Mar 29

JoNoCUusEUON -

17:08 1985 track.c Page 1 7' !

#include "windows. h"
#include “track.h"
#define abs(x) max(x, =(x))

/% Drawing Db jects #/
static HBRUSH hbrBlack;
static HBRUSH hbrHollow:
static HBRUSH hbrWhite;
static HBRUSH hbrGray;

static HPEN hpnBlack;
static HPEN hpnWhite;
static HPEN hpnhNull;

static HANDLE hObjCMAX_OBJ+11;

/# Cursors #/

static HCURSOR hcurCrossi
static HCURSOR hcurDot:
static HCURSOR hcurNone;

/# Brush Shapes #/

static HBITMAP hmapDot;

static int dxBrushMap, dyBrushMap;
static HDC hDCBrushMapi

/% Current State */
static HCURSOR hcurNow:

static char cCurrentShape = TRECT:;

static char cCurrentPen = PN_BLACK;

static char cCurrentBrush = BR_WHITE;

static RECT rcClient: /# Client rectangle of window #/
static POINT ptOrigini /# Screen—-relative origin of window #*/

/# Instance state #/
static FARPROC 1pSketch;
static FARPROC lpToolboxDialog;

static HANDLE mylInstance;

/% Dragging info #/
static RECT rcPaint;
static POINT ptStart, ptOld:

/% Backing Bitmap #/

static HBITMAP hmapQi;

static HDC hDCO;

static char OMapArrayl[280001;

Mar 29

57
58
59
60
b1
62
63
64
65
bb
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112

R R R R R R R R

17:08 1985 track.c Page 2

/* - e ey =
/¥ Painting Routines #/
B e e e e e e e e e e e e e e e e e e s e e e e e e e e e e e e #/

void pascal DrawRect (hDC)
HDC hDC;
{
Rectangle(hDC, rcPaint. left. rcPaint. top, rcPaint.right, rcPaint. bottom);
>

veid pascal DrawEllipse (hDC)
HDC hDC;
{
Ellipse(hDC, rcPaint. left, rcPaint. top, rcPaint. right. rcPaint. bottom);
¥

void pascal DrawTriangle (hDC)

HDC hDC;
{
POINT vertices[31;
vertices[0l, x= rcPaint. left;
vertices[0]l. y= rcPaint. bottom:
vertices[1]1. x= rcPaint. right;
vertices[1]. y= rcPaint. bottomi
verticesl2], x= (rcPaint.right-rcPaint. left)/2 + rcPaint. left;
vertices[2]. y= rcPaint. top;
Polygon(hDC, (LPPOINT)vertices, 3)i
¥
/% Flood £ill code for a triangle -—--—-
{
POINT center;
center. x= (rcPaint. right-rcPaint. left)/2 + rcPaint. left;
center, y= (rcPaint. bottom-rcPaint. top)/2 + rcPaint. top;
MoveTo (hDC, rcPaint. left, rcPaint. bottom);
LineTo (hDC, center. x, rcPaint. top)i
LineTo (hDC, rcPaint. right, rcPaint.bottom);
LineTo (hDC, rcPaint. left, rcPaint. bottom);
FloodFill(hDC, center. x, center.y,
GetPixel(hDC, rcPaint. left, rcPaint.bottom));
>
______ */
void pascal PaintPicture(hDC)
HDC hDC;
{
BitBlt(hDC, O, O, rcClient.right, rcClient. bottom: hDCO, O, 0. SRCCOPY
>
/% —— - _———— */
/#* Paint Box Routines */
/# - - */

Mar 29 17:08 1985 track.c Page 3
113
114 BOOL pascal ToolboxButton(cmd, butn, hWnd)
115 int cmd, butni
116 HWND hWnd;
117 /% Message from a USERBUTTON; i.e. a paintbox tool #/
118 {
119 HANDLE htemp;
120 HDC hDC;
121 RECT brect;
122
123 GetClientRect(hWnd, (LPRECT)&%brect);
124 switch (emd) {
125 case BN_CLICKED:
126 switch (butn) <
127 case 1:
128 cCurrentBrush= BR_WHITE;
129 break;
130 case 2:
131 cCurrentBrush= BR_GRAY;
132 break;
133 case 3:
134 cCurrentBrush= BR_BLACK;
135 break;
136 case 4:
137 cCurrentShape= SKETCH;
138 hcurNow= hcurDot;
139 breaki
140 case 5:
141 cCurrentShape= TRECT:;
142 hcurNow= hcurCross;
143 break:
144 case 6:
145 cCurrentShape= TRIANGLE;
146 hcurNow= hcurCross;
147 break:;
148 case 7:
149 cCurrentShape= ELLIPSE;
150 hcurNow= hcurCross;
151 break;
152 >
153 case BN_PAINT:
154 hDC= GetDC(hWnd);
199 /# draw basic button %/
156 FrameRect(hDC, (LPRECT)%brect, hbrBlack);
157 InflateRect ((LPRECT)&brect, -5, -3)i
158 /# set up for figure drawing */
159 CopyRect((LPRECT)&rcPaint, (LPRECT)%brect);
160 InflateRect ((LPRECT)&rcPaint, -4, -2);
161 SelectDb ject(hDC: hbrWhite);
162 switch (butn) {
163 case 1:
164 FillRect(hDC, (LPRECT)&brect, hObjj[BR_WHITEI1);
165 breaki
166 case 2:
147 FillRect(hDC, (LPRECT)&brect. hObJLCBR_GRAY1);
148 break;

Mar 29 17:08 1985 track.c Page 4

169 case 3:

170 FillRect(hDC, (LPRECT)%brect, hObjj[BR_BLACK1);
) [0 | break;

172 case 4:

173 SelectOb ject(hDC, hbrBlack);
174 InflateRect ((LPRECT)&%rcPaint, -11, -3);
175 DrawEllipse(hDC);

176 breaki

177 case 9:

178 DrawRect(hDC);

179 break;

180 case b:

181 DrawTriangle(hDC);

182 break;

183 case 7:

184 DrawEllipse(hDC);

185 break;

1846 b

187 ReleaseDC{hWnd, hDC);

188 break;

189 case BN_HILITE:

190 hDC= GetDC(hWnd);

191 InvertRect(hDC, (LPRECT)%brect);
192 ReleaseDC(hWnd, hDC);

193 break;

194 case BN_UNHILITE:

195 hDC= GetDC(hWnd);

196 InvertRect(hDC, (LPRECT)&brect);
197 ReleaseDC(hWnd: hDC);

198 break;

199 case BN_DISABLE:

200 default:

201 return FALSE;

202 >

203 return TRUE;

204)

205

206 /#* Paint Box WndProc */
207 /¥ — S
208

209 BOOL. FAR PASCAL ToolboxDialog(hDlg, msg, wParam, lParam, lpResult)
210 HWND hDlg;

211 unsigned msgi

212 WORD wParam;

213 LONG l1Param;

214 LONG far # lpResult;

215 /% WndProc for the Toolbox dialog box #/

216 «

217 BOOL processed;

218

219 processed= TRUE; /# Assume we can handle it #*/
220 if (msg==WM_INITDIALOG) {

221 /x 7w/

222 Y else if (msg==WM_COMMAND) {

223 if (wParam==PUTAWAY) {

224 EndDialog(hDlg, TRUE):

Mar 29

225
226
227
228
229
230
231
232
233
234
235
236
237
238
239

241
242
243
244
245
2446
247
248
249
250
251
252
253
254
255
2546
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280

17:08 1985 ¢track.c Page 5

} else {

processed= ToolboxButton(HIWORD(1Param),

¥
} else {

processed= FALSE;
>
return processed;

} /% ToolboxDialog #/

/® -
/*
/#*

wParam,

Menu Commands

void pascal NewBrushShape(hmap)

HBITMAP hmap;

/% Make hmap the current shape of the paint brush #/

{

¥

BITMAP bmInfoi

GetOb ject(hmap:, sizeof(bminfo), (LPSTR)&bmInfo)i

dxBrushMap= bmInfo. bmWidth;
dyBrushMap= bmInfo. bmHeight;
SelectObject(hDCBrushMap, hmap);

void pascal ClearPicture(hWnd)

{

HWND hWnd;

HDC hDCi

FillRect(hDCO, (LPRECT)&%rcClient,
hDC= GetDC(hWnd);
PaintPicture(hDC);
ReleaseDC(hWnd, hDC);

void pascal MenuCommand (hWnd, id)

HWND hWnd;
int id;

HMENU hMenu;

hMenu = GetMenu (hWnd);
if (id>BR_HOLLOW) <
if (id==PAINTBOX) <
CreateDialogi(myInstance,
} else if (id==CLEAR) {
ClearPicture(hlknd);
} else {

hbrWhite);

(LPSTR)"paintbox",

CheckMenultem(hMenu:, cCurrentShape, FALSE);

cCurrentShape = id;

CheckMenultem(hMenu, cCurrentShape, TRUE);

if (id==8SKETCH)
hcurNow= hcurDot;
else

hWnd.,

LOWORD(1Para

*/
o 74

lpToolboxDia

Mar 29

281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
3146
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336

17:08 1985 track.c Page &

hcurNow= hcurCross;
¥
>y else if (id<BR_WHITE) <{
CheckMenultem(hMenu, cCurrentPen, FALSE);
cCurrentPen= id;
CheckMenultem(hMenu, cCurrentPen., TRUE);
> else {
CheckMenultem(hMenu, cCurrentBrush, FALSE);
cCurrentBrush= id;
CheckMenultem(hMenu, cCurrentBrush, TRUE);

/% —————— —

/# Mouse Tracking Routines
/#*

void pascal DrawFigure(hDC)
HDC hDC;
/% Draw the selected figure with the selected tools %/
{
SelectOb ject(hDCO, hObjLcCurrentPenl);
SelectObject(hDCD, hObjLcCurrentBrushl);

switch (cCurrentShape) {
case TRECT:
DrawRect(hDCD);
break;
case ELLIPSE:
DrawEllipse(hDCO);
break;
case TRIANGLE:
DrawTriangle(hDCO);
break;
>
PaintPicture(hDC);
} /% DrawFigure %/

BOOL far pascal Sketch(x, y, 1lp)

int x, y;
LPINT 1p;
{
BitB1t(hDCO, x, y, dxBrushMap:, dyBrushMap,
hDCBrushMap, O, O, OxOO0OBBO74A);
BitBl1t((HANDLE)#1lp, x, y, dxBrushMap, dyBrushMap,
hDCO, x., y, SRCCOPY);
4

int pascal BrushStroke(x1, yl, x2, y2, hDC)
int x1, yi1, x2, y2;
HDC hDC;

int dx, dyi
ing: X i

#*/
*/
*/

Mar 29 17:08 1985 track.c Page 7
337 int mi
338 int signDx, signDy:
339 int cnt;
340
341 dx= x2-x1; dy= y2-yi;
342 signDx= dx>=071:-1;
343 signDy= dy>=071:-1;
344 cnt= 0;
345 if (abs(dx) > abs(dy)) <«
346 y= yli;
347 if (dy!=0) m= dx/dy;
348 for(x= x1; x'=x2; x= x+signDx) {
349 BitB1t(hDCO, x, y, dxBrushMap, dyBrushMap.
350 hDCBrushMap, O, O, OxO0BBO74A);
351 BitB1t(hDC, x, y» dxBrushMap., dyBrushMap,
352 hDCO, x, y, SRCCOPY);
353 if (dy!=0 && (cnt++ % m)==0)
354 y= y+signDy;
355 >
354 > else {
357 x= x1;
358 if (dx!=0) m= dy/dx;
359 forl(y= yl; y'=y2; y= y+signDy) {
3460 BitBlt(hDCO, x., y, dxBrushMap, dyBrushMap.,
361 hDCBrushMap, O, O, OxOOBBO74A);
362 BitBlt(hDC, x, y, dxBrushMap, dyBrushMap.,
363 hDCO:. x, y. SBRCCOPY);
364 if (dx'!'=0 && (cnt++ %L m)==0)
3465 x= x+signDx;
3646 >
367 >
368)} /% BrushStroke #/
369
370 wvoid pascal TrackDraw(hWnd, pt)
371 HWND hWnd;
372 POINT pti
373 /% Track mouse and paint with the brush #/
374 {
375 HDC hDCS:;
376 MSG msg;
377 POINT ptAbs;
378
379 hDCS= GetDC{(hWnd);
380 SetCapture(hWnd, FALSE);
381 SelectOb ject(hDCO, hObjjfcCurrentBrushl);
382 SetCursor(hcurNone);
383 (#1pSketch)(pt. x, pt.y, (LPINT)&hDCS);
384 ptODld. x= pt. x;
385 ptOld. y= pt. y;
386
387 while (TRUE) <{
388 ReplyMessage(OL);
389 GCetMessage ((LPMSG)&msg, NULL, Ox200, O0x210);
390 ptAbs= msg. pt;
391 ScreenToClient(hWnd, (LPPOINT)&msg.pt)i
392 if (msg. message==WM_MOUSEMOVE) <

Mar 29 17:08B 1985 <track.c Page 8

393 LineDDA(ptO1ld. x, ptOld.y, msg.pt. x, msg.pt. y,
394 1pSketch, (LPINT)X%hDCS);
395 ptOld. x= msg. pt. xi

326 pt0ld. y= msg. pt. u;

397 SetCursorPos(ptAbs. x, ptAbs. y);
398 > else if (msg. message==WM_LBUTTONUP) {
399 ReleaseDC{(hWnd, hDCS);

400 ReleaseCapture();

401 SetCursor(hcurNow);

402 break;

403 >

404 D

405) /# TrackDraw #/

404

407

408 wvoid pascal TrackFigure(hWnd, pt)

409 HWND hund;

410 POINT pt;

411 /% Track mouse and draw figure #*/

412 «

413 static HDC hDCS;

414 MSG msgi

415

416 hDCS= GetDC(hWnd);

417 SetCapture(hWnd, FALSE);

418 SelectOb ject(hDCS, hpnWhite);

419 SelectOb ject(hDCS, hbrHollow);

420 SetROP2(hDCS, R2_XORPEN);

421 ptOld. x = ptStart. x = pt. x;

422 pt0ld. y = ptStart.y = pt. y;

423 Rectangle (hDCS,

424 ptStart. x,

425 ptStart. y,

424 pt. x,

427 pt. y

428)i

429

430 while (TRUE) {

431 ReplyMessage(OL);

432 GetMessage ((LPMSG)&msg, NULL, Ox200, 0x210);
433 ScreenToClient(hWnd, (LPPOINT)&msg.pt):
434 if (msg. message==WM_MOUSEMDVE) <
435 Rectangle (hDCS.

436 ptStart. x,

437 ptStart. y,

438 ptOld. x,

439 ptOld. y

440)i

441 Rectangle (hDCS,

442 ptStart. x,

443 ptStart. y.

444 msg. pt. x,

445 msg. pt. y

444)i

447 ptOld. x = msg. pt. xi

448 ptOld.y = msg. pt. y;

Mar 29 17:08 1985 track.c Page 9
449 } else if (msg. message==WM_LBUTTONUP) {
450 rcPaint. left = min(ptStart. x, msg. pt. x);
451 rcPaint. top = min{ptBtart. y, msg.pt. y)i
452 rcPaint. right = max(msg. pt. x, ptStart. x);
453 rcPaint. bottom = max{(msg.pt.y, ptStart. y);
454 Rectangle (hDCS.
455 ptStart. x,
456 ptStart. y,
457 ptOld. x,
458 pt0ld. y
459)i
460 SetROP2(hDCS, R2_COPYPEN);
461 ReleaseCapture();
4462 DrawFigure (hDCS);
463 ReleaseDC(hWnd, hDCS);
4464 break;
4465 b
4466 ;
467 Y /# TrackFigure »/
448
4469
470 wvoid pascal CreatePicture(hiWnd)
471 HWND hlind;
472 /% Set up new picture window #*/
473 {
474 HDC hDC;
475 RECT rcli
476
477 /% Create DC's #/
478 hDC= GetDC(hWnd);
479 hDCD= CreateCompatibleDC(hDC);
480 hDCBrushMap= CreateCompatibleDC(hDC):
481 ReleaseDC(hWnd, hDC)i
482
483 /# Set up backing bitmap #/
484 hmap0D= CreateBitmap(720, 300, 1, 1, (LPSTR)OMapArray);
485 SelectOb ject(hDCO, hmap0);
4846
487 /# Set up default paint brush #/
488 NewBrushShape(hmapDot);
489
490 /# Clear backing bitmap (hWnd has null client rect so far) #/
491 SetRect ({(LPRECT)&rcO, O, 0O, 720, 300);
492 FillRect(hDCO, (LPRECT)&rcO, hbrWhite);
493 ¥} /#* CreatePicture #/
494
495
496 long far pascal TrackWndProc(hWnd. message, wParam, 1lParam)
497 HWND hWnd;
498 unsigned message;
499 WORD wParami
500 LONG 1Param;
501 «
502 PAINTSTRUCT psi |
503 HDC hDC;
504 POINT pti

Mar 29

505
506
507
508
509
210
511
912
513
514
515
916
517
918
919
520
o21
S22
923
524
525
526
227
528
529
530
531
532
233
534
535
536
537
538
239
540
541
542
5943
544
545
546
547
548
249
550
551
992
553
554
555
556
957
558
5959
960

17:08 1985 track.c Page 10

switch (message) {

case WM_MOUSEMOVE:

case WM_LBUTTONUP:
SetCursor(hcurNow);
break;

case WM_LBUTTONDOWN:
if (cCurrentShape==SKETCH)

TrackDraw(hlWnd, MAKEPOINT(lParam));

else

TrackFigure(hWnd, MAKEPOINT(1Param));

break;

case WM_CREATE:
CreatePicture(hlnd);
break;

case WM_DESTROY:
PostQuitMessage(0);
break;

case WM_SIZE:

GetClientRect(hWnd, (LPRECT)&rcClient):

break;

case WM_PAINT:

BeginPaint(hWnd, (LPPAINTSTRUCT)&ps)i

PaintPicture(ps. hdc);
EndPaint(hWnd, (LPPAINTSTRUCT)%ps);
break;

case WM_COMMAND:
MenuCommand (hWnd, wParam);
break;

default:
return(DefWindowProc(hWnd, message.

break;
>

return(OL);

} /7% WndProc #*/

int pascal InitClass(hInstance)

{

HANDLE hInstance;
WNDCLASS wClass;

/% set up some brushes #/
hbrBlack = GetStockObject(BLACK_BRUSH);
hbrHollow = GetStockOb ject (HOLLOW_BRUSH);
hbrWhite = GetStockOb ject(WHITE_BRUSH);
hbrGray = GetStockOb ject(GRAY_BRUSH);

wParam,

1Param})i

Mar 29 17:08 1985

561
562
5463
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
995
9946
997
598
599
400
601
602
603
604
605
608
607
608
509
610
611
612
613
614
615
&16

track. c Page 11

hpnBlack = GetStockOb ject (BLACK_PEN);
hpnWhite = GetStockOb ject(WHITE_PEN);
hpnNull = GetStockOb ject(NULL_PEN);

/# Cursors #/

hcurDot= LoadCursor(hInstance.
hcurCross= LoadCursor(hInstance,
hcurNone= LoadCursor(hInstance.,

(LPSTR)"dot");
(LPSTR)"cross");
(LPSTR) "none");

/% Brush Shapes #/

hmapDot= LoadBitmap(hInstance,

(LPSTR) "dot")i

/% Fill in class description #/

wClass.
wClass.
wClass.
wClass.
wClass.
wClass.
wClass.
wClass.

hCursor
hlcon
lpszMenuName
lpszClassNam
hbrBackgroun
hinstance
style
lpfnWndProc

wClass.
wClass.

cbClsExtra=
cbWndExtra=

return
} /% InitClass #/

int pascal WinMain(hInstance, hPrevinstance, lpsizCmdLine,

HANDLE hInstance, hPreviInstance:;

LPSTR 1lpszCmdLine;

int cmdShow;

{

MSG msgi

HWND hWnd;

if ('hPrevinstance) {
if ('InitClass(hInstance))

return FALSE;

} else {
GetInstanceData (hPreviInstance:. (PSTR) &hbrBlack.
CGetInstanceData (hPrevInstance, (PSTR) &hbrHollow.
GetInstanceData (hPreviInstance, (PSTR) &hbrWhite.,
GetInstanceData (hPreviInstance, (PSTR) &hbrGray.
GetInstanceData (hPreviInstance, (PSTR) &hpnWhite,
GetInstanceData (hPreviInstance, (PSTR) &hpnBlack,
GetInstanceData (hPreviInstance, (PSTR) &hpnNull,
CGetInstanceData (hPrevinstance, (PSTR) &hcurDot,
CetiInstanceData (hPrevinstance, (PSTR) &hcurCross,
GetInstanceData (hPreviInstance:, (PSTR) &hmapDot.

}

= (HANDLE)NULL;
= LoadIcon(hInstance.,

(LPSTR)"Track"

= (LPSTR)"Track";
e = (LPSTR)"Track";
d = hbrWhite;
= hlnstance;
= CS_VREDRAW | CS_HREDRAW;
= TrackWndProc;
0;
Qi

RegisterClass((LPWNDCLASS)&wClass)i

hOb JCPN_WHITE]= hpnWhite;
hOb JCPN_BLACKI= hpnBlack;
hOb JCPN_NULLI= hpnNull;

hOb JCBR_WHITEJ= hbrWhite;

)i

cmdShow)

sizeof (hbrBlack
sizeof (hbrHoll
sizeof (hbrWhite

sizeof (hbrGray))

sizeof (hpnWhite
sizeof (hpnBlack

sizeof (hpnNull))
sizeof (hcurDot))

sizeof (hcurCro

sizeof (hmapDot))

Mar 29 17:08 1985 track.c Page 12

&17
618
619
620
621
&22
623
624
625
626
627
628
629
&30
631
632
633
&34
&35
636
637
638
639
640
641
642
643
b44
545
b4é
647
648

hOb JLBR_GRAY1= hbrGray;
hOb jLBR_BLACKI1= hbrBlack;
hOb JEBR_HOLLOWI= hbrHollow:;

hcurNow= hcurCross;

hWnd = CreateWindow((LPSTR) "Track",
(LPSTR) "Doodler",
WS_TILEDWINDOW,
0,
0,
0,
100!
(HWND) NULL,
(HMENU) NULL.,
(HANDLE)hInstance,
(LPSTRINULL.)Y;

ShowWindow(hWnd, cmdShow);
UpdateWindow(hWnd);

1pSketch= MakeProcInstance((FARPROC)Sketch,
lpToolboxDialog= MakeProcInstance((FARPROC)ToolboxDialaog.

myInstance= hIinstance;

while (GetMessage((LPMSG)&msg, NULL, O,
TranslateMessage((LPMSG)kmsg);
DispatchMessage((LPMSG)&msg);

>

return O;

649) /% WinMain #/

hlnstance);

hInstance):;

3/25/87 5:20 PM

Procedure/Function names for FontList.p

FontList

BB

DefFontList
FnFonts
FBuildMenu
FCheckFont
FGetProps
FGetDefProps
FSetDefProps
SetFList
InsFList
DelFList
ListH
DrawBoxItem
ClickFilter
LClikLoopProc
FinstallFonts
Unsel
Sel
SetCell
GetSelCell
TickStyle
ComplStyle
AddNewSlot
BuildFaceBox
BuildsSizeBox
SetMenuBoxCell
BuildMenuBox
InitLists
SizeToEdit
ShowFontInfo
MenuToOthers
DolInstall
DoRemove
GrayButtons

Procedure

[Main] FontList.p
[PresNew]
[S1Draw]

[FontInstall]

End ProcNames: 34 Procedures and Functions

Page 7

3/25/87 5:20 PM Procedure

Procedure/Function names for ShareDefs.p

ShareDefs [Main]
VNewEnv [PresNew]
VDisposEnv
VCloneEnv
VReadEnv [Files]
VWriteEnv
VConvertEnv [PresConvert]

*%** End ProcNames: 7 Procedures and Functions

ShareDefs.p

Page 8

3/25/87 5:20 PM Procedure

Procedure/Function names for Ruler.p

Ruler [Main]
RNewPool [PresNew]
RDestroyPool
RReadPool [Files]
RWritePool
RConvertPool [PresConvert]
RFindPRuler [S1Draw]

RPoolFindPRuler
RCopyPRuler
RDeletePRuler
RAddPRuler
SetPRuler
RChangePRuler
RUsePool
ScaleMeasures
Setvrect
RActivate
DrawMarker [Ruler)
ClipDown
DrawTabXY
DrawTab
DrawTabWells
RDraw
RErase
RClick
DragMarker
UpdatelIndents
DragTab
TouchTack

“#% End ProcNames: 29 Procedures and Functions

Ruler.p

Pag

o

This note describes the basic internal structure of PowerPoint in terms of MPW Pascal
units. It describes the structure of the version 1.0 program, and does not include
changes made for version 1.1. All units are kept in files by the same name (with *.p’
appended), although some units are split into multiple files (these cases are discussed in
the sections on the relevant units).

Prog

Prog is the program unit for PowerPoint and contains the entry point of program execu-
tion and the main event loop. It serves as the window controller and top level event dis-
patcher.

As window controller, it manages each document window (i.e., a window containing a
PowerPoint document, or presentation), a debugging window (not compiled into the
released product, but sometimes compiled in for debugging purposes), and desk acces-
sories.
the Window menu (list of all windows on the desktop, constructed by Prog whenever the
user pulls down a menu). It handles the basics of New, Open, Close, and Quit com-
mands in order to implement document windows. It also handles the Debug menu
commands to show/hide the window and toggle debug mode. It implements dragging
(moving), resizing, and zooming for all document windows.

As event dispatcher, Prog does the following:

Units of PowerPoint

Dennis Austin
December 18, 1985

Tom Rudkin
October 30, 1987

It handles the Apple menu (About PowerPoint, Help, and desk accessories) and

Desk accessories receive all events that are targeted for them.

Events that manipulate document windows themselves (resizing, etc.) are han-
dled by Prog (with help from the DocWin unit).

The debug window receives events targeted for it; see below.

Events for document windows go to the DocWin unit; this includes all clicks
inside the contents region of a window, but not those in the rest of a window.

Menu commands that are not handled directly by Prog (see above) are passed
on to the Cmd unit.

Prog handles three “application-defined” events.

Events are not passed to a central parser in DocWin, but rather to specific procedures
for each type of event. This unit is somewhat like TextEdit in this respect; it has proce-
dures for update, activate, click, etc. (Note: we use the work “click” to mean a mouse-
down event; technically, the word should mean a mouse-down-and-up episode without
moving very far, so our click handlers actually handle both clicks and drags.)

For each document window, Prog remembers a document handle that it gets from
DocWin when the window is created, storing it in the “reference constant” field of the
window record. It is a handle to a “document context” record, defined in unit DocData,
but Prog does not know any of its details. Prog supplies the document handle and the
window pointer to DocWin whenever the call does not refer to the currently active docu-
ment window. In this way, DocWin doesn't need to use or save any information in the
window record. Prog remembers the current document handle and current window
pointer in global variables private to the unit (these are both NIL whenever no Power-
Point window is active). Similarly, other units that deal with documents and/or windows
remember the current document handle and/or window pointer in their own private global
variables. These variables are always set to the argument document and/or window by
the routine in each unit that handle activate events, and set to NIL by deactivate event
handlers. In this way, a document or window argument need only be passed to an
operation that does not always operate on the current document window (e.g. update
events).

If a certain period of time has elapsed since handling of the last non-null event was
completed (10 secs., changeable in the program resources), Prog’s event dispatcher
offers each document window a chance to do any “background” processing it has to do;
in the present version, this consists of computing the miniature images of slides for the
slide sorter. See the section on the Background unit for more details.

The debug window is implemented by three procedures within Prog, but they are in fact
only an interface to the Apple unit WriteInWindow, which does most of the work. When
these procedures are compiled in, there is also a Debug menu containing a command to
hide and show the debug window (initially hidden) and any other commands desired,
e.g. to output specific debugging information. To output to the debug window, call rou-
tines exported by WriteInWindow such as WWAddText and WWNewLine.

The initial code in program Prog, after initializing the various parts of the Macintosh tool-
box and all the units of the PowerPoint program, processes the Finder “startup” informa-
tion. This information tells whether the user selected one or more presentation docu-
ments from the Finder desktop or selected the PowerPoint application itself, and whether
he chose to open or to print them. Prog creates the necessary document windows for
new or existing presentations, or prints the selected presentations and then exits if Print
was chosen.

As a general rule, all the code in PowerPoint that knows about the list of windows on the
desktop, the position of any window on the screen, the parts of a window outside of the
contents region, etc., is isolated to Prog. On the other hand, very little of Prog is really
PowerPoint-specific, but could just as well be managing windows for other types of doc-
uments instead.

Cmd

Cmd implements command menus and dialogs directly related to commands. Its initial-
ization code gets all the menus from the program resources and installs them in the
menu bar. The unit enables or disables some menus in the menu bar based on whether
a document window is active or not. It “reviews” menus, enabling or disabling com-
mands and placing check marks or diamonds on commands as appropriate, whenever
the user pulls down any menu (or enters any command-key accelerator). It executes all
menu commands except those listed above under program Prog; it also exports routines
called by Prog to run dialogs and perform other parts of the New, Open, Close, and Help
commands and Print from the Finder. Finally, it manages PowerPoint's use of the Mac-
intosh desk scrap (i.e. system clipboard).

PowerPoint does not normally use the desk scrap to store the current clipboard con-
tents. Instead, it uses internal data structures to store information that cannot even be
represented in the system-supported clipboard types: a list of slides, a list of objects
from within a slide, PowerPoint-specific text, etc. (see the section on the ShareDefs unit
for more details). However, when the user quits PowerPoint, or when he changes the
active window from a document window to a desk accessory, Cmd causes a represen-
tation of the internal clipboard to be posted to the desk scrap in one or more system-
supported types, so that the user may paste (a PowerPoint-independent representation
of) whatever he cut or copied from PowerPoint into a desk accessory or other program,
and before certain operations, such as Paste, Cmd checks the desk scrap to see
whether something new has been placed there since it last checked, so that the user
may paste into PowerPoint whatever he cut or copied from a desk accessory or other
program. Cmd is also responsible for managing the internal clipboard and the “undo
clipboard” (a copy of the internal clipboard made before the Cut and Copy commands
are executed, so the commands can be undone), and for “extracting” data on the clip-
board to a new environment when appropriate (see ShareDefs). Cmd does not itself
understand the representation of data on the internal clipboard, but calls routines in the
Pres unit to do the work.

Cmd knows nothing about windows or graphics ports (i.e. grafPorts), but it does keep
track of the currently active document handle. None of the menu-handling routines take
a document handle as an argument—they operate on the current document. Cmd does
access some fields of the document context record.

The Cmd unit is split into two files, because of the size of the unit. The primary file is
Cmd . p, which contains the unit's interface and some of its implementation; this is the
source file given to the compiler. It text-includes (via the $1 compiler directive) the file
FileCmds .p, which contains all the routines related to commands on the File menu.

OutputPr

OutputPr implements PowerPoint printing. Itis PowerPoint's sole interface to the Mac-
intosh Print Manager. It handles the Page Setup and Print commands, including their
dialog boxes. It also creates the default page setup information for a brand new pre-
sentation, which is a landscape page (if possible) for the currently chosen printer, if one
is chosen, else a set of LaserWriter-like defaults. Finally, it creates a QuickDraw picture

containing the “handout frames,” which are dotted-outline rectangles showing where
handouts would go on the master handout page for two and for six slides per page (this
operation shares much code with printing handouts, so it is in OutputPr). See the note
“Presenter Printing” (November 6, 1986) for a discussion of printing.

The OutputPr unit was written originally by Bear River Associates, but has been modified
by Forethought (mainly in the interest of segmenting code into overlays, plus fixing many
bugs). The unit was originally named “Output™—which makes more sense—but that
conflicts with a name in the Macintosh toolbox. The unit is split into two files, because of
the size of the unit. The primary file is outputPr.p, which contains the unit's interface
and most of its implementation; this is the source file given to the compiler. It text-
includes (via the $1 compiler directive) the file DialogPr.p, which contains all the rou-
tines related to the Page Setup and Print dialogs.

DocWin

DocWin is the central unit controlling the document window contents region. To do this,
the unit defines several concepts relating to document windows.

* The view rectangle of a window is the area in which its document is viewed; it is
the entire contents region of the window minus the scroll bars and the tools (in
sorter views, the column of tools buttons and slide changer is omitted, so the
view rectangle is wider than in non-sorter views).

» The virtual page of a document is its complete display, independent of the cur-
rent window size. For example, in a slide view the virtual page is the entire dis-
play of the slide at the current scale. The virtual page of a title sorter is “infinitely
wide,"” but for scrolling purposes we pretend it's very narrow (so that horizontal
scrolling does not occur). The virtual page of a slide sorter is variable width,
depending on the actual width of the view rectangle.

* A window's graphics port is said to be in window coordinates when the port’s ori-
gin is at the upper left corner of the window's contents region and its clipping is
the entire coordinate space. Thus, when the port is in window coordinates,
arguments passed to QuickDraw routines are relative to the upper left corner of
the contents of the window.

+ The port is said to be in virtual page coordinates when its origin is set such that
arguments passed to QuickDraw routines are expressed relative to the origin of
the virtual page, as it is currently scrolled within the view rectangle, and its clip-
ping rectangle is set to the portion of the virtual page actually visible in the view
rectangle.

One of DocWin's basic roles is the implementation of scrolling. It handles the scroll bar
events and keeps track of the current scroll position. It exports routines to set the cur-
rent port into virtual page coordinates and to restore it to window coordinates. It controls
the view rectangle’s contents by invoking the Pres unit to draw the graphics and to pro-
cess other events for the document. Pres and lower-level units ignore scrolling com-

pletely and function within the coordinate system and clipping region already set up by
DocWin.

The view rectangle is expressed in window coordinates (so the top is always zero, and
the left is zero in sorter views, since there is no tools column); DocWin keeps track of the
view rectangle of the current window in a private global variable. As far as DocWin is
concerned, the virtual page is expressed in arbitrary coordinates; DocWin requests the
virtual page rectangle from Pres, which in turn requests it from Sorter or from Slide, and
uses it along with the view rectangle to compute the bounds of the two scroll bars. As
long as Sorter and Slide deal with their virtual pages in consistent fashions—i.e. the four
edges of the virtual page represent the bounds of scrolling in each direction—DocWin
can manage the scroll bars and the conversion of the port to virtual page coordinates. In
particular, DocWin does not care if the virtual page has (0,0) at its upper left corner or
not (in fact, Slide places (0,0) at the center of its virtual page, and therefore deals with
negative coordinates). The bounds of the scroll bars are computed such that, when
scrolled to its minimum value, the top (or left) edge of the virtual page is displayed
exactly at the top (or left) edge of the view rectangle, and similarly for the bottom (or
right) edges when scrolled to its maximum value. If the virtual page is smaller than the
view rectangle in either dimension, then the maximum value is set equal to the minimum
value and no scrolling is possible (the scroll bar is made inactive). (Note that, unlike
some applications, this means PowerPoint never allows the user to scroll beyond the
point where the bottom or right extreme of the display has just come into view.) See the
section on the Slide units for more details on Slide's virtual page.

DocWin exports many routines called by Prog and Cmd to perform various operations on
document windows; in most cases, any operation on a presentation is handled by a
DocWin routine, which in turn may call routines in Pres and/or ToolsWin, although in
some cases Cmd calls routines in Pres or Slide directly. For example, when Prog's
event dispatcher receives a click event in the contents region of the active window, it
calls the DocWin routine DClick; this in turn tests which part of the contents region the
mouse was in and handles it directly if it is over a scroll bar, passes it to ToolsWin
(TClick) if it is in any of the various tools, or passes it to Pres (PClick), after setting the
port into virtual page coordinates, if it was in the view rectangle. In addition to handling
events such as activate, deactivate, update, and click, DocWin handles resizing and
zooming a window, changing the size of the virtual page (e.g. when changing viewing
scale or adding slides to a sorter), changing the view (slides, notes, sorters), creating a
brand new document or a clone of an open one, opening or saving a document, closing
a document, and other operations.

DocWin keeps track of the currently active document handle and window pointer in pri-
vate global variables. Many DocWin routines operate on the current document window,
but many do not. In particular, Prog or Cmd frequently call DocWin to deactivate the
current window in order to unhighlight the window and its selection before a dialog box is
displayed, even though it remains the active document window as far as Prog and Cmd
are concerned; then the document handle must be passed to the DocWin operation.
DocWin routines that take document handle and/or window pointer arguments typically
pass one or both arguments on to the corresponding ToolsWin and/or Pres routine,
since those units also operate on documents (presentations). DocWin directly accesses
many fields of the document context record.

—_

ToolsWin

ToolsWin implements the tools portion of a PowerPoint document window: the buttons
for changing to sorter views, the name of the current view (and slide or notes page num-
ber if applicable), the slide changer (known internally as the “slider”), and the drawing
tools. Like DocWin, it exports routines for handling events for the tools, namely activate,
deactivate, update, grow (resize), and click; these routines are called only from the
equivalent DocWin routines.

ToolsWin also provides operations to get and set the current slide number, get and set
the current tool, change the current view, and change the number of slides in the pre-
sentation. These routines may be called by the Pres and Slide units. ToolsWin needs to
know the current view, not only so it can display its name in the lower-left corner of the
window, but also so it knows whether or not to display the column of tools buttons and
slide changer. It needs to know the number of slides so it can set the maximum value
on the custom scroll bar.

ToolsWin displays a picture resource for the standard tools; one of the tools is shown
inverted to indicate the current choice. It displays another picture resource for the sorter
buttons. It uses a custom scroll bar (see unit BarCntl) for the slide changer, but the pro-
gram interface to the custom bar is the same as to the standard scroll bars. TextEdit is
used to display and edit the current slide or notes page number. For more details on the
implementation of ToolsWin, see the paper, “Implementation of Presenter Tools," last
revised April 17, 1987.

Like DocWin, ToolsWin keeps track of the currently active document handle and window
pointer in private global variables. Almost all ToolsWin routines operate on the current
document window. ToolsWin directly accesses some of the fields of the document con-
text record, which contain tools-related information (such as the current tool and handles
to the slider control and to the TextEdit record). ToolsWin's routines for handling acti-
vate and deactivate events set the current document and window, and also activates or
deactivates, respectively, the tools; when activated, the tools portions of the window are
all drawn in black and the current drawing tool is inverted, whereas when deactivated the
tools portions are drawn in gray.

Pres

Pres implements the concept of a presentation. It creates and destroys presentations,
reads and writes presentations on disk, and clones presentations. It manipulates the list
of slides of the presentation, performing operations such as Cut and Paste from a sorter,
New Slide, changing to a different view or different slide, etc. Basically, Pres is respon-
sible for all global aspects of the presentation, but for none of the issues of viewing pre-
sentations in windows (that's DocWin's job).

Pres also handles events and other operations that apply to a presentation regardless of
which view it is in, even if the exact behavior is very different for different views. It does
this by passing the operation on to the Slide units if the view is a slide or notes page,
and passes it on to the Sorter unit and/or handles it in Pres if the view is a sorter. For
example, when Pres’s click handler (PClick) receives a mouse click over the view rec-

tangle—converted into virtual page coordinates by DCIick; it checks the current view,
and either passes the click on to Slide (SClick) if the view is any slide or notes page, or
passes it to Sorter (ZClick) if the view is a sorter; in the latter case, PClick tests the result
of ZClick and then rearranges the order of slides if the user dragged slides in the sorter,
or changes view to a slide or notes page if the user double-clicked in the sorter.

An open presentation (whether opened from disk or created and not yet saved) is repre-
sented by a document context record. This is the same data structure known to Cmd,
DocWin, and ToolsWin, but documents are called “presentations” inside Pres to empha-
size the specific type of document it deals with. Pres directly accesses most of the fields
of the document context record. For example, it keeps track of the number of slides in
the presentation, the current slide number, a handle to the list of slides, and whether or
not the presentation has been modified since last saved. When a new presentation is
created, Pres creates and initializes a new document context record. When a presenta-
tion is saved, Pres writes a copy of its document context record to disk, as well as other
information; this record is read back into memory when the presentation is opened. Pres
keeps track of the currently active presentation in a private global variable.

The representation of an open presentation contains the “packed” representation of all
slides, notes pages, and the master handout page, plus the “unpacked” representation
of the slide master, the notes master, and the slide, notes page or master handout page
currently on view, if any. (See the description of the Slide units below for an explanation
of these two representations.) In other words, Pres opens the slide master and notes
master when it opens the presentation, stores pointers to their slide contexts in the doc-
ument context, and leaves them open until the presentation is closed. In addition,
whenever a slide, notes page, or handout master is on view, Pres opens it and leaves it
open until the view changes (if it's not one of the two masters already open), and stores
its slide context pointer in the document context. The packed representations of each
slide and its notes page are stored within a slide-list entry, which are all linked together
with the entry for the slide master and notes master at its head, and a handle to the head
of the list stored in the document context record; see unit SlideList. The packed repre-
sentation of the handout master is stored as the notes page in a separate slide-list entry
that has no slide, and a handle to it is also stored in the document context. Only the
packed representations and slide-list entries are saved on disk; the unpacked slide con-
texts are not. See the paper “Presenter Notes Pages” (November 25, 1986) for a fuller
discussion of this subject.

The Pres unit is split into four files, because of the size of the unit. The primary file is
Pres.p, which contains the unit's interface and some of its implementation; this is the
source file given to the compiler. It text-includes (via the $1 compiler directive) three
files: PFiles.p contains all of Pres's routines relating to the non-printing commands on
the File menu; PPrint . p contains the routines relating to Print and Page Setup com-
mands; and PEdit . p contains the routines relating to modifying the slide list, except for
creating new slides.

Sorter

The Sorter unit implements the slide and title sorters. It only handles the appearance of
the sorters on the screen and mouse events for sorters; it does not manipulate the slide

list (Cut, Copy, Paste, Clear, New Slide, reordering slides), which is done by Pres. It
exports routines for handling events on sorter views, such as activate, draw (update),
and click. It also exports routines for changing the scale for viewing miniatures in the
slide sorter, reporting or changing the sorter selection (an insertion point at a specific
point, or a set of selected slides), for changing the document window's view to or from a
sorter view, etc.

Sorter is a “submodule” of Pres, a “private” unit used only by Pres (although, of course,
Pascal does not enforce this restriction).

Like Pres and DocWin, Sorter operates on documents, identified by document handles
and represented by document context records. Inside the unit, documents are some-
times called “sorters,” to emphasize the fact that the unit deals with the sorter aspects of
a presentation. Sorter is the sole unit to access some fields of the document context
record, such as the current slide sorter scale and information about how the slide sorter
is currently laid out in the window—how many columns of miniatures, how much space
between each column, etc. In addition, Sorter accesses some other fields, such as the
slide list.

Sorter keeps track of the currently active sorter in a private global variable. This is
always either the same handle as is active in Pres oris NIL. Some Sorter routines
operate on the current sorter and some do not. Sorter’s routines for handling activate
and deactivate events set the current sorter, and also highlight or unhighlight, respec-
tively, its selection. Pres calls these routines in response to activate and deactivate
events on the presentation, and also when changing to or from the title or slide sorter
view.

The Sorter unit is split into two files. The primary file is Sorter . p, which contains the
unit's interface and some of its implementation; this is the source file given to the com-
piler. It text-includes (via the $1I compiler directive) the file ZC1ick.p, which contains
the routine for handling click events in the sorter, plus all the routines called only from it.

SlideList

SlideList implements the concept of the list of slides belong to a single presentation. It
exports the record SListEntry, which is one entry in a slide list, and the type SListHandle,
which is a handle to an SListEntry. SListEntry contains the packed representations of a
slide and its notes page, a handle to the miniature image of the slide (if it has been com-
puted), a handle to the text of the slide’s title (if computed), a Boolean telling whether the
slide is selected (used only in sorter views), and handles to the next and previous slide-
list entries. Thus the entries are doubly linked in the list.

SlideList exports routines which manipulate slide lists without knowing anything about
presentations. This includes routines to allocate a slide-list entry, to dispose slide lists,
to copy slide lists, to allocate or reallocate (in case it has been purged) storage for a
slide’s miniature image, to dispose images of the slides of a slide list, to link one list of
slides into another list at a given point, and others.

SlideList is a “submodule” of Pres, a “private” unit imported only by Pres and its other
submodule (although, of course, Pascal does not enforce this restriction).

DocData

DocData exports the record type DocRec that is the basic repository for information
about a presentation, also known as a document context record, and the type Doc-
Handle, which is a handle to a DocRec and is also known as a document handle. The
record's fields are divided informally into groups that are each accessed primarily by one
of the units using the record: Cmd, DocWin, ToolsWin, Pres, and Sorter, plus informa-
tion primarily used by Slide and passed to it by Pres when a slide is opened. However,
this division is not enforced by the compiler—since all those units, and even Prog, use
DocData—nor is it strictly followed even by programming convention. The most that can
be said is that each field is only supposed to be written by the unit in whose group it is,
but even that rule isn't always followed.

DocData also exports the record type OutputRec, containing information relating to
printing. A DocRec contains a field of type OutputRec, containing the presentation’s
shape (overhead, 35-mm, or custom), starting slide number, slide and paper size, and a
handle to the print record used by the Macintosh Print Manager. This information isin a
separate record so that it can more easily be manipulated by the OutputPr unit, and so
OutputPr can create a default output record for a new presentation even before the doc-
ument context is created.

In addition, DocData exports several constants used by the units that manipulate pre-
sentations and document windows, and the routine PLock, which locks a document
handle and returns a pointer to the document context record.

The Slide Units

Slide actually comprises four distinct units, which together implement the concept of a
slide in PowerPoint. We use the term “slide,” in this context, to mean not only the slides
of the presentation (i.e. the entities that are typically shown to an audience as overhead
transparencies, 35-mm slides, or video images on screen), but also the notes pages and
the slide, notes, and handout masters. In most respects, the Slide units do not distin-
guish between slides, notes pages, and handout master; e.g. these are all edited in the
same way (except their “titles,” which for a notes page means the picture of its corre-
sponding slide, and for the handout master means the picture of the handout frames).

Slide exports the record SlideRec, which contains the basic representation of a slide.
SlideRec has a handle for an object array and a handle for a text string that hold the bulk
of the actual slide data. A single object on a slide is represented by type ObjRec, which
is exported by one of the units (OService) but not used outside the Slide units. The
contents of a SlideRec is called the “packed” representation of a slide, because all of the
slide’s objects and text are stored in just two heap objects. This is the way slides are
stored with a presentation on disk, and most of the time this is also how they are stored
when in memory.

10

However, to display or otherwise access the contents of a slide it must be open. This
produces the “unpacked" representation of the slide, in which each slide object is repre-
sented by a separate, unrelocatable heap object, and information about the slide itself is
stored in an unrelocatable heap object called a “slide context” record. This representa-
tion is optimized for speed of access, rather than for memory considerations. The slide
context includes information only needed while editing the slide, such as its current
selection, the scale at which it is being viewed, a pointer to the slide context for the slide
or notes master (as appropriate, unless this slide is the master) so that master items can
be drawn, and the “drawing environment” (see unit ShareDefs for a description of the
latter). When the slide is on view, changes are made to its unpacked representation
only, so before it is closed (and at various other times) its changes must be “flushed”;
this consists of writing the current unpacked representation from a slide context back
into a packed form in its SlideRec, if it has been modified since last flushed.

Opening or creating a slide takes a SlideRec argument and returns a slide context
pointer that can be used in subsequent calls on Slide operations to identify the slide.
Many Slide operations, however, implicitly refer to the currently active slide. This is the
slide (or notes page, etc.), if any, currently on view in the active presentation, if any.
Slide stores a pointer to the (open) slide context for the current slide in a global variable
(exported by OService but not used outside the Slide units). Slide’s routines for handling
activate and deactivate events set the current slide, and also highlight or unhighlight,
respectively, its selection. Pres calls these routines in response to activate and deacti-
vate events on the presentation, and also when changing which slide (if any) is on view
within the current presentation.

The coordinate system for slides places (0,0) at the center of the slide; the positions of
objects on the slide, the positions of the guides, the bounds of the slide, etc., are all
measured (in pixels) from the center. Thus negative coordinates are quite common.
The main reason for this is so that when the size of the slide is changed by the userin
the Page Setup command, only the slide's bounds need to be changed; the coordinates
of all objects are left unchanged, so their positions relative to the center of the slide
remain the same, although some objects may now be partially or entirely off the slide.
Another advantage is that when the window is sized larger than is necessary to view the
entire slide (at its current scale), it is easy to center the slide within the view rectangle A
striped pattern is drawn in the part of the view rectangle outside the slide bounds to
make it clear where the slide edges are in this case, and in fact at least two pixels of this
pattern are always drawn around the edges of the slide so that it can easily be ascer-
tained when the slide has been scrolled to an edge.

However, this coordinate system is not known outside the Slide units; as mentioned
above, DocWin does not need to know any details about the virtual page coordinates
(for slides and sorters), as long as they are handled consistently. Slide exports an oper-
ation that computes the rectangle to use for the slide bounds given the height and width
of the slide; an operation that returns the virtual page rectangle for a given open slide at
its current viewing scale given the window's view rectangle, which takes into account the
two pixels of border around the edges of the slide, the existence of any objects off the
slide, and the case where the virtual page would be smaller than the view rectangle in
either dimension; an operation that returns the “standard"” virtual page rectangle for a
given open slide, ignoring the size of the view rectangle and any objects that may be off
the slide, used when zooming the window; and an operation that computes the scale to

11

use so that a slide of a given (full-scale) size can be shown in its entirety within a given
view rectangle (representing the largest view rectangle possible on the screen). These
operations isolate all the details of the coordinate system within the Slide units.

The four Slide units are SActive, Slide, SMouse, and OService. SActive exports the
routines that handle activate and deactivate events for slides and routines that modify or
report information about the current slide; it primarily handles the direct results of com-
mands, but not of mouse clicks. Slide creates, destroys, opens, closes, copies, and
draws slides, and performs other operations that do not always operate on the current
slide. SMouse handles mouse clicks and idle-time in the active slide. These three units
together export the interface to slides and are imported by many higher-level units;
unfortunately, importing units must know which (one or more) of the Slide units to use,
as there is no single Slide interface to import. OService contains the fundamental types,
global variables, and service routines that support the other slide units; it is a “private”
unit imported only by the other three Slide units (although, of course, Pascal does not
enforce this restriction).

EText

EText is the interface to CoreEdit, the assembly-language unit that displays and edits
“rich” text (see below). Essentially, this unit maps CoreEdit, which was written for
MacWrite and knows nothing about multiple text boxes at arbitrary locations on the
drawing surface at various drawing scales, to the needs of PowerPoint. It is used by
Slide and Cmd units. See the papers “Text" (updated July 10, 1986) and “Text Scaling”
(updated November 17, 1986) for discussions of PowerPoint's implementation of text.

EText exports routines to handle various events on text, such as update, click, and key,
to handle all editing commands (undo, cut, paste, etc.) for text, and to get and set text
attributes from menu commands. It also exports routines to open and close an edit ses-
sion; Slide opens an edit session for the text of a label or text box whenever that box is
text-selected, setting up all the information CoreEdit needs to edit the text.

The EText unit is split into two files. The primary file is EText . p, which contains the
unit’s interface and some of its implementation; this is the source file given to the com-
piler. It text-includes (via the $1 compiler directive) the file ETEdit . p, which implements
the editing operations on text and Undo on text.

CoreEdit

CoreEdit is the core text-editing routines written originally by the authors of MacWrite
and used in that product, and licensed to Forethought by Apple. It handles “rich” text
(i.e. character-by-character formatting of font, size, and style), tabs, and indents. Fore-
thought had to modify it extensively, however, to adapt it from use in a word processor to
PowerPoint's particular requirements. See the Apple document “CoreEdit: A Program-
mer's Guide” (August 15, 1983) for the CoreEdit specification, and the paper “Presen-
ter's Use of CoreEdit” (November 23, 1986) for a discussion of the adaptation.

12

CoreEdit consists of several files. All of them reside in subfolder CoreEdit.
CoreEdit.p contains the Pascal interface to CoreEdit (type and procedure definitions),
suitable for being imported by EText, and implementations for the procedures consisting
simply of the external directive. CE. a is the primary assembly-language file, the source
file given to the assembler. It text-includes the other assembly-language source files:
CEqus.a, ReDsp.a, FmtStuf.a, Procs.a,Misc.a,andFillStuf.a.

ShareDefs

ShareDefs defines several types used by many PowerPoint units. The principal ones
are those representing the drawing environment, the internal clipboard, and the different
views that a presentation may be in. The views are represented by an enumeration type
naming the seven window views: current slide, slide master, current notes page, notes
master, handout master, slide sorter, and title sorter.

The drawing environment is represented by a record, DrawEnv, containing six handles,
which reference the environment'’s picture pool, ruler pool, installed font list, custom tool
table (not used), color table (not used in 1.0), and an object containing the presentation’s
“‘command state™: the various drawing defaults (defaults for all the attributes for new
objects), whether the grid is enabled, whether the guides are displayed and if so where,
whether object edges are shown, etc. A field of type DrawEnv is contained within the
document context record, the scrap record, and the slide context record. Thus the envi-
ronment of an open presentation is shared by each open slide of the presentation, and
by the clipboard if it contains data cut or copied from the presentation.

The picture pool contains handles to all the pictures used in the presentation; an object
in the presentation that contains a picture stores a reference into the pool in its ObjRec,
rather than the picture handle itself (see unit Collect). In this way, multiple occurrences
of a picture can appear in a presentation without duplicating the picture itself, which is
often quite large. A special case of multiple occurrences of a picture within a presenta-
tion is when a slide or object containing a picture has been copied to the clipboard; then
both the original slide or object in the presentation and the copy on the clipboard contain
the picture. In such cases, all occurrences of the picture are represented within the slide
data structures by references to the same entity in the presentation’s picture pool. Sim-
ilarly, the ruler pool contains records describing all the text rulers used in the presenta-
tion; a text box in the presentation stores a ruler index into the pool in its ObjRec, rather
than the ruler itself (see unit Ruler). This permits the same ruler to be shared by many
text boxes at very little cost; this is quite common since, for example, all text boxes cre-
ated with the (current) default ruler share the same ruler until the user actually modifies
the ruler on one of the boxes.

The internal clipboard, or scrap, is represented by a record called ScrapRec and an
enumeration type called ScrapType. ScrapType enumerates the kinds of data the clip-
board can contain, including a slide list, a single slide (or notes page), an object list, text,
or a picture; it can also indicate that the system desk scrap is to be used. ScrapRec
contains a type, a 32-bit field whose interpretation is dependent on the type, some aux-
iliary fields required for some types, and some information about the presentation from
which the scrap data was cut or copied. The 32-bit field generally contains a handle or
pointer to the data, but only the unit(s) which are responsible for managing each scrap

e 4 % LR CEET UTE REC TR

13

type—Pres, Slide, or EText—know its meaning. The presentation information includes
the drawing environment, the size of a slide, and the document handle itself;, these are
needed to give the necessary context to the scrap data. For example, all pictures and
rulers in the objects of the scrap data are denoted by references into the picture pool or
ruler pool of the scrap’s environment. And, if a picture of a slide on the clipboard is
drawn—e.g. to save to a scrapbook file—then the slide size is used to compute the
frame of the picture. The document handle is included in the scrap record so that we
can identify which presentation the scrap data came from. See the paper “Cut & Paste”
(September 18, 1986) for a more complete discussion on the clipboard.

One disadvantage of using picture and ruler pools is that it complicates pasting slides or
objects into a different presentation than the one from which they were cut or copied,
because all references to pictures and rulers in the data on the clipboard must be
replaced with references to pictures and rulers in the destination presentation, and those
pictures and rulers must be added to the destination picture and ruler pools. It also
complicates closing or saving a presentation when slides or objects on the clipboard
were cut or copied from that presentation, because any references to pictures or rulers
in the data on the clipboard are references in a pool that is about to be destroyed (if the
presentation is closing) or written to disk—and we don't want the copy of the pool stored
on disk to contain reference counts for references that happened to be on the clipboard
at the time it was saved but are not in the presentation itself. To solve these problems,
we have to extract all picture and ruler references of the data on the clipboard from their
original pools—those of the presentation from which they were cut or copied—and
replace them with references to newly-added pictures and rulers in newly-created pools.
The new pools exist in a new environment, created for the scrap, not associated with
any presentation. The document handle in the scrap record is used to recognize
whether references in the scrap data are to the environment of the presentation being
closed or saved and hence whether they need to be extracted; this handle is NIL when
the scrap has already been extracted from its original presentation.

Unit ShareDefs also exports routines that operate on drawing environments: to create a
new, default environment, to destroy an environment and its parts, to clone an environ-
ment (as part of cloning a presentation), to read and write an environment to disk, and to
convert a previous-version environment read from disk into the current version.

Ruler

The Ruler unit manages a pool of rulers for each presentation. It also draws text box
rulers and handles mouse clicks for rulers, thus handling modifications to a ruler. ...
FontList

The FontList unit maintains the list of fonts that is installed in the font menu for a each
presentation. It also includes the code that implements the Other Fonts command,

including its dialog box, for adding, deleting, replacing, or reordering fonts installed for a
presentation. ...

14

Collect

Collect manages collections (pools) of handles to arbitrary entities, allowing an entity to
be used multiple times within a presentation without multiple copies of it. It uses refer-
ence counts to know when a handle is no longer referenced within the collection, at
which time it disposes the handle. An entity within the collection is referenced via an
EntityReference, a type exported by Collect. The unit exports operations to create and
destroy a collection, to read and write a collection on disk, to add a handle to a collec-
tion, to return the handle corresponding to a given reference, to make a copy of a refer-
ence, and to delete a reference.

Collections are currently used within PowerPoint to store QuickDraw pictures that have
been pasted onto slides. See the description of unit ShareDefs above for more informa-
tion on these collections, called picture pools.

BFile

BFile implements the concept of a block file, or b-file, used by PowerPoint to store pre-
sentations on disk. The caller opens and closes the actual Macintosh file. It begins
access to the file as a b-file by passing the file's reference number to either of two BFile
operations depending on whether the file is to be read or written; both of these opera-
tions return a handle that must be passed to subsequent BFile operations.

The representation of a presentation on disk contains a set of data blocks, each of which
is referenced by a block number and each corresponding to one heap object of the pre-
sentation’s in-memory representation. The contents of a block in the file is identical to
the contents of the corresponding heap object in memory, except that handles to other
heap objects are replaced by block numbers. See the paper “BFile” (August 1, 1986) for
a complete description of the subject.

Pictures

The Pictures unit contains support for creating a QuickDraw picture and drawing into it.
PowerPoint uses this mechanism to create a picture of a slide for the slide sorter, for
display on a notes page, and for saving to a scrapbook, and to create a picture of a slide
or some objects from a slide to paste as picture into a slide and to post to the system
desk scrap. The original motivation for creating a separate unit to do this was that we
had to implement an elaborate work-around to a QuickDraw bug in scaling text within
pictures; that bug has since been fixed by Apple.

The unit exports a routine CreatePicture, which opens a new graphics port, sets up its
visible and clipping regions to match the size of picture being drawn (which is typically
larger than the screen), opens a QuickDraw picture, then calls a procedure parameter to
do the actual drawing, closes the picture and the port, and returns the picture handle.
The unit also exports a routine to check whether there is enough memory to draw a
given picture when the drawing destination is a picture—i.e. to draw a picture into a pic-
ture—a situation that can require arbitrarily-large amounts of memory.

15

Background

The Background unit implements a mechanism for allowing some computations to be
done “in background"—i.e. when the main event loop has no events to handle—and yet
be able to abort the computation if user input occurs and to handle normal idle-loop pro-
cessing (blink the insertion point and change the shape of the pointer as the mouse
moves).

This mechanism is used as follows: Whenever a computation is about to start in back-
ground that is interruptible by user input, call BgStartBackground; call BgStop-
Background when it is complete. At periodic intervals during the computation, call Bgls-
Check, which returns TRUE if it's time to do idle-time processing and to check for user
events. BglsCheck can be called by routines that run both in background and normally,
since it never returns TRUE if background processing isn't in progress (as indicated by
BgStartBackground). If background is in progress, BglsCheck calls SystemTasK if it's
been at least one clock tick (1/60th of a second) since it last did so, to give desk acces-
sories a chance to run periodically, and it returns TRUE if it has been at least 1/10th of a
second since user events were last checked. If BglsCheck returns TRUE, then call
BgEventCheck. This routine does the idle-loop processing and then checks if a user-
input event is available; if so it does not return to its caller but calls Signal, which raises
an exception that must be handled by any routine that needs to clean up before being
aborted (see unit ErrSignal). If there is no user input, then after BgEventCheck returns,
continue the computation. If the computation modifies global variables or other global
state in such a way that ordinary idle-loop processing would not work (as slide drawing
and text drawing do), then it must restore the global state before calling BgEventCheck
and set it up for the computation in progress again after it returns.

PowerPoint currently checks for user-input events in two loops: before drawing each
object on a slide, and before drawing each paragraph in a text box. This is not so often
as to cause too much time to be spent checking, but it is usually often enough to give the
user the appearance of instant response to the mouse or keyboard and to keep the
insertion point blinking at the desired rate even when sorter images are being computed
in background. Ideally, the user never notices that any processing is happening in
background; however, whenever a paragraph is very long or has complicated formatting
in it, and whenever an object contains a picture that takes a long time to draw, there is a
noticeable interval during which user input is ignored and blinking stops.

MoreOrlLess

MoreOrlLess implements the conversion of Living Video Text's More and ThinkTank files
into PowerPoint slides. It exports one routine, which is called from the Cmd unit when
the Paste From command is executed for a presentation in a sorter view. It in turn calls
routines in Pres and Slide to create new slides and set their titles and text boxes from
the outline in the file, after first running the standard get-file dialog to ask the user what
file to paste. The unit was written by Bear River Associates, with slight modification by
Forethought. See the memo from Dennis Austin, “Reading More files into Presenter”
(December 22, 1986) for more information on this subject.

16

ReadPict

ReadPict implements the pasting of MacPaint and PICT files onto PowerPoint slides. It
exports one routine, which is called from the Cmd unit when the Paste From command is
executed for a presentation in a slide view. The routine runs the standard get-file dialog
to ask the user what file to paste, then reads the file and returns a picture handle. For
PICT files, the file contains simply a picture plus a 512-byte header; the header is
skipped and the rest of the file is turned into a picture object. For MacPaint files, the unit
has to unpack the bitmap in the file, crop away all the white space around the four sides
of the bitmap (because MacPaint files are always assumed to be the size of the Macin-
tosh screen, but typically a much smaller area contains the image of interest), and then
write the bitmap into a QuickDraw picture in “bands" of at most 3K bytes each.

The unit was written by Bear River Associates, with slight modification by Forethought.

SIiMakeResFile

SIMakeResFile contains the routines to create a scrapbook file of a user-specified name,
write pictures into the file, and close it. A “scrapbook” file is one of the same type and
format as the Macintosh system file used by the Scrapbook desk accessory, except that
it may have any name and reside in any folder and volume. The pictures written to the
scrapbook each become a separate “page” in the scrapbook.

PowerPoint uses this unit for saving pictures of the slides of a presentation into a
scrapbook, which the user does via a radio button on the “Save as” dialog box. The unit
was written by Solutions, Inc. (hence the “SI" in the name), who also wrote the
SmarntScrap desk accessory for viewing arbitrary scrapbook files.

Memory

The Memory unit manages PowerPoint’s use of global memory. Its initialization code
sets up the application heap zone, allocates several master pointer blocks, and sets up
the mechanism for ensuring we don't run out of memory without warning the user about
it first (a “reserve” object and a “grow-zone” procedure). The unit also exports opera-
tions to find out whether enough memory exists for doing something, in order to “pre-
flight” check operations like loading a presentation from disk and computing miniature
images for the slide sorter. Finally, it provides a mechanism for posting an application
event that issues an alert to the user when memory is low, but does not issue the alert
until control has returned to the main event loop. See the paper “Memory Management
in PowerPoint” (February 27, 1987) for a complete, though slightly out-of-date,
discussion of the subject.

Extra

The Extra unit mediates the recursive “uses” relation, allowing units that are “low" in the
“uses” chain to use units that are “higher” in the chain. That is, lower units should import

L7

unit Extra in order to gain access to routines in higher units, rather than importing the
higher units directly.

At present, the only routines accessible through Extra are two in DocWin: Didle and
DAutoScroll. The Background unit needs to call Didle to do idle-time processing during
background computations. The Sorter and EText units need to call DAutoScroll to scroll
the virtual page within the window if the user drags the mouse out of the view rectangle
during certain operations (e.g. marquee selection and moving slides in a sorter), or if the
user types so as to move the insertion point out of the view rectangle. These units call
Xldle and XAutoScroll, which in turn call Didle and DAutoScroll, respectively.

Utility

Utility defines some miscellaneous constants, types, global variables, and routines used
throughout the program. It exports constants for the characters generated by several
keys on the Macintosh keyboard, such as the four arrow keys, return, enter, etc. It
exports the constant BIGINT, which is a number guaranteed to be “large” compared to
the screen size, but small enough not to overflow when it is offset, doubled, etc. It
exports several variables that would be constants except that their values have to be
computed at run time, such as the number of pixels per inch vertically and horizontally, a
rectangle covering the entire QuickDraw coordinate space, and a null rectangle. It
exports globals describing the program and its environment, such as a Boolean telling
whether “new” (i.e. 128K) ROMs are on the machine and a Boolean telling whether to
use metric units or English units of measurement.

Utility exports several general-purpose arithmetic and geometric routines, such as rou-
tines to scale and unscale integers, points, and rectangles by PowerPoint's fixed scales
(1:1, 2:3, 1:2, and 1:3). It exports a routine to return the current date and time in the
format PowerPoint uses during printing, a routine to show the watch cursor, routines to
save and restore a rectangle of bits from the screen, and so forth. These are all routines
which do things not obviously belonging in any other unit of the program, and usually not
even particularly PowerPoint specific.

In addition to the file Ut i1ity.p, containing the unit's interface and all of the imple-
mentation that is written in Pascal, there is also a file UtilAsm. a, containing assembly
language code to implement some Utility routines. For example, EqualMem contains a
tight assembly-language loop to tell whether the objects pointed at by two pointers are
byte-for-byte equal.

ErrSignal

ErrSignal is a unit supplied by Apple that implements a “throw and catch” type of mech-
anism for handling exceptions. It exports two principal routines: Signal and Catch-
Signal. A routine that wants to handle an exception first calls CatchSignal, then per-
forms the operation that might cause an exception. When some other routine detects an
exceptional condition, it calls Signal, which causes control to pass to the caller of
CatchSignal as though CatchSignal is returning again. Thus the routine that called
Signal, and all other routines in the call chain between the one that called CatchSignal

18

and the one that called Signal, are exited “prematurely.” The first call to CatchSignal
(before the exception occurs) returns zero, whereas after a signal has been generated
CatchSignal returns the (non-zero) argument that was passed to Signal. Thus the rou-
tine that is going to handle the exception checks the result of CatchSignal: if it is zero,
this is the first time here so do the normal operation; otherwise handle the exception.

PowerPoint uses signals only when aborting background computation due to user input.
When the routine in the Background unit detects user input during background, it calls
Signal. Certain routines involved in drawing miniatures for the slide sorter are known to
be contained in call chains that eventually call the Background event-check routine.
Those routines call CatchSignal first if they have any clean-up to do when drawing is
aborted; after their clean-up code, they must call Signal again to reraise the signal. For
example, CreatePicture has to close the picture and the port if drawing is aborted. Any
routine that does not call CatchSignal will be bypassed as control passes back up the
chain, ultimately to the routine in the main program unit that controls all background pro-
cessing.

The ErrSignal unit consists of two files: ErrSignal.p contains the interface to the unit,
written in Pascal, suitable for being imported by other units. ErrSignal.a contains the
implementation of all routines in the unit, all written in assembly language. Although the
unit was originally written by Apple, Forethought modified it to save and restore register
values as part of CatchSignal and Signal, so that all local variables, etc., will be correct
when control passes back to an exception handler, and to fix one bug.

LMenu

LMenu implements a menu definition (MDEF) for PowerPoint's Line menu. This menu
shows lines in various thicknesses and with or without arrow heads, instead of command
names, and so it requires a custom menu. It is not linked into the main PowerPoint
program, but is linked by itself into an MDEF resource. The unit was written by Bear
River Associates.

PMenu

PMenu implements an MDEF for PowerPoint's Pattern menu. This menu shows two
columns of rectangles, each containing a different pattern, so it requires a custom menu.
Like LMenu, it is linked by itself into an MDEF resource, and was written by Bear River
Associates.

BarCntl

BarCntl implements a control definition (CDEF) for PowerPoint's slide changer. The
slide changer's behavior is very similar to a scroll bar, but its appearance is different: it
looks like a thin rod with an arrowhead at each end, and its “thumb” looks like a knob
that slides along the rod. In almost every respect, the interface to this custom control is
identical to the interface to standard scroll bars: it has a minimum and maximum value
and a current value represented by the relative distance of the thumb between the top

19

and bottom of the control; it can be moved, sized, shown and hidden, enabled and dis-
abled; it responds to mouse events in the same way—all these operations are invoked
using the standard Toolbox routines for scroll bars in the standard ways. There is one
addition to the interface: when the custom control is highlighted with the value 253, it is

drawn in a gray pattern and without its thumb; this is used when the window is deacti-
vated.

BarCntl is not linked into the main PowerPoint program, but is linked by itself into a
CDEF resource. The unit was written by Bear River Associates.

PowerPoint Programming Conventions

November 24, 1987
Dennis Austin

PowerPoint is unusually tolerant of individual programming styles, and different modules use different
conventions. Nevertheless, we do try to maintain a consistent style within a single module. To make this
easier, | have noted some of the conventions that are observed.

WARNING: DOGMA AHEAD.

Indention schemes
Scheme Dennis

This one takes the view that the use of a compound statement to group the statements controlled
by a conditional or repetitive statement is a historical mistake. Most recent Pascal-like languages
(Modula, Ada, etc.) use structured statement syntax that does not require compound statements.

This indention scheme pretends that Pascal is such a language. Consequently, the final end
bracketing an if, while, or for statement is indented at the same level as its mating if, while, or for.
(an else or end else begin is also indented at the level of the if.) The begin is given no special
consideration, being regarded just another part of the syntax; the phrases then begin, do begin,
and end else begin are regarded as single tokens.

To carry the idea to extreme, every structured statement would use a begin-end pair. The
standard actually followed is less strict: If the controlled statement is only a single line (not just
single statement), then the begin-end can be omitted. In the case of an if-then-else, the begin-
end can be omitted only if both branches qualify and therefore both are omitted.

Benefits of this approach are:

Whenever a line A is indented under line B, it means that A controls B. Every level of indention
represents exactly one level of control.

Indention never changes by more than one level at a time, except in the case where the begin-
end has been omitted in the last statement in a controlled block. (A good thing to avoid.)

The program does not take up “noise” lines that are added only because of the syntax .

The phrase “end else begin” is always written as a single token. Therefore extra semicolons do
not cause syntax errors. You can end every line with a semicolon if you want to.

Scheme Tom

This more classic approach emphasizes the bracketing nature of begin and end. Matching
brackets are always in the same “column” . Begin and end always appear on a line by themselves.
Else always appears on a line by itself, indented at the level of the if.

Benefits of this approach are:

Whenever a line A is indented under line B, it means that A controls B. Every level of indention
represents exactly one level of control.

begins and ends are easy o match visually.
ifs and elses are easy to match visually.

Tab settings

Dennis likes fairly large tab settings, in the range of, say, 4 to 8. Tabs are set every 5 spaces in
many of the files because that was the default on the Lisa Workshop where those file originated.
Newer files have tabs set every 4 spaces since that is the default under MPW.

PowerPoint Programming — page 2

Most of the files Tom created have tabs set every 3 spaces. He arrived at that figure by observing
that 4 was too many and 2 was too few...

For new files, any setting is probably okay, but it is unwise to change the setting on existing files.

Identifiers

Procedures

Following Apple conventions, procedure names begin with a capital letter. Each “word" unit in the
name also begins with a capital; all other letters are lower case. Underscores are not used.
Procedures that are exported from a module are prefixed with a particular letter representing that
module. We're running out of letters, so we may need to start using 2-letter prefixes.

Constants

Following C practice, but not Apple practice, constants are usually written in all upper case. In
particular, NIL, TRUE, and FALSE are always all caps. Constants exported from the Apple
interfaces are often written in all caps so that they meet our convention. To make them more
readable, the underscore is sometimes used as a separator.

Variables

Following Apple practice, variables and field names begin with a lower case letter. Each “word"
unit in the identifier also begins with a capital; all other letters are lower case. No other convention
is used consistently.

Types

Following Apple practice, type names begin with a capital letter. An exception is made for
standard types, which may begin with a lower case letter (except for Boolean which may be
capitalized because it is a proper noun.) Each “word" unit in the identifier also begins with a
capital; all other letters are lower case. No other convention is used consistently.

Procedure headings

Procedure headings always have underlining under the word procedure and the identifier. If the
procedure is exported, the underlining is with equal signs, if not, the underlining is with hyphens.
Underlining is not done in the interface portion of a unit. Following the underlining, there is always
a comment briefly describing the procedure. If the procedure is exported, the comment appears
in both the interface and implementation sections. Exceptions are sometimes made for “one-
liners" whose function is obvious from the identifier.

The underline and comment are indented at the level of the word procedure. Local declarations
are indented an additional tab. The procedure body begin and end are always placed at the same
indention level as the word procedure. The end has a comment with the name of the procedure;
if there are many local declarations (especially local procedures), the begin has the same
comment.

AR

Comments that are inserted to note a place where some future action is required before the code
is “finished"” are marked with letters AR. (action required)

Assert, range check

Range checking is on everywhere possible. In version 1.0, we even shipped with checking on.
Where it must be turned off to use some of Apple's array types, it is turned off in the most limited
context reasonable.

PowerPoint Programming — page 3

Whenever a condition must obviously be true, we use the utility procedure Assert to make sure it
is. This can catch errors much earlier than they would otherwise show up. If you don't think that an
OSErr could possibly have been returned, call Assert(err=NOERR);

Comment symbols
We use braces as comments rather than (A

Reserved words

Ignoring Apple convention, we do not write Pascal reserved words in all capitals; they are are
written in all lower case.

Spacing

Punctuation is usually spaced as it is in English: no space before period, comma, colon, or
semicolon; one space after. No space after a left parenthesis or before a right.

Dennis observes the above convention even for ;=

Spacing within expressions varies on a case-by-case basis, as the author thinks best enhances
the readability.

Observations of MS-Windows Modules

Dennis Austin

The Microsoft Windows documentation has little to say about the use of modules aside
from the simple case of a multiple-instance application. Since we would like to use
modules in our applications, and we have been using them in previous distributions of
Windows, | have explored some of their features. My understanding is grossly
in?omplete. but it has taken many hours of experiments even to turn up this much
information.

The Windows Entry Sequence

The -Gw compiler flag causes cc to generate the windows entry (and
exit) code for all procedures declared FAR. The entry sequence is

push ds ; These first three instructions, one
pop ax ; byte each, set AX to the current DS.
nop

inec bp ; The rest of the sequence enters the
push bp ; procedure saving DS and setting DS to
mov bp, sp ; the value in AX. (I don't know why
push ds : the stored BP is forced to be odd.,)
mov ds,ax

sub sp,<const>

The first three bytes of the sequence may be changed by the linker or loader, depending
on the specifications of the module definition file (.def).

Application modules are tasks and can have multiple data segments, one per instance. For
exported procedures, i.e. those named as exports in the .def file, the linker changes the
first three bytes of the entry sequence to nop's. To call an exported procedure, AX must
be preset with the correct data segment address for the instance that is to receive the
call --even when calling from within the same module.

The Windows routine MakeProclinstance creates a code fragment that sets up AX as
required, in effect binding an exported procedure to a particular instance. It yields a
long pointer to code that loads AX with the data segment address of the instance and then
branches to the actual procedure. The code ragment is allocated in Windows own data
space.

The routine GetProcAddress serves the same purpose as MakeProcinstance, but is
intended to be called from other modules. MakeProcinstance can only be called from the
module defining the procedure. (In this release, GetProcAddress has been changed to
require the DOS file name of the exporting module rather than its module name --a step
backwards, in my opinion.)

Procedures exported with the NODATA attribute are slightly different. They are expected
not to access the module data segment. Their entry sequences are thus not modified and

DS remains that of the caller. Apparently, NODATA entry points need not be compiled
with the windows entry sequence (-Gw), although I'm not certain about this.

Library modules have only one data segment, or none at all. If there is no data segment,
the linker makes no code modifications so the code can be compiled without the "-Gw"
flag and no windows entry code will be generated. As far as entry points are concerned,
degaﬁlg% R‘?‘ gata segment is apparently the same as declaring every exported procedure
fo

If the library has a data segment, the module loader changes the first three bytes of each
entry sequence to

mov ax,<const>

where the constant is, of course, the address of the data segment. To call library
procedures, no special arrangements like GetProcAddress or MakeProclinstance are
needed.

Libraries are not started as tasks. According to John Pollock of Microsoft, they should
have a procedure called "main" like a normal C program. After loading, the main
procedure is called by "the system". It is not clear whether the library has its own stack
for this call, but it seems to.

Problems: When linking a library module with the windows library, slibw, | get an
unresolved

symbol error for WinMain. When linked with slibc (still using link4x), | get no errors
from the linker but the library won't load properly. _main is called as expected, but,
when it returns, the library routine __astart continues by calling exit() much the same
as WinStart does after WinMain returns. For a library, howvever, this kills windows.

In addition to the exit problem, though, none of the windows facilities are available when
the libary is linked with slibc. |1am not sure to what extent | am facing bugs or features,
but libraries certainly don't work the way | would expect them to.

| would expect a library to work like an application module except:

* It would have no stack, but run on the stack of its caller.
« It would be automatically loaded when needed and unloaded when no longer needed.

» It could be shared by applications, or have separate copies (data segments) for
each application calling it, depending on the .def file.

* It's starting procedure would initialize its data segment, if any. It would be
called on a system stack, but with DS set to its own data.

Miscellaneous notes:

Due to a bug in the February release, the name of a module that exports procedures must
be in all upper case. If it is not, the importing module will fail to load and windows will
die.

Whenever a module (or library) entry point is invoked from another application, the
code will execute with the stack segment separate from the data segement. The code must
be written and compiled (-Aw) so that his will work correctly.

When a single module instance (or library) is called from multiple applications
(tasks), there may be synchronization problems. Microsoft does not give any guidance
in handling these, but the nonpre-emptive scheduling means that most kludges should
succeeed.

A library module should only be loaded once, of course, but multiple loads seem to
"work™: they simply load another copy of the code segment, too.

Modules (and libraries) are apparently loaded on demand, although | can't guarantee this
feature. Libraries could also be "unloaded" when there are no loaded modules that import
from them. |don't know whether this ever happens, but it doesn't seem too.

Applications with a single data segment don't make much sense. The linker and loader
don't change the entry sequences, but Windows doesn't set up DS on calls to WinProc so
you don't get any data segment. That is probably a bug, but even if it were fixed the
feature wouldn't be of much use.

Libraries may be declared to have multiple data segments, but it is unclear what their
use might be. Perhaps a new instance could be automatically allocated for each
application that uses the library. At present, they don't even load when invoked. At least
symdeb gives no indication that they do. The linker does not even assign them an entry
point (it gives 0000:0000).

Because the loader stores the literal data segment address all through the code of a
library module, it would appear that the data segment is fixed in memory even if it is
declared movable (spelled "moveable” in Bellevue). The information is available to
adjust all those locations again if the segment is swapped, however, so we can't be sure.
Maybe they fixup code segments anew every time they're brought into memory. Now, at
second thought, that actually seems like the right choice.

Dennis Austin
19 February 1985

Observations of MS-Windows Modules

Dennis Austin

The Microsoft Windows documentation has little to say about the use of modules aside from the
simple case of a multiple-instance application. Since we would like to use modules in our
applications, and we have been using them in previous distributions of Windows, | have explored
some of their features. My understanding is grossly incomplete, but it has taken many hours of
experiments even to turn up this much information.

The Windows Entry Sequence

The -Gw compiler flag causes cc to generate the windows entry (and exit) code for all
procedures declared FAR. The entry sequence is

push ds ; These first three instructions, one
pop ax ; byte each, set AX to the current DS.
nop

inc bp ; The rest of the sequence enters the
push bp ; procedure saving DS and setting DS to
mov bp, sp ; the value in AX. (I don't know why
push ds : the stored BP is forced to be odd.)
mov ds,ax

sub sp,<const>

The first three bytes of the sequence may be changed by the linker or loader, depending on the
specifications of the module definition file (.def).

Application modules are tasks and can have multiple data segments, one per instance. For
exported procedures, i.e. those named as exports in the .def file, the linker changes the first
three bytes of the entry sequence to nop's. To call an exported procedure, AX must be preset
with the correct data segment address for the instance that is to receive the call --even when
calling from within the same module.

The Windows routine MakeprocInstance Creates a code fragment that sets up AX as required, in
effect binding an exported procedure to a particular instance. It yields a long pointer to code that
loads AX with the data segment address of the instance and then branches to the actual procedure.
The code fragment is allocated in Windows own data space.

The routine GetpProcaddress serves the same purpose as MakeProcInstance, but is intended to
be called from other modules. MakeProclnstance can only be called from the module defining the
procedure. (In this release, GetProcAddress has been changed to require the DOS file name of the

exporting module rather than its module name --a step backwards, in my opinion.)

Procedures exported with the NODATA attribute are slightly different. They are expected not to
access the module data segment. Their entry sequences are thus not modified and DS remains that
of the caller. Apparently, NODATA entry points need not be compiled with the windows entry
sequence (-Gw), although I'm not certain about this.

Library modules have only one data segment, or none at all. If there is no data segment, the
linker makes no code modifications so the code can be compiled without the "-Gw" flag and no
windows entry code will be generated. As far as entry points are concerned, declaring no data
segment is apparently the same as declaring every exported procedure to be NODATA.

If the library has a data segment, the module loader changes the first three bytes of each entry
sequence to

mov ax,<const>

where the constant is, of course, the address of the data segment. To call library procedures, no
special arrangements like GetProcAddress or MakeProcinstance are needed.

Libraries are not started as tasks. According to John Pollock of Microsoft, they should have a
procedure called "main” like a normal C program. After loading, the main procedure is called by
"the system”. It is not clear whether the library has its own stack for this call, but it seems to.

Problems: When linking a library module with the windows library, slibw, | get an unresolved
symbol error for WinMain. When linked with slibc (still using link4x), | get no errors from
the linker but the library won't load properly. main is called as expected, but, when it
returns, the library routine __astart continues by calling exit() much the same as WinStart
does after winMain returns. For a library, howvever, this kills windows.

In addition to the exit problem, though, none of the windows facilities are available when the
libary is linked with slibc. | am not sure to what extent | am facing bugs or features, but
libraries certainly don't work the way | would expect them to.

| would expect a library to work like an application module except:

* It would have no stack, but run on the stack of its caller.

» It would be automatically loaded when needed and unloaded when no longer needed. It
could be shared by applications, or have separate copies (data segments) for each
application calling it, depending on the .def file.

* It's starting procedure would initialize its data segment, if any. It would be called on a
system stack, but with DS set to its own data.

Miscellaneous notes:

Due to a bug in the February release, the name of a module that exports procedures must be in
all upper case. If it is not, the importing module will fail to load and windows will die.

Whenever a module (or library) entry point is invoked from another application, the code will
execute with the stack segment separate from the data segement. The code must be written and
compiled (-Aw) so that this will work correctly.

When a single module instance (or library) is called from multiple applications (tasks), there
may be synchronization problems. Microsoft does not give any guidance in handling these, but
the nonpre-emptive scheduling means that most kiudges should succeeed.

A library module should only be loaded once, of course, but multiple loads seem to "work™: they
simply load another copy of the code segment, too.

Modules (and libraries) are apparently loaded on demand, although | can't guarantee this
feature. Libraries could also be "unloaded"

when there are no loaded modules that import from them. | don't know whether this ever
happens, but it doesn't seem too.

Applications with a single data segment don't make much sense. The linker and loader don't
change the entry sequences, but Windows doesn' set up DS on calls to WinProc so you don't get
any data segment. That is probably a bug, but even if it were fixed the feature wouldn't be of
much use.

Libraries may be declared to have multiple data segments, but it is unclear what their use might
be. Perhaps a new instance could be automatically allocated for each application that uses the
library. At present, they don't even load when invoked. At least symdeb gives no indication that
they do. The linker does not even assign them an entry point (it gives 0000:0000).

Because the loader stores the literal data segment address all through the code of a library
module, it would appear that the data segment is fixed in memory even if it is declared movable
(spelled "moveable” in Bellevue). The information is available to adjust all those locations
again if the segment is swapped, however, so we can't be sure. Maybe they fixup code segments
anew every time they're brought into memory. Now, at second thought, that actually seems like
the right choice.

Dennis Austin
19 February 1985

