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UNIT 9
DIGITAL DESIGN

INTRODUCTION

In this unit, you are going to learn how to design digital circuits. You will
apply your knowledge of digital circuit operation and application to
develop a digital circuit to solve a particular problem or meet a particular
need. First, we will show you how to establish a design criterion for the
equipment under consideration. Then we will consider procedures for
designing both combinational and sequential logic circuits. These step-
by-step procedures will lead you from a problem definition to a com-
pleted electronic circuit. The emphasis will be on implementing your
design with modern integrated circuits. A variety of design examples
will be given to show you some of the many applications for digital
circuits,

Refer to the unit objectives that completely define the content and pur-
pose of this unit. Then go to the unit activity guide and follow the steps
indicated there to complete this unit,

UNIT OBJECTIVES

When you complete this unit you will be able to:

1. State the major criterion for the aesign of digital circuits.

2. List several design criteria for digital circuits.

3. Define a digital design problem and write a set of specifications for
the circuit required to solve that problem.

4. Develop a truth table defining the circuit design.

5. Write the logic equation expressing the operation of a combinational
logic circuit from the truth table.

6. Use Karnaugh maps to minimize Boolean equations.

7. Select the appropriate circuitry to implement the design equations.

8. List several important trade-offs regarding the selection of SSI, MSI,
ROMs, and PLAs.

9. Design a combinational logic circuit for a given application.

10. Design special counter and controller circuits for implementing se-

quential logic applications.
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Completion
Time

Play record 7, side 1
Read section Design Criteria
Answer Self Test Review questions 1 and 2.

Read section Combinational Logic
Circuit Design.

Answer Self Test Review questions 3 and 4.
Perform Experiment 23,

Read section Sequential Logic Circuit Design.
Answer Self Test Review Question 5.
Perform Experiment 24,

Complete Unit Examination.
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DESIGN CRITERIA

The first step in designing a digital circuit is to define what the circuit
must accomplish. You can do this by outlining the circuit specifications.
These details will accurately specify the purpose of the circuit and the
desired performance. The remaining design steps will convert this set of
specifications into a practical working circuit that meets the design
objectives. In designing the circuit there must be some standard for
evaluating your design. In other words, there must be some criterion for
determining whether you have adequately met your design objectives. In
digital equipment design, as in the design of almost any type of electronic
equipment, the primary design criterion is to achieve maximum per-
formance for the lowest cost. This broad general criterion is made up of
many parts which define what we mean by maximum performance and
lowest cost. Together these make up the design criteria for the equip-
ment. Let’s see what each of these important considerations mean.

Maximum Performance

The term maximum performance can have a variety of meanings de-
pending upon the circuit or equipment being designed. The definition of
maximum performance therefore is a direct function of the application.
Some of the factors that make up maximum performance include
operating speed, accuracy, size, power consumption, reliability, and the
number of unique features.

If we are going to market this equipment then we want to make it as
desirable as possible in terms of cost, performance, and unique features.
We want it to be marketable and competitive. These are only a few of the
factors that define what maximum performance is. Each of these must be
defined by itself to match the specific application. As you can see, what
we want to do is to develop the best piece of equipment possible for our
investment in design and production time and money.

Lowest Cost

Our design objective is to achieve the maximum performance possible for
the lowest cost. The cost means both materials and time. A low cost
design will have fewer parts. Fewer parts means a smaller printed circuit
board on which to mount them and lower cost. The fewer the number of
parts in a design the greater the reliability.

| 9-5
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Another important factor is design and production time. The cost of any
product includes the time required to design and produce it. The faster
and easier the circuit is to design, the less it costs. In addition, the fewer
the number of hours required to construct and test that unit the lower its
cost.

Trade- Offs

A design that achieves maximum performance for lowest cost is an
efficient design. The time and money spent in developing the unit is
minimal while we achieve the benefit of maximum performance. By
letting our criterion of maximum performance for lowest cost be our
primary design goal, you must realize that in practical situations trade
offs are generally necessary. This means it is not always possible to
achieve the very highest of performance for the lower cost. As a general
rule, high performance costs more money. If very high performance
standards must be met, then we must accept the fact that the penality we
will pay is higher cost. For example, to achieve the highest operating
speed, higher cost digital integrated circuits must be used. This higher
speed also generally requires a higher power consumption. Therefore, to
achié¢ve the highest possible speed, we are sacrificing cost and power
consumption. Increased accuracy generally requires higher quality cir-
cuits and in some cases a greater quantity of circuitry. Again, higher
costs, higher power consumption will be sacrificed. Increasing the
number of components also increases the production time and reduces
the reliability. High performance designs in addition, are generally more
sophisticated and complex. This, in turn, means a greater design time.
Therefore, an attempt to achieve maximum performance will invariably
increase cost. For that reason you must be ready to trade off higher
performance and features in order to obtain a lower cost. The design
procedure is basically one of juggling the performance requirements and
the costs to achieve a desired performance level for the lowest possible
cost. You are seeking an efficient, middle-of-the-road solution.

There are many situations where it is desirable to select high performance
as the single, most desirable design characteristic. It may be absolutely
necessary to achieve the desired level of performance regardless of the
cost. In another application, just the opposite may be true. Instead of
optimizing your design for high performance you might want to
optimize it for lowest possible cost. In order to achieve the low cost, high
performance and features will naturally be sacrificed.

While optimizing your design for maximum performance or lowest cost
is sometimes necessary, most design projects will be in that middle
ground where your job will be to balance performance and cost to achieve
an acceptable level in both.
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Self Test Review

1. The primary design criterion for digital circuits is to achieve highest
for lowest

2. List five characteristics of digital equipment that are usually affected

by the trade-offs made to achieve an optimum design.

a.

b
¢,
d
e

Answers

1. performance, cost

2. a. cost
b. speed
C. accuracy
d. power consumption
e. reliability

Also, size, weight, features, design and
production time.
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COMBINATIONAL LOGIC CIRCUIT DESIGN

In this section we are going to give you a step-by-step procedure that can
be used to design virtually any combinational logic circuit. The proce-
dure will lead you from the basic problem definition to the completed
circuitry using modern integrated circuits. The steps in this design pro-
cedure are:

Problem definition

Truth table development

Writing logic equations

Minimizing the logic equations

Selecting the circuitry and implementing the design

ol ol

Each of these steps will be described in detail. Design examples will be
used to illustrate these steps. In addition, you will learn an important
technique for minimizing logic equations. This technique involves the
use of a Karnaugh map. This is a method of putting the logic equations
into a graphical form that permits rapid circuit minimization without the
use of Boolean algebra. Finally,a variety of design problems will be given
to permit you to practice this procedure yourself. Now, let's take a look at
the steps in the design procedure.

Problem Definition

The first step in the design of any combinational logic circuit is complete
problem definition. This means that you must thoroughly identify all
functions of the circuit. You will know from the specific application what
operations the circuit must perform. Your initial job will be to outline
them completely.

The best and most thorough method of problem definition is to write outa
complete description of the application and the desired functions to be
accomplished. While it may seem unnecessary to put this information in
writing, by doing so it forces you to completely identify and explain what
is going to take place. In this description you will identify the types and
number of input signals to the circuit. You will also identify the type and
number of outputs to be produced by the circuit. Make your circuit
description as complete as possible. The exact form of the description is
not important. It can be a descriptive narrative in paragraph form. Al-
ternately it can simply be a list of inputs, outputs and functions to be
performed.
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Once you have completed the functional description of your circuit,
make up a table of specifications. This table of specifications will dup-
licate some of the information contained in your circuit description.
However, the information will be more concisely stated. The specifi-
cations will list number and type of inputs, number and type of outputs,
desired operating speed, desired power consumption, a cost objective, a
size and weight objective, types of integrated circuits to be used, interface
requirements for both the inputs and outputs including logic level
specifications, and any other information pertinent to the operation of the
circuit. Regardless whether your design is to be a circuit within a larger
system or a complete digital system itself; the functional description,
problem definition and complete set of specifications will give you all of
the information necessary to complete the design.

The process of writing down the circuit description and its specifications
is a valuable excercise. It forces you to think through the problem and to
identify it as carefully as possible. In preparing this information you will
discover many things that you may not have thought of initially. Problem
definition is more than just a busy work exercise. It is a vital first part of
the design process and the success or failure of the design can be traced
almost directly to the thoroughness of this problem definition.

Another benefit of complete problem definition and specification out-
lining is that you will have a complete set of documentation for your
circuit or system that can be used later in preparing instructional manu-
als for the equipment, engineering reports, journal articles, and other
requirements for this information.

To illustrate this concept of problem definition, and the other steps of a
design procedure, we are going to take a typical design example and
follow it through each of the design steps. A circuit example will be a
simple one to start with in order to help you easily grasp the concepts
involved. Later, several more detailed examples will be given. In addi-
tion, practice problems are provided to permit you to practice these steps
yourself.

Example Problem. The design objective is to develop a combinational
logic circuit that will monitor a four bit binary word and generate a binary
1 output signal when any one of the six invalid four bit states in the 8421
BCD code occur.

Specifications. The detailed specifications for the circuit described above
are as follows:

1. Four bit parallel binary input word

2. Signal output that will be a binary 1 state when any one of the six
invalid BCD code numbers occur.
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3. Use TTL integrated circuitry with standard TTL logic levels of binary
0 = +0.4 volts and binary 1 = +3.5 volts.

4, Speed of operation: Propagation delay of this circuit shall be less
than 100 nanoseconds. In other words, the output will become binary
1 in 100 nanoseconds or less from the time the input code is any one
of the six invalid BCD values.

5. Minimize cost, size and power consumption. It is desirable to have
the entire circuit contained within a single dual inline package IC.

Truth Table Development

The next step in the design procedure is to convert your problem descrip-
tion into a truth table. The truth table as you will recall is a chart that
completely identifies all possible input combinations and the corres-
ponding logic output states. The truth table completely defines the opera-
tion of the circuit, The truth table can be developed directly from your
problem description and specifications. '

The first step in developing the truth table is to determine the number of
inputs to the logic circuit. This, of course, is a function of the application
and this information should have been defined in the problem de-
scription. The number of inputs will determine the maximum number of
input states that can occur with this number of variables. The total
number of states that can occur is equal to 2" where n is the number of
inputs. For example, if you have defined four circuit inputs, there are a
total possible number of 2% = 16 different states that can occur. Depend-
ing upon the application, all or possibly only some of the total number of
possible states may occur. In the problem description these should be
identified.

Begin the construction of the truth table by writing down all possible
binary input states. You can do this by simply listing the binary numbers
from zero through the maximum upper limit which is a function of the
number of input states. For four inputs and a maximum of 16 possible
states, you will simply list all four bit binary numbers 0000 through 1111
in sequence. This completely defines all possible input states.

In columns adjacent to the input states in the table, record the output
variables specified by the problem. In these columns, identify the desired
output states for each input combination. If some of the input states are
not used, identify them as being invalid or “don’t care” states even
though they are not used or needed.
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Figure 9-1 shows the truth table for the BCD invalid code detector. The
input is a parallel four bit word. We label each of the input bits with a
2 ] , h 2 INPUTS |OUTPUT
letter for identification. Remember that any input lettering or numbering
scheme can be used to suit the application. Short mnemonic names nees F
designating the signal or its function can be used. Alpha-numeric combi- 0000 0
nations can also be used. For this application, the letters A, B, C, and D are 0001 0
adequate. The output of the circuit is designated F. This is the logic signal 0010 0
that will be a binary 1 if an invalid code is detected. 0011 0
0100 0
Notice in the truth table that all sixteen possible combinations of four bits 0101 0
are listed. The first ten states 0000 through 1001 are the valid 8421 BCD 0110 0
codes. Since these are valid, the output F will be binary 0. For the inputs 53 35 0
1010 through 1111, the output F is binary 1 signaling an invalid code. 1000 0
There are no unused or “don’t care” states. The truth table completely 1001 0
defines the operation of the circuit. 1010 1
While our example here has only a single binary output, other combina- i l: :] :, :
tional logic circuits may have multiple outputs. In this case the truth table 1101 1
will define these as well. A separate column for each output will be 1110 )
provided in the truth table. 1111 1
Figure 9-1

Develop the Logic Equations

The next step in the design process is to write the Boolean logic equations
from the truth table. This will put the logic function into a form where it
can be manipulated with Boolean algebra. This will allow you to reduce
the logic equation using Boolean techniques and thus minimize the
amount of circuitry required to implement it. For some applications it
may not be necessary to minimize the equation with Boolean algebra.
Instead the equation will simply be used as a guide in implementing the
function depending upon the types of circuits to be used.

To write the logic equation from the truth table, you observe the outputs
column in the truth table and write a product term of the inputs for each
output where a binary 1 state occurs. The result will be a sum-of-products
logic equation. This process will lead to a single Boolean equation for
each output,

Observing the BCD invalid code detector truth table in Figure 9-1 you can
write the output equation.

F=ABCD+ABCD+ABCD+ABCD+ABCD+ABCD

At this point it is possible to implement the Boolean equation directly
with logic circuits. AND and OR gates can be combined to perform this
function. However, in most cases it is desirable to use Boolean algebra or
other means to reduce the equation to a simpler form. This can have the

Truth table for BCD invalid

code detector.

9-11
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result of minimizing the number of gates and integrated circuit packages
used in a design. Minimization generally leads to lower cost, smaller size,
and reduced power consumption.

Circuit Minimization

By using the Boolean algebra techniques described in a previous unit, the
logic equations you developed from the truth table can be reduced.

Shown below is the step-by-step procedure for using Boolean algebra to
minimize the logic equation developed in the previous step. Keep in
mind that this is only one of several approaches that can be used. De-
pending upon how you group the various logic terms, the individual
steps may be different. In any case, your resulting reduced logic equation
should be the same.

F=ABCD+ABCD+ABCD+ABTCD+ABCD+ABCD
Reduce by factoring
F=ABCD+D)+ABC(MD+D)+ABC(D + D)
Reduce by Law of Complements and Law of Intersection
F=ABC+ABC+ABC
Reduce by factoring
F=ABC+AB(C+0Q)
Reduce by Law of Complements and Law of Intersection
F = ABC + AB
Reduce by factoring
F=ABC+ B)
Reduce by the Law of Absorption BC + B=B + C
F = A (B+C)
Expand by multiplying
F = AB + AC

As you can see a significant reduction in the equation takes place. It is
obvious that it requires much less circuitry to implement the reduced
version than it does the original equation derived from the truth table.
This minimization step is very important to the design of the circuit.
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The use of Boolean algebra is time consuming and burdensome. For some
logic equations, a reduction can take place quickly without a lot of work.
However, for large complex equations, the minimization process can
require a substantial amount of time. You may have to rearrange the
equation and regroup the terms several times before you arrive at a
minimum result. In addition, the Boolean algebra procedure described in
an earlier unit does not always lead to the optimum minimization. Be-
cause of the subtlety of logic circuits, some methods of circuit reduction
do not show themselves in the equation reduction process. For that
reason, Boolean algebra has its limitations. Other forms of minimization
have been developed to provide the maximum amount of minimization
possible and to do so quickly and conveniently. One of these techniques
is known as Karnaugh maps.

Karnaugh Maps

A Karnaugh map is a graphical method of minimizing logic equations.
The equations describing a digital logic function can be broken up and
arranged in such a way that they form a map or illustration that permits
rapid reduction or simplification. The Karnaugh map is an alternative to
the use of Boolean algebra for minimizing logic expressions. In fact, the
Karnaugh map is preferred over Boolean algebra because it makes the
reduction process faster, easier, and more effective. This technique com-
pletely eliminates the need for using Boolean algebra and allows you to
translate the logic function directly from the truth table into a Karnaugh
map that then leads to the simplified form. With this technique, it is not
always necessary to write the equations from the truth table first.

Karnaugh maps effectively replace Boolean logic equations in the sum-
of-products form. For design purposes, these equations are derived from
the truth table as we described earlier. Each of the product terms in the
equation is referred to as a minterm. Each minterm is the product of the
various input variables which are called literals. In the truth table de-
scribing the logic function, all possible input combinations are listed. For
example, for a 2-input logic circuit, there are four possible input combi-
nations. They are 00, 01, 10, and 11. If the input literals are given the
names A and B, then the minterms are A B, A B, A B, and A B.

Instead of writing the product term with respect to the literals, they are
often simply expressed as the letter m with a subscript equal to the
decimal value of the binary number representing that minterm. For
example, the product term A B represents input states of 00. The minterm
designation then would be m,. The product term A B represents the input
states 11. The decimal equivalent of this number is 3, therefore, the

| 9-13
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minterm designation would be m;. Figure 9-2 lists the product terms for a
two input logic circuit, their binary and decimal equivalents and the
minterm designation.

BINARY PRODUCT MINTERM
PEGLMAL A B TERM DESIGNATION
0 0 0 A B mq
1 0 1 A B m
2 1 0 A B my
3 1 1 A B ms
Figure 9-2

Minterm designations for logical
products of two literals.

A Karnaugh map takes this information and translates it into graphical

A A form. Figure 9-3 shows a Karnaugh map for a two input logic circuit.
Since there are two input variables, there are four possible product terms.
- mg ma Each product term is represented by a cell or square in the map.
AE AE
To show how the map and the equation are related, let's take several
y my M3 examples of converting from the equation to the map and from a map to
8 A B the equation.

= Consider the Boolean equation: C = AB + A B
Figure 9-3

Two-variable K h map. . ; : ; ; ; ;
WL e This is the equation for an exclusive OR circuit. Note that it contains two

product terms of the two variables A and B. To plot this equation on the
map, we simply place a binary 1 in those squares representing the pro-
duct terms in the equation, This is shown in Figure 9-4. The minterm
designations are not generally included within the squares on the map.
B 1 Instead, the squares themselves can be identified by referring to the
designations above and to the left of the map. At the top of the map are the
designations A and A which refer to the two vertical columns. At the left
B 1 of the map are the designations B and B which designate the two rows of
squares in the map. The product term corresponding to a square is
identified by simply reading upward and to the left for the letter desig-
nation defining that term and using these letters to form the product term.

Figure 9-4
Karnaugh map for the exclusive OR
function AB + AB. . 2
In this example, we translated a known equation into Karnaugh map

form. Keep in mind that the map can also be developed directly from the
truth table. The output column of the truth table is observed and those
input states corresponding to binary 1 outputs are translated into product
terms that can then be plotted on the map.
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As an example of translating from a Karnaugh map into the equivalent
Boolean equation, consider the map shown in Figure 9-5. To write the
output expression corresponding to this map, you develop a minterm for
each square containing a binary 1. These minterms are then ORed to-
gether to form a sum-of-products Boolean equation. The map in Figure
9-5 designates the exclusive NOR function expressed by the equation:

C=AB+AB
We can also write this equation using the minterm designations:
C=m,+ my

Figure 9-6 shows the Karnaugh map for a three variable logic circuit.
Since there are three input variables, there are eight possible input
combinations. Each input state is represented by a square in the map. The
minterm for each square in the map is designated. The relationships
between the product terms, their binary and decimal equivalents and the
minterm designation are given in Figure 9-7. Note that the columns and
rows in the map are designated by the letters corresponding to the inputs.

Karnaugh map for exclusive OR

=

|
-t

Figure 9-5

function AB + AB.

A
vy mo mI Mg m_.;
B
ABCT ABC ABC ABT
Figure 9-6
Three—variable Karnaugh map. my m3 my Mg
B
ABC ABC ABC ABTC
T C (7]
BINARY PRODUCT MINTERM
DECImMAL A B C TERM DES | GNATION
0 0 0 0 fgc mg X
1 0 0 1 ABC my
2 0 1 0 ABCT ma _
-~ B
: ¢ % 2 MEB i3 ABC | ABc | ABC | ABT
4 1 0 0 ABT my
5 1 0 1 ABC Mg
6 1 1 0 ABT mg B _
7 1 1 1 ABC my ABCT ABC ABC ABC
T C T
Figure 9-7

Minterm designations for logical
products of three literals,

9-15
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The two right-hand vertical columns are designated A, the two left-hand
vertical columns are designated A. Note that these vertical columns are
designated in a different form by the input variable C. The two center
vertical columns represent C while the two outside columns represent C.
The two horizontal rows of four squares are designated B and B. The
minterm represented by each square can be determined by simply writ-
ing a product term made up of the three letters designating that square in
its row and column position. It takes three input designations to define
the coordinates of a square.

The method of recording a given Boolean equation in the Karnaugh map
for three variables is similar to that for two variables. Consider the
equation:

X=ABC+ABC+ABC

Each three-variable term is designated by a binary 1 in the appropriate
square, See Figure 9-8.

The Karnaugh map in Figure 9-9 shows how an equation can be written
from the map. The minterm represented by each square where a binary 1
appears is summed (logically ORed) with the other terms to produce the
equation:

M=ABC+ABC+ABC+ABC

3 " A A
1 1 B 1 1
1 B 1 1
f C c [ c T
Figure 9-8 Figure 9-9

Karnaugh map for the equation
X = ABC + ABC + ABC

Karnaugh map of the equation
M = ABC + ABC + ABC + ABC

In minterm form the equations are:

M=mo+m2+m4+m7
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These same concepts can be applied to logic expressions involving four
variables. The table in Figure 9-10 shows all sixteen possible combina-
tions of four-input variables. All product terms with their binary and

decimal equivalents are given.

ecIMAL T8%Th | TeRm | [oEs | GRATI N
0 0000 |ABTD mg
1 0001 [ABCO my
2 0010 | ABCD my
3 0011 |ABcCoD ms
4 0100 |ABCTD my
5 0101 |ABTOD mg
6 0110 |ABCD mg
7 X311 X8én my
8 1000 |ABCTD mg
9 1001 |ABCD mg
10 1010 |ABCTD Mo
11 1011 |ABCOD mi
12 1100 ABTT mys
13 1101 ABTD my3
14 IMANDIABET mya
15 1111 [ABCD mys

Figure 9-10
Minterm designations for all possible
combinations of four literals.

A four variable Karnaugh map is shown in Figure 9-11. Each square in the
map represents one of the four-variable minterms. The process of record-
ing a given sum-of-products equation on the map is similar to the process
described earlier for two- and three-input variables. In addition, the

Ly A
Mo m2 mio mg
ABCD|ABCD |ABCD|ABTTD
i)
my m3 mi1 mg
ARBECTD|ARBCD|ABCD|ABTOD
m5 my mys mi3
KBTD|ABCD|ABCD|ABTD
B
Ma Mg mia mi2
KBCO|(ABCD |ABCD|ABTT
T c T

Figure 9-11
Four-variable Karnaugh map.

9-17
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procedure for writing the equation from the map is also similar to that

described before. As an example, the map shown in Figure 9-12 repre-

sents the equation below:
X=ABCD+ABCD+ABCD+ABCD+ABCD
X=my+ myg+ my + mg+ my,

Match each term in the equation to the appropriate square in the map to

be sure that you understand how the two are related.

L) A T A
1 1 |7 1 ]
¥ B
1 1 1
D D
1 1
B B
1 Ll 1 1 b
i c T ¢ ¢ 3
Figure 9-12 Figure 9-13
Karnaugh map for the equation X = Karnaugh map for the BCD invalid
ABCD + ABCD + ABCD + ABCD + code detector.
ABCD

In designing the BCD invalid state detector circuit, you wrote the Boolean
equations from the truth table. These are:

F=ABCD+ABCD+ABCD+ABCD+ABCD+ABCD
F=myy+m+m;,+ mz+ m; + m;
These can be placed on a Karnaugh map as show in Figure 9-13.

Now that you know how Boolean equations are plotted on Karnaugh
maps and how to read a Karnaugh map and translate it into a Boolean
equation, you are ready to see how these maps can be used for circuit
minimization.
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The reduction of logic equations with Boolean algebra is largely by use of
the law of complements (A + A = 1). Putting the logical function in
sum-of-product equation form, the minterms can then be grouped to
permit the factoring out of common variables. This procedure generally
produces law of complement expressions for one of the input variables.
Thus, one of the input variables is eliminated from the group of minterms
from which it was factored thereby simplifying the expression. Nearly all
of the simplification that results from the use of Boolean algebra comes
from the use of factoring and the reduction by the law of complements.
The Karnaugh map effectively implements this technique in a graphical
form.

Refer to the four-variable Karnaugh map in Figure 9-14. If you will study
this map carefully, you will see that adjacent cells or adjacent minterms
differ by only one of the input variables. In other words, only one variable
will change in moving from one adjacent cell to the next, horizontally or

Ry / o |
A A A B
/ R4 P
s & 1 /X —
i 1 ) 1 1 (1 ) y 1 I 1 S
_ | AR8CD|| ABcD | ABCD ||ABCD _ | ABCD | AECD | ABCD ||ABCD
B B
1 1 (1 1 1 1
—.?J —— 0™ | ~
Tiscu ABCD ABCD ABCD ABCD ABCD ABCD ABCD
/ —— D D
BC 1 (1 3 1) 1
e - =TS N _ _
ABCD ||AecD | ascol| ABTO BD ABED | ABCD | ABCD ||aBCD
8 B
1 1 ” -
L _J 0 1 1 Q/ 0
ABCD Eacﬁ/ ABCD | ABCD AsCd ||[AscD | ABcT|| ABCD
¢ / ¢ G ¢ c M ¢
BC A B CB
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Figure 9-14
Four-variable Karnaugh map.
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Figure 9-15
Adjacent cells in a Karnaugh map dif-
fer by only one literal.

vertically. For example, consider the two vertical minterms identified-by
binary 1's in the map of Figure 9-15. In moving from the upper cell to the
lower cell, only the B variable changes, from B to B. The A and C variables
do not change. These two adjacent minterms specify a simplification that
can be made. You can see this by writing the Boolean equation of the
minterms recorded. Assume that the sum-of-product equations of these
two minterms is equal to the function Y. The equation from the map in
Figure 9-15, thenis Y = ABC + ABC.
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Now, use Boolean algebra to simplify this expression. This is done as
shown below,

Y=ABC+ABC

Y=AC(B+B)

Y=AC(1)

Y = AC
Note that AC was factored out of each minterm leaving an expression
equal to (B + B). Since this is equal to 1, the expression is considerably
simplified. The B literal simply drops out leaving the expression Y = AC.

Logic equation minimization with a Karnaugh map is based on this
concept.

The basic procedure for reducing a logic equation by a Karnaugh map is
to first map the expression by putting a binary 1 in each cell representing
the minterms in the sum-of-products logic equation. Then, horizontal
and vertical adjacencies in groups of two or four are identified. We then
note which variables change from one cell to the next in each set of
grouped adjacent terms. These inputs then drop out of the expression.
The remaining input terms are regrouped in sum-of-product forms to
produce the simplified expression. An example will illustrate this pro-
cess.

Consider the logic expression:

Y=ABC+ABC+ABC+ABC
Y=mu+mz+m2+m5
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To simplify this logic expression we first record the minterms on a
Karnaugh map. Since there are three-input variables, an eight-cell Kar-
naugh map will be used. Binary 1's are entered in those cells representing
the minterms in the equation. This is indicated in Figure 9-16.

BC
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ool

o

Figure 9-16
Using a Karnaugh map to minimize
the expression Y = m, + m, + m, + m;

Next, adjacent minterms are grouped by some power of 2 (2, 4, 8, etc.).
Each group of two or four minterms is identified by a circle enclosing the
binary 1's on the map as indicated in Figure 9-16.

Each circled group is then observed to determine which variable changes
in moving from one adjacent cell to the next in the group. In the vertical
group of Figure 9-16, the variable B changes in moving from the upper
cell to the lower cell. This indicates then that the B term drops out leaving
only the A and C terms. Therefore, this group of two adjacent variables
represent the logic expression A C.

Observing the horizontal grouping of two variables in Figure 9-16, we see
that the variable that changes in moving from one cell to the next is the A
variable. The A term therefore drops out leaving the B and C terms. Once
the variable that changes has been identified, a new shorter minterm is
developed from the variables that have not changed. A product term of
the variables that do not change is formed, in this case B C. These shorter
product terms for each group are then summed (ORed) to produce the
reduced expression. Therefore, the reduced expression from the map in
Figure 9-16 is:

Y=AC+BC
The ability to use a Karnaugh map to produce a minimum equation

reduction results from being able to properly group the minterms and
recognize all of the adjacencies or combinations of adjacencies.
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Figure 9-17 shows two additional examples of mapping logic equations,
grouping minterms and generating the reduced expression. In Figure
9-17A, the Boolean equation is:
X=ABC+ABC+ABC
- AB =
u .._\\ A~ A A
5 1 1)) L 1 1
ABT | ABC | ABC [|ABT ABC ABc | ABC AET
A 1 [ l—AC B
a \ Joo
KRBT ABC ABC ABCT ABT ABC ABC i BE
E C E E /C E
C
Figure 9-17

Examples of reducing three variable
logic equations with maps.

The three minterms are recorded in the appropriate cells in the map by
marking 1s in the appropriate cells. Adjacent minterms are then grouped
to identify the redundant input terms. Note that the minterm A B C is used
twice. Any given minterm may be used as many times as needed to form
adjacent groups of two or four.

To determine the redundant input variables, you note which variable
changes when moving from one cell to the next within the groups you
formed. The horizontal group of two identifies the change of variable C.
In moving from one cell to the next the A and B terms do not change but
the C term does. This means that the C term drops out. We then form a

new product term made up of the variables that did not change, in this
case A B.

Next, we observed the vertical group of two to determine the redundant
variable. In this case the redundant variable is B since in moving from one
cell to the next within that vertical group the B term changes from B to B.
The A and C terms do not change therefore they represent the new
product term for use in the minimized expression. The new product

terms are then logically summed or ORed to produce the output expres-
sion:

X=AB+AC
As you can see from Figure 9-17A the original and reduced expressions

are considerably different. The reduced expression is far more economi-
cal in the use of circuitry.
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Figure 9-17B illustrates another example of minimizing a three-variable
Boolean equation. This equation is:

X=ABC+ABC+ABC+ABC
X=m +m +mg; +m,

Groups of two or four adjacent functions are then formed as shown. It is
desirable to form the largest grouping possible with the minterms re-
corded on the map. The larger the grouping, the greater the reduction that
will take place. Note in the group of four that, in moving from one
adjacent cell to the next, the A and B terms change. In moving vertically,
the B terms change. Moving horizontally, the A terms change. The only
input variable that does not change from one of these four cells to the next
isthe Cinput term. This means that A and B inputs are redundant and can
be factored out of the equation and dropped. This 4-bit grouping then
results in a substantial minimization and simply represents the input
variable C. What this grouping tells us is that the output expression will
be affected only by the variable C regardless of the A and B input states.
The reduced output expression then is:

X=C

The power of the Karnaugh map is evident from these examples. With a
little practice in mapping and grouping the minterms, you can quickly
reduce logic expressions to their minimum form. The map provides a
visual means of recognizing patterns in the minterm groupings so that
redundancies in the input variables can be easily recognized and elimi-

nated, thereby leaving only the essential input terms to implement the
function.

The benefit of the Karnaugh map in speeding up and simplifying logic
equation reduction becomes more evident as more input variables are
used. Four-input variables produce sixteen different input states. These
can be combined in a variety of ways to form logic equations. Expressions
involving minterms of four variables or more are difficult to work with by
using standard Boolean algebra techniques. But by mapping them, you
automatically group the related minterms so that the redundancies can be
readily identified.
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Figures 9-18A through 9-18D show several examples of the use of four-
variable Karnaugh maps. The reduced equations for each example are
given. Study the various groupings of minterms to be sure you under-
stand how the reduced expression is obtained for each group. As you
study each example, keep in mind these important facts:
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Figure 9-18
Examples of Karnaugh map usage.
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1. Adjacent minterms are grouped by twos, fours, eights, and higher
powers of 2 as required. The groupings may be horizontal or vertical
and may involve adjacent terms that do not “appear” adjacent in the
map. In a sixteen cell, four-variable Karnaugh map, adjacencies or
redundancies can occur in the cells in the left and right most col-
umns. Assume that the map is formed into a cylinder where the left
and right edges are made adjacent. In the same way a cylinder can be
formed by causing the upper and lower edges of the map to be made
adjacent. The term “redundant” simply means that in moving from
one cell to an adjacent cell only one of the input variables change.

2. Try to use each minterm in a group of two or four. After you have
made your initial groupings, go back and study them to be sure that
you have not overlooked various combinations of two, for example,
which would be made into a single logic grouping of four. The larger
the number of minterms enclosed within a loop the greater the
reduction that results. There will be some occasions where a minterm
cannot be included in a group of two, four or eight, In such cases no
reduction is possible and the minterm must be treated by itself.

3. In each group of two or four variables, simply move from one cell to
the next noting which variables change. The variables that change
are redundant and can be dropped out of the minterm. Form a new
product expression using the variables that do not change.

4, The minimized expression is formed by producing a sum-of-
products expression made up of the reduced product expressions
resulting from each group of minterms.

Keeping in mind the rules and characteristics just discussed, the exam-
ples in Figure 9-18 should be self-explanatory. There is one special case,
however, that you may not easily recognize. In figure 9-18C the minterm
in each corner of the map is marked. Since minterms on the left and right
columns and in the upper and lower rows are considered to be adjacent,
the minterms in each corner of the map can be considered as a single
group of four. This is more easily seen by determining which variables
change in moving from one corner cell to the next. As you can see, the A
and B variables change in moving between these four cells. The C and D

variables, however, are common to these cells. This permits a reduction
of this group to the simple two-variable term C D.

Another special case that may occur is when all squares in the map are
marked. In this case the function represented by the map is simply a
binary 1.

9-25
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Summary of Karnaugh Map Usage. The list below is a summary of the
rules and procedures for using Karnaugh maps in reducing logic equ-
ations.

1.

Study the truth table or the logic equations for the function to be
minimized. Determine the number of input variables and construct a
Karnaugh map containing a number of cells equal to two raised to a
power equal to the number of input variables.

Map the minterms directly from the truth table. If you constructed a
truth table as part of your design procedure there is no need to
translate the truth table into a Boolean equation first. If you have an
equation instead of a truth table, plot the minterms in the map from
the equation itself.

Group the minterms in the map in units of two, four, and eight terms.
Try to include each minterm in the largest group possible to ensure a
minimum solution. Each minterm should be used at least once and
can be used as many times as necessary to form the groups to produce
a minimum result. Identify each group of two, four or eight terms by
enclosing them within a loop or circle.

Note the input variables that change in moving from one minterm to
the next in each group. The variables that change are redundant and
drop from the expression. Another way of looking at this is to observe
the variables within each group that remain the same in moving from
one adjacent cell to the next within that group. Use these variables to
form a product expression that will appear in the reduced equation.
Once you have determined a product expression for each group of
minterms on the map, write the final output expression by ORing
together the product terms developed for each group.
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In Figure 9-19 we show the Karnaugh map used in reducing the Boolean
expression for our BCD invalid code detector. Note that we can identify
two groups of four variables. The reduced equation is much simpler than
the equation we wrote from the truth table given earlier.
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Figure 9-19
Karnaugh map for reducing the
equation for a BCD invalid code de-
tector.

Don’t Care” States. There are some design situations where all combi-
nations of the input variables will not occur. For example, you may have
identified the need for four input variables and your design calls for the
use of only seven of the sixteen possible input states. You can usually
determine by the application which input combinations can never occur.
In other situations there are various combinations of input states which
will not effect the operation of the circuit and therefore you do not care
whether they occur or not. It is useful to identify these “don't care” states.
In most applications you should have no difficulty in determining what
these “don’t care” states are. Such states are of value in minimizing the
logic expression through the use of a Karnaugh map. The “don’t care”
states are plotted on the Karnaugh map along with the minterms
specified by the truth table or the equation. In most cases they will aid in
the reduction of the circuitry required to implement the desired function.

To illustrate this concept, assume that your design calls for four-input
variables and the output function is indicated by the equation below.

M=ABCD+ABCD+ABCD+ABCD+ABCD

9-27
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Figure 9-20A shows how this function is plotted on a Karnaugh map. The
variables are grouped to reduce the amount of circuitry required to
implement the function. This greatly simplifies the function as you can
see by the reduced equation below.

M=ABC+BCD+ABC
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T ¢ ABc | T T c \| =
M=«ABCD +ABCD + ABCD + ABCD + ABCD M=AC + CD +BC B
M=ABC +BCD +ABC A Figure 9-20

Example of the use of “don’'t care”
states in minimizing logic functions.

In your design process assume you determine that there are four "don’t
care” states. These are: ABCD, ABCD,ABCD,and A B CD. These four
“don’t care” states can then be plotted on the map as shown in Figure
9-20B. The “don’t care” states are indicated by X’s instead of binary 1’s
used to designate the required minterms. You can now use the “don’t
care” states along with the designated minterms to produce further
circuit reductions. The X’s can be grouped along with the 1s to form
larger loops. The more minterms that you can include within a group, the
greater the resulting minimization. As you can see, three groups of four
can be formed. This resulting equation is:

M=AC+CD+BC

This equation is far simpler than either the original equation or the first
reduced version. When designing a combinational logic circuit, don't
forget to make every attempt to identify these “‘don’t care” states since
significant reductions in circuit size and complexity can result.
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Implementing the Logic Equations

You are now ready to select the circuitry to implement your design.
Remember that your basic goal is to perform the desired function for the
lowest possible cost. This means you will select the lowest price available
circuitry. You will attempt to minimize the number of components in the
design. This not only lowers the cost, but will also reduce power
consumption, size and weight and increase reliability.

In all new equipment design situations you will be using integrated
circuits, There are very few if any applications where benefits can be
derived by using discrete component circuitry. Therefore, our discussion
here is limited to selecting the types of integrated circuits appropriate to
your design.

There are four practical ways to implement a combinational logic func-
tion with integrated circuits. They are:

S81
MSI
ROM
PLA

ol

Each of these approaches has its own benefits and limitations. In the
sections to follow we will discuss each of these methods of implemen-
tation. We will use the BCD invalid code detector circuit as an example in
evaluating each of these methods.

SSI Implementation. The most direct method of implementing your
logic equations is to use SSI logic gates. Then by working from the
equation derived from the truth table or the minimized version from the
Karnaugh map, implement the circuit with available NAND and NOR
gates. This literal approach is best employed when the function to be
implemented is simple. For larger more complex functions some of the
other techniques should be used.

To illustrate the use of SSI circuits in implementing our BCD invalid code
detector, consider the original Boolean equation:

F=ABCD+ABCD+ABCD+ABCD+ABCD+ABCD
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This expression is readily implemented with SSI logic circuits as shown
in Figure 9-21A. Each product term requires a four-input gate. Dual
four-input TTL gates such as the 7420 can be used. One gate will be used
for each minterm expression in the equation. All of these product terms
will then be ORed together to produce the output function F. And since
there are six terms, a six-input OR gate is required. An eight-input TTL
gate such as the 7430 can be used for this purpose. Two of the inputs will
not be used and can be simply connected to one of the other inputs. Note
that the four-input variables must come from a source where both the
normal and complement signals are available. If the complements are not
available then they can be generated with inverters as shown in Figure
9-21B. A standard TTL circuit is the 7404 hex inverter containing six
inverter circuits. Only four of these are needed in this application. As you
can see, it requires a minimum of four and possibly five TTL integrated
circuit packages to implement this function. These ICs must be mounted
on a printed circuit board and the interconnection pattern on the circuit
board must be designed. This will take a substantial amount of time, and
the printed circuit board required to hold these circuits will be fairly
large.

Figure 9-21 B
BCD invalid code detector circuit
using SSI implementation of the
equation.
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Of course it is ridiculous to implement our BCD invalid code detector
circuit as we have indicated. You have already shown that by the use of

the Karnaugh map you can reduce the original equation to the simplified
expression:

F=AC+AB

Figure 9-22 shows how this equation can be implemented with SSI
circuits. Only three two-input logic gates are required. This means that a
standard quad two-input NAND gate such as the TTL 7400 can be used to
implement this expression. As a result we have implemented our
detector circuit with a single integrated circuit. This reduces the package
count, power consumption and printed circuit board design time as well
as size and weight. Note that the input variable D is not even required in
implementing this function. Yet, this simple circuit will generate the
same truth table as the more complex circuit in Figure 9-21. The value of
minimization by the use of a Karnaugh map is evident in this example.

Figure 9-22
BCD invalid code detector circuit.
Minimum SSI circuit.

MSI Implementation. There are a variety of MSI functional circuits that
can be used to implement combinational logic circuit designs. While
these MSI circuits are designed to perform common combinational logic
functions, they can often be adapted to perform other functions. Their use
can result in a simplified, low cost method of implementing a logic
expression. It is an alternative which should be thoroughly considered
when designing digital circuits.

The two most useful MSI circuits for implementing logic equations are
the decoder and the multiplexer or data selector. A decoder or 1 of N
detector circuit accepts a number of logic inputs and recognizes all
possible combinations of the input states. This is done by using AND or

9-31
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NAND gates to detect each of the possible input conditions. Figure 9-23A
shows a one-of-sixteen decoder circuit. It features four inputs which are
then decoded by NAND gates to produce 16 outputs. A typical
commercial version of this circuit is the 74154 TTL decoder. It is housed
in a 24-pin dual in-line package. You can see from the figure that this
decoder is a minterm generator. All 16 possible states are generated
within the single IC thereby eliminating the need to interconnect external
SSI gates and inverters. Note that in this circuit active low outputs are
generated. To obtain active high outputs, inverters can be used on each
output or the decode gates can be combined with other logic gates to
produce the proper logic levels. When inputs E1 and E2 are low, all
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Figure 9-23
— ABCT A MSI decoder (A) logic diagram and
(B) block diagram.
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7415 TTL MSI multiplexer or data
selector used to implement ciombi— Eg
national logic circuits. (A) logic
diagram, (B) block diagram. E7 —— 16 CHANNEL
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sixteen gates are enabled. Figure 9-23B shows the block diagram used to £9
represent this MSI decoder. Only the inputs and outputs are shown to E10 —
simplify the drawing of the circuit. The outputs here are designated by E1l
the minterm numbers.
£12—
Another MSI circuit widely used for implementing combinational logic Fr—
functions is the multiplexer or data selector. Figure 9-24 shows a logic ;
diagram of a typical sixteen channel multiplexer circuit. Any one of ”
sixteen input signals may be routed to the single output. Each input is E1s —]

applied to an AND gate that is enabled by the four-bit input code. The I ‘ ‘ I
input code selects the input that is routed to the output.
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Investigation of the data selector circuit in Figure 9-24 shows that all
four-variable minterms are generated by the AND gates in the circuit.
These are ORed together to produce a single output. The data selector
circuit itself then implements a logic equation that is a sum of all possible
minterms. An additional fifth input variable E can be accomodated by
connecting it to one or more of the sixteen input lines. For example, any
one of the sixteen four-bit minterms can be added to the output by
applying a binary 1 to the appropriate data input. If a minterm is not
needed in the output, the associated input line can be connected to binary
0. A fifth input code bit can be implemented by connecting it or its
complement to the appropriate data inputs. A single strobe or enable
line(s) is also used to enable or inhibit the entire circuit. Note that the
outputis active low. An inverter or other logic gate can be used to provide
the complement if needed.

We can readily illustrate the use of MSI decoders and data selectors by
showing how our BCD invalid code detector circuit can be implemented
with them.

Figure 9-25 shows the 74154 one-of-sixteen MSI decoder used to generate
the BCD invalid code detection function. Instead of working with the
simplified Boolean equation for this function we work with the complete
equation derived from the truth table. Each of the six four-variable
minterms are defined. These minterms are generated by the decoder. The
proper decoder outputs are then fed to a TTL NOR gate to produce the
desired output function. Note that with this method of implementation
two integrated circuits are required. Although we are able to implement
this function more economically than by the previously described brute
force SSI method, the result does not produce a minimum package count
or the lowest cost design. MSI circuits are considerably more expensive
than SSI circuits. In addition, this implementation requires two
integrated circuits. The MSI implementation shown in Figure 9-25 is not
the most desirable approach. In most cases it will not produce the most
efficient design.

7430

¢ Figure 9-25
BCD invalid code detector function

????TT????TTWH

implemented with a 1-of-16 MSI de-
coder,
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Figure 9-26 shows how the BCD invalid code detaction function can be
implemented with a sixteen channel data selector. A 74150 multiplexer
circuit is used. Note that binary 1 (+5 volts) is applied to the six higher
order inputs thereby enabling the gates which generate the proper min-
terms. All other inputs are connected to binary 0 to inhibit the remaining
minterms from being applied to the output. Again we work from the
expanded version of the logic equation rather than the simplified version.
The implementation does resultin the use of the single integrated circuit.
But again this is an MSI device that is larger and more expensive
than the simple SSI circuit we developed earlier. Note also that the circuit
in Figure 9-26 has an active low output. Whenever we detect one of the
six invalid BCD codes, the output of this circuit (F) will go low instead of
high as we indicated earlier. For many applications this is no
disadvantage since a low output is just as valid an indication of the
incorrect code as a high output. Nevertheless, our initial requirements
stated that the output must be high. This may require the use of an
external inverter thereby adding an additional IC package and further
increasing cost, power consumption, and waste of space.

While the use of MSI decoders and data selectors did not lead to a
minimum implementation of our example problem, there are many
situations where these devices will result in the minimum, lowest cost
design. Every design will be different and you must evaluate each of the
four basic alternatives before you find the one that meets your design
criteria.

ROM Implementation. One of the easiest ways to design digital circuits
is to use aread only memory. Virtually no design time or effort is required
to use such a device. However, there are restrictions or limitations on its
use. ROMs are generally large scale integrated circuits and must be
custom manufacturered to your specifications. Therefore, they are
expensive. In order to justify their use, the logical functions being
implemented must require that degree of sophistication.

Here are some guidelines for determining whether a ROM should be used
to implement a given logic function:

1. ROMs are used primarily for multiple input and multiple output
logic circuits. The use of a ROM becomes practical and economically
feasible only when the number of inputs and number of outputs are
equal to or exceed four. Logical circuits having fewer inputs and
outputs are generally more economically implemented with SSI or
MSI logic circuits. Because of this restriction, a ROM is not applica-
ble to our BCD invalid code detector. While the circuit requires four
inputs, it has only a single output. Naturally, a ROM could be
employed but more of its capabilities would be wasted than used.

16 CHANNEL
DATA SELECTOR

+5V

E13
Elq
Els

Figure 9-26
BCD invalid code detector
circuit implemented witha
MSI data selector.
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2. ROMs are best employed where all possible input combinations are
specified by the logic design. For example, in a four input variable
circuit a ROM is economical only if all or most of the input states are
used. ]

If the circuit you are designing has four or more inputs and outputs you
should consider the use of a ROM. Evaluate your design by studying the
truth table to see if it meets the criterion indicated in the two steps above.
If it does, the implementation of the ROM can be taken directly from the
truth table itself as the input signals specify the ROM address states while
the output states specify the memory contents at each of the address
locations. No further design procedure is required.

PLA Implementation. The fourth and final alternative available to the
digital designer in implementing combinational logic circuits is the
programmable logic array. This LSI device is used primarily for
implementing large complex logic functions. Such devices do not
become practical or economically feasible until the complexity of the
design reaches a very high level. PLAs are used primarily for multiple
input multiple output circuits. If your design calls for five or fewer inputs
and outputs, a PLA will not result in a minimum design. The cost
involved in programming the circuit to produce the desired function
during manufacturing will make the cost unusually high. In such cases
MSI circuit implementation should be employed. If the number of inputs
and outputs exceeds five or six, then PLAs should be considered. Like
any of the other alternatives, the PLA implementation should be
evaluated carefully from a cost standpoint. Size, power consumption,
and reliability should also be considered as usual. For both PLAs and
ROMs, high volume of usage will greatly reduce the cost and make these
alternatives more practical. For our BCD invalid code detector, the PLA
would certainly not be applicable.

To design a logic circuit using a PLA, you use the procedure outlined
previously. The design is first tabulated in a truth table. From the truth
table the logic equations are written. Then by using Boolean algebra or
Karnaugh maps, the equations are then minimized. The minimized
equations are given to the manufacturer who will in turn design the mask
that will properly interconnect the gates within the PLA device. The
result will be a custom integrated circuit for your design.

All four of these design alternatives for implementing digital circuits
depend directly upon the available commercial integrated circuits. Your
ability to meet your design objectives is a function of the type, cost,
performance, flexibility, and quality of the integrated circuits available to
you. For that reason it is imperative that you become familiar with the
literature of all of the manufacturers of digital integrated circuits. Order
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their catalogs and ask for individual device data sheets. Study these to
determine what circuits are available, what their specifications are and
how they can be used. In addition, most integrated circuit manufacturers
supply application notes which describe the ways in which their compo-
nent can be used. Most manufacturers also offer engineering and design
assistance to help their customers in selecting the correct device. There
are also many manufacturers that do custom design work. If the commer-
cially available devices do not meet your applications then it is possible
that special custom devices can be designed and implemented for you.
We simply cannot overemphasize the importance of being familiar with
and working with the manufacturers of the digital integrated circuits that
you will use in your designs.

Multiple Output Combinational Circuits

The applications that we have considered involve circuits with a single
output. Multiple input states are monitored and a single logic signal is
developed to indicate when specific states occur. There are many ap-
plications, however, that require multiple outputs as well as multiple
inputs. All of the design procedures that we have described so far are
fully applicable to combinational circuits with multiple outputs. Only
minor variations are necessary to achieve a correct design.

The methods of defining the problem and stating the design objectives
are similar. You will completely specify the type and number of inputs
and the type and number of outputs.

Your problem statement is then converted into a truth table that will
completely define the operation of the circuit. The number of inputs will
determine the total number of states that can exist. Then, instead of
defining a single output based on these inputs, you will define all of the
outputs required by the application. Simply, this means creating a
separate column in your truth table for each circuit output. In each
column a binary 1 is recorded adjacent to the set of input conditions
necessary to produce that output. Don’t forget to note the states that won't
occur or states that have no meaning for this application. These “don’t
care" states will greatly aid in reducing the amount of circuitry required.
Once the truth table is complete you will have thoroughly defined the
circuit to be designed.

Next, you will observe the output columns in the truth table and write a
separate Boolean equation for each. Use a Karnaugh map to minimize
these output equations. This will result in a minimized or reduced output
equation for each of the outputs required by the circuit. It is these
minimized equations that you will implement in your final design.
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INPUTS [OUTPUT
ABCD F
0000 0
0001 0
0010 0
0011 1
0100 0
0101 1
0110 1
0111 0
1000 0
1001 1
1010 1
1011 0
1100 1
1101 0
1110 0
1111 0
Figure 9-27

Truth table for Design Example #1:

Two-of-four detector

When choosing the integrated circuits to implement your design there
are several important points to consider. First, depending upon the
complexity of the circuit, ROMs and PLAs should be given first consider-
ation. These will generally result in the simplest and smallest circuits.
MSI logic circuits should then be considered if ROMs and PLAs are too
complex and sophisticated for the application. For many common func-
tions, a standard MSI circuit may already exist making the design un-
necessary. Finally, SSI circuits should be considered for multiple output
circuits of minimum complexity.

When implementing the multiple output function with SSIcircuits, itisa
good idea to study the minimized output equations derived from the
Karnaugh maps to determine if common product terms exist. If the same
product happens to occur in two or more of the output expressions then it
is only necessary to generate this product once. This will further reduce
the amount of circuitry required.

Design Examples

We have now described the procedure for designing combinational logic
circuits. Virtually any logic design problem can be handled with these
procedures. However, because of the wide range of applications there
will be many variations. The only way to illustrate the use of this proce-
dure is to provide information on several different types of applications.
Your own ability to design digital circuits will come from practice. The
design examples in this section will help to give you the experience
necessary to achieve competence. The primary purpose of the examples
in this section is to illustrate the many ways in which the procedures
described can be used. Additional practice problems are given in the Self
Test Review following this section.

Design Example #1. Design a two-of-four input detector circuit. The
circuit has four inputs A, B, C, and D, and we want a binary 1 output
condition F to occur whenever only two of these inputs are binary 1.
Develop the truth table for this circuit, write the output equation,
minimize it, and select a method for implementing it.

Solution to Design Example #1. The truth table for this circuit is shown
in Figure 9-27. With four inputs there are sixteen possible combinations
that can occur. Our design requirements stated that we wanted the output
F to be binary 1 when only two of the inputs were binary 1. By observing
the binary states of each of the sixteen possible input conditions, you can
quickly identify those where only two of the inputs are binary 1. These
states are indicated by a binary 1 in the F output column.
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You can go directly from the truth table to a Karnaugh map to attempt
simplification of this logic function. However, it is usually a good idea to
write the logic equation from the truth table first. This step only takes a
short time and helps you to visualize the function better. Writing the
equation from the truth table gives us:
F=ABCD+ABCD+ABCD+ABCD+ABCD+ABCD
F=mg+ ms + mg + mg + my + my,

Next, using the logic equation or the truth table, plot the function on a
Karnaugh map. This is done in Figure 9-28. A binary 1 is marked in those
cells identified by the minterms specified by the truth table and the
equation.

A A
1 5
_ | ABCD ABCD ABCD | ABCD
B
1 1
ABCD ABCD ABCD | ABCOD

ABCD ABTCD
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ABED ABCD ABCD ABCD

[+ ¢ g
F«ABCD + ABCD + ABCD
+ ABCD + ABCD + ABCD
F'm3+m5+m6+mg+m10+m12

Observing the Karnaugh map should immediately tell you that abso-
lutely no simplification of this logic function is possible. As you can see,
the variables are widely spaced and separated. There are no two min-
terms that can be grouped together. Since no simplification is possible,
the logic equation must be implemented directly.

An initial consideration of the four methods of implementing the logic
function will quickly rule out the use of the ROM and the PLA. Since only
a single output is required, the circuit implementation will be either by
SSIlogic elements or MSI functional devices. Yourjob is to evaluate these
alternatives and select the best form of implementation for your design.

Figure 9-28
Karnaugh map for Design Example #1.

9-39



HEATHKIT
CONTINUING
_EDUCATION

9-40 | uniT NINE |
Criemne——

There are several ways that we can implement our two-of-four detector
circuit. We can use SSIlogic gates and implement the equation directly as
shown in Figure 9-29. Here TTL SSI gates are used. Type 7420 dual
four-input gates are used to form products of the inputs. A 7430 eight-
input gate is used to produce the output sum. Depending upon the source
of the inputs, the 7404 hex inverter IC may be needed to generate the
complements of the input signals. With this circuit a total of five integ-
rated circuits are required. While the cost of such circuits is extremely
low (approximately 15 cents each in large quantities) they do take up alot
of space. A significant amount of time is required to lay out a printed
circuit board to interconnect these devices. Therefore, it is desirable to
investigate the methods of implementing this circuit with MSI functional
devices.

Figure 9-29
Two-of-four detector circuit.
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Figure 9-30 shows how the two-of-four detector circuit can be im-
plemented using a 74154 one-of-sixteen decoder and a 7430 eight-input
gate. The one-of-sixteen decoder is used as a minterm generator and the
appropriate outputs are ORed together in the 7430 gate. The size of the
circuit is somewhat less than the SSI implementation mentioned earlier.
The layout is simpler and the two circuits occupy much less space.

oOm>

D

74154
U
1 [O—
2
3 8_ 7430
o
6
1 OF 16 F
10—
DECODER s —
| o—
10 O——
110—
12—
O— :
D— Figure 9-30
O— Two-of-four detector circuit im-

plemented with 1-0f-16 MSI decoder
and 8-input gate.

A third alternative is to use an MSI data selector. The two-of-four detector
circuit can be implemented with a 74151 multiplexer as shown in Figure
9-31. This single 16-pin dual-in-line IC seems to offer the most promising
method of implementing the circuit.

74151
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o
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-

)=y D
O O

A
|
B

Figure 9-31
Two-of-four detector circuit im-
plemented with MSI data selector.
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The 74151 data selector or multiplexer circuit was described in detail in
an earlier unit. The logic diagram of this circuit isrepeated in Figure 9-32.
Each of the gates in the multiplexer are enabled by the A, B, and C inputs.
The B, C, and D inputs of our logic circuit will be applied to these lines.
These are the least significant bits of the four-bit words. To see how the
circuit works, consider the decimal value of these three least significant
bits alone and analyze the truth table to determine which inputs on the
multiplexer will be used. You should find that six of the sixteen possible
states of these three inputs are used. The decimal values of the BCD input
for each output F are 3, 5,6, 1, 2 and 4. The unused input states are B, C, D
and B, C, D, or 0 and 7. These correspond to the 0 and 7 inputs on the
multiplexer. Since they will not be used, these two inputs are connected

DATA INPUTS DATA SELECT (BINARY)

N\ v,
& N s A\

STROBE
(ENABLE) Do D) D2 D3 Dy Ds Dg D7 A B i

Figure 9-32
74151 TTL data selector.
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to ground or binary 0 thereby disabling them. To the other six inputs we
connect either the A or A signal in order to form the appropriate four-bit
product terms. Depending upon the source of the A input, an external
inverter may or may not be required as shown in Figure 9-31.

In evaluating our alternatives now we can see that the simplest and
easiest to use is the 74151 multiplexer. It results in a single integrated
circuit and design time and PC board layout time are at a minimum.
However, this MSI device is more expensive compared to the SSI devices
used and shown in Figure 9-29. The MSI multiplexer costs approxi-
mately twice as much as all of the integrated circuits in the SSI version.
For that reason from a cost stand point we may be inclined to select the SSI
implementation method. However, keep in mind that the PC board layout
time for the SSI circuit will be significant. In most cases it will be great
enough to offset the extra cost of the 74151. For that reason the
multiplexer implementation of the circuit probably offers the best solu-
tion to this particular design problem.

Design Example #2. This next example of combinational logic circuit
design is more complex but is also more representative of the types of
circuits that you will be designing. The techniques for designing multi-
input multi-output logic circuits are demonstrated here.

Design a code converter circuit that will change the 8421 BCD code into
the four-bit excess 3 code. Parallel inputs and outputs are required.
(NOTE: Since the 8421 BCD input code is used, the six invalid states are
considered as “don’t care” states.)

Solution to Design Example #2. The first step in the design procedure
is to develop a truth table. Since the inputs are the 8421 BCD code, four
input lines are required. These are labeled A, B, C, and D. The excess 3
code also has four bits. These will be labeled W, X, Y, and Z. The truth
table for this circuit is shown in Figure 9-33.

The next step is to write the Boolean equations from the truth table. Since
there are four outputs from the circuit, you will develop an output
equation for each. This is done by observing the positions of binary 1’s in
each output column. Then you write a sum-of-products expression
involving the related minterms. The output equations for this circuit are:

BCD+ABCD+ABCD+ABCD+AB
CD+ABCD+ABCD+ABCD+AB
B

w=A
X=A
Y=A

B
ECﬁ+A§CD+ABCD+ABCD+A

— i — —

Z=ABCD+ABCD+ABCD+ABCD+ABCD

10 Oy
1010 o

The next step is to map the output equations. A sixteen-cell Karnaugh
map is used for each output. You can map each output function directly

Digital Design

INPUTS | OUTPUTS
8421 BCD %53
ABCD WXyz
0000 0011
0001 0100
0010 0101
D011 0110
D100 0111
0101 1000
0110 1001
0111 1010
1000 1011
1001 1100
1010

1011

1100 DON'T
1101 CARE
1110

1111

Figure 9-33

Truth table of 8421 BCD to XS3 code

converter circuit.
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from the truth table or from the equations you derived from the table.
) Don’t forget to mark the “‘don’t care” states with X's. Combine these X's
o nfl:gg#f!?a]?s-?; — with the binary 1s on the map to help in reducing the equations. Finally,
to XS3 code converter. minimize the equations by grouping the variables on the map and from
those groupings write the reduced logic equations. Figure 9-34 shows

the four output maps and the reduced equations.
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As with any combinational logic circuit, there are several ways in which
it can be implemented with hardware. Consider the various techniques
described earlier and apply them to this problem to determine the op-
timum method of implementation.

Figure 9-35 shows the circuit implemented with SSI logic circuits. This
circuit implements the minimized equations from the Karnaugh maps.
Only four SSI packages are required. Assuming the use of 7400 TTL
circuits, the following circuits are required:

Figure 9-35
BCD to XS3 code converter im-
plemented with SSI circuits,

1—7410 triple 3-input gate (gates 1, 6, and 7)
2—7400 quad 2-input gates (gates 2, 3, 4, 5, and gates 8, 9, and 10)
1—7404 hex inverter

The circuit is simple and straight forward. Trace the input lines and
compare each of the circuits with the logic equations to be sure you see
how the circuit is implemented.
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Figure 9-36 shows how the BCD to XS3 code converter can be im-
plemented with MSI data selectors. Type 74150 TTL MSI data selectors
are used to implement the output equations for W, X, and Y. These
sixteen-input multiplexers are driven by the four-line 8421 BCD input.
The input lines of the multiplexers corresponding to the minterms ap-
pearing in the output equations are connected to +5 volts to enable them.
The unused inputs are connected to ground to disable them. Output Z is
implemented with an inverter connected to the D input. Note that this
method of implementation requires four IC packages, three of which are
24 pin MSI devices. This method of implementation is larger and more
expensive than the SSI implementation described earlier. It is not an
efficient method of implementation.
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Figure 9-36 b 4
BCD to XS3 code converter im-
plemented with MSI data selectors.
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Perhaps the easiest way to implement this code converter circuit is to use
a ROM. The 8421 BCD input code can be applied to the address lines of
the ROM. The corresponding XS3 output code can be stored in the
memory location specified by the input address. Since there are ten input
states and ten output states, ten memory locations are required. The
four-bit output code means that a total of forty bits are required in the
ROM to implement this function.

Our guidelines for determing the applicability of a ROM to a combina-
tional logic design is that the circuit have four or more inputs and
outputs. Such a criterion specifies a minimum 64-bit ROM. Four input
lines can specify a total of sixteen memory locations. Four output lines
specifies four bits per memory word or 4 X 16 = 64 bits. Commercial
ROMs this small are not available. The smallest available commercial
ROM is a 256 bit unit organized as 32 eight-bit words. Such a ROM could
be used for implementing the BCD to XS3 code converter.

Figure 9-37 shows the block diagram of a 32 X 8 ROM used to implement
this function. The 32 word memory is addressed by five address input
lines. The fifth or E input line is not required so it is simply connected to
ground. The BCD input code is applied to the A, B, C, and D input lines.
Each memory location can hold up to eight bits. Therefore, there are eight
output lines. Only four of these are required for this application. These
are labeled W, X, Y and Z to correspond to the desired output code
signals. When the ROM is manufactured, the XS3 code will be stored in
the memory location specified by the 8421 BCD input code.

With this arrangement only forty of the total possible 256 bits are used.
This means that a significant amount of the memory is wasted. However,
if this circuit is to be used in high volume, the cost of this device can be
very low. Since it requires only a single 16-pin dual-in-line package, it
may be the most desirable means of implementing this function.

The other method of implementing this logic equation is with a PLA. This
is not a practical means in this application since the requirement is not
large enough or complex enough to warrant the use of a PLA. Therefore it
should not be considered.

In considering the various means of implementing the circuit we have
outlined, the two most desirable means appear to be the SSIimplementa-
tion of the minimized equations or a ROM. The SSIimplementation is the
lowest cost approach but does require four integrated circuit packages
and the associated printed circuit board design. The ROM method is
more expensive but occupies less space. Depending upon the quantities
used and the size and space limitations of the project, the ROM method
should be carefully considered.

E —— 1\ NoT
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Figure 9-37

BCD to XS3 code converter im-
plemented with a ROM.
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Figure 9-38
Seven-segment display.

Self Test Review

3. Design a three-input majority detector circuit that generates a binary
1 output if two or more of the inputs are binary 1 indicating a
majority.

4. Design a BCD to 7-segment decoder circuit that converts the 8421
BCD code into the 7 logic signals to drive a 7-segment LED display
with the corresponding decimal digits 0 through 9. Assume that the
output of the circuit must be binary 1 in order to enable the segments
in the display. The BCD input signals are designated A, B, C, and D
while the 7-segment output signals are designated T through Z as
indicated in Figure 9-38. Assume also that the 6 invalid BCD states
can be used as “don’t care” states.

NOTE: In both of the above problems, design the circuit using the proce-
dures described earlier and select the smallest and most economical
method of implementing the circuit. In problem 4, do not use “tails” on
the 6 and 9 digits.

Answers

3. The design of the majority detector circuit calls for three
inputs which we can label A, B, and C. The output, which
we can call M, is to be a binary 1 whenever two or more of
the three inputs are binary 1 at the same time. The signal
therefore, indicates that a majority is present.

The truth table for this circuit is shown in Figure 9-39. All
eight possible combinations of the input signals are ac-
counted for. Scanning down the input state we note those
states where two or more of the inputs are binary 1. In the
output column M where we record a binary 1 adjacent to
those input states where the correct condition occurs, four
of the eight input states represent a majority condition.

INPUTS [OUTPUTS
ABC M

0oo

001
Figure 9-39 010
Truth table for the majority circuit. o

100
101

110
B R
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SSI implementation of the majority

BC
M=ABC + ABC + ABC + ABC
M=BC + AC + AB
On first glance this circuit appears to be best implemented
with SSI logic circuits. Figure 9-41 shows one method of
implementation. A type 7400 quad two-input IC is used to
implement the input product terms. One of the gates in this
IC isnot used. A type 7410 triple three-input gate is used to
implement the sum (OR) part of the result. The product
terms developed by the input gates are ORed together in
the three-input gate to produce the output M. Note that two
of the three input gates in this IC are not used. Despite the
fact we have used Karnaugh maps to minimize the number
of inputs and number of output terms, there is still some
waste of the circuitry because of the standard configuration
in which ICs are available. This clearly indicates that stan-
dard minimization techniques do not always result in the
lowest parts count or the minimum number of circuits
when using ICs. il

s = ot

Figure 9-41

detector.
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Figure 9-40 shows the eight-cell Karnaugh map used to
map and reduce this function. The original equation from
the truth table is indicated. The function may be mapped
from the equation or from the truth table itself. The loops of
adjacent minterms are shown on the Karnaugh map. The
resulting minimized equation M is indicated.
AC
r | A
3 1
ABT ABC ABC ABT
Figure 9-40
Karnaugh map for reducing the
majority detector circuit. B G (1; 1 >—-R B
ABT ‘Ksc/ ABC ABT
T / C T

9-49
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Figure 9-42 shows another way this function could be
implemented. Shown here is a type 7454 TTL AND-OR-
invert gate. This circuit implements the sum-of-products
for four groups of two inputs. By using three of the input
gates and properly connecting the inputs to the variables,
the majority detector function can be implemented. The
unused inputs are simply disabled by connecting them to
ground. In this IC the output is active low meaning that the
output equation developed by this circuit would be the
complement of the desired equation. Many times the active
low or complement output can be used as well as the
normal version of the signal. The exact voltage level of the
output signal depends on the application. By using this IC
only a single package is required to implement the func-
tion. The purpose of this example is to indicate the impor-
tance of knowing the types of integrated circuits available.
To design optimum circuits you must know which types of
ICs are available. Be sure that you have access to all of the
manufacturer's literature, data sheets, and application
notes, When you are designing a circuit study the IC types
available and mentally make note of those that could be of
value to you.

Vee 8 H G
] 3l el e L s

Figure 9-42
Type 7454 TTL AND-OR-INVERT gate ¥ &A0 % SHHER £ OR
(A) used to implement the majority

detector (B). D_

=l
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BCD INPUT | oo py | OUTPUT-SEGMENTS
ABCOD TUVWXYZ
0000 0 SREREE
0001 1 0110000
0010 2 1101101
D011 3 1 W 0 U i i |
0100 a 0110011
0101 5 1011011
0110 6 0011111
G111 7 1110000
1000 8 SEEREE
1001 9 1110011
1010
1011
1100 DON'T
1101 CARE
1110
1111

Figure 9-43
Truth table for BCD to 7 segment de-
coder.

4, Figure 9-43 shows the truth table for the BCD to 7-segment
decoder. This circuit is a code converter for changing the
8421 BCD code into a special 7-bit output code to turn on
the correct segments in a 7-segment LED display device to
read out the decimal digits 0 through 9.
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Figure 9-44 shows the output equation in minterm form for
each output segment. These equations are then plotted on
the 7 Karnaugh maps and minimized as indicated. The
minimized output equations are also shown.
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Figure 9-44

Karnaugh maps for minimizing the
BCD to 7-segment code converter.
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Figure 9-45 shows how the circuit can be implemented with SSI logic
devices. Compare this circuit to the minimized equations in Figure 9-44.
Itis important to note that the product terms in some output equations are
common to several other equations (gates 2, 3, 5, 7 and 9). When a
common term is found, that product can be generated only once and then
used in several sum outputs. This eliminates the necessity to duplicate
that product term with other logic circuitry. This further adds in the
reduction of the amount of circuitry required to implement the desired
function. A
A o
8 r 1 r} I 1 T
D I
3 - 7400 ]
1 - 7404 o . | i :
3 - 7420 JO—
¥ S'F | | |
_ T 3 L |
Figure 9-45 | | ]. |y
SSI implementation of a BCD to T 1
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While MSI circuitry could be used to implement this equation it should
generally be obvious to you that the cost and number of circuits required
would be far greater than that shown for the SSI implementation in
Figure 9-45. Since seven outputs are required, seven multiplexer circuits
would be required. Since MSI devices are always more expensive than
SSI devices, such a method of implementation would be wasteful. A BCD
decoder such as the 7442 could be used to generate the minterms and OR
gates used to produce the output sums. Again, this would take more
circuitry than the SSI version described.

This application is a prime candidate for implementation with a ROM. It
has four inputs and seven outputs. The four BCD inputs define ten
memory locations each containing a seven-bit word. This means a
seven-bit ROM is required. The smallest standard ROM available is 256
bits organized as 32 eight-bit words. This device would be perfect for
implementing the BCD to seven-segment decoder. In fact, many commer-
cial BCD to seven-segment decoders are implemented in this way. See
Figure 9-46.

—NOT USED
E z
L] y
= c—] ROM ——xX
28 ——W

B_
W e Y
—U
—T
Figure 9-46

ROM used to implement the BCD to
7-segment decoder.

While the SSI logic circuit shown in Figure 9-45 or a ROM could be used
to implement this function, you should recall that this device is already
available as a single MSI circuit. Whenever a particular function has been
defined, it is desirable to check the manufacturer’s literature to be sure
that the circuit isn’t already available as an MSI package before beginning
to design it. Today, it is simply not necessary to design a BCD to seven-
segment decoder circuit since so many commercial versions are
available. Such a device was discussed in detail in a previous unit and a
typical device has been supplied with this program.
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EXPERIMENT 23

DESIGNING COMBINATIONAL
CIRCUITS

OBJECTIVES

To verify the design of the examples given in the text and to design
typical circuits using the ICs supplied with this program.

Material Required

Heathkit Digital Design Experimenter ET-3200
All of the ICs supplied with this program.

Procedure

1. Construct the BCD invalid code detector circuit shown in Figure
9-22. Use a typical 7400 IC (443-1). Assign the pin numbers yourself,
wire the circuit and verify its operation. Use data switches SW1 -
SW4 as your input and one of the LED indicators to observe the
output. Record your data in Table 1.

2. Show how you could use the 7442 BCD to decimal decoder IC to
implement the BCD invalid code detector circuit. Draw the logic
diagram and construct the circuit using any additional ICs that you
need. Veryify the operation of the circuit. Review the operation and
characteristics of the 7442 in Unit 8 and attempt to determine any
special trait that will permit you to use this IC.

3. Show how the 74151 data selector IC can be used as a BCD invalid
code detector. Draw the circuit, then construct it and verify its opera-
tion.
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TABLE 1
INPUTS OUTPUT
SW1| Sw2| SW3 | Sw4

A B C D F
0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1
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Discussion

Figure 9-47 shows one way that the gates in a 7400 IC could be intercon-
nected to perform the BCD invalid code detection function. This is the
simplest method of implementing this function since it requires a single
SSI package. When you applied the 16 four-bit words to the circuit you
should have found that LED L4 indicated a binary 1 during the 6 invalid
BCD states 1010 through 1111. For all other input codes which represent
the ten states of the 8421 BCD code, the output of the circuit was binary 0
indicating that these are valid codes. Note that SW4, which represents the
D input or LSB of the input word is not required by the circuit.

Figure 9-47
Minimum SSI circuit for BCD invalid
code detector.

In Step 2 you were asked to determine a method for using the 7442 BCD to
decimal decoder IC to implement the BCD invalid code detector. While
the simplest and least expensive circuit for implementing this function
has already been determined, the idea of this step is to give you practice
in designing with MSI circuits. As you will see, many MSI circuits can be
used for functions other than those for which they were originally de-
signed. It is important to keep this in mind as many cost and time saving
benefits can result.

If you studied the characteristics of the 7442 circuit as detailed in Unit 8,
you should have found that the 7442 accepts the standard 8421 BCD
input code and enables one of ten outputs. The enabled output goes low

10 INPUT while all unselected outputs remain high. The truth table for this circuit

AND GATE indicates that if any of the six invalid BCD codes are applied to this
device, all ten outputs will go high simultaneously. For any of the valid

D— codes at least one of the ten will be low. This should give you a hint as to
how you may use this device to detect one of the six invalid BCD codes.

il

Figure 9-48 shows one method of doing this. All ten outputs of the 7442

Using the 7442 to implement
the BCD invalid code detector.

are connected to a ten-input AND gate. As long as a valid BCD code is

Figure 9-48 applied to the input, one of the ten outputs will be low and will disable

the AND gate. However, if an invalid input code should be applied, all
outputs will go high. The output of the AND gate will go high at this time
and thereby indicate an invalid condition.
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Figure 9-49 shows how you might have implemented this circuit with the
ICs available in this program. Since a ten-input AND gate is not available,
other IC gate packages can be properly interconnected to perform this
function. In Figure 9-49, the 7420 IC contains two four-input NAND
gates. These gates, labeled 1 and 2, when combined with inverters 3 and 4
form two four-input AND gates. The outputs of these two circuits are then
ANDed in gate 5. Gate 5 and inverter 7 form another AND gate. The two
remaining outputs of the 7442 are ANDed in gate 6. The outputs of
inverters 7 and 8 are then again ANDed in gate 9. The output of inverter
10 is the output of our 10-input AND gate. Trace through this network of
gates to be sure that you understand how they perform as a single
10-input AND gate.

e |
e oDl —H ¢ |
Wb, 1R 1)3'
P~ I
SW2 2R |
bl I R | I D5 ,
SW3 15 4(}———6 107 :
SW4 A 5071 ] '
) 6 Oo—3; |
Pt
g O

There is one important point to make here. In all of our design examples
in this unit we have used the letter designations A, B, C, and D to define
our input states. We find A as the MSB and D as the LSB. The manufac-
turer’s literature and our previous text coverage use the same letters A, B,
C, and D to define the inputs, however, A was assumed to be the LSB and
D the MSB. This is just the opposite from the assignments we made in this
unit. The assignments are arbitrary and can be changed around to fit
whatever designations you desire. However, the reversal in assignments
may have led to some confusion for you. The purpose of doing this was to
show you how the input assignments can be changed around in any way
that fits your particular application. The most direct approach is to give
the circuit whatever designations you desire, then match these to the
input designations on the IC. Change the input designations on the IC to
match your design. In Figure 9-49, our input definition assignments are
shown adjacent to the input lines. The letter designations inside the
outline for the integrated circuit are those assigned by the manufacturer.
No difficulty will arise as long as you keep the definitions straight.
However, if you should have accidentally reversed the connections so
that you made the assigned input designations match those on the IC, the
circuit would not have performed properly.

Figure 9-49

CD invalid code
lemented with 7442, 7420, 7404, and

7400,

detector im-
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In the design example in the text we showed you how to implement the
BCD invalid code detector circuit with a 74150 16-input data selector
circuit. In this experiment you are asked to show how a 74151 8-input
data selector could also be used to perform this function. The technique
for doing this was described in the text. The 74151 has a three-bit address
input code which selects one of the 8 inputs. Three of our four BCD input
bits will be applied to these address lines. The fourth BCD input will be
connected to the appropriate data selector inputs in order to produce the
correct function. In order to determine the connections for the address
lines and the input lines to the data selector, the truth tables can be used.
Table II shows the six invalid BCD states with the letter designations as
we assign them in the design example. Note that A isthe MSB and D is the
LSB. Table III shows the input states for the 74151 data selector. The
three-bit address and the enabled input designations are given. Note that
the input address here defines A as the LSB. To determine which inputs
must be applied to the 74151, you simply match portions of the truth
tables for the desired output states and for the device itself. Note how the
least significant bits of the invalid states correspond to the six address
input states designated in the table for the 74151, Since these two match,
the B, C, and D inputs should be connected to the C, B, and A pins of the
74151 IC. By matching the truth tables we have also designated which
inputs of the data selector are to be connected. Since the first two input
states are not used, inputs D, and D, can simply be connected to ground.
Inputs D, through D; will be used. These will be connected to the A input
from our BCD word. This is the MSB of the input.

The completed circuit showing all connections is shown in Figure 9-50.
You can wire this circuit and verify it’s operation yourself. While this
approach does lead to a design implemented with a single integrated
circuit, the 74151 is an MSI device and therefore much more expensive
than the 7400 SSI device used earlier to implement this function.

+5V
—ma L TABLE TOI TABLE TII
74151 INPUT DEFINITIONS
‘! Do INVALID BCD STATES TNPUT
E! Dl A B C D ADDRESS ENABLED
- - D2 T INPUT
- 1 D3 ﬂ/ 1fo 1 0 C B A
12{0a no— L Ijo 1 4
14 s Y 00 0 00
(, Mss F306 11 00 0 0 | D1
° Ili 8 1 ( \
SWl 74151 sl & 3 £ A3 e
c B A B 3 D3
lq 10 il il & 3 1 0 0 D4
B SW? 1 0 1 D5
=3 Figure 9-50 110 D6
\D—e BCD invalid code detector im- 1. 3 1 D7
o plemented with a 74151 data selector. b
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Procedure (Continued)

4. Using a 74151 data selector IC, implement the two-of-four detector
circuit described in the text. Use Figure 9-31 as a reference. Deter-
mine the appropriate pin connections yourself, wire the circuit and
verify it’s operation. Use data switches SW1 through SW4 as the
input and one of the LED indicators to designate the output. Record
your data in Table IV.

5. Using the integrated circuits supplied with this program, implement
the three-input majority detector circuit described in the text. Use
Figure 9-41 as a guide. Sketch the logic diagram, implement the
circuit and verify its operation. Record your data in Table V.

TABLE IV

A B C DJ|F

0O 0 0 o0 TABLE V
0 0 0 1 A B C
o 0 1 0 0 0 o
0o 0 1 1 0 o 1
0o 1 0 O 0 1 o0
o 1 0 1 0 1 1
o 1 1 0 1 0 0
0 1 1 1 1 0 1
1 0 0 o0 1 1 o0
1 0 0 1 1 1 1
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TWO OF FOUR
DETECTOR

B C D |F

>

(= Bl o= B = B = B = = = i =}
=== 0000
=00 = =00
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Discussion

Figure 9-31in the text shows how to implement the two-of-four detector
circuit with a 74151 data selector. However, some additional anaylsis is
desirable in order to verify the operation of this circuit. Refer to Tables VI
and VII. Table VI is the truth table for our circuit which defines the output
states F for the sixteen possible four-bit input states. A binary 1 output
occurs when any two of the four inputs are binary 1. If you will look
closely at the truth table you will see that the three least significant bits of
the input (B, C and D) repeat themselves. This three-bit 8-state pattern
occurs twice in sixteen possible states, once when the input A is
binary 0 and the other when the input is binary 1. To determine which
data selector inputs are connected to the most significant bit of the input
word (A) you analyze the input truth table. For example, you want the
output F to be binary 1 when input states 1001, 1010 and 1100 occur. You
study the three least significant bits of these input states to determine
what input on the data selector they will enable. In this case they will
enable inputs D,, D, and D,. Therefore, to these inputs you will apply the
A input from the four-bit input word. When A is binary 1, the output of
the data selector will be 1 when the D,, D,, or D, states are enabled.

In the same way you want the output F to be binary 1 when the input
states 0011, 0101 or 0110 occur. Studying the three least significant input
bit you see these correspond to data selector inputs Dy, Ds and Dg. To these
inputs you will apply a binary 1 signal when the A input is binary 0. This
signal can be developed from the A input with an inverter.

TABLE VII

74151 INPUTS

ENABLED
INPUT

e el =N === Ne'
R R OO0 =Rk ool
—~ o0 r ool

Dy
D,
D,
D,
D,
D;
D
D,
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Translating this analysis into an actual circuit we arrive at the configura-
tion shown in Figure 9-51. The four-bit input word is derived from the
data switches and a 7404 inverter IC can be used to obtain the comple-
ment of the most signficant bit A. The output of the data selector is
monitored on LED indicator L4. This output F will be binary 1 when two
of the four input bits are binary 1. You should have constructed the circuit
and verified its operation. The operation should correspond to the truth
table in Figure 9-27 (and Table VI).

T+5V
£ l? ls |16
; e 74151
2 D1
2102
3 D3 5 L4
A 15 D4 E
i D5
: 13 D6
121p7 Figure 9-51
C B A Two-of-four detector circuit im-
1/6 - 7404 3 9 11011 plemented with a 74151 data selector.
1
SW1 A
-—.——_
swz B
. R A
swia C
—
swa D

Figure 9-52 shows how to implement the majority detector circuit with
available integrated circuits. This circuit is similar to that shown in
Figure 9-41. A type 7420 four-input NAND gate is used as a three-input
gate by simply connecting two of the inputs together. In verifying the
operation of the circuit, you should have found it to be similar to that
described in the truth table of Figure 9-39,

r
A —@ i
SW1 |
—
SW2 I
I

C —o
sw3 | |
|
I
L

Figure 9-52
Majority detector circuit.
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Procedure (Continued)

6. Design a combinational logic circuit that will convert the XS3 BCD
code into the standard 8421 BCD code. After you have designed the
circuit, implement it with the integrated circuits supplied with this
program. Use the data switches as the input source and monitor the
outputs on your 7-segment LED display. Use the 9368(443-694) BCD
to 7-segment decoder driver IC and LED to monitor the BCD output of
your code converter circuit. Implement the circuit and verify its
operation. Use the design procedure described earlier in this prog-
ram.

Discussion

Your design should have exactly followed the procedure given earlier in
this unit for designing combinational logic circuits. In this problem the
definition is very clear: convert the XS3 BCD input code into the standard
8421 BCD output code. This automatically defines the circuit as having
four inputs, four outputs, and ten discrete states. From this definition you
can go immediately to the truth table defining this problem. Refer to
Table VIII. Here the inputs designated A, B, C, and D are the standard XS3
BCD code as we considered it earlier. The output is the standard 8421
BCD output code.

The next step is to write the output equations in terms of the inputs. This
will result in four output equations W, X, Y, and Z in terms of the inputs.
Since you are going to use Karnaugh maps to reduce these equations it is
not absolutely necessary to write out each equation. Instead we can
transfer the information directly from the truth table to the Karnaugh
map.
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TABLE VIII
EXCESS 3 8421 BCD
INPUT OUTPUT
DECIMAL B C D X Y
0 0o 1 1 0 0
1 1 0o 0 0 0
2 1 0 1 0o 1
3 1 1 0 0o 1
B 1 1 1 1 0
5 0 0 0O T O
6 0 0 1 1 1
7 0o 1 0 1 1
8 0o 1 i 0 0
9 1 0o 0 0 0O
0 0 0
0 0 1
0 1 0 “Don’tCare”
1 0 1 INPUTS
1 1 0
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Figure 9-53 shows the Karnaugh maps for minimizing the XS3 to BCD
code converter. Notice that X’s are used to mark the six “don’t care” input
states. There is a map for each of the four output lines. Both the original
and minimized equations are given for each map.
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Figure 9-53
Karnaugh maps for minimizing the
XS3 to BCD code converter.
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There are any number of practical means of implementing this function
with integrated circuits. However, you were restricted by the integrated
circuits supplied with this program. The easiest approach is to use the
SSI circuits available. Figure 9-54 shows how the simplified equations
are implemented. A total of five integrated circuits are required. The
implementation is straight forward and follows the equations directly.
There are two special cases that require explanation however. To imple-
ment equation X, three product terms must be ORed together as you can
see by referring to the X equation. A three-input OR gate is required. It can
be implemented with available 2-input gates. The outputs of gates 4 and 5
are ORed together in gate 9. The output of gate 9 is then inverted to
produce a negative OR function. The results are then ORed together in
gate 8 with the BCD term from gate 3.

The output Y as you should have identified from the equation is the
exclusive OR function. Therefore, one of the exclusive OR gates in the
7486 IC can be used to implement this function directly, The Z output is
simply equal to D as determined by the simplified equation.

| = Figure 9-54
‘]D\ E CD * GV Y XS3 to BCD code converter.
/ |

|

9-67



9-68

UNIT NINE

e
HEATHKIT
CONTINUING
EDUCATION

To verify the operation of the circuit you should have then applied the
XS3 input code from the data switches SW1 through SW4. The output of
the code converter circuit is then connected to the 9368 BCD to seven-
segment decoder driver IC. This IC then, in turn, drives the 7-segment
display. The decimal output on the LED display should correspond to the
SX3 input code as determined in your original truth table. See Figure
9-55.

9368 FND 500
13
XS3 70 12 6 =
1
:xz A { sco cooe P—8 seoto 114
B | conVERTER |X 2 7 SEGMENT |10 2
a0 g Y Lf DECODER [o | ™=
SWd D (e |Z—_1] DORIVER [T~
FIGURE ey
9-54) 14 10
16 3 8 3 A
Figure 9-55
XS3 to BCD code converter with €5V GND ]

7-segment LED output indicator. =

SEQUENTIAL LOGIC CIRCUIT DESIGN

A sequential logic circuit is one designed to deal with a sequence of logic
operations occuring over a period of time. The circuit may generate a
sequence of timing pulses for use in controlling the operation of other
circuits. In such an application the sequential logic circuit is used to
automate a particular function. It will carry out a certain programmed
sequence of events in the proper order and in the proper time sequence.
Alternately, a sequential logic circuit may process logic signals occuring
in a particular sequence. A sequential circuit for example, may be
designed to detect a certain sequence of events and respond by
generating output signals to other circuits.

In order to carry out these functions, a sequential logic circuit must in
some cases be capable of making logical decisions. Logical
decision-making of course is carried out by combinational logic circuits.
This can be a simple logic gate or a more complex functional logic circuit.
Most sequential circuits will contain some form of combinational logic
circuit for decision making purposes.

The key feature of a sequential logic circuit is its ability to store data. In
order to generate a desired sequence of output pulses, the sequential
circuit must have some type of memory so that it can keep track of its
sequence. The major element in any sequential logic circuit is the
flip-flop. Flip-flops are interconnected with the combinational logic
circuit to perform the desired function.



Digital Design g_ 69

A sequential logic circuit responds to the various inputs applied to it. In
return it generates specific output pulses depending upon its function.
The output signals are a function not only of the input states, but also the
current state of the sequential circuit as stored in the flip-flop memory.

Figure 9-56 shows a general block diagram of a sequential logic circuit.
The heart of the circuit is the flip-flop memory where the state of the
circuit is determined. The flip-flops are generally controlled by clock
pulses. The flip-flop outputs drive the combinational logic circuits. The
combinational logic circuits are also driven by various input signals. The
combinational logic outputs in turn drive the flip-flops and can also drive
external circuits as required.

,NPUTS: COMBINATIONAL :
LoGIC <:

CIRCUITS

FLIP=-FLOPS
L —— 1 hmen ——

CLOCK

The number of flip-flops in the sequential logic circuit determines the
total number of different states in which the circuit can exist. These states
are defined by a particular binary code which is stored in the flip-flops.
As the inputs are applied and clock pulses occur, the state of the
sequential logic circuit will change. Flip-flops will become set or reset
according to a particular desired pattern. The flip-flop states may be
interpreted as a special form of binary code. These states, in turn, control
the combinational logic circuits to cause the correct sequence of events to
occur and to generate the sequence of output pulses.

You have already studied the most common forms of sequential logic
circuits. These are counters and shift registers. Standard binary and BCD
counters are made up of flip-flops and in some cases combinational logic
circuits. Shift registers are another form of sequential logic circuit. In
most design situations a standard counter or shift register can generally
be used to meet the need for a sequential logic circuit. However, there are
many applications where special sequential circuits can result in
benefits. Unusual applications and special functions are readily
implemented with special forms of sequential logic circuits. When
unique codes and sequences are required, special sequential logic
circuits can often result in a more efficient design using fewer parts
which operate at higher speeds.

Figure 9-56

QUTPUTS General block diagram of a sequential

logic circuit.
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The most common way of classifying sequential logic circuits is the
process by which the circuit changes from one state to the next. The state
transition can occur synchronously with the application of an external
clock pulse or asynchronously. In a synchronous sequential circuit, the
speed of operation is a function of the clock frequency. The states of the
circuit change in step with the clock pulses. In an asynchronous circuit,
the state changes occur as a result of previous changes. The speed of
operation is strictly a function of the propagation delay times in the
circuit and the rate of occurence of any external signals. Because most IC
logic circuitry has such short propagation delays, very high speed
operations can be obtained with asynchronous circuits. However,
because of the unequal propagation delays of the various gates and circuit
paths, unreliable operation can occur. False triggering and invalid states
can prevent circuits from operating correctly. The design of an
asynchronous circuit is also more difficult since it requires an analysis of
the possible fault conditions that can occur and some means of correcting
these faults. Generally, synchronous circuits are easier to design,
implement and control, and therefore are recommended over
asynchronous designs. This section emphasizes the design and applica-
tion of synchronous sequential circuits using JK flip-flops.

Design Procedure

Most of the sequential logic circuits in use today are some form of special
counter. Like the standard binary and BCD counters you have studied
before, these special counters will sequence through a number of states in
response to the input signals applied. The flip-flops in the counters will
set and reset according to a specific count sequence and generate the
output pulses called for by the application. Such sequential circuits can
be counters that implement a specific code or frequency dividers that
have a required number of states. When sequential circuits like this are
used for control purposes, the counters are normally referred to as
sequencers or controllers. A wide variety of different code types can be
implemented in this application, but in controllers and sequencers the
codes most often used are cyclical codes where only one flip-flop in the
counter changes state at a time.

The design procedure to be described here shows one method of
designing special counters and sequencers. This procedure will provide
you with a means of designing such circuits for most of the applications
that you will encounter. Keep in mind that it is only one of many different
techniques. Alternate design methods are available but most applications
can be manipulated such that the type of circuit described here and the
procedure to design it can be used.
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In describing and illustrating this design procedure we will assume the
use of synchronous circuits using JK flip-flops. This is the most
commonly used approach and the one that will result in the most
versatile and reliable design.

The design procedure for sequential logic circuits is as follows:

State the problem and completely define the design objectives.
Develop a state table from the problem definition.

Develop Karnaugh maps for the flip-flop inputs from the state table.
Write the input equations for the flip-flops from the Karnaugh maps.
Draw the complete logic diagram from the logic equations.
Implement the circuit using standard integrated circuits.

L

Defining the Problem. The first step in designing a sequential logic
circuit is to define the required objective. This is best done by writing
down a complete but concise description of the function to be performed.
State explicitly what operations are to occur. There are many different
ways of expressing the logic function to be performed. There is no
standard method for doing this, but the most important part of it is to
include all possible conditions. As part of the problem definition you
should specify the characteristics of the input and output signals and
specify or determine the number of states that the circuit must assume.

The circuit inputs and outputs can be expressed in several different ways.
These may take the form of logical waveforms that define the sequence of
functions to be performed. Alternately, these may be logic levels that
occur at specific times which cause certain operations to take place. The
inputs and outputs can also be expressed in the form of a truth table or
state table. A state table is similar in format to a truth table, in that the
input and output signals are expressed in terms of 1's and 0's in table form
that shows the sequence of change at each of the desired steps or states
defined by the problem.

Specifying the input and output signals and writing out a description of
the function to be performed will generally decide or specify the number
of states in which the circuit can exist. The number of steps in the
sequence of operations to take place will generally determine the number
of circuit states. When the number of states have been determined, this
will tell you the number of flip-flops that the memory section will
contain. These flip-flops will define a binary word. The sequence of the
steps designates how the flip-flops change state. This in turn defines a
specific code sequence. The code sequence may be the standard binary
code or it could be any one of a number of special codes such as XS3 or
Gray Code. Of course, any binary sequence can be selected and
implemented if it is required by the application.
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Developing a state or flow table. Having determined the number of
states required by the application, you should now be able to develop a
state or flow table that completely defines all of the states in the circuit. A
state or flow table is simply a truth table that expresses the outputs of the
flip-flops in the circuit for each of the states required by the application.
Knowing the number of states required, the number of flip-flops can be
calculated using the techniques described earlier. For example, an
application requiring seven states would require a 3-bit counter. A 3-bit
counter will produce 2° = 8 states. Two flip-flops are insufficient since
they will produce a total of only 2? = 4 states. Three flip-flops will handle
the application properly. One of the eight states will not be used.

Figure 9-57 A shows a state table or flow table for an application requiring
seven states. The states have been specified by the application, and are
numbered 0 through 6. The eighth state (7) whose binary output is 100 is
not used but is generally included in the table and labeled as not being
used. Note that the circuit contains three flip-flops labeled A, B, and C.
The binary code for each state bears no relationship to the decimal state
assigned to it. The flip-flop outputs in such a case are simply treated as a
bit pattern rather than a binary number.

FLIP FLOP OUTPUTS t t+1
STATE ABC STATE ABC ABC
0 000 @ 0 000 110
1 110 1 110 010
2 010 B 2 010 101
3 101 RECYCLE 3 101 001
4 001 4 001 011
5 011 5 011 111
6 111 6 111 000
7 100 NOT USED 7 100 NOT USED
Figure 9-57

State or flow table for a 7-state counter
or controller.

To interpret the flow table in Figure 9-57A, you simply observe the
flip-flop states as the circuit changes from one state to the next
sequentially moving from top to bottom. The state column indicates that
the 0 state is the initial condition state and the other states occur
sequentially as shown. When state six occurs (binary output 111) the
circuit will then recycle back to the initial zero state upon the application
of the next clock pulse.
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Figure 9-57B shows another method of constructing a flow or state table.
The state column and the section labelled t are similar to the flow table in
Figure 9-57A. An additional section labelled t + 1 is also included. The t
indicates the state of the flip-flop outputs before the application of a clock
pulse. The section t + 1 indicates the state of the flip-flops after the
occurrence of one clock pulse. The information in this table is exactly the
same as that in the flow table of Figure 9-57A. Only the format is different.

The flow tables shown in Figure 9-57 illustrate one of many possible
special codes that can occur as the result of developing a sequential
circuit for a specific application. It is possible that the code illustrated
was derived strictly from the desired flip-flop output states at each state
in the circuit. This table may have been developed by observing output
waveforms that were originally specified as required by the application
to produce the specific timing and sequencing required. Studying the
table we see that no recognizable standard code exists. It is simply a
random or special code that meets the particular application.

There will be other applications where a standard code may be used or
specified. The problem may call for the pure binary code, a BCD code,
excess 3 code, or the Gray code. In still other applications no standard
code will be specified or required. In addition, a particular application
may not be code sensitive, that is any code can be used. In such situations
it is generally desirable to use some form of standard code. The
conventional binary code is desirable since a counter can be easily
constructed. This results in hardware simplifications.

For most sequential circuit applications where a special counter or
sequencer is required, the most desirable approach is to implement a
circuit in which only one flip-flop changes state at a time when the circuit
is stepped from one state to the next. The Gray code is an example of such
a code. Such a circuit can be made to operate faster than other types of
counters. Unequal propagation delays in the various circuit components
will not cause false triggering or spurious undesirable output pulses
known as glitches. If more than one flip-flop changes state at a time, the
unequal propagation delays of the flip-flops can cause momentary false
states. Gates used to decode the various counter states can then produce
very short duration pulses equal in length to the difference between the
propagation delay time changes in the various flip-flops. These glitches
can cause false circuit triggering. By changing only one flip-flop at a time
such pulses are eliminated or very greatly minimized. In addition, it is
also desirable to use a synchronous circuit so that all flip-flops in the
counter are clocked at the same time. This too helps to minimize glitches.

9-73
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Karnaugh map for the seven-state
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The Gray code is only one of many cyclical codes in which only one bit of
the code word changes at a time from one state to the next. There are many
different combinations possible and you may use any combination to
achieve the desired end result.

Another useful guideline in developing a special code for a counter or
controller is that the initial state be assigned 0. All flip-flops should be
reset for the 0 or initial state of the circuit. Most circuits will have a reset,
resting or wait state from which all operations begin. By making this state
equal to 0, it becomes easy to identify. The direct clear inputs on most JK
flip-flops can also be tied together to generate this initial or reset state by
simply bringing this line low. This line can then be controlled from a
pushbutton or by a special circuit that will automatically place the
counter in the 0 state when power is applied.

Developing a Karnaugh Map For The Counter. Another way of show-
ing the states of a special counter or sequencer is to use a Karnaugh map.
Each cell or square in the map indicates a specific state. The decimal
number corresponding to each state can be written into the cell corres-
ponding to the binary code produced by the circuit. Arrows can then be
drawn on the table to indicate the sequence of flow as defined by the state
table. The Karnaugh map produces a visual means of indicating the states
of the sequential circuit. Figure 9-58 shows a Karnaugh map that plots the
seven-state controller defined by the tables in Figure 9-57.

A A
e NOT
—T
1| O] agl 3N I
Figure 9-58 A5t N Kdc |\Ate
counter defined by the table in Figure e *
95’53. ’ B 2 5—F=6_| 1
™ ——

RBT ABC ABC ABT

C i (o}

Besides helping you visualize what your counter or sequencer is doing, it
can also help you in selecting a suitable cyclical code where only one bit
changes from one state to the next. Recall from our earlier discussion of
Karnaugh maps that adjacent cells in the map represent a change in only
one of the variables. In moving from one cell to the next only one of the
variables will change. Therefore to create a special code all that is
necessary is to choose an initial starting point and then move from one
cell to the next as many times as required to generate the special code.
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Figure 9-59 shows several examples of how the Karnaugh map can be
used to develop a special code. In all cases the initial starting point is 000
or A B C. In each example, the counter or sequencer has 6 states. Six of the
cells in the map, therefore are involved. Note that in moving from one cell
to the next only one variable changes at a time. Note particularly the state
change involved in recycling from the sixth state to the initial state.
Remember that the Karnaugh map can be treated as a cylinder where the
left and right edges of the map are considered to be adjacent.

A A
' | ABC
- — e —_—
B 000
RET (ﬁc ABC ABCT 001
\ \ 011
- 111
B
e = = 101
ABT ABC ABC ABE
100
& C o
A
A A
_ P e ABC
B 000
ABC ABC ABC ABC 010
‘] \ 110
A - 111
B
'AaE\ ABC ABC Aa;\ il
N 001

Figure 9-59
Examples of Karnaugh maps defining
six-state cyclical counters.

While we have indicated six states in these examples, controllers of any
number of states can be developed using this same technique. It is not
always possible to generate a code where only one bit changes from one
state to the next. This is particularly true of counters or sequencers with
an odd number of states. It may be possible to generate a code that
changes from only one state to the next, but in recycling more than one bit
may have to change in order to have the code return to its initial state.



9-76

UNIT NINE

HEATHKIT

Figure 9-60 shows a five-state code where only one bit changes from the
initial state through the five code states. But in recycling from the last
state 110 to the initial state 000, two bits change. Generally, such condi-
tions are not detrimental. Where they are, an even number of states could
be introduced. The extra or unneeded state, called a dummy state, would
not be used by the application but would serve only as a means of
recycling the counter by having only one flip-flop change state at a time.

A A
/ ABC
— . - = 001
ABC ABC Aac ABC
101
\/"‘\/ 111
B 110
ABT ABC ABC ABC
t C [}
Figure 9-60

Examples of a Karnaugh defining a
five-state code.

The most important application of a Karnaugh map in designing a
counter or sequencer is in determining the input states to the flip-flops
required to produce this special code specified. In using JK flip-flops,
certain states must be applied to the ] and K inputs to cause the flip-flops
to set and reset in the desired code sequence. To determine these inputs,
we observe the state table and indicate which flip-flop must be set or reset
in changing from one state to the next. The set or reset conditions are then
plotted on the Karnaugh map. Then, by properly grouping these plotted
input states, the input logic equations for the various flip-flops can be
found.

To plot the state change Karnaugh maps for each flip-flop in the counter,
you will mark each cell in the map with a symbol that designates the state

change that is to take place. There are five possible conditions that can
occur. These are:

Flip-flop changes from reset to set.
Flip-flop changes from set to reset.
Flip-flop is set and remains set.
Flip-flop is reset and remains reset.
Don’t care.

ol o O 2 o
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To indicate these five state changes, or conditions, the symbols below are
used.

1 Flip-flop changes from reset to set.

| Flip-flop is in the set state and remains in the set state.

¢ Flip-flop changes from set to reset.

0 Flip-flop is initially reset and remains reset.

X Input conditions do not occur or a “don’t care” state exists.

These state changes are summarized by the table in Figure 9-61. The
left-hand column shows the symbol used to indicate the state change.
The t column represents the state of the flip-flop prior to the application
of a clock pulse. The t + 1 column indicates the state of the flip-flop after
the clock pulse.

SYMBOL TO REPRESENT
STATE CHANGE

-

-
+

—

om-—-_l—
S bk =

t = BEFORE CLOCK PULSE
t+ 1« AFTER CLOCK PULSE

Figure 9-61
Symbols representing flip-flop state
changes.

The state table is then analyzed to determine how each flip-flop change
changes from one state to the next. These state changes are then plotted
on the Karnaugh maps, one map for each of the flip-flops in the counter.

The symbol to be plotted in each cell of the Karnaugh map designates the
state change that must take place in the output variable associated with
the map in moving from one state to the next. For example, if flip-flop A is
presently reset as indicated by its condition in the cell of interest and
must set in order to transfer to the next state, a 1 will be marked in that

cell. The symbol in a cell represents the state change that must occur to
move to the next state.

9-77
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This is best illustrated by developing the Karnaugh maps for the flip-
flops in the special 7-state counter discussed earlier. The maps for this
circuit are shown in Figure 9-62.

A A A
_-F\-—_--__-_ _____ e e
|
: ABC ABC ABC ABT | ABT
| |
1 (1 1 ] g) | /
B___:___/‘ ;:,_ B
\ABC | ABC | ABC | ABT s ABC
o c C (i c T
A FLIPFLOP ) =B +T B rLipFop ) A
K=1 K = AT + AC
A A
Figure 9-62
Karnaugh maps for flip-flops in 7-state g 0 / g X
counter. S i _
ABC ABC ABC ABCT
’f----——\‘
; ( 1 / ) \9_____0",
ABT hecC ABC ABT
el C C
C FLIP FLOP | = AB
K = AB

In each cell is recorded the symbol that designates the state change that
will take place in moving from the current state to the next state. Using
the state tables in Figure 9-57 as a guide, verify the use of the correct
symbol in each case. As an example, consider state 2 for the B flip-flop.
State 2 is defined by the code 010 or A B C. Locate this cell on the
Karnaugh maps for the B flip- flop. To move from this state to the next
state, state 3 (Code 101 or A B C) the B flip-flop will | change from its
current set state to the reset state. Therefore, in cell A B C you will record
the symbol indicating that a reset condition must occur. This is the g
symbol.

As another example consider the condition of flip-flop C in going from
state 4 to state 5. Here you see that the C flip-flop is set in state 4 (code 001
or A B C). Locate state 4 on the Karnaugh maps for the C flip-flop. To move
to the next state, state 5 (011 or A B C), the C flip-flop does not change
state, it remains set. Therefore, a / is recorded in the fourth state cell. Be
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sure to verify that the proper symbol is used in each cell of each Karnaugh
map to obtain practice in reading and developing these maps.

Once you have completely plotted the maps for each flip-flop, you will
use them to develop the ] and K input logic equations for each. To do this
you will group the various terms in the maps together in groups of 2, 4, 8,
or higher powers of 2 as you did in minimizing combinational equations.
There are some special rules that you must follow with regard to group-
ing the variables in the maps. For a JK flip-flop these rules are as indicated
below.

] input equation

1 Each 1 square must be accounted for in the | equation.
/' Optional

P Optional

0 Must not be used

X Optional

K input equation

1 Optional

/" Must not be used

B Each P square must be accounted for in the K equation.
0 Optional

X Optional

In developing the | input logic equation you must consider each 1 term
marked in the cells of the map. Each 1 must be used in some way to
account for all of the necessary input states. Cells marked with a 0 must
not be used. All other input symbols such as the/, @, and X can be used in
the same way as "“don’t care” states in any other Karnaugh map.

In determining the K input logic equations, all @ terms must be accounted
for and used in one grouping or another. The / cells must not be used. All
other cells marked with symbols 1, 0 and X can be used as ‘“‘don’t care”
states,

The Karnaugh maps in Figure 9-62 show the proper groupings of the
terms of both the ] and K input equations. The ] input equations are
identified by groups marked with solid lines. The K input equations are
designated by the dashed lines. The Karnaugh map is read in the same
way as you read Karnaugh maps for combinational logic circuits. Simply
look at each marked group and determine which variable or variables
does not change when moving from one cell to the next within that group.
Make a product term with these variables. Then OR together each of these
terms, one term for each group. The equations corresponding to the ] and
K input states are designated adjacent to each map. Using the rules given
earlier, verify the correct grouping of the variables. Then derive the input
equations for the ] and K inputs of each flip-flop yourself from the map to
check the eauatinns.
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Figure 9-63
Logic diagram of the seven-state
counter.

— e ——

A special case in the map of flip-flop A is that all 8 cells are valid for the K
input. This means that we can form one single large group of eight
representing the input term for the K input of the A flip-flop. When all
terms in a map can be looped together, it simply indicates a binary 1
condition. In other words, input A,B, or C could be in either the binary 1
or binary 0 state and the output would still be binary 1.

Drawing the Logic Diagram. Knowing the number of flip-flops in the
counter and having the equations of the ] and K inputs for each you can
draw a logic diagram for the counter or sequencer. Keep in mind that we
are dealing strictly with the JK flip-flops and a synchronous circuit.
Figure 9-63 shows the logic diagram of the seven-state counter. The T
inputs of each flip-flop are connected together to a common clock input
line. This indicates a synchronous circuit. Note that all direct clear inputs
of the flip-flops are connected together so that all of these flip-flops can be
cleared, reset or initialized from a common input line if desired. The
remaining logic circuitry represents logic gates that implement the ] and
K input equations for each flip-flop. Gate 1 through 4 are positive
NAND negative NOR gates such as the type 7400 quad two-input NAND
gate. Gates 5 and 6 are positive NOR negative NAND circuits such as type
7402 IC. JK flip-flops like the dual flip-flop 7476 could be used. The
resulting circuit is a counter that will sequence itself in the given code
with the minimum amount of hardware.

o

BINARY 1 K

T
[z -

CLOCK

CLEAR, RESET
OR INITIALIZE

Design Examples

To further illustrate the design procedure for sequential logic circuits, the
example designs given here are presented. They show that a counter can
be designed with any number of states and to sequence or step from one
arbitrary binary bit pattern to another. Special codes or arbitrary
sequences are equally easy to design and implement.



Two-Bit Gray Code Counter. Assume that we wish to design a four-
state Gray Code Counter. In attempting to achieve high speed we choose
the Gray Code since only one bit changes from one state to the next. The
fact that we need a Gray Code counter is determined by the application
itself. Perhaps the application simply calls for a four-state counter and
based on your knowledge of the application you determined that a Gray
Code sequence was the most desirable for high speed operation. The Gray
Code sequence could also have been determined by the desired output
waveforms,

Once the problem has been completely specified and stated, a state table
is developed. Figure 9-64 shows a state table for a two-bit Gray Code
counter. The states are labeled 0 through 3 and as usually desirable the
initial or first state, state 0, is made equal to 00. It takes two bits to define
four states. Note that in changing from one state to the next only one of the
two bits changes at a time. This includes the state change from the fourth
state, state 3, back to the initial state, state 0.

The next step of the design procedure is to plot the state changes for each
flip-flop on a Karnaugh map. To do this you examine the state changes
that must occur in each flip-flop in moving from one state to the next.
These state changes are then plotted in the appropriate cells on the
Karnaugh map. In each cell you plot a symbol that designates the transi-
tion that must take place to move to the next state. Use the symbols given
earlier for designating the state changes.

Figure 9-65 shows the Karnaugh maps for the A and B flip-flops with the
appropriate state changes plotted. The various symbols in this table are
then grouped according to the directions given earlier to determine the
input expressions for the | and K inputs on each flip-flop. The minimized
input expressions are given adjacent to the Karnaugh maps.

From the information derived from the Karnaugh maps, a logic diagram
can be drawn. This is illustrated in Figure 9-66, The two JK flip-flops are
interconnected as specified by the ] and K input expression given in
Figure 9-65. Since this is a synchronous circuit, the toggle inputs to the
flip-flops are tied together to the clock circuit.

A B
Figure 9-66 I:‘J A ) B —
Logic diagram of 2-bit Gray Code
counter, T T

CLOCK

Digital Design 9-81
STATE | A | B
0 010
: #14 RECYCLE
2 1)1
3 1|04
Figure 9-64

State table for 2-bit Gray Code counter.

A A
If—-"-'-'--—-.\‘
g (\0_| 9}
"B AB
1D
A B AB

A FLip-FLOP g -

A A
I‘-~\

- [}
B 1 1 :
KB :Aﬁl
[ ]
/ ]
B \Jq’l
A B AB
B fLip-fLor 1 -7%
K = A

Figure 9-65

Karnaugh maps for flip-flops in 2-bit
Gray Code counter.
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0011 —-—
0100
0101
0110
0111
1000
1001
1010
1011

RECYCLE

1100 |

State Table for Excess 3 counter.

Figure 9-67

Be sure to work through this example problem yourself. This includes
developing the initial state table, plotting the state changes on the Kar-
naugh maps, developing the input equations and sketching the logic
circuit. Verify each step of the example to be sure that you understand
what was done.

XS3 Code BCD Counter. Design a counter circuit that will count in the
standard XS3 BCD Code. We know from the statement of the design
problem that a ten-state counter is required. A BCD counter is a decade
counter with ten states. The code is also defined for us. The standard XS3
code is specified. From this information we can immediately develop a
state table. This is shown in Figure 9-67. The initial or zero state is 0011.
From there the counter steps in a standard binary code sequence until the
tenth state (1100) is reached. The counter then recycles on the tenth input
pulse.

The next step in the design process is to translate the flip-flop transitions
in the state table into the symbols that can be plotted on the Karnaugh
map. Use Figure 9-61 as a guide.

Figure 9-68 shows four sixteen-cell Karnaugh maps used to plot the state
changes for each of the four flip-flops. Since the counter has only ten
states, six of the four states will not be used and therefore can be treated as
““don’t care’ conditions. These are states 0000, 0001, 0010, 1101, 1110,
1111. X’s are placed in the appropriate squares in all four Karnaugh maps
so that these ““don’t care” conditions can be used in minimizing the input
equations for each flip-flop.

Next, the transitions of each flip-flop from one state to the next are
analyzed and plotted on the appropriate Karnaugh map. Go through each
of these yourself to see how the various transition changes were deter-
mined.

Using the rules given earlier about grouping the symbols in the Karnaugh
maps, develop the input expressions for each flip-flop. The Karnaugh
maps indicate the appropriate groupings and the resulting logic equa-
tions for the JK inputs. Solid line groups are for the | inputs while dashed
line groups are for the K inputs.
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Figure 9-68

Karnaugh maps for the XS3 counter.
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From the input equations developed from the Karnaugh maps, the logic
diagram can be sketched. Figure 9-69 shows one method of implement-
ing this circuit, All of the T inputs to the flip-flops are connected together
to form a synchronous circuit. The ] and K inputs to each flip-flop are
specified by the input equations. This gating assumes the use of standard
SSI logic packages.

D c B A

| Do
Figure 9-69
Excess 3 BCD counter. :

BINARY 1 J = :D—-J cH 2 WJ A

Design Variations

The sequential circuits that we have considered are special counters that
can have any number of states and any special code sequence. All of these
circuits have a single input, the clock. However, there are other sequen-
tial circuits where external control signals are used to control the counter.
These external inputs essentially determine when a counter or sequencer
steps from one state to the next. The only modification needed in our
design procedure to handle external inputs is to include these signals as
variables in the JK input expressions. In order to cause a circuit to change
from one state to the next, the JK inputs of the various flip-flops must have
the appropriate input signals as determined by the count sequence of the
counter. If an external input signal is to have control over the change from
one specific state to the next, then that external input signal becomes one
of the product terms in the expressions for the JK inputs on each of the
relevant flip-flops.

This concept can be simply illustrated with the two-bit Gray Code
counter discussed earlier. Assume that we wish to have an external start
signal to control the counter. In other words we wish the counter to
remain in its initial 00 state until it receives a binary 1 signal on the
START input line. Once the START signal goes high, the counter will be
incremented by the clock pulses from one state to the next. This sequence
will continue until the START line is brought low. Then the counter will
stop counting.
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Figure 9-70 shows one way that this circuit could be implemented. An
AND gate is connected to the J input of the B flip-flop. Normally this |
input is connected directly to the A output. The A output is used as one
input to the control AND gate. A START signal is also applied to the AND
gate. Now in order for the B flip-flop to set, the A output must be high and
the START input must be high. With the counter initially in its 00 or reset
state, the JK inputs on each flip-flop are 1 and 0 respectively. As clock
pulses are applied both flip-flops will continue to be reset. When the
START input line goes high, the AND gate output goes high making the |
input to the B flip-flop high. The K input to the B flip-flop is low as it is
connected directly to the normal output of the A flip-flop. The conditions
are now correct for the B flip-flop set on the occurrence of the next clock
pulse. When this happens, the normal count sequence of the Gray code
counter will begin. The counter will continue to count as indicated by the
waveforms in Figure 9-71.

" STTRT ?
crock [1] |2
—t J A 1 J B
START
| B
—Kk & K Bl i g 2
B of 1
CLOCK
Figure 9-70

Two-bit Gray Code counter with ex-

Figure 9-71

Waveforms for two-bit Gray Code

ternal control input. counter with external control input.

If the START line should go low during the count sequence as indicated
in the waveforms of Figure 9-71, the counter will continue to run until the
00 state is reached at which time the counting sequence will stop. The
counter will remain reset until the next start pulse is applied. While this
is a simple example, it does illustrate the concept of using external
signals to control the occurrence of the state changes in a special counter
Or sequencer,

In using these special counter or sequencer circuits, we will often be able
to use the flip-flop outputs directly to control external circuits. In such a
case no additional circuitry is required. It is possible to define the control
waveforms required and then design a counter to produce the desired
count sequence thereby minimizing the circuitry. Another approach to
obtain a sequence of timing pulses is to decode the state of the special
counter. AND gates can be connected to the flip-flop outputs to recognize
each unique state produced by the counter. The outputs of these decode
gates can then be used to control the sequence of operations in external
circuits.

9-85
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Figure 9-72 shows how all four states of the two-bit Gray Code counter are
decoded. The output signals produced by the decoder gates are illus-
trated in Figure 9-73. Note that as the counter steps from one state to the
next, a sequence of timing pulses is generated. These pulses are then used
to control the external circuits. In some applications all states of the
counter must be decoded to create the necessary timing pulses. In other
applications only specific states may be required thereby minimizing the
number of decode gates required. For three- and four-bit counters, MSI
decoder circuits can be used to reduce the amount of circuitry required to

Two-bit Gray Code counter with all decode the desired states.

states decoded.

CLOCK

A B
I: vl J2f I3 fal [s] Je| 7] s
J J
A B
;2 1y a0 o f 1 1 ]o of1 1o
mh KM g 01t 1 ]o of1 1]o o
AE I | [—

AB I_L J—I
AB I I I
&8 A ke L Figure 9-73

Waveforms for two-bit Gray Code
counter and decoder.

Self Test Review

The purpose of these self test review problems is to give you practice in
designing digital circuits. The example problems given here combine
both the techniques of combinational and sequential logic design. As in
any design situation the problems are wide open to interpretation based
on your knowledge and experience. There is no single perfect way of
designing and implementing a given circuit. For most applications a
variety of methods are suitable. For the problems here, however, we will
give you hints to guide you in developing a circuit based on the design
techniques you have learned here. Keep in mind that our design em-
phasizes high performance for minimum cost, size and power consump-
tion. We will also emphasize the use of digital integrated circuits, primar-
ily the TTL type which are supplied with this program. The examples
given here will permit you to breadboard these circuits to verify your
designs.

5. Design a digital die. Many games use dice to randomly select a
number that is used in determining the outcome of the game. It is
possible to design and build digital dice where the marks on the dice
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can be simulated by indicator lamps. Figure 9-74 shows an arrange-
ment of indicator lamps labeled T through Z. When the appropriate @ [ R
lamps are illuminated, the numbers 1 through 6 will be represented
in standard die format. The objective of this design problem is to
develop the circuitry necessary to randomly select a number 1
through 6 and display it. Assume that the indicator lights in the die
are light-emitting diodes (LEDs) and are driven by a saturated trans- @Y ®:
istor switch as shown in Figure 9-75A. The type of transistor and the
values of R1 and R2 are not important except to indicate that the
value of R2 is such that Q1 will saturate and the indicator LED will Figure 9-74
turn on when a standard TTL binary 1 level is applied to R2. An open Standard die format.
collector TTL inverter can also be used as indicated in Figure 9-75B.

®' 0" @

\,\ +5Y

LED +5V

Figure 9-75
LED driver circuits (A) discrete
component (B) TTL IC open collector
inverter,

As a hint in starting you on this design, assume that the random
nature of the circuit is derived from the use of a high speed clock
oscillator. When the clock oscillator is enabled, it will step the logic
circuit rapidly through the necessary states. The random depressing
and release of the control push button for the clock oscillator will
randomly determine when the clock starts and stops and what state
the die circuit is in when it begins and when it ends. This will
produce sufficiently random results for fair die operation. Using
these guidelines develop the necessary circuit.
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5. An analysis of this design problem shows that the circuit

@ @
o @ @
[ ] [ ]
Figure 9-76
Simplified block diagram of digital
die.
CODE
CONVERTER
SIX
cLock STATE
COUNTER

can be broken down into four basic parts. These are a
six-state counter, a code converter, the die display and the
clock circuit. These sections are shown properly intercon-
nected in the simplified block diagram of Figure 9-76.

Since there are six possible die display states, a six state
counter is required for the sequential circuit. A clock cir-
cuit is used to step the counter. The clock speed can be
anything that is high enough to prevent the operator or user
from selecting the desired outcome. If the clock is slow
enough the user can observe the state changes and stop the
counter at a desired state. Anything above approximately
50 Hz is satisfactory.

The six-state counter generates a specific binary code. This
code can be almost any desired sequence of binary states.
Three bits are required to represent the six states. With
three bits a maximum of 2* = 8 states will be produced.
Two of these states will not be used or can be considered as
“don't care” states.

The output of the counter drives a code converter. The code
developed by the six-state counter is converted into proper
logic output signals used to drive the LED indicators in the
die display.

As you can see from Figure 9-76, this is a two part design
problem. First you will need to design a six-state counter
and then an appropriate code converter. The die display
configuration has already been specified. The driver cir-
cuit for the LED was shown in Figure 9-75. The clock
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circuit can be any astable or free-running multivibrator
with some type of pushbutton switch used to start and stop
it.

We are going to describe two possible solutions to the
problem. Your solution may or may not be like either of
these. The first solution to be presented follows the design
procedures described in this unit. The second solution
uses these procedures also but deviates somewhat in order
to minimize the logic circuitry required for implementa-
tion.

The first part of the design procedure is to completely
define the problem. As before this is best done by illustrat-
ing the inputs and outputs. Figure 9-77 shows the standard
die format. These are the six discrete output states that we

1 2 3

@ @
o o 0" °
.V .V
. u .W .Y
.V ® 7 ) 5 6
o o o o |0 &
.W .U .Y
® vV .Z ® v .Z ® v .Z

Figure 9-77
Standard die format,

wish to achieve with our circuit. Each spot on the die is
implemented with an LED indicator. As you can see there
are a total of seven outputs required by the circuit. These
seven outputs or die segments are labeled T through Z. It is
the purpose of our code converter circuit to convert the
three-bit code from the counter into these seven outputs.
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The truth table in Figure 9-78 shows the six die states, the
counter states, and the die segment outputs. For this design
we have chosen the standard binary code for the counter
states. The standard binary counting sequence is generally
easy to implement and therefore, it is chosen for this de-
sign. However, keep in mind that any sequence of code
states could be used. Nothing in the design restricts us to
one particular code.

COUNTERSTATE | DIE SEGMENTS
DIE STA
S1aTE ABC TUVWXYZ
1 000 0001000
2 001 0010100
3 010 0011100
4 011 1010101
5 100 1011101
6 101 1110111
110
‘T CA
(11 }DONTC RE
Figure 9-78

State and flow tables for digital die.

Associated with each counter state is the outputs for the die
segments. A binary 1 in the T through Z columns indicates
that the associated LED indicators will be on. Verify this
truth table by referring to the die formats in Figure 9-77.
This truth table in Figure 9-78 completely defines the de-
sign problem. Note that the 110 and 111 states for the
counter are not used and therefore can be considered as
“don’t care” states.

The first part of our design then is to implement a six-state
counter that steps in the standard binary code shown by the
truth table. Using the procedure described in the text, we
develop our design using Karnaugh maps as shown in
Figure 9-79. Here a separate map for each flip-flop is
shown. In each cell of the map is the appropriate symbols
used to indicate the state change specified by the counter
state table. Once all of the tables have been completely
marked, the various cells can be grouped to specify the |
and K inputs. From the marked Karnaugh map the input
equations for each JK flip-flop are developed. The input
equations for each are designated in Figure 9-79. The equa-
tions in Figure 9-79 can be implemented with JK flip-flops
and SSI logic gates.
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Figure 9-79
Karnaugh map for six-state counter.

The next step is to design a code converter circuit that will
translate the six-state binary code into the output code
specified by the die segments in Figure 9-78. To do this we
effectively write the equation for each of the outputs T
through Z and then implement it. However, before we do
this it is desirable to study the truth tables to determine
what simplifications they suggest. Studying the table we
see that outputs T and Z are equal. Outputs U and Y are
also equal. Outputs V and X are the same.Since these vari-
ous outputs are equal, the output equations and the result-
ing circuitries are also the same. This means that the total
number of output equations for this circuit then becomes
four instead of seven. It is always a good idea to study the
truth table of any design problem to see if such simplifica-
tions exist.

Instead of writing the output equation from the truth table
we can go directly to Karnaugh maps for minimizations.
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B i 1 - 1
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ABC ABC ABC ABT ABC ABC ABT
@ 1 X ) )DJ " X l X
ABT ABC ABC ABC

ABC ABC ABT

Figure 9—80
Karnaugh map for code converter.

These truth tables are shown in Figure 9-80. Note that the
“don't care” states are marked with X’s. Each of the output

expressions is minimized and the minimum output
equation for each die segment is given.
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Figure 9-81 shows the complete logic diagram of the circuit.
JK flip-flops A, B, and C are used to implement the 6-state
counter. Gates 1 and 3 and inverters 2 and 4 are used to
implement the logic inputs specified by the counter design.
Gates 5, 6, 7, and 9 and inverter 8 are used to implement the
logic equations for the code converter. The solid triangle
represents the LED driver circuits shown in Figure 9-75.

T K@

w LED DRIVER
—oUu @ Yo (SEE FIGURE 9-75)
v|ze —»>—

|

AAAa

)
.

B A
BINARY 1
T 5 j ‘Do——o|>—1 i
— T T T
T B |_K )
PUSHBUTTON qE CLOCK Figure 9-81
Logic diagram of digital die.

The design arrived at by the procedure outlined in the text is
a workable design and uses a minimum number of com-
ponents. However, no design procedure is perfect and there
are many additional techniques and approaches that can be
applied to further reduce the amount of circuitry required to
implement the function. This will bring about a reduction

9-93
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in the number of components, the cost, the power consump-
tion and should increase reliability. Such further reduc-
tions in circuitry come about as a result of experience in
working with digital logic circuits and in knowing the
minimum forms of various types of circuits. Simplifications
and reductions can also come about as a result of being
familiar with the integrated circuits available from the vari-
ous manufacturers. We can readily illustrate these two im-
provements on the circuits just designed.

A familiarity with the most commonly used counter and
frequency divider circuit might lead you to develop the
ABC six-state counter circuit shown in Figure 9-82. Here, three

000
301 ¢ B A
010
011
100 o
101 J c J B | A
w— T T o
K T K B K R
BINARY 1

Figure 9-82
Simple six-state counter.

flip-flops are used but note that no external gating is re-
quired. The circuit counts in the standard binary code are
identical to that used by the circuit in Figure 9-81. A close
look at this circuit in Figure 9-82 shows that it is simply a
binary divide-by-three circuit cascaded with an additional
JK flip-flop to provide an additional divide-by-two func-
tion. Flip-flops A and B make up the count-by-three circuit.
This is identical to the circuit discussed in Unit 7. This
counter could be used to replace the counter circuit shown
in Figure 9-81. It would eliminate gates 1 and 3 and inver-
ters 2 and 4 providing a significant savings in size, cost and
power consumption.

A familiarization with the various MSI integrated circuits
available from the various manufacturers can also lead you
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to an even simpler design. Figure 9-83 shows a logic dia-
gram of a type 7492 integrated circuit IC. This circuit is
designed as a 12-state counter or divide-by-12 frequency
divider. A close look at the circuit shows that flip-flops B
and C are connected as a count-by-three circuit similar to
that shown in Figure 9-82. By connecting the output of the
A flip-flop to the clock inputs of the B and C flip-flops, the
circuit shown in Figure 9-82 is automatically available as a
single MSI integrated circuit. Flip-flop D, although con-
nected, is not used. By using the 7492, further reduction in
cost and size can generally be obtained. These are only two
examples of how design experience and component
familiarization can lead to an efficient design.

A B C D

]

_T_CJ
CP CP

Q]
4

—O
—
—Q

Rg {RESET ZERO)

Figure 9-83
Type 7492 count-by-twelve MSI TTL
IC.
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TABLE IX

STATE

A

B

0

EXPERIMENT 24

DESIGNING COMBINATIONAL
LOGIC CIRCUITS

OBJECTIVES:

To construct and verify the operation of the sequential logic circuits
designed in this unit and to provide practice in designing sequential
logic circuits for specific applications.

Materials Required:

Heathkit Digital Design Experimenter ET-3200
All of the integrated circuits supplied with this program

Procedure:

1. Construct the seven-state counter circuit designed in the text and
illustrated in Figure 9-63. From the integrated circuits available with
this program, select those appropriate to the implementation of this
circuit. Make the pin number assignments then wire the circuit and
verify its operation. You can use the A logic switch as the clock input
and the B logic switch as the reset input. Connect the A, B, and C
outputs of the counter to the LED indicators. To test the counter, clear
it to the 0 state with the B logic switch, then step the counter through
its states and record your results in Table IX. Your result should
correspond to the code shown in the table of Figure 9-57.

Discussion

To implement the seven-state counter in Figure 9-63, you should have
used two 7476 dual JK flip-flops. Gates 1, 2, 3 and 4 in this circuit can be
implemented with a type 7400 IC. Gates 5 and 6 can be implemented with
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a type 7402 positive NOR IC. The assignment of pin numbers and gate
connections is arbitrary and depends upon your own particular physical
layout. Your output code should correspond to that given in Figure 9-57.
If for some reason your counter does not work, the most likely cause is a
wiring mistake. This could be because of improper use of a gate or
flip-flop or by an actual wiring error. Double check all your connections.
Several important items to check are to see that + 5 volts and ground are
applied to each of the integrated cicuits you use. Second, the reset input
line should remain high except when the circuit is being cleared to 0.
This means that the clear input line should be connected to the B output
of logic switch B. This line normally rests high but goes low when the
switch is depressed.

Procedure

2. Construct the two-bit Gray Code counter shown in Figure 9-66.
Select the proper type of IC and connect it making your own pin
number assignments. Step the circuit with the A logic switch and
monitor the outputs on two of the LED indicators. The count code
sequence should be like that shown in Figure 9-64. Record your
results in Table X.

3. Once you have verified the operation of the two-state Gray Code
counter, modify your circuit so that it conforms to that shown in
Figure 9-70. You can implement the AND gate using two sections of a
type 7400 IC. One of the data switches can be used as the start input.
Connect the clock input to the circuit to CLK and set the frequency to
1 Hz. It is also desirable to connect the direct clear inputs of the JK
flip-flops to the B logic switch output so that you can conveniently
reset the counter. To start the experiment, set the START input line to
binary 0 and clear the counter to 0 state. Let the clock step the counter
and note the effect on the A and B outputs. Next, set the START input
line to binary 1 and note the effect. At some arbitrary point in the
count sequence, switch the START input to binary 0. Note the effect
on the A and B outputs.

Discussion

The two-bit Gray Code counter circuit is easily constructed using a single
7476 dual JK flip-flop. The clock input can come from the A or A output of
the A logic switch. Output lines A and B can be monitored on any two

TABLE X

STATE| A | B

0
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LED indicators. Code sequence should be like that shown in Figure 9-64
where only one bit at a time changes as clock pulses are applied. You
should check the circuit several times stepping it through its cycle to
monitor this effect.

With the control AND gate installed on the two-bit Gray Code counter,
you should be able to control the start and stop operation of the counter.
With the counter reset to 0 and the START input equal to binary 0, and
clock pulses applied, no counter operation will take place. When the
START line is switched to the binary 1 state, the counter will begin
incrementing at a 1 Hz rate. The count sequence will continue as long as
the start input line is high. When the START input line is switched to
low, the counter will continue counting in its normal sequence until the 0
state is reached at which time it will stop and remain in this state until the
START line is again brought high.

Procedure (Continued)

4, Construct the excess 3 BCD counter circuit shown in Figure 9-69.
Again select the types of integrated circuits required and implement
the circuit. As before, you can step the counter from the A logic
switch. The outputs can be monitored on the LED indicators. Step the
counter through its ten states and record your outputs in Table XI

TABLE XI

STATEfA|B |JC |D

0
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NOTE: There is a possibility that the excess three counter can ini-
tially come up in one of the six invalid states. If this occurs the count
sequence for this circuit will not be correct. Normally, if the counter
is incremented six or more times, the circuit will generally recover
and eventually be stepped into one of the ten valid excess 3 code
states. When one of these valid code states is achieved, the counter
will from that point on count in the correct sequence. Once you
recognize one of the correct code states, simply increment the
counter until itreads 0011, the initial 0 state for the excess three code.
Starting at this point increment the counter with the A logic switch
and complete Table XI.

Discussion

Your counter circuit should have sequenced through the ten excess 3
BCD code states as you applied clock pulses with the A logic switch. An
incorrect result is probably due to a wiring error or the incorrect use of an
IC. Be sure power is applied to all ICs. Check your wiring for mistakes if
you have trouble.

Procedure (continued)

5. Using the integrated circuits supplied with this program, design a
digital die circuit. You can use the 1 KHz clock to step the counter. By
using a NAND gate and one of the logic switches, you can control the
application of the clock pulses to the die counter circuit. For the
output use the seven-segment LED indicator instead of the standard
die display format discussed in the text. Use the 9368 (443-694) IC
supplied with the circuit to drive the LED indicator. Select the codes
so that the seven-segment display indicates the numbers 1 through 6.
Design an appropriate six-state counter using the integrated circuits
supplied with this program. Also, design the necessary code conver-
ter combinational logic circuit to convert the counter code into the
appropriate code necessary to drive the BCD to seven-segment de-
coder driver circuit. After you design the circuit, draw a complete
logic diagram. Assign pin numbers to the various integrated circuits,
then build your circuit and test it.

9-99
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Discussion

As with most applications there are many possible solutions. There are a
variety of ways to implement the digital die function as defined by the
problem. However, a close evaluation of the various alternatives will
generally lead to only one or two designs which can be considered the
most efficient. You should have found this to be the case with this
problem.,

The seven-segment LED will display the die numbers 1 through 6. The
LED will be driven by the 9368 decoder driver IC. This IC accepts the
standard 8421 BCD input code. Therefore, it is obvious that we wish our
sequential circuit to generate the code necessary to sequence through the
states that will display the decimal numbers 1 through 6. For this prob-
lem the combinational logic circuitry is automatically taken care of by the
9368 decoder driver circuit. No further design is necessary. However, you
must define the input code required to cause the display to indicate the
numbers 1 through 6. These are indicated in Table XII. The standard 8421

TABLE XII

DECIMAL | DECODER/DRIVER
OUTPUT INPUTS
A B Cc

1 0 0 1
2 0 1 0
3 0 1 1
4 1 0 0
5 1 0 1
6 1 1 0

1 1 1 “don’t care”
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BCD codes for each desired decimal output is required. The most sig-
nificant bit for the decimal outputs 1 through 6 will be binary 0 and
therefore it has been omitted. The most significant input to the 9368
decoder-driver can simply be grounded. The three least significant bits
will be used. The desired input code is a three-bit word with the standard
binary number equivalents for the decimal outputs as indicated by the
Table. The 000 and 111 states are not required and therefore, can be
treated as ‘‘don’t care’’ conditions.

The code sequence required by the application defines the sequential
logic circuit operation. We must design a six-state three bit counter that
will count in the standard binary sequence 1 (001) through 6 (110) and
then recycle.

With the information in the state table, we develop the Karnaugh maps
for each flip-flop in the counter. These maps are shown in Figure 9-84.
The symbols marked in each cell designate the state change that must

A A Iy
g X 0 P / . X 1 : 1 0
[
B ABC ABC § ABC ABT
i
: / I [} L X )
1 ABC ABC ABT
] C T
A FLIP-FLOP J = BC B rLir-fLOP Jrc
K-8 K=A+C
A A
s | X @ 7 1)
ABC ABC ABC ABT
ABT RKBC ABC ABT
€ C (5]
C FLIP-FLOP JeK 1

Figure 9-84
Karnaugh maps for deriving input
equations for flip-flops in six-state di-
gital die counter.
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occur to transfer to the next state in sequence. These various symbols are
then grouped according to the rules given earlier to derive the ] and K
input equations for the flip-flops in the counter. The completed counter
circuit is shown in Figure 9-85. This counter is readily implemented with
two dual JK flip-flops type 7476. A type 7400 IC can be used to implement
the gating functions. Gate 1 is used to switch the clock off and on with
logic switch A. Gates 2, 3, and 4 are used to implement the logic equation
expressed by the Karnaugh maps. Gate 4 is simply connected as an

inverter,

To operate this circuit, you simply depress the A logic switch for an
arbitrary length of time. During this time the 1 KHz clock will increment
the counter rapidly. All seven segments of the display will appear to be
lighted during this period of time. When you release the A logic switch,
the counter will stop at one of the six states. The arbitrary starting and
stopping of the counter will produce a random result.

+5Y

+5V

BINARY 1 4
(+5V}

—
o |

o] =

- 7476

/2 -

7476

15

14

3
ﬁ 114 - 7400

1 2

1 KHz CLK

A LOGIC SWITCH

Figure 9-85
Digital die implemented with
7-segment LED display.
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EXAMINATION
UNIT 9
DIGITAL DESIGN

The purpose of this exam is to help you review the key facts in this unit.
The problems are designed to test your retention and understanding by
making you apply what you have learned. This exam is not so much a test
as it is another learning method. Be fair to yourself and work every
problem first before checking the answers.

1. Design an invalid code detector circuit for the excess 3 BCD code. Use
the design procedure for combinational circuits given in the text
showing all truth tables and maps. Select the most efficient method of
implementation with integrated circuits and draw the final circuit
diagram. Construct your circuit on your Digital Design Experimenter
using the ICs supplied with the program. Verify the operation of the
circuit.

2. Assume that you wish to use a standard six-state binary counter such
as the circuit shown in Figure 9-82 to implement a digital die. Assume
further that you want to use the 7-segment LED display and 9368
decoder-driver IC. Design a code converter circuit that will make the
counter and display compatible. Follow the design procedure in the
text and draw a complete logic diagram of your circuit. Construct and
test your design.

3. Design a 6-state counter that will generate the timing waveforms
shown in Figure 9-86A. Use three JK flip-flops and assume that the
waveforms come directly from the normal flip-flop outputs. Develop
the state table from the waveforms using the table provided in Figure B
9-86B. Then use the design procedure for sequential circuits de-
scribed in the text. Draw your final logic diagram. Construct and verify

the operation on your circuit.
cLocK |1| |2l |3‘ |a| |5| |5| 7‘ |s|
1-—+
fartas 85 :
Figure 9-86 ) 0 , | I

Timing waveforms for Exam Problem

3 (A) and a state table to be used in l"*: ------- [ |
developing the code sequence from B 0

e et
forms (8). | I
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)
i



9-104

UNIT NINE

HEATHKIT

CONTINUING
EDUCATION

Figure 9-87
Excess 3 BCD invalid code detector
truth table.

ANSWERS
UNIT 9 EXAMINATION
DIGITAL DESIGN

1. The first step in designing an excess 3 BCD invalid code detectoris to

develop the truth table. The excess 3 BCD code was described in a
previous unit and is a four-bit code whose decimal equivalent value
is three greater than the standard binary equivalent value for the
related decimal number. The decimal numbers 0 through 9, there-
fore, are represented by the binary numbers 0011 through 1100. The
BCD excess 3 code is shown in Figure 9-87. As you can see from this
table there are six invalid states. These invalid four-bit codes have no
meaning in the excess 3 system and therefore, in some applications it
is desirable to detect these invalid codes. The circuit you are design-
ing will detect these codes and generate a binary 1 output if any of the
six should occur. The circuit required is a combinational logic circuit
with a single output F and inputs A, B, C and D.

DECIMAL INPUTS | OUTPUT
(* INVALID) | ABCD F

0000
0001
0010
got1l
100
101
110
i
000
001
010
011
100
101
110
111

°

T O 00 ~N O W B oW N =
— e e e e e e e S O O O
== O O O O O 9O Q0 o O O = =
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Rather than write the Boolean equations of the output expression F,
we can transfer the truth table information directly to a sixteen-cell
Karnaugh map. This map is shown in Figure 9-88. The designated
cells are grouped to minimize the logic function. The minimum
Boolean equation for this function is given adjacent to the map.

ABCD ABCD ABCD ABCD

1

ABCD ABCD ABCD ABCD

=

(] G C
F«ABD + ABC + ABC + ABD
Figure 9-88

Karnaugh map for minimizing the XS3
BCD invalid code detector circuit.

SSI logic gates can be used to implement the minimum equation.
However, it will require four three-input AND gates and a four-input
OR gate. From what you have learned in this unit you should have
determined that the most economical method of implementing this
circuit is to use a data selector. An eight-input data selector such as
the 74151 can be used to implement the function. The three least
significant bits of the input code (B, C, and D) will be used to drive the
A, B, and C inputs of the data selector. The decimal equivalents of the
three least significant bits in Figure 9-87 define the data selector
inputs which will be used. These correspond to D0, D1, D2, D5, D6,
and D7. Inputs D3 and D4 are not required, therefore they are con-
nected to 0. The A input from the excess 3 code signal or its comple-
ment will applied to the Do, D1, D2, D5, D6, and D7 inputs as
required. When the A input is binary 1, we want the D5, D6, and D7
inputs enabled. Therefore, we will apply the A input directly to these
three input lines on the data selector. The complement A will be
applied to the D0, D1, D2 inputs through an inverter so that these
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INPUTS

OUTPUTS

ABC

D'EE

000
001
010
011
100
101

001
010
011
100
101
110

Figure 9-90

Truth table for die code converter.

Sommmem

terms will be enabled when A is binary 0. The resulting circuit is
shown in Figure 9-89. While your own design procedure may have
lead to a slightly different result, the circuit shown here is the most
efficient method of implementing this function.

2
1/6 - 7404
-

1

74151

Do
D1
D2
D3
D4 b
D5
D6

—
e e el 1 B

A

14

13

12

o7
L— ABC
< 111119

B CD

Figure 9-89
Excess 3 BCD invalid code detector
implemented with a 74151 TTL data
selector.

2. Your design goal in this problem is to make the output of a standard

binary counter compatible with the input to a BCD to seven-segment
decoder-driver for the purpose of implementing a digital die. The
digital die will have six states and will display the numbers 1
through 6. The problem specified that a standard binary counter such
as the one shown in Figure 9-82 would be used. This counter counts
in the standard weighted binary code of 000 through 101. The out-
puts of this counter will be the input to your code converter.

In order to display the digits 1 through 6, the standard 8421 BCD code
for these decimal numbers must be applied to the 9868 BCD to
seven-segment decoder-driver circuit. Since we are only using the
numbers 1 through 6, only the three least significant bits of the
standard 8421 BCD code are valid. The most significant bit can be
binary 0. Therefore, this pin on the decoder driver is simply
grounded. The three least significant bits of the BCD codes for the
numbers 1 through 6 are the required outputs for the code converter.
With this analysis you have effectively defined your design problem.
It can be summed up by the truth tables shown in Figure 9-90. The
inputs can be labeled A, B, and C and represent the counter output.
The code converter outputs can be labeled D, E, and F and are as
indicated to implement the six states of the digital die.
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We have constructed a Karnaugh map for each of the outputs in
Figure 9-90. The Karnaugh maps for the code converter circuit are
shown in Figure 9-91. Note that the ““don’t care’ states are marked
and are used to reduce the equations to their minimum form. The
minimum equations for each output are given with the map. Check to
be sure that you see how the information in the truth table corres-
ponds to the data in the Karnaugh maps.

A A
- & 1
ABC ABC ABC ABT
" (1 x! X l
ABT ABC ABC ABC
4 c 4
D«A+BC A
A A
' 1D
ABC ABC ABC ART
: 1 ) X (x
ABT ABC ABC ABT
Lo C T
£E-8T +BC B
A A

ABCT ABC ABC ABC

C Figure 9-91
Karnaugh maps for digital die code
converter.
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Figure 9-92 8
Logic diagram of digital die using a
| —

6-state counter, code converter and =
7-segment LED display.

The minimum equations for this circuit can be readily implemented
with SSI logic circuits. Two type 7400 integrated circuits containing
two input NAND gates can be used. The completed logic diagram is
shown in Figure 9-92. One of the gates in the 7400 IC can be used as
an input control for the clock to the counter. When the A logic switch
is depressed, the 1 KHz clock will be applied to the counter and will
step it rapidly. Releasing the switch will stop the counter at some
arbitrary state and display one of the numbers 1 through 6.

CODE I |
CONVERTER | I
CIRCUIT ]
| ] ]
VI S 1. S
1KHz CLOCK [J
. B T
c T ¢ 1
A T e B gl ALL FLIP-FLOPS
LOGIC e T l—K 14176
SWITCH ALL
BINARY 1 '
el GATES: 7400

. Inthis problem the application begins with a set of timing waveforms

that fulfill some specific function. The design job is to implement a
logic circuit that will produce this sequence of timing signals. A
sequential circuit is required to fulfill this application. The
waveforms are studied and from them a flow table is produced. As
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specified by the problem, each of the waveforms represents the
output of a flip-flop in the circuit. A six-state sequential circuit will
result. You can see this by studying the waveforms and putting
binary 1s and 0s on them as shown in Figure 9-93A. The initial state

A B
cLock
v 2| |3 |4 [s| 6] |7] |8 A d :
U 1 1] 0 o o 1 ! : ’
A (l) ' 1 0 0
s o 0 o r 1 1] o o o 1 1 0
T e ' : .
c : 0 l 1
]
: Figure 9-93 g 9 :

RECYCLE

Lz 1

Waveform for 6-state counter (A) and
state table (B).

of the counter is 000 as you can see by the waveforms. After the
application of six-input pulses, the sequential circuit recycles to the
000 state. The various states of the flip-flops can be transferred to the
state table as shown in Figure 9-93B. From this table you can develop
the Karnaugh maps that will indicate the ] and K inputs states for
each flip-flop in order to generate this code. These maps are shown in
Figure 9-94. Study the state table and relate it to the Karnaugh maps.

A A A A
5| 1 0 X s (0 0 X 1

‘AEC ABC ABC ABC ‘ABC ABC ABC ABT

’ X I l 0 [} l l & " LX IJJ L/ /J

7 ABT ABC ABC ABT . ABT ABC ABC ABC
T c T o c
A fuip-fLop 1 -T B fLiP-FLOP S = A
K=¢C K=3

A A
B (0 ﬂ X 0) Figure 9-94

b |
i
ol
>l
wl
o
>
ol
o
>
ol
ol

ABT ABC ABC ABT

s [ [
C rfuLiP-FLOP ) =B
K=8

Karnaugh maps for developing 6—
state counter for Exam question 3.
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The various cells in the map are grouped according to the rules given
in the design procedure. The | and K input states are then deter-
mined. These can then be translated directly into a logic diagram.
The circuit is shown in Figure 9-95. If you study this circuit carefully,
you will see the six-state counter is really a shift register. It is a three
flip-flop six-state switch tail ring shift register similar to that discus-
sed in a previous unit. This problem demonstrates the fact that the
design procedure described in the text for sequential circuits often
results in shift register circuits as well as special counters. The
circuit can be readily implemented with 7476 JK flip-flops.

T
et J A l J B J J C

T — 1 — T
K A K B K TH
CLOCK
Figure 9-95

Six-state counter or switch tail ring
shift register.
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INTRODUCTION

In this final unit of your individual learning program in digital
techniques, you are going to study some typical applications for digital
techniques. Throughout the program we have emphasized component
operation and circuit details, but in this unit we will put all of this
information together and show you examples of how digital circuitry
performs useful functions.

Perhaps the greatest application for digital techniques is in computers.
The development of computers and digital circuits has been a parallel
effort, each area being a benefit to the other. Another area of electronics
affected by digital technques has been test/measurement equipment.
Most of the high quality, precision test equipment available today is
based on digital techniques.

Itisimpossible to cover the complete spectrum of digital applications in a
unit this size. For that reason we are selecting what we feel are two of the
most important applications for digital techniques. These are test and
measuring equipment and computers. In this unit we will give you
typical examples of each. These examples clearly illustrate the power and
benefits of digital techniques.

The unit objectives state specifically the things that you will learn in this
unit. Review them now, then refer to the unit activity guide.
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UNIT OBJECTIVES

When you complete this unit, you will be able to:

1.

10.

11,

Name the largest application area for digital techniques in elec-
tronics.

List three benefits of the use of digital techniques in test and mea-
surement applications.

List two test instruments that use digital techniques.

Draw a block diagram of a digital counter and explain the operation
of each major section.

. Name the three basic operating modes of a digital counter and exp-

lain how each works.
Explain how a digital computer operates.
Given a computer instruction set, analyze a simple program.

. Define the terms minicomputer, microcomputer, and microproces-

sor.

Write a simple program, given the problem and the instruction set.
Given a digital design problem, determine the applicability of a
microprocessor.

List the four primary benefits of using a microprocessor to replace
hard-wired logic systems.
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UNIT ACTIVITY GUIDE
Completion
Time

Oooo0bo0 OO0 00 oooo oo oo

Play Audio Record 7, Side 2

Read Section: Digital
Test Equipment: The Frequency Counter

Answer Self Test Review Questions 1-7

Read Sections: Modes of Operation and
Counter Specifications

Answer Self Test Review Questions 8-19
Read Section: A Typical Digital Counter
Answer Self Test Review Questions 20-27

Read Sections: What is a Digital Computer? and
How Computers Are Classified

Answer Self Test Review Questions 28-31

Read Sections: Digital Computer Organization and
Digital Computer Operation .

Answer Self Test Review Questions 32-40

Read Sections: Programming, Writing Programs and
Example Programs

Answer Self Test Review Questions 41-47
Read Section: Software

Answer Self Test Review Questions 48-51
Read Section: Microprocessors

Answer Self Test Review Questions 52-57

Complete Unit Examination

10-5
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Figure 10-1
Typical digital multimeter for
measuring voltage, current and re-
sistance. (Heathkit IM-1212)

DIGITAL TEST EQUIPMENT: The Frequency Counter

Digital test equipment has greatly improved the resolution and accuracy
of electronic measurements. At the same time, digital techniques have
made them faster and more convenient. The quantity being measured is
displayed directly with numerical digits, thereby eliminating the in-
terpolation associated with meter-type analog instruments,

While digital instruments have been designed to measure almost every
electronic quantity, there are several quantities which are more com-
monly measured than others. These are voltage, current, resistance and
frequency. Two basic types of digital test instruments have been de-
veloped to measure these quantities. These are the digital multimeter
(DMM) and the frequency counter.

A digital multimeter is an electronic test instrument that is used for
measuring voltage, current, and resistance. The most commonly mea-
sured quantity is voltage. A digital instrument used to measure voltage is
referred to as digital voltmeter (DVM). A digital multimeter is used like
any analog multimeter in that the test leads are connected to the circuit
under test. The quantity being measured is displayed on a decimal
readout instead of being indicated by the position of a pointer on a meter
scale. Both the resolution and accuracy of the digital display is better than
that associated with even the highest quality analog test instruments.

Figure 10-1 shows a low cost digital multimeter for measuring current,
voltage and resistance. Special single function digital meters are also
available to replace standard analog panel meters for either current or
voltage measurements. These are referred to as digital panel meters
(DPM). Any digital multimeter is essentially an analog-to-digital conver-
ter. The meter converts analog quantities of voltage, current or resistance
into an equivalent BCD word so that the quantity can be displayed in
decimal form. The analog-to-digital conversion technique employed in
digital multimeters can also be used in measuring other electronic quan-
tities such as capacitance, inductance, reactance, impedance, power and
others.

prun
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The other widely used digital test instrument is the frequency counter.
This instrument is designed primarily to measure the frequency of a
periodic input signal. It displays the frequency in Hz, KHz, or MHz in
decimal form. A frequency counter literally counts the number of pulses
or cycles of an input signal that occurs in a known period of time and
displays the frequency directly, Figure 10-2 shows a typical frequency
counter.

AUTO RANGING
FRAEGUENCY COUNTEA

LRI Y

Figure 10-2
Typical digital frequency counter.
(Heath/Schlumberger SM-118A)

While frequency measurement is the basic function of a digital counter,
many counters can make other time related measurements. Some general
purpose counters can also measure the period of an input signal. Fre-
quency counters can also be used for totalizing operations where the
counter functions to keep tally of input events that occur. Some counters
also permit frequency ratio measurements where two input frequencies
can be compared and their ratio displayed. Time interval measurements
can also be made with some counters.

The digital counter is one of the most versatile electronic test: in-
struments available. Time and frequency measurements are vital to the
proper testing and evaluation of electronic circuits and equipment. The
digital counter has greatly improved the resolution and accuracy of
frequency and time measurements, and at the same time has made them
faster and more convenient.

The digital counter is an excellent example of the use of digital circuitry
to perform a useful measurement function. For that reason, we’re going to
analyze the operation of a typical digital counter. Many of the digital
circuits described in this program are used to implement the various
counting functions.
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Figure 10-3
Block diagram of a digital counter.

——T

A general block diagram of a digital counter is shown in Figure 10-3. It
consists of four main sections; the input circuit, the gate and control
circuits, the time base, and the decimal counter and display. These
circuits work together in various ways to provide measurement of
frequency or time interval as determined by the application. Let’s take a
detailed look at each of these major sections.

DECIMALDISPLAY

= =

INPUT

SIGNAL INPUT

10 BE _*CIRCUII GATE DECIMAL COUNTER
MEASURED

CONTROL CIRCUITS

TIME BASE

Input Circuit

The input circuit is a signal conditioner designed to make the signal to be
measured compatable with the digital circuitry in the counter. The input
circuit must be flexible enough to permit the counter to accept signals
whose amplitude and wave shape vary considerably.

The input circuit incorporates some form of amplification and isolation.
The isolation is obtained with a high input impedance follower stage to
minimize the loading on the circuit generating the input signal.
Amplification is used to improve the sensitivity of the counter so that
very low amplitude signals can be measured.

The input circuitry also incorporates an attenuator and protection cir-
cuitry for handling large amplitude signals. A resistive attenuator is used
to reduce high amplitude signals to a level compatable with the input
circuitry. Diodes are also incorporated to clamp or limit the input voltage.
This protects the circuitry from excessively high amplitude signals.

Perhaps the most important part of the input circuitry is the wave shaper.
This is a circuit that converts the input signal into a rectangular pulse
whose output logic levels are compatable with those of the rest of the
counter circuitry. This circuit is used to shape and square sine wave and
other non-rectangular input signals. A typical circuit used for such squar-
ing operations is the Schmitt trigger. The Schmitt trigger is a special form
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of bistable multivibrator circuit. The binary output state is a function of
the input amplitude. When the input is below a certain threshold level
the output is binary 0. When the input exceeds this threshold level the
output switches to binary 1. If the input voltage then drops below another
threshold level, the output switches back to binary 0. Schmitt trigger
circuits are available in TTL, ECL and CMOS form. The output of the
Schmitt trigger is a signal whose frequency is identical to that of the input
signal but whose shape and amplitude are compatable with the remain-
ing counter circuitry. The output of the input circuit is applied to the
control circuitry which then determines how that input signal is used in
the measurement process.

Gate and Control Circuits

The gate is nothing more than a standard AND circuit that controls the
application of the input pulses or a precision timing signal to the decimal
counter. The control circuit determines how the input circuitry and
precision timing signals from the time base are used to control the gate.
The control circuits are also used to operate the decimal counter. The
control circuits generate all of the pulses required to permit the counter to
operate in a variety of modes.

Time Base

The time base consists of a precision crystal oscillator and a series of
frequency dividers that generate highly accurate and stable timing
signals. These signals are used as the reference or standard in making the
frequency and time measurements. The crystal oscillator which usually
runs at 1 MHz or 10 MHz provides this standard. BCD counters used as
frequency dividers generate decade sub-multiples of the crystal oscillator
frequency. The precision time signals generated by the time base are then
used to control the gate for frequency measurements or are counted by the
counter in period and time interval measurements.

The quality and accuracy of the time and frequency measurements made
by the counter is a direct function of the accuracy and stability of the
crystal oscillator. Most good counters use a temperature compensated
crystal oscillator (TCXO) to insure that the frequency remains stable over
a wide range of ambient temperature variations. In higher quality coun-
ters the crystal oscillator itself is contained within a small oven or
temperature controlled chamber where the temperature is maintained at
a constant level.

In lower quality, less accurate counters, other signal sources can be used
as a time base. For example, the ac power line voltage can be used as a

10-9
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reasonably accurate time and frequency standard. The frequency of most
ac power line signals is controlled to better than .1 percent. The normal
60 Hz power line signal can be divided down to produce timing signals of
100 ms, 1 second, and 10 seconds.

Decimal Counter and Display

The heart of the digital counter is the decimal counter circuit and its
display. The decimal counter consists of a number of cascaded BCD
counter stages. The counter counts the pulses received from the gate.
These pulses can be the shaped input signal or a reference signal from the
time base. The decimal counter accumulates these pulses and stores them
as a multiple digit BCD word. The output of each BCD counter is fed to a
storage register where the BCD word can be stored. The output of these
registers are then used to drive BCD-to-decimal decoder-driver circuits.
These operate the display readout elements. Seven-segment light emit-
ting diodes and gas discharge readouts are the most commonly used
displays in digital counters.

The operation of the decimal counter is determined by the control cir-
cuits. The control circuit generates signals to reset the counter and to
transfer the contents of the BCD counters into the storage registers.
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Self Test Review

s

List three benefits of digital techniques to electronic measuring
instruments.
a.

b.

C.

. The digital test instrument used to measure resistance is called a

. A digital counter is most often used to measure

The four basic digital counter sections are:

a.
b. o d.

The circuit used to ‘‘square’ the input signal is called a(n)
The circuit controls the application of input

pulses to the counter.

What circuit is used as the time standard in most digital counters?
a. decoder driver

b. BCD counter (decade divider)

¢. Schmitt trigger

d. crystal oscillator

Answers

1

N oG

. a. accuracy

b. resolution

c. convenience
digital multimeter
frequency

a. input

b. gate/control

c. time base

d. decimal counter

. Schmitt trigger
. gate
. d. crystal oscillator
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Modes of Operation

Digital counters are capable of operating in a variety of modes, each
permitting a different type of time and frequency measurement. The most
commonly used mode of operation is frequency measurement. Many
counters are wired to perform only this function. This is true of the
counter shown in Figure 10-2. Other more flexible counters permit a
variety of time and frequency measurements to be made. Such counters
are widely used in laboratory testing and development applications. A
front panel switch selects the desired mode of operation. In this section,
we discuss each of the most commonly used digital counter modes.

Totalized Mode. The simplest form of operation for a digital counter is
the totalized mode. This is an events counting mode where pulses ap-
pearing at the input are counted with the sum being accumulated in the
counter and displayed. Figure 10-4 shows the interconnections in the
counter for the totalize mode. The electrical events to be counted are
applied to the input circuit. The output of the input circuit is connected
to the count input of the gate. A front panel pushbutton is used to reset the
counter and clear the display to zero. As the input signals occur they will
be counted and the total displayed.

In some counters the count control input to the gate can be enabled or
inhibited by an external gating pulse. The totalized mode provides a
simple means of counting or keeping tally of the input events that occur.
In this mode the time base section of the counter is not used.

An application example of the counter used in the totalized mode will
more clearly illustrate its operation. Consider the situation in a manufac-
turing company where it is desired to count the number of items trans-
ported along a conveyor belt. As the products come off a production line
they are placed on to a conveyor belt approximately one foot apart. At one
point in their trip down the conveyor belt, they will pass between a light
source and a photo cell. The photo cell is connected to the input circuit of
the counter. As each item passes between the light source and the photo
cell, it breaks the light beam. The photo cell generates an input pulse that
is used to increment the counter. The counter will be incremented as each
unit passes the photo cell. By using the counter in this way, an accurate
tally of the number of items coming off the production line is maintained
in the counter. The counter automates the counting function thereby
eliminating the time, effort and error of a human operator.

Frequency Measurement. The most commonly used counter function
is frequency measurement. The counter circuit configuration for fre-
quency measurement is given in Figure 10-5. The signal whose frequency



HEATHKIT

CONTINUING '
EDUCATION Digital Applications | 1()-13
-W_'__-
DECIMAL COUNTER
AND DISPLAY
LSD MS D
I GNAL
SN 3 7 5 8 2 DISPLAY
l DECODER -
DRIVERS
AR N MEMOR Y
CIRCUIT REGISTERS
CASCADE
GATE BCD COUNTERS
COUNT LOAD
RESET
INPUT MEMORY COUNTERS
BINARY
1
Figure 10-4
Totalize Mode
FRONT
. — PANEL
CONTROL CIRCUITS CONTROLS
(RESET)
r NOT USED
IMHz [100KHZ|10KHz[IKHz |100Hz| 10Hz | 1Hz | .1Hz
1us | 10us [100ps|1MS [10ms [100ms|1 SEC|10 SEC
CRYSTAL ; )
Mgy #10|+10 |+10 | +10 |+10 |+ 10 |+ 10
DECIMAL COUNTER
AND DISPLAY
TIME BASE
LSD MSD
INPUT ST1GNAL
3 7 5 8 2 DISPLAY
l DECODER-
DRIVERS
WHERT . MEMORY
CIRCUIT REGISTERS
CASCADE
GATE BCD COUNTERS
COUNT LU“EY RESET
‘“P'{‘T L COUNTERS
Figure 10-5 [
ONTROL—"]
Frequency Measurement ¢ INPU ?
FRONT
CONTROL CIRCUITS T PANEL
CONTROLS
IMHz [LOOKHzZ|10KHz[1KHz |100Hz| 10Hz | 1Hz | . 1Hz
1us | 10us |100us|1mS |10ms f10ooms|1 secfio sEc
CRYSTAL : : : .
L TON 10 |+10 |+10 | +10 [+10 | <10 | +10

TIME BASE



10-14

UNIT TEN

HEATHKIT

CONTINUING
EDUCATION

is to be measured is applied to the input circuit. The output of the input
circuit is then applied to the count input of the gate. The control input to
the gate is a pulse derived from the time base. In order to perform
frequency measurement, the control input to the gate is an accurate time
interval. For example if the control input is a pulse that is exactly one
second in duration, the counter will count the number of input pulses or
cycles that occur during the one-second time interval that the gate is
enabled. This will cause the display to read the frequency in cycles or
pulses per second. Assuming a one second gate control pulse on the
counter in Figure 10-5, the frequency shown on the display is 28573 Hz.
The one-second pulse for the control input on the gate is derived from the
1 Hz output of the time base.

Higher frequencies can be measured and read out on the same display by
using a gate control input of shorter duration. For example, by using a
gate control pulse with a duration of 1 ms, the display will read frequency
in kilohertz (kHz). The counter counts the number of input pulses that
occur in one millisecond of time. Assuming a one-millisecond gate pulse
for the circuit in Figure 10-5, the frequency being measured by the
counter as indicated by the display is 28,573 kHz or 28.573 MHz. If the
counter counts 28573 pulses in one millisecond (1/1000th second) then
the number of pulses that occur in one second is 28573 X 1000 =
28573000 Hz or 28.573 MHz. The one millisecond pulse is derived from
the 1 kHz output of the time base. Other time base frequencies can be used
to generate control pulse intervals that are some multiple of a power of
ten.

The selection of the time base output frequency determines the mea-
surement resolution and how the frequency is displayed. In some coun-
ters the time base frequency is selected with a rotary switch or a series of
pushbuttons. By making all of the time base frequencies available, much
flexibility is obtained. However, optimum resolution as well as wide
range can be obtained by using only two time base frequencies: 1 Hzand 1
kHz. Several counters provide a two position switch to select these two
time bases. When the time base frequency is switched, the decimal point
in the display is switched to the appropriate position to provide the
corrected readout frequency.

Some counters such as the one in Figure 10-2 have an auto-ranging
feature. Here the time base selection is made automatically, based on the
input signal frequency. The auto-ranging circuitry automatically deter-
mines the correct time base frequency for maximum measurement resolu-
tion without over-ranging. Over-ranging refers to exceeding the count
capability of the counter. The number of digits in a counter determines
the over-ranging point for a given time base. Five and six digit counters
are the most common.
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Period Measurement. Another commonly used counter function is
period measurement. In this mode of operation, the counter measures
and displays the amount of time that it takes for the input signal to
complete one cycle. Figure 10-6 shows the counter arrangement for this
mode of operation. The input signal after being shaped is applied to the
control circuits. The control circuits permit the input signal to operate
the control input of the gate. One of the outputs of the time base is then
connected to the count input of the gate through the control circuitry.

DECIMAL COUNTER

AND DISPLAY
LSD MSD
INPUT SIGNAL
3 7 5 8 2 DISPLAY
1 DECODER -
DRIVERS
bl MEMORY
CIRCUIT REGISTERS
CASCADE
r_LﬁATE - BCD COUNTERS
LOAD
_ MEMORY RESET
INPUTN CONTROL
INPUT
CONTROL CIRCUITS
1MHz [I0OKHzZJ10KHz[1KHz |100Hz| 10Hz | 1Hz | . 1Hz
lus | 10MS |100ps{1MS |10MS |100MS|1 SEC|10 SEC
CRYSTAL
SOILLATOR +10|+10 | #10 [ +«10 |+10 |« 10 |+10
Figure 10-6

TIME BASE Period Measurement

The control circuitry causes the counter to be initially reset. Then the gate
is opened or enabled by one period of the input signal. During this time
interval, the counter is incremented by the time base signal. As indicated
in Figure 10-6, the counter counts the 1 MHz pulses from the time base.
According to the display in Figure 10-6, the period (t) of the input signal
for this example is 28,573 microseconds. This corresponds to a frequency
of f = 1/t = 1/26s73 X 10~® = 34.99 Hz. The control circuit generally causes
the period measurement to be made repeatedly during the time the input
signal is applied.
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The purpose of the period mode is to provide a means of measuring and
displaying the time that it takes for an input signal to complete one cycle.
However the primary benefit of the period mode is to provide improved
resolution and accuracy of measurement of low frequency signals. It is
difficult to obtain a highly accurate measurement of low frequency sig-
nals with most counters. For example in measuring the 60 Hz power line
frequency with a counter whose gate time is 1 second, the count dis-
played on the counter would be 60. Since the least significant digital is
1Hz, then the resolution of the measurement is no better than 1 out of 60.
This is not a very accurate measurement of the power line frequency and
some means must be provided to improve the resolution.

There are several ways that the accuracy of low frequency measurements
can be improved. The most direct way is to increase the measurement
interval, that is increase the gate pulse duration in the frequency mode.
For example, the gate pulse could be made equal to ten seconds. The
counters would then count the number of cycles of the input signal that
occur over a ten second interval. The display on the counter would then
read 600 for a 60 Hz input. In other words, the least significant digit
would then indicate tenths of a cycle rather than one cycle. By increasing
the measurement interval, we provide greater resolution of measure-
ment. The trade off, of course, is in the length of time involved in making
the measurement. While ten seconds doesn’t sound like a long time, for
an electronic measurement it is extremely long. It is a distinct disadvan-
tage to have to wait this length of time for a measurement to take place.
For example, an increase in gate time to 100 seconds would provide an
improvement in the measurement resolution and thereby the accuracy.
However the measurement time is further increased.

To improve the resolution and accuracy of frequency measurements at
low frequencies, the period mode can be used. The period of the input
signal is measured quickly and provides much greater resolution. For
example the period of the 60 Hz power line frequency is 16.667 ms. By
counting the number of 1 MHz pulses of the time base that occur during
one period, the counter display would read 16666. Then by taking the
reciprocal of the period, the frequency is obtained. This method of mea-
surement is much more accurate and faster than measuring the frequency
directly. However, measuring the period does necessitate the computa-
tion of the frequency once the measurement has been made. This can be
quickly accomplished with an electronic calculator.

There are many situations where it is desirable to obtain a highly accurate
measurement of some low frequency ac signal. Audio frequency applica-
tions involving filters and musical instruments often require accurate
low frequency measurements. In the field of geophysics and the vibration
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testing of equipment, accurate low frequency measurements are often
needed. The period mode of a standard counter can produce these low
frequency measurements. However to improve the readout convenience,
special low frequency counters have been developed. A typical unit is
shown in Figure 10-7. This is a computing counter that is designed
primarily for making accurate low frequency measurements. This
counter operates in the period mode. However, once the period is mea-
sured, it automatically computes the frequency and displays it directly.
The counter circuitry contains a MOS LSI calculator integrated circuit
that is set up to perform the period-to-frequency computation automati-
cally. To the operator, the computing counter appears to be measuring
frequency directly. This counter provides a maximum resolution of
.00001 Hz. To obtain the same resolution with a standard frequency
counter would require a gate period greater than 27 hours.

CaMPUTIN
FREOUENEY EO

a
UNTHR

A further improvement in the resolution and accuracy of low frequency
measurements can be made with a multiple period measurement. In this
mode of operation, the time base pulses are counted fora duration equal to
some multiple of the period of the input signal. This is done by feeding the
signal whose period is to be measured into a frequency divider that
produces division by 10, 100, 1000 or higher power of 10. This causes the
control circuitry to generate a gate interval equal to 10, 100, 1000 or more
timesthe period ofthe inputsignal. The counter countsthe accurate pulses
from the time base during this interval. The effect is to produce a period
averaging measurement, For example if the input signal were applied toa
divide by 100 circuit, the counter would accumulate pulses over a period
of time equal to 100 times the period of the signal. The actual time for one
cycle then would be equal to the display number divided by 100. In some
counters aspecial period averaging mode isincluded. The counterdisplay
ismade toread the period directly by simply shifting the decimal point the
correct number of positions to compensate for the selected period interval.

Figure 10-7

A computer frequency counter
measures period then computes
frequency to provide high mea-
surement resolution at low fre-

quencies.
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Time Interval Measurements. Thetime interval measurement mode ofa
digital counter is a variation of the period mode. In this application, the
count input to the gate is derived from the time base. The resolution of
measurement of the time interval is determined by the time base frequen-
cy. Forexample, with a 1 MHz time base signal, the accuracy or resolution
of measurement is 1 us. The time resolution is the reciprocal of the time
base frequency (t = 1/f). To the control input of the gate is applied a signal
that will determine the length of time that the gate is open. This can come
from a variety of sources depending upon the application. One application
may be the measurement of pulse width. The signal whose pulse width is
to be measured is applied to the input circuit. It causes the gate to be
enabled for a period of time equal to the pulse duration. During this time
interval, the counter counts the time base pulses. The display reads the
pulse duration directly.

The counter can also be used to measure the time interval occurring
between two independent events. A typical application is drag racing
where the measurement of a car's performance is its elapsed time over a
quarter mile distance. Light beams and photo cells are used at the start
and finish lines to control the counter that will measure the elapsed time.
The car is initially at rest at the starting line where its front wheel breaks
the light beam. When a start signal is given to the driver, the car moves
forward and the light strikes the photo cell. This generates an electrical
impulse that is used to start the counter. The counter is initially reset and
then begins to count the pulses from the time base. A 1 kHz signal is
normally used to provide a measurement resolution of one millisecond.
The car then traverses the quarter mile distance and breaks the light beam
as it crosses the finish line. This generates another pulse that is used to
close the gate and stop the time interval measurement. In this application
there are two independent input pulses, one from the starting line photo
cell and the other from the finish line photo cell. These start-stop pulses
can be used as the inputs to a set-reset flip-flop. The starting line photo
cell will set the flip-flop. The flip-flop then enables the gate. When the car
crosses the finish line, the pulse from the finish line photo cell will reset
the flip-flop and inhibit the gate. The count in the counter is the elapsed
time.

There are many applications for the time interval mode of measurement.
Another typical electronic application involves the measurement of the
pull-inorreleasetime ofarelay. The counter could also be used to measure
shutteropeningintervalsinacamera.Inthismode of operation the counter
in effect acts as a high resolution stop watch.

Frequency Ratio Measurement. Another mode of operation for the
digital counter is frequency ratio. In this mode, the counter is used as a
means of comparing two external frequencies. One of the frequencies is
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used to control the duration of time that the gate is enabled while the other
signal is fed to the gate tobe counted by the counter. The number displayed
onthereadoutis the ratio of the two frequencies. In this mode of operation,
the internal counter time base is not used. Instead, one of the external
signals acts as the time base. To provide high resolution of the ratio of two
frequencies thatare close to one another, one of the frequencies is fed to the
time base frequency divider. This allows the gate to remain open for a
period of time equal to 10, 100, 1000 or more times longer than the period of
the reference input frequency.

Counter Specifications

When selecting a digital counter for a specific application or in comparing
counters there are certain important specifications which must be con-
sidered. In this section we define and explain these important specifi-
cations.

Input Sensitivity. Input sensitivity is a specification that refers to the
amount of input voltage required to cause the counter to operate properly.
This specification usually calls out the minimum value of the input
voltage required for the counter to trigger reliably. Most good counters
havean input sensitivity ofless than 100 mV. Higher quality counters have
inputsensitivity as low as 1 mV. This means that the frequency or period of
a signal whose amplitude is as low as a few millivolts can be determined.
Theinputcircuitinthe counter generally incorporates some amplification
that permits such low level signals to be used.

Generally a counter with high sensitivity is most desirable. However, the
greater the sensitivity the more susceptible the counter is to noise prob-
lems. Noise pulses riding on top of a signal to be measured can cause false
triggering of the counter and an inaccurate reading. For this reason it is
generally desirable to use a counter with a sensitivity level to match the
application. If ultra-high sensitivity is not required the cost of the counter
will be less and there will be less susceptibility to the effects of noise.
Many counters have an adjustable sensitivity level that permits the input
triggering level to be varied over a wide range to match a given applica-
tion.

Input Impedance. The input impedance of a counter is the impedance
looking into the input circuit of the counter. This is the impedance that is
connected across the signal source whose frequency or period is to be
measured. Most commercial counters have an input impedance of one
megohm ofresistance in parallel with asmall value of capacitanceinthe 10
to 100 picofarad range. This high input impedance is chosen to minimize
loading effects on the circuit under test. At high frequencies, the most
important part of the input impedance becomes the shunt capacity. At
frequencies above 1 MHz it is also desirable to take into consideration the
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effect of any cable impedance. Normally, a coaxial cable is used to
connect the signal being measured and the counter input. Such cables
generally have a high capacity (above 30 pf per foot) which can signifi-
cantly affect the amplitude and characteristics of the signal being meas-
ured. A high input impedance, low capacity attenuator probe normally
used with oscilloscopes can also be used with most general purpose
counters to minimize the effect of capacitive loading at the expense of
input signal attenuation.

Frequency Range. The upper and lower frequency limits of a given
counter define the counters frequency range. Because of circuitry limita-
tions, the upper and lower frequency limits are restricted. For example a
typical medium priced counter has a frequency range of 5 Hz to 30 MHz.
The lower frequency limit is generally determined by the size of the input
coupling capacitor and input resistance. In most counters, the inpur
signal is ac coupled to the input circuit through a series capacitor. At the
lower frequencies, the reactance of this capacitor increases and, with the
input impedance, forms a voltage divider. The higher the input impe-
dance and the larger this capacitor, the better the lower frequency re-
sponse. Most typical counters have a lower frequency limit in the 1 to 5
Hz range.

The upper frequency limit of a counter is determined by the high fre-
quency response of the input amplifier circuit, the propagation delay of
the gate, and the upper frequency counting limit of the input decade
counter. Some simple low cost counters have an upper frequency limit of
only several megahertz. Standard direct counters are available for
measuring frequencies as high as one gigahertz (1 GHz). Special counting
techniques permit counters to measure frequencies up to several hundred
GHz. (1 GHz = 10 Hz.)

Display Digits. The number of read-out display digits is an important
counter characteristic. The greater the number of digits, the higher the
resolution. Keep in mind that the resolution is also a function of the gate
time and time base frequencies available in the counter. Most low and
medium priced counters have a minimum of five digits in the readout.
Counters for measuring very high frequencies in the GHz range have as
many as nine digits.

Time Base. An important characteristic of any counter is the time base
characteristics. This includes the time base frequencies and intervals as
well as information on the stability of the time base oscillator. As a
general rule, the greater the number of time base signals available, the
greater the flexibility in making time and frequency measurements. The
higher the frequency, the greater the resolution that can be obtained in
period and time interval measurements.
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The accuracy and stability of the crystal oscillator in the unit is an
important factor in the quality of the counter. The crystal oscillator
frequency is generally made adjustable over a narrow range to permit
setting the counter to the exact frequency against an accurate known
standard. From this point the stability of the counter will determine how
much this frequency changes due to temperature changes and aging. Both
long term and short term stability is considered.

Short term stability is affected mainly by the inherent losses in the
oscillator circuit itself. Temperature variations greatly affect the short
term stability of the oscillator. Temperature compensating techniques are
used to help stabilize the frequency changes with temperature.

The long term stability of a crystal oscillator is due to aging of the crystal.
Most crystal aging takes place in the first several months of operation
causing frequency drift. After this, it stabilizes to a very low level. A wide
range of stability characteristics are available in commercial counters. The
degree of stability desired depends upon the application.

Modes. An important characteristic in selection of a counter is the
availability of the various measurement modes. The large percentage of
available commercial counters have only the frequency measurement
mode. Since this is the most common mode of operation it is no disad-
vantage. If your application requires only the measurement of frequency
such a counter will suffice. Howeverifthe counteris tobe used asa general
purpose laboratory or test instrument, it is desirable to incorporate other
modes of measurement such as period, time interval, totalizing and
frequency ratio.

Self Test Review

8. When the input signal to a counter controls the gate interval, the
counted mode is:

a. Period

b. Frequency
c. Totalize

d. Ratio

9, In what counter modes is the time base not used?
a. frequency

b. period

c. totalize

d. time interval
e. ratio
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10.

11.

12.

13.

14.

15.

16.

17.

18.

19,

What mode is often used to improve the accuracy of low frequency
measurements?

a. frequency

b. period

c. totalize

d. time interval
e. ratio

In the time interval measurement mode of a computer, a time base
frequency of 10 kHz is selected. What is the time resolution?
a. 1 pus

b. 10 us
c. 100 us
d. 1ms

In the frequency mode of a digital counter, the gate pulse interval is 10
us. The 5 digitdisplay reads 706. What frequency does thisrepresent?

a. 70.6 kHz - ———

b. 706 kHz SIS N

c. 7.06 MHz

d. 70.6 MHz

The maximum frequency that can be indicated by a 6-digit counter
with a 1 ms gate intervalis _ MHz.

A computing counter usually measures _ then computes

True or False. A counter that can reliably respond to a 5 mV signal is
more sensitive than a counter that will respond to a 25 mV signal.

At very high frequencies, the input impedance to a counter is primar-
ily

a. capacitive

b. inductive

c. resistive

d. one megohm

Which of the following does not affect the upper frequency limit of a
counter?

a. input sensitivity

b. gate propagation delay

c. bandwidth of input circuit

d. speed of input BCD counter

The accuracy of time and frequency measurements in a counter is a
direct function of the quality of the time base. The time base frequency
is, in turn, greatly affected by changes in
A 5.273 MHz signal is applied to a 5-digit counter with a 1-second
gate interval. The display will read
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Answers
8. a. period
9. c. totalized and e. ratio
10. b. period
11. ¢. 100 pst = 1/f = 1/10000 = .0001 = second = 100 us
12. d. 70.6 MHz

13.
14.
15.
16.
17.
18.
19.

There are 1,000,000 microseconds per second and 100,000
10 us intervals in one second. Therefore if a counter counts
706 pulses in 10 us it would count 706 X 100,000 =
70,600,000 pulses in one second. This is a frequency of
70,600,000 pulses per second or 70.6 MHz.

999,999 MHz

period, frequency

True

a. capacitive

a. sensitivity

temperature

73000

With an input of 5.273 MHz, 5,273,000 pulses will occur
during the one second gate interval. The 5-digit counter
has a ceépacity of 99999, Therefore it will read only the 5
least significant digits of the input or 73,000.

10-23
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Block diagram of Heathkit IM-4100 { Q
digital counter.

Figure 10-8

™

A Typical Digital Counter

The best way to learn the operation of a digital counter is to analyze a
typical unit. In this section we describe in detail the operation of the
Heathkit Model IM-4100 Digital Counter. Thisisalow cost digital counter
with a five digit display and a frequency range of 5 Hz to 30 MHz. It
incorporates the frequency, period and totalize modes of operation. Ithasa
sensitivity of 15 mV rms and an input impedance of 1 megohm shunted by
less than 35 pF.

General Circuit Description. Refer to the block diagram in Figure 10-8
and the schematic diagram in Figure 10-9 as you read the following
sections.

INPUT D106
CIRCUITS DISPLAYS

INPUT‘ ‘;,d GATE D101-D105
DRIVER IC 14

sw) LGATE FULSE IC 8-1C 12
PERI0D-FREQUENCY] I

%+ 2| |509hy/ @S] DECADE cB

!
lew Sheyy | CHMTERS OVERRANGE

5

TEMORY &
DECODER/ MEMORY

b1

S

HOLD OFF
RESET, UPDATE] CLDNTROL
Ic 16, 17, 18 | LOGIC

SW2 1KH7 /yrne
e >
HZ ) ste

1 MHz cLOCK
IC2 1C25

TIME BASE SCALER

DIVIDERS
IC19-1C 24

The signal to be counted isapplied to the input circuits which consist of the
input attenuator, impedance converter, and the Schmitt trigger. There the
signal is squared and applied to the GATE. During the time the gate pulse
from IC 13 is also present, the GATE is open and the frequency is counted
by the decade counters. At the end of the GATE pulse, the count in the
decade counters is transferred to the memories by a transfer pulse. At this
time, proper segments of the display units turn on and the frequency is
displayed. A reset pulsethen clearsthe decade counterso theyareready for
the next time the GATE is open. The duration of the GATE pulse is
determined by the position of the POWER/TIME BASE switch (SW2). The
pulse is of one second duration in the kHz position and of one millisecond
duration in the MHz position. A one megahertz signal is also produced for
the period measurements.
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Figure 10-9
Schematic of the Heath Model IM-
4100/SM-4100 frequency counter.
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IC13 converts either the time base or the input period into a gate pulse
depending on the position of the mode switch (SW3). By counting the
input signal gated by the time base signal, frequency is displayed. By
counting the time base signal gated by the input signal, the period is
displayed. In the totalize mode, the counter simply counts the input
signal without any gating.

Input Circuit and Schmitt Trigger. Refer to Figure 10-9. The input
signal is applied to an input circuit that consists of a switchable voltage
divider (R1,R2, R3) thatis frequency compensated by C1, C2,and C3. This
attenuates the input signal by a factor of 1, 10, or 100 depending upon the
position of SW4. The signal is then coupled through C4 and R4 to D1 and
D2 which provide over-voltage protection for Q1.

Transistors Q1 and Q2 are direct coupled with 100% negative feedback to
form a unity gain follower circuit. The transistors provide wide
bandwidth, high input impedance, low output impedance, and a gain of
one. IC1C and IC1A then amplify the signal up to the input trigger
threshold limits of IC1B which is wired as a Schmitt trigger. IC1 is an
integrated circuit containing three differential amplifier circuits. Each
amplifier has high gain and wide bandwidth. IC1B drives Q3 and Q4
which translate the signal into TTL levels making it compatible with the
remaining logic circuitry. The conditioned input signal appears at the
collector of Q4 and is applied to the gating circuitry.

10 MHz Clock and Scaler. A 10 MHz crystal and gates B and C of a type
7400 TTL gate (IC26) form a TTL-compatible clock oscillator. Capacitors
C7, C8 and C9 provide the proper capacitive load for the crystal. C7 is
variable to permit precise calibration of the oscillator. Resistors R21, R22,
and R23 bias the IC and ensure efficient starting of the oscillator. Gate A of
IC26 provides buffering action between the oscillator and the first decade
divider ofthetime base scaler,atype 7490 (IC25) BCD counter. The 10 MHz
clock signal is then further divided by other 7490 decade dividers, IC19
through 24, to provide appropriate gate times for the frequency mode. This
divider chain is referred to as the time base scaler.

The 1 MHz time base output signal from decade counter IC25 is applied to
the control circuitry and to the decade dividers in the time base scaler to
providethe timing pulsesto operate the counterin the various modes. This
1 MHz signal passes through switch SW6 when it is in the internal (INT)
position to theinputofIC24, thefirst decade dividerin thetime base scaler.
The scalerthen developsthe 1 kHzand 1 Hz signals that will produce the 1
ms and 1 s gate pulses for frequency mode operation. The 1 kHz and 1 Hz
pulses appear on the terminals of switch SW2. When the kHz position is
selected, the 1 Hz signal output from IC19 is connected to gate IC15A. In
turn it passes through gates IC15C and D. In the frequency mode, gate
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IC15D is enabled and the 1 Hz signal passes through IC15F to the gate
flip-flop IC13B. Setting SW2 to the MHz position causes the 1 kHz signal
from IC22 to be connected to gate IC15A and therefore transmitted to the
gate flip-flop IC13B.

In the period mode gate IC15D is inhibited by the binary 0 applied to pin
13 from SW3. This prevents the time base signal from IC15C from reach-
ing the gate flip-flop. Instead, the input signal whose period is to be
measured will operate gate flip-flop IC13B. The input signal from Q4 is
applied to gate IC15E which is enabled during the period mode.

In the totalized mode the internal time base circuitry is disabled entirely.
This is done by inhibiting gates IC2B and D and IC15D and E. In this mode
the input signal passes through gates IC2A and E directly to the counter.

Decade Counter and Display. Figure 10-9 indicates that the main
counting unit of the IM-4100 counter is made up of five integrated circuit
decade counters, IC3 through IC7. IC3 is the least significant digit (LSD).
The pulses to be counted are applied to pin 14 of this counter. Each of the
IC’s in the counter is a type 7490 TTL BCD counter similar to the one you
have worked with earlier in this program. The counters are cascaded and
can achieve amaximum count of 99999. Note that all of the reset pins (pin
2) are connected together so that the counter can be reset by one of the
pulses from the control circuitry,

The four-line BCD output of each decade counter is applied to a
memory-decoder/driver integrated circuit. These are IC8 through 1C12.
Each of these devices is a type 9368 decoder-driver circuit similar to the
one supplied with this program. As you can recall, this device contains a
4-bit storage register and a BCD to 7-segment display device. At some
time during the operation of the counter, the BCD data stored in the
decade counter is transferred to the storage registers in the decoder-
driver IC's. It is the BCD data stored in the registers of IC8 through IC12
that is displayed on the LED readouts. The loading of the registers in the
decoder-driver IC’s is accomplished by a control pulse applied to pin 3 of
these circuits.

Control Circuitry. Now let’s take a look at the operation of the control
circuitry for the counter in each of its three operating modes. We will
discuss the gating, memory and reset functions for each mode.

Assume that the mode switch SW3 is in the frequency mode and the
power-time base switch SW2 is in the MHz position. The input signal
from the collector of Q4 is applied to gate B of IC2. This gate acts as the
main gate for the counter in the frequency mode. The output of gate B is
coupled through gate E in IC2 and is applied to the input of the LSD
decade counter IC3. Gate IC2B is enabled by a one second or one mil-
lisecond pulse from pin 11 of IC13B. IC13B is a J-K flip-flop that is set and
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reset by the control circuitry. With IC13B set, transistor Q5 is turned on.
This enables D106, the gate LED indicator. Flip-flop IC13B remains set for
one millisecond or one second depending upon the setting of the time
base switch. During this time the counter counts or accumulates the
pulses applied to the input.

When IC13B resets, its Q output at pin 10 will go high. This causes the
outputofIC18D to go low momentarily. IC18Disa TTL gate connected asa
pulse generator. The 470 ohm resistorR27 holdsboth inputs of the gateata
low enough potential so thatto the gateitappearsthatabinary 0 isapplied.
This keeps the output of IC18D normally high. When the input to the
capacitorC11goeshigh, the gateinputsalsogohigh. Thisforces the output
low. However capacitor C11 charges quickly through R27 thereby leaving
little voltage across R27. Asaresult the input again appears tobe a binary 0
and the output switches back to its original high state. As you can see
IC18D generates an output pulse that switches from high to low and back
again. The duration of the pulse is a function of the time constant of C11
and R27. This pulse is produced when IC13B resets.

The output from IC18D is a negative going pulse that is applied to IC18C
which drives Q6. This momentary pulse is applied to pin 3 of the de-
coder/driver ICs, IC8 through IC12. This causes the count stored in the
decade counters to be transferred to the storage registers. The LED’s then
display the count.

The trailing edge of the pulse from pin 11 of IC18D triggers IC16. This
monostable multivibrator produces a 200 ms output pulse.

The termination of the 200 ms output pulse from IC16 triggers IC18A.
This circuit generates a negative going pulse which is used to reset the
decade counters IC3 through IC7. This pulse is applied to the counters
through IC18B. The reset pulse is also used to reset flip flop IC13A
through gate 1C17C. Flip-flop IC13A is used in the over-range circuit
which will be discussed later.

The complement output of the monostable (IC16) and the pulse from
IC18A are also used to gate IC17D. This gate causes all of the decade
dividers in the time base scaler to be set to 1001. The next input pulse
from the time base oscillator will then cause all of these time base decade
dividers to be cycled to zero (0000). The signal from IC17D that sets the
time base dividers to 1001 is also used to reset flip-flop IC13B through
gate 1C26D. The timing pulses for the frequency mode are shown in
Figure 10-10.
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Figure 10-10
Timing diagram of control pulses of
IM-4100 counter in the frequency
mode.

In the period mode it is the input signal that controls the GATE flip-flop
IC13B and therefore determines the period of time during which the
GATE is open. During this time the counter is incremented by the 1 kHz
or 1IMHz time base signals. This permits period measurements with a
resolution of 1 millisecond or 1 microsecond to be made.

Assume that the mode switch SW3 is in the period position as shown in
Figure 10-9. This inhibits gates IC2B and IC15D which are used in the
frequency mode. Gate IC17A is also inhibited. At this time gate IC15E is
enabled. The input signal from the collector of Q4 is coupled through this
gate and IC15F to the gate flip-flop IC13B. The 1 kHz or 1MHz signal from
the time base is applied to gate IC2D pin 11. Here gate IC2D is enabled by
the gate flip flop IC13B. The time base signal is allowed to pass through
gates IC2D and E to the counter for a period of time equal to one cycle of
the incoming signal.

10-29
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In the period mode, the control circuitry for the memory transfer and reset
operation is similar to that for the frequency mode. At the end of the gate
interval, a pulse is generated by IC18D as before to cause the data in the
decade counter to be transferred to the storage latches and a display. The
termination of the 200 millisecond pulse generated by IC16, in turn,
causes the reset pulse to be generated by IC18B. See Figure 10-11 for the
control pulses in the period mode.

-1 PERIOD—

o LN N [N
U UL
cowecror_ [ | [ L[ L

Q4

TIME BASE ““”“”””””” ||| L ||”|”|”
1KHz (1IMH 7)

Timing diagram of control pulses of
IM-4100 counter in the period mode, |C138 ] J_

GATE
[C18D

LOAD
MEMORIES Ll

1C16
200MS PULSE I

1C18A
RESET U
COUNTERS

e B
S
GATE

In the totalized mode, the input pulses to be counted are passed through
the input circuitry and appear at the collector of Q4 as in the other modes.
The input signal is then applied to gate IC2A. With the mode switch SW3
in the totalized mode, gates IC2D and IC15E are inhibited. This prevents
the gate function of the counter from operating. Gate IC2A is enabled at
this time so that the signals to be counted are applied directly to the
decade counter without any control.

When the totalized mode is used, both inputs to IC17A are high thereby
holding the output of this gate low. This low level is coupled through
diode D3 to the input to gate IC18C. This holds the output of IC18C high
thereby causing the output of Q6 to go low. What this does is to enable the
memory storage latches in IC8 through IC12 so that the pulses being
counted in the decade counters will be transferred directly to the display.
As the input pulses occur you can see the count change on the LED
readout.
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The only control available in the totalize mode is the front panel reset
switch SW5. When this manual pushbutton is depressed, it forces the
cathode end of D5 low. This generates a reset pulse through IC18B which
clears the decade counters. In operating the counter in the totalized
mode, the counter should be initially reset to zero prior to the counting of
any input events.

In the totalize mode, it is possible to gate the input signal to the counter by
using an external input signal connected to the input normally associated
with the time base. The gate pulse is coupled through resistor R33 and
switch SW6 to gate IC17A. If the external control signal is low, the output
of IC17B will be low and will therefore inhibit gate A and prevent the
input signals from appearing at the counter input. Figure 10-12 shows the
control pulses in the totalize mode with an external gating signal.

PULSES
T0 BE

COUNTED
Figure 10-12
EXTERNAL __l ; Timing diagram of control pulses of
GATE IM-4100 counter in the totalize mode.
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Over-Range Detection. The IM-4100 counter has an over-range circuit
that will give the user an indication of when the count input exceeds the
count capability of the counter. If the gate duration and the time base
signals are such that the count passes from 99999 to 00000, a carry output
pulse occurs at the D output of the most significant digit decade counter
IC7. This will toggle flip-flop IC13A. When this flip-flop is set, it indi-
cates that an over-range condition has occurred. This flip-flop will re-
main in the binary 1 state indicating an over-range condition until the
normal reset pulse is generated by the control circuitry. At this time
IC13A is reset via gate IC17C.

The over-range condition is transferred to a d-type flip-flop (data latch)
made up of the gates in IC14. When the control circuitry generates the
pulse to transfer the data from the decade counter to the storage registers,
data latch input gates IC14A and D will be enabled. If an over-range
condition exists at this time as determined by the condition of IC13A, the
data latch will be set. The output of the data latch at IC14 pin 6 normally
keeps the over-range indicator LED shorted. This LED indicator is the
decimal point element in the seven-segment LED display D105. It is
normally lighted by the supply voltage through the 180 ohm resistor
R101. If the data latch is reset, its output at IC14 pin 6 is low and therefore
the over-range indicator is off. However when the data latch is set, the
decimal point element is lighted thereby indicating an over-range condi-
tion.
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Self Test Review

20. Which integrated circuit (Figure 10-9) generates the gate pulse?
IC2
IC13
IC15
1C19
1C22
. IC26
21, The purpose of LED D106 is to indicate when:
a. power is on
b. an over-range condition occurs
c. a decimal point is needed in the display
d. the gate is open
22. The proper operating sequence of the decade counter is:
a. reset, count, transfer to memory
b. count, reset, transfer to memory
c. transfer to memory, count, reset

23. Thetime base frequencies used in the frequency mode are

me oo TP

Hzand ________ Hz
24, Thetime base frequencies used in the period modeare ________ Hz
and ___ Hz

25. The gate for the frequency mode is IC
26. Frequency ratio measurements can be made with the Heath IM-4100
counter. To do this, which mode should be selected?
a. frequency
b. period
c. totalize

One input will be applied to the regular counter input. The other
input will be applied to the external input/output connector (see

Figure 10-10). SW6 must then be set to the __________ position.
In the frequency ratio mode, the clock oscillator used.
9 y is/is not

27. The time base frequency is 1 MHz. The display reads 8521, The
mode is being used and the input frequency is
Hz.
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Answers

20. b. IC13
21. d. indicates when the gate is open (enabled)
22. a. reset, count, transfer to memory
23. 1000 Hz (1 KHz) and 1 Hz
24, 1000 Hz (1 KHz) and 1000000 Hz (1 MHz)
25, IC2B
26. b. period
EXT position
is not
27. period, 117.3 Hz (f = 1/8521 X 1079
(The 1 MHz time base signal is used only in the period
mode).
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The greatest application for digital circuits today is in digital computers.
Digital circuits were originally developed to provide a means of im-
plementing digital computers. As new circuits and techniques have been
developed, computer performance has improved. The greatest impact on
the digital computer has been the development of integrated circuits. IC’s
have greatly reduced the size and cost of digital computers and has made
them more powerful. Over the years digital computers have continued to
decrease in price. Their size and power consumption have also decreased
significantly. At the same time, their performance and sophistication
have increased, making them practical for a wider range of applications.

Recent technological advances in semiconductor techniques have
created a unique digital product. Large scale integration of digital cir-
cuits has permitted the semiconductor manufacturers to put an entire
digital computer on a single chip of silicon. These computers are known
as microprocessors. We normally think of digital integrated circuits as
being the gates and flip-flops used to implement a computer. Now, the
computer itself is a single low cost integrated circuit. But the power of
this device is significant, and for many applications it can replace
hundreds of SSI and MSI circuits, This significant development will
further broaden the applications for digital computers. Best of all, it will
increase the sophistication and capabilities of the electronic equipment
that uses them.

Today digital computers (microprocessors) are as much a part of digital
techniques and digital design as any of the smaller and simpler circuits.
While it is impossible to cover all aspects of this exciting field in this unit,
we will introduce you to the digital computer and related techniques as
they apply to implementing digital systems. Our primary emphasis will
be on the microprocessor and its ability to replace standard hard-wired
control logic systems.

What is a Digital Computer?

A digital computer is an electronic machine that automatically processes
data by the use of digital techniques. Data refers to any information such
as numbers, letters, words, or even complete sentences and paragraphs.
Processing is a general term referring to a variety of ways in which the
data can be manipulated. The computer processes the data by performing
arithmetic operations on it, editing and sorting it, or evaluating its
characteristics and making decisions based upon it. In addition to being
able to manipulate data in a variety of ways, the computer contains an
extensive memory where data is stored. The key characteristic of a digital
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computer is its ability to process data automatically without operator
intervention.

The manner in which the data is manipulated is determined by a set of
instructions contained within the machine. These instructions form a
program that tells the computer exactly how to handle the data. The
instructions are executed sequentially to carry out the desired manipula-
lations. Most computers are general purpose in that the instructions can
be assembled into an almost infinite variety of application programs.
Each computer has a specific instruction set. These instructions are then
put into the proper sequence to perform the required calculation or
operation. The process of writing the desired sequence of instructions is
called programming.

How Computers are Classified

There are many different types of digital computers and a variety of ways
in which they can be classified. One method of classifying computers is
by size and computing power. There is a broad spectrum covering all
types of computers. At one end of the spectrum are large scale computers
with extensive memory and high-speed calculating capabilities. These
machines can process huge volumes of data in a short period of time and
in any desired manner. At the other end of the spectrum are the small
scale, low cost digital computers such as the microprocessor whose
application and computing power is more limited.

Computers are also classified by function or application. The most com-
monly known digital computer is the electronic data processor that is
used by most business, industry and government organizations for
maintaining records, performing accounting functions, maintaining an
inventory, and providing a wide variety of other data processing func-
tions. Then there are the scientific and engineering computers that are
used primarily as mathematical problem solvers. They greatly speed up
and simplify the calculations of complex and difficult scientific and
engineering problems.

Another way to classify digital computers is general purpose or special
purpose. General purpose machines are designed to be as flexible as
possible. This means that they can be programmed for virtually any
application. Special purpose computers, on the other hand, are generally
dedicated to a specific application. They are designed to carry out only a
single function. General purpose computers with a fixed program be-
come special purpose computers.

Most digital computers are of the general purpose type. Most have ver-
satile instruction sets which permit the computer to be programmed to
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perform almost any operation. With the proper program, a general pur-
pose computer can perform business data processing functions, scientific
and mathematical calculations, or industrial control functions.

The most widely used computers are the small scale machines. These
include the minicomputer, the microcomputer, the programmable
calculator, and the microprocessor. While all of these small scale
machines together account for less than 10% of the total computer dollar
investment, they represent more than 95% of the unit volume of com-
puters. Small scale computer systems are very low priced and are within
the reach of almost everyone. Today a complete computer system can be
purchased for less than the price of a new automobile. Microprocessors
and programmable calculators are even less expensive. There are many
thousands of small computers in use today. Your own personal contact
with a digital computer will no doubt be through some type of small scale
computer,

Minicomputers. The largest of the four types of small computers is the
minicomputer. A minicomputer is a general purpose digital computer
usually constructed of TTL or ECL bipolar logic circuits. It is supported
with software and peripheral units. Software refers to the programs
supplied with the computer that make it easy to use. Peripheral units are
the input-output devices that allow an operator to communicate with the
computer. Typical peripheral units are typewriters, card readers and
printers. Minicomputers are similar to the larger digital computers, but
their memory capacity, speed and applications are more limited.

A complete but minimum minicomputer can be purchased for less than
$1,000. This does not include peripheral equipment. However, such
machines are often purchased to be built into a larger piece of equipment
or a system for use as a controller. The users of such computers are
referred to as original equipment manufacturers (OEM). A complete
stand-alone minicomputer with sufficient memory, peripheral devices
and software to be used for general purpose computing can be purchased
for less than $5,000.

Microcomputers. A microcomputer is similar in many respects to a
minicomputer in that it is a general purpose machine that can be
programmed to perform a wide variety of functions. However, the
microcomputer is normally smaller and more restricted in its applica-
tion, Its speed and memory capacity is less than a minicomputer. As a
result, microcomputers are substantially less expensive than
minicomputers. Microcomputers are more often used in dedicated,
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single function applications. Software and peripheral support is at a
minimum. Most microcomputers are implemented with MOS LSI cir-
cuitry.

Programmable Calculator. A programmable calculator can be clas-
sified as a special purpose microcomputer. These machines are similar in
many respects to the hand-held and desk top electronic calculators
widely available. The programmable calculator has an input keyboard for
entering data and a decimal display for reading out the results of calcu-
lations. In a standard calculator, an operator enters the numbers to be
manipulated and the functions to be performed by depressing keys on the
keyboard in the proper sequence. The solution to the problems then
appears on the display. A programmable calculator can be used this way
also, but it contains a memory and control unit that is used to automate
the problem solving process. The data to be operated upon and the
functions to be performed are entered via the keyboard and stored in the
memory in the proper sequence. When enabled, the programmable
calculator will then automatically solve the problem stored in its memory
without operator control. Programmable calculators offer the advantage
of improved speed and convenience over standard calculators when the
same problem must be computed several times with different data. Long
problems requiring complex data and many mathematical operations are
also best solved by a programmable calculator as they relieve the operator
from the tedious work and greatly minimize errors. Another advantage of
the programmable calculator over other types of digital computers is its
ability to communicate directly with the operator through the keyboard
and decimal readout display.

Microprocessors. A microprocessor is the smallest and least expensive
type of digital computer that still retains all of the basic features and
characteristics of a computer. It can be implemented with standard digi-
tal integrated circuits or it is available as a single large scale integrated
(LSI) circuit. While the capabilities of a microprocessor are limited when
compared with a microcomputer or minicomputer, this device is still a
very powerful unit. It extends the applications of computer techniques to
many areas where minicomputers and microcomputers are not
economically feasible.

Microprocessors are generally designed to perform a dedicated function.
These devices are built into electronic equipment that will be used for
some specific application. Some typical dedicated applications include
traffic light controllers, electronic scales and cash registers, and elec-
tronic games. In addition, engineers are finding that low cost microp-
rocessors can be used to replace standard hard-wired digital logic. Design
time and cost can be significantly reduced in the design of a digital
system when microprocessors are used. A microprocessor can be used
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economically if the design is equivalent to thirty or more standard TTL
integrated circuit packages. Such hard-wired logic designs are replaced
by a microprocessor with a stored program. The program stored in a read
only memory permits the microprocessor to carry out the same functions
as a hard-wired logic controller. Microprocessors can also be used as the
main component of a minicomputer or microcomputer.

Self Test Review

28.

29.

30.

31.

The two types of binary information stored in the memory of a digital
computer are and
A list of computer instructions for solving a particular problem is
called a
Both a digital computer and an electronic calculator can solve
mathematical problems, but the unique feature of the computer is its
ability to solve the problem
The simplest digital computer is called a

Answers

28. instructions and data
29, program

30. automatically

31. microprocessor
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Digital Computer Organization

All digital computers are made up of four basic units. These are the
memory, the control unit, the arithmetic-logic unit (ALU), and the
input-output (I/O) unit. These major sections and their relationship to
one another are illustrated in Figure 10-13. An understanding of digital
computer operation starts with a knowledge of how these sections oper-
ate and how they affect one another.

MEMORY
ARITHMETIC
= CONTROL
ouTPUT LOGIC

i

Figure 10-13
General block diagram of a digital
computer,

Memory. The heart of any digital computer is its memory. It is in the
memory where the program and data are stored. As indicated earlier, the
program is a series of instructions that are stored and executed in sequ-
ence to carry out some specific function. The instructions cause the
computer to manipulate the data in some way.

Computer memories are organized as a large group of storage locations
for fixed length binary words. A computer instruction is nothing more
than a binary word whose bit pattern defines a specific function to be
performed. The data to be processed by the computer is also a binary
word. A computer memory is an accumulation of storage registers for
these instruction and data words. Most computers have memories capa-
ble of storing many thousands of words.

Digital computers typically have a fixed word size. A 32-bit word is
common for many large computers. Minicomputers usually have a 16-bit
word. Microprocessors widely use an 8-bit word. Memory sizes range
from approximately several hundred words to several hundred thousand
words of storage. A typical minicomputer may provide 4096 16-bit
words. A microprocessor may use 1024 words of 8-bit memory. The
number of words in memory is generally some power of two.



10-40

UNIT TEN

HEATHIIT

CONTINUING
EDUCATION

s

Each memory location appears to be like a storage register. Data can be
loaded into the register and retained. The word can also be read out of
memory for use in performing some operation. Each memory word is
given a numbered location called an address. The address is a binary
word used to locate a particular word in memory. The normal procedure
is to store the instruction words in sequential memory locations. The
instruction word generally contains an address which refers to the loca-
tion of some data word to be used in carrying out the operation specified.
The instructions stored in the sequential memory locations are executed
one at a time until the desired function is performed.

Most modern digital computers use semiconductor memory. These are
MOS LSI circuits where data is stored in latch flip-flops or as the charge
on a capacitor. Semiconductor memories are small, fast, and inexpensive.
Many computers, however, still use magnetic core memories. In these
memories, binary data is stored in tiny donut-shaped magnetic cores. By
magnetizing the core in one direction a binary zero is stored. Magnetizing
the core in the opposite direction causes it to store a binary one. Elec-
tronic circuitry associated with the cores is used to store data into the
memory and read it out. The advantage of core memories over
semiconductor memories is their non-volatility. When power is removed
from a semiconductor memory, all of the data is lost. Removing the power
from a magnetic core memory has no effect on the data contents. Because
the cores are permanently magnetized in one direction or the other, all
data is retained.

The typical organization of a computer memory is shown in Figure 10-14.
It consists of the semiconductor or magnetic core elements that retain the
binary data. The memory used in a digital computer is generally referred
to as a random access read/write memory. Random access refers to the
ability of the computer to directly seek out and access any specific word
stored in the computer memory. Read/write refers to the ability of the
memory to store data (write) or to retrieve data for use elsewhere (read).

Asyou can see from Figure 10-14, the access to a specific word in memory
is achieved through the memory address register (MAR) and memory
address decoder. The memory address register is a flip-flop register into
which is placed a multi-bit binary word that designates the location of a
desired word in memory. If the address 00010011 is stored in the MAR,
the content of memory location 19 is referenced. The address word may
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refer to the location of an instruction or a data word. The size of the
address word determines the maximum memory size. For example, if the
memory address word is 12-bits in length, the maximum number of
words that the computer memory can contain is 212 = 4096 words. (called
a 4K memory)

MEMORY
DATA REGISTER

TO ACCUMULATOR

MEMORY OR IR

MEMORY ADDRESS |
DECODER

MEMORY ADDRESS Typical computer memory organi-
REGISTER (MAR) |i zation,

FROM INSTRUCTION
REGISTER OR
PROGRAM COUNTER
IN THE CONTROL
UNIT

The output of the memory address register drives the memory address
decoder which recognizes one unique memory address word at a time
and enables the appropriate location. In semiconductor memories, the
memory address decoder is generally a fixed part of the integrated circuit
memory itself. When an address word is loaded into the MAR, the
specific location in memory designated by that address is enabled. Data
can then be written into or read out of that memory location.

The access to the addressed memory location is made through a memory
data register (MDR) or memory buffer register (MBR). This is a flip-flop
register into which the data or instruction word is stored on its way into
or out of the memory. A word to be stored in memory is first loaded into
the MDR and then stored in the addressed memory location. If a read
operation is being carried out by the memory, the data stored in the
addressed location is first loaded into the MDR. From there it is sent to
other portions of the computer as needed. Many computers do not use an
MDR. Instead the data or instruction goes to or comes from another
register in the computer.

10-41



10-42

UNIT TEN

ITE—
HEATHKIT
CONTINUING

EDUCATION

Control Unit. The control unitin a digital computer is a sequential logic
circuit. Its purpose is to examine each of the instruction words in mem-
ory, one at a time, and generate the control pulses necessary to carry out
the function specified by that instruction. The instruction, for example,
may call for the addition of two numbers. In this case, the control unit
would send pulses to the arithmetic-logic unit to carry out the addition of
the two numbers. If the instruction calls for the storage data in memory,
the control unit would generate the necessary control pulses to carry out
that storage operation. As you can see, it is the control unit that is
responsible for the automatic operation of the digital computer.

Almost any type of sequential logic circuit can be used to implement the
control unit. However, most modern digital computers incorporate a
microprogrammed control unit using a ROM. Here special binary words
known as microinstructions are stored in the read only memory. When an
instruction is analyzed by the control unit, that instruction will cause a
certain sequence of microinstruction words in the ROM to be executed.
The result is the generation of logic signals that will carry out the opera-
tion designated by the instruction. The instructions set for any digital
computer is defined by the operation of the control unit,

The exact logic circuitry used in the control unit varies widely from one
machine to another. However, the basic elements are shown in Figure
10-15. The control unit consists of an instruction register, a program
counter, an instruction decoder, a clock oscillator, and some type of
sequential logic circuit used for generating the control pulses.

FROM MDR

Figure 10-15
Typical control unit organization,
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The instruction register is a multi-bit flip-flop register used for storing the
instruction word. When an instruction is taken from memory, it passes
through the MDR and then into the instruction register. From here the
instruction is decoded by the instruction decoder. This logic circuitry
recognizes which instruction is to be performed. It then sends the ap-
propriate logic signals to the control pulse generator. Under the control of
the clock oscillator, the control pulse generator then produces the logic
signals that will enable the other circuitry in the machine to carry out the
specified instruction.

The program counter is simply a binary up counter that keeps track of the
sequence of instructions to be executed. The program consists of in-
structions that are stored in sequential memory locations. To begin a
program, the program counter is loaded with the starting address. The
starting address is the location of the first instruction in the program to be
executed. The first instruction is then read out of memory, interpreted
and carried out. The control circuitry then increments the program
counter. The contents of the program counter is then fed to the memory
address register that then permits the next instruction in sequence to be
addressed. Each time an instruction is executed, the program counter is
incremented so that the next instruction in sequence is fetched and
executed. This process continues until the program is complete.

In Figure 10-15 you will notice a connection between the instruction
register and the program counter. There are times when the instruction
itself will modify the contents of the program counter. Some instructions
specify a jump or branch operation that causes the program to deviate
from its normal sequential execution of instructions. The instruction
register will contain an address that will be loaded into the program
counter to determine the location to which the program jumps.

Arithmetic-Logic Unit. The arithmetic-logic unit (ALU) is that portion
of the digital computer that carries out most of the operations specified by
the instructions. The arithmetic-logic unit performs mathematical op-
erations, logical operations and decision making functions. Most
arithmetic-logic units can perform addition and subtraction. Multipli-
cation and division operations are generally programmed. The ALU can
also perform logic operations such as inversion, AND, OR, and exclusive
OR. In addition, the ALU can make decisions. It can compare numbers or
test for specific quantities such as zero or negative numbers.

The arithmetic-logic unit and control unit are very closely related, so
much so that it is sometimes difficult to separate them. Because of this,
the ALU and control unit together are often referred to as the central
processing unit (CPU). Most microprocessors are single chip LSI CPUs.
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The arithmetic-logic unit in a digital computer varies widely from one
type of machine to another. Figure 10-16 shows the ALU circuitry as-
sociated with a very simple, minimum digital computer. The heart of the
arithmetic-logic unit is the accumulator register. It is in this register
where most of the computer operations take place. Here the data is
manipulated, computations are carried out, and decisions are made.

FROM MDR

|

ACCUMULATOR REGISTER (ACC) |

J [ TO MOR
................................... ?. AR RO M AND ”’0
FROM MDR UARITHMETIC-LOGIC

AND 110 —— ) CIRCUITRY

Figure 10-16

Arithmetic logic unit organization.

The accumulator register is a flexible unit that can usually be in-
cremented or decremented. It can also be shifted right or shifted left.
Many of the instructions define operations that will be carried out on the
data stored in the accumulator register. The size of the accumulator
register is generally determined by the basic computer word size, which
is the same as the memory word size.

Associated with the accumulator register is the arithmetic-logic circuit-
ry. For the most part, this circuitry is a binary adder. With the binary
adder, both binary addition and subtraction can be accomplished. The
arithmetic-logic circuitry is also usually capable of carrying out logic
operations such as AND, OR, and exclusive OR on the data stored in the
accumulator register.

The arithmetic-logic circuitry is capable of adding two binary words. One
of the binary words is stored in the accumulator. The other binary word is
stored in the memory data register. The sum of these two numbers
appears at the output of the arithmetic-logic circuitry and is stored in the
accumulator register replacing the number originally contained there.
Most other operations with the arithmetic-logic circuitry is carried out in
this manner. The two words to be manipulated are initially stored in the
accumulator and the MDR with the results of the operation appearing
back in the accumulator replacing the original contents.
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Input-Output Unit. The input-output (V/O) unit of a computer is that
section that interfaces the computer circuitry with the outside world. In
order for the computer to communicate with an operator or with
peripheral equipment, some means must be provided for entering data
into the computer and reading it out. Data and programs to be stored in
the memory are usually entered through the input-output unit. The
solutions to calculations and control output signals are usually passed to
the external equipment through the /O unit.

The /O unit is generally under the control of the CPU. Special I/O
instructions are used to transfer data into and out of the computer. More
sophisticated /O units can recognize signals from extra peripheral de-
vices called interrupts that can change the operating sequence of the
program. Some I/O units permit direct communications between the
computer memory and an external peripheral device without interfer-
ence from the CPU. Such a function is called direct memory access
(DMA).

The input/output section of a digital computer is the least clearly defined
of all digital computer sections in that it can vary from practically no
circuitry at all to very complex logic circuitry approaching the mag-
nitude of the remainder of the computer itself. For our explanation of
digital computer operation here, we will assume the simplest form of
input/output circuitry. Data transfers between the computer and external
peripheral devices take place via the accumulator register. Data to be
inputted and stored in memory will be transferred a word at a time into
the accumulator and then into the memory through the MDR. Data to be
outputted is first transferred from the memory into the MDR, then into the
accumulator, and finally to the external peripheral device. These data
transfers into and out of the accumulator register take place under the
control of the CPU and are referred to as programmed 1/O operations.
Special input/output instructions cause the proper sequence of opera-
tions to take place.

Most digital computers can also perform 1/O operations at the request of
an interrupt. An interrupt is a signal from an external device requesting
service. The external device may have data to transmit to the computer or
may require the computer to send it data. When an interrupt occurs, the
computer completes the execution of its current instruction, then jumps
to another program in memory that services the interrupt. Once the
interrupt request has been handled, the computer resumes execution of
the main program. Data transfers occurring in the interrupt mode can also
take place through the accumulator.
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Digital Computer Operation

Now that you are familiar with the basic architecture of a digital com-
puter, you are ready to see how the various sections operate together to
execute a program. The units we described in the previous section,
together, actually form a simple, hypothetical digital computer that we
will use here to demonstrate how a computer operates. We will assume
that a program for solving a specific problem is already stored in the
computer memory. The computer will execute each instruction in
sequence until a solution is reached. We will describe the operation of the
computer and show the contents of each of the registers as the program is
carried out.

Assume that the problem to be solved is a simple mathematical operation
that tells us to add two numbers, subtract a third number, store the result,
printthe answer, then stop. The numbers that we will work with are 36, 19
and 22. The program calls for adding 36 and 19, subtracting 22, then
storing and printing the answer.

The solution to this simple problem as it is solved step-by-step by the
computer is illustrated in Figure 10-17. Here we show a simplified block
diagram of the digital computer showing the memory and the major
registers. The program is stored in memory. The contents of each memory
location, either instruction or data, is shown adjacent to the memory
address. To solve this problem, the computer sequentially executes the
instructions. This is done in a two-step operation. First, the instruction is
fetched or read out of memory. Second, the instruction is executed. This
fetch-execute cycle is repeated until all of the instructions in the program
have been executed. The figures in Figure 10-17 illustrate the contents of
the various registers and memory locations for each fetch and execute
operation.

In Figure 10-17A, the first instruction of the program is fetched. The
instruction word is read out of memory and appears in the memory data
register (MDR). Itis then transferred to the instruction register (IR) where it
is interpreted. Note that the memory address register (MAR) contains 0,
which is the address of the first instruction. The accumulator register
(ACC) is set to 0 prior to the execution of the program.
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MEMORY .
§ Figure 10-17
ADDRESS|INSTRUCTION OR DATA
0 LOAD ACC(6)
1 ADD(7)
2 SUBTRACTI(8) £k
3 STORE (9) '
a PRINT
5 JUMP(10) 1
6 34 LOAD 6 MDR
7 19 (A) Fetch first instruction (LOAD)
8 22
9 LOAD 6 IR
10 HALT
MAR 0
PC 0

Figure 10-17B shows the execution of the first instruction. The first
instruction LOAD ACC (6) tells us to load the accumulator with the data
stored in memory location 6. In executing this instruction, the number 36
is transferred to the accumulator. Note how this is done. The address
specified by the instruction word (6) is transferred from the instruction
register to the memory address register (MAR). This causes the number 36
stored in that location to be transferred to the MDR and then to the
accumulator. During this step, the program counter (PC) isincremented by
one so the next instruction in sequence will be fetched.

MEMORY
ADDRESS|INSTRUCTION OR DATA
0 LOAD ACCI6)
1 ADD(T)
2 SUBTRACTI(8) 36 ACC
3 STORE (9)
- ERINS (B) Execute first instruction (LOAD)
5 JUMP(10)
6 36 36 MDR
7 19 T
8 22
9 LOAD 6 IR
10 HALT
MAR 6 <
PC 1
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Figure 10-17C shows the fetch operation for the second instruction. The
contents of the program counter is transferred to the MAR so that the
ADD(7) instruction is fetched. This instruction passes through the MDR
into the instruction register.

MEMORY
ADORESS|INSTRUCTION OR DATA
0 LOAD ACC(6)
ADDIT)
SUBTRACTI(8)
STORE (9)
PRINT

JUMP{10) ]'

1
2
3
4
5
b 36 ADD 7 MDR
i
8
9
0

(C) Fetch second instruction (ADD)

36 ACC

19
22

ADD 7 IR

1 HALT

MAR 1

PC 1

The execution of the add instruction is shown in Figure 10-17D. This
instruction tells us to add the contents of memory location 7 to the
contents of the accumulator. The address of the add instruction is trans-

MEMORY
ADDRESS[INSTRUCTION OR DATA
0 LOAD ACCiL6)
1 ADDITI
2 SUBTRACT!(8)
55 ACC
3 STORE ( 9)
4 PRINT
(D) Execute second instruction (ADD) 5 TUMP(101
6 36 19 MDR
1 19 — T
] 22
9 ADD 7 IR
10 HALT
MAR 7
PG 2
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ferred to the MAR. This causes the contents of memory location 7, the
number 19, to be transferred to the MDR. The contents of the MDR are
added to the contents of the accumulator with the sum appearing back in
the accumulator. As you can see, the sum of 36 and 19 is 55. Note that the
program counter is again incremented so that the next instruction in
sequence will be fetched.

The remaining instructions in the program are fetched and executed in a
similar manner. The third instruction, a subtract, causes the memory
contents of location 8 to be subtracted from the contents of theaccumulator
with theresulting remainderappearing inthe accumulator. This produces
an answer of 33. This fetch-execute sequence is shown in Figure 10-17E

and F.
MEMORY
ADDRESS|INSTRUCTION OR DATA

0 LOAD ACC(6)

1 ADDI(T)

2 SUBTRACT(8) 55 ACC

3 STORE ( 9)

4 PRINT , (E) Fetch third instruction (SUB)

5 JUMPI(10) 1

6 36 SUB 8 MDR

1 19

8 22 l

9 SuB 8 IR

10 HALT

MAR 2 MEMORY

'|' ADDRESS|INSTRUCTION OR DATA

0 LOAD ACCIl6!}
2 . 1 ADDIT)
2 SUBTRACT(8I
33 ACC
3 STORE (9)
) PRINT
5 JUMP(10)
6 16 22 MDR
1 19
3 22
¢ (ANSWER! SUB 8 IR
10 HALT
MAR 8 =
PC 3 (F) Execute third instruction (SUB)
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Thenextinstructioninsequence, STORE(9), tells ustostorethe contents of
the accumulator in memory location 9. The number 33 in the accumulator
is transferred to the MDR and stored in location 9, as indicated in Figure

10-17G and H.
MEMORY
ADDRESS|INSTRUCTION OR DATA
0 LOAD ACCLO!)
1 ADDIT)
2 SUBTRACTIS)
33 ACC
3 STORE (9) ‘
[ PRINT \—]
. : i 5 JUMP(LO)
(G) Fetch fourth instruction (STORE) : = STORE 9 MDR
7 19
8 22
9 STORE 9 IR
10 HALT
MAR 3
PC 3
MEMORY
ADDRESS|INSTRUCTION OR DATA
0 LOAD ACCI(6)
1 ADDI(T)
? SUBTRACTI8) £
3 STORE (9 2 e
(H) Execute fourth instruction (STORE) - ]
b JUMPI(10)
6 36 33 MOR
7 19 |
8 22
9 33 STORE 9 IR
10 HALT
MAR 9
Pc 4
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The fifth instruction in the program, PRINT, tells us to print the contents of
the accumulator on the external printer. The number stored in the ac-
cumulator will then be transferred to a printer where it is printed. The
fetch-execute cycle for this operation is shown in Figures 10-17I and J.

MEMORY

ADDRESS

INSTRUCTION OR DATA

0

LOAD ACCI(6)

ADDIT)

SUBTRACTI(S)

STORE (9)

33

PRINT

JUMP(10}

36

1
2
3
4
5
6
7

19

PRINT

22

33

8
9
10

HALT

PRINT

MAR

PC

MEMORY

ADDRESS

INSTRUCTION OR DATA

0

LOAD ACCI6)

PRINTER

ADDI(T)

SUBTRACT(8)

STORE (9

33

PRINT

JUMP(10)

36

19

PRINT

22

32

ale|lo|w|eo|lunw|alw]m] -

HALT

PRINT

MAR

PC

ACC

MDR

ACC

MDR

(1) Fetch fifth instruction (PRINT)

(]) Execute fifth instruction (PRINT)
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The sixthinstruction in sequence is a JUMP(10) instruction that causes the
normal sequence of program executions to change. The jump instruction
tells us not to execute the contents of the next memory location in
sequence. Instead it tells us to take the next instruction from memory
location 10. You can see by referring to Figure 10-17K that the contents of
the next memory location in sequence (address 6) contains a data word.
The computer, being a dumb machine, would simply interpret a data word
asaninstruction and attempt to execute it. Ifthisever happens, theresult of
the computation will be erroneous. The purpose of the jump instruction in
our program is to jump over the data words in the program stored in
locations 6, 7, 8, and 9. The program is continued in location 10, where a

MEMORY
ADDRESS|INSTRUCTION OR DATA
0 LOAD ACCIG)
1 ADDIT)
2 SUBTRACT(8)
33 ACC
3 STORE (9)
4 PRINT
(K) Fetch sixth instruction (JUMP) l"ﬁ
5 JUMP(10)
b 36 JUMP 10 MDR
7 19
8 22
9 33 JUMP 10 IR
10 HALT
MAR 5
MEMORY
PC 5 ADDRESS[INSTRUCTION OR DATA
0 LOAD ACCI6]
1 ADDITI
2 SUBTRACTIS)
33 ACC
3 STORE (9)
A PRINT
5 JUMP(10)
6 36 Jume 10 ‘MDR
CHANGE
IN R 7 19
PROGRAM
SEQUENCE 8 22
9 33 JUMP 10 IR
10 HALT
MAR 10

PC 10
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HALT instruction is stored. By executing the jump instruction, the prog-
ram counter is loaded with the address portion of the jump instruction (10)
instead of being incremented as it normally is. See Figure 10-17L. This
causes the computer to fetch and execute the instruction stored in location
10. This is illustrated in Figures 10-17M and N.

33

HALT

HALT

MEMORY
ADDRESS|INSTRUCTION OR DATA
0 LOAD ACCI6)
] ADDI(T)
2 SUBTRACT(8)
3 STORE (9) s e
1 PRINT
5 JUNP(10) 1
6 16 HALT MDR
7 19
8 22
g 33 HALT IR
10 HALT
MEMORY
ADDRESS|INSTRUCTION OR DATA
MAR - 0 LOAD ACC(6)
1 ADDI(T)
" B 2 SUBTRACT(S)
3 STORE (9)
4 PRINT
5 JUMPI(10)
b 36
7 19
8 22
g 33
10 HALT
MAR 10
PC 11

The last instruction in the program is a HALT. This instruction has no
effect other than to stop the operation of the machine. Note in Figure
10-17N that the program counter was incremented so that it contains the
memory location (11) of the next instruction in sequence to be fetched.

Study the program shown in Figure 10-17. Trace through each of the fetch
and execute cycles for each instruction to be sure that you fully understand
the operation. All digital computers operate in this same way with minor
variations.

(M) Fetch seventh instruction (HALT)

ACC

MDR

(N) Execute seventh instruction (HALT)
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32. The four major sections of a digital computer are:
a.
b.
¢
d.
33. The section of the computer that interprets the instructions is the:
a. Memory
b. Control
c. ALU
d. 1O

34.

35.

36.

37.

38.

39.

40.

An 8-bit microprocessor has a 14-bit memory address word. What is
the maximum number of memory words it can have?
a. 256

b. 4096

c. 16,384

d. 65,536

The address of the memory word indicates its
a. Content

b. Location

c. Size

The main computational and data manipulation register in a compu-
ter is the

a. MAR
b. MDR
c. IR

d. Accumulator

What register indicates the location of the next instruction in sequ-
ence in a program?

a. MDR
b. IR
c. PC

d. Accumulator
The ALU and control unit combined are referred to as the

Two numbers are to be added by the ALU. These numbers are initially
stored in the and registers. The sum appearsin
the
In carrying out a program, the computer repeats a series of

and ______ operations on the instructions in memory.
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Answers

32. Memory

Control

Arithmetic-Logic
Input/Output

33. b. Control

34, 16,384 = 21

35. b. Location

36. d. Accumulator

37. c. PC (Program Counter)

38. CPU or Central Processing Unit
39. MDR and Accumulator, Accumulator
40. Fetch, Execute

- I
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Programming

A digital computer without a program is a useless piece of electronic
hardware. The logic circuitry making up the computer is incapable of
performing any useful end function without a program. It is this charac-
teristic of a digital computer that sets it apart from other types of digital
circuitry. And it is this characteristic that makes the digital computer the
versatile machine that it is. For this reason, a discussion of digital com-
puters is not complete without information on programming.

The process of using a digital computer is mainly that of programming it.
Whetherthe computerisasimple microprocessororalargescale system, it
must be programmed in order for it to perform some useful service. The
application of the computer will define the program. Programming is the
process of telling the computer specifically what it must do to satisfy our
application.

Programming is acomplex and sophisticated art. In many ways it is almost
a field apart from the digital circuitry and the computer hardware itself.
There are many different levels of programming and many unique
methods that are employed. For that reason it is impossible to cover them
all here. The purpose of this section is to give you an overview of the
process of programming a computer. As indicated earlier, our emphasis
will be on the programming of small scale digital computers such as the
microprocessor.

Programming Procedure. There are many different ways to program a
digital computer. The simplest and most basic form of programming is
machine language programming. This is the process of writing programs
by using the instruction set of the computer and entering the programs in
binary form, one instruction at a time. Programming at this level is
difficult, time consuming, and error prone. It also requires an in-depth
understanding of the computer organization and operation. Despite these
disadvantages, however, this method of programming is often used for
short simple programs. While most computer applications do not use
machine language programming, it is desirable to learn programming at
this level. It helps to develop a thorough knowledge of machine operation
and generally results in the shortest, most efficient programs. Many
microprocessors and minicomputers are programmed in machine
language.

To illustrate the concepts of programming in this unit, we will use
machine language programming. Other more sophisticated methods of
programming will be discussed later.
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Programming a digital computer is basically a seven step process. These
seven steps are: (1) define the problem; (2) develop a workable solution;
(3) flow chart the problem; (4) code the program; (5) enter the program
into the computer; (6) debug the program; (7) run the program. Let's take a
look at each of these steps in detail.

The first and perhaps the most important step in programming a digital
computer is defining the problem to be solved. The success of the program
is directly related to how well you define the operation to be performed.
There is no set standard for the problem defining procedure, and any
suitable method can be employed. The definition can be a written state-
ment of the function to be carried out, or it may take the form of a
mathematical equation. In some cases, the problem may be more easily
defined by graphical means. For control applications, the problem may be
expressed in the form of a truth table. The form in which you place the
definition is strictly a function of the application.

Oncethe problem isanalyzed and defined, you canbeginthinking in terms
of how the computer may solve the problem. Remember that a computer
program is a step-by-step sequence of instructions that will lead to the
correctresults. You should think in terms of solving your problemin some
step-by-step sequential manner. What you will be doing in this phase ofthe
programming procedure is developing an algorithm. An algorithm is a
method of procedure of solving a problem.

Animportant point to rememberis that there is usually more than one way
to solve a given problem. In other words, there is more than one algorithm
suitable for achieving the goal that you have set. Much of the job of
programming is in determining the alternatives and weighing them to
select the best suitable approach. The simplest and most directalgorithms
are usually the best.

The next step is to flowchart the problem. A flow chart is a graphical
description of the problem solution. Various symbols are used to desig-
nate key steps in the solution of the problem, Figure 10-18 shows the
basic flowcharting symbols. An oval defines the starting and finishing
points. A rectangular box defines each individual computational step
leading to the solution. Each rectangle contains some basic operation or
calculation that is to take place. The diamond shaped symbol represents a
decision point. It is often necessary to observe the intermediate results in
a problem solution and make a decision regarding the next step to be
taken. There are generally two exits to the diamond shaped decision
making symbol. These represent a yes or no type of decision.

(A) TERMINAL (START OR STOP)

{B) PROCESS OR COMPUTATION

YES

NO
(C) DECISION

Figure 10-18
Basic flowcharting symbols.

10-57



10-58 l UNIT TEN

LOAD 36

t

ADD 19

t

SUBTRACT 19
Y N

STORE SUM

|

PRINT

Figure 10-19
Flow chart for the problem
36 + 19 — 22 = 33 and print.

Figure 10-19 shows a simple flow chart for the problem solved in Figure
10-17. No decision was made in this program.

As you can see, the flow chart is a graphical representation of the basic
method used to solve the problem. The flow chart permits you to visualize
thealgorithm you developed. In many cases, the flowcharting of a problem
helps to determine the best approach to solving a problem since it forces
youtothinkinalogical sequenceand expressthesolutioninastep-by-step
form.

At this point in the programming procedure, your problem is quite well
defined and a basic method of solving the problem has been determined.
Youarenow ready to convert your flow chartand algorithm into a machine
language program. This process is called coding. Coding is the procedure
of listing the specific computer instruction sequentially to carry out the
algorithm defined by the flow chart. This requires a familiarity with the
instruction set of the computer you plan to use.

Thenextstep inthe programming procedure istoload the programinto the
computer memory. Once you have written the program with the computer
instructions, you have all of the information necessary to enter that
program into the computer memory. If you are dealing with machine
language programming, you will convert the instruction words into their
binary equivalents and then load them into the computer. If the program is
a simple one, it can be loaded by using the binary switches on the front
panel of the computer. However, for long, complex programs, this manual
loading procedure is difficult and time consuming.

Most computers make it easy for the programmer to enter his program.
Because oftheavailability and use of support programsresiding within the
machine, the program can usually be entered automatically. One of the
most common ways of entering data into a computer is by the use of a
keypunch machine. This is a typewriter-like machine that punches a
standard computer card with the instructions to be entered. Teletype
input/output machines using perforated paper tape are also commonly
used for program entry. The instruction designations are typed on the
machine and as they are typed, a paper tape is punched.

Once the cards or paper tape are punched, they are then fed into a tape
reader or card reader and loaded into the computer memory. A special
program residing within the computer memory called a loader causes the
program to be loaded automatically.
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With the program now in the computer memory, you can begin to run it.
However, before you use it to obtain your final answer, it is often necessary
torun through the program slowly a step ata time to look for programming
errors and other problems. This process is called debugging. You test the
program to see that it produces the desired results. Ifthe program produces
the correct result, it is ready to use. Often, programming mistakes are
encountered and it is necessary to modify the program by changing the
instruction steps. Often the entire program may be discarded and a new
one written, using a different algorithm.

Once the program has been debugged, itisready for use. With the program
stored in memory, your problem can be solved. The computer is started
and the desired results are produced.

Writing Programs

Before you can begin coding programs, you must be familiar with the
instruction set of the computer you are using. Most digital computer
instruction sets are basically alike in that they all perform certain basic
functions such as addition, branching, input/output and the like. But each
instruction set is different because the logic circuits unique to each
computer carry out these operations in different ways. To code the prog-
ram properly, you must know exactly what each instruction does. You can
get this information by studying the instruction set as it is listed and
explained in the computer’s operation and programming manuals. By
studying the instruction set you will learn how the computer is organized
and how it operates. The insight you gain from this will be valuable to you
notonly in coding the program butalso in developing the bestsolutiontoa
problem with a given machine.

Computer Instructions. A computer instruction is a binary word that is
stored in the computer memory and defines a specific operation that the
computer is to perform. The instruction word bits indicate the function to
be performed and the data which is to be used in that operation.

There are two basic types of computer instructions: memory reference and
non-memory reference. A memory reference instruction specifies the
location in memory of the data word to be used in the operation indicated
by the instruction. A non-memory reference instruction simply designates
an operation to be performed. Non-memory reference instructions gen-
erally refer to internal housekeeping operations to be performed by the
computer and manipulations on data stored in the various registers in the
computer,
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Figure 10-20 shows typical instruction word formats for an 8-bit microp-
rocessor. The format shown in Figure 10-20A is a memory reference
instruction. The instruction is defined by three 8-bit words which are
stored in sequenctial memory locations. The first 8-bit word is the op
code or operations code which is simply a binary bit pattern specifying
some operation. The second and third 8-bit words specify the memory
address of the data or operand to be used. The 8-bit op code defines 256
possible operations or functicns. It is the op code that designates the
operation that is to be performed. The 16-bit address specifies the mem-
ory location of the data to be operated upon. The size of the address
generally indicates the maximum memory size of the computer. With 16
bits of address information, 2'° = 65,536 words can be directly addressed.
We usually say that the maximum memory size is 65K.

New wm o ar i

0P CODE B OF CODE

Mt iy

A

MOST SIGNIFICANT
HALF OF ADDRESS

LEAST SIGNIFICANT

HALF OF ADDRESS OP CODE

Figure 10-20 OPERAND
Typical computer or microprocessor

instruction formats. (A) memory refer-
ence, (B) non-memory reference, (C)

immediate,

The word format in Figure 10-20B is the typical format for non-memory
reference instructions. Only an 8-bit op code is used. In this type of
instruction, an address is not needed since we do not reference a location
in memory where data is stored. Instead, the bits in this field are used to
specify various operations that are to take place within the CPU. For
example, such an instruction might call for the resetting (clearing) of a
register or the transfer of data from one register to another. Certain types
of input-output instructions have this format.

Another instruction type is the immediate instruction which is widely
used in microprocessors. The format for this instruction is shown in
Figure 10-20C. It consists of an 8-bit op code that specifies the operation.
The second 8-bit part of this instruction is the data or operand to be used
in the operation called for. The immediate instruction is like the memory
reference instruction in that it specifies the use of some data word. The
data to be used is in the instruction word itself rather than being refer-
enced by an address in the instruction word. Immediate instructions save
memory space and shorten instruction fetch and execution times.
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Another method of classifying computer instructions is to group them
according to the type of functions that they perform. These include
arithmetic and logic, decision-making, data moving, and control, Let’s
consider each of these in more detail.

Anarithmeticinstruction defines aspecific mathematical operation thatis
to take place. The most commonly used arithmetic instructions are add
and subtract. In larger computers the multiply and divide functions are
also included. Multiply and divide operations in smaller computers such
as minicomputers and microprocessors are carried out by special sub-
routines. As an example, multiplication can be performed by repeated
addition. Division can be programmed by the use of repeated subtractions.
Arithmetic instructions are generally of the memory reference type.

Logical instructions specify digital logic operations that are to be per-
formed on computer data. These include the standard logic functions of
AND, OR and invert(complement). Many computers include the exclusive
OR function. Other logic instructions include shift right and shift left
operations. The AND, OR and XOR logical instructions are usually mem-
ory reference type. The shifting and inversion instructions are of the
non-memory reference type as they generally refer to operations carried
out on data stored in one of the computer’s registers.

A decision making instruction is one that permits the computer to test for
a variety of results and based upon these tests make a decision regarding
the next operation to be performed. It is the decision-making instructions
that set the computer apart from the standard calculator. Decision-
making instructions allow the computer to automate its operations. A
decision-making instruction generally follows a sequence of other in-
structions that perform some arithmetic or logical operation. Once the
operation is performed, the decision-making instruction tests for specific
results, For example, decision-making instructions test for positive or
negative numbers, zero, odd or even numbers or equality. These tests are
generally made on the data stored in various registers in the machine. If
the test for a specific condition exists, the computer is usually instructed
to deviate from its normal sequential execution of instructions. Jump or
branch instructions are memory reference instructions that test for cer-
tain conditions and then specify a memory location where the next
instruction to be executed is located. Skip instructions also change the
computing sequence. These instructions test for a specific condition and
then, if that condition exists, direct the computer to skip the next instruc-
tion in sequence. Skip instructions are non-memory reference types.
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A data moving instruction is one that causes data words to be transferred
from one location to another in the computer. It is these instructions that
are used to take data from memory and load it into one of the operating
registers in the computer. Other data moving instructions cause data
stored in a register to be stored in a specific memory location. These are
memory reference instructions. Other data moving instructions specify
the transfer to data words between registers in the machine. These are
non-memory reference instructions. The data moving instructions pro-
vide a flexible means of transferring data within the machine to prepare it
to be processed as required by the application. A special class of data
moving instructions are the input/output instructions. I/O instructions
cause data to be transferred into and out of the computer. These non-
memory reference instructions often specify one of several input/output
channels or a specific peripheral device. Input/output operations can be
programmed to take place through the operating registers of the machine,
or in some computers, directly between the memory and the peripheral
unit.

A control instruction is a non-memory reference instruction that does not
involve the use of data. Instead, it designates some operation that is to
take place on the circuitry in the computer. Clearing a register, setting or
resetting a flip-flop or halting the computer are examples of control
instructions.

A Hypothetical Instruction Set. A typical but hypothetical instruction
set for a minicomputer or microprocessor is shown in Table I. Only a few
of the most commonly used instructions are listed so that you can become
acquainted with them quickly. Real instruction sets are far more exten-
sive. Nevertheless, the instruction set in Table I is representative. We will
use it to demonstrate the writing and coding of programs.

The instruction set in Table I can apply to the hypothetical computer
described earlier or a typical microprocessor. For the instructions listed
here, we assume that the computer has an 8-bit word length and 65K of
memory. The accumulator and memory data registers are 8 bits in length.
The program counter and MAR are 16 bits in length. I/O transfers take
place through the accumulator. A single instruction may occupy one, two -
or three consecutive memory locations depending upon its format as -
shown in Figure 10-20. Study the instructions in Table I so that you will
be familiar with the operation each performs. Note that each instruction
is designated by a three letter mnemonic. The type of instruction is
designated by the letters R (memory reference), N (non-memory refer-
ence), A (arithmetic-logic), T (data moving or transfer), D (decision) and C
(control). Despite the simplicity of this instruction set, it can be used to
program virtually any function.
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HYPOTHETICAL COMPUTER INSTRUCTION SET
Table I

TYPE OF
MNEMONIC INSTRUCTION OPERATION PERFORMED

LDA R, T Load the data stored in the specified
memory location (M) into the ac-
cumulator register.

STA R, T Store the data in the accumulator re-
gister in the specified memory location
(M).

ADD R, A Add the contents of the specified
memory location (M) to the contents of
the accumulator and store the sum in
the accumulator.

SUB R, A Subtract the contents of the specified
memory location (M) from the contents
of the accumulator and store the re-
mainder in the accumulator.

AND R, A Performalogical AND onthe datainthe
specified memory location (M) and the
contents of the accumulator and store
the results in the accumulator.

OR R, A Perform a logical OR on the data in the
specified memory location (M) and the
contents of the accumulator and store
the results in the accumulator.

JMP R, D Unconditionally jump or branch to the
specified memory location (M) and
execute the instruction stored in that
location.

IMZ R, D Jump to the specified memory location
if the content of the accumulator is zero
(reset). Execute the instruction stored
in that location. If the accumulator is
not zero, continue with the next in-
struction in normal sequence.

CLA N, C Clear or reset the accumulator to zero.
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CMP N, A Complement the contents of the
accumulator.

SHL N, A Shift the contents of the accumulator
one bit position to the left.

SHR N, A Shift the contents of the accumulator
one bit position to the right.

INP . B Transfer an 8-bit parallel input word
into the accumulator.

ourT N, T Transfer the contents of the ac-
cumulator to an external device.

HLT N, C Halt. Stop computing.

INC N, C Increment the contents of the ac-
cumulator.

DCR N, G Decrement the contents of the ac-
cumulator.

SKO N, D If the number in the accumulator is odd

(LSB = 1), skip the next instruction and
execute the following instruction. If the
accumulator is even (LSB = 0), simply
execute the next instruction in
sequence.

Example Programs.

The following examples illustrate the use of the
instruction set in writing programs. The program description, flowchart
and instruction code are given in each example. Study each program,
mentally executing the instructions and imagining the outcome. The
format of the instruction coding is shown below.

3 ADD (7)
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Thenumberonthe leftisthe memory address. The mnemonicspecifies the
instruction. Thenumber in parenthesis istheaddress of the operand called
for by a memory reference instruction. This line of instruction coding tells
us that in memory location 3 is an add instruction that tells us to add the
content of locatioril.7 to the content of the accumulator.

The program shown below is arepeat of the program given in Figure 10-17.
The only differences are the memory location numbers of the instructions,
the use of mnemonics, and the substitution of the OUT instruction for the
PRINT instruction.

0 LDA (16)
3 ADD (17)
6 SUB (18)
9 STA (19)
2 OUT

13 JMP (20)
16 36

17 19

18 22

19 ANSWER
20 HLT

The difference in memory addresses is the result of the assumption that
our computer uses an 8-bit word and that memory reference instructions
occupy three sequential memory locations. In the program of Figure 10-17
we assumed that one memory address contained one instruction. In the
program above, the LDA (16) occupies memory locations 0,1 and 2. The op
code is in 0, the most significant part of the address (0000 0000) is in
location 1, and the least significant part of the address (0001 0000) is in
location 2. The ADD, SUB, STA and J]MP memory reference instructions
each occupy three sequential locations. The OUT and HLT instructions do
not reference memory so they occupy only a single location.

The program below illustrates the use of the logical instructions.

Assume that the only logical instructions that your computer has are AND
and CMP (complement). We need to perform the OR function on the two
words A and B stored inlocations 16 and 17. The flow chartin Figure 10-21
and the program below illustrates how this is done. By DeMorgan's
theorem we know that A +B=AB. Complementing both sides gives us the
OR function.

A+B=AB

LOAD A

¥

COMPLEMENT A

¥

STORE A

'

LOAD B

t

COMPLEMENT B

}

AND WITH A

1

COMPLEMENT A E

Figure 10-21

Flow chart illustrating a
method of performing the
OR function with AND
and invert instructions.



10-66 |uniT TEN

It is the right-hand part of this equation that is our algorithm.

0 LDA (16)
3 CMP

4 STA (18)
7 LDA (17)
0 CMP

11 AND (18)
14 CMP

15 HLT

16 A

17 B

18 Intermediate storage of A

Note the use of memory location 18 as temporary storage for an inter-
mediate result (A). This frees the accumulator to process other data.

The next program illustrates several important concepts. First, it shows
how the computer makes decisions. Second, it demonstrates the use of a
program loop. A loop is a sequence of instructions that is automatically
repeated. The sequence is executed once and a jump instruction causes the
program to branch back (loop) to the beginning of the sequence and repeat
it again.

The program below is designed to enter two 4-bit BCD numbers and store
them in a single 8-bit memory location. The desired memory format is
shown in Figure 10-22. The BCD digits are entered, one at a time, into the
four least significant bit positions of the accumulator as shown in Figure
10-23. The first digit entered must be moved to the four most significant bit
positions of the accumulator before the second digit can be entered. This is
accomplished with a series of shift left instructions.

1st BCD 2nd BCD
DIGIT DIGIT
" o —— MSB LSB
ACCUMULATOR
Figure 10-22 ——’
Memory format for two BCD digits. BCD

INPUT
FROM INPUT BUS

Figure 10-23
Loading the accug\ulator from the data
us.
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The flow chart in Figure 10-24 shows how this is accomplished. The

program is given below.
START

CLEAR
ACCUMULATOR
0 CLA
1 INP
pr—— 2 SHL INPUT FIRST
3 STA (25) DIGIT
6 LDA (24) I
7 DCR
8 STA (24) I
11 JMZ (20) POSITION
14 LDA [25) LOOP
17 JMP (2)
—p=20 LDA (25)
21 INP NO
22 STA (26)
23 HLT
24 4
YES

25 Temporary storage
26 Storage for two BCD digits

INPUT SECOND
DIGIT

!

Figure 10-24
Flow chart showing how two BCD I g?NTENTS
words are storedt%n one memory lo- ACCUMULATOR
canon.

‘ STOP ’

The first instruction (CLA) clears the accumulator. The second instruction
(INP) loads the first BCD digit. This digit is then shifted left one bit
position. We need to shift it four positions to the left. The sequence of
instructions in locations 2, 3, 6, 7, 8, 11, 14 and 17 form a loop and a
decision-making test to accomplish this. Stored in memory location 24 isa
number that tells us how many times to shift. That number is loaded into
theaccumulator decremented by one and restored each time a shift occurs.
We test that number with a jump on zero instruction (J]MZ). When the BCD
digit has been shifted four times, the number in location 24 has been
reduced to zero. The JMZ instruction detects this condition and branches
the programto location 20 where the dataword isretrieved from temporary
storage and the second BCD digit is inputted.
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Let’s consider the loop and decision-making process in more detail. After
the first input digit is loaded, it is shifted left once. We then store it
temporarily in location 25. Thisisto prevent loss ofthe data while weare in
ourdecision-makingloop. Next, the number of desired shiftsis loaded into
the accumulator. We decrement it by one, indicating that we have shifted
left once. Next, we restore this number (now 3)inlocation 24. Thisnumber,
whichisstillintheaccumulator, isnow tested with the JMZ instruction. At
this time the accumulator is not zero so the program does not branch.
Instead, the next instruction in sequence is executed. This is a load
accumulator instruction that retrieves the data words which we temporar-
ily stored in location 25. Then the JMP instruction is executed. This
instruction returns us to location 2 to produce another shift. It is the jump
instruction that creates the loop.

Theloop isthenrepeated three more times. On the fourth pass through the
loop, the number in location 24 is decremented to zero. The JMZ instruc-
tiondetects thiscondition and causes the programto branchto location 20.
We have now escaped from the loop. Next we reload the shifted data from
location 25. Finally, we load the second BCD digit. Both digits are now in
the accumulator so we can store them in location 26 with the STA (26)
instruction. The program is now complete and the HLT instruction
terminates it.

These examples show how a computer performs its work. It does it
laboriously, one step at a time. The only thing that makes it practical is its
high speed operation. With each instruction taking only microseconds,
even long complex programs are executed quickly. To an operator, the
execution appears almost instantaneous.

Self Test Review

41. An algorithm is a

Flow Chart

Program

Procedure for solving a problem
Decision-making step

e P
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42.

43.

44,

45.

46.

47.

an oe

The content of the accumulator is 10111010. The CMP instruction is
executed. The new accumulator content is

Which instruction would you use to down-count the accumulator?
a. DCR

b. INC
c. SUB
d. CLA

The content of the accumulator is 45. A JMZ (34) instruction in
location 25 is then executed. The next instruction executed is in

location

a. 0

b. 28

c. 34

d. 45

Program loops are implemented with the and

instructions.

The number 0110 0101 is stored in the accumulator. The number in
memory location 18 is 1111 0000, The AND (18) instruction is exe-
cuted. The content of the accumulator becomes

a. 0110 0101
b. 1111 0000
c. 1111 0101
d. 0110 0000

Study the program below. At the completion of the program, the
content of the accumulator is:

14
40
41
255
0 LDA (13)
—>3 SKO
4 JMP (9)
7 LDA (14)
8 HLT
-9 INC
12 JMP (3)
13 40

14 255
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Answers
41. c. Analgorithm is a step-by-step procedure for solving a
problem.
42, 01000101
43. a. DCR

44, b. 28The]MZ(34)instruction testsforazeroaccumulator.
The accumulator content is 45, therefore the program does
not branch to location 34. Instead, it executes the next
instruction in sequence which begins in location 28.
Remember that the J]MZ (34) instruction and its reference
address occupies locations 25, 26 and 27.

45, JMP, IMZ

46. d. 0110 0000 Consider the two words to be ANDed as
inputs to an AND gate as they would appear in a truth table.
Then AND each corresponding pair of bits to get the result.

47, d. 255 This program uses the skip on odd accumulator
instruction (SKO) to test the content of the accumulator. It
first loads the content of location 13 into the accumulator.
This is the number 40. The SKO then tests for an odd
condition by monitoring the LSB. Since 40 is even, the
program does not skip. The next instruction in sequence is
executed. This is a JMP (9) instruction which causes the
program to branch to location 9. Here the INC instruction is
executed. The accumulator then becomes 41. The next
instruction JMP (3) loops the program back to the location 3
where the SKO instruction again tests the accumulator. This
time the content is odd. The instruction in location 4 is now
skipped and the nextin sequenceis executed. Thisisan LDA
(14) which loads 255 into the accumulator. The program
then halts.
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Software

The steps that we have just described make up the procedure typically
used in developing application programs for the digital computer. The
program may be solving a mathematical equation, sorting and editing a
large volume of data, or providing some type of automatic control to an
external machine. These application programs fall into a larger category
of computer programs called software. Software is a broad general term
used to describe all of the programs used in a digital computer. Besides
the specific applications programs, there are many special programs
supplied by the computer manufacturer which are used to simplify and
speed up the use of the computer. These support programs eliminate
much of the drudgery from programming and using a computer. It was
determined early in the development of the digital computer that the
computer itself with special internal control programs could assume
much of the responsibility for the detailed translation of a problem into
the binary language of the computer.

Subroutines. Many digital computer manufacturers supply what are
called software libraries of subroutines and utility programs. A subroutine
is a short machine language program that solves a specific problem or
carries out some often used operation. For example, typical subroutines in
many minicomputers and microprocessors are the multiply and divide
programs. Instead of using the multiply subroutine each time it isrequired
in a problem, the subroutine is stored in the computer memory only once.
This saves a substantial amount of memory space. Each time the multiply
subroutine is required, a jump instruction in the program causes the
program to branch to the multiply subroutine. Once the multiplication has
been performed, the computer jumps back to the normal program
sequence.

There are many different types of commonly used subroutines.
Multiplication and division are two of the most commonly used. Other
subroutines include binary to BCD and BCD to binary code conversions.
To communicate with external peripheral devices which use the decimal
number system and the alphabet, a code such as ASCII is used. Data is
entered into the computer in the ASCII code. In order for the computer to
process this data, it must first be converted into pure binary numbers.
Solutions to computer programs are in the pure binary form. A sub-
routine is used to convert the binary numbers into the ASCII format and
then they are sent to an external peripheral device such as the printer.

10-71
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Utility Programs, Utility programs refer to the short routines used to
run the computer. Input/output programs for specific types of peripheral
devices fall into this category. A loader is another utility program. This is
a short sequence of instructions that allows data to be loaded into the
computer. In order to operate, a computer must be programmed. But to
load a program into the computer automatically requires that the loader
program exist in the memory to begin with. Such loader programs are
often entered manually from the computer front panel. The short loader
program in memory then permits longer, more complicated programs to
be loaded automatically.

There are many different types of utility programs used in digital com-
puters. These also include editor programs for manipulating data and
moving it from one part of the memory to another. These programs also
permit you to conveniently modify a program through a peripheral device
such as a teletypewriter. Utility programs often include diagnostic
programs which provide a means of testing all of the functions of the
computer. Diagnostic routines test each computer instruction and all
memory locations. Other diagnostic programs permit peripheral devices
to be exercised and their operation verified.

Assembler. The most sophisticated software supplied with most
computers are large complex conversion programs called assemblers and
compilers. These programs allow the computer to be programmed in a
simpler language. Machine language programming is completely im-
practical for many modern applications. In order to simplify computer
programming and remove the necessity for a dependence upon a
knowledge of binary numbers and the computer architecture, computer
manufacturers have developed easier methods of programming the
computer. These methods involve higher level languages, which are
special systems for speeding up the programming process. The higher
level language permits someone with no computer expertise whatsoever
tousethe computer. The higherlevel language permits the programmer to
express his problem as a mathematical equation or in some cases as an
English language statement. These equations and statements are then fed
to the computer, which then automatically converts them into the binary
instructions used to solve the problem.

The simplest form of higher level programming language is called assem-
bly language. This is a method of programming the computer an instruc-
tion at a time as you do in machine language programming. However,
instead of binary designations for each instruction, short multiletter
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names called mnemonics are given to each of the computer instructions.
These are then written sequentially to form the program. Mnemonics are
also given to memory addresses to avoid the use of specific memory
locations.

Once the computer program is written in the assembly language, it is then
entered into the machine along with an assembler program, The assembler
program resides in the computer memory and is used to convert the
mnemonics into the binary instruction words that the computer can
interpret. Asyou cansee, the assembler is a program that eliminates the
necessity of dealing with binary numbers in the digital computer.
However, since the machine is still programmed an instruction at atime, it
provides wide flexibility in solving a given problem.

Compiler. The compiler, like the assembler, is a complex conversion
program that resides in the computer memory. Its purpose is to convert a
simplified statement of the program into the binary machine code that the
computer can understand. The difference between the compiler and the
assembler is that the compiler is capable of recognizing even simpler
problem statements.

In one type of compiler programming language known as Fortran, the
program can be written as an algebraic equation. This algebraic equation is
then entered into the computer through a teletypewriter or via punched
cards. The compiler program then analyzes the formula and proceeds to
construct a binary program to solve this equation at some location in
memory.

Anotherhigherlevel programming language known as Cobol uses English
language statements to describe the problem. These English language
statements are punched into cards and then read into the computer
memory. The compiler interprets them and converts them into the binary
program. Unlike an assembly language program which has a one-to-one
correspondence of instruction steps with machine language, a single
compiler language program statement often causes many binary in-
structions to be generated.

There are many different types of higher level programming language
used with computers. All of them have the prime function of simplifying
the programming procedure. They greatly speed up and expedite the
communications with the computer, They allow anyone who is capable of
defining his problem to use the computer.
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Cross Assemblers and Compilers. There are several special types of
higher level programming language that have been developed to aid in
programming microprocessors. For simple applications,
microprocessors are programmed at the machine language level.
However, when longer or more complex programs are required, it is
desirable to use an assembler or compiler if it is available. For
minicomputers and larger scale computers, compilers and assemblers
that reside within the computer memory itself are available to aid in the
programming process. However, most microprocessors do not have
sufficient memory to accommodate such large complex programs. In
addition, the microprocessor is generally to be dedicated to a specific
application and therefore its memory will only be large enough to hold
the application program required. In order to simplify the development
of programs for use in a microprocessor, special programs called
cross-assemblers and cross-compilers have been developed. These are
special programs that reside in the memory of a larger general purpose
digital computer. The application programs are written in these higher
level languages and the larger machine then converts the application
program into the binary machine language required by the
microprocessor. The output of the larger scale computer is generally a
paper tape containing the binary program, which is later loaded into the
microprocessor memory.

Some of the larger more sophisticated microprocessors have been used as
the primary component in a microcomputer that can be used as a software
development system for that microprocessor. A large random access
memory is added to the microprocessor along with appropriate
peripheral devices. Resident assembler programs have been developed
for these machines. In this way, the microcomputer based on the
microprocessor can be used to develop application programs that will be
used later in another system employing the same microprocessor.
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Self Test Review

48

49,

50.

b1,

. The program used to enter a program into the computer memory is

called a:

a. subroutine
b. loader

c. compiler
d. assembler

The program used to convert an instruction-by-instruction mnenomic
program into binary machine language is called a(n):

a. subroutine

b. loader

c. compiler

d. assembler

A program used to compute the square root of a number would be
classified as a:

a. subroutine

b. loader
c. assembler
d. utility

A knowledge of binary numbers and computer operation is not
required if the computer can be programmed in a higher level com-
piler language.

a. True

b. False
Answers

48. b. loader
49, d. assembler
50. a. subroutine
51, a. True
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Microprocessors

As we indicated earlier, a microprocessor is the simplest and least ex-
pensive form of digital computer available. However, now we want to be
more specific. In this section, we are going to discuss exactly what a
microprocessor is, the types that are available, and how they are used.

Types of Microprocessors. Most microprocessors are the central pro-
cessing unit (CPU) of a digital computer. That is, the microprocessors
usually contain the arithmetic-logic and control sections of a small scale
digital computer. Most of these microprocessors also contain a limited
form of input-output circuitry which permits them to communicate with
external equipment. To make the microprocessor a complete computer,
external memory and input-output devices must be added. An external
read only memory is normally used to store the program to be executed.
Some read/write, random access memory may also be used. The external
input-output circuitry generally consists of registers and control gating
that buffer the flow of data into and out of the CPU.

Microprocessors come in a wide variety of forms. However, the most
popular and widely used microprocessor is a MOS LSI circuit. These
circuits are made with both P-channel or N-channel enhancement mode
MOS devices. The entire CPU is contained on a single chip of silicon and
mounted in either a 16, 24 or 40-pin dual in-line package. Such
microprocessors are available with standard word lengths of 4, 8 and 16
bits. Other more sophisticated types of microprocessors are contained
within two or more integrated circuit packages. When combined, they
form a complete, small scale digital computer.

While most microprocessors are of the single chip MOS variety, there are
numerous bipolar microprocessors available. These are inherently faster
than the MOS devices but occupy more chip space and consume more
power. Where high speed is required, these bipolar devices can be used. A
recently developed integrated circuittechnology, referred to as integrated
injection logic (I’L), combines both the speed of bipolar devices and the
high density characteristics of MOS devices. These new I°L LSI circuits
offer many benefits, and their potential for microprocessor applications
is great.

Microprocessors can also be constructed with the standard TTL or ECL
integrated circuits. Standard MSI packages can be combined to constructa
small CPU. Figure 10-25 shows a computer of this type. While this kind of
microprocessor takes more circuitry and consumes more power, it gen-
erally offers several advantages. First, the microprocessor can be con-
structed to execute a special instruction set designed specifically for the
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application. With a standard off-the-shelf CPU, the instruction set is fixed.
Special instruction sets are often necessary for some applications and they
canbereadily optimized withaspecial TTLor ECL microprocessor design.
Another advantage of a MSI TTL or ECL microprocessor is high speed. A
standard MOS microprocessor may be too slow for the application. The
fastest available MOS microprocessor can execute a single instruction in
approximately 2 microseconds. The simpler and less sophisticated MOS
microprocessors have instruction execution speeds in the 10 to 50 mic-
rosecond region. With a special TTL or ECL MSI microprocessor, execu-
tion speeds in the nanosecond region are easily obtained.

In order to use a standard single chip microprocessor, some form of
external memory must be used. The program to be executed by the
microprocessor is generally stored in a ROM. Data is stored in RAM. Other
external components needed to support a microprocessor are an external
clock circuit, input-output registers, and peripheral devices.

All single chip microprocessors incorporate a data bus through which all
external data transfers take place. This may be a4 or 8-bit bi-directional bus
over which all data transfers between the memory and input-output
devices communicate with the CPU. A bus design of this type greatly
minimizes the number of interconnections required to connect the
microprocessor to the external devices. The limiting factor of such in-
terconnections isthe numberof pinsonthe integrated circuit package. The
bus organizations keeps the pin count to a minimum, but at the same time
requires time sharing of the bus. Since all data transfers between the
memory and CPU and between the CPU and the peripheral devices must
use the same input-output lines, each operation must take place at a
different time.

Figure 10-25

A microprocessor made with TTL MSI
and SSI integrated circuits. This
machine is more powerful than the
typical LSI microprocessor but less
powerful than a full minicomputer.
(Photo courtesy Computer Automa-

tion Inc.).

RO M
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The input-output devices used with most microprocessors are quite
different from those used with larger digital computers. Most larger
computers are connected to input-output devices like CRT terminals,
teletypewriters, paper tape readers and punches, card readers and line
printers. On the other hand, microprocessors are interfaced to devices
suchaskeyboards, 7-segment LED displays, thumbwheel switches, relays,
analogtodigitaland digital to analog converters, temperature sensors, and
other such components.

Applications of Microprocessors. Microprocessors are used primarily
for dedicated functions. Rarely are microprocessors used to implement a
general purpose digital computer. The program of a microprocessor is
usually stored in the read only memory. This means that the program is
fixed and dedicated to the specific application.

There aretwo broad general applications formodern LSI microprocessors.
They can be used as replacements for minicomputers or as replacements
for random hard-wired logic. The development of the minicomputer
enabled many engineers to design digital computers into special control
systems. The minicomputer was dedicated to the control application and
its programmable flexibility offered many benefits. But its cost was very
high. Some microprocessors have nearly as much computing power and
capability as a minicomputer and can replace the minicomputer in many
systems. A microprocessor has the advantage of smaller size, lower cost,
and lower power consumption.

Another common use for the microprocessor is as an alternative to stan-
dard hard-wired digital logic circuits. Equipment customarily con-
structed with logic gates, flip-flops, counters, and other SSI and MSI
circuits can often be implemented with a single microprocessor. All of the
standard logic functions such as Boolean operations, counting and shift-
ing can be readily carried out by the microprocessor through program-
ming. The microprocessor will execute instructions and sort subroutines
that perform the same logic functions.

Many benefits result from using the microprocessor in replacing hard-
wired random logic systems. Some of these advantages are: (1) reduced
development time and cost; (2) reduced manufacturing time and cost; (3)
enhanced product capability; (4) improved reliability.

Development time and cost can be significantly reduced when a
microprocessor is used. The design procedures used with standard logic
circuits are completely eliminated. Much of the breadboarding, cut-and-
try and prototype construction is completely eliminated. Design changes
can be readily incorporated and new functions implemented by simply
changing the program. With a microprocessor, the logic and control
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functions are implemented with programs. The program can be written
and entered into memory and then tested. System changes are easy to
make by simply rewriting the program. Unique functions can be readily
added by increasing the size of the program. In many cases, the system
can be made self-checking by programming special diagnostic routines.
Development time is further reduced because usually a single integrated
circuit microprocessor replaces many other integrated circuits. This re-
duces wiring and interconnections and simplifies printed circuit board
layout. Often the printed circuit board will be significantly smaller with a
microprocessor system. Power comsumption and cooling are also usu-
ally simplified. The benefit of reduced development time and cost, of
course, is that the product can come to market or be applied sooner.

Manufacturing costs are also reduced as a result of replacing random
logic with a microprocessor. Fewer integrated circuits and smaller
printed circuit boards are required to construct the system. Therefore,
less time and materials are required to assemble the equipment. The
programmed nature of the microprocessor system also makes it easier to
test and debug than an equivalent hard-wired system.

Enhanced product capability is another benefit of using the microproces-
sor to replace hard-wired logic.The power of a digital system im-
plemented with a microprocessor is limited strictly by the imagination of
the designer. Many unique features and capabilities can be incorporated
into the design by simply adding to the program. The incremental cost for
adding such features to a microprocessor system is small compared to
that of a hard-wired logic system. The ROM used to store the program
usually contains extra room for program additions. Therefore, it is very
easy to add special features. Many of these special or unique features
would be difficult to incorporate in a random hard-wired logic design
because of the extra design time, the complexity, and the additional cost.
When a microprocessor is used, no additional parts or significant amount
of design time are required to add them. The more unique and special
features that a product can incorporate the better it performs and the more
competitive it will be in the marketplace.

Another benefit of using the microprocessor to implement digital sys-
tems is increased reliability. Whenever the number of integrated circuits
and wiring interconnections are reduced in a system, reliability increases
significantly. Most system failures result from the failure of an integrated
circuit or from an interconnection. The number of integrated circuits and
interconnections are reduced many orders of magnitude in going from a
standard hard-wired logic system to a microprocessor system. Increased
reliability means fewer failures and leads to a corresponding reduction in
both warranty and service costs.
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The benefits of using a microprocessor are so significant that they will
soon replace most random hard-wired logic designs. But the biggest
present disadvantage of using a microprocessor is the designer’s lack of
programming knowledge. Very little circuit or logic design is required to
implement a system with a microprocessor. Instead, the primary skill
required is digital computer programming. Most engineers and digital
designers were not trained in this subject, and therefore, initial design
attempts with microprocessors may be slow and frustrating. However, as
microprocessors are more widely used and their benefits recognized,
engineers and designers will learn programming and begin to implement
their systems with these devices.

Where are Microprocessors Used? There are so many applications for
microprocessors that it is difficult to classify and list them. However, to
give you a glimpse at the many diverse uses for these devices, consider
some of the applications where they are now being used or being consi-
dered.

1. Electronic Cash Registers

Electronic Scales

Electrical Appliance Controls
Automotive Controls

Traffic Signal Controllers
Machine Tool Controls
Programmable Calculators
Automatic Test Equipment
Data Communications Terminals
Process Controllers

. Electronic Games

. Data Collection

2 i e Mk W

- =

These are only a few of the many applications presently implemented
with microprocessors. Just keep in mind that the microprocessor can be
used in any other application where hard-wired standard logic systems
are now used. In addition, microprocessors can also be used as the CPU in
a small general purpose microcomputer or minicomputer.
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A typical application for a microprocessor is illustrated in Figure 10-26.
Here the microprocessor is used to implement an electronic scale foruse in
a grocery market. The item to be weighed is placed on the scale. A
transducer and analog-to-digital converter convert the weight into a
binary word thatisread into the CPU under program control. A clerk enters
the price per pound via the keyboard. This too is read into the CPU.
Then the CPU computes the price by multiplying the weight by the

ITEM TO BE

, WEIGHED
MICROPROCESSOR f
CPU &

BBITBIDIRECTIUNAL/ TRANSDUCER]
DATA BUS L ——— | AnpA-D

CONVERTE

ROM
(CONTROL
PROGRAM) '

7 SEGMENT LED KEYBOARD ?
oD | S PLA Y o

R R o = |
A P O |

PRINTER

8Lvl

TICKET

Figure 10-26
Typical application of a
microprocessor in an electronic scale.

price per unit of weight. Then the total price is displayed on a 7-segment
LED readout and printed on a ticket. All of this takes place under the
control of the dedicated program stored in the ROM. Note the single 8-bit
bi-directional data bus over which all data transfers take place.

Designing with Microprocessors. As indicated earlier, microprocessors
can be used in two general ways. First, they can be used to replace
minicomputers for dedicated control functions. Second, microproces-
sors can be used to replace standard hard-wired random logic systems.
This section provides you with some guidelines to help you decide when
and where a microprocessor should be used.
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Microprocessors are generally much slower and less sophisticated than
the typical minicomputer. But despite these limitations, microprocessors
can often be used to replace minicomputers in some systems. The reason
for this is that most minicomputers used in control systems are not used to
their full capability. In a sense, they are a case of over-kill. Many control
systems used the minicomputer simply because of the ease with which the
control can be changed by modifying the program. The significantly
highercost has been traded off for the convenience of system modification.
In these applications, the microprocessor can usually handle the control
functions as well as the minicomputer, A careful study must be made in
such designs to see when a microprocessor can replace a minicomputer.
There are many trade-offs to consider (speed, cost, etc.). Keep in mind that
microprocessor development is in its infancy. Many technological im-
provements will be made over the years causing the microprocessor to
futher approach the capabilities of today’s minicomputer.

The microprocessor is a design alternative which should be considered
in the early design stages of any digital system. The benefits of a
microprocessor over standard hard-wired designs is significant in the
larger, more sophisticated digital systems. As a general guideline, a
microprocessor can be used beneficially if it will replace from thirty to
fifty standard MSI and SSI TTL integrated circuits. If a preliminary
design indicates that this many TTL integrated circuits must be used
a microprocessor should be considered. Unless the speed limitation of
the microprocessor is a factor, all of the benefits mentioned earlier will
result from the use of the microprocessor.

Another way to equate a microprocessor design with the more conven-
tional hard-wired logic design, is to compare the number of gates in a
hard-wired design with the number of bits of memory required by a
microprocessor system. It hasbeen determined that it takes approximately
8 to 16 bits of memory in a microprocessor system to replace a single gate.
Since most read only memories used to store the program for a microp-
rocessor can contain as many as 16,384 bits, such a memory can replace
from 1000 to 2000 gates. Depending upon the number of gates per SSI or
MSI package, this can represent a replacement of hundreds of integrated
circuit packages. A 16,384 (16K) bit ROM in a single 40-pin IC package, for
example, can replace one hundred to four hundred 14, 16, or 24-pin SSI
and MSI packages. This is a significant saving.
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At this point you may still have some doubts about the ability of a
microprocessor to replace standard hard-wired logic functions. It may be
difficult for you to imagine how a microprocessor can perform the func-
tions you are so used to implementing with SSIand MSI packages. To ease
your mind about this, let’s consider all of the standard logic functions and
illustrate how a microprocessor can perform them.

The microprocessor can readily perform all of the standard logical
functions such as AND, OR, and Exclusive OR. It usually does this by
executing the instructions designed for this purpose. Logical operations
are generally performed on data stored in memory and in the accumulator
register, with the result appearing in the accumulator. Suppose that you
wanted to perform the NAND function on two 8-bit words. Using the
instruction set in Table I, we could write the following program. Assume
that the two words to be NANDed are stored in locations 8 and 9.

0 LDA (8)
3 AND (9)
6 CMP
7  HLT

The first instruction loads the first word into the accumulator. The second
instruction performs the AND function with the word in the accumulator
and the word in location 9. Theresult appears in the accumulator. Finally,
this result is complemented to form the NAND function. This simple
example illustrates the procedure you use to implement any Boolean
function.

Arithmetic operations are also readily performed by a microprocessor.
Special adders, subtractors and other arithmetic circuits are not required
because all microprocessors can perform arithmetic operations through
programming. Multiplication and division operations are carried out by
subroutines. Even the higher math functions such as square root,
trigonometric functions, and logarithms can be computed with sub-
routines. Many special algorithms have been developed for solving these
higher mathematical functions with digital computers. To handle very
large or very small numbers or to improve the accuracy of computation,
multiple precision arithmetic subroutines are also available. Number size
islimited by the number of bits in the basic computer data word. However,
several computer words can be used to represent a quantity as large or as
small as needed. Special programs can then be written to manipulate this
data just as if it were represented by a single smaller word.

10-83
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An example of a programmed arithmetic operation is shown in Figure
10-27. This flow chart illustrates the procedure for multiplying two
positive numbers, A and B, by repeated addition. A is added B times to
produce the product. The program to implement this algorithm is given
below. The numbers to be multiplied are stored in locations 31 and 32. The
product or answer is stored in location 33.
CLEAR
MEMORY
LOCATION FOR
ANSWER
0 CLA
LOAD 9 STA (33)
ANSWER — 4] LDA (33)
7 ADD (31)
10 STA (33)
ADD A 13 LDA (32)
16 DCR
17 IMZ  (26)
20 STA (32)
STORE SUM 23 IMP  (4)
IN ANSWER I HLT
31 A
32 B
LOAD B 33 ANSWER
Loop
DECREMENT
ACCUMULATOR
YES
ACC-0?

- Figure 10-27
o %C;NTENTS Flow chart of multiplication sub-
ACCUMULATOR STOP routine.

IN B
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The first two instructions are used to clear the memory location where the
ANSWER is to be stored. CLA resets the accumulator to zero and the STA
instruction writes zeros in memory location 33. Next, the LDA instruc-
tion loads the contents of 33 (zero) into the accumulator. Then we add A
to it with the ADD instruction. We then restore the partial product in
location 33. We then load the content of location 32 (B) into the ac-
cumulator and subtract one from it with the decrement instruction DCR.
We use a jump on zero (JMZ) instruction to see if the accumulator is zero.
If it is not, we restore the accumulator content in location 32. The jump
instruction creates a loop that returns us to the LDA (33) instruction. The
entire sequence is then repeated. This continues until A has been added B
times. Each time we add A to the answer, we subtract one from B. This
permits us to keep track of how many times A has been added. When A
has been added B times, the content of location 32 is again reduced by one
producing a zero result. The JMZ instruction tests for zero. The correct
product is contained in location 33 at this time. The JMZ causes the
program to branch to location 26 where the HALT instruction is executed
to stop the program.

Microprocessors can also be used to make decisions. For example, the
microprocessor can compare two binary numbers and determine if they
are equal or if one is greater than or less than another. This decision
making function permits the microprocessor to evaluate information as it
is developed and to modify its operation according to the values of the
data.

The flow chart in Figure 10-28 illustrates one algorithm for comparing
two binary numbers. Here, one number is subtracted from the other. A
test for zero is then made. If the remainder is zero, of course, the numbers
are equal. The program below implements this algorithm. The numbers
to be compared are stored in locations 15 and 16.

LDA (15)
SUB (16)
JMZ  (23)
next instruction (A # B)
23 next instruction (A = B)

o ;M w o

Figure 10-28
Flow chart of a procedure for compar-
ing two numbers.

( START )

LEAD A

SUBTRACT B

KEMA INDER=0?
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If the numbers are equal, the program branches to location 23. If the
numbers are not equal, the program continues in its normal, sequential
manner.

Another common logic function that is readily implemented with a
microprocessor is counting. The microprocessor can count external
events or a frequency standard. External events are counted by applying
them to the interrupt line on the microprocessor. As each event occurs, an
interrupt is generated with the microprocessor. This causes the
microprocessor to jump to a subroutine that will increment the ac-
cumulator register or add one to some memory location. Up or down
counters are readily implemented with the increment and decrement
accumulator instructions. Decision-making techniques can be used to
detect when a specific count is reached or to count quantities larger than
the computer word size permits. For example, with an 8-bit data word in a
microprocessor, the maximum count that the accumulator can handle is
1111 1111 or 255. To count to higher values, a program can be written to
indicate each time the counter overflows.

The program below illustrates a method of detecting a count of 153. The
flow chart in Figure 10-29 shows the approach.

0 CLA

CLEAR

ACCUMULATOR

2 STA (18)

LOOP

5 SUB (19)

INCREMENT
ACCUMULATOR 11 LDA (18)

i IMZ  (21)

YES

Figure 10-29

14 JMP (1)
18 Count
19 153

21 LDA (18)
24 HLT

Flow chart showing a method of de-

tecting a count of 153,
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The first instruction clears the accumulator. The accumulator is then
incremented by the INC instruction, and the count is stored in location 18.
The count is then compared by subtracting 153 and testing for zero. If a
non-zeroresult occurs, the count isretrieved with the LDA instruction and
the program loops back to the increment instruction. This loop continues
until a count of 153 is reached. When the JMZ instruction detects the zero
condition, the program branches to location 21 where the count is loaded
and the program halts,

To count to numbers higher than 255, the program below can be used. See
the flow chart in Figure 10-30 for an explanation of the procedure. This
program counts in multiples of 256, Note that the program has two loops.
The inner loop determines when a count of 256 occurs, while the outer
loop determines the number of times that the inner loop occurs. The total
count then is the product of the number of times the inner loop occurs and
the count in location 37, in this case 5. The program halts on a count of 5
X 256 or 1280.

CLEAR
ACCUMULATOR

STORE
IN COUNT

0 aLA
[36] LOOP
——p—————> 4 INC
— 5 JMZ (11)
. 8 JMP (4)
ANl 11  LDA (36)
loop 14 INC
17 STA (36)
20 SUB (37)
— 23 JMZ (30)
26  CLA LS
27 JMP (4)
outer »30  HLT
loop 36 COUNT
37 5
CLEAR
ACCUMULATOR

Figure 10-30

Flow chart illustrating a program to
count to 1280 (5 X 256).

INCREMENT
ACCUMULATOR

YES

LOAD COUNT

'

INCREMENT
ACCUMULATOR

STORE
IN COUNT

YES
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The first instruction clears the accumulator. The next instruction writes
zero into memory location 36 which we call COUNT. The content of
location 36 tells us how many times the inner loop is repeated. These first
two instructions initialize the circuitry prior to starting the count. The
program then begins the count by executing the increment instruction in
location 4. The JMZ (11) then tests for zero. If the accumulator is not zero,
the JMP instruction is executed creating a loop that returns the program to
the INC instruction. The loop is repeated 255 times at which time the
accumulator is 1111 1111. The INC instruction is executed a 256th time
and the accumulator recycles to 0000 0000. Then the JMZ (11) instruction
again tests for zero. This time the program branches to location 11 where
the LDA (36) instruction is performed. This loads COUNT (which is
initially zero). COUNT is then incremented to indicate that a count of 256
has occurred. COUNT is then restored by the STA (36) in location 17.
Next, the program tests to see if COUNT is 5. It subtracts 5 from COUNT. If
the remainder is not zero, the accumulator is cleared and the program
loops back to the beginning where the inner loop is again repeated. When
COUNT becomes 5, the inner loop has been repeated 5 times indicating a

count of 1280. The program then branches via the JMZ (30) instruction to
a HLT.

The microprocessor can also generate timed output pulses. It can do this
in several ways. The simplest method is to store a series of binary num-
bers in sequential memory locations with the proper bit designations.
These can then be read out of memory, one at a time, and sent to the
output data bus. As the binary words change, the output bits change and
generate any desired sequence of timing pulses. The rate of occurence of
these pulses depends upon the speed of the microprocessor. Longer
timed output pulses can also be generated by producing internal timing
delays. This can be done by programming counting loops like the ones
just illustrated. The time delays are a product of the instruction execution
speed and the desired count. With a count of 153 and an instruction
execution speed of 12.5 microseconds, the total delay would be 153 X
12.5 = 1912.5 microseconds. The binary words in memory could be
outputted every 1.9125 milliseconds.

As you can see, microprocessors can perform all the same functions as
hard-wired digital logic systems. The logic designer no longer spends his
time in designing circuits or in minimizing Boolean expressions. Instead,
he writes programs. For that reason, it is highly desirable for the digital
designer to learn programming. As microprocessors become more widely
used, the digital engineer will become more of a programmerthan a circuit
or logic designer.



HEATHKIT

cﬁ"u&"tll"b"f Digital Applications | 10-89

=

I
—_—r

Self Test Review

52, Write a program that performs the exclusive OR function on two 8-bit
words, A and B, stored inlocations41and 42, Use the instruction set in
Table I. Start your program in location 0.

53. Write a program showing how you would multiply a number in
location 22 (X) by 8. (Hint: A shift-left operation multiplies by 2.)
Start your program in location 0.

54, Which of the following best describes a microprocessor?

a. General purpose digital computer
b. Special purpose digital computer

55. The memory used with a microprocessor is usually a
a. semiconductor RAM
b. semiconductor ROM
c. magnetic core

56. List the four benefits of using microprocessors to replace hard-wired
logic.

a.
b.
C:

d.

57. A hard-wired logic system using 40 CMOS SSIand MSI packages is to
be redesigned. Would a microprocessor be a good alternative to
consider?

a. True
b. False
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Answers

52. Theexclusive OR functionisC = AB + AB. The flow chart of
this function is shown in Figure 10-31 and the program is
given below.

0 LDA (42)
START
4 AND (41) ]
7 STA (43) LOAD B
10 LDA (41)
13 CMP
14 AND (42] COMPLEMENT
17 OR (43) ACCUMULATOR
20 HLT
41 A AND WITH A
42 B
43 Intermediate Results AB
STORE IN 43
[
LOAD A
COMPLEMENT
ACCUMULATOR
Figure 10-31 AND WITH B
Flow chart of a program to perform the
exclusive OR function.
OR WITH AB
IN LOCATION 43

The first instruction loads B into the accumulator. It is the
complemented to product B. B is then ANDed with A by the
third instruction, The result, AB, is stored in location 43 for
later use. Next, A is loaded with the LDA (41). A is then
complemented to produce A. A is ANDed with B by the AND
(42) instruction. The result AB appears in the accumulator.
Finally, the contents of the accumulator is ORed with the

content of 43 (AB) to produce AB + AB which appears in the
accumulator.
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55.
56.

a7

53. The flow chart in Figure 10-32 shows one method of mul-

tiplying the content of location 22 (X) by 8. The program is

given below.

-2
27

Flow chart illustrating the procedure
for multiplying a number by 8 by

LDA (22)
SHL

STA (22)
LDA (23)
DCR

IMZ  (24)
STA (23)
JMP  (0)

X
COUNT (3)

LDA (22)
HLT

Figure 10-32

shifting.

LOOP

LOAD X

SHIFT LEFT

STORE X

LOAD COUNT

’

DECREMENT
THE ACCUMULATOR

YES

LOAD X

3
STOP

Each time the number X is shifted left, it is effectively
multiplied by 2. Three shifts produce multiplication by 8. A
counter and decision-making loop determine when three

shifts occur.

. b. Special purpose digital computer

The microprocessor is usually dedicated to a specific

application.
semiconductor ROM

Less design time and cost
Less manufacturing time and cost
Enhanced product capability
Greater reliability

g L0 o P

True
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DIGITAL APPLICATIONS

The purpose of this exam is to help you review the key facts in this
unit. The problems are designed to test your retention and under-
standing by making you apply what you have learned. This exam is
not so much a test as it is another learning method. Be fair to yourself
and work every problem first before checking the answers.

1. A frequency counter cannot measure:

A. frequency
B. voltage

C. period

D. time

2. Inthe frequency mode of operation of a digital counter, the gate
interval is controlled by the:
A. Input signal
B. Schmitt trigger
C. Time base
D. Decade counter

3. Period measurements are made on low frequency signals to
improve the measurement:

A. resolution

B. accuracy

C. speed

D. convenience

A frequency counter counts 1715 pulses during a 100

microsecond interval. This represents a frequency of:

A. 1715 Hz

B. 171.5 KHz
C. 1.715 MHz
D. 17.15 MHz

5. Using the instruction set in Table I, write a program that com-
pares two binary numbers, A and B, that are stored in memory
locations 41 and 42. Do not use the compare algorithm of sub-
tracting one quantity from another as discussed in the text.
Develop a new algorithm. Start the program in location 0.
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6.

10.

1L,

Write a program that will determine (count) how many times
the number 5 can be subtracted from the number 215. The
number 5 is in location 31 and the number 215 is in location 32.
Start your program in location 0. Store the count in location 33.
End the program with the count in the accumulator.

A hard-wired logic system uses 30 ECL MSI and SSI integrated
circuits. Could this system be replaced by a single chip

microprocessor?
A. Yes
B. No

Most single chip microprocessors contain which of the follow-
ing major sections of a digital computer? Check all that apply.

A. Memory
B. ALU

C. Control
D. 1/0

What register in the CPU of a digital computer would you look at
to determine the address of the next instruction to be fetched?
A. Accumulator

B. Program counter

C. Instruction register

D. Memory data register

External signals that change the normal program sequence are
called a:

A. bus

B. branch or jump

C. interrupt

D. fetch

Study the program below and determine which algebraic ex-
pression is being solved.

0 LDA (15)
3 ADD (16)
6 ADD (17)
9 SUB (18)
12 SHL

13 SHL

14  HLT

15 W

16 X

17 Y

18 Z

W+X+Y-2
W+X-Y+ 2
4W+X+Y - 72)
W+ X+Y-2)4

oWy
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12. The program stored in a large scale digital computer that is used
to convert an instruction-by-instruction higher level language
program into the binary code used in a microprocessor is called
a(n):

A. Compiler

B. Assembler

C. Subroutine

D. Cross assembler
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W N =

B - Voltage
C - Time base
A - Resolution

D-17.15 MHz. To determine the frequency in pulses per second
or Hz, you multiply the number of counts in 100 microseconds
(1715) by the number of 100 microsecond intervals in one second
(10,000). The frequency then is 17150000 or 17.15 MHz.

. The exclusive OR function can be used to compare two binary

numbers. Remember that an exclusive NOR is a single bit
comparator. The algorithm is simply to perform an exclusive OR
on the two words to be compared. If they are equal, the ac-
cumulator will be zero. A JMZ instruction can then test for zero.
The program below is identical to that described in the answerto
Self Test Review Question 52 except for the J]MZ instruction.

0 LDA (42)
3 CMP

4 AND (41)
7 STA (43)
10 LDA (41)
13  CMP

14 AND (42)
17 OR (43)

20 JMZ  (30)

23 next instruction if A # B
30 next instruction if A = B
41 A

42 B =
43 intermediate results AB

10-95
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0 CLA
1 STA (33)
(r——- 4 LDA (32)
7 SUB (31)

— 10 JMZ (26)
13 STA (32)
16 LDA (33)

10 INC
20 STA (33)
23 JMP (4)
L2 1DA (33)
29 INC
30 HLT
31 5
32 215

33  ANSWER (COUNT)

The first two instructions clear the accumulator and load zero
into location 33 where the answer will be stored. Next, the LDA
(32) instruction loads 215 into the accumulator. The next in-
struction subtracts 5. We then test for zero. If the accumulator is
not zero, we store its content back into location 32. Next, we
load the COUNT (initially zero) and increment it, thereby indi-
cating that we subtracted 5 once from 215. The count is then
restored in location 33. Next, the program loops back to again
subtract 5 and test for zero. The loop repeats and the COUNT is
incremented each time a subtraction occurs. When the number
in location 32 is reduced to zero, the JMZ instruction branches
to location 26 where the COUNT is loaded and incremented
once more to indicate the final subtraction.

If you will study the solution closely, you will see that it is
actually a simple division subroutine. The divide algorithm is
repeated subtraction. The quotientisin location 33. The program
will not work for numbers that do not result in an integer
quotient.

. B - No. Because of the package count a microprocessor would

ordinarily be considered. But most single chip microprocessors
are probably not fastenoughtoachieve the desired speed if ECL is
used in the original design.
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8. B, C - ALU and Control
9. B-Program counter. This register keeps track of the addresses of
the instructions being executed.
10. C - Interrupt
11. C-4(W + X + Y + Z). The two shift-left operations multiply the
result by 4.
12. D - Cross assembler
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TERMINAL symBoL

( START )

( stoP )
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OPERATION Box
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DECISION BOX




MOVE
EMPLOYEE
NUMBER

TO PRINT

ME
NAME
TO PRINT

MOVE
ADDRESS
TO PRINT




CONNECTOR

PAGE 1

( START )
@

READ
CARD

DN\, YES

NO

MOVE
EMPLOYEE NUMBER
TO PRINT

®

PAGE 2

11

MOVE
NAME
TO PRINT

Y

MOVE
ADDRESS
TO PRINT

Y

WRITE

A




DECISION-MAKING symBoLS

v AV

IA

A<B
A=B
A=B

A is equal to B.

A is greater than B.
AislessthanB.
A is greater than or equal to B.

A is less than or equal to B.




DECISION-MAKING SYMBOLS
ARE GENERALLY USED IN

DECISION BOXES.

A IS
EQUAL TO

NO THAN 14 NO 100 OR
HIGHER
AlS A IS AlIS
14 OR 10 OR LESS THAN
UNDER HIGHER 100
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B3 - B3
( START )
PROBLEM:
READ
1. Add 3 numbers: A B, C
A, B, and C producing sum, S.

!

S=A+B+C

Y

PRINT

S=A+B+C 1

( stor ) 46

2. Print sum.
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1 MIN.
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PROBLEM DEFINITION:

1. Normal light timing works well until factory closes at
4:30 PM.

2. Traffic study shows that if Light “B” is retimed to stay
green for 2 minute intervals between 4:30 PM and 5:00
PM congestion is relieved.

3. After 5:00 PM traffic lights should be returned to the
“NORMAL” timing cycle.

4. Light “A’s” green timing cycle is never changed.

5. Light “B’s” timing cycle is changed to 2 minutes at 4:30
PM and returned to 1 minute at 5:00 PM.
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CHANGE LIGHT
A TO GREEN
HOLD 2 MIN.

Y

CHANGE LIGHT
A TO YELLOW
HOLD 10 SEC.

¥

CHANGE LIGHT
A
TO RED

NO

CHANGE LIGHT
B TO GREEN
HOLD 1 MIN.

¥

CHANGE LIGHT
B TO YELLOW
HOLD 10 SEC.

Y

CHANGE LIGHT
B
TO RED

¥

CHANGE |
LIGHT A
TO GREEN

NO

YES

Y

) |

4:30 PM = 1630

5:00 PM = 1700

CHANGE LIGHT
B TO GREEN
HOLD 2 MIN.

¥

CHANGE LIGHT
B TO YELLOW
HOLD 10 SEC.

¥

CHANGE LIGHT
B
TO RED

-~

=

24 HOUR CLOCK
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TO RED
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HOLD 10 SEC.
Y
CHANGE LIGHT
B

4

> TEST #1
: L 4 : IS TIME GREATER THAN 1630 ?
CHANGE LIGHT \1 YES.
A TO GREEN
HOLD 2 MIN. LOOP TO NEXT DECISION BOX.
¥
CHANGE LIGHT TEST #2
A TO YELLOW PR
HOLD 10 SEC. IS TIME GREATER THAN 1700 ?
L] NO.
cHANGE LIGHT TIME MUST BE BETWEEN 1630
T0 RED AND 1700. GO TO 2 MINUTE
LIGHT B CYCLE.
Y
CHANGE LIGHT CHANGE LIGHT
B TO GREEN B TO GREEN
HOLD 1 MIN. HOLD 2 MIN.
Y Y
CHANGE LIGHT CHANGE LIGHT
B TO YELLOW B TO YELLOW
HOLD 10 SEC.
¥
CHANGE LIGHT

1631 = 4:31 PM
1700 = 5:00 PM

e



" T o

CHANGE LIGHT
A TO GREEN
HOLD 2 MIN.

| CHANGE LIGHT
|  ATO YELLOW
| HOLD 10SEC. |

Yy
Y e

CHANGE LIGHT [ 1 CHANGE LIGHT
B TO GREEN ; B TO GREEN
HOLD 1 MIN. HOLD 2 MIN.

= r

CHANGE LIGHT : CHANGE LIGHT o
B TO YELLOW i B TO YELLOW Lt
HOLD 10 SEC. == HOLD 10 SEC.

™ ¢ : B ks, A same

CHANGE LIGHT
B
TO RED




( sTART )

>

{ ==

CHANGE LIGHT
A TO GREEN
HOLD 2 MIN.

CHANGE LIGHT
A TO YELLOW
HOLD 10 SEC.

¥

CHANGE LIGHT
A
TO RED

/

CHANGE LIGHT ~ CHANGE LIGHT
B TO GREEN B TO GREEN
HOLD 1 MIN. HOLD 2 MIN.

| .
CHANGE LIGHT CHANGE LIGHT
B TO YELLOW # SAME* B TO YELLOW
HOLD 10 SEC. HOLD 10 SEC.

¥ b ¥

CHANGE LIGHT CHANGE LIGHT

: 4 SAME - 5

TO RED TO RED
= 1

=

p———

55






INFORMATION SUMMARY

Mechanical alternating current generators combine circular mechanical motion
with magnetism to produce an alternating current electromotive force (voltage).

If an object starts ey ,
at this point, the O
reference point .. .

"\ And travels to this
point, it has rotated 90°
from the reference point

'2';f it then rotates to this
point, it has rotated 180°

If it rotates further to this
point, it has rotated 270°

If it then continues back to

the reference point, it has

rotated 360° .
1 Revolution = 360°

Figure 1 Each cycle can be considered a complete sequence of events--
in the above case, from 0° through 180° and on around to
360° or 0°, '

L .

w A loop of wire or armature starting from any position and rotated at a‘uniform

" gpeed Iin a clockwise or counterclockwise direction is forced to cut the lines
of force in a magnectlic field. See Figure 2. As the armature rotates, it cuts
‘a varying number of lines of force. As the rumber of lines of forue being cut
increases, the induced electromotive force increases. As the armature rotates
‘and Jess lines of force ave cut, the induced electrouwotive t1orce decrcaser.
This action 1is repeated again and again as the gencerator continues to rntate.
A cycle or a complete series of events is accomplished each tinme the avmature

makes a full revolution.

wiig i A




Informaticn Summary, continued

Degrees of
Rotation

Maximum Volrts 0 Volts

As the generator armature rotates, the magnitude
and polarity of the voltage produced follows the °
pattern of the sine wave

Figure 2



Information Summary, continued

The voltage produced by the simple alternating current
generator has a characteristic waveform that is
important to alternating current theory. The

waveform describes the output voltage of the generator.
See Figure 3.

Since a sine wave corresponds

to one cycle and there are -

360° in one cycle, there are BINE WATE
360° in one complete sine wave.

90"

Maximum Voltage

The points of least voltage (0 volts)
"occur at 0°, 180°, and 360°.

These are the points where

the armature wire is moving

parallel to the magnetic

flux lines.

180" 3sd

[+]
Minimum| Voltage Degrees\of Rotation

Figure 3

Maximum|Voltage

The points of greatest

voltage occur at 90°

270°. The armature wires

are moving at right angles

to the magnetic flux lines .
and the rotating wires are

cutting the maximum number

of lines of flux per degree

of rotatlon,



Information Summary, continued

It should be renembered that alternating current

reverses in polarity from plus to minus to plus
each half cycle. Note Figure 3
that describes this variation is called a sine
wave which means that the voltage generated at

any point in the armature wire or coil travel is

The waveform

proportional to the angle between the magnetic
flux lines and the direction of motion of the
armature coll. See Figure 4.

Waveforms can be

plotted for either '

current or voltage.
This graph shows
how the current or

voltage varies

3

For a-c power sources,
waveforms can also
show how the output
voltagze varies with
one complete cycle of

Since alternating current has a sine wave as its

characteristic waveform, it is necessary to
understand the mearing »f the terms used to describe
the sine waveform.

* 2k with time. g‘ 2 3609
_'6. 1 b — i g 1
: ; 0 1 A i 4 -} o i Y i e A " i
v -2 a 5 E s’ w0 et 29 s’

§-1 3 seconds -a-, af degree of rotation

2l B .2

™ -3

Figure 4

In the alternating current waveform, the volrage or
current changes from zerc to a
and back to zero in @ positive direction. The

same change or pattern takes place in a negative

direction,

maximumn value

Increasing from zero to a maximum positive
value, then decreasing to zero and increasing to a

. maximum negative value, and then decreasing again to

zero describes one complete cveie of the sing wave,



Information Summary, continued ‘

The number of complete sine waves generated

in one second is the frequency of the voltage

or current and is expressed in cycles per second (cps)
or the currently used standard, Hertz (Hz).

The greater the number of cycles generated per second,
the higher the frequency. A generator rotating .
at a speed sufficient to produce sixty alternations

of current each second is producing electrical

current or voltage at a frequency of 60 Hz. If

the generator were speeded up to produce 120
alternations, the frequency would be 120 Hz.

See Figure 5.

_ i The frequency of a voltage
¥je—rcwcle —we—! cycle—ele—lcycle—=! or current is the number

I
1 1
i i : of cycles generated each
i N t second. The frequency of
vsscong this voltage is, therefore,
~ 3 cps.
3 \/ -~ "M \/

The following chart indicates some of the units
commonly used to indicate frequency.

woltage
o

Figure 5

1 Kilocycle/sec (L ke) = 1 KiloHertz (1 kHz) = 1000 cps or 1000 Hz

GRS
&&

1 Megacycle/sec (1 Mc) - 1 MegaHertz (1 MHz) = 1,000,000 cps or 1,000,000 Hz

1 Gigacycle (1 Gc) - 1 GigaHertz (1 GHz) = 1,000,000,000 cps or 1,000,000,00C

Hz is now an internationally accepted standard for
measuring frequency and will be used herein.

Hz



Informalbion Summary, continued

Electric currenit in a circuit travels at the
speed of light, (186,000 miles per second or
300,000,009 meters ver second) and since the
speed is constant, current can only travel a
given distance in & given period of time. Since
frequency is a measure of Lhe number of cycles for
a given perio:d of time, the distance traveled by
the currenc during one cycle can be calculated.
This distance 1s called WAVELENGTH. See TFigure
6. It takes 1/60th of a second to complete
one full cycle of AC power line voltafe. The
wavelength of 60 Hz voltage is 1/60 x 186,000
or 3100 miles. The wavelength of 60 KHz voltage
is 186,000 or 3.1 miles. ¥ 5

60K
Wavelength is equal tco velocity of current divided
by the frequency. ;

Wavelength = _1§§§QQQ,_ = 62,000 miles
ey
: y
|

“\ :
kg 1§ :
A \ ﬁf \ | Freq. of signal = 3 Hz
oY \ |

Voltar-
B sy
|
|
o
- '
= i
S —
b5
::hz_

i
[
! puration,of one cycle .

nf 3 Hz signal _ Figure 6

1f che fregquency is ) Hz, and the velocity
of the electricity alung the wire is 186,000 miles
per second, the wavelength is the velocity divided by
frequency: 186,000 = 62,000 miles.

3 -
The uniput of an AC generater varies as a sine wave.
Two genwetaters of the same type ard size will each
generat - 4t least our full sine wave for each full
revolution, If thev are staried at the same time
and ar: rupn at the same speed, the two waveforms
. bey 0 toserter and ead togerher. .

o o o+ p— By -



Information Summary, continued

Ilhey will reach their maximum values and pass

theough s¢ro at the same time, The two waveforms

nrée In step and can be superimposed upon each

oLheer.  The twe output currents or voltages
represented by such in-step sine waves are said to be
in phase. See Figure 7.

Generator {1

Generator {2 g ' o \\\\\L//);r

Figure 7

Two currents or voltages are in phase if they reach
their peak magnitudes at the same instant. Their
peak magnitudes may be of different values however.
See Figure 8.

These volitages are
¥ in phase, but have

Ey : different maguitudes
Ez\

S

ol

)
This current
+ and volcaga
1 are in pi.ase
1 -
G

63;4'130_ 9

W g ST,
"':1(';_ ‘LLLJJ
Wl \GSNIT
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Infurmation Summary, continued

If vne generator is started after the other,
maximum and minimum output values will occur
after corresponding values of the other
generator. The two outputs are said to

be out of phase or that a phase difference
exists. See Figure 9.

These two currents

have the same frequency

" but I, leads I,by,9d’or
I,lags I, by 90°

—
]
.

- %

+

1 These two signals
& b have the same amplitude
2 _ and frequency but E,
. @ - lime leads E, by 180°or

. E,lags E,by 180°

Figure 9

The terms "lead" and "lag" are used to indicate
the position of the current or voltage with respect
to time.



Information Summary, continued

An aiternation is, in general, une-halrc
a cycle, or 180°.

The amplitude, or peak value is the maximum
+ 5 positive and negative values of an a-c
MIIwmhonl_iilé voltage or current.

The period is the time required by one full
cycle of a-c voltage-or current.

- o 360°
v

e

12’ peak amplitude or

° peak valve

Figure 10

The above diagram describes the terms "alternation",
"amplitude", and "period". The peak value of the
amplitude is obtained by measuring the current or voltage
with a peak reading meter. The period is determined

by dividing the frequency into one.

1

period = ———
frequency



Informaticn Summary, continued

The period is in secounds and the frequency
is in cvcles per second.

The values of AC voltages and curreants are
constantly crhanging. The most obvicus value is the
peak value or a measure ni the maximum amplitude of
the sine wave. On a waveform, the distance from
maximum positive value to maximum negative value

is the peak-to-peak value. See Figure 1l.

more than one type of value

s
PEAK VALUE A-C voltages and currents have
& ' i
3
5 \ Peak-tn-Peak Value
? \ £t —— '
v Vf—— '
oe
b |
“
o=
2

ipstantan s
Values

-

e E———— e e —

PEAK VALUE

Figure 11

The instantaneous values are the values of the
current or voltage a: the instant they are measured
(28 scen on oscilloscoupe). This value would vary




Information Summary, continued

from zcro to peak value in both the positive and
negative direction. As a rule, peak-to-peak, peak,
and instantaneous values are not satisfactory for
expressing values of voltage or current. Instead,
the average value and the effective values are
generally used. See Figure 12.

Average Value
During Positive,
Half Cycle -

e

} —

The average value

of a pure sine e mwe--— -

1 wave is 0.637 times
the peak value

-

- Average Value
During Negative

Figure 12 | Half Cycle

Voltage or Current
F [}

The average value of AC voltage or current is an
average of all the instantaneous values during one
half cycle or alternation.

Average voltage is determined by multiplying peak
voltage by a factor of 0.637.

A circuit with a peak voltage of 100 volts has an
average voltage of 63.7 volts.

4.130-13

6
-
F T

NE
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Information Summary, continued

+ Effective Value During
Positive Half Cycle

The effective (rms) value
of a pure sine wave is 0.707
times the peak value

Voltage or Current

Effective Eeff= 0.707 x E peak
Valure During or
-| Negative Half Cycle Ieff= ,707 x T peak

Figure 13

lhe effective value of an AC voltage or current is

useful in .-pressing AC currents and voltages in values
relates Lo LC. The effective value of an AC voltage:

or curren! 5 chat value which will produce the same

amount »f .eat in a circuit containing only resistance

that would be caused by a DC voltage or current of the same
value.

Ihe effective value of an AC voltage or current
is expressed as .707 times the peak value. The
effective value of a 100 volt AC circuit is 70.7
volts.



JInformation Summary, continued

The following table is used to convert one AC value to another,

To Convert From To Use the Equations
Peak Average Eav = 0.637 Epg Iay = 0.637 Ipy
Peak Effective EEFF = 0.707 Epg Igprp = 0.707 Ipg
Average Peak Epg = 1.57 Epy IPK = 1.57 I,y
Average Effective Eppr = 1;11 Epy IEFr = 1.11 Iay
Effective . Peak éPK = 1.414 EEFF Ipg = 1.414 ERfFp
Effective Average Epy = 0.9 EgFF IAv =.0.9 Igpr



INFORMATION

INFORMATION SHEET #1
THE LABORATORY OSCILLOSCOPE

The lab scope uses the same basic principles as the
general purpose scope. It has been designed to provide
greater accuracy and stability, wider frequency response,
less distortion, and more flexibility in use. Many
special features are commonly included. In this
information sheet, you will begin to learn some of the
typical lab scope features, It is assumed that you

have studied the package on "General Purpose Oscilloscopes."

1. Set-up controls for the trace,

A. The focus,intensity, horizontal and vertical
position controls serve the same function as in
the general purpose scope.

B. Astigmatism--This is a new control. Few
general purpose scopes provide this. This
control provides a sharper focus at all parts
of the screen.

2. Horizontal features.

A. Triggered sweep
The sweep circuit in the lab scope i1s switched
on or triggered by the incoming signal. This
provides a much more stable display. The
general purpose scope requires an adjustment of
the frequency of the sweep generator to a
value near that of the frequency of the input
signal. This is not necessary in the lab scope.
As a result the display can be more quickly
stabilized, .

a. Controls--There are usually two controls,
often called TRIGGER LEVEL and STABILITY,
although other names are used. The details
of these and other controls are in your
scope's instruction manual. These two
controls adjust the sensitivity of the trigger
circuit and the voltage at which it triggers.

EL~10-08



Information Sheet #1, con't

b.

Trigger selection--Most lab scopes have provisions
for selecting various trigger signals. Some

of these are positive or negative, internal,
external, high frequency, TV line or frame.

B. Calibrated time base

a.

The general purpose scope does not readily
provide time information about the signal being
observed. The sweep speeds in the lab scope
are calibrated in time per centimeter. This
allows the time of a certain waveform to be
measured. The sweep speed selector setting
multiplied times the length, in centimeters,

of the waveform gives the time.

NOTE: Many lab scopes provide a variable
sweep speed control. This must be in the

CAL (calibrated) position for the sweep speeds
to be calibrated and to make time measurements.

Many lab scopes have auxiliary switched sweep
speed controls. These may increase or decrease
the sweep speed by a definite factor. Time
measurements are still possible providing the
position of these switches is considered.

Sweep magnifiers are examples of this. These
increase the sweep speed to "magnify" the
display and show fine details more clearly.

+3. Vertical Features
Sweep speeds can be as slow as seconds per centimeter
and as fast as a few nanoseconds per centimeter.

A. Calibrated Vertical Amplifiers

The general purpose scope must be calibrated
with an external signal or else an internal
switched signal. 1f the vertical gain

control is changed, the scope is no longer
calibrated. As long as any variable control
is in the calibrated position, the scope need
not be calibrated for different sensitivities.
The vertical sensitivity of a lab scope is
measured in volts per centimeter. For example,

_'.EL-.-IO—OB
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Information Sheet #1, con't

A scope might have these sensitivities or ranges: 10 mv/cm, 50 mv/cm,
100 mv/cm and so on up to perhaps 50 v/cm. The maximum sensitivity,
sometimes called the deflection factor, in this case would be 10 mv/cm.

The maximum sensitivity is related to the frequency response or
bandwidth., Generally a scope with two sensitivity ranges will have a
narrower frequency response at its highest sensitivity. Here is an
example:

Sensitivity Frequency Response
100 nmv/cm DC - 15 MHz
10 mv/cm DC - B MHz

Plug-in vertical amplifiers are features of some lab scopes. These allow
great flexibility in using the basic scope. Amplifiers with different
sensitivities, frequency responses, and special features are available.

Another specification of the vertical amplifier is the '"rise time'". This
is important in scopes which are to be used to measure the time a rapidly
rising signal takes to rise. This can be in the nanosecond range!

Other Features

A. Delayed presentation
The sweep, which is triggered by the signal, starts after the signal
has already reached the trigger level. The result is shown below:

Actual wave form

Trigger level

....... 7 = X

time sweep starts

Scope presentation

Start of wave form is missing
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Information Sheet #1, con't

A delay line, which causes the input signal to
delay a small time between the time it triggers the
sweep and the time the signal starts being displayed
eliminates this.

input

O— delay line p——— to vertical

(signal is now a few
microseconds behind
the sweep)

trigger b 0 SWEeep

The presentation now becomes: !

- :
' el
.||
b .. S8ignal reaches
]

'
sweep starts = - ::rz;ll;altimplifier
at this time ol
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B.

C.

E.

&

Dual Trace and Dual Beam

a, A dual beam scope has two separate beams
with separate vertical amplifiers. It may
have a common Sweep Or separate sweeps.

b. A dual trace scope has one beam which is
electronically switched back and forth between
two separate inputs. This is done; rapidly
during the sweep (chopped) or at the start of
each sweep(alternate).

Single sweep

For observation, often photographic, of a non-
repetitive wave or 8 wave which varies its
characteristics, & single sweep feature is useful.
This allows "cocking' the sweep trigger which is
“"fired" when the wave appears. The scope sweeps
once only and must be reset for another sweep.

Scope Photography

A permanent record is often made of a waveform with

a camera. The usual camera is a specially adapted
Polaroid camera. This allows the user to examine

his photographs immediately and retake them if necessary.

Storage Oscilloscopes

The storage scope allows a waveform to be kept

on the screen while it is being studied or until a
second waveform is avallable for comparison. Then the
waveform can be erased electronically. The waveforms
can be stored for up to several hours,

Spectrum Analyzers

These devices display the energy distribution of a
signal vertically against the frequencies within the
signal on the horizontal axis. This is extremely
useful in pulse and radio frequency work.

Miscellaneous
Space does not permit description of the many more
special features which are available. You may wish
to learn more about them on your own. Some of these are:
1. differential vertical amplifiers
2. time domain reflectrometry
3. phosphor types
4. beam finders
5. voltage and current probes
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6.5 - MULTIPLEXORS

Multiplexors are defihed as circuits which select one of two or more inputs to
appear on the ocutput, Multiplexors are equivalent to electronic rotary switches
and are available in Zto 1, 4to 1, 8to 1, and 16 to 1 varieties.

0.5.1 Two-to-One Multiplexoss

A two-to-one multiplexor which selects one of two inputs to appear at the output is

shown below,
SELECT D
S——

™

Four 2 to 1 mux's are contained in one IC, and the entire IC logic is illustrated

below,
ENABLE %l>
ENABLE y
1A M [
2 IB ‘ TD‘ i
_:g lylo— " & '
: 2A . - ! )1 ] 2Y
e DT
| 3vp— = D-'*-Do- 3y
= :g 4y o—- - 'H;—)
: | Dy 4y
4B |
) .
¥, SELECT

SELECTD _CD_

(=17
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Be 5.2 Dual 4 to 1 Multiplexor

The dual 4 to 1 multiplexor illustrated below selects one of four inputs to appear
at the output,

oy 2 By
g

L]
s goce
P
Tl
T
e
—(E
o=

1]

le '2_9—

MSD sl Zho—

mee |
SELECTS
Z, % 7y “p
Truth Table

Select
Inputs Inputs Qutputs
So 81 Ioa I1a I2a I3, Za Za
L L L X X X L H
L L H X X X H L
H L X L x x L H
H L X H X X H L
L H X X L X L H
L H X X H X H L
H H X X X L L H
H H X X X H H L
Sp §1 Iob .Itb Ioy Isb | Zb  Zb
L L[| L X X X |L H
L L| H X ¥ ‘X |H L
H .L| x L X X | L H
H L X Hx X X H L
L H| X X L _ X |L H .
I H X X H X H L
H H X X X L L H
H H X X X H H L

L = LOW Vultage Level

H = HIGH Voltare Level

X = Either HIGH or LOW
Logic Level

6-14
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’\) 6.5.3 8 to 1 Multiplexor

The 8 to 1 multiplexor illustrated below selects one of eight inputs to appear at
the output. : ¥

I + Ny 1, ly . Ig lg Iy

. T 0 © 0

ENABLE : ‘ !
5

) 1°—{>°T4> .

i

12
15

HERNEN

I

13 I
16 :

14
- J U

SELECTS

Truth Table
E S2 S1 80 Ip I1 I2 13 14 Is Ig I71Z 2
HX X X X X X X X X X X|H L
L L LLLJXZXZXZXZXZXZXI|H L
L LLLHXZXZXZXZXZXZX|L H
L LLHXLZXZXZXZXZXZXI|H L
L L LHXHXZXKZ XTZEXKTIXTZIXI|LH
L LHLXZXTLXZXZXZXZX|s L
L L HL X XHXZXZXZXX|L H
L LHHXJXJXLJXZXZXZXI|HL
L LHHXZXZXHZXZXZXZX|L H
LHLLJXZXZXZXLZXZXZXI|HL
L HLLXZXJXJXHZXX X|L H
L HLHXZXZXZXZXTLXXI|H L
L HLHXZXZXZXXHZXXI|L H
LHHLXZXZXXXZXL X|HL
LHHLZXXZXXXXHX|L H
™ L HHHXZXZXXZXZXZXTLI|n v
L HHHXZXXXZXZXX#H(r Hl

H = HIGH voltagze level
L = L.OW veltase level
X = Level does not affect outpuat,

(=15
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6.6

C

DECODERS /DEMULTIPLEXORS

Decoders /Demultiplexors are defined as circuits which convert from a binary code
to a decimal system or from one binary code to another, There are various
decoders /demultiplexors available, We will examine only one, the BCD-to-
Decimal Decoder.

6.6.1

BCD-To=Decimal Decoder

This decoder takes a four bit binary digit input and converts it into one of ten

possible outputs,

The circuit design insures that all outputs are hlgh when binary

codes greater than nine (9) are applied to the inputs,

INPUT A 13 3
'\

INPUTS<

Logic Diagram

=l

2
&
[

INPUT B ﬁD:

slitolii-oli

INPUT € —-Dc

s
P

INPUT D ﬁﬂD@ Py

;!
Y

;%J Yy

Wiﬁ

A
Op—
A | p—
& Ep
—1B 4P—20UTPUTS
5 rOUT
6 p— -
—iC e
7p— is?
8p—
—D | -
'-. -
Function Table
Inputs Oulpuls
outkuTo No.fD C€C B AJl0O 1 2 3 4 5 6 7 B 9
R 0L L L L|L HHHHIHEHIBETEHTIHTIH
1L L L H|H L HH HHHUHIE H
2{L L HLIH HULHUHHMHMHHH
oUTAUT 2 3]L L H H|H HHLHUHHUHHH
4/L H L LIH HH H L HHHHH
ouTAUT 3 5/)L H L H|HHHMHHLIHIEMHHH
6]L H H L|IHHHUHUHUMHELHUHDLUNU
SUTFUT & 7ML H H H/H H H H HHUHILHBR
8|lH L L L|H H HHHHMHHLH
o S(H L L H|H HHH NI HHHHL
H L HL|HHHHIDHHEINHM®N
I =|H L H H[H H HHWHHHEHHI
=B H L LIHHHMNIHHHNEI
I H L HIH H I HHHHHHHK
QuITRLT 7 “|H H W L|HL H H H HHHHMINII
H H H HIJH H H I H B I Nu
S1 ouTAUTS T O
S H = high level (off); L = low level (on).

Ha1h
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’\! 6.7 REGISTERS

A register is an electrical device which receives information upon command, and
holds that information without modification until another command is received.
Registers are nothing more than a number of flip-flops used on conjunction with

. each other,

6.7.1 Load /Shift Register (100-000180)

There is one 4 bit shift register IC which is used in a wide variety of register
applications. This IC is illustrated below and its operation is covered in detail,
.The DGC part number is identificd by the 100-xxxxxx number shown above.

L 1.2 4

EPO P P2 P3
rFE
D -

cP a
e 4 % 9 30—|
3 R

11144

fo Py Py Py
PE
E
b ) ) ) Y " y [ 13 Py -
—l P —{CP —1CP r—{CP
.
cn RA cn en P9
—U o)
cp -
MR
Q Q Q, R

This IC has 3 synchronous modes of operation: parallel load, shift, and bold (do
nothing). The hold capability permits information storage in the register which
is independent of clock.,

, ‘) In order for any operation to be performed, the enable (E) input must be low,
Once the IC is enabled with E low, the IC must be told whether to parallel load
or shift, This is accomplished by controlling the PE input, The IC is programmed
to parallel load the PO=-P3 inputs when P2 is low. The parallel load takes place on
' the positive geing edge of the clocking signal (CP).

£ 1"
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C

When PE is high the IC is programmed to shift one bit position on the positive going
edge of clock. The shift operation shifts the bit contained in positions 0, 1 and 2
of the register into the next higher position, Bit position 3 is shifted out and bit
position 0 receives the incoming bit which is controlled by the D input. When D

is high a one is shifted into position O and a zero is shifted in when D is low,

0 | g 3
DINPUT —» | (3 [ —L

"BIT BUCKET"

The MR input clears the register when low. This master reset overrides all
inputs, and does not require a clock signal.
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6.7.2 8-bit Shift Register (100-000101)

Another shift register IC used in DGC logic provides parallel loading and shifts
in either direction,

HEEEEEN
RABCDETFGH
S0 - - L

CLK
—doLR

G 95 Oc 9p Qe Op Og Qy

IIIII|||'

This register has four distinct modes of operation:

Parallel Load

‘) Shift Right (QA towards QH)
Shift Left (QH towards QA)
Hold (do nothing)

All operations, except clear, are synchronous with the positive going edge of clock,
The S0-S1 inputs are mode control inputs and control the register operation as

follows:
Operation of Mode Control
Inputs
Sl SO Mode
L L - Hold
H L Shift Left
L H Shift Right
H H Parallel Load

During a shift right operation, serial data (R input) is shifted into Q4 and Qy

through Qg are shifted toward Qf one bit pesition. A "one" bit is entered into

Q4 when the R input is high, During a shift left operation serial data (L input) is
J shifted into Q“ and Qp through Qp are shifted toward Q one bit position,
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6.7:3 ~ 16-bit Multiple-Port Register File (100-000171)

The 16-bit register file IC is organized as eight words of two bits each, The
register file is similar in operation to a random access memory (RAM) of eight
locations containing two bits each. That is, any one of the eight locations carn be
addressed and read from, without destroying the contents of the location, and the
contents can be altered by generating a write signal, Multiple-port inputs and
outputs allow two different locations to be read from or altered at the same time,

The register file logic symbol and simplified block diagram are shown below,
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Referring to the simplified block diagram you will notice the register file is divided

into two (2) sections., All inputs and outputs except CLOCK are prefixed with a 1
or 2 indicating which section they are to be associated.

Any one of the 8 word by 2 bit storage registers, shown in the center, can be read
from either section one outputs (1QA, 1Qp) or section two outputs (2Q4, 2Qp).
Likewise any one of the 8§ words can be altercd by either section one inputs (1Dj,
1Dp) or section two inputs (214, 2Dp).
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In order to read from any word via section one output, the register file must have
its section one 8 to 1 output multiplexor, selected to the word desired, and enabled,
This is accomplished by applying the correct control levels to the section one read
address lines (1R0-2), and applying a low control signal to the section one read
enable line (1GR),

To read any word via section two output, the register file must have its section
two, 8 to 1 output multiplexor, sclected to the word desired and enabled, This is
accomplished by applying the correct control levels to the section two address
lines (2 /R0~2) and applying a low control signal to the section two read enable
line (2GR).

No clock signal is required to read from the register file,

The register file is a tri-level output device (high, low or high-impedance), When
the read enable line is applied high to the output multiplexor the associated outputs
remain in the high-impedance state and neither 51gmf1cantly load or drive the line
connected,

In order to write into any word the register file must have the input demultiplexor, '
associated with the desired section, addressed to the word to be altered (1W0-2 or
2W /RO-2) and the demultiplexor must be enabled (1GW or 2GW), The input data,
associated with the desired section (1DA -B or 2DA -B) is then applied to the storage
register and will be written into the storage register on the positive going edge of
clock (CLK),

In register file applications, the same word could be selected to be read to both
section outputs or two different words could be sélected to appear on the section
outputs, Two different words can be selected for alteration at the same time.
Using section one of the register file, it is possible to read from one word while
altering a different word. Section two has common write-read address lines,
therefore, in applications it is possible to read from and alter the same word.,

NOTE: Since the two sections are independent, it is
possible for both write functions to be activated
with both write addresses selecting the same
word location, If this occurs and the information
at the data inputs is not the same for both sections,
the low-level data will predominate and be stored.

The register file IC is used by DGC computers to store the four accumulators, the
program counter, and three other 16-bit registers, Since each register file con-
tains twe bits it is necessary to use 8 register file ICs to provide the 16-bit storage
required. The 8 register file ICs will have their addresses, enables, and clock
signal inputs connected in parallel,
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6.8 COUNTERS

A counter is an electrical

device which records the number of events which have

occurred. Counters are flip-flops connected together in cascade and depending
upon the manner of connections, can be either up-counters or down-counters, as
illustrated and described in the iollowing paragraphs.

6.8.1 Up-Counters

.;I‘he binary up-counter illustrated below is incremented by one each time the INPUT
signal has a positive going transition (I~ ). In paragraph 6.4.2, you found when
both the ] and K inputs are high as in this illustration (+V), a JK flip-flop togzles

“to the opposite state when

the clock signal is asserted. Therefore, FF1 will

“toggle on every positive going transition of INPUT, FF2 will toggle every other
“INPUT transition (FF1Q going high) and FF3 toggles every fourth INPUT transition

-(FF2Q going high).
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6.8.2 Down-Counters

The binary down=-counter illustrated below is decrmented by one each time the
INPUT signal goes high. Notice the only difference between the down-counter
and the up-counter is one uses the Q output (down) of the JK flip-flops while the
other used the Q output (up).
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6.8.3 Presettable Counters

. Counters can also be set to a specified value and the count continues from that
value.. This is accomplished by using the preset input to the flip-flops.

6.8.4 Counter ICs

There are many various types of counters contained within IC packages., Some of
these are listed below:

. 4-bit Binaryv Counter - Counts 0 to 15
. BCD Decade Counter - Counts 0 to 9
. Up/Down Binary Counter

. Up/Down Decade Counter

e OO B

Counter 1Cs are available in either asynchronous or synchronous operation. The

up /down counters described in paragraphs 6,8.1 and 6. 8.2 are exampies of
asynchronous operation, where the count is rippled through all the stages, Synchro-
nous counters have additional gating which provides having all flip-flops clocked
simultancously so that the outputs change coincident with each other when instructed
by the count input, A synchronous counter is described in paragraph 6, 8,5,
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6.8.5 - Synchronous 4-Bit Counter

The synchronous 4-bit counter illustrated below is fully programmable; that is,
the outputs may be preset to either level. As presetting is synchronous, setting
up a low level at the load input disables the counter and causes the outputs to agree
with the setup data after the next clock pulse regardless of the levels of the enable
inputs,

The clear function is synchronous and a low level at the clear input sets all four
of the flip-flop outputs low after the next clock pulse, regardless of the levels of
the enable inputs,

This counter also provides an internal carry look-ahead (Ripple Output) which can
be generated at the 15 (1111) count,

Both count-enable inputs (P and T) must be a h1gh 1evel to count and the T enable 2
input also enables the carry output. B
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