after a speci­
fied number of times.

The IF instruction also tests a Boolean variable or expression. If the variable is
true, the instructions following IF are executed once. The ELSE instruction is
optional. When it is used, the instructions following ELSE are executed when the
Boolean variable is false.

The TEST instruction tests a variable of any data type, and compares its value to
numbers, strings, or other variables specified by any number of VALUE instruc­
tions. If the variable and the argument to one VALUE instruction match, the
instructions following that VALUE are executed once. Deciding whether to exe­
cute instructions based on the value of a variable or deciding which of several sets
of instructions to execute is called conditional execution.

The LOOP,ENDLOOP Structure

The unit practice generates random numbers for the practice problems. The unit
uses LOOP instructions to assure that the same problem is not displayed twice in
succession.

The complete unit is shown in the section on scoring. The instructions that affect
the generation of the variables x and y are shown below.

5-25
Creating a Simple Lesson

DEFINE olc:Lx,ok:Ly:INTEGER
ASSIGN olc:Lx : = 3 $$ Used to see if current x and y are
ASSIGN ok:Ly : = 4 $$ same as x and y for last problem.
; instructions omitted
DEFINE c:INTEGER $$ Counter for problems.
SEED
FOR

ENDFOR

C := 1,25 $$ Do 25 problems.
ASSIGN X: = RANDOMU(O, 13) $$ Assign values to x and y.
LOOP X = olcl..x

ASSIGN X := RANDOMU(0,13)
ENDLOOP
ASSIGN olcLx : = x
ASSIGN V: = RANDOMU(O, 13)
LOOP y = ok:Ly

ASSIGN y : = RANDOMU(0,13)
ENDLOOP
ASSIGN okLy : = y
DO prac1 $$ Display problem.
DO return

The instruction DEFINE okLx,ol<Ly:INTEGER defines two unit-level variables.
Because these variables are defined at unit level, they can be used only in the unit.
Every time the unit practice is executed, these variables are created. When the unit
returns to lesson level, the variables no longer exist.

The instructions ASSIGN ol<Lx : = 3 and ASSIGN ol<Ly : = 4 assign initial val­
ues to the variables.

The instructions that assign a number to x before calling the unit prac I to display
and judge the problem are:

ASSIGN X: = RANDOMU(O, 13) $$ Assign values to x and y.
LOOP X = olc:Lx

ASSIGN X := RANDOMU(0,13)
ENDLOOP
ASSIGN olcLx : = X

The instruction ASSIGN X: = RANDOMU(0, 13) assigns a random number to x.
The Boolean expression tested by the LOOP instruction is x = ol<Lx. This expres­
sion is true when the numbers in the two variables are the same. When the expres­
sion is true, the instruction between LOOP and ENDLOOP is executed. This
instruction assigns another random number to x. Then the LOOP instruction com­
pares this number and old-x. If the numbers are still the same, another number is
assigned to x, and so on.

5-26
Creating a Simple Lesson

-~ I
I
I

I ..
I
I
I
I
I

-
I

'• I
I
I
I
I
I
f'
I
I
I
I

I

If the numbers are different, the instruction in the loop is not executed; and the loop
ends. In either case, x contains the number that is used for the next multiplication
problem. The instruction ASSIGN olcLx : = x saves the current value of x in
olcLx. At this point, the two variables contain the same value.

The instruction DO prac l later in the FOR loop displays and judges one problem
using x. After the unit prac I returns, the END FOR instruction returns control to the
FOR instruction. The instruction ASSIGN x: = RANDOMU(0, 13) assigns a new
number to x. The variable olcLx still contains the number from the last problem, so
the expression x = olcLx is true if the number displayed in the last problem and the
number to be displayed in the next problem are the same.

At the beginning of the unit, the value 3 is assigned to olcLx. The first time the
student chooses to practice, the unit instruc calls the unit prac l to display one prob­
lem. For this problem, x is 3. Initializing olcLx as 3 assures that the first scored
problem is not the same as the practice problem.

The FOR,ENDFOR Structure

The control logic for the unit review calls the unit revall if students choose to
review all the times tables and the unit revone if students choose to review only one
of the times tables. When students choose one, unit review assigns the number they
enter to the variable x.

The unit revone uses a FOR instruction to assign the values 0 through 12 to y, to
calculate the product of x and y, and to display the 13 lines of the times table.

Unit revone contains the following instructions.

; The unit revone displays one times table. It is called 12 times
; by unit revall or once by unit review.
UNIT revone $$ The value of x when revone is called is
AT 025 $$ set by unit review or unit revall.
FCOLOR BLUE
SIZE 2
FOR y := 0,12 $$ For 13 times, changing the value

ASSIGN z : = x*y $$ of y each time, calculate answer
WRITC <<T,x,2,0>> x <<T,y,2,0>> = <<T,z,3,0>>

ENDFOR $$ and display It.
DO return $$ Execute unit return.

The FOR instruction has three arguments. The syntax is:

FOR counter : = inltiaLvalue,endlng_value

5-27
Creating a Simple Lesson

The variable y is the counter in the FOR instruction in unit revone. The initial value
is 0. The ending value is 12.

The first time the FOR instruction is executed, the counter is assigned the initial
value. In this example, the variable y has the value 0. Then the counter is compared
to the ending value. If the counter is greater than the ending value, the instructions
between FOR and ENDFOR are not executed. The first time, y is O and the ending
value is 12. The counter is less than the ending value, so the instructions between
FOR and ENDFOR are executed.

The instruction ASSIGN z: = x • y calculates the product of x and 0, and assigns
the value to z. The WRITC instruction displays the variables in tabular format.

The next instruction is ENDFOR. At this point, I is added to the counter. The vari­
able y now contains the value 2. The FOR instruction is executed again and the
counter is compared to the ending value. Two is less than 13, so the instructions are
executed again. Because the WRITC instruction inserts a IBrn at the beginning of
the line, the second line of the times table is displayed below the first line.

The iteration continues until y is assigned the value 13. This occurs after the multi­
plication for x times 12 is displayed. When the FOR instruction compares the value
of the counter to the ending value, 13 is greater than 12. The instructions between
FOR and ENDFOR are not executed again.

The instruction after ENDFOR is DO return. This unit displays the PRESS
RETURN message and pauses until the student presses (Brn. The instruction DO
return is the last instruction in the unit revone. The unit revone returns to the unit
review.

The unit revone is also called 12 times by the unit revall. The unit revall contains a
FOR instruction that uses the variable x as the counter.

Here is the unit revall.

UNIT revall
FOR x:=1,12

00 revone
ENDFOR

The variable x is the counter, and its value is incremented by I at the ENDFOR
instruction. Since the initial value is I, the first value assigned to x is 1. The first
time unit revone is called, the value of x is I. The unit revone increments the value
of y and displays the ones times table. Because unit revone is called from unit
revall, it returns to unit revall. The FOR instruction increments x; revone displays
the twos times table, and so on.

~28
Creating a Simple Lesson

•• I
I
I
I
I
I

..
I
I
I
I
I

•
I

I
I

I
I
I
I
I

-
I

Figure 5-8 shows how the two variables change in the FOR loops in the two units.

X y Unit rev11l l begins
FIJUNDFOR with X
11t 1 ilnd executes
unit re11one once

FOR 1 ► rOR t

for each 1111lue of X.
1
2
3
4
5
6
7
8
9

19
11

4 • ENDFOR
12

2 FOR e
1

.
12

f- ENDFOR
3-.+ FOR 9 .
.
12-.+ FOR 9 .

.
12

f-ENDFOR
~ENDFOR

Figure &-8
The FOR Instruction

The IF,ENDIF Structure

lkli t re110n1t begins
FOR,ENDFOR with Y
ate and d1spl~s
one line for eKh
1111lue of Y.

MR-S-2128-82

The IF instruction controls conditional execution of one or two sets of instructions.
The syntax of an IF structure is:

IF Boolean expression
Instructions

ELSE

ENDIF
instructions

~29
Creating a Simple Lesson

The ELSE instruction and the second set of instructions following it are optional .
First the Boolean expression is tested. If the expression is true, the instructions
following IF are executed. The instruction after ENDIF is executed next. If the
expression is FALSE, the instructions following ELSE are executed, then the
instruction following ENDIF. If there is no ELSE and the expression is false, no
instructions in the IF structure are executed.

The following IF structure is in the unit practice.

IF done_once = FALSE
DO instruc

ENDIF

The unit instruc displays instructions for answering the multiplication, then dis­
plays one problem and judges the response to make sure the student understands.

The Boolean variable done-once is defined at lesson level. Its initial value is
FALSE. The first time the student chooses to practice, the Boolean expression is
true. The unit instruc is executed and changes the value of done-0nce to TRUE. If
the student chooses to practice again, the expression is false; and the unit instruc is
not executed.

The unit practice calls the unit shoscore after the student finishes the set of 25
problems. The unit displays the score for the current set of problems. If the student
has practiced before, shoscore also displays the score for the previous set and com­
pares the two scores.

The unit shoscore uses IF instructions to decide what to display. The unit shoscore
follows.

UNIT shoscore
FCOI.OR RED
SIZE 2
AT 505
TEST SCORES(GOAL) $$ Score for set of 25 problems.

$$ All riglt. VALUE 25
WRITE VERY GOOD

YOU GOT THEM All RIGHT.
VALUE 20 .. 24

WRITE GOOD
YOUR SCORE IS <<S,INT(SCORES(GOAL))>>.

VALUE 0 .. 19

5-30

WRITE YOU SHOU.D REVIEW BEFORE
YOU PRACTICE AGAIN.
YOUR SCORE IS <<S,INT(SCORES(GOAL))>>.

Creating a Simple Lesson

•• I
I

I

I ..
I
I

I

-
I

'• I
I
I
I
I

I
I
I
I
I

-
I

ENDTEST
AT
IF

1305
GOAL > 1 SS Practiced more than once.
WRITC LAST TIME YOUR SCORE WAS <<s,lnt(scores(goal-1))>>
IF SCORES(GOAL) <> SCORES(GOAL-1)

IF SCORES(GOAL) > SCORES(GOAL-1)
WRITC YOU'RE DOING BETTER

ELSE
WRITC YOU'VE SHOWN YOU CAN DO BETTER

TRY IT AGAIN.
ENDIF

ELSE
WRITE TOO.

ENDIF
ENDIF
DO return SS Execute unit return.

The score for the set of problems just completed is displayed by the TEST structure
at the beginning of the unit. This structure is explained in the next section. Figure
5-11 shows this display.

The IF instructions in the second part of this unit display the score for the previous
set of problems, if there is one. Figure 5-9 shows this display.

GOOD
YOUR SCORE IS 22,

LAST TIME YOUR SCORE WAS 24
YOU'VE SHOWN YOU CAN DO BETTER
TRY IT AGAIN.

PRESS lliBI

Figure 5-9
The Unit Shoscore

MA-S-2129-412

5--31
Creating a Simple Lesson

The IF instructions in the unit shoscore are nested: that is, one IF,ELSE,ENDIF
structure is inside another. Figure 5-10 shows the three levels of nesting and sum­
marizes conditions for executing the instructions at each level.

nnt ,,.,,,
£K«utal
111'1l,YH'
,,.,.JMJ/1
~is ,_,,,.
U,,,J.
n. l'irst
UM th,
stuallnt
1•r-«U'9,
QJt: •J.

Figlxe &-10

IF

s.cor1II /,w/. Encutal 111'1I.Y ,;.,, ~ is ~, /Nit 2.
Tests ,,;,,u.,. Scr!fY ~ s,t .j,tst C'Olf'll,tal is U.
Mlle IS Scr!fY ~ l'f'WitJIIS s,t.

COAL > 1
AT llte
liRITC LAST Tit£ YU SCCJIE WAS «S,INT<SCCJIES<COAL-1»»

IF sal£S(COAI..> 0 SCCJIES<COAl..-1>

E..SE .
ENDI

IF sal£S<COAL> > SCCJIES<COAL-1>
• liR ITC YOO' RE DOit«; BETTER
ELSE

ENDIF
liRITC

TOO

YOO'VE ~ YOO CM DO BETTER
TRY IT ACAIN

ENDIF lhirtl /,w/, £K«utal Ml.I .n,, ~ is ~t J-,t 2 Md
sa,,w .., l1/tll 1(/111/. Tests ,,;,,u.,. Scr!fY ~
,., pt ~l•t• is ~ t"'111r,niJus scorw.

MR·S-2130-82

Nested IF Instructions

The Boolean expressions tested by all three IF instructions depend on the system
variable GOAL and the SCORES array. How values are assigned to these variables
is explained above. The system variable GOAL contains the goal number for the
set of problems the student has just completed: The SCORES array is indexed by
goal number, so the array element SCORES(GOAL) contains the score for the
same set of problems.

The IF instruction at the first level tests the expression GOAL > I . The operator >
means greater than. When the student begins the lesson, the goal number is I by
default. After the first set of problems, the variable GOAL contains the value I; so
this expression is FALSE. The goal number is not greater than I. Because the
expression is FALSE, none of the instructions between the first-level IF and
ENDIF are executed.

5-32
Oeating a Simple Lesson

•• I
I
I
I

I
I
I
I
I

-
I

I
I

I
I
I
I
I

•
I

After the second set of practice problems, the goal number is 2. Now the expres­
sion GOAL> I is true. The instructions between IF and ENDIF are executed. The
WRITC instruction displays a line of text. The next instruction is the second-level
IF instruction.

The expression tested by the second-level IF instruction compares two elements of
the SCORES array. Because the current goal number is 2, the value of the variable
GOAL is also 2. The array element SCORES(GOAL) contains the score for the
current set of problems. The Boolean operator<> means not equal. The expres­
sion GOAL- I used as the index to the other element of the SCORES array evalu­
ates to I at this point. The element SCORES(GOAL-1) contains the score for the
first set of problems. The expression is true when the two scores are not equal.

The second-level IF instruction has a matching ELSE instruction, so one of the two
sets of instructions is always executed. When the two scores are equal - that is,
when the expression tested by IF is false - the instructions following ELSE are
executed. The instruction writes the one word TOO on the screen. The next instruc­
tion to be executed is the instruction following the ENDIF at the second level. The
next instruction is the ENDIF instruction at the first level, so the conditional execu­
tion begun by the first-level IF instruction is also finished.

When the expression tested by the second-level IF instruction is true, the instruc­
tions between IF and the second-level ELSE instruction are executed. When the
scores for the two sets of practice problems are not equal, the next step is to deter­
mine which is greater.

The expression tested by the third-level IF is true when the current score is greater
than the previous score. In this case, the instructions between IF and ELSE are
executed, and the student is told this score is better than the last one. The expres­
sion is false when the previous score is greater than the current score. In this case,
the instructions between ELSE and END IF are executed, and the student is told the
last score was better.

5-33
Creating a Simple Lesson

The TEST, VALUE,ENDTEST Structure

The TEST. VALUE,ENDTEST structure also performs conditional execution. The
syntax of the structure is:

TEST variable
VALUE condition

instructions
VALUE condition

instructions
OTHER

instructions
ENDTEST

The argument to TEST specifies a variable to be tested. The arguments to the
VALUE instructions specify possible values of the variable. The variable is com­
pared to the argument of the first VALUE instruction. If they match. the instruc­
tions after VALUE are executed; then the instruction after ENDTEST is executed.
If they do not match. the variable is compared to the argument of the next VALUE
instruction. The procedure continues until either the OTHER instruction or the
ENDTEST instruction is reached. The OTHER instruction is optional. When
OTHER is used. the instructions following it are executed when none of the
VALUE instructions match.

The TEST structure from the unit shoscore is repeated below.

AT 505
TEST SCORES(GOAL)
VALUE 25

WRITE VERY GOOD
YOU GOT THEM All RIGHT.

VALUE 20 .. 24
WRITE GOOD

YOUR SCORE IS <<S,INT(SCORES(GOAL))>>
VALUE 0 .. 19

ENDTEST

5-34

WRITE YOU SHOULD REVIEW BEFORE
YOU PRACTICE AGAIN.
YOUR SCORE IS <<S,INT(SCORES(GOAL))>>

Creating a Simple Lesson

I
I ..
I

I
I

I

•• I
I
I
I
I
I ,.
I
I
I
I
I

-
I

Figure S-1 I shows the display created by these instructions .

GOOD
YOUR SCORE IS 24.

PRESS lillBJ

MR-S-2131-112

Figure 5-11
The TEST Instruction

The variable being tested is the array element SCORES(GOAL), which contains
the score for the current set of problems. The score is a real number from O to 25.

The first VALUE instruction specifies the condition 25. The text block following
this VALUE instruction is displayed if the student's score is 25. Since one argu­
ment of one of the VALUE instructions matched the variable, the instruction fol­
lowing ENDTEST is executed next.

If the student missed at least one problem, the score is compared to the argument of
the second VALUE instruction. This argument specifies a range of numbers. If the
score is 20, 21, 22, 23, or 24, it matches this range. If the score matches, the text
block following this VALUE instruction is displayed.

If the score is in the range 0 .. 19, it matches the argument of the third VALUE
instruction; and third text block is displayed.

5-35
Creating a Simple Lesson

This TEST structure does not use the OTHER instruction. The OTHER instruction
begins a set of instructions that are executed only when the variable being tested
does not match the argument to any VALUE instruction. The arguments to the three
VALUE instructions cover all possible scores. Because this lesson displays 25
problems and adds one to the score for each right response, the variable
SCORES(GOAL) always contains a number from O through 25.

You could use the IF structure to make the same comparisons. In this case, the
TEST structure is preferable for two reasons. First, there are three alternatives. You
cannot nest them as the IF structures above were nested, and you would have to use
three IF structures. Second, it is easier to specify a range with the TEST structure
than with the IF structure.

Notice that the AT instruction that specifies the position for the feedback that is
displayed is outside the TEST structure. In this way, one AT sets the current loca­
tion for any of the three WRITE instructions. You could also use an AT instruction
after each of the three VALUE instructions.

Combining Structures

You can combine control structures by nesting them inside each other. The section
explaining the IF structure showed three levels of nested IF structures. Here is one
final example showing a TEST structure nested in a LOOP structure.

The first time students choose to practice, the lesson explains what to do and gives
them a chance to respond to one problem that is not scored. If the response is right,
the lesson goes on to the 25 practice problems. If the response is wrong, the lesson
displays the answer and asks the students to enter another response.

The unit instruc displays the instructions and the sample problem. The unit instruc
follows.

5-36
Creating a Simple Lesson

•• I
I
I
I
I
I

..
I
I
I
I
I

-
I

•• I
I
I
I
I

I
I
I
I
I

-
I

UNIT
ASSIGN
ASSIGN
AT
WRITE

DO
LOOP

lnstruc
X: = 3 SS assign values for practice problem.
Y:=4
503
You will see 25 multiplication problems.
Type the answer and press RETURN.
You will be told If
you got the answer right.

Press RETURN again for the next problem.
Press RETURN now to see a sample.

return
done_once = FALSE $$ Display problem and loop

SS until student gets it right DO prac1
SIZE 2
TEST RESPONSEV
VALUE 12 SS Practice problem answered correctly

OTHER

AT 310
WRITE GOOD - you seem to understand.

Now the real problems start.
DO return
ASSIGN done_once: = TRUE $$ Assign new value

SS to control variable.
AT 310
WRITE Try again, now that you know

the right answer
DO return

ENDTEST
ENDLOOP

Figure 5-12 shows the explanation displayed by the first part of this unit.

5-37
Creating a Simple Lesson

You will see 25 Multiplication problems.
T~pe the answer and press RETURN.
You will be told iT
~ou got the answer right.

Press RETURN again Tor the next probleM.
Press RETURN now to see a saMple.

PRESS liii!II

MR-S-2132-82

Figure &--12
The Unit Instruction

The variable done-0nce is defined at lesson level. An IF instruction in unit practice
calls the unit instruc if the value of done-once is FALSE. The expression
done-0nce = FALSE is tested by the LOOP instruction. If the expression is true,
which it is the first time, the instructions between LOOP and ENDLOOP are exe­
cuted. The instruction 00 prac I executes the unit prac I to display the problem and
judge the response.

The TEST instruction tests the system variable RESPONSEV. This system varia­
ble contains the student's response if the response matches the answer specified by
the RIGHTV instruction in unit prac I.

In the default response-judging process, a response-judging block does not end
until the student enters a response judged correct. Had the default process been
used in unit prac I, the RESPONSEV variable would always contain the value 12
when the unit returns. In unit prac I, however, the JUDGE STOP instruction over­
rides the default response-judging process, so that judging stops after the first
response whether it is judged right or wrong. Therefore, if the student's first
response is wrong, RESPONSEV contains a value other than 12 when unit prac I
ends.

If the student's response in prac I is correct, the instructions between VALUE and
OTHER are executed. The student sees the display in Figure 5-13.

5-38
Creating a Simple Lesson

•• I
I
I

I
..

I
I
:1
I
I

-

I
I
I
I

I
I
I
I

-
I

GOOD--~ou seem to understand.
Now the real probleMs start.

3 X 4 12
You're right,

3 X 4 12

PRESS DEJiD

MR-S-2133-82

Figure 5-13
The Example Problem

After the display, the variable done_once is assigned the value TRUE. The lesson
goes to the instruction following ENDTEST. This instruction is ENDLOOP, which
transfers control back to the LOOP instruction.

The expression done-once = false is evaluated again. This time the expression is
false because the value of done_once has changed. The instructions between
LOOP and ENDLOOP are not executed. Since END LOOP is the last instruction in
the unit, the unit returns to lesson level.

If the student's response to the sample problem is judged incorrect, the path is dif­
ferent. Since the system variable RESPONSEV contains a value other than 12, the
instructions between OTHER and ENDTEST are executed, and the student sees a
different display.

Then control is passed back to the LOOP instruction. This time, however, the vari­
able done-0nce has not been changed, so the instructions between LOOP and
END LOOP are executed again. The student has another chance to answer the sam­
ple problem.

5-39
Creating a Simple Lesson

ENDING THE LESSON

The last instruction in the lesson is END LESSON. This instruction follows the
final instruction in the last unit, and has no effect on lesson execution. Actual exe­
cution ends at the last lesson-level instruction. The ENDLESSON instruction is a
signal to the compiler that there are no more instructions in this lesson.

5--40
Creating a Simple Lesson

•• I
I
I
I
I
I

..
I
I
I
I
I

-
I

..
I
I

•• I
I
I
I
I
I ..
I

•• I

I
I
I
f'
I
I
I
I
I

•
I

6
Editing, Compiling, and Linking

a Lesson

Three functions must be performed before a lesson can be executed: editing to pro­
duce a file containing source code in VAX DAL, compiling the source code to pro­
duce object code, and linking the object code and the run-time library for VAX
DAL with the VAX/VMS linker.

Editors and the VAX/VMS linker are available to all VAX/VMS users and are doc­
umented in detail in the VAX/VMS document set. Programs that perform useful
functions such as copying and printing files are also documented there.

The compiler for VAX DAL is explained in detail in this manual.

If you are an experienced VAX/VMS user, you may want to skip to the last section
of this chapter which explains the compiler command line and options.

If you have never used a computer before, or if you are not familiar with
VAX/VMS, you should read the Introduction to VAX/VMS before you start. The
VAX/VMS DCL Dictionary also contains helpful information. The EDT Editor
Manual explains how to use the editor EDT to edit source files.

Installations can customize the VAX/VMS software. Check with your system man­
ager to see if your site has command procedures to simplify compiling and linking
lessons.

PREPARING A LESSON

Once you have planned and designed your lesson, you must perform the following
steps before the lesson can be executed .

6--1

1 Editing

The instructions that make up the lesson are entered into a source file using a
computer program called an editor. You use an editor to type VAX DAL
instructions into the computer file or files that make up the lesson.

Editors also make it easy for you to correct typing mistakes, insert and
delete lines or whole units, and find lines before or after your current posi­
tion in the file. The instructions in the file you edit are called source code.
When you display the file on the terminal, you can read the instructions.
The compiler can also read the instructions for the next step in the process.

2 Compiling

Compiling produces an intermediate file containing a version of your
instructions called object code. While the compiler is reading your source
file, it checks the syntax of your instructions. If there are syntax errors in
your lesson, such as commas left out between arguments or IF instructions
without matching ENDIF instructions, the compiler identifies and reports
these errors.

3 Linking

Linking reads the object code generated by the compiler and produces a file
that contains an executable image of the lesson.

When linking is complete, you have an executable lesson.

Before a lesson is ready for students to take, each of these steps is generally
repeated several times. Compiling a lesson for the first time after it is edited almost
always reveals syntax errors. The lesson is edited again to remove these. Executing
the lesson for the first time may uncover other kinds of errors. Perhaps you have an
ERASE instruction with arguments that erase too much or not enough. Perhaps you
chose a text size that writes part of a display off the screen. The lesson must be
edited, compiled, linked, and executed again.

Tasting and Correcting a Lesson

Lessons require two distinct types of testing: technical and educational.

Prior to educational testing, a lesson is tested to ensure that it works according to
your plan. While you are editing, compiling, linking, and executing your lesson
during implementation, you may find three kinds of errors in the lesson: compiler
errors, run-time errors, and logic errors.

When the lesson is finished and runs as planned, it needs to be tested for educa­
tional validity. This area of testing is beyond the scope of this manual.

6-2
Editing, Compiling, and Linking a Lesson

•• I
I
I
I
I
I

..
I
I

I

-

'• I
I
I
I
I
I ,,
I
I
I
I
I

•
I

Compiler Errors
The VAX DAL compiler tests the syntax of the instructions. For every error, the
compiler displays a message on the terminal showing the instruction, its line num­
ber, and a description of the error.

The compiler reports all errors that it finds. Some errors are simply warnings. A
lesson can be linked if it contains only warning errors.

Typical errors the compiler finds are: punctuation marks that are not part of the
syntax for the instruction; instructions that have too few or too many arguments;
missing ENDIF instructions; mismatched parentheses; and expressions with
incompatible data types.

Here are some examples of error display on the screen, and explanations of the
errors.

Example J

• CODE

LESSON BAD
DEFINE X:READ
ASSIGN X: = 20

• ERROR DISPLAY

I dal bad
2 DCfINC X:READ

IDAL-[-lll:DATATYPE, ~"°"" ~ta t9fle in DUIN[COMand
3 ASSIQf X:a20

IDAL-E-llt))[fVAR, Undefined vriable
IDAL-E-INVASCNDEST, Invalid destination fDf' the ASSICN COIUland
IDAL-W-NOENDLESSON, No ENDLESSON COMand found

IDAL-E-ENl>CMPERR, COIIPilation CCJIIPl•t• with trrors • MR-S-3965-85

6-3
Editing, Compiling, and Linking a Lesson

• EXPLANATION

The error in the code is a simple typing mistake: the data type in the
DEANE instruction should be REAL. The first error message identifies the
error. This error also produces the two error messages for the second line of
code. The compiler cannot define a variable without a data type, so the
variable x is not defined. A value cannot be assigned unless the variable is
defined. These errors mean that the lesson cannot be linked and executed.

A single error may produce a number of error messages. Because the data
type READ does not exist, the variable Xis not defined. Every reference to
the variable X produces an error message. In a lesson with several hundred
lines of code, a simple error like this one can produce twenty or thirty error
messages. Errors such as forgetting an ENDIF or an ENDFOR can also
produce many error messages because the compiler cannot close the
structure.

The last error message is produced because there is no ENDLESSON
instruction. As the error message indicates, this is a warning message only.
If this were the only error, the lesson could be linked and executed.

Examp/e2

• CODE

LESSON
DEFINE
FOR

BAD
X:REAL
X:=1,23
AT X*100
LINE < <S)(> > WRITE

ENDFOR
ENDLESSON

• ERROR DISPLAY

f DAl BAD
4 AT X•100

IIAL-E-INYQHJSSTYP, The CROSS coordiut.. 5fleC)ifi~ion 1111st. t. of 1.~ int.ecer
IDAL-C-INYCHRCOORI, Irwailid charaict.er in coordinaw specificaiUon

5 IIRIT[LINE «s,x»
IIAL-U-IUDOTIND, Illecait dot. irant.ilt.ion

' [NJ>r(Ji
IIAL-lt-ILLDOTIND, II •ec•I dot. irant.ilt.ion

IDAL-E-ENDClfPERR, CollpilaUon CC111pl•t.. •it.h errors

•

6-4
Editing, Compiling, and Linking a Lesson

•• I
I
I
I
I:
I

..
I
I
I
I

-
I

•• I
I
I
I
I
I
f'
I
I
I
I
I

•
I

• EXPLANATION

These instructions are intended to write the word LINE and the value in the
variable X on rows l through 23. The author expected the value of X to be l
the first time FOR is executed. Multiplying by l 00 gives I 00 as the argu­
ment to AT. The second time, Xis 2 and the argument to AT is 200. If you
look only at the FOR instruction, this should work. All the numbers are
integers.

The problem is the data type of the variable X. Because X is defined as
REAL, it contains 1.0, 2.0, and so on through the FOR loop. The auto­
matic data type conversion perfonned by evaluating the expression X* 100
produces real numbers. When real numbers are used as arguments to AT,
they specify nonnalized coordinates.

The compiler recognizes that this instruction is wrong, and assumes that
row-and-column addresses are wanted. The two possible corrections are:
change the DEFINE instruction so that X is defined as INTEGER, or
use the system function INT to change the real number to an integer only
for the AT instruction. In the second case, the AT instruction would be
AT INT(X) * 100.

The last error message is a dot indentation error. This line is inside the
FOR,ENDFOR structure and should be indented. Like the missing
END LESSON instruction in the previous example, this error does not stop
compilation. The lesson can be linked and executed if there are no other
errors.

Some errors in your code are obvious as soon as the compiler reports them. Others
may not be easy to identify. Edit the lesson, correcting the obvious errors, and com­
pile again. This step may eliminate some of the unidentified errors as well.

Run-time Errors
Run-time errors appear when you execute the lesson. A lesson executes up to a run-
time error, and then stops and displays an error message. •

Run-time errors often occur because of the current value of a variable. For exam­
ple, you may be using a variable to store the position of the prompt character dis­
played by the QUERY instruction. When the lesson is executed, this variable
contains different numbers at different times. A run-time error occurs if the prompt
is off the screen.

Some run-time errors such as the example above are peculiar to lessons written in
VAX DAL. Others are reported by VAX/VMS libraries and functions that are
called by VAX DAL. Error messages produced by VAX/VMS libraries are listed in
the VAX/VMS documentation .

~
Editing, Compiling, and linking a Lesson

An example of the display of run-time error messages follows with an explanation
of what you should look for in the message and in your program.

• CODE

LESSON
AT
SIZE
WRITE

BAD
1010
4
This text is
intended to
make the prompt
character go off
the screen ood
display a
run-time error

QUERY
RIGHT
ENDQ
ENDLESSON

• ERROR DISPLAY

DAL-£-allOUTBOU, Cursor ou\ of bounds. Tm will no\ be visible in INPUT/HRY
cOMand • MR-S-3940-85

• EXPLANATION

When you execute this lesson, the text is displayed briefly. When the lesson
attempts to display the prompt character, the address is checked. This
address is off the screen. The lesson ends, erases the screen, and displays
the error message.

Given the text size and the address selected with AT, there are too many
lines of text. The error can be corrected by selecting a different text size or a
different starting address. It may be necessary to redesign the screen
display.

logic Errors
After compiler errors and run-time errors are identified and corrected, the lesson
still may not do what you intended because of logic errors. Legitimate instructions
that do something different from what you intended produce logic errors.

The foJJowing instruction is probably a logic error.

ERASE 510,1240

o-6 .
Editing, Compiling, rnd Linking a Lesson

•• I
I
I
I
I
I

..
I
I
I
I

I

•• I
I
I,
I

I
I
I
I

-
I

This instruction is legitimate. It erases one dot at fine coordinates 510, 1240. How­
ever, it seems unlikely that the author intended to erase one dot that is not even
visible on the screen.

A much more likely instruction is:

ERASE 510;1240

The change in punctuation means the arguments define the area to be erased in row
and column coordinates. Now the instruction erases a rectangle beginning at row 5,
column 10 and ending at row 12, column 40.

Other simple logic errors include forgetting a PAUSE instruction, changing text
size or color and forgetting to change it back, and putting instructions in the wrong
order. Generally, simple logic errors are easy to see when you execute the lesson,
and easy to find and correct.

Logic errors can be more complicated and more difficult to find and correct. Usu­
ally, the behavior of the lesson indicates what part of the lesson is wrong. The prob­
lem can often be traced to a single unit. Inserting extra WRITE instructions to
display the contents _of variables at different times can be helpful. Using extra
PAUSE instructions, especially in loops, can also help isolate an error.

THE VAX DAL COMPILER

The DAL compiler is executed by the command DAL. The name of the source file
is a parameter for the command. Command switches modify the operation of the
compiler.

A lesson can be edited in more than one source file. The compiler can combine
several source files into one object file. If files are combined, there can be only one
LESSON instruction. The LESSON instruction must be at the beginning of the first
file. Lesson level ends at the first unit instruction in the combined files.

Compiler Switches

You have several options for compiler operation. Select an option by specifying
one or more of the switches listed below. Switches listed in pairs are mutually
exclusive; do not specify both of the switches in a pair.

• UNITS/NOUNITS

The /UNITS switch displays the name of each unit as the compiler
encounters it. The /NOUNITS switch turns off the display. The default is
/NOUNITS.

6-7
Editing, Compiling, and Linking a Lesson

• LIST/NOLIST

The /LIST switch generates a file containing the source code during execu­
tion of the compiler. The file is not spooled to the printer automatically, but
can be printed or displayed. The /NOLIST switch does not generate the
file. The default is /NOLIST.

If the ;LIST switch is specified, a file name and extension can be specified.
The default file name is the name of the source file. The default extension is
.LIS. The format is LIST= newname.ext.

• OBJrNOOBJ

The 'OBJ switch produces a filename.OBJ file containing the compiled
code. The /NOOBJ switch has no effect on the execution of the compiler or
the operation of the other switches; however, no filename.OBJ file is cre­
ated. The default is ,OBJ.

When the /OBJ switch is specified, the name of the .OBJ file can also be
specified. The format is /OBJ= newname. The default name is the name of
the source file.

• OLD_ VERSION

The OLD_VERSION switch compiles the lesson using the VAX DAL
V 1.1 compiler, rather than the V 1.5 compiler. The OLD_ VERSION
switch enables you to continue to modify and use lessons written in VAX
DAL V 1.1. If you use the /OLD_ VERSION switch you must link the les­
son to the V 1.1 run-time library.

• /PUBLISH

The /PUBLISH switch places a software lock on a lesson. Students can
access lesson compiled with the /PUBLISH switch only through the
Courseware Authoring System (C.A.S.) Delivery System. Attempts to run
a lesson compiled with the /PUBLISH switch result in run-time error
messages indicating that the lesson cannot be run. The /PUBLISH switch
prevents students from setting their default directories to a directory con­
taining the lesson's executable image and running the lesson without being
detected or scored.

Compiler Examples

The following examples show how to call the compiler with different options.
Switches must be entered on the same line with the command. You can enter the
source file name either before or after the switches. If you do not enter the file
name, you are prompted for it. The default extension for files is .DAL. You do not
need to enter this extension.

6-a
Editing, Compiling, and Linking a Lesson

•• I
I
I
I
I
I

..
I
I
I
I
I

-
I

'• I
I
I
I
I

I
I
I
I

I

The following example shows the command and the prompt with no switches.
When the system prompt is displayed again, the compiler is finished.

$ DAL lesson
$

The following example shows the command with the source file name and the
/UNITS switch entered on the same line. The name of each unit is displayed as the
compiler encounters it. If the file is long, this option is useful as an indication that
the compiler is working.

$ DALAJNITS plurals

$

INTRO
QUERY1
QUERY2
QUERY3
SHOWTEXT

The following example combines three source files into one object file and assigns
a new name to the object file. The first file contains the LESSON instruction and all
lesson-level instructions. The second and third files contain units. The last instruc­
tion in the third file is the ENDLESSON instruction.

$ DAL begln,mlddle,end/OBJ = lesson
$

THE VAX/VMS LINKER

The VAX/VMS Linker Reference Manual contains complete documentation for the
linker. This section shows the command line for linking object files with the DAL
run-time library to produce an executable image.

The command line is:

$ LINK fllename{,fllename ... }

Where:

filename is the name of the .OBJ file. Several file names can be specified and
separated by commas.

6-9
Editing, Compiling, and Linking a Lesson

•• I
I
I
I
I
I ..
I
I
I
I
I

-
I

..
I
I
I
I
I
I
fl
I
I
I
I

..
I

•• I

I
I
f'
I
I

I

-
I

7
Terminal Management

A VAX DAL lesson can be delivered on any one of eight different DIGITAL tenni­
nal models. Some technical differences between terminal models can have an
effect on lesson execution. Lessons developed and tested on one terminal model
may behave differently on another.

This chapter suggests how to design lessons that can be displayed at terminals with
different characteristics. The chapter begins with a description of the different
characteristics of GIGI, VTl25, VT240, VT241, DECmate II and Ill, Rainbow,
and Professional tenninals. The chapter also explains how to set various terminal
characteristics on your terminal.

Topics discussed in this chapter include:

• How to program around hardware differences so that a lesson can be deliv­
ered at a variety of terminals

• How to adjust terminal characteristics, such as response echoing and
response typeahead, on the terminal model you use

• How to set up the terminal so that a lesson can make use of special function
keys

• How to save and restore terminal states

Much of the information contained in this chapter is also relevant to the discussion
in Chapter 12 of the VAX DAL color management system. Authors should study
both this chapter and Chapter 12 if they plan full color lessons to be displayed at a
variety of terminals.

7-1

DIFFERENCES BETWEEN TERMINAL MODELS

A lesson developed and tested on one terminal model and executed on another can,
among other things, place text or graphics off the screen or fail to find colors you
request with FCOLOR or BCOLOR instructions. The technical differences that
affect lesson execution can be grouped together into three main categories:
software support requirements, screen characteristics, and color capabilities.

Software Support Requirements

A VAX DAL lesson requires different software support from different types ofter­
minals. On many terminal models, a DAL lesson needs nothing more than its own
built-in interconnection with the VAX/VMS terminal management facilities and
ReGIS graphics facilities. On other terminal models, DAL requires auxiliary
software. Users of any terminal model should include the VAX/VMS "SET
TERMINAUINQUIRE" command in their login command file. This command
causes the VAX/VMS operating system to ask the user's terminal for its terminal
characteristics. In this way, the VAX/VMS terminal management facilities are
assured of having the correct attributes for the terminal in use. Table 7-J lists the
software support DAL requires of the different terminal models.

Table 7-1: VAX DAL Software Support Requirements

- • - .,, - ---:..rh .. - .----
' ~ .. ~ -- ---

~ - _,.. -- -- ~---J_...,,___ -

GIGI (VK100)
VT125
VT240 or VT241

G G, VT125, VT240, and VT241 users should include a
VAX/VMS SET TERMINALINQUIRE command in their commood
fies. lhs ensures that VAXNMS term no management facilities
use the correct attributes for the terminal

DECmote II & Ill To use DECmate I or Ill term1naIs w1h DAL, the DECmate must
be configured with the hardware graphics option and the
DECmate Graphics Terminal Emu ator V2.0 software. The
graphics term,naI emulator capab1 irties n DECmate WPS V2.0
and the DECmate Graphics Terminal Emu ator V1 .0 software
are not Sl.pp()rted. The DECmate Graphics Term nal Emulator
(GTE) set-up opt,on for terminal ID shou d be set to VK100
MODE-VT125 ID. Once this has been set correctly, the user's
IOgin command file should include a VAX,VMS SET TERMI­
NAL/INQUIRE commcr.d.

7-2
Terminal Management

•• I
I
I
I

I ..
I
I
'I
I

I

•• I
I
,,

I
I
I
f'

I
I
I
I

-
I

Table 7-1: VAX DAL Software Support Requirements (Cont.)

Rainbow

Professional

To use a Rainbow with DAL, the Rainbow must be configured
with three supporting software products: the hardware graph­
ics option, Rainbow A:>ly-TRM, and Rainbow ReGIS. A:>ly-ReGIS
is not sl.4JP()rtect Once the Rainbow has been configured cor­
rectly, issue the following VAX VMS command: SET TERMI­
NAUDEVICE - VT200/REGIS.

To use a Professional with DAL, the Professional must be con­
figured with the extended bitmap graphics hardware option
and PRO Communications software. V2.0 or later.

If PRO.'Communlcatlons V2.0 is used, PRO.'Communications
should be set such that the terminal ID IS VT125. (DAL does not
support PRO.'Communlcations V2.0 when the terminal ID Is set
to PRO mode.) Once this Is correctly set, the user's login com­
mand file should Include a VAA/VMS SET TERMINAUINQUIRE
command. This will ensure that VAXNMS terminal manage­
ment facilities have the correct attributes for a Professional tec­
mlnal.

Screen Characteristics

Some terminal models have narrower screens than others. This means that displays
that make use of the edges of the screen are not always transportable to other
terminals.

Screen width is expressed in fine address units. A single fine address unit is the
smallest unit on the screen that can be illuminated. Table 7-2 lists the different
terminal models and their screen widths.

7-3
Terminal Management

Table 7-2: Screen Widths

GIGI (VK100)
VT125
DECmate II & Ill
Professional

VT240
VT241
Rainbow

767

799

Authors can make their lessons transportable between terminals with different
screen widths if they use relative addressing or design their lessons to write only to
screen addresses within the boundaries of the narrower screen.

Color &apabilites

For VAX DAL, the most significant differences between terminal models are in the
area of color capabilities. For example, GIGI terminals have access to eight differ­
ent colors, and all eight colors can appear on the terminal screen simultaneously.
Rainbow terminals have access to 4096 different colors, but only four colors can be
displayed on the terminal screen simultaneously

Authors must be aware of the color capabilities of both the terminals on which they
develop their lessons and the terminals on which their lessons execute. A lesson
fails to execute as expected if it uses more colors simultaneously than the terminal
can suppon. A lesson also fails execute as expected if it requests colors that the
terminal cannot provide.

Terminals use color specifications to generate colors. Color specifications are
codes that define how the colors are generated. A terminal can only generate a color
if it has the specification for that color.

If you are developing a lesson that is to be executed from several different types of
terminals, plan to use only colors that all the terminals have specifications for.
Also, different terminals suppon different numbers of colors on the screen simulta­
neously. Some terminals can suppon eight colors in a single display. Other can
suppon only four. Plan to use only that number of colors in displays that can be
supponed by all of the terminals in use.

7-4
Terminal Management

•• I
I
I
I
I

I
I
I
I
I

-
I

I

I
I

I
I
I
I
I

-
I

The table below contains the following information for each terminal:

• The number of color specifications the terminal has
• The number of colors that can appear on the screen simultaneously (includ­

ing background color)

• The method used to store (and access) the color specifications

Table 7-3: Terminal Color Capabilities

GIGI (VK100)
• 8 colors available
• 8 colors supported simultaneously
• accessed by color-number (0-7) only

VT125
• 64 colors available
• 4 colors supported slmultaneously
• accessed by HLS specification only

VT240 or VT241 (wtth ReGIS)
• 64 colors avallable
• 4 colors supported simultaneously
• accessed by HLS specification only

DECmate II
• 16 colors availct>le
• 4 colors supported simultaneously
• accessed by color-number (0-15), or by HLS specification

DECmate Ill
• 64 colors available
• 4 colors supported simultaneously
• accessed by HLS specification only

Rainbow
• 4096 colors available
• 4 colors supported simultaneously
• accessed by HLS specification only

Professional Series (wtth PRO'Communlcatton V2.0)
• 64 colors available
• 8 colors supported simultaneously
• accessed by HLS specification only

7-5
Terminal Management

Chapter 12 in this guide contains a detailed discussion of the VAX DAL color man­
agement system and the DAL instructions that access and use color specifications.
The Programmer's Reference Guide for each terminal lists the color specifications
available with the terminal. Authors should refer to these two sources for more
information about terminal color capabilities.

THE VAX DAL TERMINAL MANAGEMENT INSTRUCTIONS

VAX DAL is equipped with instructions that can tailor terminal characteristics to
suit a lesson. These instructions do the following:

• Manage the way student responses are displayed on the screen

• Modify the color management capacities of the terminal

• Enable student use of special function keys

• Save and restore sets of terminal characteristics

Response Display Modifiers

Two instructions, SET ECHO and SET TYPEAHEAD, modify the way student
responses are handled by the terminal and displayed on the terminal screen. SET
ECHO OFF instructs the terminal not to display a student's response as it is typed .
SET ECHO ON turns on the echoing of student responses on the screen. Responses
are echoed on the screen by default.

When SET TYPEAHEAD ON is in effect, students can type responses before the
response prompt appears. The terminal uses a typeahead buffer to store anything a
student types before the prompt. If SET TYPEAHEAD OFF is in effect, each time
a response prompt appears the terminal discards the contents of the typeahead
buffer, and therefore discards anything the student typed before the prompt was
displayed. If SET TYPEAHEAD ON is in effect, DAL treats the contents of the
typeahead buffer as part of the student's response. When a response prompt
appears, the contents of the typeahead buffer are displayed after the prompt.
Responses can be typed before the prompt by default.

7-6
Terminal Management

•• I
I
I
I
I
I

..
I

I

I
I
I

I
I
I
I
I

-

DAL Color System Modifiers

As mentioned above, different terminal models have widely different color capa­
bilities. Two instructions, SET MAXCOLORS and SET HLS, modify the DAL
color system by limiting the size of DAL's internal color table, and by establishing
whether the terminal and supporting software in use require the HLS method for
specifying colors.

The SET MAXC0L0RS Instruction
SET MAXCOLORS modifies the size of the DAL color table. DAL uses the color
table to identify the colors currently available for use. (See Chapter 12 in this guide
for a complete discussion of the DAL color table.) If the terminal can support only
four colors on the screen at the same time, the DAL color table contains four slots.
If the terminal can support 16 colors on the screen at the same time, the DAL color
table contains 16 slots. A lesson that uses more than four colors on the screen
simultaneously fails to execute properly on a terminal that supports only four col­
ors. After the color table of the four-color terminal fills up, subsequent FCOLOR
instructions are ignored. A four-color terminal supports a maximum of four differ­
ent colors on the screen at one time, including background color.

Authors developing lessons for terminals with different maximum color table sizes
have two options. They can create several different versions of a lesson, with each
version tailored to the color table of the terminal the lesson uses. Or, they can use
the SET MAX COLORS instruction to create a lesson that executes successfully on
all of the different terminal models. The SET MAXCOLORS instruction estab­
lishes a size for the DAL color table. With SET MAX COLORS, authors can limit
the lesson color table to a size that all the terminals in use can support. The syntax
of the SET MAXCOLORS instruction is:

SETI MAXCOLORS, value

Where:

value is a number from I to 64 that specifies the number of slots in the DAL
color table.

Note that the color table cannot consist of more than 64 slots. See Chapter 12 for
further discussion of the SET MAXCOLORS instruction.

7-7
Terminal Management

The SET HLS Instruction
The SET HLS instruction, though used less frequently than the SET
MAXCOLORS instruction, also modifies the DAL color system. Whenever a les­
son makes use of a terminal or software utility that references color specifications
by color number rather than HLS specification, SET HLS OFF ca.n be used to turn
off the use of HLS specifications. Authors rarely need to use this instruction: DAL
automatically sets the terminal to the proper HLS setting at lesson startup.

Instructions That Enable Special Function Keys

Three instructions, SET FKEY, SET KEYPAD, and SET DELETE. enable lessons
to detect student-pressed keys and treat those keys as student responses.

The SET FKEY Instruction
Function keys, the F-keys across the top of the keyboard of your terminal, generate
escape sequences when pressed. If SET FKEY ON is in effect, DAL intercepts the
escape sequence generated by a special function key and converts the sequence into
an ASCII string. DAL then loads the ASCII string into the RESPONSE system
variable where it can be treated just as if the student had actually typed in the string.
Authors can test for key-generated ASCII strings in judging statements such as
RIGHT and WRONG, or in control structures such as TEST, VALUE and IF struc­
tures. Key-generated ASCII strings can also be used in WHEN STRING state­
ments to cause specific units to execute whenever students press specific function
keys.

This special function key feature cannot be used with Professional series terminals.

The syntax of the SET FKEY instruction is:

(!!ID
SET (ID FKEY, agument

Where argument can be:

7~

ON, which turns the special function key feature on. When SET FKEY speci­
fies ON, ASCII strings are generated and trapped in the RESPONSE variable
when students press function keys. Pressing a function key does not terminate
the students' responses. Students still must use the RETURN key, or the cur­
rent response delimiter, to terminate their responses.

Terminal Management

I

I

I
I
I
I
I

-
I

•• I
I
I
I
I
I
~
I
I
I
I
I

--
1

OFF, which turns the special function key feature off. When SET FKEY spec­
ifies OFF, DAL intercepts and discards the escape sequences generated by spe­
cial function keys. The function key feature is off by default.

TERMINATE, which turns the special function key feature on in the same way
that SET FKEY, ON does. When SET FKEY specifies TERMINATE, a func­
tion key generates an ASCII string, and terminates the student's response. Stu­
dents need not enter a response delimiter after they press the special function
key.

When SET FKEY specifies ON or TERMINATE, the following ASCII strings are
produced and entered in the RESPONSE variable when special function keys are
pressed.

Table 7-4: ASCII Strings Generated by Speclal Function Keys

®1) [F07 __KEY] g [FOB KEY]
~ [F09__KEY] tm) [F10__KEY]
(ill) [F1 LKEY] ~ [F12 KEY]
(ill) [F13__KEY] (lli) [F14 KEY]
(HELP] [F15.J<EY] ~ [F16 . .KEY]
®J [F17 __KEY] ~ [F18J<EY]
(ill) [F19__KEY] ~ [F20J<EY]
®RID,®D [E01__KEY] 00).~ [E02 KEY]
~.®) [E03__KEY] cm:,.m [E04J<EY]
®Y),@ID [EOS_KEY] tm),(E@) [E06 KEY]
G [LFA__KEY] G) [RTA_KEY]
rn [DNA_KEY] CD [UPAJ<EY]
(ffJ) [PF1__KEY] (m) [PF2...KEY]
(®) [PF3__KEY] (e8) [PF4 KEY]

Note that special function keys I through 6 cannot be used by a DAL lesson. These
function keys are reserved for VAX/VMS operating system use. As a general rule,
function keys 6 through 10 also should not be used. Depending on the system
requirements at your location, function keys 6 through l O may be used by the oper­
ating system.

7-9
Terminal Management

The SET KEYPAD Instruction
Like SET FKEY, the SET KEYPAD instruction causes keys pressed by students to
generate ASCII strings that can be treated as the students' responses. SET
KEYPAD affects the keys on the numeric keypad of the terminal . ASCII strings are
generated only if the keypad is in application mode (see below) and the SET FKEY
instruction is set to ON. The syntax of the SET KEYPAD instruction is:

SETI KEYPAD, agument

Where argument can be:

APPLJCATION, which sets the keypad to application mode. If SET FKEY
specifies ON or TERMINATE, and SET KEYPAD specifies APPLICATION,
keys on the keypad generate ASCII strings that are entered in the RESPONSE
variable and can be treated as a student's response. When SET FKEY is ON,
numeric keypad keys do not terminate the student's response. If SET FKEY
TERMINATE is in effect, keys on the keypad enter and terminate the student's
response.

NUMERIC, which sets the keypad to numeric mode - keypad keys function
normally generating numbers,••.", .. , .. , .. _", and RETURN. The keypad is in
numeric mode by default.

Table 7-5: ASCII Strings Generated by Keypad Keys

ICEV(SJ SIIIIN9 ICEYCI)

rn [KPO....KEV] CD [KP1....KEY]
m [KP2....KEV. CD [KP3_KEV]
CI) [KP4....KEYJ (I) (KP5_KEYJ
m [KP6....KEY] CD [KP7_KEV]
rn [KP8....KEV] (I) [KP9_KEV]
□ [KPC....KEVJ 0 [KPM_KEV]
0 [KPPKEY] ~ [KPE....KEV]

The SET DELETE Instruction
One final instruction modifies key usage at the terminal: the SET DELETE instruc­
tion. SET DELETE enables or disables use of the DELETE key. SET DELETE
also makes it possible to detect student use of the DELETE key and record the use
as an ASCII string in the RESPONSE system variable. The syntax of SET
DELETE is:

~ SET CID DELETE, argument

7-10
Terminal Management

•• I
I
I
I
I
I ..
I

I

..
I

I
I
I
I
I

-

Where argument can be:

ON, which is the default. When SET DELETE specifies ON, the DELETE key
functions normally: pressing the key erases the character at the immediate left
of the cursor. In this mode it is not possible to detect student use of the
DELETE key. DELETE is not reported in the system variable KEYPRESSED
and is not counted as a response character by the QLENGTH system variable.

OFF, which modifies the functioning of the DELETE key. When SET
DELETE specifies OFF, pressing the DELETE key does not delete the charac­
ter to the left of the cursor. Instead, the ASCII string [DELKEY] is inserted in
the RESPONSE system variable and KEY PRESSED is set with the value 127.
When SET DELETE is OFF, KEYPRESSED counts the. DELETE key as one
character in the student's response. The SET FKEY instruction does not need
to be set to ON for the SET DELETE, OFF instruction to work.

Like ASCII strings generated by special function and keypad keys, the ASCII
string generated by the DELETE key can be used in response judging or in control
structures just as if the student had actually typed in the string.

All special function keys and keypad keys generate strings that have the character
sequence "-1CEY]" in common. Consequently, authors can use a single WHEN
STRING statement to trap entry of any special function key used by the student.
Or, the author can create individual WHEN STRING conditions for specific keys.

ASCII strings generated by special function keys, keypad keys, or the DELETE
key are not echoed on the terminal screen. However, the string can be written to the
screen from the RESPONSE variable after one of the keys is pressed.

Lesson Menu-1)river, listed in full in Appendix F, shows one application of special
function keys in a lesson. Function keys in this instance are used in support of a
menu driver.

Instructions That Save and Restore Terminal States

VAX DAL instructions make it possible to save sets of terminal characteristics, and
later restore the characteristics to the terminal. Using SAVE and RESTORE
instructions, authors can move a lesson back and forth between complete terminal
states and complete sets of display attributes, without having to reset each attribute
of the different terminal states with each transition.

7-11
Terminal Management

The SAVE Instruction
Authors can create up to 10 different sets of tenninal characteristics with the SAVE
instruction. Each set can contain up to 17 different tenninal characteristics.

The syntax of the SAVE instruction is:

~ SAVE (ID set....number, ltenL.to...save{,ltem_to_save ... }

Where:

seLnumber is a number from 1 to IO that identifies a set of terminal
characteristics.

item.Jo.Jave is a keyword that specifies a particular tenninal characteristic to
save. Up to 17 keywords, separated by commas, can be specified in each
SAVE instruction. The keywords and the characteristics they save are listed in
the table below.

Table 7-6: Termlnal Characteristics Saved by the SAVE
Instruction

BCOLOR

CHARSET

FCOLOR

GORIGIN

GW>-IERE

ITALICS

MODE

PATTERN

PROMPT

RORIGIN

ROTATE

RW>-IERE

a..rent BCOLOR setting

Nana of the CUTent character set

a..rent FCOLOR setting

GORIGIN X and Y coordinates

GW>-IEREX and GW>-IEREY, which are the X ood Y coord notes of
the last points expressed in the curent graph scoie

Current degree of italics

Current writing mode

Current writing pattern

Current prompt chacx::ter

Cooent RORIGIN X and Y coordinates

Current angle of rotation

X ood Y coord notes of the pont last drown re ative to the current
RORIGIN

RSIZE a..rent X ood V size coefficients (RSIZEX and RSIZEY)

7-12
Terminal Management

J
11

I
I
I
I
ii ..
I
I
I
I
I

-
ii

•• I
I
I
I
I
I ,.

I
I

I

Table 7-6: Terminal Characteristics Saved by the SAVE
Instruction (Cont.)

SIZE

SREF

Current text size

Coordinates and character pattern specified by the last SREF
instruction

TROTATE

WHERE

Current angle of text rotation

Coordinates of the last point displayed (the values of the WHERE,
WHEREX, and WHEREY system variables)

The RESTORE Instruction
Authors can restore a saved set of terminal characteristics to the terminal with a
RESTORE instruction. RESTORE talces as its argument the set number of the set
of characteristics it is to install. The syntax of the RESTORE instruction is:

RESTORE I seLnumber

Where:

set-.number is the number of a set of previously saved terminal characteristics.

The lesson below demonstrates the use of both the SAVE instruction and the
RESTORE instruction.

LESSON

' BCOLOR
FCOLOR
SREF
PATTERN
ITALICS
RORIGIN

SAVE
SAVE
SAVE

saveJestore

This program shows the effect of saving and
restoring three sets of DAL termlnal characteristics.

Set up the initial characteristics:

blue
white
500,400
dash
20
600,100

Save these characteristics as three different terminal states.

1,bcolor,fcolor
2,sref ,pattern
3,ltalics,rorlgln

7-13
Terminal Management

Display text ood graphics with <i:xNe characteristics. •• lklit screen draws a shaded cuive, oo unshaded circle, ood
two boxes In which the characteristics are written. . I .

00 screen
WRITE state 1: bcolor blue-fcolor white

state 2: sref 500,400-pattem dash

I state 3: italics 20-rorigin 600,100
AT 2300
WRITE Press RETURN to change all the terminal characteristics.
PAUSE I Now change all characteristics . . .
BCOLOR dartc I I
FCOLOR green
SREF
PATTERN SOLID

I ITALICS 0
RORIGIN 300,0

Display text ood graphics with new characteristics.

I .
00 screen
WRITE bcolor dartc-fcolor green .. shading disabled-pattern solid

italics 0-rorigln 300,0
AT 2300
WRITE Press RETURN to restore terminal state nurrber 1.
PAUSE I

Restore first state, ood srcw that the characteristics in
that state have been restored.

I .
RESTORE 1
00 screen
WRITE state 1. bcolor blue-fcolor white I shading dlscbled-pattem solid

italics 0-rorigln 300,0
AT 2300
WRITE Press RETURN to restore terminal state number 2. I PAUSE

Restore the second state, ood show 1hat the characteristics
in that state have been restored.

II

7-14 -Terminal Management

I

•• I
I
I
,,

I
I ,.
I
I
I
I
I

" I

RESTORE 2
DO screen
WRITE state 1: bcolor blue-fcolor white

AT
WRITE
PAUSE

'

state 2: sref 500,400--pattem dash
Italics 0--mrlgln 300,0
2300
Press RETURN to restore terminal state number 3.

Restore fhe third state, and show 1hat fhe characteristics
In 1hat state hove been restored.

RESTORE 3
DO screen
WRITE state 1: bcolor blu&--fcolor white

state 2: sref 500,400--pattem dash
state 3: Italics 20--rortgln 600,100

PAUSE

UNIT

' ERASE

' CURVE

AT
WRITE

SREF

' BOX
AT
WRITE

screen

Create a graphics design on which to write fhe
descriptions of fhe terminal states.

First draw a curve.

400,300;440,320;500,380;510,300;590,400;550,430;490,460;430,400;
400,300;400,300
100,300
curve

Next draw a box.

100,100;200,200
100,70
box 100, 100;200,200

400,300;440,320;500,380;
510,300;590,400;550,430;490,.460;
430,400;400,300;400,300
$$ Disable shading so 1hat Slbsequent
graphics do not get shaded.

Then draw a circle around a relative coordinate.

7-15
Terminal Management

' RCIRClE 0,0:25
RAT 0,0
WRITE rclrcie 0,0:25

And finally, draw a box to hold a description of the
terminal state's save:restore status.

' BOX
AT

739;1279:5
840

ENDI..ESSON

7-16
Terminal Mooagement

$$ Coordinate at which to
begin writing description.

•• I
I
I
I
I
I ..
I
I
I
I
I

II
I

I

:.
' I

I

'• I

I

-. •
I

8
Response Judging

The discussion of response judging in Chapter 4 explains the default matching pro­
cess and the default sequence of events when a student response matches a speci­
fied answer. The simple lesson in Chapter 5 shows some examples of response
judging. This chapter describes the VAX DAL instructions that modify response
judging.

There are three main ways you can modify the default response judging sequence.

• You can modify what the student must type to match the specified answer.
• You can modify the right and wrong judgments and what happens after a

response matches.

• You can modify the way you specify right and wrong answers by specifying
variables instead of the actual words the student types. With this modifica­
tion. you can also specify that the answer must include units of measure­
ment and that a number need not be exact.

MODIFYING WHAT A RESPONSE MATCHES - THE SPECS INSTRUCT•

The SPECS instruction modifies the exactness with which the student's response
must match the specified right or wrong answers. With the default specifications.
students can use any combination of uppercase and lowercase letters and any punc­
tuation. They cannot insert extra words or use the right words in a different order.
They cannot use expressions or units. The spelling tolerance test is applied to each
word in the response .

Depending on the subject matter of the lesson. you can select the appropriate set of
arguments to modify these default conditions. There is one set of current specifica­
tions. When the SPECS instruction changes a specification. the new specification
is in effect for all subsequent response judging.

8-1

Arguments to the SPECS Instruction

The SPECS instruction has t t sets of possible keywords. Each set controls a
response-judging feature that can be turned on or off. The sets of keywords are:

~2

• ANYORDER/NOANYORDER

When ANYORDER is specified, the words in the student's response are
compared to the words in the arguments to the RIGHT instructions. If all
the words are the same regardless of word order, the response is judged
right. The default is NOANYORDER.

• CAPS/NOCAPS

When CAPS is specified, the student's response must be capitalized
exactly as the argument to RIGHT to be judged right. When NOCAPS is
specified, capitalization is not considered in judging. The default is
NOCAPS.

• CONY NOCONY

When CONY is specified, students can use any unit conversion formulas
defined by the author. When NOCONY is specified, all previously defined
conversion formulas become unavailable: the units of measure the students
use must match those used in the author's specified answers. The default is
CONY.

• EXACT/NOEXACT

When EXACT is specified, the spelling of all words in the student's
response must be exactly as specified. The spelling tolerance test is not
used. The default is NOEXACT.

• EXP/NOEXP

When EXP is specified, students can use student variables in their
responses. The student variables are evaluated when the response is
judged. When student variables are allowed, RIGHTY and WRONGY
must be used instead of RIGHT and WRONG. The default is NOEXP.

• EXTRA/NOEXTRA

When EXTRA is specified, the student's response can have extra words
and still be judged right. The default is NOEXTRA.

• FUNCT/NOFUNCT

When NOFUNCT is specified, students cannot use system functions in
their responses. They cannot, for example, respond to a question that asks
for the square root of a number by using functions to calculate the square
root. The default is FUNCT, which permits students to use system func­
tions in their responses.

Response Judging

•• I
I
I
I
I
I

..
I
I
I
I
I

..
,.

I

'• I
I
I
I
I
I ,
I
I
I
I
I

-

• MACHTOL/NOMACHTOL

When MACHTOL is specified, a tolerance of plus or minus one ten-mil­
lionth of the value of the author's specified answer is allowed in student
responses. Use MACHTOL with RIGHTV/WRONGV instructions when
the author's real number answer is defined as a calculated expression, and a
tolerance is not explicitly stated. MACHTOL allows for a discrepancy
between the author's answer and a student's response that is within the
range of what can be attributed to machine error. MACHTOL applies only
to RIGHTV/WRONGV instructions. NOMACHTOL turns off the use of
the MACHTOL feature, and is the default.

• PRECISE/NOPRECISE

When PRECISE is specified, the student's response must precisely match
one of the string answers designated in a RIGHTV or WRONGV instruc­
tion. PRECISE applies to RIGHTV/WRONGV instructions only, and
supersedes all other SPECS instructions. When NOPRECISE is specified,
the PRECISE rule is turned off, and any other current SPECS take affect.
The default is NOPRECISE.

• PUNC/IMPUNC/NOPUNC

When PUNC is specified, the punctuation in the student's response is
checked against the punctuation in the argument to the RIGHT instruction.
Wherever the author has placed a punctuation mark in the answer, the stu­
dent must also place a punctuation mark in the response. The student's
mark does not need to match the author's mark unless the SPECS EXACT
instruction is also in effect. When IMPUNC is specified, punctuation in the
student's response must match the punctuation in the RIGHT answer
exactly, whether or not the SPECS EXACT instruction is in effect. When
NOPUNC is specified, punctuation in the answer and in the response is
ignored. The default is NOPUNC.

• UNITS/NOUNITS

When UNITS is specified, students include the name of units of measure­
ment in their responses when units of measurement are specified in the
answers. The RIGHTV and WRONGV instructions must be used, and the
CONVERT instruction can be used to specify that values are to be con­
verted to an equivalent value in another unit. NOUN ITS is the default.

8--3
Response Judging

Using the SPECS Instruction - ANYORDER and EXTRA Keywords

The sample lesson Icecream draws an ice cream cone in a color that is suitable for
the flavor the student requests. The lesson Icecream is in Appendix F.

The challenge for the author of this lesson is to provide as many right answers as
possible so that most flavors students enter display plausible colors of ice cream.
(The use of the SYN instruction for this purpose is discussed later.)

The specifications are changed at lesson level to provide the most flexibility.
Lemon and peppermint are right answers . With the EXTRA specification,
responses such as lemon sherbet or peppermint twist are also judged right. As long
as one of the words in the response is in the list of synonyms, the response matches.

With the ANYORDER specification, responses such as chocolate mint or mint
chocolate chip are both right. These two answers, however, produce different col­
ors. Mint and chocolate are both right answers. Response judging ends when the
response matches a specified answer, so mint chocolate chip ice cream is green
with dark chips. Chocolate mint ice cream is dark.

The other specifications have not been changed. There is no reason for requiring
capital letters or punctuation in the responses, and using the default value of
NOEXACT allows for typing errors.

MODIFYING WHAT A RESPONSE MATCHES - THE SYN INSTRUCTION

The SYN instruction specifies a target word that is used in the argument to RIGHT
or WRONG, and a list of synonyms for the target word. You can add words to the
lists of synonyms, or delete words at any point in the lesson. The lists of synonyms
are available to all units.

The syntax of the SYN instruction is:

SYN + "tagef',"syn1·;syra-;syn3•{, ... }

The plus sign (+) indicates that this is a list of added synonyms. The first word
following the plus sign is the target word, and the words that follow are the syno­
nyms. Later in the lesson you can use the SYN instruction with a plus sign and the
same target word to add to the list of synonyms. The added words are then syno­
nyms for subsequent units.

You can also delete some words from the list or delete the entire list. To delete some
words, use a minus sign (-) before the target word; then list the synonym or syno­
nyms to be deleted. Other words in the synonym list are not affected. To delete the
entire list, precede the target word with a minus sign, but do not list any words after
the target word.

8-4
Response Judging

•• I
I
, ,

I
l
I .,
I
I
I
I

I

••
~
I
I

I

-
I

To indicate that a synonym list should be checked during response judging, you
identify the target word in the argument to RIGHT or WRONG by enclosing it in
double angle brackets, like this:

RIGHT <<target>>

The lesson Icecream shows one use of synonyms in response judging. Each of the
eight colors is specified as a target word at the beginning of the lesson. The syno­
nyms for each color are flavors that look like that color. Then in the arguments to
the RIGHT instructions, each color is specified as a right answer and enclosed in
double angle brackets. When the student responds with a flavor such as lemon, the
lesson searches the lists of synonyms and equates lemon with yellow.

The following example shows the SYN instruction and the RIGHT instruction for
yellow.

SYN + "yellow","lemon·,·oonono·

QUERY
RIGHT <<yellow>>

FCOLOR YELLOW

Synonym checking occurs only when the target word is enclosed in double angle
brackets. If the word yellow appears in an answer without the angle brackets, the
synonym lists are ignored, and only the response yellow is judged right.

MODIFYING WHAT THE RESPONSE MATCHES - THE NOISE INSTRUCTION

The NOISE instruction specifies that certain words are to be ignored in certain
positions in a response. Noise words are specified with the NOISE instruction; then
double angle brackets in the answer following RIGHT or WRONG specify the
position where noise words are acceptable.

The syntax of the NOISE instruction is:

NOISE + ·no1se_word·,·no1se_word"{, ... }

The plus sign (+) indicates that these words are to be added to the list of noise
words. A minus sign (-) can be used to delete words, or to delete the entire list if
no words follow the minus sign.

There is only one list of noise words. The list can be modified during execution of
the lesson so that different words are acceptable as noise words in different student
responses.

The following example shows noise words defined by the NOISE instruction and
locations for noise words specified in a RIGHT instruction.

8-5
Response Judging

QUERY
RIGHT <<>> man and <<>> dog

Assuming that the noise words listed above are in effect, the following responses
are judged right:

manooddog
a man ood a dog
fhe man ood fhe dog
a man ood this dog
that man and a dog

The following responses are judged wrong:

a manor a dog
a man and his dog
a tall man and a little dog

MODIFYING JUDGMENT OF THE RESPONSE - THE JUDGE INSTRUCTION

The arguments to the JUDGE instruction change what happens after a right or
wrong response is matched. When a RIGHT or RIGHTV is matched, the default
sequence is to process any response-contingent instructions, then go to the ENDQ
and proceed from there. When a WRONG or WRONGV is matched, the default
sequence is to process any response-contingent instructions, erase the response
echoed when the student typed it, display the prompt again, and collect another
response.

The JUDGE instruction and its argument are part of the response-contingent
instructions, and apply only when that response is matched.

Arguments to the JUDGE Instruction

There are six possible keywords to JUDGE.

8-6

• AGAIN

The AGAIN keyword causes judging to begin again at the start of the
response-judging block. The same response is judged. The AGAIN
keyword can be used in the response-contingent instructions with either
RIGHT or WRONG.

Response Judging

•• I
I
I
I

-
I ..
I
I
I
i
I

-
I

•• I
I
I
I
I
I ,
I
I
I
I
I

--
1

• CONTINUE

The CONTINUE keyword causes judging to continue. Judging does not
stop when this answer matches the response. Instead, the response is com­
pared to the next specified answer. The instruction that specifies the last
matching answer controls the next step. If the last matching answer is the
argument to a RIGHT instruction, the lesson continues after the ENDQ
instruction. If the last matching answer is the argument to a WRONG
instruction, the response is erased; and the lesson waits for a new response.

The response-contingent instructions for all matching answers are
executed.

• IGNORE

The IGNORE keyword erases the student's response and displays the
prompt again. Judgment then begins again with the new response. This
keyword can be used after either RIGHT or WRONG instructions.

• NO
The NO keyword reverses a right judgment. The student's response is
erased, the prompt is displayed again, and the lesson waits for a new
response. This keyword also reverses all the system variables associated
with right and wrong responses.

• OK
The OK keyword reverses a wrong judgment. The lesson goes to the
ENDQ and proceeds from that point. This keyword also reverses all the
system variables associated with right and wrong responses.

• STOP

The STOP keyword stops judging and causes the lesson to go to the ENDQ
immediately. Any response-contingent instructions following the STOP
are not executed.

Using the JUDGE Instruction - the CONTINUE Keyword

The lesson Icecream in Appendix F shows a typical use of the CONTINUE
keyword with the JUDGE instruction. Since a number of flavors include the word
chip, chip is specified as a RIGHT answer. When this word occurs anywhere in a
student's response, a flag is set to show that this response occurred, and the instruc­
tion JUDGE CONTINUE is given. This forces the lesson to go on looking for
another right answer to select a color.

8-7
Response Judging

The order of RIGHT and WRONG instructions in the response-judging block is
important with the JUOOE CONTINUE instruction. The first specified answer is
always compared to the response. Whether the other specified answers are com­
pared depends both on the response and on JUOOE instructions.

In the lesson lcecream, the response always needs to be tested for chip, then tested
for a color. After the response matches a color, no other answers should be
checked. Therefore, the first RIGHT instruction specifies chip. The response-con­
tingent instructions for this answer include JUOOE CONTINUE. The order of the
other RIGHT instructions is not important.

Using the JUDGE Instruction - the STOP Keyword

The unit prac I in the lesson Multiply (which can also be found in Appendix F)
shows a typical use of the STOP keyword. The default sequence forces the student
to keep responding until the response matches an answer you have specified as
right.

The default sequence is overridden with a JUOOE STOP instruction following the
WRONG instruction. Notice that the feedback display of the right answer when the
student makes a mistake comes before the JUOOE STOP instruction. When the
JUOOE STOP instruction is executed, the lesson goes to the ENDQ immediately.
Any response-contingent instructions following JUOOE STOP are not executed .

THE R GHTV AND WRONGV INSTRUCTIONS

The instructions RIGHTV and WRONGV, like RIGHT and WRONG, specify
right and wrong answers, but do so in a different way. With RIGHT and WRONG,
answers are specified literally as the words students type in their responses. With
RIGHTV and WRONGV, answers can be specified as variables or expressions.

The lesson Multiply shows one use of the instruction RIGHTV to specify a right
answer as the current value of a variable. Because the variable is an integer, the
characters the student types are converted to an integer before the response and the
answer are compared. If the student enters an expression, the expression is evalu­
ated before the response and the answer are compared. (If the right answer to one of
the multiplication problems is JO, 5 + 5 is judged right.)

The RIGHTV and WRONGV instructions can specify a tolerance as either a per­
centage or an absolute value. If the response is within the tolerance range, it is
judged as matching. 1be RIGHTV and WRONGV instructions can specify that a
unit of measurement is a required part of the answer. With units, you can also use
the CONVERT instruction so that students can enter more than one unit.

8-8
Response Judging

•• I
I
I
I
I
I

..
I
I
I
I
I

..
I

•• I
I
I
I
I
I
~
I
I
I

I

The syntax of RIGHTV and WRONGV is:

RIGHTV volue{,tolerance,unlLnorne}
WRONGV value{,tolerance,unlt..nome}

The instructions RIGHTV and WRONGV must have arguments. The specified
value can be an expression, a variable, or a constant of any data type.

You can specify the tolerance as a percentage or an absolute value. To specify a
percentage, use a number followed by a percent sign. To specify an absolute value,
use a number. The unit name is a string constant or variable that defines the unit for
the specified value. The response must contain the specified unit name to be judged
right.

Several of the SPECS instructions apply specifically to RIGHTV and WRONGV
instructions. SPECS PRECISE, for example, is used when a precise match is
required between the student's string or calculated response and the author's speci­
fied answer. Unlike SPECS EXACT, SPECS PRECISE requires that capitalization
and word spacing, in addition to the other criteria checked by SPECS EXACT,
precisely match in the student response and the author's answer. This response­
judging feature is useful when evaluating student string responses that are chemical
or mathematical formulas.

Student Variables

Student variables are variables whose names students can enter in a response. The
current value of the variable is used to evaluate the expression.

Letting students respond with an expression to be evaluated is useful in a number of
situations. You may be teaching a subject that uses constants such as Planck's con­
stant. Students can use the standard notation for such constants in their responses;
the lesson can perform the arithmetic. You might want to write a lesson that imi­
tates a calculator, and let students use this as a tool.

In the following example, students can use numbers, operators, and the word pi in
their responses.

8-9
Response Judging

LESSON
SIZE
SPECS
DEFINE
DEFINE
ASSIGN
PROMPT

ASSIGN
AT

clrcum
2
EXP
pl:REAL,STUDENT
r:REAL
r:=17.5

pl:=3.14159
310

$$ Let student use student variables.
$$ Define pi as a student variable.
$$ Define variable fa radius.

$$ Change prompt char so student sees m
$$ equation.

WRITE If the radius of a circle is < <T,r,4, 1 > > cm,
what Is the circumference?
Use the * symbol fa multlpllcatlon.
Usepl

QUERY *
RIGHTV 2*Pl*R,1%

$$ put • = • after c fa equation
$$ allow 1% tolerooce

WRITE Right. Multiplying by pl gives <<s,responsev>>
WRONG

MARKUP
WRITE Try again.

ENDQ
ENDLESSON

Students can type several responses: the answers 2*pi*l7 .5, pi*35, and pi* 17 .5*2
are all judged right. If they wish, students can even complete the multiplication by
pi. They cannot, however, use the variable r in their responses because r is not
defined as a student variable. They must enter a number for the radius.

Student variables must be defined at lesson level and can be used in any unit.

Figure 8-1 shows one response.

If the radius of a circle is 17.6,
what is the circuMference?
Use the* SMMbol for Multiplication.
Use 11pi 11

C = 2 * 17.5 * pi

Right.

FiglMeer-1
The RIGHTV lns1ruction

8-10
Response Judging

MA·S-2134-62

•• I
I
I
I
l
I

..
I
I
t
I
I

--
1

•• I
I
I
I
I
I
~
I
I
I
I
I

-

Specifying a Tolerance

The DAL code example above specifies a 1 % tolerance for the student's response.
Tolerances are used for two reasons. The first reason is to provide more flexibility
for the student. If a student answering the query in the above example actually
multiplies by the value of pi, the response matches only if the student uses the exact
value of 3.14159 that you assigned to the variable pi. If a student multiplies by
3.14, the response is judged wrong. Therefore, a tolerance is needed.

The second reason involves the representation of real numbers in the computer. A
full treatment of this topic is beyond the scope of this manual. Briefly, if the author
specifies the real number answer as a expression and does not also specify a toler­
ance, all student responses, even correct ones, are apt to be judged wrong because
of machine error. You must either use a tolerance with real numbers, or use the
SPECS MACHTOL instruction, which permits the minute discrepancies that can
be attributed to machine error. For more detailed information on this topic, find a
reference that explains floating-point numbers.

You can specify the value and a tolerance without using variables, as shown in the
following examples.

RIGHTV 2.17 *(10.0"5), 10
WRONGV(8.8*(10.0"-6)) + (12.5*(10.0"-4)),10"-6

In these two examples, the tolerance is an absolute number. When the student
enters a response, the value of the expression in the answer is calculated. The stu­
dent's response matches if it is within the range denned by the result plus or minus
the tolerance.

8-11
Response Judging

Specifying Units

The third argument to RIGHTV and WRONGV specifies a unit name. When this
argument is used and SPECS UNITS is in effect, students must include the unit
name to match.

You can also allow students to enter one of several unit names and a value in the
units they select. For example, there are many subjects where values are normaUy
expressed in one of several units, depending on the size of the value. Distance in
the metric system can be expressed in meters, kilometers, centimeters, or
millimeters.

Suppose that the right answer to a problem is 2.5 meters. This can also be
expressed as 250 centimeters. The CONVERT instruction specifies the formula for
conversion between units. As you write the lesson, you perform calculations and
specify answers in the basic unit. When students take the lesson, they can enter any
combination of value and units.

If you want students to be able to use unit conversion formulas instruction in only
some of their responses, you can tum off access to all previously defined conver­
sion formulas with the SPECS NOCONV instruction. Disabled conversion formu­
las can be turned back on with SPECS CONV.

The syntax of the CONVERT instruction is:

CONVERT base_lf\it = seconday_unlLexpresslon

The base unit is the unit name specified as the third argument to RIGHTV or
WRONGV. The value specified in the RIGHTV or WRONGV instruction must
also be in these units. The secondary unit expression defines the arithmetic opera­
tion required to convert a value in the secondary units to a value in the base unit.

The instruction CONVERT m = cm /100 is interpreted as follows. If mis the unit
name in the answer, the students can enter either m or cm in the response. If the
student enters m, compare the value in the response to the value in the answer. If
the student enters cm, divide the value in the response by I 00; then compare the
resulting value to the value in the answer.

The following short lesson illustrates the CONVERT instruction.

8-12
Response Judging

•• I

I
I
I

..
I
I
I
I,

'• I
I
I
I
I
I
~
I
I

I

LESSON convert
SPECS UNITS
CONVERT ft = In /12
CONVERT ft = yd *3
SIZE 2
DO questt
DO quest2
; End of lesson level.

UNIT quest1
AT 101
WRITE Relatively short distances can be

measured In Inches, feet, or yards.
Use the unit names In, ft, and yd.
A stick Is 2 ft long. How long Is
it in Inches?

QUERY
RIGHTV 2,1%,"ff'

MARKUP
PAUSE

WRONG
MARKUP
PAUSE

ENDQ

UNIT quest2
WRITC How long is the stick In yards?
QUERY
RIGHTV 2,1%,"ff'

MARKUP
PAUSE

WRONG
MARKUP
PAUSE

ENDQ

ENDLESSON

Figure 8-2 shows a student's responses to this lesson. Notice that the student
entered 2/3 yd in the second unit. The expression 2/3 is convened to a real number
before it is compared to the answer. The real number 0.666667 is stored in the
variable RESPONSEV. The student can also enter a real number.

8-13
Response Judging

Relat i ve!~ short d i stances can be
Measured in i nches, ~eet, or ~ards.
Use the uni t naMes i n, ~t, and ~d.

A s tick i s 2 ~t long.
it i n i nches'?
>24 i n OK

How long i s

How long i s the s tick i n ~ards?
} 2/ 3 Md OK

MR•S-2135-C!

Flglxe er.-2
The CONVERT Instruction

MISCELIANEOUS DISPIAY INSTRUCTIONS

Two different VAX DAL instructions modify the display of queries. The PROMl7f
instruction changes the system prompt character, and the INPUT instruction
accepts a response without invoking the response-judging features of QUERY.

The PROMPT Instruction

The PROMPT instruction changes the character displayed as the system prompt at
each QUERY instruction. In the lesson Multiply which can be found in Appendix
F, two prompts are used: the default system prompt > and the equal sign. The sys­
tem prompt is used for questions about what the student wants to do. The equal sign
is used when the student's response is the answer to a multiplication problem. The
instruction that selects the equal sign is:

PROMPT ·= •

The argument is a string constant, and can be any character or series of characters,
including characters from an alternate character set. Notice that there is a space
following the equal sign. This provides a space before the student's response.

If you wish to use a string from an alternate character set as the prompt, use the
following instruction format:

PROMPT •smng·, chor_.set_name

8--14
Response Judging

•• I
I
I
I
I
I ..
I
I
I
M
I

-
I

•• I
, ,

I
I
I
I
..
I
I
I
I
I ,.
I

You are required to load the alternate character set prior to using this instruction.

Once you have used the PROMPT instruction, the system displays the specified
prompt until another PROMPT instruction is executed.

The INPUT Instruction

The INPUT instruction displays the system prompt character and waits for a stu­
dent response. The response is stored in the system variable RESPONSE. The
INPUT instruction is useful when you want the student to respond, but do not want
the automatic judging and scoring of the response that the QUERY instruction initi­
ates. A typical use for this instruction is following the display of a menu that the
student selects from.

8-15
Response Judging

•• I
I
I
I'
I
I ..
I
I
I
I
I

-
I

'• I
I
I
I
I
I ..
I
I
I

I ..

I -

•• I
I
I
I
I
I ..
I
I
I
I
I

91
I

•• I
I
I
I
I

I
I
I
I

I

9
Response Processing

Chapter 8 discussed the instructions that modify default response judging. This
chapter discusses the response-judging sequence itself, examining the different
system variables that are updated to record student responses, errors, and scores.

Topics discussed in this chapter include:

• Scoring system variables

• Response-related system variables

• System variables in nested queries

• The ERRORV system variable

SCORING SYSTEM VARIABLES

VAX DAL maintains a number of system variables that contain student scores and
information about student responses. Table 9-1 lists the scoring system variables
discussed in this guide, what they contain, and how they are updated.

9-1

Table 9-1 : Scoring System Varlables

- I .. • - '

' I

- . - ------ - - ~ -_ ... _: ·~ _...__if! ·-_:::-- __ - J

GOAL integer Number of cunent goal GOAL nstruct on
1 to 100

NNO Integer Number of responses Incremented by an
Judged mcooect s.nce lncooeci response
beginning of lesson. Updated When a uni
Un ess default response conta nIng a QUER
1udg1ng Is ovemdden b OCk finishes
this variable Is 0

integer Number of responses lncremen ea b a COf-
udged cooect since the eci response Updated
beg1nn ng of the lesson when a un con a Ing a

QUER bock finishes

Number of correc1 ncremen◄ed b a COf·
responses mode on lhe reef ·esponse on tne f rst
first affen'l) since the attempt. Updated when
beg nnIng of the un conta n ng tr-a
lesson QUER 1shes

UMTRIES integer Number of times the ru- Incremented after each
dent hos responded to response C eared ~
the current QUERY. tt"le un t conra nIng

QUERY begins

QUERES integer umber of QUERY nstruc- Updated by each new
tions s nee the beginn ng QUERY 1nstrucf on
of the resson QUER ES iS
not ncremented when
prompt IS redisplayed
after a wrong response
t Is ncremented if any
nstructlon (REDO LOOP,
FOR. BRANCH) retuns
control to a point pre-
ceding the QUERY.

9-2
Response Processing

•• I
I
I

I
I ..
I
I
I
I

I

•• I
I
I
I
I
I ..
I
I
I
I

Table 9-1: Scoring System Variables (Cont.)
..

~ ... • .. r--- _._ • - ·_ -- ...

SATISFIED Integer

SCORE real

SCORES real

Assigned the value 1 If
the response Is judged
C01Tect and 2 if the
response Is judged incor­
rect. If the unit does not
contain a QUERY block,
value assigned Is zero.

student's total score.
Default increment Is 1
Increment Is modified by
argument to WEIGHT
Instruction.

Array of SCORES indexed
by goal number. Array
contains score for each
goal. The index Is an inte­
ger between 1 and 100
If any other Index 1s used,
the value -999 Is returned.

Updated after each
RIGHT. WRONG, RIGHTV,
and WRONGV instruc­
tion. Cleared when a
unit containing a QUERY
begins

Updated when a unit
containing a QUERY
finishes execution.

Updated When unit con­
taining QUERY finishes Its
execution

The following is a step-by-step explanation of how DAL uses scoring system vari­
ables to record student scores.

When execution of a unit begins:
DAL sets the NUMTRIES and SATISFIED system variables to zero. The other
scoring system variables do not update during the execution of the unit. If the unit
does not contain a QUERY block, both SATISFIED and NUMTRIES still contain
zero when the unit finishes .

Because both NUMTRIES and SATISFIED are reset to zero whenever a new unit
starts, the current value of these two variables cannot be passed to another unit.
Authors who need to pass the current value of NUMTRIES or SATISFIED must
assign the value to a user-defined variable and pass the user-defined variable.

9-3
Response Processing

After the student enters the first response:
The response is counted as a try and DAL sets NUMTRIES to I.

If the response matches an answer specified by a RIGHT instruction, DAL sets the
SATISAED variable to I and passes control to the ENDQ instruction.

If the response matches an answer specified as WRONG, or if the response does
not match any of the specified answers, DAL sets SATISAED to 2 and repeats the
QUERY block. DAL adds I to the NUMTRIES variable for each additional try the
student requires to answer the query.

By default, the response-judging sequence repeats until the student's response
matches a RIGHT answer. When the student eventually enters a response that is
judged correct, DAL sets SATISAED to I and passes control to ENDQ.

After the ENDQ instruction, any subsequent instructions in the unit execute, and
execution of the unit ends.

When execution of the unit ends:
DAL updates the scoring variables NOK, NOKFIRST, SCORE, and
SCORES(GOAL) based on the values of the NUMTRIES and SATISAED system
variables. Because students remain by default in the response-judging block until
they respond with a correct answer, SATISAED always contains the value I when
the execution of a unit finishes (unless default response judging is overridden) .

If SATISAED contains the value I when the execution of a unit finishes, DAL
updates the scoring system variables in the following manner:

• 1 is added to NOi<

• 1 is added to NOKFIRST if NUMTRIES = 1

• SCORE Is updated based on WEIGHT

• SCORES(GOAL) Is updated based on WEIGHT

In a unit that does not contain a QUERY block, the SATISAED variable still con­
tains the value zero when the unit finishes. The scoring variables do not update if
SATISAED contains zero when the unit ends.

How to override the default response-judging sequence:
By default, the response-judging sequence is repeated until the student enters a
correct response. The JUDGE STOP instruction overrides the default response­
judging sequence.

9-4
Response Processing

•• I
I
I
I
I
I

..
I
I
I
I
I

-
I

I
I
I
I
..
I
I
I
I
I

-
, ,

A JUDGE STOP instruction in a response-judging block immediately passes con­
trol to the ENDQ instruction, whether the student has matched a RIGHT answer or
not. If the last response the student made before JUDGE STOP failed to match a
correct answer, SATISFIED contains the value 2 when the unit finishes.

If SATISFIED contains the value 2 when the execution of a unit ends, DAL incre­
ments the NNO system variable. NNO contains the number of incorrect responses
the student has made since the beginning of the lesson. An incorrect response does
not affect the SCORE or SCORES system variables.

How to override the def a ult scoring system:
By default, NOK, NOKFIRST, NNO, SCORE, and SCORES(GOAL) are updated
only after execution of the unit ends. The SCORE UPDATE instruction overrides
the default scoring variable update.

When executed in a unit, the SCORE UPDATE instruction updates the scoring
variables immediately, based on the current value of the SATISFIED system varia­
ble. The update can occur only after the response-judging block in a unit. If you
execute a SCORE UPDATE instruction before the unit finishes executing, you can
use the updated scoring variables in the unit.

If you use SCORE UPDATE in a unit, the scoring variables do not increment again
when the unit ends. DAL updates the scoring variables more than once for the same
response-judging block only if the lesson executes the unit containing the block
more than once with a REDO instruction.

Another way to modify the default scoring variable update is to assign a value to
SATISFIED before execution of the unit ends. In this way, the scoring variables are
updated when the unit ends based on the SATISFIED value the author assigns.

RESPONSE-RELATED SYSTEM VARIABLES

VAX DAL maintains a number of system variables that contain information about
student responses, but are not used to keep score. Some of these variables can be
used to restrict the way a query can be answered. Table 9-2 lists the most com­
monly used response-related system variables, and describes what they contain and
how they are updated. Appendix C, which lists all system variables, includes other
response-related variables.

9-5
Response Processing

Table 9-2: Response-Related System Variables

0

9~
Response Processing

•• I
I
I
I
I
I ..
I
I
I
I
I

-
I

I
I

I
I. '

I
, ,

I

-
I

Table 9-2: Response-Related System Variables (Cont.)

l~ESPONSEV real
Integer
Boolean

Bool 30n

Stnr,g In RESPONSE
evo a e,cpres
son of same aata type
as argumenrs to
RIGKTV or WRONGV.

U5t:<l with QELAPSED
!:> d ten 11ne rl time
allowed for responsia
ha .. occurreci
0 notimeout
1 tim0(:>ut

Evaluated whoo
f.llGHTV or WRONGV 1

execute,j,

IA hen QELAP:SED Is ro1
0, lMEOUT Is 581 o O at
I me or QUERY, to 1
When QELAPS D COlJIUS
dOwn too

DAL updates the RESPONSE variable each time a student enters a character string
in response to a QUERY, INPUT, or PAUSE STRING instruction. RESPONSE
contains the student's exact input.

If the response-judging block contains a RIGHTV or a WRONGV instruction, the
contents of the RESPONSE variable are considered to be an expression. DAL eval­
uates the expression when the first RIGHTV or WRONGV instruction in the
response-judging block begins execution. The value returned by the expression is
stored in RESPONSEV.

Both RESPONSE and RESPONSEV are available in the unit containing the
response-judging block.

By default, student responses can contain any number of characters and are termi­
nated by the delimit character !Brn.

The system variable QELAPSED defines a time limit for responding. You use the
system variable TIMEOUT to test whether the time limit has elapsed. This can be
useful for tests, for various kinds of simulation, and for games. The default value
ofQELAPSED is 0; this makes the QUERY available for an unlimited amount of
time.

The following example gives the student five seconds to respond.

9-7
Response Processing

ASSIGN QELAPSED: = 5
QUERY
RIGHT

WRONG
IF TIMEOUT = 1

ENDIF
ENOQ

DO OUTIME

$$ Wait 5 seconds for response.

$$ Response-contingent instructions.

The ASSIGN instruction preceding the QUERY sets the value of QELAPSED to 5.
When QELAPSED is set, TIMEOUT is also set to 0. Then, if the five seconds
elapse before the student has typed the delimit character, TIMEOUT is set to I; and
whatever the student has typed is judged. If you test for the TIMEOUT value as
part of the wrong answer processing, you can display an appropriate message to the
student, handle the QUERY as an unanswered question, or to do whatever else is
useful in this lesson.

The system variable QLENGTH defines the number of characters allowed in one
response. After the student enters that number of characters, response judging
begins. Like QELAPSED, QLENGTH must be assigned a new value before each
QUERY to which it applies. The variable QLENGTH is reset to the default value
of Oat the ENDQ.

Menus provide one logical use for QLENGTH; another is in games where students
always respond with the same number of characters or digits.

QLENGTH is useful, but should be employed with caution. Generally, it is easier
for a student to do the same thing consistently. In lessons that use QLENGTH for
some responses but not others, students can become confused about when they
need to use the RETURN key and when they do not.

Suppose that the student gets used to pressing the RETURN key after every
answer, and you then change QLENGTH and specify that responses are one char­
acter long. Whenever a key is pressed, the input is stored, and the stored characters
are read the next time a QUERY, INPUT, or PAUSE instruction is encountered. If
the student continues to press the RETURN key after an answer, the RETURN
character is stored. Then, when the lesson comes to a QUERY, INPUT, or PAUSE
instruction and reads what has been typed, this extra RETURN character is picked
up. Depending on where the student is in the lesson, the~ character can be inter­
preted as a wrong answer, or can cause a display to be erased before it can be read.
The default response sequence waits after the prompt character until the student
types the system delimit character (fl@.

9~
Response Processing

•• I
I
I
I
I
I ..
I
I
I
I
I

-
I

•• I
I
I
I
I
I
f'
I
I
I
I
I

-
I

USING SYSTEM VARIABLES

The following unit uses default response judging except for the three SPECS
instructions. Modifications to this unit show some possibilities for using the scor­
ing and response-related system variables in a lesson.

UNIT
AT
WRITE
SPECS
SPECS
SPECS
QUERY
RIGHT

WRONG

' WRONG

ENDQ
ERASE

capitol
310
What Is the capitol of the United States?
EXACT SS Spelling, punctuation, and cap letters count.
CAPS
PUNC

Washington, D.C.
WRITE Very goodl

Press RETURN
PAUSE
Washington
WRITE Tell me the whole name.

PAUSE
ERASE

WRITE

PAUSE
ERASE

Press RETURN and try again.

510;680 SS Erase the text on lines 5 and 6
before displaying the prompt again.
SS Any response not specified above.

Be sure you are spelling and punctuottng
the name correctly.
Press RETURN and try again.

510;880

One problem with the unit above is that it does not distinguish between a mis­
spelled (or mistyped) response and a totally wrong response. If the student
responds "washignton, DC", the response is judged wrong. The suggestion to
check the spelling and punctuation is helpful. Exactly the same thing happens,
however, if the student responds "Lima, Peru", and the suggestion is useless.

The following instructions are a revision of the unit capitol using the system vari­
ables to detect a misspelled or mistyped response. For this revision, the default
specifications are in effect. Uppercase characters and punctuation are not consid­
ered in judging. The spelling tolerance test is applied.

9-9
Response Processing

UNIT
AT
WRITE
QUERY
RIGHT

ccpltol
210
What Is the capitol of the United States?

Woshlngton, D.C.
IF RESPONSE <> "Washington, D.C. •

ELSE

AT 615
WRITE Check VCAS spelling and PlJ)Cfuatlon.

Press RETURN a-id try again.
PAUSE
ERASE 615;880
JUDGE NO

AT
WRITE
PAUSE

615
Very good.
ELAPSED,3

ENDIF
WRONG

Because the default specifications are in effect, a misspelled, mispunctuated, or
miscapitalized version of Washington, D.C. is judged right. Exactly what the stu­
dent typed is stored in RESPONSE. The IF instruction compares the string "Wash­
ington, D.C." to the student's response. If the two strings are equal, the feedback
following the ELSE is displayed; the answer is judged right; and the lesson goes to
the ENDQ.

If the response is not equal to the string, the feedback about spelling and punctua­
tion appears on the screen. This feedback appears only if students make mistakes in
capitalization or punctuation, or if they misspell the word Washington. The
instruction JUOOE NO reverses the right judgment, so the lesson erases what the
student typed and redisplays the prompt. The ERASE instruction erases the
feedback.

The WRONG Washington instruction from the original unit still makes sense, so it
stays in the revised unit. But the WRONG (blank) instruction needs to be changed
to help a student who really has no idea what the answer is. The NUMTRIES varia­
ble can help here.

9-10
Response Processing

•• I
I
I
I
I
I ..
I
I
I
I
I

-
I

•• I
I
I
I
I
I
f'
I
I
I
I
I

-
I

WRONG
TEST NUMTRIES
VALUE 1

AT 615
WRITE That's not right.

VALUE 2
AT 615
WRITE Let me give you a hint.

It was named for the first president.
VALUE 3

AT 615
WRITE The answer Is Washington, D.C.

Put this on your list of capitals to review.
Press RETURN to continue.

PAUSE
JUDGE STOP

ENDTEST
AT 815
WRITE Press RETURN to try again.
PAUSE
ERASE 615;1080

ENDQ

The TEST structure tests the value of the variable NUMTRIES. If the student's first
response is wrong, the feedback is just that the response is wrong. On the second
try, the lesson displays a hint. If the third try is still judged wrong, the answer is
displayed. The JUDGE STOP instruction ends the judging and goes to the ENDQ.

The instructions following the ENDTEST are executed after the first two wrong
answers. These instructions can be included in the instructions following VALUE 2
and VALUE 3, but this means writing them twice. They are skipped after the third
time, because JUDGE STOP causes the unit to go to the ENDQ immediately.

The lesson lcecream in Appendix F shows another use of the RESPONSE variable.
If the student's response is not one of the flavors of ice cream that the lesson recog­
nizes, the lesson uses the RESPONSE variable to say that the flavor requested is
not available. Of course, anything the student types is repeated, and it is possible to
have nonsensical feedback.

SYSTEM VARIABLES IN NESTED QUERIES

A nested query occurs whenever a DO instruction in a QUERY block executes a
unit that contains a QUERY block.

The DAL units below show the instructions that create a nested query.

9-11
Response Processing

UNIT
AT
WRITE

QUERY
RIGHTV

WRONG

ENDQ
RETURN

UNIT
AT
WRITE

AT
WRITE
NOISE
SPECS
QUERY
RIGHT

WRONG

ENDQ

unita
505
In what yea did Christopher Columbus
set sail for what he 1hought was India?
810
1492
AT
WRITE
PAUSE
ERASE

1015
Excellent!
ELAPSED,3

DO unitb
JUDGE STOP

unitb
1015
Sorry, but the correct answer is 1492.
Here's a bonus question, however, and if you
get this second question correct it will make
~ for missing the first question.
1515
What were the names of Columbus's ttvee ships?
+·cn:J", itie·
ANYORDER
1715
<<>>Nlna<<>>Plnta<<>>Santa Maria
AT 1915
WRITE Excellent!

AT 1915
WRITE Sorry, but you're wrong again.

Time to read that chapter.
JUDGE STOP

IF SATISFIED = 2 $$ So the NNO variable isn't
$$ incremented if the student
$$ misses the bonus question. ENDIF

PAUSE
ERASE
RETURN

ASSIGN SATISFIED:=0

In the above DAL code, a DO instruction in the QUERY block in unita executes
unitb. Because unitb itself executes a QUERY block, the QUERY block in unitb is
nested inside the QUERY block in unita. Unitb executes conditionally, depending
on the outcome of response judging in unita.

9-12
Response Processing

•• I
I
I
I
I
I ..
I
I
I
I

I

•• I
I
I
I
I
I ,.
I
I
I
I
I

--
1

Before a unit called from within a QUERY block starts, DAL saves the values of
many scoring variables and response-related variables. DAL does this in order to
preserve the status of the calling QUERY block. When the called unit finishes and
control returns to the calling QUERY block, DAL restores the saved values to the
scoring variables and response-related variables. In this way, the values of the vari­
ables in a QUERY block are not disturbed if the QUERY block executes a
response-contingent unit.

The items in the table below are saved when a unit is executed from within a
QUERY block.

Table 9-3: Items Saved when Queries are Nested

SATISFIED variable

RESPONSE variable

Response length

Typeahead flag

Latency

QLENGTH variable

OKWORD variable

Current Goal

Current prompt

Prompt location

NUMTRIES variable

ERRORV variable

Response ECHO flag

Number of words In the response

ANSCNT variable

QELAPSED variable

NOWORD variable

Current text size

Current prompt font

Flag on whether scores have been updated

The original values of the items listed above are restored when a unit called from a
QUERY block finishes executing. DAL saves and restores system variable values
only when DAL units are called from within QUERY blocks. Variable values are
not saved when a QUERY block calls a routine written in another programming
language. Also, variable values are not saved if control transfers to a condition
unit.

With the exception of the SATISFIED and NUMTRIES variables, the current
value of the variables listed above can be passed to a unit called from a QUERY
block. However, changes made to the values in the called unit cannot be passed
back to the QUERY block when the called unit finishes executing.

9-13
Response Processing

SATISFIED and NUMTRIES are reset to zero when the called unit starts its execu­
tion. Therefore, the current value of these variables cannot be passed. SATISFIED
and NUMTRIES values can be passed if the called unit is a condition unit instead of
a regular DAL unit. None of the items listed above are saved and restored if a con­
dition unit is called from within a QUERY block.

The previous values of several scoring system variables are not restored when a
QUERY block calls another unit. These variables are incremented to reflect the
results of response judging in the called unit. These variables are:

NOK

SCORE

NNO

NOKFIRST

SCORES

QUERIES

USING THE ERRORV SYSTEM VARIABLE

DAL sets the ERRORV system variable each time a student response fails to match
the answers specified by a RIGHT, WRONG, RIGHTV, or WRONGV instruction
in a response-judging block. DAL sets ERRORV with a value that specifies the
reason why the match failed. The table below lists what each ERRORV value
means.

Table 9-4: ERRORV Values

0

10

12

21

31

41

51

9-14

Studen response malches the 01'\S'W'er ng OdeqUately

Genera fol ure Enor not Iden ,lied by other ERRORV codes

\\tong word length

Spelling algon1hm fa ure.

Extra words n response (Occus on y kt the student's response ofherN1se
matches the spec,fled answer.)
SPECS PRECISE on; match failed.

Cc:i>ltahzotlon In student response does not match that n l'he specified
answer.
SPECS IMPUNC on; punctuation in the student response does not match
fhat in the specified answer.

Response Processing

•• I
I
I
I
I
I

..
I
I
I
I
I

ea
I

•• I
I
I
I

I
I
I
I
I

-
I

Table 9-4: ERRORV Values (Cont.)

71 Unit of measure required; no unit In response.

72 Llnlt of measure in response dot¾ not match unit In the specified answer
and cannot be converted

73 Unit In response no unit In specified answer.

7A SPECS EXACT on: unit in response matches either ur.lt In aisw or u:.rt n
answer by conversion but neither exactly

75 SPECS NOCONV on unit In response C001:,ct by conversion but us of
conversion formulas not allowed

91 Value of response 1s wrong

92 Mismatched parentheses ,n response

93 Unidentified variable 1n response

94 Response Is missing an operand

95 Unidentified function In response

96 Invalid argument to function

97 Too few argumants for function.

98 Too many arguments for fu'lction

Setting ERRORV Values

DAL sets ERRORV to zero whenever a RIGHT, WRONG, RIGHTV, or
WRONGV instruction begins executing. If the student's response fails to match
any of the answers specified by the instruction, DAL sets ERR ORV with a nonzero
value. Each RIGHT, WRONG, RIGHTV, and WRONGV instruction in a QUERY
block can assign a different value to ERRORV. This means that ERRORV can
potentially contain different values at different places in the same QUERY block.

ERRORV contains a value other than zero only if the response-matching process
fails. If a response is judged wrong, ERRORV contains a zero because the
response-matching process succeeded in matching the student's response to an
answer specified by a WRONG instruction. A WRONG instruction without an
argument always produces a zero in ERRORV, because the match always
succeeds.

9-15
Response Processing

Checking ERRORV Yllues In I Response.Judging Block

Authors must use CHECKERR blocks to test the value of the ERR ORV variable in
a response-judging block. CHECKERR blocks are blocks of instructions that begin
with the CHECKERR instruction and contain control logic structures. Position a
CHECKERR block after the response-contingent instructions to any RIGHT,
WRONG, RIGHTV, or WRONGV instruction. A CHECKERR instruction must
be at the same level of dot indentation as the RIGHT, WRONG, RIGHTV, or
WRONGV instruction it follows .

TEST structures and IF structures work well in CHECKERR blocks. These control
logic structures can be used to execute error-contingent instructions if the match
fails in an anticipated way. The example below illustrates how ERRORV might be
used.

UNIT
AT
WRITE
AT
WRITE
QUERY
RIGHTV

rootprob
610
Use a system function to answer the following question:
810
What Is half the square root of 50 multiplied by 4?
1010
(SQRT (50)/2) * 4
AT 1520
WRITE EXCELLENT!

CHECKERR
TEST ERRORV
VALUE 0

VALUE 9'2
AT
WRITE

PAUSE
ERASE
REDO

VALUE 94
AT
WRITE

PAUSE
ERASE
REDO

9-16
Response Processing

$$ So ·oTHER'" is not executed
$$ for a correct response.
$$ (Mismatched paentheses)
1520
You have an uneven number of
parentheses in ycxx response.
Press RETURN to try again.

1010;2360

$$ (Response missing operood)
1520
You left 00 operald out of
'(OU' response.
Press RETURN to try again.

1010;2360

I
I
I
I
I ..
I
I
I
I
I

-

•• I

I

I,

I
I
I
I

-
I

VALUE 95 $$ (Unidentified function)
AT 1520
WRITE You may have misspelled the

function name. Use SQRT(SO).
Press RETURN to try again.

PAUSE
ERASE 1010;2360
REDO

VALUE 97 $$ (Too few arguments to the function)
AT 1520
WRITE You forgot to Include an

argument in the function.
Press RETURN to try again.

PAUSE
ERASE 1010;2360
REDO

OTHER
AT 2055
WRITE <<S,ERRORV>> $$ report ERRORV values

$$ not responded to above.
ENDTEST

WRONG
AT 2020
WRITE Sony, but you're wrong.

Press return to try again.
PAUSE
ERASE 2020;2360

ENDQ

Figures 9-1 and 9-2 show displays produced by UNIT rootprob (listed above).

UH a ~r.ttM function to answer tha following c,.iar.tion:

What ii half' the !c,.lare root of' 50 Mlltiplied bit 4?

)(SQRT(50)/214

Figure 9-1

You have an uneven oollber of'
parentheses in !fOUr response.
Pren R£T~ to t~ again,

MR-S-3966-85

Using ERRORV to Detect Missing Parentheses

9-17
Response Processing

1J5e a 5ll5tM function to in5Wtlr tha fol lowing c,antion:

11\at is hilt the sc,iare root of 50 MUitiplied b!I 4?

:><SKT(~)/Z)l4

Figure9-2

You u.1 have aisspel ltd tha
function na11e, Use SORT<~>.
Press RET~ to tr, af•in.

MR-S-3967-85

Using ERRORV to Detect a Misspelled System F\.nciion

Separate CHECKERR blocks can test the value of the ERR ORV variable after the
response-contingent instructions to each RIGHT, WRONG, RIGHTV, or
WRONGV instruction in a QUERY block. The ERRORV variable cannot be
tested outside of a CHECKERR block. CHECKERR blocks cannot be used outside
QUERY blocks.

Interpreting ERRORV Values

DAL analyzes responses that are expressions differently from responses that are
strings. What follows is a description of the two processes DAL uses to analyze
student responses and set ERRORV.

In a response consisting of several different elements, any or all elements in the
student's response may fail to match elements in the specified answer. Note, there­
fore, that some ERRORV codes detect an overall student response problem. Other
ERR ORV codes detect an error in just one element in the response. ERR ORV code
10 is the general purpose, catch-all flag that DAL sets when a match attempt fails,
but no specific reason for the failure can be identified.

Interpreting ERRORV Values for Expressions
Student responses that fail to match answers specified by RIGHTV or WRONGV
instructions can produce ERRORV code 10, or ERRORV codes higher than 51.

9-18
Response Processing

•• I
I
I

I
I ..
I
I
I
I

I

•• I
I
I

I

I
I

I

DAL analyzes responses that are expressions in the three consecutive phases listed
below. A fatal error in any one of the phases terminates the analysis.

1 The structure of the expression is examined for format, existing variables,
function arguments, and so on.

2 The unit of measure designation is examined (if SPECS UNITS is in
effect).

3 The value of the expression as a whole is examined.

ERRORV reports the first error it encounters in an expression. If the expression
contains two errors, the second is not detected. For example, the following expres­
sion has both an invalid argument to the function and unbalanced parentheses. The
ERR ORV code this expression produces is shown at the right of the expression.

30*(SQRT(-100) cm 96 (Invalid argument)

If SPECS NOUNITS (the defaull)is in effect, then ERRORV codes from 71 to 75
are not applicable. Note that, if SPECS NOUNITS is in effect, students can enter
anything or nothing as units of measure; DAL simply ignores units in the response.

When SPECS UNITS is on, however, ERRORV codes from 71 to 75 can be pro­
duced. If DAL detects a problem with units, analysis stops and the appropriate
ERRORV code is set. Note that, if the match fails because of units of measure,
DAL never examines the value of the expression. An incorrect response that uses
the wrong units of measure produces a unit error code in ERR ORV.

The examples below illustrate the ERRORV values that result from specific student
responses. If the specified answer to a query is, or evaluates to, 300 cm, then a
response from Column A below produces the ERRORV value listed in Column B.

Column A

30*SQRT(100) cm
30SQRT(6) cm
30*SQRT(6) cm
(300)) cm
((300) cm
30 * cm
30** 15 cm
30*SINT(45) cm
30*(SQRT(-100)) cm
30*(SQRT()) cm
30*SQRT(5,6) cm

Column B

0 - response is correct
72 - incorrect units (operator missing)
91 - value of response is incorrect
92 - mismatched parentheses
92 - mismatched parentheses
93 - undefined variable
94 - operand missing
95 - unidentified function
96 - invalid argument to the function
97 - too few arguments to the function
98 - too many arguments to the function

9-19
Response Processing

Interpreting ERRORV Values for String Responses
The ERRORV codes for string responses are largely self-explanatory. For exam­
ple, ERRORV code 51 (SPECS IMPUNC in effect; incorrect punctuation in
response) is produced when SPECS IMPUNC is in effect and the response is incor­
rectly punctuated. However, things become more complicated when a response
contains more than one error or more than one word. What follows is a description
of the phases of analysis DAL applies to string responses.

Analysis of Single Word Responses

DAL first checks the length of the response. If the response contains too many or
too few characters to match the specified answer, the response is assumed to be the
wrong word. Analysis terminates and ERRORV is set to 11 (meaning wrong word
length). If the response contains other errors, they are not detected.

If SPECS NOEXACT (the default) is in effect, the response and the specified
answer can differ in length by one or more characters, depending on the length of
the answer. If SPECS EXACT is in effect, the response and the answer must have
exactly the same number of characters. When SPECS EXACT is in effect, incor­
rect punctuation often produces the word length code.

If word length is acceptable, DAL checks the capitalization in the response. If
SPECS CAPS is in effect, incorrect capitalization terminates the analysis and sets
ERRORV to4I (meaning incorrect capitalization).

If the response is adequately capitalized, DAL compares the spelling of the
response with the spelling of the specified answer. If SPECS NOEXACT is in
effect, the response must pass the default spelling tolerance test, but the response
does not need to exactly match the specified answer. SPECS EXACT requires that
spelling in the response exactly match the spelling in the answer. If the response
does not pass the spelling test, incorrect spelling terminates the analysis and sets
ERRORV to 12 (spelling algorithm failure).

If the response passes all three phases of the analysis described above, the response
matches one of the specified answers, and ERRORV remains set to O (indicating a
successful match between the response and an answer).

If SPECS PRECISE is in effect, DAL sets ERRORV to 31 (SPECS PRECISE in
effect; match failed) if the match fails for any reason.

If a RIGHT, WRONG, RIGHTV, or WRONGV instruction specifies more that one
answer, ERRORV reflects the comparison of the student's response to the last
answer in the string of specified answers.

9-20
Response Processing

•• I
I
I
I
I
I

..
I
I

I

•• I
I
I
I
I

I
I
I
I

I

Analysis of Multiword Responses

All of the conditions described above are true of responses that consist of one word.
Student responses that consist of several words are handled somewhat differently.
The following example illustrates this. Let the correct answer to a query be:

McRae of the USA

The following student responses produce the corresponding ERRORV codes if
SPECS CAPS and SPECS EXACT are both in effect:

McRae of the Usa 41 (CAPS)

McRAE of the USA 11 (Wrong word length)

In the first instance, the incorrect capitalization of USA is the only thing wrong
with the response. It also is a problem with the last element in the response. Hence,
ERRORV code 41. In the second instance, "McRAE" fails to match "McRae"
because of SPECS CAPS, so DAL looks for another word in the answer that
matches "McRAE". DAL attempts to match the student's "McRAE" against the
author's "of', "the", and "USA". The judgment of "McRAE" against "USA" is
that word length is too long, hence, ERRORV code 11.

When a word in a student's response fails to match a word in the specified answer,
the student's incorrect word is checked against each subsequent word in the
author's answer. ERRORV code 11 almost always results. ERRORV codes other
than 11 are produced only if the incorrect word is the last word in the response.

9-21
Response Processing

•• I
I
I
I
I
I ..
I
I
I
I
I

-
I

..
I
I
I
I
I
I
f'
I
I
I
I
I

-
I

•• I
I
I
I
I

I
I
.1
I
I

-
I

10
Graphics

This chapter discusses the use of the graphics instructions in DAL. Graphics can be
used in many different ways to make a lesson more interesting. They can draw
attention to a particular part of the display, both when you display it originally and
after t~e student has responded. Graphics can be directly related to the subject mat­
ter of the lesson, as in geometry.

The following instructions are explained in this chapter:

• Basic Graphics Instructions: BOX, CIRCLE, CURVE, DOT, LINE, and
VECTOR

These instructions draw elements that can be combined into pictures or
used to enhance and emphasize text displays.

• PATTERN

The PATTERN instruction draws patterns such as dotted or dashed lines.

• SREF

The SREF instruction shades areas of the screen so that they appear in a
solid or patterned color.

• Text Enhancement Instructions: ITALICS and TROTATE

The ITALICS instruction displays characters with vertical lines on a slant.
The TROTATE instruction displays text with the baseline at an angle
across the screen.

• ERASE

The ERASE instruction erases the entire screen or a specified rectangle on
the screen.

10-1

• MODE

The MODE instruction modifies the display mode of both text and graph­
ics, and controls features such as blinking, reversal of background and
foreground color, overlaying characters, and writing in erase mode.

• Relative Graphics

Relative graphics change the 0,0 location from the top left comer to any
point on the screen, then specify addresses that are relative to the new 0,0
location. The relative graphics instructions RAT, RBOX, RCIRCLE,
RCURVE, ROOT, RUNE, and RVECTOR correspond to the basic graph­
ics instructions. Relative graphics can also be rotated, and their size can be
modified independently in the x and y directions.

This chapter also discusses the graphics system variables.

Chapter 3 explains screen addresses, text display, and the selection of background
and foreground colors. Examples in this chapter use the graphics instructions and
the AT, WRITE, SIZE, BCOLOR, and FCOLOR instructions.

BASIC GRAPHICS INSTRUCTIONS

The basic graphics instructions draw line figures. You can combine these figures to
draw pictures, or use them to emphasize or isolate parts of the display. The instruc­
tions are named for the figures they draw:

• BOX draws a rectangle. The sides can be more than one line thick.

• CIRCLE draws a circle or an arc.

• CURVE draws a curve between points on the screen. Any number of points
can be included.

• DOT draws a dot.

• LINE draws a straight line.

• VECTOR draws an arrow.

Figure J 0-1 shows a picture drawn with the basic graphics instructions.

10-2
Graphics

•• ii
I
I
I
I
I

..
I
I
I
I
I

-

•• I

I
I ,.
I
I
I

I

Figure 10-1
Basic Graphics Instructions: Sailboat

The following lesson draws Figure I 0--1 .

LESSON boot
DEFINE x,y : INTEGER
ERASE
BOX 0,0;0.999,0.999:-15 $$ frane
FCOLOR GREEN
LINE 200,280;500,280 $$ deck
LINE 456,50;456,280 $$ mast

FCOLOR WHITE
LINE 448,55;225,260 $$ sail
LINE 225,260;448,260
LINE 448,260;448,55

FCOLOR BLUE
FOR y : = 220,240,10

FOR

ENDFOR
ENDFOR

$$ waves
x: = 200,500,100
CIRCLE x,y:100,235,305

MR-S-2136-82

10--3
Graphics

FCOI.OR GREEN $$ bottom of
AT 200,200 $$ boot
CURVE 200,280;230,310;230,310
AT 500,200
CURVE 500,280;470,310;470,310
PAUSE
ENDLESSON

BOX

The BOX instruction draws a rectangle. An optional argument designates the line
thickness for the sides of the box. The syntax is:

BOX {comer;}opp_comer{:thickness}

The first two arguments are the screen addresses of the two opposite corners. The
first corner address, which specifies the upper left corner of the box, is optional. If
it is not specified, the box begins at the current location.

The BOX instruction that draws the frame around the picture of the sailboat above
uses the addresses 0,0 and 0. 999,0. 999. The fine coordinates for the first address
select the upper left corner of the screen. The normalized coordinates for the sec­
ond address select the lower right corner.

The thickness argument, which is optional, specifies the thickness of the sides of
the box in dots. If thickness is not specified, the lines for the four sides of the box
are one dot wide. If thickness is a positive number, the additional lines are drawn
outward from the addresses. If thickness is a negative number, the lines are drawn
inward. In the lesson that draws Figure l~I, the thickness of the frame is-15, so
the lines are drawn inward from the limits of the screen.

You can specify the screen addresses in any of the three forms: row and column,
fine, or normalized. Thickness is always specified in screen dots.

Figure 1~2 shows some boxes and the instructions that draw them.

10--4
Graphics

•• I
I
I
I
I
I ..
I
I
I
I

I

'• I
I
I
I

I
I
I
I
I

-
I

□ '
ROX 19,230: iet,330: 10

MR•S·2137-e2

Figure 10-2
The BOX Instruction

CIRCLE

The CIRCLE instruction draws either a circle or an arc. The syntax is:

CIRCLE center:radlus{,starLoLarc,encLoLarc}

The first argument is the location of the center of the circle in any of the three forms
of screen addresses. The second argument is the radius in dots. The following
instructions draw three concentric circles.

CIRCLE 350,250 : 150
CIRCLE 350,250 : 100
CIRCLE 350,250 : SO

To draw an arc, use the third and fourth arguments to specify the starting and end­
ing points of the arc. These arguments are in degrees. Zero degrees is at 3 o'clock.
Other points can be specified as positive or negative. Twelve o'clock, for example,
is either 90 or -270. The arc is drawn counterclockwise from the starting point to
the ending point.

10-5
Graphics

Figure 1~3 shows four circle instructions and the circle and arcs they draw.

CIRCLE 451,258 : 13',315,45

CIRCLE 4!5t,25&: let,-45,45

CIRCLE ♦!it,258 : 15e---~

Figure 10--3
The CIRCLE Instruction

e

MA-S-2138-82

Look at the instruction that draws the 180-degree arc on the left. The starting point
is 90 degrees, and the arc is drawn counterclockwise to 270 degrees. Reversing the
order of the arguments draws the arc on the other side: that is, from 270 degrees
counterclockwise to 90 degrees.

The waves in the sailboat picture are drawn with the CIRCLE instruction. The
radius and arc arguments are the same for each instruction. The address of the
center changes for each of the 12 arcs.

10-6
Graphics

•• I
I
I
I
I
I

..
I
I

I

•• I
I
I
I

I
I
I
I
I

-

CURVE

The CURVE instruction draws a curve. It requires at least three addresses, and
more can be specified. The syntax is:

CURVE address;address;address{; ... ;address}

When three addresses are specified, the curve is drawn between the first and second
points, as follows. Four points are used for curve fitting, which determines the
shape of the curve. The current location (not specified as an argument) determines
the beginning slope of the curve. The curve is drawn between the first two specified
points. The fourth point (the last address specified) determines the ending slope of
the curve.

Figure I 0-4 shows examples of curve fitting. The solid lines represent the curves
actually drawn with the CURVE instruction. The vertical dashed line begins at the
current location that was set before the CURVE instruction. The horizontal dashed
lines are drawn from the second-to-last to the last positions specified with the
CURVE instruction. The curve that is drawn is a segment of the curve that passed
through all four points.

The two curves in this figure begin and end at different absolute locations, but the
distance between the first and second points specified is the same. The difference in
the appearance of the curves is caused by the difference in the current location and
the difference in the distance between the second-to-last point and the last point.

10-7
Graphics

,
• ·'"'•,Jtl

I

curve 1M,2M;JM,4";7M,4M

MR-S-21»42

Flglxe 10-4
The CURVE Instruction: Three Foints

Figure 10-5 shows two curves, each drawn by specifying four addresses. The dif­
ference in appearance of these two curves is again caused by the different current
location before each CURVE instruction, and the different last location specified in

each instruction.

10--8
Graphics

•• II
I
I
I
I
I

..

I

-
I

•• I
I
I
I
I

I
I

-
I

curve 1ee,1ee:2et,2ee;Jte,Jte:4H,Jte

curve 1ee,2tt;2tt,Jee;Jee,4H;7H,4M

Figure 10-5
The CURVE Instruction: Four Folnts

When more than three addresses are specified, the curve is drawn in segments. The
first segment is drawn between the first two addresses. The current location and the
third address are used for curve fitting. The second segment is then drawn between
the second and third addresses; the first and fourth addresses are used for curve
fittin&. This process continues for the curve between any number of addresses.

The CURVE instructions used in the sailboat picture are:

AT
CURVE
AT
CURVE

200,200
200,280;230,310;230,310
500,200
500,280;470,310;470,310

$$draw curves for
$$boat

The horizontal line for the deck of the boat is drawn from 200,280 to 500,280.
These two locations are also the first locations in the CURVE instructions. The AT
instruction preceding each CURVE instruction sets the current location 80 dots
above the first specified point. Because of the current location, the starting slope of
the drawn curve is steep. The second location specified in both instructions is 30
dots down and 30 dots in toward the center of the screen. The curve ends at this
point. The third location specified is the same as the second. Since this location is
used for curve fitting, the slope of the ending part of the drawn curve is nearly ftat.

1~9
Graphics

DOT

The DOT instruction draws one dot on the screen. The syntax is:

DOT address

The address can be expressed in any of the three forms of screen addressing.

Remember that each address horizontally specifies one displayable dot, but that
there are two addresses vertically for each dot. These odd-even pairs mean that the
two following instructions illuminate the same dot:

DOT 100,99
DOT 100,100

LINE

The LINE instruction draws a straight line between any two points on the screen.
The syntax is:

LINE {address;}oddress

The two locations can be specified in any of the three forms of screen addressing.
The beginning address is optional. If it is not specified, the line begins at the current
location.

The sail, mast, and deck of the sailboat in Figure 10-1 are drawn with the LINE
instruction.

VECTOR
-- -------

The VECTOR instruction draws an arrow. The syntax is:

VECTOR {toiLadaess;)poinLoddress:arowJlze

The first two arguments are the locations of the tail and the point of the arrow.
These can be in any of the three forms of screen address. The tail address is
optional. If it is not specified, the tail of the arrow is at the current location.

The third argument is a real number between O and I that determines the length of
the two lines for the arrow head. This number specifies a proportion of the total
length of the arrow, which determines the size of the arrow head. Figure 10-6
shows arrows of different lengths and with different proportions for the arrow
head.

10-10
Graphics

•• II
I

I
..

I
I
I
ii

I

-
I

•• I
I
II

I
I
I
f'
I
I
I
I
I

-
I

vector 7!i,50;25e,59: 0.1

vector 7!i,120;29,12t: 0,25

>
vector 75,230;250,230: e.5

> vactar 7et,175: e.1

vector 75,399;250,390: e.75
vector 5et,45e;5ee,35e: ,5

t
I

MR-S·214Hl2

Figure 10-6
The VECTOR Instruction

The four arrows on the left side of Figure 10--6 are the same length, but specify a
different proportion of the length for the arrow head.

The two linked arrows on the right show the results of using the current location to
specify the tail of the arrow. The following instructions draw and label these two
arrows:

AT 500,50
WRITE vector 450,175 : 0.1
VECTOR 450,175: .1
VECTOR 700,175: 0.1
AT 550,190
WRITE vector 700,175: 0.1

The current location after the first line of text is the top left corner of the next char­
acter cell. The tail of the diagonal arrow begins at the current location. After the
diagonal arrow is drawn, the current location is the point of the arrow. The horizon­
tal arrow begins at the current location.

10-11
Graphics

MODIFYING LINE GRAPHICS

Two instructions modify graphics drawn with the basic graphics instructions. The
PATTERN instruction draws lines in different patterns. The SREF instruction
shades figures with the foreground color in the current pattern, or with a specified
character.

PATTERN

The PATTERN instruction specifies the current pattern for drawing lines. The syn­
tax is:

PAmRN keyword

The keywords are DOT, DASH, DASHDOT, and SOLID. The default pattern is
SOLID. After the current pattern is changed, all lines drawn with the basic graph­
ics instructions and the relative graphics instructions are drawn in the specified pat­
tern. Areas shaded with the SREF instruction are shaded in the current pattern.

Figures 1(~3, 10-4, and 10-5 show the DASH pattern. Figure 10-7 shows more
examples of patterns.

Figlxe 10-7
The PAffiRN Instruction

10-12
Graphics

pattem DASHllOT

pattern DOT

pattern DASH

MR-S-2142-82

•• I
I
I
I
I
I

..
I
I
I
I

I

•• I
I
I
I
I
I
f'
I
I
I
I
I

-

SREF

The SREF instruction specifies that subsequent graphics should be shaded from the
lines they are drawn with to the reference line or point specified by SREF. The
current foreground color shades the area between the reference line or point and the
lines drawn with the graphics instructions. Shading is in the current pattern, or in a
character pattern specified in the SREF instruction. The syntax is:

SREF x_coordlnate I NONE, y_coordlnate I NONE{, "character1

The first argument, x_coordinate, is the address of a point on the x-axis of the
screen expressed as a fine coordinate. Y _coordinate is the address of a point on the
y-axis of the screen expressed as a fine coordinate.

The second argument, NONE, is a keyword used in place an x- or y-coordinate in
order to create a horizontal or vertical reference line.

The last argument, character, is a single keyboard character, enclosed in quotation
marks, to be used as the shading pattern. This argument is optional. If a character
pattern is not specified, the current shading pattern is used.

Authors can specify vertical or horizontal reference lines for shading by using the
keyword NONE. To establish a vertical reference line, specify an x-coordinate, but
enter the keyword NONE in place of a y-coordinate. This establishes a vertical
reference line through the specified x-coordinate. The following instruction sets up
a vertical reference line for shading through the x-coordinate I 00:

SREF 100,NONE

To establish a horizontal reference line, enter the keyword NONE in place of an x­
coordinate, but specify a y-coordinate. This establishes a horizontal reference line
through they-coordinate.

To establish a shading reference point, specify both the x- and y-coordinates. Shad­
ing centers around the reference point and fills out to the lines defined by subse­
quent graphics instructions.

The SREF instruction with no argument stops shading.

10-13
Graphics

Figure I 0-8 shows the sailboat from Figure I 0-1 with a shaded sail and a shaded
sun.

Figure 10-8
Sailboat with Shaded Sail

The following instructions draw the shaded sail:

FCOLOR WHITE
SREF NONE,260

LINE 448,55;225,260

SREF

$$ Set reference line to location
$$ of lower edge of sail.
$$ Draw diagonal line and shade
$$ to horizontal reference line.
$$ Tun off shading.

MR-S-2143-82

After a reference line is specified, each point on any line drawn by any basic or
relative graphics instruction is extended vertically to the reference line. If the refer­
ence line is above the lines drawn by the instruction, the shading goes up; if the
reference line is below, the shading goes down. In the first curve shown in Figure
I 0-9, the reference line passes through the center of the curve, and the shading
goes both up and down. In the second curve, the reference line is below the lowest
points of the curve.

10-14
Graphics

•• I
I
I
I
I
I ..

I

I

•• I
I

I

I
I
I
I
I

-
I

sref' Nil£, 150
curve 100,200;150,100;200,200;250,100:300,200;350,100;400,200:450,100;500,200

sref' tOE,470
curve 50,450; 150,350;250, 450;3!50,350; 450, 450;550, 3!!0;650,450;750,3!50

MR-S-397$-85

Figure 10-9
The SREF Instruction

The SREF instruction shades in the current pattern or in a specified character. In the
lessons that draw Figures 10-8 and 10-9, the PATTERN instruction is not used, so
shading is done in the default pattern SOLID. Figure 10-10 shows examples of
shading with the DASH, DASHOOT, and DOT patterns. The instructions that
draw each figure are also on the illustration.

Notice that the PATTERN instruction precedes the SREF instruction. When the
SREF instruction is executed to begin shading, the current pattern is also selected.
Changing the current pattern after an SREF instruction has no effect on the pattern
for shading until another SREF instruction is executed.

10-15
Graphics

~tern dot
sref IOI:, 150
I ine .75, 50; 525, 50

~ttem dashdot
sref fOE,270
vector 10,270;200,270: 0.5
vector 390,270;200,270: 0,5

- -- ---- -
pattern~
sref 500, 350
circle 500,350:50 -

MR-S-3976-85

Figure 10-10
The SREF and PATTERN Instructions

TEXT ENHANCEMENT

The SIZE instruction, which changes text size, is explained in Chapter 3. There are
two other instructions that modify text: ITALICS and TROTATE. These three
instructions can be used together, so that you can display tall, narrow, italicized
characters or short, wide, rotated characters.

ITALICS

The ITALICS instruction displays italics. The vertical elements of characters are
slanted, while the horizontal elements remain the same. Unlike printed italics, the
vertical elements on the screen can be slanted to the left or to the right.

The syntax of the instruction is:

ITALICS degree

Any degree of italics can be specified. The entire text cell is slanted from the top
left comer. Positive arguments, such as 45 or 20, move clockwise toward the bot­
tom of the text cell. Negative arguments, such as -30 and-45, move counterclock­
wise toward the bottom of the text cell.

1~16
Graphics

•• I
I
I
I
I

II
II
I
II
II

•
I

I

I
'I
I
I
I

--

All text displayed after an ITALICS instruction is italicized until you use the ITAL­
ICS instruction with the argument Oto return text to its normal position.

Figure 10-11 shows different text sizes and degrees of italics.

SIZE 3,11
ITALICS -45

::c ,-~ L_ ::c C: E:;

Figure 10-11
The ITALICS Instruction

TROTATE

SIZE 3,11
ITALICS 45

SIZE 6,3
ITALICS -31

SIZE 6,3
ITALICS -15

MA·S-2146-82

The TROTATE instruction displays text with a single text cell rotated around the
top left comer. When several characters are displayed by one WRITE instruction,
the entire string is rotated.

The syntax of the instruction is:

TROTATE degree

The degree of rotation can be any multiple of 45. If you specify a positive number,
the rotation is counterclockwise. If you specify a negative number, the rotation is
clockwise.

Subsequent text is rotated until you use the instruction TROTATE Oto return text to
its normal position. When text is rotated, the current location after a string is dis­
played is the next character position with the same rotation.

10-17
Graphics

Figure 10-12 shows rotated text.

g-1111
~ at Ut
::, trotate 279

write cb.r'I

Figure 10-12
The TROTA TE Instruction

12...
~ trotate 9t
- at 4Jt write up

1~31\NI.i_
at 27t lllllllaiiill
trotate Ult
write INVERT

MR·S-2147-42

The top part of Figure I 0-12 shows three words in inverse mode and no rotation.
Each word is also displayed in normal mode, and rotated a different number of
degrees. The instructions for rotating each text string are on the illustration. The
cross at the upper left corner of the first character cell of the unrotated strings marks
the point around which rotation occurs.

The following instructions draw the sentence marked with the parts of speech for
each word.

10-18
Graphics

•• I
I
I
I
I
I

..
I
I
I
I
I

-

•• I
I
I
I
I
I ,.
I
I
I
I
I
te
I

DEFINE xslze2 = 18
PATTERN DASH
LINE 30,380;30,450
LINE 20,406;400,406
PATTERN SOLID
TROTATE 0
SIZE 2
AT 30,420
WRITE John Is a good boy.
TROTATE 45
SIZE 1
AT 30,406
WRITE noun

$$ For calculating width
$$ of size 2 chars.
$$ Vertical marker line.
$$ Horizontal marker line.

$$ Set to no rotation.

LINE 30 + (xslze2*5),380; 30 + (xslze2*5),450
AT 30 + (xslze2*5),406
WRITE verb
LINE 30 + (xslze2*8),380; 30 + (xslze2*8),450
AT 30 + (xslze2*8),406
WRITE article
LINE 30 + (xslze2*10),380; 30 + (xslze2*10),450
AT 30 + (xslze2*10),406
WRITE adjective
LINE 30 + (xslze2*15),380; 30 + (xsize2*15),450
AT 30 + (xslze2*15),406
WRITE noun
PAUSE
TROTATE 0
ENDLESSON

Notice that the horizontal text in this illustration is size 2, while the rotated text is
size I . Text rotated 45, 135, 225, or 315 degrees is also larger.

ERASE

Using the ERASE instruction with no argument erases the entire screen. The
ERASE instruction was used with no argument in many of the preceding examples.
ERASE can also be used with two arguments to erase any rectangular area on the
screen. The syntax is:

ERASE corner;opposlte_comer

Any of the three forms of screen addressing can be used.

1~19
Graphics

MODE

The MODE instruction modifies the display mode of both text and graphics, and
controls features such as blinking, inverse video, overlaying characters, and writ­
ing in erase mode.

The syntax of the MODE instruction is:

MODE keyword

The three current modes are selected by a keyword from each of the three groups
listed below. In each group, the keywords are mutually exclusive. Only one mode
in each group is active at any one time. For example, when REPLACE mode is
selected with the keyword REPLACE, it remains in effect until a mode instruction
with the keyword OVERLAY is used.

• NORMAUINVERSE

NORMAL is the default. With text, NORMAL displays the dots in a text
cell in the foreground color and the rest of the cell in the background color.
With graphics instructions, NORMAL draws lines in the foreground color.
INVERSE displays the dots in a text cell in the background color and the
rest of the cell in the foreground color. INVERSE draws graphics in the
background color. INVERSE should be used with care with graphics . In
some instances, graphics are not displayed in INVERSE mode.

• FIXED/BLINK

FIXED is the default. BLINK alternates between normal video and reverse
video. In BLINK mode, text and graphics alternate between the current
foreground color and DARK. Note that BLINK mode cannot be used on all
terminals.

10-20
Graphics

•• I
I
I

I
..

I
I

I

--
1

•• I
I
I
I
I
I ..
I
I
'I,

I
I
re
I

• OVERLAY/REPLACFJCOMPLEMENT/ERASE

OVERLAY is the default. In a terminal, there is a special display memory
called the bit-map that determines which dots are illuminated on the moni­
tor. There is one location in this memory (one bit) for each addressable dot
in the x-direction, and one bit for two addressable dots in the y-direction.
The WRITE instructions and all graphics instructions change the screen
display by setting and clearing bits.

In OVERLAY mode, the bits for the character cell or for the graphics figure
are set. The dots defined by the bits are turned on, and the dots are
illuminated.

In REPLACE mode, the bits affected are cleared before they are set.

In COMPLEMENT mode, the new display depends on what was previ­
ously displayed in the same locations. Each bit is set if it was previously
clear, and cleared if it was previously set.

In ERASE mode, the area defined by a text cell or a graphics instruction is
erased instead of being drawn. The bits are all cleared. If something was
written in the area, it is erased; otherwise, there is no change.

In addition to using the MODE instruction with keywords, authors can change dis­
play modes with one of the following system constants. Using the constant name
has the same effect as using the keyword. For example, MODE M_JNVERSE has
the same effect as MODE INVERSE .

Instruction

MODE NORMAL
MODE INVERSE
MODE FIXED
MODE BLINK
MODE OVERLAY
MODE REPLACE
MODE COMPLEMENT
MODE ERASE

Constant

M_Normal
M-1nverse
M_Fixed
M-8link
M_Overlay
M_Replace
M_Complement
M_Erase

Figure 1~13 shows the results of OVERLAY, REPLACE, COMPLEMENT, and
ERASE modes when they are combined with NORMAL mode. The text on the two
sides of the illustration is the same. The box on the left is first shaded using SREF.
The same text is then printed on both sides of the illustration to show the results of
displaying text in different modes when bits are previously set. Figure 1~14
repeats the same illustration using INVERSE mode.

10-21
Graphics

Figure 10-13
The MODE Instruction 1

Flgu'e 10-14
The MODE Instruction 2

10-22
Graphics

overla~

replace

coMpleMent

The text on tha left is
in er~ IIOde,

MR-S-21482

o·....-·er l aH

·r·· ~ -, 1 :::1- _.-. ~
a::; Ml I •--=

UiiiU ffti

MR-S-2149-82

•• I
I
I
I
I
II ..
I
I
I
I
I

ttl
I

•• I
I
I
I
I

I
I
I
I
I
re
I

ERASE mode is useful for erasing only text or graphics previously displayed. The
ERASE instruction erases a rectangular area or the whole screen. To erase a circle,
use the instruction MODE ERASE; then draw the circle again. Then, reset the dis­
play mode to OVERLAY or REPLACE.

COMPLEMENT mode is useful for animation. First select COMPLEMENT mode
and draw the figure. In the bit-map memory, the bits for the figure change states,
and the figure appears on the screen. Then draw the figure again. The bits again
change states, returning to what they were before the figure was displayed. The
figure disappears, but nothing else on the screen is changed. The lesson Icecream
listed in Appendix Fuses COMPLEMENT mode to draw and redraw the drip from
the ice cream.

RELATIVE GRAPHICS

In all three coordinate systems, the origin of the coordinates is at the top left corner
of the screen. Relative graphics specify any location on the screen as the origin.
Then you can use any form of screen addressing, and the locations on the screen are
relative to the new 0,0 point.

The following relative graphics instructions perform the same functions and use the
same arguments as the basic graphics instructions. The relative graphics instruc­
tions, which are listed below, begin with the prefix R.

• RAT
• RBOX
• RCIRCLE
• RCURVE
• ROOT
• RLINE
• RVECTOR.

There are three additional relative graphics instructions:

• RORIGIN specifies the current 0,0 point
• ROTATE rotates the graphics around the origin
• RSIZE modifies the size of relative graphics

You can do some things with relative graphics that you cannot do with the basic
graphics instructions. You can write a unit that draws a picture, then display the
picture at different locations on the screen by setting the relative origin and execut­
ing the unit. Using the basic graphics instructions requires a different series of
instructions with different addresses for each display.

10-23
Graphics

Since relative graphics can be scaled, it is easy to display a picture in different
sires, and to draw figures such as ellipses.

Because relative graphics can be rotated, it is easy to draw things like the sun in the
sailboat picture.

Figures drawn with the relative graphics instruction are drawn in the current pattern
and are shaded with the SREF instruction.

RORIGIN

The RORIGIN instruction selects the screen address to be used as the 0,0 address
for subsequent R-prefixed graphics instructions. The syntax is:

RORIGIN address

Any of the three forms of screen addressing can be used.

Figure I 0-15 shows three boxes. The same unit draws all three boxes using the
relative graphics instruction RUNE. At lesson level there are three series of
instructions. Each RORIGIN sets the current relative graphics origin. Each RAT
sets the current location relative to this origin. The address is the same in each case.
Each WRITE labels a box, and each DO draw draws one box relative to the current
origin.

10-24
Graphics

•• I
I
I
I
I
I

..
I
I
I
I
I

ea
i

•• I
I
I
I
I
I ,.
I
I
I
I
I _.,
i

r n
LJ""'''"

((1
! • I

LJ rorigin 4et, tee

Figure 10-15
The RORIGIN Instruction

The foHowing lesson draws Figure 1~15.

LESSON rotplc
BOX 0,0;0.999,0.999
ERASE
RORIGIN 100,100
RAT 65,0
WRITE rorigin 100,100
DO draw
RORIGIN 400,100
RAT 65,0
WRITE rorigln 400,100
DO draw
RORIGIN 300,400
RAT 65,0
WRITE rorigln 300,400
DO draw
PAUSE

MR-S-2150-82

10-25
Graphics

UNIT draw
RUNE --50,--50;--50,50
RUNE 50,50
RUNE 50,--50
RUNE --50,--50
RUNE -40,-60
RUNE 60,-60
RUNE 50,--50;60,-60
RUNE 60,40
RUNE 50,50
ENDLESSON

SS Left vertical line
SS Bottom line
SS Right vertical line, main box
SS Top line, main box
SS Angle from top left comer
$$ Top line, perspective box
SS Angle to top rigit
SS Right vertical, perspective
SS Angle to bottom right

Notice that many of the RUNE instructions in the unit draw have only one argu­
ment. This argument specifies the ending point of the line. The line begins at the
current location. In each case, the current location is the ending point of the line
drawn by the preceding RUNE instruction.

RSIZE

The RSIZE instruction specifies a size for subsequent R-prefixed graphics instruc­
tions. The distances between points in the figure are multiplied by the specified
size. Height and width can be changed independently.

The syntax is:

RSIZE x-slze,y-size

1~26
Graphics

•• I
I
I
I
I
I ..
I
I
I
I
I

-­
M

'• I
I
I
I
.

I
I
fl'
I
I
I
I
I ,.
I

Figure 10-16 shows two boxes of different sizes.

I

Figure 10-16

r r,
Ure\ es,e I ror1gin Jee,1••

'"-· ------------ rsize J,1

r1
j j lrat 65,e

LJl
1 rorigin 4et,Jee
"ilZe 1,2

'

The RSIZE Instruction

I

MR-S-2151-82

The boxes in Figure 10-16 are drawn by the same unit as the boxes in Figure
10-15. The RSIZE instruction has changed their proportions. The text written by
each box shows the RAT instruction that specified the text location, the RORIGIN
instruction that specified the current 0,0 location, and the RSIZE instruction that
specified the proportions. RSIZE changes the location specified with RAT just as it
changes the locations specified with RBOX and RUNE to draw the figure. It does
not change text size.

1a-27
Graphics

The following instructions draw Figure 1~16.

ERASE
BOX 0,0;0.999,0.999
RORIGIN 300,100 $$ Set origin.
RSIZE 3, 1 $$ Set relative size.
RAT 65,0 $$ Label box.
WRITE rat 65,0

rorigln 300,100
rsize 3,1

DO draw $$ Drow box.
RORIGIN 400,300
RSIZE 1,2
RAT 65,0
WRITE rat 65,0

rorigln 400,300

DO
PAUSE
RSIZE

ROTATE

rsize 1,2
draw

1,1 $$ Reset relative size tor
$$ next pictures.

The ROTATE instruction rotates the addresses of subsequent relative graphics
instructions before the figure is drawn. This makes it possible to draw a figure at an
angle without changing the addresses. The syntax is:

ROTATE degree

A positive number of degrees rotates the addresses counterclockwise. A negative
number rotates the addresses clockwise. The location of each point specified in the
instruction is rotated around the origin, then the figure is drawn.

Figure 1~17 shows some lines rotated different numbers of degrees.

10-28
Graphics

J
I
I
I
I
-
I
I ..
I
I
·1
I
I .,
I

'• I
I
I
I
I
I ,.
I
I
1.
I
I ,.
I

RORIGIN 5t,22t 0

-90

MA-S-2152-82

Figure 10-17
The ROTATE Instruction

The sun in the sailboat picture shown earlier is drawn with the following
instructions:

RORIGIN 100,100
SREF NONE,100
FCOLOR YELLOW
RCIRCLE ·o,0:25

c:INTEGER

$$ Set relative origin.
$$ Set reference line at y-coordinate 100.
$$ tor O ot relative addresses.
$$ Drow 1he sun.
$$ Stop shading. SREF

DEFINE
FOR c: = 0,360,20

RUNE 35,0;50,0 $$ Drow one ray.
ROTATE c $$ Rotate cx:ldresses.

ENDFOR $$ Repeat at different angles.

Any figure drawn with an R-prefixed graphics instruction can be rotated. The
addresses are rotated the number of degrees specified, and the instruction is then
executed. With RBOX, this method of rotation produces a rectangle, but the pro­
portions of the rectangle are different at different rotations. When you draw a box
with RBOX (and with BOX), you are actually specifying the diagonal of the rec­
tangle. The addresses specifying the diagonal are rotated, and then the rectangle
defined by the new diagonal is drawn.

10-29
Graphics

Figure 10-18 shows two boxes drawn with the RBOX instruction. One box is
rotated; the other box is not.

rbox t,e;2e1,1ee
solid line

:
rotate -31
rbox e,e;2tt,1ee
dashed l1ne ,___ , ___ __;,..2'00,100

' I
I , I ,_ ______ :,,

rohtad -31 degren

MR-S-215:H:!

Figure 10--18
Rotated Boxes: RBOX

To rotate a rectangle and have it keep the same proportions, draw the rectangle
using four RUNE instructions. Figure I 0-19 is another illustration of the same box
drawn in Figures 10-14 and 10-15. Because this square is drawn with the RUNE
instruction, it remains a square as it is rotated.

10-30
Graphics

•• I
I
,I

I
I
I ea

I

'• I
I
I
I
I
I
..
I
I
I
I
I ,.

rorigin iM,100
rotate -4S

□
Figure 10-19

rorigin 1M,3!ie
rotate 180

Rotated Boxes: RUNE

GRAPHICS SYSTEM VARIABLES

rorigin 400,1H
rotate 45

□
rorigin 45e,35t
rotate e

MR-S-21 S4-82

Many of the graphics instructions modify the values of graphics system variables.
The system variables provide a convenient way of using or testing the current loca­
tion, current foreground color, and other current attributes.

Table I 0-1 lists some graphics system variables. Uses of these variables are illus­
trated in the unit that follows the table. Appendix C lists all system variables.

10-31
Graphics

Table 10-1: Graphics System Variables •• of Update

I
BCOLOR integer Value of 1he curent BCOLOR instruction

background color.

FCOLOR integer Value of 1he current FCOLOR 1nstruc on I
foreground color.

SIZEX integer X size lost specified or SIZE instruction I
SIZ8 when SIZE hOS only
one argument.

SIZEY nteger Y size lost spec ed A SIZE nstruction I
SIZE nstructon w th on y I
one argument changes I th s ·anab e to the
defau y size assoc,-
oted th the orgumen

WHERE n•eger row Row and co unn Updated by a I
ana coumn address of lost po,nt graphics nstruci ons
COO'dnates displayed After ext s Reset to 000 by .. d splayed this point s ERASE ,.,,th no

one po,n to 1he nght of arguments
the upper ng,t comer
of the character ceI1.
After line gaph cs ore I d1sp ayed, 1he vanab e
conta ns 1he address of
the upper left comer of
1he text cell In wh1Ch 1he I ost dot was drawn

V.HEREX ntegerfine X-coordinate of lost Updated by al
coordnates point displayed After graphics •nstructions I text IS d splayed, this Reset to O by ERASE

pont 1s one pont to the with no arguments.
rlglt of 1he upper rig,t
comer of 1he character I cell.

I
1~2 --Graphics

I

•• I
I
I
I
I
I,
..
I
I
I
I
I ,.
I

Table 10-1: Graphics System Variables (Cont.)

. . - - . ~ ~ - - -

:~........_--~- -'-~~-~·

WHEREY Integer fine
coordinates

Y-coordinate of lost
point displayed. After
text Is displayed, this
point Is one point to the
right of the upper right
comer of the character
cell.

Updated by all
graphics instructions.
Reset to O by ERASE
with no arguments.

The following unit shows one use of the graphics system variables. Many lessons
repeat the same message each time a student must press the RETURN key to con­
tinue a lesson. The following unit uses the system variables to save the current
location, text size, and foreground color while it displays the press return message,
and restores the values before it returns to the calling unit. Another unit in the les­
son can call this unit without affecting the display in the calling unit. An alternative
way to call another unit without affecting the current display is to use the SAVE and
RESTORE instructions, which are explained in Chapter 7.

UNIT
DEFINE
DEFINE
ASSIGN
ASSIGN
ASSIGN
ASSIGN

SIZE
IF

ELSE

ENDIF
AT
WRITE
MODE
AT

pressJet
olc:Lwherex,old_wherey,old_fcolor,olcL.slze : INTEGER
storL.mes = 2260
old_wherex : = WHEREX $$ Save the current values.
old_wherey : = WHEREY
olc:Lfcolor : = FCOI..OR
old_size : = SIZEX

1
(BCOI..OR = WHITE)
FCOLOR BLUE

FCOLOR WHITE

storLmes
Press
INVERSE
WHERE+ 1

$$ Display the message.
$$ Test value of sys var
$$ BCOLOR, and set FCOI..OR
$$ accordingly.

$$ Use current location in
$$ sys var WHERE, and skip one
$$ space ofter Press.

1~3
Graphics

RETURN
NORMAL

WRITE
MODE
PAUSE
ERASE WHERE + 100;starLmes $$ Use sys var WHERE + 100 to

AT olc:Lwherex,olc:Lwherey
SIZE old....size
FCOLOR olc:Lfcolor
; End of U1it.

$$ erase message.
$$ Restore the old values.

First, the unit press_ret defines local variables for the display attributes it is going
to modify and assigns the current values to the variables. Then the unit displays its
message, pauses, and erases its message. By using the local variables as argu­
ments, the last three instructions restore the previous values of the system
variables.

Any other unit in the lesson can call press_ret. When press_ret returns, the current
location, foreground color, and text size are the same as they were before press_ret
was executed.

The starting address of the message is defined by the named constant starLmes.
With this constant and the system variable WHERE, the message can be displayed
anywhere on the screen by changing only the value of the constant. The AT
starLmes instruction sets the current location to the address defined by the con­
stant. After the first WRITE instruction has displayed the word Press, the system
variable WHERE contains the address of the next character cell in row-and-column
coordinates. The argument to the next AT instruction sets the current location one
character cell to the right, in effect skipping one space. This is the correct address
for writing the word RETURN.

The use of the system variable WHERE and the named constant starLmes with the
instruction ERASE is similar. After the word RETURN is displayed, WHERE con­
tains the current location. Adding 100 to this value calculates the address one row
below the current address. This is the correct address for the beginning of the rec­
tangle to be erased. Since starLmes contains the address of the beginning of the
string, the ERASE instruction erases only the two words.

The following lesson displays one word, calls the unit press_ret, then displays
another word.

10-34
Graphics

•• I
I
I
I
I
I

..
I
i
I
I
I .,
I

•• I
I
I
I
I
I
f'
I
I
I
I
l
1·•
I

LESSON testing
SIZE 3
FCOLOR GREEN
AT 510
WRITE testing
DO press_ret
WRITE bock
PAUSE
; End of lesson level.
; The instructions shown above are
; Inserted here before the lesson
; is compiled.
ENDLESSON

The lesson pauses twice, once in the unit press_ret and once at the end of the lesson
level instructions. Figure 10-20 shows the screen in the unit press_ret. Figure
10-21 shows the screen at the end of the lesson.

testing

Figure1~20
Graphics System Variables 1

Press 111m I
MR•S-2156-82

10--35
Graphics

I
testingback

MR-S-2156-82

Figure 10-21
Graphics System Variables 2

GENERAL GRAPHICS CONSIDERATIONS

Some of the factors that affect displays are not under the author's control. DAL
lessons can be displayed on color monitors or on black-and-white monitors. Tenni­
nals can operate at a number of different line speeds. Line speed affects the speed at
which text and graphics are displayed.

Different types of tenninals often use different processes to generate graphics on
their screens. In some cases, observable differences occur when the same lesson
executes from two different terminal models. Chapter 7 in this guide discussed
these differences, which may be important if your lesson is delivered on more than
one type of terminal.

10-36
Graphics

I
I

:1

•• I
I
I
I.
I
I ,.
I
I
t
I
I
re
I

Using Color

When lessons are displayed on a black-and-white monitor, the color keywords or
slot numbers select shades of gray. The effects of gray shades and color are differ­
ent. If you know that your lessons may be displayed on both types of monitors, it is
a good idea to test the lessons on both types.

Most monitors have both brightness and contrast controls that can be adjusted by
the student. The settings of these controls affect both gray shades and color. Some
settings may cause the darker grays or the colors blue and red to be invisible when
the background color is DARK. Lessons that begin with text or graphics using
these color combinations can appear to be malfunctioning.

On black-and-white monitors, the gray shades nearest to each other, such as white
and yellow or magenta and cyan, may not be distinguishable. On color monitors,
the colors are distinct. (The colors on different monitors may not be identical.
Color monitors, like color television sets, have a number of internal adjustments.)

Terminal line Speed

The line speed at which terminals operate depends both oh the physical connection
between the terminal and the computer and on decisions made by the system man­
ager at each site. The line speed affects the speed at which text and graphics are
displayed on the screen. Line speeds affect every program, not just DAL lessons.

When tenninals are connected to the system over phone lines, 1200 baud is a com­
mon line speed. When terminals are connected directly to the computer, 4800 baud
and 9600 baud are common line speeds. The difference between 1200 baud and
4800 baud is noticeable, but the difference between 4800 baud and 9600 baud is
usually not apparent.

Animation, which in general requires displaying a figure and then erasing it at a
number of different locations, looks different at 1200 baud than at 4800 or 9600
baud. If you know that your lessons can be run on tenninals with different line
speeds, test the lessons at different speeds.

Displaying text is faster than displaying graphics. Lessons that display primarily
text and use only simple graphics such as underlining words generally look right at
1200 baud.

Line speed is rarely a problem for student input from the keyboard.

1~7
Graphics

•• I
I
I.
I
I
I

..
I
I
I
I
I

et

•• I
I
i
I
I
I
~
I
I
I
I
I ,.
I

11
Modifying Lesson Flow

LOOP/ENDLOOP, FOR/ENDFOR, and other control logic instructions were
explained in Chapter 5. This chapter discusses several other VAX DAL control
logic instructions that can modify lesson flow.

Use VAX DAL control logic instructions to do the following:

• Direct lesson flow back to lesson level

• Direct lesson flow to another unit in the current unit calling chain

• Respond to specific strings in student responses

• Execute a unit at regular time intervals or at a specified time of day

• Respond to specific instructions in the lesson

• Respond to technical problems that arise during lesson execution

Topics discussed in this chapter include:

• The unit calling chain

• Unconditional transfer of control

- RETURN

- BACKUP

• Conditional transfer of control

- BRANCH

-WHEN

- Condition handling

11-1

A transfer of control from unit level to lesson level, or from one unit to another, can
only occur along the unit calling chain. This chapter begins with a discussion of the
unit calling chain.

THE UNIT CALLING CHAIN

A unit's calling chain is its lineage. In the same way that a family lineage traces a
path from an individual back to an ancestor. the calling chain traces a path from the
current unit back to lesson level.

To extend the comparison, units, like individuals, can be of different generations.
A first-generation unit is a unit that is executed by a DO instruction at lesson level.
A second-generation unit is executed by a DO instruction in a first-generation unit.
A third-generation unit is executed by a DO instruction in a second-generation unit,
and soon.

The figure below illustrates the calling chain of a very simple lesson, lesson
CalLChain. This lesson executes three units in a single calling chain. Lessons can
contain any number of calling chains, which execute one at a time.

LESSOf C.11_0.in .
DO Glnl - - - -> I.MIT Cenl . , ___ ., .
ENDLESSOf I DO Cen2 - - - -> I.MIT Cen2

<- - - ., .
DO Gen3 - - - -• !MIT Gen3

I • <- - - ,
l - - RETIJIH

I •
1

- - RETIJIH I

I •

'- - RETIJIH
MR,S-3941-85

Figure 11-1
A Unit Calling Chain

Although control passes from unit Gen J to unit Gen2 at the DO instruction, unit
Gen) remains open in the calling chain while Gen2 and Gen3 execute. Unit Gen I
remains open until control is returned to Gen J and execution of Gen J finishes.

11-2
Modifying Lesson Flow

I
I
I
I
I

..
I
I ,
I
I
I

et
I

•• I

I
I
I
t,
I
I
I
I
I ,.
I

A unit's place in the calling chain has a direct bearing on what can and cannot be
done with control logic instructions in the unit, as the next two sections in this
chapter explain.

UNCONDITIONAL TRANSFER OF CONTROL

VAX DAL provides two instructions that immediately redirect lesson flow along
the unit calling chain. These are the RETURN and BACKUP instructions.

The RETURN Instruction

Whenever a RETURN instruction is encountered in a unit, execution of the unit is
immediately terminated. Control is then transferred to the instruction following the
last instruction executed in the unit or level that called the current unit. RETURN
transfers control back to the unit that executed the current unit, or, if the unit is a
first-generation unit, transfers control back to lesson level. Lesson flow is redi­
rected one level back up the calling chain.

The syntax of the RETURN instruction is:

RETURNIBUJ

RETURN can be used as a response-contingent instruction.

The BACKUP Instruction

Like the RETURN instruction, BACKUP redirects lesson flow to another level in
the current unit calling chain. Unlike the RETURN instruction, BACKUP can
transfer control two, three, or more steps along the calling chain.

The BACKUP instruction has three options:

• BACKUPTOP

• BACKUP uniLname

• BACK UP number

BACKUP TOP terminates execution of the unit and passes control to the instruc­
tion following the last instruction executed at lesson level.

11-3
Modifying Lesson Flow

BACKUP uniLname passes control to a unit specified by uniLname. Enclose the
uniLname in double quotes. The specified unit can only be a a unit executed earlier
in the current unit calling chain - that is, the unit must have either directly or indi­
rectly called the current unit. Note that control can be passed only to DAL units,
and not to DAL functions, subroutines written in other programming languages, or
condition units (discussed later in this chapter). A BACKUP uniLname instruction
is ignored if it specifies a unit that:

• does not exist

• is not part of the current unit calling chain

BACKUP number passes control the specified number of units back up the calling
chain. For example, a BACKUP 3 instruction in a fourth-generation unit returns
control to the first-generation unit in the chain. The lesson terminates if BACKUP
number specifies a transfer of control beyond lesson level (for example, specifies a
return six generations up the calling chain from a second-generation unit).

With both BACKUP uniLname and BACKUP number, control is passed to the
instruction following the last instruction executed in the level to which control has
returned.

The BACKUP instruction works properly only in lessons written entirely in VAX
DAL. The calling chain of a unit that executes a BACKUP instruction cannot con­
tain a routine written in another programming language. Otherwise, BACKUP
may return control to the wrong lesson location.

Lesson backup displays applications of the BACKUP instruction in all three of its
forms.

11-4
Modifying Lesson Flow

•• I
I
I
I
I
I ..
I
I
I

I

'• I
I
I
I
I
I ..
I
I
I
I
I ,.
I

LESSON
DEFINE
DEFINE
DEFINE
ASSIGN
ASSIGN

backup
review : BOOLEAN
set : INTEGER
pnum : INTEGER
set:= 1
pnum:= 1

FCOLOR BLUE
DO table

table

210

$$ Flag for review
$$ Problem set number
$$ Problem number
$$ Start with SET1

$$ A first-generation unit UNIT
ERASE
AT
WRITE This lesson tests your multlpllcatton skills.

All of the problems that you will be asked come
from the following multiplication table.

$begin_a
SIZE 2
IF review

ERASE
ENDIF review : = FALSE
ASSIGN

AT 610
WRITE MULTIPLICATION TABLE

1 X 12 = 12
2 X 12 = 24
3 X 12 = 36
4 X 12 = 48
5 X 12 = 60
6 X 12 = 72

SIZE 1
AT 2005
WRITC Press RETURN when you are ready to do problems.
PAUSE
t

DO sett

BRANCH revlew,$begin_a $$ Does the student want see the table?

UNIT sett
DEFINE i : integer

$begin_b

BRANCH set=2,$skip1

$$ A second-generation unit.

$$ Go directly to SET2

11-5
Modifying Lesson Flow

ASSIGN
PROMPT
ERASE
AT
SIZE
WRITE
SIZE

FOR

review:= FALSE
=

220
2
PROBLEM SET-1
1

I:= pnum,3
ERASE 810;925
AT 810
WRITE <<s,I>> X 12
QUERY *
RIGHTV 1*12

AT 1220
WRITE Very Good!
PAUSE

-Press RETURN-

ERASE 1220;1360
WRONG

AT
WRITE

1015
No, you're wrong. Would you like to see the
multiplication table again?

PROMPT •(Y1N) >.

ENDQ
ENDFOR

INPUT
IF

ELSE

ENDIF

ASSIGN set : = 2
ASSIGN pnum: = 4

$skip1
DO set2

BRANCH revlew,$begln_b

UNIT set2

DEFINE i:INTEGER

11~
Modifying Lesson Flow

(RESPONSE = •v1 OR (RESPONSE = Y)
ASSIGN review : = TRUE
ASSIGN pnum : = 1

BACKUP

PROMPT.=.
ERASE 1015;1365

$$ Now next set.

$$ A thi~ation ISlit.

$$ Save current problem
$$ To oolt TABLE

•• I
I
I
I
I
I ..
I
I
I
I I

I
•1

I

•• I
I
I
I
I
I ..
I
I
I
I
I
ae
I

ERASE
AT
SIZE
WRITE
SIZE
PROMPT

FOR

220
2
PROBLEM SET-2
1

=

I:= pnum,6
ERASE 810;925 . AT 810
WRITE <<s,I>> X 12
QUERY *
RIGHTV 1*12

WRONG

AT 1220
WRITE Very Good! - Press RETURN

PAUSE
ERASE 1220;1360

AT
WRITE

1015
No, you're wrong. Would you like to see the
multiplication table again?

PROMPT "(YIN)>•
INPUT
IF

ELSE

(RESPONSE = "Yj OR (RESPONSE = Y)
ASSIGN review : = TRUE
ASSIGN pnum : = 1 $$ Save current problem.
BACKUP 1able" $$ Trcnfers control to lesson level.

WRITC In that case, would you like to redo
the problem set you Just finished?

INPUT
IF (RESPONSE = "Yj OR (RESPONSE = Y)

ASSIGN review : = TRUE
ASSIGN set : = 1
ASSIGN pnum: = 1
BACKUP ·sew $$ To the SET 1

ENDIF
ENDIF
PROMPT"=.
ERASE 1015;1665

ENDQ
ENDFOR

ENDLESSON

11-7
Modifying Lesson Flow

CONDITIONAL TRANSFER OF CONTROL

The VAX DAL instructions that transfer control conditionally are the BRANCH,
WHEN, and condition-handling instructions.

The BRANCH ln:rtruction

Like the control logic structures discussed in Chapter 5, the BRANCH instruction
can only be used in a single level of the lesson. BRANCH does not transfer control
to another level or unit. However, the BRANCH instruction does conditionally or
unconditionally transfer control in the level in which the instruction is executed.
The syntax of the BRANCH instruction is:

BRANCH I {condition,} $1obel1 {,$1obel2}

Where:

{condition} is a Boolean expression. This argument is optional.

$label I is the labeled location to which control is passed if the condition is true,
or if a condition is not specified. Labels must begin with a dollar sign ($), and
can contain no more than 10 characters.

{$/abe/2} is a second labeled location to which control is passed if the condition
is false. This argument is optional.

Whenever a BRANCH instruction without a conditional argument is encountered
in a unit or at lesson level, control is passed immediately to the first labeled location
specified by the instruction.

If BRANCH specifies a Boolean condition, DAL tests the value of the condition. If
the condition evaluates to true:

• DAL transfers control to the first labeled location specified by the
BRANCH instruction.

If the condition evaluates to false, DAL does one of two things:

• If the condition is false and BRANCH specifies a second label, DAL trans­
fers control to the location specified by the second label.

• If the condition is false and BRANCH does not specify a second label, the
BRANCH instruction is ignored, and control passes to the instruction fol­
lowing BRANCH.

11-8
Modifying Lesson Flow

11

I

I
I
I
I
I

'" I

•• I
I
I
I
I
I
{'
I
I
I
I
I ,.
I

The following example shows an application of the BRANCH instruction at lesson
level. Note that this example shows only a partial lesson. A full lesson includes the
units called from lesson level.

LESSON stop
DEFINE revlew:BOOLEAN,RESTART
BRANCH GOAL = 2,$goal2
BRANCH GOAL = 3,$goal3
DO unit1
GOAL GOAL+1
SCORE FALSE
DO askend
SCORE TRUE
$goal2
IF review

$$ Set to TRUE in unit askend.
$$ If lesson begins with GOAL set to 2
$$ or 3, branch to appropriate place.

$$ Increment goal for next time.
$$ Don't score query In unit askend.
$$ Ask student about ending.
$$ Tum on scoring and continue.

$$ Review Is TRUE if student asked
DO revlew1 $$ to stop.

ASSIGN review:= FALSE $$ Reset for next time.
ENDIF

DO
GOAL
SCORE
DO
SCORE
$goal3
IF

ENDIF

unlt2
GOAL+1
FALSE
askend
TRUE

review
DO review2
ASSIGN review:= FALSE

DO unlt3
DO end

ENDLESSON

The above example contains the lesson level instructions for a lesson that is to be
started more than once. Students can stop the lesson and then restart the lesson
later. Each time they start the lesson. the GOAL system variable is incremented.
Because GOAL is saved as a restart variable if the lesson is stopped, GOAL con­
tains the value 2 when the lesson executes a second time. The BRANCH instruc­
tion tests to see whether the student is taking the lesson a second (or greater) time.
If so, BRANCH transfers control to a location in the lesson different from the loca­
tion the student started from the first time. In this way, BRANCH creates a lesson
that starts with new material the first three times the lesson is executed. (To see the
complete lesson, refer to the definition for the STOP instruction in the VAX DAL
Reference Manual.)

11-9
Modifying Lesson Flow

The WHEN Instruction

VAX DAL provides authors with two ways to create lessons that respond to condi­
tions. One way is with WHEN statements. The other way is with condition han­
dlers. WHEN statements are used to execute a unit:

• At a specified time of day

• After a specified pericxl of time

• Each time a specified time interval elapses

• When the student enters a specified string of characters

The syntax of the WHEN instruction is:

WHEN I keyword, condition, {unlLname}

Where:

keyword identifies the type of condition the WHEN statement responds to. The
WHEN keywords are listed in the two tables below. Keywords from the first
table specify WHEN statements that execute after a specified pericxl of time, at
a specified time of day, or every time a regular period of time expires.
Keywords from the second table establish, cancel, and restore WHEN state­
ments that respond to specific character strings in student responses.

condition is an expression consistent with the condition type specified by the
keyword.

{unit_name} is the name of the unit to be executed if the specified condition
occurs. If a uniLname argument is not specified, the WHEN instruction
cancels a previously declared WHEN instruction that uses the specified
keyword and condition.

11-10
Modifying Lesson Flow

•• I
I
I
I
I
I

..
I
I
I I

I
I

et
I

•• I
I
I

I
fl
I
I
I
I

I

Table 11-1: Time-Related WHEN Keywords

TIME

INTERVAL

The time In seconds which Is to elapse between execution of the
WHEN instruction and execution of the unit the WHEN Instruction
specifies. After the specified number of seconds is up, the current
unit is intenupted, and control passes to the specified unit.

The time of day (based on the operating system clock) at which the
specified unit is to be executed. When the specified time Is
reached, the current Lf'llt Is lntenupted, and control passes to the
unit specified by the WHEN Instruction.

The time in seconds which is to elapse between executions of the
unit specified by the WHEN Instruction. Each time the interval Is up,
the unit executes.

Table 11-2: String-Related WHEN Keywords

ENABLE

The WHEN Instruction responds to a string of characters, or to an
expression that evaluates to a string. The argument to a WHEN
STRING Instruction is a string enclosed In double Quotes. After the
student types the last character of the string, the current unlt Is Inter­
rupted, and control passes to the unit specified by the WHEN instruc­
tion.

This keyword cancels a previously declared WHEN STRING Instruc­
tion. A WHEN STRING instruction lists a string of characters (enclosed
In double quotes) as its argument. A WHEN DISABLE "string" Instruc­
tion cancels a WHEN STRING "string· unlt_name Instruction if the two
string arguments match. A WHEN DISABLE instruction does not spec­
ify a unlLname.

This keyword restores a previously canceled WHEN STRING Instruc­
tion. A WHEN ENABLE "string" Instruction restores a canceled WHEN
STRING ·stnng· instruction If the two string arguments match.

The unit specified by a WHEN instruction executes anytime the interrupt condition
occurs.

11-11
Modifying Lesson Flow

After the unit specified by WHEN is executed, the keyword determines the lesson
location to which control is returned. If the keyword is a time-related keyword
from Table 11-1, control is returned to the instruction that follows the instruction
that was executing when the time interval was satisfied. If the keyword is STRING,
control is returned to the beginning of the unit or lesson that was interrupted when
the student typed the string.

The scope of a WHEN instruction depends upon the keyword used, and the loca­
tion of the instruction in the unit calling chain. Regardless of keyword, a WHEN
instruction executed at lesson level is in effect for the rest of the lesson.

WHEN instructions that use the time-related keywords from Table 11-1 are global
in nature. Once declared, they are in effect for the rest of the lesson. If executed in a
unit, a time-related WHEN instruction is still in effect after execution of the unit
finishes.

WHEN instructions that use the string-related keywords from Table 11-2 are local
to the level in which they are declared. If executed in a unit, a string-related WHEN
instruction remains in effect only as long as the unit remains active. As soon as
execution of the unit finishes, the WHEN instruction declared in the unit is
canceled.

Authors can be selective about where they want a WHEN STRING instruction to
apply. A WHEN STRING instruction executed in a first-generation unit applies
only to subsequent units in that unit's calling chain. As soon as that first-generation
unit finishes execution and returns control to lesson level, the WHEN STRING
instruction established by the unit is canceled.

Any WHEN instruction can be canceled. A WHEN instruction that specifies a
keyword and a condition, but not a uniLname, cancels a previously declared
WHEN instruction that uses the specified keyword and condition. For example,
WHEN INTERVAL,60 cancels a previous WHEN INTERVAL,60,uniLname
instruction.

A specific WHEN STRING, .. string", uniLname instruction is temporarily sus­
pended by a WHEN DISABLE, .. string" instruction if the two string arguments
match. When execution of the unit containing the WHEN DISABLE instruction
finishes, the suspended WHEN STRING instruction is automatically restored.
WHEN STRING instructions suspended at lesson level are turned off for the rest of
the lesson (unless they are restored by a WHEN ENABLE instruction).

A WHEN STRING instruction can be canceled by a WHEN DISABLE instruction
for the duration of a calling chain (or for just part of that calling chain). DAL auto­
matically restores the WHEN STRING instruction when execution of the unit con­
taining the WHEN DISABLE instruction finishes.

11-12
Modifying Lesson Flow

•• I
I
I

I
..

I
I
I
I
I

et
I

I
I
I
I
I
f'
I
I
I
I
I .,.
I

The WHEN ENABLE, "string" instruction restores a previously disabled WHEN
STRING, "string" instruction if the two string arguments match. WHEN ENABLE
can only restore a WHEN instruction that was disabled in the current unit. A
WHEN STRING instruction disabled at lesson level can only be restored by a
WHEN ENABLE instruction at lesson level.

The DAL code below shows one application of the WHEN STRING instruction.
Because the string to which WHEN STRING responds is defined by the author, the
string can be anything the author desires: "help", "review", or "stop", for example.
The lesson below uses WHEN STRING instructions with the SET FKEY instruc­
tion (explained in Chapter 7) to modify the example used earlier in this chapter for
the BACKUP instruction.

LESSON helpkey
DEFINE I : Integer
FCOLOR WHITE
AT 410
SET FKEY TERMINATE
WHEN STRING, "[F10_J(EYr, table
WHEN STRING, "[F12_J(EYr, probsett
%MACRO pressJet
AT 2245
MODE INVERSE
WRITE ... Press RETURN to continue ...
MODE NORMAL
%ENDMACRO
WRITE This lesson tests your multiplication skills.

Study the following multlpllcatlon table because
all of the problems you will be asked come from it.
Press RETURN to see the multiplication table.

PAUSE
DO
DO
DO

WRITC
PAUSE

UNIT
ERASE
FCOLOR
SIZE
AT

table
probsett
probset2

Press RETURN to end this lesson.

table

RED
2
525

11-13
Modifying Lesson Flow

WRITE 1 X 12 = 12
2 X 12 = 24
3 X 12 = 36
4X 12 = 48
5X 12 = 60
6X 12 = 72

SIZE 1
AT 2010
FCOLOR WHITE
WRITE Press RETURN when you are recx:ty to try some problems.
PAUSE
RETURN

U'JIT Probsett
FOR I:= 1,3

ERASE

ENDFOR

11-14

AT 310
FCOLOR WHITE
WRITE Problem Set #1
PROMPT ·=.
AT 810
FCOLOR RED
WRITE < <s.l> > X 12
QUERY *
RIGHTV 1*12

WRONG

ENDQ

ERASE 1220,2379
AT 1220
FCOLOR YELLOW
WRITE Very Good!
press.....ret
PAUSE

AT
WRITE

1220
No, you're wrong. Press the F10 key
if you'd like to see the multipllcotion
table again.

Modifying Lesson Flow

-:
I
I
I
I
I ..
I
I
I
I
I

--
1

I
I
I
I
I
f'
I

I

RETURN .
UNIT Probset2
ERASE
FOR I:= 4,6

ERASE
AT 310
FCOLOR WHITE
WRITE Problem Set #2
AT 810
FCOLOR RED
WRITE <<s,I>> X 12
QUERY *
RIGHTV 1*12

ERASE 1220,2379
AT 1220
FCOLOR YELLOW
WRITE Very Good!
press_ret
PAUSE

WRONG
1220 AT

WRITE No, you're wrong. Press the F10 key If
you'd like to see the multlpllcatlon

ENDQ
ENDFOR
RETURN
ENDLESSON

table again, or the F12 key If you'd like to
redo the problem set you just finished.

11-15
Modifying Lesson Flow

Condition Handlers

Like WHEN instructions, condition handlers respond to conditions that arise dur~
ing lesson execution. Unlike WHEN instructions, condition handlers respond to:

• Specific instructions in the lesson such as STOP, ENDLESSON, or
SIGNAL

• Keys pressed by the student such as CTRUC

• Technical problems with a DECtalk unit or with file input/output
operations

Four different instructions are used with condition handling:

ON declares a condition handler

CDUNIT names a unit that is executed by a condition handler

SIGNAL invokes a condition handler

CANCEL disables a condition handler declared in the current level of the
lesson

The ON Instruction
An ON instruction specifies:

• The condition a condition handler responds to

• The condition unit that executes if the specified condition becomes true

If a condition named in an ON instruction occurs, the condition handler interrupts
the current unit and executes the condition unit. After execution of the condition
unit finishes, control is returned to the instruction that follows the instruction that
was executing when the interrupt occurred.

The syntax of the ON instruction is:

ON I condition_nome, cduniLname

Where:

condition-lUlme is one of the condition names listed in Table I 1-3.

cdunit....name specifies the name of a condition unit, which is a DAL unit that
begins with a CDUNIT instruction.

11-16
Modifying lesson Flow

J
I
I
I
I
I
I

..
I
I
I
I
I

--
1

..
I
I
I
I
I
I
~
I
I
I
I

I

Specify the condition a condition handler responds to with one of the following
condition names:

Table 11-3: Condition-Name Keywords

ANY CONDITION

CONDITION, value

CTRL C

DTSTATUS

IORESULT,value

ENDLESSON

STOPLESSON

establishes a default condition handler. A default condition
handler responds to any VAAVMS error condition tor which a
handler is not already set up. Should such an error occur, the
ONCODE system variable is set with the VAAVMS error code
that Identifies the error type. Consult the VAX/VMS documen­
tation set tor listings of the VAAVMS error codes.

establishes a condition handler that can be deliberately
invoked by the lesson. Value Is an Integer that labels the con­
dition handler tor a SIGNAL instruction.

establishes a condition handler set up to execute before
DAL's built-in CTRL 'C handler. Authors can use this handler to
execute a condition unit that restores terminal states it a stu­
dent aborts the lesson with CTRL/C.

establishes a condition handler set up to handle problems
with a DECtalk unit. A DTSTATUS condition handler executes
anytime the value of the DTSTATUS system variable Is not 1.
(A DTSTATUS value of 1 indicates a successful DECtalk
operation.)

establishes a condition handler set ~ to respond to specific
file input/output problems. Value specifies the value of the
IORESULT system variable that causes the handler to execute.

establishes a condition handler that executes at the end of
the lesson. Unlike a CTRL C condition handler, which exe­
cutes only If the student aborts the lesson, this condition han­
dler executes when the student finishes the lesson.

establishes a condition handler that executes at lesson end if
the author concludes the lesson session with a STOP instruc­
tion.

11-17
Modifying Lesson Flow

Of the condition names described above, CONDITION, value, and IORESULT.
value are the only two that require arguments. The other condition names establish
handlers that react automatically to instructions encountered in the lesson, keys
pressed by the user, or operation status codes reported by VAX/VMS.

The CONDITION, value condition name establishes a condition handler that
authors can deliberately invoke. The value argument is an integer. A SIGNAL
CONDITION, value instruction invokes a CONDITION, value condition handler
if the two integer values match. See below for further discussion of the SIGNAL
instruction and the CONDITION, value condition handler.

The IORESULT, value condition name establishes a condition handler that exe­
cutes if file input/output problems set the IORESULT system variable with an
anticipated status code. IORESULT has 16 possible values, which are listed in
Table 11-4.

Table 11-4: IORESULT values
. -- -

- ,•~- ., • - . - - - - - -~
1

2

3

4

5

6

7

8

9

10

11

12

13
14

15

noona return

inva d chamel numt>ef

insufficient virtual memory space

channel not open

f1 e ,s read only

file ,s sequentia on y

1le ,s -...11te on y

new fife was created w th OPEN nstl\Jctlon

tray not opened (SLIDE expects a previously opened tray file)

RMS error; check the RMSSTATUS system variab e for the error type

file wrong type for operaflon

e not ndexed, Index operation requested

problem wlfh key on FIND or GET instruction

restart file not fOll)(j

restart variable mISSing

16 perma)ent variable miss ng

11-18
Modifying Lesson Flow

I
I
I
I
I ..
I
I
I
I

I

..
I
I
I
I
I
I
i'
I
I
I
I
I
te
I

An I ORES ULT condition handler keyed to one of the above values responds if the
value is returned after a file 1/0 operation.

The scope of a condition handler depends on its place in the calling chain. An ON
instruction executed at lesson level creates a condition handler that is in effect for
the rest of the lesson. A condition handler declared in a unit is canceled when exe­
cution of the unit finishes.

Authors can be selective about where they want a condition handler to apply. An
ON instruction in a first-generation unit applies only to subsequent units in the call­
ing chain of that unit. As soon as the first-generation unit finishes execution and
returns control to lesson level, the condition handler it established is canceled.

The CDUNIT Instruction
CD UNIT identifies a DAL unit that is associated with a condition handler. Like the
UNIT instruction, the CD UNIT instruction begins a series of DAL instructions that
are executed together as a unit. The syntax of the CDUNIT instruction is:

CDUNITI cdunlLname

Where:

cduniLname is a unique name that identifies the condition unit. Condition unit
names contain from one to 10 characters, the first of which must be a letter.

Condition units function like other DAL units except for the following differences.

• System variables that normally clear when a new unit begins execution
remain unchanged when a condition unit begins execution.

• Response-related variables and variables that DAL normally saves when a
unit is called from within a QUERY block are not saved when a condition
unit is called from within a QUERY block.

• Condition units cannot contain QUERY blocks.
• Condition units cannot contain ON instructions
• Condition units cannot contain WHEN instructions

Condition units can be used anywhere in a lesson. For example, condition units can
be executed by WHEN or DO instructions. However, authors who use condition
units for purposes other than condition handling do so at their own risk. The differ­
ences listed above can produce unanticipated results.

11-19
Modifying Lesson Flow

The SIGNAL Instruction
The SIGNAL instruction invokes a CONDITION, value condition handler. As
explained above, a SIGNAL CONDITION, value instruction invokes a CONDI­
TION, value condition handler if the two values match. For example, A SIGNAL
CONDITION,3 instruction immediately transfers control to the condition unit
named in an ON CONDITION,3 cduniLname instruction.

A SIGNAL instruction can only invoke an active condition handler. A condition
handler declared in a unit becomes inactive when execution of the unit finishes. A
condition handler declared at lesson level is active throughout the lesson, and can
be invoked by a SIGNAL instruction at any level of the lesson.

The CANCEL Instruction
The CANCEL conditiolLJlame instruction disables a condition handler associated
with the specified condition name. For example, the instruction CANCEL
IORESULT, 15 disables the condition handler set up to respond to an IORESULT
value of 15. The syntax of the CANCEL instruction is:

CANCEL I condition_name

Where:

condition-1U1me is:

ANY CONDITION
CONDITION, value
CTRLC
DTSTATUS
IORESULT, value
ENDLESSON
STOPLESSON

CANCEL can only disable a condition handler declared at the level of the lesson
that is currently executing. A condition handler declared at lesson level can only be
disabled by a CANCEL instruction executed at lesson level. A condition handler
declared in a unit can only be disabled by a CANCEL instruction in that unit.

A canceled condition handler is disabled for the rest of the lesson (unless the han­
dler is restored with another ON instruction).

A CANCEL instruction has no effect if it specifies:

• A conditiorLname for which there is no condition handler

• A condition handler that was not declared in the current level of the lesson

11-20
Modifying Lesson Flow

J
I
I
I
I
I

I
I
'I
I
I

--
1

•• I
I
I
I
I
I ,.
I
I
I
I
I
re
I

A Condition-Handling Example
Lesson handler (shown below) displays the effect of five of the condition handlers
described above, as well as the use of the ON, SIGNAL, CANCEL, and CD UNIT
instructions.

LESSON handler

t

ON
ON
ON
ON
ON

'

Declare five condition handlers using the syntax:
ON condltion....name, cdunlt....name

CONDITION, 1,cond1
CONDITION,2,cond2
CTRLC,ctrlc
STOPLESSON,stopl
ENDLESSON,endl

Display a menu of options.

LOOP true
ERASE
WRITC

INPUT
TEST
VALUE

VALUE

VALUE

VALUE

Enter a number from the menu below to Invoke or
cancel a condition handler.

Note that entering 3, 4, or 5 will end the lesson.

1 - signal CONDITION,1 handler (calls cdunit COND1)
2 - signal CONDITION,2 handler (calls cdunit COND2)
3 - execute CTRLC handler (calls cdunit CTRLC)
4- execute STOP handler (calls cdunlt STOPL)
5 - execute ENDLESSON handler (calls cdunit ENDL)
6 - cancel a condition handler

response
"1.
SIGNAL condlfion,1
'"2.
SIGNAL condlfion,2

LOOP true
WRITC
PAUSE

ENDLOOP

STOP

Type a CTRUC ...

11-21
Modifying Lesson Flow

VALUE •5•
OUTLOOP true
VALUE .6.

' ; Display a second menu of options.

WRITC Enter a number from the menu below

INPUT
TEST
VALUE

VALUE

VALUE

VALUE

to concel a condition handler.

1 - concel CON0mON,1 handler
2 - cancel CONDITION,2 handler
3 - concel CTRLC handler
4 - cancel STOPLESSON handler
5 - concel ENDLESSON handler

response ,.
CANCEL CON0mON,1
WRITC The CONDmON,1 ha')dler hos been canceled.
'T
CANCEL CONDITION,2
WRITC The CONDITION,2 ha')dler hos been canceled.

CANCEL CTRLC
WRITC The CTRLC handler hos been conceled .
•4·
CANCEL STOPLESSON
WRITC The STOPLESSON handler hos been conceled.

VALUE ·5·

OTHER

ENDTEST

CANCEL ENDLESSON
WRITC The ENDLESSON handler hos been cooceled.

WRITC A handler hos not been canceled.

ENDTEST
ENDLOOP

C0UNIT cond1
WRITC You ae now in the CON01 condition llllt.

PAUSE

11-22

The CONDmON,1 condition handler transferred
control of the lesson to this condition unit.
When you press RETURN, control will poss bock to
the menu of options display .

... Press RETURN to contirue ...

Modifying Lesson Flow

•• I
I
I
I
I
I ..
I
I
I
I
I

et
I

..
I
I
I
1.
I
I ,.
I
I
I
I

I

CDUNIT cond2
WRITC You are now in the COND2 condition unit.

PAUSE

The CONDITION,2 condition handier transferred
control of the lesson to this condition unit.
When you press RETURN, control will pass back to
the menu of options display .

... Press RETURN to continue ...

CDUNIT ctrlc
WRITC You are now in the CTRLC condition unit.

PAUSE

The CTRLC condition handler passed control of the lesson
to this condition unit when you pressed CTRIJC. DAL
has a built-in CTRUC handier that terminates the lesson when
CTRIJC Is pressed. That handler will execute when you
press RETURN .

... Press RETURN to terminate the lesson ...

CDUNIT stop!
WRITC You are now in the STOPL condition unit.

PAUSE

The STOPLESSON condition handler passed control of the lesson
to this condition unit when the STOP Instruction was
encountered. When you press RETURN, the STOP instruction
will stop the lesson .

... Press RETURN to stop the lesson ...

CDUNIT endl
WRITC You are now In the ENDL condition unit.

The ENDLESSON condition handier passed control of the lesson
to this condition unit when the ENDLESSON instruction was
encountered. When you press RETURN, the ENDLESSON instruction
will end the lesson.

... Press RETURN to end the lesson ...

ENDLESSON

11-23
Modifying Lesson Flow

J
I
I
I
I
I
I ..
I
I
I
I
I

ea
I

..
I
I
I
I
I
I
~
I
I
I

•• I
I
I
I

I
I
I
I
I ,.
I

12
The VAX DAL Color

Management System

Chapters 3 and 5 each explained some of the rudiments of the VAX DAL color
management system. This chapter describes the color management system in
detail, explaining the system's component parts and their interaction. At lesson
startup, DAL initializes the color system with eight basic colors that you can use as
foreground or background colors in your displays. Depending on the color capabil­
ities of the terminals you use, you may be able to access and use additional colors in
your lessons, with from 4 to 16 different colors appearing on the terminal screen at
the same time.

Topics discussed in this chapter include:

• Color system components

- Color specifications

- Terminal color palette

- DAL color map

- DAL color table

- Color management instructions

• The default color system

• Color system modification

12-1

You cannot modify the color capabilities of the terminals you use to deliver your
lessons. VAX DAL color management instructions modify the DAL color system
components only. They do not expand the color capabilities of tenninals. The
instructions can, however, make full use of the color capabilities of the tenninal.
Authors should refer to Chapter 7 in this guide, entitled Tenninal Management, to
look up the color capabilities of the terminals their lessons use.

THE COMPONENTS OF THE DAL COLOR MANAGEMENT SYSTEM

The DAL color management system consists of color specifications, three color
structures, and five color management instructions. The three color structures are:

• The color palette of the terminal

• The DAL color map

• The DAL color table

DAL color management instructions send a color specification to the tenninal
whenever the author requests a color.

Color Specifications

A color specification is a code the tenninal must use in order to generate a particular
color. Tenninals are equipped with a fixed number of color specifications. This
number specifies the number of different colors the tenninal is capable of generat­
ing. A tenninal equipped with eight color specifications can generate only eight
colors.

DIGITAL terminals use color specifications that are encoded by two different
methods. The standard method is the Hue/Lightness/Saturation (HLS) method for
specifying colors. The HLS method uses different values for hue, lightness, and
saturation to specify a large range of colors. DIGITAL VT125, VT240, VT241
terminals, and DECmate III, Rainbow, and Professional tenninal emulators use
the HLS method of specifying colors.

DIGITAL tenninals also use a color number method. With this method, each color
specification is identified with an integer. DIGITAL GIGI (VK 100) tenninals use
this method. The DECmate II tenninal emulator uses both the HLS method and the
color number method. (See Chapter 7: Tenninal Models: Color Capabilities for
more details.)

12-2
The VAX DAL Color Management System

I
I
I

..
I
I·
I
I
I

-
I

•• I .,
I
I
I
I
~

I
I

I

Terminal Color Palettes

Each of the terminals mentioned above stores color specifications in an internal
color palette. A terminal color palette can be thought of as a storage cabinet con­
taining cubbyholes or slots. Each slot contains a different color specification.

The number of slots in the color palette determines the number of color specifica­
tions the terminal can use. For example, the GIGI color palette has eight slots; con­
sequently, GIGI terminals are equipped with eight different color specifications.
Rainbow terminals have 4096 different color palette slots, hence, 4096 different
color specifications.

For terminals that use the HLS method for specifying colors, the address of the
color palette slot that contains an HLS specification is the HLS specification itself.
For example, the slot that contains the specification 120 50 I 00 (the specification
for the color red) has 120 50 I 00 as its address.

For terminals that use the color number method for specifying colors, the address
of a slot containing a color specification is the color number identified with that
specification. In the color number method, the color specification for red is identi­
fied with the number 2. Consequently, slot number 2 in the color palette contains
the color specification for red.

For definitive information about the color palette of the terminal you use, you must
refer to the Programmer's Reference Manual that comes with the terminal. The
Programmer's Reference Manual provides a list of the color specifications your
terminal is equipped with. You need information from this list to access and use the
colors in your terminal color palette.

The DAL Color Map

Like a terminal color palette, the DAL color map stores color specifications. The
color map is, in fact, the DAL counterpart to the terminal color palette. In the
course of the lesson, color specifications are copied from the terminal color palette
into the DAL color map.

Unlike the terminal color palette, where the number of storage slots determines the
number of specifications the terminal has, the DAL color map is of a constant size,
regardless of the terminal model DAL is executed on. The DAL color map has 64
color slots. These slots are addressed by number, from Oto 63.

12--3
The VAX DAL Color Management System

When the lesson uses a foreground color or background color, it refers to the DAL
color map for color specifications, not to the terminal color palette. When a color is
requested with an FCOLOR or BCOLOR instruction, DAL searches the DAL
color map for the color specification of the requested color. When DAL finds the
color specification, DAL sends it to the terminal color generation facility where the
specification is used to generate the color given to subsequent text or graphics.
Note that, because the color map contains only 64 slots, the color map can contain a
maximum of 64 color specifications. Lessons, consequently, cannot use more than
64 different colors at one time.

Color specifications are loaded from the terminal color palette into the DAL color
map by two different means. The first is automatic. The second is entirely under the
author's control.

At lesson startup, DAL automatically loads the first eight slots in the color map
(slots O through 7) with the color specifications of eight basic colors. This provides
the author with enough colors for most simple lessons. The DAL-provided colors,
their color specifications, and the numbers of the color map slots the specifications
occupy, are listed below.

Table 12-1: DAL-Provided Color Specifications

DARK 000 0

BLUE 050100 1

RED 12050100 2

MAGENTA 60 50100 3

GREEN 24050100 4

CYAN 30050100 5

YEUOW 180 71100 6

WHITE 0100100 7

As explained in earlier chapters, the FCOLOR and BCOLOR instructions bring
new foreground and background colors into use. These instructions can specify the
DAL-provided colors by color name or by color map slot number.

12-4
The VAX DAL Color Management System

•• I
I
I
I
I
I

..
I

I

•• I
I
I
I

I
I

--
1

The reason DAL-provided colors can be invoked either by color name or by slot
number is important for future discussion. DAL defines each of the DAL-provided
color names as a constant equal to a slot number. Slot number 2, for example, is
identified with the string constant "RED". Whenever an FCOLOR RED instruction
is issued, DAL looks in slot number 2 in the color map for the color specification
for red. Because the string RED equals 2 by definition, FCOLOR RED and
FCOLOR 2 have the same effect.

The second way color specifications are loaded into the DAL color map is with the
MAP instruction. Authors can use the MAP instruction to copy the specification of
a color they need into a slot in the DAL color map from the terminal color palette.
Once in the color map, the color can be requested by an FCOLOR or BCOLOR
instruction that uses the color's slot number as its argument. (More on the MAP
instruction follows.)

Th D L Color l bl

The DAL color table is another color structure used by the DAL color management
system. Unlike the color palette or map, the color table does not store color specifi­
cations. Instead, the color table acts as DAL's guide to the color map. The color
table stores directional pointers that DAL uses to locate color specifications in the
color map. The color table also limits the number of colors that DAL can use
simultaneously.

Several of the terminals used to execute DAL lessons cannot support more than
four different colors on the screen simultaneously. DAL acknowledges this restric­
tion by limiting the number of slots in the DAL color table to the number of colors
that the terminal can support on the screen at the same time. If DAL can locate (by
referencing the color table) only four color specifications at a time, then there is no
danger of using more colors in a single display than can be supported by the
terminal.

DAL establishes the size of the color table at lesson startup. Authors can change the
default size of the color table with the SET MAXCOLORS instruction, which is
described later in this chapter. The size DAL assigns the color table depends on the
terminal model in use. The table below displays the color table sizes that are used
with different terminal models.

12-5
The VAX DAL Color Management System

Table 12-2: Terminal Models: Color Table Size

VT125 4 slots

VT240.VT241 4 slots

DECmatelll 4 slots

RANBOW 4 slots

GIGI (VK100) 8 slots

PROFESSIONAL 8 slots
(w th PRO:Communlcations V2.0)

DECmatell 16 slots

Authors can use the SET MAX COLORS instruction to reduce the size of the color
table (from 16 slots down to 4, for example) in order to create a lesson that runs
successfully on terminals with differing color capabilities. Authors cannot, how­
ever, successfully use SET MAXCOLORS to expand the color table to a size
greater than the terminals in use can support.

DAL places a new pointer in the DAL color table each time a new foreground or
background color is used. The pointer directs DAL to a color specification in the
color map.

The first FCOLOR instruction executed in a lesson sets a pointer in slot number
(MAX COLORS-I) in the color table. The second FCOLOR instruction sets a
pointer in slot number (MAXCOLORS-2), and the third in slot number
(MAXCOLORS-3). Color table slot number O always contains the pointer to the
specification for the current background color. Whenever a new background color
is specified, the pointer to the current background color specification is erased from
slot 0, and a pointer to the specification for the new background color replaces it.

If you reuse a color that you have already used on the screen, DAL looks up the
pointer for that particular color in the color table. If DAL finds the pointer, DAL
uses it to find the required color specification.

12-6
The VAX DAL Color Management System

I
I
I
I
I ..
I
I
I

I

-
I

•• I
I
I
I

I
I
I
I

I

After a third new foreground color is used at a terminal that supports only four
colors on the screen, the color table is full (the fourth color is the background
color). Each slot in the table contains a pointer, even if only one foreground color
was used at a time. After the color table is full, subsequent FCOLOR instructions
are ignored because DAL has no place to set pointers for any additional foreground
colors. Authors must use either the FCOLOR instruction with the
table-sloLnumber argument, or the CCOLOR instruction (see below) to bring
new foreground colors into use when the color table is full.

THE VAX DAL COLOR MANAGEMENT INSTRUCTIONS

The five VAX DAL color management instructions are the FCOLOR, CCOLOR,
BCOLOR, MAP, and SET MAXCOLORS instructions. These instructions man­
age the DAL color system, bringing color specifications into use and setting limits
on the color system. This section explains the function of each of the instructions in
detail.

The FC0L0R Instruction

The FCOLOR instruction specifies the color of subsequent text or graphics.
FCOLOR uses two different syntaxes:

FCOLOR color_constanLname{, tableJloLnumber}

FCOLOR map__sloLnumber{, table__sloLnumber}

Where:

color -<:onstanLname is one of the DAL-provided color constants listed in
Table 12-1. Because these constants are equated with slot numbers in the DAL
color map, the two FCOLOR syntaxes are more alike than they appear. Note
that authors can also define string constants equal to slot numbers.

map_s/01-.number specifies a slot in the DAL color map that holds a color spec­
ification. FCOLOR 7, for example, makes the color that is defined by the
specification in slot number 7 the new foreground color.

{tab/e_s/ot_number} specifies a slot in the DAL color table. DAL sets the
pointer to the requested color specification in the color table slot specified by
the argument. And, if a pointer was previously in that slot, DAL replaces it
with the new pointer.

12-7
The VAX DAL Color Management System

Using the FCOLOR instruction with the table_sloLnumber argument is one way to
request additional colors when the color table is full. The instruction removes the
pointer from the color table slot specified, and sets a new pointer in the slot for the
new color specification. Be aware that the current color whose pointer is replaced
becomes unavailable: if any graphics or text that use the current color are still on
the screen, they are changed to the new foreground color.

The FCOLOR instruction functions in three different ways, depending on the state
of the DAL color table and the syntax of the instruction:

• If color table slots are available, an FCOLOR instruction sets a pointer to
the required color specification in the first available slot, or in the slot spec­
ified by the table_sloLnumber argument. Subsequent text and graphics use
the new foreground color.

• If the color table is full and an FCOLOR instruction is used without a
tabJe_sloLnumber argument, the FCOLOR instruction is ignored. Subse­
quent text and graphics use the foreground color specified by the last suc­
cessful FCOLOR instruction.

• If the color table is full and the FCOLOR instruction is used with a
table_sloLnumber argument, the current pointer in the specified color
table slot is replaced by a new pointer. Subsequent text and graphics use the
new foreground color.

The CC0L0R instruction

The CCOLOR instruction clears any or all of the pointers from the DAL color
table. This is another way to make new colors available after the color table reaches
capacity. The CCOLOR instruction has three syntaxes:

CCOLOR color_constanLnome

CCOLOR toble_sloL.number

CCOLORALL

12--8
The VAX DAL Color Management System

'I
I
I
I
I

..
I
I
I
I

I

•• I
I
I

I
I
~
I
I
I
I
I

-
I

Where:

color_constant-'lame is the color name that identifies the color specification
you no longer need. CCOLOR RED, for example, removes the pointer to the
color specification for red from the color table. Because DAL equates the
string "RED" with slot number 2 in the color map, a CCOLOR RED instruc­
tion eliminates the pointer in the color table that points to color map slot num­
ber 2. This assumes that slot number 2 still contains the color specification for
red. CCOLOR RED makes unavailable for displays the color defined by the
specification in slot number 2 in the color map (unless another pointer to slot
number 2 is created). A CCOLOR instruction that specifies a
color_constanLname that has not been defined (either by DAL at lesson
startup or by the author) has no effect.

tab/e_slot-'lumber specifies a slot in the DAL color table that is to be emptied.
CCOLOR l removes the pointer from color table slot number I and makes the
color pointed to from that slot unavailable.

ALL is a keyword that clears the entire color table. After a CCOLOR ALL
instruction, the background color defaults to DARK and the foreground color
is undefined. A foreground color must be specified before any text or graphics
can be written to the screen.

The BC0L0R Instruction

The BCOLOR instruction specifies a color for the background of a display. The
BCOLOR instruction automatically clears the current pointer from color table slot
number O and creates a new pointer to the color specification of the new back­
ground color. The BCOLOR instruction has two syntaxes:

BCOLOR color_constanLname

BCOLOR map....sloLnumber

The parameters for the BCOLOR instruction match those for the FCOLOR instruc­
tion. Note, however, that the BCOLOR instruction never requires the
table_sloLnumber argument that can be used with FCOLOR instructions.
BCOLOR automatically clears the current pointer from the color table slot it
updates.

The pointer to the color specification for the current background color always occu­
pies color table slot number 0. DAL ignores an FCOLOR instruction that tries to
place a pointer in slot number 0.

12-9
The VAX DAL Color Management System

The MAP Instruction

The MAP instruction makes all of the color specifications in a terminal color
palette available to DAL. The MAP instruction copies color specifications from the
terminal color palette into slots in the DAL color map. Once in the color map, the
color specifications can be requested with FCOLOR map_sloLnumber and
BCOLOR map_sloLnumber instructions.

The Programmer's Reference Guide for your terminal model lists the specifications
contained in your terminal color palette. Before you can use the MAP instruction,
you must find out what specifications your terminal has.

If your terminal uses the HLS method for storing color specifications (all but GIGI
terminals do), use the following MAP instruction syntax:

MAP map....slot....number, gray_value, H_value, Lvalue, S_value

Where:

map_s/ot-11umber is the slot in the DAL color map in which the color specifi­
cation is to be loaded. The color map consists of 64 slots, numbered from 0 to
63. This means that a lesson can use a maximum of 64 different colors.
Remember that the eight basic DAL-provided colors are stored in slots 0
through 7. If you load a color specification into one of those slots, the color
specification for the basic color becomes unavailable. An FCOLOR
map_sloLnumber or BCOLOR map_sloLnumber instruction can be used to
request a color whose specification is loaded into a slot in the color map.

gray_value establishes the shade of gray that replaces the color if the lesson is
run on a black-and-white terminal. This argument is an integer from Oto 100.
A gray level of 0 means the color is replaced by black on a black-and-white
terminal. Gray level I 00 replaces the color with white, 75 with light gray, 50
with medium gray, and 25 with dark gray.

H_value, L_value, and s_value define the color specification that the MAP
instruction moves from the color palette to DAL's color map. H_value corre­
sponds to the hue value of the specification. Lvalue corresponds to the light­
ness value of the specification. s_value corresponds to the saturation value of
the specification. You can find the HLS values for the colors you need listed in
your terminal's Programmer's Reference Guide.

The following MAP instruction moves the color specification for firebrick red
(available in VT240s and other terminals), and a gray level value of 75, into slot 45
in the DAL color map:

MAP 45,75,120,35,60

12-10
The VAX DAL Color Management System

•• I

'I
I

..
I
I
I
I
I

-
I

•• I
I
I
I
I
I
~

I
I
I
I

--
1

The color palette of a GIGI terminal contains only the eight colors that DAL uses to
initialize the DAL color map. The MAP instruction therefore cannot move any
additional colors into the DAL color map in a lesson executed at a GIGI terminal.

The MAP instruction has a second syntax, however, that can be used to rearrange
the eight colors in a GIGI-DAL color map. This second syntax can also be used
with other terminal models to move color specifications identified with color con­
stant names to new locations in the color map. The second syntax for the MAP
instruction is:

MAP map_slot.:..number, color_constanLname

For example, a MAP 19,RED instruction moves the specification identified with
the color_constanLname RED to slot number 19 in the color map. Use this second
MAP syntax when you need to place the color specifications in the color map into a
particular sequence.

The SET MAXC0L0RS Instruction

SET MAXCOLORS changes the default number of slots available in the DAL
color table. DAL uses a SET MAXCOLORS instruction at lesson startup to match
the color table size to the color capabilities of the terminal. You may wish to change
the size of the color table if you develop lessons on 8- or 16-color terminals that
must run on 4-color terminals, or the other way around. The syntax of the SET
MAXCOLORS instruction is:

SETI MAXCOLORS, value

Where:

value is the number of slots the color table is to have.

A COLOR MANAGEMENT EXAMPLE

The following source code example uses VAX DAL color instructions to manage
the terminal color palette, DAL .color map, and DAL color table. At appropriate
times in the source code, a schematic diagram of the state of the color map and the
color table is shown. Figure 12-1 shows the color map and color table at lesson
startup.

12-11
The VAX DAL Color Management System

DAL cam tw>

0

1

2

3
4

5

6

7

8

64

HO LO SO
HO L50 SSOO
H120 L!50 SSOO
H60 L50 S100
H240 L!50 S100
H300 L50 S100
H180 L71 S100
HO L100 S100

<Elf>TYl

/
<El9TY>

Figure 12-1

<DARIO
(Bl.I.{)

<RED>
<HACENTA)

<GREEN>
<CYAN>

<YELLIMl
<llfITE>

DAL CCI.~ TABLE

~;
~
/

MR-S-3942-85

Default Color System: Lesson Sta1up

LESSON DEMO
I
I This lesson odds fOlJ' colors to the eight already provided by
I VAX DAL First, the names of the new colors are defined as
I constants equal to slot numbers in the DAL color map.
I
DEFINE
DEFINE
DEFINE
DEFINE
DEFINE
I

coral= 6
thistle = 9
khaki= 10
orchid = 11
wheat= 12

I Next, gay levels & HLS specifications for the new colors are
I loaded Into the DAL color map. Note that because the color names
I were defined as constoots equal to numbers, we con use the color
I names in place of slot numbers.
I
MAP
MAP
MAP
MAP
MAP
I

12-12

corai,25,150,50,10
thistle,25,60,60,25
khaki,50, 160,50,25
orchid,50,60,65,60
wheat,75,160,60,25

The VAX DAL Color Management System

•' I
I
I
I
I
I

..
I
I
I
I
I

-
I

•• I
I
I
I
I
I
~
I
I
I
I
I

-
I

I Now change the color specification for the DAL-provided
I color GREEN to llme green.
I
MAP green,50,240,50,60
I

Figure 12-2 shows the color map after the new color specifications are loaded into
it.

DAL CCl.M HAP
0

2

3

4

5

6
7

8
9

10

u
12

13

64

HO LO SO
HO L50 SlOO
H120 L50 S100
H60 L50 S100
H240 L50 S60
H300 L50 S100
H180 L71 SlOO
HO L100 S100
H150 L50 S10
H60 LBO S25
H180 L50 S25
H60 L65 S80
H180 L80 S25

<Etf>TY>
\
/

(Eti?TY>

Figure 12-2

<DARK>

<BU£>
<RED>
<HAC£NTA>
(Lit£)

<CYAN>
<YELL~>
(IIUTE>
(<:aW.)

<THISTLE>
(KHAKI>

(CllOIID>
(11£AT>

Modified Color Map

\
/

12-13
The VAX DAL Color Management System

Color Management Example (cont.): Lesson DEMO

I This lesson is written for a four-color terminal.
I SET MAXCOI..ORS 4 allows for one background color and three
I foreground colors.
I
SET MAXCOI..ORS, 4
I
I Use WHEAT for the bockgra.nd color.
I
BCOLOR wheat
I
I foint to the color specification for ORCHID from slot nunber 1
I In the color table.
I
FCOI..OR orchld,1
SIZE 2
AT 10
WRITE This foreground color Is ORCHID.
I
I foint to the color specification for THISTLE from slot nurroer 2
I In the color table.
I
FCOI..OR thistle,2
AT 610
WRITE This foreground color is THISTLE.
I
I foint to the color specification for CORAL from slot nunber 3
I in the color table.
I
FCOI..OR coral,3
AT 1210
WRITE This foreground color is CORAL (press RETURN).
PAUSE

12-14
The VAX DAL Color Management System

•• I
I
I
I
I
II

..
I
I
I
I
I

-
I

•• I
I
I
I
I

I
I
I
I

--
1

Figure 12-3 displays the first configuration of pointers in the DAL color table .

DAL Cll..00 HAP
0

1

2
3

4

5

6

7
B

9

10
11
12
13

6-4

HO LO SO
HO L50 S100
H120 L50 S100
H60 L50 S100
H240 L50 S60
H300 L50 S100
H180 L71 S100
HO L100 S100
H150 L50 S10
H60 LBO S25
H180 L50 S25
H60 L65 SBO
H180 LBO 525

<EHPTYl

/

<EHPTY>

Figure 12-3

<DARIO
(Bl.I.IE)

<RED>
<HAGENTA>
<LIHE>
(CYAN)
(Y£LLIM)
(IIUTE>
(COOAI..)

(THISTLE>
(KHAKI)

<mcHID>
(lffAT>

.
\
/

Initial Color Table Configuration

DAL COLOO TABLE

___ :I!
___ :1~

MR-S-3944-85

12-15
The VAX DAL Color Management System

Color Management Example (cont.): Lesson DEMO

ERASE
I
I Now the color table is full (as MAXCOLORS = 4), so we'll clear It.
I
CCOI..ORALL
I
! ~nt to the color specification for WHEAT from the first
I available slot in the color table: slot number 3 (MAXCOLORS-1).
I
FCOLOR wheat
AT 10
WRITE This foreground color is WHEAT. Notice that

the background is now dak-CCOLOR ALL
cleared the entire color table and returned
the background color to its default: dak.

I
I ~nt to the color specification for KHAKI from the next
I available slot In the color table: slot number 2 (MAXCOLORS-2).
I
FCOI..OR khaki
AT 610
WRITE This foreground color is KHAKI.
I
I ~nt to the color specification for GREEN from the lost
I available slot In the color table: slot number 1 (MAXCOLORS-3).
I
FCOLOR geen
AT 1210
WRITE This foreground color is in GREEN's slot in

the color map. It is actually lime green
because the color specification in that slot
was changed to lime geen eatier.

PAUSE
ENDLESSON

12-16
The VAX DAL Color Management System

•• I

I
I
II

..
I
I
I
I
I

-
I

•• I
·I
I
I

I
I
I
I
I

--

Figure 12-4 displays the last configuration of pointers in the DAL color table.

0

J

2

3

4

5

6

7

8
9

10

JJ
J2
13

64

DAL COl..00 HAP

HO LO SO <DARIO

HO L50 SJOO <BUU

HJ20 L50 S100 <RED>
H60 L50 SJOO (HACENTAl

H240 L50 S60 <LINE>
H300 L50 S100 (CYAN)

H180 L71 SJOO <YELLCM)

HO LJOO S100 < .. UTE>

H150 L50 S10 <COOAL>

H60 L80 S25 <THISTLE>

H180 L50 S25 (kHAll:l)

H60 L65 S80 <CRCHID>

H180 L80 S25 (IH:AT>

<Elf>TY>

\
/

<EHPTY>

Figure 12-4

\
/

Final Color Table Configuration

DAI. CClOO TABLE

I --B!O

4---- F ! 2

~--F!3

MR-S-3945-85

12-17
The VAX DAL Color Management System

•• I
I
I
I
I
I ..
I
I
I
I
I

ea
I

•• I
I
I
I
I
I
~
I
I
I
I
I

-
I

..

•• I
I
I
I
I
I ,.
I
'I

I
I

-

3
F·te Input/Out ut 1n VAX DAL

Authors can use VAX DAL file input/output (1/0) instructions to access up to 16
different external files in their lessons. File 1/0 instructions can be used to:

• Access or create external files

• Deposit or retrieve data in external files

• Locate, delete, or update data in external files

Files can be used as a lesson database or as a repository for student comments or
questions.

This chapter explains the use of external files in a DAL lesson. Topics discussed in
this chapter include:

• Principal data elements, file structures, and record access modes used with
external files

• VAX DAL instructions that authors use to access and modify data stored in
files

-OPEN

-GET

-PUT

-AND

- UPDATE

- DELETE

- CLOSE

13-1

• VAX DAL file 1/0 operations with sequential files

• VAX DAL file 1/0 operations with random files

• VAX DAL file 1/0 operations with indexed files

Authors already familiar with basic file 1/0 concepts may want to skip directly to
the sections dealing with file 1/0 in VAX DAL.

DATA ELEMENTS

In descending order of size, the basic units of data in any file are records, data
fields, and bytes. Files store data in these units. The principal unit of data in a file is
a record. Records are usually made up of data fields, and data fields, in tum, are
made up of bytes.

Records

A record is a collection of several pieces of data that are treated as a whole. Exam­
ples are a person's home address or a personnel record. In the address example, a
person's full name is considered one piece of data in the data collection. Street
address, city, state, and zip code are other pieces of data. Taken separately, each
piece of data is of marginal usefulness. Together in a single record, however, the
pieces form one useful, manageable bundle of information.

Data Fields

Data fields isolate the different pieces of data contained in a single record. To carry
on with the above address example, an individual's last name is one data field in a
record that contains that individual 's address. Another data field contains the indi­
vidual's street address, yet another, the zip code. Data fields, then, are different
strings of characters that are parts of a single record. The characters in a data field
are stored as bytes of data.

Bytes

A byte is a group of eight binary digits used to represent a single character. The
name Sam, for example, requires a field in a record at least three bytes in length
(one byte for each character in the name).

13--2
File Input/Output in VAX DAL

•• I
I
I

I
I

..
I
I
I
I
I

•
I

'• I
I
I
I
I
I ,,
I.
I
I
I
I

•
I

FILE STRUCTURES

Records, which are made up of fields and bytes, are stored in files. A file is a struc­
tured collection of records kept on a storage medium, such as a disk or a magnetic
tape.

The structure of a file determines how the records in the file are stored, and how
records can be retrieved from or added to the file. What follows is a discussion of
three frequently encountered file structures.

Sequential File Structure

In a sequential file, records are stored in the order in which they are added to the
file. The address of a record (the location at which the record can be found in the
file) is determined by its place in the sequence of records. The third record added to
the file, for example, is record number three. The fourth record added becomes
record number four. The location of a record in the sequence of records gives the
record its record number and address. Thus, records cannot be inserted between
records already stored in a sequential file because inserting a record in the middle of
the file would disrupt the existing record sequence.

Sequential files are useful for storing records that have varying lengths. For exam­
ple, the first record in the file can be 64 bytes long. The second record can be 128
bytes long. Records in sequential files are not required to have a uniform size.

Access to Records in Sequential Files
The location of each record in a sequential file is specified by its place in the
sequence of records. To find a particular record, the computer must be given the
number of the record. The computer then reads through and counts all of the
records preceding the desired record in the file. For example, to find the fifth record
in a sequential file, the computer starts at the beginning of the file and reads to the
end of the fourth record. After the fourth record, the computer finds the fifth
record.

13-3
File Input/Output in VAX DAL

firs\ second

I
third

I
fourth

record record record NCOrd

" t /
Third record Al ways found

between second Ind
fourthrec:cl'Ca

Figure 13-1
Sequential File Organization

Rando Fil ructure

In a random file, each record occupies a numbered location called a relative cell.
Each time a record is inserted in a relative cell, the record is assigned the number of
the cell as its address, or relative record number. A relative record number speci­
fies the location of the record relative to the beginning of the file.

In random files, programmers can leave empty spaces between records. For exam­
ple, records can be placed in the ninth and eleventh cells of a random file while the
tenth cell is left empty. The programmer can later place a record in the tenth cell.

Records are limited to a specific size in random files. They cannot be longer than
the relative cells they are to occupy. If a record is too long or too short for the
relative cell, the record is truncated or blank padded to make it the correct size.

Access to Records in Random Files
Because each cell in a random file is of a fixed length, the location of a record in the
file can be calculated from its relative record number. The computer multiplies the
relative record number by the length of each cell to detennine where the desired
record is in relation to the beginning of the file. Control is then transferred directly
to the desired record. This process is faster than using the sequential-access method
in which each record preceding the desired record in the file must be read before the
desired record can be found.

Records in random files can be accessed sequentially, just as records are accessed
in sequential files. Authors can use sequential access methods to read through each
record preceding the desired record in a random file.

13-4
File Input/Output in VN< DAL

•• I
' I
I
I
I

..
I
I
I
I
I

•
I

•• I
I
I·
I
I
I
..
I
I
I
I
I

•
I

first
record

Relative r
Ce II ltuilber 1

Figure 13-2

IMpt!f
cell

Random File Organization

Indexed FIia Structure

r
2

third
ffi:Ord

r
3

fourth
record

r
4

MR-S-3947-85

Records are indexed when they are added to an indexed file. Programmers desig­
nate one or more data fields in each record as the keys to that record. The computer
then creates indexes from the keys to the records.

The index of an indexed file is much like the index of a book. Just as a reader refers
to a book index to locate needed information, a computer refers to a file index to
locate a needed record.

As each record is added to an indexed file, the contents of one or more data fields
are copied from the record into the file index. These data fields become the keys to
the records. Each key in the index is listed with the location of the record of which
the key is a part. Given a key, the computer can locate an entire record.

Programmers must specify one data field in the record format as the primary key.
The principal index to the file is constructed of the primary keys from the records in
the file. In the address record example used earlier, an individual's last name is
listed as one data field in the individual's address record. The last name data field is
frequently used as the primary key to the record. Given a person's last name, the
computer can locate the person's entire address record.

Programmers can designate other data fields in the records as the records' secon­
dary keys. The computer uses the secondary keys to create secondary or subin­
dexes to the records in the file.

Access by Key Value to Records in Indexed Files
Because the location of each record in an indexed file is documented in the file
indexes, all that is necessary to locate a particular record in an indexed file is the
entry for that record in the primary index, and optionally, any entries the record
may have in secondary indexes .

13-5
File lnput/Oufput in VAX DAL

The index to an indexed file is made up of the keys to the records in the file. A key is
the actual contents of one data field from a record in the file. If you know the key to
a record that is listed in the file index, you can find the record in the file.

Records in indexed files can be accessed sequentially. Authors can access the
records in a file one after another, in the order in which they are listed in the file
index.

For more infonnation about the structure and elements of files, consult the Guide to
VAX/VMS File Applications in the VAX/VMS documentation set.

THE VAX DAL FILE 1/0 INSTRUCTIONS

Several steps must be taken to access, read, and modify data in a file external to a
DAL lesson. Each step is slightly different depending on the structure of the exter­
nal file you wish to use. The seven instructions provided by DAL that allow the use
of external files are:

• OPEN

• GET

• PUT
• AND

• UPDATE

• DELETE

• CLOSE

First, the function of each instruction is explained. Next, the syntax of each instruc­
tion is explained in the context of its use with a particular file structure.

The OPEN Instruction

The OPEN instruction establishes contact with the file to be used. It must precede
all other file-processing instructions. The OPEN instruction does the following:

• Establishes the channel number used to access and identify the file in sub­
sequent GET, PUT, UPDATE, DELETE, and CLOSE instructions.

• Finds the requested file, opens it, and verifies its identity as the requested
file.

13-6
File lnput/OUtput in VAX DAL

•• I ,.
I
I
I
I

..
I
I
I
I
I

•

'• I
I
I
I
I
I ,.
I
I
I
I
I

•
I

• Establishes an access mode for the file. Possible access modes are:

- READ - the file can only be read from

- WRITE - the file can only be written to

- UPDATE- the file can be both read from and written to

If the requested file cannot be found, the OPEN instruction creates a file with the
name and attributes that the OPEN instruction specifies.

The GET Instruction

The GET instruction reads a record from a file into a string variable or record struc­
ture. The lesson can then use the variable or structure that contains the record. The
GET instruction can be used in two different ways. Depending on the syntax used,
GET either reads the current record from the file, or locates and reads a specific
record from the file.

The PUT Instruction

The PUT instruction writes a record from a string variable or record structure into
an external file. Where the record is written in the file depends on file structure and
on the syntax of the PUT instruction.

The FIND Instruction

The FIND instruction locates a record in a file. While FIND does not read a record
it locates into a variable or record structure, it does make the record the current
record in the file. As the current record, the record can be read by the GET instruc­
tion, erased by the DELETE instruction, or modified by the UPDATE instruction.
The FIND instruction cannot be used with sequential files.

The UPDATE Instruction

The UPDATE instruction replaces the contents of the current record in the file with
the contents of a record structure declared at lesson or module level. UPDATE can
only be used with indexed files.

13-7
File Input/Output In VAX DAL

The DELETE Instruction

The DELETE instruction, as its name implies, deletes the current record in a file.
DELETE also can only be used with indexed files.

The CLOSE Instruction

The CLOSE instruction closes a file so that its contents are no longer available to a
lesson. Depending on its syntax, the CLOSE instruction either closes or deletes the
specified file. The syntax of the CLOSE instruction is the same regardless of file
structure. The syntax of the CLOSE instruction is:

CLOSEI chameL.no{, DELETE}

Where:

channel...no is the identifying number assigned to the file by the OPEN instruc­
tion that accessed the file.

{DELETE} is an optional argument that deletes as well as closes the specified
file.

FILE 1/0 OPERATIONS WITH SEQUENTIAL FILES

An OPEN instruction must precede all other file 1/0 operations involving a sequen­
tial file. The syntax of the OPEN instruction used to access or create a sequential
file is:

~ OPEN CID flle_name, chameLno, mode, SEQUENTIAL

Where:

ji/e...name specifies the name of the file.

channel...no is a number from O to 15 used to identify the file in subsequent file
1/0 operations.

mode is a keyword that specifies an access mode for the file (the access mode
keywords are: READ, WRITE, UPDATE).

SEQUENTIAL is the keyword that specifies the file structure of the file being
opened.

13-8
File Input/Output in VAX DAL

•• I
I
I
I
I
I

..
I
I
I
I
I

·•
I

•• I
I
I
I
I

I
t
I
I
I

•
I

Reading Records from a Sequential File

The syntax of the GET instruction used to read records from a sequential file is:

GETI channeLno, varlable_nome

Where:

channeLno is the identifying number given to the file by the OPEN instruction
that accessed it.

variable-1UJme specifies the name of a variable. This variable must be of the
same data type as the data in the records.

Two things affect reading records from sequential files. First, control is positioned
at the beginning of the file when a sequential file is opened in READ-access mode.
This means that, when the file is first accessed, the first record in the file is the
current record.

Second, the GET instruction can only read the current record from a sequential file.
GET cannot position the file at a particular record and then read that record. To read
a record other than the first record in a sequential file, you must first use system
functions to position the file at the record you need.

Positioning a file involves moving control forward or backward through the file
until the desired record is reached. The record at which control is positioned
becomes the new current record in the file. Two different system functions can be
used to position control at a record in a sequential file for a GET operation: the
FIND system function and the REWIND system function. You cannot use the
FIND instruction to position a sequential file.

The FIND system function attempts to position control at a specified record in a
file. The syntax of the FIND function is:

FIND(channeLno,recordJ10)

Where:

channeLno is the channel number of the file containing the desired record.

record-110 is the record number of the desired record in the file.

If the FIND function successfully positions the file at the specified record, the func­
tion returns the value I. lfFIND is not successful, it returns O and the IORESULT
variable is set with a value that indicates why the attempt failed. FIND automati­
cally invokes the REWIND system function (see below) if the record number of the
desired record is lower than the record number of the current record .

13-9
File Input/Output in VAX DAL

A GET instruction executed after a successful FIND system function reads the cur­
rent record from a sequential file. After a successful GET operation, the next record
in the file becomes the current record. Because of this, successive GET instructions
can read all of the records in a sequential file, in the order they fall in the file.

The REWIND system function positions control at the first record in the file. The
syntax of the REWIND function is:

REWIND(chooneLno)

Where:

channeLno is the channel number of the file that contains the desired record.

If a GET instruction is executed after a REWIND, the first record in the file is read
into the variable named in the syntax of the GET instruction.

The DAL code below shows how the GET instruction and system functions can be
used to read a record from a sequential file:

DEFINE
DEFINE
OPEN
ASSIGN
IF

ELSE

ENDIF

status : integer
oos14: string
•answers.dot" ,3,reod,SEQUENTIAL
status : = FIND(3,14)
status = 1 $$ successful FIND operation
GET 3,00514
WRITC The correct answer is < <s,00514> >

WRITC The cooect Cl"ISWer could not be located

Writing Records to a Sequential File

The syntax of the PUT instruction used to write records into a sequential file is:

PUT~ chcnleLno, voriable.Jlcune

Where:

channeL.no is the identifying number given to the file by the OPEN instruction
that accessed it.

variabfe_name specifies the name of the string variable containing the data to
be written. Data can only be written to a sequential file from a variable with the
string data type.

13-10
File Input/Output in VAX DAL

•• I
I
I
I
I
I ..
I
r
I
I
I

et
I

•• I
I
I
I
I
I ,.
I
I
I
I
I

-
I

Records can be written to a sequential file only at the end of file (EOF) position. If
you attempt to add a record to the file anywhere but at EOF, nothing is written; the
RMSSTATUS variable is set to 98812, and IORESULT is set to 10.

Because a sequential file is positioned at EOF when it is accessed in WRITE mode,
you can successfully write records to a newly opened sequential file. If the file is
positioned anywhere other than at EOF by earlier operations that use the FIND or
REWIND functions, use the EOF system function to reposition the file. The syntax
of the EOF system function is:

EOF(channeLno)

Where:

channeLno is the identifying number of the file in which you would like to
write the record.

The DAL code below displays how the PUT instruction can be used to write
records into a sequential file.

DEFINE
DEFINE
OPEN
AT
WRITE

INPUT
ASSIGN
IF

ENDIF

comment:strlng
status:lnteger
"comments.dot" ,4,wrtte,SEQUENTIAL
510
Do you have any comments about the material we
have covered so far? If so, go ahead and enter
them at the prompt. If not, press RETURN.
515
comment : = RESPONSE
comment<>··
ASSIGN status : = EOF(4) $$ to ensure that
PUT 4,comment $$ the file Is at EOF

FILE 1/0 OPERATIONS WITH RANDOM FILES

An OPEN instruction must precede all other file VO operations involving a random
file. The syntax of the OPEN instruction used to access or create a random file is:

OPEN I flle_name, channel_no, mode, RANDOM, record_size

1~11
File Input/Output in VAX DAL

Where:

file-1Ulnte specifies the name of the file.

channeL.no is a number from O to 15 used to identify the file in subsequent file
1/0 operations.

mode is a keyword that specifies an access mode for the file (the access mode
keywords are: READ, WRITE, UPDATE).

RANDOM is the keyword that specifies the file structure of the file being
opened.

record-Size specifies the maximum number of bytes (characters) that each
record can contain. This number also specifies the size of the relative cells in
which the records are stored.

If an OPEN instruction specifies a random file that does not already exist, a file is
created with the characteristics (file name, access mode, and record size) specified
by the instruction. Records can then be written to the newly created file.

Reading Records from a Random File

The syntax of the GET instruction used to read records from a random file is:

GETI channeL..no, vaiable_rome{, recorc:Lnumber}

Where:

channeLJw is the identifying number given to the file by the OPEN instruction
that accessed it.

variable-1Ulnte specifies the name of a string variable.

{recorLnumber} is the number of the record to be read.

A GET instruction can both locate and read a record from a random file. By multi­
plying the record number by the maximum record size specified in the OPEN
instruction that accessed the file, GET calculates the position of the record relative
to the beginning of the file. The GET instruction then writes the contents of the
record into the variable the GET instruction specifies.

The REWIND and FIND system functions and the FIND instruction can also be
used to position a random file at a record. A GET instruction without a record num­
ber argument reads the current record from a random file.

13-12
File lnput/OUtput in VAX DAL

•• I
I
I
I
I
I

..
i
I
I
I
I

-
I

•• I
I
I
I
I
I

" I
I
I
I
I

•
I

After GET reads a record from a random file, the next sequential record in the file
becomes the current record. The next record in the file is positioned as the new
current record even if there are empty cells between the last record read and the new
current record.

The FIND instruction can be used to locate a record in a random file. The FIND
instruction can only locate a record and make it the current record in the file. FIND
does not modify, read from, or write to the record in any way.

The syntax of the FIND instruction used with a random file is:

FIND I channel...no, record_no

Where the parameters are the same as the corresponding parameters used with the
GET instruction for a random file.

The DAL code below displays one application of the instructions used to locate and
read a record from a random file.

DEFINE
OPEN
GET

ans14 : string
·answers.dor ,5,reod,RANDOM,60
5,ans14,14

IF IORESULT = 1
WRITC The correct answer is <<s,ans14>>

ELSE

ENDIF
WRITC The correct answer could not be located

Writing Records to a Random File

The syntax of the PUT instruction used to write records to a random file is:

PUTI chonnelJlO, varlableJlOme{, recordJlO}

Where:

channeLno is the identifying number given to the file by the OPEN instruction
that accessed it.

variable.J1ame specifies the name of the string variable or record structure con­
taining the data to be written. Data can be written only from variables that have
the string data type. Component variables in record structures used with ran­
dom files can be of any data type except table or record. See the next section in
this chapter for more information about record structures .

13-13
File Input/Output in VAX DAL

{record.Jw} is the number of the relative cell in the file into which the record is
written. If a relative cell is not specified, the record is written into the cell
whose relative record number is one higher than the number of the last cell
written to.

The contents of the variable named by the PUT instruction are written into the spec­
ified relative cell in the file. PUT instructions can insen records into empty cells
between existing records in a random file. For example, if records are written to
cell number 5 and cell number 7 in the file, a record can later be inserted in cell
number 6.

Records cannot be written to cells that already contain records.

Records of varying lengths can be written to fixed-length cells. If the record is too
long, it is truncated. If the record is too shon, it is blank padded. Authors can use
the LEN function to determine the number of characters in a string variable, or the
total number of characters in the component variables of a record structure. The
syntax of the LEN system function is:

LEN(vaJ)(Jm8)

Where:

var ...name is the name of a string variable or record structure.

Random files can be positioned at EOF for a write by the EOF system function.

The foJlowing DAL code displays how the PUT instruction can be used to write
records to a random file.

UNIT puLaverage

DEFINE
DEFINE
OPEN
ASSIGN
ASSIGN
PUT

1~14

Record the student's average l.P to this point in
the lesson.

average : string
i: integer
"averoges.dar,4,write,RANDOM,5
average:= strfng(NOK/QUERIES)*100
I:= 1+1
4,average,i

File Input/Output in VAX DAL

I
I
I
I
I ..
I
I
,I
I
I

•
I

I
I
I
I
I ,,
I
I
I
I
I

•
I

FILE 1/0 OPERATIONS WITH INDEXED FILES

An OPEN instruction must precede all other file 1/0 operations involving an
indexed file. The syntax of the OPEN instruction used to access or create an
indexed file is:

@ID
OPEN OO f....nome,ciLno,mode,INDEXED,rec....nome,shr_fype,prlllL.key....nome

{sec_key_O....nome{, sec_1<ey_n_name ... }}

Where:

/...name specifies the name of an indexed file.

ch...no is a number from O to 15 used to identify the file in subsequent file 1/0
operations.

mode is a keyword that specifies an access mode for the file (the access mode
keywords are: READ, WRITE, UPDATE).

INDEXED is the keyword that specifies the file structure of the file being
opened.

rec_name is the name of a record structure defined at lesson or module level.

shr _type is a keyword that specifies the type of file sharing allowed (possible
keywords are READ, WRITE, UPDATE, or NONE).

prim....key...name specifies the name of a component variable in the rec-11ame
record structure. This component variable corresponds to the primary key data
field in the records.

{sec....key_,O...name} specifies the name of a component variable in the rec-11ame
record structure. This component variable corresponds to the first secondary
key data field in the records.

{sec....key...n...name} specifies the name of a component variable in the rec_name
record structure. This component variable corresponds to the nth secondary
key data field in the records.

Enter the OPEN instruction and all its parameters on one line in the source code.

If an OPEN instruction specifies an indexed file that does not already exist, an
indexed file is created with the characteristics specified by the instruction. Records
can then be written to the newly created file.

13--15
File Input/Output in VAX DAL

Record structures are used in many file 1/0 operations involving indexed files. All
data written to, and all data read from indexed files is passed by means of record
structures.

A record structure is a collection of related variables, just as a record is a collection
of related fields of data. Each component variable in a record structure corresponds
to one or more fields of data in the records of a file. Component variables must be of
the same data type as the data field to which they correspond. Component variables
cannot have the TABLE or RECORD data type; the nesting of one record structure
within another is not supported. Define the component variables in an order that
corresponds to the order of the data fields in the record.

String variables defined in record structures must specify a fixed length for strings.
Because each field in a record is of a fixed length, the string variable that corre­
sponds to a field in the record must be of a fixed length. The syntax of the DEFINE
instruction used to define a fixed-length string is:

DEFINE I voriable_name : STRING, length

Where:

length specifies the maximum number of bytes (characters) allowed in the
string.

A variable-length string can be assigned to a fixed-length string variable. The string
is either blank padded or truncated to fit the fixed length. Fixed-length strings can
be declared only in record structure definitions.

The name of a variable defined as part of a record structure must be unique. The
name of the record structure itself must also be unique.

The DAL code below displays an example of a record structure definition. Each
component variable corresponds to one field of data in the records of an indexed
file. The component variables must be defined in the same order as the fields to
which they correspond in the record.

DEFINE studenLdato : RECORD
DEFINE last_name : STRING,25
DEFINE firsLnome: STRING,15
DEFINE clossJonk : INTEGER
DEFINE GPA : REAL
DEFINE tesLscore[S]: INTEGER
DEFINE meeting : BOOLEAN

ENDRECORD

The last instruction in a record definition must be the END RECORD instruction.
ENDRECORD signifies the end of the record definition for the compiler.

13-16
File Input/Output in VAX DAL

•• I
I
I
I
I
I ..

I
I
I

-
I

..
I
I
I
I

I ,.
I
I
I
I
1,

•
I

Reading Records from an Indexed File

The of the GET instruction used to read records from an indexed file is:

GETI channeLno, key_number, { EQ I GT I GE}, key_value

Where:

channeLno is the identifying number given to the indexed file by the OPEN
instruction that accessed it.

key-11umber is a number that specifies which index (key) to use to locate the
record (primary key = 0, first secondary key = l, nth secondary key = n).

{ EQ I GT I GE} specifies which of three types of key value match you
require.

key_value is the data field in a record that acts as the key to that record.

Depending on the syntax you use, the GET instruction either locates and reads a
specified record from an indexed file, or reads the current record from an indexed
file. In both cases, GET copies the record into the record structure specified by the
OPEN instruction that accessed the file.

A GET instruction that uses all of the parameters listed above locates and reads a
record from an indexed file. The key number argument indicates whether the key
value you specify is in the primary or secondary indexes. The key value argument
specifies the actual index entry that identifies the record you need. Given these two
arguments, the GET instruction can locate the record.

You can specify that you want a record with a key value that is equal to (EQ),
greater than (GT), or greater than or equal to (GE) a value you specify. This applies
to both numeric and alphabetic key values. The letter A has a lower value than the
letter Z.

Once the required record is located, the GET instruction assigns the first field of
data in the record to the first component variable in the record structure named in
the OPEN instruction that accessed the file. Next, it assigns the second field of data
to the second variable of the record structure and so on, until the entire record is
copied into the record structure.

13-17
File Input/Output in VAX DAL

Records in indexed files can be accessed and read sequentially. The order assigned
the records in an indexed file depends on the ordering of the records' keys in the
indexes to the file. Records are listed in file indexes in the ascending order of their
key values. If the key to each record is numeric, the record with the lowest key
value is the first record listed in the index. If the key to each record is alphabetic,
the records are listed in alphabetic order in the index. A GET instruction with just a
channel number as its argument reads the current record from the file. After a GET
operation in an indexed file, the record listed next in the index becomes the current
record.

The DAL code below displays how records can be read from indexed files.

LESSON show....stat
DEFINE studenLdata : RECORD

DEFINE last.name: STRING,25
DEFINE password : STRING,5
DEFINE classJank : INTEGER
DEFINE GPA : REAL
DEFINE test....score[4] : INTEGER
DEFINE meeting : BOOLEAN

ENDRECORD
AT 510
WRITE Would you like to see your Clll'ent

status in this class? [Yes. No]
QUERY •
RIGHT

RIGHT

WRONG

ENDQ
SEND

UNIT
ERASE
OPEN
WRITE
SET
INPUT
GET
PAUSE
ERASE

13-18

Yes I Y
DO
No IN
BRANCH

status

SEND

WRITC Please enter either YES or NO.

status

"class.dat',0,read,INDEXEO,studenLdata,NONE,last.Jl0rTl8,password
What is V<::AS class password?
ECHO.OFF ,.
0, 1,EQ,RESPONSE
ELAPSED,3

File Input/Output in VAX DAL

•• I
I
I
I
I
I ..
I
I
I
I
I

•
I

I
I
I
I
I ,,
I
I
I,
I
I

-
I

AT 510
WRITE Your current GPA is <<s,GPA>>.

You currently rank number < <s,class_rank> > In your class.

Your test scores are:

IF meeting

Test #1 - <<s,tesL.score[1]>>
Test #2 - <<s,test...score[2]>>
Test #3 - <<s,test...score[3]>>
Test #4 - <<s,test...score[4]>>

WRITC Please schedule a meeting with your teacher.
ENDIF
PAUSE
ENDLESSON

Writing Records to an Indexed File

The syntax of the PUT instruction used to write records to an indexed file is:

Purl channeLno

Where:

channel...J10 is the identifying number given to the indexed file by the OPEN
instruction that accessed it.

With indexed files, the PUT instruction needs only the channel number of an
indexed file as its argument. The name of the record structure containing the data to
be written is specified by the OPEN instruction that opened the indexed file.

The DAL code below displays how records can be written to indexed files.

LESSON add_student
DEFINE studenLdata:RECORD

DEFINE last_name
DEFINE password
DEFINE class_rank
DEFINE GPA
DEFINE test.....score[4]
DEFINE meeting

ENDRECORD
DEFINE done :BOOLEAN

:STRING,25
:STRING,5
:INTEGER
:REAL
:INTEGER
:BOOLEAN

OPEN ·cIass.dar,0,WRITE,INDEXED,studenLdata,NONE,last_name, password

13-19
File Input/Output in VAX DAL

LOOP NOTdone
WRITE New studenfs last name?
INPUT
ASSIGN lasLname: = RESPONSE
WRITC S1udent's password?
INPUT
ASSIGN
PUT
WRITC
INPUT
ASSIGN
IF

password:= RESPONSE
O $$ Save the info
Do you have another student name to add? (Y.'N)

done:= (RESPONSE<>'"Y1 AND (RESPONSE<>Y)
NOT done
ERASE

ENDIF
ENDLOOP
ENDLESSON

Updating Records in an Indexed File

The UPDATE instruction modifies an existing record in an indexed file. Like the
PUT instruction, UPDATE writes data from the record structure specified by the
OPEN instruction that accessed the indexed file. The syntax of the UPDATE
instruction is:

UPDATE~ chCl'lneLno

Where:

channeL.no is the identifying number given to the indexed file by the OPEN
instruction that accessed it.

The UPDATE instruction replaces the contents of the current record in an indexed
file with the contents of the record structure. Because UPDATE can only modify
the current record in the file, the FIND instruction must be used to position the file
at the record you want to modify. The syntax of the FIND instruction used with
indexed files is:

FIND~ channeLno(, keyJIUmber, { EQ I GT I GE} key_value}

Where:

channeLno specifies the identifying number given to the indexed file by the
OPEN instruction that accessed it.

1~20
File Input/Output in VAX DAL

•• I
I
I
I
I
I ..
I
I
I
I
I

-
I

'• I
I
I
I
I
I
f'
I
I
I
I
I

-
I

{key_number} specifies a number that specifies which key index to use to locate
the record (Primary key = 0, first secondary key = I, nth secondary
key= n).

{ EQ I GT I GE} specifies the type of key value match you require.

{key_value} specifies the entry in the key that is also a data field in the record
you need.

A FIND instruction with only a channel number as its argument makes the record
listed next in the file's index the current record.

UPDATE applies only to records in indexed files.

The DAL code below displays how records can be updated in an indexed file.

LESSON
DEFINE
DEFINE
DEFINE
DEFINE

update
target : STRING
option : INTEGER
blanks =
studenLdata : RECORD
DEFINE last...name : STRING,25
DEFINE password : STRING,5
DEFINE major : STRING,10
DEFINE classJook : INTEGER
DEFINE GPA : REAL

. DEFINE passing : BOOLEAN
ENDRECORD
FCOLOR CYAN
OPEN ·cIass.dar,o,uPDATE,INDEXED,studenLdata,NONE,losLname ,password
PROMPT .>>•
MODE REPLACE $$0vertype
I Set up the screen.
AT 510
WRITE Option :

1 -Change student's name/password/major
2 -Change student's grade information
3-Quit

Student Name:

13-21
File Input/Output in VAX DAL

LOOP TRUE
ERASE
ERASE
INPUT

519;625
1024;1150

$$ Clear name and option fields.

519 $$ Get option.
option:= INT(NUMBER(RESPONSE))

LOOP (option < 1) OR (option > 3) $$ Accept only 1--3
ERASE 519;625
INPUT 519
ASSIGN option : = INT(NUMBER(RESPONSE))

ENDLOOP
OUTLOOP option = 3 $$ QUIT

INPUT 1024 $$ Get student name
ASSIGN taget : = RESPONSE
FIND 0,1,EQ,target
IF IORESULT <> 1 $$ Cannot find record.

AT 2301
WRITE No such student. Press RETURN to continue
PAUSE
ERASE
ERASE

RELOOP TRUE
ELSE

1024;1160
2301;2450

$$ Start Over.

GET 0,1,EQ,target
ENDIF
IF option= 1

DO name_change
ELSE

ENDIF
ENDLOOP

DO grades_change

CLOSE 0 .
UNIT name_change
AT 1210
WRITE Press RETURN to leave fields unchanged.

Overtype the fields you want to chooge.

Last Name
Password
Major

: <<s,last_name>>
: <<s,password>>
: <<s,major> >

INPUT 1526 $$ Change name
IF RESPONSE <> ...

WRITE < <s,blanks> > $$ Erase left-over chars.

ENDIF
INPUT

13--22

ASSIGN lastJlOffie : = RESPONSE

1626 $$ Change password

File lnpJt/Ou1put in VAX DAL

I

I

'• I
I
I
I
I
I ,,
I
I
I
I
I

-
I

IF RESPONSE <> ••
WRITE < <s,blanks> > SS Erase left-over chars.
ASSIGN password : = RESPONSE

ENDIF
INPUT 1726 $$ Change major
IF RESPONSE<> ••

WRITE <<s,blanks>> $$ Erase left-over chars.
ASSIGN major : = RESPONSE

ENDIF
; Save the change. TARGET still contains the original name.
FIND 0,1,EQ,target
UPDATE 0
AT 2340
WRITE Press RETURN to continue
PAUSE
ERASE 1210;2467

' UNIT grades_change
AT 1210
WRITE Press RETURN for the fields you want unchanged.

Overtype the fields you want to change.

GPA : <<t,GPA,4,2>>
: <<s,classJank>> Class Rank

A:Jsslng : <<s,passlng>> (1-PASS, 0-FAIL)

INPUT 1526 $$ Change GPA
IF RESPONSE<> ••

WRITE <<s,blanks>> $$ Erase left-over chars.
ASSIGN GPA : = NUMBER(RESPONSE)

ENDIF
INPUT 1626 $$ Change password
IF RESPONSE<> ••

WRITE < <s,blanks> > $$ Erase left-over chas.
ASSIGN classJank : = INT(NUMBER(RESPONSE))

ENDIF
INPUT 1726 $$ Change class rank
IF RESPONSE <> ••

ASSIGN passing : = INT(NUMBER(RESPONSE))
ENDIF
; Save the change. TARGET still contains the original name.
FIND 0,1,EQ,target
UPDATE 0
AT 2340
WRITE Press RETURN to continue
PAUSE
ERASE 1210;2467
ENDLESSON

13-23
FIie Input/Output in VAX DAL

Deleting Records in an Indexed File

The DELETE instruction erases a record from an indexed file. Like the UPDATE
instruction, DELETE is used only with indexed files and affects only the current
record in a file. The syntax of the DELETE instruction is:

DELETE I channel..no

Where:

channel.JW identifies the indexed file that contains the record to be deleted.

If a DELETE is executed without first positioning the file at a target record, the
current record in the file is erased. Position the file at a target record with the FIND
instruction. The syntax of the FIND instruction used with indexed files is listed in
the section that immediately precedes this section in this chapter.

The DAL code below displays an application of the DELETE instruction to an
indexed file.

DEFINE
AT
WRITE

INPUT
ASSIGN
OPEN
FIND
DELETE

13-24

ta-get : string
510
What is the last name of the student
whose Et"trv you want erased?
515
target : = RESPONSE
•c1ass.dar ,O,tpdote,IN~D.studenLclato,NONE,last_nome
0, 1,EQ,taget
0

File Input/Output in VAX DAL

I
I

I
I
I
I
I

-
I

J
I
I
I
I
I
I ..
I
I
I
I
I

•

I
I
I
I
I ,.
I
I
I
I
I

•
I

14
Parameter Passing in VAX DAL

VAX DAL lessons can invoke VAX/VMS run-time library (RTL) routines,
VAX/VMS system services, and routines written in other VAX programming lan­
guages. Because these external routines frequently need data from the main lesson,
VAX DAL is equipped with mechanisms that can pass data to external routines. A
VAX DAL lesson can also receive data from external routines, but only if the data
is passed in the manner DAL expects.

This chapter discusses procedures for passing data into and out of DAL routines.

When developing a DAL lesson that uses both DAL routines and routines written in
other VAX languages, use DAL instructions in the lesson to call all external rou­
tines. A VAX DAL lesson sets the terminal to graphics mode, whereas most other
VAX language programs set the terminal to text mode. Because of this difference,
attempts to call external routines in the language used by the external routines may
produce unanticipated results.

PASSING DATA TO DAL ROUTINES

DAL routines receive data from other routines by two different parameter-passing
methods: reference and descriptor. These two methods are used whether the data is
passed to a DAL routine from another DAL routine, or from an external routine
written in another VAX language. When passing data from an external routine into
a DAL routine, use the same parameter-passing method that DAL would use to
pass the data (see Table 14-1). Authors should not alter the default parameter-pass­
ing methods used to pass data to DAL routines.

Data is passed into DAL routines by the following default methods, based on data
type .

14-1

Table 14-1: Default Parameter-Passing Methods

Integer

Real

String

Array

Table

Record

By Reference

By Reference

By Descriptor

By Descriptor

By Reference

Calnot be passed from one DAL
routine to <:r10ther DAL routine

When data is passed by reference. the address in memory of the variable containing
the data is passed to the routine that requires the data. The routine then refers to the
location for the data.

When data is passed by descriptor, a block of information describing the character­
istics of the data (a descriptor) is passed to the routine that requires the data. The
routine then uses the descriptor to locate and retrieve the data.

Record structures can only be declared at lesson or module level and are automati­
cally accessed and modified during file inpuUoutput operations. Therefore. they
cannot and do not need to be passed from one DAL routine to another.

DAL routines cannot receive parameters that have data types other than those sup­
ported by VAX DAL.

PASSING DATA FROM DAL ROUTINES

Data passed from one DAL routine to another DAL routine uses the default param­
eter-passing mechanism described in Table l~I. Again . authors should not
change the parameter-passing methods that DAL automatically uses to pass data
between routines written in DAL.

When passing data from a DAL routine to a VAX/VMS RTL routine, VAX/VMS
system service, or routine written in another programming language. authors can
choose the method used to pass the data. The options include parameter passing by
reference. by descriptor, and by vaJue. Choose the parameter-passing option that
best suits the requirements of the receiving routine.

14-2
Parameter Passing in V/\X DAL

•• I
I
I
I
I
I ..
I
I
I
I
I

91
I

•• I
I
I
I
I
I ,.
I
I
I
I
I

-
I

When data is passed by value, the actual value of the data is passed directly to the
external routine.

Use the arguments BY VALUE, BY REF, and BY DESC with the DO instruction
to assign a parameter-passing method to a variable. The following DO instruction
displays the syntax used for parameter passing:

DO routlne_nome (vort BY DESC, vor2 BY REF, vor3 BY VALUE)

Where:

routineJUlme is the name of the non-VAX DAL routine.

var I, var2, and var3 identify the variables that contain the data to be passed.

BY DESC specifies parameter passing by descriptor.

BY REF specifies parameter passing by reference.

BY VALUE specifies parameter passing by value.

The BY VALUE, BY REF, and BY DESC arguments can also be used to pass
parameters in DAL function calls. The following ASSIGN instruction displays the
syntax used for parameter passing:

ASSIGN resulLvor : = func(vor1 BY DESC, vor2 BY REF, vor3 BY VALUE)

Where:

result-var is the name of the variable that receives the value returned by the
function. This variable must have the same data type as the value the function
returns.

June is the name of the external routine.

var/, var2, and var3 identify the variables containing the data to be passed.

BY DESC, BY REF, BY VALUE specify the methods used to pass data from the
variables to the routine.

Not all data types can be passed by all three of the different parameter-passing
methods. Table 14-2 shows the methods that can be used to pass variables of differ­
ent data types. Possible methods are marked YES or DEFAULT. If one of the three
methods is not specified, DAL passes data to external routines by the appropriate
default parameter-passing method.

14-3
Parameter Passing in VAX DAL

Table 14-2: Parameter-Passing Options (Passing Data To External
Routines Only)

1, :-. -- -
•·=-- Value lytefeNNICe ly Delcrtptor I

Boolean YES DEFAUlT YES

Integer YES DEFAULT YES

Real YES DEFAUlT YES

String NO YES DEFAU..T

May NO YES DEFAU..T

Table NO DEFAlA.T NO

Record NO YES DEFAULT

Note that record structures can be passed to routines written in other languages. A
record structure passed by descriptor is set up and passed as a fixed-length string. If
a record structure is passed by reference, the address of the structure in memory is
passed. The receiving routine then must call and interpret the data. Passing record
structures by reference may allow external routines to define the same record for­
mat as that used in the record structure.

Permanent variables cannot be passed to routines written in other programming
languages. If you need to pass a permanent variable, assign the value of the varia­
ble to a user-defined variable, and pass the user-defined variable.

Restart and student variables can be passed to external routines. Note, however,
that these variables do not have any special characteristics when used in external
routines.

PARAMETER-PASSING EXAMPLES

Example 1: DAL to BASIC routines

The DAL instructions and the BASIC commands shown below are both elements
of the same DAL lesson. Compiled separately and then linked to the lesson, the
BASIC subroutine can be treated as a unit within the lesson. DAL invokes the
BASIC subroutine with a DO instruction that lists the name of the subroutine as its
argument.

14-4
Parameter Passing In VAX DAL

•• I
I
I
I
I
I ..
I
I

•• I
I
I

I
I
I
I
I

-
I

LESSON DALto~ASIC
DEFINE mystrlng:string

leng:integer
FCOLOR white

$$ Input and output string
$$ length of substring

WRITE Given a string S and a number N, this lesson calls a BASIC
subroutine that takes N characters from the left of string,
ood moves them to the right side of the string.

Example: S = "1234567890", N = 5, result = "6789012345"

Input the string to be changed:

; Get the string . .
INPUT *
ASSIGN mystrlng : = response .
; Get the number of characters to move . .
$GETLENG
WRITC

ll'l)Ut an Integer less than <<s,LEN(mystrlng)>>
INPUT *
ASSIGN Ieng : = INT(NUMBER(RESPONSE)) .
; Test to see if the number entered Is too large .

•
IF Ieng > = LEN(mystring)

WRITC <<s,leng>> Is too large a number. Try again
BRANCH Sgetleng

ENDIF
WRITC

Calling the BASIC routine ...

; Call a BASIC routine MOVE to do the string manipulation. .
DO move (Ieng BY REF, mystring BY DESC)

; Output result.

' WRITC

PAUSE
ENDLESSON

Result: < <s,mystrlng> >

14-5
Parameter Passing in VAX DAL

;;;;;;;;;;:;;;;; BASIC routine ;;:;;;;;;;;;:;;;;;;;;;;;;;;

100 sub move (integer Ieng, string mystring)
mystring = right$(mystring,leng+1) + leftS(mystring,leng)

999 end sub

DAL passes the variable .. mystring" to the BASIC routine by descriptor, and the
variable "Ieng" by reference.

Example 2: DAL to VAX/VMS Run-time Library Routine

The following lesson calls a VAX/VMS run-time library routine with a function
call. In this example, the user passes a string to the routine and receives a string and
an integer back. It is strongly recommended that authors treat run-time library rou­
tines as functions. In this way, the author can check the status value returned by the
routine.

When strings are returned from run-time library routines, the variable that receives
the string must be assigned a null string before the routine executes, as the example
below illustrates.

LESSON
DEFINE
DEFINE
DEFINE
DEFINE
DEFINE
ASSIGN
ASSIGN
ASSIGN
AT

sorT1)1

logname : string SS Variable fa the logical name
In : Integer SS Length of the translation
result : string SS Translation string
status : Integer SS status value from RTL call
lib$sys_trntog : integer, function
logname : = "SYSSSYSTEM"
result : = - $$ Initialize translation string variable
status : = lib$sys_trnlog(logname BY DESC,ln BY REF.result BY DESC)
310

WRITE
WRITC
WRITC
PAUSE
ENDLESSON

SYSSSYSTEM = < <s,result> >
The translation Is < <s,ln> > characters long.
STATUS = <<s,status>>

Example 3: DAL to VAX/VMS Run-time Library Routine

The following lesson illustrates the alternative approach to passing parameters to
run-time library routines. In this instance, the routine is treated as an external unit
or subroutine. Note that there is no mechanism for obtaining a status value in this
approach.

14-6
Parameter Passing in VAX DAL

•• I
I
I
I
I
I ..
I
I
I
I
I

•
I

•• I
I
I
I
I
I
~
I
I
I
I
I

•
I

LESSON
DEFINE
DEFINE
DEFINE
ASSIGN
ASSIGN
DO
AT

samp2
lognome : s1Ting
In : Integer
result : string
logname : = "SYSSSYSTEM"

$$ Variable for the logical name
$$ Length of the translation
$$ Translation s1Ting

result : = •• $$ Initialize translation string vaiable
lib$sys_Jmlog(logname BY DESC,ln BY REF.result BY DESC) $$ CAll IT
310

WRITE
WRITC
PAUSE
ENDLESSON

SYS$SYSTEM = < <s,result> > $$ Display the result
The translation is <<s,ln>> characters long.

Example 4: DAL to VAX/VMS System Service

The following lesson invokes a VAX/VMS system service that, given a VAX/VMS
status code, returns text that explains the code. As in Example 2 above, the called
routine is treated as an external function. Because the system service returns a
string, the string variable that receives the string is loaded with a null string before
the service is invoked.

LESSON
$again
AT
PROMPT
INPUT
IF

samp3

1000
"Enter message number (STOP to exit): •

RESPONSE <> "STOP"
DO dlsplay__stotus (INT(NUMBER(RESPONSE)))

ENDIF
I

ERASE
BRANCH $again

I Given a status code, look up the message and display it.
I Call the system service SGETMSG to get the text.
I
UNIT
DEFINE
DEFINE
DEFINE
I

dlsplay__stotus (stafus_code)
stotus_code,stotus,msglen : integer
msgtext : s1Ting
sys$getmsg: lnteger,functton

! Initialize the msgtext variable to the maximum length of the text
I string we want to allow. Any excess post the initialized length
I will be discarded.
I
ASSIGN msgtext : = •

14-7
Parameter Passing in VAX DAL

ASSIGN

ASSIGN
WRITC
DO
RETURN
!

status:= sys$ge1msg(stafus_code BY VALUE,
msglen BY REF,
msgtext,
-1 BY VALUE,
OBY VALUE)

msgtext := SUBSTR(msgtext,1,msglen)
< <s,msgtext> >
waiter

I Routine fOf pausing
I
UNIT waiter
I
I Wait fOf them to read it
I
PROMPT "Press RETURN to continue"
AT 2220
INPUT
RETURN
ENDLESSON

14-8
Parameter Passing in VAX DAL

$$ status code of message
$$ location fOf length
$$ buffer fOf text
$$ flags, re1um all parts
$$ optional •• I

:1
I
I
I
I ..
I
I
I
I

I

•• I
I
I
I
I
I
fl
I
I
I
I
I

-
I

15
Macros in VAX DAL

VAX DAL macros offer one way to speed lesson development and simplify lesson
modification. If certain operations are performed frequently in your lesson, you
can use macros to save a significant amount of development time.

When macros are used, you do not need to retype a frequently used series of
instructions, or call a unit that contains the series, each time the series is needed in
the source code of the lesson. Instead, include the instructions in a macro and gives
the instructions a tag, or macro name. Then, write the macro name into the source
code wherever you need the instructions. At compile time, the entire series of
instructions is written to the listing file at the each place you used the macro name.

Macros can be made to process arguments. The instructions the macro inserts in the
listing file can be given different arguments each time the macro is used.

The instructions that create and include macros in the listing file of a lesson begin
with a percent sign (%). These instructions are:

%MACRO
%END MACRO
%INCLUDE

This chapter describes the instructions used to create VAX DAL macros and pro­
vides examples of how macros can be used.

15-1

DEFINING A VAX DAL MACRO

The syntax of the %MACRO instruction that begins a macro definition is:

~ %MACRO
00

macro_nome {(p1, p2, ...)}

Where:

macro....name is the name given the series of instructions that is to be written
into the file. A macro name can consist of one or more alphanumeric charac­
ters, and can include the punctuation marks dollar sign($), underscore(_), and
period(.). Macro names must begin with an alphabetic character.

{(pl, p2, ...)} is an optional list ofone or more parameters, or arguments, to the
macro. Up to 255 parameters can be used. Parameters must not be enclosed in
quotation marks unless the quotation marks are part of the parameter. A param­
eter name can consist of one or more alphanumeric characters, and can include
the punctuation marks dollar sign($), underscore(_), and period(.). Parame­
ters cannot include commas or parentheses unless the parameters are enclosed
in quotes.

A macro definition begins with the %MACRO instruction, includes the instruc­
tions that are to be written into the listing file, and ends with the %ENDMACRO
instruction. The %MACRO and %ENDMACRO instructions cannot follow dot
indentation; they must begin in the leftmost column in the source file. The DAL
source code below shows a simple macro definition that writes the "press
RETURN" message into the listing file.

%MACRO press_ret
AT 2255
MODE INVERSE
WRITE ... Press RETURN to continue ...
MODE NORMAL
PAUSE
%ENDMACRO

After the above macro definition, enter the word "press_ret" in the source code
wherever you need the lesson to pause. At compile time, all of the instructions in
the macro are included in the listing file at each place press__ret appears.

Define a macro before you use the name of the macro in the lesson. VAX DAL does
not support forward references to macro definitions.

1~2
Macros in VAX DAL

•• I
I
I
I
'I
I ..
I
I
I
I
I

•
I

'• I
I
I
I
I

I
I
I
I
I

•
I

USING PARAMETERS WITH A VAX DAL MACRO

Parameters can expand the usefulness of a macro. A macro with parameters writes
the same set of instructions into the listing file each time the macro is used, but
assigns the instructions different arguments.

List parameters after the macro name in the order in which they are used in the
macro. Parameters must be enclosed in single quotation marks in the body of the
macro definition. The following macro definition creates a macro that opens an
indexed file, assigns the file a channel number, and specifies the name of the file's
primary key. Next, the macro specifies the key value of a record to be retrieved
from the file.

%MACRO open_it (name, chon, pkey, get)
OPEN 'name', 'chan•, read, INDEXED, dataJeC, none, 'pkey'
GET 'chon', 0, EQ, 'get'
CLOSE 'chan'
%ENDMACRO

Rather than typing the OPEN, GET, and CLOSE instructions and all of their argu­
ments to retrieve a record, the author can retrieve a record with the words "opelL.it"
and four parameters that specify the file and the record needed. A use of the open._it
macro and a listing of the source code the macro produces is shown below.

In the source code:

open_it ("file.dat", 3, lasLname, Smith)

In the listing file:

OPEN
GET
CLOSE

"flle.dar, 3, read, INDEXED, dataJec, none, lasLname
3, 0, EQ, Smith
3

Used with different parameters, the open_it macro can generate instructions that
open and retrieve data from any number of different files.

If the number of parameters listed after the macro name in the source code is less
than the number of parameters required by the instructions in the macro, null
strings are written in the listing file in place of the missing parameters. If too many
parameters are listed after the macro name, the extra parameters are discarded.

No data type checking occurs with macro parameters. Parameters are written to the
listing file purely by text substitution.

1&-3
Macros in VAX DAL

Macro definitions can be nested. That is, one macro can be defined inside another,
and the internal macro can use the parameters assigned the larger macro of which it
is a part. The macro definitions below are nested. The source code file is:

LESSON Tmp
%MACRO show_if (picfile, fkey)
SLIDE 'plcfile'
%MACRO open_lt (chon)
OPEN 'plcflle', 'chon', UPDATE, SEQUENTIAL
WRITE Now opening file: 'plcflle' on chamel 'chan'
%ENDMACRO
PAUSE STRING, 'fkey'
%ENDMACRO

show _tt fj1 .ptc·, ·[F10.J<EY)1
openJt (6)
ENDLESSON

The resulting listing file is:

LESSON Tmp
SLIDE •j1.ptc•
PAUSE SffilNG, ·[F10.J<EYt
OPEN ·11.p1c·, 6, UPDATE, SEQUENTIAL
WRITE Now opening file: •j1.ptc· on channel 6

ENDLESSON

USING THE %INCLUDE INSTRUCTION

Because of the way the DAL compiler processes macros and secondary DAL
source files, authors may need to use the %INCLUDE instruction in lessons that
contain macros and consist of two or more files.

The VAX DAL compiler preprocesses macros before it parses a source file. Parsing
removes any unnecessary spaces from the files. If a second file is included in the
main lesson file at compile time by an INCLUDE instruction, the second file is
parsed but not preprocessed. Consequently, any macros in the included file are not

compiled.

15-4
Macros in VAX DAL

•• I
I
I
I
I
I

..
I
I
I
I

I

•• I
I
I
I

I
I
I

I

The %INCLUDE instruction includes a secondary file in preprocessing and
ensures that macros in the file are properly compiled. If your lesson consists of two
or more DAL source files, one of which includes the other file at compile time, and
if the included file contains macros, use %INCLUDE instead of INCLUDE to join
the files at compile time. The syntax of the %INCLUDE instruction is:

%INCLUDE I file....speciflcation

Where:

fi/e_specification is the file name and extension of the file to be included. This
specification is not enclosed in quotation marks.

The %INCLUDE instruction must begin in the leftmost column of the main DAL
lesson file. A file included in compilation by an %INCLUDE instruction cannot
contain %INCLUDE instructions.

15-5
Macros in VAX DAL

•• ii
I
I
I
I
I ..
I

I
I
fl
I
I
I
I
I

•
I

..

•• I
I
I
I
I

I
,,

I

I

A
Instructions

This appendix gives a brief description of all instructions in DAL. The instructions
that are explained in this manual are preceded by an asterisk. The VAX DAL Refer­
ence Manual gives a full explanation of all VAX DAL instructions.

*ASSIGN

*AT

AXES

*BACKUP

*BCOLOR

*BOX

*BRANCH

*CANCEL

*CCOLOR

The ASSIGN instruction assigns a value to a variable.

The AT instruction selects a screen address.

The AXES instruction defines the screen location of the
maximum boundaries of the axes of a graph.

The BACKUP instruction transfers control to another unit
in the current unit calling chain, or transfers control back to
lesson level.

The BCOLOR instruction modifies the color of the screen.
When a black-and-white monitor is used, the colors specify
shades of gray from darkest to lightest.

The BOX instruction draws a rectangle on the screen.

The BRANCH instruction transfers control to another point
in the lesson. The transfer is conditional, depending on the
arguments to BRANCH. Unconditional transfer is allowed
within the current unit.

The CANCEL instruction disables a condition handler.
CANCEL only applies to condition handlers declared at the
current level of the lesson.

The CCOLOR instruction clears pointers from the DAL
color table to allow for new color selections.

A-1

*CDUNIT The CDUNIT instruction opens and names a DAL unit that •• supports a condition handler.

CHAR The CHAR instruction modifies one character in an alter-
nate character set. The CHAR instruction specifies the dot I pattern displayed on the screen.

CHARSET The CHARS ET instruction specifies one of the four charac-

I ter sets as active. The dot patterns in this character set are
used in writing text until another CHARSET instruction
selects another character set. The standard ASCII character
set is one of the four; the other three are user defined. I *CHECKERR The CHECKERR instruction begins a block of instructions
that checks the value of the ERRORV system variable in a

I QUERY block.

*CIRCLE The CIRCLE instruction draws a circle whose center and
radius are specified. When optional arguments are used to I specify the beginning and end of an arc, CIRCLE draws
only the arc.

CLIP The CLIP instruction defines a rectangular area on the I screen for displays. After this area is defined, only those
locations within the area are displayed, regardless of the .. addresses used with WRITE and the various graphics
instructions.

CLOSE The CLOSE instruction closes a file so that its contents are
no longer available to the lesson. I CONTROL The CONTROL instruction sends to the terminal control
sequences that are not ReGIS commands.

I *CONVERT The CONVERT instruction specifies the formula used to
convert a value expressed in one unit of measure to an
equivalent value in another unit. The student can use either

I unit in responses.

*CURVE The CURVE instruction fits a curve to a specified number
of points on the screen.

I DECTALK The DECTALK instructions specify how a DECtalk unit is
connected to a terminal, and what characteristics the
DECtalk unit is to have. I

A-2
I.

Instructions

I

•• *DEFINE The DEFINE instruction defines the name, data type, and
usage characteristics of variables, and the name and value
of constants.

I *DELETE The DELETE instruction deletes the current record in an
indexed file.

I DELIMIT The DELIMIT instruction specifies the character that ends
a student's response.

DELTA The DELTA instruction specifies a standard increment for

I the independent variable in a GRAPH instruction.

*DO The DO instruction executes the unit or the lesson named as

I
its argument. This instruction can be used at lesson level to
control the sequence of units in the entire lesson, and at unit
level to control execution of one unit from another.

II

DO* The DO * instruction calls another program or VAX/VMS
software utility. Authors can invoke DAL lessons or pro-
grams written in other languages.

I *DOT The DOT instruction illuminates the smallest addressable
screen element.

~
*ELSE The ELSE instruction marks the beginning of a series of

instructions that are executed only when the condition spec-
ified by the preceding IF instruction is false.

I
ENDFILL The ENDFILL instruction marks the end of a block of

graphics instructions that began with the FILL instruction.

*ENDFOR The ENDFOR instruction marks the end of the iterative

I instructions begun by the preceding FOR instruction.

*ENDIF The ENDIF instruction marks the end of an IF structure.

I
*END LESSON The ENDLESSON instruction is the last instruction in a

VAX DAL source file that contains lesson-level instruc-
tions.

I *ENDLOOP The ENDLOOP instruction marks the end of the instruc-
tions that are repeated as long as the condition specified by
the preceding LOOP instruction is true.

I, *END MODULE The ENDMODULE instruction is the last instruction in a
VAX DAL source file that does not contain lesson-level
instructions.

- A-3

I
Instructions

*ENDQ The ENDQ instruction marks the end of a series of •• response-judging instructions begun by the QUERY
instruction.

*ENDRECORD The ENDRECORD instruction specifies the end of a record I structure definition for the compiler. Record structures are
used in many file 1/0 operations.

11 *ENDTEST The ENDTEST instruction marks the end of a TEST struc-
ture.

*ERASE The ERASE instruction erases all or part of the screen, I refreshing it with background color.

*FCOLOR The FCOLOR instruction specifies a color to be used in text

I and graphics displays.

FILL The FILL instruction begins a block of graphics instruc-
tions that draws a polygon. The interior of the polygon is

I shaded with the current foreground color and pattern.

*FIND The FIND instruction locates a record in an indexed or ran-
dom-access file. I *FOR The FOR instruction begins an iterative structure and speci-
fies the number of times the instructions between the FOR .. and its associated ENDFOR will be executed.

FUNCT The FUNCT instruction begins a specialized subroutine
that either defines a new function which then can be called

I like the system functions, or redefines an existing system
function.

GAT The GAT instruction is the graphing analog of the AT

I instruction. The GAT instruction selects a screen address
using the current GORIGIN and the current scale to locate
the point specified by GAT on the screen.

:1 GBOX The GBOX instruction is the analog of BOX using the
graphing coordinates.

GCIRCLE The GCIRCLE instruction is the graphing analog of CIR- I CLE.

GCURVE The GCURVE instruction is the graphing analog of

I CURVE.

GDOT The GDOT instruction is the graphing analog of DOT.

A-4 -Instructions

I

•• *GET The GET instruction reads a record from an open file into a
variable or record structure.

GLINE The GLINE instruction is the graphing analog of LINE.

I *GOAL The GOAL instruction divides units of a lesson into groups
for which separate scores are accumulated.

I GORIGIN GORIGIN is one of the instructions that define the screen
location and the scale for graphs. GORIGIN defines the
point on the screen that is the origin of the graphing system.

·1 AXES defines the screen location of the ends of both axes.
SCALEX and SCALEY define the scale.

GRAPH The GRAPH instruction graphs the expression used as its

I argument. The origin and scale of the graph are established
by the related instructions GORIGIN, AXES, SCALEX
and SCALEY, and LSCALEX and LSCALEY. The inde-

I pendent variable in the expression is incremented by the
instruction DELTA.

GVECTOR The G VECTOR instruction is the graphing analog of VEC-

I TOR.

HBAR The HBAR instruction draws one horizontal bar of a bar .. graph. The current graph origin, dimensions, and scale -
defined by the most recent GORIGIN, AXES , and
SCALEX and SCALEY instructions - determine the
placement of the bar on the screen.

I *IF The IF instruction marks the beginning of an IF structure
and specifies the condition to be tested.

I INCLUDE The INCLUDE instruction inserts the VAX DAL source
code in another file into this source file at compile time.

*INPUT The INPUT instruction displays the prompt character and

I waits for a response from the keyboard.

*ITALICS The ITALICS instruction specifies that subsequent text is to

I
be italicized.

*JUDGE The JUDGE instruction modifies the judgment of student
responses. Both the judgment that a response is right or

I
wrong and the events that follow the judgment can be
changed.

- A-5
Instructions

I

*LESSON

*LINE

LOG

*LOOP

LSCALEX,
LSCALEY

*MAP

*MARKUP

MARKX, MARKY

MATCH

MGRAPH,
END MG RA PH

MLOAD

*MODE

A-6
Instructions

The LESSON instruction begins a lesson and specifies the
lesson name.

The LINE instruction draws a straight line from one point
on the screen to another.

The LOO instruction creates a file containing information
about student performance. As different students take the
lesson, the file is updated.

The LOOP instruction marks the beginning of a LOOP
structure. A LOOP structure contains a series of instruc­
tions that are executed as long as the condition specified by
LOOP is true.

The LSCALEX and LSCALEY instructions specify loga­
rithmic scaling factors used to map graphs to the screen.
With GORIGIN and AXES, LSCALEX and LSCALEY
provide the basis for defining the graphing coordinate sys­
tem with logarithmic scales.

The MAP instruction loads color specifications and gray
levels into DAL's internal color map.

The MARKUP instruction writes the contents of the system
variables OK WORD or NOWORD on the screen.

The MARKX and MARK Y instructions draw the axes of a
graph at the screen locations defined by GORIGIN and
AXES. The markings, both tic marks and numbers, are
selected by the arguments to MARKX and MARKY.

The MATCH instruction determines the presence of a par­
ticular word in the student's response.

The MGRAPH/ENDMGRAPH instruction pair specifies a
macrograph letter and defines the ReGIS commands it is
associated with.

The MLOAD instruction loads a macrograph into the ter­
minal.

The MODE instruction specifies a mode of graphics display
that affects the appearance of text and graphics on the
screen and the way display information is stored in the ter­
minal's bit-map memory.

•• I
I
I
I
I
I

..
I

I

••
*MODULE The MODULE instruction begins a separately compiled

module and specifies the module's name.

MPLOT The MPLOT instruction draws a macrograph loaded into

I the terminal by a previous MLOAD instruction.

*NOISE The NOISE instruction specifies words to be ignored when

I
the student uses them in a response.

NOWORD The NOWORD instruction specifies the word displayed
when the instruction MARKUP is used as a response-con-

I tingent instruction for an answer judged wrong.

OKWORD The OKWORD instruction specifies the word displayed
when the MARKUP instruction is used as a response-con-

I tingent instruction with an answer judged OK.

*ON The ON instruction establishes a condition handler.

I *OPEN The OPEN instruction opens a file and establishes both the
channel number used to identify the file and an access mode
for the file.

I *OTHER The OTHER instruction marks the beginning of a series of
instructions that are executed only if none of the VALUE ,. instructions between the preceding TEST instruction and
the OTHER instruction have caused a different set of
instructions to be executed.

OUTLOOP The LOOP instruction specifies a condition that must be

I false if control is to be passed to the instruction following
the ENDLOOP. The OUTLOOP instruction specifies an
alternate condition that causes control to pass to the instruc-

I
tion following the ENDLOOP.

*PATTERN The PATTERN instruction selects a pattern for line draw-
ings and for shading the area specified by SREF.

I *PAUSE The PAUSE instruction suspends execution of a lesson
until one of the following occurs: a specified amount of

I
time elapses, a specified time is reached, the RETURN key
is pressed, or a correct response is entered.

*PROMPT The PROMPT instruction defines the character displayed

I
as the prompt by the QUERY and INPUT instructions. It
can specify a prompt string from an alternate character set.

*PUT The PUT instruction writes a record into a file.

- A-7
Instructions

I

*QUERY The main function of the QUERY instruction is to mark the

•• beginning of a response-judging block of instructions. The
QUERY instruction also displays the prompt character and
pauses until a response has been typed on the keyboard .

I *RAT The RAT instruction is the analog of AT in the relative
addressing system.

*RBOX The RBOX instruction is the analog of the BOX instruction I in the relative addressing system.

*RCIRCLE The RCIRCLE instruction is the analog of CIRCLE in the I relative addressing system.

*RCURVE The RCURVE instruction is the analog of CURVE in the
relative addressing system. I *ROOT The ROOT instruction is the analog of DOT in the relative
addressing system.

I REDO The REDO instruction reexecutes the current unit when it is
used at unit level, or reexecutes the lesson when it is used at
lesson level.

I REGIS The REGIS instruction sends an unaltered ReGIS string to
the terminal. .. RELOOP The RELOOP instruction, like the OUTLOOP instruction,
specifies a condition that passes control to the preceding
LOOP instruction before the ENDLOOP is reached.

*RESTORE The RESTORE instruction replaces current terminal char- I
acteristics with characteristics previously saved by the
SAVE instruction.

I *RETURN The RETURN instruction returns control to the calling unit
or lesson before the end of the unit or lesson in which it is
executed.

I *RIGHT The RIGHT instruction specifies anticipated right answers
to a QUERY. The RIGHT instruction can also mark the
beginning of a series of response-contingent instructions I that are executed only if the student's response matches a
right answer.

I
A-8 • Instructions

I

I.
I
I
..
I

' I
I
I

•
I

*RIGHTV The RIGHTV instruction is a version of the RIGHT instruc­
tion that specifies right answers as variables or expressions.
The RIGHTV instruction is used: when the student's
response is an expression to be evaluated; when the answer
has been found by evaluating expressions, as is often the
case in mathematics; when files are used to store sets of
questions and answers; and in other cases when the right
answer is more easily specified as a variable than as a con­
stant.

*RLINE The RLINE instruction is the relative graphics analog of
LINE.

*RORIGIN The RORIGIN instruction defines the origin for relative
graphics. The addresses specified in the arguments to R­
prefixed graphics instructions are interpreted as relative to
the point defined by RORIGIN.

*ROTATE The ROTATE instruction specifies that the addresses used
for subsequent relative graphics (R-prefix instructions) are
rotated a specified number of degrees before the figure is
drawn.

*RSIZE The RSIZE instruction modifies the vertical and horizontal
dimensions of relocatable graphics .

*RVECTOR The RVECTOR instruction is the relative graphics analog
of the VECTOR instruction.

*SAVE The SAVE instruction creates a restorable set of terminal
characteristics. Sets of characteristics are restored to the
terminal by the RESTORE instruction.

SCALEX, SCALEY The SCALEX and SCALEY instructions specify the scal­
ing factors used to map graphs to the screen.

*SCORE The SCORE instruction enables and disables scoring. The
SCORE instruction can be used at any point in the lesson or
in a unit. Scoring is on by default.

*SCORE UPDATE The SCORE UPDATE instruction updates scoring system
variables in a unit after response judging, but before execu­
tion of the unit finishes . By default, scoring variables
update only after a unit finishes.

SEED The SEED instruction seeds random number algorithms
with the current value of the clock to generate a new
sequence using the RANDOMx functions .

A-9
Instructions

*SET ECHO

*SET FKEY

*SET HLS

*SET KEYPAD

*SET
MAX COLORS

*SET
TYPEAHEAD

*SIGNAL

*SIZE

SLIDE

SPEAK

*SPECS

A-10
Instructions

The SET ECHO instruction specifies whether student
responses are echoed on the screen.

The SET FKEY instruction specifies whether students can
enter special function keys in response to INPUT, QUERY,
or PAUSE STRING instructions.

The SET HLS instruction indicates whether the terminal in
use supports the HLS (Hue/Lightness/Saturation) method
for specifying colors.

The SET KEYPAD in truction selects the numeric or appli­
cation mode for the terminal keypad. In the application
mode, keypad keys generate ASCII strings that can be
treated as responses to INPUT, QUERY, or
PAUSE STRING instructions.

The SET MAXCOLORS instruction specifies the number
of colors that can be displayed on a terminal screen simulta­
neously.

The SET TYPEAHEAD instruction permits or prevents
students from typing answers ahead.

The SIGNAL instruction invokes a CONDITION.value
condition handler.

The SIZE instruction alters the size of the text.

The SLIDE instruction displays a filename.PIC file con­
taining a slide.

The SPEAK instruction sends text to a DECtalk unit to be
spoken.

The SPECS instruction modifies the requirements for judg­
ing a student right or wrong by changing the default specifi­
cations for exactness of spelling, punctuation, and
capitalization, for allowing extra words or the same words
in different order, and for allowing expressions or requiring
units of measure in the response. The SPECS instruction
can also make unit conversion formulas and system func­
tions unavailable for use in student responses.

I
I
I

- ~

I

' I
I
I

•
I

~- *SREF The SREF instruction specifies a reference line or point
used to shade figures drawn with the graphics instructions.
The area from the reference line or point to the line drawn

I by subsequent graphics instructions is shaded in the current
foreground color and the current pattern. SREF can also
specify a character pattern to be used for shading.

-

I STOP The STOP instruction ends execution of the lesson. Restart
variables are saved when the lesson ends with STOP.

I
*SYN The SYN instruction specifies synonyms for use in answer

processing by identifying a target word and a list of syno-
nyms. When a target word is specified within a RIGHT or
WRONG instruction, all of the synonyms in the list are

I considered equivalent in judging the student's response.

*TEST The TEST instruction marks the beginning of a test struc-

I
ture that ends with the instruction ENDTEST and specifies
the name of the variable that is the basis for the test.

TRAY The TRAY instruction loads a tray file created by the Slide

I Projection System and makes it available for subsequent
SLIDE instructions.

.. *TROTATE The TROTATE instruction specifies that subsequent text
will be rotated a multiple of 45 degrees from horizontal,
depending on the value specified.

*UNIT The UNIT instruction specifies the unit's name in the form

I needed by the DO instruction and identifies the beginning
of the unit.

'
*UPDATE The UPDATE instruction writes the contents of the record

structure into the current record in an indexed file.

*VALUE The VALUE instruction is part of a TEST structure. The

I
VALUE instruction specifies a value, a series of values, or a
range of values to be compared to the contents of the varia-
ble specified in its associated TEST instruction, and marks

I
the beginning of a series of instructions that are executed
only if the values in its argument match the value of the
variable.

I
VBAR The VBAR instruction draws one vertical bar of a bar

graph.

*VECTOR The VECTOR instruction draws an arrow between any two

• points with an arrow head of an arbitrary size .

A-11

I
Instructions

WEIGHT

WHEN

*WRITC

*WRITE

*WRONG

*WRONGV

A-12
Instructions

The WEIGHT instruction defines the value added to the
SCORE and SCORES(i) variables when the student
responds to a QUERY.

The WHEN instruction specifies that characters input from
the keyboard, elapsed time, or absolute time can interrupt
the current unit and cause execution of another unit.

The WRITC instruction is a variation of the WRITE
instruction. The only difference is that DAL inserts a car­
riage return before the first line of text. Alternatively, this
instruction can be spelled WRITEC.

The WRITE instruction specifies the text and variables
whose contents are to be displayed on the screen.

The WRONG instruction specifies anticipated wrong
answers to a QUERY. The WRONG instruction can also
mark the beginning of a series of response-contingent
instructions that are executed only if the student's response
matches this answer.

The WRONGV instruction is a version of the WRONG
instruction that specifies wrong answers as variables or
expressions. The WRONGV instruction is used: when the
student's response is an expression to be evaluated; when
the answer has been found by evaluating expressions, as is
often the case in mathematics; when files are used to store
sets of questions and answers; and in other cases when the
wrong answer is more easily specified as a variable than as
a constant.

J
I
I
I
I
I
I

..
I
I
I
I
I

•
I

•• I
I
I
I·
I
I ,.
I
I I

I
I
I
te
t

•• I
I
I
I
·1

..
I
.,
1
i
I

ea

'•
' I
I
I
I
I
..
I

" I
I
I ,.
I

B
System Functions

This appendix lists all system functions. The functions explained in this manual are
preceded by an asterisk.

ABS(x)

ALT(a,b, ...)

ANTILOG(x)

ARCCOS(x)

ARCSIN(x)

ARCTAN(x)

ARCTAND(x,y)

ASCil(x,i)

CHAR(x)

returns the absolute value of its argument, which can be a
scalar or an array.

inserts a separator (a CTRUP) into a string between the part
of the string expressed as argument a and the part of the
string expressed as argument b. A string can be divided into
any number of fields, with each field delimited by a
CTRUP.

returns the antilogarithm of its argument.

returns the angle whose cosine is its argument. The angle is
returned as a decimal in radians.

returns the angle whose sine is its argument. The angle is
returned as a decimal in radians.

returns the angle whose tangent is its argument. The angle
is returned as a decimal in radians.

returns the angle whose tangent is x/y. If y evaluates to 0,
pi/2 is returned in radians.

requires a string constant or variable in x and returns the
ASCII value of the character in position i in the string.

returns the character that has an ASCII value of x.

B-1

CHARSETLD(x)

COS(x)

DEG(x)

DELETE(x,y)

DET(array)

DIMS(array)

DIMAX(array,i)

*EOF(channel no)

EVAL(string)

EXP(x)

B--2
System Functions

returns the Boolean value I if the character set x has been
loaded during this execution of the lesson. The argument x
must be identical to the argument to the CHARSET instruc-
tion.

returns the cosine of its argument. The argument must be in
radians.

returns the value of its argument in degrees. The argument
must be in radians.

returns a subset of string x with y deleted. The string y can
be a pattern-valued expression. Only the first instance of y
is deleted even if y appears more than once. If the substring
y is not in the string x, xis returned unchanged.

returns the determinant of the square array given as its argu­
ment.

returns the number of dimensions of the array named.

returns the upper bound of the ith dimension of the array
named.

returns the Boolean value I if the file associated with the
channel is at its end-of-file mark. The EOF function returns
the Boolean value 0 if the file is not at its end-of-file mark.
This function is used with the PUT instruction. This func­
tion sets the system variable IORESULT.

takes a character string as its argument, evaluates the string
as an expression, and returns a real number result. DAL
operators and the following system functions can be used
within the EVAL function.

ABS
ARCSIN
cos
INT
RAD
SIN

ANTILOG
ARCTAN
DEG
LN
REAL
SQRT

ARCCOS
ARCTAND
EXP
LOG
ROUND
TAN

returns a value equal to e raised to the power of the argu­
ment.

••
' ,~
I
I
I
I

..
I

I
I
I

•1

..
I ,,.,

I
I
I
I
I ,.

I
I ,.
t

*FIND(channel
no,record no)

IDEN(x)

INSTRING(x,y)

*INT(x)

INV(array)

IS

LEN(x)

LN(x)

LOG(x)

LOWER(x)

*NUMBER(x)

attempts to position the file associated with the channel num­
ber at the specified record number, and returns the Boolean
value I if the attempt is successful. If the record number is
lower than the record number at the current position,
REWIND occurs automatically. This function sets the sys­
tem variable IORESULT. The FIND function cannot be used
with indexed files.

returns an identity array of order x which can be used directly
in expressions, or can be assigned to a variable.

returns a number corresponding to the character position of
stringy in string x. If stringy contains more than one charac­
ter, the position of the first character is returned. If y is not
contained in x, 0 is returned.

returns the truncated integer portion of its real number argu­
ment. The sign is preserved.

returns the inverse of its argument which must be a square
array.

changes the three conversion functions NUMBER, INT, and
INV to interrogative functions. ISN UMBER(x) returns I if x
is either a real number or an integer, and O otherwise.
ISINT(x) returns I if x is an integer. ISINV(x) returns I if x
has a nonzero detenninant.

returns the length (number of characters) of the string varia­
ble or record structure listed as its argument. An integer
value is returned.

returns the logarithm (base e) of its argument.

returns the logarithm (base I 0) of its argument.

returns a string with all uppercase letters in its string-valued
argument converted to lowercase (digits and symbols are not
modified).

returns the real number represented by its string-valued argu­
ment.

B-3
System Functions

PICFILE
(filename)

RAD(x)

RANDOMN
(m,sd)

RANDOMP
(lambda)

opens the specified file and sends the ReGIS instructions for
all subsequent screen displays to this file as well as to the
screen. The file is closed by the function with no argument.
The file extension can be included; the default is .PIC. The
PICFILE function returns a Boolean I if the file was success­
fully opened or closed.

returns the value of its argument in radians. The argument is
assumed to be in degrees and is evaluated mod 360.

returns a randomly selected number given a mean and a stan­
dard deviation of a normal distribution.

returns a randomly selected number between O and I selected
from a Poisson distribution of intensity lambda.

*RANDOMU(x,y) returns a randomly selected number between x and y drawn
from a uniform distribution. The value of x is included in the
distribution. The value of y is not.

*REAL(x)

REPLACE(x,y,z)

*REWIND
(channel no)

ROUND(x)

SIGN(x)

SIN(x)

SQRT(x)

STRING(x)

B-4
System Functions

returns a real number equivalent to its integer argument.

returns string x with the first instance of string y replaced by
string z. Replacement occurs from left to right. If string y
does not exist in string x, string x is returned unchanged .

resets the file associated with the specified channel number
to its first record. Returns I if the rewind is successful;
returns O if it is not. This function sets the system variable
IORESULT.

returns an integer that is equivalent to the rounded real num­
ber argument. The sign is preserved.

returns + I if the value of x is a positive number and- I if the
value of x is a negative number. If the value of x is 0, 0 is
returned. The argument can be a real number, an integer, or
an array.

returns the sine of its argument. The argument must ·be in
radians.

returns the square root of its argument. The argument must
be positive, and cannot be a table or an array.

returns a character string equivalent to its real or integer
argument.

•• I
I
I
I
I
I

..
I

' i
I
I

'• I
I
I
I
I
I
fl
e
I
I
I
I ,.
I

SUBSTR
(string,y,z)

TAN(x)

TRAN(array)

UPPER(x)

WORD(n,string)

returns the substring of string that begins at character posi­
tion y and is z characters long. Returns a null string if string
does not contain at least z characters starting at position y.

returns the tangent of its argument. The argument must be in
radians.

returns the transpose of the array specified as its argument.

returns a string with all lowercase letters in its string-valued
argument converted to upper case. Digits and symbols are
not changed.

returns the nth word in the specified string variable. If n eval­
uates to less than I or to a number greater than the number of
words in the string, a null string is returned. Words are termi­
nated by a space, am, a®), or any punctuation mark
except apostrophe, hyphen, dollar sign, and underscore.
Other punctuation marks are ignored, and are not returned as
part of the word.

B-5
System Functions

•• I
I
I
I
j

I ..
I

· -

'

I
1·
I .,

I
I
I
I ,.
I

I

I
I
I
I ..
I
.
I
I
I

•
I

•• I
I
I
I
I
I ,.
I
I
I
I
I ,.
I

C
System Variables

This appendix lists the system variables. The variables are listed alphabetically
within each of three categories. Table C-1 lists the graphics and graphing system
variables. Table C-2 lists the scoring system variables. Table C-3 lists the
response-related system variables. Table C-4 lists the timing and miscellaneous
system variables.

Table C-1: Graphics and Graphing System Variables

Name Data Type Description Modified By

BCOLOR integer Value of current back- BCOLOR Instruction
ground color.

CHARSET string Name of last charac- CHARSET instruction
ter set specified.

FCOLOR Integer Value of current fore- FCOLOR Instruction
ground color.

GORIGINX real Value of x coordinate GORIGIN instruction
last specified.

GORIGINY real Value of y coordinate GORIGIN instruction
last specified.

C-1

Table C-1: Graphics and Graphing System Variables (Cont.) •• Name Dato Type Description Mod fled ly

GRAFSTAT read-only array Information about fhe Various graphics I
curent state of fhe d 1,s- instructions
ploy. See Appendix A

I I
in fhe VAX DAL Refer-
ence Manual fa a ,ist-
1ng of fhe GRAFSTAT
array elements

I GWHEREX real X coord note of the Updated by al
10~ point displayed graph cs nstruct ons
e>-pressed In curren1 Reset by GORIGIN I· graph scale. if text SCALE ona LSCALE
was disp eyed lost
th s point s the upper

I eft comer of the
character cel l.

GWHERE rec, Y coordinate of the Updated by al

I IOSf po,nt d1sp1a,ed grapnIcs nrnJCf ons.
e;q:,ressed In current Reset by GOR G N
graph sco1e If text SCALE and LSCALE .. was disp eyed ast
lhis point ,s ij)8 upper
left comer of the
character ceil

ITALICS nteger Value ast specif,ea ffALtCS nstruc on I
RORIGINX 1ntegerfne X coordnote of pont RORIGIN ns1rucf1on

coordnotes lost spec f.ed
, ,

RORIGINY ·nteger fine Y coord note of point RORIGIN instruction
coord1notes lost specified. I

RSIZEX integer X s ze coeffic·ent RSIZE instruction

RSIZEV integer Y size coefficient RSIZE instruction I
I

C-2 .,
System Variables

, ,

'• Table C-1: Graphics and Graphing System Variables (Cont.)

I
RWHEREX integer fine X coordinate of point All graphics instruc-

I
coordinates last drawn relative to tlons. Reset by

RORIGIN. If text was RORIGIN.
ctawn last, this point is
the upper left comer

I
of the character cell

RWHEREY integer fine Y coordinate of point All graphics lnstruc-
coordinates last drawn relative to tions. Reset by

I RORIGIN If text was RORIGIN.
drawn last, this point 1s
the upper left corner
of the text cell.

I SIZEX Integer X size last specified or SIZE Instruction
size when SIZE has

I
only one argument.

SIZEY Integer Y size last specified. SIZE instruction

~
A SIZE instruction with
one argument
changes this variable
to the default y size
associated with the

I
argument

WHERE Integer row Row and column All graphics lnstruc-
and column address of last point tions. Reset to O by

t coordinates displayed. After text is ERASE with no
displayed, this point is arguments.
one point to the right

I
of the upper right cor-
ner of the character
cell After line graph-
ICS are displayed, the
variable contains the

I address of the upper
left corner of the text
cell in which the last
dot was drawn.

I

- C-3

I
System Variables

Table C-1: Graphics and Graphing System Variables (Cont.)

-

1 .. --.._____.. ~~~~ ~-=~

WHEREX

WHEREY

nteger fine
coordinates

ntegerfine
coordnates

X coordinate of last
point displayed. After
text 1s displayed, this
point 1s one point to
the right of the upper
right comer of the
character cell

Y coord nate of ast
point displayed After
text s d splayed, this
point 1s one point to
the right of the upper
right comer of the
character eel

All graphics instruc­
tions. Reset to O by
ERASE with no
arguments

Al, graphics nstruc­
tlons. Reset to O by
ERASE wth no
arguments

Table C-2: Response-Related System Varlat!es

- - ~ - . -~ - ·~-.. - - -
- ---- - _.iir,.~ • • • •

ANSCNT Integer Sequent,a number of C eaed by QUERY
RIGHT. RIGHTV, Set by first match
WRONG or WRONGV and not reset until
matched by most QUERY IS encoun-
recent response. tared again. Set to O

if no match

ERRORV nteger Value that identifies Set by each RIGHT,
Why the student failed WRONG, RIGHTV, or
to match the author's WRONGV instruction.
specified answer.
Updated only if the
matching process
fa Is. See Chapter 9 for
possible values.

LATENCY integer seconds nme from QUERY or Updated after every
INPUT lXltil delimiter s response ood availa-
received. ble until prompt s

displayed again.

C-4
System Variables

•• I
I
I
I
t
I

--
1
I
I
I

I

'• I

' I
I

' I
~

Table C-2: Response-Related System Variables (Cont.)

LENGTH Integer Length 1n characters
of most recent
response.

PROMPT string Current prompt string
Contains by default

QELAPSED Integer seconds nme that query 1s
available. O indicates
no time limit.
QELAPSED counts
down as time elapses
When it reaches 0, the
variable TIMEOUT Is
set.

QLENGTH Integer Number of characters
allowed in response
If this number 1s
reached, response 1s
terminated and
judging begins.

RESPONSE string maximum Student's exact
500 chars response.

RESPONSEV real integer Student's response
Boolean when the response is

calculated as an
expression. Data type
Is determined by the
calculation required.

Updated at end of
each response.

PROMPT Instruction

Set to O at beginning
of lesson Changed
only if new value
assigned.

Set to O (no 11mlt) Of
beginning of lesson
Reset only if new
value assigned.

New value assigned
at QUERY or INPUT.
New response 1s ter•
minated by DELIMIT
character or value of
QLENGTH. Charac-
ters ent&red later are
read by next INPUT
or QUERY if
typeahead IS
allowed

Evaluated when
RIGHTV or WRONGV
isexecutad

C-5
System Variables

Table C-2: Response-Related System Variables (Cont.)

OROS ager

Used w m QELAPSED
ode8'TT'lne f me
a owea for respor se
haSOCCUTed
0 no meout
1

moerof WO(n
response Words are

po o a ·ora

Table C-3: Scoring System Variables

GOAL nteger 1 to 100 umber o curren•
restart goo

NNO integer umber of responses
restart udged ncorrec:1 s nee

the beg M ng of the
esson.

NOK integer Number of responses
restart judged correct Since

the beginning of the
lesson.

C-6
System Variables

pd<T at eno of
esp

GOAL ct;en

incremented men
un contanng
QUERY returns YI th
answer judged NO
orby SCORE
UPDATE

Incremented by a
right answer.
Updatea when u,it
containing QUERY
re1ums, or by SCORE
UPDATE.

I I

••
I
I
I
I
I ..
I
I

' I
I

•
I

'•
Table C-3: Scoring System Variables (Cont.)

I NOKFIRST integer Number of first Incremented by a
restart responses judged cor- correct response on

rect since the begin- the first attempt.

I nlng of the lesson. Updated when l.Xllt
containing QUERY
returns, or by SCORE
UPDATE.

I NUMTRIES integer Number of times the Incremented at each
student has responded response. Cleared at

I
to the current QUERY. beginning of a unit.

Integer Number of QUERY Updated by each
instructions since the new QUERY lnstruc-

I /

beginning of the les- tton.
son. QUERIES Is not
Incremented when
prompt Is redisplayed

I after a wrong
response. It Is incre-
mented If any lnstruc-,. tlon (REDO, LOOP,
FOR, BRANCH) returns
con1rol to a point pre-
ceding the QUERY.

I SATISFIED Integer Assigned the value 1 if Updated after each
RESPONSE Is judged RIGHT, WRONG,
correct, 2 if RESPONSE RIGHTV, or WRONGV

I
Is judged Incorrect, Instruction. Connot
and O If the l.Xllt does be passed to
not contain a QUERY another lXllt.
block.

I. SCORE real res1art Student's total score. Updated when unit
., Default increment Is 1. containing QUERY

Increment Is modified returns, or by SCORE

I by argument to UPDATE.
WEIGHT Instruction.

I

• C-7
System Variables

I

Table C-3: Scoring System Variables (Cont.)

SCORES rea restart !vrov of SCORES
Indexed by goo num­
bef' and conta ning
SCOfe for each goal
The index Is an nteger
be ·een 1 and 00 If
ooy omer ndex s
used the VO U8 999 S

re7tlmed

I.Jpdoted when un
contain ng QUERY
re1\Jms or o SCORE
UPDATE

Note: Each unit containing a query is scored once. If instructions within the unit
cause the query to be repeated, only the last response is scored.

Table C-4: Timing and Miscellaneous System Variables

st ng 12 d'lCJrS ser·s C A S name Read rom

iJPP81'COS8 CAS files
eft-us1 ed When lessons
bank-f ed are executed

from VAX MS
command eve
this vanab e Is
nul

COURSE stnng 9 chars, Users C.A S g~. Read from

l.W8fCOS8, CAS. files
left-justified IIJhenlessons
bank-filled are executed

from VAX VMS
command evel,
th,s variable s
nul

QJNIT string maximum Name of unit Set when execu-
32 chOlocters, currenttv be ng fion begns.
uppercase executed.

C-8
System Variables

•' I
I
I
I
I
I

..
I
I
I
I
I

et
I

'• I
I

•
I
I
I ,.
I
I
I
I

I

Table C-4: Timing and Miscellaneous System Variables (Cont.)

- ~---~ - - • "l<r' • - -

lr., • .._, '

DATE string Current date.
DD-MON-VF.AR

DTSTATUS Integer Value indicating the
status of the last
DECfaik operation.
See Appendix A in 1he
VAX DAL Reference
Manual for a fable of
possible DTSTATUS
values.

Controls whether user's
responses are echoed
fo screen.
1 - echo
0 = no echo

Amount of fime since
beginning of current
lesson.

INTERRUPT string maximum Nome of unif being
32 characters, executed of 1he time
uppercase WHEN occurred. Value

Is null except during
execution of unlf
called by interrupt

- • ... ,,.I,

VAX, VMS system
S01Vice.

Default is 1.
Reset only if les-
son assigns new
value. Use for
maintenance of
current DAL
code ONLY.
Use SET ECHO
lnsfrucflon in new
lessons.

Derived from the
time stored of
the start of the
lesson and 1he
current system
fime.

WHEN instruction

C-9
System Variables

Table C-4: Timing and Miscellaneous System Variables (Cont.)

ame DataTYJ)e

IORESULT integer

C-10
System Variables

A numenc code that
repor1s the status of
the most recent I 0
request

1 normal return
2 invahd channe

number
3 - 1nsuffic1en .'irtual

memory

4 channel not
open

5 fi e 1s read on y
6 fi e s sequen a

only

7 flle is wnte on
6 new file was cre­

ated w 1h OPEN
Instruction

9 tray not opened
(SLIDE expects
previ<)USty
opened
tray file)

10 RMS Error, chedi:
RMSSTArus for
error value

11 file wrong type for
operat.on

12 == file not ndexed
index operaf'on
requested

13 - problem with key
on FIND or GET

14 - restart file not
tcxro

OPEN ,nstruction
CLOSE nstruction
GET nstruction
PUT Instruct on
ffND nsiructiOn
UPDATE
nstrucon
DELETE nstruction
TRAY nstruct on
SL DE 1ns1rucfion
CI-IARSET
nstruction

LOAD
,nstruct,
FIND !unction
EOF function
REWIND fi.nel,on
P!CFILE funct on

•• I
I
I
I
I
I ..
I
I
I
I

I

•• I
I
I
I
I
I
~

' I
I
I I

I ,.
I

Table C-4: Timing and Miscellaneous System Variables (Cont.)

15 restart van ble

16

r 0

C-1
System Variables

Tab!e C-4: Timing and Miscellaneous System Variables (Cont.) •• I.
ONCODE integer Condition value; useful Maintained by

m the ANYCONDITION DAL. I handler. Canta ns VMS
code 1den' fying a file
1 '0 error (see VAX VMS
documentation for I vaues)

ONKEY integer The l<ey of a record Set b y an

I 1n~ved In an indexed ndexed-file-
t, e error. lied nto re ated error
ndexed le support Ma,n,aned b

RMSSTATUS S1nng RMS sta1us code of

DAL

An R s I
ast RMS operaton

operaton

I
n•8Qe(ead-onl OITO~ con- Ma,nta ned b y

1a, Ing compe1e data ·ar:ous DAL .. about he S'fatus of !he commalds
enn:no See Appen-

d A n he VAX DAL
Reference Manua or
a hsi of TE STAT

' VA stem

I
TSA a-rcr Oba red from

VA ✓MS See I of VOU' term,na ·s
·are Programmers
ons Reference

and so on). Gu cle for more I nformatlon

I
C-12 --System Variables

1·

..
I
I
I
I
I
I ,.
I
I
I
I
I ,.
I

Table c-1: Timing and Miscellaneous System Variables (Cont.)

USERTYPE string Letter indicating type
of user:
A author
s student
G group instructor

Read from
C A.S. flies
Wheniessons
are executed
from VAX, VMS
command level,
this variable 1s
null

Note: Attempts to access files can return status codes from a number of
VAX/VMS system services. For more information about error messages. refer to
the System Messages and Recovery Procedures Manual in the VAX/VMS docu­
mentation set. The explanation of the SET MESSAGE command in the VAX/VMS
DCL Dictionary explains how to convert the number returned in IORESULT to a
system message. When the number in IORESULT is displayed in a DAL lesson. it
is a decimal number.

C-13
System Variables

'• I

' I
I
I
I ..
I
I
I
I
I ,.
I

•' I

I
I ..
I
I
I
I
I

et

I
I
I
I
I ,
I
I
I
I
I ,.
I

D
Operators

Table D-1 defines the operators in DAL. The order of precedence is listed below
the table.

Table D-1: Operators

n eger, reo same
coned. aton Sfring

ega11 ineger, reo sane

Sl.t>oc neger, reo same

some

nteger, reo same
e neger reo nteger rea

equo ager, reo Booeon
Booeon st ng

no equo nteger. reo Booieon
Boolean slr ng

D-1

Table D-1: Operators (Cont.)

less than Integer, real, Boolean
Booleai

less than or Integer, real, Booean
equal o Boolea

greoter than lnteg, , re::JI 8oi)le n
B >Ole n

D D Boo n 1eon

OR Boe

t., R Boe., on

I Boal

Boo! or

odiJ

The evaluation of expressions follows algebraic conventions as far as possible: that
1s, expressions are evaluated from left to right following the order of precedence of
the operators. The order of precedence can be overridden with pairs of parentheses.

The order of precedence 1s listed below. The highest precedence is I .

1 Function evaluation (that is, returning the , alue of a function such as
COS(x))
Unary plus and minus (that 1s, specifying positive or negative numbers)
Logical NOT

2 Exponentiation
The logical operators = , .,. , < ~ = and =

3 The logical operators IMP. AND XOR, and MOD
Multiplication and division

4 The logical operator OR
Addition and subtraction

D-2
Operators

•• I

I
I ..
I
I
I
I
I

el
I

'• I
I·
I
I
I
I ..
I
I
I
I
I ,.
I

•• I
I
I
I
I
I ..
I
I
I
I
I .,
I

'• I
I
I
I
I
I ..
I
I
I
I
I ,.
I

Table E-1: Syntax Symbols

period

comma

semicolon

colon

E
Syntax Symbols

1 In first character position of Indented lines 1n
QUERY blocks IF structures. LOOP structures. FOR
structures, and TEST structures; the period s fol­
lowed by one ~ or one ID and 1s called "dot
indentar1on· throughout this manual
2 as a decimal point In real numbers

general purpose separator 1ypical uses are
between variable names used as arguments to
the DEFINE Instruction, between the x-coordna1'e
and tt,e y-coordinate that define one screen
position, and between variable names used as
arguments to system functions

1 between two or more sets of x, y pos tion
arguments
2. 1n the first character pos tion of a line as a sym­
bol defining a comment line

1 oetween position and o her arguments in
graphics ns!ructions
2 between variable name and data type v.1Th
DEFINE

E-1

Table E-1: Syntax Symbols (Cont.) •• I
a d o ue I
a \/ I

I
I

orra vs I ..
non s

I
e

I
I
I
I

E-2
.,

Syntax Symbols

I

•• I
I
,,

I
I
I ..
I
I
I
I
I ,.
I'

Table E-1: Syntax Symbols (Cont.)

$

$$

percent sign

dollar sign

double dollar s gn

1 precedI g a number, a percent s g
specIfIes

and le er

the radix of In ... number
B binary
0 octal
D It)

re sl.,

on

E-3
Syntax Symbols

•• I
I
I
I
I
I ..
I
I
I
I
I

•1
I·

I ..
I

I
I

•
I

•

I

I ..
I
I
I
I
I

•
I

'• I
I
I
I

I
I
I
I ,.
I

F
Sample Lessons

MULTIPLY

LESSON multiply
DEFINE go_on:BOOLEAN
ASSIGN go_on : = TRUE
DEFINE done_once:BOOLEAN

$$ True until student qutts.

$$ Used In unit practice.
DEFINE x, y,z:INTEGER $$ Used for all multiplication.

DO infro1 $$ Display title page
SCORE FALSE $$ Tum off scoring.

; Set up loop. Lesson returns here after each practice or
; review. Loop Is broken and lesson ends when student chooses to quit.
LOOP go_on $$ Begin loop.

DO menu $$ Display instructions and choices.
QUERY
RIGHT

RIGHT

RIGHT

WRONG

ENDQ
ENDLOOP

practice
DO practice
quit
DO
ASSIGN
REVIEW
DO

SIZE
WRITE
SIZE

quit
go_on : = FALSE

review
$$ Anything else is wrong.

1 $$ Display error message
YOU MUST TYPE ONE OF THE WORDS ABOVE
2 $$ and return to beginning

$$ of QUERY block.
$$ end of loop

F-1

; End of lesson level.

UNIT intro1
ERASE
FCOLOR RED
BOX 0,0;767,479:-12
FCOLOR YELLOW
BOX 12,12;755,467:-12
FCOLOR RED
BOX 24,24;743,455:-12
SIZE 4,8
AT 1115
WRITE MULTIPLICATION
DO re1um

$$ Drow red box at limits of screen.

$$ Draw yellow box inside red.

$$ Drow red inside yellow

$$ Execute unit return

; End of unit intro1. Unit return returns to this point. Because
; this is end of unit intro1, unit intro1 returns to Instruction
; following DO intro1 at lesson level

UNIT menu
FCOLOR RED
ERASE
BOX
AT
SIZE
WRITE

AT
WRITE
AT
WRITE
SIZE
AT
WRITE
SIZE
AT
WRITE
SIZE
AT
WRITE
SIZE
AT
WRITE

F-2

0,0;0.999 ,0. 999
210
2

$$ For manual illustrations.

This lesson lets you review your
multiplication tables or practice
some multiplication problems.
820
Do you woot to
1125
PRACTICE
1
1332
OR
2
1427
REVIEW
1
1632
OR
2
1729
QUIT

Sample Lessons

•• I
I
,,

I
I
I

..
I
I
I
I
I .,
I

•• I
I
I
I
I
I ..
I
I
I
I
I ,.
I

UNIT
ERASE
BOX
SIZE
AT
WRITE

QUERY

review $$ Select to review one or all tables.

0,0;0.999,0.999
2
510
Type ALL to review all
1he multiplication tables.

Type a number to review
1hat multiplication table.

$$ For manual illustrations.

RIGHT all
ERASE
BOX 0,0;0.999,0.999
DO revall

$$ For manual illustrations.
$$ Review all.

RIGHT 112 I 3 1415 161 7 I 8 19 110 111112
ASSIGN x : = NUMBER(RESPONSE)
ERASE
BOX 0,0;0.999,0.999
DOrevone

$$ For manual illustrations.
$$ Review chosen one.

WRONG
SIZE 1
WRITE You must type ALL or a number from 1 to 12.

Try again.
SIZE 2

ENDQ

; The unit revone displays one times table. It is called 12 times
; by unit revall or once by Ll'lit review.
UNIT revone $$ The value of x when revone is called is
AT 025 $$ set by unit review or unit revall.
FCOLOR BLUE
SIZE 2
FOR y := 0,12 $$ For 13 times, changing the value

ASSIGN z : = x*y $$ of y each time, calculate answer
WRITC <<T,x,2,0>> x <<T,y,2,0>> = <<T,z,3,0>>

ENDFOR $$ and display It.
DO return $$ Execute unit return.

UNIT
SIZE
AT
WRITE
MODE
WRITE
PAUSE
ERASE
MODE
BOX

return
1
2060
PRESS
INVERSE
RETURN

NORMAL
0,0;0.999,0.999

$$ Display press return and
$$ wait at pause.

F-3
Sample Lessons

UNIT quit
ERASE
BOX 0,0;0.999,0.999
AT 1020
SIZE 10
FCOLOR RED
WRITE BYE
DO return

UNIT revall
FOR x:=1,12

DO revone
ENDFOR

$$ Display BYE.

$$ For manual illustrations.

$$ Reviews all times tables.
$$ For 12 times, increment x and
$$ display one table.

UNIT
DEFINE
ASSIGN
ASSIGN
ERASE

PRACTICE $$ Displays 25 problems and scores them.
olc:Lx,olcLy~NTEGER
olc:Lx : = 3 $$ Used to see if current x and y are
olcLy : = 4 $$ same as x and y for last problem.

BOX 0,0;0.999,0.999 $$ For manual illustrations.
FCOLOR RED
SIZE 2

; The IF block is executed only the first time the student chooses
; to practice. The variable done_once Is defined at lesson level and
; is assigned the value TRUE in this lrit.
IF done_once = FALSE SS If this is the first time

do lnstruc $$ display Instructions
ENDIF

SCORE TRUE $$ Begin scoring.

DEFINE c:INTEGER $$ Counter for problems.
SEED
FOR

ENDFOR

F-4

c : = 1,25 $$ Do 25 problems.
ASSIGN X: = RANDOMU(0, 13) $$ Assign values to x and y.
LOOP X = olc:Lx

ASSIGN X := RANDOMU(0,13)
ENDLOOP
ASSIGN olcLx : = x
ASSIGN Y:=(RANDOMU(0,13))
LOOP y = old_y
. ASSIGN y := RANDOMU(0,13)
ENDLOOP
ASSIGN olcLy : = y
DO proc1 $$ Display problem.
DO return

Sample Lessons

•• I
I
I
I
I
I ..
I
I
I
I

I

'• I
I
I
I
I
I ..
I
I
I
I
I ,.
I

SCORE
DO
GOAL

FALSE
shoscore
GOAL+1

UNIT shoscore
FCOLOR RED
SIZE 2
AT 505

$$ Stop scoring.
$$ Display score for practice.
$$ Increment goal for next time.

TEST SCORES(GOAL) $$ Score for set of 25 problems.
$$ All right. VALUE 25

WRITE VERY GOOD
YOU GOT THEM ALL RIGHT.

VALUE 20 .. 24
WRITE GOOD

VALUE 0 .. 19
YOUR SCORE IS <<S,INT(SCORES(GOAL))

WRITE YOU SHOULD REVIEW BEFORE
YOU PRACTICE AGAIN.

ENDTEST
YOUR SCORE IS < <S,INT(SCORES(GOAL)) >

AT 1305

>.

; If student has practiced before, tell him how this time compares
; to the last time.
; Outer IF tests for more than one time. Next IF tests for different
; scores. If scores are different, third IF tests for which Is
; better, and displays appropriate message. If scores are same,
; word TOO is displayed following score for last time.

IF GOAL > 1 $$ Practiced more than once.

ENDIF
DO

WRITC LAST TIME YOUR SCORE WAS <<s,lnt(scores(goal-1)) > >
IF SCORES(GOAL) <.> SCORES(GOAL-1)

IF SCORES(GOAL) > SCORES(GOAL-1)

ELSE

ENDIF
ELSE

WRITE
ENDIF

return

WRITC YOU'RE DOING BETTER

WRITC

TOO.

YOUVE SHOWN YOU CAN DO BEITTR
TRY IT AGAIN.

$$ Execute unit return

F-5
Sample Lessons

UNIT PRAC1 $$ Unit prac1 displays and judges one problem.
$$ calculate right answer for these ASSIGN Z: = X*Y

PROMPT • •
FCOLOR BLUE $$ two numbers
SIZE 3
AT 820 $$ display current problem

<s,y>> WRITE <<S,x>> x
QUERY
RIGHTV Z $$ the current value of Z is right

WRONG

ENDQ
PROMPT

UNIT
ASSIGN
ASSIGN
AT
WRITE

F-6

1420
2
You're right,
1720
3

AT
SIZE
WRITE
AT
SIZE
WRITE <S,x>> x <<S,y> > = <<S,z> >

$$ anything else 1s a wrong answer
AT 1420
SIZE 2
FCOLOR RED
WRITE NO, the risjlt CJ"\Swer is
SIZE 3
AT 1720
WRITE <S.x x <S,y
JUDGE STOP

instruc

$$ display the rigit answer
= <S,z>>

$$ stop judging, do not repeat query

X: = 3 $$ assign values for practice problem.
Y:=4
503
You will see 25 multiplication problems.
Type the answer and press RETURN.
You will be told if
you got the answer right.

Press RETURN again for the next problem.
Press RETURN now to see a sample.

Sample Lessons

•• I
I
I
I
I
I ..
I
I
I
I
I .,
I

'• I
I
I
I
I
I
..
I
I
I
I
I
1•
I

DO return

LOOP done_once = FALSE $$ Display problem and loop
DO prac1 $$ until student gets it right
SIZE 2
TEST RESPONSEV $$ It wos right.
VALUE 12

AT 310
WRITE GOOD - you seem to understand.
Now the real problems start.
DO return
ASSIGN done_once: = TRUE

$$ Assign new value
OTHER $$ to control variable.

ENDTEST
ENDLOOP

ENDLESSON

ICECREAM

AT 310
WRITE Try ogoin, now that you know

1he rig1t answer
DO return

$$ end of all Instructions In lesson file

The lesson lcecream requires the auxiliary file GLOB.FNT for the character set
used for the chocolate chips and the drip from the ice cream. The file GLOB.FNT
must be in the same directory as the executable image of lcecream.

LESSON
DEFINE
DEFINE
ASSIGN
SYN
SYN
SYN
SYN
SYN
SYN
SYN
SYN
SPECS
SPECS

ICECREAM
CHIPS:INTEGER
CONTINUE:BOOLEAN
CHIPS:=0
+ "DARK","LICORICE", "CHOCOI..A TE","COFFEE"
+ "BLUE","BOYSENBERRY"
+ "WHITE" ,"VANILLA.
+ "GREEN","LIME","PISTACHIO","MINT"
+ "RED", "STRAWBERRY","CHERRY"
+ "YELLOW","LEMON","BANANA"
+"MAGENTA", "RASPBERRY", "PEPPERMINT"
+ "CYAN","BLUEBERRY"
ANYORDER
EXTRA

ERASE
FCOLOR BLUE
SIZE 4
AT 510

F-7
Sample Lessons

WRITE ICE CREAM STORE
CHARSET ·GLoB.FNT•
CHARSET "STANDARD•

ASSIGN CONTINUE : = TRUE
LOOP CONTINUE

DO ASK
DO CONE
DO REP

ENDLOOP
;end of lesson level

UNIT ASK
SIZE 2
FCOI..OR YELLOW
AT 1515
WRITE What flavor do you want?
QUERY
RIGHT

RIGHT

CHIP
ASSIGN CHIPS:= 1
JUDGE CONTINUE
<<GREEN>>
FCOI..OR GREEN

RIGHT <<WHITE>>
FCOI..OR WHITE

RIGHT <<RED>>
FCOI..OR RED

RIGHT <<YELLOW>>
FCOI..OR YELLOW

RIGHT <<BLUE>>
FCOLOR BLUE

RIGHT <<MAGENTA>>
FCOI..OR MAGENTA

RIGHT <<CYAN>>
FCOI..OR CYAN

RIGHT <<DARK>>

WRONG

ENDQ

FCOI..OR DARK

FCOI..OR WHITE
ERASE 1310;2080
AT 1310
WRITE SORRY, we're out of <<s,response>>

Order anofhef flavor

SIZE 1

F-8
Sample Lessons

•• I
I
I
I
I
I ..
I
I
I
I
I .,
I

•• I
I
I
I
I
I ..
I
I
I
I
I
1•
I

UNIT CONE
DEFINE J,I,old_fcolor:INTEGER
ERASE
; Change colo,s for chocolate chip
IF CHIPS= 1 AND FCOLOR = DARK

BCOLOR DARK
FCOLOR WHITE

ENDIF
; Change background If fcolor dark
IF FCOLOR = DARK AND CHIPS= 0

BCOLOR WHITE
ENDIF
ASSIGN old_fcolor : = fcolor
SREF NONE,120

CIRCLE 360,120:100,0,180
CHARSET "GLOB.FNT.
IF CHIPS=1

MODE COMPLEMENT
AT 290,30
WRITE b c

b C C

C b C

c b
b c

MODE REPLACE
ENDIF
FCOLOR YELLOW

b

$$ Draw the icecreom.

LINE 460, 120;360,440 $$ Draw the cone.
LINE 260,120
SREF
ASSIGN
FOR

CHIPS:=0
l:=0,70,10
IF BCOLOR = WHITE

FCOLOR white
ELSE

FCOLOR DARK
ENDIF
MODE ERASE
FOR J:=0,8

$$ Change foreground color
$$ to background color for
$$ licking the icecreom.

CIRCLE 360,250:230-I-J,45, 135
ENDFOR
MODE COMPLEMENT
RORIGIN 360,160
FCOLOR old_fcolor $$ Change foreground color again
FOR J: = 160,440,20 $$ for the drop.

RAT -120,0

F-9
Sample Lessons

WRITE a
d

RAT -120,0
WRITE a

d
RORIGIN 360,J

ENDFOR
ENDFOR
CHARSET "STANDARD•
PAUSE ELAPSED,1
FCOLOR BCOLOR
MODE ERASE
SREF NONE,120
CIRCLE 450,120:100

SREF
CIRCLE
PAUSE
SREF
CIRCLE
PAUSE
ERASE

NONE,130
300,130:60
ELAPSED,1
NONE,470
360,440:60
ELAPSED,1

SIZE 10
MODE REPLACE
AT 20,240
FCOLOR RED
WRITE GULP!!
PAUSE ELAPSED,1
ERASE
AT 20,140
FCOLOR BLUE
WRITE BURP??
PAUSE ELAPSED,1

REP

3
315

$$ Toke bites out of cone.

UNIT
ERASE
SIZE
AT
WRITE I scream, You scream

We all scream for
SIZE 5
AT 1220
FCOLOR RED
WRITE ICE CREAM
SIZE 2

F-10
Sample Lessons

•• I
I
I
I
I
I ..
I
I
I
I
I .,
I

'• I
I
I
I
I
I
..
I
I
I
I
I
1•
I

AT
WRITE
QUERY
RIGHT

2020
Do you wait more?

YESIY
BCOLOR DARK
ERASE
AT 1320
SIZE 2
FCOLOR YEUOW
WRITE This time,

WRONG NOIN
ASSIGN CONTINUE:= FALSE
JUDGE STOP

ENDQ

ENDLESSON

Lesson Mem.1-Driver is a simple menu driver program that uses special function
keys to place an arrow beside the menu topic to be chosen. Notice also that
Mem1-Driverconsists of two VAX DAL modules that are compliled separately and
then linked together. This requires the use of global and external variables.

LESSON OM
I This lesson consists of two separately compiled modules:
I OM and UTILITY.

These should be compiled separately and then linked together.

This lesson demonstrates the use of the special function keys
to manage a menu of items on the screen.

!
DEFINE
DEFINE

whichone : integer, global
menuitems[6] : string

$$ which item was picked
$$ aray contains menu topics

; Menu topics.
ASSIGN menuitems(1] :="Building the Foundation"
ASSIGN menuitems[2] : = "Framing the Structure·
ASSIGN menuitems[3] : = "Roofing the Structure·
ASSIGN menuitems(4) : = "Wiring the Structure•
ASSIGN menuitems[S] :="Plumbing the Structure"
ASSIGN menuitems(6] : = "Finishing the Interior"

F-11
Sample Lessons

SET
SET
SET
ERASE

FKEY, TERMINATE
KEYPAD, NUMERIC
TYPEAHEAD, OFF

AT 300
SIZE 3
FCOLOR yellow

$$ will be using special function keys
$$ set the keypad to numeric mode
$$ typeahead is not allowed

WRITE CONSTRUCTION DEMONSTRATIONS
AT 610
SIZE 1
FCOLOR cyan
WRITE This is a collection of CBI lessons about various

construction topics. You may select a topic and
and then select a demonstration lesson.

These lessons are for demonstration purposes only.
DO pressret

DO mainmenu

AT 1810
WRITE You selected: <<s,whichone>>-<<s,menuitems[whichone)>>
PAUSE

UNIT mainmenu
ERASE
AT 300
SIZE 3
FCOLOR yellow
WRITE Construction Topics
FCOLOR cyan
AT 615
SIZE 1
WRITE Use the UP and DOWN arrow keys to select a topic,

and then press the SELECT key to select the topic.

DO getitem(menuitems, 10,35,30) $$ call driver routine
RETURN

ENDLESSON

F-12
Sample Lessons

•' I
I
I
I
I
I ..
I
I
I
I

'• I
I
I
I
I
I ..
I
I
I
I
I
1•
I

MODULE utility
I
I A separately compiled module which is part of the DM lesson.
I

Contains the following units:
GETITEM
PRESSRET

Global/External variables:
!
DEFINE whichone : integer, external
I
UNIT getltem (array,row,col,pcol)

This unit is a simple menu driver.

It requires four parameters:

array - name of the array containing the menu items
row - the row the menu items are to begin on
col - the column the menu items are to begin in

pool - the column to display the prompt In
(the prompt is"->·)

array[?) : string
row,col,pcol: Integer
z,num : Integer

DEFINE
DEFINE
DEFINE
DEFINE

SET
ASSIGN
ASSIGN
I

gotit: boolean

ECHO, OFF
gotit : = false

$$ TRUE if item has been selected

$$ don't echo input

num := dimax(array,1)

I First write out the menu
I

$$ NUM is the number of items to display

F-13
Sample Lessons

FCOI..OR cyan
FOR z := 1,num

AT (row+z-1)*100+col
WRITE <<s,array(z]>>

ENDFOR
I
! Now prompt and get an item
!
FCOI..OR yellow
AT (row-1)*100+pcol
WRITE ->
PROMPT ~
LOOP not gotit

INPUT *

F-14

TEST
VALUE

response
"[E04.J<EY]" $$ SELECT key pressed
IF (int(where/100) > = row) $$ check for valid choice
AND (int(where/100) <= (row+nt.m-1))

assign gotit : = TRUE
assign whichone : = int(where/100)-9

ENDIF
VALUE "[DNA.J<EY]" $$ DOWN arrow pressed

TEST int(where/100)
VALUE (row-1) .. (row+ ..,__,m-2)

AT int(where/100) *100 + pcol
MODE erase
WRITE ->
MODE replace
AT (int(where/100)+1)*100+pcol
WRITE ->

OTHER $$ pointer was at bottom of meru; move to top item
AT lnt(where/100)*100+ pcol
MODE erase
WRITE ->
MODE replace
AT row*100 + pcol
WRITE ->

ENDTEST
VALUE "[UPA.J<EY]" $$ UP arrow pressed

TEST int(where/100)
VALUE (row+1) .. (row+ run-1) $$ move pointer up one item

Sample Lessons

I
I
I
I
I ..
I
I
I
I

I

•• I
I
I
I
I
I ..
I
I,
I
I
I
1•

AT int(where/100)*100+pcol
MODE erase
WRITE ·>
MODE replace
AT (lnt(where/100)-1)*100+pcol
WRITE ·>

OTHER $$ pointer was at top of menu; move to bottom item

ENDTEST
ENDLOOP

ENDTEST

AT int(where/100)*100+pcol
MODE erase
WRITE ->
MODE replace
AT (row+num-1)*100+pcol
WRITE ->

SET ECHO, ON $$ tum echo back on
RETURN

' UNIT
DEFINE
DEFINE
I

This unit causes a message saying
Press RETURN to be printed

pressret
oldfcolor : integer
oldsizex,oldsizey : Integer

I Save old attributes.
!
ASSIGN oldfcolor : = fcolor
ASSIGN oldsizex : = sizex
ASSIGN oldsizey : = sizey
SIZE 1
FCOLOR yellow
AT 2360
MODE inverse
WRITE Press RETURN to continue
PAUSE
MODE normal
!
! Restore old attributes.
I
FCOLOR oldfcolor
SIZE oldsizex,oldsizey
RETURN

ENDMODULE

F-15
Sample Lessons

•• I
I
I
I
I
I ..
I
I
I
I
I

•1
I

I

..

..

•• I
I
I
I
I
I
..
I
'I
I
I
I
1•
I

G ossar

answer: a number or text string, expressed as a constant or a variable, that is an
argument to one of the instructions RIGHT, RIGHTV, WRONG, or WRONGV.
The author specifies possible answers, either right or wrong. (See RESPONSE.)

anticipated response: a student's response that matches one of the specified
answers. The author has anticipated that students will enter this response, and has
specified it as a right answer or as a wrong answer .

current record: a record in an external file at which control is positioned. The
current record is the record that is used in a file 1/0 operation.

current unit: a unit that is currently executing in a lesson.

fine coordinates: screen address coordinates that define a location on the
screen as one of 768 horizontal addresses (x-coordinates) and one of 480 vertical
addresses (y-coordinates).

graphics: pertaining to pictures or to drawing pictures. Graphics instructions in
DAL draw lines, circles, dots, boxes, arrows, and curves that can be combined into
pictures or used to emphasize text.

graphing: pertaining to plotting graphs. Graphing instructions define the screen
as a graph, plot points on the graph, and draw graphics whose addresses are points
on the graph.

keyword: a word with a specified meaning when it is used as an argument to a
DAL instruction.

module: a DAL lesson source file that is compiled apart from the source file con­
taining the lesson-level instructions.

Glossory-1

normalized coordinates: screen address coordinates that specify a location
on the screen as a proportion of the total horizontal distance (x-coordinate) and the
total vertical distance (y--coordinate).

permanent variable: a variable that is stored when execution of a lesson
ends. There is one set of permanent variables for each lesson.

response: anything the student enters from the keyboard. (See ANSWER.)

response-contingent: depending on the student's response. This term is gen­
erally used to describe an instruction or a sequence of instructions that is executed
only when a student enters a response that matches one of the specified answers.

response judging: the process of determining whether a response matches a
specified answer. Response judging also includes scoring, executing response-con­
tingent instructions, and the control logic that determines whether the question is
repeated so the student can enter another response.

restart variable: a variable that is stored when execution of a lesson 1s
stopped by the STOP instruction. There is a separate set of restart variables for each
student who executes a lesson.

row and column coordinates: screen address coonlinates that specify a
location on the screen as one of 24 rows and one of 80 columns.

student: anyone who executes a lesson.

student variable: a variable whose name is available to students when they
execute lessons.

system variable: a variable that is maintained by C.A.S. and is available to
any lesson.

unanticipated response: any student response that does not match one of
dle specified answers. The author has not anticipated this response .

Glossary-2

•• I
I
I
I
I
I ..
I

I

I
I
I
I ..
I
I
I
I
I .,
I

..
I.
I
I
I
1·

I ,.
I
I
I
I

I

A
ABS function, B-1
ACCNAME variable, C-8
ALT function, B-1
ANSCNT variable, C-4
Answer, 1-1, 4-1, 4-7

variable, 5-21, 8-8
ANTILOG function, B-1
ARCCOS function, B-1
ARCSIN function, B-1
ARCTAN function, B-1
ARCTAND function, B-1
Argument, 2-3
Arithmetic

expressions, 2-8
operators, 2-8

ASCII
function, B-1

ASSIGN instruction,~. 5-20, A-1
example, 5-18

AT instruction, 3-3, A-I
example, 3-9

Author, 2-1
AXES instruction, A-1

B
BACKUP instruction, 11-3, A-I
Baud rate, 1~37
BCOLOR instruction, 3-23, 12-9, A-1
BCOLOR variable, 1~32, C-1

I de

Boolean
expressions, 2-8, 5-7, 5-25, 5-33
operators, 2-8
variables, ~

BOX instruction, 1~2. 10-4, A-I
example, 3-4

BRANCH instruction, 11-8, A-I

C
Calling chain, 11-2
CANCEL instruction, 11-20, A-I
Case

in source code, 2-11
CCOLOR instruction, 12-8, A-I
CDUNIT instruction, 11-19, A-2
CHAR function, B-1
CHAR instruction, A-2
Character

cell, 3-1
Character size, 3-18
CHARSET instruction, A-2
CHARSET variable, C-1
CHARSETLD function, 8-2
CHECKERR

blocks, 9- I 6
checking ERRORV, 9-16
instruction, 9-16, A-2

CIRCLE instruction, 1~2. 1~5. 10-6,
A-2

example, 3-7
CLIP instruction, A-2
CLOSE instruction, 13-8, A-2

lndex-1

Color, 3-23, 5-15, 10-37 Data types, 2-4, 5-18

-:
Color capabilities BOOLEAN, 2-5

tenninal models, 7-4 constants, 2-7
Color constant names, 12-5 INTEGER, 2-4
Color lessons on B & W tenninals, REAL,2-4

12-10 RECORD,2-5
Color management system, 12-1 STRING, 2-4

example, 12-1 I DATE variable, C-9 I Color map, 12-3 DECmate II and Ill tenninals
default contents, 12-4 color capabilities, 7-5

Color palettes, 12-3 VAX DAL on, 7-2
Color specifications, 12-2 DECTALK instructions, A-2 I DAL-provided, 12-4 DEFINE instruction, 2-4, 2-7, 5-5, A-3
Color table, 12-5 example, 5-26
Comment line, 2- I I , 2-12 fixed-length strings, 13-16

I Con:ipiler, 6-1, 6-7 record structures, 13-16
errors, 6-3 DEG function, B-2
switches, 6-7 DELETE function, B-2

COMPLEMENT mode, I 0-23 DELETE instruction, 13-8, A-3

I Condition handler, 11-16 indexed files, 13-24
canceling a, 11-20 Delimit character, 4-2, 9-7
condition unit, 11-19 DELIMIT instruction, A-3
declaring a, 11-16 DELTA instruction, A-3 I example, 11-21 DET function, B-2
signaling a, 11-20 DIMAX function, B-2 .. Conditional transfer of control, 11-8 DIMS function, B-2

Constants, 2-7 Display modes, 3-2, 3-24, 5-15, 10-20
data types, 2-7 Displaying
names, 2-10 variables, 3-15
string, 8-14, 9-10 DO• instruction, A-3

I CONTROL instruction, A-2 DO instruction, 2-2, 5-2, 5-6, 5-18,
Control logic 5-21, A-3

conditional transfer of control, 11-8 example, 5-27
instructions, 11-1 parameter passing, 14-3 I unconditional transfer of control, 11-3 Dot indentation, 2-12, 2-13, 5-7, 5-18

Conventions, iii response-judging block, 4-2
CONVERT instruction, 8-12, A-2 WRITE instruction, 3-15
COS function, B-2 DOT instruction, 10-2, 10-10, A-3 I COURSE variable, C-8 example, 3-7
CUNIT variable, C-8 DTSTA TUS variable, C-9
Current

location, 3-11, 3-13, 10-34 E I record, 13-9
ECHO variable, C-9 text size, 3-13, 5-11, 5-13

CURVE instruction, 10-2, 10-7, A-2 ELAPSED variable, C-9

I ELSE instruction, 5-29, 5-30, A-3

D ENDFOR instruction, A-3
ENDIF instruction, 5-29, A-3

Data records, 13-2 ENDLESSON instruction, 5-40, A-3

•1 Data type conversion, 5-19, 5-21 ENDLOOP instruction, 5-7, A-3

lndex-2

I

•• I
I
I
I
I
I
..
I
I
I
I

%ENDMACRO instruction, 15-2
ENDMODULE instruction, A-3
ENDQ instruction, 4--2, A-4
ENDRECORD instruction, A-4
ENDTEST instruction, 5-34, A-4
EOF function, B-2
ERASE instruction, 3-14, 10-19, A-4

example, 4--7
ERASE mode, 10-23
Errors

compiler, 6-3
run-time, 6-5

ERRORV variable, 9-6, 9-14, C-4
checking the, 9-16
error codes, 9-14
expressions and, 9-18
interpretation, 9-18
multiword responses, 9-21
setting of the, 9-15

EVAL function, B-2
Execution

VAX/VMS run-time library routines,
14--6

VAX/VMS system services, 14--7
EXP function, B-2
Expressions

arithmetic, 2-8, 5-24
Boolean, 2-8, 5-7, 5-25
in responses, 8-9, 8-13

External variables, 2-5
example, F-11

F
FCOLOR instruction, 3-23, 12-7, A-4

example, 5-20
FCOLOR table_sloLnumber

instruction, 12-7
FCOLOR variable, 10-32, C-1

example, 10-34
Feedback, 4--5
File 1/0, 13-1

current record, 13-9
data fields, 13-2
data records, 13-2
file structures, 13-3
indexed files, 13-15
random files, 13-11
record structures, 13-16
sequential files, 13-8

File input/output
See also File 1/0

File input/output instructions, 13-6
CLOSE, 13-8
DELETE, 13-8
FIND, 13-7
GET, 13-7
OPEN, 13-6
PUT, 13-7
UPDATE, 13-7

FIND function, 13-9, B-3
FIND instruction, 13-7, A-4

indexed files, 13-20
random files, 13-13

Fine coordinates, 3-4, 3-10
odd-even pairs, 3-5

FOR instruction, 5-25, A-4
example, 5-23

FUNCT instruction, A-4
Function, 2-8
Function calls

parameter passing with, 14--3

G
OAT instruction, A-4
GBOX instruction, A-4
GCIRCLE instruction, A-4
GCURVE instruction, A-4
GDOT instruction, A-4
GET instruction, 13-7, A-5

indexed files, 13-17
random files, 13-12
sequential files, 13-9

GIGI (VKIOO) terminal
color capabilities, 7-5
VAX DAL on a, 7-2

GLINE instruction, A-5
Global variables, 2-5

example, F-11
GOAL instruction, 5-24, A-5
GOAL variable, 5-24, 5-32, 9-2, C-6
GORIGIN instruction, A-5
GORIGINX variable, C-1
GORIGINYvariable, C-1
GRAFSTAT variable, C-2
GRAPH instruction, A-5
Graphics, 1-2

relative, 10-23
Graphics instructions, I 0-1

lndex-3

Graphics system variables, 2-6, C-1
GVECTOR instruction, A-5
GWHEREX variable, C-2
GWHEREY variable, C-2

H
HBAR instruction, A-5
Hue/Lightness/Saturation (HLS) method,

12-3

IDEN function, 8-3
IF instruction, 5-25, 5-29, 5-30, 5-31,

5-32, A-5
example, 10-34

%INCLUDE instruction, 15-4
INCLUDE instruction, A-5
Indexed files

access to records, 13-5
file 1/0, 13-15
file structure, 13-5
record structures, 13-16

INPUT instruction, 8-15, A-5
JNSTRING function, 8-3
Instruction, 2-2
INT function, 2-8, 8-3
Integer variables, 5-6
Integers, 2-4
INTERRUPT variable, C-9
INV function, 8-3
INVERSE mode

example, 5-15
JORESULT variable, C-10

values, 11-18
JS function, 8-3
ITALICS instruction, 10-16, A-5
ITALICS variable, C-2

J
JUDGE instruction, 5-21, 5-38, 8-6,

8-8, 9--10, A-5
example, 9--10

Judging student responses
See Response

lndex--4

K
KEYPRESSED variable, C-11
Keywords, 2-3

L
LATENCY variable, C-4
LEN function, 13-14, 8-3
LENGTH variable, C-5
Lesson, 1-1, 1-4,2-1

level, 2-1, 5-2
name, 2-9
transporatbility, 7-1
use of function keys in, 7-8

Lesson flow, 11-1
conditional transfer of control, 11-8
unconditional transfer of control, 11-3

LESSON instruction, 5-2, 5-4, A-6
Lesson structure, 5-2
Lesson-level variables, 2-10, 5-5
LINE instruction, 10-2, 10-10, A-6

example, 3-8
Line speed, I 0-37
Linking, 6-1

VAX DAL run-time library, 6-9
LIST/NOLIST compiler switch, 6-8
LN function, 8-3
LOG function, 8-3
LOG instruction, A-6
LOOP instruction, 5-7, 5-25, 5-38, A-6

example, 5-23
LOWER function, 8-3
Lowercase, 2-11
LSCALEY instruction, A-6

M
Machine error tolerance

SPECS MACHTOL, 8- I I
%MACRO instruction, 15-2
Macros, 15-1

with parameters, 15-3
MAP instruction, 12-10, A-6
MARKUP instruction, 4-5, A-6

example, 4-7
MARK Y instruction, A-6

J
I
I
I
I
I
I

..
I
I
I
I

I

••
MATCH instruction, A-6 OPEN instruction, 13-6, A-7
MGRAPH, ENDMGRAPH instruction, indexed files, 13-15

A-6 random files, 13-11
MLOAD instruction, A-6 sequential files, I 3-8

I, MODE instruction, 3-24, 3-26, 5-15, Operators
10-20, A-6 arithmetic, 2-8

example, 3-12, 10-34 Boolean, 2-8, 5-33

I
system constant, 3-26 relational, 5-32

Module, 2-2 OTHER instruction, 5-34, A-7
names, 2-9 OUTLOOP instruction, A-7

MODULE instruction, A-7

I
MPLOT instruction, A-7 p

N Parameter passing, 14-1
examples, 14-4

I
NAME variable, C-11 from DAL routines, 14-2
Named constants, 2-7 to DAL routines, 14-1

example, 10-19 PATTERN instruction, 10-12, 10-15,
Naming A-7

I constants, 2-10 example, 10-19
units, 2-9 PAUSE instruction, 4-5, 4-6, A-7
variables, 2-10 example, 4-7

I
Nested queries, 9--11 Permanent variables, 2-6
NNO variable, 9--2, C-6 PICFILE function, 8--4

default update, 9--4, 9--5 Professional terminal

.. NOISE instruction, 8-5, A-7 color capabilities, 7-5
Noise words, 8-5 VAX DAL on a, 7-3
NOK variable, 9--2, C-6 Prompt character, 4-2, 5-10, 5-14, 8-14

default update, 9--4 PROMPT instruction, 5-14, 8-14, A-7
NOKFIRST variable, 9--2, C-7 example, 8-9

I NORMAL mode PROMPT variable, C-5
example, 5-15 PUBLISH compiler switch, 6-8

Normalized coordinates, 3-8, 3-11 PUT instruction, 13-7, A-7
NOWORD instruction, A-7 indexed files, 13-19

I NUMBER function, 5-18, B-3 random files, 13-13
NUMTRIES variable, 9--2, 9--1 I, C-7 sequential files, 13-10

default update, 9--3

I
example, 9--11 Q
passing to another unit, 9--3

QELAPSED variable, 9--6, 9--8, C-5

0 QLENGTH variable, 9--6, 9--7, C-5
QUERIES variable, C-7

I OBJ/NOOBJ compiler switch, 6--8 QUERY blocks
Odd-even pairs, 10-10 See also response-judging
OKWORD instruction, A-7 nested queries, 9--11

I
OLD_ VERSION compiler switch, 6-8 QUERY instruction, 4-2, A-8
ON instruction, I 1-16, A-7 example, 5-11, 8-9
ONCHANNEL variable, C-11
ONCODE variable, C-12 ,. ONKEYvariable, C-12

lndex-5

I

R
RAD function, B-4
Rainbow tenninal

color capabilities, 7-5
Random access to records, 13-4
Random files

access to records, 13-4
file 1/0, 13-11
structure, 13-4

RANDOMN function, B-4
RANDOMP function, B-4
RANDOMU function, B-4

example, 5-20
RAT instruction, 10-23, A-8
RBOX instruction, 10-23, A-8

example, I 0-30
RCIRCLE instruction, 10-23, A-8
RCURVE instruction, 10-23, A-8
ROOT instruction, 10-23, A-8
REAL function, B-4
Real numbers, 2-4
Record structures, 13-16
REDO instruction, A-8
REGIS instruction, A-8
Related documents, ii
Relative graphics, 10-23
RELOOP instruction, A-8
REPLACE function, B-4
Response, 1-1, 4-1, 4-7

extra words, 4-7, 8-2
modifying display of a, 7--tl
precise matching, 8-3
punctuationin,4-7,8-3
spelling of, 4-7, 8-2
student variables, 8-9
tolerance of machine error in, 8-3
unit conversion in, 8-1
units of measure, 8-3, 8-12
uppercase and lowercase, 4-7, 8-1
use of system functions in, 8-2
variables used in, 8-2
word order, 4-7, 8-1

Response judging, 1-2, 1-4
default sequence, 9-3
modifications, 5-21, 8-1, 8-7
noise words, 8-5
QUERY blocks, 4-1

lndex--6

Response judging (Cont.)
specifications, 4-7, 5-9, 8-1
specifying answers, 5-18
synonyms, 8-4

Response processing
error detection with ERRORV, 9-14

Response scoring
system variable update, 9-3

RESPONSE variable, 5-18, 9-tJ, C-5
default update, 9-7

Response-contingent instructions, 4-1,
4-5, 5-8, 5-18, 8-7

Response-judging block, 4-1, 4-2, 5-8
Response-related variables, 9-5
RESPONSEV variable, 5-38, 8-9, 8-13,

9-7,C-5
default update, 9-7

Restart variables, 2-t,
RESTORE instruction, 7-13, A-8
RETURN instruction, 11-3, A-8
REWIND function, 13-IO, B-4
RIGHT instruction, 4-4, A-8

example, 5-11
noise words, 8-5
synonyms, 8-5

RIGHTV instruction, 5-19, 5-21, 8-8,
A-9

tolerance, 8-11
units, 8-12, 8-13

RLINE instruction, 10-23, A-9
RMSSTATUS variable, C-12
RORIGIN instruction, 10-23, 10-24,

A-9
RORIGINX variable, C-2
RORIGINY variable, C-2
ROTATE instruction, 10-23, 10-28, A-9
ROUND function, B-4
Row and column addresses, 3-2, 3-3,

3-IO
RSIZE instruction, 10-23, 10-26, A-9

example, 10-27
RSIZEX variable, C-2
RSIZEY variable, C-2
Run-time errors, 6-5
RVECTOR instruction, 10-23, A-9
RWHEREX variable, C-3
RWHEREY variable, C-3

•• I
I
I
I
I
I

..
I
I
I
I
I

•1
I

•• I
I
I
I
I
I ,.
I
I
I
I
I
1•
I

s
SATISFIED variable, 9-3, C-7

default update, 9-3
passing to another unit, 9-3

SAVE instruction, 7-1 I, A-9
Saving and restoring display

attributes, 7-11
SCALEY instruction, A-9
SCORE instruction, 5-6, A-9

example, 5-23
SCORE UPDATE instruction, 9-5, A-9
SCORE variable, 2-8, 5-22, 9-3, C-7

default update, 9-4
SCORES variable, 5-22, 5-32, 9-3, C-8

default update, 9-4
Scoring system variables, 9-2
Screen addresses, 3-1

conversion, 3-11
fine coordinates, 3-4, 3-10

example, 10-19
normalized coordinates, 3-8, 3-11
row and column coordinates, 3-2,

3-10
syntax, 3-1 I

SEED instruction, 5-20, A-9
Sequential access to records, 13-3
Sequential files

access to records, 13-3
file 1/0, 13-8
structure, 13-3

SET DELETE instruction, 7-10
SET ECHO instruction, 7--6, A-10
SET FKEY instruction, 7-8, A-10
SET HLS instruction, 7-8, A-IO
SET KEYPAD instruction, 7-10, A-IO
SET MAXCOLORS instruction, 7-7,

12--6, 12-11, A-IO
SET TYPEAHEAD instruction, 7--6
Setting terminal characteristics, 7-1
Shading figures, I 0- I 3
SIGN function, B-4
SIGNAL instruction, I 1-20
SIN function, B-4
SIZE instruction, 3-13, 3-18, 5-13,

A-10
example, 3-12

SIZEX variable, I 0-32, C-3

SIZEY variable, 10-32, C-3
SLIDE instruction, A-IO
Source file, 6-1
SPEAK instruction, A-10
Special function keys, 7-8
SPECS instruction, 8-1, A-IO

example, 9-9
SPECS MACHTOL instruction, 8-1 I
SPECS NOCONV instruction in only

some of their responses, you can,
8-12

SPECS PRECISE instruction, 8-9
SQRT function, B-4
SREF instruction, 10-13, A-I I
STOP instruction, A-11
STRING function, B-4
Strings,2-4
Student, 1-1, 2-1
Student response

See Response
Student variables, 2-5, 8-2, 8-9
SUBSTR function, B-5
SYN instruction, 8-4, 8-5, A-11
Synonyms, 8-4, 8-5
Syntax, 2-11

graphics instructions, 3-4, 3-7
screen addresses, 3-11
text block, 3-15

System constants
mode, 3-26

System variables, 2--6
graphics, 2--6, 10-31, 10-34, C-1
miscellaneous, C-8
response-related, 2--6, C-5

T

saved in nested queries, 9-13
scoring, 2--6, 9-1, C-7
use in lessons, 9-9

TAN function, B-5
Terminal management, 7-1

instructions, 7--6
Terminal models, 7-1

color capabilities, 7-4
DAL support requirements, 7-2
screen size differences, 7-3

TERMSTAT variable, C-12

lndex-7

TEST instruction, 5-25, 5-34, A-11
example, 9-11

Text
block, 3-15
size, 3-2, 5-9, 5-13

TIME variable, C-12
TIMEOUT variable, 9-7, 9--8, C-6
TRAN function, B-5
TRAY instruction, A-11
TROTATE instruction, 1~17, 1~18,

A-II
example, 1~19

TSA variable, C-12

u
Unit, 1-4, 2-1, 2-2, 5-2, 5-4

calling chain, 11-2
level, 5-4
names, 2-9

UNIT instruction, 5-2, 5-4, 5-11, 5-20,
A-II

Unit-level variables, 2-10, 5-26
Units of measurement, 8-12
UNITS/NOUNITS compiler switch, 6-7
UPDATE instruction, 13-7, A-11

indexed files, 13-20
UPPER function, B-5
Uppercase, 2-11
Usage characteristics, 2-5

EXTERNAL, 2-5
GLOBAL,2-5
PERMANENT, 2-6
RESTART, 2-6
STUDENT, 2-5, 8-9

USERTYPE variable, C-13

V
VALUE instruction, 5-34, A-11

example, 9-11
Variables, 2-3, 5-28

BOOLEAN, 5-6
definition of, 5-6
EXTERNAL, 2-5
GLOBAL,2-5

lndex-8

Variables (Cont.)
INTEGER, 5-6
lesson-level, 2-10, 5-5, 5-38
names, 2-10
PERMANENT, 2-6
RESTART, 2-6
scoring, 5-22
STUDENT, 2-5, 8-9
system, 2-6
unit-level, 2-10, 5-26, 1~34
usage characteristics, 2-5
user-defined, 2-3, 5-18

VAX DAL color management system,
12-1

VAX DAL compiler, 6-1
See also compiler

VAX DAL macro preprocessor, 15-1
VAX DAL run-time library, 6-9
VAX/VMS

linker, 6-9
run-time library routines, 14-6
system services, 14-7

VBAR instruction, A-11
VECfOR instruction, 1~2. 1~10,

A-II
example, 3-7

VT 125 tenninal
color capabilities, 7-5
VAX DAL on a, 7-2

VT240 and VT24 I tenninals
color capabilities, 7-5
VAX DAL on, 7-2

w
WEIGHT instruction, A-12
WHEN instruction, 11-10, A-12

disabling a, 11-11
scope, 11-12

WHERE variable, 1~32, C-3
example, 1~34

WHEREX variable, 1~32, C-4
WHEREY variable, 1~33, C-4
WORDS variable, C-6
WRITC instruction, 5-17, 5-28, A-12

example, 5-32

•• I
I
I
I
I
I

..

I
I

•1
I

•• I
I
I
I
I
I
..
I
I
I
I
I
1•
I

WRITE instruction, 3-3, 5-17, A~12
example, 3-9, 4-7
response-contingent, 4-7, 5-13, 5-18
text blocks, 3-14, 5-37
variables, 3-15

string format, 3-18, 5-17, 5-20
tabular format, 3-18, 5-16,8--9

WRONG instruction, 4-4, A-12
example, 5-11, 5-18

WRONGV instruction, 5-19, 8--8, A-12
tolerance, 8--11
units, 8--12

lndex-9

•• I
I
I
I
I
I ..
I

•• I
I
I
I
I
I

.-:
I
I
I .l!!

£: ; r
0

I l
I
19i
I I

VAX DAL Author's Guide
AA-K763C-TE

READER'S COMMENTS

Note: This form is for document comments only. DIGITAL will use comments submitted on this form
at the company's discretion. Problems with software should be reported on a Software Performance
Report (SPR) fonn. If you require a written reply and are eligible to receive one under SPR service.
submit your comments on an SPR form.

Did you find errors in this manual? If so. specify by page.

Did you find this manual understandable. usable. and well-organil.Cd'! Please make suggestions for
improvement.

Is there sufficient documentation on associated system programs required for use of the software
described in this manual? If not. what material is missing and where should it be placed'!

Please indicate the type of user/reader that you most nearly represent.
O Assembly language programmer
O Higher-level language programmer
O Occasional programmer (experienced)
O User with lillle programming experience
O Student programmer
O Non-programmer interested in computer concepts and capabilities

Nome

Orgooization

Street

City State

Dale

ZipCode
orCoultry

Do Not lea - FOid Here a'd SIOl)le·•···

Ill 111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 33 MAYNARD. MA

Postage Will Be Paid by: ~n~aoma
Software Publications
200 Forest Street MR01-2 / L12
Marlborough, Massachusetts 01752

No Postage
Necessary
If Mailed In The
United States

•• I
I

I
I ..
I
I
I
I

•1
'I

'• I
I
I
,,

I
I ..
I
I
I
I
I
1•
I

DECLIT AA VAX K763C

VAX. DAL authoT ' s guide

DECLIT AA VAX K763C

VAX. DAL authoT ' s guide

+ ~ ----+----------1

1

SHREWSBURY LIBRARY
Digital Equipment Corporation
333 South Street SHR1·3 / G18

Shrewsbury, MA 01545
(DTN) 237-3271

5111EWSBURY uaRARY
DIGITAL EQUIPIENT C()RPORAll)M

SHR131G18
OlN237-3'00

M-«JIDC..TE
..._.lftU.a.A.

mnmnamn
•0190528*

I

I ..
I
I
I
I
I .,

