EXECUTIVE

OSBORNE

Technical Manual

Volume B: Programmer’s Guide

|

!
I

]

< |
-] |
5 1
"

-}

) |
L3
a
]
L3

OssoRnNE

OSBORNE EXECUTIVE TECHNICAL MANUAL
VOLUME B: PROGRAMMER'S GUIDE

ABSTRACT

This manual contains a thorough description of
Digital Research's operating system, CP/M Plus. Both
BDOS and BIOS functions are discussed in sufficient
detail to allow a programmer to fully utilize the
extensive features of this operating system.

COPYRIGHT 1984 OSBORNE COMPUTER CORPORATION
26538 Danti Court, Hayward, CA 94545
(415) 887-8080

OSBORNE EXECUTIVE TECHNICAL MANUAL
Volume B: Programmer's Guide
Issue date: May 1984

No part of this publication may be reproduced, stored
inaretrieval system, or transmitted, in any form or
by any means, electronic, mechanical, photocopy,
recording, or otherwise,without the prior written
permission of OSBORNE COMPUTER CORPORATION.

The information in this document is subject to change
without notice.

Neither OSBORNE COMPUTER CORPORATION nor this document
makes any expressed or implied warranty, including, but
not limited to the implied warranties of
merchantibility, quality, or fitness for a particular
purpose. OSBORNE COMPUTER CORPORATION has no obligation
to update or keep current the information contained in
this document.

Under no circumstances will OSBORNE COMPUTER
CORPORATION be liable for any loss or other damages
arising out of the use of this manual.

The following are trademarks of OSBORNE COMPUTER

CORPORATION: OSBORNE, OSBORNE Executive. CP/M Plus is a
registered trademark of Digital Research Corporation.

B-ii

TABLE OF CONTENTS

) VOLUME B: PROGRAMMER'S GUIDE

INTRODUCTIOH TO CP/H PLUS.......I.]..I‘...IIlllll!ll..B-’1
Banked Memory OrganizatioN.c.ceesssescesossoescsssB=1
System ComponentS....-............................3—3
Memory Region BOUNABT L8 o ocsasyebesiesivslediny s ssrebed
The BDDS al"ld BIOS....-.--...........-00.-.0.-.....8-6
Applicatioﬂs al’ld the BDOS...-..onolaaoolooctllocloB-6
Applications and RSXS...ceseesesvssssssacasssassesB=T
Disk and Drive Organization and Requirements......B-T
C°1d Start Operation..-..........-.....-.-........B—B
CCP Operation.......--.....--........-.-.--.......B-g
Page ZePO Initializatioﬂ.........-.-..-....-.....3-14
Transient Program OperatioN....ceecesssssssssssssB=16
Resident System Extension OperatioN.....eeeesesesB=17
SUBHIT operation.---a..-..-..-o---o------.--.....ﬂ-ao

CP/M PLUS SYSTEM CALLS'l..ll.!lll.l.o.l.lllll.l.llltlB-21
BDOS System Call ConventionS.ceeecssssasscosssesseB=2l
System Call Reference AN B LU E b eons dottesvessBuSS

DOS CONSOLE I/Ol.l..llllllIl....ll..lll..llll.l.lt.ila-32
Console I/0 System CallS...ccceasosssscsssscesessB=33

BDOS FILE SYSTEH..IIU...IIIIII...'I'..I'.I!.ICC......B-uE
File Naming ConventionS....cecessesassssssssccsssB=845
DiSk al‘ld File Organizatiﬂn...-.......--....-...-.B—uﬁ
File Control Block DefinitioN...eeveveeescsssses.B=UT
File ﬂttf‘ibutes....--.......--...-..-.-..--....-.8—50

) USEI‘ Nutl'lber CODVEI’ItiOﬂS.........--.............-.3—51
Directory Labels al'ld xFCBal...-nuo-..---o.ololoaoa-52
File Dﬂte and Time Stamps....-..--....o.o.-.-....B-ss
File Passwor‘ds...................................3-57
File Byte COUntS.........-......-...-.-..o..-.--.B—SB
BROS Error HanaLiNE oo s oo et toiaasiosisesiele s saiosssB=50
BDOS Drive System CallS...cceceesceacssscssnssseesB=62
BDOS File System Calls-----..onoaoonao----a.o.ao'B-Tu
BDOS List DeVice SYStem Calls.lIllllt..l..ll...uB""110
BDOS Program System BaY B e d et st n s sate nins ewDel V1
System calls...lll.l...ll-Illl....l.."'l..l'l..B-116
BDOS Time system Calls--..--..............---..-3-120

CP/M PLUS BIOS DOCUHENT.&TION..---c..onoooo|ltl.-|¢ooB-122
CP/H S}'Stem components.....--.---...............3-122
Communication among CP/M Plus ModuleS.....es....B=122
Banked aﬂd NOHbﬂnkEd SYStEms.ltolnioo.to..-laco.B-12u
DiSk Or‘gal’lizatiorl.......-......-....-...........3-126
Initial Load (Cold Boot) of CP/M Plus,..........B=127

THE SYSTEH CONTROL BLOCK.----noaola-oo--looon-oonocoB"‘128

CP/H PLUS BIOS OVEBVIEHI...ll...l.lI....l...l...'...a-133

SYSTEH INITIALIZATIONI.......II......Il...l"'..l.l.a-136
System Initialization Functions.........veeuee0aeB=137

CHARACTER I/o..onttu.l--o--olouoo.---nc-o--ou--qulnoB"1u0
Character I/0 Data Structures......cseeesveeess.B=141
charaCter I/O FunCtionS......-.---.......-..-o..B—1u2

B-iii

——

TABLE OF CONTENTS

DISK I/O..I.Il.I.l'.'l...ll....l'....‘.‘.....B-1u7
BIOS Disk Data Structures......ceeeeeeseeeesesssB=149 (
Drive Table..-l.l.l.....l...‘l"..lB-151

Disk Parameter He3del s ciseanedalsdadsdessacondacBEINT
Extended Disk Parameter Headers (XDPHB) i o ve5vas sBe153
Disk Parameter BLOOK L 55 009 ¢ v0.0:004 Nad SBbieH o5 e s B 150
Buffer Control BlogK.s saes snassnianansvissesesssBelST
DiSk I/O FUﬂCtiOﬂS...-.-....-....-.-..-.-..-....B—ISB
MEMORY SELECTS AND MOVES............................8-165
Memory Select and Move FunctionS.......ceeeses..B=165
CLOCK SUPPORT..I]I.....O...l....ll.l‘.!l'.l..ll.illlB-168
Clock . Support FuBotioN.e..iecesciinsseddicss sics i sBat6s
Generating and Moving CP/M: GENCPM........020....B=169
Example of System Generation with Banked
HelTlOPY.......---.a.--.-.....-...o-o.--.-.-....B—173
Sample RUI‘I Of GENCPH........-...--...-.......c-.B-17u
APPENDIX A: SYSTEM CONTROL BLOCK....................ﬂpp-1
APPENDIX PRL FILE GENERATIONI.ll.ll..l.llll..li..ﬁpp-6
APPENDIX . SPR GENERATION--.o-.cotonoo..tncloonoo.-nﬂpp—‘?
APPENDIX ASCII AND HEXADECIMAL CONVERSIONS.......App-8
APPENDIX THE SYSCALLS,ASM FILE..................App-12

MmOoOOw>

FIGURE LIST

FIGURE B-1, BANKED SYSTEM MEMORY ORGANIZATION.....es..B=2
FIGURE B-2, BANKED MEMORY WITH BANK 1 IN CONTEXT......B-2 ‘
FIGURE B-3. CP/M PLUS LOGICAL MEMORY ORGANIZATION.....B-3 (: f
FIGURE B-4., SYSTEM MODULES AND REGIONS IN LOGICAL

HEHORY-‘.l.lll.lI!l.lllll.‘.lll.l.ll.lB"'u
FIGURE B-6. DIRECTORY RECORD WITH SFCB.ceesesdscesessB=55
FIGURE B-7. GENERAL MEMORY ORGANIZATION

OF GR/N PLUS, s vsvavviideasodis dasedo dBE12Y

FIGURE B-8. SYSTEM TRACK ORGANIZATION. . ccoceessoeesB=126
FIGURE B-9, BIOS DISK STRUCTURE. seveevavacsscsecsssB=150
FIGURE B-10. DISK PARAMETER HEADER FORMAT..........B=151
FIGURE B-11. EXTENDED DISK-PARAMETER HEADER

FORHAT.......I........I..l.l....l'.B—Isq
2 DISK PARAMETER BLOCK FORMAT....v00e...B=155
3

FIGURE .
™ BUFFER CONTROL BLOCK...I.l...lll.l.lllB-157

B-1
FIGURE B-1

TABLE LIST

TABLE B-1. BUILT—IN COHMANDS.U...ll.t!...l..lllll.B-11

TABLE B-2n PAGE ZERO AREAS.....--.-............o..B-'“-I

TABLE B-3. SYSTEM CALL CATEGORIES.ssvaactccaccesesB=2l

TABLE B-uq BDOS SYSTEH CALL SUHHARY.....-..-.----.3—25

TABLE B-5. BDOS SYSTEM CALL SUMMARY BY VALUE......B-29

TABLE B-6, CONSOLE-MODE BIT DEFINITION....vvvssq..B=38

TABLE B-7. C_RAWIO ENTRY PARAMETERS:.0v0eeevsseassB=38

TABLE B-8. C_READSTR EDIT CONTROL CHARACTERS......B-41

TABLE B-g. FCB FIELD DEFINITIONS...........-..---.B-ll»a ”
TABLE B-10, FILE ATTRIBUTE BITScsesusosssecacssesesB=b0 (h
TABLE B-11. BDOS INTERFACE ATTRIBUTES, c.oe'essaascsiisBe51

B-ivy

TABLE OF CONTENTS

TABLE LIST (Cont.)

TABLE 8-12. PASSHORD PROTECTION HoDES-.....uocoo.cua-57
TABLE B-13. REGISTER A ERROR-CODE DEFINITIONS......B-61
TABLE B-14, REGISTER A DIRECTORY-CODE DEFINITIONS..B-61
TABLE B-15. REGISTER A ERROR-FLAG DEFINITIONS......B-62
TABLE B-16. REGISTER A PHYSICAL AND EXTENDED

ERROR-CODE DEFI"ITIO"S..........ll.B-62
TASLE 8-17. FCB FORHﬁTIIQGGIGIlOloillti......l..lllB-BB
TABLE B-18. PROGRAM RETURN CODES..¢eevssesssseesseB=114
TABLE B-19. SYSTEH CONTROL BLOCK-..-...---.....no.B-119
TABLE B—ZO. SCB FIELDS---......----l.;ooolsounuulnB-129
TABLE B-21. CP/H PLUS BIOS JUHP vEcToRtl.lll.lllllB-133
TABLE B'22. SYSTEH CALLSl..oooa.llcooounnounnutt.on*13u
TABLE B-23, CP/M PLUS BIOS FUNCTION JUMP TABLE....B-134
TABLE B-Qn. SYSTEM INITIALIZATIONI..UCCCGUC.IUC...B_136
TABLE B-25. CP/M PLUS LOGICAL DEVICE

CHARACTERISTICS.Il.l.il.ll. ccccc oaB""uo
TABLE B-26., I/0 REDIRECTION BIT VECTORS IN SCB....B=142
TABLE 3-27. SINGLE-SECTUR I/Oco.o. llllll idl.l.OOIIB-1u7

TABLE B-zgo DISK PARAHETER HEADER FIELDS....U.C.‘IB-153
TABLE B-30. FIELDS OF EACH XDPH...ceeteveeesavaesasB=155
TABLE B-32., BUFFER CONTROL BLOCK FIELDS......s....B=157
TABLE B‘BB. SCB FIELDS AND DEFIHITIONS..OIl.l.l.ocApp-1
TABLE B-3u. PRL FILE FORHAT.ll.ll.ll.llll.ll.qlt'.App-7
TABLE 3-350 ASCII SYHBOLS.......-.--..-...........ADP-B
TkBLE B-36. CONVERSION TABLE......-......-a..--...ﬂpp-a

TABLE OF CONTENTS

SECTION

Section
Section
Section
Section
Section
Section
Section
Section
Section
Section
Section
Section
Section
Section
Section
Section
Section
Section
Section
Section
Section
Section
Section
Section
Section
Section
Section
Section
Section
Section
Section
Section
Section
Section
Section
Section
Section
Section
Section
Section
Section
Section

LIST ALPHABETIZED

AUXIN,
AUXIST,
AUXOST,
AUXOUT,

BOOT,

CONIN,
CONOST,
CONST,
DEVINI,
DEVTBL,
DRVTBL,
DRV_ACCESS,
DRV_ALLOCVEC,
DRV_ALLRESET,
DRV_DPB,
DRV_FREE,
DRV_FREEBLOCKS,
DRV_GET,
DRV_GETLABEL,
DRV_LOGINVEC,
DRV_RESET,
DRV_ROVEC,
DRV_SET,
DRV_SETLABEL,
DRV_SETRO,
DRV_SPACE,
FLUSH,
F_ATTRIB,
F_CLOSE,
F_DELETE,
F_DMASET,
F_ERRMODE,
F_FLUSH,
F_LOCK,
F_MAKE,
F_MULTISEC,
F_OPEN,
F_PARSE,
F_PASSWD,
F_RANDREC,
F_READ,
F_READRAND,

B-144
B-146
B-146
B-144
B-137
B-143
B-145
B-143
B-138
B-138
B-149
B-63
B-63
B-614
B-65
B-65
B-66
B-67
B-67
B-68
B-69
B-70
B-70
B-71
B-73
B-73
B-164
B-T4
B-76
B-77
B-78
B-79
B-80
B-81
B-81
B-83
B-81
B-86
B-89
B-90
B-91
B-92

Section
Section
Section
Section
Section
Section
Section
Section
Section
Section
Section
Section
Section
Section
Section
Section
Section
Section
Section
Section
Section
Section
Section
Section
Section
Section
Section
Section
Section
Section
Section
Section
Section
Section
Section
Section
Section
Section
Section
Section
Section
Section

B-vi

F_RENAME,
F_SFIRST,
F_SIZE,
F_SNEXT,
F_TIMEDATE,
F_TRUNCATE,
F_TSTWRITE,
F_UNLOCK,
F_USERNUM,
F_WRITE,
F_WRITEAND,
F_WRITEXFCB,
F_WRITEZF,
HOME,
LISTST,
L_WRITE,
L_WRITEBLK,
MOVE,
MULTIO,
P_CHAIN,
P_LOAD,
P_RETCODE,
P_TERMCPM,
READ,
SECTRN,
SELDSK,
SELMEM,
SETBNK,
SETDMA,
SETSEC,
SETTRK,
S_BDOSVER,
S_BIOS,
S_RSX,
S_SCB,
S_SERIAL,
TIME,
T_GET,
T_SET,
WBOOT,
WRITE,
XMOVE,

B-94
B-96
B-98
B-99
B-100
B-101
B-102
B-103
B-103
B-104
B-106
B-108
B-109
B-159
B-145
B-110
B-110
B-165
B-163
B-111
B-111
B-112
B-114
B-161
B-163
B-159
B-166
B-166
B-161
B-160
B-160
B-115
B-115
B-116
B=117
B-120
B-168
B-120
B-121
B-137
B-162
B-167

INTRODUCTION TO CP/M PLUS

INTRODUCTION TO CP/M PLUS

This section introduces the general features of the
Osborne Executive CP/M Plus Operating System, with an
emphasis on how it organizes your computer's memory.
CP/M Plus is available in two versions: a version
that supports bank-switched memory, and a version
that runs on nonbanked systems. The Osborne Executive
CP/M Plus is a banked system; CP/M Plus uses the
larger memory of the banked system to provide
additional functions.

CP/M Plus provides a software environment for program
development and execution for the Osborne Executive
computer system. It allows rapid access to data and
programs through a file structure that supports
dynamic allocation of space for both sequential- and
random-access files.

CP/M Plus supports a maximum of 16 logical floppy or
hard disks with a storage capacity of up to 512
megabytes each. The maximum file size supported is
32 megabytes.

CP/M Plus supports the bank-switched memory
capabilities of the Osborne Executive, and supplies
additional facilities including extended command-line
editing, password protection of files, and extended

error messages.

The system requires a minimum of two memory banks
with 11 kilobytes of memory in bank 0 and 1.5
kilobytes in common memory, plus space for the
Osborne Executive BIOS. The bank-switched system
provides more user memory for application programs.

CP/M Plus resides in the file CPM3.SYS, which is
loaded into memory by the system loader during system
initialization. The system loader resides on the
first two tracks of the Executive program diskettes.
CPM3.SYS contains the distributed BDOS and the
Osborne Executive BIOS.

Banked Memory Organization

CP/M Plus supports bank-switched memory to expand
memory capacity beyond the usual 64K-byte address
space of an eight-bit microprocessor. The figure
below shows memory organization under the Osborne
Executive CP/M Plus system.

INTRODUCTION TO CP/M PLUS ‘
Top of Memory
FFFF: 4=—e—ee——y
Ixxxxxxxx!
Common Memory !Resident!
Ixx0.S.xx!
FO00: + + 4 +
Top of ! Banked ! [Ixxxxxxxx!
Banked Memory ! 0.S. ! [Ixxxxxxxx! +==——=———+ :E000
tmmmmemmmet [XXXXXXXX] | Video |
Bank-switched ! I Ixxxxxxxx! | RAM |
! ! Ix60 Kx! | Area |
| Buffer | Ix TPA xX! 4==—ee——- + :C000
! I Ixxxxxxxx!
I Area | [Ixxxxxxxx! BO00: 4==——————t
! I Ixxxxxxxx! ! 8K RAM !
fommmm———t [XAXXAXXX ! ADOD: +=—m—mmmmite
Low Memory ! 4K CCP ! Ixxxxxxxx! ! 8K ROM !
0000: + + 4 + e ————
Bank 0 Bank 1 ... Bank 7 Bank 8

FIGURE B-1. BANKED SYSTEM MEMORY ORGANIZATION
(A1l addresses are expressed in hexadecimal notations.)

In the figure above, bank 0 is switched in, or in c |
context. That is, any reference to a memory location

will automatically address bank 0. The top region of

memory, the common region, is always in context; that

is, it can always be referenced no matter what bank

is switched in. The figure below shows memory

organization when bank 1 is in context.

Top of Memory o —————
(Common) IXxxxxxxx!
Ixx0.S.xx!
Ixxxxxxxx!

Top of Banked + + : + fm————

Memory ! Banked ! Ixxxxxxxx! ! !

" 0.8~ 1 Ixxxxxxxx! ! !

PO Ixxxxxxxx! ! l

! ! Ixxxxxxxx! 1 !

! ! Ixxxxxxxx! 1 !

Bank-switched ! ! Ixxxxxxxx! ! !

! ! Ixxxxxxxx! ! !

! ! Ixxxxxxxx! ! !

! ! Ixxxxxxxx! | !

! ! Ixxxxxxxx! 1 !

Low Memory 1 1 Ixxxxxxxx! ! 1

(O000H) + + - + P

Bank 0 Bank 1 =i Bank N 3
FIGURE B-2. BANKED MEMORY WITH BANK 1 IN CONTEXT ‘I

P

INTRODUCTION TO CP/M PLUS

From a transient program's perspective, bank 1 is
always in context. The operating system can switch
to bank 0 or other banks when performing operating-
system system calls without affecting the execution
of the transient program. When exiting from a BDOS
system-call routine, the operating system
automatically switches back to the bank containing
the calling program.

The operating system uses bank 0 for disk record
buffers and directory hash tables. Space in the
common region is allocated for transfer buffers.

In the Osborne Executive there can be a minimum of
two to a maximum of seven memory banks, plus the
video and ROM banks. Bank 0 is the system bank and
is in context when CP/M Plus is started. Banks 1
through 6 are the transient program banks, and must
be contiguous from location zero to the top of banked
memory. (Banks 2 - 6 are not implemented in the
current system.) This requirement does not apply to
the other banks. Bank 7 is used for the video screen
contents and attributes, and bank 8 contains the Boot
ROM, Scratch Pad RAM, and Font RAM.

CP/M Plus always organizes memory logically so that,
to a transient program in any CP/M Plus system,
memory appears as shown in the figure below. The top-
of-memory address is 64K-1 (OFFFFH).

Top of Memory +— +
(FFFFH) jo RSl
e ————— ‘
Ixxxxxxxxx! |
Ixxxxxxxxx!
IXXXXXXXXX] |
Ixxxxxxxxx!
Ixxxxxxxxx!
Ixxxxxxxxx!
Low Memory Ixxxxxxxxx!
(0000H) dm————e—ee=t

FIGURE B-3. CP/M PLUS LOGICAL MEMORY ORGANIZATION

System Components

The CP/M Plus Operating System is composed of several
modules. The figure below shows where these modules
reside in logical memory. Note that the figure below
is just a more detailed version of the figure above.

B-3

INTRODUCTION TO CP/M PLUS

High Memory: . +
: BIOS : Basic I/0 System :
BIOS_base: : :
: BDOS : Basic Disk Operating System :
BDOS_base: : :
: LOADER : Program Loader Module
LOADER_base: f

I RSX(1) : Resident System Extension

L TSR A

.

1
! RSX(N) : Resident System Extension
!

RSX(N)_base: - +
XXX XXXXXXXAAXXXXX XXX XX XXX XX XAXAXXXXX XXX]

IXXXXAXXXXXKXXXXXXXXXXXXXXX XX XXX XXX XXX AXXXX !
I1xxxTPA : Transient Program Areaxxxxxxxxxx!
IXXXXAXXXAXXXXXXXKXX XXX XX XXX X XXX XXX AXKXAKK]

1%+ +x 1

Ix! 1x!

Ix! CCP : Console Command Processor Ix!

Ix! Ix!
0100H: +

! Page Zero
!
O0O0O0H: +

FIGURE B-4. SYSTEM MODULES AND REGIONS
IN LOGICAL MEMORY

— -

+

The Basic Input/Output System (BIOS) is a hardware-
dependent module that defines the low-level interface

to the Osborne Executive hardware. It contains the
device-driving routines necessary for peripheral
device I/0.

The Basic Disk Operating System, BDOS, is the
hardware-independent logical nucleus of CP/M Plus.
It provides a standard environment for transient
programs through system calls.

The LOADER module handles program loading for the
Console Command Processor and transient programs.

B-4

INTRODUCTION TO CP/M PLUS

Usually, this module is not resident when transient
programs execute. However, when it is resident,
transient programs can access the module by making
P_LOAD BDOS system calls.

Resident System Extensions (RSXs) are temporary,
additional operating-system modules that extend or
modify normal operating-system system calls. The
LOADER module is always resident when RSXs are
active,

The Transient Program Area (TPA) is the region of
memory where transient programs execute. The CCP
also executes in this region,

The Console Command Processor (CCP) is a transient
system program that provides the user interface tc
CP/M Plus.

The Page Zero region is an interfacing data structure

to the BDOS module from the CCP and transient
programs. It contains critical system parameters.

Memory Region Boundaries

Note: All memory regions in CP/M Plus begin on a
page boundary. A page is defined as 256 (100H)
bytes, so a page boundary always begins at an address
with a low-order byte of zero.

"High memory" denotes the high address of the CP/M
Plus system. This address falls below the actual
top-of-memory address since space above the operating
system has been allocated for directory hashing or
data buffering. The maximum "high memory" address in
the Osborne Executive is OEFFFH,

The labels BIOS_base, BDOS_base, and LOADER_base
represent the base addresses of the operating system
regions. These addresses always fall on page
boundaries. The size of the BIOS region is about
1.5K bytes. The size of the BDOS region is six pages,
1.5K.

RSXs are page-aligned modules that are stacked below
LOADER_base in memory. The memory ceiling of the TPA
region is reduced when RSXs are active.

Under CP/M Plus the CCP is a transient program that
the BIOS loads into the TPA region of memory at
system cold and warm start. The BIOS also loads the
LOADER module at this time. The LOADER module is
contained in the CCP.

B-5

INTRODUCTION TO CP/M PLUS (.

When the CCP gains control, it relocates the LOADER
module just below BDOS_base. The LOADER module
handles program loading for the CCP, and is three
pages or .75K in size.

The maximum size of a transient program that can be
loaded into the TPA is limited by LOADER_base because
the LOADEZR cannot load a program over itself.
Transient programs may extend beyond this point,
however, by using memory above LOADER_base for
uninitialized data areas such as I/0 buffers.
Programs that use memory above BDOS_base cannot make
BDOS system calls.

The BDOS and BIOS

CP/M Plus achieves hardware independence through the

interface between the BDOS and the BIOS sections of

the operating system. This interface consists of a

series of entry points in the BIOS that the BDOS

calls to perform hardware-dependent primitive

functions. For example, the BDOS calls the CONIN:

entry point of the BIOS to read the next console

input character. For a detailed description of the

Osborne Executive CP/M Plus BIOS, see the CP/M Plus ('
BIOS section.

Applications and the BDOS

Transient programs and the CCP access CP/M Plus
facilities by making BDOS system calls. They are
described in the BDOS System Calls section.

To make a BDOS system call, a transient program loads
the CPU registers with specific entry parameters and
calls location 0005H in Page Zero. If RSXs are not
active in memory, location 0005H contains a Jjump
instruction to location BDOS_base + 6. If RSXs are
active, location 0005H contains a jump instruction to
the RSX entry point at an address below BDOS_base.

Thus, the Page Zero interface allows programs to run
without regard to where the operating system modules
are located in memory. In addition, transient
Programs can use the address at location 0006H as a
memory ceiling.

The Console Command Processor is a special system
Program that executes in the TPA and makes BDOS calls
Just like an application program. However, the CCP
has a unique role: it gives the user access to ‘
operating system facilities while transient programs
are not executing. It includes several built-in

B-6

INTRODUCTION TO CP/M PLUS

commands, such as TYPE and DIR, that can be executed
directly without having to be loaded from disk.

When the CCP receives control, it reads the user's
command lines; distinguishes between built-in and
transient commands; and when necessary, calls upon
the LOADER module to load transient programs from
disk into the TPA for execution.

Applications and RSXs

A Resident System eXtension (RSX) module is a
temporary addition to the operating system. An RSX
can extend or modify one or more operating-system
system call(s).

At any one time there might be zero, one, or several
RSXs active in memory. When a transient program
makes a BDOS system call while RSXs are active, each
RSX examines the number of the call. If the system
call number matches the system call the RSX is
designed to extend or modify, the RSX performs the
requested function. Otherwise the RSX passes the
system call request to the next RSX, if any. Non-
intercepted system calls are passed to the BDOS for

standard execution.

The CP/M Plus utility, GENCOM, can attach RSXs to
program files. When attaching RSXs, GENCOM places a
special one-page header at the beginning of the
program file. The CCP reads this header, learns that
a program has attached RSXs, and loads the RSXs
accordingly.

The LOADER module is a special type of RSX that
supports the P_LOAD system call. It is always
resident when RSXs are active., To indicate that RSX
support is required, a program that calls P_LOAD must
have an RSX header attached by the CP/M Plus GENCOM
utility, even if the program does not require other

RSXs.

Disk and Drive Organization and Requirements

CP/M Plus can support up to 16 logical drives,
identified by the letters A through P, with up to 512
megabytes of storage each. If the drive has adequate
storage, a CP/M Plus file can be as large as 32
megabytes. A logical drive usually corresponds to a
physical drive on the system, particularly for floppy
disk drives. High-capacity hard disks, however, are
commonly divided into multiple logical drives. The
figure below illustrates the standard organization of

B-7

INTRODUCTION TO CP/M PLUS

an Osborne Executive CP/M Plus disk.

Track 39 =—> 4
!
Data Tracks I CP/M Plus Data Region !
! !
Track 4 ——> 4
{
! CP/M Plus Directory Region
1
Track 3 ==—> 4
Character Sets,
Function Key Definitions,
and Keyboard Tables.
Track 2 --=>

BIOS Tables (Sector 5)

CCP.COM (Sectors 1 - 4)

!
!
!
|
System Tracks !
!

Track 1 ——=> 4

I
! CPMLDR (Sectors 2 - 5)
1

1
!
!
|
|
1
|
!
|
!
1
|
Cold Boot Loader (Sector 1) !

Track 0 -—> 4
FIGURE 5. SYSTEM TRACK ORGANIZATION

The first three tracks are the system tracks. They
are required only on the disk used by CP/M Plus for
cold start or warm start. All subsequent CP/M Plus
disk access is directed to the data tracks which CP/M
Plus uses for file storage.

The data tracks are divided into a directory area and
a data area. The directory area defines the files
that exist on the drive and identifies the data space
that belongs to each file. The data area contains
the file data defined by the directory.

Cold Start Operation

The cold start procedure is executed immediately
after the computer is turned on. The cold start
brings CP/M Plus into memory and gives it control of
the computer's resources. Cold start is a four-stage
procedure,

First, ROM-based firmware loads a small program,
called the Cold Boot Loader, into memory from the
system tracks of drive A. It loads CPMLDR into memory
from the system tracks of the system disk and passes
control to it. CPMLDR reads the CPM3.SYS from the
data area of the disk. The CPM3.SYS file contains
the BDOS and BIOS system components and information

B-8

0

INTRODUCTION TO CP/M PLUS

indicating where these modules are to reside in
memory. Then CPMLDR sends a sign-on message to the
console and passes control to the BIOS. These first
stages of the cold boot procedure are performed with
Bank 0 in context. The BIOS Cold-Start function
switches Bank 1 into context before proceeding.

The final stage in the cold start procedure is
performed by the P_TERMCPM system call. The entry
point to this system call is located at BIOS_base as
described above., It begins by performing any
remaining hardware initialization, and initializing
Page Zero.

It then completes the boot process by loading the
autostart program EXECST.COM into the TPA region of
memory and passing control to it. If there is no
EXECST.COM on the disk, it will load the CCP.

When the CCP gains control, it displays the system
prompt (A>). If a PROFILE.SUB file is present on
drive A, the CCP executes it before prompting the
user for a command.

CCP Operation

The Console Command Processor reads the user's
command lines, differentiates between built-in
commands and transient commands, and executes them
accordingly.

When the CCP gains control following a cold start
procedure, it displays the system prompt at the
console., This signifies that the CCP is ready to
execute a command.

It then scans the directory of the default drive for
the file PROFILE.SUB. If the file exists, the CCP
creates the command line SUBMIT PROFILE<Lcr>.
Otherwise the CCP waits for the user to type a
command.

The command form the CCP accepts is the standard CP/M
command line, consisting of a command keyword
followed by an optional command tail. The CCP
converts all letters in the command line to
uppercase. The following syntax defines the standard
CP/M Plus command line:

<{command)> <command tail> <er>

where

{command> => <filespec>

B-9

INTRODUCTION TO CP/M PLUS

<command tail> => (no command tail) or <filespec> or
{filespec><{delimiter><filespec>

{filespec> => {d:}filename{.typl}{;password}

{delimiter> => one or more blanks or a tab or
one of the following: "=,[]<>|"

d: => CP/M Plus drive specification, "A:"
through "p:"

filename => 1-to-8-character filename

typ => 1-to-3-character filetype

password => 1=-to-8-character password value

Fields enclosed in braces {} are optional., If there
is no drive {d:} present in a file specification, the
default drive is assumed. If the type field {.typ}
is omitted, a type field of all blanks is assumed.
Omitting the password field {;password} implies a
password of all blanks. When a command line is
entered at the console, it is terminated by a return

or line-feed keystroke <ecrd. (?

Transient programs that run under CP/M Plus are not
restricted to the above command-tail definition.
However, the CCP only parses command tails for
transient programs in the standard format.

Transient programs that define their command tails
differently must perform their own command-tail
parsing. When a transient program begins execution,
the command tail is present in the default-drive DMA
buffer at 0080H in the Page Zero area.

The command field must identify either a built-in
command, a transient program, or a SUBMIT file. The
following table summarizes the built-in commands.

TABLE B-1. BUILT-IN COMMANDS
—Command Meaning
DIR Displays a list of a2ll filenames from a disk
directory except those marked with the SYS
attribute,

DIRSYS Displays a filename list of those files marked
with the SYS attribute in the directory. May
be abbreviated DIRS.

l

—

INTRODUCTION TO CP/M PLUS

_TABLE B-1. BUILT-IN COMMANDS (Cont.)

Command Meaning

ERASE Erases a filename from a disk directory and
releases the storage occupied by the file. May
be abbreviated ERA.

RENAME Renames a file, May be abbreviated REN.

TYPE Displays the contents of an ASCII character
file at your console output device.

USER Changes from one user number to another. May
be abbreviated to the desired user number
followed by a colon (4:).

Built-in commands are commands which are stored in
memory so they can be executed without referencing a
disk. A built-in command may have an associated
command file on the disk that expands upon its
options. If the CCP reads a command line and
discovers the built-in command does not support the
options requested, the CCP loads the built-in
function's command file to perform the command. The
DIR command is an example of this type of command.
Simple DIR commands are supported by the DIR built-in
command. More complex requests are handled by the

DIR.COM utility.

The CCP assumes that all command keywords that do not
identify built-in commands identify either a
transient program file or a SUBMIT file. If the CCP
identifies a command keyword as a transient program,
the transient program file is loaded into the TPA
from disk and executed. If it recognizes a SUBMIT
file, the CCP reconstructs the command line into the

following form:
SUBMIT <filename.SUB> <command tail> <cr>

and attempts to load and execute the SUBMIT utility.
Thus, the original command field becomes the first
command-tail field of the SUBMIT command., The
procedure the CCP follows to parse a standard command
line and execute built-in and transient commands is

described as follows.

The CCP parses the command line to pick up the
command field. If the command field is not preceded
by a drive specification, or followed by a filetype
or password field, the CCP checks to see if the
command is a CCP built-in function. If the command
is a built-in command, and the CCP can support the
options specified in the command tail, the CCP

B-11

INTRODUCTION TO CP/M PLUS .

executes the command. Otherwise the CCP goes on to
the steps described below.

At this point the CCP assumes the command field
references a command file or SUBMIT file on disk. If
the optional filetype field is omitted from the
command, the CCP usually assumes the command field
references a file of type .COM. For example, if the
command field is PIP, the CCP attempts to open the
file PIP.COM.

Optionally, the CP/M Plus utility SETDEF can be used
to specify that a filetype of ,SUB also be considered
when the command filetype field is omitted. When
this automatic SUBMIT option is in effect, the CCP
attempts to open the command with a filetype of .COM.
If the .COM file cannot be found, the CCP attempts
the open operation with a filetype of .SUB. As an
alternative, the order of file-open operations can be
reversed, so that the CCP attempts to open with a
filetype of .SUB first,

If the filetype field is present in the command, it
must equal .COM, .SUB, or ,PRL. A .PRL file is a
Page-Relocatable file used in Digital Research's
multiuser operating system, MP/M. Under CP/M Plus
the CCP handles .PRL files exactly like .COM files.

When the current user number is nonzero, and a file-
open request fails because the file cannot be found,
the CCP attempts to locate the file under user zero.
If the file exists under user zero with the SYS
(system) attribute set, the file is opened from user
zero. This search for a file under user zero is made
by the F_OPEN BDOS system call.

If the password specified in the command field does
not match the password of a file on a disk protected
in Read mode, the CCP file-open operation is
terminated with a password error.

If the CCP does not find the .COM or .SUB file, it
echoes the command line followed by a question mark
to the console. If it finds a command file with a
filetype of .COM or .PRL, the CCP proceeds as
described below. If it finds a SUBMIT file, it
reconstructs the command line as described above and
tries to load SUBMIT.COM.

B-12

Y o W

INTRODUCTION TO CP/M PLUS

When the CCP successfully opens the command file, it
initializes the following Page Zero fields for access
by the loaded transient program:

0050H : Drive for which the command file was loaded
0051H : Password address of first file in command tail
0053H : Password length of first file in command tail
0054H : Password address of second file in command tail
0056H : Password length of second file in command tail
005CH : Parsed FCB for first file in command tail
006CH : Parsed FCB for second file in command tail
0080H : Command tail preceded by command-tail length

Page Zero initialization is covered in more detail
below,

At this point the CCP calls the LOADER module to load
the command file into the TPA. The LOADER module
terminates the load operation if a read error occurs,
or if the available TPA space is not large enough to
contain the file. If no RSXs are resident in memory,
the TPA ceiling is determined by the address
LOADER_base because the LOADER cannot load over
itself. Otherwise the maximum TPA address is
determined by the base address of the lowest RSX in

memory.

Once the program is loaded, the LOADER module checks
for an RSX header on the program. Programs with RSX
headers are identified by a RET instruction at
location 100H.

If an RSX header is present, the LOADER relocates all
RSXs attached to the end of the program to the top of
the TPA region of memory under the LOADER module or
any other RSXs that are already resident. It also
updates the address in location 0006H of Page Zero to
point to the lowest RSX in memory. Finally, the
LOADER discards the RSX header and relocates the
program file one page lower in memory, so that the
first executable instruction resides at 100H.

After initializing Page Zero, the LOADER module sets
up a 32-byte stack with the return address set to

location 0000H of Page Zero and jumps to location
100H. At this point the loaded transient program

begins execution.

When a transient program terminates execution, the
BIOS warm=-start routine reloads the CCP into memory.
When the CCP receives control, it tests to see if
RSXs are resident in memory. If not, it relocates
the LOADER module below the BDOS module at the top of
the TPA region of memory. Otherwise it skips this
step because the LOADER module is already resident.

B-13

INTRODUCTION TO CP/M PLUS

The CCP execution cycle then repeats.

Note: Unlike earlier versions of CP/M, the CCP does
not reset the disk system at warm start. However,
the CCP does reset the disk system if a CTRL-C is
typed at the prompt.

Page Zero Initialization

Page Zero is the region of memory located from 0000H
to O0OFFH. This region contains several instructions
and data structures that are used by transient
programs while running under CP/M Plus.

TABLE B-2. PAGE ZERO AREAS

Locations Contents
From To

0000H - 0002H Contains a jump instruction to the BIOS
warm-start entry point at BIOS base + 3.
The address at location 0001H can also be
used to make direct BIOS calls to the BIOS
console status, console input, console
output, and list output primitive
functions.

0003H - O0O4H (Reserved)

O005H - 0007H Contains a jump instruction to the BDOS,
the LOADER, or to the most recently added
RSX; and serves two purposes: executing
the instruction JMP 0005H provides the
primary entry point to the BDOS, and LHLD
0006H places the address field of the Jjump
instruction in the HL register pair. This
value, minus one, is the highest address
of memory available to the transient
program,

0008H - 003AH Reserved interrupt locations for Restarts
1"7-

003BH - 003FH Reserved.

OO40H - OO41H BIOS version number.
0042H BIOS product code.
0043H BIOS feature code.
OO44H - OO45H ROM version number.
0046H ROM product code.

B-14

INTRODUCTION TO CP/M PLUS

TABLE B-2, PAGE ZERO AREAS (Cont.)
Contents

Locations
From To
OO4TH
0048H
0050H
0051H - 0052H
0053H
0054H - 0055H
0056H
005TH - 005BH
005CH - OO7TBH

ROM feature code.

Reserved.
(Executive product code = 2).

Identifies the drive from which the
transient program was loaded. A value of
one to 16 identifies drives A through P.

Contains the address of the password field
of the first command-tail operand in the
default DMA buffer beginning at 0080H. The
CCP sets this field to zero if no password
for the first command-tail operand is
specified.

Contains the length of the password field
for the first command-tail operand. The
CCP also sets this field to zero if no
password for the first command tail is
specified.

Contains the address of the password field
of the second command-tail operand in the
default DMA buffer beginning at 0080H. The
CCP sets this field to zero if no password
for the second command-tail operand is
specified.

Contains the length of the password field
for the second command-tail operand. The
CCP also sets this field to zero if no
password for the second command tail is

specified.
(Not currently used - reserved).
Default File Control Block (FCB) area 1

initialized by the CCP from the first
command-tail operand of the command line,

if it exists.

B-15

——

INTRODUCTION TO CP/M PLUS (
TABLE B-2, PAGE ZERO AREAS (Cont.)
Locations Contents
Fram To

006CH —~ 007TBH Default File Control Block (FCB) area 2
initialized by the CCP from the second
command-tail operand of the command line,
if it exists.

Note: This area overlays the last 16 bytes
of default FCB area 1. To use the
information in this area, a transient
program must copy it to another location
before using FCB area 1.

007CH Current record position of default FCB
area 1. This field is used with default
FCB area 1 in sequential record
processing.

OO7DH -~ OOTFH Optional default random-record position.
This field is an extension of default FCB
area 1 used in random-record processing.

0080H - OOFFH Default 128-byte disk buffer. This buffer L
contains the command tail when the CCP (
loads a transient program. ;

The following example illustrates the initialization
of the command-line fields of Page Zero. Assuming
the following command line is typed at the console:

A:PROGRAM B:FILE.TYP;PASS C:FILE.TYP; PASSWORD

A hexadecimal dump of 0050H to 00A5H would show the
Page Zero initialization performed by the CCP:

0050H: 01 8D 00 04 9D 00 08 00 00 00 00 00 02 46 49 4cCFIL
0060H: 45 20 20 20 20 54 59 50 00 00 00 03 46 49 4C E....TYP.....FIL
O07OH: 45 20 20 2 00 00 00 E....TYP........

0
0080H: 24 20 42 3A 53 . B:FILE.TYP;PAS
A 53 S C:FILE.TYP;PAS

E&SS
= = un
OO =
£ =0
OO w

Transient Program Operation

As the name transient implies, transient programs are
not system-resident. The CCP must load a transient

Program into memory every time the program is

executed. Generally, an executing transient program ‘
communicates with the operating system only through " "
BDOS system calls. Transient programs make BDOS

System calls by loading the CPU registers with the

B-16

INTRODUCTION TO CP/M PLUS

appropriate entry parameters and calling location
0005H in Page Zero.

Transient programs can use the S_BIOS BDOS system
call to access BIOS entry points. This is the
preferred method for accessing the BIOS; however, for
compatibility with earlier releases of CP/M,
transient programs can also make direct BIOS calls
for console and 1list I/0 by using the jump
instruction at location O0000H in Page Zero.

A transient program can terminate execution in one of
three ways: by jumping to location 0000H, by making
a BDOS P_TERMCPM call, or by making a P_CHAIN call.
The first two methods are equivalent; they pass
control to the BIOS warm-start entry point.

The P_CHAIN call allows a transient program to
specify a transient program to be executed after it
terminates. This call executes a standard warm-boot
sequence, but passes the command specified by the
terminating program to the CCP, which executes the
specified command instead of prompting the console.

Resident System Extension Operation

A Resident System Extension (RSX) is a special type
of program that can be attached to the operating
system to modify or extend the functionality of the
BDOS. RSX modules intercept BDOS system calls and
either perform them, translate them into other BDOS
system calls, or pass them to the operating system.
The BDOS executes nonintercepted system calls in the
standard manner.

A transient program can also use the S_RSX BDOS
system call to call an RSX for special functions.
S_RSX is a general-purpose system call that allows
customized interfaces between programs and RSXs.

Two examples of RSX applications are the GET utility
and the LOADER module. The GET.COM command file has
an attached RSX, GET.RSX, that intercepts all console
input calls and returns characters from the file
specified in the GET command line. The LOADER module
is another example of an RSX, but it is unique in
that it supports the P_LOAD system call. It is always
resident in memory when other RSXs are active.

RSXs are loaded into memory at program load time.
After the CCP locates a command file, it calls the
LOADER module to load the program into the TPA. The
LOADER loads the transient program into memory along
with any attached RSXs. Subsequently, the loader

B-17

“

INTRODUCTION TO CP/M PLUS Q

relocates each attached RSX to the top of the TPA and
adjusts the TPA size by changing the jump at location
0005H in Page Zero to point to the RSX. When RSX
modules reside in memory, the LOADER module resides
directly below the BDOS, and the RSX modules stack

downward from it.

The order in which the RSX modules are stacked
affects the order in which they intercept BDOS calls.
A more recently stacked RSX has precedence over an
older RSX. Thus, if two RSXs in memory intercept the
same BDOS system call, the more recently loaded RSX
handles the system call.

The CP/M Plus utility GENCOM attaches RSX modules to
program files. Program files with attached RSXs have
a special one-page header that the LOADER recognizes
when it loads the command file. GENCOM can also
attach one or more RSXs to a null command file so
that the CCP can load RSXs without having to execute
a transient program. In this case the command file
consists of the RSX header followed by the RSXs.

RSX modules are page-relocatable files with the
filetype .RSX. RSX files must be page-relocatable]
because their execution address is determined (
dynamically by the LOADER module at load time, RSX n
files have the following format:

End of File: + -
! PRL bit map {
I RSX code 1
! RSX prefix !
0100H: =

I 256-byte PRL header
OCOO0OH: + -

RSX files begin with a one-page PRL header that
specifies the total size of the RSX prefix and code
sections. The PRL bit map is a string of bits
identifying those bytes in the RSX prefix and code
sections that require relocation. The PRL format is
described in detail in Appendix B.

Note: The PRL header and bit map are removed when an
RSX is loaded into memory. They are only used by the
LOADER module to load the RSX.

The RSX prefix is a standard data structure that the

LOADER module uses to manage RSXs. Included in this (‘
data structure are jump instructions to the previous /
and next RSX in memory, and two flags. The LOADER

—————

INTRODUCTION TO CP/M PLUS

module initializes and updates these jump
instructions to maintain the link from location six
of Page Zero to the BDOS entry point. The RSX flags
are the Remove flag and the Nonbanked flag. The
Remove flag controls RSX removal from memory. The
Nonbanked flag identifies RSXs that are loaded only
in nonbanked CP/M Plus systems.

The RSX code section contains the main body of the
RSX. This section always begins with code to
intercept the BDOS system call that is intercepted by
the RSX. This section can also include
initialization and termination code that transient
programs can call with the S_RSX BDOS system call.

When the CCP gains control after a system warm start,
it removes any RSXs in memory that have the Remove
flag set to OFFH., All other RSXs remain active in
memory .

Note: If an RSX marked for removal is not the lowest
active RSX in memory, it still occupies memory after
removal, Although the removed RSX cannot be
executed, its space is returned to the TPA only when
all the lower RSXs are removed.

There is one special case where the CCP does not
remove an RSX with the Remove flag set following warm
start., This case occurs on warm starts following the
load of an empty file with attached RSXs. This
exception allows an RSX with the Remove flag set to
be loaded into memory before a transient program.

The transient program can then access the RSX during
execution. After the transient program terminates,
however, the CCP removes the RSX from the system
environment. The CP/M Plus SAVE utility is an example
of such an RSX.

As an example of RSX operation, here is a description
of the operation of the GET utility. The GET.COM
command file has an attached RSX. The LOADER moves
this RSX to the top of the TPA when it loads the
GET.COM command file. The GET utility performs
necessary initializations which include opening the
ASCII file specified in the GET command line. It
also makes an S_RSX BDOS system call to initialize
the GET.RSX. At this point the GET utility
terminates. Subsequently, the GET.RSX intercepts all
console input calls and returns characters from the
file specified in the GET command line. It continues
this action until it reads the end-of-file character
(*Z). At this point it sets its Remove flag in the
RSX prefix, and stops intercepting console input. On
the following warm boot the CCP removes the RSX from

memory.

B-19

INTRODUCTION TO CP/M PLUS

SUBMIT Operation

When the SUBMIT utility begins execution, it opens
and reads the file specified by <filespec> and
creates a temporary SUBMIT file of the same name as
type .$$$ on the system's temporary file drive.
GENCPM sets the temporary file drive to the CCP's
current default drive. If desired, the SETDEF utility
can be used to set the temporary file drive to a
different drive. As it creates the temporary file,
SUBMIT performs the parameter substitutions requested
by the <parameters> subfield of the SUBMIT command
line,

After SUBMIT creates the temporary SUBMIT file, its
operation is similar to that of the GET utility
described above. The SUBMIT command file also has an
attached RSX that performs console input redirection
from a file. However, the SUBMIT RSX expands upon
the simpler facilities provided by the GET RSX.
Command lines in a SUBMIT file can be marked to
indicate whether they are program or CCP input.
Furthermore, if a program exhausts all its program
input and the next SUBMIT command is a CCP command,
the SUBMIT RSX temporarily reverts to console input.
Redirected input from the SUBMIT file resumes when
the program terminates.

Because CP/M Plus's SUBMIT facility is implemented
with RSXs, SUBMIT files can be nested. That is, a
SUBMIT file can contain additional SUBMIT or GET
commands. Similarly, a GET command can specify a
file that contains GET or SUBMIT commands. For
example, when a SUBMIT command is encountered in a
SUBMIT file, a new SUBMIT RSX is created below the
current RSX. The new RSX handles console input until
it reads end-of-file on its temporary SUBMIT file,
ggxthis point control reverts to the previous SUBMIT

B-20

o %

£

CP/M PLUS SYSTEM CALLS

CP/M PLUS SYSTEM CALLS

Under CP/M Plus a transient program can access
standard operating-system functions and hardware
resources through an invariant software interface.
This interface consists of a number of system calls
available to the transient program. Information
applying to all the system calls is summarized in the
sections below.

BDOS System-Call Conventions

CP/M Plus uses standard conventions for BDOS system
calls. These calling conventions are summarized

below:

Entry Parameters:
Register C: BDOS system-call Number
Registers DE: Byte or Word Value or Address

Return Parameters:
Register A: single-byte values = L
Registers HL: double-byte values
Register B: =H

Unsupported Calls Return:
system calls 0-127: HL
system calls 128-255: HL

The BDOS does not restore registers before returning
to the calling program. Therefore the responsibility
for saving and restoring critical registers rests
with the calling program.

00OFFH
0000H

The following example illustrates how a transient
program calls a BDOS system call. This program reads
characters continuously until it encounters an
asterisk, then terminates execution by returning to

the system.

bdos equ 0005h ;BDOS entry point in Page Zero
CREAD equ 1 ;BDOS console-input system call
]

org 100h ;Base of Transient Program Area
nexte: mvi c¢,C_READ ;Use mnemonic for call number

call bdos ;Return character in A

cpi '® ;End of processing?

jnz nexte ;Loop if not

ret ;Terminate program

end

B-21

CP/M PLUS SYSTEM CALLS

System-Call Reference Tables

The following tables describe the CP/M Plus system
calls. They are intended both as an introduction to
the calls and as a reference for use during
programming.

Note: A mnemonic has been assigned to each system
call according to the functional group to which it
belongs. The sections in this manual documenting the
system calls are arranged alphabetically according to
these mnemonies. All future releases of Digital
Research operating systems will use this system of
mnemonics, with extensions or modifications as
needed. The reader is encouraged to become familiar
with this system which makes the large number of
system calls in sophisticated operating systems such
as CP/M Plus easier to learn and use.

An equate file (SYSCALLS.ASM) containing the system

call mnemonics and their numerical equivalents is

provided for the convenience of the programmer (see

Appendix E). This file can be included in the equate

section of a program, making use of the standard

mnemonics for the system call subroutines a simple ‘c
matter.

Table B-3 enumerates the functional categories of
system calls and their mnemonic prefixes. Table B-4
describes the categories of system calls and their
general uses. Table B-5 presents the CP/M Plus
system calls in numerical order for those who prefer
that system. Use the tables as a quick reference to
find the system call you need while programming.

B-22

CP/M PLUS SYSTEM CALLS

TABLE B-3, SYSTEM CALL CATEGORIES

Prefix Name Definition

o2 Console System Calls - The Conscle System
Calls handle console I/0 operations on a
character, string, or block basis.

DRV_ Disk-Drive System Calls - The Disk-Drive
System Calls access and free drives, get
and set specified disk parameters, and
perform other disk- and drive-level
functions.

F_ Disk-File System Calls - The Disk~File
System Calls open and close, make and
delete, and read from and write to disk
files, as well as setting default
passwords, error modes, attributes, and
other file-level options.

I List-Device System Calls - The List-
Device System Calls write characters or
blocks to the default list device.

4 Program System Calls - The Program System
Calls terminate programs, chain to other
programs, and perform other operations on
programs.

S System System Calls - The System System
Calls return various types of systems
data, such as version numbers and
addresses, and enable applications to
call the BIOS directly.

JIE Time System Calls - The Time System Calls
set the system calender and clock and
return the time from them.

B-23

CP/M PLUS SYSTEM CALLS

TABLE B-4, BDOS SYSTEM CALL SUMMARY
Moemonic =~ Number Name Definition
C_AUXIN 3 Auxiliary Input Return a character from

C_AUXINST 7
C_AUXOUT -
C_AUXOUTST 8
C_DELIMIT 110
C_MODE 109
C_RAWIO 6
C_READ 1
C_READSTR 10
C_STAT 3l
C_WRITE 2
C_WRITEBLK m
C_WRITESTR 9

DRV_ACCESS 38
DRV_ALLOCVEC 27

DRV_ALLRESET 13

Auxiliary Input
Status
Auxiliary Output
Auxiliary Output
Status

Get/Set Output
Delimiter
Get/Set Conscle Mode

Raw Console 1/0

Read Console

Read Console Buffer

Get Console Status

Write to Console

Write Block

Write String

Access Drive

Get Addr(Alloc)

Reset Disk System

B-24

the auxiliary input
device.

Return status of the
auxiliary input device.

Send a character to the
auxiliary output device.

Return status of
auxiliary output device.

Set or return current
Output Delimiter.

Set or return Console
mode.

Perform Raw mode I/0 with
the default virtual
console,

Read a character from the
default virtual console.

Read an edited line from
the default virtual
console.

Obtain the status of the
default virtual console.

Write a character to the
default virtual console.

Write a string to the
default virtual console.

Write a string to the
default virtual console
until $.

For MP/M compatibility.

Get the address of the
disk allocation vector.

Restore disk system to
reset state.

DRV_DPB 31

DRV_FREE 39

DRV_FREEBLOCKS 98

DRV_GET 25

DRV_GETLABEL 101

DRV_LOGINVEC 24

DRV_RESET 37

DRV_ROVEC 29
DRV_SET 14

DRV_SETLABEL 100

DRV_SETRO 28

DRV_SPACE 46

F_ATTRIB 30
F_CLOSE 16
F_DELETE 19

CP/M PLUS SYSTEM CALLS

TABLE B-4, BDOS SYSTEM CALL SUMMARY (Cont.)
Mpemonic Number

Definition

Get Addr(DPB)

Free Drive

Free Blocks

Return Current Disk

Return Directory
Label Data

Return Login Vector

Reset Drive

Get R/0 Vector
Select Disk

Set Directory Label

Write Protect Disk

Get Disk Free Space

Set File Attributes

Close File

Delete File

B-25

Return the segment and
offset address of the
Disk Parameter Block for
the default disk of the

calling program.
For MP/M compatibility.

Free temporarily
allocated blocks in open
files.

Return the default disk
of the calling program.

Return the data byte of
the directory label for
the specified drive.

Return bit map of logged-
in disk drives.

Reset the specified
drive(s).

Return R/0 bit vector.

Set the default disk of
calling program.

Create or update a
directory label.

Set the default disk to
Read-Only.

Return unallocated space
on the specified disk
drive.

Set Disk File compatibil-
ity or interface attri-
butes.

Close a disk file as
specified in FCB.

Delete the disk file
specified by the FCB.

CP/M PLUS SYSTEM CALLS

Mnemonic _ Number
F_DMASET 26
F_ERRMODE 45
F_FLUSH 48
F_LOCK 42
F_MAKE 22
F_MULTISEC 4y
F_OPEN 15
F_PARSE 152
F_PASSWD 106
F_RANDREC 36
F_READ 20
F_READRAND 33
F_RENAME 23

TABLE B-4. BDOS SYSTEM CALL SUMMARY (Cont.)

Definition

Set DMA Address

Set BDOS Error Mode

Flush Buffers

Lock Record

Make File

Set Multisector Count

Open File

Parse Filename

Set Default Password

Set Random Record

Read Sequential

Read Random

Rename File

B-26

Set the Direct Memory
Address offset address.

Set the Error mode to
Default, Return, or
Return and Display.

Write any data in the
blocking/deblocking buf-
fers to the disk.

Assume exclusive owner-
ship of one or more con-
secutive records in the
FCB-specified disk file.

Create the disk file as
specified in the FCB.

Set the number of records
for subsequent disk
operations.

Open a disk file as
specified in FCB.

Parse an ASCII string and
initialize an FCB,

Establish a default pass-
word for file access.

Return the Random-Record
Number of the next
sequential record of a
Disk File in the
specified FCB.

Read records sequentially
from the FCB-specified
disk file.

Read the FCB-specified
record at random from a
disk file.

Rename the FCB-specified
disk file.

)

F_SFIRST

F_SIZE

F_SNEXT

F_TIMEDATE

F_TRUNCATE

F_TSTWRITE

F_UNLOCK

F_USERNUM

F_WRITE

F_WRITERAND

F_WRITEXFCB

17

35

18

102

99

0

43

21

34

103

CP/M PLUS SYSTEM CALLS

TABLE B-4, BDOS SYSTEM CALL SUMMARY (Cont.)
_Mnemonic _ Number

Definition

Search for First

Compute File Size

Search for Next

Read File Date Stamps
and Password Mode

Truncate File

Test and Write Record

Unlock Record

Set/Get User Code

Write Sequential

Write Random

Write File XFCB

Find the first file that
matches the specified
FCB.

Return the size of a disk
file in the specified
FCB.

Find the next file
matching the FCB of the
previous SEARCH FOR FIRST
call,

Return the XFCB of the
FCB-specified disk file.

Set the last file record
to the number in the
referenced FCB.

Read record before
writing to make sure it
has not changed. For
compatibility with MP/M.

Relinquish exclusive
ownership of the FCB-
specified records. For
compatibility with MP/M.

Set or return the default
user number of the
calling program.

Write records sequential-
ly to the FCB-specified
disk file.

Write the FCB-specified
record at random to a
disk file.

Create or update the XFCB
for the FCB-specified
disk file.

CP/M PLUS SYSTEM CALLS

_WRITEZF

L_WRITE

L_WRITEBLK

P_CHAIN

P_LOAD

P_RETCODE

P_TERMCPM

S_BDOSVER

S_BIOS
S_RSX
S_SCB

S_SERIAL

T_GET

40

112

47

59

108

12

50

49

107

105

Write Random with
Zero Fill

Write to List

List Block Write

Chain to Program

Load Overlay

Get/Set Program

Return Code

System Reset

Return Version Number

Direct Bios Calls
Call Resident System
Extension

Get/Set System
Control Block

Return Serial Number

Get Date and Time

Write the FCB-specified
record at random to a
disk file, filling all
previously unwritten
lower-numbered records
with zeros.

Write a character to the
default list device.

Write a block of charac-
ters to the default list
device.

Load, initialize, and
jump to the program
specified in the DMA
buffer.

Load the specified CMD
file in memory; return
its base-page segment
address.

Set Program Return Code
before terminating pro-
gram.

Terminate calling program
unconditionally, release
all owned resources.

Return BDOS version
number, CPU and operating
system type.

Call specified BIOS-
character 1/0 routine.

Transfer control to the
specified RSX.

Return or set the value
of a specified SCB field.

Return the system serial
number.

Obtain the system
calendar and clock, hours
and minutes only.

¢

CP/M PLUS SYSTEM CALLS

TABLE B-4, BDOS SYSTEM CALL SUMMARY (Cont.)

_Mnemonic Number

T_SET

Name Definition

104 Set Date and Time Set internal system cal-
endar and clock to speci-
fied value.

The table below lists the CP/M Plus system calls in
numerical order, showing the parameters a program
must pass when making the system call, and the values
it returns to the program.

TABLE B-5. BDOS SYSTEM CALL SUMMARY BY VALUE

o ESwn - O

-3

9
10

1
12
13
14
15
16
17
18
19
20
21
22
23
24
5

Name Page Mnemonic Input Parameters Returned Values
System Reset P_TERMCPM none none
Read Console C_READ none A = char
Write to Console C_WRITE E = char A = OOH
Auxiliary Input C_AUXIN none A = char
Auxiliary Output C_AUXOUT E = char A = OOH
Write to List L_WRITE E = char A = O0H
Raw Console I/0 C_RAWIO E = OFFH/ A = char/status/
OFEH/O0FDH/char
Auxiliary Input C_AUXINST none A = 00/0FFH
Status
Auxiliary Output C_AUXOUTST none A = 00/0FFH
Status
Write String C_WRITESTR DE = .String A = OOH
Read Console Buffer C_READSTR DE = .Buffer/ Chars in buffer
OFFFFH
Get Console Status C_STAT none A = 00/01
Return Version Number S_BDOSVER none HL= Version (0031H)
Reset Disk System DRV_ALLRESET none A = OOH
Select Disk DRV_GET E = Disk Number A = Err Flag
Open File F_OPEN DE = .FCB A = Dir Code
Close File F_CLOSE DE = .FCB A = Dir Code
Search for First F_SFIRST DE = .FCB A = Dir Code
Search for Next F_SNEXT none A = Dir Code
Delete File F_DELETE DE = .FCB A = Dir Code
Read Sequential F_READ DE = ,FCB A = Err Code
Write Sequential F_WRITE DE = ,FCB A = Err Code
Make File F_MAKE DE = .FCB A = Dir Code
Rename File F_RENAME DE = .FCB A = Dir Code
Return Login Vector DRV_LOGINVEC none HL= Login Vector
Return Current Disk DRV_GET none A = Cur Disk#

Note: The period (.) indicates the starting address of the specified module.

B~-29

CP/M PLUS SYSTEM CALLS

DEC HEX

26
27
28
29
30
31
32

33
34
35

36
37
38
39
40

41
42
43
uy
45
46

u7
48
49

50
59
60

98
99

1A
1B
1C
1D
1E
1F
20

21
22

23

24
25
26
27
28

29
2A
2B
2C
2D
2E

2F
30
31

32
3B
3C

62
63

100 64
101 65

102 66

103 67
104 68
105 69

Set DMA Address
Get Addr(Alloc)
Write Protect Disk
Get R/0 Vector

Set File Attributes
Get Addr(DPB)
Set/Get User Code

Read Random
Write Random
Compute File Size

Set Random Record
Reset Drive

Access Drive

Free Drive

Write Random with
Zero Fill

Test and Write Record
Lock Record

Unlock Record

Set Multisector Count

Set BDOS Error Mode

Get Disk Free Space

Chain to Program

Flush Buffers

Get/Set System
Control Block

Direct BIOS Calls

Load Overlay

Call Resident System
Extension

Free Blocks

Truncate File

Set Directory Label
Return Directory
Label Data

Read File Date Stamps
and Password Mode

Write File XFCB

Set Date and Time

Get Date and Time

F_DMASET
DRV_ALLOCVEC
DRV_SETRO
DRV_ROVEC
F_ATTRIB
DRV_DPB
F_USERNUM

F_READRAND

F_WRITERAND

F_SIZE

F_RANDREC
DRV_RESET
DRV_ACCESS
DRV_FREE
F_WRITEZF

F_TSTWRITE
F_LOCK
F_UNLOCK
F_MULTISEC
F_ERRMODE
DRV_SPACE

P_CHAIN
F_FLUSH
S_SCB

S_BIOS
P_LOAD
S_RSX

DRV_FREEBLOCKS

F_TRUNCATE

DRV_SETLABEL
DRV_GETLABEL

F_TIMEDATE

F_WRITEXFCB
T_SET
T_GET

DE = .DMA
none
none
none
DE = .FCB
none
E = OFFH/
user number
DE = .FCB
DE = .FCB
DE = .FCB
DE = .FCB
DE = Drive Vector
none
none
DE = .FCB
DE = .FCB
DE = .FCB
DE = .FCB
E = # Sectors
E = BDOS Err Mode
E = Drive number
A = Err Flag
E = Chain Flag
E = Purge Flag
DE = ,SCB PB
DE = .BIOS PB
DE = .FCB
DE = .RSX PB
none
DE = .FCB
DE = .FCB
E = Drive
DE = .FCB
DE = .FCB
DE = .DAT
DE = .DAT

%

A = OOH
HL= .Alloc
A = OOH
HL= R/0 Vector
A = Dir Code
HL = .DPB
A= Curr User/
00H
A = Err Code
A = Err Code
0. Py 02
A = Err Flag
ro, r1, r2
A = OOH
A = O0OH
A = OOH
A = Err Code
A = OFFH
A = OOH
A = O0H
A = Return Code
A = OOH
Number of Free g
Sectors
A = OOH
A = Err Flag

A = Returned Byte
HL= Returned Word

BIOS Return
A = Err Code

A = Err Code

A = OOH

A = Dir Code
A = Dir Code

A = Dir label
data byte

A = Dir Code
A = Dir Code
A = OOH

Date and Time
A = seconds

Note: The period (.) indicates the starting address of the specified module.

B-30

)

DEC HEX

106 6A
107 6B

108 6C

109 6D
110 6E

111 6F
112 70
152 98

Set Default Password
Return Serial Number

Get/Set Program
Return Code

Get/Set Console Mode

Get/Set Output
Delimiter
Write Block
List Block
Parse Filename

P_RETCODE

C_MODE
C_DELIMIT

C_WRITEBLK
L_WRITEBLK
F_PARSE

CP/M PLUS SYSTEM CALLS

DE = .Password A = OOH

DE = .Serial # Serial Number

field

DE = OFFFFH/Code HL = Program Ret Code/

none

DE = OFFFFH/Mode HL = Console Mode/none
DE = OFFFFH/ A = Qutput Delimiter/
E = Delimiter none

DE = .CCB A = OOH

DE = .CCB A = OOH

DE = .PFCB See definition

Note: The period (.) indicates the starting address of the specified module.

Abbreviations used in the above table:

Abs
Addr
Char

Con
Cond.
Ct

]

Absolute
Address

ASCII Character
Command

Console
Conditional
Count

Dir
Err
Proc
i#
Pswd
Reloc
Rec

Directory
Error
Process
Number
Password
Relocatable
Record

Rgst
Rtn
Sp
Spec.
Sys
Term.
Vect

Request
Return
Space
Specified
System
Termination
Vector

B-31

—_—?

BDOS CONSOLE I/O

DOS CONSOLE I/0 ’

Console I/0 system calls can be divided into four
categories: basic console I/0, direct console I/0,
buffered console input, and special console
functions.

Using the basic console I/0 system calls, programs
can access the console device for simple input and
output. The basic console-I/0 system calls are:

1 C_READ Inputs a single character

2 C_WRITE Outputs a single character

9 C_WRITESTR Outputs a string of characters

11 C_STAT Signals if a character is ready for input
111 C_WRITEBLK Outputs a block of characters

The input system call echoes the character to the
console so that the user can identify the typed
character. The output system calls expand tabs in
columns of eight characters.

The basic I/0 system calls also monitor the console

to stop and start console output scroll at the user's

request. If the user types a CTRL-S., these system _
calls suspend execution. Execution and console ér
scrolling resume when the user types a CTRL-Q.

When the BDOS is waiting because of a CTRL-S, it
scans input for three special characters: CTRL-Q,
CTRL-C, and CTRL-P. If the user types any other
character, the BDOS transmits a bell character (CTRL-
G) to the console, discards the input character, and
continues to wait. If the user types a CTRL-C, the
BDOS executes a warm start which terminates the
calling program. If the user types a CTRL-P, the
BDOS toggles the printer echo switch. The printer
echo switch controls whether console output is
automatically echoed to the list device (LST:). The
BDOS signals when it turns on printer echo by sending
a bell character to the console.

All basic console I/0 system calls discard any CTRL-Q
or CTRL-P character that is not preceded by a CTRL-S
character. Thus, the C_READ BDOS system call cannot
read a CTRL-S, CTRL-Q, or CTRL-P character.
Furthermore, these characters are invisible to the
C_STAT system call.

B-32

Console I/0 System Calls

C_AUXIN

SYSTEM CALL 3:

Entry Parameters:
Register G2

Returned Value:
Register A:

AUXILIARY INPUT

03H

ASCII Character

BDOS CONSOLE I/0

C_AUXIN reads the next character from the logical
auxiliary input device (AUXIN:) into register A.
Control does not return to the calling program until
the character is read.

SYSTEM CALL 7T:

C_AUXINST

Entry Parameters:
Register C: OF7H

Returned Value

AUXILIARY INPUT STATUS

Register A: Auxiliary Input Status

C_AUXINST returns the value OFFH in register A if a
character is ready for input from the logical

auxiliary input device (AUXIN:).
ready for input,

B-33

If no character is
the value O0H is returned.

BDOS CONSOLE I/O

e e e e -
! !
! C_AUXOUT !
! !
! SYSTEM CALL 4: AUXILIARY OUTPUT !
l !
o e ———————— -
! |
| Entry Parameters: !
! Register C: O4H !
! Register E: ASCII Character !
| |
o e e e e e e e e e e +

C_AUXOUT sends the ASCII character from register E to
the logical auxiliary output device (AUXOUT:).

C_AUXOUTST
SYSTEM CALL 8: AUXILIARY OUTPUT STATUS

- - — - — - -

+
!
! Entry Parameters:

! Register C: 08H
!

!

!

!

Returned Value:
Register A: Auxiliary Output Status

C_AUXOUTST returns the value OFFH in register A if
the logical auxiliary output device (AUXOUT:) is
ready to accept a character for output. If the
device is not ready for output, the value O0OH is
returned.

B-34

BDOS CONSOLE I/O

Returned Value
Register A

¢ Output Delimiter or
(no value)

o ————————— - - - -
! |
1 C_DELIMIT !
! l
1 SYSTEM CALL 110: GET/SET OUTPUT DELIMITER !
| 1
e e e e e e e
1

Entry Parameters: !
Register C: 6EH |

Register DE: OFFFFH (Get) or !

|

!

|

1

1

1

!
!
l
!
| E: Output Delimiter (Set)
!
l
!
|
!

C_DELIMIT sets or interrogates the string delimiter
for C_WRITESTR (Print String). The default delimiter
value is a dollar sign ($). The CCP restores the
Output Delimiter to the default value when a
transient program is loaded.

If register pair DE = OFFFFH, then the current Output
Delimiter is returned in register A, Otherwise
C_DELIMIT sets the Output Delimiter to the value
contained in register E.

o e e - e e -+
! !
! C_MODE !
! !
! SYSTEM CALL 109: GET/SET CONSOLE MODE l
! !
R R e e -
! !
| Entry Parameters: !
! Register C: 6DH !
! Register DE: OFFFFH (Get) or !
! Console Mode (Set) I
! !
! Returned Value: |
! Register HL: Consocle Mode or 1
! (no value) !
! !
o o ————————— et 2

A program can set or interrogate the Console Mode by
calling C_MODE. If register pair DE = OFFFFH, then
the current Console Mode is returned in register HL.
Otherwise C_MODE sets the Console Mode to the value
contained in register pair DE.

B-35

BDOS CONSOLE I/O

The Console Mode is a 16-bit system parameter that
determines the action of certain BDOS Console I/0
system calls. The definition of the Console Mode is:

TABLE B-6. CONSOLE~MODE BIT DEFINITION
DEFINITION

bit 0 If this bit is set, the C_STAT system call returns true only
if a CTRL-C is typed at the console. Programs that make
repeated console status calls to test if execution should be
interrupted can set this bit to interrupt on CTRL-C only.
The CCP built-in commands DIR and TYPE run in this mode,

bit 1 Setting this bit disables stop and start scroll support for
the basic console I/0 system calls, which comprise the first
category of system calls described in this section. When
this bit is set, the C_READ system call reads CTRL-S, CTRL-
Q, and CTRL-P; and the C_STAT system call returns true if
the user types these characters. Use this mode in
situations where raw console input and edited output are
needed. While in this mode, you can use the C_RAWIO system
call for input and input status; and the C_READ, C_WRITESTR.
and C_WRITEBLK system calls for output without the
possibility of the output system calls intercepting input
CTRL-S, CTRL-Q, or CTRL-P characters.

[

bit 2 Setting this bit disables tab expansion and printer echo
support for the C_WRITE, C_WRITESTR, and C_STAT system
calls. Use this mode when nonedited output is required.

bit 3 This bit disables all CTRL-C intercept action in the BDOS.
This mode is useful for programs that must control their own
termination.

bits 8 The BDOS reserves these bits for the CP/M Plus GET RSX that

and 9 performs console input redirection from a file. With one
exception, these bits determine how the GET RSX responds to
a program console-status request (the C_RAWIO, C_STAT, or
S_BIOS system calls).

bit 8 = 0, bit 9 = 0 conditional status
bit 8 = 0, bit 9 = 1 false status
bit 8 = 1, bit 9 = 0 true status

bit 8 = 1, bit 9 = 1 do not perform redirection

Note: The Console Mode bits are numbered from right to left.

In conditional status mode, GET responds false to all

status requests except for a status call preceded

immediately by another status call. On the second

call, GET responds with a true result. Thus, a cr
program that spins on status to wait for a character

is signaled that a character is ready on the second

B-36

BDOS CONSOLE I/0

call, In addition, a program that makes status calls
periodically to see if the user wants to stop is not
signaled.

When a transient program begins execution, the
Console Mode bits are normally set to zero. However,
the CP/M Plus utility GENCOM can attach an RSX header
to a .COM file so that when it is loaded, the console
mode bits are set differently. This feature allows
you to modify a program's console I/0 behavior
without having to change the program.

+
1

| C_RAWIO

1

! SYSTEM CALL 6: DIRECT CONSOLE I/O
|

1

1

1

|

1

- +
| |
! Entry Parameters: !
I Register C: O06H !
! Register E: OFFH (input/status) or 1
! OFEH (status) or |
| OFDH (input) or 1
1 char (output) |
| 1
1 Returned Value: !
! |
! !
! 1
+

Register A: char or status
(no value)

C_RAWIO can provide direct console I/0 in situations
where unadorned console I/0 is required. C_RAWIO
actually consists of several subsystem calls that
support direct console input, output, and status
checks. The BDOS does not filter out special
characters during direct console I/0. The direct-
output subsystem call does not expand tabs, and the
direct-input subsystem call does not echo typed
characters to the console.

Use direct console I/0 carefully because it bypasses
all the normal control-character functions. Programs
that perform direct I/0 through the BIOS under
previous releases of CP/M should be changed to use
direct 1/0 so that they can be fully supported under
future releases of MP/M and CP/M.

A program calls C_RAWIO by passing one of four

different values in register E. The values and their
meanings are summarized in the following table.

B-37

BDOS CONSOLE I/0

IABLE B-7. C RAWIO ENTRY PARAMETERS
Register
E value Meaning

OFFH Console input/status command returns an input character; if
no character is ready, a value of zero is returned.

OFEH Console status command (On return, register A contains 00 if
no character is ready; otherwise it contains FFH.)

OFDH Console input command, returns an input character; this
function will suspend the calling process until a character
is ready.

ASCIT C_RAWIO assumes register E character contains a valid
ASCII character and sends it to the console.

C_READ
SYSTEM CALL 1: CONSOLE INPUT

Entry Parameters:
Register C: 0O1H

Returned Value:
Register A: ASCII Character

C_READ reads the next character from the logical
console (CONIN:) to register A. Graphic characters,
along with carriage return, line feed, and backspace
(CTRL-H) are echoed to the console. Tab characters
(CTRL-I) are expanded in columns of 8 characters.
CTRL-S, CTRL-Q, and CTRL-P are normally intercepted
as described below. All other nongraphic characters
are returned in register A but are not echoed to the
console.

When the Console Mode is in the default state (see
C_MODE), C_READ intercepts CTRL-S, CTRL-Q, and CTRL-P
characters. Any characters that are typed following
a CTRL-S, and preceding a CTRL-Q are also
intercepted. However, if start/stop scroll has been
disabled by the Console Mode, the CTRL-S, CTRL-Q, and
CTRL-P characters are not intercepted. Instead, they
are returned in register A, but are not echoed to the
console,

B-38

[N

A

BDOS CONSOLE I/O0

If printer echo has been invoked, all characters that
are echoed to the console are also sent to the list
device (LST:).

C_READ does not return control to the calling program

until a nonintercepted character is typed, thus
suspending execution if a character is not ready.

C_READSTR
SYSTEM CALL 10: READ CONSOLE BUFFER

-

1
1
1
!
1
!
I
I
1
1
1
1
L}
1
I
I
I
1
1
1
1
1
1
1
1
1
1
'
]
1
1
I
I
!
I
'
1
i
1
1
1
1
1
1
I
I
1
i

Entry Parameters:
Register C: OAH
Registers DE: Buffer Address

Returned Value: Console Characters
in Buffer

]
]
1
1
)
1
1
1
1
1
1
I
1
]
1
I
I
|
I
t
|
1
|
1
1
1
1
1
1
1
I
1
I
!
:
I
I
]
1
1
I
!
!
1
1
1
1
1

R S o

C_READSTR reads a line of edited console input from
the logical console (CONIN:) to a buffer that
register pair DE addresses. It terminates input and
returns to the calling program when it encounters a
return (CTRL=M) or a line feed (CTRL-J) character.
C_READSTR also discards all input characters after
the input buffer is filled. In addition, it outputs
a bell character (CTRL-G) to the console when it
discards a character to signal the user that the
buffer is full. The input buffer addressed by DE has
the following format:

DE: +0 +1 +2 +3 +4 +5 +6 +7 +8 M +n

ImxInclcllc2lc3iclleS51lcbleT! oMalie 12?71

where mx is the maximum number of characters which
the buffer holds, and nc is the number of characters
placed in the buffer. The characters entered by the
operator follow the nc value, The value mx must be
set prior to making a C_READSTR call and may range in
value from 1 to 255. Setting mx to zero is
equivalent to setting mx to one. The value nc is
returned to the calling program and may range from
zero to mx. If nc < mx, then uninitialized positions
follow the last character, denoted by 7?7 in the
figure.. Note that a terminating return or line-feed

B-39

BDOS CONSOLE I/0

character is not placed in the buffer and not
included in the count nec.

If register pair DE is set to zero, C_READSTR assumes
that an initialized input buffer is located at the
current DMA address (see F_DMASET). This allows a
program to put a string on the screen for the user to
edit. To initialize the input buffer, set characters
¢l through cn to the initial value followed by a
binary zero terminator.

When a program calls C_READSTR with an initialized
buffer, it operates as if the user had typed in the
string. When C_READSTR encounters the binary zero
terminator, it accepts input from the console. At
this point the user can edit the initialized string
or accept it as it is by pressing the RETURN key.
However, if the initialized string contains a
carriage return (CTRL-M) or a line-feed (CTRL-J)
character, C_READSTR returns to the calling program
without giving the user the opportunity to edit the
string. The edit control characters are summarized
in the table below.

C_READSTR also filters input for certain control
characters. If the user types a CTRL-C as the first
character in the line, C_READSTR terminates the
calling program by branching to the BIOS warm=-start
entry point. A CTRL-C in any other position is
simply echoed at the console. C_READSTR also watches
for a CTRL-P keystroke, and if it finds one at any
position in the command line, it toggles the printer
echo switch., C_READSTR does not filter CTRL-S and
CTRL-Q characters, but accepts them as normal input.
In general, it accepts all control characters that it
does not recognize as editing control characters as
input characters. C_READSTR identifies a control
character with a leading caret (*) when it echoes the
control character to the console. Thus, CTRL-C
appears as “C in a C_READSTR command line on the
screen,

B-40

rub/del

CTRL~-A
CTRL-B

CTRL-F

CTRL~-M

CTRL-R

BDOS CONSOLE I/0

Removes and echoes the last character if at the end of the
line; otherwise deletes the character to the left of the
current cursor position; GENCPM can change this function
to CTRL-H.

Moves cursor one character to the left.

Moves cursor to the end of the line when at the beginning;
otherwise moves cursor to the beginning of the line.

Reboots when at the beginning of line; the Console Mode
can disable this function.

Causes physical end-of-line; if the cursor is positioned
in the middle of a line, the characters at, and to the
right of, the cursor are displayed on the next line.

Moves cursor one character to the right.

Deletes the character at the current cursor position when
in the middle of the line; has no effect when the cursor
is at the end of the line.

Backspaces one character position when positioned at the
end of the line; otherwise deletes the character to the
left of the cursor; GENCPM can change this function to
rub/del.

(Line feed) terminates input; the cursor can be positioned
anywhere in the line; the entire input line is accepted;
sets the previous line buffer to the input line.

Deletes all characters to the right of the cursor along
with the character at the cursor.

(Return) terminates input; the cursor can be positioned
anywhere in the line; the entire input line is accepted;
sets the previous line buffer to the input line.

Echoes console output to the list device.

Retypes the characters to the left of the cursor on the
new line.

B-41

BDOS CONSOLE I/O

CTRL-U

CTRL-W

Updates the previous line buffer to contain the characters
to the left of the cursor; deletes current line, and
advances to new line.

Recalls previous line if current line is empty; otherwise
moves cursor to end of line.

Deletes all characters to the left of the cursor.

C_READSTR uses the console width field defined in the
System Control Block. If the console width is
exceeded when the cursor is positioned at the end of
the line, C_READSTR automatically advances to the
next line. The beginning of the line can be edited
by entering a CTRL=R.

When a character is typed while the cursor is
positioned in the middle of the line, the typed
character is inserted into the line, Characters at,
and to the right, of the cursor are shifted to the
right. If the console width is exceeded, the
characters disappear off the right of the screen.
However, these characters are not lost. They
reappear if characters are deleted out of the line,
or if a CTRL-E is typed.

C_STAT
SYSTEM CALL 11: GET CONSOLE STATUS

e e v

+

!

| Entry Parameters:

! Register C: OBH
!
!
!
l

Returned Value:
Register A: Console Status

- b b e - e

C_STAT checks to see if a character has been typed at
the logical console (CONIN:). If the Console Mode is
in the default state (see C_MODE), C_STAT returns the
value O1H in register A when a character is ready.

If a character is not ready, it returns a value of
00H.

B-42

P

BDOS CONSOLE I/0

If the Console Mode is in CTRL-C Only Status mode,
C_STAT returns the value 01H in register A only if a
CTRL-C has been typed at the console.

o +
! !
! C_WRITE !
! !
! SYSTEM CALL 2: CONSOLE OUTPUT 1
! |
o o o +
! !
H Entry Parameters: !
! Register G 02H |
| Register E: ASCII Character |
! !
o +

C_WRITE sends the ASCII character from register E to
the logical console device (CONOUT:). When the
Console Mode is in the default state (see C_MODE),
C_WRITE expands tab characters (CTRL-I) in columns of
8 characters; checks for CTRL-S, CTRL-Q, and echoes
characters to the logical list device (LST:) if
printer echo (CTRL-P) has been invoked.

[—————— et bl

+

I

! C_WRITEBLK

]

! SYSTEM CALL 111: PRINT BLOCK
!

- -

+
!

l Entry Parameters:

! Register C: 6FH

| Register DE: CCB Address
l
!
!

Returned Value: None

C_WRITEBLK sends the character string located by the
Character Control Block (CCB) addressed in register
pair DE to the logical console (CONOUT):. If the
Console Mode is in the default state (see C_MODE),
C_WRITEBLK expands tab characters (CTRL-I) in columns
of eight characters. It also checks for stop scroll
(CTRL-S), start scroll (CTRL-Q), and echoes it to the
logical list device (LST:) if printer echo (CTRL-P)
has been invoked.

B-43

BDOS CONSOLE I/O

The CCB format is: L AT W NS hus 07 Jodia g
I ADDR ! LENGTH I
- ————— - o +

ADDR : Address of character string
LENGTH : Length of character string

C_WRITESTR
SYSTEM CALL 9: PRINT STRING

o e e e e e e e e e e e e +
! . !
! Entry Parameters: !
! Register C: O09H !
! Registers DE: String Address !
! !
e e e e e e e e e -

C_WRITESTR sends the character string addressed by
register pair DE to the logical console (CONOUT:)
until it encounters a delimiter in the string. The
default delimiter is a dollar sign ($) but it can be
changed to any other value by C_DELIMIT. If the
Console Mode is in the default state (see C_MODE),
C_WRITESTR expands tab characters (CTRL-I) in columns
of 8 characters. It also checks for CTRL-S, CTRL-Q,
and echoes to the logical l1ist device (LST:) if
printer echo (CTRL-P) has been invoked.

B-4y

BDOS FILE SYSTEM

BDOS FILE SYSTEM

The BDOS file system supports four categories of
system calls: file-access system calls, directory
system calls, drive-related system calls, and
miscellaneous system calls. The file access category
includes system calls to create a file (F_MAKE), open
an existing file (F_OPEN), and close a file
(F_CLOSE). Both the F_MAKE and F_OPEN system calls
activate the file for subsequent access by BDOS file-
access system calls. The BDOS read and write system
calls are file-access system calls that operate
either sequentially or randomly by record position.
They transfer data in units of 128 bytes, which is
the basic record size of the file system. The
F_CLOSE system call makes any necessary updates to
the directory to permanently record the status of an
activated file.

File-Naming Conventions

Under CP/M Plus, a file specification consists of
four parts: the drive specifier, the filename field,
the filetype field, and the file password field. The
general format for a command line file specification
is shown below:

{d:}filename{.typ}{;password}

The drive-specifier field specifies the drive where
the file is located. The filename and type fields
identify the file. The password field specifies the
password if a file is password-protected.

The drive, type, and password fields are optional,
and the delimiters : ., ; are required only when
specifying their associated field. The drive
specifier can be assigned a letter from A to P where
the actual drive letters supported on a given system
are determined by the BIOS implementation. When the
drive letter is not specified, the current default
drive is assumed.

The filename and password fields can contain one to
eight nondelimiter characters. The filetype field
can contain one to three nondelimiter characters,
All three fields are padded with blanks, if
necessary. Omitting the optional type or password
fields implies a field specification of all blanks.

The CCP calls the F_PARSE system call to parse file
specifications from a command line. See F_PARSE for

B-45

BDOS FILE SYSTEM

details of the operation of this system call.

It is not mandatory to follow the file-naming
conventions of CP/M Plus when you create or rename a
file with system calls. However, the conventions
must be used if the file is to be accessed from a
command line. For example, the CCP cannot locate a
command file in the directory if its filename or
filetype field contains a lowercase letter.

As a general rule, the filetype field names the
generic category of a particular file, while the
filename distinguishes individual files in each
category. The following list of filetypes names some
of the generic categories that have been established
by usage convention.

ASM Assembler Source PLI PL/I Source File
PRN Printer Listing REL Relocatable Module
HEX Hex Machine Code TEX TEX Formatter Source

BAS Basic Source File BAK ED Source Backup
INT Intermediate File SYM SID Symbol File

COM Command File $$$ Temporary File
PRL Page Relocatable DAT Data File
SPR Sys. Page Reloec. SYS System File

Disk and File Organization

The BDOS file system can support from 1 to 16 logical
drives. The maximum file size supported on a drive
is 32 megabytes. The maximum capacity of a drive is
determined by the data-block size specified for the
drive in the BIOS. The data-block size is the basic
unit in which the BDOS allocates disk space to files.

Logical drives are divided into two regions: a
directory area and a data area., The directory area
contains entries that define which files exist on the
drive. The directory entries corresponding to a
particular file define those data blocks in the
drive's data area that belong to the file. These
data blocks contain the file's records.

Each disk file consists of a set of up to 262,144
128-byte records. Each record in a file is identified
by its position in the file. This position is called
the record's random record number. If a file is
created sequentially, the first record has a position
of zero, while the last record has a position one
less than the number of records in the file. Such a
file can be read sequentially in record pesition
order beginning at record zero, or randomly by record {
position. Conversely, if a file is created randomly,
records are added to the file by specified position.

B-46

BDOS FILE SYSTEM

A file created in this way is called sparse if
positions exist within the file where a record has
not been written.

The BDOS automatically allocates data blocks to a
file to contain its records on the basis of the
record positions consumed. Thus, a sparse file that
contains two records, one at position zero, the other
at position 262,143. consumes only two data blocks in
the data area. Sparse files can only be created and
accessed randomly, not sequentially. Note that any
data block allocated to a file is permanently
allocated to the file until the file is deleted or
truncated. These are the only mechanisms supported
by the BDOS for releasing data blocks belonging to a
file.

Source files under CP/M Plus are treated as a
sequence of ASCII characters, where each line of the
source file is followed by a carriage-return line-
feed sequence, ODH followed by OAH. Thus, a single
128-byte record could contain several lines of source
text. The end of an ASCII file is denoted by a CTRL-
Z character (1AH) or a real end-of-file, returned by
the BDOS read operation. CTRL-Z characters embedded
within machine code files such as .COM files are
ignored. The actual end-of-file condition returned
by the BDOS is used to terminate read operations.

File Control Block Definition

The File Control Block (FCB) is a data structure that
is set up and initialized by a transient program, and
then used by file access and directory system calls
called by the transient program, Thus, the FCB is an
important communication channel between the BDOS and
a transient program. For example, when a program
opens a file, and subsequently accesses it with BDOS
read and write system calls, the BDOS file system
maintains the current file state and position within
the program's FCB. Some BDOS system calls use
certain fields in the FCB for invoking special
options. Other BDOS system calls use the FCB to
return data to the calling program. In addition, all
BDOS random-I1/0 system calls specify the random
record number with a three-byte field at the end of
the FCB.

When a transient program makes a file access or
directory BDOS system call, register pair DE must
address an FCB. The length of the FCB data area
depends on the system call., For most system calls,
the required length is 33 (21H) bytes. For the
F_READRAND and F_WRITERAND system calls, the

B-47

BDOS FILE SYSTEM

F_TRUNCATE system call, and the F_SIZE system call,
the FCB length must be 36 (24H) bytes. The FCB
format is shown below:

" 4
+ *

r o < e
+ - - L

OOH IDrivel 1 f£2 3 f% 5 6 ...

T

O8H ...f8 1 t1 t2 3

ex | reserved ! rc

< -

10H

+ o

-+

reserved for system |use

18H

e s e s o

i " " i
- ¥ - ¥ o

reserved for system use

L e s e o

20H ! cr

i Rand&m Recérd # ; ro i ri i re

 S—

- T

TABLE B-9. FCB FIELD DEFINITIONS

Explanation

f1...f8

t1,t2,t3

reserved

Drive code (0 - 16)

0 => use default drive for file
1 => auto disk select drive A,
2 => auto disk select drive B,

16=> auto disk select drive P.

-y

Contain the filename in ASCII uppercase, with high
bit = zero. f1', ..., f8' denote the high-order bit of
these positions, and are file attribute bits.

Contain the filetype in ASCII uppercase, with high bit
= zero'. t1', t2', and t3' denote the high-order bit of
these positions, and are file attribute bits.

A B 1 => Read/Only file

t2' = 1 => System file

t3' = 1 => File has been archived

Contains the current extent number, usually set to zero
by the calling program, but can range zero - 31 during
file I/0.

mnn

Reserved for internal system use.

Record count for extent "ex" takes on values from 0 -

?gg)(values greater than 128 imply record count equals

Current record to read or write in a sequential file
operation, normally set to zero by the calling program
when a file is opened or created.

e .

BDOS FILE SYSTEM

_TABLE B-9. FCB FIELD DEFINITIONS (Cont.)

FCB Field

Explanation

Random
Record #

Optional random record number from 0 to 262,143 (0 -
3FFFFH). Random Record # constitutes an 18-bit value
with low byte r0, middle byte r1, and high byte r2.

For BDOS directory system calls, the calling program
must initialize bytes 0 through 11 of the FCB before
issuing the system call. The DRV_SETLABEL and
F_WRITEXFCB system calls also require the calling
program to initialize byte 12. The F_RENAME system
call requires the calling program to place the new
filename and type in bytes 17 through 27.

BDOS F_OPEN and F_MAKE system calls require the
calling program to initialize bytes 0 through 12 of
the FCB before making the call. Usually byte 12 is
set to zero. In addition, if the file is to be
processed from the beginning using sequential read or
write system calls, byte 32 (cr) must be zeroed.

After an FCB is activated by an F_OPEN or F_MAKE
system call, a program does not have to modify the
FCB to perform sequential read or write operations.
In fact, bytes 0 through 31 of an activated FCB must
not be modified. However, the F_READRAND and
F_WRITERAND system calls require that a program set
bytes 33 through 35 to the requested random record
number prior to making the system call,

File directory entries maintained in the directory
area of each disk have the same format as FCBs,
excluding bytes 32 through 35, except for byte 0
which contains the file's user number. Both the
F_OPEN and F_MAKE system calls bring these entries,
excluding byte 0, into memory in the FCB specified by
the calling program. All read and write operations
ona file must specify an FCB activated in this
manner.

The BDOS updates the memory copy of the FCB during
file processing to maintain the current position
within the file. During file write operations, the
BDOS updates the memory copy of the FCB to record the
allocation of data to the file, and at the
termination of file processing, the F_CLOSE system
call permanently records this information on-disk.

Note: Data allocated to a file during file write
operations is not completely recorded in the
directory until the calling program issues an F_CLOSE
system call. Therefore, a program that creates or

B-49

___——————————————————1-!!ﬂr

BDOS FILE SYSTEM

modifies files must close the files at the end of any
write processing; otherwise data might be lost.

File Attributes

The high-order bits of the FCB filename (f1',...,f8")
and filetype (t1',t2',t3') fields are called the
Attribute Bits. Attribute Bits are one-bit Boolean
fields (1 = on, 0 = off), that indicate two kinds of
attributes within the file system: File Attributes
and Interface Attributes.

The File Attribute Bits (f1',...,f4' and £, 520, 3%
can indicate that a file has a defined file
attribute. These bits are recorded in a file's
directory FCBs. File attributes can be set or reset
only by the F_ATTRIB system call. When the F_MAKE
system call creates a file, it initializes all file
attributes to zero. A program can interrogate file
attributes in an FCB activated by the F_OPEN system
call, or in directory FCBs returned by the F_SFIRST
and F_SNEXT system calls.

Note: The BDOS file system ignores File Attribute
Bits when it attempts to locate a file in the ‘
directory. |

TABLE B-10, FILE ATTRIBUTE BITS
Bit Name Definition

t1': Read-Only attribute - The file system prevents write
operations to a file with the Read-Only attribute set.

t2': System attribute - This attribute, if set, identifies the
file as a CP/M Plus system file. System files are not
displayed by the CP/M Plus DIR command. In addition, user-
zero system files can be accessed on a Read-Only basis from
other user numbers.

t3*: Archive attribute - This attribute is designed for user-
written archive programs. When an archive program copies a
file to backup storage, it sets the archive attribute of the
copied files. The file system automatically resets the
archive attribute of a directory FCB that has been issued a
write command. The archive program can test this attribute
in each of the file's directory FCBs via the F_SFIRST and
F_SNEXT system calls. If all directory FCBs have the
archive attribute set, it indicates that the file has not
been modified since the previous archive. Note that the
CP/M Plus PIP utility supports file archival.

B-50

BDOS FILE SYSTEM

TABLE B-10. FILE ATTIRIBUIE BITS (Cont.)
Bit = Name = Defipition -

f1',...,f4': User-definable attributes.

f5',...,f8": Interface attributes.
These attributes cannot be used as file attributes.
Interface attributes f5' and f6' can request options for the
F_MAKE, F_CLOSE, F_DELETE, and F_ATTRIB system calls. The
table below defines options indicated by the f5' and f6'
Interface Attribute Bits for these system calls.

16 F_CLOSE f5' = 1 : Partial Close

19 F_DELETE f5' = 1 : Delete file XFCBs
only

22 F_MAKE f6' = 1 : Assign password to
file

30 F_ATTRIB f6' = 1 : Set file byte count

Each interface attribute is discussed in detail in
the definitions of the above system calls.
Attributes f5' and f6' are always reset when control
is returned to the calling program. Interface
attributes f7' and f8' are reserved for internal use
by the BDOS file system.

User Number Conventions

The CP/M Plus User facility divides each drive
directory into 16 logically independent directories,
designated as user 0 through user 15. Physically,
all user directories share the directory area of a
drive. In most other aspects, however, they are
independent. For example, files with the same name
can exist on different user numbers of the same drive
with no conflict. However, a single file cannot
reside under more than one user number.

Only one user number is active for a program at one
time, and the current user number applies to all
drives on the system. Furthermore, the FCB format
does not contain any field that can be used to
override the current user number. As a result, all
file and directory operations reference directories
associated with the current user number. However, it

B-51

BDOS FILE SYSTEM

is possible for a program to access files on
different user numbers; this can be accomplished by
changing the user number with the F_USERNUM system
call before accessing the desired file. Changing the
user number in this way does not affect the CCP's
user number displayed in the system prompt. When the
transient program terminates, the original user
number is restored. However, an option of the
P_CHAIN system call allows a program to pass its
current user number and default drive to the chained
program. Note that this technique must be used
carefully. An error occurs if a program attempts to
read or write to a file under a user number different
from the user number that was active when the file
was opened.

User zero has special properties under CP/M Plus.
When the current user number is not equal to zero,
and if a requested file is not present under the
current user number, the file system automatically
attempts to open the file under user zero. If the
file exists under user zero, and if it has the system
(SYS) attribute bit (t2') set, the file is opened
from user zero. Note, however, that files opened in
this way are available only for read access. As a
result, commonly needed utilities need not be copied
to all user numbers on a directory, and you can
control which user zero files are directly accessible
from other user numbers.

Directory Labels and XFCBs

The BDOS file system includes two special types of
FCBs: the XFCB and the Directory Label. The XFCB is
an extended FCB that optionally can be associated
with a file in the directory. If present, it
contains the file's password. The format of the XFCB
follows.

B-52

BDOS FILE SYSTEM

dr« i} name. ..

O0H I i
OBH...nameT i type1 i pm i s1 i s2 ; re i i
10H ; ; ; pass;ord . : v i
18H i : : : rese;ved y . Y !
XFCB FORMAT
dree———— drive code (0 - 16)

name----filename field
type--—-filetype field
PM===—==password mode
bit 7--Read mode
bit 6--Write mode
bit 5--Delete mode
#¥ebit references are right to left,
relative to zero
s1,82,rc--reserved for system use
password--eight-byte password field (encrypted)
reserved--eight-byte reserved area

*) An XFCB can be created only on a drive that has a

: directory label, and only if the directory label has
password protection activated. For drives in this
state, an XFCB can be created for a file in three
ways: by the F_MAKE system call, by the F_WRITEXFCB
system call, or by typing a SET command at the
console., The F_MAKE system call creates an XFCB if
the calling program requests that a password be
assigned to the created file. The F_WRITEXFCB system
call can be used to assign a password to an existing
file.

Note: In the directory, an XFCB is identified by a
drive byte value (byte 0 in the FCB) equal to 16
(10H) + N, where N equals the user number.

For each drive the directory label specifies if file
password support is to be activated, and if date and
time stamping for files is to be performed. The
format of the Directory Label follows.

B-53

BDOS FILE SYSTEM

+

+ " 3 +
- 'r b

OOH i dr i . 'name.:... . 3)
OBH...nameT_ :type j ; dl i s1 i s2 | re i i
SRR IR T o ot . . f
oy ER R TR e SRR

+

4 i 3 " i
+ + T T b e b

DIRECTORY LABEL FORMAT

S drive code (0 - 16)
name--------Directory Label name
type===----=Directory Label type

(o Directory Label data byte

bit T--require passwords for password-
protected files

bit 6--perform access time stamping

bit 5--perform update time stamping

bit Y4--perform create time stamping

bit O--Directory Label exists

E bit references are right to
left, relative to zero

s1,82.rc-——n/a

password--—-eight-byte password field (encrypted)

tsi1 four-byte creation or access time-stamp field
ts2 ---four-byte update time-stamp field

Only one Directory Label can exist in a drive's
directory. The Directory Label name and type fields
are not used to search for a Directory Label; they
can be used to identify a disk. A Directory Label
can be created, or its fields can be updated by the
DRV_SETLABEL system call. This system call can also
assign a Directory Label a password. The Directory
Label password, if assigned, cannot be circumvented,
whereas file password protection is an option
controlled by the Directory Label. Thus, access to
the Directory Label password provides a kind of
super-user status on that drive. That is, any
password-protected file can be read simply by setting
the Directory-Label Data Byte bit seven to zero,
disabling password protection for the whole drive.
However, this can be prevented by assigning a
password to the Directory Label itself with the SET
command.

The BDOS file system has no system call to read the
Directory Label FCB directly. However, the
Directory-Label data byte can be read directly with
DRV_GETLABEL. In addition, the F_SFIRST and F_SNEXT
system calls with a ? in the FCB drive byte can be
used to find the Directory Label on the default
drive, In the directory, the Directory Label is

B-54

|
|
)

BDOS FILE SYSTEM

identified by a drive byte value (byte zero in the
FCB) equal to 32 (20H).

File Date and Time Stamps

The CP/M Plus File System uses a special type of
directory entry called an SFCB to record date and
time stamps for files. When a directory has been
initialized for date and time stamping by invoking
the INITDIR utility, SFCBs reside in every fourth
position of the directory. Each SFCB maintains the
date and time stamps for the previous three directory
entries as shown in the figure below.

FCB 0

FCB 1

FCB 2

SRS I I

s
e
b
T

stamps for | stamps for | stamps for IXXI
feb 0 ! fcb 1 §" .febi2 1XX1

i i
T T

FIGURE B-6. DIRECTORY RECORD WITH SFCB

This figure shows a directory record that contains an
SFCB. Directory records consist of four directory
entries, each 32 bytes long. SFCBs always occupy the
last position of a directory record.

The SFCB directory item contains five fields. The
first field is one byte long and contains the value
21H. This value identifies the SFCB in the
directory. The next three fields, the SFCB
subfields, contain the date and time stamps for their
corresponding FCB entries in the directory record.
These fields are ten bytes long. The last byte of
the SFCB is reserved for system use. The format of
the SFCB subfields is shown below.

B-55

BDOS FILE SYSTEM

OH 1H 5H O9H OAH OBH
IMAR- | UPDATE STAMP | "ACCESS/CREATE IP/W IRESER!
IKER | (FCB 0) ! (FCB 0) IMODE | -VED!
j ! UPDATE STAMP | ACCESS/CREATE IP/W IRESER!
OBH ! (FCB 1) ! (FCB 1) IMODE ! ~VED!

| UPDATE STATE | "ACCESS/CREATE IP/W | RESERVED !
150 |

(FCB 2) ! (FCB 2) IMODE | I

———

i
T T T -

An SFCB subfield contains valid information only if
its corresponding FCB in the directory record is an
extent-zero FCB. In other words, the FCB referenced
by the SFCB is a file's first directory entry. For
password-protected files, the SFCB subfield also
contains the password mode of the file. This field
is zero for files that are not password-protected.
The F_SFIRST and F_SNEXT system calls can be used to
access SFCBs directly. In addition, the F_TIMEDATE
system call can return the date and time stamps and
password mode for a specified file. Refer to
F_TIMEDATE for a description of the format of a date
and time stamp field.

CP/M Plus supports three types of file stamping:
create, access, and update. Create stamps record
when the file was created, access stamps record when
the file was last opened, and update stamps record
the last time the file was modified. Create and
access stamps share the same field. As a result,
file-access stamping and file-create stamping are
mutually exclusive. Turning on file-access stamping
with the SET command, for example, automatically
turns off file-create stamping if it is enabled.

The CP/M Plus utility, INITDIR, initializes a
directory for date and time stamping by placing SFCBs
in every fourth directory entry. Date and time
stamping will not work on disks that have not been
initialized in this manner. For initialized disks
the Directory Label determines the type of date and
time stamping supported for files on the drive. If a
disk does not have a Directory Label, or if it is
Read-Only, or if the disk's Directory Label does not
specify date and time stamping, then date and time
stamping for files is not performed.

Note: The Directory Label is also time-stamped, but
these stamps are not made in an SFCB. The time-stamp
fields in the last eight bytes of the Directory Label
record when it was created and last updated. Access
stamping for Directory Labels is not supported.

B-56

BDOS FILE SYSTEM

The BDOS file system uses the CP/M Plus system date
and time when it records a date and time stamp. This
value is maintained in a field in the System Control
Block (SCB). The BIOS module directly updates the
SCB system date and time field once per second. The
CP/M Plus DATE utility can be used to set the system
date and time.

File Passwords

Files can be assigned passwords in three ways: by

the F_MAKE system call, by the F_WRITEXFCB system
call, or by the SET command. A file's password can
also be changed by the F_WRITEXFCB system call if the
original password is supplied.

Password protection is provided in one of three
modes. The following table shows the difference in
access level allowed to system calls when the
password is not supplied.

TABLE, B-12. PASSWORD PROTECTION MODES
Password

Mode Access Level (when no password is supplied.)
1. Read The file cannot be read.

2. Write The file can be read, but not modified.
3. Delete The file can be modified, but not deleted.

If a file is password-protected in Read mode, the
password must be supplied to open the file. A file
protected in Write mode cannot be written to without
the password. A file protected in Delete mode allows
read and write access, but the user must specify the
password to delete the file, rename the file, or to
modify the file's attributes. Thus, password
protection in Read mode implies Write and Delete mode
protection, and Write mode protection implies Delete
mode protection. All three modes require the user to
specify the password to delete the file, rename the
file, or to modify the file's attributes.,

If the correct password is supplied, or if password
protection is disabled by the Directory Label, then
access to the system calls is the same as for a file
that is not password-protected. In addition, the
F_SFIRST and F_SNEXT system calls are not affected by
file passwords. The system calls that test for
password are listed below:

B-57

BDOS FILE SYSTEM

15 F_OPEN

19 F_DELETE

23 F_RENAME

30 F_ATTRIB

99 F_TRUNCATE
100 DRV_SETLABEL
103 F_WRITEXFCB

File passwords are eight bytes in length. They are
maintained in the XFCB Directory Label in encrypted
form. To make a system call for a file that requires
a password, a program must place the password in the
first eight bytes of the current DMA, or specify it
with the F_PASSWD system call prior to making the
function call.

Note: The BDOS keeps an assigned default password
value until it is replaced with a new assigned value,
even if password protection is temporarily set to
NONE using the SET command.

File Byte Counts

Although the logical record size of CP/M Plus is
restricted to 128 bytes, CP/M Plus does provide a
mechanism to store and retrieve a byte count for a
file. This facility can identify the last byte of
the last record of a file. The F_SIZE system call
returns the random record number, plus one, of the
last record of a file.

The F_ATTRIB system call can set a file's byte count.
Conversely, the F_OPEN system call can return a
file's byte count to the cr field of the FCB. The
F_SFIRST and F_SNEXT system calls also return a
file's byte count. These system calls return the
byte count in the s1 field of the FCB in the current
DMA buffer (see F_SFIRST and F_DMASET).

Note: The file system does not access or update the
byte count value in file read or write operations.
However, the F_MAKE system call does set the byte
count of a file to zero when it creates a file in the
directory.

BDOS Error Handling

The BDOS file system responds to error situations in
one of three ways:

Method 1. It returns to the calling program

with return codes in register A, H,
and L identifying the error.

B-58

rooo.

BDOS FILE SYSTEM

Method 2. It displays an error message on the
console, and branches to the BIOS
warm-start entry point, thereby
terminating execution of the calling
program,

Method 3. It displays an error message on the
console, and returns to the calling
program as in method 1.

The file system handles the majority of errors it
detects by method 1. Two examples of this kind of
error are the file-not-found error for the F_OPEN
system call and the reading-unwritten-data error for
a read system call. More serious errors, such as
disk I/0 errors, are usually handled by method 2.
Errors in this category, called physical and extended
errors, can also be reported by methods 1 and 3 under
program control.

The BDOS Error Mode, which can exist in three states,
determines how the file system handles physical and
extended errors. In the default state, the BDOS
displays the error message, and terminates the
calling program (method 2). In return error mode,
the BDOS returns control to the calling program with
the error identified in registers A, H. and L (method
1). In return and display mode, the BDOS returns
control to the calling program with the error
identified in registers A, H, and L, and also
displays the error message at the console (method 3).
While both return modes protect a program from
termination because of a physical or extended error,
the return and display mode also allows the calling
program to take advantage of the built-in error
reporting of the BDOS file system. Physical and
extended errors are displayed on the console in the
following format:

CP/M Error on d: error message
system call = npn File = filename.typ

where d identifies the drive selected when the error
condition is detected; error message identifies the
error; nn is the system call number; and filename.typ
identifies the file specified by the system call., If
the system call did not involve an FCB, the file
information is omitted.

B-59

BDOS FILE SYSTEM ‘

The BDOS physical errors are identified by the
following error messages:

Disk I/0

o Invalid Drive
0o Read-Only File
0 Read-Only Disk

o

The Disk I/0 error results from an error condition
returned to the BDOS from the BIOS module.

If the BIOS does not support the selected disk, the
BDOS returns an error code resulting in the Invalid-
Drive error message.

The Read-Only File error is returned when a program
attempts towrite toa file that is marked with the
Read-Only attribute.

The Read-Only Disk error is returned when a program
writes to a disk that is in Read-Only status.

The BDOS extended errors are identified by the
following error messages:

o Password Error [
o File Exists
© ? in Filename

The file Password Error is returned when the file
password is not supplied, or when it is incorrect.
The File Exists error is returned by the F_MAKE and
F_RENAME system calls when the BD0OS detects a
duplicate filespec conflict.

The ? in Filename error is returned when the BDOS
detects a ? in the filename or type field of the
passed FCB for the F_RENAME, F_ATTRIB, F_OPEN,
F_MAKE, and F_TRUNCATE BDOS system calls.

The following paragraphs describe the error return-

code conventions of the BDOS file system calls. BDOS

file system calls fall into three categories: they

;;turn an Error Code, a Directory Code, or an Error
ag.

The following system calls return an Error Code in
register A:

20 F_READ Read Sequential

21 F-WRITE Write Sequential

33 F_READRAND Read Random -
34 F_WRITERAND Write Random I~
40 F_WRITEZF Write Random w/Zero Fill

L+ i

BDOS FILE SYSTEM

TABLE B-13. REGISTER A ERROR-CODE DEFINITIONS
Code Meaning ;

00 : System call successful
255 : Physical error : refer to register H
01 : Reading unwritten data or
No available directory space (Write Sequential)
02 : No available data block
03 : Cannot close current extent

04 : Seek to umwritten extent

05 : No available directory space

06 : Random record number out of range

09 : Invalid FCB (previous BDOS close call

returned an error code and invalidated the FCB)
10 : Media Changed (A media change was detected on
the FCB's drive after the FCB was opened.)

For BDOS read or write system calls, the file system
also sets register H to the number of 128-byte
records successfully read or written before the error
was encountered, On successful system calls, Error
Code = zero, register H is set to zero, If the Error
Code equals 255, register H contains a physical error
code (see the table.)

The following system calls return a Directory Code in
register A:

15 F_OPEN Open File

16 F_CLOSE Close File

1% F_SFIRST Search for First

18 F_SNEXT Search for Next

19 F_DELETE Delete File

22 F_MAKE Make File

23 F_RENAME Rename File

30 F_ATTRIB Set File Attributes
35 F_SIZE Compute File Size
99 F_TRUNCATE Truncate File

100 DRV_SETLABEL Set Directory Label
102 F_TIMEDATE Read File Date Stamps and Password Mode

103 F_WRITEXFCB Write File XFCB
— TABLE B-14, REGISTER A DIRECTORY-CODE DEFINITIONS
_Code Meaning

00 = 03 : Successful system call
255 : Unsuccessful system call

With the exception of the F_SFIRST and F_SNEXT system
calls, all system calls in this category return with
the directory code set to zero on successful returns.

B-61

BDOS FILE SYSTEM

However, for the F_SFIRST and F_SNEXT system calls, a
successful Directory Code also identifies the
relative starting position of the directory entry in
the calling program's current DMA buffer.

If the F_ERRMODE system call is used to place the
BDOS in return error mode, the following system calls
return an Error Flag on physical errors:

14 DRV_SET Select Disk
46 DRV_SPACE Get Disk Free Space
48 F_FLUSH Flush Buffers

98 DRV_FREEBLOCKS Free Blocks
101 DRV_GETLABEL Return Directory Label Data

Code Meaning

00 : Successful system call
255 : Physical error : refer to register H

% se s we

The BDOS returns non-zero values in register H to
identify a physical or extended error if the BDOS
Error Mode is in one of the return modes. Except for
system calls that return a Directory Code, register A
equal to 255 indicates that register H identifies the
physical or extended error. For system calls that
return a Directory Code, if register A equals 255 and
register H is not equal to zero, register H
identifies the physical or extended error. The
following table shows the physical and extended error
codes returned in register H.

No error, or not a register H error

Disk I/0 error

Read-Only Disk

Read-Only File or File Opened under user zero from another user
number or file password-protected in write mode and correct
password not specified.

Invalid Drive : drive select error

Password Error

File Exists

? in Filename

B-62

BDOS FILE SYSTEM

The following two system calls represent a special
case because they return an address in registers H
and L.

27 DRV_ALLOCVEC Get Addr(Alloc)
31 DRV_DPB Get Addr(Disk Parms)

When the BDOS is in return error mode and it detects
a physical error for these system calls, it returns
to the calling program with registers A, H. and L all
set to 255; otherwise they return no error code.

BDOS-Drive System Calls

o o e e e - +
l !
! DRV_ACCESS !
1 |
! SYSTEM CALL 38: ACCESS DRIVE !
1 1
o e e -
1 !
1 Entry Parameters: 1
! Register C: 26H !
1 !
o e e e e e -

This is an MP/M system call that is not supported
under CP/M Plus. If called, the file system returns
a zero in register A indicating that the access
request is successful.

+
1
I
1
1
I
1
1
I
1
1
!
1
1
I
I
I
I
!
1
1
I
I
1
I
I
1
1
|
1
1
1
!
I
1
!
1
1
1
I
1
1
1
1
1
1
1
1
+

DRV_ALLOCVEC
SYSTEM CALL 27: GET ADDR(ALLOC)

Register €3 YBRH

Returned Value:
Registers HL: ALLOC Address

——— - —— e -t

|
!
!
!
|
+
1
| Entry Parameters:
1
l
!
!
l
+

|
1
I
|
!
1
I
I
1
|
1
1
I
I
!
I
!
|
!
!
|
!
|
1
I
I
I
!
|
!
I
1
!
1
!
1
I
!
1
1
|
!
1
|
1
1
|
+

CP/M Plus maintains an allocation vector in main
memory for each active disk drive. Some programs use
the information provided by the allocation vector to
determine the amount of free data space on a drive.

B-63

——

BDOS FILE SYSTEM

Note: The allocation information might be inaccurate
if the drive has been marked Read-Only.

DRV_ALLOCVEC returns the base address of the
allocation vector for the currently selected drive in
register pair HL. If a physical error is encountered
when the BDOS error mode is one of the return modes
(see the F_ERRMODE system call), DRV_ALLOCVEC returns
the value OFFFFH in the register pair HL.

In banked CP/M Plus systems, the allocation vector
can be placed in bank zero. In this case a transient
program cannot access the allocation vector. However,
the DRV_SPACE system call can be used to directly
return the number of free 128-byte records on a
drive. The CP/M Plus utilities that display a
drive's free space, DIR and SHOW, use DRV_SPACE for
that purpose.

-
!

! DRV_ALLRESET

|

| SYSTEM CALL 13: RESET DISK SYSTEM
!

+

!

! Entry Parameters:

! Register C: ODH
!
-+

DRV_ALLRESET restores the file system to a reset
state where all the disk drives are set to Read-Write
(see DRV_SETRO and DRV_ROVEC), the default disk is
set to drive A, and the default DMA address is reset
to 0080H. This system call can be used, for example,
by an application program that requires disk changes
during operation. DRV_RESET can also be used for
this purpose.

B-64

BDOS FILE SYSTEM

o e e e e -
! |
! DRV_DPB !
! !
! SYSTEM CALL 31: GET ADDR (DPB PARMS) !
! !
e e +
! !
! Entry Parameters: |
| Register €3 ' “1EH !
1 |
! Returned Value: |
! Registers HL: DPB Address |
| |
e e o +

DRV_DPB returns the base address of the BIOS-resident
Disk Parameter Block (DPB) for the currently selected
drive in register pair HL. Refer to the section on
Disk Parameter Headers for the format of the DPB.

The calling program can use this address to extract
the disk parameter values.

If a physical error is encountered when the BDOS
error mode is one of the return modes (see the
F_ERRMODE system call), DRV_DPB returns the value
OFFFFH in the register pair HL.

DRV_FREE
SYSTEM CALL 39: FREE DRIVE

Entry Parameters:
Register C: 2TH

e o

This is an MP/M system call that is not supported
under CP/M Plus. If called, the file system returns
a zero in register A indicating that the free request
is successful.

B-65

—a

BDOS FILE SYSTEM

the calling program in register A. Register A equal
to zero indicates that no directory label exists on
the specified drive. 1If a physical error is
encountered by DRV_GETLABEL when the BDOS Error mode
is in one of the return modes (see the F_ERRMODE
system call), this function returns with register A
set to OFFH (255 decimal) and register H set to one
of the following:

01 : Disk I/0 error
04 : Invalid drive error

DRV_LOGINVEC
SYSTEM CALL 24: RETURN LOGIN VECTOR

o e e e e e e e e e .
! 1
! Entry Parameters: |
! Register C: 18H !
| !
! Returned Value: !
! Registers HL: Login Vector !
l !
e, e, ———— e —————————— -

DRV_LOGINVEC returns the login vector in register
pair HL. The login vector is a 16-bit value with the
least-significant bit of L corresponding to drive A;
and the high-order bit of H corresponding to the
sixteenth drive, labeled P. A 0 bit indicates that
the drive is not on-line, while a 1 bit indicates the
drive is active., A drive is made active by either an
explicit BDOS Select Disk call (DRV_SET) or an
implicit selection when a BDOS file operation
Specifies a non-zero dr byte in the FCB. DRV_LOGINVEC
maintains compatibilty with earlier releases since
registers Aand L contain the same values upon
return.

B-68

BDOS FILE SYSTEM

DRV_RESET
SYSTEM CALL 37: RESET DRIVE

!
!
l
!
!
- +
! |
! Entry Parameters: !
! Register € vesH !
! Register DE: Drive Vector !
! !
! !
! !
! !
+

Returned Value:
Register A: OOH

DRV_RESET restores the specified drive(s) to the
reset state. A reset drive is not logged-in and is
in Read-Write status. The passed parameter in
register pair DE is a 16-bit vector of drives to be
reset, where the least-significant bit corresponds to
the first drive A; and the high-order bit corresponds
to the sixteenth drive, labeled P. Bit values of 1
indicate that the specified drive is to be reset,

DRV_ALLRESET and DRV_RESET allow a program to control
when a disk's directory is to be reinitialized
(logged-in) for file operations. When CP/M Plus is
cold-started, all drives are in the reset state.
Subsequently, as drives are referenced, they are
automatically logged-in by the file system until
reset by a system call or a system reset. Note that
DRV_ALLRESET and DRV_RESET have similar effects
except that whereas DRV_ALLRESET automatically resets
all drives on the system, any combination of drives
can be reset with DRV_RESET.

The primary use of DRV_RESET under CP/M Plus is to
prepare for a media change on a drive. Subsequently,
when the drive is accessed by a system call, the
drive is automatically logged-in. Be sure to close
your files, particularly files that have been written
to, prior to resetting a drive.

Although CP/M Plus automatically relogs-in removable
media when media changes are detected, you should
still explicitly reset a drive before prompting the
user to change disks.

B-69

BDOS FILE SYSTEM

DRV_ROVEC
SYSTEM CALL 29: GET READ-ONLY VECTOR

————

+

!

| Entry Parameters:

! Register C: 1DH
!
!
!
!

Returned Value:
Registers HL: R/0 Vector Value

DRV_ROVEC returns a bit vector in register pair HL
that indicates which drives have the temporary Read-
Only bit set. The Read-Only bit can be set only by a
BDOS Write-Protect Disk call.

The format of the bit vector is analogous to that of
the login vector returned by DRV_LOGINVEC. The least-
significant bit corresponds to drive A, while the
most-significant bit corresponds to drive P,

e

+

!

! DRV_SET

!

! SYSTEM CALL 14: SELECT DISK
!

Entry Parameters:
Register C: OEH
Register E: Selected Disk

Returned Value:
Register A: Error Flag
Register H: Physical Error

DRV_SET designates the disk drive named in register E
as the default disk for subsequent BDOS file
operations. Register E is set to 0 for drive A, 1
for drive B, and so on through 15 for drive P in a
full 16-drive system. In addition, DRV_SET logs in
the designated drive if it is currently in the reset
state. Logging-in a drive activates the drive's

directory until the next disk system reset or drive

reset operation.

B-70

BDOS FILE SYSTEM

FCBs that specify drive code zero (dr = 00H)
automatically reference the currently selected
default drive. FCBs with drive code values between 1
and 16, however, ignore the selected default drive
and directly reference drives A through P.

Upon return, register A contains a zero if the select
operation was successful. If a physical error was
encountered, DRV_SET performs different actions
depending on the BDOS error mode (see F_ERRMODE). If
the BDOS error mode is in the default mode, a message
identifying the error is displayed at the console and
the calling program is terminated. Otherwise DRV_SET
returns to the calling program with register A set to
OFFH and register H set to one of the following
physical error codes:

01 ¢ Disk I/0 Error
04 : Invalid drive

1
1
1
1
I
I
|
I
1
1
1
1
1
B
1
1
1
1
)
I
!
I
I
1
I
1
1
I
I
1
!
1
1
1
1
I
)
!
1
1
1
1
I
1
1
1
1
1
+

DRV_SETLABEL
SYSTEM CALL 100: SET DIRECTORY LABEL

I
1
I
1
1
|
I
|
I
)
i
|
1
1
I
1
!
!
)
1
I
I
)
1
|
1
1
I
B
1
1
I
I
1
1
1
1
1
1
)
|
1
1
|
1
1
1
I

Entry Parameters:
Register C: O64H
Register DE: FCB Address

Returned Value:
Register A
Register H

Directory Code
Physical or
Extended Error

Rl e e e

I
1
I
1
'
1
)
)
1
1
1
1
1
I
1
I
1
1
I
I
I
1
]
1
1
)
!
1
1
1
I
I
I
)
1
I
1
1
1
I
I
H
1
1
.
!
1
1

DRV_SETLABEL creates a directory label or updates the
existing directory label for the specified drive.

The calling program passes in register pair DE the
address of an FCB containing the name, type, and
extent fields to be assigned to the directory label.
The name and type fields of the referenced FCB are
not used to locate the directory label in the
directory; they are simply copied into the updated or
created directory label. The extent field of the FCB
(byte 12) contains the user's specification of the
directory-label data byte. The definition of the
directory-label data byte is:

B-T1

BDOS FILE SYSTEM

Fw

bit 7--Require passwords for password-protected files
6--Perform access date and time stamping
5--Perform update date and time stamping
4--Perform create date and time stamping
O--Assign a new password to the directory label

If the current directory label is password-protected,
the correct password must be placed in the first
eight bytes of the current DMA, or have been
previously established as the default password (see
F_PASSWD). If bit O (the low-order bit) of byte 12 of
the FCB is set to 1, it indicates that a new password
for the directory label has been placed in the second
eight bytes of the current DMA,

DRV_SETLABEL also requires that the referenced
directory contain SFCBs to activate date and time
stamping on the drive. If an attempt is made to
activate date and time stamping when no SFCBs exist,
DRV_SETLABEL returns an error code of OFFH in
register A and performs no action. The CP/M Plus
INITDIR utility initializes a directory for date and
time stamping by placing an SFCB record in every
fourth entry of the directory.

DRV_SETLABEL returns a Directory Code in register A
with the value 0 if the directory label create or :I
update is successful; or OFFH (255 decimal) if no

space exists in the referenced directory to create a

directory label; or if date and time stamping was

requested and the referenced directory did not

contain SFCBs. Register H is set to zero in both of

these cases. If a physical error or extended error is

encountered, DRV_SETLABEL performs different actions

depending on the BDOS error mode (see F_ERRMODE). If

the BDOS error mode is the default mode, a message

identifying the error is displayed at the console and

the calling program is terminated. Otherwise

DRV_SETLABEL returns to the calling program with

register A set to OFFH and register H set to one of

the following physical or extended error codes:

Disk I/0 error
Read-Only disk
Invalid drive error
File password error

o
F-

BDOS FILE SYSTEM

o

DRV_SETRO
SYSTEM CALL 28: WRITE PROTECT DISK

——————————— -

Entry Parameters:
Register Cz5 +JCH

s e
o i b G Sun Sen b

DRV_SETRO provides temporary write protection for the
currently selected disk by marking the drive as Read-
Only. No program can write to a disk that is in the
Read-Only state. A drive reset operation must be
performed for a Read-0Only drive to restore it to the
Read-Write state (see DRV_ALLRESET and DRV_RESET).

Register A: Error Flag
Register H: Physical Error

o e -
1 !
! DRV_SPACE :
1

l SYSTEM CALL 46: GET DISK FREE SPACE !
! 1
e —————— —_——————————————— e +
! |
! Entry Parameters: 1
! Register C: 2EH !
! E: Drive |
| |
! Returned Value: First 3 bytes !
! of current DMA |
! buffer 1
! !
! |
! !

DRV_SPACE determines the number of free sectors, 128-
byte records, on the specified drive. The calling
program passes the drive number in register E, with 0
for drive A, 1 for B, and so on, through 15 for drive
P in a full 16-drive system. DRV_SPACE returns a
binary number in the first 3 bytes of the current DMA
buffer. This number is returned in the following
format:

B-73

BDOS FILE SYSTEM

{ £80 1 f£31 4 fta2 1

-

fs0 = low byte
fs1 = middle byte
£32 = high byte

Note: The returned free-space value might be
inaccurate if the drive has been marked Read-Only.

Upon return, register A is set to zero if the system
call is successful. However, if the BDOS Error Mode
is one of the return modes (see F_ERRMODE) and a
physical error is encountered, register A is set to
OFFH (255 decimal) and register H is set to one of
the following values:

01 : Disk I/0 error
04 : Invalid drive error

BDOS File System Calls

S e e e o o o - ‘:
! 1
! F_ATTRIB !
| !
| SYSTEM CALL 30: SET FILE ATTRIBUTES |
1 !
o e o e e +
! !
! Entry Parameters: !
! Register Cs 1EH !
l Registers DE: FCB Address !
l !
! Returned Value: !
! Register A: Directory Code !
! Register H: Physical or !
! Extended Error !
! !
e e e — — — — — ———— —————————————————— +

By calling F_ATTRIB, a program can modify a file's
attributes and set its last-record byte count. Other
system calls can be called to interrogate these file
parameters, but only F_ATTRIB can change them. The
file attributes that can be set or reset by F_ATTRIB
are f1' through f4', Read-Only (t1'), System (t2'),
and Archive (t3').

»

| B-T4

e e e L

BDOS FILE SYSTEM

The register pair DE addresses an FCB containing a
filename with the appropriate attributes set or
reset. The calling program must ensure that it does
not specify an ambiguous filename. In addition, if
the specified file is password-protected, the correct
password must be placed in the first eight bytes of
the current DMA buffer or have been previously
established as the default password (see F_PASSWD).

Interface attribute f6' specifies whether the last-
record byte count of the specified file is to be set:

fé6'
fé6'

0 : Do not set byte count (default mode)
1 : Set byte count

If interface attribute f6' is set, the calling
program must set the cr field of the referenced FCB
to the byte-count value. A program can access a
file's byte-count value with the F_OPEN, F_SFIRST, or
F_SNEXT system calls.

F_ATTRIB searches the referenced directory for
entries belonging to the current user number that
match the FCB-specified name and type fields. It
then updates the directory to contain the selected
indicators, and if interface attribute f6' is set,
the specified byte-count value. Note that the last-
record byte count is maintained in byte 13 of a
file's directory FCBs.

File attributes t1', t2', and t3' are defined by CP/M
Plus, Attributes f1' through f4' are not presently
used, but can be useful for application programs
because they are not involved in the matching program
used by the BDOS during Open File and Close File
operations. Indicators f5' through f8' are reserved
for use as interface attributes.

Upon return, F_ATTRIB returns a Directory Code in
register A with the value 0 if the system call is
successful, or OFFH (255 Decimal) if the file
specified by the referenced FCB is not found.
Register H is set to zero in both of these cases. If
a physical or extended error is encountered, F_ATTRIB
performs different actions depending on the BDOS
error mode (see F_ERRMODE). If the BDOS error mode is
the default mode, a message identifying the error is
displayed at the console and the program is
terminated. Otherwise F_ATTRIB returns to the calling
program with register A set to OFFH, and register H
set to one of the following physical or extended
error codes:

B-75

BDOS FILE SYSTEM

01 : Disk I/0 error

02 : Read-Only disk

04 : Select error

07 : File password error

09 ¢ ? in filename or filetype field
o e e -
! !
! F_CLOSE !
! !
! SYSTEM CALL 16: CLOSE FILE !
! !
o e e e e e e e e -
! !
l Entry Parameters: |
! Register Cz "M0B !
! Registers DE: FCB Address |
! | -
! Returned Value: !
! Register A: Directory Code !
! Register H: Physical or l
! Extended Error {
! !
L LT T S —— +

F_CLOSE performs the inverse of the F_OPEN system
call, The calling program passes the address of an
FCB in register pair DE. The referenced FCB must
have been previously activated by a successful F_OPEN
or F_MAKE system call., Interface attribute f5'
specifies how the file is to be closed as shown
below:

f5' = 0 : Permanent close (default mode)
£f5' = 1 * Partial close

A permanent close operation indicates that the
program has completed file operations on the file. A
partial close operation updates the directory, but
indicates that the file is to be maintained in the
open state.

If the referenced FCB contains new information
because of write operations to the FCB, F_CLOSE
permanently records the new information in the
referenced disk directory. Note that the FCB does
not contain new information, and the directory update
Step is bypassed if only read or update operations
have been made to the referenced FCB.

Upon return, F_CLOSE returns a directory code in
register A with the value 00H if the close was
successful, or FFH (255 decimal) if the file was not
found. Register H is set to zero in both of these

B=-76

Y

f 2

BDOS FILE SYSTEM

cases. If a physical or extended error is
encountered, F_CLOSE performs different actions
depending on the BDOS error mode (see F_ERRMODE).

If the BDOS error mode is in the default mode, a
message identifying the error is displayed at the
console and the calling program is terminated.
Otherwise F_CLOSE returns to the calling program with
register A set to OFFH and register H set to one of
the following physical error codes:

01 : Disk I/0 error
02 : Read-Only disk
04 : Invalid drive error

e e e e e +
! l
1 F_DELETE l
! !
| SYSTEM CALL 19: DELETE FILE |
| l
e e e e e e +
! !
! Entry Parameters: !
! Register C3 13R !
! Registers DE: FCB Address !
I |
! Returned Value: !
! Register A: Directory Code !
! Register H: Extended or 1
| Physical Error |
! !
o e e .

F_DELETE removes files or XFCBs that match the FCB
addressed in register pair DE. The filename and
filetype can contain ambiguous references (question
marks in bytes f1 through t3), but the dr byte cannot
be ambiguous as it can in the F_SFIRST and F_SNEXT
system calls. Interface attribute f5' specifies the
type of delete operation that is performed.

0 : Standard Delete (default mode)
1 : Delete only XFCBs

5
£5*

If any of the files that the referenced FCB specify
are password-protected, the correct password must be
placed in the first eight bytes of the current DMA
buffer, or have been previously established as the
default password (see F_PASSWD).

For standard delete operations, F_DELETE removes all
directory entries belonging to files that match the
referenced FCB. All disk directory and data space

owned by the deleted files is returned to free space

B-T7

I o e e

BDOS FILE SYSTEM

and becomes available for allocation to other files.
Directory XFCBs that were owned by the deleted files
are also removed from the directory. If interface
attribute f5' of the FCB is set to 1, F_DELETE
deletes only the directory XFCBs that match the
referenced FCB.

Note: If any of the files that match the input FCB
specification fail the password check, or are Read-
Only, then F_DELETE does not delete any files or
XFCBs. This applies to both types of delete
operations.

Upon return, F_DELETE returns a Directory Code in

register A with the value 0 if the delete is

successful, or 255 (OFFH) if no file that matches the
referenced FCB is found. Register H is set to zero

in both of these cases. If a physical or extended

error is encountered, F_DELETE performs different

actions depending on the BDOS error mode (see

SETERRMODE). If the BDOS error mode is the default :
mode, a message identifying the error is displayed at

the console and the calling program is terminated.

Otherwise F_DELETE returns to the calling program

with register A set to OFFH and register H set to one _
of the following physical or extended error codes: ll

01 : Disk I/0 error

02 : Read-Only disk

03 : Read-Only file |
04 : Invalid drive error

07 : File password error

F_DMASET

!
1
1
: SYSTEM CALL 26: SET DMA ADDRESS

!
! Entry Parameters:

l Register C: 1AH

1 Registers DE: DMA Address
!
+

DMA is an acronym for Direct Memory Address, which is
often used in connection with disk controllers that
directly access the memory of the computer to
transfer data to and from the disk subsystem. Under
CP/M Plus, the current DMA is usually defined as the
buffer in memory where a record resides before a disk
write and after a disk read operation. If the BDOS

B-78
o -

BDOS FILE SYSTEM

Multisector Count is equal to one (see F_MULTISEC),
the size of the buffer is 128 bytes. However, if the
BDOS Multisector Count is greater than one, the size
of the buffer must equal N *# 128, where N equals the
Multisector Count.

Some system calls also use the current DMA to pass
parameters and to return values. For example, system
calls that check and assign file passwords require
that the password be placed in the current DMA. As
another example, DRV_SPACE returns its results in the
first 3 bytes of the current DMA. When the current
DMA is used in this context, the size of the buffer
in memory is determined by the specific requirements
of the system call.

When a transient program is initiated by the CCP, its
DMA address is set to 0080H. DRV_ALLRESET also sets
the DMA address to 0080H. F_DMASET can change this
default value to another memory address. The DMA
address is set to the value passed in the register
pair DE. The DMA address remains at this value until
it is changed by another F_DMASET or DRV_ALLRESET
call,

F_ERRMODE
SYSTEM CALL 45: SET BDOS ERROR MODE

el 2

+
!

! Entry Parameters:

! Register Css .2DH
! E: BDOS Error Mode
!
!
!

Returned Value: None

P S e s s . -

F_ERRMODE sets the BDOS error mode for the calling
program to the mode specified in register E. If
register E is set to OFFH (255 decimal), the error
mode is set to Return Error mode. If register E is
set to OFEH (254 decimal), the error mode is set to
Return and Display mode. If register E is set to any
other value, the error mode is set to the default
mode.

F_ERRMODE determines how physical and extended errors
are handled for a program., The Error Mode can exist

in three modes: the default mode, Return Error mode,

and Return and Display Error mode. In the default

B-79

o oA SRR L e e e

BDOS FILE SYSTEM

mode, the BDOS displays a system message at the
console that identifies the error and terminates the
calling program. In the return modes, the BD0OS sets
register A to OFFH (255 decimal), places an error
code that identifies the physical or extended error
in register H, and returns to the calling program.
In Return and Display mode, the BDOS displays the
system message before returning to the calling
program. No system messages are displayed, however,
when the BDOS is in Return Error mode.

F_FLUSH
SYSTEM CALL 48: FLUSH BUFFERS

. ae b -

o e o e +
! !
! Entry Parameters: !
! Register C: 30H !
! Register E: Purge Flag !
! !
! Returned Value: I
! Register A: Error Flag 1
! Register H: Physical Error !
! 1
o T +

F_FLUSH forces the write of any write-pending records
contained in internal blocking/deblocking buffers.

If register E is set to OFFH, this system call also
purges all active data buffers. Programs that provide
write with read-verify support need to purge internal
buffers to ensure that verifying reads actually
access the disk instead of returning data that is
resident in internal data buffers. The CP/M Plus PIP
utility is an example of such a preogram.

Upon return, register A is set to zero if the flush
operation is successful. If a physical error is
encountered, F_FLUSH performs different actions
depending on the BDOS error mode (see SETERRMODE).

If the BDOS error mode is in the default mode, a
message identifying the error is displayed at the
console and the calling program is terminated.
Otherwise F_FLUSH returns to the calling program with
register A set to OFFH and register H set to the
following physical error code:

01 : Disk I/0 error
02 : Read-Only disk
04 : Invalid drive error

B-80

| B

BDOS FILE SYSTEM

F_LOCK
SYSTEM CALL 42: LOCK RECORD

e S e e S S

+
!
Entry Parameters: |
Register C: 2AH !

DE: FCB Address l

!

l

!

!

Returned Value:
Register A: O0OH

F_LOCK is an MP/M II system call that is supported
under CP/M Plus only to provide compatibility between
CP/M Plus and MP/M. It is intended for use in
situations where more than one running program has
Read-Write access to a common file. Because CP/M Plus
is a single-user operating system in which only one
program can run at a time, this situation cannot
occur, Thus, under CP/M Plus F_LOCK performs no
action except to return the value 00H in register A
indicating that the record lock operation is
successful.

F_MAKE
SYSTEM CALL 22: MAKE FILE

— - -

Entry Parameters:
Register C: »16H
Registers DE: FCB Address

Returned Value:
Register A: Directory Code
Register H: Physical or
Extended Error

e G e - - - —

I
1
1
|
|
I
|
|
I
I
!
1
1
I
|
1
1
1
1
|
|
1
1
I
|
I
!
|
I
1
!
|
!
!
I
1
!
I
1
!
!
|
!
|
!
!
]
+

F_MAKE creates a new directory entry for a file under
the current user number. It also creates an XFCB for
the file if the referenced drive has a directory
label that enables password protection on the drive,
and the calling program assigns a password to the

B-81

D P L e S e

BDOS FILE SYSTEM

file.

The calling program passes the address of the FCB in
register pair DE, with byte 0 of the FCB specifying
the drive; bytes 1 through 11 specifying the filename
and filetype; and byte 12 set to the extent number.
Usually byte 12 is set to zero. Byte 32 of the FCB
(the cr field) must be initialized to zero, before or
after the Make call, if the intent is to write
sequentially from the beginning of the file.

Interface attribute f6' specifies whether a password
is to be assigned to the created file.

6"
f6°!

Do not assign password (default)

0
1 Assign password to created file

When attribute f6' is set to 1, the calling program
must place the password in the first 8 bytes of the
current DMA buffer, and set byte 9 of the DMA buffer
to the password mode (see the F_TIMEDATE system

call).

Note: F_MAKE only interrogates interface attribute

gb; if passwords are activated on the referenced

rive, =I

F_MAKE returns with an error if the referenced FCB
names a file that currently exists in the directory
under the current user number.

If the F_MAKE system call is successful, it activates
the referenced FCB for file operations by opening the
FCB, and initializes both the directory entry and the
referenced FCB to an empty file, It also initializes
all file attributes to zero. In addition, F_MAKE
makes a Creation date and time stamp for the file if
the following conditions are satisfied: the
referenced drive has a directory label that requests
Creation date and time stamping, and the FCB extent
number field is equal to zero. F_MAKE also makes an
Update stamp if the directory label requests update
stamping and the FCB extent field is equal to zero.

iﬁ zhe referenced drive contains a directory label
ooy 1§"ab1°’ password protection, and if interface
SEon.Dute f6' has been set to 1, F_MAKE creates an
the aor the file., In addition, F_MAKE also assigns
£i E SSword and the password mode placed in the

rst nine bytes of the DMA to the XFCB.

Eg°; ;eturﬂ: F_MAKE returns a directory code in
isgascgr A with the value zero if the make operation
o bessful, or 255 (OFFH) if no directory space is

able. Register H is set to 0 in both of these

B-82

BDOS FILE SYSTEM

cases. If a physical or extended error is
encountered, F_MAKE performs different actions
depending on the BDOS error mode (see SETERRMODE). If
the BDOS error mode is the default mode, a message
identifying the error is displayed at the console and
the calling program is terminated. Otherwise F_MAKE
returns to the calling program with register A set to
OFFH, and register H set to one of the following
physical or extended error codes:

01 : Disk I/0 error

02 : Read-Only disk

04 : Invalid drive error

08 : File already exists

09 : ? in filename or filetype field

F_MULTISEC
SYSTEM CALL 44: SET MULTISECTOR COUNT

— - -

o e o . O S O +
1 l
| Entry Parameters: 1
| Register C: 2CH l
! E: Number of Sectors !
! !
! Returned Value: l
! Register A: Return Code !
! !
o e e e e e e e o e +

F_MULTISEC provides logical record blocking under
CP/M Plus. It enables a program to read and write
from1 to 128 physical records of 128 bytes at a time
during subsequent BDOS Read and Write system calls,

F_MULTISEC sets the Multisector Count value for the
calling program to the value passed in register E.
Once set, the specified Multisector Count remains in
effect until the calling program makes another
F_MULTISEC call and changes the value,

Note: The CCP sets the Multisector Count to 1 when it
initiates a transient program.

CP/M Plus can read or write multiple 128-byte disk
records in a single BDOS system call. In a
multisector I/0 operation, data is transferred
directly between the TPA and the drive. In addition,
the BIOS can use multisector 1I/0 to optimize the 1/0
operation, resulting in better performance. Thus,
the primary objective of multisector I1I/0 is to

B-83

BDOS FILE SYSTEM E
f

improve sequential I/0 performance. The number of
records read or written with multisector I/0 ranges
from 1 to 128. The Multisector Count is set to one
when a transient program begins execution. However,
transient programs can set the CP/M Plus Multisector
Count to 128 when sufficient buffer space is
available,

Note: The greatest potential performance increases
are obtained when the Multisector Count is set to
128. Of course, this requires a 16K buffer.

The Multisector Count determines the number of
operations to be performed by the following system
calls:

F_READ
F_READRAND
F_WRITE
F_WRITERAND
F_WRITEZF

The Multisector Count affects BDOS error reporting
for the BDOS Read and Write system calls. If an
error interrupts these system calls when the
Multisector Count is greater than one, they return :
the number of records successfully read or written in

register H for all errors except for physical errors
(A = 255).

Upon return, register A is set to zero if the

specified value is in the range of 1 to 128.
Otherwise register A is set to OFFH.

F_OPEN
SYSTEM CALL 15: OPEN FILE

et 2

Entry Parameters:
Register C: 'OFH
Registers DE: FCB Address

Returned Value:
Register A: Directory Code
Register H: Physical or
Extended Error

e e el o

4 o o own s bem e S v pum Sem

F_OPEN activates the FCB for a file that exists in

B-84

BDOS FILE SYSTEM

the disk directory under the currently active user
number or user zero. The calling program passes the
address of the FCB in register pair DE, with byte 0
of the FCB specifying the drive; bytes 1 through 11
specifying the filename and filetype; and byte 12
specifying the extent. Usually byte 12 of the FCB is
initialized to zero.

If the file is password-protected in Read mode, the
correct password must be placed in the first eight
bytes of the current DMA, or have been previously
established as the default password (see F_PASSWD).
If the current record field of the FCB (cr) is set to
OFFH, F_OPEN returns the byte count of the last
record of the file in the cr field.

You can set the last-record byte count for a file
with F_ATTRIB. Note that the current record field of
the FCB (er) must be zeroed by the calling program
before beginning read or write operations if the file
is to be accessed sequentially from the first record.

If the current user is non-zero, and the file to be
opened does not exist under the current user number,
F_OPEN searches user zero for the file. If the file
exists under user zero, and has the system (SYS)
attribute (t2') set, the file is opened under user
zero. Write operations are not supported for a file
that is opened under user zero in this manner.

If the F_OPEN operation is successful, the user's FCB
is activated for read and write operations. The
relevant directory information is copied from the
matching directory FCB into bytes d0 through dn of
the FCB. If the file is opened under user zero when
the current user number is not zero, interface
attribute f8' is set to one in the user's FCB. In
addition, if the referenced file is password-
protected in Write mode, and the correct password was
not passed in the DMA, or did not match the default
password, interface attribute f7' is set to one.
Write operations are not supported for an activated
FCB if interface attribute f7' or f8' is true.

When F_OPEN is successful, it makes an Access date
and time stamp for the opened file when the following
conditions are satisfied: the referenced drive has a
directory label that requests Access date and time
stamping, and the FCB extent number field is zero.

Upon return, F_OPEN returns a directory code in
register A with the value O0OH if the open was
successful, or FFH (255 decimal) if the file was not
found. Register H is set to zero in both of these
cases. If a physical or extended error was

B-85

BDOS FILE SYSTEM

encountered, F_OPEN performs different actions ?
depending on the BDOS error mode (see SETERRMODE). If |
the BDOS error mode is in the default mode, a message
identifying the error is displayed at the console and

the program is terminated. Otherwise F_OPEN returns

to the calling program with register A set to OFFH,

and register H set to one of the following physical

or extended error codes:

01 : Disk I/0 error

04 : Invalid drive error

07 : File password error

09 : 2 in the FCB filename or filetype field

- - +
! !
: F_PARSE :
: SYSTEM CALL 152: PARSE FILENAME |
1
- - - +
! |
! Entry Parameters: |
i Register C: 98H 1 -
: DE: PFCB Address : .
! Returned Value: !
! Registers HL: Return code !
! pParsed file |
: control block |
D ——— T Tl L +

F_PARSE parses an ASCII file specification and
Prepares a File Control Block (FCB). The calling
Program passes the address of a data structure called
the Parse Filename Control Block (PFCB) in register
Pair DE. The PFCB contains the address of the input
ASCII filename string followed by the address of the
target FCB as shown below:

PFCB:DW INPUT ; Address of input ASCII string
DW FCB : Address of target FCB

The maximum length of the input ASCII string to be
Parsed is 128 bytes. The target FCB must be 36 bytes
in length.

F_PARSE assumes the input string contains file
Specifications in the following form:

{d:)filename{.typ){;password}

——

:here items enclosed in curly brackets are optional.
—PARSE also accepts isolated drive specifications

B-86
..lllllh-___ I e e § e

BDOS FILE SYSTEM

(d:) in the input string. When it encounters one, it
sets the filename, filetype, and password fields in
the FCB to blank.

F_PARSE parses the first file specification it finds
in the input string, eliminating leading blanks and
tabs. The system call then assumes that the file
specification ends on the first delimiter it
encounters that is out of context with the specific
field it is parsing. For instance, if F_PARSE finds
a colon and it is not the second character of the
file specification, the colon delimits the entire
file specification.

F_PARSE recognizes the following characters as
delimiters:

space

tab

return

null

; (semicolon)--except before password field

= (equal)

< (less than)

> (greater than)

. (period)--except after filename and before filetype
: (colon)--except before filename and after drive
, (comma)

i (vertical bar)

[(left square bracket)

] (right square bracket)

If F_PARSE encounters a nongraphic character not
listed above, in the range 1 through 31, it treats
the character as an error. F_PARSE initializes the
specified FCB shown in the table that follows:

B-87

BDOS FILE SYSTEM

TABLE B-17, FCB FORMAT
Location Contents
byte 0 The drive field is set to the specified drive.

If the drive is not specified, the default drive code
is used. 0 = default, 1 = A, 2 = B,

byte 1 -8 The name is set to the specified filename. All
letters are converted to uppercase. If the name is
not eight characters long, the remaining bytes in the
filename field are padded with blanks. If the
filename has an asterisk (¥), all remaining bytes in
the filename field are filled in with question marks
(?). An error occurs if the filename is more than
eight bytes long.

byte 9 - 11 The type is set to the specified filetype. If no
filetype is specified, the type field is initialized
to blanks. All letters are converted to uppercase.
If the type is not three characters long, the
remaining bytes in the filetype field are padded with
blanks. If an asterisk (*) occurs, all remaining
bytes are filled in with question marks (?). An
error occurs if the type field is more than three

bytes long. ,

byte 12 - 15 Filled in with zeros.

byte 16 - 23 The password field is set to the specified password.
If no password is specified, it is initialized to
blanks. If the password is less than eight
characters long, remaining bytes are padded with
blanks. All letters are converted to uppercase, If
the password field is more than eight bytes long, an
error occurs.

Note: A blank in the first position of the password
field implies no password was specified.

byte 24 - 31 Reserved for system use.

If an error occurs, F_PARSE returns an OFFFFH in
register pair HL.

On a successful parse, F_PARSE checks the next item

in the input string. It skips over trailing blanks

and tabs and looks at the next character. If the

character is a null or carriage return, it returns a

0 indicating the end of the input string. If the

character is a delimiter, it returns the address of

the delimiter. If the character is not a delimiter, ‘
itbreturns the address of the first trailing blank or

tab.

B-88

L-.-IliIIIllL____________J--------------.---l---l----------------.‘...

BDOS FILE SYSTEM

If the first nonblank or nontab character in the
input string is a null (0) or carriage return,
F_PARSE returns a zero indicating the end of string.

If F_PARSE is to be used to parse a subsequent file
specification in the input string, the returned
address must be advanced over the delimiter before
placing it in the PFCB.

F_PARSE also excludes all control characters from the
file fields, and translates all lowercase letters to
upper-case.

Avoid using parentheses and the backslash character
(\) in the filename and filetype fields because they
are commonly used delimiters. Use asterisk and
question mark characters (* and ?) only to make an
ambiguous file reference. When F_PARSE encounters an
* in a filename or filetype field, it pads the
remainder of the field with question marks. For
example, a filename of X¥.*¥ jis parsed to

X??22?7?2?7.22?. The BDOS F_SFIRST, F_SNEXT, and
F_DELETE system calls treat a ? in the filename and
type fields as follows: A ? in any position matches
the corresponding field of any directory entry
belonging to the current user number. Thus, a search
operation for X?7?%7%2?2.2?? finds all the current user
files on the directory beginning in X. Most other
file-related BDOS system calls treat the presence of
a ? in the filename or filetype field as an error,

o e et o - 1 o +
! !
! F_PASSWD |
! |
! SYSTEM CALL 106: SET DEFAULT PASSWORD |
! !
o ————— - e e e ———— s &
! !
! Entry Parameters: !
! Register C: 6AH !
! Register DE: Password Address !
! |
! Returned Value: None !
1 !
e e e e e e -

F_PASSWD allows a program to specify a password value
before a file protected by the password is accessed.
When the file system accesses a password-protected
file, it checks the current DMA and the default
password for the correct value, If either value
matches the file's password, full access to the file

B-89

D S SN T SR e e

A AL L L R e TR e R

BDOS FILE SYSTEM

is allowed.

Note: This system call performs no action in
nonbanked CP/M Plus systems because file passwords
are not supported.

To make an F_PASSWD call, the calling program sets
register pair DE to the address of an 8-~byte field
containing the password.

F_RANDREC
SYSTEM CALL 36: SET RANDOM RECORD

Entry Parameters:
Register C: 24H
Registers DE: FCB Address

Returned Value:
Random-Record Field Set
__ ! (]

ot pem o sun sum pum s

F_RANDREC sets the random-record number of the next
record to be accessed from a file that has been read
or written sequentially to a particular point. This
value is returned in the random-record field (bytes
r0, r1, and r2) of the FCB addressed by the register
pair DE. F_RANDREC can be useful in two ways.

First, it is often necessary to initially read and
scan a sequential file to extract the positions of
various key fields. As each key is encountered,
F_RANDREC is called to compute the random-record
position for the data corresponding to this key. If
the data unit size is 128 bytes, the resulting record
number, minus one, is placed into a table with the
key for later retrieval. After scanning the entire
file and tabularizing the keys and their record
numbers, you can move directly to a particular record
by performing a random read using the corresponding
random-record number that you saved earlier. The
scheme is easily generalized when variable record
lengths are involved, because the program need only
store the buffer-relative byte position along with
the key and record number to find the exact starting
position of the keyed data at a later time.

A second use of F_RANDREC occurs when switching ')
from a sequential read or write over to random read

B-90

_——‘L

BDOS FILE SYSTEM

or write. A file is sequentially accessed to a
particular point in the file, then F_RANDREC is
called to set the record number, and subsequent
random read and write operations continue from the
next record in the file.

e e —————— ———

F_READ
SYSTEM CALL 20: READ SEQUENTIAL

o v - -

Entry Parameters:
Register B FT4R
Registers DE: FCB Address

Register A: Error Code
Register H: Physical Error

ettt o

1
1
!
1
!
1 Returned Value:
|
!
!
+

———————————————

F_READ reads the next 1 to 128 128-byte records from
a file into memory beginning at the current DMA
address. The BDOS Multisector Count (see the
F_MULTISEC system call) determines the number of
records to be read. The default is one record. The
FCB addressed by register pair DE must have been
previously activated by an F_OPEN or F_MAKE system
call,

F_READ reads each record from byte cr of the extent,
then automatically increments the cr field to the
next record position. If the cr field overflows,
then F_READ automatically opens the next logical
extent and resets the cr field to 0 in preparation
for the next read operation. The calling program
must set the cr field to 0 following the F_OPEN call
if the intent is to read sequentially from the
beginning of the file.

Upon return, F_READ sets register A to zero if the
read operation is successful. Otherwise register A
contains an error code identifying the error as shown
below:

01 : Reading unwritten data (end of file)
09 : Invalid FCB

10 : Media change occurred

255 : Physical error; refer to register H

Error Code 01 is returned if no data exists at the

B-91

—*T

BDOS FILE SYSTEM

next record position of the file. Usually the no-
data situation is encountered at the end of a file.
However, it can also occur if an attempt is made to
read a data block that has not been previously
written, or an extent which has not been created.
These situations are usually restricted to files
created or appended with F_WRITERAND and F_WRITEZF.

Error Code 09 is returned if the FCB is invalidated
by a previous BDOS close call that returns an error.

Error Code 10 is returned if a media change occurs on
the drive after the referenced FCB is activated by an
F_OPEN or F_MAKE system call.

Error Code 255 is returned if a physical error is
encountered and the BDOS error mode is Return Error
mode or Return and Display Error mode (see
SETERRMODE). If the error mode is the default mode,
a message identifying the physical error is displayed
at the console and the calling program is terminated.
When a physical error is returned to the calling
program, register H contains one of the following
error codes:

01
04

: Disk I/0 error

: Invalid drive error

On all error returns except for physical error
returns, A = 255, F_READ sets register H to the
number of records successfully read before the error
is encountered. This value can range from 0 to 127
depending on the current BDOS Multisector Count. It
is always set to zero when the Multisector Count is
equal to one.

F_READRAND
SYSTEM CALL 33: READ RANDOM

Dt T ————— +
! !
1 Entry Parameters: !
! Register Gt 29H !
: Registers DE: FCB Address !

!
! Returned Value: !
! Register A: Error Code !
: Register H: Physical Error !

!
o e e - e o e e e e -

B-92

BDOS FILE SYSTEM

F_READRAND is similar to F_READ except that the read
operation takes place at a particular random-record
number, selected by the 24-bit value constructed from
the three-byte r0, r1, r2 field beginning at

position 33 (21H) of the FCB. Note that the sequence
of 24 bits is stored with the least-significant byte
first (r0), the middle byte next (r1), and the high
byte last (r2). The random-record number can range
from 0 to 262,143. This corresponds to a maximum
value of 3 in byte ra.

To read a file with F_READRAND, the calling program
must first open the base extent (extent 0). This
ensures that the FCB is properly initialized for
subsequent random-access operations. The base extent
may or may not contain any allocated data.

F_READRAND reads the record specified by the random-
record field into the current DMA address. The
system call automatically sets the logical extent and
current record values, but unlike the F_READ system
call, it does not advance the current record number.
Thus, a subsequent F_READRAND call rereads the same
record. After a random read operation, a file can be
accessed sequentially, starting from the current
randomly accessed position. However, the last
randomly accessed record is reread or rewritten when
switching from random to sequential mode.

If the BDOS Multisector Count is greater than one
(see F_MULTISEC), F_READRAND reads multiple
consecutive records into memory beginning at the
current DMA. The r0, ri, and r2 field of the FCB is
automatically incremented to read each record.
However, the FCBs random-record number is restored to
the first record's value upon return to the calling
program.,

Upon return, F_READRAND sets register A to zero if
the read operation was successful. Otherwise
register A contains one of the following error codes:

01 : Reading unwritten data (end of file)
03 : Cannot close current extent

04 : Seek to unwritten extent

06 : Random-record number out of range

10 : Media change occurred
255 : Physical error : refer to register H

Error Code 01 is returned if no data exists at the
next record position of the file. Usually the no-
data situation is encountered at the end of a file.
However, it can also occur if an attempt is made to
read a data block that has not been previously
written.

B-93

TR e e

BDOS FILE SYSTEM

Error Code 03 is returned when F_READRAND cannot
close the current extent prior to moving to a new
extent.

Error Code 04 is returned when an F_READRAND
operation accesses an extent that has not been
created.

Error Code 06 is returned when byte 35 (r2) of the
referenced FCB is greater than 3.

Error Code 10 is returned if a media change occurs on

the drive after the referenced FCB is activated by a
BDOS open or make call.

Error Code 255 is returned if a physical error is
encountered, and the BDOS error mode is one of the
return modes (see F_ERRMODE). If the error mode is
the default mode, a2 message identifying the physical
error is displayed at the console and the calling
program is terminated. When a physical error is
returned to the calling program, register H contains
one of the following error codes:

01 : Disk I/0 error
04 : Invalid drive error

On all error returns except for physical errors (A =
255), F_READRAND sets register H to the number of
records successfully read before the error is
encountered. This value can range from 0 to 127
depending on the current BDOS Multisector Count. It
is always set to zero when the Multisector Count is
equal to 1.

F_RENAME
SYSTEM CALL 23: RENAME FILE

= -

1
1
1
1
1
1
1
!
I
1
B
I
1
1
1
)
)
I
1
1
1
1
I
I
I
I
1
'
1
I
1
!
1
I
I
I
)
I
'
I
I
1

Entry Parameters:
Register Cs 17H
Registers DE: FCB Address

Returned Value:
Register A: Directory Code
Register H: Physical or
Extended Error

el e

s
I
|
1
I
I
I
I
I
I
!
!
|
!
!
I
'
1
1
|
I
1
!
I
1
!
I
I
1
1
I
1
I
1
I
I
!
!
|
1
|
1
|
I
!
!
I
!

BDOS FILE SYSTEM

F_RENAME uses the FCB addressed by register pair DE
to change all directory entries of the file specified
by the file specification in the first 16 bytes of
the FCB to the file specification in the second 16
bytes. If the file specified by the first filespec is
password-protected, the correct password must be
placed in the first eight bytes of the current DMA
buffer, or have been previously established as the
default password (see F_PASSWD).

The calling program must also ensure that the
filenames specified in the FCB are valid and
unambiguous, and that the new filename does not
already exist on the drive. F_RENAME uses the dr
code at byte zero of the FCB to select the drive.
The drive code at byte 16 (10H) of the FCB is
ignored.

Upon return, F_RENAME returns a Directory Code in
register Awith the value zero if the rename is
successful, or OFFH (255 decimal) if the file named
by the first filename in the FCB is not found.
Register H is set to zero in both of these cases. If
a physical or extended error is encountered, F_RENAME
performs different actions depending on the BDOS
error mode (see F_ERRMODE). If the BDOS error mode
is the default mode, a message identifying the error
is displayed at the console and the program is
terminated. Otherwise F_RENAME returns to the
calling program with register A set to OFFH and
register H set to one of the following physical or
extended error codes:

01 : Disk I/0 error

02 : Read-Only disk

03 : Read-Only file

04 : Invalid drive error

07 : File password error

08 : File already exists

09 : ? in filename or filetype field

B-95

BDOS FILE SYSTEM

+
I
I
1
i
1
I
|
!
|
I
!
|
I
1
I
1
|
1
!
!
1
1
I
|
I
1
|
I
1
1
1
I
!
I
1
I
I
1
1
1
|
1
1
I
1
1
!

F_SFIRST
SYSTEM CALL 17: SEARCH FOR FIRST

Entry Parameters:
Register G ity
Registers DE: FCB Address

Returned Value:
Register A: Directory Code
Register H: Physical Error

Lttt e e

F_SFIRST scans the directory for a match with the FCB
addressed by register pair DE. Two types of searches
can be performed. For standard searches, the calling
program initializes bytes 0 through 12 of the
referenced FCB, with byte 0 specifying the drive
directory to be searched; bytes 1 through 11
specifying the file or files to be searched for; and
byte 12 specifying the extent. Usually byte 12 is
set to zero. An ASCII question mark (63 decimal or
3FH) in any of the bytes 1 through 12 matches all
entries on the directory in the corresponding
position. This facility, called ambiguous reference,
can be used to search for multiple files on the
directory. When called in the standard mode, the
F_SEARCHF system call scans for the first file entry
in the specified directory that matches the FCB and
belongs to the current user number,

If byte 0 of the referenced FCB is set to a question
mark, the F_SFIRST system call ignores the remainder
of the referenced FCB, and locates the first
directory entry residing on the current default
drive. All remaining directory entries can be
located by making multiple F_SNEXT calls. This type
of search operation is usually not made by
application programs, but it does provide complete
flexibility to scan all current directory values.

Note: This type of search operation must be
performed to access a drive's directory label.

Upon return, F_SFIRST returns a Directory Code in

register A with the value 0 to 3 if the search is
successful, or OFFH (255 Decimal) if a matching
directory entry is not found. Register H is set to
zero in both of these cases. For successful
searches, the current DMA is also filled with the

B-96

B e e e

BDOS FILE SYSTEM

directory record containing the matching entry, and
the relative starting position is A ®* 32 (that is,
rotate the A register left five bits, or ADD A five
times). Although it is usually not required for
application programs, the directory information can
be extracted from the buffer at this position.

The F_SFIRST system call also initializes the F_SNEXT
system call. After F_SFIRST has located the first
directory entry matching the referenced FCB, F_SNEXT
can be called repeatedly to locate all remaining
matching entries. In terms of execution sequence,
however, the F_SNEXT call must either follow a
F_SFIRST or F_SNEXT call with no other intervening
BDOS disk~-related system calls.

If the directory has been initialized for date and
time stamping by INITDIR, then an SFCB resides in
every fourth directory entry, and successful
Directory Codes are restricted to the values 0 to 2.
For successful searches, if the matching directory
record is an extent-zero entry, and if an SFCB
resides at offset 96 within the current DMA (contents
of DMA Address + 96 = 21H), the SFCB contains the
date and time stamp information and password mode for
the file. This information is located at the

' relative starting position of 97 + (A * 10) within
the current DMA in the following format:

0 - 3 : Create or Access Date- and
Time-Stamp Field

4 - 7 : Update Date- and Time-Stamp Field

8 : Password Mode Field

If a physical error is encountered, F_SFIRST
performs different actions depending on the BDOS
error mode (see F_ERRMODE system call)., If the BDOS
error mode is in the default mode, a message
identifying the error is displayed at the console and
the calling program is terminated. Otherwise
F_SFIRST returns to the calling program with register
A set to OFFH, and register H set to one of the
following physical error codes:

01 : Disk I/0 error
04 : Invalid drive error

B-97

BDOS FILE SYSTEM

F_SIZE
SYSTEM CALL 35: COMPUTE FILE SIZE

——— e ——

-+
l

!

!

!

!

+

!

! Entry Parameters:

! Register Gz 23H

! Registers DE: FCB Address

!

! Returned Value:

! Register A: Error Flag

! Register H: Physical or

! Extended Error
! Random Record
! Field Set

!

+

F_SIZE determines the virtual file size which is, in
effect, the address of the record immediately
following the end of the file. The virtual size of a
file corresponds to the physical size if the file is
written sequentially. If the file is written in
random mode, gaps might exist in the allocation, and
the file might contain fewer records than the
indicated size. For example, if a single record with
record number 262,143 (the CP/M Plus maximum) is
written to a file using F_WRITERAND, then the virtual
size of the file is 262,144 records even though only
one data block is actually allocated.

To compute file size, the calling program passes the
address of an FCB in random mode format (bytes ro,
r1, and r2 present) in register pair DE. Note that
the FCB must contain an unambiguous filename and
filetype. F_SIZE sets the random-record field of the
FCB to the random-record number, plus one, of the
last record in the file, If the r2 byte is set to
O4H, then the file contains the maximum record count
262,144,

A program can append data to the end of an existing
file by calling F_SIZE to set the random-record
position to the end of file, and then performing a
sequence of random writes starting at the preset
record address.

Note: The BDOS does not require that the file be
open to use F_SIZE. However, if the file has been
written to, it must be closed before calling F_SIZE.
Otherwise an incorrect file size might be returned.

B-98

e—_

BDOS FILE SYSTEM

Upon return, F_SIZE returns a zero in register A if
the file specified by the referenced FCB is found, or
an OFFH in register A if the file is not found.
Register H is set to zero in both of these cases. If
a physical or extended error is encountered, F_SIZE
performs different actions depending on the BDOS
error mode (see F_ERRMODE). If the BDOS error mode
is the default mode, a message identifying the error
is displayed at the console and the program is
terminated. Otherwise F_SIZE returns to the calling
program with register A set to OFFH, and register H
set to one of the following physical or extended
errors:

01 : Disk I/0 error
04 : Invalid drive error

———— i ————————————————————— i ————

F_SNEXT

i ——

Entry Parameters:
Register C: 12H

Returned Value:
Register A: Directory Code
Register H: Physical Error

F_SNEXT is identical to the F_SFIRST system call,
except that the directory scan continues from the
last entry that was matched. F_SNEXT returns a
Directory Code in register A, analogous to F_SFIRST.

Note: In execution sequence, a F_SNEXT call must

follow either a F_SFIRST or another F_SNEXT call with
no other intervening BDOS disk-related system calls.

B-99

BDOS FILE SYSTEM

F_TIMEDATE

SYSTEM CALL 102: READ FILE DATE STAMPS
AND PASSWORD MODE

- v - -

——

Entry Parameters:
Register C: 66H
Register DE: FCB Address

Returned Value:
Register A: Directory Code
Register H: Physical Error

el e L L S

el e

F_TIMEDATE returns the date- and time-stamp
information and password mode for the specified file
in byte 12 and bytes 24 through 32 of the specified
FCB. The calling program passes the address of an
FCB in which the drive, filename, and filetype fields
have been defined in register pair DE.

If F_TIMEDATE is successful, it sets the following
fields in the referenced FCB:

byte 12 (OCH): Password mode field
bit 7--Read mode
bit 6==Write mode
bit 4--Delete mode

Byte 12 equal to zero indicates the file has not been
assigned a password.

byte 24 - 27 (18H - 11BH): Create or Access
time-stamp field

byte 28 - 31 (1CH - 1FH) : Update time-stamp
field

The date-stamp fields are set to binary zeros if a
stamp has not been made. The format of the time-
stamp fields is the same as the format of the date
and time structure described in T_SET.

Upon return, F_TIMEDATE returns a Directory Code in
register A with the value zero if the system call is
successful, or OFFH (255 decimal) if the specified
file is not found. Register H is set to zero in both
of these cases. If a physical or extended error is
encountered, F_TIMEDATE performs different actions
depending on the BDOS error mode (see F_ERRMODE). If
the BDOS error mode is in the default mode, a message

B-100

I,

-

BDOS FILE SYSTEM

identifying the error is displayed at the console and
the calling program is terminated. Otherwise
F_TIMEDATE returns to the calling program with
register A set to OFFH and register H set to one of
the following physical or extended error codes:

01 : Disk I/0 error
04 : Invalid drive error
09 : ? in filename or filetype field

—— - ——————————

F_TRUNCATE
SYSTEM CALL 99: TRUNCATE FILE

-

Entry Parameters:
Register C: ©63H
DE: FCB Address

Returned Value:
Register A: Directory Code
Register H: Extended or
Physical Error

F_TRUNCATE sets the last record of a file to the
random-record number contained in the referenced FCB.
The calling program passes the address of the FCB in
register pair DE, with byte 0 of the FCB specifying
the drive; bytes 1 through 11 specifying the filename
and filetype; and bytes 33 through 35 (r0, r1, and
r2) specifying the last record number of the file.
The last record number is a 24-bit value stored with
the least-significant byte first (r0), the middle
byte next (r1), and the high byte last (r2). This
value can range from 0 to 262,143, which corresponds
to a maximum value of 3 in byte r2.

If the file specified by the referenced FCB is
password-protected, the correct password must be
placed in the first eight bytes of the current DMA
buffer, or have been previously established as the
default password (see F_PASSWD).

F_TRUNCATE requires that the file specified by the
FCB not be open, particularly if the file has been
written to. In addition, any activated FCBs naming
the file are not valid after F_TRUNCATE is called.
Close your file before calling F_TRUNCATE and then
reopen it after the call to continue processing on

B-101

BDOS FILE SYSTEM

the file,

F_TRUNCATE also requires that the random-record
number field of the referenced FCB specify a value
less than the current file size. In addition, if the
file is sparse, the random-record field must specify
@ record in a region of the file where data exists.

Upon return, F_TRUNCATE returns a Directory Code in
register Awith the value zero if F_TRUNCATE is
Successful, or OFFH (255 decimal) if the file is not
found or the record number is invalid. Register H is
Set to zero in both of these cases. If a physical or
extended error is encountered, F_TRUNCATE performs
different actions depending on the BDOS error mode
(see F_ERRMODE). If the BDOS error mode is in the 0
default mode, a message identifying the error is
displayed at the console and the program is
terminated. Otherwise F_TRUNCATE returns to the
calling program with register A set to OFFH and
register H set to one of the following physical or
extended error codes:

01 : Disk I/0 error

02 : Read-Only disk

03 : Read-Only file d
04 : Invalid drive error

07 : File password error

09 : 2 in filename or filetype field

e o e e e e e e e e e e -
! l
! F_TSTWRITE !
! !
! SYSTEM CALL 41: TEST AND WRITE RECORD |
! !
e e, —————— 0 5 i e o S
! !
! Entry Parameters: !
! Register C: 29H !
! Register DE: FCB Address 1
! 1
! Returned Value: l
! Register A: Error Code !
: Register H: Physical Error !

l
e nnc_c e n e - - —————— —

F_TSTWRITE is an MP/M II system call that is not
supported under CP/M Plus. If called, F_TSTWRITE
returns with register A set to OFFH and register H
set to zero.

B-102

BDOS FILE SYSTEM

e

F_UNLOCK
SYSTEM CALL 43: UNLOCK RECORD

1
I
1
|
1
1
]
]
1
1
1
1
I
i
!
I
1
!
!
!
i
1
1
1
1
!
!
1
1
I
1
1
1
1
1
1
1
|
I
1
|
1
1
I
1
1
1
1

Entry Parameters:
Register Gs. 2BH
DE: FCB Address

Returned Value:
Register A: O0O0H

Bl T PR N ——
o v v e e b e e o e b e e

F_UNLOCK is an MP/M II system call that is supported
under CP/M Plus only to provide compatibility between
CP/M Plus and MP/M. It is intended for use in
situations where more than one running program has
Read-Write access to a common file, Because CP/M Plus
is a single-user operating system in which only one
program can run at a time, this situation cannot
occur, Thus, under CP/M Plus, F_UNLOCK performs no
action except to return the value 00H in register A
indicating that the record unlock operation is
successful.

1
I
I
1
|
|
1
|
I
|
!
I
|
|
I
|
I
|
1
I
I
I
I
I
|
I
|
|
!
I
|
I
!
1
I
1
1
I
|
I
|
I
1
|
!
|
|
+

F_USERNUM
SYSTEM CALL 32: SET/GET USER CODE

+ o= =}

e

Entry Parameters
Register C
Register E

20H
OFFH (get) or
User Code (set)

Returned Value:
Register A: Current Code or
(no value)

el ek kI S ——

L N ——

A program can change or interrogate the currently
active user number by calling F_USERNUM. If register
E = OFFH, then the value of the current user number
is returned in register A where the value is in the
range of 0 to 15. If register E is not OFFH, then the
current user number is changed to the value of E

B-103

BDOS FILE SYSTEM

(module 16). In other words, only the value of the
four least-significant bits of register E, 0 through
15 (0 - OFH), is used to set the user number.

F_WRITE
SYSTEM CALL 21: WRITE SEQUENTIAL

_ﬂﬂ__
—————

I
1
1
I
I
I
i
1
I
1
I
1
I
1
|
!
1
1
i
!
!
1
1
1
1
I
1
1
!
!
I
1
!
I
|
I
I
I
|
I
I
|
1
|
]
I
B

Entry Parameters:
Register C: 15H
Registers DE: FCB Address

Returned Value:
Register A: Error Code
Register H: Physical Error

el
R e e ek

F_WRITE writes 1 to 128 128-byte data records,
beginning at the current DMA address, into the file
named by the FCB addressed in register pair DE. The
BDOS Multisector Count (see F_MULTISEC) determines
the number of 128-byte records that are written. The
default is one record. The referenced FCB must have
been previously activated by an F_OPEN or F_MAKE
system call.

F_WRITE places the record into the file at the
position indicated by the cr byte of the FCB, and
then automatically increments the cr byte to the next
record position. If the cr field overflows, the
system call automatically opens, or creates the next
logical extent, and resets the cr field to zero in
preparation for the next write operation. If F_WRITE
is used towrite to an existing file, then the newly
written records overlay those already existing in the
file. The calling program must set the cr field to
zero following an Open or Make call if the intent is
to write sequentially from the beginning of the file.

F_WRITE makes an Update date and time for the file if
the following conditions are satisfied: the
referenced drive has a directory label that requests
date and time stamping, and the file has not already
been stamped for update by a previous F_MAKE or
F_WRITE system call.

Upon return, F_WRITE sets register A to zero if the

write operation is successful. Otherwise register A
contains an error code identifying the error as shown

B-104

| T EE—— et

—_ﬂ------------------.-----.------.--ﬂ

BDOS FILE SYSTEM

below:
01 : No available directory space |
02 : No available data block
09 : Invalid FCB
10 : Media change occurred
255 : Physical error : refer to register H

Error Code 01 is returned when F_WRITE attempts to
create a new extent that requires a new directory

entry, and no available directory entries exist on
the selected disk drive.

Error Code 02 is returned when F_WRITE attempts to
allocate a new data block to the file, and no
unallocated data blocks exist on the selected disk
drive.

Error Code 09 is returned if the FCB is invalidated
by a previous BDOS close call that returns an error.

Error Code 10 is returned if a media change occurs on
the drive after the referenced FCB is activated by a
BDOS open or make call,

Error Code 255 is returned if a physical error is
encountered and the BDOS error mode is Return Error
mode, or Return and Display Error mode (see
F_ERRMODE). If the error mode is the default mode, a
message identifying the physical error is displayed
at the console and the calling program is terminated.
When a physical error is returned to the calling
program, register H contains one of the following
error codes:

01 : Disk I/0 error
02 : Read-Only disk
03 : Read-Only file or

File open from user zero when

the current user number is non-zero or

File password-protected in Write mode
04 : Invalid drive error

On all error returns, except for physical error
returns (A = 255), F_WRITE sets register H to the
number of records successfully written before the
error was encountered. This value can range from 0
to 127 depending on the current BDOS Multisector
Count., It is always set to zero when the Multisector

Count is set to one.

B-105

BDOS FILE SYSTEM

+
|
I
!
1
!
I
I
1
|
!
I
|
!
)
!
!
|
!
1
I
!
|
!
I
|
|
!
1
1
I
I
|
1
1
I
|
1
|
1
I
!
|
!
1
!
|
1
+

F_WRITERAND
SYSTEM CALL 34: WRITE RANDOM

Entry Parameters:
Register C: 22H
Registers DE: FCB Address

Returned Value:
Register A: Error Code
Register H: Physical Error

S S A e S b | S ! A i

F_WRITERAND is analogous to F_READRAND, except that
data is written to the disk from the current DMA
address. If the disk extent or data block where the
data is to be written is not already allocated, the
BDOS automatically performs the allocation before the
write operation continues.

To write to a file using F_WRITERAND, the calling
program must first open the base extent (extent 0).
This ensures that the FCB is properly initialized for
subsequent random-access operations. If the file is
empty, the calling program must create the base
extent with F_MAKE before calling F_WRITERAND. The
base extent might or might not contain any allocated
data, but it does record the file in the directory so
that the file can be displayed by the DIR utility.

F_WRITERAND sets the logical extent and current
record positions to correspond with the random record
being written, but does not change the random-record
number. Thus, F_READ or F_WRITE operations can
follow a F_WRITERAND, with the current record being
reread or rewritten as the calling program switches
from random to sequential mode,

F_WRITERAND makes an Update date and time stamp for
the file if the following conditions are satisfied:
the referenced drive has a directory label that
requests Update date and time stamping if the file
has not already been stamped for update by a previous
F_MAKE or F_WRITE call.

If the BDOS Multisector Count is greater than one
(see F_MULTISEC), F_WRITERAND reads multiple
consecutive records into memory beginning at the
current DMA, The r0, r1, and r2 field of the FCB is
automatically incremented to write each record.

B-106

BDOS FILE SYSTEM

However, the FCB's random-record number is restored
to the first record's value when it returns to the
calling program. Upon return, F_WRITERAND sets
register A to zero if the write operationis
successful. Otherwise register A contains one of the
following error codes:

02 : No available data block
03 : Cannot close current extent
05 : No available directory space
06 : Random-record number out of range
10 : Media change occurred
255 : Physical error : refer to register H

Error Code 02 is returned when F_WRITERAND attempts
to allocate a new data block to the file and no
unallocated data blocks exist on the selected disk
drive.

Error Code 03 is returned when F_WRITERAND cannot
close the current extent prior tomoving to a new
extent.

Error Code 05 is returned when F_WRITERAND attempts
to create a new extent that requires a new directory
entry and no available directory entries exist on the
selected disk drive.

Error Code 06 is returned when byte 35 (r2) of the
referenced FCB is greater than 3.

Error Code 10 is returned if a media change occurs on
the drive after the referenced FCB is activated by a
BDOS open or make call.

Error Code 255 is returned if a physical error is
encountered and the BDOS error mode is one of the
return modes (see F_ERRMODE). If the error mode is
the default mode, a message identifying the physical
error is displayed at the console and the calling
program is terminated. When a physical error is
returned to the calling program, it is identified by
register H as shown below:

01 : Disk I/0 error
02 : Read-Only disk
03 : Read-Only file or

File open from user zero when the current
user number is non-zero or
File password-protected in write mode

04 : Invalid drive error

On all error returns, except for physical errors (A =
255), F_WRITERAND sets register H to the number of
records successfully written before the error is

B-107

________________________———————ﬁ..-----------llllllllllllllllw

BDOS FILE SYSTEM

encountered. This value can range from 0 to 127
depending on the current BDOS Multisector Count. It
is always set to zero when the Multisector Count is
equal to one.

F_WRITEXFCB
SYSTEM CALL 103: WRITE FILE XFCB

e p— -

--—--——--——.———--.——-—-—_-—----——--——-——--—q- —————

Entry Parameters:
Register C: ©6TH
Register DE: FCB Address

Returned Value:
Register A: Directory Code
Register H: Physical Error

b e L S -
- - - - -

F_WRITEXFCB creates a new XFCB or updates the
existing XFCB for the specified file. The calling {
program passes in register pair DE the address of an
FCB in which the drive, name, type, and extent fields
have been defined. The extent field specifies the
password mode and whether a new password is to be
assigned to the file. The format of the extent byte
is shown below:

FCB byte 12 (OCH) (ex) : XFCB password mode
bit 7--Read mode
bit 6--Write mode
bit 5--Delete mode
bit O--Assign new password toc the file

If the specified file is currently password-
protected, the correct password must reside in the
first eight bytes of the current DMA, or have been
previously established as the default password (see
F_PASSWD). If bit 0 is set to 1, the new password
g;:t reside in the second eight bytes of the current

Upon return, F_WRITEXFCB returns a Directory Code in
register Awith the value zero if the XFCB create or
update is successful; or OFFH (255 decimal) if no
directory label exists on the specified drive; or the
file named in the FCB is not found; or no space
exists in the directory to create an XFCB.

F_WRITEXFCB also returns with OFFH in register A if

B-108

L R R R e T . EEEEEEEEEEEEEEEEEERRRRRRRRRRRRRRRREEER RN T

BDOS FILE SYSTEM

passwords are not enabled by the referenced
directory's label. Register H is set to zero in all
of these cases. If a physical or extended error is
encountered, F_WRITEXFCB performs different actions
depending on the BDOS error mode (see F_ERRMODE)., If
the BDOS error mode is the default mode, a message
identifying the error is displayed at the console and
the calling program is terminated., Otherwise
F_WRITEXFCB returns to the calling program with
register A set to OFFH and register H set to one of
the following physical or extended error codes:

01 : Disk I/0 error

02 : Read-Only disk

04 : Invalid drive error

07 : File password error

09 : ? in filename or filetype field
e ———————— e +
1 I
! F_WRITEZF !
! !
! SYSTEM CALL 40: WRITE RANDOM WITH !
! ZERO FILL !
! !
e e e e +
! !
! Entry Parameters: |
! Register C: 28H !
1 Register DE: FCB Address !
! !
! Returned Value: !
! Register A: Error Code {
! Register H: Physical Error |
! !
e —— - - - - - - - - - - - o

F_WRITEZF is identical to F_WRITERAND, with the
exception that a previously unallocated data block is
filled with zeros before the record is written. If
this system call has been used to create a file,
records accessed by a read random operation that
contain all zeros identify unwritten random-record
numbers. Unwritten random records in allocated data
blocks of files created using F_WRITERAND contain
uninitialized data.

B-109

OTHER BDOS SYSTEM CALLS

BDOS List Device System Calls

e e e e e e e e e e e +
! !
| L_WRITE !
! !
! SYSTEM CALL 5: LIST OUTPUT !
! !
e e e e - e 4+
! !
! Entry Parameters: |
! Register C: O05H !
! Register E: ASCII Character !
! I
o e e e e e e e e +

L_WRITE sends the ASCII character in register E to
the logical list device (LST:).

L_WRITEBLK
SYSTEM CALL 112: LIST BLOCK

o e e e 2 e e -
! !
! Entry Parameters: |
! Register C: TOH !
! Register DE: CCB Address l
! !
l Returned Value: none |
! |
e e o e -

L_WRITEBLK sends the character string located by the
Character Control Block (CCB) addressed in register
pair DE to the logical list device (LST:). The CcCB
format is:

byte 0 - 1 : Address of character string (word
value)

byte 2 - 3 : Length of character string (word
value)

B-110

L}

OTHER BDOS SYSTEM CALLS

BDOS Program System Calls

- - -

! 1
! P_CHAIN !
! !
! SYSTEM CALL 47: CHAIN TO PROGRAM !
! !
tomm—————— - e ————————— e e e +
| !
! Entry Parameters: !
! Register C: 2FH !
l E: Chain Flag !
! !
e e e - e e +

P_CHAIN provides a means of chaining from one program
to the next without operator intervention. The
calling program must place a command line terminated
by a null byte (00H) in the default DMA buffer. If
register E is set to OFFH, the CCP initializes the
default drive and user number to the current program
values when it passes control to the specified
transient program. Otherwise these parameters are
set to the default CCP values.

Note: P_RETCODE can be used to pass a two-byte value
to the chained program.

P_CHAIN does not return any values to the calling
program and any errors encountered are handled by the
CCP.

o] . =

P_LOAD
SYSTEM CALL 59: LOAD OVERLAY

1
I
1
1
1
1
I
1
I
I
1
1
1
!
1
1
]
1
1
)
1
I
I
I
|
1
1
1
B
1
1
]
I
I
I
1
1
1
1
|
1
|
1
1
1
I
I
1

Entry Parameters:
Register C: 3BH
Register DE: FCB Address

Returned Value:
Register A: Error Code
Register H: Physical Error

ettt el L

+
H
1
B
1
1
!
1
!
I
1
1
1
1
1
I
1
1
1
1
I
!
1
]
1
I
I
1
I
1
I
I
I
I
1
1
I
I
1
1
1
|
1
1
1
1
|
I
!
+

Only transient programs with an RSX header can use
P_LOAD because it is supported by the LOADER module.

B-111

——

OTHER BDOS SYSTEM CALLS

The calling program must have a header to force the
LOADER to remain resident after the program is
loaded.

P_LOAD loads either an absolute or relocatable
module. Relocatable modules are identified by a
filetype of PRL. P_LOAD does not call the loaded
module.

The referenced FCB must be successfully opened before
P_LOAD is called. The load address is specified in
the first two random-record bytes of the FCB (r0 and
r1). The LOADER returns an error if the load address
is less than 100H; or if performing the requested
load operation would overlay the LOADER or any other
Resident System Extensions that have been previously
loaded.

When loading relocatable files, the LOADER requires
enough room at the load address for the complete PRL
file including the header and bit map (see Appendix
B). Otherwise an error is returned. P_LOAD also
returns an error on PRL file-load requests if the
specified load address is not on a page boundary.

Upon return, P_LOAD sets register A to zero if the
load operation is successful. If the LOADER RSX is
not resident in memory because the calling program
did not have a RSX header, the BDOS returns with
register A set to OFFH and register H set to zero.

If the LOADER detects an invalid load address, or if
insufficient memory is available to load the overlay,
P_LOAD returns with register A set to OFEH., All
other error returns are consistent with the error
codes returned by BDOS F_READ.

P_RETCODE !
SYSTEM CALL 108: GET/SET PROGRAM RETURN CODE!

handie Bl I

_,__-_..__.,..___._.__-__.___--__-____-,__,_-._____....___-.__

Entry Parameters:
Register Cse b CH
Register DE: OFFFFH (Get) or
Program Return Code (Set)

Returned Value:
Register HL: Program Return Code or
(no value)

1——__-._——_—-'-
bdh el i I R

OTHER BDOS SYSTEM CALLS

CP/M Plus allows programs to set a return code before
terminating. This provides a mechanism for programs
to pass an error code or value to a following job
step in batch environments. For example, Program
Return Codes are used by the CCP in CP/M Plus's
conditional command-line batch facility. Conditional
command lines are command lines that begin with a
colon (:). The execution of a conditional command
depends on the successful execution of the preceding
command. The CCP tests the return code of a
terminating program to determine whether it
successfully completed or terminated in error.
Program return codes can also be used by programs to
pass an error code or value to a chained program (see
P_CHAIN, Chain to Program).

The CCP has a conditional command facility that uses
the Program Return Code. If a command line SUBMITted
to the CCP by the SUBMIT utility begins with a colon,
the CCP skips execution of the command if the
previous command set an unsuccessful Program Return
Code. In the following example, the SUBMIT utility
sends a command sequence to the CCP.

A>SUBMIT SUBFILE
A>COMPUTE RESULTS.DAT
A>:REPORT RESULTS.DAT

The CCP does not execute the REPORT command if the
COMPUTE command sets an unsuccessful Program Return
Code.

A program can set or interrogate the Program Return
Code by calling P_RETCODE. If register pair DE =
OFFFFH, then the current Program Return Code is
returned in register pair HL. Otherwise P_RETCODE
sets the Program Return Code to the value contained
in register pair DE. Program Return Codes are
defined in the table below.

B-113

a0 |

OTHER BDOS SYSTEM CALLS

TABLE B-18. PROGRAM RETURN CODES

Code Meaning

0000 - FEFF Successful return.

FFOO - FFFE Unsuccessful return.

0000 The CCP initializes the Program Return Code to
zero unless the program is loaded as the result of
program chain.

FF80 - FFFC Reserved.

FFFD The program is terminated because of a fatal BDOS
error.

FFFE The program is terminated by the BDOS because the

user typed a CTRL-C.

+
!
P_TERMCPM !
!
SYSTEM CALL 0: SYSTEM RESET l

!

T +
! !
! Entry Parameters: !
! Register C: OOH !
l !
e - +

P_TERMCPM terminates the calling program and returns
control to the CCP via a warm-start sequence. Calling
this system call has the same effect as a jump to
location 0000H of Page Zero.

Note: The disk subsystem is not reset by P_TERMCPM
under CP/M Plus. The calling program can pass a
return code to the CCP by calling P_RETCODE prior to
making 2 P_TERMCPM call or jumping to location 000O0H.

When the CCP loads a transient program, the LOADER
module sets the stack pointer to a 16-level stack,
and then pushes the address 0000H onto the stack.
Thus, an immediate return to the system is equivalent
to a jump to 0000H. However, most transient programs
set up their own stack, and terminate execution by
making a P_TERMCPM call or by jumping to location
0000H.

B-114

OTHER BDOS SYSTEM CALLS

System Calls

S_BDOSVER
SYSTEM CALL 12: RETURN VERSION NUMBER

— e p— — —
— g - —

e B .
l |
! Entry Parameters: !
! Register C: OCH !
! |
! Returned Value: !
! Registers HL: Version Number !
! l
e e e e e e e — e —————— +

S_BDOSVER provides information that allows version-
independent programming. It returns a two-byte value
in register pair HL: H contains OOH for CP/M and L
contains 31H, the BDOS file-system version number.
S_BDOSVER is useful for writing applications programs
that must run on multiple versions of CP/M and MP/M.

o e e +
! !
! S_BIOS 1
! !
! SYSTEM CALL 50: DIRECT BIOS CALLS !
! 1
T +
! l
! Entry Parameters: !
! Register Cs -32H !
! Register DE: BIOS PB Address !
! !
! Returned Value: BIOS RETURN !
! !
o e o -

S_BIOS provides a direct BIOS call through the BDOS
to the BIOS. The calling program passes the address
of a data structure called the BIOS Parameter Block
(BIOSPB) in register pair DE. The BIOSPB contains
the BIOS function number and register contents as
shown below:

BIOSPB: db FUNC ; BIOS function number
db AREG ; A register contents
dw BCREG ; BC register contents
dw DEREG ; DE register contents
dw HLREG ; HL register contents

B=115

__________————————————1---------IIIIllllllllllllllllllllllllll'

OTHER BDOS SYSTEM CALLS

P_TERMCPM is equivalent to S_BIOS with a BIOS
function number of 1.

Note: The register-pair BIOSPB fields (BCREG, DEREG,
HLREG) are defined in low-byte, high-byte order. For
example, in the BCREG field, the first byte contains
the C register value and the second byte contains the B
register value.

Under CP/M Plus, direct BIOS calls via the BIOS jump
vector are only supported for the BIOS Console I/0
and List functions. You must use S_BIOS to call any
other BIOS functions. In addition, S_BIOS intercepts
BIOS DRV_ALLOCVEC (Select Memory) calls and returns
with register A set to zero. Refer to the CP/M Plus
BIOS section for the definition of the BIOS functions
and their register-passing and return conventions.

See the section entitled BIOS Overview for a list of
Osborne Executive CP/M Plus BIOS functions and
function numbers.

Note: XMOVE and MOVE, when used in conjunction,
should be called directly and not through BDOS. The

reason for this is that the BDOS calls move when

function 50 is called.

e e e o o e e e 4 e e e e -
! !
! S_RSX !
! !
l SYSTEM CALL 60: CALL RESIDENT SYSTEM !
! EXTENSION !
! !
I o i o 15 e v e e S e e e LB L LS
! !
! Entry Parameters: !
! Register C: "3CH !
! Register DE: RSX PB Address !
! !
! Returned Value: !
! Register A: Error Code !
: Register H: Physical Error !
!
S R o el o < it s i ok i o A e i e e BT +
S_RSX is a special BDOS function that you use when
You call Resident System Extensions. The RSX
subfunction is Specified in a structure called the
RSX Parameter Block, defined as follows: "
RSXPB: db FUNC i RSX Function number ‘

db NUMPARMS ; Number of word parameters

B-116

.
B

OTHER BDOS SYSTEM CALLS

dw PARMETER1 ; Parameter 1
dw PARMETER2 ; Parameter 2

dw PARMETERn ; Parameter n

RSX modules filter all BDOS calls and capture RSX
function calls that they can handle. If there is no
RSX module present in memory that can handle a
specific RSX function call, the call is not trapped,
and the BDOS returns OFFH in registers A and L. RSX
function numbers from 0 to 127 are available for CP/M
Plus-compatible software use. RSX function numbers
128 to 255 are reserved for system use.

+

! !
| S_SCB !
! !
! SYSTEM CALL 49: GET/SET SYSTEM !
! CONTROL BLOCK |
! !
o ———————— e —————————— +
1 !
! Entry Parameters: !
! Register s ' 318 !
! Register DE: SCB PB Address !
l !
! Returned Value: !
! Register A: Returned Byte l
! Register HL: Returned Word !
1 !
e ——— ———— e e +

The System Control Block (abbreviated SCB) is a 100-
byte (64H-byte) CP/M Plus data structure that resides
in the BDOS system component., The SCB contains
internal BDOS flags and data, CCP flags and data, and
other system information such as console
characteristics and the current date and time. The
BDOS, BIOS, and CCP system components, as well as
CP/M Plus utilities and RSXs, reference SCB fields.
The S_SCB system call provides access to the SCB
fields for transient programs, RSXs, and the CCP.

However, use caution when you access the SCB and use
S_SCB for two reasons. First, the SCB is a data
structure applicable only to CP/M Plus. Digital
Research's multiuser operating system, MP/M, does not
support S_SCB. Therefore, programs that access the
SCB can run only on CP/M Plus. Secondly, the SCB
contains critical system parameters that reflect the
current state of the operating system. If a program
modifies these parameters illegally, the operating
system might crash. However, for application writers

B-117

_————:3-----IllllllllllllllllllIl.IllllIlIlI.IIIIIIIIIIIIIIIIII

OTHER BDOS SYSTEM CALLS

who are writing System-oriented applications, access
to the SCB variables might prove valuable.

For example, the cCcp default drive and current user
number are maintained in the System Control Block.

user number by making an explicit BDOS call, the
System Control Block values are not changed. They
continue to reflect the state of the system when the
transient program was loaded. For compatibility with
CP/M version 2, the current disk and user number are
also maintained in location 0004H of Page Zero. The
high~order nibble contains the user number, and the
low-order nibble contains the drive.

to be updated or returned. The SCB Parameter block
is defined as:

Offset within SCB
OFFH if Setting a byte

SCBPB: DB OFFSET ;
; OFEH if setting s wors P
]

DB SET

O001H - OFDH are reserved
000H if a get operation ;
DW VALUE iByte or word value tobe set

The OFFSET bParameter identifies the offset of the
field within the SCB to be updated or accessed. The
SET parameter determines whether S_SCB is to set a
byte or word value in the SCB or if it is to return a
byte from the SCB. The VALUE pParameter is used only
in set calls. 1In addition, only the first byte of
VALUE is referenced in set byte calls.

The System Control Block is Summarized in the
following table. Each of these fields is documented
in detail in Appendix A,

B-118

OTHER BDOS SYSTEM CALLS

TABLE B-19, SYSTEM CONTROL BLOCK
Hex Offset Description
00 - O4 Reserved for System Use
05 BDOS version number

06 - 09 User Flags

OA - OF Reserved for System Use
10 = 11 Program Error return code
12 - 19 Reserved for System Use

1A Console Width (columns)
1B Console Column Position
1C Console Page Length

1D - 21 Reserved for System Use

22 - 23 CONIN: Redirection flag, bit 7 = 0 > none
24 - 25 CONOUT: Redirection flag, bit 7 = 0 > none
26 - 27 AUXIN: Redirection flag, bit 7 = 0 > none
28 - 29 AUXOUT: Redirection flag, bit 7 = 0 > none
2A - 2B LSTOUT: Redirection flag, bit 7 = O > none
2C Page Mode

2D Reserved for System Use

2E CTRL-H Active

2F Rubout Active

30 - 32 Reserved for System Use

33 - 34 Console Mode

35 - 36 Reserved for System Use

37 Output Delimiter

38 List Output Flag

39 - 3B Reserved for System Use

3C - 3D Current DMA Address

3E Current Disk

3F - 43 Reserved for System Use

uy Current User Number

45 - 49 Reserved for System Use

4A BDOS MultiSector Count

4B BDOS Error Mode

4C - 4F Drive Search Chain (DISKS A:,E:,F:)

50 Temporary File Drive

51 Error Disk

52 - 56 Reserved for System Use

57 BDOS Flags

58 - 5C Date Stamp
5D - 5E Common-Memory Base Address
5F - 63 Reserved for System Use

If S_SCB is called with the OFFSET parameter of the
SCB parameter block greater than 63H, the system call
performs no action but returns with registers A and

HL set to zero.

B-119

OTHER BDOS SYSTEM CALLS

S_SERIAL
SYSTEM CALL 107: RETURN SERIAL NUMBER

l

! Entry Parameters:

! Register C: 6BH

! Register DE: Serial Number
! Field
!
!
!
l

el e ep——_

Returned Value: Serial Number
Field Set
e e e e e e e e +

S_SERIALreturns the CP/M Plus serial number to theb-byte
field addressed by register pair DE.

BDOS~Time System Calls

e e e e e +
! !
! T_GET !
! !
! SYSTEM CALL 105: GET DATE AND TIME !
! !
e e e B +
1 1
! Entry Parameters: !
! Register C: 69H !
! Register DE: DAT Address !
! !
1 Return Value: !
! Register A: Seconds !
! DAT set I
! !
e e +

T_GET obtains the system internal date and time. The
calling program passes in register pair DE the
address of a 4-byte data structure that receives the
date and time values. The format of the date and
time (DAT) data structure is the same as the format
described in T_SET below. T_GET also returns the
Sseconds field of the system date and time in register
A as a two-digit BCD value.

OTHER BDOS SYSTEM CALLS

e e e e -

T_SET
SYSTEM CALL 104: SET DATE AND TIME

Entry Parameters:
Register C: 68H
Register DE: DAT Address

Returned Value: None

T_SET sets the system internal date and time. The
calling program passes the address of a 4-byte
structure containing the date and time specification
in the register pair DE. The format of the date and
time (DAT) data structure is:

byte 0 = 1 : Date field
byte 2 : Hour field
byte 3 : Minute field

The date is represented as a 16-bit integer with day
1 corresponding to January 1, 1978, The time is
represented as two bytes: hours and minutes are
stored as two BCD digits.

This system call also sets the seconds field of the
system date and time to zero.

B-121

CP/M Plus BIOS Documentation

CP/M PLUS BIOS DOCUMENTATION

The following sections provide information of
interest to those desiring a deeper understanding of
CP/M Plus, especially the system programmer who wants
to customize the Osborne Executive CP/M Plus BIOS for
special applications. CP/M Plus already provides this
facility in the form of Resident System Extensions
(RSXs); however, certain applications that cannot be
implemented with RSXs may require direct modification
of the BIOS.

CP/M System Components

The CP/M Plus Operating System consists of the
following modules: the Console Command Processor
(CCP), the Basic Disk Operating System (BDOS), and
the Basic Input/Output System (BIOS).

The CCP provides the basic user interface to the
operating system. It supplies six built-in commands:
DIR, DIRS. ERASE, RENAME, TYPE, and USER. The CCP
executes in the Transient Program Area (TPA), the
region of memory for application programs. It
contains the Program Loader Module which loads
transient programs from disk into the TPA for
execution.

The BDOS is the logical nucleus and file system of
CP/M Plus. It provides the standard CP/M software
interface between the application program and the

physical input/output routines of the BIOS.

The BIOS interfaces the BDOS to the Osborne Executive
hardware. The BIOS performs all physical I/0 in the
system.

The BDOS and the BIOS modules cooperate to provide
the CCP and other transient programs with hardware-
independent access to CP/M Plus facilities. Because
the BIOS is configured for different hardware
environments and the BDOS remains constant, you can
transfer programs that run under CP/M Plus unchanged
from systems with different hardware configurations
to the Osborne Executive.

Communication Among CP/M Plus Modules
The BIOS loads the CCP into the TPA at system cold

and warm start., The CCP moves the Program Loader
Module to the top of the TPA and uses it to load

B-122

CP/M Plus BIOS Documentation

transient programs.

The BDOS contains a set of system calls that the CCP
and applications programs call to perform disk and
character 1/0 operations.

The BIOS contains a Jump Table with a set of 33 entry
points that the BDOS calls to perform hardware-
dependent primitive functions, such as peripheral
device I/0. For example, CONIN: is an entry point of
the BIOS called by the BDOS to read the next console
input character.

Similarities exist between the BDOS system calls and
the BIOS functions, particularly for simple device
I/0. For example, when a transient program makes a
C_WRITE system call to the BDOS, the BDOS makes a
console-output function call to the BIOS. In the
case of disk I/0, however, this relationship is more
complex. The BDOS typically makes several BIOS
function calls to perform a single BDOS file I/O
system call. BDOS disk I/0 is in terms of 128-byte
logical records, and BIOS disk I/0 is in terms of
physical sectors and tracks. Therefore, sector
translation must also take place.

The System Control Block (SCB) is a 100-byte (64H-
byte) CP/M Plus data structure that resides in the
BDOS. The BDOS and the BIOS communicate through
fields in the SCB. It contains BDOS flags and data,
CCP flags and data, and other system information,
such as console characteristies and the current date
and time. You can also access some of the System
Control Block fields from an application program.
However, note that the SCB contains critical system
parameters which reflect the current state of the
operating system. If a program modifies these
parameters, the operating system can crash, See the
System Control Block section of this manual, and the
description of the S_SCB system call in the BDOS-
System System Calls section for more information on
the System Control Block.

Page Zero is a region of memory that acts as an
interface between transient programs and the
operating system. It contains critical system
parameters, including the entry to the BDOS and the
entry to the BIOS Warm-Boot routine. At system
startup, the BIOS initializes these two entry points
in Page Zero. All linkage between transient programs
and the BDOS is restricted to the indirect linkage

through Page Zero.

B-123

CP/M Plus BIOS Documentation

High memory: r

| |

| BIOS: Basic I/0 System 1

I |

BIOS_base: + -

| |

| BDOS: Basic Disk Operating System |

i i

BDOS_base: 4= +

/1 i

) LOADER: Program Loader Module |

/] Camponent of CCP |

LOADER_base:/ T
i |

/ i TPA: Transient Program Area H

TPA \ I |

\ . +

N o] |

N/ Y CCP: Console Command Processor i

\ |

0100H: b= ¢
]

1 |

i PAGE ZERO !

] I

I I

0000H: + +

FIGURE B-7. GENERAL MEMORY ORGANIZATION OF CP/M PLUS

Note: All memory regions in CP/M Plus are page-
aligned, which means that they must begin on a page
boundary. Because a page is defined as 256 (100H)
bytes, a page boundary always begins at a hexadecimal
address that has a low-order byte of zero.

Banked and Nonbanked Systems

CP/M Plus supports banked memory hardware, with a
minimum of 96 kilobytes of memory. For a detailed
explanation of memory organization for the Osborne
Executive CP/M Plus banked system, see the
Introductory section of this document. Bank 0 and
common memory are for the operating system., Bank 1
is the Transient Program Area, which contains the
Page Zero region of memory. You can use additional
banks to enhance operating system performance,

Common memory is always enabled and addressable. The
operating system is divided into two modules: the
resident portion, which resides in common memory; and
the banked portion, which resides just below common
memory in Bank 0. CPMLDR, the system loader, loads
part of the BDOS into common memory and part of the
BDOS into Bank 0. CPMLDR loads the BIOS in the same
manner.

B-124

ﬁ

CP/M Plus BIOS Documentation

In the Osborne Executive the CP/M Plus banked system
is large enough to contain the required buffers and
the resident (common) portion of the operating
system, which means a 1.5K BDOS and the common part
of your customized BIOS.

CP/M Plus maintains a cache of deblocking buffers and
directory records using a Least Recently Used (LRU)
buffering scheme. The LRU buffer is the first to be
reused when the system runs out of buffer space. The
BDOS maintains separate buffer pools for directory
and data-record caching.

This diagram shows the memory organization in the
Osborne Executive bank-switched CP/M Plus system.

+

!

1

| RESIDENT BIOS 1.5K
\ | RESIDENT BDOS 1.5k |

3+

PP PP PP B PP

LRU DATA BUFFERS i
|

AAAAAPAAPRPAAPAPAAPARARANAN AAARAAAAAARAARARAAARAAARANA

{ ALLOCATION/CHECKSUM| | PROGRAM LOADER

| VECTORS L=
¢ +| Stacked RSX Modules

d == =

| BANKED BIOS 3K

+] TPA
| BANKED BDOS 11K |
| LRU DIRECTORY
| BUFFERS TPA

HASHED DIRECTORY
TABLES
Optional overlays

COPY OF CCP

PP PP PP PP PP PP

— 1b —— — —— o ——

|
i
|
|
(one per drive) |
|
+

TRANSIENT PROGRAM

——— i ——— —— ——— — —

PAGE ZERO

B i v

BANK 0 BANK 1

The banked system supports a TPA of 60K or more. The
banked portion of the operating system in Bank 0
requires at least 16K of memory.

In the banked system the BDOS and the BIOS are
separated into two parts: a resident portion and a
banked portion. The resident BDOS and BIOS are

B-125

CP/M Plus BIOS Documentation

located in common memory. The banked BDOS and BIOS
are located in the operating system bank, called Bank
0-

The RSX modules shown in the diagram above are
Resident System Extensions (RSX) that are loaded
directly below the operating system when included in
an application or utility program. The Program
Loader places the RSX in memory and chains BDOS calls
through the RSX entry point in the RSX.

Disk Organization

The figure below illustrates the organization of an
Osborne Executive CP/M Plus system disk.

Track 39 ——> +
!
Data Tracks ! CP/M Plus Data Region
1
Track 4 —-—> 4

CP/M Plus Directory Region

Character Sets,
Function Key Definitions,

|
!
|
Track 3 ===> +
!
!
! and Keyboard Tables.

Track 2 -==> +

1
System Tracks | BIOS Tables (Sector 5)
! CCP.COM (Sectors 1 = 4)

Track 1 ===> 4=

B R I e s el =

1

| CPMLDR (Sectors 2 = 5)

1 Cold Boot Loader (Sector 1)
Track 0 =——=> +

FIGURE 8. SYSTEM TRACK ORGANIZATION

The first 3 tracks are the system tracks; the

remaining tracks (the data tracks) are used by CP/M
Plus for file storage.

Note: The system tracks are used only during system

cold start. All other CP/M Plus disk access is
directed to the data tracks of the disk.

B-126

CP/M Plus BIOS Documentation

Initial Load (Cold Boot) of CP/M Plus

CP/M Plus is loaded into memory in a four-stage
procedure. The first stage consists of loading into
memory a small program, called the Cold Boot Loader,
from the system tracks of the Boot disk. This load
operation is handled by a small program in Read-Only
Memory (ROM) that begins execution upon system reset.

In the second stage, the Cold Boot Loader loads the
memory image of the CP/M Plus system loader program
(CPMLDR) from the system tracks of a disk into memory
and passes control to it. The Cold Boot Loader loads
CPMLDR into Bank 0.

In the third stage, CPMLDR reads the CPM3.SYS file,
which contains the BDOS and Osborne Executive BIOS,
from the the data area of the disk into the memory
addresses assigned by GENCPM. CPMLDR reads the
common part of the BDOS and BIOS into the common part
of memory, and reads the banked part of the BDOS and
BIOS into the area of memory below common_base in
Bank 0. CPMLDR then transfers control to the Cold-
BOOT system initialization routine in the BIOS.

For the final stage, the BIOS Cold-BOOT routine (BIOS
Function 0) performs any remaining necessary hardware
initialization, displays the sign-on message, and
checks the disk for the program EXECST.COM. If
EXECST.COM is present, the BIOS loads it into the TPA
region of memory and passes control to it. If EXECST
does not exist, the BIOS loads the CCP, which then
displays the system prompt.

B-127

THE SYSTEM CONTROL BLOCK

THE SYSTEM CONTROL BLOCK

The System Control Block (SCB) is a data structure
located in the BDOS. The SCB contains flags and data
used by the CCP, the BDOS, the BIOS, and other system
components. The BIOS, or any other program, can
access specific data in the System Control Block
through BDOS.

In the SCB.ASM file, the high-order byte of the
various SCB addresses is defined as OFEH. The linker
marks absolute external equates as page-relocatable
when generating a System Page-Relocatable (SPR)
format file. GENCPM recognizes page-relocatable
addresses of OFExxH as references to the System
Control Block in the BDOS. GENCPM changes these
addresses to point to the actual SCB in the BDOS when
it is relocating the system.

Do not perform assembly-time arithmetic on any
references to the external labels of the SCB. The
result of the arithmetic could alter the page value
to something other than OFEH.

Uy
The example below shows the fields of the System
Control Block. An "@" before a name indicates that
it is a data item. A "?" preceding a name indicates
that it is the label of an instruction. In the
example, r/w means Read-Write, and r/o means Read-
Only. The BIOS can modify a Read-Write variable, but
must not modify a Read-Only variable.

THE SCB.ASM FILE
title 'System Control Block Definition for CP/M3 BIOS'

public Bcivec, @covec, faivec, faovec, €lovec, Ebnkbf
public €crdma, €crdsk, €vinfo, €resel, €fx, Busrcd
public émltio, fermde, ferdsk, Gmedia, 6€bflgs
public @date, €hour, 6min, @sec, ?erjmp, @mxtpa
scb$base equ OFEOOH ; Base of the SCB
ECIVEC equ scb$base+22h ; Console Input Redirection
; Vector (word, r/w)
6COVEC equ scb$base+24h ; Console Output Redirection
; Vector (word, r/w)
; Auxiliary Input Redirection
; Vector (word, r/w) ,
€AOVECequ scb$base+28h ; Auxiliary Output Redirection .
; Vector (word, r/w)

EAIVEC equ scb$base+26h

B-128

THE SYSTEM CONTROL BLOCK

PLOVEC equ scb$base+2Ah List Output Redirection
Vector (word, r/w)

Address of 128-Byte Buffer
for Banked BIOS (word, r/o)
Current DMA Address

(word, r/o)

Current Disk (byte, r/o)

BDOS Variable "INFO"

EBNKBF equ scb$base+35h
€CRDMA equ scb$base+3Ch

6CRDSK equ scb$base+3Eh
6VINFO equ scb$base+3Fh
(word, r/o)

6RESEL equ scb$base+l41h FCB Flag (byte, r/o)
6FX equ scb$base+l3h ; system call for Error
; Messages (byte, r/o)
BUSRCD equ scb$base+ildh ;sCurrent User Code(byte, r/o)
6MLTIO equ scb$base+4Ah ;Current Multisector Count

(byte,r/w)
6ERMDE equ scb$base+iBh BDOS Error Mode (byte, r/o)
GERDSK equ scb$base+51h BDOS Error Disk (byte, r/o)
6MEDIA equ scb$base+54h Set by BIOS to indicate
6BFLGS equ scb$base+5Th

open door (byte,r/w)
6DATE equ scb$base+56h

e W M Ly WS we we W W

BDOS Message Size Flag
(byte,r/o)
Date in Days Since 1 Jan 78
(word, r/w)
6HOUR equ scb$base+5Ah Hour in BCD (byte, r/w)
6MIN equ scb$base+5Bh Minute in BCD (byte, r/w)
ESEC equ scb$base+5Ch Second in BCD (byte, r/w)
?ERJMP equ scb$base+5Fh ; BDOS Error Message Jump

; (three bytes, r/w)
éMXTPA equ scb$base+62h ; Top of User TPA

; (address at 6,7)(word, r/o)

M s VR W W MR W W g wE W e

end

TABLE B-20, SCB FIELDS

Field Meaning

E€CIVEC, ECOVEC, (Read-Write Variables) These fields are
@AIVEC, EADVEC, the 16-bit I/0 redirection vectors for
ELOVEC the five logical devices: console input,
console output, auxiliary input,
auxiliary output, and the list device.
(See the section on Character 1/0
Functions below.)

EBNKBF (Read-Only Variable) @BNKBF contains the
address of a 128-byte buffer in the
resident portion of the BDOS. This buffer
is available for use during BOOT and WBOOT
only. The BIOS uses it to transfer a copy
of the CCP from an image in an alternate
bank.

B-129

THE SYSTEM CONTROL BLOCK

Field

TABLE B-20, SCB FIFLDS (Cont.)

Meaning

€CRDMA, FX,
USRCD, EERDSK

EVINFO, ERESEL

@MEDIA

(Read-Only Variables) These variables
contain the current DMA address, the BDOS
system call number, the current user
code, and the disk code of the drive on
which the last error occurred. They can
be displayed when a BDOS error is
intercepted by the BIOS. See 7ERJMP.

(Read-Only Variable) 6CRDSK is the current
default drive, set by the DRV_SET BDOS
system call.

(Read-Only Variables) If GRESEL is equal to
OFFH, then @VINFO contains the address of a
valid FCB, If GRESEL is not equal to OFFH,
then 6VINFO is undefined. The BIOS uses
@VINFO to display the filespec when it
intercepts a BDOS error.

(Read-Write Variable) #MLTIO contains the
current multisector count. The BIOS can
change the multisector count directly, or
through the F_MULTISEC BDOS system call.
The value of the multisector count can
range from 1 to 128,

(Read-Only Variable) 6ERMDE contains the
current BDOS error mode. OFFH indicates
the BDOS is returning error codes to the
application program without displaying any
error messages. OFEH indicates the BDOS is
both displaying and returning errors. Any
other value indicates the BDOS is
displaying errors without notifying the
application program.

(Read-Write Variable) 6MEDIA is a global
system flag indicating that a drive door
has been opened. The BIOS routine that
detects the open drive door sets this flag
to OFFH. The BIOS routine also sets the
MEDIA byte in the Disk Parameter Header
associated with the open-door drive to
OFFH.

B-130

THE SYSTEM CONTROL BLOCK

TABLE B-20., SCB FIELDS (Cont.)
Field Meaning

EBFLGS (Read-Only Variable) The BDOS in CP/M Plus
produces two kinds of error messages:
short error messages and extended error
messages. Short error messages display one
or two lines of text. Long error messages
display a third line of text containing the
filename, filetype, and BDOS system call
number involved in the error.

GENCPM sets this flag in the System Control
Block to indicate whether the BIOS displays
short or extended error messages. The BIOS
error-message handler checks this byte in
the System Control Block. If the high-
order bit (bit 7) is set to zero, the BDOS
displays short error messages. If the
high-order bit is set to 1, the BDOS
displays the extended three-line error
messages. For example, the BDOS displays
the following error message if the BIGS
returns an error from READ and the BDOS is
displaying long error messages:

CP/M Error on d: Disk I/0
BDOS Function = nn File = filename.typ

In the above error message, Function nn and
filename.typ represent the BDOS system call
number and file specification involved,
respectively.

EDATE (Read-Write Variable) The number of days
since 1 January 1978, expressed as a 16-bit
unsigned integer, low byte first. A real-
time clock interrupt updates the EDATE
field to indicate the current date.

EHOUR, @MIN, (Read-Write Variable) These two-digit
Binary-Coded Decimal (BCD) fields indicate
the current hour, minute, and second
updated by a real-time clock interrupt.

B-131

THE SYSTEM CONTROL BLOCK

Field

TABLE B-20, SCB FIELDS (Cont,)
Meaning

TERJMP

EMXTPA

(Read-Write Code Label) The BDOS calls the
error message subroutine through this jump
instruction. Register C contains an error
code as follows:

Permanent Error
Read-Only Disk
Read-Only File
Select Error
Password Error
File Exists

? in Filename

Oo~NEWMn =

Error code 1 above results in the BDOS
message: Disk 1/0

The 7ERJMP vector allows the BIOS to
intercept the BDOS error messages so you
can display them in a foreign language.

Note: This vector is not branched to if
the application program is expecting return
codes on physical errors.

7ERJMP is set to point to the default
(English) error message routine contained
in the BDOS. The BOOT routine can modify
the address at 7ERJMP+1 to point to an
alternate message routine. Your error-
message handler can refer to 6FX, €VINFO
(if ERESEL is equal to OFFH), @CRDMA,
6CRDSK, and @USRCD to print additional
error information. Your error handler
should return to the BDOS with a RET
instruction after printing the appropriate
message.

(Read-Only Variable) @MXTPA contains the
address of the current BDOS entry point.
This is also the address of the top of the
TPA. The BOOT and WBOOT routines of the
BIOS use this address to initialize the
BDOS-entry JMP instruction at location O05H
during system initialization. Each time an
RSX is loaded, 6MXTPA is adjusted by the
system to reflect the change in the
available User Memory (TPA).

B-132

CP/M PLUS BIOS OVERVIEW

CP/M PLUS BIOS OVERVIEW

The table below describes the entry points into the
BIOS from the Cold Start Loader and the BDO0S. Entry
to the BIOS is through the BIOS jump vector, a set of
33 jump instructions that pass program control to the
individual BIOS subroutines.

TABLE B-21. CP/M PLUS BIOS JUMP VECTOR

— No. Instruction

[I e e e el e
OWOoONOONEWN—-O0WEIONN WM —O

nn
3R

2

XX

=N

3

L L0
nN=0

Description

JMP BOOT Perform cold start initialization

JMP WBOQT Perform warm start initialization

JMP CONST Check for console input character ready

JMP CONIN Read Console Character in

JMP CONOUT Write Console Character out

JMP LIST Write List Character out

JMP AUXOUT Write Auxiliary Output Character

JMP AUXIN Read Auxiliary Input Character

JMP HOME Move to Track 00 on Selected Disk

JMP SELDSK Select Disk Drive

JMP SETTRK Set Track Number

JMP SETSEC Set Sector Number

JMP SETDMA Set DMA Address

JMP READ Read Specified Sector

JMP WRITE Write Specified Sector

JMP LISTST Return List Status

JMP SECTRN Translate Logical to Physical Sector

JMP CONOST Return Output Status of Console

JMP AUXIST Return Input Status of Aux. Port

JMP AUXOST Return Output Status of Aux. Port

JMP DEVTBL Return Address of Char. 1/0 Table

JMP DEVINI Initialize Char. I/0 Devices

JMP DRVTBL Return Address of Disk Drive Table

JMP MULTIO Set Number of Logically Consecutive
sectors to be read or written

JMP FLUSH Force Physical Buffer Flushing for
user-supported deblocking

JMP MOVE Memory to Memory Move

JMP TIME Time Set/Get signal

JMP SELMEM Select Bank of Memory

JMP SETBNK Specify Bank for DMA Operation

JMP XMOVE Set Bank When a Buffer is in a Bank
other than 0 or 1

JMP TOROM Call ROM routine

JMP RESERV1 Reserved for Future Use

JMP RESERV2 Reserved for Future Use

B-133

CP/M PLUS BIOS OVERVIEW

Each jump address corresponds to a particular
subroutine that performs a specific hardware
operation. Entry points 31 and 32 are reserved for
future versions of CP/M. The five categories of
system operations and the BIOS function calls that
accomplish these operations are shown below.

TABLE B-22, SYSTEM CALLS
— Operation Function
System Initialization BOOT, WBOOT, DEVTBL, DEVINI,
DRVTBL
Character 1/0 CONST, CONIN, CONOUT, LIST,

Disk 1/0 HOME, SELDSK, SETTRK, SETSEC,

Memory Selects and Moves MOVE, SELMEM, SETBNK, XMOVE
Clock Support TIME

AUXOUT, AUXIN, LISTST, CONOST,
AUXIST, AUXOST

SETDMA, READ, WRITE, SECTRN,
MULTIO. FLUSH

——TABLE B-23, CP/M PLUS BIOS FUNCTION JUMP TABLE SUMMARY

The table below is a summary showing the CP/M 3 BIOS
function numbers, jump instruction names, and the
entry and return parameters of each jump instruction
in the table, arranged according to the BIOS function
number.

—No, Function Input OQutput.
0 BOOT None None
1 WBOOT None None
2 CONST None A = OFFH if ready
A = O0H if not ready
3 CONIN None A = Con Char
4 CONOUT C = Con Char None
5 LIST C = Char None
6 AUXOUT C = Char None
T AUXIN None A = Char
8 HOME None None
9 SELDSK C = Drive 0-15 HL = DPH addr
E = Init Sel Flag HL = 000H if invalid dr.
10 SETTRK BC = Track No None
11 SETSEC BC = Sector No None
12 SETDMA BC = .DMA None
13 READ None A = OOH if no err o
A = 01H if nonrecov err

A = OFFH if media changed

B-134

CP/M PLUS BIOS OVERVIEW

14

15
16
17
18
19
20

21
22

23
24

26
28
29
30

3
32

LISTST
SECTRN
CONOST
AUXIST
AUXOST
DEVTBL

DEVINI
DRVTBL

MULTIO
FLUSH

TIME
SELMEM
SETBNK
XMOVE

TOROM

RESERV1
RESERV2

C = Deblk Code

None
BC = Log Sect No
None
None
None

None
C=Dev No 0O - 15
None

C = Multsec Cnt
None

HL = Dest Adr
DE = Source Adr
Get/Set Flag
Mem Bank
Mem Bank
Dest Bank
Source Bank
C = Count

C
A

A
B
C
B

A = OOH if no err

A = 01H if phys err
A = 02H if disk is R/0

A = OFFH if media changed
A = OOH if not ready
A = OFFH if ready

HL = Phys Sect No
DE = Trans Tbl Adr

A = OOH if not ready
A = OFFH if ready

A = QOOH if not ready
A = OFFH if ready

A = OOH if not ready
A = OFFH if ready

HL = Chr Tbl addr
None

HL = Drv Tbl addr

HL = OFFFFH

HL = OFFFEH

HL = OFFFDH

None

A = 0O00H if no err

A = 001H if phys err
A = 002H if disk R/0

HL & DE point to next
bytes following MOVE
None
None
None
None

E = Offset (from 0100H) to

ROM RTN

Reserved for Future Use
Reserved for Future Use

B-135

SYSTEM INITIALIZATION

SYSTEM INITIALIZATION

When the BOOT routine of the BIOS gets control, it
initializes two system parameters in Page Zero of
memory, as shown below.

TABLE B-24.
—Location Description
0,152 Set to JMP WBOOT (0O00H: JMP BIOS+3). Location 1
and 2 must contain the address of WBOOT in the jump
vector.
5,6,7 Set to JMP BDOS, the primary entry point to CP/M

Plus for transient programs. The current address
of the BDOS is maintained in the variable @MXTPA in
the System Control Block.

The BOOT and WBOOT routine loads the CCP into the TPA
in Bank 1 at location 0100H, The BIOS Cold-BOOT
routine reads the CCP into memory from the system
tracks.

The Cold-BOOT routine places a copy of the CCP into a
reserved area of Bank 0. Then the Warm-BOOT routine
copies the CCP into the TPA in Bank 1 from Bank 0
rather than reloading the CCP from disk, thus
avoiding disk access during warm boot.

There is a 128-byte buffer in the resident portion of
the BDOS that is used by BOOT and WBOOT. The address
of this buffer is stored in the SCB variable @BNKBF.
BOOT and WBOOT use this buffer as a stack area.

The system tracks for CP/M Plus are partitioned like
this:

Cold | CPMLDR | Ccp
Start Ldr | i

o ———
 o——

The Cold Start Loader loads CPMLDR into a constant
memory location that is chosen when the system is
configured. However, CPMLDR loads the BDOS and BIOS
system components into memory as specified in the
CPM3.SYS file generated by GENCPM, the system
generation utility. Thus, CP/M Plus allows the user
to configure a new system with GENCPM and then run it
without having to update the system tracks of the
system disk.

B-136

SYSTEM INITIALIZATION

System Initialization Functions

This section defines the BIOS system-initialization
routines BOOT, WBOOT, DEVTBL, DEVINI, and DRVTBL.

Get Control from Cold Start Loader
and Initialize System

Entry Parameters: None

The BOOT entry point gets control from the Cold Start
Loader in Bank 0 and is responsible for basic system
initialization. Any remaining hardware
initialization that is not done by the boot ROMs, the
Cold Boot Loader, or the LDRBIOS is performed by the
BOOT routine.

The BOOT routine must perform the system
initialization outlined in the section on System
Initialization. This includes initializing Page Zero
jumps and loading the CCP. BOOT also prints the
sign-on message. Control is then transferred to the
CCP in the TPA at 0100H.

To initialize Page Zero, the BOOT routine places a
jump at location 0000H to BIOS_base + 3, the BIOS
warm-start entry point. The BOOT routine also places
a jump instruction at location 0005H to the address
contained in the System Control Block variable,
@MXTPA.

Entry Parameters: None

Returned Values: None

SYSTEM INITIALIZATION

The WBOOT entry point is entered when a warm start
occurs. A warm start is performed whenever a user
program branches to location 0000H or attempts to
return to the CCP. The WBOOT routine also performs
the system initialization outlined in BIOS Function
0, including initializing Page Zero jumps and loading
the CCP.

When WBOOT is complete, it transfers control to the
CCP at location 0100H in the TPA.

Note: The CCP does not reset the disk system at warm
start. The CCP only resets the disk system when a
CTRL-C is pressed following the system prompt.

e +
| i
i BIOS Function 20: DEVTBL !
i |
it ——— -
| i
; Return Address of Character I/0 Table i

i
| |
! Entry Parameters: None !
i i
{ Returned Values: HL = Addr of Chrtbl |
| |
o e +

The DEVTBL and DEVINI entry points allow you to
support device assignment with a flexible, yet
completely optional system. It replaces the IOBYTE
facility of CP/M 2.2.

BIOS Function 21: DEVINI

Entry Parameters: C=device number, 0-15

Returned Values: None

The DEVINI routine initializes the physical character
device specified in register C to the baud rate

B-138

SYSTEM INITIALIZATION

contained in the appropriate entry of the CHRTBL.
is referenced only by the DEVICE utility supplied
with CP/M Plus.

—— — — — —— o —— —— —————— T ——————— ——

It

Return Address of

Entry Parameters: None

Returned Values: HLE =

HL

HL

22: DRVTBL

Disk Drive Table

Addr of Drive Table of
Disk Parameter Headers
(DPH); Hashing can be
utilizedif specified
by the DPHs referenced
by this DRVTBL.

OFFFFH if no Drive
Tablej;the BDOS is
responsiblefor
blocking/deblocking;
Hashing is supported.
OFFFEH if no Drive
Table; the BDOS is
responsible for
blocking/deblocking;
Hashing is not
supported.

B-139

e e e e o e o i o e e e i e e o e e e e

CHARACTER I/0

CHARACTER I/0

CP/M Plus assumes that all simple character I/0
operations are performed in 8-bit ASCII, upper- and
lowercase, with no parity. An ASCII CRTL-Z (1AH)
denotes an end-of-file condition for an input device.
The table below lists the characteristics of the
logical devices:

——TABLE B-25, CP/M PLUS LOGICAL DEVICE CHARACTERISTICS
Deyice Characteristics

CONIN, CONOUT The interactive console that
communicates with the operator,
accessed by CONST, CONIN, CONOUT,
and CONOQUTST. Typically, the
CONSOLE is a device such as a CRT
or teletype, interfaced serially,
but it can also be a memory-mapped
video display and keyboard. The
console is an input and output
device.

LIST The system printer. LIST is
usually a hard-copy device such as
a daisywheel or dot-matrix
printer.

AUXOUT The auxiliary-character output
device, such as a modem.

AUXIN The auxiliary-character input
device, such as a modem.

Character I/0 Data Structures

The BIOS data structure CHRTBL is a character table
describing the physical I/0 devices. ' CHRTBL contains
6-byte physical device names and the characteristics
of each physical device. These characteristics
include a mode byte, and the current baud rate, if
any, of the device. The DEVICE utility references
the physical devices through the names and attributes
contained in CHRTBL. DEVICE can also display the
physical names and characteristics in CHRTBL.

The mode byte specifies whether the device is an
input or output device, whether it has a selectable
baud rate, whether it is a serial device, and if
XON/XOFF protocol is enabled.

B-140

CHARACTER I/0

The listing below shows the character device table
that the DEVICE utility uses to set and display I/0
direction in the Osborne Executive Computer.

; sample character device table

chrtb db 'CRT ! ; console VDT
db mbinout+mb$serial+mb$soft$baud
db baud$9600
ab Y EPT - 1 ; System serial printer
db mb$output+mb$serial+mb$soft$baud+mb$xon
db baud$9600
db 'TI810 ' ; alternate printer
db mb$output+mb$serial+mb$soft$baud
db baud$9600
db "MODEM ' ; 300-baud modem port
db mbinout+mb$serial +mb$soft$baud
db baud$300
db 'VAX ! ; interface to VAX 11/780
db mbinout+mb$serial +mb$soft$baud
db baud$9600
db 'DIABLO' ; Diablo 630 daisywheel printer
db mb$output+mb$serial+mb$soft$baud+mbxon$xoff
db baud$1200
db *CEN 1 ; Centronics-type parallel printer

db mb$output
db baud$none

db O ; table terminator

The listing below shows the equates for the fields
contained in the sample character device table.

; equates for mode byte fields

mb$input equ 0000$0001b ; device may do input
mb$output equ 0000$0010b ; device may do output
mbinout equ mb$input+mb$output ; dev may do both
mb$soft$baud equ 0000$0100b ; software selectable
; baud rates

mb$serial equ 0000$1000b ; device may use protocol
mbxonxoff equ 0001$0000b ; XON/XOFF protocol

; enabled

; equates for baud rate byte

baud$none equ 0 ; no baud rate

; associated with device
baud$50 equ 1 ; 50 baud

B-141

CHARACTER I/O

baud$75 equ 2 ; 75 baud
baud$110 equ 3 ; 110 baud
baud$134 equ 4 ; 1345 baud
baud$150 equ 5 ; 150 baud
baud$300 equ 6 ; 300 baud
baud$600 equ 7 ; 600 baud
baud$1200 equ 8 ; 1200 baud
baud$1800 equ 9 ; 1800 baud
baud$2400 equ 10 ; 2400 baud
baud$3600 equ 11 ; 3600 baud
baud$4800 equ 12 ; 4800 baud
baud$7200 equ 13 ; 7200 baud
baud$9600 equ 14 : 9600 baud
baud$19200 equ 15 ; 19.2k baud

Character I/0 Functions

This section defines the CP/M Plus character I1/0
routines CONST, CONIN, CONOUT, LIST, AUXOUT, AUXIN,
LISTST, CONOST, AUXIST, and AUXOST.

CP/M Plus assumes all simple character I/0 operations
are performed in eight-bit ASCII, upper- and
lowercase, with no parity. An ASCII CTRL-Z (1AH)
denotes an end-of-file condition for an input device.

In CP/M Plus, you can direct each of the five logical
character devices to any combination of up to twelve
physical devices. Each of the five logical devices
has a 16-bit vector in the System Control Block

(SCB). Each bit of the vector represents a physical
device where bit 15 corresponds to device zero, and
bit 4 is device eleven. Bits 0 through 3 are
reserved for future system use.

You can use the public names defined in the supplied

SCB.ASM file to reference the I/0 redirection bit
vectors. The names are shown below.

— TABLE B-26, I/0 REDIRECTION BIT VECTORS IN SCB

Name Logical Device
6CIVEC Console Input
B6COVEC Console Output
@ATVEC Auxiliary Input
B@AOVEC Auxiliary Output
BLOVEC List Output

The BIOS sends an output character to all of the
devices whose corresponding bit is set, and reads an
input character from the first ready device whose
corresponding bit is set.

B-142

CHARACTER I/0

BIOS-input status routines return true if any
selected device is ready. Output status routines,
however, return true only if all selected devices are

ready.
Fm——— e e e +
| |
| BIOS Function 2: CONST |
| {
- o e e - e o e
| |
H Return Status of Console Input Device |
| |
| |
H Entry Parameters: None |
| |
| Returned Values: A = OFFH if a console |
H character is ready|
; A = O0OH if no console |
| character is ready/|
| |
e e e o e e o e +

Read the status of the currently assigned console
device and return OFFH in register A if a character
is ready to read, and O0H in register A if no console
characters are ready.

! BIOS Function 3: CONIN |

Read a Character from the Console

Entry Parameters: None

Returned Values: A = Console Character

Read the next console character into register A with
no parity. If no console character is ready, wait
until a character is available before returning.

B-143

CHARACTER I/0

Output a Character to the
Auxiliary Output Device

Entry Parameters: C = Character

Returned Values: None

Send the character from register C to the currently

assigned AUXOUT device. The character is in AS
with no parity.
o = = = -
|
H BIOS Function T: AUXIN
i
+ --
i
| Read a Character from the
i Auxiliary Input Device
|
t
| Entry Parameters: None
I
| Returned Values: A = Character
|
+ ——

CII

Read the next character from the currently assigned
AUXIN device into register A with no parity. A
returned ASCII CTRL-Z (1AH) reports an end-of-file.

B-144

CHARACTER I/0

+
I
1
I
I
I
1
1
1
I
I
1
1
i
I
I
I
I
1
1
B
I
1
I
!
1
I
I
I
I
I
1
)
!
I
!
1
1
)
1
i
1
i
I
1
I
]
1
¥

BIOS Function 15: LISTST

-

Return the Ready Status
of the List Device

O00H if list deviceis
notready to accepta

character

A = OFFHif listdevice is
ready to accept a

character

Returned Values: A

————— . et e e e o s e s o S e

i
i
i
+
|
i
|
i
i
Entry Parameters: None |
i
|
i
|
|
|
i
H
+

+
1
1
1
1
!
B
1
B
I
I
1
1
!
I
I
1
1
L)
1
1
I
|
I
]
]
I
I
I
I
I
I
!
I
I
)
)
)
I
I
I
]
I
]
I
!
I
1

The BIOS LISTST function returns the ready status of
the list device,.

BIOS Function 17: CONOST

Entry Parameters: None

OFFH if ready
00H if not ready

Returned Values: A

The CONOST routine checks the status of the console.
CONOST returns a OFFH if the console is ready to

display another character. This entry point allows
for full polled handshaking communications support.

B-145

CHARACTER I/0

e
|

| BIOS Function 18: AUXIST

|

- -
|

i Return Input Status of Auxiliary Port

]

E

| Entry Parameters: None

]

I

| Returned Values: A = OFFH if ready

I A = 000H if not ready
I
-

The AUXIST routine checks the input status of the
auxiliary port. This entry point allows full poll
handshaking for communications support using an
auxiliary port.

BIOS Function 19: AUXOST

Entry Parameters: None

Returned Values: A OFFH if ready

+

|

i

|

+

I

! Return Output Status of Auxiliary Port
i

t

i

I

| 000H if not ready
|

|

+

The AUXOST routine checks the output status of the
auxiliary port. This routine allows full polled
handshaking for communications support using an
auxiliary port.

B-146

ed

DISK I/0

DISK I/0

The BDOS accomplishes disk I/0O by making a sequence
of calls to the various disk subroutines in the BIOS.
The subroutines set up the disk number to access, the
track and sector on a particular disk, and the Direct
Memory Access (DMA) address and bank involved in the
I/0 operation. After these parameters are
established, the BDOS calls the READ or WRITE BIOS
function to perform the actual 1/0 operation. The
BDOS can make a single call to SELDSK to select a
disk drive, follow it with a number of read or write
operations to the selected disk, and then select
another drive for subsequent operations.

CP/M Plus supports multiple-sector read and write
operations to optimize rotational latency on block
disk transfers. The multiple-sector I/0 facility is
implemented in the BIOS by using the multisector
count passed to the MULTIO entry point. The BDOS
calls MULTIO to read or write up to 128 sectors. For
every sector number 1 topn, the BDOS calls SETDMA
then calls READ or WRITE.

The table below shows the sequence of BIOS calls that
the BDOS makes to read or write a physical disk
sector, and to read or write multiple, contiguous
physical disk sectors.

IABLE B-27. SINGLE-SECTOR I/0
Explanation

Called only when disk is initially selected or
Called for every read or write of a physical
Called for every read or write of a physical

Called for every read or write of a physical

Call
SELDSK

reselected.
SETTRK

sector.
SETSEC

sector.
SETDMA

sector.
SETBNK

Called for every read or write of a physical
sector,

READ, WRITE Called for every read or write of a physical

sector,

B-147

DISK I/0
TABLE B-27, SINGLE~-SECTOR I/0 (Cont.)

Call Explanation

SELDSK Called only when disk is initially selected or
reselected.

MULTIO Called to inform the BIOS that the next n
calls to disk READ or disk WRITE require a
transfer of n contiguous physical sectors to
contiguous memory.

SETTRK Called for every read or write of a physical
sector.

SETSEC Called for every read or write of a physical
sector.

SETDMA Called for every read or write of a physical
sector.

SETBNK Called for every read or write of a physical
sector.

READ, WRITE Called for every read or write of a physical

sector.

For example, when reading two contiguous sectors, the

BIOS calls are:
Call Explanation

SELDSK Called to initially select disk
MULTIO With a value of 2
SETTRK For first sector
SETSEC For first sector
SETDMA For first sector
SETBNK

READ

SETTRK For second sector
SETSEC For second sector
SETDMA For second sector
SETBNK

READ

The CP/M Plus BDOS performs its own blocking and
deblocking of logical 128-byte records. Unlike
earlier versions of CP/M, the BIOS READ and WRITE
routines always transfer physical sectors as
specified in the BIOS Disk Parameter Block directly
to or from the DMA buffer. The BIOS Disk Parameter
Header defines one or more physical sector buffers
which the BDOS uses for logical record blocking and
deblocking.

B-148

DISK I/0

CP/M Plus maintains a cache of deblocking buffers and
directory records using a Least Recently Used (LRU)
buffering scheme. The LRU buffer is the first to be
reused when the system runs out of buffer space. The
BDOS maintains separate buffer pools for directory
and data record caching. The BIOS contains the data
structures to control the data and directory buffers
and the hash tables.

CP/M Plus uses hash tables to greatly speed directory
searching. The BDOS can use the hash tables to
determine the location of directory entries, and
therefore reduce the number of disk accesses required
to read a directory entry. The hash table allows the
BDOS to directly access the sector of the directory
containing the desired entry without having to read
the directory sequentially.

When the BIOS finds an error condition, the READ and
WRITE routines perform ten retries before reporting
the error condition to the BDOS. If the BIOS returns
an error condition to the BDOS, the BDOS reports the
error to the user in the following form:

CP/M Error on d: Disk I/0

where d: represents the drive specification of the
relevant drive,

BIOS Disk Data Structures

The BIOS includes tables that describe the particular
characteristics of the disk subsystem. This section
describes the elements of these tables.

In general each disk drive has an associated Disk
Parameter Header (DPH) that contains information
about the disk drive and provides a scratchpad area
for certain BDOS operations. One of the elements of
this Disk Parameter Header is a pointer to the Disk
Parameter Block (DPB), which contains the actual disk
description.

The figure below shows the relationships between the
drive table, the Disk Parameter Header, and the Data
and Directory Buffer Control Block fields and their

respective data structures and buffers.

B-149

B-150

DISK I/O
! Drive i‘able (Addresses of DPHs) o Tk 1
0+1 023 o6 Bz 709 BI0TA=EE
! : 4 : 4 + -
l +——=> | Checksum Vector |
ot ! e T At
! ! : + e s
| | 4=—e———=> | Allocation Vector |
| ! ! + ; ; + + +
! Ve et S S
| ! ! === | Hash Table !
IDisk Parameter Header | ! 1 + + 4 + dm——t
! + + + t 4 } ; + 4 ; +
+=—> IXLT! IMF !DPBICSVIALVIDIR!DAT!HASHIBK !
v . v
PR | BCB Header | 4=—| BCB Header 1
! D I e o
! !
! Buffer Control Block (BCB) | Buffer Control Block (BCB)
! 4 + + } : ; } g | } + 4 + 4 + } ;
] | BUFADR! I LINK ! +==>! | BUFADR! | LINK !
! ! | Ly
“ + ! + + !
! + 4 ; 4 + ; | ! ——— + : TR . 1
4+=--=>| Directory Buffer | ! =21 Data Buffer ! !
+ ; + } + } ! ; ——— - + + !
. ! . !
- l - !
+ . m—— —— - g -
! - ! -
! !
! Buffer Control Block (BCB) 1 Buffer Control Block (BCB)

! L e e e o e I B e B S e
P | BUFADR! ! OO00H ! +=—>I ! BUFADR! ! OOOOH !
o) !

! Fom e pm bt i e e e e
+===>1 Directory Buffer ! =21 Data Buffer !
FIGURE B-9. BIOS DISK STRUCTURE

- N

)

-

Ff—

DISK I/0

Drive Table

The drive table consists of 16 words containing the
addresses of the Disk Parameter Headers for each
logical drive name, A through P, and takes the
general form:

drivetable dw dphO

dw dphl
dw dph2
au dphF

For logical drives that do not exist in the Osborne
Executive system, the corresponding entry in the
drive table is zero.

The GENCPM utility accesses the drive table to locate
the various disk-parameter data structures, so that
it can determine which system configuration to use,
and optionally allocate the various buffers itself.
If certain addresses in the Disk Parameter Headers
referenced by the drive table are set to OFFFEH,
GENCPM allocates the appropriate data structures and
updates the DPH.

Disk Parameter Header

08H:
10H:
18H:

In the figure below which shows the format of the
Disk Parameter Header, "b" refers to bits.

T SR
! -0- E+Lmi OPB 1 oS |
L AV | DIRBGB | DIABCE | HASH |
‘“‘BANKI + o + + =
———

FIGURE B-10. DISK PARAMETER HEADER FORMAT

B-151

DISK I/0

_TABLE B-29, DISK PARAMETER HEADER FIELDS

— Field

Camment.s

XLT

DPB

ALV

The XLT field contains the address of the logical-
to-physical sector translation table. Disk drives
with identical sector-skew factors can share the
same translate table, XLT is the value passed to
the SECTRN BIOS function from the BDOS in registers
DE. The translation table consists of one byte per
physical sector.

These 72 bits (9 bytes) of zeros are the scratch
area the BDOS uses to maintain various parameters
associated with the drive.

MF is the Media Flag. The BDOS resets MF to zero
when the drive is logged in. The BIOS sets this
flag and @MEDIA in the SCB to OFFH if it detects
that a drive door has been opened. If the flag is
set to OFFH, the BDOS checks for a media change
prior to performing the next BDOS file operation on
that drive. If the BDOS determines that the drive
contains a new disk, the BDOS performs a login on
that drive and resets the MF flag to OOH.

Note: The BDOS checks this flag only when a system
call is made, and not during an operation.

The DPB field contains the address of a Disk
Parameter Block that describes the characteristics
of the disk drive.

CSV is the address of a scratchpad area used to
detect changed disks. This address is different
for each Disk Parameter Header. There is one byte
for every four directory entries (or 128 bytes of
directory). In other words, length(CSV) =
(DRM/4) + 1.

ALV is the address of the scratchpad area (called
the allocation vector) which the BDOS uses to keep
disk-storage allocation information. This area is
unique for each drive. The allocation vector
requires two bits for each block on the drive.
Thus, length(ALV) = (DSM/4) + 2. With double-bit
allocation vectors, CP/M Plus autcmatically frees,
at every system warm start, all file blocks that
are not permanently recorded in the directory.

B-152

DISK I/O

TABLE B-29. DISK PARAMETER HEADER FIELDS (Cont.)
Comments

DTABCB

Note: File space allocated to a file is not
permanently recorded in a directory unless the
file is closed. Therefore, the allocation vectors
in memory can indicate that space is allocated
although directory records indicate that space is
free for allocation.

DTABCB contains the address of the data BCB list
head in a banked system, Set DTABCB to OFFFEH for
GENCPM to set up the DTABCB field., The BDOS uses
data buffers to hold physical sectors so that it
can block and deblock logical 128-byte records.

HASH contains the address of the directory-hashing
table associated with a DPH. Set HASH to OFFFFH to
disable directory hashing. Set HASH to OFFFEH to
make directory hashing on the drive a GENCPM

option. Each DPH using hashing must reference a
unique hash table, If a hash table is supplied, it
must be 4 ®* (DRM + 1) bytes long where DRM is one less
than the length of the directory. In other words,

the hash table must contain four bytes for each
directory entry of the disk.

HBANK contains the bank number of the hash table.
GENCPM automatically sets HBANK when HASH is set to
OFFFEH.

Extended Disk Parameter Headers (XDPHs)

An Extended Disk Parameter Header (XDPH) consists of
a prefix plus a regular Disk Parameter Header as
described above. The label of the XDPH references
the start of the DPH. The fields of the prefix are
located at relative offsets from the XDPH label.

The XDPHs for each unit of a controller are the only
entry points in a particular disk drive module. They
contain both the DPH for the drive and the addresses
of the various action routines for that drive,
including READ, WRITE, and initialization. The
figure below shows the format of the Extended Disk
Parameter Header.

B-153

DISK I/0
ADDRESS LOW BYTE HIGH BYTE

0 78 15
XDPH-9 i addr of sector INIT 1
XDPH-T ! addr of sector READ i
XDPH-5 | addr of drive WRITE |
XDPH-3 I addr of drive LOGIN i
XDPH-2 E unit | i

start of

XDPH+0 | addr of translate table | <--regular
XDPH+2 | 0 | 0 | o
XDPH+4 i 0 { 0 |
XDPH+6 i 0 i 0 |
XDPH+8 i 0 | 0 |
XDPH+10 | Media Flag | 0 |
XDPH+12 t addr of DPB i
XDPH+14 | addr of CSV i
XDPH+16 i addr of ALV i
XDPH+18 i addr of DIRBCB |
XDPH+20 | addr of DTABCB |
XDPH+22 t addr of HASH |
XDPH+24 | hash bank !

FIGURE B-11. EXTENDED DISK-PARAMETER HEADER FORMAT

B-154

DISK I/0

The table below describes the fields of each Extended

Disk Parameter Header.

TABLE B-30, FIELDS OF EACH XDPH
—_Field Meaning
WRITE The WRITE word contains the address of the sector

WRITE routine for the drive

READ The READ word contains the address of the sector

READ routine for the drive.

LOGIN The LOGIN word contains the address of the LOGIN

routine for the drive.

INIT The INIT word contains the address of the first-
time initialization code for the drive.

UNIT The UNIT byte contains the drive code relative to
is the value placed in
€RDRV prior to calling the READ, WRITE, and LOGIN

the disk controller. This

entry points of the drive.

Regular DPH The remaining fields of the XDPH comprise a

" standard DPH.

Disk Parameter Block

i "
v o

OOH: | SPT | BSH | BLM | EXM | DSM | DRM...

O8H:...DRM | ALO | AL1 | CKS | OFF | PSH |

10H: | PHM | ' ' i " S ke MM
et

FIGURE B-12. DISK PARAMETER BLOCK FORMAT

B-155

DISK I/0

TABLE B-32, DISK PARAMETER BLOCK FIELDS

— Field

Comment.s

SPT

DRM

ALO, AL1

Sets SPT to the total number of 128-byte logical
records per track.

Data-allocation block shift factor.
Block mask.
Extent mask.

Determines the total storage capacity of the disk
drive. DSM is one less than the total number of
blocks on the drive.

Total number of directory entries minus one that
can be stored on this drive. The directory
requires 32 bytes per entry.

Determines reserved directory blocks. The two fields
ALO and AL1 can together be considered a string of
16 bits, as shown in the figure below.

ALO AL1

\ V.

| Pl |
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15

Position 00 corresponds to the high-order bit of
the byte labeled ALO, and position 15 corresponds
to the low-order bit of the byte labeled AL1, Each
bit position reserves a data block for a number of
directory entries, thus allowing a maximum of 16
data blocks to be assigned for directory entries.
Bits are assigned starting at 00 and filled to the
right until position 15. ALO and AL1 overlay the
first two bytes of the allocation vector for the
associated drive.

The size of the directory check vector, (DRM/4)+1.
Set bit 15 of CKS to 1 if the drive is permanently
mounted. Set CKS to 8000H to indicate that the
drive is permanently mounted and directory
checksumming is not required.

Note: Full directory checksumming is required on
removable media to support the automatic login
feature of CP/M Plus.

The number of reserved tracks at the beginning of

the logical disk. OFF is the track on which the
directory starts.

B-156

DISK I/0

Specifies the physical-record shift factor.
Specifies the physical-record mask.

CP/M allocates disk space in a unit called a block.
BLS is the number of bytes in a block. The block
size on the Osborne Executive is 1024 bytes.

Buffer Control Block

The Buffer Control Block (BCB) locates physical
record buffers for the BDOS. The BDOS uses the BCB

to manage the physical record buffers during
processing. More than one Disk Parameter Header can

specify the same BCB. The GENCPM utility can create
the Buffer Control Block.

Note that only the DRV, BUFFAD, BANK, and LINK fields
need to contain initial values. The figure below
shows the form of the Buffer Control Block:

DRV | REC # |WFLG | O- | TRACK

- e = o=
v u

+ -+

SECTOR | BUFFAD |BANK | LINK |

e
L)

FIGURE B-13., BUFFER CONTROL BLOCK

Identifies the disk drive associated with the record
contained in the buffer located at address BUFFAD.

Identifies the record position of the current

contents of the buffer located at address BUFFAD.
REC# consists of the absolute sector number of the
record where the first record of the directory is

Set by the BDOS to OFFH to indicate that the buffer
contains new data that has not yet been written to
disk. When the data is written, the BDOS sets the
WFLG to zero to indicate the buffer is no longer

00H: |
OBH:i
Field
DRV
REC#
zero,
WFLG
dirty.
—0— Scratch byte used by BDOS.

B-157

DISK I/0

Field

TRACK Contains the physical track location of the contents
of the buffer.

SECTOR Contains the physical sector location of the
contents of the buffer.

BUFFAD Specifies the address of the buffer associated with

this BCB.

BANK Contains the bank number of the buffer associated
with this BCB.

LINK Contains the address of the next BCB in a linked

list, or zero if this is the last BCB in the linked
list.

The BDOS distinguishes between two kinds of buffers:
data buffers referenced by DTABCB, and directory
buffers referenced by DIRBCB. The DIRBCB and DTABCB
fields of a Disk Parameter Header each contain the
address of a BCB list head rather than the address of
an actual BCB., A BCB list head is a word containing
the address of the first BCB in a linked list. If
several DPHs reference the same BCB list, they must
reference the same BCB list head. Each BCB has a LINK
field that contains the address of the next BCB in
the 1ist, or zero if it is the last BCB.

The one-byte BANK field indicates the bank in which
the data buffers are located. The BANK field of
directory BCBs is zero because directory buffers must
be located in Bank O below the banked BDOS module, or
in common memory.

If you set the DPH DIRBCB or the DPH DTABCB fields to
OFFFEH, the GENCPM utility creates BCBs; allocates
physical record buffers; and sets these fields to the
address of the BCBs. This allows you to write device
drivers without regard to buffer requirements.

Disk I/0 Functions
This section defines the CP/M 3 BIOS disk I/0

routines HOME, SELDSK, SETTRK, SETSEC, SETDMA, READ,
WRITE, SECTRN, MULTIO, and FLUSH.

B-158

DISK I/0
o e e e +
| |
t BIOS Function 8: HOME ;
|
o e e +
| |
| Select Track 00 of the Specified Drive :
|
i |
| Entry Parameters: None i
|
| Returned Values: None :
|
o B B B o +

Return the disk head of the currently selected disk
to the track 00 position. The HOME call is
equivalent to a call to SETTRK with a parameter of 0.

B +
| |
| BIOS Function 9: SELDSK H
{ |
o e e e e e e e +
| |
| Select the Specified Disk Drive ;
|

| i
| Entry Parameters: C = Disk Drive (0-15) |
| E = Initial Select Flag }
|

| Returned Values: HL = Address of DPH |
| if drive exists H
| HL = OO0OH if drive]
: does not exist !
o o o e e e O B B e +

Select the disk drive specified in register C for
further operations, where register C contains 0 for
drive A, 1 for drive B, and so on to 15 for drive P.
On each disk select, SELDSK returns in HL the base
address of a 25-byte area called the Disk Parameter
Header. If there is an attempt to select a
nonexistent drive, SELDSK returns HL = 0000H as an
error indicator.

On entry to SELDSK, if it is the first time the
specified disk is selected, the BDOS sets Bit 0, the
(least-significant bit in Register E) to 0.

B-159

DISK I/O

BIOS Function 10: SETTRK

Entry Parameters: BC = Track Number

|
|
|
+
|
| Set Specified Track Number
|
|
|
|
| Returned Values: None

|

Register BC contains the track number for a
subsequent disk access on the currently selected
drive. Normally the track number is saved until the
next READ or WRITE occurs.

e s +
| |
! BIOS Function 11: SETSEC |
| !
o e e e e e e e e e e e e e e +
| |
| Set Specified Sector Number |
| |
| |
H Entry Parameters: BC = Sector Number }
|

I Returned Values: None ;
|

o o e e e e e +

Register BC contains the sector number for the
subsequent disk access on the currently selected
drive. This number is the value returned by SECTRN.
The BIOS delays the actual sector selection until a
READ or WRITE operation occurs,

Note: The current BIOS implementation only makes use
of Register C.

B-160

(

DISK I/O

o e e e e T
|

i BIOS Function 12: SETDMA !
|

S S S R +
| |
| Set Address for Subsequent Disk I/0 :
|

| |
| Entry Parameters: BC = Direct Memory |
| Access Address ;
|

| Returned Values: None |
! |
o e e e e e O +

Register BC contains the DMA (Direct Memory Access)
address for the subsequent READ or WRITE operation.
For example, if B = OOH and C = 80H when the BDOS
calls SETDMA, then the subsequent read operation
reads its data starting at 80H, or the subsequent
write operation gets its data from 80H, until the
next call to SETDMA occurs.

o e e -
|

| BIOS Function 13: READ

!
- -
|

| Read a Sector from the Specified Drive

|

{

i Entry Parameters: None

|

H Returned Values: A = O00H if no errors

] A = 001H if nonrecoverable
{ error occurred

| A = OFFH if media changed
|

o - -

This function assumes the BDOS has selected the
drive, set the track, set the sector, and specified
the DMA address. The READ subroutine attempts to
read one sector based upon these parameters, then
returns one of the error codes in register A as
described above,

If the value in register A is 0, then CP/M Plus
assumes that the disk operation completed properly.
If an error occurs, the BIOS attempts ten retries to
see if the error 1s recoverable before returning the
error code,

B-161

DISK I/0

If an error occurs in a system that supports
automatic density selection, the system verifies the
density of the drive, If the density has changed,
READ returns a OFFH in the accumulator. This causes
the BDOS to terminate the current operation and
relog-in the disk.

B T PR ———— DL T T ——— +

| BIOS Function 14: WRITE |

Write a Sector to the Specified Disk

Ly]

|

i

i

Entry Parameters: = Deblocking Codes ;
i

|

|

|

|

Returned Values: A = 000H if no error
A = 001H if physical error
A = 002H if disk is Read-Only
A = OFFH if media has changed
B e e L LY S ———— - — - - -+

This BIOS Function writes the data from the currently
selected DMA address to the currently selected drive,
track, and sector. Upon each call to WRITE, the BDOS
provides the following information in register C:

0 = deferred write
1 = nondeferred write
2 = deferred write to the first sector of a

new data block

This information is provided for those BIOS
implementations that do blocking/deblocking in the
BIOS instead of the BDOS.

As in READ, the BIOS attempts ten retries before
reporting an error.

If an error occurs in a system that supports
automatic density selection, the system verifies the
density of the drive. If the density has changed,
the WRITE function returns a OFFH in the accumulator.
This causes the BDOS to terminate the current
operation and relog-in the disk.

B-162

DISK I/O

T e —— e e e ——————————————— T
|

| BIOS Function 16: SECTRN ;
|

m———— - o e e e e e e e ————
| |
| Translate Sector Number Given Translate Table :
|

| |
{ Entry Parameters: BC = Logical Sector Number |
| DE = Translate Table Addr |
| |
! Returned Values: HL = Physical Sector Number :
|

e e B e ——————— +

SECTRN receives a logical sector number in BC and a
translate table address in DE. The logical sector
number is relative to zero. The translate table
address is obtained from the Disk Parameter Block for
the currently selected disk. The sector number is
used as an index into the translate table, with the
resulting physical sector number returned in HL,

Certain drive types either do not need skewing or
perform the skewing externally from the system
software. In this case the skew table address in the
DPH can be set to zero, and the SECTRN routine can
check for the zero in DE and return with the physical
sector set to the logical sector.

e e e e e e e - o e e -
| |
H BIOS Function 23: MULTIO |
| !
e e e e e
! |
| Set Multisector Count for READ or WRITE |
| |
| Entry Parameters: C = Multisector Count |
| |
| Returned Values: None !
| |
e —————————————— —————————————— ————— ————————— ———

To transfer logically consecutive disk sectors to or
from contiguous memory locations, the BDOS issues a
MULTIO call, followed by a series of READ or WRITE
calls, This allows the BIOS to transfer multiple
sectors in a single disk operation. The BIOS can
transfer up to 16K bytes of data in a single
operation,

B-163

DISK I/0
Note: The current BIOS can transfer up to one full

track (5K).

BIOS Function 24: FLUSH |

Force Physical Buffer Flushing

Entry Parameters: None

000H if no error
001H if physical error
002H if disk is R/O

Returned Values: A

=
"numn

The flush-buffers entry point allows the system to
force physical-sector buffer flushing. The BDOS calls
the FLUSH routine to ensure that no dirty buffers
remain in memory. The BIOS immediately writes any
buffers that contain unwritten data.

B-164

MEMORY SELECTS AND MOVES

MEMORY SELECTS AND MOVES

Four BIOS functions are provided to perform memory
management. The functions are MOVE, XMOVE, SELMEM,
and SETBNK. The BDOS uses the BIOS MOVE routine to
perform memory-to-memory block transfers. The BDOS
calls XMOVE to specify the source and destination
banks to be used by the MOVE routine.

The BDOS uses SELMEM when the operating system needs
to execute code or access data in other than the
currently selected bank.

The BDOS calls the SETBNK routine prior to calling
disk READ or disk WRITE functions. The SETBNK
routine saves its specified bank as the DMA bank.
When the BDOS invokes a disk I/0 routine, the I/0
routine saves the current bank number and selects the
DMA bank prior to the disk READ or WRITE. After
completion of the disk READ or WRITE, the disk I/0
routine reselects the current bank. When the BDOS
calls the disk I/0 routines, Bank 0 is in context
(selected).

Memory Select and Move Functions

This section defines the memory management functions
MOVE, XMOVE, SELMEM, and SETBNK.

o e e e e e e .
| !
{ BIOS Function 25: MOVE |

|
e e e e e e +
| |
! Memory-to-Memory Block Move !

|
| |
{ Entry Parameters: HL = Destination Address |
| DE = Source Address |
I BC = Count |

|
| Returned Values: HL and DE must point to |
| next bytes following move |
{ operation !

|
B e e e e e e e e e e e e e e e e 0 e e +

The BDOS calls the MOVE routine to perform memory-to-
memory block moves to allow use of the Z80 LDIR
instruction. Note that the arguments in HL and DE are
reversed from the Z80 machine instruction,

B-165

MEMORY SELECTS AND MOVES

necessitating the use of XCHG instructions on either
side of the LDIR. The BDOS uses this routine for all
large-memory copy operations. On return, the HL and
DE registers are expected to point to the next bytes
following the move.

Usually the BDOS expects MOVE to transfer data within
the currently selected bank or common memory.
However, if the BDOS calls the XMOVE entry point
before calling MOVE, the MOVE routine performs an
interbank transfer.

S e -
| |
| BIOS Function 27: SELMEM |
i i
S e B B B o o -
| |
| Select Memory Bank |
| |
H |
i Entry Parameters: A = Memory Bank |
|]
| Returned Values: None |
| |
o e e e B B o +

The CP/M Plus BDOS calls SELMEM to select the current
memory bank for further instruction execution or
buffer references.

e e e +
| !
} BIOS Function 28: SETBNK |

|
o e e e e e e +
| !
| Specify Bank for DMA Operation i
| |
| |
i Entry Parameters: A = Memory Bank |

|
i Returned Values: None i

|
o e e e e e e e e e e +

SETBNK specifies the bank that the subsequent disk
READ or WRITE routine must use for memory transfers.
The BDOS always makes a call to SETBNK to identify
the DMA bank before performing a READ or WRITE call.

Note: The BDOS does not reference banks other than 0
or 1 unless another bank is specified by the BANK

B-166

MEMORY SELECTS AND MOVES

field of a Data Buffer Control Block (BCB).

e e +
| |
| BIOS Function 29: XMOVE E
|

o e e e e e e e -
| {
| Set Banks for Following MOVE i
| |
| Entry Parameters: B = Destination Bank |
| C = Source Bank |
| |
| Returned Values: None i
| |
o e B e +

XMOVE supports memory-to-memory DMA transfers over
the entire, extended address range. An XMOVE call
affects only the following MOVE call. All subsequent
MOVE calls apply to the memory selected by the latest
call to SELMEM. After a call to the XMOVE function,
the following call to the MOVE function is not more
than 128 bytes of data.

B-167

CLOCK SUPPORT

CLOCK SUPPORT

Clock

The BIOS maintains the time of day in the System
Control Block and updates the time on clock
interrupts. The time of day is kept as four fields in
the System Control Block. @DATE is a binary word
containing the number of days since January 1, 1978.
The bytes @HOUR, @MIN, and @SEC contain the hour,
minute, and second in Binary-Coded Decimal (BCD)
format.

Support Funection

This section defines the clock-support function TIME.

Entry Parameters: C = Time Get/Set Flag

+
|
|
|
+
|
Get and Set Time |
|
|
]
]
|
Returned values: None i

|

+

The BDOS calls the TIME function to indicate to the
BIOS whether it has just set the Time and Date fields
in the SCB, or whether the BDOS is about to get the
Time and Date from the SCB. On entry to the TIME
function, a zero in register C indicates that the
BIOS should update the Time and Date fields in the
SCB. A OFFH in register C indicates that the BDOS
has just set the Time and Date in the SCB and the
BIOS should update its clock.

This entry point allows the systems to interrogate
the clock to determine the time. Since the clock is
capable of generating an interrupt, an interrupt

Sservice routine is used to set the Time and Date
fields on a regular basis.

B-168 |

GENERATING AND MOVING CP/M: GENCPM

GENERATING AND MOVING CP/M: GENCPM

The GENCPM utility creates a memory image of CP/M in
a file called CPM3.SYS which contains the CP/M 3.0
BDOS and the BIOS tailored for the Osborne Executive.
The utility program allows you to relocate system
modules and allocate physical record buffers,
allocation vectors, checksum vectors, and hash tables
as required by BIOS.. To create the CPM3.SYS file,
you must have your customized BNKBIOS3.SPR file.
GENCPM creates the CPM3.SYS file from three files:
RESBDOS3.SPR, BNKBDOS.SPR, and BNKBIOS3.SPR. To

load CPM3.8YS into memory, you must create a
LDRBIOS.SPR file and incorporate it into the
CPMLDR.COM FILE.

GENCPM can get its data from the file GENCPM.DAT,
which you create at some other time, or you can
specify the data while running GENCPM.

To use GENCPM, enter either:
GENCPM AUTO
or
GENCPM AUTO DISPLAY

If you enter GENCPM AUTO, the program will seek the
file GENCPM.DAT for input data. The new system will
be generated, and the only display will be the signon
and signoff messages. If AUTO is specified and
GENCPM.DAT does not exist, the program will revert to
manual entry. This will also happen if an error
occurs while running in the AUTO mode.

If you enter GENCPM AUTO DISPLAY, you may also use
GENCPM.DAT for default values, entering your own
where you wish the values to be different from those
in GENCPM.DAT. You can specify a value by answering
the question mark prompt with the appropriate value,
or use the default value (which will be shown in
parentheses) by simply pressing <RETURND.

GENCPM questions and responses are shown below:

Use GENCPM.DAT for defaults (Y) ?

- ¢ GENCPM gets its default values from the
file GENCPM.DAT.

N GENCPM uses defaults built into the
system.

B-169

GENERATING AND MOVING CP/M: GENCPM

Create a new GENCPM.DAT file (N) ?

N

GENCPM will not create a new GENCPM.DAT
file,

After GENCPM generates the new CPM3,5YS
file, it creates a new GENCPM.DAT file
containing the default values.

Display Load Table at Cold Boot (Y) ?

Y

Upon performing a Cold Boot, the system
displays the load table containing the
filename, filetype, hex starting address,
length of system modules, and the
Transient Program Address (TPA) size,

System displays only the TPA size on Cold
Boot.

Number of console columns (#80) ?

Enter the number of columns (characters/line)
for your console.

Number of lines per console page (#24) ?

Enter the number of lines per screen for your
console.

Backspace echoes erased character (N) ?

N

Backspace character (“H, 08h) moves back
one column and erases the previous
character.

Backspace moves forward one column and
displays the previous character.

Rubout echoes erased character (Y) ?

: 4

Rubout (7Fh) moves forward one column and
displays the previous character.

Rubout moves back one column and erases
the previous character.

Initial default drive (A:) 2

Enter drive letter the prompt is to display at
Cold Boot. E 1 i

B-170

GENERATING AND MOVING CP/M: GENCPM

Top page of memory (FF) ?

Enter the page address that is to be the top of
the operating system. OFFh is the top of a 64K
system.

Bank switched memory (Y) ?

Y GENCPM uses the banked system files. The
Osborne Executive uses a banked system.

N GENCPM uses the nonbanked system file
Common memory base page (CO) ?

This question is displayed only if you answered
Y to the previous question. Enter the page
address of the start of Common Memory.

Long error messages (Y) ?

This question is displayed only if you answered
Y to bank-switched memory.

Y CP/M 3.0 error messages contain the BDOS
function number and the name of the file
on which the operation was attempted.

N CP/M 3.0 error messages do not display the
function number or file,

Double allocation vectors (Y) ?

This question is displayed only if you answered
N to bank-switched memory. Double allocation
vectors are described in the ALV definition of
the Disk Parameter Header.

Y GENCPM creates double-bit allocation
vectors for each drive.

N GENCPM creates single-bit allocation
vectors for each drive.

Accept new system definition (Y) ?

Y GENCPM proceeds to the next set of
questions.

N GENCPM repeats the previous questions and
displays your previous input in the
default parentheses. You may modify
your answers,

B-171

GENERATING AND MOVING CP/M: GENCPM

Number of memory segments (#3) ?

GENCPM displays this question if you answered Y
to bank-switched memory.

Enter the number of memory segments in the
system. Do not count Common memory or memory
in Bank 1, the TPA bank, as a memory segment.
A maximum of 16 (0 - 15) memory segments are
allowed. The memory segments define to GENCPM
the memory available for buffer and hash table
allocation. Note that part of Bank 0 is
reserved for the operating system.

CP/M 3 Base, size, bank (B6,3A,00)

Enter memory segment table:
Base, size, bank (10,A6,00) ?
Base, size, bank (00,C0,02) ?
Base, size, bank (00,C0,03) ?

Enter the base page, length, and bank of the
memory segment.

Accept new memory segment table entries (Y) ?

Y GENCPM displays the next group of
questions.

N GENCPM displays the memory-segment table
definition questions again.

Setting up directory hash tables:
Enable hashing for drive d: (Y) ?

GENCPM displays this question if there is a
Drive Table and if the DPHs for a given drive
have an OFFFEh in the hash table address field
of the DPH. The question is asked for every
drive d: defined in the BIOS.

: ¢ Space is allocated for the Hash Table.
The address and bank of the Hash Table is
entered into the DPH.

N No space is allocated for a Hash Table for
that drive,

Setting up Blocking/Deblocking buffers:
GENCPM displays the next set of questions if

either or both the DTABCB field or the DIRBCB
field contain OFFFEh.

B-172

GENERATING AND MOVING CP/M: GENCPM

Number of directory buffers for drive d: (#2) 2 2

This question appears only if you are
generating a banked system., Enter the number
of directory buffers to allocate for the
specified drive. In a banked system directory
buffers are allocated only inside Bank O.

Number of data buffers for drive d: (#1) ? 1

This question appears only if you are
generating a banked system. Enter the number
of data buffers to allocate for the specified
drive. In a banked system, data buffers can
only be allocated outside Bank 0, and in
Common. You can only allocate data buffers in
alternate banks if your BIOS supports interbank
moves.

Share buffer(s) with which drive (A:) ?

This question appears only if you answer zero
to either of the above questions. Enter the

drive letter (A - P) of the drive with which

you wish this drive to share a buffer.

Allocate buffers outside bank zero (N) ?

This question appears if the BIOS XMOVE routing
is implemented.

Y GENCPM allocates data buffers in Common
and Bank 0,

N GENCPM allocates data buffers in Common.
Accept new buffer definitions (Y)

Y GENCPM creates the CPM3.SYS file and
terminates.

N GENCPM redisplays all of the buffer
definition questions.

Example of System Generation with Banked Memory

The following section contains an example of a system
generation session for a banked memory system. Where
no entry follows a program question, assume <RETURN>
was entered to select the default value in
parentheses, Entries different from the default
appear after the question mark.

B-173

GENERATING AND MOVING CP/M: GENCPM

Contents of Example GENCPM.DAT File
COMBAS = CO <er>

LERROR 7 <er>

NUMSEGS = 3 <er>

MEMSEGOO = 00,80,00 <cr>
MEMSEGO1 = 0d, b3,02 <er>
MEMSEGOf = ?00,C0,10 <cr>
HASHDRVA = Y {er>
HASHDRVD = n <er>
NDIRRECA = 20 <er>
NDTARECF = 10 <er>

Sample Run of GENCPM

CP/M 3.0 System Generation
Copyright (C) 1982, Digital Research

Default entries are shown in (parens).
Default base is Hex, precede entry with # for
decimal.

Use GENCPM.DAT for defaults (Y) ?
Create a new GENCPM.DAT file (N) ? ‘
Display Load Map at Cold Boot (Y) ?

Number of console columns (#80) ?
Number of lines in console page (#24) ?
Backspace echoes erased character (N) ?
Rubout echoes erased character (N) ?

Initial default drive (A:) ?

Top page of memory (FF) ?
Bank switched memory (Y) ?
Common memory base page (CO) ?

Long error messages (Y) ?
Accept new system definitions (Y) ?

Setting up Allocation vector for drive A:
Setting up Checksum vector for drive A:
Setting up Allocation vector for drive B:
Setting up Checksum vector for drive B:
Setting up Allocation vector for drive C:
Setting up Checksum vector for drive C:
Setting up Allocation vector for drive D:
Setting up Checksum vector for drive D:

¥%¥Bank 1 and Common are not included %%#
¥%¥¥In the memory segment table. "ES

B-174 J

GENERATING AND MOVING CP/M: GENCPM

Number of memory segments (#3) ?

CP/M 3 Base,size, bank (8B,35,00)

Enter memory segment table:
Base,size,bank (00,8B,00) ?
Base,size,bank (00,B3,02) ?
Base,size,bank (00,C0,03) ?

CP/M 3 Sys 8B0O0Oh 3500h Bank 00

Memseg No, 00 0000h 8BOOh Bank 00

Memseg No. 01 0DOOh B300h Bank 02

Memseg No. 02 0000h COOOh Bank 03

Accept new memory segment table entries (Y) ?

Setting up directory hash tables:
Enable hashing for drive A: (Y) ?
Enable hashing for drive B: (Y) ?
Enable hashing for drive C: (Y) ?
Enable hashing for drive D: (Y) ?

Setting up Blocking/Deblocking buffers:
The physical record size is 0200h:

Available space in 256 byte pages:
TPA = O0F4h, Bank 0 = 008Bh, Other banks = 0166h

Number of directory buffers for drive A: (#32) ?

Available space in 256 byte pages:
TPA - OOF4h, Bank = 0049h, Other banks = 0166h

Number of data buffers for drive A: (#2) ?
Allocate buffers outside bank zero (N) ?

Available space in 256 byte pages:
TPA = 00FOh, Bank 0O = 0049h, Other banks = 0166h

Number of directory buffers for drive B: (#32) ?

Available space in 256 byte pages:
TPA = 00FOh, Bank 0 = 0007h, Other banks = 0166h

Number of data buffers for drive B: (#0) ?
Share buffer(s) with which drive (A:) ?

The physical record size is 0080h:

Available space in 256 byte pages:
TPA = 00FOh, Bank 0 = 0001h, Other banks = 0166h

Number of directory buffers for drive C: (#01) ?

B-175

GENERATING AND MOVING CP/M: GENCPM

Available space in 256 byte pages:
0001h, Other banks = 0166h

TPA = O00FOh, Bank 0

Number of directory buffers for
Share buffer(s) with which drive (C:) ?

Available space in 256 byte pages:

TPA 00FOh, Bank 0 =

Accept new buffer definitions (Y) ?

BNKB1053 SPR
BNKB10S3 SPR
RESBDOS3 SPR
BNLBDOS3 SPR

®®%CP/M 3.0 SYSTEM GENERATION DONE ##¥

F600h
B100h
FOOOh
8700h

0001h, Other banks

0600h
OF0O0h
0600h
2A00h

B-176

drive D:

(#0) ?

0166h

Appendices

APPENDIX A: SYSTEM CONTROL BLOCK

The System Control Block (SCB) is a CP/M Plus data
structure located in the BDOS. CP/M Plus uses this
region primarily for communication between the BDOS
and the BIOS, However, it is also available for
communication between application programs, RSXs, and
the BDOS. Note that programs that access the System
Control Block are not version independent. They can
run only on CP/M Plus.

The following list describes the fields of the SCB
that are available for access by application programs
and RSXs. The location of each field is described as
the offset from the start address of the SCB (see the
S_SCB system call), The RW/RO column indicates if
the SCB field is Read-Write or Read-Only.

I

Offset. RW/RO Definition

00 - 04 RO Reserved for system use.

RO BDOS Version Number.

06 - 09 RW Reserved for user use. Use these four

bytes for your own flags or data.

OA - OF RO Reserved for system use.

12 - 19

RW Program-Error Return Code. This 2-byte field
can be used by a program to pass an error
code or value to a chained program. CP/M
Plus's conditional command facility also uses
this field to determine if a program executes
successfully. The P_RETCODE system call is
used to get/set this value.

RO Reserved for system use,

APPENDIX-1

Appendices

TABLE B-33, SCB FIELDS AND DEFINITIONS (Cont.)
—Offset RW/RO Definition

1A RW Console Width. This byte contains the
number of columns (characters per line) on
your console relative to zero. Most systems
default this value to 79. You can set this
default value by using the GENCPM or the
DEVICE utility. The console width value is
used by the banked version of CP/M Plus in
C_READSTR, CP/M Plus's console-editing input
system call. Note that typing a character
into the last position of the screen, as
specified by the Console Width field, must
not cause the terminal to advance to the next
line.

1B RO Console Column Position. This byte contains
the current conscle column position.

1C RW Console Page Length. This byte contains the
page length, lines per page, of your console.
Most systems default this value to 24 lines
per page. This default value may be changed
by using the GENCPM or the DEVICE utility
(see the CP/M Plus User's Guide).

1D - 21 RO Reserved for system use.

22 - 2B RW Redirection flags for each of the five
logical character devices. If your system's
BIOS supports assigmment of logical devices
to physical devices, you can direct each of
the five logical character devices to any
combination of up to 12 physical devices.

The 16-bit word for each device represents
the following: Each bit represents a
physical device where bit 15 corresponds to
device 0 and bit 4 corresponds to device 11,
Bits 0 through 3 are reserved for system use.
You can redirect the input and output logical
devices with the DEVICE command

2 - 23 RW CONIN: Redirection Flag.
24 - 25 RW CONOUT: Redirection Flag.
26 - 27 RW AUXIN: Redirection Flag.
28 - 29 RW AUXOUT: Redirection Flag.
2A - 2B RW LSTOUT: Redirection Flag.

APPENDIX-2

Appendices

_TABLE B-33, SCB FIELDS AND DEFINITIONS (Cont.)
RW/RO

Definition

— Offset
2C
2D
2E
2F
30 - 32
33 - 34
35 - 36
37
38
39 - 3B
3¢ - 3D

RO

RO

Page Mode. If this byte is set to zero, some
CP/M Plus utilities and CCP built-in commands
display one page of data at a time; you
display the next page by pressing any key.

If this byte is not set to zero, the system
displays data on the screen without stopping.
To stop and start the display, you can press
CTRL-S and CTRL-Q, respectively.

Reserved for system use.

Determines if CTRL-H is interpreted as a
rub/del character. If this byte is set to O,
then CTRL-H is a backspace character (moves
back and deletes). If this byte is set to
OFFH, then CTRL-H is a rub/del character
(echoes the deleted character).

Determines if rub/del is interpreted as CTRL-
H character. If this byte is set to 0, then
rub/del echoes the deleted character, If
this byte is set to OFF, then rub/del is
interpreted as a CTRL-H character (moves back
and deletes).

Reserved for system use.

Console Mode. This is a 16-bit system
parameter that determines the action of
certain BDOS Console I/0 system calls.

Reserved for system use.

Output delimiter character. The default-
output delimiter character is $, but you can
change this value by using the C_DELIMIT
system call.

List Output Flag. If this byte is set to 0,
console output is not echoed to the list
device. If this byte is set to 1, console
output is echoed to the list device.

Reserved for system use.

Current DMA Address. This address can be set
by the F_DMASET system call, The CCP
initializes this value to 0080H.

DRV_ALLRESET system call also sets the DMA
address to 0080H.

APPENDIX-3

Appendices

3E RO
3F - 43 RO
44 RO
45 - 49 RO
4A RW
4B RW
4C - 4F RW
50 RW

Current Disk. This byte contains the
currently selected default disk number. This
value ranges from 0 to 15 corresponding to
drives A - P, respectively. The DRV_GET
system call can be used to determine the
current disk value.

Reserved for system use.

Current User Number. This byte contains the
current user number, This value ranges from
0 to 15. The F_USERNUM system call can
change or interrogate the currently active
user number.

Reserved for system use.

BDOS Multisector Count. This field is set by
the F_MULTISEC system call.

BDOS Error Mode. This field is set by the
F_ERRMODE system call. If this byte is set
to OFFH, the system returns to the current
program without displaying any error
messages. If it is set to OFEH, the system
displays error messages before returning to
the current program. Otherwise the system
terminates the program and displays error
messages. See description of the F_ERRMODE
system call for a discussion of the different
error modes.

Drive Search Chain. The first byte contains
the drive number of the first drive in the
chain, the second byte contains the drive
number of the second drive in the chain, and
so on, for up to four bytes. If less than
four drives are to be searched, the next byte
is set to OFFH to signal the end of the
search chain, The drive values range from 0
to 16, where 0 corresponds to the default
drive, while 1 to 16 corresponds to drives A
- P, respectively. The drive search chain
can be displayed or set by using the SETDEF
utility.

Temporary File Drive. This byte contains the
drive number of the temporary file drive.

The drive number ranges from O to 16, where 0
corresponds to the default drive, while 1 to
16 corresponds to drives A - P, respectively.

APPENDIX-4

Appendices

TABLE B-33, SCB FIELDS AND DEFINITIONS (Cont.)

RW/RO Definition

—Offset
51
52 - 56
57
58 - 59
5A
5B
5C
5D - 5E
5F - 63

RO Error drive. This byte contains the drive
number of the selected drive when the last
physical or extended error occurred.

RO Reserved for system use,

RO BDOS Flags. Bit 7 applies to banked systems
only. If bit 7 is set, then the system
displays expanded error messages. The second
error line displays the system call number
and FCB information. Bit 6 applies only to
nonbanked systems. If bit 6 is set, it
indicates that GENCPM has specified single
allocation vectors for the system, Otherwise
double allocation vectors have been defined
for the system. The DRV_FREEBLOCKS system
call returns temporarily allocated blocks to
free space only if bit 6 is reset,

RW Date in days in binary since 1 Jan 78.

RW Hour in BCD (2-digit Binary Coded Decimal).

RW Minutes in BCD,

Rw Seconds in BCD.

RO Common-Memory Base Address. This value is
zero for nonbanked systems and non-zero for
banked systems.

RO Reserved for system use.

APPENDIX-5

Appendices

APPENDIX B: PRL FILE GENERATION

PRL Format

A Page Relocatable Program has an origin offset of
100H bytes that is stored on-disk as a file of type
PRL. The format is shown in the table below.

T ————— S

0001-0002H Program size

0004-0005H Minimum buffer requirements (additional memory)
0006-00FFH Currently unused, reserved for future allocation

0100H + Program size equals start of bit map

The bit map is a string of bits identifying those
bytes in the source code that require relocation.
There is one byte in the bit map for every eight
bytes of source code. The most significant bit (bit
7) of the first byte of the bit map indicates whether
or not the first byte of the source code requires
relocation., If the bit is on, it indicates that
relocation is required. The next bit (bit 6) of the
first byte corresponds to the second byte of the
source code, and so forth.

Generating a PRL

The preferred technique for generating a PRL file is
to use the CP/M LINK-80, which can generate a PRL
file from a REL relocatable object file.

A>link dumplop]

APPENDIX-6

Appendices

APPENDIX C: SPR GENERATION

System Page Relocatable (SPR) files are similar in
format to PRL files except that SPR files have an
origin offset of 0000H (see Appendix B). SPR files
are provided as part of the standard CP/M Plus
System: the resident and banked portions of the
banked BDOS (named RESBDOS3.SPR and BNKBDOS3.SPR) and
the nonbanked BDOS (named BDOS3.SPR). The customized
BIOS must also be generated in SPR format before
GENCPM can create a CP/M Plus system. The BIOS.SPR
file is named BNKBIOS3.SPR for banked systems and
BIOS3.SPR for nonbanked systems. A detailed
discussion of the generation of BIOS3.SPR or
BNKBIOS3.SPR is provided in the CP/M Plus BIOS
section.

The method of generating an SPR is analogous to that
of generating a Page Relocatable Program (described
in Appendix B) with the following exceptions:

o If LINK-80 is used, the output file of type SPR
is specified with the [os] or [b] option. The
[b] option is used when linking BNKBIOS3.SPR.

o] The code in the SPR is ORGed at 000H rather
than 100H.

APPENDIX-7

Appendices

APPENDIX D:

This appendix contains tables of the ASCII symbols,
including their binary, decimal, and hexadecimal

ASCII AND HEXADECIMAL CONVERSIONS

conversions.
TABLE B-35, ASCII SYMBOLS
—Symbol Meaning Symbol Meaning
ACK acknowledge FS file separator
BEL bell GS group separator
BS backspace HT horizontal tabulation
CAN cancel LF line feed
CR carriage return NAK negative acknowledge
DC device control NUL null
DEL delete RS record separator
DLE data link escape SI shift in
EM end of medium S0 shift out
ENQ enquiry SOH start of heading
EOT end of transmission SpP space
ESC escape STX start of text
ETB end of transmission SuUB substitute
ETX end of text SYN synchronous idle
FF form feed Us unit separator
VT vertical tabulation
TABLE B-36, CONVERSION TABLE
Binary Decimal _ Hexadecimal _ASCII
0000000 000 00 NUL
0000001 001 01 SOH (CTRL-A)
0000010 002 02 STX (CTRL-B)
0000011 003 03 ETX (CTRL-C)
0000100 004 04 EOT (CTRL-D)
0000101 005 05 ENQ (CTRL-E)
0000110 006 06 ACK (CTRL~F)
0000111 007 07 BEL (CTRL-G)
0001000 008 08 BS (CTRL-H)
0001001 009 09 HT (CTRL-I)
0001010 010 OA LF (CTRL-J)
0001011 011 0B VT (CTRL-K)
0001100 012 oc FF (CTRL-L)
0001101 013 0D CR (CTRL-M)
0001110 014 OE SO (CTRL-N)
0001111 015 OF SI (CTRL-0)
0010000 016 10 DLE (CTRL-P)
0010001 017 1 DC1 (CTRL-Q)
0010010 018 12 DC2 (CTRL-R)
0010011 019 13 DC3 (CTRL-S)
APPENDIX-8

S T ey -

TABLE B-36, CONVERSION TABLE (Cont.)

Appendices

Binary = Decimal = Hexadecimal ASCII

0010100
0010101
0010110
0010111
0011000
0011001
0011010
0011011
0011100
0011101
0011110
0011111
0100000
0100001
0100010
0100011
0100100
0100101
0100110
0100111
0101000
0101001
0101010
0101011
0101100
0101101
0101110
0101111
0110000
0110001
0110010
0110011
0110100
0110101
0110110
0110111
0111000
0111001
0111010
0111011
0111100
0111101
0111110
0111111
1000000
1000001
1000010
1000011
1000100
1000101
1000110
1000111

020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
o
042
043
o4y
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071

14
15
16
17
18
19
1A
1B
1C
1D

APPENDIX-9

DC4 (CTRL-T)
NAK (CTRL~U)
SYN (CTRL-V)
ETB (CTRL-W)
CAN (CTRL-X)
EM (CTRL-Y)
SUB (CTRL-Z)
ESC (CTRL-[)
FS (CTRL-\)
GS (CTRL-])
RS (CTRL-")
US (CTRL-_)
(SPACE)
!

LO~NONMEWN=2ON* | % $ K =052

DT MOOmE @D VI Avws o

Appendices

TABLE B-36, CONVERSION TABLE (Cont.)
—Binary = Decimal = Hexadecimal ASCII
1001000 072 48 H
1001001 073 49 I
1001010 074 4A J
1001011 075 4B K
1001100 076 4c ¥
1001101 077 4p M
1001110 078 4E N
1001111 079 YF 0
1010000 080 50 P
1010001 081 51 Q
1010010 082 52 R
1010011 083 53 S
1010100 084 54 T
1010101 085 55 U
1010110 086 56 Vv
1010111 087 57 W
1011000 088 58 X
1011001 089 59 Y
1011010 090 5A yA
1011011 091 5B [
1011100 092 5C \
1011101 093 5D]
1011110 094 5E A '
1011111 095 5F <
1100000 096 60 '
1100001 097 61 a
1100010 098 62 b
1100011 099 63 e
1100100 100 64 d
1100101 101 65 e
1100110 102 66 f
1100111 103 67 g
1101000 104 68 h
1101001 105 69 i
1101010 106 6A 3
1101011 107 6B Kk
1101100 108 6C 1
1101101 109 6D m
1101110 110 6E n
1101111 111 6F o
1110000 112 70 p
1110001 113 (al q
1110010 114 72 r
1110011 115 73 s
1110100 116 T4 L
1110101 117 75 u
1110110 118 76 v
1110111 119 77 W
1111000 120 78 X
1111001 121 79 y (
1111010 122 TA z
1111011 123 7B {

APPENDIX-10

B e L ek

Appendices

1111100
1111101
1111110
nmmnm

TABLE B-36, CONVERSION TABLE (Cont.)
Binary Decimal Hexadecimal ASCII
124 7C
125 70
126 TE
127 TF

1 ot e

APPENDIX-11

Appendices

APPENDIX E: THE SYSCALLS.ASM FILE

C_AUXIN equ 3 Auxiliary Input
C_AUXINST equ T Auxiliary Input Status
C_AUXOUT equ - Auxiliary Output
C_AUXOUTST equ 8 Auxiliary Output Status
C_DELIMIT equ 110 Get/Set Output Delimiter
C_MODE equ 109 Get/Set Conscle Mode
C_RAWIO equ 6 Raw Console I/0

C_READ equ 1 Read Console

C_READSTR equ 10 Read Console Buffer
C_STAT equ 1 Get Console Status
C_WRITE equ 2 Write to Console
C_WRITEBLK equ 111 Write Block

C_WRITESTR equ 9 Write String

Get Addr(Alloc)
Reset Disk System

DRV_ALLOCVEC equ 27
DRV_ALLRESET equ 13

DRV_DPB equ 31 Get Addr(DPB)
DRV_FREEBLOCKS equ 98 Free Blocks
DRV_GET equ 25 Return Current Disk

DRV_GETLABEL equ 101
DRV_LOGINVEC equ 24

Return Directory Label Data
Return Login Vector

3
3
’
H
3
:
’
)
)
)
’
.
)
1
DRV_RESET equ 37 ; Reset Drive
DRV_ROVEC equ 29 ; Get R/0 Vector
DRV_SET equ 14 ; Select Disk ‘~]
DRV_SETLABEL equ 100 ; Set Directory Label .-
DRV_SETRO equ 28 ; Write Protect Disk
DRV_SPACE equ 46 ; Get Disk Free Space
F_ATTRIB equ 30 ; Set File Attributes
F_CLCSE equ 16 ; Close File
F_DELETE equ 19 ; Delete File
F_DMASET equ 26 ; Set DMA Address
F_ERRMODE equ 45 ; Set BDOS Error Mode
F_FLUSH equ 48 ; Flush Buffers
F_LOCK equ y2 ; Lock Record
F_MAKE equ 22 ; Make File
F_MULTISEC equ 4y ; Set Multisector Count
F_OPEN equ 15 ; Open File
F_PARSE equ 152 ; Parse Filename
F_PASSWD equ 106 ; Set Default Password
F_RANDREC equ 36 ; Set Random Record
F_READ equ 20 ; Read Sequential
F_READRAND equ 33 ; Read Random
F_RENAME equ 23 ; Rename File
F_SFIRST equ 17 ; Search for First
F_SIZE equ 35 ; Compute File Size
F_SNEXT equ 18 ; Search for Next
F_TIMEDATE equ 102 ; Read Date Stamps, Password Mode
F_TRUNCATE equ 99 3 Truncate File
F_TSTWRITE equ 1 ; Test and Write Record
F_UNLOCK equ 43 ; Unlock Record
F_USERNUM equ 32 ; Set/Get User Code ('
F_WRITE equ 21 ; Write Sequential o
F_WRITERAND equ 34 3 Write Random
APPENDIX-12

B b

F_WRITEXFCB
F_WRITEZF
L_WRITE
L_WRITEBLK
P_CHAIN
_LOAD
P_RETCODE
P_TERMCPM
S_BDOSVER
S_BIOS
S_RSX
S_SCB
S_SERIAL
T_GET
T_SET

equ
equ
equ

equ
equ
equ
equ

equ
equ

equ
equ
equ

103
40

112
b7
59
108

12
50
60
ug
107
105
104

M MR W M M WE W W M M W WE M M e

Appendices

Write File XFCB

Write Random with Zero Fill
Write to List

List Block Write

Chain to Program

Load Overlay

Get/Set Program Return Code
System Reset

Return Version Number

Direct Bios Calls

Call Resident System Extension
Get/Set System Control Block
Return Serial Number

Get Date and Time

Set Date and Time

APPENDIX-13

OSBORNE

COMPUTER CORPORATION

2F00213-01

