
EXECUTIVE'·
OSBORNE

Technical Manual

Volume B: Programmer's Guide

•

•

•

OSBORNE EXECUTIVE TECHNICAL MANUAL
VOLUME B: PROGRAMMER'S GUIDE

ABSTRACT

This manual contains a thorough description of
Digital Research's operating system, CP / M Plus. Both
snos and sros fUnctions are discussed 1n sufficient
detail to allow a programmer to fully utilize the
extensive features of this operating system.

B-1

COPYRIGHT 1984 OSBORNE COMPUTER
26538 Dant! Court, Hayward, CA
(415) 887-8080

CORPORATION
94545

OSBORNE EXECUTIVE TECHNICAL MANUAL
Volume B: Programmer's Guide
Issue date: Hay 198~

No part of this publication may be reproduced, stored
In a retrieval system, or transmitted, In any form or
by any means, electronic, mechanical, photocopy,
recording, or otherwlse,wlthout the prior written
permission of OSBORNE COMPUTER CORPORATION.

The information in this document Is subject to change
wIthout notice.

Neither OSBORNE COMPUTER CORPORATION nor this document
makes any expressed or implied warranty, including, but
not limited to the implied warranties of
merchantlbl11ty, quality, or fitness for 8 particular
purpose. OSBORNE COMPUTER CORPORATION has no obligation
to update or keep current the information contained in
this document.

Under DO circuastBnces will OSBORNE COMPUTER
CORPORATION be liable for any loss or other d ••• ges
arising out or tbe use or tbis aanuBI.

The following are trademarks of OSBORNE COMPUTER
CORPORATION: OSBORNE, OSBORNE Executive. CP/M Plus Is a
registered trademark of Digital Research Corporation.

B-11

(1

TABLE OF CONTENTS

VOLUME B: PROGRAMMER'S GUIDE

INTRODUCTION TO CP/M PLUS B-1
Banked Memory Organiza tl on•..... . B-1
System Components•.••...••....•....••. ••· •• · .B-3
Memory Region Boundaries 8-5
The SDOS and BIOS•.....•... 8-6
Applications and the BOOS••....•••....•... B-6
Applications and RSXs•................ B-7
Disk and Drive Organization and Requirements B-7
Cold Start Operation B-8
CCP Operation · .8-9
Page Zero Initialization .•••...•••.•...•.•....... B-14
Transient Program Operation•.........•....... 8-16
Resident System Extension Operat1on•.... B-17
SUBMIT Operatlon B- 20

CP/M PLUS SYSTEM CALLS•.....•••..•.•.••...••••... B-21
BDOS System Call Conventions ...•...•.•...••...•.• B-21
System Call Reference Tables B-22

DOS CONSOLE 1/0•................... ··· . . B-32
Con.ole I/O System Calls ...••.•.....•.•.......... B-33

BDOS FILE SySTEM ·· .B-!45
File Naming Conventions B-!45
Disk and File Organization ••....••.....••....••.. B-46
File Control Block Definition ..••.•.....••...••.. B- 47
File Attributes B- 50
User Number Conventions•... B-51
Directory Labels and XFCBs •••..•.••••......•..... B-52
File Date and Time Stamps .•..••......•.•..•...•.. B-55
File Passwords•.... B-57
File Byte Counts B-58
BDOS Error Handling B- 58
BOOS Drive Sy.tem Calls•••......•.•••••.••• B- 62
BOOS File System Calls B-74
BOOS List Device Sy.tem Call •••..•.•••.••.....•. B-110
BOOS Program System Calls •••••••••...•...•.•.••. B- 111
System Calls•... B-116
BOOS Time Sy.tem Calls .•....•.••......••....•... B-120

CP/M PLUS BIOS DOCUMENTATION ••••....••••••.•...••... B-122
CP/M System Components .••..•...•.•.•••.....••.•• B-122
Communication among CPIM Plus Hodules •.......... B-122
Banked and Nonbanked Systems•.•..•••...•••• B-124
Disk Organization•.................. B-126
Initial Load (Cold Boot) of CP/M Plu •••••••..••• B-127

THE SYSTEM CONTROL BLOCK B-128
CP/M PLUS BIOS OVERVIEW B-133
SYSTEM INITIALIZATION B-136

Sy.tem Initialization Functions ..•.......•.•••.• B-137
CHARACTER I/O•......................•........ B-1!40

Character I/O Data Structures B-1!41
Character I/O Function •.....••••••.........•••.. B-142

B-i11

TABLE OF CONTENTS

DISK 110 .. B- 1 ~7
BIOS Di.k Data Structure ••......•..............• B_ l~9
Drive Table 8-151
Disk Parameter Header B_151
Extended Di.k Parameter Header. (XDPH.) •....•..• B-1 53
Disk Parameter Block 8- 156
Buffer Control Block B_157
Disk liD Functions 0 •••••••••• 8- 158

MEMORY SELECTS AND MOVES ..•..••....••....•...•....•• B_165
Hemory Select and Hove Functions•. B_165

CLOCK SUPPORT ••••••••.•••••••••••••• •• •••••••• •• •• •• 8-168
Clock Support Function ...•....••••.......••..... B_168
Generating and Moving CP/M: GENCPM •....•.•.•...• B-169
Example of System Generation with Banked

Hemory········· B_17 3
Sample Run of GENCPH B_174

APPENDIX A: SYSTEM CONTROL BLOCK ...•.•..••...••...•. App_l
APPENDIX B: PRL FILE GENERATION •••..••• ..••••.•. App-6
APPENDIX C: SPR GENERATION ..•.•..•.....••..•••...... App_7
APPENDIX D: ASCII AND HEXADECIMAL CONVERSIONS ...• .•• App_8
APPENDIX E: THE SYSCALLS.ASM FILE•.. .•..... • . . App_12

FIGURE LIST

FIGURE B-1. BANKED SYSTEM MEMORY ORGANIZATION •••..••• . B_2
FIGURE B-2. BANKED MEMORY WITH BANK 1 IN CONTEXT ...••. B_2
FIGURE B-3. CP/M PLUS LOGICAL MEMORY ORGANIZATION ••••. B_3
FIGURE B-~. SYSTEM MODULES AND REGIONS IN LOGICAL

FIGURE B-6.
FIGURE B-7.

FIGURE B-8.
FIGURE B-9.
FIGURE B-l0 .
FIGURE B-ll.

MEMORY •• ••• •• ••••••• ••• ••• .•• • ..• •• •• • 8-4
DIRECTORY RECORD WITH SFCB•.•.•. B-55
GENERAL MEMORY ORGANIZATION

OF CP/M PLUS •..••••••••.•••••••••••• 8-1 24
SYSTEM TRACK ORGANIZATION ..•• •. .•...... B-126
BIOS DISK STRUCTURE•••..••.••.•.. B_150

DISK PARAMETER HEADER FORMAT ••.•...••. B_151
EXTENDED DISK-PARAMETER HEADER

FORMAT •••••••••••••••••••.••••.•••• 8-154
FIGURE B-12. DISK PARAMETER BLOCK FORMAT ..•••..• •• • B_155
FIGURE B-13. BUFFER CONTROL BLOCK ••.••..••...••...• B_157

TABLE LIST

TABLE B-1.
TABLE B-2 .
TABLE B-3.
TABLE B-~.
TABLE B-5.
TABLE B-6.
TABLE B-7.
TABLE B-8.
TABLE B-9.
TABLE B-l0.
TABLE B-ll .

BUILT-IN COMMANDS •.•.•...•.•..••••...•. B_ll
PAGE ZERO AREAS B - l~
SYSTEM CALL CATEGORIES ••.••.•• . ••• ... • . B_ 2~
BDOS SYSTEM CALL SUMHARY •.•. ..•..••..•. B_25
BDOS SYSTEM CALL SUMMARY BY VALUE .••..• B-29
CONSOLE-MODE BIT DEFINITION ••.••...•.•• B-38
C_RAWIO ENTRY PARAHETERS ••.•.••...•..•. B-38
C_READSTR EDIT CONTROL CHARACTERS ..•..• B_ ~l
FCB FIELD DEFINITIONS •••.••••.•.•...... B_~8
FILE ATTRIBUTE BITS . ••. . •.••..•.••• .•• • B_50
BDOS INTERFACE ATTRIBUTES •••.•..•..•... B_51

B-iv

a

TABLE OF CONTENTS

TABLE LIST (Cont.)

TABLE B-12.
TABLE B-13.
TABLE B-1ij.
TABLE B-15.
TABLE B-16.

TABLE B-17.
TABLE B-1B.
TABLE B-19.
TABLE B-20.
TABLE B-21.
TABLE B-22.
TABLE B-23.
TABLE B-2ij.
TABLE B-25.

TABLE B-26.
TABLE B-27.
TABLE B-29.
TABLE B-30.
TABLE B-32.
TABLE B-33.
TABLE B-3ij.
TABLE B-35.
TABLE B-36.

PASSWORD PROTECTION MODES •••••.•••••••. B-57
REGISTER A ERROR-CODE DEFINITIONS •••••. B-61
REGISTER A DIRECTORY-CODE DEFINITIONS •. B-61
REGISTER A ERROR-FLAG DEFINITIONS •••••• B-62
REGISTER A PHYSICAL AND EXTENDED

ERROR-CODE DEFINITIONS ••••••.•••••. B-62
FCB FORMAT .••.•.•••••.••.•••••••••.•••. 8-88
PROGRAM RETURN CODES •••.•••••••••••.•• B-11ij
SYSTEM CONTROL BLOCK ••••••••••.•.•.••• B-119
see FIELDS••.......••••......•. 8-129
CP/M PLUS BIOS JUMP VECTOR ••••••••.••• B-133
SYSTEM CALLS .••••.••••••••....•••••••• B-13-4
CP/M PLUS BIOS FUNCTION JUMP TABLE •••. B-13ij
SYSTEM INITIALIZATION •••••.•••.•••.••• B-136
CP/M PLUS LOGICAL DEVICE

CHARACTERISTICS •••.••••••.•••••••• B-1ijO
I/O REDIRECTION BIT VECTORS IN SCB •••• B-1ij2
SINGLE-SECTOR I/O •••••••...•••.••••••• B-1ij7
DISK PARAMETER HEADER FIELDS ••••.••••• B-153
FIELDS OF EACH XDPH •••••••••••••.••••• B-155
BUFFER CONTROL BLOCK FIELDS ••••••••••• B-1S7
SCB FIELDS AND DEFINITIONS ••••••••••.• App-1
PRL FILE FORHAT •.... 0 ••••••••••••••••• App-7
ASCI I SyMBOLS ..•.•.••.•..........•••.. App- 8
CONVERSION TABLE •...•••••••••••••••••• App-B

B-v

TABLE OF CONTENTS

SECTION LIST ALPHABETIZED

Section AUXIN, B-144 Sectton F_RENAHE, B-94
Section AUXIST, B-146 Section F _SFIRST, B-96
Section AUXOST, B-146 Section F_SIZE, B-98
Section AUXOUT, B-144 Section F_SNEXT, B-99
Section BOOT, B-137 Section F_TIHEDATE, B-l00
Section CONIN, B-143 Section F _TRUNCATE, B-l0l
Section CONOST, B-145 Section F _TSTWRITE, B-l02
Sectton CONST, B-143 Section F_UNLOCK, B-l03
Section DEVINI, B-138 Sectton F _USERNUH, B-l03
Sectton DEVTBL, B-138 Section F _WRITE, B-l04
Sectton DRVTBL, B-149 Sectton F _WRITEAND, B-l06
Section DRV_ACCESS, B-63 Section F_WRITEXFCB, B-l08
Sectton DRV_ALLOCVEC, B-63 Section F_WRITEZF, B-l09
Section DRV_ALLRESET, B-64 Section HOME, B-159
Section DRV_DPB, B-65 Section LISTST, B-145
Section DRCFREE, B-65 Section l..-WR lTE , B-ll0
Sectt on DRVJREEBLOCKS, B-66 Section L_WRITEBLK, B-ll0
Section DRV_GET, B-67 Section HOVE, B-165
Sectton DRV_GETLABEL, B-67 Section HULTIO, B-163
Section DRV_LOGINVEC, B-68 Section P_CHAIN, B-lll
Section DRV_RESET, B-69 Section P_LOAD, B-lll
Section DRV_ROVEC, B-70 Section P_RETCODE, B-112
Section DRV_SET, B-70 Section P_TERHCPH, B-114
Section DRV_SETLABEL, B-71 Section READ, B-161
Section DRV_SETRO, B-73 Section SECTRN, B-163
Section DRV_SPACE, B-73 Section SELDSK, B-159
Sectton FLUSH, B-164 Section SELHEH, B-166
Section F_ATTRIB, B-74 Section SETBNK, B-166
Section F_CLOSE, B-76 Section SETDHA, B-161
Section F_DELETE, B-77 Section SETSEC, B-160
Section F_DHASET, B-78 Sectton SETTRK, B-160
Section F_ERRMODE, B-79 Section S_BDOSVER, B-115
Section FJLUSH, B-80 Section S_BIOS, B-115
Section F_LOCK, B-81 Section S_RSX, B-116
Section F_HAKE, B-81 Section S_SCB, B-117
Section F_HULTISEC, B-83 Section S_SERIAL, B-120
Section F_OPEH, B-84 Section TIME, B-168
Section F_PARSE, B-86 Section T_GET, B-120
Section F_PASSWD, B-89 Section T_SET, B-121
Section F_RANDREC, B-90 Section WBOOT, B-137
Section F_READ, B-91 Section WRITE, B-162
Section F_READRAND, B-92 Section XHOVE, B-167

B-vi

INTRODUCTION TO CPIM PLUS

INTRODUCTION TO CPIM PLUS

This section introduces the general features of the
Osborne Executive CP/M Plus Operating System, with an
emphasis on how it organizes your computer's memory.
CP/M Plus is available 1n two versions: a version
that supports bank- switched memory, and a version
that runs on nonbanked systems . The Osborne Executive
CP/M Plus 1s a banked systemj CP/M Plus uses the
larger memory of the banked system to provide
add! tional functions.

CP/M Plus provides a software environment for program
development and execution for the Osborne Executive
computer system . It allows rapid access to data and
programs through a file structure that supports
dynamic allocation of space for both sequential- and
random-access files.

CP/M Plus supports a maximum of 16 logical floppy or
hard disks with a storage capacity of up to 512
megabytes each . The maximum file size supported is
32 megaby tes.

CP/M Plus supports the bank-switched memory
capabilities of the Osborne Executive, and supplies
additional facilities including extended command - line
editing, password protection of files, and extended
error messages .

The system requires a minimum of two memory banks
wi th 11 kilobytes of memory in bank 0 and 1.5
kilobytes in common memory, plus space for the
Osborne Executive BIOS. The bank-switched system
provides more user memory for application programs .

CP/M Plus resides in the file CPM3.SYS, which is
loaded into memory by the system loader during system
initialization. The system loader resides on the
first two tracks of the Executive program diskettes.
CPM3.SYS contains the distributed BOOS and the
Osborne Executive BIOS.

Banked Hemory Organization

CP/M Plus supports bank-switched memory to expand
memory capacity beyond the usual 64K-byte address
space of an eight- bit microprocessor. The figure
below shows memory organization under the Osborne
Executive CP/M Plus system.

B-1

INTRODUCTION TO CP/M PLUS

Top of Memory
FFFF: +-----+

Ixxxxxxxxi
Common Memory IResidentl

IxxO.S.xxl
FOOO: +------+

Top of I Banked I
Banked MEmory I O.S. I

+--------+
Bank-switched I I

I I
I Buffer I
I I
I Area I
I I
+-------+

Low Memory I 4K CCP I
0000: +--------+

Bank 0

+-----+
Ixxxxxxxx I
Ixxxxxxxxi
Ixxxxxxxxi
Ixxxxxxxxi
Ix 60 K x r
Ix TPA xxi
Ixxxxxxxxi
Ixxxxxxxxi
Ixxxxxxxxi
Ixxxxxxxxi
Ixxxxxxxxi
+-------+

Bank 1

+-----+ : £000
I Video I
I RAM I
I Area I
+--------+ :Cooo

8000: +--------+
18KRAHI

AOOO: +-------+
I 8K ROM I
+-------+

Bank 7 Bank 8

FIGURE B-1. BANKED SYSTEH HEHORY ORGANIZATION
(All addresses are expressed in hexadecimal notations.)

In the figure above, bank 0 1s switched in, or 1n
context. That is, any reference to a memory location
will automatically address bank O. The top region of
memory, the common region, Is always in contextj that
is, it can always be referenced no matter what bank
is switched in. The figure below shows memory
organization when bank 1 is in context.

Top of Memory +--------+
(Carmon) Ixxxxxxxxi

IxxO.S. xx I
Ixxxxxxxxi

Top of Banked +-----+ +----+ +-------+
Memory I Banked I Ixxxxxxxxi I I

I O.S. I Ixxxxxxxx I I I
+-------+ Ixxxxxxxxi I I
I I Ixxxxxxxxi I I
I I Ixxxxxxxxi I I

Bank-ad tched I I Ixxxxxxxxi I I
I I Ixxxxxxxxi I I
I I Ixxxxxxxxi I I
I I Ixxxxxxxxi I I
I I Ixxxxxxxx I I I

LCAtI Kemory I I Ixxxxxxxxi I I
(OOOOHl +----+ +-----+ +------+

Bank 0 Bank 1 Bank N

FIGURE B-2. BANKED HEHORY WITH BANK 1 IN CONTEXT

B-2

INTRODUCTION TO CP/M PLUS

from a transient program's perspective, bank 1 is
always in context. The operating system oan switch
to bank 0 or other banks when performing operating
system system calls without affecting the execution
of the transient program. When exiting from a BOOS
system-call routine, the operating system
automatically switches back to the bank containing
the calling program.

The operating system uses bank 0 for disk record
buffers and directory hash tables. Space 1n the
common region is allocated for transfer buffers.

In the Osborne Executive there can be a minimum of
two to a maximum of seven memory banks, plus the
video and ROM banks. Bank 0 1s the system bank and
1s 1n context when CP/M Plus 1s started. Banks 1
through 6 are the transient program banks, and must
be contiguous from location zero to the top of banked
memory. (Banks 2 - 6 are not implemented 1n the
current system.) This requirement does not apply to
the other banks. Bank 7 is used for the video screen
contents and attributes, and bank 8 contains the Boot
ROM, Scratch Pad RAM, and Font RAM.

CP/M Plus always organizes memory logically so that,
to a transient program in any CP/M Plus system,
memory appears as shown in the figure below. The top
of-memory address is 6_K-1 (OFFFFH).

Top of Memory +---------+
(FFFFll) I 0.5. I

Low Memory
(OOOOH)

+---------+
Ixxxxxxxxxl
lxxxxxxxxxl
Ixxxxxxxxxi
Ixxxxxxxxxi
Ixxxxxxxxxi
Ixxxxxxxxxi
Ixxxxxxxxxi
+-------+

FIGURE B-3. CP/M PLUS LOGICAL MEMORY ORGANIZATION

The CP/M Plus Operating System is composed of several
modules. The figure below shows where these modules
reside in logical memory. Note that the figure below
is just a more detailed version of the figure above.

B-3

INTRODUCTION TO CP/M PLUS

LOADER-base:

0100H:

OOOOH:

+---+
I

BIOS : Basic I/O System I
I

+--------------------------------+
I I
I B~: Basic Disk Operating System I
I I

+---------------------------------------+
I I
I LOADER: Progran Loader Module I
I I
+---------------------------------------+
I I
I RSX(l): Resident System Extension I
I I
+---------------------------------------+

+-------------------------+
I I
r RSX(N): Resident System Extension I
I I
+---+
Ixxxi
Ixxxi
IxxxTPA : Transient Program Areaxxxxxxxxxxi
Ixxxl
Ix+-----------------------------------+xl
Ixl Ixl
Ixl CCP : Console Command Processor Ixl
Ixl Ixl
+---+
I I
I Page Zero I
I I
+---+

FIGURE B-4. SYSTEM MODULES AND REGIONS
IN LOGICAL MEMORY

The Basic Input /Output System (BrOS) is a hardware
dependent module that defines the low-level interface
to the Osborne Executive hardware. It contai ns the
device-driving routines necessary for peripheral
device I/O.

The Basic Disk Operating System, BOOS, is the
hardware-independent logical nucleus of CP/M Plus.
It provides a standard environment for transient
programs through system calls.

The LOADER module handles program loading for the
Console Command Processor and transient programs.

f

INTRODUCTION TO CPIM PLUS

Usually, this module is not resident when transient
programs execute. However, when it is resident,
transient programs can access the module by making
P_LOAD BOOS system calls.

Resident System Extensions (RSXs) are temporary,
additional operating-system modules that extend or
modify normal operating-system system calls. The
LOADER module is always resident when RSXs are
active.

The Transient Program Area (TPA) 1s the region of
memory where transient programs execute. The CCP
also executes 1n this region.

The Console Command Processor (CCP) Is a transient
system program that provides the user interface tc
CP/M Plus.

The Page Zero region Is an interfacing data structure
to the SDOS module from the CCP and transient
programs. It contains critical system parameters.

Kemory Region Boundaries

Note: All memory regions in CP/M Plus begin on a
page boundary. A page is defined as 256 (lOCH)
bytes, so a page boundary always begins at an address
with a low-order byte of zero.

"High memory" denotes the high address of the CP/M
Plus system. This address falls below the actual
top-of-memory address since space above the operating
system has been allocated for directory hashing or
data buffering. The maximum "high memory" address in
the Osborne Executive is OEFFFH.

The labels BIOS_base, BDOS_base, and LOADER_base
represent the base addresses of the operating system
regions. These addresses always fallon page
boundaries. The size of the BIOS region is about
l.5K bytes. The size of the BDOS region is six pages,
1 • 5K.

RSXs are page-aligned modules that are stacked below
LOADER_base 1n memory. The memory ceiling of the TPA
region is reduced when RSXs are active.

Under CP/M Plus the CCP is a transient program that
the BIOS loads into the TPA region of memory at
system cold and warm start. The BIOS also loads the
LOADER module at this time. The LOADER module is
contained in the CCP.

8-5

INTRODUCTION TO CP/M PLUS

When the CCP gains control, it relocates the LOADER
module just below BDOS_base. The LOADER module
handles program loading for the CCP, and is three
pages or .75K in size.

The maximum size of a transient program that can be
loaded into the TPA is limited by LOADER_base because
the LOADER cannot load a program over itself.
Transien~ programs may extend beyond this point,
however, by using memory above LOADER_base for
uninitialized data areas such as I/O buffers.
Programs that use memory above BDOS_base cannot make
BDOS system calls.

The BOOS and BIOS

CP/M Plus achieves hardware independence through the
interface between the BOOS and the BIOS sections of
the operating system. This interface consists of a
series of entry pOints in the BIOS that the BDOS
calls to perform hardware-dependent primitive
functions. For example, the BDOS calls the CONIN:
entry point of the BIOS to read the next console
input character. For a detailed description of the
Osborne Executive CP/M Plus BIOS, see the CP/M Plus
BIOS section.

Applications and the BOOS

TranSient programs and the CCP access CP/M Plus
facilities by making BDOS system calls. They are
described in the aDOS Syste. Calls section.

To make a BDOS system call, a transient program loads
the CPU registers with specific entry parameters and
calls location 0005H in Page Zero. If RSXs are not
active in memory, location 0005H contains a jump
instruction to location BOOS_base + 6. If RSXs are
active, location 0005H contains a jump instruction to
the RSX entry point at an address below BOOS_base.

Thus, the Page Zero interface allows programs to run
without regard to where the operating system modules
are located in memory. In addition, transient
programs can use the address at location 0006H as a
memory ceiling.

The Console Command Processor is a special system
program that executes in the TPA and makes BOOS calls
just like an application program. However, the CCP
has a unique role: it gives the user access to
operating system facilities while transient programs
are not executing. It includes several built-in

B-6

INTRODUCTION TO CP/M PLUS

commands, such as TYPE and DIR, that can be executed
directly without having to be loaded from disk.

When the CCP receives control, it reads the user's
command lines; distinguishes between built-in and
transient commandsj and when necessary, calls upon
the LOADER module to load transient programs from
disk into the TPA for execution.

Applications and RSXs

A Resident System eXtension (RSX) module Is a
temporary addition to the operating system. An RSX
can extend or modify one or more operating-system
system ca11(s).

At anyone time there might be zero, one, or several
RSXs active in memory. When a transient program
makes a SDOS system call while RSXs are active, each
RSX examines the number of the call. If the system
call number matches the system call the RSX is
designed to extend or modify, the RSX performs the
requested function. Otherwise the RSX passes the
system call request to the next RSX, if any. Non
intercepted system calls are passed to the BOOS for
standard execution.

The CP/H Plus utility, GENCOH, can attach RSXs to
program files. When attaching RSXs, GENCOM places a
special one-page header at the beginning of the
program file. The CCP reads this header, learns that
a program has attached RSXs, and loads the RSXs
accordingly.

The LOADER module is a special type of RSX that
supports the P_LOAD system call. It is always
resident when RSXs are active. To indicate that RSX
support is required, a program that calls P_LOAD must
have an RSX header attached by the CP/M Plus GENCOH
utility, even if the program does not require other
RSX' .

Disk and Drive Organization and Require.ents

CP/M Plus can support up to 16 logical drives,
identified by the letters A through P, with up to 512
megabytes of storage each. If the drive has adequate
storage, a CP/M Plus file can be as large as 32
megabytes. A logical drive usually corresponds to a
physical drive on the system, particularly for floppy
disk drives. High-capacity hard disks, however, are
commonly divided into multiple logical drives. The
figure beloW illustrates the standard organization of

B-7

INTRODUCTION TO CP/M PLUS

an Osborne Executive CP/M Plus disk.

Track 39 - } +-----_______________ -+

I I
Data Tracks I CP/M Plus Data Region I

I I Track 4 - } +---____________________ -+

I I
I CP/M Plus Directory Region I
I I Track 3 --} +------------______________ +

I Character Sets, I
I Function Key Definitions, I
I and Keyboard Tables. I Track 2 --} +----__________________________ 1

I I
System Tracks I BIOS Tables (Sector 5) I

I CCP.COH (Sector. 1 - ~) I Track 1 --} +--------_____________________ -+

I I
I CPIUJR (Sector. 2 - 5) I
I Cold Boot Loader (Sector 1) I Track 0 ---} +--__________________________ -+

FIGURE 5. SYSTEM TRACr ORGAHIZATION

The first three tracks are the system tracks. They
are required only on the disk used by CP/M Plus for
cold start or warm start. All subsequent CP/M Plus
disk access is directed to the data tracks which CP/M
Plus uses for file storage.

The data tracks are divided into a directory area and
a data area. The directory area defines the files
that exist on the drive and identifies the data space
that belongs to each file. The data area contains
the file data defined by the directory.

Cold Start Operation

The cold start procedure is executed immediately
after the computer is tUrned on. The cold start
brings CP/M Plus into memory and gives it control of
the computer's resources. Cold start is a four-stage
procedure.

First, ROM-based firmware loads a small program,
called the Cold Boot Loader, into memory from the
system tracks of drive A. It loads CPHLDR into memory
from the system tracks of the system disk and passes
control to it. CPHLDR reads the CPH3.SYS from the
data area of the disk. The CPH3.SYS file contains
the BOOS and BIOS system components and information

B-8

INTRODUCTION TO CP/M PLUS

indicating where these modules are to reside 1n
memory. Then CPHLDR sends a sign-on message to the
console and passes control to the BIOS. These first
stages of the cold boot procedure are performed with
Bank 0 1n context. The BIOS Cold- Start function
switches Bank 1 into context before proceeding.

The final stage in the cold start procedure 1s
performed by the P_TERHCPH system call. The entry
point to this system call 1" located at BIOS_base 85

described above. It begins by performing any
remaining hardware initialization, and initializing
Page Zero.

It then completes the boot process by loading the
autos tart program EXECST.COH into the TPA region of
memory and passing control to it. If there is no
EXECST.COM on the disk, it will load the CCP.

When the CCP gains control, it displays the system
prompt (A». If a PROFILE. SUB file is present on
drive A. the CCP executes it before prompting the
user for a command .

CCP Operation

The Console Command Processor reads the user's
command lines, differentiates between built-in
commands and transient commands, and executes them
accordingly.

When the CCP gains control following a cold start
procedure, it displays the system prompt at the
console. This signifies that the CCP is ready to
execute a command.

It then scans the directory of the default drive for
the fUe PROFILE. SUB. If the file exists, the CCP
creates the command line SUBMIT PROFILE(cr >.
Otherwise the CCP waits for the user to type a
command.

The command form the CCP accepts is the standard CP/ M
command line, conSisting of a command keyword
followed by an optional command tail. The CCP
converts all letters in the command line to
uppercase. The following syntax defines the standard
CP/M Plus command line:

<ca.mand> <co .. and tail> <cr>

where

=> <filespec >

B-9

INTRODUCTION TO CP/M PLUS

<ca.mand tail> =) (no command tail) or (filespec) or
(fl1espec><delimiter><fl1espec)

(filespec)

<deli.iter>

d:

filename

typ

password

=> {d:}fllename{.tYP}{jpassword}

=> one or more blanks or a tab or
one of the following: "=,[]<>I"

=> CP/M Plus drive specification, "A:"
through rtp: tt

=> 1-to-8-character filename

=> l-to-3-character fl1etype

=> l-to-8-character password value

Fields enclosed 1n braces {} are optional. If there
1s no drive (d:} present 1n a file specification, the
default drive 1s assumed. If the type field {.typ}
is omitted, a type field of all blanks is assumed .
Omitting the password field (;passvord) implies a
password of all blanks. When a command line 1s
entered at the console, it is terminated by a ret~ r n
or line-feed keystroke <cr>.

Transient programs that run under CP/M Plus are not
restricted to the above command-tail definition .
However, the CCP only parses command tail" for
transient programs in the standard format.
Transient programs that define their command tails
differently must perform their own command-tail
parsing. When a transient program begins execution,
the command tail is present in the default-drive DM!
buffer at OOaOH in the Page Zero area.

The command field must identify either a built-in
command, a transient program, or a SUBMIT file. The
following table summarizes the built-in commands.

DIR

DIRSlS

TABLE 8:1. aun.T-IN CCII4AHOO
Meanins

Displays a list of all filenames from a disk
directory except those marked with the SYS
attribute.

Displays a filename list of those files marked
wi th the SYS attribute in the directory. Hay
be abbreviated DIRS.

8-10

INTRODUCTION TO CP/ M PLUS

TIW E ~1 . BUILT-IN <XJtSANIX$ (Coot.)
Cr-anrl Meaning

ERASE Erases a fllenane fran a disk directory and
r eleases the storage occupied by the file. Hay
be abbreviated ERA .

Renames a fUe . Hay be abbreviated REN.

TYPE Displays the contents of an ASCII character
fi l e at your console output device .

USER Changes fran one user m.rnber to another. Hay
be abbr eviated to the desi red user number
followed by a colon (~:) .

Built- in commands a r e commends which are stored in
memory so they can be executed without referencing a
disk . A built-in command may have an associated
command file on the disk that expands upon its
options . If the CCP reads a command line and
discovers the built- in command does not support the
options requested , the CCP loads the built-in
function's command file to pe r fo r m the command. The
DIR command is an example of this type of command.
Simple DIR commands a r e supported by the DIR built-in
command . Hore complex requests are handled by the
DIR . COM utility .

The CCP assumes that all command keywor ds that do not
identify built- in commands identify either a
transie nt pr og r am file or a SUBMIT file. If the CCP
identifies a command keywo r d as a transient program ,
the transie nt pr og r am file is loaded into the TPA
from di sk and executed. If it recognizes a SUB HIT
file, the CCP r econstructs the command line into the
follo wing form :

SUBMIT <Cilenaae.SUB> <command ta i l> <cr >

and attempts to load and execute the SUBHIT utility.
Thus , the or iginal command field becomes the first
command - tail field of the SUBMIT command. The
procedure the CCP follows to parse a standard command
line and execute built- in and transient commands is
described as follows .

The CCP parses the command line to pick up the
command field . If the command field is not preceded
by a drive specification, or followed by a filetype
or password field , the CCP checks to see if the
command is a CCP buil t-in fUnction. If the command
is a buil t - i n command, and the CCP can support the
options specified in the command tail, the CCP

B- 11

INTRODUCTION TO CP/M PLUS

executes the command. Otherwise the CCP goes on to
the steps described below.

At this point the CCP assumes the command field
references a command file or SUB HIT file on disk. If
the optional filetype field is omitted from the
command, the CCP usually assumes the command field
references a file of type . COH. For example, if the
command field is PIP, the CCP attempts to open the
file PIP.COM.

Optionally, the CP/M Plus utility SETDEF can be used
to specify that a filetype of .SUB also be considered
when the command filetype field is omitted. When
this automatic SUBHIT option is in effect, the CCP
attempts to open the command with a filetype of . COH.
If the .COH file cannot be found, the CCP attempts
the open operation with a filetype of .SUB. As an
alternative, the order of file-open operations can be
reversed, so that the CCP attempts to open with a
flletype of .SUB first.

If the filetype field is present in the command, it
must equal .COH, .SUB, or .PRL. A .PRL file is a
Page-Relocatable file used in Digital Research's
multiuser operating system, HP/M. Under CP/M Plus
the CCP handles .PRL files exactly like .COM files.

When the current user number is nonzero, and a file
open request fails because the file cannot be found,
the CCP attempts to locate the file under user zero.
If the file exists under user zero with the SYS
(system) attribute set, the file is opened from user
zero. This search for a file under user zero is made
by the F_OPEN BOOS system call.

If the password specified in the command field does
not match the password of a file on a disk protected
in Read mode, the CCP file-open operation is
terminated with a password error.

If the CCP does not find the .COM or .SUB file, it
echoes the command line followed by a question mark
to the console. If it finds iii command file with a
filetype of .COM or .PRL, the CCP proceeds as
described below. If it finds a SUBMIT file, it
reconstructs the command line as described above and
tries to load SUBMIT.COH.

B- 12

OOSOH
OOS1H
OOS3H
OOS4H
OOS6H
OOSOl
0060l
0080H

INTRODUCTION TO CP/M PLUS

When the CCP successfully opens the command ftle, it
initializes the following Page Zero fields for access
by the loaded transient program:

Drive for which the command file was loaded
Password address of first file 1n carmand tail
Password length of first file 1n ccmnand tail
Password address of second file 1n command tail
Password length of second file 1n command tail
Parsed FeB for first file in command tail
Parsed FCB for second file in ccmnand tail
Carmand tail preceded by carmand-tall length

Page Zero initialization 1s covered 1n more detail
below.

At this point the CCP calls the LOADER module to load
the command file into the TPA. The LOADER module
terminates the load operation if a read error occurs,
or if the available TPA space 1s not large enough to
contain the file. If no RSXs are resident in memory,
the TPA ceiling is determined by the address
LOADER_base because the LOADER cannot load over
itself. Otherwise the maximum TPA address is
determined by the base address of the lowest RSX in
memory.

Once the program is loaded, the LOADER module checks
for an RSX header on the program. Programs wi th RSX
headers are identified by a RET instruction at
location 100H.

If an RSX header is present, the LOADER relocates all
RSXs attached to the end of the program to the top of
the TPA region of memory under the LOADER module or
any other RSXs that are already resident. It also
updates the address in location 0006H of Page Zero to
point to the lowest RSX in memory. Finally, the
LOADER discards the RSX header and relocates the
program file one page lower in memory, so that the
first executable instruction resides at 100H.

After initializing Page Zero, the LOADER module sets
up a 32-byte stack with the return address set to
location OOOOH of Page Zero and jumps to location
100H. At this point the loaded transient program
begins execution.

When a transient program terminates execution, the
BIOS warm-start routine reloads the CCP into memory.
When the CCP receives control, it tests to see if
RSXs are resident in memory. If not, it relocates
the LOADER module below the SDOS module at the top of
the TPA region of memory. Otherwise it skips this
step because the LOADER module is already resident.

B-13

INTRODUCTION TO CP/H PLUS

The CCP execution cycle then repeats.

Note: Unlike earlier versions of CP/M, the CCP does
not reset the disk system at warm start. However,
the CCP does reset the disk system if a CTRL-C is
typed at the prompt.

Page Zero Initialization

Page Zero is the region of memory located from OOOOH
to OOFFH. This region contains several instructions
and data structures that are used by transient
programs while running under CP/M Plus.

IABl£ 8-2. PMdE ZERO ABUS
Locations Contenta

Frgp. To

OOOOH - 0002H Contains a jllllP instruction to the BIOS
warm-start entry point at BIOS_base + 3.
The address at location ooolH can also be
used to make direct BIOS calls to the BIOS
console status, console input, console
output, and 11.st output primitive
functions.

0003H - 0004H (Reserved)

0005" - 0007H Contains a jllllP instruction to the BDOS,
the LOADER. or to the most recently added
RSXj and serves two purposes: executing
the instruction JHP OOO5H provides the
primary entry point to the BDOS, and lHLD
0006H places the address field of the jllllP
instruction in the HL register pair. This
value, minus one, is the highest address
of memory available to the transient
progran.

0008H - OOJAH Reserved interrupt locations for Restarts
1 - 7.

003Bl! - 003FH Reserved.

0040H - 00418 BIOS version number.

00II2H

0QII3H

BIOS product code.

BIOS feature code.

0044" - 00458 ROM version number.

OQII6H ROM product code.

B-l~

INTRODUCTION TO CP/M PLUS

II8I£ 8-2- PAGE ZERO ARUS (Cont.)

LocatiOO3 Contenta
f'r:ca To

()()/17M

OOII8H

ROM feature code.

Reserved .
(Executive product code = 2),

0050H Identifies the drive from which the
transient program was loaded. A value of
one to 16 identifies drives A through P.

0051H - 0052H Contains the address of the password field
of the first command-tail operand 1n the
default DMA buffer beginning at 0080H. The
CCP sets this field to zero if no password
for the first command-tail operand is
specified.

0053H Contains the length of the password field
for the first ccmnand-tail operand. The
CCP also sets this field to zero if no
password for the first cannand tail is
specified.

00548 - 00558 Contains the address of the password field
of the second caonand-tall operand 1n the
defaul t DMA buffer beginning at 0080H. The
eep sets tilts field to zero if no password
for the second coomand-tail operand 1s
specified.

OO56H Contains the length of the password field
for the second coornand-tall operand. The
CCP also sets this field to zero if no
password for the second command tail is
specified.

0057H - OO5BH (Not currently used - reserved) .

005QI - 007BII Default File Control Block (FCB) area 1
initialized bY the CCP from the first
carmand-tall operand of the ccmnand line,
if it exists.

B-15

INTRODUCTION TO CP/M PLUS

TARI f 8-2- PMjE ZEIJl AREM (Cont.)
Locations Contenta

rna To

006a! - 00'7BIf Default File Control Block (FCB) area 2
initialized by the CCP fran the second
ccmnand-tall operand of the ccmnand line,
if it exists .

Note: This area overlays the last 16 bytes
of defaul t Fca area 1. To use the
infonmation in this area, a transient
progran Il'LIst copy it to another location
before using FCB area 1.

007CH Current record position of default FeB
area 1. This field is used with default
Fca area 1 in sequential record
processing.

007DH - 007FH Optional default random-record position.
This field Is an extension of default FCB
area 1 used In rand~record processing.

0080H - 00Fl'll Default 128-byte disk buffer. This buffer
contains the command tatl when the CCP
loads a transient program.

The following example illustrates the initialization
of the command-line fields of Page Zero. Assuming
the following command line is typed at the console:

!:PROGRAM B:FILE.TYP;PASS C:FILE.TYP;PASSWORD

A hexadecimal dump of 0050H to 00A5H would show the
Page Zero initialization performed by the CCP:

0050H: 01 8D 00 04 9D 00 08 00 00 00 00 00 02 46 49 4C . • .•.•. • ••. •• FIL
0060H: 45 20 20 20 20 54 59 50 00 00 00 00 03 46 49 4C E .••• TYP ••••• FIL
0070H: 45 20 20 20 20 54 59 50 00 00 00 00 00 00 00 00 E • • •• TYP ••••.•.•
0080H: 24 20 42 3A 46 49 4C 45 2E 54 59 50 3B 50 41 53 • B:FILE.TYP;PAS
0090H: 53 20 43 3A 46 49 4C 45 2E 54 59 50 3B 50 41 53 S C:FILE. TYP;PAS
OOAOH: 53 57 4F 52 44 00

Transient Progra. Operation

As the name tranSient implies, transient programs are
not system-resident. The CCP must load a transient
program into memory every time the program is
executed. Generally, an executing tranSient program
communicates with the operating system only through
BOOS system calls. Transient programs make BOOS
system calls by loading the CPU registers with the

B-16

INTRODUCTION TO CP/M PLUS

appropriate entry parameter~ and calling location
0005H In Page Zero.

Transient programs can use the S_BIOS aDOS system
call to access BIOS entry pOints. This is the
preferred method for accessing the BIOSi however, for
compatibility with earlier releases of CP/M,
transient programs can also make direct BIOS calls
for console and list I/O by using the jump
instruction at location OOOOH In Page Zero.

A transient program can terminate execution In one of
three ways: by jumping to location OOOOH, by making
a aDOS P_TERHCPM call, or by making a P_CHAIN call.
The first two methods are equivalent; they pass
control to the BIOS warm-start entry pOint.

The P_CHAIN call allows a transient program to
specify a transient program to be executed after it
terminates. This call executes a standard warm-boot
sequence. but passes the command specified by the
terminating program to the CCP, which executes the
specified command instead of prompting the console.

Resident System Extension Operation

A Resident System Extension (RSX) is a special type
of program that can be attached to the operating
system to modify or extend the functionality of the
BOOS. RSX modules intercept BOOS system calls and
either perform them, translate them into other BOOS
system calls, or pass them to the operating system.
The BOOS executes nonintercepted system calls in the
standard manner.

A transient program can also use the S_RSX BOOS
system call to call an RSX for special functions.
S_RSX is a general-purpose system call that allows
customized interfaces between pr ograms and RSXs.

Two examples of RSX applications are the GET utility
and the LOADER module. The GET.COM command file has
an attached RSX, GET.RSX, that intercepts all console
input calls and returns characters from the file
specified in the GET command line. The LOADER module
is another example of an RSX, but it is unique in
that it supports the P_LOAD system call. It is always
resident in memory when other RSXs are ac tive.

RSXs are loaded into memory at program load time.
After the CCP locates a command file, it c alls the
LOADER module to load the program into the TPA. The
LOADER loads the transient program into memory al ong
with any attached RSXs. Subseq uently, the l oader

B-17

INTRODUCTION TO CP/M PLUS

relocates each attached RSX to the top of the TPA and
adjusts the TPA size by changing the jump at location
0005H 1n Page Zero to point to the RSX. When RSX
modules reside 1n memory, the LOADER module resides
directly below the BOOS, and the RSX modules stack
downward from it.

The order 1n which the RSX modules are stacked
affects the order in which they intercept BOOS calls.
A more recently stacked RSX has precedence over an
older RSX. Thus, if two RSXs 1n memory intercept the
same BOOS system call, the more recently loaded RSX
handles the system call.

The CP/M Plus utility GENCOH attaches RSX modules to
program files. Program files with attached RSXs have
a special one-page header that the LOADER recognizes
when it loads the command file. GENCOH can also
attach one or more RSXs to a null command file so
that the CCP can load RSXs without having to execute
a transient program. In this case the command file
consists of the RSX header followed by the RSXs.

RSX modules are page-relocatable files with the
filetype .RSX. RSX files must be page-relocatable
because their execution address is determined
dynamically by the LOADER module at load time. RSX
files have the following format:

End of FUe: +--------------+
PRL bit map

+---------------------+
I RSX code I

+----------------+ RSX prefix I

0100H: +------------------------+
I 256-byte PRL header I

OOOOH: +- -------------+
RSX files begin with a one-page PRL header that
specifies the total size of the RSX prefix and code
sections. The PRL bit map is a string of bits
identifying those bytes in the RSX prefix and code
sections that require relocation. The PRL format is
described in detail in Appendix B.

Note: The PRL header and bit map are removed when an
RSX is loaded into memory. They are only used by the
LOADER module to load the RSX.

The RSX prefix is a standard data structure that the
LOADER module uses to manage RSXs. Included in this
data structure are jump instructions to the previous
and next RSX in memory, and two flags. The LOADER

8-18

INTRODUCTION TO CP/M PLUS

module initializes and updates these jump
instructions to maintain the link from location six
of Page Zero to the BDOS entry point. The RSX flags
are the Remove flag and the Nonbanked flag. The
Remove flag controls RSX removal from memory. The
Nonbanked flag identifies RSXs that are loaded only
In nenbanked CP/M Plus systems.

The RSX code section contains the main body of the
RSX. This section always begins with code to
intercept the BOOS system call that Is intercepted by
the RSX. This section can also include
initialization and termination code that transient
programs can call with the S_RSX BOOS system call.

When the CCP gains control after a system warm start,
it removes any RSXs in memory that have the Remove
flag set to OFFH. All other RSXs remain active in
memory.

Hote: If an RSX marked for removal is not the lowest
active RSX in memory, it still occupies memory after
removal. Although the removed RSX cannot be
executed, its space is returned to the TPA only when
all the lower RSXs are removed.

There is one special case where the CCP does not
remove an RSX with the Remove flag set following warm
start. This case occurs on warm starts following the
load of an empty file with attached RSXs. This
exception allows an RSX with the Remove flag set to
be loaded into memory before a transient program.
The transient program can then access the RSX during
execution . After the transient program terminates,
however, the CCP removes the RSX from the system
environment. The CP/M Plus SAVE utility is an example
of such an RSX.

As an example of RSX operation, here is a description
of the operation of the GET utility. The GET.COM
command file has an attached RSX. The LOADER moves
this RSX to the top of the TPA when it loads the
GET.COM command file. The GET utility performs
necessary initializations which include opening the
ASCII file specified in the GET command line. It
also makes an S_RSX BOOS system call to initialize
the GET. RSX. At this point the GET utility
terminates. Subsequently, the GET.RSX intercepts all
console input calls and returns characters from the
file specified in the GET command line. It continues
this action until it reads the end-of-file character
("'Z). At this point it sets its Remove flag in the
RSX prefix, and stops intercepti ng console input. On
the following warm boot the CCP removes the RSX fr om
memory.

B- 19

INTRODUCTION TO CP/M PLUS

SUBMIT Operation

When the SUBHIT ut1llty begln~ execution, it opens
and reads the file specified by <filespec) and
creates a temporary SUBMIT file of the same name as
type .$$$ on the system's temporary file drive .
GENCPH sets the temporary file drive to the cepls
current default drive. If desired, the SETDEF utility
can be used to set the temporary file drive to a
different drive. As it creates the temporary file,
SUBHIT performs the parameter substitutions r equested
by the (parameters) subfleld of the SUBHIT command
line,

After SUB HIT creates the temporary SUB HIT file, its
operation Is similar to that of the GET utility
described above. The SUB HIT command file also has an
attached RSX that performs console input redirection
from a file. However, the SUBHIT RSX expands upon
the simpler facilities provided by the GET RSX.
Command lines in a SUB HIT file can be marked to
indicate whether they are program or CCP input.
Furthermore, if a program exhausts all its program
input and the next SUB HIT command is a CCP command,
the SUBHIT RSX temporarily reverts to console input .
Redirected input from the SUBHIT file resumes when
the program terminates.

Because CP/H Plus's SUB HIT facility is implemented
with RSXs, SUBHIT files can be nested . That is, a
SUBMIT file can contain additional SUBMIT or GET
commands. Similarly, a GET command can specify a
file that contains GET or SUBMIT commands. For
example, when a SUBMIT command is encountered in a
SUBMIT file, a new SUB HIT RSX is created below the
current RSX. The new RSX handles console input until
it reads end-of-file on its temporary SUBHIT file.
At this point control reverts to the previous SUBHIT
RSX.

8-20

CP/M PLUS SYSTEM CALLS

CP/" PLUS SYSTE" CALLS

Under CP/M Plus a transient program can access
standard operating- system functions and hardware
resources through an invariant software interface.
This interface consists of 8 number of system calls
available to the transient program. Information
applying to all the system calls Is summarized in the
sections below.

BDOS System-Call Conventions

CP/M Plus uses standard conventions for BDOS system
calls. These calling conventions are summarized
below:

Entry Paraneters:
Register c: BIXl) sy stem-call Nunber
Registers DE: Byte or Word Value or Address

Return Parameters:
Register A:
Registers HL:
Register B:

single-byte values = L
double-byte values
= H

Unsupported Calls
system calls
sy stem call 5

Return:
0-127:
128-255:

HL = OOCFFli
HL = OOOOH

bdo.

The SDOS does not restore registers before returning
to the calling program. Therefore the responsibility
for saving and restoring critical registers rests
with the calling program.

The following example illustrates how a transient
program calls a SOOS system call. This program reads
characters continuously until it encounters an
asterisk, then terminates execution by returning to
the system.

equ 0005h jBDOS entry point In Page Zero
C.J!EAD equ 1 JSDOS console-input system call

•
org lOCh jBase of Transient Program Area

nextc: mvi c,CJEAD jUse mnemonic for call number
call bdo. jReturn character In A
cpi ••• jEnd of processing?
Jnz nextc jLoop if not
ret jTermlnate program
end

B-21

CP/M PLUS SYSTEM CALLS

System-Call Reference Tables

The following tables describe the CP/M Plus system
calls. They are intended both as an introduction to
the calls and as a reference for use during
programming.

Hote: A mnemonic has been assigned to each system
cal} according to the functional group to which it
belongs. The sections In this manual documenting the
system calls are arranged alphabetically according to
these mnemonics. All future releases of Digital
Research operating systems will use this system of
mnemonics, with extensions or modifications as
needed. The reader is encouraged to become familiar
with this system which makes the large number of
system calls in sophisticated operating systems such
as CP/M Plus easier to learn and use.

An equate file (SYSCALLS.ASM) containing the system
call mnemonics and their numerical equivalents is
provided for the convenience of the programmer (see
Appendix E). This file can be included in the equate
section of a program, making use of the standard
mnemonics for the system call subroutines a simple
matter.

Table B-3 enumerates the fUnctional categories of
system calls and their mnemonic prefixes. Table B-4
describes the categories of system calls and their
general uses. Table 8-5 presents the CP/M Plus
system calls in numerical order for those who prefer
that system. Use the tables as a quick reference to
find the system call you need while programming.

~22

TABLE B-3.
Prefil N p F

CP/M PLUS SYSTEM CALLS

SYSTEM CAll CAIfIiDBTfS
Definition

C_ Console System Call., - The Console System
Calls handle console I/O operations on a
character, string, or block basis.

DRV_ Disk-Drive System Calls - The Disk-Drive
System Calls access and free drives, get
and set specified disk parameters, and
perform other disk- and drive-level
functions.

F_ Disk-File System Calls - The Disk-File
System Calls open and close, make and
delete, and read from and write to disk
files, as well as setting default
passwords, error modes, attributes, and
other file-level options.

L- List-Device System Calls - The List
Device System Calls write characters or
blocks to the default list device,

P_ Program System Calls - The Prograu System
Calls terminate programs, chain to other
programs, and perform other operations on
prograns.

S_ System System Calls - The System System
Calls return various types of systems
data, such as version nllllbers and
addresses, and enable applications to
call the BIOS directly.

T_ Time System Calls - The Time System Calls
set the system calender and clock and
return the time fran them.

B-23

CP/M PLUS SYSTEM CALLS

PRJ E 8=11. BIKE sxsmt CAlL SlDIURX
N!pber H;w Definition

3

CJ.UXINST 7

CJ.UXOOT

CJ.UXOOTST 8

CJ)ELIMIT 110

CJfJDE 109

C.J!AWIO 6

C.J!EAD 1

10

CSTAT 11

Cj/RITE 2

Cj/RlTEllLK 111

Cj/RITESTR 9

DRVj.CCESS 38

DRVj.l.LOCVEC 27

DRVj.LLRESET 13

Auxiliary Input

Auxiliary Input
Status

Auxiliary Output

Return a character from
the auxiliary input
device.

Return status of the
auxiliary input device .

Send a character to the
auxiliary output device.

Auxiliary OUtput Return status of
Status auxiliary output device.

Get/Set Output Set or return current
Delimiter Output Deltmdter.

Get/Set Console Mode Set or return Console
mode.

Raw Console I/O Perform Raw mode I/O with
the default virtual
console.

Read Console Read a character from the
default virtual console.

Read Console Buffer

Get Console Status

Write to Console

Write Block

Wri te String

Access Drive

Get Addr(Alloc)

Reset Disk System

B-2~

Read an edited line fran
the defaul t virtual
console.

Obtain the status of the
default virtual console.

Write a character to the
default virtual console.

Write a string to the
default virtual console.

Write a string to the
defaul t virtual console
until $.

For HP/H canpatibility.

Get the address of the
disk allocation vector.

Restore disk system to
reset state .

CP/ M PLUS SYSTEM CALLS

DRJ E H. BOO) SXSIEM CAll. SlDIWlX (Coot .)
""!!her Hw: Def1ntt1on

DRVJ>PB 31

DRVJREE 39

DRVJREEBLOCKS 98

25

DRVJ.(x;INVEC 24

DRV -.5ETLABEl. 1 DC

DRV-.5ETRO 28

DRV-.5PACE 46

FJ-mIB 30

16

FJ>ELETE 19

Get Addr(DPB)

Free Drive

Free Blocks

Return Current Disk

Return Directory
Label Data

Return Login Vector

Reset Drive

Get RIO Vector

Select Disk

Set Directory Label

Return the segment and
offset address of the
Disk Parameter Block for
the default disk of the
calling progran.

For HP/M compatibility .

Free temporarily
allocated blocks 1n open
files.

Return the default disk
of the calling progran .

Return the data byte of
the directory label for
the specified drive.

Return bit map of logged-
1n disk drives.

Reset the specified
drive(s) .

Return RIO bit vector .

Set the default disk of
calling program.

Create or update a
directory label .

Write Protect Disk Set the default disk to
Read-Only.

Get Disk Free Space Return unallocated space
on the specified disk
drive.

Set File Attributes Set Disk File canpatibil
ity or interface attri
butes.

Close File Close a disk file as
specified in FOB.

Delete File Delete the disk file
specified by the FCB .

B- 25

CP/M PLUS SYSTEM CALLS

I611!: 8-4. = SYSTDI ~61J, SlHWlY (Cant.l
Mnmorrtc "!!!ber "- Definition

FJ)MASET 26 Set DMA Address Set the Direct Memory
Addres! offset address .

F_ERRI{)DE 45 Set BOOS Error Mode Set the Error mode to
Default, Return, or
Return and Display .

FJWSH 48 Flush Buffers Wri te any data 1n the
blocking/deblocking buf-
fers to the disk.

FJ.QCK 42 Lock Record Assume exclusive owner-
ship of one or more con-
secutive records 1n the
FCB-speclfied disk file.

FJW(E 22 Make FUe Create the disk file as
specified in the FCB.

FJ9.)LTISEC 44 Set Hultlsector Count Set the nunber of records
for subsequent disk
operations.

COPEN 15 OpenFHe Open a disk file as
specified in FCB .

F_PARSE 152 Parse Filename Parse an ASCII string and
initialize an FCB.

FJ>ASSWD 106 Set Default Password Establish a default pass-
word for file access .

FJANDREC 36 Set Random Record Return the Random-Record
NlIJIber of the next
sequential record of a
Dbk FHe in the
specified FCB.

F_READ 20 Read Sequential Read records sequentially
frail the FCB-specified
disk fUe.

F_READRAND 33 Read Randan Read the FCB-specified
record at randan fran a
disk fUe.

f_RENAME 23 Renane FUe Rename the F'CB-spec1fied
disk fHe.

8-26

CP/M PLUS SYSTEM CALLS

TARLE IK. BOC§ SYSm! CAIL SU!tW!Y (Coot.>
""Mer Heme Definition

17

F"SIZE 35

18

102

LTRUNCATE 99

41

43

32

F..l/RITE 21

F..l/RITERAND 34

F..l/RITEXFCB 103

Search for First Find the first file that
matches the specified
FCB .

Compute File Size Return the size of a disk
file 1n the specified
FCB.

Search for Next Find the next file
matching the FCB of the
previous SEARCH FOR FIRST
call.

Read File Date Stamps Return the XFCB of the
and Password Mode FCB-specified disk file.

Truncate File Set the last file record
to the number in the
referenced FCB .

Test and Write Record Read record before
writing to make sure it
has not changed. For
compatibility with MP/ M.

Unlock Record

Set/Get User Code

Write Sequential

Write Randoo

Wri te File XFCB

B-27

Relinquish exclusive
ownership of the FCB
specified records. For
compatibility with MP/M.

Set or return the default
user nllJJber of the
calling program.

Write records sequential
ly to the FCB-specified
disk file.

Write the FCB-specified
record at randem to a
disk file .

Create or update the XFCB
for the FCB-specified
disk file.

CP/M PLUS SYSTEM CALLS

Hnmonic

LWRITE

LWRITEBLK

P,J.OAD

SJlDOSVER

SJlIOS

S3ERIAL

LGET

TABLE IH. BOC§ SYSIDI CAlL S!J/I!ARX (Coot. >
Mpher Nape Definition

40

5

112

47

59

108

o

12

50

60

49

107

105

Write Random with
Zero Fill

Write to List

List Block Write

Chain to Program

Load OVerlay

Get/Set Program
Return Code

System Reset

Return Version Number

Direct Bios Calls

Call Resident System
Extension

Get/Set System
Central Block

Return Serial N\JIlber

Get Date and Time

Write the FCB-specified
record at randan to a
disk file, filling all
previously unwritten
lower-numbered records
with zeros.

Write a character to the
default list device.

Write a block of charac
ters to the default list
device.

Load, initialize, and
jump to the program
specified in the DMA
buffer.

Load the specified CMD
file in memory; return
its base-page segment
address.

Set Program Return Code
before terminating pro
gram.

Tenminate calling program
unconditionally, release
all owned resources.

Return BDOS version
runber I CPU and operating
system type.

Call specified BIOS
character IIO routine.

Transfer control to the
specified RSX.

Return or set the value
of a specified SGB field.

Return the system serial
runber.

Obtain the system
calendar and clock, hours
and minutes only.

B-28, __________________________ ~

CP/M PLUS SYSTEM CALLS

TAR! E IH. BDOO SYSm! CAlL S!J!t\ARY C Coot. I
Mnenpnjc ""Rref";arne Definition

L..SET 1()lj Set Date and Time Set internal system cal
endar and clock to speci
fied value.

The table below lists the CP/M Plus system calls in
numerical order , showing the parameters a program
must pass when making the system call, and the values
it returns to the program.

TABLE 8-5.
DEC HEX Nane

o 00 System Reset
1 01 Read Console
2 02 Write to Console
3 03 Auxiliary Input
4 04 Auxiliary OUtput
5 05 Write to List
6 06 Raw Console 1/0

7 07 Auxil iary Input
Status

8 08 Auxiliary OUtput
Status

9 09 Write String
10 OA Read Console Buffer

11 OB Get Console Status

Page

12 OC Return Version Number
13 OD Reset Disk System
14 OE Select Disk
15 OF Open File
16 10 Close File
17 11 Search for First
18 12 Search for Next
19 13 Delete File
20 14 Read Sequential
21 15 Write Sequential
22 16 Hake File
23 17 Renane Fil e
24 18 Return Login Vector
25 19 Return Current Disk

BDOO SYSm! CAlL S!J!t\ARY BY VALUE
Hnemonic InPUt Parameters Returned Values

P_TERHCPM
C_READ
C..J/RITE
C....AUXIN
CJUXOUT
~WRITE
C_RAWIO

C....AUXINST

CJUXOUTST

CWRITESTR
C_READSTR

C_STAT
S...JlDOSVER
DRVJLLRESET
DRY_GET
F_OPEN
F_CLOSE
F.J;FIRST
F_SNEXT
F..JlELETE
F_READ
F_WRlTE
FJ1AKE
FJlENAHE
DRVJ.OGINVEC
DRLGET

none
none
E ::: char
none
E ::: char
E ::: char
E = OFFHI
OFEHlOFDH/char

none

none

DE = .String
DE = .Bufferl

OFFFFH
none
none
none
E = Disk NlJIlber
DE = .FCB
DE = .FCB
DE = .FCB
none
DE = .FCB
DE = .FCB
DE = . FCB
DE = .FCB
DE = .FCB
nOne
none

none
A ::: char
A = OOH
A ::: char
A = OOH
A = OOH
A ::: char/status/

A = OO/OFFH

A = OO/OFFH

A = OOH
Olars in buffer

A = 00/01
HL= Version COO31Hl
A = OOH
A = Err Flag
A = Dir Code
A = Dir Code
A = Dir Code
A = Dir Code
A = Dir Code
A = Err Code
A ::: Err Code
A = Dir Code
A = Dir Code
HL= Login Vector
A = Cur Disk'

Hote: The period C. l indicates the starting address of the specified module .

B-29

CP/M PLUS SYSTEM CALLS

TABLE l!-5. BIJ(§ SYSm! CAlL SU!tIARI BY YAUJE (Coot.)
DEC HEX IIi!me Page Itlemonfc InPUt PariJDf'ters Returned Values
26 1A Set DHA Address FJ)HASET DE : . DHA A : OOH
Z7 1B Get Addr(Alloc) DRVJ.lLOCVEC none HL: . Alloc
28 1C Write Protect Disk DRV_SETRO none A: OOH
29 1D Get RIO Vector DRVJlOVEC none HL: RIO Vector
30 1E Set File Attributes F_AITRIB DE : . FCB A : Dir Code
31 1F Get Addr(DPB) DRVJ)PB none HI.. : . DPB
32 20 Set/Get User Code F_USERNUM E : OFFH/ k CUrr User/

user ntltlber OOH
33 21 Read Randan F_READRAND DE : .FCB A : Err Code
34 22 Wei te Random F_WRITERAND DE : .FCB A : Err Code
35 23 Compute File Size F_SIZE DE : .FCB rO o rl . r2

A : Err Flag
36 24 Set Random Record F_RANDREC DE : .FCB ro, el. r2
37 25 Reset Drive DRV_RESET DE : Drive Vector A : OOH
38 26 Access Drive DRVJ,CCESS none A : OOH
39 Z7 Free Drive DRVYREE none A: OOH
40 28 Write Random with F_WRITEZF DE : .FCB A : Err Code

Zero Fill
41 29 Test and Write Record F_TSnlRITE DE : .FCB A : OFFH
42 2A Lock Record FJ.QCK DE : .FCB A: OOH
43 2B Unlock Record F_UNLOCK DE : .FCB A : OOH
44 2C Set Multisector Count F .JtJLTISEC E : , Sectors A ::;: Return Code
45 2D Set BOOS Error Mode F_ERRMCDE E : BOOS Err Mode A : OOH
46 2E Get Disk Free Space DRV_SPACE E = Drive number Nt.rnber of Free

A : Err Flag Sectors
47 2F Chain to Program P_CHAIN E : Chain Flag A: OOH
48 30 Flush Buffers FJLUSH E : Purge Flag A : Err Flag
49 31 Get/Set System S..,SCB DE : .SCB PB A : Returned Byte

Control Block HL= Returned Word
50 32 Direct BIOS Calls SJlIOS DE : . BIOS PB BIOS Return
59 3B Load OVerlay PJ.QAD DE : .FCB A : Err Code
60 3C Call Resident System S_RSX DE: • RSX PB A : Err Code

Extension
98 62 Free Blocks DRVYREEBLOCKS none A : OOH
99 63 Truncate File F_TRUNCATE DE : .FCB A ::;: Di e Code 100 64 Set Directory Label DRV_SETLABEL DE : .FCB A : Dir Code 101 65 Return Directory DRV_GETLABEL E : Drive A : Dir label

Label Data data byte 102 66 Read File Date Stamps F_TIMEDATE DE : .FCB A ::;: Die Code
and Password Hade

103 67 Write File XFCB F -""RITEXFCB DE: . FCB A : Dir Code 104 68 Set Date and Time T..,SET DE : . DAT A : OOH 105 69 Get Date and Time T_GET DE : . DAT Date and Time
A : seconds

Note: The per iod (.) indicates the starting address of tJle specified module .

B- 30

IARI E &-5 .
DEC HD N.,. Page

106 6A Set Default Password
107 68 Return Serial NlIJIber

108 6C Get/Set Program
Return Code

109 6D Get/Set Console Hode
110 6E Get/Set Output

Delimiter
111 6, Write Block
112 70 List Block
152 98 Parse filename

Note: The period C.) indicates the

CP/M PLUS SYSTEM CALLS

IlIXlS SISm! CAlL S!J!t!ARY BY 'l.lL!JE <coot.)
Hnapgnic InPUt Panrters Re turned, Values

,]ASSWD
S_SERIAL

P_RETCODE

CJtJDE
CJlELIMIT

C_WRITEBLK
L WRITEBLK
F_PARSE

starting address

DE = . Password A = OOH
DE = . Serial' Serial NlIJIber
field

DE = OFFFFHICode HL = Progrcm Ret Code/
none

DE = OFFFFHiHode HL = Console Mode/none
DE = OFFFFHI A = OUtput Delimiter/

E = Del imi ter none
DE = . CCB A = OOH
DE = .CCB A = OOH
DE = .PfCB See definition

of the specified module .

Abbreviations used i n the above table:

Abs = Absolute Dir = Directory Rq.t = Request
Addr = Address Err = Error Rtn = Return
Char = ASCII O1aracter Proc = Process Sp = Space
Coom = Galmand , = NlIJIber Spec . = Specified
Con = Console Pswd = Password Sy, = System
Condo = Conditional Reloc = Relocatable Tenn . = Tennination
Ct = Count Rec = Record Vect = Vector

•

B- 31

aDOS CONSOLE I/O

DOS CONSOLE I/O

Console lID system calls can be divided into four
categories: basic console 110, direct console 110,
buffered console input, and special console
functions.

Using the basic console liD system calls, prog rams
can access the console device for simple input and
output. The basic console - I/O system calls are:

, CJ!EA]J

2 C.JIRl1'E
9 CjlRIrelTR
" C-liTAT
,,, CjlRTrnlLK

Inputs a single character
Outputs a single character
OUtputs a string of characters
Signals if a character is ready for input
Outputs a block of characters

The input system call echoes the character to the
console so that the user can identify the typed
character . The output system calls expand tabs in
columns of eight characters .

The basic l i D system calls also monitor the console
to stop and start console output scroll at the user's
request. If the user types a CTRL - S. these system
calls suspend execution. Execution and console
scrolling resume when the user types a CTRL - O.

When the aDOS is waiting because of a CTRL - S , it
scans input for three special character s : CTRL-O,
CTRL- C, and GTRL- P. If the user types any othe r
character. the BDOS transmits a bell cha racter (CTRL
G) to the console, discards the input cha racter , and
continues to wait. If the user types a CTRL- G, the
BDOS executes a warm start which termi nates the
calling program . If the user types a GTRL- P, the
aDOS toggles the printer echo switch. The pr inte r
echo switch controls whether console output is
automatically echoed to the list device (LST :). The
BDOS signals when it turns on printer echo by sending
a bell character to the console .

All basic console I/O system calls discard any CTRL - O
or CTRL- P character that is not preceded by a CTRL- S
cha racter. Thus, the C_READ BDOS system call c annot
read a CTRL- S, CTRL-Q , or CTRL- P cha r acte r.
Furthermore, these characters are invisible t o the
C_STAT system call.

a- 32

BDOS CONSOLE 1/0

Console I/O System Calls

+--+
J J
J C_AUXIN J
J J
J SYSTEM CALL 3: AUXILIARY INPUT J
J J
+--+
J J
I Entry Parameters: 1
J Register C: 03H J
J J
I Returned Value: I
I Register A: ASCII Character I
J J
+--+

C_AUXIN reads the next character from the logical
auxiliary input device (AUXIN:) into register A.
Control does not return to the calling program until
the character 1s read.

+--+
J J
J C_AUXINST J
J J
J SYSTEM CALL 7: AUXILIARY INPUT STATUS J
J J
+--+
J J
I Entry Parameters: I
J Register C: 07H J
J J
I Returned Value: I
I Register A: Auxiliary Input Status I
J J
+--+

C_AUXINST returns the value OFFH in register A if a
character is ready for input from the logical
auxiliary input device (AUXIN:). If no character is
ready for input, the value OOH is returned.

B-33

BDOS CONSOLE I/O

+--+
I

C_AUXOUT I
I

SYSTEM CALL q: AUXILIARY OUTPUT I
I

+--+
I I
I Entry Parameters: t

Register C: 04H I
Register E: ASCII Character I

I
+--+

C_AUXOUT sends the ASCII character from register E to
the logical auxiliary output device (AUXOUT :),

+--+

CAUXOUTST

SYSTEM CALL 8: AUXILIARY OUTPUT STATUS

+--+
I I
I Entry Parameters: I
I Register C: 08H I
I I
I Returned Val ue: I
I Register A: Auxiliary Output Status I
I I
+--+

C_AUXOUTST returns the value OFFH 1n register A if
the logical auxiliary output device (AUXOUT:) is
ready to accept a character for output. If the
device is not ready for output, the value OOH is
returned.

B-3q

-

BDOS CONSOLE I/O

+--+
I

C_DELIMIT I
I

SYSTEH CALL 110: GET/SET OUTPUT DELIHITER I
I

+--+
I I
I Entry Parameters: I
I Register C: 6EH I
I Regi.ter DE: OFFFFH (Get) or I
I E: Output Delimiter (Set) I
I I
I Returned Value: 1
I Register A: Output Delimiter or I
I (no value) I
I I
+--+

C_DELIMIT sets or interrogates the string delImiter
for C_WRITESTR (Print String). The default del1miter
value Is a dollar sign ($), The CCP restores the
Output Delimiter to the default value when a
transient program Is loaded.

If register pair DE : OFFFFH, then the current Output
Delimiter is returned In register A. Otherwise
C_DELIMIT sets the Output Delimiter to the value
contained In register E.

+--+
I I
I C_MODE I
I I
I SYSTEH CALL 109: GET/SET CONSOLE MODE I
I I
+--+

Entry Parameters:
Register C:
Register DE:

Returned Value:
Register HL:

6DH
OFFFFH (Get) or
Console Mode (Set)

Console Mode or
(no value)

I
I
I
I
I
I
I
I
I
I

+--+
A program can set or interrogate the Console Mode by
calling C_HODE. If register pair DE = OFFFFH, then
the current Console Mode is returned in register HL.
Otherwise C_HODE sets the Console Hode to the value
contained in register pair DE.

B-35

BDOS CONSOLE I/O

bit 0

bit 1

bit 2

bit 3

bits 8
and 9

The Console Hode 1s a 16-bit system parameter that
determines the action of certain BOOS Console I/O
system calls. The definition of the Console Hode 1s:

If this bit Is set, the C-.sTAT system call returns true only
if a CTRL-C 1s typed at the console. Prograns that make
repeated console status calls to test if execution should be
interrupted can set this bit to interrupt on CTRL- C only.
The CCP built-in commands DIR and TYPE run 1n this mode .

Setting this bit disables stop and start 3Croll support for
the basic console I / O system calls, which comprise the fi rst
category of system call" described 1n this section . When
this bit is set, the C.....READ system call reads CTRL-S, CTRL
Q, and CTRL- Pj and the C~AT system call returns t r ue if
the user types these characters. Use this mode 1n
situations where raw console input and edited output are
needed. While in this mode, you can use the C_RAWIO system
call for input and input status j and the C~, C_WRITESTR.
and CJiRITEBl..K system calls for output without the
possibility of the output system calls intercepting input
CTRL-S. CTRL-Q, or CTRL-P characters.

Setting this bit disables tab expansion and printer echo
support for the CJiRITE, C.JIRITESTR, and C3TAT system
calls. Use this mode when nonedited output is required .

This bit disables all CTRL-C intercept action in the BDOS.
This mode is useful for progrcms that Il'Ust control their own
tennination.

The BDOS reserves these bits for the CP/M Plus GET RSX that
performs console input redirection from a file . With one
exception, these bits detennine hClool the GET RSX responds to
a progrcm console-status request (the C_RAWIO, C3TAT, or
S...$I05 system calls).

bit 8 : 0, bit 9 : 0
bit 8 : 0, bit 9 : 1
bit8 : 1, bit9:0
bit 8 : 1. bit 9 : 1

conditional status
false status
true status
do not perfonn redirection

Note: The Console Hode bits are numbered from right to left.

In conditional status mode, GET r esponds false to all
status requests except for a status call pr eceded
immediately by another status call. On th e second
call , GET responds with a true r esult . Thus, a
program that spins on status to wait fo r a cha racter
is signaled that a character is r eady on t he second

B- 36

BOOS CONSOLE I/O

call. In addition, a program that makes status calls
periodically to see if the user wants to stop 1s not
,dgnaled.

When a transient program begins execution, the
Console Mode bits are normally set to zero. However,
the CP/M Plus utility GENCOH can attach an RSX header
to a ,COM file so that when it 15 loaded, the console
mode bits are set differently. This feature allows
you to modIfy a program's console I/O behavior
without having to change the program.

+--+
C_RAIiIO

SYSTEM CALL 6: DIRECT CONSOLE I/O

+--+
Entry Parameters:

Register C:
Register E:

Returned Value:
Register A:

06H
OFFH (input/status) or
OFEH (status) or
OFDH (input) or
char (output)

char or status
(no value)

I
I
I
I
I
I
I
I
I
I
I
I

+--+
C_RAWIO can provide direct console I/O in situations
where unadorned console I/O is required. C_RAWIO
actually consists of several subsystem calls that
support direct console input, output, and status
checks. The BOOS does not filter out special
characters during direct console I/O. The direct
output subsystem call does not expand tabs, and the
direct-input subsystem call does not echo typed
characters to the console.

Use direc t console I/O carefully because it bypasses
all the normal control-character functions. Programs
that perform direct I/O through the BIOS under
previous releases of CP/M should be changed to use
direct I / O so that they can be fully supported under
future releases of MP/M and CP/M.

A program calls C_RAWIO by passing one of four
different values in register E. The values and their
meanings are summarized in the following table.

B-37

BOOS CONSOLE 1/0

TABLE B-7, C BAWIO ENTRY PARAl1ETERS
Resi·ter
E value Meaning

OFFH Console input/status command returns an input character; if
no character is ready, a value of zero 1s returned,

OfEH Console status command (On return, register A contains 00 if
no character is ready; otherwise it contains FFli.)

OFDH Console input command, returns an input characterj this
function will suspend the calling process until a character
1s ready.

ASCII C RAWIO assumes register E character contains a valid
ASCII character and sends it to the console.

+--+
I I
I ~~ I
I I
I SYSTEM CALL 1: CONSOLE INPUT I
I I

+--+
I I
I Entry Parameters: I
I Regi.ter C: 01H I
I I
J RetUrned Value: I
I Register A: ASCII Character I
I I

+--+
C_READ reads the next character from the logical
console (CONIN:) to register A. Graphic characters,
along with carriage return, line feed, and backspace
(CTRL-H) are echoed to the console. Tab characters
(CTRL-I) are expanded in columns of 8 characters.
CTRL-S, CTRL-Q, and CTRL-P are normally intercepted
as described below. All other nongraphic characters
are returned in register A but are not echoed to the
console.

When the Console Hode is in the default state (see
C_MODE), C_READ intercept. CTRL-S, CTRL-Q, and CTRL-P
characters. Any characters that are typed following
a CTRL-S, and preceding a CTRL-O are also
intercepted. However, if start/stop scroll has been
disabled by the Console Hode, the CTRL-S, CTRL- Q, and
CTRL-P characters are not intercepted. Instead, they
are returned in register A, but are not echoed to the
console.

8-38

BOOS CONSOLE I/O

If printer echo has been invoked, all characters that
are echoed to the console are also sent to the list
device (LST:),

C_READ does not return control to the calling program
until a nonintercepted character is typed, thus
suspending execution if a character is not ready.

+--+
I
I C_READSTR
I
I SYSTEM CALL 10: READ CONSOLE BUFFER
I

+--+
I I
I Entry Parameters: I
1 Register C: OAH I
I Registers DE: Buffer Address I
I I
I Returned Value: Console Characters I
I in Buffer I
I I

+--+
C_READSTR reads a line of edited console input from
the logical console (CON IN:) to a buffer that
register pair DE addresses. It terminates input and
returns to the calling program when it encounters a
return (CTRL-H) or a line feed (CTRL-J) character.
C_READSTR also discards all input characters after
the input buffer is filled. In add1tion, it outputs
a bell character (CTRL-G) to the console when it
discards a character to signal the user that the
buffer is full. The input buffer addressed by DE has
the following format:

DE: +0 +1 +2 +3 +4 +5 +6 +7 +8 +n

Imxlnclc11c21c31clllc51c61c71 111 I

where mx is the maximum number of characters which
the buffer holds, and nc is the number of characters
placed in the buffer. The characters entered by the
operator follOw the nc value. The value mx must be
set prior to making a C_READSTR call and may range in
value from 1 to 255. Setting mx to zero is
equivalent to setting mx to one. The value nc is
returned to the calling program and may range from
zero to mx. If nc < mx, then uninitialized positions
follow the last character, denoted by?? in the
figure. Note that a terminating return or line-feed

B-39

•
BDOS CONSOLE I/O

character is not placed In the buffer and not
included in the count nco

If register pair DE Is set to zero, C READSTR assumes
that an initialized input buffer Is located at the
current OMA address (see F_DHASET). This allows a
program to put a string on the screen for the user to
edit. To initialize the input buffer, set characters
c1 through en to the initial value followed by a
binary zero terminator.

When a program calls C_READSTR with an init1alized
buffer, it operates as if the user had typed In the
string. When C_READSTR encounters the binary zero
terminator, it accepts input from the console . At
this pOint the user can edit the initialized string
or accept it as it Is by pressing the RETURN key.
However, if the initialized string contains a
carriage return (CTRL-H) or a line-feed (CTRL- J)
character. C_READSTR returns to the calling program
without giving the user the opportunity to edit the
string. The edit control characters are summarized
in the table below.

C_READSTR also filters input for certain control
characters. If the user types a CTRL-C as the first
character in the line, C_READSTR terminates the
calling program by branching to the BIOS warm-start
entry point. A CTRL-C in any other position is
simply echoed at the console. C_READSTR also watches
for a CTRL-P keystroke, and if it finds one at any
position in the command line, it toggles the printer
echo switch . C_READSTR does not filter CTRL- S and
CTRL-Q characters. but accepts them as normal input.
In general, it accepts all control characters that it
does not recognize as editing control characters as
input characters. C_READSTR identifies a cont r ol
character with a leading caret (~) when it echoes the
control character to the console. Thus, CTRL- C
appears as "'C in a C_READSTR command line on the
screen .

BDOS CONSOLE 110

lAW E 8-8. C BElIX)TB EDIT CQHl'R(J.. atARACIERS
Cwacter mit Control fUoctioo

nib/del Removes and echoes the last character if at the end of the
linej otilerwoise deletes the character to the left of the
current cursor position; GENCPM can change this function
to CTRL-H.

CTRL-A Moves cursor one character to the left.

CTRL-B Moves cursor to the end of the line when at the beginning;
otheNlse moves cursor to the beginning of the line.

CTJU,.C

CTJU,.P

CI'RL-R

Reboots when at the beginning of line; the Console Mode
can disable this function.

Causes physical end-or-line; if the cursor 1s positioned
in the middle of a line, the characters at, and to the
right of, the cursor are displayed on the next line.

Moves cursor one character to the right.

Deletes the character at the current cursor position when
in the middle of the line i has no effect when the cursor
is at the end of the line.

Backspaces one character position when positioned at the
end of the linej otherwise deletes the character to the
left of the cursor; GENCPH can change this function to
rub/del.

(Line feed) terminates input; the cursor can be positioned
anywhere in the line; the entire input line is acceptedj
sets the previous line buffer to the input line.

Deletes all characters to the right of the cursor along
with the character at the cursor.

(Return) terminates input; the cursor can be positioned
anywhere in the linej the entire input line is acceptedj
sets the prev10us line buffer to the input line.

Echoes console output to the list device.

Retypes the characters to the left of the cursor on the
new line.

B-~l
----------------------~--~--~

BOOS CONSOLE I/O

TARI£ Bdl. C RE'I§IB mn cotaJQ,. atARAC1"EJt3 (Coot,)
Otaracter fdi t Control f\mc;t.1oo

CTRL-X

Updates the previous line buffer to contain the characters
to the left of the cursor; deletes current line, and
advances to new line.

Recalls previous line if current line 1s empty; otherwise
moves cursor to end of line.

Deletes all characters to the left of the cursor.

C_READSTR uses the console width field defined 1n the
System Control Block. If the console width 1s
exceeded when the cursor 1s positioned at the end of
the line, C_READSTR automatically advances to the
next line. The beginning of the line can be edited
by entering a CTRL-R .

When a character 1s typed while the cursor 1s
positioned 1n the middle of the line, the typed
character is inserted into the line. Characters at,
and to the right, of the cursor are shifted to the
right. If the console width is exceeded, the
characters disappear off the right of the sc r een.
However, these characters are not lost . They
reappear if characters are deleted out of the line,
or if a CTRL - E is typed .

+--+
I I
I C_STAT I
I I
I SYSTEM CALL ,,: GET CONSOLE STATUS I
I I

+--+ I I
I Entry Parameters: I
I Registe r C: OBH I
I I
I Returned Value: I
I Register A: Console Status I
I I

+--+
C_STAT checks to see if a character has been ty ped at
the logical console (CONIN:) . If the Co nsol e Hode is
in the default state (see C_HODE), C_STAT retu r ns the
value 01H in register A when a characte r i s r eady.
If a character is not ready, it returns a val ue of
OOH.

B- 42

11

BOOS CONSOLE I/O

If the Console Mode 1s in CTRL-C Only Status mode,
C_STAT returns the value 01" in register A only if a
CTRL-C has been typed at the console.

+--+
I I
I C_VRITE I
I I
I SYSTEM CALL 2: CONSOLE OUTPUT I
I I
+--+
I I
I Entry Parameters: I
I Register C: 02H I
I Register E: ASCII Character I
I I

+--+
C_WRITE sends the ASCII character from register E to
the logical console device (CONOUr:) . When the
Console Hode Is 1n the default state (see C_HODE),
C_WRITE expands tab characters (CTRL-I) 1n columns of
8 charactersj checks for CTRL-S, CTRL-Q, and echoes
characters to the logical list device (LST:) if
printer echo (CTRL-P) has been invoked.

+--+
I I
I C_VRITEBLK I
I I
I SYSTEM CALL 111: PRINT BLOCK I
I I

+--+
I I
I Entry Parameters: I
I Register C: 6FH I
I Register DE: CCB Address I
I I
I Returned Value: None I
I I

+--+
C_WRITEBLK sends the character string located by the
Character Control Block (CCB) addressed in register
pair DE to the logical console (CONOUT):. If the
Console Hode is in the default state (see C_HODE),
C_WRITEBLK expands tab characters (CTRL-I) in columns
of eight characters. It also checks for stop scroll
(CTRL-S), start scroll (CTRL-Q), and echoes it to the
logical list device (LST:) if printer echo (CTRL-P)
has been invoked.

B-43

BOOS CONSOLE I/O

The eeB format 1~: +-----+-----+-----+-----+
I ADDR I LENGTH I
+-----+-----+-----+-----+

ADDR : Address of character string
LENGTH : Length of character string

+--+
I I
I C_WRITESTR I
I I
I SYSTEM CALL 9: PRINT STRING I
I I

+--+
I I
I Entry Parameters: J
I Register C: 09H I
I Registers DE: String Address I
I I

+--+
C_WRITESTR sends the character string addressed by
register pair DE to the 10g1cal console (CONOU!:)
until it encounters a delimiter in the string. The
default delimiter 1s a dollar sign ($) but it can be
changed to any other value by C_DELIMIT. If the
Console Hode Is In the default state (see C_HODE),
C_WRITESTR expands tab characters (CTRL-I) in columns
of 8 characters. It also checks for CTRL-S, CTRL-Q,
and echoes to the logical list device (LST:) if
printer echo (CTRL-P) has been invoked.

l

•

BOOS FILE SYSTEM

BOOS FILE SYSTEM

The SOOS file system supports four categories of
system calls: file-access system calls, directory
system calls, drive-related system calls, and
miscellaneous system calls. The file access category
includes system calls to create a file (F_HAKE>, open
an existing file (F_OPEN), and close a file
(F_CLOSE). Both the F_HAKE and F_OPEN system calls
activate the file for subsequent access by SDOS fl1e
access system calls. The snos read and write system
calls are file-access system calls that operate
either sequentially or randomly by record position .
They transfer data 1n units of 128 bytes, which 1s
the basic record size of the file system. The
F_CLOSE system call makes any necessary updates to
the directory to permanently record the status of an
activated file.

File-Ha.lng Conventions

Under CP/M Plus, a file specification consists of
four parts: the drive specifier, the filename field,
the filetype field, and the file password field. The
general format for a command line file speCification
is shown below:

{d:}filenaae{.tYP}{jpassvord}

The drive-specifier field specifies the drive where
the file is located. The filename and type fields
identify the file. The password field specifies the
password if a file is password-protected.

The drive, type, and password fields are optional,
and the delimiters !. i are required only when
specifying their associated field. The drive
specifier can be assIgned a letter from A to P where
the actual drive letters supported on a given system
are determined by the BIOS implementation. When the
drive letter is not specified, the current default
drive is assumed.

The filename and password fields can contain one to
eight nondelimiter characters. The filetype field
can contain one to three nondelimiter characters.
All three fields are padded with blanks, if
necessary. Omitting the optional type or password
fields implies a field specification of all blanks.

The CCP calls the F_PARSE system call to parse file
specifications from a command line. See F_PARSE for

B- 45

BDOS FILE SYSTEM

details of the operation of this system call.

It 1s not mandatory to follow the file-naming
conventions of CP/M Plus when you create or rename a
file with system calls. However, the conventions
must be used if the fl1 e 1 s to be accessed from a
command line. For example, the CCP cannot locate a
command file in the directory if 1ts filename or
filetype field contains a lowercase letter.

As a general rule, the fl1etype field names the
generic category of a particular file, while the
filename distinguishes individual files in each
category. The following list of fl1etypes names some
of the generic categories that have been established
by usage convention.

ASH
PRN
HEX
BAS
INT
COH
PRL
SPR

Assembler Source
Printer Listing
Hex Machine Code
Basic Source File
Intermediate File
Command File
Page Relocatable
Sys. Page Reloc.

Disk and File Organization

PLI
REL
TEX
BAK
SIH
U$
DAr
SIS

PLII Source File
Relocatable Module
TEX Formatter Source
ED Source Backup
SID Symbol File
Temporary File
Data File
System File

The BDOS file system can support from 1 to 16 logical
drives. The maximum file size supported on a drive
is 32 megabytes. The maximum capacity of a drive is
determined by the data-block size specified for the
drive in the BIOS. The data-block size is the basic
unit in which the SDOS allocates disk space to files.

Logical drives are divided into two regions: a
directory area and a data area. The directory area
contains entries that define which files exist on the
drive. The directory entries corresponding to a
particular file define those data blocks in the
drive's data area that belong to the file. These
data blocks contain the file's records.

Each disk file consists of a set of up to 262,144
128-byte records. Each record in a file is identified
by its position in the file. This position is called
the record's random record number. If a file is
created sequentially, the first record has a position
of zero, while the last record has a position one
less than the number of records in the file. Such a
file can be read sequentially in record position
order beginning at record zero, or randomly by record
position. Conversely, if a file is created randomly,
records are added to the file by specified position .

BDOS FILE SYSTEM

A file created 1n this way 1s called sparse if
positions exist within the file where a record has
not been written.

The BOOS automatically allocates data blocks to a
file to contain its records on the basis of the
record positions consumed. Thus, a sparse file that
contains two records, one at position zero, the other
at position 262.1~3. consumes only two data blocks in
the data area. Sparse files can only be created and
accessed randomly, not sequentially. Note that any
data block allocated to a file 1s permanently
allocated to the file until the file 1s deleted or
truncated. These are the only mechanisms supported
by the aDOS for releasing data blocks belonging to a
file.

Source files under CP/M Plus are treated as a
sequence of ASCII characters, where each line of the
source file is followed by a carriage-return line
feed sequence, ODH followed by OAH. Thus, a single
128-byte record could contain several lines of source
text. The end of an ASCII file is denoted by a CTRL
Z character (lAH) or a real end-of-file, returned by
the BOOS read operation. CTRL-Z characters embedded
within machine code files such as .COM files are
ignored. The actual end-of-file condition returned
by the BOOS is used to terminate read operations.

File Control Block Definition

The File Control Block (FCB) is a data structure that
is set up and initialized by a transient program, and
then used by file access and directory system calls
called by the transient program. Thus, the FCB is an
important communication channel between the BOOS and
a transient program. For example, when a program
opens a file, and subsequently accesses it with BOOS
read and write system calls, the BOOS file system
maintains the current file state and position within
the program's FCB. Some BOOS system calls use
certain fields in the FCB for invoking special
options. Other BOOS system calls use the FCB to
return data to the calling program. In addition, all
BOOS random-I/O system calls specify the random
record number with a three-byte field at the end of
the FeB.

When a transient program makes a file access or
directory BOOS system call, register pair DE must
address an FCB. The length of the FCB data area
depends on the system call. For most system calls,
the required length is 33 (21HI bytes. For the
F_READRAND and F_WRITERANO system calls, the

BDOS FILE SYSTEM

F_TRUNCATE system call, and the F_SIZE
the FCB length must be 36 (24H) bytes.
format is shown below:

+-----+-----+-----+-----+-----+-----+-----+-----+
OOH !Drive I f1 f2 f3 f4 f5 Ni f7 ...

+-----+-----+-----+-----+-----+-----+-----+-----+
OBH ... fB I t1 t2 t3 I ex I reserved I rc I

+-----+-----+---+-----+-----+---+-----+----+
10H I reserved for system use I

+-----+-----+-----+-----+-----+-----+-----+-----+
18H I reserved for system use I

+-----+-----+-----+-----+-----+-----+-----+-----+
20H 1 cr I Random Record , I rO I r1 I r2 I

+-----+-----+-----+-----+-----+-----+-----+

TABLE 8-9. FCB Flf] ,Q QFiINIIIONS

system call,
The FCB

ECB Field Explanation

dr

f1 ... f8

t1,t2,t3

reserved

rc

cr

Drive code (0 - 16)
o => use default drive for file
1 => auto disk select drive A,
2 => auto disk select drive B,

16=> auto disk select drive P.

Contain the fUenane in ASCII uppercase, with high
bit = zero. fl', ... , fBI denote the high-order bit of
these poSitions, and are fUe attribute bits.

Contain the fUetype in ASCII uppercase, with high bit
= zero'. t 1 " t2'. and t3' denote the high-order bi t of
these poSitions, and are file attribute bits.
tl' = 1 => Read/Only file
t2' = 1 => System file
t3' = 1 => File has been archived

Contains the current extent number, usually set to zero
by the calling program. but can range zero - 31 during
file I/O.

Reserved for internal system use.

Record count for extent "ex" takes on values from 0 -
255 (values greater than 128 imply record count equals
12B) .

CUrrent record to read or write in a sequential file
operation, normally set to zero by the calling program
when a file is opened or created.

FC!I Field

Randall
Record ,

BOOS FILE SYSTEM

TABLE 8:9. fCB FIE1,Q DF.FINIIIONS (Coot.)

Optional random record number from 0 to 262,143 (0 -
3FFFFH). Random Record' constitutes an lS-bit value
with 1", byte rO, middle byte r1, and high byte r2.

For BOOS directory system calls, the calling program
must initialize bytes a through 11 of the FCB before
issuing the system call. The DRV_SETLABEL and
F_WRITEXFCB system calls also require the calling
program to initialize byte 12. The F_RENAME system
call requires the calling program to place the new
filename and type in bytes 17 through 27.

BOOS F_OPEN and F_MAKE system calls require the
calling program to initialize bytes 0 through 12 of
the FCB before making the call. Usually byte 12 Is
set to zero. In add! tion, if the file Is to be
processed from the beginning using sequential read or
write system calls, byte 32 (cr) must be zeroed.

After an FCB is activated by an F_OPEN or F_MAKE
system call, a program does not have to modify the
FCB to perform sequential read or write operations.
In fact, bytes ° through 31 of an activated FCB must
not be modified. However, the F_READRAND and
F_WRITERAND system calls require that a program set
bytes 33 through 35 to the requested random record
number prior to making the system call.

File directory entries maintained in the directory
area of each disk have the same format as FCBs,
excluding bytes 32 through 35, except for byte 0
which contains the file's user number. Both the
F_OPEN and F_MAKE system calls bring these entries,
excluding byte 0, into memory in the FCB specified by
the calling program. All read and write operations
on a file must specify an FCB activated in this
manner.

The BOOS updates the memory copy of the FCB during
file processing to maintain the current position
within the file. During file write operations, the
BOOS updates the memory copy of the FCB to record the
allocation of data to the file, and at the
termination of file processing, the F_CLOSE system
call permanently records this information on-disk.

Hote: Data allocated to a file during file write
operations is not completely recorded in the
directory until the calling program issues an F_CLOSE
system call. Therefore, a program that creates or

8-49

BDOS FILE SYSTEM

Bit

modifies files must close the files at the end of any
write processing; otherwise data might be lost .

File Attributes

The high-order bits of the FCB filename (fl',.oo,f8,)
and flletype (tl',t2',t3') fields are called the
Attribute Bits. Attribute Bits are one-bit Boolean
fields (1 = on, 0 = off), that indicate two kinds of
attributes within the file system: File Attributes
and Inte:"'face Attributes.

The File Attribute Bits (f1', ..• ,f4' and tl',t2 ' ,t3 1)

can indicate that a file has a defined file
attribute. These bits are recorded In a file's
directory FeBs. File attributes can be set or reset
only by the F_ATTRIB system call. When the F_HAKE
system call creates a ftle, it initializes all file
attributes to zero. A program can interrogate file
attributes in an FCB activated by the F_OPEN system
call, or in directory FCBs returned by the F_SFIRST
and F_SNEXT system calls .

Note: The BOOS file system ignores File Attribute
Bits when it attempts to locate a file in the
directory,

!lame
TAW E 8-10. rn E AD'RIBllIE BIlS

Definition

tl': Read-Only attribute - The file system prevents write
operations to a file with the Read-Only attribute set.

t2': System attribute - This attribute, if set, identifies the
file as a CP/M Plus system file, System files are not
displayed by the CP/M Plus DIR command. In addition, user
zero system files can be accessed on a Read-Only basis from
other user nlDbers,

t3': Archive attribute - This attribute is designed for user
written archive programs. When an archive program copies a
file to backup storage, it sets the archive attribute of the
copied files. The file system autanatically resets the
archive attribute of a directory FCB that has been issued a
write coomand. The archive program can test this attribute
in each of the file's directory FCBs via the F~IRST and
F_SNEXT system calls. If all directory FCBs have the
archive attribute set, it indicates that the file has not
been modified since the previous archive. Note that the
CP/M Plus PIP utility supports file archival.

B-50

Bit

BOOS FILE SYSTEM

URI E 8:-10. ETI.E ATIlUBlTIE BITS (Coot.)
Definition

n I , ••• ,f4': User- definable attributes.
f5' •...• f8 t : Interface attributes.

These attributes cannot be used as file attributes.
Interface attributes fS' and f6' can request options for the
FJW(E, F_CLOSE, FJ)Fl.ETE. and FJTI'RIB system calls. The
table below defines options indicated by the 1'5 I and f6 '
Interface Attr 1bute Bits for these system calls.

TABLe: B-1 1. BOOS INTERFACE ATIRmUTES
BIX§ Syst;em Call Interface Attribute Definition

16

19

22

30

F_a.OSE fS' : 1 Partial Close

FJ)ELETE fS' : Delete file XFCBs
only

F_HAKE f6' :;; 1 Assign password to
file

F-fiITRIB f61 :;; 1 : Set file byte count

Each interface attribute is discussed in detail in
the def1nitions of the above system calls .
Attributes f5 1 and f6' are always reset when control
Is returned to the calling program. Interface
attributes f7 ' and fBI are reserved for internal use
by the BDOS file system.

User Number Conventions

The CP/M Plus User facility divides each drive
directory into 16 logically independent directories,
designated as user 0 through user 15 . Physically,
all user directories share the directory area of a
drive. In most other aspects, however, they are
independent. For example, files with the same name
can exist on different user numbers of the same drive
with no conflict. However, a single file cannot
reside under more than one user number.

Only one user number is active for a program at one
time, and the current user number applies to all
drives on the system. Furthermore, the FeB format
does not contain any field that can be used to
override the current user number . As a result, all
file and directory operations reference directories
a ssociated with the current user number. However, it

B- 51

BDOS FILE SYSTEM

is possible for a program to access files on
different user numbers; this can be accomplished by
changing the user number with the F_USERNUM system
call before accessing the desired file. Changing the
user number in this way does not affect the CCP's
user number displayed in the system prompt. When the
transient program terminates, the original user
number is restored. However, an option of the
P_CHAIN system call allows a program to pass its
current user number and default drive to the chained
program. Note that this technique must be used
carefully. An error occurs if a program attempts to
read or write to a file under a user number different
from the user number that was active when the file
was opened.

User zero has special properties under CP/M Plus .
When the current user number is not equal to zero,
and if a requested file is not present under the
current user number, the file system automatically
attempts to open the file under user zero. If the
file exists under user zero, and if it has the system
(SYS) attribute bit (t2') set, the file is opened
from user zero. Note, however, that files opened in
this way are available only for read access. As a
result, commonly needed utilities need not be copied
to all user numbers on a directory, and you can
control which user zero files are directly accessible
from other user numbers.

Directory Labels and XFCBs

The BDOS file system includes two special types of
FCBs: the XFCB and the Directory Label. The XFCB is
an extended FCB that optionally can be associated
with a fll e in the directory. If present, it
contains the file's password . The format of the XFCB
follows.

B-52

BDOS FILE SYSTEM

+----+---+----~--+----+----+----+----+

OOH I dr nane... I
+----+---+---+-----+---+----+-----+----+

OSH ..• nano I type I pm I 51 I 52 I rc I I
+-----~-+----+----+---+----+----+---+

lOH I password I
+-----+-----+-----+------+-----+-----+-----+-----+

18H I reserved I
+-----+-----+-----+-----+-----+-----+-----+-----+

XFCB FORMAT

dr------drive code (0 - 16)
name----filename field
type----filetype field
pm------password mode

bit 7--Read mode
bit 6--Write mode
bit 5-Delete mode
··-----blt references are right to left,

relative to zero
sl,s2.rc-reserved for system use
password--ei8ht-byte password field (encrypted)
reserved--elght-byte reserved area

An XFCB can be created only on a drive that has a
directory label, and only if the directory label has
password protection activated. For drives 1n this
state, an XFCB can be created for a file 1n three
ways: by the F_HAKE system call, by the F_WRITEXFeS
system call, or by typing a SET command at the
console. The F_HAKE system call creates an XFeS if
the calling program requests that a password be
assigned to the created file. The F_WRITEXFeS system
call can be used to assign a password to an existing
flle.

Note: In the directory, an XFeS is identified by a
drive byte value (byte 0 in the FCS) equal to 16
(10H) + H, where H equals the user number.

For each drive the directory label specifies if file
password support is to be activated, and if date and
time stamping for files is to be performed. The
format of the Directory Label follows.

B-53

BDOS FILE SYSTEM

+ +----+1--+----1 +----+-----+----+
OOHldrl name •••••

+-----+-----+-----+----+-----1 +-----+-----+
08H ••• namet type I dl I 51 I 52 I rc I

+---~I--~-+---+---+----++--+----+

10H I password I
+---~I --+----+-----+-----+----+----+----+

lSH I tal I ts2 I
+----+---+----+----+----+---+----+---+

DIRECTORY LABEL FORMAT

dr----------drive code (0 - 16)
name--------Directory Label name
type--------Directory Label type
dl---------Directory Label data byte

bit 7--requlre passwords for password-
protected fUes

bit 6--perfonn access time stamping
bit 5-perform update time stamping
bit 4--perform create time stamping
bit O--Dlrectory Label exists
"--bit references are right to

left, relative to zero
sl,s2.rc-n/a
password--elght-byte password field (encrypted)
t.l-----four-byte creation or access time-stamp field
ts2-----four-byte update time-stamp field

Only one Directory Label can exist in a drive's
directory. The Directory Label name and type fields
are not used to search for a Directory Labelj they
can be used to identify a disk. A Directory Label
can be created, or its fields can be updated by the
DRV_SETLABEL system call. This system call can also
assign a Directory Label a password. The Directory
Label password, if assigned, cannot be circumvented,
whereas file password protection is an option
controlled by the Directory Label. Thus, access to
the Directory Label password provides a kind of
super-user status on that drive. That is, any
password-protected file can be read simply by setting
the Directory-Label Data Byte bit seven to zero,
disabling password protection for the whole drive.
However, this can be prevented by assigning a
password to the Directory Label itself with the SET
command.

The BDOS file system has no system call to read the
Directory Label FCB directly. However, the
Directory-Label data byte can be read directly with
DRV_GETLABEL. In add1t1on, the F_SFIRST and F_SNEXT
system calls with a '1 in the FCB drive byte can be
used to find the Directory Label on the default
drive. In the directory, the Directory Label is

B-5~

-

BOOS FILE SYSTEM

identified by a drive byte value (byte zero in the
FCB) equal to 32 (20H).

File Date and Time Stamps

The CP/M Plus File System uses a special type of
directory entry called an SFCS to record date and
time stamps for files. When a directory has been
initialized for date and time stamping by invoking
the INITDla utility, SFCSs reside 1n every fourth
position of the directory. Each SFCS maintains the
date and time stamps for the previous three directory
entries as shown in the figure below.

+---+---+
I I FCB 0
I I

+---+---+
I I FCB 1 I
I I I
+---+---+
I I feB 2
I I
+---+------------+------------+------------+--+
121HI stamps for I stamps for I stamps for IXXI
I I feb 0 I feb 1 I feb 2 IXXI
_+I-------+I--------+I-------~-+

FIGURE B-6. DIRECTORY RECORD WITH SFCB

This figure shows a directory record that contains an
SFCB. Directory records consist of four directory
entries, each 32 bytes long. SFCBs always occupy the
last position of a directory record.

The SFCB directory item contains five fields. The
first field is one byte long and contains the value
21H. This value identifies the SFCB in the
directory. The next three fields, the SFCB
subfields, contain the date and time stamps for their
corresponding FCB entries in the directory record.
These fields are ten bytes long. The last byte of
the SFCB is reserved for system use. The format of
the SFCB subfields is shown below.

B-55

BDOS FILE SYSTEM

OH lH 5H 9H OAll OEll

+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+
IMAR- 1 UPDATE STAMP 1 ACCESS/CREATE IP/w IRESERI
IKER 1 (FCB 0) 1 (feB 0) IIf:)DE 1 -VEDI
+----+---+----+---+---+----+---+----+----+-----+----+

1 UPDATE STAMP 1 ACCESS/CREATE IP/W 1 RESER 1
OEll 1 (feB 1) 1 (feB 1) IHODE 1 -VEDI

+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+
1 UPDATE STATE 1 ACCESS/CREATE IP/W 1 RESERVED 1

15H 1 (FCB 2) 1 (feB 2) IIf:)DE 1 1
+--+---+--+---+---+---+---+---+---+--+--- +

An SFeB subfield contaln~ valid information only if
its corresponding FeB 1n the directory record 1s an
extent-zero FCB. In other words, the FCB referenced
by the SreB 1s a fl1e l s first directory entry. For
password-protected ftles, the SFCB subfle!d also
contains the password mode of the file. This field
is zero for files that are not password-protected.
The F_SFIRST and f_SNEXT system calls can be used to
access SFCBs directly. In addition, the F_TIHEDATE
system call can return the date and time stamps and
password mode for a specified file. Refer to
F_TIMEDATE for a description of the format of a date
and time stamp field.

CP/M Plus supports three types of file stamping:
create, access, and update. Create stamps record
when the file was created, access stamps record when
the file was last opened, and update stamps record
the last time the file was modified. Create and
access stamps share the same field. As a result,
file-access stamping and file-create stamping are
mutually exclusive. Turning on file-access stamping
with the SET command, for example, automatically
turns off file-create stamping if it is enabled.

The CP/M Plus utility, INITDIR, initializes a
directory for date and time stamping by placing SFCBs
in every fourth directory entry. Date and time
stamping will not work on disks that have not been
initialized in this manner. For initialized disks
the Directory Label determines the type of date and
time stamping supported for files on the drive . If a
disk does not have a Directory Label, or if it is
Read-Only, or if the disk's Directory Label does not
speoify date and time stamping, then date and time
stamping for files is not performed.

Note: The Directory Label is also time-stamped, but
these stamps are not made in an SFCB. The time-stamp
fields in the last eight bytes of the Directory Label
record when it was created and last updated. Access
stamping for Directory Labels is not supported.

B- 56

8DOS FILE SYSTEM

The snos file system uses the CP/M Plus system date
and time when it records a date and time stamp. This
value 1s maintained in a field 1n the System Control
Block (Se8) . The BIOS module directly updates the
SeB system date and time field once per second . The
CP/M Plus DATE utility can be used to set the system
date and time.

File Passwords

Pa:!5lOrd

Files can be assigned passwords 1n three ways: by
the F_HAKE system call, by the F_WRITEXFCB system
call, or by the SET command. A file's password can
also be changed by the F_WRITEXFCB system call if the
original password 1s supplied.

Password protection 1s provided 1n one of three
modes, The following table shows the difference 1n
access level allowed to system calls when the
password is not supplied.

TABLE B--12. PASSWORD PROTECTION KlDES

tbJe prM Level (when no password is supplied.)

1. Read The fUe cannot be read.

2. Write The f11 e can be read, but not modified.

3. Delete The fUe can be modified, but not deleted.

If a file is password-protected in Read mode, the
password must be supplied to open the file. A file
protected in Write mode cannot be written to without
the password. A file protected in Delete mode allows
read and write access, but the user must specify the
password to delete the file, rename the file, or to
modify the file'S attributes. Thus, password
protection in Read mode implies Write and Delete mode
protection, and Write mode protection implies Delete
mode protection. All three modes require the user to
specify the password to delete the file, rename the
file, or to modify the fUe's attributes.

If the correct password is supplied, or if password
protection is disabled by the Directory Label, then
access to the system calls is the same a" for a file
that is not password-protected. In addi tiOD, the
F_SFIRST and F_SNEXT system call" are not affected by
file passwords. The system calls that test for
password are listed below:

8-57

BDOS FILE SYSTEM

15 F_OPEN
19 F _DELETE
23 F _RENAME
30 F_ATTRIB
99 F_TRUNCATE

100 DRV_SETLABEL
103 F_WRITEXFCB

File passwords are eight bytes In length. They are
maintained In the XFCB Directory Label In encrypted
form. To make a system call for a ftle that requires
a password, a program must place the password In the
first eight bytes of the current OMA, or specify it
with the F_PASSWD system call prior to making the
function call.

Note: The SDOS keeps an assigned default password
value until it Is replaced with a new assigned value,
even if password protection Is temporarily set to
NONE using the SET command.

File Byte Counts

Although the logical record size of CP/M Plus 1s
restricted to 128 bytes, CP/M Plus does provide a
mechanism to store and retrieve a byte count for a
file. This facility can identify the last byte of
the last record of a file. The F_SIZE system call
returns the random record number, plus one, of the
last record of a file.

The F_ATTRIB system call can set a file's byte count .
Conversely, the F_OPEN system call can return a
fll e' s byte count to the cr field of the FCB. The
F_SFIRST and F_SNEXT system calls also return a
file's byte count. These system calls return the
byte count in the s1 field of the FCS in the current
DMA buffer (see F_SFIRST and F_DMASET).

Note: The file system does not access or update the
byte count value in rile read or write operations.
However, the F_HAKE system call does set the byte
count of a file to zero when it creates a file in the
directory.

BDOS Error Handling

The snos file system responds to error situations in
one of three way s:

Hethod 1. It returns to the calling program
with return codes in register A, H,
and L identifying the error.

B-58

BOOS FILE SYSTEM

Method 2. It displays an error message on the
console, and branches to the BIOS
warm-start entry point, thereby
terminating exeoution of the calling
program.

Method 3. It displays an error message on the
console, and returns to the calling
program as 1n method 1.

The file system handles the majority of errors it
detects by method 1. Two examples of this kind of
error are the file-not-found error for the F_OPEN
system call and the reading-unwritten-data error for
a read system call. Hore serious errors, such as
disk 1/0 errors, are usually handled by method 2.
Errors 1n this category, called physical and extended
errors, can also be reported by methods 1 and 3 under
program control.

The aDOS Error Hode, which can exist in three states,
determines how the file system handles physical and
extended errors. In the defaul t state, the enos
displays the error message, and terminates the
calling program (method 2). In return error mode,
the enos returns control to the calling program with
the error identified in registers A, H. and L (method
1). In return and display mode, the enos returns
control to the calling program with the error
identified in registers A, H, and L, and also
displays the error message at the console (method 3).
While both return modes protect a program from
termination because of a physical or extended error,
the return and display mode also allows the calling
program to take advantage of the built-in error
reporting of the enos file system. Physical and
extended errors are displayed on the console in the
following format:

CP/M Error on d: error .essage
system call = nn File = fl1ename.typ

where d identifies the drive selected when the error
condition is detectedj error message identifies the
errorj .nn is the system call number; and filename.typ
identifies the file specified by the system call. If
the system call did not involve an FCB, the file
information is omitted.

B-59

BDOS FILE SYSTEH

The BOOS physical errors are identified by the
following error messages:

o Disk 110
o Invalid Drive
o Read-Only File
o Read-Only Disk

The Disk 110 error results from an error condition
returned to the BOOS from the 8IOS module.

If the BIOS does not support the selected disk, the
BOOS returns an error code resulting 1n the Invalld
Drive error message.

The Read-Only File error 1s returned when a program
attempts to write to a file that is marked with the
Read-Only attribute.

The Read-Only Disk error 1s returned when a program
writes to a disk that 1s in Read-Only status .

The BOOS extended errors are identified by the
following error messages:

o Password Error
o File Exists
o ? in Filename

The file Password Error is returned when the file
password is not supplied, or when it is incorrect.
The File Exists error is returned by the F_H AKE and
F_RENAHE system calls when the BOOS detects a
duplicate filespec conflict.

The? in Filename error is returned when the BOOS
detects a ? in the filename or type field of the
passed FCB for the F_RENAHE, F_ATTRIB, F_ OPEN ,
F_HAKE, and F_TRUNCATE BOOS system calls.

The following paragraphs describe the error return
code conventions of the BOOS file system calls . aDOS
file system calls fall into three categories : they
return an Error Code, a Directory Code, or an Error
Flag.

The following system calls return an Error Code in
register A:

20
21
33
34
40

F_READ
F-WRITE
F_READRAND
F _WRITERAND
F_WRlTEZF

Read Sequential
Write Sequential
Read Random
Write Random
Write Random w/Zer o Fill

B- 60

'4

BDOS FILE SYSTEM

TABLE 8-13. REIirsIER A ERROR-CODE DEFINITIOtiS
Code Heapine

00 Sy stem call successful
255 Physical error : refer to register H

01 Reading unwritten data or
No available directory space (Write Sequential)

02 No available data block
03 Cannot close current extent
04 Seek to unwritten extent
05 No available directory space
06 Randan record mrnber out of range
09 Invalid FeB (previous BOOS close call

returned an error code and invalidated the FeB)
10 Media Changed (A media change was detected on

the FCB's drive after the FeB was opened.)

For 8DOS read or write system calls, the file system
also sets register H to the number of 128-byte
records successfully read or written before the error
was encountered. On successful system calls, Error
Code = zero, register H 1s set to zero. If the Error
Code equals 255, register H contains a physical error
code (see the table.)

The following system calls return a Directory Code in
register A:

15 F_OPEN
16 F _CLOSE
11 F_SFIRST
18 F _SNEXT
19 F _DELETE
22 F _MAKE
23 F_RENAME
30 F_ATTRIB
35 F_SIZE
99 F_TRUNCATE
100 DRV_SETLABEL
102 F_TIMEDATE
103 F_WRITEXFCB

Open File
Close File
Search for First
Search for Next
Delete File
Make File
Rename File
Set File Attributes
Compute File Size
Truncate File
Set Directory Label
Read File Date Stamps and Password Hode
Write Fll e XFCB

TABLE 6-]4. RFIjISIER A DIBEcmRY-oonE DEFINITIONS
COde !leaning

00 - 03
255

Successful system call
Unsuccessful system call

With the exception of the F_SFIRST and F_SNEXT system
calls, all system calls in this category return with
the directory code set to zero on successful returns.

B-61

BDOS FILE SYSTEM

However, for the F_SfIRST and F_SNEXT system calls, a
successful Directory Code also identifies the
relative start!ng position of the directory entry 1n
the calling program's current OMA buffer.

If the F_ERRHODE system call 1s used to place the
SDOS 1n return error mode, the following system calls
return an Error Flag on physical errors:

n DRV.JIET Select Disk
lI6 DRV....sPACE Get Disk Free Space
lIS F..J"LUS/! Flush Buffer>
98 DRV-FREEBLOCKS Free Blocks
101 DRV...J;ElUBtl. Return Directory Label. Dots

TABLE 8-15. REGISTER A ERROR-fJ.f(j DEFINITIONS
Code MeantOS

00 Successful sy stem call
255 Physical error : refer to register H

The SOOS returns non-zero values 1n register H to
identify a physical or extended error if the BOOS
Error Mode 1s 1n one of the return modes. Except for
system calls that return a Directory Code, register A
equal to 255 indicates that register H identifies the
physical or extended error. For system calls that
return a Directory Code, if register A equals 255 and
register H is not equal to zero, register H
identifies the physical or extended error. The
following table shows the physical and extended error
codes returned in register H.

TABLE 8:16. RfIiISIER A PHYSICAL AND EXTfNPED EBROR-CODE DfFlNTIIONS
Code Meaning

00 No error, or not a register H error
01 Disk I/O error
02 Read-Only Disk
03 Read-Only File or File Opened under user zero fran another user

nunber or file pa:ssword-protected in write mode and correct
password not specified.

04 Invalid Drive : drive :select error
07 Password Error
08 File Exi3ts
09 '/ in Filename

B-62

•

BDOS FILE SYSTEM

The following two system calls represent a special
case because they return an address in registers H
and L.

27
31

DRV_ALLOCVEC
DRV_DPB

Get Addr(Alloc)
Get Addr(Disk Parms)

When the BOOS 1s 1n return error mode and 1 t detects
a physical error for these system calls, it returns
to the calling program with registers A, H. and L all
set to 255; otherwise they return no error code.

BDOS-Drive System Calls

+--+
DRY_ACCESS

SYSTEM CALL 38: ACCESS DRIVE

+--+
I I
I Entry Parameters: 1
I Register C: 26H I
I I

+--+
This 1s an HP/H system call that 1s not supported
under CP/M Plus. If called, the file system returns
a zero 1n register A indicating that the access
request is successful.

+---+
I I
I DRY_ALLOCVEC I
I I
I SYSTEM CALL 27: GET ADDR(ALLOC) I
I I
+---+
I I
I Entry Parameters: I
I Register C: 18H I
I I
I Returned Value: I
I Registers HL: ALLOC Address I
I I
+---+

CP/H Plus maintains an allocation vector in main
memory for each active disk drive. Some programs use
the information provided by the allocation vector to
determine the amount of free data space on a drive.

B-63

BOOS FILE SYSTEM

Note: The allocation information might be inaccurate
if the drive has been marked Read-Only.

DRV_ALLOCVEC returns the base address of the
allocation vector for the currently selected drive in
register pair HL. If a physical error Is encountered
when the BDOS error mode Is one of the return mode"
(see the F_ERRHODE system call), DRV_ALLOCVEC returns
the value OFFFFH In the register pair HL.

In banked CP/M Plus systems, the allocation vector
can be placed In bank zero. In this case a transient
program cannot access the allocation vector. However,
the DRV_SPACE system call can be used to directly
return the number of free 128-byte records on a
drive. The CPIM Plus utilities that display a
drive's free space, OIR and SHOW, u.se DRV_SPACE for
that purpose.

+---+ I I
I DRV_ALLRESET I
I I
I SYSTEM CALL 13: RESET DISK SYSTEM I
I I

+---+ I I
I Entry Parameters: I
I Register C: ODH I
I I

+---+
DRV_ALLRESET restores the file system to a reset
state where all the disk drives are set to Read-Write
(see DRV_SETRO and DRV_ROVEe), the default disk is
set to drive A, and the default DMA address is reset
to 0080H. This system call can be used, for example,
by an application program that requires disk changes
during operation. DRV_RESET can also be used for
this purpose.

B- 64

BDOS FILE SYSTEM

+---+
I I
I DRV_DPB I
I I
I SYSTEM CALL 31: GET ADDR (DPB PARMS) I
I I
+---+
I I
f Entry Parameters: I
I Register C: lFH I
I I
I Returned Value: 1
I Registers HL: OPB Address I
I I
+---+

DRV_OPS returns the base address of the BIOS-resident
Disk Parameter Block (OPS) for the currently selected
drive in register pair HL. Refer to the section on
Disk Parameter Headers for the format of the OPB.
The calling program can use this address to extract
the disk parameter values.

If a physical error is encountered when the BOOS
error mode is one of the return modes (see the
F_ERRHOOE system call), DRV_OPS returns the value
OFFFFH In the register pair HL.

+--+
DRLFREE

SYSTEM CALL 39: FREE DRIVE

+--+
I I
I Entry Parameters: I
I Register C: 27H I
I I
+--+

This 1s an HP/H system call that Is not supported
under CP/M Plus. If called, the file system returns
a zero 1n register A indicating that the free request
1s successful.

B-65

- j

BDOS FILE SYSTEM

the calling program in register A. Register A equal
to zero indicates that no directory label exists on
the specified drive. If a physical error Is
encountered by DRV_GETLABEL when the BDOS Error mode
is In one of the return modes (see the F_ERRHODE
system call), this function returns with register A
set to OFFH (255 decimal) and register H set to one
of the following:

01 Disk I/O error
04 : Invalid drive error

+---+
I

DRV_LOGINVEC I
I

SYSTEM CALL 24: RETURN LOGIN VECTOR I
I

+---+
I I
I Entry Parameters: I
I Register C: 18H I
I I
I Returned Value: I
I Registers HL: Login Vector I
I I

+---+
DRV_LOGINVEC returns the login vector in register
pair HL. The login vector is a 16-bit value with the
least-significant bit of L corresponding to drive Ai
and the high-order bit of H corresponding to the
sixteenth drive, labeled P. A 0 bit indicates that
the drive is not on-line, while a 1 bit indicates the
drive is active. A drive is made active by either an
explicit BOOS Select Disk call (DRV_SET) or an
implicit selection when a BOOS file operation
specifies a non-zero dr byte in the FCB. DRV_LOGINVEC
maintains compatibilty with earlier releases since
registers A and L contain the same values upon
return.

B-68

BDOS FILE SYSTEH

+--+
I I
I DRV_RESET I
I I
I SYSTEH CALL 37: RESET DRIVE I
I I

+--+ I I
t Entry Parameters: I
I Regi ster C: 2SH I
I Register DE: Drive Vector 1
I I
I Returned Value: I
I Register A: OOH I
I I

+--+
DRV_RESET restores the specified drive(s) to the
reset state, A reset drive 1s not logged-in and is
1n Read-Write status. The passed parameter in
register pair DE 1s a 16-hlt vector of drives to be
reset, where the least-significant bit corresponds to
the first drive A; and the high-order bit corresponds
to the sixteenth drive, labeled P. Bit values of 1
indicate that the specified drive 1s to be reset.

DRV_ALLRESET and DRV_RESET allow a program to control
when a disk's directory is to be reinitialized
(logged-in) for file operations. When CP/M Plus is
cold-started, all drives are in the reset state.
Subsequently , as drives are referenced, they are
automatically logged-in by the file system until
reset by a system call or a system reset. Note that
DRV_ALLRESET and DRV_RESET have similar effects
except that whereas DRV_ALLRESET automatically resets
all drives on the system, any combination of drives
can be reset with DRV_RESET.

The primary use of DRV_RESET under CP/M Plus is to
prepare for a media change on a drive. Subsequently,
when the drive is accessed by a system call, the
drive is automatically logged-in. Be sure to close
your files, particularly files that have been written
to, prior to resetting a drive.

Although CP/M Plus automatically relogs-in removable
media when media changes are detected, you should
still explicitly reset a drive before prompting the
user to change disks.

B-69

BOOS FILE SYSTEH

+---+
I

DRV_ROVEC I
I

SYSTEH CALL 29: GET READ-ONLY VECTOR I
I

+---+
Entry Parameters:

Register C: 1 DH

Returned Value:
Register" HL: RIO Vector Value

I
I
I
I
I
I
I

+---+
DRV_ROVEC returns a bit vector 1n register pair HL
that indicates which drives have the temporary Read
Only bit set. The Read-Only bit can be set only by a
aDOS Write-Protect Disk call.

The format of the bit vector Is analogous to that of
the logIn vector returned by DRV_LOGINVEC. The least
significant btt corresponds to drive A, while the
most-significant bit corresponds to drive P.

+---+
I I
I DRV_SET I
I I
I SYSTEM CALL 14: SELECT DISK I
I I
+---+

Entry Parameters:
Register C: OEH
Register E: Selected Disk

Returned Value:
Register A: Error Flag
Register H: Phy sical Error

+---+
DRV_SET designates the disk drive named in register E
as the default disk for subsequent BOOS file
operations. Register E is set to 0 for drive A, 1
for drive B, and so on through 15 for drive P in a
full 16-drive system. In addition, ORV_SET logs in
the designated drive if it is currently in the reset
state. Logging-in a drive activates the drive's
directory until the next disk system reset or drive
reset operation.

B- 70

-

BOOS FILE SYSTEM

FeBs that spectfy drive code zero (dr = DOH)
automatically reference the currently selected
default drive. FCBs with drive code values between 1
and 16, however, ignore the selected default drive
and directly reference drives A through P.

Upon return, register A contains a zero if the select
operation was successful. If a physical error was
encountered, DRV_SET performs different actions
depending on the eDOS error mode (see F_ERRMODE). If
the BOOS error mode is 1n the default mode, a message
identifying the error 1s displayed at the console and
the calling program 1s terminated. Otherwise DRV_SET
returns to the calling program with register A set to
OFFH and register H set to one of the following
physical error codes:

01 Disk I/O Error
OLi : Invalid drive

+--+
I I
I DRV_SETLABEL I
I I
I SYSTEM CALL 100: SET DIRECTORY LABEL I
I I

+--+ I I
I Entry Parameters: I
I Register C: 6~H I
I Register DE: FCB Address I
I I
I Returned Value: t
I Register A Directory Code I
I Register H: Physical or I
I Extended Error I
I I

+--+
DRV_SETLABEL creates a directory label or updates the
existing directory label for the specified drive.
The calling program passes in register pair DE the
address of an FCB containing the name, type, and
extent fields to be assigned to the directory label.
The name and type fields of the referenced FCB are
not used to locate the directory label in the
directorYi they are simply copied into the updated or
created directory label. The extent field of the FCB
(byte 12) contains the user's specification of the
directory-label data byte. The definition of the
directory-label data byte is:

B-71

BDOS FILE SYSTEM

btt 7--Require passwords for password- protected files
6--Perform access date and time stamping
5--Perform update date and time stamping
4--Perform create date and time stamping
O--Assign a new password to the directory label

If the current directory label 1s password-protected,
the correct password must be placed 1n the first
eight bytes of the current DMA, or have been
previously established as the default password (see
F_PASSWD). If bit 0 (the low-order bit) of byte 12 of
the FeB is set to 1, 1 t indicates that a new password
for the directory label has been placed 1n the second
eight bytes of the current DHA.

DRV_SETLABEL also requires that the referenced
directory contain SFCBs to activate date and time
stamping on the drive. If an attempt is made to
activate date and time stamping when no SFCBs exist,
DRV_SETLABEL returns an error code of OFFH in
register A and performs no action. The CP/M Plus
INITDIR utility initial1zes a directory for date and
time stamping by plaCing an SFCB record in every
fourth entry of the directory.

DRV_SETLABEL returns a Directory Code in register A
with the value 0 if the directory label create or
update is successfulj or OFFH (255 decimal) if no
space exists in the referenced directory to create a
directory labelj or if date and time stamping was
requested and the referenced directory did not
contain SFCBs. Register H is set to zero in both of
these cases. If a physical error or extended error is
encountered, DRV_SETLABEL performs different actions
depending on the BOOS error mode (see F_ERRMODE). If
the BDOS error mode is the default mode, a message
identifying the error is displayed at the console and
the calling program is terminated . Otherwise
DRV_SETLABEL returns to the calling program with
register A set to OFFH and register H set to one of
the following phYSical or extended error codes:

01 Disk liD error
02 Read-Only disk
04 Invalid drive error
07 File password error

B-72

BOOS FILE SYSTEM

+---+
I I
I DRY_SETRO I
I I
I SYSTEM CALL 28: WRITE PROTECT DISK I
I I
+---+
I I
I Entry Parameters: I
I Register C: lCH I
I I

+---+
DRV_SETRO provides temporary write protection for the
currently selected disk by marking the drive as Read
Only. No program can write to a disk that 1s in the
Read-Only state. A drive reset operation must be
performed for a Read-Only drive to restore it to the
Read-Write state (see DRV_ALLRESET and DRV_RESET),

+--+
DRLSPACE

SYSTEM CALL ~6: GET DISK FREE SPACE

+--+
Entry Parameters:

Register C:
E:

Returned Value:

Register A:
Register H:

2EH
Drive

First 3 bytes
of current DMA
buffer
Error Flag
Phy sical Error

+--+
DRV_SPACE determines the number of free sectors, 128-
byte records, on the specified drive. The calling
program passes the drive number in register E, with 0
for drive A, 1 for B, and so on, through 15 for drive
P in a full 16-drive system. DRV_SPACE returns a
binary number in the first 3 bytes of the current DMA
buffer. This number is returned in the following
format:

B-73

BDOS FILE SYSTEM

I fsO I fs 1 I fs2 I

fsO = low byte
fsl = middle byte
fs2 = high byte

Note: The returned free - space value might be
inaccurate if the drive has been marked Read-Only.

Upon return, register A is set to zero if the system
call is successful. However, if the BOOS Error Hode
is one o~ the return modes (see F_ERRHODE) and a
physical error is encountered, register A is set to
OFFH (255 decimal) and register H is set to one of
the following values:

01 Disk 1/0 error
04 : Invalid drive error

BOOS File System Calls

+---+
F_ATTRIB

SYSTEM CALL 30: SET FILE ATTRIBUTES

+---+
Entry Parameters:

Register e:
Registers DE:

Returned Value:
Register A:
Register H:

1 EH
FeB Address

Directory Code
Phy sical or
Extended Error

+---+
By calling F_ATTRIB, a program can modify a file's
attributes and set its last-record byte count . Other
system calls can be called to interrogate these file
parameters, but only F_ATTRIB can change them. The
file attributes that can be set or reset by F_ATTRIB
are fl' through f4', Read - Only (tl'), System (t2'),
and Archive (t3').

B-74

i

BDOS FILE SYSTEM

The regtster pair DE addresses an FCB containing a
filename with the appropriate attributes set or
reset. The calling program must ensure that it does
not specify an ambiguous filename. In addition, if
the specified file is password-protected, the correct
password must be placed 1n the first eight bytes of
the current DMA buffer or have been previously
established as the default password (see F_PASSWD).

Interface attribute f6' specifies whether the last
record byte count of the specified file 1s to be set:

f6' = 0 : Do not set byte count (default mode)
f6' := 1 : Set byte count

If interface attribute f6' 1s set, the calling
program must set the cr field of the referenced FeB
to the byte-count value. A program can access a
file's byte-count value with the F_OPEN. F_SFIRST, or
F_SNEXT system calls.

F_ATTRIB searches the referenced directory for
entries belonging to the current user number that
match the FCB-specified name and type fields. It
then updates the directory to contain the selected
indi cators, and if interface attribute f6' is set,
the specified byte-count value. Note that the last
record byte count is maintained 1n byte 13 of a
file's directory FCBs.

File attributes tl', t2', and t3' are defined by CP/M
Plus. Attributes fl' through f4' are not presently
used, but can be useful for application programs
because they are not involved in the matching program
used by the BOOS during Open File and Close File
operations. Indicators f5' through f8' are reserved
for use as interface attributes.

Upon return. F_ATTRIB returns a Directory Code in
register A with the value a if the system call is
successful, or OFFH (255 Decimal) if the file
specified by the referenced FCB is not found.
Register H is set to zero in both of these cases. If
a physical or extended error is encountered, F_ATTRIB
performs different actions depending on the BOOS
error mode (see F_ERRMOOE). If the BOOS error mode is
the default mode, a message identifying the error is
displayed at the console and the program is
terminated. Otherwise F_ATTRIB returns to the calling
program with register A set to OFFH, and register H
set to one of the following physical or extended
error codes:

B-75

aDOS FILE SYSTEM

01 Disk I/O error
02 Read-Only disk
04 Select error
07 File password error
09 ? in filename or filetype field

+---+
I I
I F_CLOSE I
I I
I SYSTEM CALL 16: CLOSE FILE I
I I

+---+
I I
I Entry Parameters: I
I Register C: 10H I
I Registers DE: FCB Address I
I I
I Returned Value: I
I Register A: Directory Code I
I Register H: Physical or I
I Extended Error I
I I
+---+

F_CLOSE performs the inverse of the F_OPEN system
call. The calling program passes the address of an
FCB in register pair DE. The referenced FCB must
have been previously activated by a successful F_OPEN
or F_HAKE system call. Interface attribute f5'
specifies how the file is to be closed as shown
below:

f5' : 0
f5' :; 1

Permanent close (default mode)
Partial close

A permanent close operation indicates that the
program has completed file operations on the file . A
partial close operation updates the directory, but
indicates that the file is to be maintained in the
open state .

If the referenced FCB contains new information
because of write operations to the FCB, F_ CLOSE
permanently records the new information in the
referenced disk directory. Note that the FCB does
not contain new information, and the directory update
step is bypassed if only read or update operations
have been made to the referenced FCB .

Upon return, F_CLOSE returns a directory code in
registe r A with the value OOH if the close was
successful, or FFH (255 decimal) if the file was not
found . Register H is set to zero in both of these

8- 76

BOOS FILE SYSTEM

cases. If a physical or extended error is
encountered, F_CLOSE performs different actions
depending on the BOOS error mode (see F_ERRHODE).
If the BOOS error mode 1s in the defaul t mode, a
message identifying the error 1s displayed at the
console and the calling program is terminated.
Otherwise F_CLOSE returns to the calling program with
register A set to OFFH and register H set to one of
the following phYSical error codes:

01 Disk 1/0 error
02 Read-Only disk
04 Invalid drive error

+---+
I I
I F_DELETE I
I I
I SYSTEM CALL 19: DELETE FILE I
I I

+---+
Entry Parameters:

Register C:
Registers DE:

Returned Value:
Register A:
Register H:

13H
FCB AddrelSs

Directory Code
Extended or
PhYSical Error

I
I
I
I
I
I
I
I
I
I

+---+
F_DELETE removes files or XFCBs that match the FCB
addressed in register pair DE. The filename and
filetype can contain ambiguous references (question
marks in bytes fl through t3), but the dr byte cannot
be ambiguous as it can in the F_SFIRST and F_SNEXT
system calls. Interface attribute f5' specifies the
type of delete operation that is performed.

f5' = 0 : Standard Delete (default mode)
f5' = 1 : Delete only XFCBs

If any of the files that the referenced FCB specify
are password-protected, the correct password must be
placed in the first eight bytes of the current DM!
buffer, or have been previously established as the
default password (see F_PASSWD).

For standard delete operations, F_DELETE removes all
directory entries belonging to files that match the
referenced FCB. All disk directory and data space
owned by the deleted files is returned to free space

B-77

...

BDOS FILE SYSTEM

and becomes available for allocation to other files.
Directory XFCBs that were owned by the deleted files
are also removed from the directory. If interface
attribute f5' of the FCB is set to 1, F_DELETE
deletes only the directory XFCBs that match the
referenced FCB.

Note: If any of the files that match the input FCB
specification fail the password check, or are Read
Only, then F_DELETE does not delete any files or
XFCBs. This applies to both types of delete
operations.

Upon return, F_DELETE returns a Directory Code in
register A with the value 0 if the delete is
successful, or 255 (OFFH) if no file that matches the
referenced FCB is found. Register H is set to zero
in both of these cases. If a physical or extended
error is encountered, F_DELETE performs different
actions depending on the BDOS error mode (see
SETERRHODE). If the BDOS error mode is the defaul t
mode, a message identifying the error is displayed at
the console and the calling program is terminated.
Otherwise F_DELETE returns to the calling program
with register A set to OFFH and register H set to one
of the following physical or extended error codes:

01 Disk I/O error
02 Read-Only disk
03 Read-Only file
O~ Invalid drive error
07 File password error

+---+
I I
I F_DMASET I
I I
I SYSTEM CALL 26: SET DMA ADDRESS I
I I

+---+
I
I
I
I
I

Entry Parameters:
Register C:
Registers DE:

, AH
DMA Address

+---+
DMA is an acronym for Direct Memory Address, which is
often used in connection with disk controllers that
directly access the memory of the computer to
transfer data to and from the disk subsystem. Under
CP/M Plus, the current DMA is usually defined as the
buffer 1n memory where a record resides before a disk
write and after a disk read operation. If the SOOS

B-78

BDOS FILE SYSTEM

Hultlsector Count is equal to one (see F_HULTISEC),
the size of the buffer is 128 bytes. However, if the
BOOS Hultlsector Count 1s greater than one, the size
of the buffer must equal N • 128, where N equals the
Hul t1 sector Count.

Some system calls also use the current DHA to pass
parameters and to return values. For example, system
calls that check and assign file passwords require
that the password be placed 1n the current DHA. As
another example, DRV_SPACE returns its results 1n the
first 3 bytes of the current DHA. When the current
DHA is used 1n this context, the size of the buffer
in memory is determined by the specific requirements
of the system call.

When a transient program is initiated by the CCP, its
DHA address 1s set to 0080H. DRV_ALLRESET also sets
the DHA address to 0080H. F_DHASET can change this
defaul t value to another memory address. The DHA
address is set to the value passed in the register
pair DE. The DHA address remains at this value until
it is changed by another F_DHASET or DRV_ALLRESET
call.

+--+
F_ERRHODE

SYSTEM CALL 45: SET BDOS ERROR MODE

+--+ I I
I Entry Parameters: I
I Register C: 2DH I
I E: aDOS Error Hode I
I I
I Returned Value: None I
I I

+--+
F_ERRHODE sets the aDOS error mode for the calling
program to the mode specified in register E. If
register E is set to OFFH (255 decimal), the error
mode is set to Return Error mode. If register E is
set to OFEH (254 deCimal), the error mode is set to
Return and Display mode. If register E is set to any
other value, the error mode is set to the default
mode.

F_ERRHODE determines how phYSical and extended errors
are handled for a program. The Error Hode can exist
in three modes: the default mode, Return Error mode,
and Return and Display Error mode. In the default

B-79

BDOS FILE SYSTEM

mode, the eoos displays a system message at the
console that identifies the error and terminates the
calling program. In the return modes, the BOOS sets
register A to OFFH (255 decimal), places an error
code that identifies the physical or extended error
In register H, and returns to the calling program.
In Return and Display mode, the SOOS displays the
system message before returning to the calling
program. No system messages are displayed, however,
when the BOOS Is In Return Error mode.

+--+
I

LFLUSH I
I

SYSTEM CALL qB: FLUSH BUFFERS I
I

+--+
I I
I Entry Parameters: I
I Regi.ter C: 30H I
I Register E: Purge Flag I
I I
I Returned Value: I
I Register A: Error Flag I
I Register H: Physical Error I
I I

+--+
F_FLUSH forces the write of any write-pending records
contained 1n internal blocking/deblocking buffers.
If register E is set to OFFH, this system call also
purges all active data buffers. Programs that provide
write with read-verify support need to purge internal
buffers to ensure that verifying reads actually
access the disk instead of returning data that is
resident in internal data buffers. The CP/M Plus PIP
utility is an example of such a program.

Upon return, register A is set to zero if the flush
operation is successful. If a physical error is
encountered, F_FLUSH performs different actions
depending on the 8DOS error mode (see SETERRHODE).
If the BDOS error mode is in the defaul t mode, a
message identifying the error is displayed at the
console and the calling program is terminated.
Otherwise F_FLUSH returns to the calling program with
register A set to OFFH and register H set to the
following physical error code:

01 Disk I/O error
02 Read-Only disk
04 Invalid drive error

B-Bo

-

BOOS FILE SYSTEM

+--+
I I
I F_LOCK I
I I
I SYSTEM CALL ~2: LOCK RECORD I
I I

+--+ I I
I Entry Parameters: I
I Register C: 2AH I
I DE: FCB Address I
I I
I Returned Value: I
I Register A: OOH I
I I

+--+
F_LOCK Is an HP/H II system call that Is supported
under CP/M Plus only to provide compatibility between
CP/M Plus and HP/H. It Is intended for use In
situations where more than one running program has
Read-Write access to a common file. Because CP/M Plus
Is a single-user operating system in which only one
program can run at a time, this situation cannot
occur. Thus, under CP/M Plus F_LOCK performs no
action except to return the value OOH in register A
indicating that the record lock operation is
successful.

+---+
I I
I F_KAKE I
I I
I SYSTEM CALL 22: MAKE FILE I
I I

+---+ I I
I Entry Parameters: I
I Register C: 16H I
I Registers DE: FCB Address I
I I
I Returned Value: I
I Register A: Directory Code I
I Register H: Physical or I
I Extended Error I
I I

+---+
F_HAKE creates a new directory entry for a file under
the current user number. It also creates an XFCB for
the file if the referenced drive has a directory
label that enables password protection on the drive,
and the calling program assigns a password to the

B-S1

....

BOOS FILE SYSTEM

file.

The calling program passes the address of the FeB In
register pair DE, with byte 0 of the FeB spec1fying
the drive; bytes 1 through l' specifying the filename
and fl1etype; and byte 12 set to the extent number.
Usually byte 12 Is set to zero. Byte 32 of the FeB
(the cr field) must be initialized to zero, before or
after the Hake call, if the intent Is to write
sequentially from the beginning of the file.

Interface attribute f6' specifies whether a password
Is to be assigned to the created file.

f6' ~ 0 : Do not assign password (default)
f6 ' = , : Assign password to created fUe

When attribute f6' Is set to 1, the calling program
must place the password In the first 8 bytes of the
current DHA buffer, and set byte 9 of the DMA buffer
to the password mode (see the F_TIMEDATE system
call) .

Hote: F_HAKE only interrogates interface attribute
f6' if passwords are activated on the referenced
drive.

F_HAKE returns with an error if the referenced FCB
names a file that currently exists in the directory
under the current user number.

If the F_HAKE system call is successful, it activates
the referenced FeB for file operations by opening the
FCB, and initializes both the directory entry and the
referenoed FCB to an empty file. It also initializes
all file attributes to zero. In addition, F_HAKE
makes a Creation date and time stamp for the file if
the following conditions are satisfied: the
referenced drive has a directory label that requests
Creation date and time stamping, and the FCB extent
number field 1s equal to zero F HAKE also makes an
Update stamp if the directory· label requests update
stamping and the FCB extent field is equal to zero.

If the referenced drive contains a directory label
that enables paSSword protection, and if interface
attribute f6' has been set to 1, F_HAKE creates an
XFCB for the file. In addition, F HAKE also assigns
the password and the password mOde-placed in the
first nine bytes of the DHA to the XFeB.

Upon return, F_HAKE returns a directory code in
register A with the value zero if the make operation
1s Successful, or 255 (OFFH) if no directory space is
available. Register H is set to 0 in both of these

B-82

BOOS FILE SYSTEM

cases. If a physical or extended error is
encountered, F_HAKE performs different actions
depending on the aDOS error mode (see SETERRHODE). If
the BDOS error mode 1s the default mode, a mes5sge
identifying the error 1s displayed at the console and
the calling program 1s terminated. Otherwise F_HAKE
returns to the calling program with register A set to
OFFH, and register H set to one of the following
physical or extended error codes:

01 Disk I/O error
02 Read-Only disk
04 Invalid drive error
08 File already exists
09 ? in filename or filetype field

+--+ I I
I F_HULTISEC I
I I
I SYSTEM CALL 44: SET MULTISECTOR COUNT I
I I

+--+
I I
t Entry Parameters: I
I Register C: 2CH I
I E: Number of Sectors I
I I
I Returned Value: I
I Register A: Return Code I
I I

+--+
F_HULTISEC provides logical record blocking under
CP/M PIUB. It enables a program to read and write
from 1 to 128 physical records of 128 bytes at a time
during subsequent SODS Read and Write system calls.

F_HULTISEC sets the Hultisector Count value for the
calling program to the value passed 1n register E.
Once set, the specified Hultlsector Count remains in
effect until the calling program makes another
F_HULTISEC call and changes the value.

Note: The CCP sets the Hultisector Count to 1 when it
initiates a transient program.

CP/M Plus can read or write multiple 128-byte disk
records in a single BOOS system call. In a
multisector I/O operation, data is transferred
directly between the TPA and the drive. In addition,
the BIOS can use multisector I/O to optimize the 1/0
operation, resulting in better performance. Thus,
the primary object1ve of mult1sector 1/0 is to

B-83

BOOS FILE SYSTEM

improve sequential I/O performance. The number of
records read or written with multisector I/O ranges
from' to 128. The Hultlsector Count is set to one
when a transient program begins execution . However,
transient programs can set the CP/M Plus Hultisector
Count to 128 when sufficient buffer space is
available .

Note: The greatest potential performance inc r eases
are obtained when the Hultisector Count is set to
128. Of course, this requires a 16K buffe r .

The Hultlsector Count determines the number of
operations to be performed by the following system
calls:

F_READ
F_READRAND
F_WRITE
F_WRITERAND
F_WRITEZF

The Hultisector Count affects BOOS error reporting
for the aDos Read and Write system calls . If an
error interrupts these system calls when the
Hultisector Count is greater than one, they return
the number of records successfully read or written in
register H for all errors except for physical errors
(A ; 255),

Upo n return, register A is set to zero if the
specified value is in the range of 1 to 128.
Otherwise register A is set to OFFH.

+---+ I
I F_ OPEH
I
I SYSTEM CALL 15: OPEN FILE
I

+---+
I I
I Entry Parameters: f
I Register C: OFH I
I Registers DE: FeB Address I
I I
I Returned Value: I
I Register A: Directory Code I
I Register H: PhYSical or I
I Extended Error I
I I

+---+
F_OP EN activates the FeB fo r a file that exists 1n

B- 8~

BDOS FILE SYSTEM

the dl~k directory under the currently active user
number or use r zero . The calling program passes the
address of the FeB in register pair DE, with byte 0
of the FCB specifying the drivej bytes 1 through l'
specifying the filename and fl1etypej and byte 12
specifying the extent . Usually byte 12 of the FeB is
initialized to zero.

If the file is password-protected 1n Read mode, the
correct password must be placed 1n the first eight
bytes of the current OMA, or have been previously
established as the default password (see F_PASSWD).
If the current record field of the FCB (cr) 1s set to
OFFH , F_OPEN returns the byte count of the last
record of the file 1n the cr field.

You can set the last-record byte count for a file
with F_ATTRIB. Note that the current record field of
the FeB (cr) must be zeroed by the calling program
before beginning read or write operations if the file
is to be accessed sequentially from the first record.

If the current user is non-zero, and the file to be
opened does not exist under the current u~er number,
F OPEN searches user zero for the file. If the file
exists under user zero, and has the system (SYS)
attribute (t2') set, the file 1s opened under user
zero. Write operations are not supported for a file
that is opened under user zero in this manner.

If the F_OPEN operation is successful, the user's FeB
is activated for read and write operations. The
relevant director y information is copied from the
matching directory FeB into bytes dO through dn of
the FeB . If the file is opened under user zero when
the current use r number is not zero, interface
attribute f8 ' is set to one in the user's FeB . In
addition, if the referenced file is password
protected in Write mode, and the correct password was
not passed in the DHA, or did not match the default
password, interface attribute f7' is set to one.
Write operations are not supported for an activated
FeB if interface attribute f7' or f8' is true.

When F_OPEN is successful, it makes an Access date
and time stamp for the opened file when the following
conditions are satisfied: the referenced drive has a
directory label that requests Access date and time
stamping, and the FeB extent number field is zero.

Upon return . F_OPEN returns a directory code in
register A wi th the value OOH if the open was
successful , or FFH (255 decimal) if the file was not
found. Register H is set to zero in both of these
cases. If a physical or extended error was

B- 85

BOOS FILE SYSTEH

encountered, F_OPEN performs different actions
depending on the SDOS error mode (see SETERRHODE) . If
the BOOS error mode 1s In the default mode, a message
identifying the error Is displayed at the console and
the program Is terminated. Otherwise F_OPEN returns
to the calling program with register A set to OFFH,
and register H set to one of the following physical
or extended error codes:

01 Oisk I/O error
O~ Invalid drive error
07 FUe password error
09 ? in the FCB filename or filetype field

+--+
I
I F_P1RSE
I
I SYSTEH CALL 152: PARSE FILENAHE
I

+--+ I I
t Entry Parameters: I
I Register C: 98H I
I DE: PFCB Address I
I I
I Returned Value: I
I Registers HL: Return code I
I Parsed fUe I
I control block I

+--+
F_PARSE parses an ASCII file specification and
prepares a File Control Block (fCB). The calling
program passes the address of a data structure called
the Parse Filename Control Block (PFCS) in register
pair DE. The PFCS contains the address of the input
ASCII filename strins followed by the address of the
target FCB as shown below:

PFCB :OW
DW

INPUT
FCB

. Address of input ASCII string • . Address of target FCB •
The maximum length of the input ASCII string to be
Parsed is 128 bytes. The target FCS .ust be 36 bytes
1n length.

F_PARSE assumes the input string contains file
SPecifications 1n the following form:

Id:}f1len •• el.typ}l;p ••• word }

""here i tells enclosed in curly brackets are optional.
F_PARSE also accepts isolated drive specifications

B-86

BOOS FILE SYSTEH

Cd:) In the input string. When it encounters one, it
sets the filename, fl1etype, and password fields in
the FeB to bl ank.

f_PARSE parses the first file specification it finds
in the input string, eliminating leading blanks and
tabs. The system call then assumes that the file
speCification ends on the first delimiter it
encounters that is out of context with the specific
field it Is parsing. For instance, if F_PARSE finds
a colon and it is not the second character of the
file specification, the colon delimits the entire
file specification.

F_PARSE recognizes the following characters as
delimiters:

space
tab
return
null

(semicolon)--except before password field
= (equall
< Oes", than)
> (greater than)

(period) - -except after filename and before filetype
(colon)- - except before filename and after drive

, (comma)
I (vertical bar)
[(left square bracket)
] (right square bracket)

If F_PARSE encounters a nongraphic character not
listed above, in the range 1 through 31, it treats
the character as an error. F_PARSE initializes the
specified FeB shown in the table that follows:

B- 87

BDOS FILE SYSTEM

Locatioo

byte 0

TABLE 8-17. FeB FPRHAI
Contents

The drive field 1s set to the specified dr ive.

If the drive 1s not specified, the default dri ve code
is used. 0 = default, 1 = A, 2 = B.

byte 1 - 8 The n<De 1s set to the specified filename , All
letters are converted to uppercase. If the name 1s
not eight characters long, the remaining bytes in the
file~e field are padded with blanks . If the
filename has an asterisk (*), all remaining bytes in
the filencme field are fi1led in with question mar ks
(1). An error occurs if the filename 1s more than
eight ~tes long.

byte 9 - 11 The type is set to the specified flletype. If no
filetype 1s specified, the type field 1s initialized
to blanks. All letters are converted to uppercase.
If the type 1s not three characters long, the
remaining bytes 1n the flletype field ar e padded with
blanks. If an asterisk (*) occurs, all remaining
bytes are filled 1n with question marks (1). An
error occurs if the type field is more than three
bytes long.

byte 12 - 15 Filled in with zeros.

byte 16 - 23 The password field is set to the specified password.

byte 24 - 31

If no password is specified, it is initialized to
blanks. If the password is less than eight
characters long, remaining bytes are padded with
blanks. All letters are converted to uppercase. If
the password field is more than eight bytes long, an
error occurs.

Note: A blank in the first position of the password
field implies no password was specified.

Reserved for system use.

If an error occurs , F_PARSE returns an OFFFFH in
register pair HL.

On a successful parse, F_ PARSE checks the next item
in the input string. It skips over trailing blanks
and tabs and looks at the next character . If the
character is a null or carriage return, it returns a
o indicating the end of the input string. If the
character is a delimiter, it returns the address of
the delimiter. If the character is not a delimiter,
it returns the address of the first trailing blank or
tab.

B- BB

-

BOOS FILE SYSTEM

If the first nonb!ank or nontab character 1n the
input string 1s a null (0) or carriage return,
F_PARSE returns a zero indicating the end of string.

If F_PARSE is to be used to parse a subsequent file
specification 1n the input string, the returned
address must be advanced over the delimiter before
placing It In the PFCB.

F_PARSE also excludes all control characters from the
file fields, and translates all lowercase letters to
upper-case.

Avoid using parentheses and the backslash character
(') 1n the filename and filetype fields because they
are commonly used delimiters. Use asterisk and
question mark characters (* and 7) only to make an
ambiguous file reference. When F_PARSE encounters an
• in a filename or filetype field, it pads the
remainder of the field with question marks. For
example, a filename of X-.- is parsed to
X????????17. The SDOS F _SFIRST. F _SNEXT. and
F_DELETE system calls treat a ? in the filename and
type fields as follows: A? in any position matches
the corresponding field of any directory entry
belonging to the current user number. Thus, a search
operation for X?????????? finds all the current user
files on the directory beginning in X. Host other
file-related SDOS system calls treat the presence of
a ? in the filename or filetype field as an error.

+--+
I
I F_PASSWD
I
I SYSTEM CALL 106: SET DEFAULT PASSWORD
I

+--+
I I
I Entry Parameters: I
I Register C: 6AH I
I Register DE: Password Address I
I I
I Returned Value: None I
I I
+--+

F_PASSWD allows a program to specify a password valUe
before a file protected by the password is accessed.
When the file system accesses a password-protected
file, it checks the current OMA and the default
password for the correct value. If either value
matches the file's password, full access to the file

S-69

BOOS FILE SYSTEM

1s allowed.

Note: This system call performs no action 1n
nonbanked CP/ M Plus systems because file passwords
are not supported.

To make an F_PASSWD call, the calling program sets
register pair DE to the address of an 8-byte field
containing the password.

+--+
F_RANDREC

SYSTEM CALL 36: SET RANDOM RECORD

+--+
I I
I Entry Parameters: I
I Register C: 2~H I
I Registers DE: FCB Address I
I I
I Returned Value: I
I Random-Record Field Set I
I I

+--+
F_RANDREC sets the random-record number of the next
record to be accessed from a file that has been read
or written sequentially to a particular point. This
value is returned in the random-record field (bytes
rOt rl, and r2) of the FCB addressed by the register
pair DE. F_RANDREC can be useful in two ways .

First, it is often necessary to initially read and
scan a sequential file to extract the positions of
various key fields. As each key is encountered ,
F_RANDREC is called to compute the random-record
position for the data corresponding to this key. If
the data unit size is 128 bytes, the resulting record
number, minus one, is placed into a table with the
key for later retrieval. After scanning the entire
file and tabularizing the keys and their record
numbers, you can move directly to a particular record
by performing a random read using the corresponding
random-record number that you saved earlier. The
scheme 1s easily generalized when variable record
lengths are involved, because the program need only
store the buffer-relative byte position along with
the key and record number to find the exact sta rti ng
position of the keyed data at a later time.

A second use of F_RANDREC occurs when switching
from a sequential read or write over to rand om read

B-90

BDOS FILE SYSTEM

or write, A file is sequentially acce~sed to a
particular point in the file, then f_RANDREC Is
called to set the record number, and subsequent
random read and write operations continue from the
next record In the file.

+---+
F_READ

SYSTEM CALL 20: READ SEQUENTIAL

+---+
Entry Parameters:

Register C:
Registers DE:

Returned Value:
Register A:
Register H:

1~H
FCB Address

Error Code
Physical Error

+---+
F_READ reads the next 1 to 128 128-byte records from
a file into memory beginning at the current OHA
address. The BOOS Hul tisector Count (see the
F_HULTISEC system call) determines the number of
records to be read. The defaul t is one record. The
FCB addressed by register pair DE must have been
previously activated by an F_OPEN or F_HAKE system
call.

F_READ reads each record from byte cr of the extent,
then automatically increments the cr field to the
next record position. If the cr field overflows,
then F_READ automatically opens the next logical
extent and resets the cr field to 0 in preparation
for the next read operation. The calling program
must set the or field to 0 following the F_OPEN call
if the intent is to read sequentially from the
beginning of the file.

Upon return, F_READ sets register A to zero if the
read operation is successful. Otherwise register A
contains an error code identifying the error as shown
below:

01 Reading unwritten data (end of file)
09 Invalid FCB
10 Hedia change occurred

255 Physical error; refer to register H

Error Code 01 1s returned if no data exists at the

B-91

BDOS FILE SYSTEM

next record position of the f ile. Usually the no
data situation is encountered at the end of a file.
However, it can also occu r if an attempt is made to
read a data block that has not been previously
written, or an extent which has not been created .
These situations are usually restricted to files
created or appended with F_WRITERAND and F_WRITEZF.

Error Code 09 is returned if the FCB is invalidated
by a previous BDOS close call that returns an error .

Error Code 10 is returned if a media change occurs on
the drive after the referenced FCB is activated by an
F_OPEN or F_HAKE system call .

Error Code 255 is returned if a physical error is
encountered and the BDOS error mode is Return Error
mode or Return and Display Error mode (see
SETERRHODE)' If the error mode is the defaul t mode,
a message identifying the physical error is displayed
at the console and the calling program is terminated.
When a physical error is returned to the calling
program, register H contains one of the following
error codes:

01 Disk 1/0 error
04 Invalid drive error

On all error returns except for physical er r or
returns, A : 255. F_READ sets register H to the
number of records successfully read before the err or
is encountered. This value can range from 0 to 127
depending on the current BDOS Hultisector Count. It
is always set to zero when the Hultisector Count is
eq ual to one.

+---+
I I
I F_READRAND I
I I
I SYSTEM CALL 33 : READ RANDOM I
I I
+---+
I I
I Entry Parameters: J
I Register C: 21H J
I Registe r s DE: FCB Address I
I I
I Returned Value : I
J Register A: Error Code I
I Registe r H: Physical Error I
I I

+---+

B- 92

BOOS FILE SYSTEH

F_READRAND is similar to F_READ except that the read
operatton takes place at a particular random-record
number, selected by the 24-bit value oonstructed from
the three-byte rO, rl, r2 field beginning at
post ticn 33 (21 H) of the FCB. Note that the sequence
of 24 bits 1s stored with the least-significant byte
first (rO), the middle byte next (rl), and the high
byte last (r2), The random-record number can range
from 0 to 262,143. This corresponds to a maximum
value of 3 1n byte r2.

To read a file with F_READRAND, the calling program
must first open the base extent (extent 0), This
ensures that the FCB is properly initialized for
subsequent random-access operations. The base extent
mayor may not contain any allocated data.
F_REAORAND reads the record specified by the random
record field into the current DMA address. The
system call automatically sets the logical extent and
current record values, but unlike the F_READ system
call, it does not advance the current record number.
Thus, a subsequent F_REAORAND call rereads the same
record. After a random read operation, a file can be
accessed sequentially, starting from the current
randomly accessed position. However, the last
randomly accessed record is reread or rewritten when
switching from random to sequential mode.

If the BOOS Hultisector Count is greater than one
(see F_HULTISEC). F_READRAND reads multiple
consecutive records into memory beginning at the
current OHA. The rO, r1, and r2 field of the FCB is
automatically incremented to read each record.
However, the FCBs random-record number is restored to
the first record's value upon return to the calling
program.

Upon return, F_READRANO sets register A to zero if
the read operation was successful. Otherwise
register A contains one of the following error codes:

01 Reading unwritten data (end of file)
03 Cannot close current extent
O~ Seek to unwritten extent
06 Random-record number out of range
10 Media change occurred

255 Physical error : refer to register H

Error Code 01 1s returned if no data exists at the
next record position of the fUe. Usually the no
data situation is encountered at the end of a file.
However, it can aLso occur if an attempt 1s made to
read a data block that has not been previously
written.

B-93

BDOS FILE SYSTEM

Error Code 03 1s returned when F_READRAND cannot
close the current extent prior to moving to a new
extent .

Error Code O~ 1s returned when an F_READRAND
operation accesses an extent that has not been
created .

Error Code 06 1s returned when byte 35 (r2) of the
referenced FeB 1s greater than 3.

Error Code 10 1s r eturned if a media change occurs on
the drive after the referenced FCB 1s activated by a
BOOS open or make call.

Error Code 255 is returned if a physical error is
encountered, and the BOOS error mode 1s one of the
return modes (see F_ERRHODE). If the error mode is
the default mode, a message identifying the physical
error is displayed at the console and the calling
program is terminated. When a physical error is
returned to the calling program, register H contains
one of the following error codes:

01 Disk 1/0 error
O~ Invalid drive error

On all error returns except for phYSical e r rors (A =
255) , F_ READRAND sets register H to the number of
records successfully read before the er ror is
encountered. This value can range from 0 to 127
depending on the current BOOS Multisector Count. It
is always set to zero when the Multisector Count is
equal to 1.

+---+
I
I F_RENAHE
I
I SYSTEM CALL 23: RENAME FILE
I

+---+
I I
I Entry Parameters: I
I Register C: 17H I
I Registers DE: FCB Address t
I I
I Returned Value: I
I Register A: Directo r y Code I
I Register H: Physical or I
I Ex tended Er ror I
I I

+---+

B- 9~

=

BOOS FILE SYSTEM

F_RENAHE uses the FCB addressed by register pair DE
to change all directory entries of the file specified
by the file specification 1n the first 16 bytes of
the FeB to the file specification 1n the second 16
bytes. If the file specified by the first filespec 1s
password - protected, the correct password must be
placed 1n the first eight bytes of the current DMA
buffe r , or have been previously established as the
default password (see F_PASSWD).

The calling program must also ensure that the
filenames specified 1n the FCB are valid and
unambiguous, and that the new filename does not
already exist on the drive. F_RENAHE uses the dr
code at byte zero of the FeB to select the drive.
The drive code at byte 16 (10H) of the FCB i.s
ignored.

Upon return, F_RENAHE returns a Directory Code in
register A with the value zero if the rename is
succes.sful, or OFFH (255 decimal) if the file named
by the first filename in the FCB is not found.
Register H is set to zero in both of these ca.ses. If
a physical or extended error is encountered, F_RENAHE
performs different actions depending on the BOOS
error mode (see F_ERRHODE). If the BOOS error mode
is the default mode, a message identifying the error
i.s displayed at the console and the program is
terminated. Otherwise F_RENAHE return.s to the
calling program with register A .set to OFFH and
register H set to one of the following physical or
extended error codes:

01 Disk 110 error
02 Read-Only disk
03 Read- Only file
04 Invalid drive error
07 File password error
08 File already exists
09 ? in filename or filetype field

B-95

BDOS FILE SYSTEM

+---+
F_SFIRST

SYSTEM CALL 17: SEARCH FOR FIRST

+---+
Entry Parameters:

Register C:
Registers DE:

Returned Value:
Register A:
Register H:

11H
FCB Address

Directory Code
Physical Error

I
I
I
I
I
I
I
I
I

+---+
F_SFIRST scans the directory for a match with the FCB
addressed by register pair DE. Two types of searches
can be performed . For standard searches, the calling
program initializes bytes 0 through 12 of the
referenced FCB, with byte 0 specifying the drive
directory to be searchedj bytes 1 through 11
specifying the file or files to be searched forj and
byte 12 specifying the extent. Usually byte 12 is
set to zero. An ASCII question mark (63 decimal or
3FH) in any of the bytes 1 through 12 matches all
entries on the directory in the corresponding
position. This facility, called ambiguous reference,
can be used to search for multiple files on the
directory . When called in the standard mode, the
F_SEARCHF system call scans for the first file entry
in the specified directory that matches the FCB and
belongs to the current user number .

If byte 0 of the referenced FCB is set to a question
mark, the F_SFIRST system call ignores the remainder
of the referenced FCB, and locates the first
directory entr y residing on the current default
drive . All remaining directory entries can be
located by making multiple F_SNEXT calls. This type
of search operation is usually not made by
application programs, but it does provide complete
flexibility to Bean all current directory values .

Note : This type of search operation must be
performed to access a driVe's directory label.

Upon return, F_SFIRST returns a Directory Code in
r egister A with the value 0 to 3 if the search is
successful, or OFFH (255 DeCimal) if a matching
directory entry is not found. Register H is set to
zero in both of these cases. For successful
searches, the current DMA is also filled with the

B- 96

BOOS FILE SYSTEM

directory record containing the matching entry, and
the relative starting position 1s A • 32 (that is,
rotate the A register left five bits, or ADD A five
times), Although it is usually not required for
application programs, the directory information can
be extracted from the buffer at this position.

The F_SFIRST system call also initializes the F_SNEXT
system call. After F_SFIRST has located the first
dlrecto~y entry matching the referenced FCB, F_SNEXT
can be called repeatedly to locate all remaining
matching entries. In terms of execution sequence,
however, the F_SNEXT call must either follow a
F_SFIRST or F_SNEXT call with no other intervening
BOOS disk-related system calls.

If the directory has been initialized for date and
time stamping by INITOIR, then an SFCB resides in
every fourth directory entry, and successful
Directory Codes are restricted to the valUes 0 to 2.
For successful searches, if the matching directory
record is an extent-zero entry, and if an SFCB
resides at offset 96 within the current DHA (contents
of OMA Address + 96 = 21H), the SFCB contains the
date and time stamp information and password mode for
the file. This information is located at the
relative starting position of 97 + (A • 10) within
the current DHA in the following format:

o - 3 : Create or Access Date- and
Time-Stamp Field

4 - 7 : Update Oat~ and Time-Stamp Field
8 : Password Hode Field

If a physical error is encountered. F_SFIRST
performs different actions depending on the BOOS
error mode (see F_ERRHOOE system call). If the BOOS
error mode is in the default mode, a message
identifying the error is displayed at the console and
the calling program is terminated. Otherwise
F_SFIRST returns to the calling program with register
A set to OFFH, and regi::lter H ::let to one of the
following physical error codes:

01 Disk 1/0 error
04 : Invalid drive error

B-97

BDOS FILE SYSTEH

+---+
I I
I F_SIZE I
I I
I SYSTEH CALL 35: COHPUTE FILE SIZE I
I I
+---+

Entry Parameters:
Register C: 23H
Registers DE: FCB Address

Returned Value:
Register A:
Register H:

Error Flag
Physical or
Extended Error
Random Record
Field Set

+---+
F_SIZE determines the virtual file size which is, in
effect, the address of the record immediately
following the end of the file. The virtual size of a
file corresponds to the physical size if the file is
written sequentially. If the file is written in
random mode, gaps might exist in the allocation, and
the file might contain fewer records than the
indicated size. For example, if a single re cord with
record number 262,143 (the CP/M Plus maximum) is
written to a file using F_WRITERAND, then the virtual
size of the file is 262.144 records even though only
one data block is actually allocated.

To compute file Size, the calling program passes the
address of an FCB in random mode format (bytes rO,
rl, and r2 present) in register pair DE. Note that
the FCB must contain an unambiguous filename and
filetype. F_SIZE sets the random-record field of the
FCB to the random-record number, plus one, of the
last record in the file . If the r2 byte is set to
04H, then the file contains the maximum record count
262,144.

A program can append data to the end of an existing
file by calling F_SIZE to set the random-record
position to the end of file, and then performing a
sequence of random writes starting at the preset
record address.

Note: The BOOS does not require that the file be
open to use F_SIZE. However, if the file has been
written to, it must be closed before calling F_SIZE.
Otherwise an incorrect file size might be returned.

B-98

BOOS FILE SYSTEH

Upon return, F_SIZE returns a zero 1n register A if
the file specified by the referenced FeB 1s found, or
an OFFH 1n register A if the file 1s not found.
Register H 1s set to zero 1n both of these cases, If
a phYSical or extended error Is encountered, F_SIZE
performs different actions depending on the aDOS
error mode (see F_ERRHODE), If the BOOS error mode
1s the default mode, a message identifying the error
Is displayed at the console and the program is
terminated. Otherwise F_SIZE returns to the calling
program with register A set to OFFH, and register H
set to one of the following physical or extended
errors:

01 Disk I/O error
04 Invalid drive error

+---+
I I
I F_SNEXT I
I I
I SYSTEH CALL 18: SEARCH FOR NEXT I
I I

+---+ I I
I Entry Parameters: I
I Register C: 12H I
I I
I Returned Value: I
I Register A: Directory Code I
I Register H: Physical Error I
I I

+---+
F_SNEXT is identical to the F_SFIRST system call,
except that the directory scan continues from the
last entry that was matched. F_SNEXT returns a
Directory Code in register A, analogous to F_SFIRST.

Note: In execution sequence, a F_SNEXT call must
follow either a F_SFIRST or another F_SNEXT call with
no other intervening BDOS disk-related system calls.

B-99

BDOS FILE SYSTEM

+--+
I I
I F_TIMEDATE I
I I
I SYSTEM CALL 102: READ FILE DATE STAMPS I
I AND PASSWORD MODE I
I I

+--+
I I
I Entry Parameters: I
I Register C: 66H I
I Register DE: FCB Addre~s I
I I
I Returned Value: I
I Register A: Directory Code I
I Register H: Physical Error I
I I

+--+
F_TIHEDATE returns the date- and time-stamp
information and password mode for the specified file
in byte 12 and bytes 24 through 32 of the specified
FCB. The calling program passes the address of an
FCB in which the drive, filename, and filetype fields
have been defined in register pair DE.

If F_TIHEDATE is successful, it sets the following
fields in the referenced FCB:

byte 12 (OCH): Password mode field
bit 7--Read mode
bit 6--Write mode
bit 4--Delete mode

Byte 12 equal to zero indicates the file has not been
assigned a password.

byte 24 - 27 (18H - 118H): Create or Access
time-stamp field

byte 28 - 31 (1CH - 1FH) : Update time-stamp
field

The date-stamp fields are set to binary zeros if a
stamp has not been made. The format of the time
stamp fields is the same as the format of the date
and time structure described in T_5ET.

Upon return, F_TIHEDATE returns a Directory Code in
register A with the value zero if the system call is
successful, or OFFH (255 decimal) if the specified
file is not found. Register H is set to zero in both
of these cases. If a physical or extended error is
encountered, F_TIHEDATE performs different actions
depending on the BOOS error mode (see F_ERRHODE). If
the BOOS error mode is in the default mode, a message

B-100

BDOS FILE SYSTEM

identifying the error is displayed at the console and
the calling program 1s terminated. Otherwise
F_TIHEDATE returns to the calling program with
register A set to OFFH and register H set to one of
the following physical or extended error codes:

01 Disk 1/0 error
04 Invalid drive error
09 ? 1n filename or filetype field

+--+
I I
I F_TRUNCATE I
I I
I SYSTEM CALL 99: TRUNCATE FILE I
I I
+--+
I I
I Entry Parameters: 1
I Regi.ter C: 63H I
I DE: FCB Address I
I I
I Returned Value: I
I Register A: Directory Code I
I Register H: Extended or I
I Physical Error I
I I

+--+
F_TRUNCATE sets the last record of a file to the
random-record number contained in the referenced FeB.
The calling program passes the address of the FeB in
register pair DE, with byte 0 of the FeB specifying
the drive; bytes 1 through 11 specifying the filename
and fUetype; and bytes 33 through 35 (rO, r1, and
r2) specifying the last record number of the file.
The last record number is a 24-bit value stored with
the least-significant byte first (rO), the middle
byte next (r1), and the high byte last (r2). This
value can range from 0 to 262,143, which corresponds
to a maximum value of 3 in byte r2.

If the file specified by the referenced FCB is
password-protected, the correct password must be
placed in the first eight bytes of the current DHA
buffer, or have been previously established as the
default password (see F_PASSWD).

F_TRUHeATE requires that the file specified by the
FCB not be open, particularly if the file has been
written to. In addition, any activated FCBs naming
the file are not valid after F_TRUNeATE is called.
Close your file before calling F_TRUNCATE and then
reopen it after the call to continue processing on

B-l0l

BOOS FILE SYSTEM

the file.

F_TRUNCATE also requires that the random-record
number field of the referenced FCB specify a value
less than the current file size. In addition, if the
file Is sparse, the random-record field must specify
a record In a region of the file where data exists.

Upon return, F_TRUNCATE returns a Directory Code In
register A with the value zero if F_TRUNCATE Is
successful, or OFFH (255 decimal) if the file Is not
found or the record number is invalid. Register H Is
set to zero In both of these cases. If a phYSical or
extended error Is encountered, F_TRUNCATE performs
different actions depending on the BOOS error mode
(see F_ERRHODE)' If the BOOS error mode Is In the 0
default mode, a message identifying the error is
displayed at the console and the program is
terminated. OtherWise F_TRUNCATE returns to the
calling program with register A set to OFFH and
register H set to one of the following phYSical or
extended error codes:

01 Disk 1/0 error
02 Read-Only disk
03 Read-Only file
04 Invalid drive error
07 File password error
09 ? in filename or filetype field

+--+
I I
I F_TSTWRITE I
I I
I SYSTEM CALL ij1: TEST AND WRITE RECORD I
I I

+--+
I I
I Entry Parameters: I
I Register C: 29H I
I Register DE: FCB Address I
I I
J Returned Value: I
J Register A: Error Code J
I Register H: PhYSical Error I
I I

+--+
F_TSTWRITE is an HP/H II system call that is not
supported under CPIM Plus. If called, F_TSTWRITE
returns with register A set to OFFH and register H
set to zero.

B-102

BDOS FILE SYSTEM

+--+
I I
I F_UNLOCK I
I I
I SYSTEM CALL 43: UNLOCK RECORD I
I I
+--+
I I
I Entry Parameters: I
I Register C: 2BH I
I DE: FeB Addre.. I
I I
I Returned Value: I
I Register A: OOH I
I I

+--+
F_UNLOCK Is an HP / H II system call that is supported
under CP/ M Plus only to provide compatibility between
CP/M Plus and HP / H. It Is intended for use In
situations where more than one running program has
Read-Write access to a common file. Because CP/M Plus
is a single-user operating system in which only one
program can run at a time, this situation cannot
occur. Thus, under CP/M Plus, F_UNLOCK performs no
action except to return the value OOH in register A
indicating that the record unlock operation is
successful.

+---+
I

F_USERIUM I
I

SYSTEM CALL 32: SET/GET USER CODE I
I

+---+ I I
I Entry Parameters: I
I Regi.ter C: 20H I
I Register E: OFFH (get) or I
I User Code (set) I
I I
I Returned Value: I
I Register A: Current Code or I
I (no value) I
I I

+---+
A program can change or interrogate the currently
active user number by calling F_USERNUH. If register
E = OFFH, then the value of the current user number
is returned in register A where the value 1s in the
range of 0 to 15. If register E is not OFFH, then the
current user number is changed to the value of E

B-103

BDOS FILE SYSTEM

(module 16), In other words, only the value of the
four least-significant bits of register E, 0 through
15 (0 - OFH), 1s used to set the user number.

+---+
I I
I F_WRITE I
I I
I SYSTEM CALL 21: WRITE SEQUENTIAL I
I I

+---+ I I
I Entry Parameters: I
I Register C: 15H I
I Registers DE: FeB Address I
I I
I Returned Value: I
I Register A: Error Code I
I Register H: Physical Error I
I I
+---+

F WRITE writes 1 to 128 128-byte data records,
beginning at the current DMA address, into the file
named by the FCB addressed 1n register pair DE. The
BDOS Hultisector Count (see F_HULTISEC) determines
the number of 12B-byte records that are written. The
default is one record. The referenced FeB must have
been previously activated by an F_OPEN or F_HAKE
system call.

F_WRITE places the record into the file at the
position indicated by the cr byte of the FeB, and
then automatically increments the cr byte to the next
record position. If the cr field overflows, the
system call automatically opens, or creates the next
logical extent, and resets the cr field to zero in
preparation for the next write operation. If F_WRITE
is used to write to an existing file, then the newly
written records overlay those already existing in the
file. The calling program must set the cr field to
zero following an Open or Make call if the intent is
to write sequentially from the beginning of the file.

F_WRITE makes an Update date and time for the file if
the following conditions are satisfied: the
referenced drive has a directory label that requests
date and time stamping, and the file has not already
been stamped for update by a previous F_HAKE or
F_WRITE system call.

Upon return, F_WRITE sets register A to zero if the
write operation is successful. Otherwise register A
contains an error code identifying the error as shown

B- 104

below:

BDOS FILE SYSTEM

01 No available directory space
02 No available data block
09 Invalid FeB
10 Media change occurred

255 Physical error : refer to register H

Error Code 01 is returned when F_WRITE attempts to
create a new extent that requires a new directory
entry, and no available directory entries exist on
the selected disk drive,

Error Code 02 Is returned when F_WRITE attempts to
allocate a new data block to the file, and no
unallocated data blocks exist on the selected disk
drive.

Error Code 09 Is returned if the FeB Is invalidated
by a previous aDOS close call that returns an error.

Error Code 10 Is returned if a media change occurs on
the drive after the referenced FeB 1s activated by a
BOOS open or make call.

Error Code 255 is returned if a physical error is
encountered and the BOOS error mode is Return Error
mode, or Return and Display Error mode (see
F_ERRHODE). If the error mode is the default mode, a
message identifying the physical error is displayed
at the console and the calling program is terminated.
When a physical error is retUrned to the calling
program, register H contains one of the following
error codes:

01 Disk I/O error
02 Read-Only disk
03 Read-Only file or

File open from user zero when
the current u~er number 1s non-zero or
File password-protected in Write mode

04 : Invalid drive error

On all error returns, except for phy~1cal error
returns (A = 255), F_WRITE sets register H to the
number of record~ succes~fully written before the
error was encountered. This value can range from 0
to 127 depending on the current BOOS Hulti~ector
Count. It 1s always set to zero when the Hult1~ector
Count is set to one.

B-l05

BOOS FILE SYSTEM

+---+
I

F_WRITERAND I
I

SYSTEM CALL 3~: WRITE RANDOM I
I

+---+
Entry Parameters:

Register C:
Registers DE:

Returned Value:
Register A:
Register H:

22H
FCB Address

Error Code
Physical Error

I
I
I
I
I
I
I
I
I

+---+
F_WRITERAND is analogous to F_READRANO, except that
data is written to the disk from the current DHA
address. If the disk extent or data block where the
data is to be written is not already allocated, the
BOOS automatically performs the allocation before the
write operation continues.

To write to a file using F_WRITERAND, the calling
program must first open the base extent (extent 0).
This ensures that the FeB is properly initialized for
subsequent random-access operations. If the file is
empty, the calling program must create the base
extent with F_HAKE before calling F_WRITERANO. The
base extent might or might not contain any allocated
data, but it does record the file in the directory so
that the file can be displayed by the DIR utility.

F_WRITERAND sets the logical extent and current
record positions to correspond with the random record
being written, but does not change the random-record
number. Thus, F_READ or F_WRITE operations can
follow a F_WRITERAND, with the current record being
reread or rewritten as the calling program switches
from random to sequential mode.

F_WRITERANO makes an Update date and time stamp for
the file if the following conditions are satisfied:
the referenced drive has a directory label that
requests Update date and time stamping if the file
has not already been stamped for update by a previous
F_MAKE or F_WRITE call.

If the BDOS Hultisector Count is greater than one
(see F_MULTISEC), F_WRITERAND reads multiple
consecutive records into memory beginning at the
current DHA. The rO, rl, and r2 field of the FCB is
automatically incremented to write each record.

B-106

)
BDOS FILE SYSTEM

However, the FeB's random-record number 1s restored
to the first record's value when it returns to the
calling program. Upon return, F_WRITERAND sets
register A to zero if the write operation is
successful. Otherwise register A contains one of the
following error codes:

02 No available data block
03 Cannot close current extent
05 No available directory space
06 Rando~record number out of range
10 Media change occurred

255 Physical error : refer to register H

Error Code 02 1s returned when F_WRITERAND attempts
to allocate a new data block to the file and no
unallocated data blocks exist on the selected disk
drive.

Error Code 03 1s returned when F_WRITERAND cannot
close the current extent prior to moving to a new
extent.

Error Code 05 is returned when F_WRITERANO attempts
to create a new extent that requires a new directory
entry and no available directory entries exist on the
selected disk drive.

Error Code 06 is returned when byte 35 (r2) of the
referenced FCB is greater than 3.

Error Code 10 is returned if a media change occurs on
the drive after the referenced FCB is activated by a
SOOS open or make call.

Error Code 255 is returned if a physical error is
encountered and the aDOS error mode is one of the
return modes (see F_ERRHOOE). If the error mode is
the default mode, a message identifying the physical
error is displayed at the console and the calling
program 1s terminated, When a physical error is
returned to the calling program, it is identified by
register H as shown below:

01 Disk I/O error
02 Read-Only disk
03 Read-Only file or

File open from user zero when the current
user number is non-zero or
File password-protected in write mode

04 : Invalid drive error

On all error returns, except for physical errors (A =
255), F_WRITERAND sets register H to the number of
records successfully written before the error 1s

B-107

BOOS FILE SYSTEM

encountered. This value can range from 0 to 127
depending on the current BOOS Hul tlsector Count. It
1s always set to zero when the Hultlsector Count is
equal to one.

+--+
I I
I F_VRITEIFCB I
I I
I SYSTEM CALL 103: WRITE FILE XFCB I
I I

+--+ I I
I Entry Parameters: I
I Register C: 67H I
I Register DE: FeB Address I
I I
I Returned Value: I
I Register A: Directory Code I
I Register H: Physical Error J
I I

+--+
F_WRITEXFCB creates a new XFCB or updates the
existing XFCB for the specified file. The calling
program passes 1n register pair DE the address of an
FCB in which the drive, name, type, and extent fields
have been defined. The extent field specifies the
password mode and whether a new password is to be
assigned to the file. The format of the extent byte
is shown below:

FCB byte
bit
bit
bit
bit

12 (OCH) (ex) : XFCB password mode
7-- Read mode
6--Write mode
5- -Del ete mode
O--Assign new password to the file

If the specified file is currently password
protected, the correct password must reSide in the
first eight bytes of the current DMA, or have been
previously established as the default password (see
F_PASSWD). If bit 0 is set to 1, the new password
must reside in the second eight bytes of the current DHA.

Upon return, F_WRITEXFCB returns a Directory Code 1n
register A with the value zero if the XFCB create or
update is successful; or OFFH (255 decimal) if no
directory label exists on the specified drive; or the
file named in the FCB is not found; or no space
exists in the directory to create an XFCS .

F_WRITEXFCB also returns with OFFH in register A if

B- 10B

=

8DOS FILE SYSTEM

passwords are not enabled by the referenced
directory's label. Register H 1s set to zero 1n all
of these cases. If a physical or extended error 1s
encountered, F_WRITEXFCB performs different actions
depending on the BOOS error mode (see f_ERRHODE). If
the BOOS error mode 1s the default mode, a message
identifying the error is displayed at the console and
the calling program is terminated. Otherwise
f_WRITEXFCB returns to the calling program with
register A set to OFFH and register H set to one of
the following physical or extended error codes:

01 Disk I/O error
02 Read-Only disk
04 Invalid drive error
07 File password error
09 ? in filename or filetype field

+--+
I
I F_WRITEZF
I
I SYSTEM CALL 40: WRITE RANDOM WITH
I ZERO FILL
I

+--+
I I
I Entry Parameters: I
I Register C: 28H I
I Register DE: FCB Address I
I I
I Returned Value: I
I Register A: Error Code I
I Register H: Physical Error I
I I

+--+
F_WRITEZF is identical to F_WRITERAND, with the
exception that a previously unallocated data block is
filled with zeros before the record is written. If
this system call has been used to create a file,
records accessed by a read random operation that
contain all zeros identify unwritten random-record
numbers. Unwritten random records in allocated data
blocks of files created using F_WRITERAND contain
uninitiallzed data.

8-109

OTHER BOOS SYSTEM CALLS

BDOS List Device Syate. Calls

+--+
I I
I ~VRITE I
I I
I SYSTEM CALL 5: LIST OUTPUT I
I I
+--+
I I
I Entry Parameters: I
I Register C: 05H I
I Register E: ASCII Character I
I I
+--+

L-WRITE sends the ASCII character 1n register E to
the l ogi c al list device (LST:).

+--+
I I
I ~VRITEBLK I
I I
I SYSTEM CALL 112: LIST BLOCK I
I I
+--+
I I
f Entry Parameters: I
I Register C: 70H I
I Register DE: eee Address I
I I
I Returned Value: none I
I I
+--+

L_WRITEBLK sends the character string located by the
Character Control Block (eeB) addressed in register
pair DE to the logical list device (LST:). The eeB
format is:

byte 0 - 1

byte 2 - 3

Address of character string (word
value)
Length of character string (word
value)

B-ll0

OTHER BOOS SYSTEM CALLS

eDOS Prograa System Calls

+--+
I

P_CHAIN I
I

SYSTEM CALL 47: CHAIN TO PROGRAM I
I

+--+ I I
I Entry Parameters: I
I Regi.ter C: 2FH I
I E: Chain Flag I
I I

+--+
P_CHAIN provides a means of chaining from one program
to the next without operator intervention. The
calling program must place a command line terminated
by a null byte (OOH) 1n the default OMA buffer. If
register E is set to OFFH, the CCP initializes the
default drive and user number to the current program
values when it passes control to the specified
transient program. Otherwise these parameters are
set to the default CCP values.

Note: P_RETCODE can be used to pass a two-byte value
to the chained program.

P_CHAIN does not return any values to the calling
program and any errors encountered are handled by the
CCP.

+--+
P_LOAD

SYSTEM CALL 59: LOAD OVERLAY

+--+ I I
I Entry Parameters: I
I Register C: 3BH I
I Register DE: FCB Address I
I I
I Returned Value: I
I Register A: Error Code I
I Register H: Physical Error I
I I

+--+
Only transient programs with an RSX header can use
P_LOAD because it is supported by the LOADER module.

B- 1 1 1

OTHER BDOS SYSTEH CALLS

The call ing program must have a header to force the
LOADER to remain resident after the program is
loaded.

P_LOAD loads either an absolute or relocatable
module. Relocatable modules are identified by a
fl1etype of PRL. P_LOAD does not call the loaded
module.

The referenced FeB must be successfully opened before
P_LOAD Is called. The load address is specified In
the first two random-record bytes of the FeB (rO and
r1). The LOADER returns an error if the load address
Is less than 100H; or if performing the requested
load operation would overlay the LOADER or any other
Resident System Extensions that have been previously
loaded.

When loading relocatable files, the LOADER requires
enough room at the load address for the complete PRL
file including the header and bit map (see Appendix
B). Otherwise an error is returned. P_LOAD also
returns an error on PRL file-load requests if the
specified load address is not on a page boundary.

Upon return, P_LOAD sets register A to zero if the
load operation is successful. If the LOADER RSX is
not resident in memory because the calling program
did not have a RSX header, the BOOS returns with
register A set to OFFH and register H set to zero.
If the LOADER detects an invalid load address, or if
insufficient memory is available to load the overlay,
P_LOAD returns with register A set to OFEH. All
other error returns are consistent with the error
codes returned by BOOS F_READ.

+--+ , ,
, P_RETCODE , , ,
, SYSTEH CALL 108: GET/SET PROGRAH RETURN CODE' , ,
+--+ , ,
I Entry Parameters: I
I Register C: 6CH I
, Register DE: OFFFFH (Get) or ,
I Program Return Code (Set) I , ,
I Returned Val ue: I
I Register HL: Program Return Code or I
I (no value) I , ,
+--+

B-112

OTHER BOOS SYSTEM CALLS

CP/M Plus allows programs to set a return code before
terminating. This provides a mechanism for programs
to pass an error code or value to a following job
step in batch environments. For example, Program
Return Codes are used by the CCP 1n CP/M Plus's
conditional command-line batch facility. Conditional
command lines are command lines that begin with a
colon (:). The execution of a conditional command
depends on the successful execution of the preceding
command. The CCP tests the return code of a
terminating program to determine whether it
successfully completed or terminated in error.
Program return codes can also be used by programs to
pass an error code or value to a chained program (see
P_CHAIN, Chain to Program),

The CCP has a conditional command facility that uses
the Program Return Code. If a command line SUBHITted
to the CCP by the SUBHIT utility begins with a colon,
the CCP skips execution of the command if the
previous command set an unsuccessful Program Return
Code. In the following example, the SUBHIT utility
sends a command sequence to the CCP.

A)SUBMIT SUB FILE

A)COMPUTE RESULTS.OAT

A):REPORT RESULTS. OAT

The CCP does not execute the REPORT command if the
COMPUTE command sets an unsuccessful Program Return
Code.

A program can set or interrogate the Program Return
Code by calling P_RETCODE. If register pair DE =
OFFFFH, then the current Program Return Code is
returned in register pair HL. Otherwise P_RETCODE
sets the Program Return Code to the value contained
in register pair DE. Program Return Codes are
defined in the table below.

B-1 13

OTHER BDOS SYSTEM CALLS

TABLE 8-18. PROOW REnlRN CODES
Code IWning

0000 - FEfl"
FFOO - FfFE
0000

Successful return.
Unsuccessful return.
The CCP initializes the Progran Return Code to
zero unless the progran 1s loaded as the result of
progran chain.

Ff1lO - FFFC
FFFD

Reserved.
The progran is tennlnated because of a fatal BOOS
error.

FfFE The progran is terminated by the BDOS because the
user typed a CTRL- C.

+--+
I I
I P_TERHCPH I
I I
I SYSTEM CALL 0: SYSTEM RESET I
I I
+--+
I I
I Entry Parameters: I
I Register C: OOH I
I I
+--+

P_TERHCPH terminates the calling program and returns
control to the CCP via a warm-start sequence. Calling
this system call has the same effect as a jump to
location OOOOH of Page Zero.

Hote: The disk subsystem is not reset by P_TERHCPM
under CP/M Plus. The calling program can pass a
return code to the CCP by calling P_RETCODE prior to
making a P_TERMCPH call or jumping to location OOOOH .

When the CCP loads a transient program, the LOADER
module sets the stack pointer to a 16-level stack,
and then pushes the address OOOOH onto the stack.
Thus, an immediate return to the system is equivalent
to a jump to OOOOH. However, most transient programs
set up their own stack, and terminate execution by
making a P_TERMCPM call or by jumping to location
OOOOH.

B-114

OTHER BOOS SYSTEM CALLS

System Calls

+---+
I I
I S_BDOSVER I
I I
I SYSTEM CALL 12: RETURN VERSION NUMBER I
I I
+---+

Entr y Parameters:
Register C:

Returned Value:
Registers HL:

OCH

Version Number

I
I
I
I
I
I
I

+--------------------- - - - - - -- --------- ----------+
S_BDOSVER provides information that allows version
independent programming. It returns a two-byte value
in register pair HL: H contains OOH for CP/M and L
contains 31H, the BOOS file-system version number.
S_ BDOSVER 1s useful for writing applications programs
that must r un on multiple ve r sions of CP/M and MP/H.

+--- --- ------------ -- - ------------------ - - - -- - ---+
I I
I S_BIOS I
I I
I SYSTEM CALL 50: DIRECT BIOS CALLS I
I I
+---------------------- -------------- - - - - --------+

Entry Parameters:
Register c: 32H
Register DE: BIOS PB Address

Returned Value: BIOS RETURN

+--------- - - -------------- - --- - - - ---------- - -----+
S_BIOS provides a direct BIOS call through the BOOS
to the BIOS. The calling program passes the address
of a data structure called the BIOS Pa rameter Block
(BIOSPB) in register pair DE. The BIOSPB contains
the BIOS function number and register contents as
shown below:

BIOSPB: db FUNC BIOS function numbe r
db AREG A register contents
dw BCREG BC register contents
dw DEREG DE register contents
dw HLREG HL register contents

B- 115

- - - - - -

OTHER BDOS SYSTEM CALLS

P_TERHCPH is equivalent to 5_8105 with a BIOS
function number of 1.

Hote: The register - pair BIOSPB fields (BCREG, DEREG
r

HLREG) are defined in low - byte, high-byte order. For
example, in the BCREG field, the first byte contains
the C register value and the second byte contains the B
register value.

Under CP/M Plus, direct BIOS calls via the BIOS jump
vector are only supported for the BIOS Console I/O
and List functions. You must use 5_8105 to call any
other BIOS functions. In addition, 5_8105 intercepts
BIOS DRV_ALLOCVEC (Select Memory) calls and returns
with register A set to zero. Refer to the CP/M Plus
BIOS section for the definition of the BIOS fUnctions
and their register- passing and return conventions.

See the section enti tIed BIOS Overview for a list of
Osborne Executive CP/M Plus BIOS functions and
function numbers.

Note: XMOVE and HOVE, when used in conjunction,
should be called directly and not through BDOS. The
reason for this is that the BDOS calls move when
function 50 is called.

+--+
I I
I L~X I
I I
I SYSTEM CALL 60: CALL RESIDENT SYSTEM I
I EXTENSION I
I I
+--+
I I
I Entry Parameters: J
I Register C: 3CH I
I Register DE: RSX PB Address I
I I
I Returned Value: I
I Register A: Error Code !
I Register H: Physical Error I
I I

+--+
S_ RSX is a special BDOS function that you use when
you call ReSident System Extensions . The RSX
subfunction is specified 1n a structure called the
RSX Parameter Block, defined as follows:

RSXPB: db FUNC
db NUMPARMS

B- 116

RSX Function number
Number of word parameters

dw PARMETERl
dw PARMETER2

dw PARMETERn

OTHER BOOS SYSTEM CALLS

Parameter 1
Parameter 2

Parameter n

RSX modules filter all SDOS calls and capture RSX
function calls that they can handle. If there is no
RSX module present in memory that can handle a
specific RSX function call, the call Is not trapped,
and the BOOS returns OrFH in registers A and L. RSX
function numbers from 0 to 127 are available for CPIM
Plus-compatible software use. RSX function numbers
128 to 255 are reserved for system use.

+--+
S_SCB

SYSTEM CALL 49: GET/SET SYSTEM
CONTROL BLOCK

+--+

I
I
I
I
I
I

Entry Parameters:
Register C:
Register DE:

RetUrned Value:
Register A:
Register HL:

31H
SCB PB Address

Returned
Returned

Byte
Word

I
I
I
I
I
I
I
I
I

+--+
The System Control Block (abbreviated SCB) is a 100-
byte (64H-byte) CP/M Plus data structure that resides
in the BOOS system component. The SCB contains
internal BOOS flags and data, CCP flags and data, and
other system information such as console
characteristics and the current date and time. The
BOOS, BIOS, and CCP system components, as well as
CP/M Plus utilities and RSXs, reference SCB fields.
The S_SCB system call provides access to the SCB
fields for transient programs, RSXs, and the CCP.

However, use caution when you access the SCB and use
S_SCB for two reasons. First, the SCB is a data
structure applicable only to CP/M Plus. Digital
Research's multiuser operating system, MP/H, does not
support S_SCB. Therefore, programs that access the
SCB can run only on CP/M Plus. Secondly, the SCB
contains critical system parameters that reflect the
current state of the operating system. If a program
modifies these parameters illegally, the operating
system might crash. However, for application writers

B-117

OTHER BDOS SYSTEM CALLS

who are writing system-oriented applications, acCess
to the SeB variables might prove valuable .

For example, the CCP default drive and current user
number are maintained in the System Control Block.
This information Is displayed In the system prompt.
If a transient program changes the current disk or
user number by making an explicit BDOS call, the
System Control Block values are not changed. They
continue to reflect the state of the system when the
transient program was loaded. For compatibility with
CP/M version 2. the current disk and user number are
also maintained In location OOO~H of Page Zero. The
high-order nibble contains the user number, and the
low-order nibble contains the drive.

To use S_SCB, the calling program passes the address
of the SCB parameter block in reg1.,ter pair DE. This
data structure identifies the byte or word of the SCB
to be updated or returned. The SCB parameter block
is defined as:

SCBPB: DB OFFSET
DB SET

DW VALUE

Offset within SeB
OFFH if setting a byte
OFEH if setting a word
001H - OFDH are reserved

j OOOH if a get operation
;Byte or word value tobe set

The OFFSET parameter identifies the offset of the
field within the SCB to be updated or accessed. The
SET parameter determines whether S_SCB is to set a
byte or word value in the SCB or if it is to return a
byte from the SCB . The VALUE parameter is used only
in set calls. In addition, only the first byte of
VALUE is referenced in set byte calls.

The System Control Block is summarized in the
following table. Each of these fields is documented
in detail in Appendix A.

B- 118

OTHER BDOS SYSTEM CALLS

TABLE 8-19. SYSTEM COllTROL BLOCK
Hel Offset Descriptioo

00-04
05
06 - 09
OA - Of
10 - 11
12 - 19
1A
1B
1C
1D - 21
22 - 23
24 - 25
26 - 27
28 - 29
2A - 2B
2C
2D
2E
2f
30 - 32
33 - 34
35 - 36
37
38
39 - 3B
3C - 3D
3E
3f - 43
44
45 - 49
4A
4B
4C - 4f
50
51
52 - 56
57
58 - 5C
5D - 5E
5f - 63

Reserved for System Use
BDOS version number
User Flags
Reserved for System Use
Progran Error return code
Reserved for Sy stem Use
Console Width (columns)
Console Column Position
Console Page Length
Reserved for System Use
CONIN: Redirection flag, bit 7 = 0 > none
CONcur: Redirection flaS, bit 7 = 0 > none
AUXIN: Redirection flag, bit 7 = 0 > none
AUXOOT: Redirection flag, bit 7 = 0 > none
LSTOOT: Redirection flag, bit 7 = 0 > none
Page Mode
Reserved for System Use
CTRL-H Active
Rubout Active
Reserved for System Use
Console Mode
Reserved for System Use
Output Delimiter
List Output flag
Reserved for System Use
CUrrent DM! Address
Current Disk
Reserved for System Use
Current User Number
Reserved for System Use
BOOS MultlSector Count
BOOS Error Mode
Drive Search Chain (DISKS A: IE: IF:)
Temporary File Drive
Error Disk
Reserved for Sy stem Use
BOOS flags
Date Stanp
Cammon-Memory Base Address
Reserved for System Use

If S_SeB is called with the OFFSET parameter of the
sea parameter block greater than 63H, the system call
performs no action but returns with registers A and
HL set to zero.

B-119

•

OTHER BDOS SYSTEM CALLS

+--+
S_SERIAL

SYSTEM CALL 107 : RETURN SER I AL NUMBER

+--+
Entry Parameter s:

Register C:
Register DE :

Returned Value:

6BH
Serial
Field

Numbe r

Serial Numbe r
Field Set

I
I
I
I
I
I
I
I
I

+--+
S_SERIALreturns the CP I M Plus serial number to the6 - byte
field add r essed by register pair DE .

BOOS-Time Sys t em Calls

+--+
T_GET

SYSTEM CALL 105 : GET DATE AND TIME

+--+
I I
I Entry Pa r amete r s : I
I Register C: 69H I
I Register DE: OAT Add r ess I
I I
I Return Value : I
I Registe r A: Seconds I
I DAT set I
I I

+--+
T_GET obtains the system inte r nal date and time . The
calli ng pr ogram passes in register pai r DE t he
address of a ~ - byte data structure that r eceives the
date and time values. The fo r mat of the date and
time (OAT) data structu r e is the same as the fo r mat
desc r ibed in T SET below. T GET also r etur ns the
seconds field of the system-date and tim e in r egister
A as a t wo- digit BCD value .

B- 120

----------------~ --------------------------------------

OTHER BDOS SYSTEM CALLS

+---------------------------- - -------------------+
T_SET

SYSTEM CALL 10~: SET DATE AND TIHE

+- - - ---- -- ---------------------------------- - --- -+
I I
I Ent ry Parameters: 1
I Register C: 68H I
I Register DE: OAT Address I
I I
I Returned Value: None I
I I
+-- - - - ---+

T_5ET sets the system internal date and time. The
calling program passes the address of a 4-byte
structure containing the date and time specification
1n the register pair DE. The format of the date and
time (OAT) data structure is:

byte 0 - 1
byte 2
byte 3

Date field
: Hour field
: Hinute field

The date 1s represented as a 16 - blt integer with day
1 corresponding to January 1, 1978. The time 1s
represented as two bytes: hours and minutes are
stored as two BCD digits .

This system call also sets the seconds field of the
system date and time to zero.

B- 121

CP/M Plus BIOS Documentation

CP/M PLUS BIOS DOCUMENTATION

The following sections provide information of
interest to those desiring a deeper understanding of
CP/M Plus, especially the system programmer who wants
to customize the Osborne Executive CP/M Plus BIOS for
special applications. CP/M Plus already provides this
facility In the form of Resident System Extensions
(RSXs)j however, certain applications that cannot be
implemented with RSXs may require direct modification
of the BIOS.

CP/M System Components

The CP/M Plus Operating System consists of the
following modules: the Console Command Processor
(CCP), the BaSic Disk Operating System (BOOS), and
the Basic Input/Output System (BIOS).

The CCP provides the basic user interface to the
operating system. It supplies six built-in commands:
DIR, DIRS . ERASE. RENAME, TYPE, and USER. The CCP
executes in the Transient Program Area (TPA) I the
region of memory for application programs . It
contains the Program Loader Module Which loads
transient programs from disk into the TPA for
execution.

The BDOS is the logical nucleus and file system of
CP/M Plus. It provides the standard CP/M software
interface between the application program and the
physical input/output routines of the BIOS.

The BIOS interfaces the BDOS to the Osborne Executive
hardware. The BIOS performs all physical I/O in the
sy stem.

The aDOS and the BIOS modules cooperate to provide
the CCP and other transient programs with hardware
independent access to CP/M Plus facilities. Because
the BIOS is configured for different hardware
environments and the BDOS remains constant, you can
transfer programs that run under CP/M Plus unchanged
from systems with different hardware configu rations
to the Osborne Executive.

Communication A_ong CP/M Plus Modules

The BIOS loads the CCP into the TPA at system cold
and warm start . The CCP moves the Program Loader
Module to the top of the TPA and uses it to load

B-122

J
CPIM Plus BIOS Documentation

transient prog r ams.

The BOOS contains a set of system calls that the CCP
and applications programs call to perform disk and
character 110 operations.

The BIOS contains a Jump Table with a set of 33 entry
points that the BDOS calls to perform hardware
dependent primitive functions, such as peripheral
device 110. For example, CONIN: is an entry point of
the BIOS called by the BOOS to read the next console
input character.

Similarities exist between the BOOS system calls and
the BIOS functions, particularly for simple device
110. For example, when a transient program makes a
C_WRITE system call to the BOOS, the BOOS makes a
console-output function call to the BIOS. In the
case of disk I/O, however, this relationship is more
complex. The BOOS typically makes several BIOS
function calls to perform a single BOOS file I/O
system call. BOOS disk 1/0 is in terms of 128-byte
logical records, and BIOS disk I/O is in terms of
physical sectors and tracks. Therefore, sector
translation must also take place.

The System Control Block (SCB) is a lOO-byte (64H
byte) CPIM Plus data structure that resides in the
BOOS . The BOOS and the BIOS communicate through
fields in the SCB. It contains SDOS flags and data,
CCP flags and data, and other system information,
such as console characteristics and the current date
and time. You can also access some of the System
Control Block fields from an application program.
However, note that the SCB contains critical system
parameters which reflect the current state of the
operating system . If a program modifies these
parameters, the operating system can crash. See the
System Control Block section of this manual, and the
description of the S_SCB system call in the BDOS
System System Calls section for more information on
the System Control Block.

Page Zero is a region of memory that acts as an
interface between transient programs and the
operating system. It contains critical system
parameters, including the entry to the BOOS and the
entry to the BIOS Warm-Boot routine. At system
startup, the BIOS initializes these two entry points
in Page Zero . All linkage between transient programs
and the BOOS is restricted to the indirect linkage
through Page Zero.

B-1 23

CP/M Plus BIOS Documentation

High memory: +---+
I

BIOS: Basic liD System

+---+ :
:
:

BOOS: Basic Disk Operating System

+---+
II

I j LOADER: ProgrClll Loader Module
/ : Component of CCP

LOADER-base:/ +---+

0100H:

OOOOH :

I I
/ TPA: Transient Program Area

TPA \
\
\
\
\

+---+
: CCP: Console Carmand Processor
: I

\+---+
I

PAGE ZERO

+---+
FIGURE B-7. GENERAL MEMORY ORGANIZATION OF CPIM PLUS

Note: All memory regions 1n CPIM Plus are page
aligned, which means that they must begin o n a page
boundary. Because a page 1s defined as 256 (100H)
bytes, a page boundary always begins at a hexadecimal
address that has a low-order byte of zero.

Banked and Honbanked Systems

CP/M Plus supports banked memory hardware, with a
minimum of 96 kilobytes of memory. For a detailed
explanation of memory organization for the Osborne
Executive CP/M Plus banked system, see the
Intr oductory s ection of this document. Bank 0 and
common memory are for the operating system. Bank 1
is the Transient Program Area, which contains the
Page Zero region of memory. You can use additional
banks to enhance operating system performance.

Common memory is alway s enabled and addressable. The
operating system is divided into two modules: the
resident portion, which resides in common memory; and
the banked portion, which resides just below common
memory in Bank O. CPMLDR, the system loader, loads
part of the BDOS into common memory and part of the
BDOS into Bank O. CPMLDR loads the BIOS in the same
manner.

B-12~

CP/M Plus BIOS Documentation

In the Osborne Executive the CP/M Plus banked system
is large enough to contain the required buffers and
the resident (common) portion of the operating
system, which means a 1.5K BOOS and the common part
of your customized BIOS.

CP/M Plus maintains a cache of deblocking buffers and
directory records using a Least Recently Used (LRU)
buffering scheme. The LRU buffer is the first to be
reused when the system runs out of buffer space. The
BOOS maintains separate buffer pools for directory
and data-record caching.

This diagram shows the memory organization in the
Osborne Executive bank-switched CP/M Plus system.

/+---------------------+
/: LRU DATA BUFFERS

/ +---------------------+
COIKW HEllJRY / I RESIDENT BIOS 1.5K :

\ +---------------------+
\ : RESIDENT BOOS 1. 5K

+ ••••••••• AAAAAAA ••• ++A •••••• AA.AAAAAAAAAAA+
I AlLOCATION/ CHECKSUM I I PRa::RAM LOADER I
1 VECTORS 1+---------------------+
+-------------------+1 Stacked RSX Modules 1
I BANKED BIOS 3K 1+---------------------+
+-------------------+1 TPA I
I BANKED BOOS 11 K I
+-------------------+

LRU DIRECTCRY I :
I BUFFERS II TPA
+-------------------+1
1 HASHED DIRECTORY I:
I TABLES II
I (one per drive) : I Optional overlays I
+-------------------+ I :

COPY OF CCP 1+---------------------+ +AAAAAAAAAAAA.AAAAAA+I :
I TRANSIENT PRa::RAM : , , , ,
+---------------------+
I PAGE ZERO
+---------------------+

BANK 0 BANK 1

The banked system supports a TPA of 60K or more. The
banked portion of the operating system in Bank 0
requires at least 16K of memory.

In the banked system the BOOS and the BIOS are
separated into two parts: a resident portion and a
banked portion. The resident SDOS and 8IOS are

B-125

CP/M Plus BIOS Documentation

located in common memory. The banked BOOS and BIOS
are located in the operating system bank, called Bank
O.

The RSX modules shown in the diagram above are
Resident System Extensions (RSX) that are loaded
directly below the operating system when included in
an application or utility program. The Program
Loader places the RSX in memory and chains BOOS calls
through the RSX entry point in the RSX.

Disk Organization

The figure below illustrates the organization of an
Osborne Executive CP/M Plus system disk.

Track 39 ---> +-------------------------------+
I

Data Tracks 1 CP/M Plus Data Region
I

Track ~ ---> +-------------------------------+
I I
1 CP/M Plus Directory Region 1
I I

Track 3 ---> +-------------------------------+
I Character Sets, 1
1 Function Key Definitions, 1
I and Keyboard Tables. 1

Track 2 ---> +-------------------------------1
I I

System Tracks 1 BIOS Tables (Sector 5) 1
I CCP.COM (Sectors 1 - 4) I

Track 1 ---> +-------------------------------+
I I
I CPMLDR (Sectors 2 - 5) I
I Cold Boot Loader (Sector 1) I

Track 0 ---> +-------------------------------+
FIGURE 8. SYSTEH TRACK ORGANIZATION

The first 3 tracks are the system tracksj the
remaining tracks (the data tracks) are used by CP/H
Plus for file storage.

Note: The system tracks are used only during system
cold start. All other CP/M Plus disk access is
directed to the data tracks of the disk.

8-126

CP/M Plus BIOS Documentation

I nitial Load (Cold Boot) of CP/M Plus

CP/M Plus is loaded into memory in a four-stage
procedu r e . The fi r st stage consists of loading into
memory a small pr og r am , called the Cold Boot Loader ,
f r om the system t r acks of the Boot disk. This load
operation is handled by a small pr ogram in Read - Only
Memory (ROM) that begins execution upon system reset.

In the second stage , the Cold Boot Loader loads the
memory image of the CP/M Plus system loader program
(CPMLDR) f r om the system tracks of a disk into memory
and passes control to it. The Cold Boot Loader loads
CPMLDR i nto Bank O.

In the third stage, CPMLDR reads the CPH3 .SYS file,
which contains the BDOS and Osborne Executive BIOS,
from the the data area of the disk into the memory
addresses assigned by GENCPM. CPMLDR reads the
common part of the BOOS and BIOS into the common part
of memory, and reads the banked part of the BDOS and
BIOS into the area of memory below common_base in
Bank O. CPMLDR then transfers control to the Cold
BOOT system initialization routine in the BIOS.

For the final stage , the BIOS Cold-BOOT routine (BIOS
Function 0) perfor ms any r emaining necessary hardwa r e
initialization , displays the sign- on message, and
checks the disk for the program EXECST.COM. If
EXECST.COM is present, the BIOS loads it into the TPA
region of memory and passes control to it. If EXECST
does not exist, the BIOS loads the CCP, which then
displays the system prompt.

B- 127

THE SYSTEM CONTROL BLOCK

THE SISTEM CONTROL BLOCK

The System Control Block (SeB) 1s a data structure
located in the BDOS. The SeB contains flags and data
used by the CCP , the BDOS. the BIOS. and other system
components. The BIOS, or any other program, can
access specific data in the System Control Block
through BDOS.

In the SeB.ASH file, the high-order byte of the
various SeB addresses 1s defined as OFEH. The linker
marks absolute external equates as page- relocatable
when generating a System Page-Relocatable (SPR)
format file. GENCPM recognizes page-relocatable
addresses of OFExxH as references to the System
Control Block in the BOOS. GENCPH changes these
addresses to pOint to the actual SeB in the BDOS when
it is relocating the system.

Do not perform assembly-time arithmetic on any
references to the external labels of the SCB. The
result of the arithmetic could alter the page value
to something other than OFEH.

The example below shows the fields of the System
Control Block. An lI@n before a name indicates that
it is a data item. A "1" preceding a name indicates
that it is the label of an instruction. In the
example, r/w means Read-Write, and rIo means Read
Only. The BIOS can modify a Read-Write variable, but
must not modify a Read-Only variable.

THE SC8. ASH Fll.E

title 'System Control Block Definition for CP/M3 BIOS'

public @civec, @covec, @aivec, @aovec, @lovec, @bnkbf
public @crdma, @Crdsk, @Vinfo, @resel, @fx, @osrcd
public @mItio, @enmde, @erdsk, @media, @bflgs
public @date, @hour, @min, @sec, 1erjmp, @mxtpa

scb$base equ OFEOOH Base of the SCB

@CIVEC equ scb$base+22h Console Input Redirection
Vector (word, r/w)

@CCNEC equ scb$base+2Qh Console OUtput Redirection
Vector (word, r/w)

@AIVEC equ scb$base+26h Auxiliary Input Redirection
j Vector (word, r/w)

@AOVECequ scb$base+28h jAuxiliary Output Redirection
j Vector (word, r/w)

B-128

•

@LOVEC equ

@BNKBf equ

@CRDMA equ

@CRDSK equ
@VINfO equ

@RESEL equ
@Fl(equ

@USRCD equ
@MLTIO equ

@ERHDE equ
@ERDSK equ
@MEDIA equ

@BfLGS equ

@DATE equ

@HOUR equ
@MIN equ
@SEC equ
?ERJMP equ

@MXTPA equ

end

Field

@CIYEC, @CO'IEC,
@AIVEC, @ADVEC,
I!.OJEC

THE SYSTEH CONTROL BLOCK

scb$base+2Ah List Output Redirection
Vector (word, r/w)

scb$base+35h Address of 128-Byte Buffer
for Banked BIOS (word, rIo)

scb$base+3Ch Current DMA Address

scb$base+3Eh
j (word, rIo)
; Current Disk (byte, rio)

scb$base+3Fh j BOOS Variable "INFO"
j (word, rIo)

scb$base+ll1h j FCB Flag (byte, rIo)
scb$base+ll3h j system call for Error

j Messages (byte, rIo)
scb$base+44h jCurrent User Code(byte, rIo)
scb$base+4Ah ;Current Hul tlsector Count

(byte,r/w)
scb$base+4Bh j BOOS Error Mode (byte, rIo)
scb$base+51h ; BDOS Error Disk (byte, rIo)
scb$base+5Qh j Set by BIOS to indicate

; open door (byte,r/w)
scb$base+57h BDOS Message Size Flag

scb$base+5Bh
(byte,r/o)
Date 1n Days Since 1 Jan 78

scb$base+5Ah
(word, r/w)
Hour 1n BCD (byte, r/w)

scb$base+5Bh Minute 1n BCD (byte, r/w)
scb$base+5Ch Second in BCD (byte, r/w)
scb$base+5Fh BDC6 Error Message Jump

(three bytes, r/w)
scb$base+62h Top of User TPA

(address at 6,1)(word, rio)

TABLE B--20. SGB FIEJ.D$
Heanirw:

(Read-Wrlte Variables) These fields are
the 16-bit I/O redirection vectors for
the five logical devices: console input,
console output, auxiliary input,
auxiliary output, and the list device.
(See the section on Character I/O
Functions below.)

(R~y Variable) @BNKBf contains the
address of a 128-byte buffer in the
resident portion of the BDIl). 11th buffer
is available for use during BCXJT and WOOT
only. The BIOS uses it to transfer a copy
of the CCP fran an image in an al ternate
bank.

B-129

THE SYSTEH CONTROL BLOCK

Field

fCRaU, @FX,
USHCD, @ERDSK

I!II.no

@l£DIA

TABLE 8-20. SGB FIElDS (Cont .)
Meani,.

(Read-Only Vanables) These variables
contain the current OM! address, the BDOS
system call nlJnber, the current user
code, and the disk code of the drive on
which the last error occurred. They can
be displayed when a BOOS error is
intercepted by the BIOS. See ?ERJHP .

(Read~J' Variable) @CRDSK is the current
default drive, set by the DRV~ET BOOS
system call.

(Read-Only Variablea) If @RESEL i. equal to
OFFH, then @VINFO contains the address of a
valid FCB. If @RESEL i. not equal to om,
then @VINFO is undefined. The BlOO uses
@VINFO to display the filespec when it
intercepts a BOOS error.

(Read-WT1te Variable) @HeTIO contains the
current multi sector count. The BIOS can
change the multisector count directly, or
through the F_HULTISEC BDOS system call.
The value of the multisector count can
range from 1 to 128.

(Read-Only Variable) @ERHDE contains the
current BOOS error mode. OFFH indicates
the BOOS is returning error codes to the
application program without displaying any
error messages. OFEH indicates the BOOS is
both displaying and returning errors. Any
other value indicates the BOOS is
displaying errors without notifying the
application program.

(Read-Wr1te Variable) @MEDIA is a global
system flag indicating that a drive door
has been opened. The BIOS routine that
detects the open drive door sets this flag
to OFFH. The BIOS routine also sets the
MEDIA byte in the Disk Paraneter Header
associated with the open-door drive to
OFFH.

B-1 30

Field

@DATE

8f(lJR, @MIN ,

THE SYSTEM CONTROL BLOCK

TABLE &-20. seB FIElDS (Cont,)

(R~J Variable) The BDOS in CP/M Plus
produces two kinds of error messages:
short error messages and extended error
messages. Short error messages display one
or two lines of text. Long error messages
display a third line of text containing the
filename, filetype, and BDOS system call
number involved in the error.

GENCPM sets this flag in the System Control
Block to indicate whether the BIOS displays
short or extended error messages. The BIOS
error-message handler checks this byte in
the System Control Block. If the hlgh
order bit (bit 7) Is set to zero, the BDOS
displays short error messages. If the
high-order bit Is set to 1, the BOOS
displays the extended three-line error
messages. For example, the BOOS displays
the following error message if the SIOO
returns an error fran READ and the BDOS is
displaying long error messages:

CP 1M Error on d: Di sk I/O
BIXlS Function :: nn File = filename. typ

In the above error message, Function no and
filename.typ represent the BDOS system call
number and file specification involved,
respectively.

(Read-Vr1te Variable) The nll1lber of days
since 1 January 1978, expressed as a 16-bit
unsigned integer, low byte first. A real
time clock interrupt updates the @DATE
field to indicate the current date.

(Read-Wr1te Variable) These two-digit
Binary-Coded Decimal (BCD> fields indicate
the current hour, mdnute, and second
updated by a real-time clock interrupt.

B-131

•

THE SYSTEM CONTROL BLOCK

Field

1EIIJI4P

TABLE ~20. SCB FIEJ ,DS (Cont,)
Mcan1.M

(Read-llr1te Code Label) The BOOS calls the
error message ~ubroutlne through this jump
instruction. Register C contatns an error
code as follows:

1 Permanent Error
2 Read-Only D1sk
3 Read-Only F1le
4 Select Error
1 Password Error
8 File Exists
9 ? in Filename

Error code 1 above results in the BOOS
message: Di* I/O

The ?ERJHP vector allQols the BIOS to
intercept the BOOS error messages so you
can display them in a foreign language •

Note: This vector is not branched to if
the application program Is expecting return
codes on physical errors.

?ERJMP 1s set to point to the default
(English) error message routine contained
in the BOOS. The BOOT routine can modify
the address at ?ERJMP+l to point to an
alternate message routine. Your error
message handler can refer to @F:lC, @VINFO
(1f @RESEL 1s equal to OFFH), @CROHA,
@CRDSK, and @USRCD to print additional
error information. Your error handler
should return to the BOOS with a RET
instruction after printing the appropriate
message.

(Read-Only Variable) @KXTPA conta1ns the
address of the current BOOS entry point.
This is also the address of the top of the
TPA. The 8CX)T and WBOOT routines of the
BIOS use this address to initialize the
BDOS-entry JHP instruction at location OO5H
during system initialization. Each time an
RSX 1s loaded, @KXTPA 1s adjusted by the
system to reflect the change in the
ava1lable User Memory (TPA).

B-132

CP/M PLUS BIOS OVERVIEW

CP/M PLUS BI OS OVERVIEW

The table below describes the entry points into the
BIOS from the Cold Start Loader and the BOOS. Ent ry
to the 8IOS Is through the BIOS jump vector, a set of
33 jump instructions that pass program control to the
individual BIOS subroutines.

TABLE B-21 , CP/M PLUS BIOS JUMP YEClPR
No. Instruction Description

o JHP BOOT
1 JMP waOOT
2 JHP CONST
3 JHP CONIN
4 JHP CONOOT
5 JMP LIST
6 JHP AUXOOT
7 JHP AUXIN
8 JHP HOME
9 JHP SELDSK

10 JHP SETTRK
11 JHP SETSEC
12 J HP SETOMA
13 JHP READ
14 JHP WRITE
15 JHP LISTST
16 JMP SECTRN
17 JHP CONOST
18 JHP AUXIST
19 JMP AUXOST
20 JHP DEVTBL
21 JHP DEVINI
22 JHP DRVTBL
23 JHP UTIO

24 JHP FLUSH

25 JHP!!JVE
26 JHP TIME
27 JHP SELMEM
28 JHP SETBNK
29 JHP XIfJlTE

30 JHP TOROM
31 JHP RESERV1
32 JHP RESERV2

Perfonn cold start initialization
Perfonn warm start initialization
Check for console input character ready
Read Console Character In
Write Console Character out
Write List Character out
Write Auxiliary Output Character
Read Auxiliary Input Character
Move to Track 00 on Selected Disk
Select Disk Drive
Set Track NlDIber
Set Sector NlIJlber
Set DHA Address
Read Specified Sector
Write Specified Sector
Return List Status
Translate Logical to Physical Sector
Return Output Status of Console
Return Input Status of Aux. Port
Return Output Status of Aux. Port
Return Address of Char. I/O Table
Initialize Char. I/O Devices
Return Address of Disk Drive Table
Set Number of Logically COnsecutive
sectors to be read or written
Force PhYSical Buffer Flushing for
user- supported deblocking
Memory to Memory Move
Time Set/Get signal
Select Bank of Memory
Specify Bank for DHA Operation
Set Bank When a Buffer is in a Bank
other than 0 or 1
Call ROM routine
Reserved for Future Use
Reserved for Future Use

B-133

CP/M PLUS BIOS OVERVIEW

Each jump address corresponds to a particular
subroutine that performs a specific hardware
operation. Entry pOints 31 and 32 are reserved for
future versions of CP/M. The five categories of
system operations and the BIOS function calls that
accomplish these operations are shown below.

TABLE 8-22. SYSTEM GAllS
OPeration E\mction

System Initialization BOOT. WSOOT. DEVTBL. DEVINI ,
DRVTBL

Character I/O CONST. CONIN. CONOUT, LIST,
AUXOUT, AUXIN. LISTST I CONasT ,
AUXIST, AUXOST

Disk I/O HOME, SELDSK, SETTRK, SETSEC,
SETDHA. READ, WRITE. SECTRN.
HULTIO. FLUSH

Memory Selects and MoYes KJVE, SEl.HEM, SElBNK, XM:lVE

Clock Support TIME

The table below Is a summary showing the CP/M 3 BIOS
function numbers, jump instruction names, and the
entry and return parameters of each jump instruction
In the table, arranged according to the BIOS function
number.

TABLE 8-23. CP/M PLUS BIOS FllNCI'ION JUMP TABLE SUMMARY
No. function InPUt D.JtPYt

0 BOOT None None
1 WSOOT None None
2 CONST None A = OFFH if ready

A ; DOH if not ready
3 COOIN None A = Con Char
4 CONOUT C = Con Char None
5 LIST C = Olar None
6 AUXOUT C = Olar None
7 AUXIN None A :: Cllar
8 HOME None None
9 SELDSK C = Drive 0-15 HL ; DPH addr

E ; Init Sel Flag HL ; OOOH if invalid dr.
10 SETTRK BC :: Track No None
1 1 SETSEC BC :: Sector No None
12 SETDKA BC ; .DIIA None
13 READ None A :: DOH if no err

A :: 01H if nonrecov err
A = OFFH if media changed

B-1 34

CP/ M PLUS BIOS OVERV IEW

DlK E 8-23 . ~fLH PillS IlIas FlJNCIICIi JUMP Dill E SUMMARY !Cent,)
Ho, function lnDut OJtD!Jt

14 WRITE C ; Deblk Code A :; OOH if no err
A :; 01H if phys err
A ; 02H if disk is RIO
A :; OFFH if media changed

15 LISTST None A :; OOH if not ready
A :; OFFH if ready

16 SECTRN Be :; Log Sect No HL :; Phys Sect No
DE :; Trans Tbl Adr

17 CONOST None A :; OOH if not ready
A ; OFFH if ready

18 AUXIST None A :; OOH if not ready
A :; OFFH if ready

19 AUXOST None A :; ooH if not ready
A :; OFFH if ready

20 DEVTBL None HL ; Chr Tbl addr
21 DEVINI C::DevNoO - 15 None
22 DRVTBL None !-[. :; Drv Tbl addr

HL ; OFFFFH
HL ; OFFFEH
HL ; OFFFDH

23 !tJLTlO C :: !oUl tsec Cnt None
24 fLUSH None A :: OooH if no err

I~
A ; 001H if phys err
A ; 002H if disk RIO

25 H:JVE HL :; Dest Adr HL & DE point to next
DE :; Source Adr bytes folla/i08 I«lVE

26 TIME C ; Get/Set Flag None
27 SELHEM A :: Hem Bank None
28 SETBNK A :: Hem Bank None
29 XH:JVE B ;; Dest Bank None

C :; Source Bank
Be :; Count

30 TOROH E ; Offset (from 0100H) to
ROHR7N

31 RESERV1 Reserved for Future Use
32 RESERV2 Reserved for Future Use

B- 135

SYSTEM INITIALIZATION

SYSTEM INITIALIZATION

When the BOOT routine of the sros gets control, it
initializes two system parameters 1n Page Zero of
memory, as shown below.

TABLE "lb2""'4 ___________ _
l.ocatioo Description

D,1,2 Set to JHP WBOOT (OOOOH: JHP 8105+3). Location 1
and 2 must contain the address of WBOOT 1n the jump
vector.

5,6,7 Set to JHP BOOS. the primary
Plus for transient programs .
of the BOOS Is maintained In
the System Control Block.

entry point to CP/M
The current address

the variable @MXTPA in

The BOOT and WeCOT routine loads the CCP into the TPA
In Bank 1 at location 0100H. The 8ros Cold- BOOr
routine reads the CCP into memory from the system
tracks.

The Cold-BOOT routine places a copy of the CCP into a
reserved area of Bank O. Then the Warm- BOOT routine
copies the CCP into the TPA In Bank 1 from Bank 0
rather than reloading the CCP from disk, thus
avoiding disk access during warm boot.

There is a 128-byte buffer in the resident portion of
the BOOS that is used by BOOT and WBOOT. The address
of this buffer is stored in the SCB variable @BNKBF .
BOOT and WBOOT use this buffer as a stack area.

The system tracks for CP/M Plus are partitioned like
this:

+---+ I Cold I CPMLDR CCP
IStart Ldr I
+---+
The Cold Start Loader loads CPHLDR into a constant
memory location that is chosen when the system is
configured . However, CPHLDR loads the BOOS and BIOS
system components into memory as specified in the
CPM3 .SYS file generated by GENCPM, the system
generation utility. Thus , CP/M Plus allows the user
to configure a new system with GENCPM and then run it
without having to update the system tracks of the
system disk.

8-136 - - -

SYSTEM INITIALIZATION

System Initialization Functions

This section defines the BIOS system-initialization
routines BOOT , WBDO!, DEVTBL, DEVINI, and DRVTBL .

+--+
8105 Function 0: 800T I

: I
+--+

, ,

Get Control from Cold Start Loader
and Initialize System

Entry Parameters: None

Returned Values: None
+--+

The BOOT entry point gets control from the Cold Start
Loader 1n Bank 0 and 1s responsible for basic system
initialization. Any remaining hardware
initialization that is not done by the boot ROMs, the
Cold Boot Loader, or the LORBrOS is performed by the
BOOT routine.

The BOOT routine must perform the system
initialization outlined in the section on System
Initialization. This includes initializing Page Zero
jumps and loading the CCP. BOOT also prints the
sign- on message. Control is then transferred to the
CCP in the TPA at 0100H .

To initialize Page Zero, the BOOT routine places a
jump at location OOOOH to BIOS_base + 3, the BIOS
warm-start entry point. The BOOT routine also places
a jump instruction at location 0005H to the address
contained in the System Control Block variable,
@MXTPA .

+--+
BIOS Function 1: WBOOT

+--+
I

Get Control When a Warm Start Occurs

Entry Parameters: None

Returned Values: None

+--+

8- 137

SYSTEM INITIALIZATION

The wecor entry point 15 entered when a warm start
occurs. A warm start 1s performed whenever a user
program branches to location OOOOH or attempts to
return to the CCP. The WaOOT routine also performs
the system initialization outlined 1n BIOS Function
0, including initializing Page Zero jumps and loading
the CCP.

When we cor is complete, it transfers control to the
CCP at location 0100H 1n the TPA.

Note: The CCP does not reset the disk system at warm
start. The CCP only resets the disk system when a
CTRL-C is pressed following the system prompt.

+--+
I BrOS Function 20: DEVTBL
:
+--+

Return Address of Character I/O Table

Entry Parameters: None

Returned Values: HL = Addr of Chrtbl
:
+--+

The DEVTBL and DEVINI entry points allow you to
support device assignment with a fleXible, yet
completely optional system. It replaces the IOBYTE
facility of CPIM 2.2.

+--+
I
I BIOS Function 21: DEVINI
:
+--+

Initialize Character I/O Device

Entry Parameters: C=device number, 0-15

Returned Values: None
:

+--+
The DEVINI routine initializes the physical character
device specified in register C to the baud rate

B-138

SYSTEM INITIALIZATION

contained in the appropriate entry of the CHRTSL . It
is r eferenced only by the DEVICE utility supplied
with CPI M Plus.

+--+
I 1

BIOS Function 22: DRVTBL I

+--+
Return Address of Disk Drive Table

Ent ry Parameters: None

Retu r ned Values: HL = Addr of Drive Table of
Disk Parameter Headers
(DPH); Hashing can be
utilized1f specified
by the DPHs referenced
~ this D~HL.

HL = OFFFFH if no Drive
Table;the aoos 1s
responslblefor
blocking/deblocking;
Hashing 1s supported.

HL = OFFFEH if no Drive
Table; the aDOS 1s
responsible for
blocking/deblockingj
Hashing is not
supported.

+--+

8-1 39

CHARACTER I/O

CHARACTER 1/0

CP/M Plus assumes that all simple character I/O
operations are performed in a - bit ASCII, upper- and
lowercase, with no parity. An ASCII CRTL- Z (lAH)
denotes an end-or-file condition for an input device.
The table below lists the characteristics of the
logical devices:

TABLE 8-25. CP/M PLUS I.1XJICAL DEVICE CHARACTERISTICS

Device Olaracteci.stics

CONlN, CONCIJT The interactive console that
ccmnunicates wi th tbe operator,
accessed by CONST, CONIN. CONCUr,
and CONOOTST. Typically, the
CONSOLE 1s a device such as a CRT
or teletype, interfaced serially,
but it can also be a memory-mapped
video display and keyboard. The
console 1s an input and output
device.

LIST The system printer. LIST is
usually a hard-copy device such as
a daisywheel or dot-matrix
printer.

•

AUXOUT The auxiliary-character output
device, such as a modem.

AUXIN The auxiliary-character input
device, such as a modem .

Character 1/0 Data Structures

The BIOS data structure CHRTBL is a character table
describing the phYSical I/O devices . . CHRTBL contains
6- byte phYSical device names and the characteristics
of each physical device. These characteristics
include a mode byte, and the current baud rate, if
any, of the device. The DEVICE utility references
the phYSical devices through the names and attributes
contained in CHRTBL. DEVICE can also display the
physical names and characteristics in CHRTBL .

The mode byte specifies whether the device is an
input or output device, whether it has a selectable
baud rate, whether it 1s a serial device, and if
XON/XOFF protocol is enabled.

B- '~O

CHARACTER IIO

The listing below shows the character device table
that the DEVICE utility uses to set and display I/O
direction 1n the Osborne Executive Computer.

sample character device table

chrtb db 'CRT j console VDT
db mbinout+mb$serial+mb$soft$baud
db baud$9600

db 'LPT j system serial printer
db mb$output+mb$serlal+mb$soft$baud+mb$xon
db baud$9600

db 'T1810 I j alternate printer
db mbSoutput+mb$seria!+mb$soft$baud
db baud$9600

db I K>DEM I j 300-baud modem port
db mbinout+mb$serial.mb$soft$baud
db baud$300

db 'VA:/.. ; interface to VAX 11/780
db mbinout+mb$serial+mb$soft$baud
db baud$9600

db 'DIABLO' ; Diablo 630 daisywheel printer
db mb$output+mb$seria!+mb$softSbaud+mb$xon$xoff
db baud$1200

db I CEN
db mb$output
db baudSnone

db 0

i Centronics-type parallel printer

i table terminator

The listing below shows the equates for the fields
contained in the sample character device table.

equates for mode byte fields

mb$input
mb$output
mbinout
mb$soft$baud

mb$serial
mbxonxoff

eQu 0000$0001 b ; device may do input
equ 0000$OO10b ; device may do output
equ mb$input.+mb$output i dey may do both

equ OOOO$0100b i software selectable
i baud rates

equ OOOO$1000b i device may use protocol
equ 0001 $OOOOb ; XON/XOFF protocol

i enabled
; equates for baud rate byte

baud$none equO

baud$50 equl

i no baud rate
i associated with device
i 50 baud

8-141

CHARACTER 1/0

baud$75
baud$110
baud$13ij
baud$150
baud$3OO
baud$600
baud$12oo
baud$lBoo
baud$2ijOQ
baud$3600
baud$ij800
baud$72oo
baud$96oo
baud$19200

equ2
equ 3
equ ij
equ 5
equ6
equ7
equB
equ9
equ 10
equ 11
EqU 12
equ 13
equ 1ij
equ 15

Character I / O Functions

i 75 baud
110 baud
13ij.5 baud
150 baud
300 baud
600 baud
1200 baud
1800 baud
2ijoo baud
3600 baud
4800 baud
7200 baud
9600 baud
19.2k baud

This section defines the CP/M Plus character I/O
routines CONST, CONIN, CONOUT, LIST, AUXOUT, AUXIN,
LISTST, CONOST, AUXIST, and AUXOST.

CP/M Plus assumes all simple character I/O operations
are performed 1n eight- bit ASCII, upper- and
lowercase, with no parity . An ASCII CTRl- Z (lAH)
denotes an end - of- file condition for an input device.

In CP/M Plus, you can direct each of the five logical
character devices to any combination of up to twelve
physical devices. Each of the five logical devices
has a 16 - bit vector in the System Control Block
(SeB). Each bit of the vector repre.sents a physical
device where bit 15 corresponds to device zero, and
bit 4 is device eleven. Bits 0 through 3 are
reserved for future system use.

You can use the public names defined in the supplied
SeB . ASH file to reference the I/O redirection bit
vectors. The names are shown below.

TABLE 8-26 , va REDIRECTION BIT VECTORS IN SCB
Hilme LoBi cal Device

@CIVEC
IlCOVEC
@AlVEC
@ACVEC
@LCl\TEC

Console Input
Console Output
Auxiliary Input
Auxiliary OUtput
List Output

The BIOS sends an output character to all of the
devices whose corresponding bit is set, and reads an
input character from the first ready device whose
corresponding bit is set.

B- 1ij2

1

CHARACTER I/O

BIOS-input status routines return true if any
selected device is ready. Output status routines,
however, return true only if all selected devices are
ready.

+--+
I

BIOS Function 2: CONST I
I

+--+
I
I Return Status of Console Input Device
I
I

Entry Parameters: None

Returned Values: A = orFH if a console
character is ready

A = DOH if no console
character 1s ready

+--+
Read the status of the currently assigned console
device and return OFFH 1n register A if a character
1s ready to read, and ~OH 1n register A if no console
characters are ready.

+--+
BIOS Function 3: CONIN

+--+
I

Read a Character from the Con~ole I
I
I

Entry Parameters: None I
I

Returned Values: A: Console Character I
I

+--+
Read the next console character into register A with
no parity. If no console character is ready, wait
until a character is available before returning.

B-' ~3

CHARACTER l iD

+--+
i

BIOS Functio n 6 : AUXOUT I
i

+--+
Output a Character to the
Auxiliary Output Device

Ent r y Pa r ameters : C = Character

Re tu r ned Values: None

+--+
Send the character from
assigned AUXOUT device.
with no parity.

register C to the currently
The character is 1n ASCII

+--+
: BIOS Function 7 : AUXI N , , , ,
+--+

Read a Character from the
Auxiliary Input Device

Entry Parameters: None

i
i
i
i
I

Returned Values : A = Character :
I

+--+
Read the next cha r acter from the currently assigned
AUX I N device into register A with no parity. A
retu r ned ASCII CTRL- Z (1AH) reports an end - of- file.

B- '~~

CHARACTER I/O

+---+
BIOS Function 15: LISTST

i
+---+

Return the Ready Status
of the List Device

Entry Parameters: None

Returned Values: A : QOOH if list devlceis
notready to accepta
character

A = OFFH1f 11stdevlce 1s
ready to accept a

character

+---+
The BIOS LISTST function returns the ready status of
the list device.

+---+
I

BIOS Function 17: COHOST

+---+
Return Output Status of Console

Entry Parameters: None

Returned Values: A = OFFH if ready
A = OOH if not ready

+---+
The CONOST routine checks the status of the console.
CONOST returns a OFFH if the console is ready to
display another character. This entry point allows
for full polled handshaking communications support.

B-145

CHARACTER I/O

+---+
I I
I BIOS Function 18: AUXIST , , , ,
+---+

Retu rn Input St atus of Auxilia r y Por t

En try Param ete r s: None

Returned Val ues : A : OFFH if r ea dy
A = oaO H if not r eady

+---+
The AUXIST routine checks the input status of the
auxilia r y por t . This entry point allows ful l polled
handshaking for communications support using an
auxiliary por t.

+---+
BIOS Function 19 : AuxaST

+---+
Return Output Status of Auxilia r y Port

Entr y Pa r ameters: None

Returned Values : A = OFFH if ready
A = OOOH if no t ready

I
+---+

The AUXOST r outine ch ecks the output status of the
auxiliary por t . Th is r outine allows full polled
handshaki ng fo r communications suppor t using an
auxili a ry port.

B- 146

DISK I/O

DISK I/O

Call

SWlSI(

SETTRK

SETSEC

SETI»!A

SETBHJ(

The aDOS accomplishes disk I/O by making a sequence
of calls to the va r ious disk subroutines 1n the BIOS.
The subroutines set up the disk number to access. the
t rack and sector on a particular disk , and the Direct
Memory Access (O MA) address and bank involved in the
I/O operation. Af ter these parameters are
established , t he BDOS calls the READ or WRITE BIOS
functio n to perform the actual I/O operation. The
BOOS can make a single call to SELOSK to select a
disk dr ive , follo w it with a number of read or write
operations to the selected disk, and then select
anothe r dr ive fo r subsequent operations.

CP/M Plus supports multiple- sector read and write
operations to optimize rotational latency on block
disk transfers . The multiple-sector I/O facility is
implemented in the BIOS by using the multi sector
count passed to the HULTIO entry pOint. The BOOS
calls HULTIO to read or write up to 128 sectors. For
every secto r number 1 tO.D, the BOOS calls SETDHA
then calls READ or WRITE .

The table below shows the sequence of BIOS calls that
the BOOS makes to read or write a physical disk
sector , and to read or write multiple, contiguous
physical disk sectors .

TABLE 8-27 , SINGLE-SECTOR I/O
ExPlanation

Called only when
reselected .

disk is initially selected or

Called for every read or wri te of a Jilysical
sector.

Called for every
sector.

read or wrl te of a physical

Called for every read or write of a physical
sector.

Called for every read or write of a physical
sector .

READ, WRITE Called for every read or write of a physical
sector.

B- l~7

DISK liD

Can

Sfl.OOI(

IIJLTIO

SETTRK

SE:!'SEC

SETDMA

SElBHK

READ, WRITE

TARI E 8-Zl. SlJIjl.feSECIOR UO (Cont.)
FJ;planation

Called only when disk is initially selected or
reselected .

Called to inform the BIOS that the next n
calls to disk READ or disk WRITE require a
transfer of n contiguous physical sectors to
contiguous memory.

Called for every read or write of a physical
sector .

Called for every read or write of a physical
sector.

Called for every read or write of a physical
sector .

Called for every read or write of a physical
sector.

Called for every read or write of a physical
sector.

For example, when reading two contiguous sectors , the
BIOS calls are:

Call

SELDSK
KULTIO
SETTRK
SETSEC
SETDKA
SETBNK
READ
SETTRK
SETSEC
SETDKA
SETBNK
READ

Explana tion

Called to initially select disk
With a value of 2

For first sector
For first sector
For first sector

For second sector
For second sector
For second sector

The CP/M Plus enos performs its own blocking and
deblocking of logical 128-byte records . Unlike
earlier versions of CP/M, the BIOS READ and WRITE
r outines always transfer physical sector s as
specified in the BIOS Disk Parameter Block directly
to o r from the DMA buffer. The BIOS Disk Pa r ameter
Header defines one or more physical sector buffers
which the BDOS uses for logical r ecord blocking and
deblocking.

B- 1~8

•

DISK I/O

CP/M Plus maintains a cache of deblocking buffers and
directory records using a Least Recently Used (LRU)
buffering scheme. The LRU buffer 1s the first to be
reused when the system runs out of buffer space. The
BOOS maintains separate buffer pools for directory
and data record caching. The BIOS contains the data
structures to control the data and directory buffers
and the hash tables.

CP/M Plus uses hash tables to greatly speed directory
sea rching. The BOOS can use the hash tables to
determine the location of directory entries, and
therefore reduce the number of disk accesses required
to read a directory entry, The hash table allows the
BDOS to directly access the sector of the directory
containing the desired entry without having to read
the directory sequentially.

When the BIOS finds an error condition, the READ and
WRITE routines perform ten retries before reporting
the error condition to the BOOS. If the BIOS returns
an error condi tion to the BOOS, the BOOS reports the
error to the user in the following form:

CPIM Error on d: Diak 1/0

where d: represents the drive specification of the
relevant drive.

BIOS Disk Data Structures

The BIOS includes tables that describe the particular
characteri stics of the disk SUbsystem. This section
describes the elements of these tables.

In general each disk drive has an associated Disk
Parameter Header (DPH) that contains information
about the disk drive and provides a scratchpad area
for certain BOOS operations. One of the elements of
this Disk Pa rameter Header is a pOinter to the Disk
Parameter Block (DPB), which contains the actual disk
description.

The figure below shows the relationships between the
drive table, the Disk Parameter Header, and the Data
and Directory Buffer Control Block fields and their
respective data structures and buffers.

B-l~9

DISK I/O

+---+---+---+---+---+---+---+---+---+---+---+---+
I Drive Table (Addresses of DPHs) I
+---+---+---+---+---+---+---+---+---+---+---+---+
o 1 I 2 3 ~ 5 6 7 8 15

I +---+---+--+---+---+
I +---> CheckslIll Vector

+-----+ I +---+---+---+---+---+
I I +---+--+---+---+---+
I I +------> I Allocation Vector I
I I I +--+---+---+---+---+
I I I +---+---+---+---+---+
1 I I +--> I Hash Table
1 Di sk Parameter Header I I I +---+--+---+---+--+
1 +--+---+---+---+---+--+---+---+----+---+
+--> IXLTI IKf IDPBICSVIALVIDIRIDATIHASHIBK I

+---+---+---+--+---+--+--+---+---+---+
I I

+-------------+
V

+---+---+---+---+--+
+------1 SCB Header I
I +---+--+---+---+--+
I
I Buffer Control Block (BCB)
I +---+---+---+---+---+---+---+
+-->1 I BUFADRI I LINK

+---+---+---+--+--+---+---+

+----------------+
I +---+--+---+---+---+
+--> I Directory Buffer

+---+---+---+---+---+

+------------ -----------+
I
I
I Buffer Control Block (Bce)
I +---+---+---+---+---+---+---+
_>1 I BUFADRI I OOOOH I

+---+--+--+---t---+-+--+
I

+----------------+
I +---+---+---+--+---+
+--->1 Directory Buffer I

+--+---+--+--+---+

FIGURE B-9.

+--------------+
V

+---+--+---+---+---+
+--1 BGB Header I
I +---+---+---+---+--+
I
I Buffer Control Block (BCS)
I +---+---+---+---+---+---+-__ +
+--> I I BUFADR I I LINK I

+---+---+---+---+---+---+---+
I

+---------------+
I +---+---+---+--+--+
+--> I Data Buffer

+---+---+---+---+---+

+---------- ---------+
I
I
I Buffer COntrol Block (BCB)
I +---+---+---+---+---+---+---+
+-->1 ! BUFADRI I OOOOH I

+---+--+---+---+---+---+---+
I

+---------------+
I +---+---+---+---+--+
+->! Data Buffer I

+---+---+---+---+---+

BIOS DISK STRUCTURE

B- 150

DISK I/O

Drive Table

The drive table consists of 16 word s containtng the
addresses of the Disk Parame t er Headers for each
logical drive name, A through P, and takes the
general form:

drlvetable dw dphO
dw dphl
dw dph2

dw dphF

For logical drives that do not e xist 1n the Osbo r ne
Executive system, the corresponding e nt r y 1n the
drive table 105 zero.

The GENePH utility acc es se s the dr i ve table to locate
t he various disk-parameter da ta structures, so that
i t can determine whi ch sy s t em configuration to use ,
and optionally allocate t he v arious buffers itself.
If certain addresses In the Disk Pa r ameter Heade r s
referenced by the drive ta ble are set to OfFFEH ,
GENePH allocates the appr opr i a te data structures and
updates the OPH.

Di sk Para.eter Header

I n the figure below which ~how ~ the format of the
Disk Parameter Header, "b" r efe r s to bit~ .

+----+----+-----+---+---+----+----+----+
OOH : I XU I -0- I -0- - 0- I

+---4 I +-_+--_+-___ +--_+-__ +
08H : I -0- I -0- I ~ DPB I CSV

+--+--+---+----1 +----+----+---+
lOH : I ALV I DIRBCB DTABCB I HASH I

+---1
18H : UIlAM< I

+---t +--_ ,-_.+---+
+

FIGURE 8-10. DIS[PARAMETER HEADER FORMAT

8-151

DISK I/O

Field
TABLE 8-29. DISK PARAHEIEB HEADER EIEI OS

Cgpent,s

XLT The XLT field contains the address of the loglcal
tc>physical 3eCtor translation table. Disk drives
with identical sector-skew factors can share U1e
sane translate table. XLT is the value passed to
the SECTRN BIOS function fraa the BOCIS 1n register s
DE. The translation table consists of one byte per
phy.ical :sector.

DPB

csv

ALV

These 72 bits (9 bytes) of zeros are the scratch
area the BIX)5 U3eS to maintain various parameters
associated with the drive.

HF 1s the Media Flag. The 800s re3ets HF to zero
when the drive is logged In. The BIOS seb thh
nag and @!£DIA in the SCB to OFFH if it detects
that a drive door has been opened. If the nag is
set to OFFH, the BDOS checks for a media change
prior to performing the next BOOS fUe operation on
that drive. If the BOOS determines that the drive
contains a new disk I the Boas perform.s a login on
that drive and re .. t. the If' flag to OQH.

Note: The BDOS check3 this nag only when a system
call is IDBde, and not during an operation.

The OPS field contains the address of a Disk
Parameter Block that deserlbes the characteristics
of the disk drive.

CSV is the address of • scratchpad area used to
detect changed disk.. This addre .. i. different
for each Disk Paraaet.er Header. There is one byte
for every four directory entries (or 128 bytes of
directory) . In other word., length(CSV) ;
(DRlVQ) + 1.

AlV is the address of the :.crat.chpad area (called
the allocation vector) which the BDOS use, to keep
disk-storage allocation information. Thh area is
unique for each drive. The allocation vector
requires two bits for eKh block on the drive.
Thu., length (ALV) ; (001II.) + 2. With double-bit
allocation vectors CP/M Plus lutcaatically frees,
at every .system ".;. start, aU file blocks that
are oot penaanently recorded 1n the directory .

B-152

DISK I/O

_--:::-:,..,-__ I",A .. Rlw.£ B-29. DW PAJWt.nlI Hum flO m (Coot.)
DUd ~b

DIABCB

IIIANIC

Note: File space allocated to a file is not
permanently recorded 1n a directory unless the
file is closed, Therefore, the allocation vectors
1n memory can indicate that space 1s allocated
although directory records indicate that space Is
free for allocation.

DTABCB contains the address of the data BOB list
head 1n a banked system. Set DTABCB to OFFFEH for
GENCPM to set up the DTABCS field. The BDOO uses
data buffers to hold physical sectors so that it
can block and deblock logical 128-byte records.

HASH contains the address of the directory-hashing
table associated with a OPH. Set HASH to OFFFFH to
disable directory hashing. Set HASH to OFFFElI to
make directory hashing on the drive a GENCPH
option. Each DPH using hashing must reference a
unique hash table. If a hash table is supplied, it
must be 4 • (ORM + 1) bytes long where ORH is one less
than the length of the directory. In other words,
the hash table must contain four bytes for each
directory entry of the disk.

HBANK contains the bank nl.lllber of the hash table.
GEliCPH automatically sets HBANK when HASH is set to
OITFEli.

Extended Disk Parameter Headers (XDPHs)

An Extended Disk Parameter Header (XDPH) consists of
a prefix plus a regular Disk Parameter Header as
described above. The label of the XDPH references
the start of the DPH. The fields of the prefix are
located at relative offsets from the XDPH label.

The XDPHs for each unit of a controller are the only
entry points in a particular disk drive module. They
contain both the DPH for the drive and the addresses
of the various action routines for that drive,
including READ, WRITE, and initialization. The
figure below shows the format of the Extended Disk
Parameter Header.

B-153

DISK I/O

ADDRESS LG/ BYTE HIGH BYTE

XDPH-9

XDPH-1

XDPH-5

XDPH-3

XDPH-2

XDPH+o

XDPH+2

XDPH+'!

XDPH+6

XDPH+8

XDPH+l0

XDPH+12

XDPH+14

XDPH+16

XDPH+18

XDPH+20

XDPH+22

XDPH+24

o 1 8 15

addr of sector INIT

addr of sector READ

addr of drive WRITE

addr of drive LOGIN

unit

addr of translate table I

o o

o o

o o

o o

I Media Flag o

addr of DPS

addr of CSV

addr of ALV

addr of DIRBCB

addr of DT ABCB

addr of HASH

hash bank

start of
<--regular

DPH

FIGURE B-11. EXTENDED DISK-PARAMETER HEADER FORHAT

B-1 54

f

f

DI SK I / O

The table below describes the fields of each Extended
Disk Pa ramete r Header.

Field

WHIlE

LCGIN

INIT

UNIT

Regular DPII

TABLE 8-30 . EIEJ,ns Of EACH XDPH
Meaning

The WRITE word contains the address of the sector
WRITE routine for the drive.

The READ word contains the address of the sector
READ routine for the drive.

The LOGIN word contains the address of the LOGIN
routine for the drive.

The INIT word contains the address of the fl rst
t~ initialization code for the drive .

The UNIT byte contains the drive code relative to
the disk controller. This 1s the value placed in
@RDRV prior to calling the READ, WRITE, and UXiIN
entry points of the drive.

The remaining fields of the XDPH comprise a
standar d DPH.

Disk Parameter Block

+-----+-----+-----+-----+-----+-----+-----+---- - +
OOH : I SPI' I BSH I BLM I ElM I DSH I DRH .. •

+--- --+-----+-----+-----+-----+-----+-----+---- -+
08H : . .. DRM I ALO I AL1 I CKS OFF I PSH I

+-----+-----+-----+-----+-----+-----+-----+-----+
10H: I PIIM I

+-----+

FIGURE B-12. DISK PARAMETER BLOCK FORMAT

8-1 55

DISK I/O

TABLE 8:32. DISK PARAMETER BLOCK EIEJ IX>

Field

SPT Sets SPI' to the total nllYlber of 128-byte logical
records per track.

BSH Data-allocation block shift factor.

BLH Block mask.

ElM Extent mask.

llSH Determines the total storage capac1 ty of the disk
drive. DSH is one less than the total nlll1ber of
blocks on the drive.

OHM Total nt.lllber of directory entries minus one that
can be stored on this drive. The directory
requires 32 bytes per entry.

ALO,.ALl Determines reserved directory blocks. The two fields
ALO and .ALl can together be considered a string of
16 bits, as shQrm in the figure belCA<l.

ALO ALl
I :

.----__ V __ ---, .----__ V ___ ,
I : I :
00 01 02 03 04 05 06 D7 08 09 10 11 12 13 1~ 15

Position 00 corresponds to the high- order bit of
the byte labeled ALO. and position 15 correspond"
to the low-order bit of the byte labeled ALl. Each
bit position reserves a data block for a number of
directory entries, thus alla..ling a maximlll1 of 16
data blocks to be assigned for directory entries.
Bits are assigned starting at 00 and filled to the
right tmtll poSition 15. ALe and ALl overlay the
first two bytes of the allocation vector for the
associated drive .

as The size of the directory check vector, (DRHl4)+ 1 .
Set bit 15 of CKS to 1 if the drive is permanently
mounted. Set CKS to BOOOH to indicate that the
drive is permanently mounted and directory
checicilmning is not required.

Note: Full directory checksunming is required on
removable media to support the automatic login
feature of CP/M Plus.

The IUIlber of reserved tracks at the beginning of
the logical disk. OFF is the track on which the
directory starts.

8-156

field

PSI!

I'IIM

TABLE 1HZ. DISK PAJW1EIER "roc FIfln:! (Coot.)
CmPC!'!!:§

Specifies the physical-record Shift factor.

Specifies the physical-record mask.

DISK 1/0

CPIM allocates disk space in a unit called a block.
BLS Is the number of bytes In 8 block. The block
size on the Osborne Executive Is 1024 bytes.

Buffer Control Block

The Buffer Control Block (SeS) locates physical
record buffers for the BOOS. The BDOS uses the BCe
to manage the physical record buffers during
processing. More than one Disk Parameter Header can
specify the same BCe. The GENCPH utility can create
the Buffer Control Block.

Note that only the DRV, BUFFAD t BANK, and LINK fields
need to contain initial valUes. The figure below
shows the form of the Buffer Control Block:

+---+---~-+-- I -I +---. +
OOH: I DRV I REC, IWFLG I ...().. I TRACK

+----+---- f +---+---+----.• ,--.... --+
aSH: SECTOR: BUFF AD : BANK I LINK

+---+--+-_ .• ,--... - ... --+--+

Field

DRY

RECI

FIGURE B-13. BUFFER CONTROL BLOCK

TABLE &=32. IUFER rotIIROL Bl.OCl fJtlffl
ca.ent

Identifies the disk drive associated with the record
contained 1n the buffer located at address BUFFAD.

Identifies the record poSition of the current
contents of the buffer located at address BUFFAD.
REel consists of the absolute sector m.mber of the
record where the first record of the directory Is
zero.

Set by tile BOOS to OfFH to indicate tIlat the buffer
contains new data that has not yet been written to
disk. When the data is wrl tten, the BOOS .sets the
WFLG to zero to indicate the buffer 1s no longer
dirty •

...().. Scratch byte used by BOOS .

B-157

DISK I/O

Field

TI!.ICI:

VEfF Pe32. BUFFER <XIIIlKL NID' WlM (Ccmt,)
D nt

Contains the physical t r ack location of the contents
of the buffer .

SECTOR Contains the physical sector location of the
contents of the buffer.

~JD Specifies the address of the buffer associated with
this BCB.

Contains the bank number of the buffer associated
wi til this BCB.

Contains the address of the next Bee in a linked
list, or zero if this 1s the last BCe 1n the linked
list.

The BOOS distinguishes between two kinds of buffers:
data buffers referenced by DTABCB, and directory
buffers referenced by DIRBCB. The DIRBCB and DTABCB
fields of a Disk Parameter Header each contain the
address of a Bce list head rather than the add r ess of
an actual BCS. A BCe list head 1s a word containing
the address of the first BCe 1n a linked list. If
several DPHs reference the same BCB list, they must
reference the same BCB list head. Each BCB has a LINK
field that contains the address of the next BCB in
the list, o r zero if it is the last BCB.

The one - byte BANK field indicates the bank in which
the data buffers are located. The BANK field of
directory BCBs is zero because directo r y buffers must
be located in Ba nk 0 below the banked BDOS modu l e , or
in common memory.

If you set the DPH DIRBCB or the DPH DTABCB fields to
OFFFEH, the GENCPH utility creates BCBsi allocates
physical record buffers; and sets these fields to the
address of the BCBs. This allows you to write device
drivers without regard to buffer requirements .

Disk I/O Funct ions

This section defines the CP/M 3 BIOS disk I/O
routines HOME, SELDSK, SETTRK, SETSEC, SETDHA , READ,
WRITE, SECTRN, HULTrO, and FLUSH.

B- 158

f

f

DISK I/O

+---+
I I
I BIOS Funct!on 8: HOME I
I I
+---+
I I
I Select Track 00 of the Specified Drive I
I I
I I
I Entry Parameter~: None
I
I Returned Value~: None
I
+---+

Return the disk ~ead of the currently selected disk
to the track 00 position. The HOME call Is
equivalent to a call to SETTRK with a parameter of O.

+---+
I I
I BIOS FUnct!on 9: SELDSK
I
+---+
I I
I Select the Spec!f!ed D!sk Dr!ve I
I I
I I

Entry Parameters: C = D1sk Drive (0-15) f

Returned Values:

E = In!t!al Select Flag I

HL = Address of OPH
if drive exists

HL = OOOH !f dr!ve
does not exist

I
I
I
I
I
I

+---+
Select the disk drive specified in register C for
further operations, where register C contains 0 for
drive A, 1 for drive Bf and so on to 15 for drive P.
On each disk select, SELDSK returns in HL the base
address of a 25-byte area called the Disk Parameter
Header. If there is an attempt to select a
nonexistent drive, SELDSK returns HL = OOOOH as an
error indicator.

On entry to SELDSK, if it is the first time the
specified disk is selected, the BDOS sets Bit 0, the
(least-significant bit in Register E) to O.

B-159

DISK I/O

+---+ I I
I BIOS Function 10: SETTRK
I
+---+ I I
I Set Specified Track Number I
I I
I I

Entry Parameters: Be: Track Number I
I

Returned Values: None I
I

+---+
Register Be contains the track number for a
subsequent disk access on the currently selected
drive. Normally the track number is saved until the
next READ or WRITE occurs.

+---+
I

BIOS Function 11: SETSEC

+---+ I I
I Set Specified Sector Number I
I I
I

Entry Parameters: Be = Sector Number

Returned Values: None

+---+
Register BC contains the sector number for the
subsequent disk access on the currently selected
drive. This number is the value returned by SECTRN.
The BIOS delays the actual sector selection until a
READ or WRITE operation occurs.

Hate: The current BIOS implementation only makes use
of Register C.

B-160
_ AII~ ______________ _

•

f

DISK 1/0

+---+
I I

BIOS FUnction 12: SETDMA I
I

+---+ I I
I Set Address for Subsequent Disk 1/0 I
I I
I I
I Entry Parameters: BC = Direct Memory I
I Access Address I
I I
I Returned Values: None I
I I
+---+

Register BC contains the DMA (Direct Memory Access)
address for the subsequent READ or WRITE operation.
For example, if B :: OOH and C = 80H when the BOOS
calls SETDHA, then the subsequent read operation
reads its data starting at 80H, or the subsequent
write operation gets its data from 80H, until the
next call to SETDHA occurs.

+---+ I I
I BIOS Function 13: READ
I
+---+ I I
I Read a Sector from the Specified Drive I
I I
I I
I Entry Parameters: None I
I I
I Returned Values: A: OOOH if no errors I
I A : 001H if nonrecoverable I
I error occurred I
I A : OFFH if media changed I
I I
+---+

This function assumes the BOOS has selected the
drive, set the track, set the sector, and specified
the OMA address. The READ subroutine attempts to
read one sector based upon these parameters, then
returns one of the error codes in register A as
described above.

If the value in register A is 0, then CP/M Plus
assumes that the disk operation completed properly.
If an error occurs, the BIOS attempts ten retries to
see if the error is recoverable before returning the
error code.

B-161

DISK I/O

If an error occurs 1n a system that supports
automatic density selection, the system verifies the
density of the drive. If the density has changed ,
READ returns a OFFH In the accuMulator. This causes
the BOOS to terminate the current operation and
relog-ln the disk.

+---+
I I
I BIOS Function 14: WRITE I
I I
+---+
I I
I Write a Sector to the Specified Disk
I
I
I Entry Parameters: C = Deblocking Codes
I
I Returned Values: A = OQOH if no error
I A:001Hif
I A : 002H if
I A : OFFH if

physical error I
disk is Read- Onlyl
media has changed I

I I
+---+

This BrOS Function writes the data from the currently
selected DHA address to the currently selected drive,
track, and sector. Upon each call to WRITE, the SODS
provides the following information in register C:

o = deferred write
1 = nondeferred write
2 = deferred w ri te to the first sector of a

new data block

This information is provided for those BIOS
implementations that do blocking/deblocking in the
BIOS instead of the BDOS.

As in READ, the BIOS attempts ten retries before
reporting an error.

If an error occurs in a system that supports
automatic density selection, the system verifies the
density of the driVe. If the density has changed,
the WRITE function returns a OFFH in the accumulator.
This causes the BOOS to terminate the current
operation and relog- ln the disk.

B- 162

(

,

DISK I/O

+---+ , I , ,
I BIOS Function 16: SECTRN I

: I
+---+ :

Translate Sector Number Given Translate Table I
I
I

Entry Parameters: Be; Logical Sector Number
DE = Translate Table Addr

I Returned Values: Hl = Physical Sector Number
:
+---+

SECTRN receives a logical sector number 1n Be and a
translate table address In DE. The logical sector
number 1s relative to zero. The translate table
address is obtained from the Disk Parameter Block for
the currently selected disk. The sector number 1s
used as an index into the translate table, with the
resulting physical sector number retUrned In HL.

Certain drive types either do not need skewIng or
perform the skewing externally from the system
software . In this case the skew table address in the
DPH can be set to zero, and the SECTRN routine can
check for the zero in DE and return with the physical
sector set to the logical sector.

+---+
: I
I BIOS Function 23: HULTIO I
I I
+---+
: I
I Set Hultisector Count for READ or WRITE I
I I
I I
I Entry Parameters: C = Hultisector Count I
I I
I Returned Values: None
I
+---+

To transfer logically consecutive disk sectors to or
from contiguous memory locations, the BOOS issues a
HULTIO call, followed by a series of READ or WRITE
calls. This allows the BIOS to transfer multiple
sectors in a single disk operation. The BIOS can
transfer up to 16K bytes of data In a single
operation.

8-163

DISK I/O

lote: The current BIOS can transfer up to one full
track (5K).

+---+
I I
I BIOS Function 2~: FLUSH I
I I
+---+

Force Physical Buffer Flushing

Entry Parameters:

Returned Values:

None

A = OOOH if
A = 001H if
A = 002H if

no error
physical error
di.k i. RIO

I
I
I
I
I
I
I

+---+
The flush-buffers entry point allows the system to
force physical-sector buffer flushing. The BDOS calls
the FLUSH routine to ensure that no dirty buffers
remain 1n memory. The BIOS immediately writes any
buffers that contain unwritten data.

B-16~

•

1

MEMORY SELECTS AND MOVES

MEMORT SELECTS AND MOVES

Four BIOS functions are provided to perform memory
management. The functions are HOVE, XHOVE, SELHEH,
and SETBNK. The BOOS uses the BIOS HOVE routine to
perform memory-to-memory block transfers. The BOOS
calls XHOVE to specify the source and destination
banks to be used by the HOVE routine.

The SOOS uses SELHEH when the operating system needs
to execute code or access data 1n other than the
currently selected bank.

The BOOS cells the SETBNK routine prior to calling
disk READ or disk WRITE functions. The SETBNK
routine saves its specified bank as the OMA bank.
When the BOOS invokes a disk I / O routine, the I/O
routine saves the current bank number and selects the
OMA bank prior to the disk READ or WRITE. After
completion of the disk READ or WRITE, the disk I/O
routine reselects the current bank. When the BOOS
calls the dlsk 1/0 routines, Bank 0 is in context
(selected) .

He.or1 Select and Move functions

This sectlon defines the memory management functlons
MOVE, XMOVE, SELMEM, and SETBNK.

+---+ I I
I BIOS Function 25: MOVE
I
+---+
I I
I Hemory-to-Memory Block Hove
I
I

Entry Parameters:

Returned Values:

HL = Destination Address
DE = Source Address
BC = Count

HL and DE must point to
next bytes following move
operation

+---+
The BDOS calls the HOVE routine to perform memory-to
memory block moves to allow use of the laO LDIR
instruction. Note that the arguments in HL and DE are
reversed from the laO machine instruction,

B-165

MEMORY SELECTS AND MOVES

necessitating the use of XCHG instructions on either
side of the LDIR. The eoos uses this routine for all
large-memory copy operations. On return, the HL and
DE registers are expected to point to the next bytes
following the move .

Usually the BOOS expects HOVE to transfer data within
the currently selected bank or common memory.
However, if the BDOS calls the XHOVE entry pOint
before calling HOVE, the HOVE routine performs an
interbank transfer.

+---+
I I
I BIOS Function 27: SELMEM
I
+---+ I I
I Select Memory Bank
I
I

Entry Parameters: A; Memory Bank

Returned Values: None

+---+
The CP/M Plus BOOS calls SELHEM to select the current
memory bank for further instruction execution or
buffer references.

+---+
I I
I BIOS Function 28: SETBHK
I
+---+
I I
I Specify Bank for DMA Operation
I
I

Entry Parameters: A = Memory Bank

Returned Values: None

+---+
SETBNK specifies the bank that the subsequent disk
READ or WRITE routine must use for memory transfers.
The BOOS always makes a call to SETBNK to identify
the DMA bank before performing a READ or WRITE call.

Note: The BOOS does not reference banks other than 0
or 1 unless another bank is specified by the BANK

B-166

MEMORY SELECTS AND MOVES

field of a Data Buffer Control Block (BC8).

+---+
I

BrOS FUnction 29: I"OYE I
I

+---+
I I
I Set Banks for Following MOVE
I
I
I Entry Parameters: B = Destination Bank
I C = Source Bank
I
I Returned Values: None
I
+---+

XHOVE supports memory-to-memory DMA transfers over
the entire, extended address range. An XHOVE call
affects only the following HOVE call. All subsequent
HOVE calls apply to the memory selected by the latest
call to SELHEH. After a call to the XHOVE function,
the following call to the HOVE function 1s not more
than 128 bytes of data.

B-167

CLOCK SUPPORT

CLOCJ[SUPPORT

The BIOS maintains the time of day 1n the System
Control Block and updates the time on clock
interrupts. The time of day 1s kept as four fields 1n
the System Control Block. @DATE 1s a binary word
containing the number of days since January 1, 1978.
The bytes @HOUR, @HIN, and @SEC contain the hour,
minute, and second 1n Binary-Coded Decimal (SCD)
format.

Clock Support FUDction

This section defines the clock-support function TIME.

+---+
I

BIOS Function 26: TIME I
I

+---+ I I
I Get and Set Time I
I I
I I
I Entry Parameters! C = Time Get/Set Flag
I
I Returned values: None
I
+---+

The BOOS calls the TIME fUnction to indicate to the
BIOS whether it has just set the Time and Date fields
in the SCB, or whether the BOOS is about to get the
Time and Date from the SCB. On entry to the TIME
function, a zero in register C indicates that the
BIOS should update the Time and Date fields in the
SeB. A OFFH in register C indicates that the BOOS
has just set the Time and Date in the SCB and the
BIOS should update its clock.

This entry point allows the systems to interrogate
the clock to determine the time. Since the clock is
capable of generating an interrupt, an interrupt
service routine is used to set the Time and Date
fields on a regular baSis.

B-168

f

,

GENERATING AND HOVING CP/H: GENCPH

GEIERATING AND HOVING CP/H: GENCPH

The GENePH utility creates a memory image of CP/M in
a file called CPH3.SYS which contains the CP/H 3.0
aDOS and the BIOS tailored for the Osborne Executive.
The utility program allows you to relocate system
modules and allocate physical record buffers,
allocation vectors, checksum vectors, and hash tables
as required by BIOS. To create the CPH3.SYS f1le,
you must have your customized BNKBIOS3.SPR ftle.
GENePH creates the CPH3.SYS file from three files:
RESBDOS3.SPR, BNKBDOS.SPR, and BNKBIOS3.SPR. To
load CPH3.SYS into memory, you must create a
LDRBIOS.SPR file and incorporate it into the
CPHLDR.COH FILE.

GENePH can get its data from the file GENCPH.DAT,
which you create at some other time, or you can
spectfy the data while running GENePH.

To use GENePH, enter either:

GEICPH AUTO
or

GEICPH AUTO DISPLAY

If you enter GENCPH AUTO, the program will seek the
file GENCPH.DAT for input data. The new system will
be generated, and the only display will be the signon
and signoff messages. If AUTO is specified and
GENCPH.DAT does not exist, the program will revert to
manual entry . This will also happen if an error
occurs while running in the AUTO mode.

If you enter GENCPH AUTO DISPLAY, you may also use
GENCPH.DAT for default values, entering your own
where you wish the values to be different from those
in GENCPH.DAT. You can specify a value by answering
the question mark prompt with the appropriate value,
or use the default value (which will be shown in
parentheses) by simply preSSing <RETURN>.

GENCPH questions and responses are shown below:

Use GENCPH.DAT for default. (Yl ?

Y GENCPH gets its default values from the
file GEHCPH.DAT.

N GENCPH uses defaults built into the
system.

B-169

GENERATING AND HOVING CP/H: GENCPH

Create a new GENCPH.DAT file (H) ?

N GENePH will not create a new GENCPM.DAT
file.

Y After GENCPM generates the new CPM3 .SYS
file, it creates a new GENCPH.DAT file
containing the default values.

Display Load Table at Cold Boot (1) ?

Y Upon performing a Cold Boot, the system
displays the load table containing the
filename, fl1etype, hex starting address,
length of system modules, and the
Transient Program Address (TPA) size.

N System displays only the TPA size on Cold
Boot.

Nu.ber of console colu.ns ('80) ?

Enter the number of colUmns (characters/line)
for your cons01 e.

Number of lines per console page (#2_> ?

Enter the number of lines per screen for your
console.

Backspace echoes erased character (N) ?

N Backspace character (AH, 08h) moves back
one colUmn and erases the previous
character.

Y Backspace moves forward one column and
displays the previous character.

Rubout echoes erased character (I) ?

Y Rubout (7Fh) moves forward one column and
displays the previous character.

N Rubout moves back one column and erases
the previous character.

Initial de~ault drive (A:) ?

Enter drive letter the prompt is to display at
Cold Boot.

B-170

- - - "-

(

f

\

GENERATING AND HOVING CP/H: GENCPH

Top page of aeaorJ (FF) ?

Enter the page address
the operating system.
system.

Bank av itched aeaorJ (Y) ?

that is to be the top of
OFFh 1. the top of • 64K

Y GENCPH uses the banked system files. The
Osborne Executive uses a banked system.

N GENCPH uses the nonbanked system file

Common memory base page (CO) ?

This question is displayed only if you answered
Y to the previous question. Enter the page
address of the start of Common Hemory.

Long error messages (1) ?

This question is displayed only if you answered
Y to bank-switched memory.

I CP/M 3.0 error messages contain the BDOS
function number and the name of the file
on which the operation was attempted.

N CP/M 3.0 error messages do not display the
fUnction number or file.

Double allocation vectors (I) ?

This question is displayed only if you answered
N to bank-switched memory. Double allocation
vectors are described in the ALV definition of
the Disk Parameter Header.

Y GENCPH creates double-bit allocation
vectors for each drive.

N GENCPH creates single-bit allocation
vectors for each drive.

Accept new BJstea defin1 t10n (I) ?

Y GENCPH proceeds to the next set of
questions.

N GENCPM repeats the previous questions and
displays your previous input 1n the
defaul t parentheses. Iou may modify
your answers.

8-1 71

GENERATING AND HOVING CP/H: GENCPH

NUllber of lIlellory segments (#3) ?

GENCPH displays this question if you answered Y
to bank-switched memory.

Enter the number of memory segments in the
system. Do not count Common memory or memory
in Bank 1, the TPA bank, as a memory segment.
A maximum of 16 (0 - 15) memory segments are
allowed. The memory segments define to GENCPH
the memory available for buffer and hash table
allocation. Note that part of Bank 0 is
reserved for the operating system.

CP/M 3 Base, size, bank (B6,3A,00)

Enter memory seg.ent table:
Base, size, bank (10,.16,00) ?
Base, size, bank (00,CO,02) ?
Base, size, bank (00,CO,03) ?

Enter the base page, l ength, and bank of the
memory segment.

Accept new me.ory seg.ent table entries (Y) ?

y

N

GENCPH displays the next group of
questions.

GENCPH displays the memory-segment
definition questions again.

Setting up directory hash tables:
Enable hashing for drive d: (Y)?

table

GENCPH displays this question if there is a
Drive Table and if the DPHs for a given drive
have an OFFFEh in the hash table address field
of the DPH. The question 15 asked for every
drive d: defined in the BIOS.

Y Space is allocated for the Hash Table.
The address and bank of the Hash Table is
entered into the DPH.

N No space is allocated for a Hash Table for
that drive.

Setting up Blocking/Deblocking butters:

GENCPH displays the next set of questions if
either or both the DTABCB field or the DIRBCB
field contain OFFFEh.

B-172

f

f

GENERATING AND HOVING CP/H: GENCPH

Number of directory bufCers for drive d: ('2)? 2

This Question appears only if you are
generating a banked system. Enter the number
of directory buffers to allocate for the
specified drive. In a banked system directory
buffers are allocated only inside Bank O.

HUmber of data buffers for drive d: ('1) ? 1

This question appears only if you are
generating a banked system. Enter the number
of data buffers to allocate for the specified
drive. In a banked system, data buffers can
only be allocated outside Bank 0, and In
Common. You can only allocate data buffers in
alternate banks if your BIOS supports interbank
moves.

Share huffere.) with which drive eA:) ?

This question appears only if you answer zero
to either of the above questions. Enter the
drive letter (A - P) of the drive with which
you wish this drive to share a buffer.

Allocate buffers outside bank zero (N) ?

This question appears if the BIOS XHQVE routing
is implemented.

Y GENCPH allocates data buffers in Common
and Bank O.

N GENCPH allocates data buffers in Common.

Accept new buffer definitions (Y)

Y GENCPH creates the CPH3.SYS file and
terminates.

N GENCPH redisplays all of the buffer
definition questions.

EE •• pIe ot Syste. GeneratioD witb BaDked Me.ory

The following section contains an example of a system
generation session for a banked memory system. Where
no entry follows a program question, assume <RETURN>
was entered to select the default value in
parentheses. Entries different from the default
appear after the question mark.

8-173

GENERATING AND HOVING CP/H : GENCPM

Contents of Example GENCPK.DAt File

COMBAS ; CO <or>
LERROR ; ? <or>
NUHSEGS ; 3 <or>
MEMSEGOO = 00,80,00 <or>
HEHSEG01 ; Od, b3,02 <or>
HEMSEGOf = ?OO,CO,10 <cr>
HASHDRVA ; Y lor>
HASHDRVD ; n <cr>
NDIRRECA ; 20 <or>
NDTARECF ; 10 <cr>

Sa.pIe Run of GElep"

CP/M 3.0 System Generation
Copyright (CI 1982, Digital Research

Default entries are shown in (parens).
Default base is Hex, precede entry with' for
decimal.

Use GENCPH.DAT for default. (YI ?

Create a new GENCPH.DAT file (N) ?

Display Load Map at Cold Boot (YI ?

Number of console columns (leO) ?
Number of lines in console page ('2~) ?
Backspace echoes erased character (N) ?
Rubout echoes erased character (N) ?

Initial default drive (A:I ?

Top page of memory (FY) ?
Bank switched memory (1) ?
Common memory base page (CO) ?

Long error messages (Y) ?

Accept new system definitions (Y) ?

Setting up Allocation vector for drive A:
Setting up Checksum vector for drive A:
Setting up Allocation vector for drive B:
Setting up Checksum vector for drive B:
Setting up Allocation vector for drive C:
Setting up Checksum vector for drive C:
Setting up Allocation vector for drive D:
Setting up Checksum vector for drive D:

···Bank 1 and Common are not inCluded •••
··· In the memory segment table. • ••

B- 174

1

)
GENERATING AND MOVING CP/M: GENCPM

Number of memory segments (13) 'I

CP/M 3 Base,slze, bank (88,35,00)

Enter memory segment table:
Base,slze,bank (00,88,00) ?
Base,slze,bank (00,83,02) ?
Base,slze,bank (OOrCO,03) 'I

CP/M 3 Sys
Memseg No. 00
Hemseg No. 01
Hemseg No. 02

BBOOh 3500h
OOOOh BBOOh
ODOOh B300h
OOOOh COOOh

Bank 00
Bank 00
Bank 02
Bank 03

Accept new memory segment table entries (Y) ?

Setting up directory hash tables:
Enable hashing for drive A: (Y) 'I
Enable hashing for drive B: (Y)?
Enable hashing for drive C: (I) 'I
Enable hashing for drive D: (Y)?

Setting up Blocking/ Deblocking buffers:

The physical record size Is C2COh:

Available space In 256 byte pages:
TPA = OOF~h, Bank 0 = OOBBh, Other bank. = 0166h

Number of directory buffers for drive A: (I32)?

Available space in 256 byte pages:
TPA - OOF~h, Bank = 00~9h, Other banks = 0166h

Number of data buffers for drive A: (I2)?
Allocate buffers outSide bank zero (N) ?

Available space in 256 byte pages:
TPA = OOFOh, Bank 0 = 00~9h, Other banks = 0166h

Number of directory buffers for drive B: (132) ?

Available space in 256 byte pages:
TPA = OOFOh, Bank 0 = 0007h, Other banks = 0166h

NUmber of data buffers for drive B: (10)?
Share buffer(s) with which drive (A:) ?

The phYSical record size is OOaOh:

Available space in 256 byte pages:
TPA = OOFOh, Bank 0 = 0001h, Other bank. = 0166h

Humber of directory buffers for drive C: (101) ?

B-175

GENERATING AND MOVING CP/M: GENCPM

Available space 1n 256 byte pages:
TP! = OOFOh, Bank 0 = 0001h, Other banks = 0166h

Number of directory buffers for drive D: ('0) 1
Share buffer(s} with which drive (C:) ?

Available space 1n 256 byte pages:
TPA OOFOh, Bank 0 = 0001h, Other banks = 0166h

Accept new buffer definitions (Y) ?

BNKB10S3 SPR
BNKB10S3 SPR
RESBDOS3 SPR
BNLBDOS3 SPR

F600h
B100h
FOOOh
6700h

0600h
OFOOh
0600h
2AOOh

"'CP/ M 3.0 SYSTEM GENERATION DONE •••

B-176

f

Offset

00 - O~

05

06 - 09

OA - OF

10 - 11

12 - 19

Appendices

APPENDIX A: SYSTEM CONTROL BLOCK

The System Control Block (SCB) is a CP/M Plus data
structure located in the BOOS. CP/M Plus uses this
region primarily for communication between the BOOS
and the BIOS. However, it is also available for
communication between application programs, RSXs, and
the BOOS. Note that programs that access the System
Control Block are not version independent. They can
run only on CP/M Plus.

The following list describes the fields of the SCB
that are available for access by application programs
and RSXs. The location of each field is described as
the offset from the start address of the SCB (see the
S_SCB system call). The RW/RO column indicates if
the SCB field is Read-Write or Read-Only.

TARI;; B-33. sea Woo A8D DtUNmOtCS
RlllRO

RO

RO

RW

RO

RW

RO

Definition

Reserved for system use.

BDOS Version Number.

Reserved for user use. Use these four
bytes for your own flags or data.

Reserved for system use.

Program-Error Return Code. This 2-byte field
can be used by a program to pass an error
code or value to a chained program. CP/M
Plus's conditional command facility also uses
this field to determine if a program executes
successfully. The PJETCODE system call is
used to get/set this value.

Reserved for system use.

APPENDIX-1

Appendices

Offset

1A

1B

1C

1D - 21

22 - 2B

22 - 23

2~ - 25

26-ZI

28 - 29

2A - 2B

TANE 8-33.
IllllRO

SCB WIns AID DEfIIIIU!I!S (Cant,)
Defin1tl00

RW

RO

RW

RO

RW

RW

RW

RW

RW

RW

Console Width. This byte contains the
number of columns (characters per line) on
your console relative to zero. Host systems
default this value to 79. You can set this
defaul t value by using the GENCPM or the
DEVICE utility. The console width value is
used by the banked version of CP/M Plus in
C_READSTR, CP/M Plus's console-editing input
system call. Note that typing a character
into the last position of the screen, as
specified by the Console Width field, must
not cause the tenminal to advance to the next
line.

Console Column Position. This byte contains
the current console column position.

Console Page Length. This byte contains the
page length, lines per page, of your console.
Most systems default this value to 24 lines
per page. This default value may be changed
by using the GENCPH or the DEVICE utility
(see the CP/M Plus User's Guide).

Reserved for system use.

Redirection flags for each of the five
logical character devices. If your system's
BIOS supports assignment of logical devices
to physical devices, you can direct each of
the five logical character devices to any
combination of up to 12 physical devices.
The 16-bit word for each device represents
the following: Each bit represents a
physical device where bit 15 corresponds to
device 0 and bit 4 corresponds to device 11.
Bits 0 through 3 are reserved for system use.
You can redirect the input and output logical
devices with the DEVICE ccmnand

C~IN: Redirection Flag.

CONOOT: Redirection Flag.

AUXIN: Redirection Flag.

AUXOOT: Redirection Flag.

LSTOOT: Redirection Flag.

APPENDIX-2

)

)

Ofhe1;

2C

2D

2E

2F

30 - 32

33 - 3~

35 - 36

37

38

39 - 38

3C - 3D

Appendices

peLf; Pe33. SCJ! FIfln:; AND DEFINWONS (Coot.)
I!!!/I\O

RW

RO

RW

RW

RO

RW

1\0

RW

RW

RO

RO

Definitloo

Page Mode. If this byte 1s set to zero, some
CP/H Plus utilities and CCP built-in commands
display one page of data at a time; you
display the next page by pressing any key.
If this byte 1s not set to zero, the system
displays data on the screen without stopping.
To stop and start the display, you can press
CTRL- S and CTRL-Q, respectively.

Reserved for system use.

Detennines if CTRL-H 1s interpreted as a
rub/del character. If this byte 1s set to 0,
then CTRL-H 1s a backspace character (moves
back and deletes). If this byte 1s set to
OFFH, then CTRL-H is a rub/del character
(echoes the deleted character) .

Determines if rob/del 1s interpreted as CTRL
H character. If this byte 1s set to 0, then
rub/del echoes the deleted character. If
this byte 1s set to OFF, then rub/del is
interpreted as a ~H character (moves back
and deletes).

Reserved for system use.

Console Mode. This is a 16-bit system
parameter that determines the action of
certain BD03 Console I/O system calls .

Reserved for system use.

Output delimi ter character. The defaul t
output delimiter character is $, but you can
change this value by using the CJ)El..DUT
system call.

List Output Flag. If this byte is set to 0,
console output is not echoed to the list
device. If this byte is set to 1, console
output is echoed to the list device.

Reserved for system use.

Current DHA Address. This address can be set
by the F ..J)MASET syst ... call. The CCP
initializes this value to 0080H .
DRVJLLRESET .yot ... call also seto the DKA
address to 0080H.

APPENDIX-3

Appendices

3E

3F - 43

44

45 - 49

4A

48

4C - 4F

50

1111£ »=33.
!!VIRO

sea EIf1J!S All! D£EIIIll1(IIS (Coot.)
Def1n1t1Qn

RO

RO

RO

RO

RII

RII

RII

RII

Current Disk. This byte contains the
currently selected default disk nunber . This
value ranges from 0 to 15 corresponding to
drives A - PI respectively. The DRV_GET
system call can be used to detennine the
current disk value.

Reserved for system use.

CUrrent User Number. This byte contains the
current user number. This value ranges from
o to 15. The f_USERHUH system call can
change or interrogate the currently active
user number.

Reserved for system use.

BDOS Hultisector Count. This field is set by
the F_K.lLTISEC system call.

BOC6 Error Mode. This field is set by the
F_ERRHODE system call . If this byte is set
to OFFH, the system returns to the current
program without displaying any error
messages. If it is set to OFEH, the system
displays error messages before returning to
the current progrElll. Otherwise the system
tenninates the program and displays error
messages. See description of the F_ERRHODE
system call for a discussion of the different
error modes.

Drive Search Chain. The fi rst byte contains
the drive number of the first drive in the
chain, the second byte contains the drive
number of the second drive in the chain, and
so on, for up to four bytes. If less than
four drives are to be searched, the next byte
is set to OFFH to signal the end of the
search chain. The drive values range from 0
to 16, where 0 corresponds to the default
drive, while 1 to 16 corresponds to drives A
- P, respectively. The drive search chain
can be displayed or set by using the SETDEF
ut1lity.

Temporary File Drive. This byte contains the
drive mmber of the temporary file drive.
The drive number ranges frCIII 0 to 16, where 0
corresponds to the default drive, while 1 to
16 corresponds to drives A - P, respectively .

APPENDIX - 4

f

' I

•

51

52 - 56

51

58 - 59

5A

5B

5C

5D - 5E

5F - 63

Append i ces

IANl Pe33. sea fIflllS AND DEF1HIII0IIS (Coot.)
!!!!IIIO

RO

RO

RO

RW

RW

RW

RW

RO

RO

Dcf1niUon

Error drive. This byte contains the drive
number of the selected drive when the last
physical or extended error occurred .

Reserved for system use.

BDOS Flags. Bit 7 applies to banked systems
only. If bit 1 is set, then the system
displays expanded error messages. The second
error line displays the system call nllTlber
and FCB infonnation. Bit 6 applies only to
nonbanked systems. If bit 6 is set, it
indicates that GENCPH has specified single
allocation vectors for the system. Dthent'ise
double allocation vectors have been defined
for the system. The DRVJREEBLDCKS systen
call returns temporarily allocated blocks to
free space only if bit 6 is reset.

Date in days in binary since 1 Jan 78 .

Hour in BCD (2-dig!t Binary Coded Decimal)'

Hirutes in BCD.

Seconds In BCD.

Carmon- Memory Base Address. This value Is
zero for non banked systems and non-zero for
banked systems .

Reserved for system use .

APPENDIX - 5

Appendices

APPEIDIX B: PRL FILE GEIERATIOM

PRL FOl"llat

0001-0002H

0004-0005H

0006-00FFH

A Page Relocatable Program has an origin offset of
100H bytes that is stored on-disk as a file of type
PRL. The format is shown in the table below.

TAR!" 8-3lJ. PBL Ell.E FOI!!1AI
Contents

Program size

Minimum buffer requirements (additional memory)

Currently unused, reserved for future allocation

0100H + Program size equals start of bit map

The bit map is a string of bits identifying those
bytes in the source code that require relocation.
There is one byte in the bit map for every eight
bytes of source code. The most significant bit (bit
7) of the first byte of the bi t map indicates whether
or not the first byte of the source code requires
relocation. If the bit is on, it indicates that
relocation is required. The next bit (bit 6) of the
first byte corresponds to the second byte of the
source code, and so forth.

Generating a PRL

The preferred technique for generating a PRL file is
to use the CP/H LINK-SO, which can generate a PRL
file from a REL relocatable object file.

A>l1nk dump[op]

APPENDIX-6

f

•

Appendices

APPENDIX C: SPR GENERATION

System Page Relocatable (SPR) files are similar in
format to PRL files except that SPR files have an
origin offset of OOOCH (see Appendix B). SPR files
are provided as part of the standard CP/M Plus
System: the resident and banked portions of the
banked BDOS (named RESBDOS3.SPR and BNKBDOS3.SPR) and
the nonbanked BOOS (named BDOS3.SPR). The customized
BIOS must also be generated in SPR format before
GENCPH can create a CP/M Plus system. The BIOS.SPR
file is named BNKBIOS3.SPR for banked systems and
BIOS3.SPR for nonbanked systems. A detailed
discussion of the generation of BIOS3.SPR or
BNKBIOS3.SPR i. provided in the CP/M Plus BIOS
secti on.

The method of generating an SPR is analogous to that
of generating a Page Relocatable Program (described
In Appendix B) with the following exceptions:

o If LINK-SO is used, the output file of type SPR
Is specified with the (os] or [b] option. The
[b] option is used when linking BNKBIOS3.SPR •

o The code in the SPR is ORGed at COOH rather
than 100H.

APPENDIX-7

Appendices

APPE.DIX D: ASCII '.D HEXADECI MAL CONVERSIONS

This appendix contains tables of the ASCII symbol s ,
including their binary, decimal, and hexadecimal
conversions.

TaBlE 1H5. ASCII SXMU,S
SyA>ol

AeI:

Meaning Sywbol Meant,.

BEL
BS
CAN
CR
DC
DEL
OLE
EM
EIIl
EO!'
ESC
ETB
ETJ[

FF

acknowledge
bell
backspace
cancel
carriage return
device control
delete
data link escape
end of mediun
el"quiry
end of transmission
escape
end of transmission
end of text
form feed

TANS B:-36.
Bloan Dec1pJ

0000000 000
0000001 001
0000010 002
0000011 003
0000100 004
0000101 005
0000110 006
0000111 007
0001000 008
0001001 009
0001010 010
0001011 011
0001100 012
0001101 013
0001110 014
0001111 015
0010000 016
0010001 017
0010010 018
0010011 019

FS
GS
lIT
LF
NAK
NUL
RS
SI
SO
sal
SP
STX
SUB
SlN
US
YT

fUe separator
group separator
horizontal tabulation
line feed
negative acknowledge
null
record separator
shirt in
.shift out
start of heading
space
start of text
substi tute
synchronous idle
unit separator
vertical tabulation

CClWERSIOft TARIS
HeXadec1.J ASCII

00 MJL
01 SOH (CTRL-A)
02 5TX (CTRL-B)
03 ETX (CTRL-C)
04 EOT (CTRL-D)
05 ENQ (CTRL-E)
06 ACK (CTRL-F)
07 BEL (CTRL-G)
08 BS (CTRL-H)
09 lIT (CTRL-I)
OA LF (CTRL-J)
OB VT (CTRL-K)
OC IT (CTRL-L)
OD CR (CTRL-H)
OE SO (CTRL-N)
OF SI (CTRL- O)
10 DLE (CTRL-P)
11 DCl (CTRL-Q)
12 OC2 (CTRL-R)
13 OC3 (CTRL- 5)

APPENDIX - 8

f

Appendices

•
0010100 020 14 DC4 (CTRL-T)
0010101 021 15 /W((CTRL-U)
0010110 022 16 SYN (CTRL-V)
0010111 023 17 E'lB (CTRL-W)
0011000 024 18 CAN (CTRL-X)
0011001 025 19 EM (CTRL-Y)
0011010 026 lA SUB (CTRL-Z)
0011011 027 lB mc (CTRL-[)
0011100 028 lC FS (CTRL-\)
0011101 029 lD GS (CTRL-J)
0011110 030 lE RS (CTRL--)
0011111 031 IF US (CTRL-_)
0100000 032 20 (SPACE)
0100001 033 21 I
0100010 034 22 " 0100011 035 23 ,
0100100 036 24 $
0100101 037 25 J
0100110 038 26 &
0100111 039 27
0101000 040 28 (
0101001 041 29)

• 0101010 042 2A •
0101011 043 2B +
0101100 044 2C
0101101 045 2D
0101110 046 2E .
0101111 047 2F /
0110000 048 30 0
0110001 049 31 1
0110010 050 32 2
0110011 051 33 3
0110100 052 34 4
0110101 053 35 5
0110110 054 36 6
0110111 055 37 7
0111000 056 38 8
0111001 057 39 9
0111010 058 3A
0111011 059 3B ,
0111100 060 3C <
0111101 061 3D :

0111110 062 3E >
0111111 063 3F ?
1000000 064 40 @
1000001 065 41 A
1000010 066 42 B
1000011 067 43 C
1000100 068 44 D

1 1000101 069 45 E
1000110 070 46 F
1000111 071 47 G

APPENDIX-9

Appendices

TAPIE B-36. C!JI\1ERSIO!! TAli" (Coot .)
Bina" Dec1. J Hezadec1.J ASCU

1001000 (112 ~8 H
1001001 013 ~9 I
1001010 01~ ~A J
1001011 015 ~B K
1001100 016 ~C L
1001101 077 ~O H
1001110 018 ~E N
1001111 079 4F 0
1010000 080 50 P
1010001 081 51 Q
1010010 082 52 R
1010011 083 53 S
1010100 084 54 T
1010101 085 55 u
1010110 086 56 V
101 0111 087 57 w
1011000 OBB 58 X
1011001 089 59 Y
1011010 Ogo 5A Z
1011011 091 5B [
1011100 092 5C \
1011101 093 50 1
1011110 09~ 5E •
1011111 095 5F (
1100000 096 60
1100001 097 61 a
1100010 098 62 b
1100011 099 63 c
1100100 100 64 d
1100101 101 65 e
1100110 102 66 f
1100111 103 67 g
1101000 104 68 h
1101001 105 69 1
1101010 106 6A j
1101011 107 6B k
1101100 108 6C 1
1101101 109 60 m
1101110 110 6E n
1101111 111 6F 0
1110000 112 70 P
1110001 113 71 q
1110010 114 72 r
1110011 115 73 s
1110100 116 74 t
1110101 117 75 u
1110110 118 76 v
1110111 119 77 w
1111000 120 78 x
1111001 121 79 Y
1111010 122 7A z
1111011 123 7B (

APPENOIX- l0

•

•

•

1111100
1111101
1111110
1111111

TARlE B--36. COffVERSION IAII;: (Cont.)
Pee'·) Hexadcc'al ASCII

124
125
126
127

7C
7D
7E
7F

APPENDIX-11

I
}

DEL

Appendices

Appendices

APPE.DII E: THE STSCALLS.ASM FILE

CJl)XIN equ 3 Auxiliary Input
CJl)XINST equ 7 Auxiliary Input Status
CJl)XOOT equ 4 Auxiliary Output
C_AUXCUIST equ 8 Auxiliary Output Statu.
CJ)El.IMIT equ 1 10 Get/Set Output Delimi ter
CJtJDE equ 109 Get/Set Console Hode
C...JlAWIO equ 6 Raw Console I/O
C...JlEAD equ 1 Read Console
C_READSTR equ 10 Read Console Buffer
C_STAT equ l' Get Console Status
C_WRITE equ 2 ; Write to Console
C_WRITEllLK equ 111 Write Block
C....WRITESTR equ 9 Write String
DRV-ALLOCVEC equ 27 Get AdddAlloc)
DRV_ALLRESET equ 13 Reset Disk System
DRVJ)PB equ 31 Get AdddDPB)
DRVJREEllLOCKS equ 98 Free Bloc""
DRV_GET equ 25 Return Current Disk
DRV_GE'lLABEl. equ 101 Return Directory Label Data
DRVJ.OGINVEC equ 24 Return Login Vector
DRV...JlESET equ J7 Reset Drive
DRV_ROVEC equ 29 Get RIO Vector
DRV...$ET equ
DRV_SE'lLABEl. equ
DRV...$ETRO equ

14 Select Di.k
100 Set Directory Label
28 Wri te Protect Disk

DRV_SPACE equ
FJTTRIB equ

46 Get Disk Free Space
30 Set File Attributes

F_CUEE equ 16 Close File
FJ)El.ETE equ 19 Delete File
F JlHASET equ 26 Set DHA Address
F_ERRI{)DE equ 45 Set BDOS Error Mode
FJ'LUSIi equ 48 Flush Buffers
FJ.OCK equ 42 Lock Record
F_HAKE equ 22 Make File
F_MULTISEC equ 44 Set Hultisector Count
F_OPEN equ
F_PARSE equ

15 Open File
152 Parse Filename

FJASSWD equ
F ...JlANDREC equ

106 Set Default Password
36 Set Randan Record

F_READ equ
F...JlEADRAND equ

20 Read Sequential
33 Read Rendom

F_RENAME equ 23 Rename File
F_SFIRST equ 17 Search for First
F_SIZE equ
F_SNEXT equ
F _TIHEDATE equ
F_TRUNCATE equ

35 Compute File Size
18 Search for Next
102 Read Date Stamps, Password Mode
99 Truncate File

F_IS1lIRITE equ
F_UNLOCK equ
F _USERNUM equ
F....WRITE equ
F _WRITERAND equ

41 Test and Write Record
43 Unlock Record
32 Set/Get User Code
21 Write Sequential
34 Write Random

APPENDIX-12

•

•

•

F _WRITEXFCB
F_WRITEZF
lJIRITE
l....WRITEllLK
P_CHAIN
PJ.OAD
PJlETCODE
P_TERHCPH
SJlDOOVER
S_BlOO
S_RSX
S_SCB
S....5ERIAL
LGET
T....5ET

equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ

Appendices

103 ; Write File XFCB
~O Wrl te Random ith Zero Fill
5 Wrl te to List
112 List Block Write
47 Olain to Progrcrn
59 Load Overlay
108 Get/Set Program Return Code
o System Reset
12 Return Version NLtIlber
50 Direct Bios Calls
60 Call Resident System Extension
49 Get/Set System Control Block
107 Return Serial Number
105 Get Date and Time
104 Set Date and Time

APPENDIX - 13

•

2F00213-01

