PRISM SYSTEMS
o o .}L/L__

|
|
]
|
|
|
|
|
| -~
|
|
il

Mica Working Design Document
Chapter Overviews

dlilgliltiall

Digital Equipment Corporation
Confidential and Proprietary

Restricted Distribution

|
|

..nllll””””m

I
| ””

l"”””“lllllln...
”|”““““"|I|.,__

1

Mica Working Design Document
Chapter Overviews

Digital Equipment Corporation
Confidential and Proprietary

This Is an unpublished work and Is the property of Digital
Equipment Corporation. This work Is confidential and s
maintained as a frade secret. In the event of inadvertent or
deliberate publication, Digital Equipment Corporation will
enforce Its rights in this work under the copyright laws as a
published work. This work, and the Information contained in
it may not be used, copied, or disclosed without the express
written consent of Digital Equipment Corporation.,

© 1988 Digital Equipment Corporation
All Rights Reserved

mﬂgnnan 5

This information shall not be disciosed to non-Digital Equip-
ment Corporation personnel or generally distributed within
Ddigital Equipment Corporation. Distribution Is restricted to
persons authorized and designated by the responsible Engl-
neer or Manager.

This document shall not be left unattended. and, when not
In use, shall be stored In a locked storage areaq.

These restrictions are to be enforced until noted otherwise.

(2
ble Engineer/Manager Date

8

Document Copy: 77; Date: e .' /H?'

Restricted Distribution

Digital Equipment Corporation - Confidential and Proprietary

Restricted Distribution

Revislon History

Author

Summary of Changes

Revision
Date Number
March 1988 1.0

DECwest Engineering

Initial Distribution

il

'| Restricted Distribution

TABLE OF CONTENTS

GENERAL

CHAPTER 1 INTRODUCTIONTOMICA i 1-1
O B 0 e st ol S 5 e e S S & S P = R S i ST (PGP S B 1-1
1.1.1 Expandable Base-System Functionalityccovvue s 1-1
1.1.1.1 Object Architecture coaveressocsomonrsonsessonsas 1-1
1.112 Layered /O System« v« e s v o s tasancnvesasonsrssssnssas 1-2
1.1.1.3 Protected Subsystems.t iii ettt 1-2
1.1.14 Client/Server.TOOIS L. oo v ois s oia s dinliis o o ectie o o o siaais assge s oo 1-3
1.1.2 Process Structureand Threadscoviuvressereanornnssorsss 1-3
1.1.3 Cheyenne Database Serverot eunesorernsvsansanans 1-3
1.14 Glacier Compute Servercv o v etsauasaranoorrssssaseas 1-6
RN R TR D Tyt e e e g e b S S e M YO v O T8 8 1 1-5

CHAPTER 2 NAMING STANDARDS AND PILLAR CODING STYLE
b e R s e 2-1
s U e B e P o) e T B 1 I T b T S 2-1
R e R SO IS i R SO 8 e LY T L I A T 2-1
2.12 NamingStandardsvevservorrrorensenttastosnenan 2-1
2.1.8 Pillar Coding StyleGuidelinesot sans 2-2
CHAPTER 3 STATUS VALUES, MESSAGES, AND TEXT FORMATTING >
B Y OV T s & o 5 s DT T00rs o T 0 o Aa oA e al i ghard e aladiis, sme o viiningeint v 31
Y R L e il il e B L8 (v AR kT T SRR e e I % 46 3-1
il B 8 R R g T S e SRR e e B PRI R R T SN 3-2
B LR B ban NOTEE i o al oo d s or ol 0I5 e ¥ Absis 0L o1 ibs el vatia o st a0 I8 o) paske- o, 8 = 4, % 33
3.13.1 SEVERITY Field (bits <2:0>) . . + v« v v v e v v tas s anansvsrsnsase 3-3
3.1.3.2 MESSAGE_NUMBER Field (bits <15:3>). v v v a v vnn e 33
3.1.3.3 FACILITY_NUMBER Field (bits <27:16>) cccveconvvanen 34
3.1.34 LOCAL_MESSAGE_NUMBER Field (bits <27:3>) o o v v v vcvvnn e G
3.135 LOCAL STATUS Field (bit 28) ccuasversasarssanns 34
3.13.6 FACILITY SPECIFIC Field (bit 29) oo evovosonescns 34
3.1.3.7 CUSTOMER_FACILITY Field (bit 30) e v v v v vnnrvnonaanan 3—4
3.1.3.8 INHIBIT_MESSAGE_PRINTING Field (bit31).vouen 3
3.14 Statusand Text MeSsSages« oo v tvsr v ssanssatassssnsensse 34
3.14.1 Status Message Formatot rarrnrasncnans 3-5
8.14.2 Message Source Files and Compilation 0 eannn 3-5
3.14.3 In-Memory Message Organizationccocveeensosnons 35
3.14.4 Accessing and DisplayingMessagescicvurreneenn 3-6
815 Text FOrmattingcccoervsvesoccossssoncssonsensspansasn 3-6
il

g, oA S U TRRRBE IR VT R

Digital Equipment Corporation - Confidential and Proprietary

Restricted Distribution

J.1.6 Open IBsnsn . . ciic N ARTSh Ll S08 a a ala lellermAsTnte s o ¢1simcesls v e/ ety 41 & 88 € a8

EXECUTIVE

4.1.1 Requirements.

..............
..........................

..................................

4.12 Functional Descriplion . « i . ¢ . s v i v e v sconessostionsosaanasnssss
4121 Envirennient of the Karnal % o e e alalle sis o olala o o ¢ &0 eiala s olss eils
41,22 Interaction With the Execabive . 0. 0. e o' s s oo ainie s o oo ste s se s oo
4123 Primery Kernel Dot Strarctiares . . .o i . v o i saad s s sieie aieieaica s olas
41 2 Primby Kl e o Tl o N R s
4:3.2'5) Performianios Data Collueton Sl deais id e ol oin nt e s o s A vt

5.1.2 What is an Object? .
D18 Scope " ok s o

8.1 OVeriom b o it s et

6.1.3 UJPT Setup/Teardown

6.1.3.1 UJPT Setup ..

..
..
..

..

..
..
..

..

..

..................................

..................................
......................................
..................................
......................................
.......................................

......................
..................

Digital Equipment Corporation - Confidential and Proprietary

Restricted Distribution

CHAPTER 7 MEMORY MANAGEMENT iteiinennnn 7-1
Vo DT o TR T R S e e e S e g SR e ey, e e T S 7-1
Lokl ROGUINCIOBIED s ¢ 7o s as:s + winie bis vl k4 a 567a7s o aisaralp & 8 & e wiatelos/pie eluiats 7-1
10 Fonctional escripbiot o a0 a oo i v oot atdh o BTy B iR MY I e s 2 mirins sipise 7-1
7.12.1 Environment of Memory Management00veneennonnns 7-1

7.1.3 'Memory Management Data Stroctures . . . «.o v oaae o evneanoeipsnes 7-2
7.1.4 Differences from the VAX/VMS Memory Management Subsystem. - 74
AR ER O N ARCHITE T RE o e A s io s sos ey o tas 81
g e T A T e I e e sl e e Sl A S e e e S et 8-1

S i) Punction ProCRBOOrE:: i sy B ueushehrn s e 55 samss o oohel e s o 5 98 8000 805 5riee 8-1
8.1.2 Ohjects Used by the /O System . . o civaivic oo se v aie 0o @ o o nisis o o son o sibis 8-1
e Ty T) et s Dol e W e e e L W S 8-2

S L Chaa el ONIarE . . Tos o 5l o1 3h4 Ave ey Sraralsauy o' /s7a'a 3 g ah) o (p-aun e raigis e (ari 8-2

T e R R e e e S o el 8-2

8.18 1O Reguest Synchronigabion . . . « .« cs cosscv s 0o onsssovosanssessis 8-2
B I B vion TRONIEEAE -/ /s < 5is 2§ 4 s & ECRIN S (60 0 e S HTe B vaik e sl nue s e 8-2

2 e e B PR SR A W B B s K el e 1T S e TR L S e 8-3
CHAPTER 9 SYSTEM SERVICE ARCHITECTURE 9-1
L e T i P e Pt S S o P e g 9-1
T R T S T W R e I e A S TR o 9-1
9.1.1.1 System Service Dispatcherttt eveccnronasen 9-2

s By P T T T S S e | R e e o SR ey e g 9-3

9.1.1.3 System Service Completion ¢ oiesvvesesesrsnssrsorness 9-3

9.1.1.4 Repeatable and Resumable System Services 0000 9-3

9.1.2 Changestothe ExistingChapter 0000t nnenrernsorsns 69—
CHAPTER 10 SECURITY ANDPRIVILEGEScciuun. 10-1
10 AN s chintas s Dl bamlbne T TTs ST ANy 41315 bhuiie o0 § i bimesel ane e e om v 10-1
JOIT AnthantioRbinm iy Soi e il o s.v 005 5 wbaine lohs el Fhs B 56 o ndisetns o ablls Bhalelss 10-1
1010 Acoadt Controll T e im o sranmaa @ Eirmieusts s s v n poeis s oo o s s ke 8 e 10-2

(R BT T T e e Y R Ry e e 10-2
10.1.2.2 Object Access Control Information it innsenonsas 10-2
10.1.2.3 Accens Control Algoritlhion . s sows vt b 9130 alMidiarslals .e/0 4 ¢ 5 8 asine s 10-3

10123 Bertrity ADGIbSio st o 000 v 55598 66 548 5. 595 5.5 2 2V 8% 5 9804 s00i0in s s s 10-3

e B T e R B o e R e R S e A T i R T W T s e 10-3

v

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

CHAPTER 11 CONDITION, EXIT, AND AST HANDLING 11-1
e TS I R L A e R Y P - e R S R S ii::

B AL DA HAOAROR. o s 4 3 s 4 4 s 5 & Biowali s n & 515403 o 8 &Fas 5 66 areima aleld
B R R e) B lwria F 61 0alions o ¥ o & Wik o abe: B aotd it SUE %% Aaw] 11-2
L e e R e AP R W e = 11-3
11.1.4 User-Mode AST Handlingo oo uouevennnnsnnnnnnnnnsnnns 11-3
R e o e R N ey S s g S 114
CHAPTERTI2 VBODTING B St . e b s s it Setn & 5t & o s 12-1
SRS T A e e sl S B e I N S R 12-1
L T e e e ot sy e L IR My e 12-1
12.1.2 HIReaWHtS BUOTRITRI .~ % 5 iar s 5. nin 1m0 bhw s tan Piocs oim o o s e ol s e b 12-1
12.1.5" Priniary SOIEWATS BOOLSIIRD « « s /s s v siolvis s o s sas o vesns s & 12-2
12.1.4 Secondary Software BoOtStTaDo oo vt i 12-2
12.14.1 Ultrix Secondary BootBBaD ., . i+ oo s s s v oo e e v v v e oo orme oo 12-2
12.1.4.2 Mica Secondary BootStrapo v v v st vt e e e 12-3
12.1.5 Mica Bootstrap Summaryoueinr i 12-3

13,1, Overview i o oo SN TR SO LS O ETYE . ST, 13-1
13.1.1 System Dump Analyzerc.0iuuiin 13-1
13.1.1.1 Requirements & Goals\euunennnnnnnnn e ... 13-1
18.3.1.3: Desigp HighBglts, . soccoiins | < o 5oyt st Ryl = - 13-2
s i ST ISR A A e U S et e 13-2
1318 Oystem DebugRer. . v coouvivia s « erarilsiod B s pa e 13-3
13.1.3:1 Requirements & Goalso uieneeouisasonnnnnn.,.... 13-3
13.1.3.3 Desigh FUUIGhsiv/e o0t o o5 y'a uime mnare e o 13-3
%0105 Rt R, 2 i S E TN PR Nag s 134

.............................. 14-1

WL OV seiontas ol el il GRRS VSN AN SN —— LT (0 14-1
A Syntem Houlinee & R el » 2270 ¢ 14-1
14.12 Executive Routine Interface Guidelines 14-2
Ll Conmial bandelings . - i e e ey e, 25 1" 14-2
bt L A I s R O il o AT g 14-2
14.1.2.1.2 Parameter i R e e e 14-2
e Rt PRSI I 143
LA Bomed Ty, v LN s b S R 143
14.1.2.14 RetumVa]ue............... 14-3
. o Bl Boulinei . ool S s st s s T
14.1.2.2.1 Object Creation Executive IOORIIR o i e o o ot g e 144
14.1.2.2.2 Get/Set Information Executive Routines, 14-5
S Secal BRSSO . » e Tci . vl v s 14-5

vi

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

14.13 System Service Definitionscc it ieriniieitvroienesnnn 14-5
/O

CHAPTER 15 DIRECT ACCESS MASS STORAGE FUNCTION
o e) o R W el 1 ol i R e e R A R R M 15-1
B8] OVerview \.iv i G e v s ol momsensin i te it Be e 86 505 a0 vl st aan i (e aal s i o g 6y 15-1
151 Godls S s IR B B QRIS e ST s sna s e i e L R 6 15-1
15.12 Disk Logical Block Interfaceccivtteneancnascnvsonvoons 15-2
15.1.3 Function Processors « . . . « «cevesaoesssssssmmsns s sviossesdsns 15-3
15.1.8.1 MSCP Function Processor « .« v vt s sssosreassnssssnssnan 15-3
15.1.3.2 Disk Striping Function Processorcc0oieirnnrssnasnas 15-3
15.1.3.3 Disk Shadowing Function Processor o0 uinrarranenns 154
15.1.4 Error Handlingand Diagnosticso v v i i i i inrononsens 15-5
15.14.1 Invalid VO Request ¢ vesesissoes abisloesldnsiainsiveioyds 15-5
15142 Power Pailum® i .5 o 5o/ v@ 5i'e s o eiotere s islls nlaldlels o o aeie o ae wie b nle 15-5
165.15 Sample /ORequest Flowcicviitiiannorervnsonsness 15-56
CHAPTER 16 MAGNETIC TAPE FUNCTION PROCESSORS 16-1
BB ORI o is s sinls e alsns Bianilacal ainis = & funs) b shirs=a S /nransllif uaats) sliecaviioheiniiancs: nis fa' a8 16-1
16.1.1 Goalsand Requirements v v v vt o vnnansasroaransonsssse 16-1
16.1.2 Tape Logical-Block Interfaceocoiiincinuniesrannranean 16-2
16.1.83 TMSCP Class Function Processorvvvvv s ranoaserssnes 16-3
CHAPTER 17 SYSTEM COMMUNICATION SERVICES 17-1
s e el o T A TR R S e & o e SO SR o S 17-1
17.1.1 Goalsand Requirements+ v veevsetevacrannaronnesenss 17-1
1T B POt OBy T aars v s a0 s s e o o mimye o nlie! s s | ale/dieiia s ¥ iv=asl(s v gile/in & 17-1
17.1.3 Implementation Strategy ¢ ccctr ittt i s 17-2
17.1.3.1 Initialization and System/Path Recognition.o vv e nnn 17-2
17.1.3.2 Message and Datagram Buffer Allocationo cvevnnnn 17-3
17133 SYSAP-SCSB InterfRce cc e cvvsvavssonsnsaoinanssnsoss 17-3
17.1.3.4 SCS-Device Function Processor Interface 00 unn 174
1T L3 Fionw Cottrol SeREma ™ .~ . o < sxls o visheokniorolh movesansifel bl o SEEF 3. a0 1% 5 174
17.1.85.1 SCSProtocol MesSages « « ¢ oo s s s v oo astiasassnniossnsins 17-56
17.1.3.5.2 SCS Application Messages and Block Data Transfers 17-5
17.1.36 ErrorPhilosophy o v v vt vitiintncanvasrsnnarssanacss 17-5
vii

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

CHAPTER 18 XCA FUNCTION PROCESSORcuvvuivennnn 18-1
Tl e ot e e i sl s ve e 4] ety At 2 2w & ol o A atal e s 18-1
RERTVR R Sro DRy NN, & i 5. 0 Wi o sk sflier o dal whwliari e iy S ¢ TS T E 18-1
18,13 REGUITSIDAIEN L o 2s i & vl o s st e o 8 88 ATALS LS Syt ity B 5 'S8L% Bk s 18-1
ool e T T e T sl e rep il R e o i el G e s SRR - Bl 18-1
e LT e e e e e N T 18-2
18.1.5 Higher-level Interface to XCA Function Processor 18-2
18.1.6 XCA Function Processor Interface tothe XCAPort 18-3
18.1.7 XCA Function Processor Implementationvovvmsennnnnnnn 184
181,711 Bynteam BOOPIibion . i vivis o ¢ disl o s siaaiese TR puiloapd D04 1 184
IRE TS Vel Ot~) S S isr s C R R R L. 184
18:1. %3 Reapongaiandbing = J v o0 L IRE SN Mt T G5 A, 18-5
18:5. 74 R Handbng andins oo s oma b s e i e A 18-5
CHAPTER 19 NI FUNCTION PROCESSOR o' 19-1
L Y i e e o N SO R e i e i 19-1
SO LT RIS Ty ST TNV e Wl Do e T e e, e & 19-1
19.1.2 Features Not Implementedcuuvvnmrnnnn s 19-1
1910 Capahilitadl . e v e T LN . . . 19-1
19.14 Interface with the Upper Layer : ... i liseic s o ine e s cossse oatom . . 19-2
19.14.1 Request and Execute VOFunctions0 oo oo. ... 19-2
19.1.4.2 Synchronous /O Call Functions00'ouoo. .. 19-3
1014 Callbaeks & vvtio o o ed bagh o o PTRET L e U NP L L 19-3
19.1.5 Implementation Strategy0uiiiriin . 19-3
19.1.5.1 Transmit Gioatrrg s o ereg e it dd b SRS N S 194
10.1.5.8 ReTeimucohn Bl o v nnis Sk e S R S A 19-5
1918, Outetanding TOudEIar - i & vians 2 5m Sl s+ IEEARRAE S Rt s 4 p 19-6
CHAPTER 20. CONSOLE SUPPORT. . .5 1+ + ottt s s e an 20-1
S0 TTOVErvIow s W AR L L L LT s e S i oLty 20-1
20.1.1 Requirerments ;. . o4 oo SL0aten s SN IRIRGIVE L pochual L0 L TL 20-2
20,12 Dosign. Eghlights %, TN T ONRt S it v WSt iy SUNIMUSN § 04) 20-2
20,121 Console Terminal ... NI Il melbnes swli=id o0 F 0 20-2
20:1.2:1.1 Synchoorivus TAEIMOS /' voiows v o 0N CHS ML 20-3
40.13.1.3 Asynchronoos kuterfeoy.. . oou P0G RS 0T 20-3
20.13.3 ‘Consale Sioneie'DEVice "W, TV NS rmlleslia oA e Se it 20-3
20125/ Confgueation Pocossts .'s s duivi i o ST vl b0 70 20-4
901 RN Fois s AT 7 SIS A1E'5 4 o e e e s e] 204
CHAPTER 21 MESSAGE FUNCTION PROCESSOR 21-1
i e it e TR R R R S I 21-1
b e i L R o R S MM 5 21-1
e oty gt s b ot o ST 21-3
e e AR o b o - SRR 21-3

vill

e

Digital Equipment Corporation - Confidential and Proprietary

Restricted Distribution
CHAPTER 22 PRISM DIAGNOSTIC MONITOR o YT 2 22-1
B2.T VOVEIVINW . ook 5 s o uieatn uls e e (g e el e e el a1 4) o R e ol s veliadalks i = 22-1
K U il T ST e T R e il I RIS SRR R SRR S T Ay -t - et < e 22-1
22.1.2 Diagnostic Run-time Environments.t iiiiiineaiones 22-1
22.1.3 Tunctional OVervieWw . o o s «is o haia islie ininie.atd o858, o aleToaats oo s Ry 22-2
22.1.4 Components of a PDM-based Diagnostic Program0.00000n 224
B30 PDEE Datipn CoaIE, . s o o s s e sialre a a6 e v SRt Buniesa e ade . & 0y dh s 224
251G PO Do NOE - QONNN s e s < o Sco s s & o nabiad st oivse enad iileoctt (Bl b4 8ydne s 3 & 224
22,17 Requirements on Other Products for Meeting Demgn Goals | Lo sareausil s @ » 22-5
2218 POM Intarlaoes & 2100 L0 i, 5 Lhkieie s o aiarese i nrenal 16 o st s i anslnamietak el SOk aFa Uu & 22-5
oL T T T e et R R RO e R TR B e SO R 22-5
22.18.2 Programmer Interface—Diagnostic Servicescc00 .. 22-6
SRTD PN Intortind FrtedBRonE /s« & <0 oiticle 3 Vo0t Sibeamete 008 0le shimiae &4 445 § 22-6
22.19.1 Interface Between the User Interface and the PDM Server 22-6
22.192 PDM/DiagnosticInterface0 nticiiantacnanns 22-6
22.1.10 PDM’s Interfaces to the On-line and Off-line Environments 22-6
Lt Othet M TeRtural ™. 5o/t » s viv vie’s s 5805 & 8w 4lsce o £ gIa0p ¥ (e 48 3 @ e 22-6
SR 1R Secarity Ias0es | 1 it st i v a YAl he e e s w v ets ne et 8 eae 22-7
22.1,13 Changes from Rev. 1.0 of "The PRISM Diagnostic Environment”. . , 22-7
CHARTERZ23 . ERRORLOGGING5 i snirvivsasaparvtsissgee st 23-1
R Lo T AT o o o1 s e T T LT oI e e S 23-1
28.1.1 What is Error LogRing?. i . o s v o os oo asipracadilsiip-achio sty sllainio g aied anerssors 23-1
23.1.2 How Is Error Information Stored?t cinvinvnnnssrrsnanssn o 23-1
23.1.3 What Does the System Error Log File Contain?0v00nn 23-1
23.1.4 What Do System Error Log Records Contain? Toaaghlas et difass 23-2
23.1.5 Who Creates System Error Log Records? oivvironnann 23-2
23.1.6 How are Records Placed into the Error LogFile?o 0 23-2
23.1.7 How Can the System Error LogFilebeRead?. 23-2
23.1.8 Where Does ERF Reside and Execute?. cnvvvvensscsrssynsers 23-2
23.1.9 Where DoERF UsersReside?0ciieneinesanssassnassans 23-3
23.1.10 Who can Access the System Error Log File? 233
23.1.11 Whocan Control Error Logging? -« s s cssssssossasessnmesssss 23-3
23.112 Howisthe ErrorLogData Used? 0o iiearvoncvnonacse 23-3
23.1.13 How Does Off-line Error Logging Work?ot vt i it avnanns s 23-3
23.1.14 Are There Other Error Logging Facilities?00 iuaa.s 23-3
FILE SYSTEM
Ix

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

CHAPTER 24 DISK FILE SYSTEM FUNCTION PROCESSORS 24-1
B L SR L T ¢ o e A e § et R A S & Sl e e B AT 24-1
B4 LIV RRON A IIROCEONIon . oo & idisivia & eoniiarmis & aerbin's 4 6 ddielald B 08 & o Nee 24-1
e D T A e e G DI B 5 A i e G 24-2
24.1.3 Objects Used By Disk File System Function Processors 24-2
24.1.8.1 Function Processor Unit Objects - « - oo v onveceassssssnass 24-2
241323 Channsl Ogkctn’ 5 27 VB s it s sea's as o oMl dn et e wis o 24-3

2414 Other /O Architecture Support ccvuevvvnrneeceenannanns 243
24.1.5 Disk File System Class Interface Functions 243
241670 et A L5 L hahh s 58 S & o oo SUNRTNIRE JOAT N4 244
CHAPTER 25 FILES-11 ODS2 FUNCTION PROCESSOR 25-1
U W g U e e U S BN T i S S i e 25-1
25.1.1 Files—11 ODS2-3 Data Structures . . » . o .« o v v vve s v e e eveoe oeanennn 25-1

20. 1.8 THrent ... o s N s 5t s A3k e e o b 25-3
e s I e 25-3

S0 14 MoMOting & POREDNS . bilicsr» il abala 2o Rheris a5 s rsie e o oareon i e S 25-4
25.1.5 Dismounting & VOIUINE . .. v v v voovvee v ovennnosessenn e ennn. 254

F PR T TR e SN S e ey et sl 25-5
SELT) Okijoct NESe6s s AR LI v . airere LIt . o iy . S 25-5
25:1.8 - ACOBEMBRK. .. & o378 575 a6 3+ o bl 412 S ms e 1o e i o oo 25-5
250.9. Dottty Vs PR T VAR Tl % A R A b Sl s TR 25-5
25.1.10 Mapping & Retrieval Pointers0ousmomnn.o ... 25-6

36, L1 ROMWIILS 40, - o RS o = eieria s o hrme I sliyin flas | el ot bl &0 (25-5
25112 Cabhionin e oo il o 5 TS o GRRE Sl S S oS S 1 25-6
20:1.18 OWBerTopics /. . 'vi vin's s aih £ oa S0 TR s e raahia S | | & 25-6
CHAPTER 26 RECORD MANAGEMENT SERVICER = .ol orr o, b, 26-1
P01 OVIVIRNE o' 1" & v.nits oitwiom s =vaatore SeU RGBT, SR VINCRRSIR (N I s 26-1
RELL, IOME PUnctonBlty . ..« i s o nivis & morinie: v o KiEkat e i e St s e 261
26812 'RMS Programming Interfios . ey oo s o/t e s scocal bk o 26-3
20510 Satople U Rauest Flow .. £, 0 oy @t 08 EU CSSENISIREARRS 3% Tl 26—4
CHAPTER:2Z. CACHING . i manbalans o b e bl e 1 27-1
L Overvllr s Lo s ol PO RS s cani® s ih i k. 52 ¢ 1 7-1
27.1.1 Issues Related to the Design of a System-wide Data Cache 27-1
i R £ LR SR NG PR I SR vy 27-2

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

CHAPTER 28 FILE MANAGEMENT UTILITIES 28-1
B8.1 Overview ... b [t S g T Y e 28-1
S8R Goklisr ¢ 5 rviton Fonpimdn ask s anloi on Saki bV I s s eaaa s @) 4 & 28-1
28.12 Requirements for the File Management Utilities0000u. 28-1
2813 Utilities in: the ORBEANSYRIAIIS . v« miresss minkesaitim s niats:tdl s eass 3t 28-2
28.14 Integration with System Managemento inienenansnn 28-2
28135 Deacription of the RIGHEEE - . .. o/ cicin o aieanaiaiats adiialia he s, vie aie unais sy 28-2
$8.1.51 Thalnitialing TGO A i o oo vimn ooemb o5 SEEUE AR NPt & s wiehs 28-2
281 5: 2 The Monnb TUGHEY « oaioii o v as aais @) sai s, sk Ak poarsilss s Nisassiol/ous s ol viieis 283
o L MR T T IR R L o | T T 28-3
BELSA The Vanty Ut U o s L . 19 Ll nh el ok St e ol o/i8 i (8 28-3
25100 Tha Backup I o o e o sl oo it -l ol ko e o e 0 g 284

IMAGE RELATED

CHAPTER 29 OBJECT MODULE AND IMAGE FILE FORMAT 29-1
R M TR R R DR T T AR T NS S I P o7 T o By 29-1
AL B R s 2 0S5 7 & 551 5 s Shae cals a0fieud o aNedbl A Rl ahiaria s iale e ©1n) 29-1
SR RGN . L 5 5 Liaod ds anitd d S SE AT 0 35 e sad e TR 45 29-2
e R e T T T T T S A e SR R S e e AT S S 294

B TERE 38 D LINEER SN0 00 T 55 ¢ 7 0 s ot Sarit bt et Es AR - T ¢ s 30-1
SO EVRVIOWE .S o5 bkl 5 s b oubass b IG5 hcas 55w, JTTSIEES ASTARTY Rk s bade s i1 s 30-1
8011 Requirements . 2 i o 2180 s ca5 v CEVPTLLAGIGN T SRS 8005 S v 30-1
S035 FRDINERREIONT ' s . o 50s 3./oi0 /2 0 e o850 % 20 s 0:iv te 5 e SRR RSN Sl VRN 30-2

SO 121 Tobin] SCRES -+« viv /o5 57500« s o uide 7uilk 16157 (i 1o e e oy Ta BN gl fy a driallls e 30-2
BHTRR PROE L 5 i i b vt e et oty i s i v S e e e, Tae, BTG s 4NN Rt U, o aie e 30-2
SHLAE Intermedinte b e AR T I B ISR sl 30-2

BON R PRBE Do viids foya ek s oo e aliia o ARl B Sh e S fo 6 4 e s G lengony SRS SIS 30-2
s T T A S e R T o IR s T I o 303

83018 Compiler DODEDEEDEY < v.55 « tv'y oo ¢ 5 s s st v ¢ o5 a0 essessseesssnshdsssa 30-3
ESAPTER 31 IMAGE ACTIVATION i coqiivas vosive s ende sitas s ok 31-1
D VT o 00 o A et et St gmi ot g g ey e r o s TS RPIROG TS e as s Vi@ w¥e 31-1
8131 Goal/RequIveMBNER . '« o 's'i'a's s s oarv 2t e D ETe s A o b SR v Sa e e 31-1
81112 Humotiorigd LIescription ./ vl s o P SR VS IS TR T, BALEN, 31-1
81.12.1 Image INGABERON . .. oo v 07 a 0ot o5 s i e s als s bt s e s aterehs s n e 31-1
31132 Tmagn Bt 5. i 0 il Ty e e RIS SR s SR B EAARS o v 31-2
81:1.2.8 ‘Atolond ProchOUNS . ./« o o s e ialere e sty o AFDERRUBRSIES PR A 00 ¢ vs 31-2
91124 Installation of TRGON . . v i . /& v D5ieial 0lthver et ot giatala 2las ot a e pils T s 00 i 31-2
31.1.2.5 Images Within Shareable ImageSpace 31-3

81.18 Issneatobe Resolved .. . & . T S A oy o R v v, o We e ey e 31-3

SYSTEM MANAGEMENT AND ADMINISTRATION

RV R METRRSE

T A S e e R

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

CHAPTER 32 SYSTEM MANAGEMENT0iiireiiniiineannens 32-1
B BN i S0l ls s N e T e e A e e e A R Al ke e e e g:-i
SALL Mot DeRernaan < c J LI e e S L e et ate e e e R
S2.12 " Synteny Manteement Modal o e icia s tichais s s i wiaisle s o s i T oY s 32-2
32.1.2.1 The System Management User Interfacec0.0... 32-2
32.1.2.2 The System Management Serveru.uoueeeenneas 32-3
82 B RBC IR RS s e v e e BRI T A e 32-3
32.14 Managing Multiple Systemsc00eevenenenneensenens 32-3
ORLAL CHASHD SPRIRUI .. 5.5 a i 6 i S i o s BRI e] LA 324
SH/LER Chovenne SYstanis . 2o cf o oo il s s nadianon s e g s e 324
SRAL By S5t il s e A e d s B b Bl e LS AR SRS 324
32.1.6 Subset System Management ACCESSoir st s 324
32.1.7 Authorization, Proxy, Identifier, and Startup Parameter Files 324
82.1.8 Server Design Considerationsv.ovusssseennmnn e, 32-5
RTINS NSO .1 7 =) B 32-5
CHAPTER 33 OPERATOR COMMUNICATIONS 33-1
SIS Oemiaor .2t b b S 2 35008 dbaibies s o siath con o Georaniinde 33-1
89.1.1 Panctional Deseripliont © 2 @ oo £ - aheas e samssssovo o DORiaR g Y 33-1
99.13 OPCOM COMpOnents & 5.5 5 537 5 450k k& s o6 55s SEMRNSSA . & | 33-2
33.1.2.1 Client System Management Interface 33-3
33.1.2.2 Client Operator Display Process 33-3
33.1.2.3 Client Operator Request Program 333
SRR OPOOM BV o o cwvoe oisois 2abe R s cise o R o 334
33.1.2.5 Mica Message Function Processor Units ()2 210 7) [RRPRRE EE W | s 334
83326 Roader Thromlls.. . . - orvp o vt bodlls 2 vnid ve r e L 2 % 2 .. 33-5
99,13 AIA Fanctansbity i . o o 566000 bt s aies o oa oo el e s b . 33-5
83.1.4 Native; mode OPCOMIEaMS & 4le' 3 s4/8 b8 550 = o n vrete s & srmrete st e 33-5
33.1.5 Manipulating log files on o S R T R e 33-5
aLBTIaeuRE . . e e s e 33-6
CHAPTER 34 CONFIGURATION MANAGEMENT SOFTWARE 34-1
Pl OPEEVIEW . o0 a3 vy s 2w oot woriie MRS B B R 34-1
PALL Gonle' 50 SSREED 'St e PIRIEMITON. SRARN 18 s 34-1
4619 Sunetional Dodcrption... oo by oo nte 2o M0 DB IE SRS L 34-1
LA AeHnns &b Sybiem Boot o . 4 s 48N b Lo s e S 3 34-2
$4.123 Actims During Normal Operation’. . < 2% . . . i e ou srs o mrs 34-2
H RS 4 The Betie MEOiinn Prosous . . < aje s + o - Mg dies s 34-2
34.122.2 The Conﬁguration-Manager G TR s et i Wil 34-3
34.1.2.2.3 Configuration Function S JOSUS A i il 343
25 R S A e e 344
A
34-5

Digital Equipment Corporation - Confidentlal and Proprietary

Restricted Distribution
34.1.4 Relation to Other SoftWare . , .+ - c « + v v siess iinin oo sinodis s sas o s sone 346
34341 Memory Management «'s e e v s v 0a s 0ninesessninsssinseions o 346
34.14.2 Shadow Function Processor « ¢ « oo s so s s o s s aia o s siv o aimalbgine s 346
34.1.4.3 MSCP Function Processor and Controller Function Processor , 346
34.1:44. SCS Function ProCessor: . . . s.c.e s s.ne's s s0/s's b 65w adilbiege i ol s . 346
34.1.4.56 Device Function Processors 600 aaaaeinsin At BES 34-6
34.1.4.6 Machine Chack- - vns Sdlasetin whaeis cibi sl s loiatiols CPVERIRLN] S 4 34-7
B4.14.7 Connole Softwle o i ciniasmirm v @ b o 555 5 &5 0ls sTaiaie s Wteialanda it s "34-7
84.14.8 External Service Processor . . . « « o s =2 i aawt e oo sials sisiaios ansines 34-7
I T T ety T Rt ISR R, 5l P S T oA 34-1
CHAPTER 35 SYSTEM VOLUME LAYOUT AND SOFTWARE
B A e A T I o ot L Lo e e et Sl i AL o i ld maeh g o il ks A e 7 o0 35-1
BEL OVEITION £ 5 7 6 % & 5k onis bk s wraony ms o o TRtk o as Wi e s aiere AL P 35-1
85.1.1 System Volume Layout « cc st oo e vsosasncnansnonssssessions 356-1
851311 The Read-OnlyATen , <.« = + ws:acw.iv xS AL L SRlEmmaiali sl Jullibis v s 35-1
85.1.1.2 The Read/Writs Areatnr)', o olisily JaiQnl e vals 080 shint uls bos e 35-1
35.1.1.3 Read-Only and Read/Write Area Interaction 35-2
85.1.2 Soltware INBtallation . . . «.v v~ ve viniais o bais s 553 5% 00 v eroletenslles tane 35-2
BB 0T GO o 5 i s v oo ls bt ot SHETANG Sria A alis) s s 1 5 Ta e 8ie Uitratvai Lol Inoutin fiva T 63 oa 35-2
35.12.2 General Descriptionccivttititrencnnnnarsnenssnas 35-3
B8129 Standsrd INBEEIIBHON . . ; vivovaisis 4 3@/ s e ke b 5 olle)ai s o/ialee e o inieis 35-3
8512381 Initial Installalion . . S E S om 5 5ot s oS Taned e oleve bt/ ale s ¢ 372 s 35-3
35.12.32 Update Inatallationccovrevrvevicenncscrssnaimsamss 35-3
85.124 Special Installationcc0tiiiint it onrannsasnessos 35-3
35.1.2.4.1 Special Installation Typesot erns 354
35.1.2.4.2 Special Installation Procedure00t vnoven 354
35.1.2.5 Front-End and Client Software Installation 35-5
35.12.6 High-Availability Configuration0iartsrnnearesns 35-5
TESTING AND PERFORMANCE MEASUREMENT
CHAPTER 36 PERFORMANCE MONITOR iiiiiinnnnnn 36-1
B8.1 OVErVIEW =, oo 5 % i o7 b it s e tn a) otal nih wal IS5 5 BoTleataha N0 1o 0 SHsIiTR Ty 5 TR VE ok te 36-1
T B e P e I o e e o e I R A T T T e) 36-1
SB.1S TrRBOMORY « s 0 v 500 /o sioieia a s ow s-98,9 5+ b mD Wit i pidasiORas adEe T o Yus 36-1
8818 Fonctional OVEEVIBW. |« vo1a16 & o o35l e 4 s/aisimia aveile sias o auvie il §wisly oo 36-1
BT Y ECILE TYTEBEVIIE, oo 5 sihin o € m ln'c s 48 4 Emndr 251 & o ot m e AR W a1) ek Al 36-2
BRILGG TIBERE . b s ais iy eree s as sharmrule ohel-el s el sice]iniasbialie|alans Bl aby ‘. ilams 36-2
36.14 Implementation Overviewccciuuiiovrtar s neensnns 36-2
BB.1E ISBOBE . .vovnis o o onaie s M DENVINES DHleREdih RIS - D FREIG 36-3
xiil

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

CHAPTER 37 USER-LEVEL SYSTEM EXERCISER ik
S0 Gonls Jutmmesed il liot el 25 %56 o LR aNalele v e 55 3
ST WoniGoRles s, 51w ials =150t a5 5l siazer aiers o e 7ol o7 aemi) /0 - el
37.1.8 Outline of the Functionality. o v v v v v v v v v v s nns T " ;

87.1.3.1 Interactions with Other SoftWare ««ccusseonsesn. =
L1400kl 00 Of The DEMIPR « < v v o 4 o 0o 5 viois7e o 6o tio o b sieminidihe sle . : 3'-?3
37.14.1 Input and Initialization.c.ooenooeeoonoinaiioooo. . 373
87.14.2 Devico TOBLINE - - . s - s s cvassaasanasvesossonsnnssson _ : 3:—3
37.1.4.3 Load and Application Specific Testing« . v v v v v s n. 3:'3
S0l B. 1 Teaag CARCIIT Y% o F L5 00§ v e e e e e e s aTe ok 373
37.14.32 Fault Tolerant Testing00 ecuvuens : . . 373
37.1.5 Developing Glacier User Tests «vvessvnsns RRER) ot el 37-3
BUBOLROUNIIOINGS . . o v oo mimatale Biws 41 oo o s pietedle ol bttt : R
37.1.6.1 User Diagnostics INLerfa0e ; < - 4 o o 2+ » s+ sis/dare s's som o o vies 374
37.1.6.2 Error Logging and Symptom Directed Diagnostics 3 e 374
37.1.6:3 Mica System Servicsn . . o vis s o s sers 59 o0 uis s s s ot s see ot e 374
AN T T L, RS U i S, S e AR 374
NETWORK
CHAPTER 38 MICA NETWORK OVERVIEW . oo b daia ol 38-1
D0 B e s o e S ik (s s e s B e) . Ay 38-1
GELLIReqUIrementsoent vt ot et S, NN 383
SOLIBTRNORIRE At & T s e s Wi s v e DI RN Y _ 38~
023 MONRORIE L 055 5 < e ey e SR Wop iy, | doRoPl 384
38.1.4 Network Software Comtponenty 1% Soo TiT Lol ~d e | 38-5
BB Lk 0 e e T Ay _ 38-5
B BADITRNEPONS. 4 5 . 2w vl s e e e =i P | : 38-6
38.1.4.3 Value-Added Services i e e 38-6
B8.14.4 Applieations iiniin i, E i : | 985
CHAPTER 39 NETWORK SERVICES == e o 39-1
R S L L e o, e 39-1
89.11 Requirementsand Goals,.. b : 36-1
SULE - PINACOMPOES < lo . &0 wcigas oy e i 0 9
89,18 TOser Initertios . .00l 0l s i = L ,,q_:
39.14 Implementation. R < 3 J: 3
.............. S, 39-4
CHAPTER 40 DNA NAMING SERVICE CLERK T 40-1
BOL OVOrTOW L s o
011 Bequtrements ° ‘I‘;—;
40.1.2 Functional Interfaces . . R e B s
40.1.3 Implementation. S e 1 e
........... 40-2

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

CHAPTER 41 DECNET STARTUP, SHUTDOWN, MANAGEMENT, AND

BEMEREMINEE .o o oo R e s B G 8 v s e 67 e SRS e 8 Ry e 41-1
N o e T e P - e 1 I ST e 41-1
O B T e e A e P e S i T R R S 41-1
41.1.2 Network Managementand EventLoggingttt vnan 41-1
41.12.1 Entities, Directors,and Agent8. vttt vvasnnsnasnsassns 41-1
SEESE Nodn Bty oo ol s o opimens ais s sabi pilians b e e o w5 o vari o' 3 (3 a5 eie ayb 414
41128 CMIP and the CMIP Servar.. o« v e olv 6y o e, aeisione.m ok oihts i i . 414
41124 DECnet-Mica Event Dispatcher0ccott et iinnerenss 41-5
41:1.3 Network Management Security . ..« « « ¢ snio s o soin o o cvioain s e anossnsiss 41-5
4114 DECHet~MICh StartiiD . . o cs o oo aitioioim sioios s aueiob s 5 v aisis s 00v 805 08 00l o 41-5
43 ED DECHat-MEca ShatdOWi . «s .+ oo itee s s alvis,ere sloia s oo wiegea s o sl ers) slecslvie 41-6

B LB NS . v et i (A GRLTRe EOCTRIS EAEeE) A H] » SRS e (D S TR 5 5 Gk $ W 41-6
CHAPTER 42 QUARTZ INTERPROCESS COMMUNICATION 42-1
G B e R Tty) iy 42-1
42.1.1 RoquirementalIonln - o . o i a i vioiein ot ok foia’slie s ta e [aaradaits (s la ialp '4s s 42-1
AR 22 Non-GoalS | 3, ..ol ool e s inimiaioiesse bl ASES: o0 s a0 sNE e d o 8. Phins souiy (vt 4 1 ($18)(x 42-1
42.1.3 Functional Description« .. oo v s sh s oo ssasis oo maineeseiesssss 42-1
R R I U B s o T T e N) T T, 42-2
42.14.1 Message Region OBJect . . . « « v cv «s «o0 vsnminnoiston s oioie s ¢ dise e 42-2
42.14.1.1 Functional INterface« sicis o v ain i s abioinisls o vosoll sois v o sa s as 42-2
42.142 MessageQueue Objectcc ittt innaetinnnenevnon 42-3
T B T g i S o T 42-5
42:1.4.2.2 Functichal IntarfRes . . ,.aie b & ailais s 57eh s ansathiia:acas st g he: 42-6
42143 Mesnago Oats OBJOtts . . . « .o v s.aio s sivis 5 cisiarsis s s ninos s sasnsas e 42-6
42.14.3.1 Functional Interfacs . & v v Sl sl a0 as < ikl o sivis JS e 42-6

DISTRIBUTED FILE SERVICES

CHAPTER 43 DISTRIBUTED FILE SERVICE INTRODUCTION 43-1
R L AR IO T e e M harralie a Lol ba 4o G e ol s B o 0 o i vt oo S et o NSNS e B0 43-1
s B TR L S T T e e SRR B R U L P A e R e 43-1
ASTE Model s BN R TR NP S TeT, Teels T ratatiny Shila s stute s Wardiot JNPEIS o s WP @ woaile b 43-1
0L D o oreEe . I L B N O e e U e e a e e vl e s e 43-2
4314 Plantibel TRERLIETIONE 5 o555 % ov nleseluls "alotals s slela/la s lale olaselate b b ekt 'y &upa ERE
43.1.5 Network TranSparency « o s s s s s sia s s s s sis ass s oo ois s sesnsnnae 43—

S B R T O e et v em o Pmre e liutalhs s 5 9 o ey 0TS g e e s o 'y Gl 43-5
D002 ERERRAY . & oo s Niars To e a0 o N 1 o ars Yo e Vel e Tl ot e e T Matey s e Ton s 3 el wte 43-5

xv

ﬁ

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

CHAPTER 44 DISTRIBUTED FILE SERVICE MANAGEMENT

R e SR D Sty AT S R R 1 2 A T ACRCA T NCRCR
44.1.1 Restricting Access to Management Operations«.oco.. -1
e e R PP Uy Y P (R GRS o e S N
4018 MOMRIIDE i %/ tiite Sasieliisi« /s = sis a8 0 s o on s ¥ 5 e asss s aasArs e
4414 DECnet Name Service occoes oo ssssssssssssnssssss
44.1.5 Management of Files Accessed Through DFS
R I T T T e A N S S

SLTAS Thant Banchion PHOOBREOY s .. 's) i o s o5 sy sssuiasassessasessh
R T T AT SR sl (TN S S SR et R o = eyt oy
44.1.6.3 Request/Response Function Processor «oouiusn,

CHAPTER 45 DISTRIBUTED FILE SERVICE COMMUNICATION FUNCTION
L AR e Y e e R R NS O SRR

S0 SOVErisw o TR ot PN o v o sl e @S 5 e e
45.1.1 RR . 32
45.1.1.1 Interface t.o ngherLevel Funct.wn Processors and T'hrcndn o
45.1.1.2 Interface to DECnet Session Layer0
45.1.1.3 Interface to System Management _ . ~rg
SEXA Inplemnenation | . il il A e ke a5 < N

45.1.1.4.2 Design Considerations and Issues 3
AR BRSNS NN s b ST e e R0 §

CHAPTER 46 DISTRIBUTED FILE SERVICE CLI
BROGEBEOR =~ 4 (el TV R PO e

20,1 SOIVEBVIOW o cevvini s = o o050 mlara a3 15 o omtie o I

..................

..............
....................

CHAPTER 47 DISTRIBUTED FILE SERVICE SERVER

47.1 Overview
47.1.1 Sessions. x e
47.1.2 Server Process Implementahon
T8 e Profobikl. o o T e Tt e R e
47.1.4 Security .

47.15 Ca.c}ung ----
4118 Bufferitg , : ovom vmeiocn s ir s me o e P T
47.1.7 Accounting and Quota Enforcement .. = ¢ D
47.1.8 Failure Recovery

....................

DATABASE SERVER

xvi

45-1

45-1
45-1
45-2
45-2
45-3
45-3
453
453
40—
454
45-5

Digital Equipment Corporation - Confidential and Proprietary

Restricted Distribution

CHAPTER 48 CHEYENNE OVERVIEW 00 ideiin vl vewedas 48-1
N L e e s St e e S R e e bl e AL 48-1
40T ProdRet GRORIS . = 010 7 o dis o o sl aaiens n £k b Ay L5 i b ARSI LTS Sbraia o cl s o m 48-2
SB. 1LY Dota INtOBTILY s « o oo n sinnie o wians SN, o T L e T R 48-3
48.1.1.2 Reliability and Availability00 viininiiiacarana, 48-3
AB.1.1.8 PearlormRnOS ; « o v s siais faileiaiads s raTsae Srete SN Ty et ot e kst diatisle, e -tats 48-3
4B.1.2 Componenta . . oic oo o v vvleininzoin erate TRAF LA o K7 FUG 00 RN AT yuale 484
L B O T A ey et R P B A A AR ¥ 7 MR ST 484
48122 Extended Service Processorcccuoesoveesesnnonsonos 48-5
48128 Mans BIOTBER ... o ovior o0 e G I raats Sla s ousf s talty & o olil Fo0 7 48-5
LB T iy e e L e A e R R R s R TS 48-5
T B RS e eyl e R e B A gt o 4O P R e O 48-5

48 198 Chant BolbWmI® "5 o s a s L0 ois s el S0 s rBLaYs ol ot ohal/p (6 oot maTE ¢ alisiia et 48-6

48.1 261 CommuniCatIONE < s = s o viaais s o sivis sl siihiiata o a riois o aieie bl b e s 48-6
48.1.2.6.2 Mica and Quartz System Management and Database Administration . 48-6
RN T s g it s et R P it o st st AT 48-6

AR 1264 Database MO v . - . - o c siaie s o sl od 53000 wse s 3s nie s el 8rs ol mia s 48-7

482 TargetCustomer Basecciitentvnnnnnrssorannronssoas 48-7
48.2.1 Apphication USers « o sieiore sisie o oo oin s o v simgsasrdins siolasales s olvisls 48-8
4822 Application Writerst vtvveeirentornsesssvestsnnonss 48-8
48.2.3 Database AAMINISLYALOTE . . o . v o oo v o eiioino s b o0 a0 o o s sunioiaielneiss sin s s 48-8
4824 System MBNAGErSo voiv v s osnstsssiansssvesvossossvonss 48-9
48.2.5 Operation® SLa sis s ¢ oo a s v v inaaiec s saies snwieie s oo SlelasfdiE o Ts aie 48-9
48.2.6 Software Support Personnelc.ciiitiiiiiiiiiiaiaes 48-9
48.2.7 Hardware Service Personnel it iuneiiisnnessornasane 48-10
48.3 Hardware Components c.ocovvonnntassronessossostosrassnss 48-10
483 1 CHent SyptomB . &s o c o vnasaosindassinsaasnsaaasesseilaaedshys 48-10
4832 Standard Configurations« v oo v vvm s st st a e 48-10
48.3.3 Highly Available Configurations v ve v vnvinnasesss 48-11
AB.84 Mans BUOVRED s+ s o v o n o o nnie o eiaibualy SR Btk caraget s sl ol B0 o 1 4 48-11
48.4 Software Components.« v oo e v v v s assnsstasssnscsantaasssases 48-11
48.4.1 Componentson ClientSystemscocveusornnsnnronenss 48-11
48.4.11 Access to CheyenneDatabasesccvevvesaniasasceeas 48-12
48.4.1.2 System Management and Database Administration 48-13

4B A1 Databasn TOOME " o « 36 509 00 7.0 wiinne sisins o v, o IBARRRS B e T2 48-14

4R 414 CommumichtionS. o o « » ias s v o nsias obias s o 5 visalh) dnalissmmss s b 48-14
48.42 Components on Stone Systemso vvini i es 48-15
ABADY QOBIEE . o s 05 o 21000 v slounpin 1 &8 5V SMBRG RO W vpe b B 48-15
dB8422 Mica BxecntiVl: , . o5 o o0s o s's o v alpiss Ererersiavens reseisison showhbine < fo1 48-16
48423 System Managementc00000st st 48-16
48424 Network Management:ccveaesosnssnsensnsssssnisns 48-17
48425 Transaction Managementcoatueersnnnrsonnonnsns 48-18
48.42.6 Cheyenne Diagnosis and Maintenance vieronen 48-18

485 Special Challengesc.vveitur o ssrosasnoascasnsssssss 48-20
xvil

O ————————————————————————————e,,,, /T

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

> TR T DT Wy LTl T L L AT PR A e 48-20
48.5.1 Achieving High Availability« o v s oo cm o b
4852 Boppott- 7. . . .iciav b i s s saste sl e d ResiialeEe s u e e dxais ek o
C o e 1 (AT A S e o S A A e Ty G L R L i 0 e 2 R sty
48.5.4 Ease of Use and Internationalization Requirements «. o0 . .

486 Related Products st v e v vnsnsssssasssssssssssssssnsas :88:52
48.6.1 Other DIGITAL Products et cotsosscssasssonnnansss 3 .2.
48.6.2 Future Versionsof Cheyenne ¢« « s s ss s s s st o ssanensnsss . 48-24

AB B TBEIL I . ot ale v leis w5 s s nlalsiaes s o n skslss Fheys xikeea 48-25

CHAPTER 40 .. TRANSACTION SERVICES :: ... dua¥u NS et 49-1

SIS) T T A e e M e B T T A O L I L .. 49-1
e Y N T T iy OO D . -+ I 49-1
B0 It BL CIVEIVIOW i 5 s o x/sidis 7 = b & e hin e s et v e e are e oa e e 49-2

49.1.2.1 Transaction Object Service Routines PRI 49-3

49123 " Rocovery - NATIREEE 5 & v/ 5.0 5 bieoih b 60 s0m & 5 & gie o/ €58 s dimns 518 e 40

e e e A e e e Tl AR IR (o B P i T 1L 494

49.1.3.1 Redoand Undo/Redo Logging v in v nnnn, e R

49.1.3.2 Two-Phase Commit with Presumed Abort S . 49-4

40.1.8.3 ‘Othor Tachniques . 4 o 0 1 s ate tieinie s o orere ME, dTave ¥ il e b we ® D

L S i e e ., M ; : 408-5

49. 2.0 BIBOgTanhY U, i o bttt S O g 49-6
COMPUTE SERVER

CHAPTER 50 GLACIER OVERVIEW 50-1

A et T N T R VR — 50-1

e 50-1
50.1.1.1 Client/Server Integration.,............ 501
50.1.1.2 Application Integration Architecture 50-2
50.1.1.3 Multiple Operating Systems SOPPOIL & 4 53 v ivie o o oloh s 50-2
R0 114 OBent MOBEREION ¢ + ¢ i - sivcuiamne o v ¢ viowisiois o mm an e 50-2

B3 Targol Castomen Bane: o/ .covai vihis bne s o - SSNEEIE S0 500k stgrarins 50-2
90,235 Application Users Jot £iu ot SIS S oot o 50-2
2948, Agatication Develotrordwminiit ot Lok Ue et pasea. & ¢ 48 50-3
5023 SystemManagers,.......... 50-3
BORA Oporphions BIafl oo vooveinvon s xob s ron e s doltate . s 50-3

- 502.6 Software Support Personnel, .., ..., T @
50.2.6 Hardware Service Personnel,. >
50.2.7 Internal Software Developers., "¢ 04

---------------------- 5

50.3 First Revenue Ship Applications . ., 504

...................... 5

504 Glacier Components. ~

50.4.1 Client Hardware Components ., "' cresee. Y
.......................... 504

xviii

Digital Equipment Corporation - Confideritial and Proprietary

Restricted Distribution

50.4.2 Client Software Components +cou e eremnansosasnsanssons 50-5
50.42.1 Software Run-Time Environmentcrv et annrnasnessss 50-5
50.42.2 Software Development Environmentcoconenvee.nn 506
50.42.3 System Managementccoeevsovotancrnrrsnoases . 50-6
50.4.2.4 Underlying Software Mechanismso0vnn v 50-7
5042.4.1 Network Support . . . « o« e v vsavisssoosanssssassnavovesass 50-7
50.4.2.4.2 Remote Procedure Calls (RPC)o it v nenannnnn . 50-7
504243 Setved DISKE L. L i cnatintilon Salte Hsi 5 o e b5is & 9 894 3 4080 9 . 50-7
50.4.3 Server Hardware Components ¢+ oo e v o nsessonosnvrssssnsess 50-7
50.43.1 FRSHardware Configurationt v e raanasnrasss 50-8
50.432 Follow-On Configuration« s et cv v st srsansnassscssonnee 50-9
50.4.4 Server Software Componentsuocuenvannsvooararsstsnranns 50-9
50.44.1 Software Run-Time Environmentc0crvvanruvontnnnas 50-9
50.4.4.1.1 Application Integration Architecture0 vvvunen 50-9
50.4.4.1.2 Application Migration vuvi it 50-10
50.44.1.3 Record Management Services evvenasvnerancancans 50-10
50.4.4.2 Software Development Environmentot viivtaananne 50-10
50.4.4.2.1 Program Development Toolscvconroniriinnnns 50-11
50.44.3 System Management:«rveesoansansnaasnsscnsann 50-12
50.44.3.1 System Management Server.cco v rreanrsrannins 50-12
504.4.3.2 Performance Monitorciciveveronnsssenranasans 50-12
504433 Console Supportc.overeerincrtiaiari e 50-12
504.4.3.4 System DumpAnalyzer. oo ivruennaastiiiirecnen 50-12
504435 Error Loggingcvetevssersavsrasssesannsosaee 50-12
50.44.4 Underlying Software Mechanismscvtrivarrarcnne 50-13
50.44.4.1 MicaOperatingSystemcovavror s assensrnns 50-13
504442 DECnet-MicaPhaseVcoiainsavesecsssscnsnnssns 50-13
504443 Remote Procedure Callscotvevimanccasonenssns 50-13
50.4.4.4.4 Distributed File Services (DFS)c.ccvvianinmnvinncan 50-14
504445 JobController Server « -« i s s v i v iseat s st a8 wrn e sniee 50-14

50.5 Special Challengeso vt isaeeesirr e 50-14
506 Outstanding ISsuesocovenarivrasssessnsasensnosscns 50-14
CHAPTER 51 MICA COMPUTE SERVER SUPPORT 51-1
R A R Rt i) RO S s SR AR e R A R 51-1
B1IY GORIB. « s« b ovs s 8705 8 n koo & SHPWNDAS Wrataih g arigie iohu: dxh Siens pRaly &0 b3 51-1
51.11.1 ActivationofaMicalmage oo vvn st crnens 51-2
51.1.1.2 Application Integration Architectureccovccvernrveanen 51-2
51.1.1.3 Support for Development Toolso v innree s 51-2
51.12 COmPOnents . . . s oo vs envovensnssnesiosssorsansdaulsgossies: 51-2
51.12.1 MicaComponents:coesssnssstccsensnsssoannnssns 51-3
xix

B —

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

CHAPTER 52 VMS COMPUTE SERVER SUPPORT 52-1
BB VMM 1« e - oo 4 o5 & o 5 opumatio s s s pitin o s s o and anos sy SUNS
52.1.1 ROGUITEMONES . : < & o sisiais s ais/ass & e sis v oimeeosssssssssshrssbsesa :_:2-:
G2.1.2 AsSUMPLIONS . . . » < o cieoe n ve v v s e s 515 SiE A e e S S s E 2 S isie by winie :_’2_-
52.1.3 Functional Description« s s ceeseaasaonssesscns i 52-2
52.1.5.1 TR0 ACEVREION . o ¢ « o 0.0 0 v cressis LmPia o 08 5,008 48 5 880 BE 48 20500 52-2
52.132 RPCCallsfor VMS Servicess st 622 onnnssssaneens . 52-2
52.1.8.83 Condition Handling «cccoosmoseosomenesespensss . 52-2
82184 Termanabion. 5. s s.onie s b o & 5 Slewab odi s e arE AR TRy s aaaalia 'y aiv g 52-2
D3:1.3'0' DebugrerBuppart '« - ole o L a e o aié e e e tainis a6 eeeia e e = e 52-2
CHAPTER 53 ULTRIX COMPUTE SERVER SUPPORT : 53-1
53.1 Overview . e .. B8-1
313 Coals i ihas: SRR i BB oo NI, B0ttt HiaaniBl « «
53.1.1.1 -Execution of a/ Mica Image . . sisias corsmmysis s il amasie 5 d sbolalate o 53-1
53.1.1.2 Access to the Client Environment. v v e v v a v v v s o s v ennssnes 53-1
53.1.1.3 Development Tool Support v v v v v v v v s s v s vt o msnns. < S R -

53:1.2 Fanktional Deacription: o &'2 5056 boatdaMlias. o « Snamrsusad? et st s dalk's 53-2
53.12.1 The Client Context Server« «i s s s 65 505 <o s 5585 s v o5 s onnes 53-3
53.1.2.2 Mica Program Development on ULTRIX\ oo oo v ir . 534

CHAPTER 54 PROTECTED SUBSYSTEMS ANDRPC 541

DEL OVBEVIOW .+ 4o o v aiiis & o motasie ¥ bea it 4e 8ot S is NS vyl A ERNES. Ha-l
54.1.1.1 Functionality for Mica System Components _ . . 54-2
54.1.1.2 Functional Basis for Protected Subsystems 543
54.11.3 Easy Migration to Corporate RPC D43
54.1.1.4 Hide RPC Usage Behind the Stub Generator 54-3

5413, Nongaals & 2. 5 iniog, alamd i), o IO el el £ 544
VR.13.1. 'Oetomelr WARIBMLY . (e Drmvmmhe o o v sie o ins s s i e e b s 544
64.12.2 All-Encompassing Mechanism 544
54.1.2.3 Interoperation with other RPC protocols 544

§4.13 Communieations Traneiort s i wirsiome s » rommss b s ot L 54-5

R B . o sitnin s = e s o e wate ae g e R | N . 54-5

CHAPTER 55 RPCSTUB GENERATOR 55-1

POSLSOeawbom. o Wopich M blnsiainvio/ua s o o SRR ST b L S 55-1

55.1.1 Requjrements,Goals,andNongoals Ta s s e L) B 2 5 1 55-2
85. 1.1 Requiremaots; i s smi o i ooy oo Tl bs ol GF Naasid B LTS BE_ 9
BELER Gl - ot L s A s f?—d
BB LLD Nongodls £ T o L et = e T a.:)—::

55.1.2 Operation of the Stub Generator ...,~ Ttrrrreeees ??_\

55.1.3 Implementation Strategy itz ---------------- ;;:43

66.14 Dependencies,.......

R EE—————

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

CHAPTER 56 AIAUSERINTERFACEc00ivvvanaronssnnis 56-1
DR ORI o s o e o e e N A e e« o o A R sl A e o s r e ids 56-1
B R R i e v BB s e S g T N R AR A - ok 56-1
BE12 DECWINAOWE . . .l o oain onn e S Sithanily SOpUN Moot oo 56-1
56.1.2.17 The X Window Syatemil Suissel el 2ol RNl ik Biass 65, o v 8 56-2
56.1.2.1.1 DECwindows Server and Device Drivers00... 56-3

56.1.2.1.2 Network Protocol and Transport Mechanism 56-3

56.1.2.1.3 Xlib and Xtoolkit Programming Libraries 56-3

56.1.2.2 Application Programming Libraries.ot iiviinnonn. 56-3
SBIRRY. Tha DECLooTKIS s i SRt o o aps tids s & b 58 R 4540 2p8 8.9 €5 56-3
S6122 2 DDEF Toolluit it Svalieivam Saassaidsh o g s o & v 008 Ay Sip Enmte w5 56-3

56:1.2:3 Tmplonmontation: SIrategY « v vs v s ¢ s o0 s nisienis s sisiie sis s scatsNis = 95 564
58134 Dependentias™ , FI TN L - 03w d 2 im0 d s s R e R he) 564
CHAPTER 57 MISCELLANEOUS RUN-TIME LIBRARY ROUTINES 57-1
T e R T b o Pt R e b d e e s kLR 57-1
57.13.1 Goals andl RBQUITEMBIILE i'L 0% < & u viere & 6 ain s o e ¢ cuii s Are. 6 0 woe sk el y ke 57-1
£7.1.2 Low-Leval Math TEOUBINNE 11-vo0e 50 a10rc ogs siava 4 olais a5 s o #0 e o) pawmonts 4o 57-2
57.1.3 Common Multithread Architecture Routines . ,o 57-3
57.1.4 Print System Model Client Routinesc.cccicicnvimrsvasmesnn 574
718 Open I8BUOE ; » » v o0 o o 5002 o pomsiinnt® ST spples 216 wumincnierslie i meninty Bz« 4 s B 574

CHAPTER 58 APPLICATION RUN-TIME UTILITY SERVICES 581

R R e T T RS S A s B il el i ST e T e R MR PR A R L O 58-1
58.1.1 Coals and Requirements , o oo a0 v soos o a0 paomnessessonsses 58-1
RS AR ROUTION . 5 5t s o siuiri & Vs Alets s me o b to i 3 nd g s & VR it s ahhgs 58-2

58.1.2.1 User Mode Virtual Memory Allocation/Deallocation Routines , 58-2
58122 Condition Handling Routin®es . . . « «sv e s 5 nie ais e o 6.8/6 5.0 90 dis s o 58-2
58.1.2.3 Date and Time ConversionRoutines0t 58-3
BR. 124 Strine Mapping Routinmd« o0 orumnms speiaiste egisimmsadama's « i 584
58.12.5 Process Information Routinesot vei v v vv s s avinaacnsensse 58-5
58.12.6 Command Language Interpreter Interface Routines 58-5
§8.12.7 Data Conversion Boutines . .« . /s e s 5 e elals s hsfatonraloie s o ais 58-5
58.1.2.8 Text String and Message Formatting Routines 58-5
58.12.9 String Routines . ..« . ccuovvssavosesvransionsssssnsosneess 58-56
58.1.2.10 Thble-Driven Parsing Routinies . & o T s o5 v s o o s o s 5k s s s aies asalss alt 58-5
[R T B T T R S e s e A T R RO e 58-6
BE.1B ODSO THINES. . « . coont v v 5 v 0 a s o gus tividis sie 3indos o 5B aiBuA® o 800 Sap o8 bos 58-6
O R RIY. . L Y om0 s RSO - 4 2 LN e LY St | Glossary-1
xx|

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

EXAMPLES
: . s e] vih « o NIRRT
14-1 Prototype Object Creation Routine o
14-2 Prototype Get/Set Information Object Service Routines, &5
14-3 Sample System Service Definitioncoveuweenas g
50-1 Typical Glacier Program Development cuvvvwuuisnnnnnn., 50-5
FIGURES
1-1 Glacier Client/Server Modelo oo v vs v e nnnnns . -4
3-1 Mica Status . . . : 3.2
3-2 HbSstatyin valaa-p = nb b o be e s 14 TR, o el R DAL irv " 3.3
6-1 Complax UTPTIAYOR! 54 i« o bordie aia s s b 5 ava Bdiiie o T g L0l UL
7-1 Virtual Address Space Layout000 0., AR 7-3
81 Overview of Mica’s I/O Architecture S PR |
9-1 Dispatching System Services Eatl 8-2
15-1 Direct Access Mass Storage Function Processors and Clients 15-2
15-2 . s ks T S b I S e g 154
15-3 L/O Structure Layout for a Shadowed and Striped Files-11 Volume » 15-6
1564 /O Request Packets Used to Satisfy the Sample Request ; . 15-7
16-1 Magnetic Tape Function Processors e e e : cv e 162
17-1 SCS Function Processor in the IO = e e 17-2
19-1 How the NI Function Processor is Implemented s el na 154
19-2 Mapping of Transmit Buffers to Actual POCRINC 0 I DR, BA sy 19-5
21-1 How Threads Read and Write through Message FPUs . . ., 21-2
22-1 Layout of PDM and Diagnostic Subprocesses e 22-3
24-1 LocationofDFFPLayerinLheI/OSystem _ s 3-8
25-1 Relationship of Files—11 Data Structures, ! 25-3
29-1 Object Module and Image File RO o = b W | _ | 29.3
32-1 System Management Compotientso SR E LG 7 2 51 = B ..o 322
33-1 Relationship of OPCOM Oornponenity .. 31 Jowpeay maum s o . 33-2
34-1 ConﬁgurationManagerDesig‘n................._. T) 344
o T + ysead-Only Byateini Volume Avem, ih g sie v oot R U iy 351
o 1 ad Vil SslentNolunh Aiwnsicl, s kb et e T AR 35-2
T abethce el OEBSR Lty 3 o ke SR sy Tl 3:_._;
e« | aEler CommonsioR . e o e Y ed sy 3;,_;
38-2 Cheyenne Communications, . , . . .~ """'Tttrresseeaian 3;-_3-
38-3 Software Components of the Network , """ “""ttrtesens . 3acs
39-1 The Components of BECREEMIC o . ryn LR SRR N TS a5 g 3 9
39-2 Relationship of Ports and Channels in a Viﬂu;:i C:rr:uu. ‘‘‘‘‘‘‘‘‘‘‘‘ g::
41-1 Overview of DECnet—Mica Network Management angd E,‘ -
41-2 Details of DECnet-Mica Network M vent Logging 41-2
anagement and Ev Lo 1-3
42-1 Source Queue States ..., .. ent Logging ‘
42-2 Sink Queue States """""""""""""""" b ‘2’1
43-1 DFS Clients and Servers in a Network v, oS e W s e R 4 42-5
45-2 MEcaDFSSystem....., . .t tttetessaeasin.iin ‘g 4:::;’
48-1 Highly Available Cheyenne Co s DGRt S B B8 o s waed '
48.9 Software Layering '-11‘:18-1!.11:“..10!1 48-2
48-3 Client-Resident Cheyenne Communication Components _ ,. .. '. .. I_ ‘. :::: ‘;:-21

xxli

484
49-1
51-1
53-1
54-1
556-1
56-1

TABLES
5-1
33-1
42-1
42-2
42-3
57-1
57-2
58-1

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

Cheyenne Remote System Managementccouenorcenn 48-13
Transaction Services Block Diagram c o vv it i e e 49-3
Mica Compute Server Support «ccviae e snrresnsesn 51-3
ULTRIX Compute Server Supportot vierrarraroersens 533
The RPC Architecture Model:cicuieeinnnoeasransonnane 54-2
The Flow of a Remote Procedure Call it iiinenns 55-2
DECwindows Componentssccoveueorssosnsvacssrnssss 56-2
Object Architecture: Terms and Definitionso neennn 5-2
Client System Management Interface Commandsocoovenen 33-3
Message Queue Statesot ec sttt 42-3
Source Queue State Transitions. v v v v v viee s 424
Sink Queue State Transitions0 e et 424
Low-Laval Math RROMEINeH -« ss «laia: suniruls soays &raisseis (8 & einiais o gheie = wFa o 57-3
CMA Roubinms . <+ » v o 057603 o 5w\ losa i s, & ala1a & siblcwi)ie sieiinieto e, w/n-vise sLver Al & 574
High-Level Math Routines o0 veeneaiasninncennnnns 58-6

xxiil

P o nimo MRREE T R R T

General
This set of chapters covers general topics relating to the Mica operating system.

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

CHAPTER 1
INTRODUCTION TO MICA

1.1 Overview

Mica is DIGITAL's proprietary operating system for the 1990s and beyond, targeted initially for the
PRISM architecture.

The most important aspect of the design of Mica is the emphasis on building a modular system base
for the future development of all types of software products. Mica is explicitly designed to break
the "product P cannot ship until feature F is in the operating system" cycle, by allowing most new
functionality to be added without modifying the base system. The modular design features and strong
base-system functionality of Mica are summarized in this Introduction.

Mica has also become a vehicle for work in distributed system design. The two initial FRS products
are the Cheyenne database server and the Glacier compute server. Both exploit client/server models,
with interactive front-end processing being handled by a potentially large number of client systems,
and high-performance compute- and/or I/O-intensive processing handled by a Mica-based back-end
server.

The entire design of Mica is rich in innovative design concepts, with its object-based executive, layered
/O system, protected subsystems, and the exploitation of a thread-based architecture, to name just a
few points. In addition, the system is written in a high-level language, to enhance its maintainability,
extensibility and portability to future hardware architectures. Rounding off the base functionality of
Mica is a set of superior compilers that exploit the underlying hardware and software functionality.
This includes a FORTRAN compiler supporting automatic vectorization and decomposition.

The following subsection describes what makes Mica ideal as an expandable base system. The second
subsection describes the process structure of Mica. The last two subsections briefly describe the initial

Mica-based FRS products.

1.1.1 Expandable Base-System Functionality

The following subsections present the modular design features of Mica, which allow it to be expanded
at four different levels.

1.1.1.1 Object Architecture

Fundamental to the design of Mica is the object architecture. Objects are abstract entities provided
by the system that require a data structure to represent. Objects are organized into types defined
in terms of the operations that may be performed on them. These operations are implemented by a
collection of procedures referred to as object service routines. A few examples of objects are events,
sections, processes, /O channels, device units, volumes, open files, and timers.

The most important aspect of the object architecture is that it provides a single mechanism for
controlling the identification, naming, visibility, and security of all system entities. There is a single
identification mechanism for all objects in the system, based on a 64-bit object ID. Optionally, any
object may also have an ASCII name, which may be translated (qualified by object type) to find its ID.
Objects are referenced via object IDs stored in object containers at three levels of visibility: system,
job, and process. Visibility of objects may be allowed for all processes in a system, all processes in a

Introduction to Mica 1-1

D I B TS el T e S

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

job, or a single process, depending on whether the object is created in a system object container, job
object container or process object container, respectively. 5

j i ity i object can optionally have an access
Objects are the single focus of security in the system. Every :
coﬁ‘trol list (ACL), wgilajch allows protection to be specified on a]:;L:r-cnllz;f_m:tL basis. The ACL is matched
against the security profile of any thread attempting access to the object.

Therefore, at the lowest level of the system, new functionality may be added by loading new object
types and object service routines into the system.

1.1.1.2 Layered I/0 System
The /O system of Mica is implemented as a layer on top of the object architecture.

The VO architecture is designed to facilitate the successive layering of virtual support on top of
actual physical devices. Each layer is implemented by an entity refgrred to as a function processor.
Function processors implement many levels of 1/O, including those implemented in VMS by device
drivers, pseudo drivers, ancillary control processors (ACPs), and extended QIO processors (XQPs).
Mica has additional function processors to implement such things as disk striping, disk shadowing,
each of the DNA network layers, and so on.

Function processor units (FPUs) are objects created for function processors, to which channels may
be created for subsequent /O operations, For example, the Files-11 function processor has function
processor units for volumes, device function processors have function processor units for devices, and
so on.

Function processors may be layered by creating a channel to one FPU and referencing the channel
in another FPU,

Thus, the /O architecture provides another mechanism by which new functionality may be added
to the'sy.stem in a modular fashion. In fact, by implementing new function processors that support
pre-existing function processor interfaces, it becomes possible to “plug in" new functionality such as
a new file system or network transport.

1.1.1.3 Protected Subsystems

Protected subsystems are the favored way of adding functionalit : ,

i e B e el e o el Sttt
e s P do not compromise the i’.'“‘eg.ﬁty of the system. Protected s&}'t@ms also
1 entations via network RPC.

Some examples of functionality implemented as . .
Manager, System Management, and OPCOM. protected subsystems in Mica are the Configuration

1-2 Introduction to Mica

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

1.1.1.4 Client/Server Tools

The following components, which are part of the client/server interface for Mica, could be useful in
developing other client/server systems:

* The underlying Mica network architecture, including network RPC.
* The Distributed File System (DFS), which implements file access within a distributed system.

* The server-oriented job controller, which handles remote image activation requests on a Mica
server. It also facilitates binding back to the client for accessing the initiating terminal and
retrieving environment information (such as logical names, defaults, and so on) from a "client
context server” on the client.

\Cheyenne uses a subset of the above.\
Figure 1-1 depicts Glacier as an example of a client/server model.

There are some good reasons why future software products after Cheyenne and Glacier may also wish
to use a client/server implementation. In the two initial client/server products, the user interface
is removed from the powerful Moraine server system to frontends that have much less compute
power. But since the user interface is mostly characterized by high I/O latency and low compute
requirements, the user still receives good response time. If, on the other hand, the server implemented
the user interface directly, and attempted to support hundreds of users simultaneously, the aggregrate
compute requirements for the user interface could be substantial. The server is thus much better
utilized and is capable of supporting more users if it is limited to work dispatched to it from clients
that is more characterized by high I/O bandwidth and compute requirements.

1.1.2 Process Structure and Threads

Mica supports job and process objects, which are very similar to jobs and processes in VMS, It also
supports user objects, which represent users that have been validated in the system and are allowed
to have jobs. However, a very important aspect of the Mica architecture comes from the fact that
Mica supports the concept of threads.

A thread is the entity of execution within a process. All threads within a process share the same
address space and object containers, but they have separate stacks, registers, hardware context, exit
handlers, and AST queues. A process may support multiple threads of execution in parallel; in fact,
these threads may run on multiple processors at the same time.

Mica employs multiple threads to increase the level of parallelism within the operating system itself.
More important, however, is the use of threads in compute-intensive user software. Compilers for
Mica can generate code that uses threads to implement parallel decomposition.

Through the use of threads at both the system and application levels, Mica is inherently a parallel
system. This fact further enhances Mica’s suitability as a powerful software base for the future.

1.1.3 Cheyenne Database Server

Cheyenne is a highly reliable, highly available database server implemented on Mica. Cheyenne
consists of one or more Stone systems with the Quartz relational database software, front-ended by
VAX client systems. The client/server communication uses the DIGITAL Standard Relational Inter-
face (DSRI) protocol. \Use of the evolving corporate DIGITAL Distributed Transaction Processing
Architecture (DDTA) is yet to be decided.\

The main goals of the Cheyenne product are absolute data integrity, high reliability and availability,
and high performance. As a basis for Cheyenne in meeting these goals, Mica provides the following
important features:

* Transaction services with logging, recovery, and warm standby

Introduction to Mica 1-3

LA T R R SN SR .

ta
Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

Figure 1-1: Glacler Client/Server Model

CLIENT SYSTEM

USER
INTERFACE

REMOTE IMAGE
ACTIVATION

CLIENT/SERVER
COMMUNICATION

CUENT

MICA SERVER
JOB
CONTROLLER
USER SERVER
PROCESS PROCESS
CLIENT/SERVER FILE
COMMUNICATION SYSTEM
EXEC:
Protected Subsystems Memory Man
User, Job, Process, Thread VO System
Object Arch
SMP
KERNEL

14 Introduction to Mica

— .

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

* Disk shadowing

* Automatic hardware reconfiguration, including a spare strategy for shadowed disks
* An aggressive strategy for the handling of transient machine faults

* Threads for parallel processing of transactions

* A special interprocess communication mechanism for database processes

These features will also help Mica to evolve as a strong base for general purpose transaction process-
ing.

1.1.4 Glacler Compute Server

Glacier is a high-performance compute server for scientific and other compute-intensive applications.
A typical Glacier system consists of a Glacier-based Moraine SMP system with scalar-vector or scalar-
only modules, front-ended by a potentially large number of workstations or VAX frontends. The
client/server interface employs RPC, and is designed in such a way as to allow the support of a
variety of systems as front ends.

The main features of Mica exploited in Glacier are:

* High-performance and reliable disk I/O via striping and shadowing

* The use of multiple threads for parallel processing of single-stream applications
* Large virtual and physical address space

* The Distributed File System (DFS)

* A get of superior compilers

* The Applications Integration Architecture (AIA)

An important part of the compute server concept is the philosophy of allowing multiple client systems
to provide their own user interface and software development environment, complete with client-
specific command languages, editors, and file utilities. This allows the user to develop compute-
intensive applications on the client system in a familiar environment (initially VMS, later ULTRIX
and others), and then execute these applications transparently on the server. Some compute-intensive
DIGITAL software also executes on the server, such as the compilers and linker.

The server itself is designed to support portable applications that do not specify system-specific calls.
This is made possible via the use of state-of-the-art standard compilers (such as FORTRAN, C, Ada,
and Pascal) and the Applications Integration Architecture (AIA).

1.2 WDD Structure

Following is a complete list of the WDD chapter overviews, in the order they appear in the Mica
Overview Document. They are grouped into logical areas, which are named in the following list in
all uppercase, The chapters within each area are indented below their corresponding area title.

GENERAL
Introduction to Mica
Naming Standards and Pillar Coding Style Guidelines
Status Values, Messages, and Text Formatting

EXECUTIVE
The Kernel
Object Architecture
Process Structure
Memory Management

Introduction to Mica 1-5

_.|

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

/O Architecture

System Service Architecture

Security and Privileges

Condition, Exit, and AST Handling

Booting

System Dump Analyzer and System Debugger

EXECUTIVE ROUTINES
Executive Routines

/0
Direct Access Mass Storage Function Processors
Magnetic Tape Function Processors
System Communication Services
XCA Function Processor
NI Function Processor
Console Support
Message Function Processor
PRISM Diagnostic Monitor
Error Logging

FILE SYSTEM
Disk File System Function Processors
Files-11 ODS2 Function Processor
Record Management Services
Caching
File Management Utilities

IMAGE RELATED
Object Module and Image File Format
Linker
Image Activation

SYSTEM MANAGMENT and ADMINISTRATION
System Management
Operator Communications
Configuration Management Software
System Volume Layout and Software Installation

TESTING and PERFORMANCE MEASUREMENT
Performance Monitor
User-Level System Exerciser

NETWORK
Mica Network Overview
Network Services
DNA Naming Service Clerk
DECnet Startup, Shutdown, Management, and Logging
Quartz Interprocess Communication

DISTRIBUTED FILE SERVICES
_ Distributed File Service Introduction
Distributed File Service Management
Distributed File Service Communication Funeti
Distributed File Service Client Function Proces::rpmcemr
Distributed File Service Server

DATABASE SERVER
Cheyenne Overview

Transaction Services

1-6 Introduction to Mica

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

COMPUTE SERVER
Glacier Overview
Mica Compute Server Support
VMS Compute Server Support
ULTRIX Compute Server Support
Protected Subsystems and RPC
RPC Stub Generator
AlA User Interface
Miscellaneous Run-Time Library Routines
Application Run-Time Utility Services

Introduction to Mica 1-7

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

CHAPTER 2
NAMING STANDARDS AND PILLAR CODING STYLE GUIDELINES

2.1 Overview

This chapter defines the naming conventions to be used for names accessible from user-mode programs
throughout Mica. It also presents coding style guidelines for all code written in Pillar, the software
development language for the Mica operating system.

21.1 Goals

The overall goal in setting naming standards and coding guidelines is to ensure consistency across
code written for the Mica operating system. Specifically:

* Naming standards:
— Present a consistent, easy-to-remember name space to users and developers
— Aid future developers in maintaining and extending the software

— Ensure that customer-written software is not invalidated by future releases of DIGITAL
products that add new names

* Pillar coding style guidelines:
— Ensure that Mica system software written in Pillar is more maintainable and extensible

— Improve the overall presentation of Pillar code examples in Mica documentation

2.1.2 Naming Standards

Naming standards will be used to define names for all public software interfaces for layered products
and bundled Mica software. The Naming Standards and Pillar Coding Style Guidelines chapter
provides conventions for:

* Faclity names

* Module names

* System service and system routine names
* Procedure parameter names

* Mica system files and directory names

* Named types

* Global variables

* Compile-time named constants

* Message names

* [Item codes used in item lists

Naming Standards and Pillar Coding Style Guidelines 2-1

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

System and group logical names used to alter, define, or control a facility

Compile-time facility macros and procedures

2.1.3 Pillar Coding Style Guidelines

i i ideli ill b d by all Mica software developers to promote code consistency
Zlc}'l:sl;. ﬁﬁcg‘;l}ieup;ezo;qwar:. "i‘sl'?e N:ming Standards and Pillar Coding Style Guidelines chapter

provides conventions for:

Statement indentation policy
Capitalization policy
Source line length

Order of declarations

Format and policy of multi-line statements and multi-statement lines

Block and line comment format

Use of "whitespace" to improve code readability

Pillar statement formats including:

Executable statements such as IF/THEN/ELSE, CASE, and LOOP
Record, enumerated type, and set declaration formats
Procedure declarations (external and procedure completions)

Procedure invocations

Module and procedure layout format

2-2 Naming Standards and Pillar Coding Style Guidelines

h__i

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

CHAPTER 3
STATUS VALUES, MESSAGES, AND TEXT FORMATTING

3.1 Overview

A status value passes information regarding the success or failure of a process, thread, /O service,
or procedure back to the thread which created or called it. Status values are also used to organize
and index messages that convey information about status values in textual form.

This chapter:

Defines the format of Mica status, the data structure which contains a status value.
Defines the format of status values.

Describes the mechanisms used to translate status values in text strings.

Describes the organization of messages and message files.

Describes the use of messages and message files for internationalizing text.

Qutlines the text formatting support provided on Mica. While such support is an important
part of message access and display, it is general purpose in nature and may be used in any
programming situation where text formatting is required.

3.1.1 Goals

The primary goal of this implementation is to provide a consistent, easy-to-understand, and easy-to-
use way of organizing definition of and access to status information, message text, or both. Within
this general goal are the following specific goals:

To provide a local message capability which allows message definition and access without the
requirement of facility registration

To provide a convenient way of separating text from an image that uses it, and to allow the text
to be rewritten in another natural language without affecting the image

To describe and encourage the use of the message capabilities for all user-displayed text in a
program, not just status messages, as a way o internationalize programs more easily

To provide a text formatting capability that addresses internationalization requirements

Status Values, Messages, and Text Formatting 3-1

T

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

3.1.2 Status on Mica

Mica status is 64 bits. The first 82 bits are the status value; depending on the type of status, the

second 32 bits may or may not be used. Mica defines three types of status: fﬂgf;f?"fgiﬂf’fd status,
local status, and internal status. The format of each type is shown in Figure :

* Facility-registered status—The status value contains a number indicating which facility gener-
ated the status. The second 32 bits are not used.

i i for the messa

e Local status—The status value has the local status bit set. A qu 25 bits are used fo fe
numb:r as a facility number is not required. The second 32 bits of the status contain the address
of a message data structure used to acquire the message text.

e Internal status—This type of status is used internally by a particular faclity. The first 32 bits
is a facility-registered status value. The second 32 bits may be used in _wlhatcver way r._he facility
desires. An internal status normally does not appear pulside the facility that uses it because
outside the facility, the second 32 bits of the status are ignored.

Figure 3-1: Mica Status

L]

N

FACILITY-REGISTERED STATUS VALUE

(undefined)

Facility-registered Status

kLl

[+]

_LOCAL STATUS VALUE

MESSAGE DATA STRUCTURE ADDRESS

Local Status

k) -

FACILITY-REGISTERED STATUS VALUE

FACILITY-DEFINED INFORMATION

Intemal Status
FIGE
Pillar's predefined data type STATUS is 64 bits. For lan

values, such as C and FORTRAN, procedures which return local status should include an optional

argument to the procedure which returns a condition record. Thi oo :
64 bit status, all of which are required for local message mtrievals, condition record contains the full

guages which do not support 64 bit return

3-2 Status Values, Messages, and Text Formatting

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution
3.1.3 Status Values

There are two kinds of status values: facility-registered status values, and local status values. Status
values are longword values used to:

* Indicate the exit status of a process

* Indicate the exit status of a thread

* Return status from a remote procedure call

* Return completion status from an I/O request

* Return status from a procedure or function call (such as a run-time library function)
* Organize local messages, that is, internal messages within a program

Additionally, values in status value format are used to organize and access nonmessage text local to
a facility.

Status values have the binary format shown in Figure 3-2:
Figure 3-2: lib§status_value

31 30 2 28 7 16 15 3 2 o

I JClF|L FACILITY_NUMBER MESSAGE_NUMEBER SEVERITY

Facility-registered Status Value

ilelF|L LOCAL_MESSAGE_NUMBER SEVERITY

Local Status Value
FAG1

The sections below describe each field of a status value.

3.1.31 SEVERITY Field (bits <2:05)

The severity field of a status value indicates the basic success or failure of the producer of the status.
Severity is represented as a binary value in the range 0 to 4 (values in the range of 5 to 7 are reserved
to DIGITAL).

Successful completion is indicated by an odd-valued severity. Even severity values indicate partial
or complete failure.

3.1.3.2 MESSAGE_NUMBER Field (bits <15:3>)

The message_number field of a status value is used to identify which of a set of several possible
conditions this status value represents. The message routines use this value to index into a message
section to obtain the corresponding message text. This field is defined only for facility-registered
status values,

Status Values, Messages, and Text Formatting 3-3

A ek R S M R

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

3.1.3.3 FACILITY_NUMBER Field (bits <27:16>)

num i i i f the status value Each
Th ili ber field of a status value is used to identify the producer o : :
fa"?hfg’ct;g& have i;ts own unique facility number. This field is defined only for facility-registered

status values.
The facility number 0 is reserved for system-wide status values. The facility name corresponding to
facility number 0 is STATUS.

3.1.34 LOCAL_MESSAGE_NUMBER Field (bits <27:3>)

The local_message_number field of a status value is used to index into a message section to obtain
message text for a local message. This field is defined only for local status values.

3.1.3.5 LOCAL_STATUS Field (bit 28)

The local_status field is used to indicate that the status value is local. Local status values are used to
organize facility local messages without the requirement of facility registration. Local status values
have this bit set; facility-registered status values have this bit clear.

3.1.3.6 FACILITY_SPECIFIC Field (bit 29)

The facility_specific field is used to indicate that the status value is specific to a single facility
Status values with this bit clear are used to identify system-wide status codes, for system and shared
messages.

3.1.3.7 CUSTOMER_FACILITY Field (bit 30)

The customer_facility field is used to indicate that the number specified in the fadlity number field
is a customer facility. Status values for DIGITAL facilities have this bit clear.

3.1.3.8 INHIBIT_MESSAGE_PRINTING Fleld (bit 31)

The inhibit_message_printing field is used to inhibit display of the message b g
7 T e ; : Y message outpul rou
tines. This bit is set by system routines that display the re Iti i
bt Glaglayed burioe. play Sulling message, so that the message is

3.1.4 Status and Text Messages

Status messages are text strings used to describe a status value to i guage
complete status message consists of: - s G ki fy

. ig;gclljty name—A short string of characters indicating the facility to which the status is regis-

* Severity—A single letter indication corresponding to the severity of the status

. breviated condition nam ; . o
gb anr:?e“: condition e—A short string of characters identifying the status in an abbreviated

* Message text—A string of characters describi : . - .
parameters specific to the error cccurrence. ing the status in detail, possibly with formatted

Text messages are text strings used to provide non status : :
: related infi :
language. A text message is the same as the message text portil:m)ofc::-m.l mt::: :eamus: i

3-4 Status Values, Messages, and Text Formatting

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

3.1.4.1 Status Message Format

By default, status messages are assembled in the following format:
SFACILITY-S-ACONDNAME, message text

"FACILITY" is the facility name, "S" is the severity, and "ACONDNAME" is the abbreviated condition
name. A user or facility may request that certain parts of a status message be excluded when the
message is assembled. The default message format may be changed with a CLI command (such
as SET MESSAGE for DCL). A logical name is used to convey the current message format setting
between a CLI running on a client system and a program running on the server. :

3.1.42 Message Source Files and Compilation

Messages are created in text format using a text editor. A file consisting of a collection of facility
name, abbreviated condition names, severity condition values, and message text is called a message
source file, Message compilation is the process of creating a message object file from a message source
file. Mica provides message compilation capabilities as part of the Pillar compiler.

The message compilation facility provides a way to internationalize messages by allowing the message
text and formatting information to be separated from the image file. The message source file is
compiled twice:

1. The first compilation produces a direct message object module containing the facility names,
severities, abbreviated condition names, and message text. This module is then linked to form
a message image file which is accessed when the message text is required.

2. The second compilation creates an indirect message object module which is linked with other
program object modules to form the program image file. In this case, the compiler generates the
message object file without the message text itself. Instead, the data structures which would
normally point to the message text contain the specification for the corresponding message image
file that contains the message text.

Once a particular message source file is translated into another natural language, the first step
described above is repeated on the translated file. The result is a message image file in another
language that can be accessed by the application without requiring that the application be relinked.

3.1.43 In-Memory Message Organization

Mica status value and message support stores message information in a message section. Message
sections are pointed to by message section descriptors. There are two types of message section
descriptors: the direct message section descriptor and the indirect message section descriptor.

* Direct message section descriptors contain a pointer to a message section that is generated at the
time the message file is compiled. This is the case when the entire message section (including
text) is linked with the image.

¢ Indirect message section descriptors contain a pointer to the name of the file containing the
message section and a null message section pointer. When the message section is first accessed,
the message image file containing the corresponding message section is read into memory and the
pointer to the message section is updated. This is the case when the two-step process described
in Section 3.1.4.2 is used to create internationalizable messages.

Message support also allows message sections to be chained together. This allows multiple language
versions of a given message section to be available at the same time. Such support is required for
multithreaded server processes whose clients may have different default languages.

Status Values, Messages, and Text Formatting 3-5

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

3.1.44 Accessing and Displaying Messages
Mica provides three routines for accessing and displaying messages:

1 ine i i . This routine takes
* The libSget_message routine is used to obtain and format status messages '
a condition record as input and obtains and formats the status message corresponding o the

status value in the condition record.

* The lib$display_message routine is used to obtain, format, and display status messages. This
routine takes a condition array as input and obtains and formats the status messages corre

sponding to each condition record’s status value.

* The lib$get_text routine is used to obtain and format a message corresponding to a supplied local
status value and message section.

Translation of a status value to a message depends on the type of status:

* Facility-registered status values—Translation is accomplished by searching one or more message
sections. Each process has access to two groups of message sections; image and system. Image
message sections are those loaded with the image. System message sections are those shared
across the entire system. The translation routines search image message sections first, followed
by system message sections.

* Local status values—Translation is accomplished by searching the specified message section. If
the specified message section does not contain the index specified by the local_message_number
field, the translation fails. No other message sections are searched.

3.1.5 Text Formatting

Mica status and message support also includes text formatting capabilities. The libSformat_text

routine provides support for a new set of formatting directives. Specific goals for this functionality
are.

* To move data type and access information out of the formatting control string, placing it with
the arguments instead

* Toprovide full parameter positioning and formatting capabilities required for full international-
1zation support

The directives provide:
* Formatting information such as width, radix, and fill

‘ lr;c:is;‘tll:gn:g information that allows parameters to be positioned differently for different natural

* Special formatting requests such as system date and time
* A means of specifying that directives are to be repeated in a controlled fashion

3.1.6 Open Issues

* Message compilation support will be provided by th Pil -
Pillar Message Compiler will not occur until la)t:e c:]m‘l;:: Clgglapll% f:::{:f Deve::pmqi-nt of the
and message data structures may have to be modified as the message mmpicl,?:"s clre‘\;"tel:;‘“;:h:l.:.u&re

3-6 Status Values, Messages, and Text Formatting

Executive

This set of chapters describes the components of the Mica executive.

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

CHAPTER 4
THE KERNEL

4.1 Overview
4.1.1 Requirements

The kernel is the lowest layer of software in the system and, as such, is positioned closest to the actual
hardware. The kernel is a single layer of code that must implement all interprocessor synchronization,
thread dispatching, exception handling, and fork processing. It must also keep the system time and
provide services to device drivers for handling interrupts.

The kernel presents a formal interface to the next higher level of software (the executive) that is free
of the problems associated with synchronizing various activities on multiple processors and which
automatically implements symmetrical multiprocessing (SMP) capabilities.

The kernel attempts to implement no policy. That is the province of the higher levels of software
in the system. There are, however, some algorithms that must be implemented in the kernel for
efficiency, and therefore, some policy will be included in the kernel. Such a case is the way in which
the priority of a thread decays over time. For those cases where it is essential for policy to be located
in the kernel, external controls will be provided so that executive software can influence, if not directly
control, the actions of the kernel.

4.1.2 Functional Description
4.1.21 Environment of the Kernel

The kernel runs in kernel mode, usually at an interrupt priority level (IPL) of 2. This is the priority
level at which dispatching occurs. The kernel can be executed simultaneously on all processors in a
multiprocessor configuration, and synchronizes access to critical regions as appropriate.

Software within the kernel is not context switchable, whereas all software outside the kernel is always
context switchable. In general, executive software is not allowed to raise IPL above 1, or otherwise
block context switching, and must use kernel procedures to synchronize its activities.

The kernel is not pageable and cannot take page faults.

All software outside the kernel is written in Pillar. Kernel software is a mixture of Pillar and
assembly language. All interfaces to the kernel are defined in Pillar and exported to other programs.
It is expected that the size of the kernel will be approximately 8K instructions.

The Kernel 4-1

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

4.1.2.2 Interaction With the Executive

' i i ices, Memory management,
Executi ft also runs in kernel mode. It implements system services, me ‘
1.;1;4.=:r-1ev‘|a|:ii :l:je;asr:pport, the file system, network access, and device drivers; and it sets system policy,

Executive software communicates with the kernel via a set of data abstractions called kernel objects,
and a set of operations that can be performed on these objects. Kernel objects are referred 1o by
address and should not be confused with user objects as defined by !.he t_.:bject lrchuect_ura. Kamd
objects are not accessible to user software. An example of a kernel object is an event, which provides

a form of synchronization.

i i i i . They both run in
There is no firewall protection provided between the kernel and executive software y bot
kernel mode and can potentially disrupt each other’s activity. There is, however, a formal interface
between executive software and the kernel, and a well-defined set of rules that must be obeyed.

Normally, the kernel does little or no checking of procedure arguments supplied by the executive;
however, debugging software can be conditionally compiled into the kernel to ensure the correctness of
calls to kernel procedures. For those cases that the kernel does check argument values for consistency,
an error condition is raised via the standard condition mechanism when a parameter value is found
to be in error.

4.1.23 Primary Kernel Data Structures
The following are the primary data structures defined and used by the kernel:

* The system control block (SCB)—The SCB is an architecturally defined structure that contains
an array of exception and interrupt service routine addresses used to service interrupts and
exception conditions. The base address of the SCB is stored in the system control block base
register (SCBB).

* The processor control block (PB)—The PB contains a collection of processor- ific information.
Examples of the information contained in the PB include a pointer to the mmd object of the
current thread, the processor-specific fork queue header, and counts of the interprocessor inter-
rupts that have occurred. The address of the PB is stored in the processor base register (PRBR),
which is defined by the PRISM architecture.

* Anarray o_f pointers to the PBs—There is a pointer to the PB for each processor in the system.
The index into this array for each processor is stored in the WHAMI register for the processor.

* Spin locks—Spin locks are used to achieve multiprocessor synchronizati 1, spi
locks are used to synchronize access to eight kinds of ent.itiei Saoer mation. I e leepel, i

1. Dispatcher database

2. Power-up request queue
3. Power-up status queue
4. VAX port queues
5. Device work queues
6. Active I/O interrupts

7. Processor request
8. Kernel debugger

4-2 The Kernel

- y

Digital Equipment Corporation - Confidential and Proprietary

Restricted Distribution

Dispatcher objects Control objects
Event AST
Mutex Device work queue
Queue Interrupt
Semaphore Power-up request
Timer Power-up status
Thread Process

VAX port queue

* Dispatcher database—The dispatcher database is used when choosing which threads should
be active at any point in time. The database is a collection of data structures that contains
information such as a list of threads ready for execution, and a record of which processors are
executing threads at which priority levels,

* Timer queue—The timer queue is a binary tree of timer objects that are each set to expire at a
specified time.

* Power-up request and status queues—The power-up request and status queues are used to notify
threads when a power recovery interrupt is received by PRISM hardware.

* Performance data—The kernel collects and stores performance data in various private data struc-
tures.

4.1.24 Primary Kernel Functions
The primary functions of the kernel include:

* Multiprocessor coordination—To coordinate the activity of multiple processors the kernel uses
spin locks for synchronization and interprocessor interrupts for notifying other processors of
work to be done. Executive code outside the kernel can use either spin locks or mutex objects to
implement mutual exclusion.

* Thread dispatching—The kernel supports 64 levels of thread priority. The highest 16 levels
are referred to as real-time priorities and the lowest 48 levels as class priorities. The kernel
implements dispatching, which chooses exactly which thread to execute next. Scheduling, which
selects the threads that are eligible for execution, is the province of higher levels of software.

* AST Processing—The kernel provides services for queuing and delivering asynchronous system
traps (ASTs) to target threads. A combination of software state and hardware registers is used
to determine the correct time to interrupt thread execution.

* Interval timer support and the system time—The interval timer is used by the kernel for main-
taining the system time, accumulating accounting and performance information, updating thread
quantums, and timer queue maintenance. The system time is maintained as a quadword count
of 100ns intervals and is initialized to zero when the system is booted.

* Address space number (ASN) Management—The kernel provides for complete management of
the assignment of address space numbers (ASNs). ASN’s are used to tag translation buffer entries
and therefore avoid flushing at every context switch.

* Powerfail Recovery—Powerfail recovery support is provided by the kernel via power-up request
and status objects. In conjunction with raising IPL, these objects provide a driver thread with
the capability to interrupt its execution and/or have a status variable set when a power recovery
interrupt is received by PRISM hardware. Power-up status objects may only be used directly by
kernel-mode code. Power-up request objects are intended primarily for use by driver threads,
but can also be provided to user-mode programs via executive objects.

The Kernel 4-3

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

4.1.25 Performance Data Collection

The kernel collects various categories of performance data during its execultion so that both the
designers and users of the system can analyze and improve its performance. aﬂ“ ?{“3 structures
required to record this data are private to the kernel and, th}erefore. are not directly accessible to
executive software. Executive software can retrieve the following data, however, by calling a kernel

procedure that returns the desired category of data:

* Number of currently computable and waiting threads

* Processor fork queue depth

* Context switch headway

* Number of interprocessor interrupts (for each kind of request)
* Interrupt data for an interrupt vector

* Contention data for device work queues and mutexes

* Processor mode data

* Dispatcher object wait queue depth

4-4 The Kernel

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

CHAPTER 5
OBJECT ARCHITECTURE

5.1 Overview
5.1.1 Introduction

This chapter describes the software architecture of objects. It describes what objects are, and defines
the data structures and operations necessary to support objects.

51.2 What Is an Object?

Objects are abstract elements provided by an operating system that may be accessed by a user or
a program. Typically, objects are defined in terms of the operations that may be performed upon
them (for example, create, clear, set, get information, wait, delete) and their relationships to other
objects. The reason for categorizing these elements as objects is to provide a single, standardized set
of rules for creating, naming, protecting, accessing, and managing them. For example, each object
has a unique ID value (called an object ID) which may be used to identify it. Objects at the job and
process levels are only directly expressible by threads in that job or process.

5.1.3 Scope

It is important to understand that this chapter only defines the architecture of objects, not all object
types. It is necessary that some objects or parts of objects be defined as part of this architecture.

5.1.4 Requirements and Goals

* Software development goals

— Provide an extensible, yet rigorous framework for the definition and manipulation of
executive-controlled data structures.

— Maintain management consistency. The management of objects, in terms of actions taken
to fulfill service requests, should be as object-type independent as possible. For example,
standard routines and procedures can be established for determining whether access to an

object should be granted.

— Provide new object definition support. It should be possible to add new object types to
the system without having to modify existing system code. This means that the interface
between the kernel/executive system software and objects must be well-defined, and that
the kernel/executive need not have knowledge of the internals of all objects.

* Interface goals

— Provide consistent specification. The ways in which each object in the system may be spec-
ified by users should be minimized and kept consistent with the manner in which other

objects are referenced.

Object Architecture 5-1

N Poloh MR,

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

i i ly to a set of objects within

= i i perations. There are some operations that appl
ar:?ydsieinﬁgn:sowait. The definition of what these operations mean o each object should

be kept six;zple and similar to their definition for other objects.
i : . be perf: on
dence. Where possible, the operations that may ormed

tsl;xlpfl:i:ctli;?emfnegeg)e behavior of that object, should not be dependent upon the level
(system, job, or process) at which that object has been created. This allows applications to
be developed in the relative safety of process and job levels before being moved 1o & more

shareable level, with minimal change in behavior.

— Provide security and protection. The method of determining which objects a user may refer
to, and which zperat?ons may be performed on those objects, should be the same for all

objects. This is the basis for Mica security.

5.1.5 Functional Description

The object architecture runs in kernel mode at IPL 0. Through the use of mutexes, object architecture
procedures can simultaneously execute on multiple processors.

The object architecture provides a framework for creating object-specific services. These serviess
include creating, deleting, allocating, referencing, name translating, and getting information about
objects. For example, the object service to create an event, and the object service to create a thread
both invoke the same object architecture-defined routine to create the object.

The object architecture provides a hierarchical visibility structure for objects. When an object 18
created, it is placed at one of three levels: system, job, or process. Objects at the system level are
visible to all threads on the system. Objects at the job level for a particular job are only visible to
threads in that job. Objects at the process level for a particular process are only visible to threads in
that process. For example, a thread cannot access an object that is at the process level for another
process, because it cannot express an object ID for that object.

Each level can contain one or more object containers to catalog objects at that level. There are two
types of object containers at the process level: Process-private object containers and display object
containers, Obje:'.:ts s!.ored in a process-private object container are only wvisible to the pruco:u with
which the container is associated. Objects stored in a display object container are visible to the
associated process, and any of its descendant processes,

Objects are referred to by object ID. If a program refers to '
: ' an object name, this name must be
translated to an object ID. An object name is unique within a contai e eact
co y h
processor mode, When a user attempts to refer to an obi o for 5 oot P -

rights are compared to the access control information associ '
the user may access the object. ocated with an ohiest, I thers fs s sk

An object may be allocated to a user, identifier ID, job

shared among restrictive classes of users. » Process, or thread. This allows objects to be

the object ID is explicitly deleted. The object itself h
and there are no outstanding references to the objec':t..

Table 5-1 summarizes key object architecture terms and components

Table 5-1: Obiject Architecture: Terms angd Definitions

Object Identification and Names

Term Type Definition

Object ID B4-bit Value
Used 1o refer to an object

5-2 Object Architecture

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

Table 5-1 (Cont.): Object Architecture: Terms and Definitions

Object Identification and Names

Term Type Definition

Principal Object ID Object ID Associated with an object at object creation. An object
has exactly one principal object ID.

Reference Object ID Object ID Optionally associated with an object. An nb;ect may
have zero, one, or more reference IDs.

Object Name Character String Together with type and mode, an object name can be

Object Name Table

translated to an object ID. The combination of object
type, mode, and name string is unique within a single
object container.

Data Structure Tracks object names within an object container. When
an object container is created, a name table is also al-
located, and that address is stored in the object con-
tainer's body.

Term

Object Hierarchy
Definition Description

Object Container

Object Level
System Level

Job Level

Process Level

Display Container
Private Container

Container Directory

Object Header

Object Body

Object Type Objects of this type contain pointers to other objects.
They are used to organize large numbers of objects.

- Indicates the scope of visibility of an object container.

Obiject Level Objects at this level are potentially accessible to all
processes on the system.

Object Leve! Objects at this level are potentially accessible to all
processes in a given job.

Object Level Objects at this level are potentially accessible to all

threads in a given process. Containers at this level
can be sther display or private.

Object Container Objects in such containers are accessible to a given
process and all of its descendants.

Object Container Objects in such containers are accessibie only to a
given process, and nol to its descendants.

Data Structure Used to organize large numbers of containers. All

threads have the same system container directory. All
threads in a job have the same job container direc-
tory. All threads in a process have the same process
container directory.

Data Structure Fixed-format data structure that contains object type-
independent data. This header is used by the exec-
utive without necessarily knowing the type of object it
is accessing.

Data Structure A data structure that is specific o an object type.

Object Architecture 5-3

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

Table 5-1 (Cont.): Object Architecture: Terms and Definitions

—
—

Object Type
Term Definition Description sl
Object Type = Object type determines wha! operations can be pe.

Object Type Descriptor (OTD) Data Structure

formed on an object
Describes what operations are supporned for what o
ject types. There is one OTD for sach object type

Miscellaneous

Description

Term Definition
Object Service Routines System Routines
Object Allocation Block Data Structure

Implement operations that can be performed on ob
jects. Some object service routines are parsoular 152
certain type of object; others are supporied across al
object types

Contains information about oblect allocasion

5.1.6 Object-Related Operations
The following types of operations can be performed on most types of objects:

54

Creating an object

Protecting an object

Translating an object ID

Deleting an object

Creating references to an object
Making a temporary object
Marking a new object as temporary
Allocating an object

Deallocating an object

Getting information about an object

Changing the name of an object

Object Architecture

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

CHAPTER 6
PROCESS STRUCTURE

6.1 Overview

This paper describes the components of the Process Chapter for the working design document of the
MICA system. The Process Chapter describes the architecture of the User, Job, Process, Thread
(UJPT) hierarchy in terms of its external interfaces and data structures. The chapter also describes
the UJPT implementation in terms of its algorithms and dependencies on other portions of the MICA
system (e.g. the kernel and object architecture).

6.1.1 Goals/Requirements

The goal of the UJPT architecture is to provide a vehicle for controlling multiple threads of execution
in a single address space. The architecture provides facilities for resource usage control, security
profile management, address space and image management, and object container directory services.

61.2 UJPT Hierarchy

The UJPT architecture consists of a hierarchy of objects. The objects provide a logical grouping of
functionality and control.

6.1.21 The User Object

The User object appears at the highest level of the UJPT hierarchy. Its primary function is to provide
a focal point for acquiring security profiles and resource quotas/limits for its underlying objects.

The User object is implemented as a system level object in the "USER$OBJECT_CONTAINER" object
container.

6.1.2.1.1 Functional Interface

The MICA executive provides entry points capable of setting and extracting various attributes of a
User object. An entry point also exists to delete, or "force exit”, a particular User object which simple
“force exits” all jobs of that user. There is no user interface for creating User objects since they are
only created as a side effect of creating a Job object.

61.22 The Job Object

The Job object appears at the second level of the UJPT hierarchy. Its sole function is to provide a set
of resource limits for a collection of processes running together as a job. The job object also provides
a job level object container directory.

The Job object is implemented as a system level object in the "JOB$OBJECT_CONTAINER" object
container.

Process Structure 6-1

R TR L e

|

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

6.1.2.21 Functional Interface

: : i of crea
The MICA executive provides entry points capable _
and extracting various attributes of a Job object. The creation of a the

causes the user object for that user to be created.

As part of Job object creation all of the necessary support data structures are created including a job
level object container directory and, the associated kernel mutex.

ting and deleting job objects, and setting
first _]Ob for a MICA user

6.1.23 The Process Object

i i i : function is to provide
The Process object appears at the third level of the UJPT hierarchy. Its primary pr
an address spice anpd a program image for a set of threads. The Process object is the target of all
accounting information. The Process object can also act as a focal point for control operations.

There can be multiple processes in a job. Processes created as a result of job creation are top level
processes. Once established, a process may cause the creation of other processes. These new processes
are sub-processes ,or child processes. The refer to the creating process as their parent process.

The Process object is implemented as a system level object in the "PROCESSSOBJECT_CONTAINER'
object container,

6.1.2.3.1 Functional Interface

The MICA executive provides entry points capable of creating and deleting Process objects, setting
and extracting various attributes of a Process object, and performing control operations on all threads
of the process.

Control operations are Suspend/Resume Process, Hibernate/Wake Process, and Signal Process. Con
trol operations performed on Process simply perform the operation on all threads of the process.

As part of Process object creation all of the necessary support data structures are created including
the read only process control region (PCR), and a process level object container directory. The PCR
is part of the processes user—-mode read only address space. The MICA executive places information
in the PCR so that the process can read it without entering the system.

6.1.24 The Thread Object

The Thread object appears at the lowest level of the UJPT hierarchy. Its primary function is to
provide a thread of execution. The Thread object is the schedulable eiu‘ty inpnthef\ilc.: system. It

maintains the processor state as it executes the Program steps of an image. The Thread object is
resources occurs in the Process object. The

the consumer of resources, but the accounting for these
Thread object can also act as a focal point for control operations.

The Thread object is implemented as a proce level object i . -
object container. process level object in the THREADSOBJECT CONTAINER

\ T think threads should be system level objects 7\

6.1.24.1 Functional Interface

n—th:lad environment block (TEB), and user
executive places information in the TCR so that the threar;n C&ne ::g ;:nzt;r:d:eut: ' t:hz‘t?g:
ul entening the sy

6-2 Process Structure

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

The TEB is part of the user-mode thread architecture. The MICA executive initializes the TEB to
point to the TCR.

6.1.3 UJPT Setup/Teardown

A UJPT hierarchy is created, extended, and deleted by using the create and delete interfaces for
User, Job, Process, and Thread objects.

6.1.3.1 UJPT Setup

The creation of the first Job object for a MICA user is the event that triggers the creation of a UJPT
hierarchy. Once established, a UJPT hierarchy is extended by creating additional Job, Process, and
Thread objects. Figure 6-1 illustrates a complex UJPT hierarchy.

6.1.3.2 UJPT Teardown

The collapse of a UJPT hierarchy is started when any component of the hierarchy “exits”. The
collapse follows two basic paths. A bottom up collapse is the normal case and occurs when thread
objects “exit”. The following actions occur in a bottom up collapse.

» If the exiting thread is the last thread in its process, then cause the process to exit.
* If the exiting process has any sub—processes, then cause its sub—processes to exit.
» If the exiting process is the last process in its job, then cause the job to exit.

* If the exiting job is the last job in its user, then cause the user to exit.

A top down collapse occurs when any object other then a thread is “exited”. The following actions
occur in a top down collapse.

* If the exiting object is a user object, then cause all jobs for that user object to exit.
* If the exiting object is a job object, then cause all processes for that job to exit.

» If the exiting object is a process object then cause all sub-processes for that process to exit, and
cause all threads for that job to exit.

Process Structure 6-3

G el TRt TR 1 e o Y

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

Figure 6-1: Complex UJPT Tree
System Container Directory

—___'ﬂ 100 ‘ USERSOBJECT CONTAINER
r.

21 IDO
Job Ct 1 D2 PROCESSSOBJECT _CONTANER
ID5
Job Container Directory D3 THREADSOBJECT CONTANER
D4
Job.0 s
3.1 ID1
T
Process Ct 2 1
Process Container Diractory]
|
Process.0 J
41 ID2
Sub Process Ct 1
Thread Ct 2
Process
2 DS
S.t Procoss L
Threag Ct
Process Coarer Descor
Thread.0 Thread. 1 T 2
21 I3 21 ID4 J | .
e ——————————
Theead 2
& De \
J

X.Y = Pointer Count, Object ID Count

= Referenced Pointer

6-4 Process Structure

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

CHAPTER 7
MEMORY MANAGEMENT

7.1 Overview
7.1.1 Requirements

The memory management subsystem provides a combination of hardware and software functions
to accomplish the mapping of physical address space into the virtual address space of a process.
The physical address is used by hardware to identify a page in physical memory. The memory
management subsystem has six principal requirements:

* A number of processes may occupy main memory simultaneously, all freely using their own
unique address spaces, while only accessing their own data and code.

* Only a portion of the total address space for a process needs to be resident at any one time.

* The data and code belonging to a process are scattered throughout physical memory and need
not be contiguous.

* Processes can automatically share code and data.
* Processes are protected from themselves and from other processes.

* Support for the I/O system. This includes mapping of I/O space, and locking pages in memory
for I/O.

7.1.2 Functlional Description

The Mica memory management is designed to support a large user virtual address space (2 gigabytes
per address space) ,and large working sets (4 gigabytes per address space) . Figure 7-1 illustrates
the layout of the virtual address space associated with a process.

7.1.21 Environment of Memory Management

The memory management subsystem executes in kernel mode. Through the use of mutexes, multiple
processors may be executing within the memory management subsystem simultaneously. During
handling of the translation not valid fault, ASTs are disabled. This prevents an AST from interrupting
the translation not valid fault processing, causing a recursive entry into the translation not valid code.

The memory management subsystem consists of the following features.

¢ Fault handlers for access violation — Checks to see if the offending page is a guard page for a
user's stack. If so, the guard page is unprotected and a condition indicating the stack guard page
was accessed is raised. Otherwise, an access violation condition is raised.

e Fault on read—Raises an access violation condition.
e Fault on write—Implements copy-on-modify semantics, and helps to track the modified state of
a page.

Memory Management 7-1

i W e, . - OSSR Ol IR et S

e e e T e T

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

i i for system service dispatching.
* Fault on execute—Checks to see if the page is a kernel entry page m Service
If so, it saves appropriate registers, and calls the system service. Otherwise, bllt r;;st:s an access
violation condition indicating that the user attempted to execute nonexecutable ;

* ion valid—Implements the pager. The page table entry for the faulting page is
m«:;oto rt;ziemine hmsto make the page valid. The faulting page can come from a mapp;.;d
file, a paging file, a page of zeroes, or a page that is glneady in memory. ln'the latxr ca;ed the
page that is already in memory is either in a transition state, or shared with another address
space that already has the page valid. This is also refered to as a page foult.

In addition, there are a number of system routines that contribute to memory management. These
include:
* System services—Affect an address space

* Executive services—Manage and allocate pages from paged and nonpaged pools; also probe, lock,
and unlock I/O buffers from memory

* Balance set manager—Ensures ample free pages
* Modified page writer—Writes modified pages

7.1.3 Memory Management Data Structures
The following system data structures are used by the memory management subsystem:

* Page frame number (PFN) database —Tracks physical pages and their states. Each physical
page is in one of five states:

1. Active and valid—A page in this state is mapped in some address space’s working set.
2. Free—Available for immediate reuse,

3. Zeroed—Available for immediate reuse.
4

Standby—A page in this state is marked as in transition in a (prototype) page table entry
(PTE), and may be reactivated as the result of a page fault for the transition page. This page

can be reused, but the page table entry must change from a transition state to an invalid
state.

5. Modified—A page in this state is marked as in transition in a (prototype) PTE, and may
be reactivated as the result of a page fault for the transition page. Before the page can be

reused its contents must be written to disk. Once its contents are written to disk, the page
enters into the standby state.

. _Working set list—Mar}ages the physical pages owned by an address space. Each address space
is guaranteed a certain number of physical pages. When a page fault occurs which would cause

* Pagetable pages —-Max_zage_ the complete address space. Each address space contains one segment
1 page table page which is one page in size and contains 512 page table entries. There are

" multiple, up to 512, segment 2 page table pages which are one page in size and contain 1024
page table entries,

7-2 Memory Management

e ———— T

AR M Y e AR TS e NN e

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

* Mapping objects, section objects and segment objects—Track mapped files.

Figure 7-1: Virtual Address Space Layout

0 No Access — 64 KB 00000000

User Space — 2 GB (less 64 KB)

All pages owned by user.
Kemael access and user access
are aways identcal.

2G
. Shareable Image Space - 0.5 GB i

All pages owned by user.
Kernel access and user
access are always identical,

25GB 0000000
Control Space - 64 MB A
Owned by kernel.
System Space - 1.5 GB less (64 MB + 8 MB) A4000000

Paged Syste™ Area

Nonpaged System Area

FFB00000
Hyper Space - 4 MB

Hyper Space Working Set Lists - 4 MB A

4GB

Notes on Figure 7-1:

* User space—Maps user code and data. Includes 64 KB that is set no access to catch programming
errors.

o Shareable image space—Maps system-wide installed shareable images.
* Control space—Maps kernel-mode stacks and other thread-related structures.

» System space: Paged area—Maps pages that can be paged to disk. This area includes code, data,
and pool.

e System space: Nonpaged area—Maps pages that must be memory resident. This area includes
code, data, and pool.

* Hyper space—Maps address space page tables and data structures.

Memory Management 7-3

SRR LR CR g e

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

7.1.4 Differences from the VAX/VMS Memory Management Subsystem

Mica memory management supports several enhancements over VMS memory management, includ-
ing the following:

An address space’s page table pages are only valid within that address space.

Image files are automatically shared among all address spaces executing the image file.
Copy-on-modify operations.

Large and sparse address spaces.

Standby and zeroed page lists.

No system working set. Each address space’s working set contains the portion of the system that
can be paged that is used by that address space.

No swapper. Reduction of address space use is accomplished by paging the process out of memory.

Virtual addresses cannot be overmapped, without first deleting the previous virtual addresses.

7-4 Memory Management

[.

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

CHAPTER 8
/O ARCHITECTURE

8.1 Overview

The Mica VO architecture defines the fundamental components of the I/O system, the interface of
each component, and the relationships between the components. The objective of this architecture
is to provide a framework in which simple or complex I/O structures can be built in an efficient and
modular fashion.

The Mica /O architecture is designed to allow I/O abstractions to be built in successive virtual layers
on top of physical or pseudo devices. Examples of these /O abstractions are file systems, shadowing,
striping, and so on.

8.1.1 Function Processors

IO abstractions and devices are represented by components called function processors. A function
processor is an image that contains the code necessary to implement an I/O abstraction . The purpose
of the function processor is to satisfy /O requests. If an I/O request cannot be completely satisfied by
a function processor, then that function processor may pass the request on to a lower-level function
processor for further processing.

The function processor can execute an I/O request in either a procedure-based manner or by using
system threads. Procedure-based calls to the function processor allow the function processor to
complete execution within the calling thread. System threads provide function processors with the
mechanism to do extended processing, including I/O waiting, after returning control to the user
thread. System threads belong to the function processors that queue requests to them.

8.1.2 Objects Used by the /O System

The Mica I/O architecture defines three I/O objects:

* Function Processor Unit (FPU) object

* Channel object

* Function Processor Descriptor (FPD) object

The functions of these objects are described in the following sections. The /O architecture defines

two significant data structures that are not owned by any particular object. These two structures are
the 1/0 request packet (IRP) and the I/0 status block (10SB).

The IRP maintains the user's I/O request, as well as some bookkeeping information that is used by
various components and objects in the I/O system. The IRP is allocated when an I/O request is made

and is deallocated when the request is completed.

The I/O status block contains the final status of the I/0 request and other data (such as byte transfer
count) that is written to it when the I/O request completes.

VO Architecture 8-1

R S N S e

h

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

8.1.21 FPU Object

i 7 its (FPUs). An FPU
A function processor accepts requests on one or more function processor units ;
represents apparticu]ar resource to higher levels of software. All requests to a resource are directed
to its respective FPU, which then specifies the appropriate funcgog processor to process the request.
Examples of these FPUs are the ODS II unit, shadow unit, striping unit, device unit, MSCP unit,
and so on.

8.1.22 Channel Object

A channel object describes a logical /O path to an FPU on which I/O requests can be issued. The
channel object receiving the initial user request maintains a listhead of all outstanding IRPs. This
listhead is only used in the event that all outstanding requests on this channel need to be canceled.

Channel objects are only associated with FPU objects and thread objects.

8.1.2.3 FPD Object

The function processor descriptor (FPD) object maintains the addresses of each global procedure in
the function processor. The I/O architecture has a defined set of procedures that are common to all
function processors. When the function processor is needed to process an I/O request, the address of
the appropriate function processor procedure is looked up via the FPD object.

8.1.3 /O Request Synchronization

The Mica I/O architecture supports two types of /O requests:
* Synchronous

* Asynchronous

If a synchronous request is specified, the issuing thread is blocked until the request completes. If
the request is asynchronous, then the issuing thread is not blocked, but continues to execute. The
program issuing an asynchronous /O request has the choice of specifying an AST procedure, an event
object, or both to synchronize its execution with the completion of the request. When an asynchronous
/O request completes, the specified event object is signaled and/or the specified AST is queued.

8.1.4 /O Service Routines

The I/O Architecture specifies a set of well-defined interfaces to the /O system for the purpose of
initiating, canceling, and synchronizing VO requests; as well as for creating, manipulating, and
deleting of objects. Some of these interfaces to the /O system are available via system service
routines. Other interfaces are designated as internal, and are only available to components of the
VO system, such as function processor and system threads.

The diagram in Figure 8-1 shows a typical configuration of the /O system. Before the /O system
can be used, an FPD object must be created for each function processor and an FPU object must be
created for each available resource. After the system has been set up, the user can then create a

channel object to an FPU, and issue an /O request via the Request_IO system service routine. The
user is notified when the request has been satisfied.

8-2 1/O Architecture

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

Figure 8-1: Overview of Mica's VO Architecture

VO System
Services

VO Reguest Reguest_lo

Cancel_lo

Synchronize
o

Device
FPU
(N I or
Pseudo
Device

User

Create
Channel

the VO
Got

System Channel
Intormation

o=

Channel Channel

Create FPU

Get FPU
Information

Configure
FPU

FPD FP IMAGE

ORJECT FPD & FP

8.1.5 1O Security

/O requests are subject to access permission checks by Mica security and I/O system support routines.
Mica security provides mechanisms for granting and denying access to channel and FPU objects.

Additional security checking is done by the I/O system support routines to determine if the function
code specified for the I/O request can be issued over the channel.

See Chapter 10, Security and Privileges and Chapter 8, /O Architecture for more information.

/O Architecture 8-3

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

CHAPTER 9
SYSTEM SERVICE ARCHITECTURE

9.1 Overview

System services are kernel-mode routines invoked by user-mode threads. They control access to
shared resources, and protect the integrity of the executive and other users. System services execute
within the Mica executive. Create Event (exec$create_event) is an example of a system service.

System services are the interface between a user program and the executive. When an image is
activated and a system service is first called, the autoloader resolves the address of the system
service's entry vector in system space.

The system service architecture defines the mechanisms for placing system services into the system
image, and dispatching system service calls into the executive.
The system service architecture has the following goals:

* Programs that use system services do not require recompilation or relinking on subsequent
versions of Mica.

* System service dispatching is efficient and identical for all system services.
* User software can filter system services.
* System services are not at a fixed location in the address space.

* User execution of system services is secure.

9.1.1 Functional Description

When an image is built that calls system services, Mica resolves the references to the system services
from a shareable image. The system service shareable image contains the entry descriptors for all
system services. The autoload mechanism, discussed in Chapter 31, Image Activation and Chapter
30, Linker, is used to resolve the references to system services to their proper addresses within the
Mica executive.

When the autoload routine loads the system service shareable image into the process's address space,
it performs the shareable image fixups. The fixup for the entry descriptors involves adding the base
address of the system service vector page to the entry descriptor found in the shareable image.

The system service vector page resides in the nonpaged portion of the system address space, protected
as user read, kernel read, fault on execute. When a user calls a system service, a JSR instruction
executes, using the address located in the entry descriptor as a target. In this case, the address is
within the system service vector page. Figure 9-1 depicts the flow of control involved in this process.

Since the system service vector page is valid and has fault on execute enabled, a fault on execute
(FOE) fault is generated. The fault vectors through the SCB to the system service dispatcher.

System Service Architecture 38-1

e A ﬁ

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

Figure 8—-1: Dispatching System Services

USER CODE ENTRY DESCRIFTOR FOR exec$foo
ech < ADDRESS OF exec$foo
a4 a - IN VECTOR PAGE

> ICLE

VECTOR PAGE

ADDRESS OF ENTRY DESCRIPTOR ENTRY DESCRIFTOR FOR @800
FoR e$foo

ADDRESS OF eSfoo

CODE FoR effoo

8.1.1.1 System Service Dispatcher

The system service dispatcher analyzes the page table entry (PTE) for the faulting address, and if

the page is not a kernel entry page for the system service, an access violation is reported. Otherwise,
the system service is dispatched.

The dispatching consists of:
* Saving the appropriate registers so the system service can be repeated.
* Loading R3 with the address of the thread control block for the current thread.

. Loadigg the first longword of the thread control block with the previous mode argument from
the PS.

* The address which was the target of the JSR instruction contains the address of the entry

descriptor for the system service. The linkage mechanism is set up and the system service is
called at its entry point.

8-2 System Service Architecture

[-

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

9.1.1.2 The System Service

The code for each system service is responsible for ensuring that all arguments are probed and
captured as necessary. Sil V2.0 and Pillar will have some support for probing and capturing, but that
support will not handle item list elements or record elements. All writers of system services must
ensure that all arguments are probed and captured as appropriate.

The system service must declare a handler to catch access violations and other conditions that can
be raised by the executive or kernel. Any conditions not handled are caught by the prebuilt handler
for the system service dispatcher. The handler for system services causes a bug check.

When the system service completes, it returns to the system service dispatcher with the system
service status.

8.1.1.3 System Service Completion

L?’pon return, the system service dispatcher checks the status values. If the status values are not
either repeat service or resume service, the service is complete and will return to the caller.
The return is accomplished by:

* Restoring R3 and the frame pointer to their original contents

* Setting the linkage registers for the return

* Clearing any volatile registers which could contain sensitive information
* Popping the stack back to the PC/PS pair

* Modifying the original PC to return to the caller rather than the address within the system
service vector page.

* Issuing an REI to return to the caller

9.1.1.4 Repeatable and Resumable System Services

When a system service issues a wait, it has the option to accept delivery of user-mode ASTs. This
is accomplished by declaring to the kernel wait call that the service is willing to accept the "deliver
user-mode AST" condition and has handlers set up to clean up from the system service. Services
that accept delivery of user-mode ASTs fall into two categories. Repeatable services are completely
reexecuted after the delivery of the ASTs. In contrast, resumable services cause another system
service that performs a continuation of the original service using the original arguments.

The following steps occur if a "deliver user-mode AST" condition is raised:
* The kernel unwaits the waiting thread with the status "deliver user-mode AST".
* The "deliver user-mode AST" condition is raised.

* The system service condition handlers clean up the service by deallocating any resources, decre-
menting counters, etc. This is necessary because the REI transfers control to user-mode code
and the system service does not have to be repeated.

* The system service dispatcher notices that the returned status is either "repeat” or "resume” and
restores the argument registers, etc.

¢ If the status is "resume system service,” the system service dispatcher increments the PC stored
in the kernel stack by four, and stores it back in the kernel stack, so that an REI will cause the

next entry vector to fault.
* The system service dispatcher pops the stack back to the PC/PS pair.

At this point the registers contain the same values they contained when the system service
dispatcher was invoked.

« The system service dispatcher executes an REI instruction.

System Service Architecture 9-3

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

* When user mode is restored by the REI instruction, the user-mode AST is delivered. Before the
AST is executed, the current context is saved, and after the AST is completed, the context is
restored. Part of the context that is saved and restored is the current PC, which is the address

of the system service's entry vector.

e When the user-mode AST is completed, execution is attempted at the entry vector, and the result-
ing FOE fault dispatches to the desired system service which repeats or resumes the execution
of the system service.

9.1.2 Changes to the Existing Chapter

The following changes will be made to the existing chapter:

* Remove system service entry page. System services will be autoloaded.

* Remove previous mode argument. The previous mode argument is the first longword of the TCB.

* Remove the fixed system service vector page. This page is built at system initialization and the
autoloader knows how to find it.

9-4 System Service Architecture

‘_—_‘L

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

CHAPTER 10
SECURITY AND PRIVILEGES

10.1 Overview

This paper is the overview of the Security and Privileges Chapter of the Mica Working Design Doc-
ument. The overview describes the security model for the base Mica operating system. The security
requirements of the compute server are not discussed specifically as they are believed to be a subset
of the security model presented in this overview. The security requirements of the database server
are not discussed at this time because they are not known.

The security model is described in terms of authentication, access control, and security audits. It
does not assume the existence of workgroups. It treats a Mica system as an independent security
domain with its own authorization database. A user must be entered in the authorization database
in order to gain access to the system. Any objects that are located on Mica and are accessed on behalf
of the user are accessed with the user's Mica access rights.

10.1.1 Authentication

When a user attempts to gain access to the system, the system must verify the identity of the
user. The act of verifying the identity of a user is called authentication. Requests to gain access to
the system originate from many sources, including a request to connect to a server from a local or
remote node, or a request to create a process that has a different username. On Mica, the software
that manages requests to gain access to the system must authenticate the request before allowing
access. If the authentication succeeds, the software can allow the user access to the system. If the
authentication fails, the software cannot allow the user access to the system.

The exact method used to authenticate a user is still under design. One method is to have each server
perform authentication. Another method is to have one centralized protected sub-system perform the
authentication. Whatever method is selected, the checks performed would include verifying that
the user is a valid user of the system, and checking the day of the week and time of day that the
user is allowed access. Other checks can be added if they are needed. The information for user
authentication is kept in a system authorization file.

On Mica, access to the system from remote nodes is via DECnet-like proxy access. If the remote
user’s nodename-username pair is not registered in the system authorization database, the user is
refused access. If the user’s nodename-username pair is registered, the user gains access.

Security and Privileges 10-1

?%

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

10.1.2 Access Control

After a user has gained access to the system, the user can access resources that are on the system.
On Mica, a resource can have no protection, so that all users can access it, or the resource can hgve
protection so that only certain users can access it. The system controls access to resources by checking
the user’s access rights against the resource’s access control information to verify that the user has

access to the resource.

On Mica, any resource that needs to be protected must be an object as described by the Object Archi-
tecturee.&Theyaccess to a resource is checked indirectly by the procedure ESREFERENCE_OBJE(_:T_
BY_ID. Software calls ESREFERENCE_OBJECT_BY_ID and passes it the object ID of an object
to obtain the address of the object (reference the object). One of the things that ESREFERENCE_
OBJECT_BY_ID does is call the procedure ESVERIFY_ACCESS to verfiy that the cs'ller .hn.s access
to the object. Therefore, whenever software references an object, the access to the object is checked.
This is the only place in Mica that ESVERIFY_ACCESS is called.

10.1.2.1 User Access Rights

Each user that is allowed to use a Mica system is given a set of access rights. Access rights represent
the user’s claims to resources on the system. On Mica, the access rights are kept in each thread that
is owned by a user.

\ Are access rights a per-process or a per-thread attribute? Can threads within the same process
have different access rights? If a server handles requests for only one client, the access rights should
be kept in each process; then all threads within one process would have the same access rights. On
the other hand, if a server handles requests for multiple clients, each thread could assume the access
rights of a client; in this case, each thread has different access rights and they should be kept in each
thread. \

The access rights of a user is made up of two parts: a mode and an identifier list. The mode is the
processor mode that the thread is executing in. On Mica, the mode is either user or kernel. The
identifier list is a list of 32-bit values, called identifiers, that represent who the user is and what
groups the user is a member of. Each time a user gains access to the system, the user is assigned
the same identifiers. Each identifier also has an alphanumeric name at the human interface level.

Each user is asaignet_i a unique identifier, called the user identifier, that identifies the user to the
system. Note that this is different from VMS where a user is identified by a UIC. This identifier is
always included in audit messages.

Privileges are not included in the access rights of a user because there are no privileges on Mica.
Privileged access to objects is implemented using identifier lists and access control on objects. For
example, privileged executive code could be implemented as an object. The user would have to have
the appropriate identifiers to access the object and execute the code.

10.1.2.2 Object Access Control Information

As stated above, resources on Mica that need protection are uired to be objects. Each object
has access control information that describes the access rights ‘r::ded by a user {o gam accesgbgo a
resource. On Mica, the object header of each object contains the access control information.

The access control information of an object is made up of three parts: a mod ! 1
and an access control list (ACL). The mode is the processor mode that the objezi ?uo:;mggu%:;
owner identifier is the user identifier of the user who created the object. The ACL is a list of o}lc or
more access cont.rpl entries (ACE). Each ACE contains a list of one or more identifiers and the access
allowed to the object. If a user has the identifiers listed in the ACE, and the access requested is a
subset of the access that is allowed by the ACE, the user is allowed the requested access.

10-2 Security and Privileges

D——

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

10.1.2.3 Access Control Algorithm

When a user tries to access an object, the system examines the user’s access rights and the object’s

access control information to determine if the user has access to the object. The following are the

steps taken by the system to determine access: (Note that "desired access mode” is the processor

mode of the user at the time the user requested access to the object; it is not the current mode of the

kcmthm‘il Jbecau.se when the system checks access to an object, the current mode of the thread is always
el.

1. If the desired access mode is kernel, access is allowed.

2. If the desired access mode is user and the object does not have an ACL, the access is determined
from the mode of the object:

* If the mode is user, access is allowed.
* If the mode is kernel, access is denied.

3. If the desired access mode is user, the object has an ACL, the user is the owner of the object,
and the access desired is CONTROL, the ACL is ignored and access is allowed.

4. If the desired access mode is user and the object has an ACL, the access is determined from the
ACL. The system examines each ACE in the ACL until either an ACE is found whose identifiers
are all listed in the user’s identifier list, or the end of the ACL is reached:

« If an ACE is found, the access requested by the user is checked against the access allowed
by the ACE. If the requested access is a subset of the access allowed by the ACE, the user
is allowed access. If the requested access is not a subset, the user is denied access.

e Ifan ACE is not found, the user is denied access.

10.1.3 Security Audits

Security audits allow certain system events to be auditted. These events include the login and logout
of users, the mounting and dismounting of devices, and the successful or unsuccessful access to
objects. Currently on Mica, the only system event that will be auditted is access to objects.

The auditting of access to objects is implemented by audit entries that are located in an object’s audit
list. On Mica, the object header of each object points to the audit list. Each audit entry contains
the type of access to audit and the names of one or more audit sinks. When access to an object is
allowed or denied, the system checks all the audit entries in the audit list to determine if the access
request should be auditted. Mica will use the message function processor to collect and disperse audit
messages to the appropriate audit sink.

The software that handles the messages in an audit sink determines the characteristics of the sink,
For example, the software that handles a log sink would write the messages to a disk file. The
software that handles an alarm sink would write the messages to a security terminal or console.
Audit messages are generated by ESVERIFY_ACCESS. No other procedures are allowed to generate
audit messages.

10.1.4 Issues

* The Mica operating system will not have the capability and functionality to apply for a C2 class
security rating as defined by the Department of Defense. Why? Because we do not have a secure
communication channel between a client system and a Mica system. Plus, there is no way to
verify a client’s "connect-to-server” request to make sure that the request actually came from the
client.

e If the assumption is made that a client's "connect-to-server” request actually came from that
client, how is the user authentication done? Does each server perform user authentication or is
there a centralized authentication service?

Security and Privileges 10-3

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

* The access control requirements of the database server are not known.

e Is there a one-to-one or a many-to-one relationship between a client and server? If there is a
many-to-one relationship, the server could have minimal access rights so that the threads that
service client requests assume the access rights of the client when accessing objects. Or, the
server could have maximum access rights (enough to access all objects) so that threads servicing
client requests check to ensure the client has access to the object. If the client has access, the
thread accesses the object using the server’s rights.

* This specification may not play well with workgroups.

* Does an ODS 2+ disk on a Mica system exhibit the same access control behavior as an ODS 2+
disk on a VMS system?

¢ How does a user on a client system create, modify, or delete ACLs for objects on a Mica system?

104 Security and Privileges

[

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

CHAPTER 11
CONDITION, EXIT, AND AST HANDLING

11.1 Overview

This chapter describes four facilities: condition handling, unwinding, support for exit handlers, and
support for user-mode asynchronous system trap (AST) handlers. The chapter specifies goals, in-
tu-faties, and algorithms for the areas. These facilities are all related and are designed to work
together.

There are currently no outstanding issues for this chapter and the only planned modifications are
those resulting from the last group-wide review, with the addition of a section on user-mode AST
handlers—previously undocumented for Mica.

Each facility is described separately.

11.1.1 Condition Handling

A condition results from an error encountered during thread execution. It may be due to a hardware
or software failure. Examples of such hardware errors are arithmetic traps, access violations, and
so on. Examples of such software errors are range checking, argument checking, and so on. The
Mica condition handling facility provides the capability for programs to process such conditions in a
controlled fashion.

A condition handler is a procedure written as a part of a program or supplied by a run-time facility to
handle conditions if they occur during the execution of that program. Should a condition occur during
program execution, Mica must be able to find a thread's condition handlers. The condition handling
facility provides the mechanism by which handlers are found and established (either at runtime or

compile time),

When a condition occurs, it is said to be raised in the thread which caused it. Raising a condition
interrupts the normal control flow in a thread, saves its context, and causes a search to be made
for a condition handler established by the thread. If a handler is found, it is called as a procedure,
with arguments describing the nature of the condition (the condition record) and the environment in

which it occurred (the mechanism record).

A condition handler may choose to handle the condition (that is, perform some actions relating to the
condition) or may choose to reraise the condition (normally done for conditions which that handler is
not written to handle). In the second case, the search for handlers continues and the next handler
found is called. This process continues until some handler either indicates that the thread should
continue (either from the location of the condition or using the unwind facility from a different
location) or causes the thread to exit, or until no more established handlers can be found, In this

last case, the system catchall handler is called.
There are three types of condition handlers:

* Vectored handlers

* Invocation descriptor-based handlers

Condition, Exit, and AST Handling 11-1

—-_——*T

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

* The system catchall handler

i i i f which are
Th be many vectored handlers or invocation descriptor-based handlers, none of wh
su:;fie‘:!a?;r Mica. T}ixere is only one system catchall handler, which is always provided by Mica.

Vectored handlers may only be established at runtime, by using a system service. There are two types
of vectored hand.lers:yprirgary and last chance. Primary vectored handlers are the first searched for
when a condition is raised. The list of primary handlers is called in FIFO order with respect to when
they were established. If all have been called and reraised, the invocation c_lempwr-based ha;;dlm
are then called for currently active procedures, from the most recently active to the oldest. Finally,
if all these reraise the condition, the last chance vectored handlers are called in LIFO order with
respect to when they were established. Should all these reraise as well, t.hen_the system catchall
handler is called, which produces an error message and causes the thread to exit.

Invocation descriptor-based handlers are established at compile time. They are located fn:vm a proce-
dure's invocation descriptor. These handlers are used to implement a particular language's condition
handling semantics. For the Pillar language, they are used to implement structured condition han-
dling.

Mica condition handling is designed to allow the processing of nested conditions and also to handle
boundary problems with stack limitations. It also provides the following additional features:

* Invocation descriptor-based handlers may be called multiple times when multiple conditions are
active. This behavior may be enabled per handler. (Note that this is required for PL/1 support.)

* Environment information relating to a condition contains the set of scratch registers used in a
PRISM procedure call, together with the stack pointer (SP) and frame pointer (FP) at the time
of the condition (that is, registers R1 through R31, inclusive).

* Condition information is complete, including information relating to message files and argument
typing.

* A separate stack is available for the execution of vectored handlers. This improves the capabili-
ties of the Mica debugger.

-

11.1.2 Unwinding

The Mica unwind facility centrally provides the capability to perform nonlocal GOTOs within a
thread. It is implemented as a user-mode procedure, mapped in system space, and reached via a
procedure variable in the process control region (PCR).

A call to the Unwind service specifies a target procedure and point in that procedure from which
to continue thread execution. The target procedure must be an ancestor of the calling procedure.
A target procedure invocation is specified either by its stack frame pointer (procedure invocations
without stack frames may not be unwound to), or as the caller of the establisher of the last active

condition handler. A condition record may be specified along with thi targ ive inf
relating to why the unwind operation is taking place. . - i ey

Prior to reiturning executiqn to the target procedure invocation, the unwind facility searches for and
calls any invocation descriptor-based condition handlers established for any procedure invocations

foum'i]::etween the calling procgdure and the target procedure invocation. These are called with the

Once this phase has completed, the target invocation’s register context
is continued from the specific point. Note that in the case of an unwind
been active, R8 and R9 are restored from the mechanism record, allowi

is restored and the execution
after a condition handler has
ng a return status to be set.

11-2 Condition, Exit, and AST Handling

[

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

Since processes in Mica are multithreaded, it is necessary for each thread to clean up its use of the
common address space. The unwind algorithm is designed to help this take place: instead of exiting
a thra_ad by using the Exit system service, a call to Unwind is made, specifying the beginning of the
call l_uerarchy as the target. Unwind then calls all established invocation descriptor-based handlers,
causing them _all to clean up their own environments. When the beginning of the call hierarchy is
ret::hod, Unwind calls the thread Exit system service, with the input condition record argument as
status,

Thus, in Mica, user-mode thread exit is accomplished using the unwind facility, not by using the
thread Exit system service directly. J

11.1.3 Exit Handling

'l'hg Mica exit handling facility allows threads and processes to perform overall clean-up actions on
their environment or deallocation of system resources. Exit handlers are procedures established by
a thread during execution and called in user mode after a thread has called the thread (or process)
Ex;.t ;:r:tdejm service. There is no way in Mica a thread or process can exit without attempting to call
exit ers.

There are two types of exit handlers: thread and process exit handlers. Thread exit handlers are
called when a thread exits. Process exit handlers are called when the last thread in a process has
finished executing the last of its thread exit handlers.

Exit handlers are established using a system service and kept as a list in either the PCR or the thread
control region (TCR). This helps ensure that the exit handler list cannot be accidentally corrupted.
The lists are called in LIFO order. Each list entry has a procedure variable and a nontyped 64-bit
parameter, which may be used to pass information to the handler when it is activated during thread
exit. Entries may only be removed by using the Establish Exit Handler system service with the
appropriate arguments.

Exit handlers are called with the 64-bit, user-specified argument kept in the list entry and a condition
record. This is the condition record that was used in the call to the thread Exit system service which
activated the exit handler. An exit handler completes it processing by calling the thread Exit system
service. Thus, each call to the Exit system service removes a handler from the list and calls it, until
the list is empty, in which case the rest of thread rundown continues.

If, during the execution of an exit handler, a forced exit request is made for that thread, then the
current exit handler is terminated, and the next one on the list is called. All handlers are allowed to
run until they exhaust CPU quota. They may not establish new exit handlers. Should an exit handler
exceed the thread's CPU quota, it is terminated. The thread’'s CPU quota is then incremented by a
fixed amount and the next handler found and called.

Note that a forced exit request for a thread which is not executing exit handlers causes an exit unwind
operation to occur prior to calling any exit handlers.

11.1.4 User-Mode AST Handling

The Mica user-mode AST handling facility provides a mechanism for delivering asynchronous event
notification in user mode to threads. Many Mica system services have the capability of executing in
parallel with a thread's execution and/or causing subsequent asynchronous event notification to the
thread. Thus, a thread may issue a system service, the service may return with a pending status,
and the thread may continue executing. When the service later completes the requested action or
an event associated with that service occurs, if the thread established an AST handler in the service
call, a user-mode AST is queued to the thread. The AST is delivered as soon as the thread is next
eligible to run, unless an AST has already been delivered and is being processed by the thread, or if

the thread has disabled the delivery of user-mode ASTs.

An AST handler is a procedure that is intended to receive such notification. These procedures are part
of the program and are associated with a particular event or system service completion notification
required by the thread during its execution. An AST cannot occur unless the thread has established

an AST handler for it.

Condition, Exit, and AST Handling 11-3

g -

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

To establish an AST handler, a thread uses a procedure variable for the handler in the system service
call that can cause the desired AST. Along with this procedure variable, the thread may specify a 64-
bit quadword untyped parameter. When the procedure is subsequently called to process the AST this
parameter, together with an AST-specific, 64-bit quadword untyped parameter, is used as an input
argument. These arguments are used to identify the AST and to pass information to the thread
concerning the AST.

Once a user-mode AST has been delivered, no other user-mode ASTs can be delivered _u::;t.il it has
finished being processed. Subsequent ASTs are blocked by hardware until the thread explicitly leaves
AST state, thereby removing the block. The AST is delivered to system-supplied code in user mode.
This procedure sets up a stack frame and then, in turn, calls the specified AST procedure with the
AST parameters. When the AST procedure returns, the system procedure uses a system service to
remove the AST In Progress flag for the thread and dismisses the AST state, allowing the delivery of
further user-mode ASTs (if any are pending). The stack is then cleaned and an REI instruction used
fo continue the thread’s previous execution.

Note that the "false" stack frame is important: it is used to provide continuity when attempting an
unwind through an AST event. The system procedure has an invocation descriptor-based condition
handler established specifically to deal with this possibility.

At any time, a thread may disable or enable the delivery of user-mode ASTs. This is accomplished
using the SWASTEN instruction and does not involve any system services.

11.1.5 Dependencies

This chapter depends on the:

PRISM SRM—specifically, hardware exceptions
PRISM Calling Standard

Mica process architecture design

.Ul N -

Mica kernel design

Note that the Mica debugger design depends on this chapter.

114 Condition, Exit, and AST Handling

[E—"

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

CHAPTER 12
BOOTING

12.1 Overview

This chapter discusses the bootstraping process for PRISM processors, how the Mica system uses
this process to bootstrap itself, and finally, the provisions made that allow operating systems other
than Mica to bootstrap themselves.

NOTE

It is a goal of the PRISM bootstrapping process to remain completely decoupled
from the existence of and external service processor.

12.1.1 Bootstrap Structure

The purpose of the bootstrap process is to define a process capable of handing over a cold machine to
system software, On PRISM processors, this bootstrap process occurs in three phases.

1. Hardware Bootstrap
2. Primary Software Bootstrap
3. Secondary Software Bootstrap

The three phases of bootstrap are responsible for initializing the PRISM processors to a known
and architecturally defined state, loading and passing control to an operating system independent
primary bootstrap program, and finally loading and passing control to an operating system dependent
secondary bootstrap program.

12.1.2 Hardware Bootstrap

The hardware bootstrap is defined by the PRISM System Reference Manual. The purpose of the
hardware bootstrap is to:

¢ initialize each PRISM processor to an architecturally defined state
* initialize portions of system memory to an architecturally defined state

* load the PRISM primary software bootstrap program (PSB) into system memory, and pass control
to it.

Booting 12-1

Jm——*’

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

12.1.3 Primary Software Bootstrap

The primary software bootstrap is implemented as PSB. It is ?ntended to be a relat.i_vely operating
systelzn in?:lrzpendent piece of software. It will however contain some ODS-II specific file system

primitives.

The ODS-II file operations exist to support Mica booting. Ultrix booting is accomp]ished through
logical block booting; an ODS-II file system does not have to exist on the boot device to support
Ultrix booting.

The primary software bootstrap is responsible for:
* Determining system type and performing system specific initialization.

e Creating an allocated physical memory descriptor which describes all of physical memory, allo-
cated memory, and bad memory.

* Sizing and testing available memory.
* Initializing a System Control Block (SCB) for the bootstrap master processor.

* Determining the bootstrap device to be used by the secondary software bootstrap by searching
the 10 space, and examining values stored in the system-wide restart parameter block.

* Initializing the bootstrap device drivers, and creating a bootstrap device driver interface descrip-
tor such that the bootstrap device drivers may be used by the secondary software bootstrap.

The bootstrap device drivers export a standard read logical block interface. The drivers run at
an elevated IPL. The drivers are modeled after the VAX/VMS bootstrap device drivers. They are
not FPU based, or otherwise related to the IO device drivers present in the Mica system. The
drivers provide a read logical block interface to possibly two boot devices.

* Creating a primary and an alternate path to the read-write and read-only system disks,

This step is only performed if the underlying file system available through the primary interface
is ODS-II. The purpose of the primary and alternate interface is to provide a “search list”
capability for loading system files.

* Locate and load the secondary bootstrap program.
* Transfer control to the secondary bootstrap program.

121.4 Secondary Software Bootstrap
The secondary software bootstrap program is an operating system specific bootstrap. The secondary

software bootstrap program has different responsibilities for different operating systems. There are
currently two forms of secondary software bootstraps.

* Ultrix logical block bootstrap
* Mica secondary software bootstrap

12.1.4.1 Ultrix Secondary Bootstrap

In the case of Ultrix booting, the secondary bootstrap consists of a single 512 !
loafled ;mfl transfered to. Once active, the program will load a ‘mﬂ'gs:mnd:éummos;om;

no isi 1
a “number of blocks” parameter thus forcing an additionil lt:::‘f::" :nnt.rif:rb:t:g::

12-2 Booting

e ——— e

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

121.4.2 Mica Secondary Bootstrap

The secondary software bootstrap for the Mica system is implemented in [sys$kernel/mica$sysboot.exe.
It is responsible for loading the portions of the Mica operating system that are required to initialize
the system and load the modules required by the system.

121.5 Mica Bootstrap Summary

The following summarizes the flow taken during a bootstrap of the Mica Operating System.

The hardware bootstrap occurs to initialize the PRISM processor to the state described in the
PRISM SRM.

PSB is loaded and invoked. PSB further initializes the system. This includes establishing a
boot.at.ngl d::ioe driver which supports a logical block read interface to the primary and alternate
system disks.

PSB uses the bootstrap device driver to load (“activate”) the Mica SSB implemented in
[sysShkernel)mica$sysboot.exe.

The Mica SSB is invoked. SSB opens the file [sys$kernelJmica$components.dat. For each file
name stored in this file, its image is loaded and “linked” to the other components loaded in with
the initial system. After all files have been processed, SSB transfers control to mica$system_
initialize(), the initial entry point of Mica.

The mica$system_initialize() entry point is responsible for initializing both the core Mica system
and the non—core Mica system. Once initialization is complete, the initial user-mode process is
created. This process is implemented in [sys$kernel/mica$startup.exe.

Booting 12-3

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

CHAPTER 13
SYSTEM DUMP ANALYZER AND SYSTEM DEBUGGER

13.1 Overview

The System Dump Analyzer and the System Debugger are tools used to probe and debug a Mica
system. The System Dump Analyzer is a utility that is used to help determine the cause of system
failures. This utility can also be use to examine a running system. The System Debugger is a
interactive debugging tool that is used to monitor the execution of the Mica operating system.

The primary group of users of both the tools are system programmers. The System Dump Analyzer
could also be used by system managers to diagnose system problems including performance analysis.

13.1.1 System Dump Analyzer

The System Dump Analyzer (SDA) reads, formats, and displays the contents of the system dump file
or a running system.

When a fatal error causes a system failure, the Mica operating system writes information concerning
its status to a system dump file. This file contains a copy of the contents of memory and a copy of
the hardware context at the time the failure was detected.

In addition to examining the contents of the system dump file, SDA can also examine the currently
running system. This feature is not committed for FRS.

The System Management interface is used to activate the System Dump Analyzer.

13.1.1.1 Requirements & Goals

The requirements for the System Dump Analyzer are:

* A mechanism for customers to supply Mica failure information to the support organization
¢ A mechanism for Mica developers to analyze system failure

The System Dump Analyzer goals are to:
* Examine the data structures symbolically
* Allow symbols to be defined

¢ Have a command line interface compatible with the symbolic debugger being developed by the
Software Development Technologies (SDT) group at Spitbrook

* Write system dump files to disk other than the system disk

* Write system dump files to tape in addition to disks.

* Display summary information about Mica and its sub-components
* Easily add new functions to the utility

System Dump Analyzer and System Debugger 13-1

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

13.1.1.2 Design Highlights

The code that writes the tem dump file is activated by _the system crash rne;h_amsm. When a
system error has happene?:st.he Systeg: crash mechanism is responsible for deciding whether the
error is fatal and what actions need to be taken. The system crash mechan_.lsm always attempts to
write errorlog information into a special preallocated errorlog crash file. Optionally the system crash
mechanism may write a system dump file. A system dump is not written if

* The fault of the crash is know to be a hardware problem or
* The writing of dumps is disabled by TBD mechanism or
* A preallocated dump file does not exist

The system dump file writer is strictly a slave to the system crash code, and works at IPL7. It
cannot depend on the failed system to perform any functions. The system dump file writer uses the
bootstrap device drivers. All the code which is used to write a dump file is checksumed and before &
dump is written the checksum is checked.

Because of the large amount of memory that a Prism system can support, only part of the system
memory is written to the system dump file. A subset algorithm specifies what part of the system
memory to save. The contents of memory are divided into logical groupings,

Virtual memory database

Pooled memory

System space

Current process’ memory

Server processes’ memory

Memory associated with other processes

These groupings are prioritized as listed above, with essential parts always being written to the
system dump file and non-essential parts being written as space allows in the system dump file.

A dump file for a system is preallocated and is overwritten. A system manager must take an action
to save a dump file.

13.1.1.3 Issues

1. Is the subset memory dumps sufficient to analyze crashes?

Not all systems fai]urgs can be isolated by examining dumps. Using the subset memory sys-
tem dump files, there is a strong possibility that fewer failures can be isolated by examining

dumps. However, the use of subset files may not greatly impact the usefulness of system dump
mechanism. '

One alternative to subset dumps is after a crash, boot a "small” i

. ’ system which runs only SDA and
can examine the contents of memory directly. How it 1 i ; ti
he facct p T s y ever it 18 not clear is this alternative meets

2 S::::;s?ystem memory get corrupted in such a way that it is impossible to identify the subset

3. ' Possible primitive user interface at FRS

Because of scheduling constraints, and since Mi
) ca development nl
supported system programmers at FRS, the user interface f::y be%t::itﬁin:?;;lg.m e

13-2 System Dump Analyzer and System Debugger

D

Digital Equipment Corporation - Confidentlal and Proprietary
Restricted Distribution
13.1.2 System Debugger

The System Debugger (SD) is a debugging tool that is used to monitor the execution of the Mica
operating system and user programs. The user of the SD can interactively examine memory, de-
posit values in memory locations, set breakpoints, perform single-step execution, define symbols, and
evaluate arithmetic expressions.

Unlike the other debugging tools supplied by Mica, the system debugger works in the harsh envi-
ronments in kernel mode at non-zero IPL. The SD is therefore very primitive. The debugger is self
contained and does not use the Mica system which it is debugging for any services. :

Although SD will be used for a short period of time to debug user mode programs, the preferred
debugger for user mode programs is SDT’s debugger.

13.1.21 Requirements & Goals

The requirements of the SD are that it:
* Runs at any IPL

* Runs in both user and kernel mode
* Does not use the Mica services

* Does not require special hardware

The SD goals are to:

* Allow symbols to be defined

* Do instruction decoding

* Have a command line interface compatible with the SDT debugger

13.1.2.2 Design Highlights

The implementation of the SD is straightforward. The SD performs all of its functions without the
assistance of the Mica operating system.

The SD is loaded as part of the system, and is hooked into the system as an interrupt service routine
(ISR) in the system control block (SCB).

The SD uses the console terminal as its user interface. The console terminal is the only I/O device
used by the SD. The SD uses polling to perform the I/0, and does not employ interrupts.

The Mica System Debugger commands are less cryptic than VMS' XDELTA commands, and are
compatible with the SDT debugger command line interface.

Currently there are no plans for SD to make use of the debugger symbol table included in an image.

Two side effects of the debugger implemetation are:
* Use of the SD requires a standalone system because the entire system is stalled when a break-
paint happens.

* Only the contents of physical memory may be examined. Virtual memory which is not in physical
memory can not be examined or altered (including setting breakpoints).

System Dump Analyzer and System Debugger 13-3

= s E—

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

13.1.2.3 Issues

1.

The SDT debugger runs in Kernel Mode at IPL 0

It is a goal to have the SDT debugger run in kernel mode at IPL 0. Therefore, the only environ-
ment in which the SD would have to be used is at kernel mode at non-zero IPL.

A command line interface like that implemented by the SDT parser may be too complicated.

In the context of the SD, the parser needed to handle SDT commands may be over complicated.
Therefore, the need for a parser may be in opposition to the goal of keeping the SD simple and
straightforward.

Step-Single-Instruction Function and Instruction Pipeline

The Step-Single-Instruction function causes many instructions to be executed as the result of
one Step-Single-Instruction command. The machine’s instruction pipeline is also flushed. On a
broken machine, a possible side effect is that code may run differently depending on whether
the Step-Single-Instruction function is being used.

Step-Over-This-Call function requires instruction decode knowledge

The SD, in order to implement the Step-Over-This-Call function, requires instruction decode
logic and knowledge of the calling standard. The same instruction, Jump-to-Subroutine (JSR),
is used for both procedure calls and unconditional branches.

13-4 System Dump Analyzer and System Debugger

‘>—J

Executive Routines

This chapter summarizes the Mica executive routines.

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

CHAPTER 14
EXECUTIVE ROUTINES

14.1 Overview

This overview contains guidelines for designing Mica executive routines, and the protocol for submit-
ting system service definitions to the author of the Internal System Services Manual.

NOTE

It is the intent of Mica to provide a stable platform, with respect to system services,
that all user-mode applications can depend on. From time to time user-visible data
structures and procedure interfaces will change. Mica intends to provide a system
service interface such that user-mode applications do not have to re-compile or
re-link to run on new versions of the operating system.

14.1.1 System Routines

System routines exist in three different forms:

1. User-visible, implemented in user—-mode.

2. User—visible, implemented in kernel-mode.

3. User-invisible, implemented in kernel-mode.

This paper only discusses system routines that are implemented in kernel-mode. The name assigned
to this class of system routines is executive routines.

System-routines implemented in kernel-mode that are visible in user-mode are known as system
services. Mica system services have the facility name execd.

System-routines implemented in kernel-mode that are invisible in user-mode are known as executive
services. Mica executive services have many different facility names, with the most common facility
name being e$.

The rest of this paper contains some code fragments and naming guidelines. The facility name used
in all of the examples is exec$. This is for convenience only. When dealing with system services, the
exec§ facility name is correct, but for executive services the facility name is not exec$.

Executive Routines 14-1

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

14.1.2 Executive Routine Interface Guidelines

This section describes the interface style for all executive routines in the Mica system. The _intcnutjis
to provide a framework for the system service authors so that they can design system aemtcl:s t_ht
are similar in style to all other system services present in the Mica system, and to ensure that the
styles used for system services are compatible with the style used in executive services.

i i ideli ing technique ie.
ideli i ed in terms of Pillar. No guidelines for parameter passing q
‘:]a!sfl?: i?e?;g}, Eili?r;::mi;?or will be given as this is a function of the Pillar language, and of

the PRISM calling standard.

The guidelines are broken up into three areas:
* General Guidelines

* Object Service Routines

* General Service Routines

14.1.2.1 General Guidelines

This section describes the “prototype” executive routine. The important aspects are:
* Parameter Options

* Parameter Ordering

* Parameter Types

* Return Value

14.1.2.1.1 Parameter Options

The options for executive routine parameters should either be “required parameter”, or default. The
use of the Pillar optional parameter option is discouraged since these get passed by reference which
is slow and needs to be probed and captured by the executive.

If a parameter is default, then it is assumed to be an optional parameter with respect to the caller
of the executive routine. For the rest of this document, it is assumed that “optional” parameters use
the default keyword.

14.1.2.1.2 Parameter Ordering

The parameter ordering for Mica executive routines is as follows:
* Required IN parameters.

* Optional IN parameters.

* Required IN OUT parameters.

* Optional IN OUT parameters.

* OUT parameters.

While the above parameter urdering scheme is encouraged, there are some instances where the rules

gzsomewhat relaxed. The two primary reasons for using an alternate parameter ordering scheme

* The executive routine has a complex parameter list
case, the above scheme is enforced o

* The executive ro
first parameter.

with a natural parameter grouping. In this
nly for related groups of parameters. S

utine is an object service routine. In this case, the object identifier is always the

14-2 Executive Routines

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

14.1.21.3 Parameter Types

Parameter types are always described in terms of named data types of the form exec$t_xxxx where
xxxx is a rez}aopabla degmptxon of the data type. The use of builtin Pillar data types is discouraged
in the description of Mica executive routine parameters. The primary reason is to provide an easier
migration path to the eventual 64 bit PRISM architecture.

The use of item lists is dist_:ou.raged. The only endorsed use of item lists is in Mica executive routines
tha:l are used in configuring portions of the system or in the “get/set information” object service
routines. :

Where possible, parameters should be sized such that they will fit into a register.

14.1.2.1.3.1 Record Types

The use of Pillar records is discouraged since they must be captured and probed by the executive,
and they will typically not be passed in registers. Executive routine designers should be aware that
the use of records will significantly decrease performance. The use of records should be avoided for
high bandwith executive routines.

NOTE

The rest of this section speaks in terms of executive routines, but it is really ad-
dressing executive routines that are system services. Executive services will always
be compiled together. Record incompatibilities will not be an issue within the ex-

ecutive.

If an executive routine must use a record, then it must provide a mechanism where the record may
change yet old code will still work properly. This allows for expansion without the use of item lists.
The mechanism used to assure compatibility between exported records, and the executive routines
that have record arguments is bound by the following goals:

* The caller of the executive routine should only ever see a single data type that describes the
record.
* If the executive routine changes the definition of the record, but the caller does not recompile,

then the call should still work and the executive routine may only use the previous version of
the record. This strategy should hold for all versions of Mica. Only upward—compatible changes

should be made to records.
* If the caller recompiles, then the new version of the record is in effect.

* The burden of determining which version of the record that the caller is using is placed on the
executive routine.

NOTE

It is expected that Pillar will provide language support for detecting and con-
verting versioned records. All executive code should be written in terms of

up-to-date records. The method for automatic recognition, capturing, and con-
verting versioned records is TBD.

14.1.2.1.4 Return Value

All Mica executive routines that return complex information, or are system services should return a
value of type status. Executive routines that rarely fail, should report exceptional failures by raising

conditions and should not return any values.

Executive Routines 14-3

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

14.1.2.2 Object Service Routines

ideli i i] i tines with a few exceptions.
The guidelines expressed in Section 14.1.2.1 apply to object service rou
As stated previously, the object identifier for the object service routine 18 always the ﬁrgt parameter,
In addition to this deviation, others exist for the following classes of object service routines.

Object Creation Executive Routines
Get/Set Information Executive Routines

14.1.2.21 Object Creation Executive Routines

Object creation executive routines impose the following restrictions:

The name of the executive routine is exec$create_xxxx where xxxx is the type of object being
created.

The first two parameters of the executive routine are:
1. The object identifier of the object being created.
2. The object type independent parameters of the object.

The object type independent parameters of the object is described by the exec$t_object_parameters,
This data structure contains the object name, the access control list for the object, and the con-
tainer that the object is to be created in.

Following the two required parameters are object type specific parameters. The ordering of these
parameters is per Section 14.1.2.1.2.

Object creation executive routines should simply create and initialize the new object. They should
not perform other functions on the newly created object.

Example 14-1 illustrates a “prototype” object creation executive routine.
Example 14-1: Prototype Object Creation Routine

It is important to note that for the optional parameters, it is
routine to use proper values when actually creating the object.

PROCEDURE execScreate_framit:z (

! Object Creation Reguired Parameters
|

OUT object_Aid: @xacSt_object_id; ! returned 14 of the new framitz cbiect

IN object parameters: execSt_object_parameters = DEFAULT;:

TAamitz atate: exscSt framitz states:
T framitz sequence: exsci3t_counter;
OUT framitz length: exacSt length:

) REIURNS status;

B v= amem

up to the designer of the executive
This also means that the executive

routine may choose to ignore some of the optional parameters when appropriate.

14-4 Executive Routines

Digital Equipment Corporation - Confidential and Proprietary

Restricted Distribution
Example 14-2: Prototype GetSet Information Object Service Routines
! Pretotype Get Informatlion Object Service Routine
PROCEDURE execSget_framicz information (
IN object_id: axecSt_object_id: ! Object ID of framitz object
IR information: execSt_item list; ! Specification of information to be returned
| RETURNS status;
! Frovotype Set Information Object Service Routine
PROCEDURE axeciser_framite information |
iN sbject_id: execS:t_object_id; ! Object ID of Iramitz cbject
IN information: exec$t_item list: ! Specification of information to be sat

| RETURNS status;

14.1.2.22 Get/Set Information Executive Routines

For each object type present in the Mica system, an interface capable of extracting or setting various
attributes of the object should exist. While this is not a requirement, it is the preferred method
of reading information from an object or configuring an object. The procedure name for the get
/set information object service routines is in the form exec$get_xxxxx_information(), exec$set_xxxxx_
information() where xxxxx is the name of the associated object type. When present, the format of the
getset information object service routines is as in Example 14-2.

The only acceptable deviation from the prototype interfaces described in Example 14-2 is to make
the object_id parameter optional. This is only acceptable when the notion of “current” object makes
sense. An example of this would be in a call to exec$get_thread_information(). The object identifier
of the thread can be optional since the notion of “current thread” is reasonable.

It is important to note that item lists are present in the prototype get/set information object service
routines. This is acceptable in these cases due to the relatively low performance requirements of this
class of executive service, and the potentially large number of items.

14.1.2.3 General Executive Routines

There are no special rules that have not already been covered that apply to general executive routines.
It is however the intent of the Mica system to provide simple interfaces that perform a single function
with fairly well defined error modes. If at all possible, there should only be one way to perform a
given function through the Mica executive routine interface. To illustrate this point, assume that for
event objects there is a create interface and a wait interface. It would be inappropriate to add an
option to the create interface that let the caller immediately wait on the object.

14.1.3 System Service Definitions

The designers of Mica system services are responsible for submitting the definitions for their system
services to the author of Internal System Services Manual. The author of this chapter is currently
Bill Muse.

System service definitions are submitted when the chapter identifying the system services has passed
its formal review. The layout of a system service definition is based on the Pillar coding standards for
external procedure definitions and the comment block for procedure implementations. Example 14-3
illustrates the proper layout of a system service definition for the exec$set_thread_priority() system

service.

Executive Routines 14-5

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

Example 14-3: Sample System Service Definition

! Syatem Service Definition
PROCEDURE execSset_thread pric
IN thread

} RETURNS

EXTERNAL;
l4e
Routine description:

! Change the
must have w

Arguments:

1 in thread id The object ID of the thraad whose If the object 1
1 the default

! in new_prierity The new pri

: out eld prierity The previous p 2 1i» iy valid

! return codae

Return value:

} axacsSk_norm
execSk_r

14-6 Executive Routines

e ——

/0
This set of chapters describes /O components of Mica.

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

CHAPTER 15
DIRECT ACCESS MASS STORAGE FUNCTION PROCESSORS‘

15.1 Overview

This chapter describes the logical block interface to disks, which is used by function processors to
access data residing on the disks. This chapter also describes the three function processors that
implement the disk logical block interface:

* MSCP class function processor
* Striping function processor

* Shadowing function processor

Figure 15-1 shows the relationships between these function processors, the function processors they
use, and function processors that use the disk logical block interface.

User-mode threads request disk I/O operations through the system services described in Chapter 8,
VO Architecture. Data transfer requests are always handled first by a file system function processor.
The file system function processor uses the disk function processors to actually perform the data
transfer.

Each of the shadowing and striping function processors implement and use the disk logical block
interface. This allows stripe sets, shadow sets, and individual disk volumes to be transparently
supported by file system function processors.

The mass storage control protocol (MSCP) class function processor implements the disk logical block
interface. However, it uses the systems communications services (SCS) class interface to communicate
with device function processors, which interact directly with the device controllers.

15.1.1 Goals

The objective of the disk logical block interface is to:

* Support all features of DSA 1 and DSA 2 disks

* Provide high throughput and low latency access to disk-resident data

+ Provide features to support high availability and reliability of disk-resident data

Direct Access Mass Storage Function Processors 15-1

e —

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

Figure 15-1: Direct Access Mass Storage Function Processors and Clients

Applications and Utilities

File System
Kernel Mode e
3‘;:!"‘“" Files-11 Disk
] Logical Block
— interface
f
Disk
Striping
4
Direct Access .
Mass Storage Disk
Function 9 7| Shadowing
Processors
MSCP DUP
~7| Class Class
N
] SCS Class
* Intertace
System Com-
munications { SCS
Services

SCS Pont
Interface

: : 2

?i* ﬁevlce HSX XCA
unction DFP DFP L B
Processors

15.1.2 Disk Logical Block Interface

The disk logical block interface is a set of procedure calls that configure disks and access data on
disks. The actual procedure calls are defined in Chapter 8, I/O Architecture. The function codes and
paramcter records that make up the remainder of the interface are described in this chapter.

The disk logical block interface supports reading, writing, comparing, erasing, and accessing data on
chsks: These operations are cglled data transfer functions, which are supported by all logical block unit
function processors. The !og1ca] E}lock: interface also Supports various disk configuration functions,

w]-ui? incLu(ile bnngingg. urdt online, initializing a stripe or shadow set adding a counterpart to an
exasung shadow set, and so on. Most of the configuration functi uni :
ey gu ctions are unique to a specific function

15-2 Direct Access Mass Storage Function Processors

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

15.1.3 Function Processors

The disk logical block interface is implemented by the MSCP function processor, the disk striping
function processor, and the disk shadowing function processor.

15.1.3.1 MSCP Function Processor

The MSCP class function processor implements the logical block interface to disk device function
processors. Each of its function processor unit (FPU) objects represents a disk unit. _

The MSCP function processor’s main purpose is to build MSCP requests, and queue them to the
appropriate device function processors. It also manages changes in the physical configuration and
generates error log packets.

15.1.3.2 Disk Striping Function Processor

Disk striping is one of the features used to provide high throughput and low latency to disk-resident
data. The disk striping function processor binds two or more homogenous logical block units together,
and presents them to higher levels of software as a single, large, unified virtual unit. This unit is
presented as a single continuous vector of logical blocks that is used exactly as if it were a single
physical unit. This virtual unit is termed a stripe set.

The data in a stripe set is organized by stripes. A stripe is made up of a set of stripe fragments. Each
stripe fragment resides on a single unit. All of the stripe fragments in a stripe cover the same range
of logical block numbers on each unit. The primary configuration parameter for a stripe set is the
size of a stripe fragment. Figure 15-2 shows a stripe set consisting of two disks with a track size of
8 blocks and a stripe fragment size of 3 blocks.

Analysis by Mike Riggle has shown that the optimal size of a stripe fragment is the track size of the
underlying disks. However, the striping function processor allows this default value to be overridden

when a stripe set is initialized.

Each FPU managed by the disk striping function processor represents a stripe set. The function
processor examines the range of logical blocks for each I/O request it receives. If the blocks do not
span more than one of the bound units, the request is simply passed down to the function processor
managing the target unit. Otherwise, the request is passed to a system thread that breaks the
request down into two or more requests, each of which is isolated to a single unit. The system thread
then issues these sub-requests to the function processors managing the target units. The original
IO request does not complete until each of these sub-requests has completed. Similarly, the original
/O request’s completion status is computed from the status values returned for the sub-requests.

Direct Access Mass Storage Function Processors 15-3

S ———————

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

Figure 15-2: Sample Stripe Set

; Unit LBN : 7
7 2 &

- . 3 $ 14 8 7y
0 2i0s 4 5) /:/: 4 771
A 12l 6l 7l 8 ,f Stripe Set LBN - 59|10 ’_’___‘:é{

14 1{5 F‘o by h2 13
A 13 N s ol 5 2 1 16| 17| 21 23 |7 Q
> 14 181 19 20 4/// B 2 (23
23 7 22 |
7 he he 20 |2 f :// 2 = P8 e 2o |2 |V
25| 26| 30 | 31 | 32 |74 29|33 | 34 | 35 |2
Disk Unit A Disk Unit B

AQ Al A2
First stripe 0 i 2

w 3
@
R
4
<
&
2
£
&

Second Stripe 12 |13 |14 | 15| 16| 17| 18| 19|20 | 21 | 22 | 23

A8 a9 |at0 |Ba |Bs B0 rn rz A1z |81y B2 |B13

15.1.3.3 Disk Shadowing Function Processor

Disk shadowing is a feature used to provide high data availability and enhanced reliability, The disk
shadowing function processor binds two or more homogenous logical block units together to increase
data reliability and availability. Each logical block unit contains a complete copy of the data on the
others. If the data on one unit becomes unavailable, the data is still available on one of the others.

Each FPU managed by the disk shadowing function processor represents a shadow set. A shadow

set consists of one or more counterparts. Each counterpart is a single logical block unit. 1deally, each
counterpart holds exactly the same data as every other counterpart in the shadow set.

Disk shadowing has the potential to increase throughput and reduce latency for read operations,
since the function processor can balance the load between the counterparts in the shadow set.

Much of the complexity of the shadowing function processor lies in error handling and recovery.
The disk shadowing function processor will automatically and transparently replace damaged data
(such as uncorrectable ECC error) on one counterpart with undamaged data from another counter-
part. Counterparts are added to an existing shadow set while the shadow set is online. The new
counterparts are automatically brought up to date with the data from the existing counterparts.

15-4 Direct Access Mass Storage Function Processors

R < v o Lo TSR USRLE T | p D e RS S e e

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

15.1.4 Error Handling and Diagnostics
15.1.4.1 Invalid /O Request
An /O request is invalid if any of the following is true:

. T:t? target device (physical or logical) is not in an appropriate state to perform the requested
action

* The /O request does not contain a required parameter :
* A field in the /O request contains a value outside the domain of allowed values for that field
¢ The VO request contains parameters that are not applicable to the requested action

Each function processor will detect the first three cases and terminate the I/O request with an error.
The last case is very difficult to catch, and no attempts will be made to do so. Function processors
simply ignore such fields.

15.1.4.2 Power Fallure

Function processors are expected to gracefully recover from power failure. Function processor power
recovery involves the following steps:

1. Terminating each outstanding I/O request with POWERFAIL or BAD_STATE status.

When a function processor notices that an I/O request completed with POWERFAIL or BAD_
STATE status, it needs to make a decision:

* Allow the request to fail
* Queue the request so it can be retried after the power recovery activity has completed

Generally, only file systems have enough context to retry the request. Other disk function pro-
cessors do not retry requests following powerfail recovery.

2. Returning all units back to their state before the failure,

This is a bottom up process that involves reinitializing controllers, bringing units back on-line,
re-establishing shadow and stripe sets, and performing mount verification at the file system level.
The TRANSITION FPU state is provided by the I/O architecture to allow function processors to
coordinate their powerfail recovery actions.

3. Retrying the requests that were requeued.

15.1.5 Sample /O Request Flow

This section provides an overview of the flow of a disk IO request through the I/O system. It should
enable you to "get the feel” of how the various components fit together. The scenario is an application
pro that asks RMS to read a record from a disk file. The disk file resides on a stripe set, which
is shadowed. Each shadow set has two counterparts, each of which is an RA90 disk unit. Both RA90s
are connected to the host through an HSX controller. The stripe set fragment size is 69 sectors (the
size of an RA90 track). Figure 15-3 shows the function processors, function processor units, and

channels referenced in this example.

Figure 15—4 shows the 1/O request packets (IRPs) used to satisfy the request. The following descrip-
tion details the actions that are taken during the execution of the request:

1. The application calls RMS at its $GET entry point

Direct Access Mass Storage Function Processors 15-5

e

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

Figure 15-3: /O Structure Layout for a Shadowed and Striped Files—11 Volume

User Mode
Kernel mode
Files-11
Channels are represe nied
by thin ines
Striping
Shadowing
Mscp
sCs
Function
Processors FPUs

Srequest_io, passing it the same

4. The eSrequest_io service then calls eSrequest_io_trusted, which finds th, '
o ‘ _10_ X FPD dispatch table
from the channel, and invokes the Files—11 function processor at its lm‘r:'ahze U(;'gammeters

The Files-11 function processor’s Initialize /O Paramete
g - rs procedure allocates an /O request
Paclltet (marked IRP] in Figure 1{5_4)' interprets the parame rd, fills i: the 1/O recuest
Crmination prameies (OB oo S o oS o irited serice then 81 13
, event, . 3 S -
invokes the function processor’s Execute /O ::loce‘:iatii.the e$execute_io service, which, in turn,

15-6 Direct Access Mass Storage Function Processors

M

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

Figure 15-4: 1/O Request Packets Used to Satisfy the Sample Request
IRP 1

R

VBN 1381
Size 16 K

User mode

Kernel mode

Files-11
Striping
Shadowing
B - .
LBN 16002
Size 3K
Read Log,
LBN 1;?02
Size 3K
MSCP

The Files-11 Execute IO procedure determines that virtual blocks 1361 through 1392 fall into
a single file extent starting at logical block 32010. It allocates a second FP parameter record in
the IRP, and places the following information into it:

— io$c_disk_read function
— Starting at logical block 32010 for 16 Kb

The function processor calls eSexecute_io, passing it the VO request packet (/RP 1) and the ad-
dress of a channel object created by the Files—11 function processor. The channel object identifies

the FPU for the stripe set holding the file (STAQ in Figure 15-4).

Direct Access Mass Storage Function Processors 15-7

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

i

10.
11.

12,

13.

The /O subsystem finds the FPD dispatch table from the channel and invokes the striping
function processor’s Execute /O procedure.

The striping function ssor finds that logical blocks 32010 through 32015 map onto logical
blo‘z;s 120%32 through W? on the second unit in the stripe set (SHAI in Figure 15-4), and
that logical blocks 32016 through 32041 map onto logical blocks 16008 through 16033 on the
first unit in the stripe set (SHA0). The striping function processor must use a system thread 1
process this request. The IRP is queued to the striping ﬁ.u;tchon processor’s transfer work queye
and the issuing thread returns from the e$execute_io service.

The issuing thread returns from the Files—11 function processor's Execute /O procedure.
The issuing thread returns from the exec$request_io system service.

RMS places the thread into a wait state for the completion event used in the execSreguest io
system service.

A system thread starts up and dequeues the I/O request packet from the striping function pro-
cessor’s transfer work queue.

The system thread interprets the /O request. It finds that it will need to generate two 10
requests (called JRP 2 and IRP 3 in Figure 15—4). The first (URP 2) has the following parameters:

— Function io$c_disk_read

— Starting at logical block 16002 for 3.0Kb

— Directed to the second logical block unit in the stripe set (SHA1)
The second (IRP 3) has these parameters:

— Function io$c_disk_read

— Starting at logical block 16008 for 13.0Kb

— Directed to the first logical block unit in the stripe set (SHAO)

The system thread calls eSrequest_io_trusted twice: once for each VO request. It then calls

kSwait_multiple to wait on the events associated with the I/O requests. Each sub-request follows

8. The eSrequest_io_trusted service calls the shadowing function processor’'s Initialize 1/0 Pa-
rameters procedure.

b. The shadowing function processor’s Initialize /O Parameters procedure allocates an 110

d. The Execute I/O procedure interprets the I/O re. i
_ _ quest packet and dete !
is a logical block read. It selects an up to date counter;;’:rt to Ber‘:'\n{!: t{:l:qe:::ta:ntgilmu;

15-8 Direct Access Mass Storage Function Processors

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

ii Calls eS$synchronous_io_call to invoke the SCS function processor to allocate a named
buffer descriptor for the data buffer.

iii Fills in the message buffer to construct an MSCP READ command. Allocates a refer-
ence identifier for the command.

iv. Queues the I/O request to the FPU’s outstanding request queue.

v Calls eSsynchronous_io_call to invoke the SCS function processor to send the sequenced
message to the controller. The SCS function processor then uses e$synchronous_io_call
to invoke the HSX device function processor.

S.

The HSX device function processor queues the sequenced message to the HSX controller.

vii The system thread returns from the HSX device function processor’s Synchronous /O
Call procedure.

viii The system thread returns from the SCS function processor's Synchronous /O Call
procedure.

ix The system thread returns from the MSCP function processor’s Execute I/O procedure.
g. The system thread returns from the shadowing function processor’s Execute I/O procedure.
h. The system thread returns from e$request_io_trusted to the striping function processor.

I. The disk controller reads the command packet and executes it. Eventually, it transfers the
data from the disk to the designated buffer. Finally, it queues an END packet to the port's
response queue and interrupts the PRISM processor.

J The HSX function processor’s interrupt service routine runs and signals an autoclearing
event. The interrupt is then dismissed.

k. A system thread created by the HSX function processor wakes up and dequeues the re-
sponse from the controller's response queue. It calls back to the SCS function processor’s
scsSreceive_process_routine procedure.

. The SCS function processor's scs$receive_process_routine procedure interprets the message
header and calls the procedure in the MSCP function processor that has been registered to
process sequenced messages.

m. The MSCP sequenced message callback procedure interprets the MSCP reference identifier
and uses it to find the /O request packet associated with the END packet. The system
thread created by the HSX function processor is then removed from the FPU’s outstanding
request queue, and the MSCP reference identifier is invalidated.

n. The END packet is used to set the final status and transfer length fields of the /O request
packet.

0. The system thread calls eScomplete_io to terminate the I/O request. A special kernel mode
AST is queued to the striping function processor’s thread.

p. The system thread returns from eScomplete_io.

q. The system thread returns from the MSCP function processor’s sequenced message callback
procedure.
r. The system thread returns from the SCS function processor’s scs$receive_process_routine

procedure.
s. The system thread checks for another processor response, and waits if there is none.

. The special kernel-mode AST is delivered to the striping function processor thread. The
AST procedure terminates the processing for the sub-request (IRP 2 or IRP 3) and deletes

the /O request packet. The AST is then terminated.

Direct Access Mass Storage Function Processors 15-9

e

R 090

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

14. The striping function processor’s system thread becomes ready to run when the last of its sub
requests have completed.

15. The system thread computes the final status, and calls eScomplete_io to terminate the 'O request
(IRP 1).

16. The system thread goes back to waiting for work on the striping function processor’s work queve

17. A special kernel-mode AST is delivered to the process thread that issued the original IYO request
The AST procedure writes the I/O status block, then signals the completion event. The 10
request packet (JRP 1) is deleted, and the AST is terminated.

18. The process thread resumes running in user mode and executes RMS code to check the completion
status of its /O request. RMS deblocks the record from the buffer and presents it to the caller

19. The process thread returns back to the caller from RMS.

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

CHAPTER 16
MAGNETIC TAPE FUNCTION PROCESSORS

16.1 Overview

This chapter describes the support for magnetic tapes in Mica. Mica provides access to unlabeled,
foreign-mounted magetic tapes, While the initial product set does not include ANSI-tape support,
future versions of the software probably will include such support.

The following interface and function processor are described in this chapter:

* Tape logical-block interface

* Thpe Mass Storage Control Protocol (TMSCP) function processor

Figure 16-1 shows the relationship between the TMSCP function processor and other function pro-
cessors it uses.

The TMSCP function processor implements the Tape Mass Storage Control Protocol. Threads request
tape I/O operations through the system services described in Chapter 8, I/O Architecture. The TMSCP
function processor supports requests from kernel- and user-mode threads.

16.1.1 Goals and Requirements

Mica tape support meets the following requirements:

* Support all DSA-1 and DSA-2 TMSCP-compliant storage elements supported by HSX controllers,
HSC controllers, or both

TMSCP storage elements that are not supported by these controllers are not supported by Mica.
Although little or no development would need to take place to support them, they are not included

in system testing.
* Allow streaming tape drives to run at their maximum data rates
* Support the Ptolemy optical-storage device if required by Glacier or Cheyenne

The Ptolemy optical disk is a write-once, TMSCP-compliant storage device. Supporting Ptolemy
is limited to including it in the system test plans, _anFI providing support in the error-log dlsplgy
program. The optional media loader is supported in its transparent, automatic mode, but not in
its program-control mode. This support allows a stack of media to be loaded into the drive and

processed in FIFO order.
* Support exclusive access to tape drives

A tape drive is only allowed to be ONLINE through a single host. AVAILABLE tape drives are
allowed to be AVAILABLE to any host. This allows a pool of tape d]:ives to be shared among
several hosts, but limits the processing of data to one host for each drive.

Magnetic Tape Function Processors 16-1

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

Figure 16-1: Magnetic Tape Function Processors
Applications and Utilities

Formatied
Tape
Kernel Mode Interface

Formatted

Tape ANSI Tape
Function

Processors

Logical Tape
interface

Tape Mass
Storage
Function
Processor

2 SCS Cimas
interface

System Com-
munications SCs
Services

SCS Port
intertace

Tape Device

Function HSX DFP XCA DFP
Processors

16.1.2 Tape Logical-Block Interface

is a set of procedure calls used to confi data
on tapes. The procedure calls are defined in Chapter 8, I/0 Mhitectugmﬁﬁjni?:i:ms:s and
parameter records that make up the remainder of the interface are described in this chapter.

The tape logical-block interface supports readin
positioning-to data on tapes. These functions are called data

various tape-configuration functions. These include bringing a
ters governing the media (such as density, speed

g, writing, comparing, erasing, accessing, and
-transfer functions. 1t also supports

: unit on line, setting physical parame
» caching mode), and so on.

16-2 Magnetic Tape Function Processors

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

Uncached write operations do not complete until the data is on the media. Cached operations complete
when the controller has read the data from the host, but possibly before the data is on the media.
The use of caching dramatically improves throughput (by up to a factor of ten for some drives)
at the expense of reliability. Reliability suffers because applications may be told their I/O request
has completed before the data is actually recorded on the media. The tape logical-block interface
provides mechanisms whereby applications can enable write caching, but still synchronize with the
media when necessary (for example, by writing data with the io$c_item_caching flag set to FALSE,
or by using the io$c_tape_flush function).

16.1.3 TMSCP Class Function Processor

The TMSCP class function processor implements the tape logical-block interface. Each TMSCP fune-
tion processor unit (FPU) represents a tape drive.

The TMSCP class function processor’s primary purpose is to translate application I/O requests into
their TMSCP counterparts. It also manages the configuration of TMSCP tape drives, and performs
error logging for TMSCP tape drives.

Data-transfer requests are processed in the context of the thread issuing the request. The TMSCP
function processor communicates with device function processors through the System Communica-
tion Services (SCS) function processor. End-packet processing is performed in the context of device
function processor threads.

The TMSCP function processor creates one thread to manage each tape controller. This thread is used
to configure units on the controller, and for access-path failover and powerfail-recovery processing.

Much of the design and implementation of the TMSCP function processor is derived from the Mass
Storage Control Protocol (MSCP) class function processor, described in Chapter 15, Direct Access

Mass Storage Function Processors.

Magnetic Tape Function Processors 16-3

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

CHAPTER 17
SYSTEM COMMUNICATION SERVICES

17.1 Overview

This chapter specifies the System Communication Services (SCS) available in the Mica system. It
also outlines the SCS implementation strategies identified to date.

Please see the attached glossary for a short list of SCS terms and definitions. In this chapter, port is
used to refer to a remote node's interface to the Computer Interconnect (CI), bus and adapter refers
to the local Mica CI interface, namely the External Memory Interconnect (XMI)-to-CI Adapter (XCA).
Any local Mica controllers, such as the Hierarchical Storage Controller for XMI (HSX), using System
Communication Architecture (SCA) are treated as adapters by SCS.

17.1.1 Goals and Requirements

The objective of the Mica SCS interface is to:

* Conform to the SCA specification for message formats, protocol, and implementation-independent
interface models

* Provide SCA communication services for concurrent Mica system applications running in kernel
mode to remote computer systems over one or more multi-access interconnects

Functions not implemented in the Mica SCS interface are:

* Failover support. SCS reports the failure of a communication path to the Mica system applica-
tions, but the individual application is responsible for reinitiating contact to a remote partner
over another path.

* Management of load balancing between many paths to a single, remote system.

ntation of SCA in CI port hardware can not guarantee that a sequenced
message is always delivered or that the sender is always notified of an error. Consequently, the
Mica implementation of SCS limits its efforts in this area. The design of system application

software should take this limitation into account.

* The current impleme

17.1.2 SCS Functionality

SCS performs the functions of t
(SCA). As such, SCS is responsib
cations (SYSAPs), controlling the use o
and multiplexing different connections onto the v

he session layer of the DEC System Communication Architecture
le for managing connections between communicating system appli-
f buffer resources, controlling the flow of messages and data,
irtual circuits between systems.

SCS provides user applications with the following services:

¢ Directory services

System Communication Services 17-1

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

These services maintain a directory of local SYSAPs that are waiting for active connection re.
quests from remote partners. A local SYSAP uses the services to register or delete itself from
the directory. A remote user cannot directly access the directory, but rather comnmunicates with
a local Mica SYSAP, named scs$directory. The scsSdirectory SYSAP uses the directory services

to provide directory lookup functions for remote users.
* Configuration services

These services maintain the identity of remote systems reachable through SCS. They keep infor-
mation about the remote systems’ hardware and software, and the connecting paths to them. The
local SYSAP uses these services to determine which remote systems are reachable, the number
of paths to the remote system, and the state of the virtual circuit on each path.

* (Connection services

These services are used to establish a connection between two SYSAPs over a virtual circuit
Connection services give SYSAPs the capability to: a) request a connection to another SYSAP,
b) accept or reject a connection request, c) disconnect from an established connection, or d) be
notified when a connection is broken.

* Data exchange services

Data exchange services allow two connected SYSAPs to exchange information. These services
send and receive datagrams, sequenced messages, and block data transactions.

171.3
17.1.3.1

Implementation Strategy
Initialization and System/Path Recognition

SCS is implemented as a gingle_ function processor with a single function processor umit (FPU).
Figure 17-1 shows the relationship between the SCS function processor and other function processors
in the system.

Figure 17-1: SCS Function Processor in the /O System

== == L., -~ - ==} hoplen Mo
interface
SYSAPs { MSCP TMSCP RPC
L LI
) -
* 58, Spe
Intertace
System Com-
munications SCs
Services

* SO P
Intertace

J -

Device
Function HSX XCA
Processors DFP DFP g 54 ' B

The SCS function processor is initialized

first adapter that uses SCA prot;e::l. Z'Fhefe:?;’he s
about every SCA adapter it successfully conﬁgure's
ware). SCS responds by establishing a channel

17-2 System Communication Services

guration function processor recognizes the
t(.he configuration function processor informs SCS
4 s;:e Chapter 34, Configuration Management Soft-

e adapter FPU, and by binding the SCS FPU

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

to the adapter FPU. The adapter’s device function processor finds the remote systems with which
the adapter can communicate, establishes virtual circuits to each system, and records the resulting
system information in the SCS configuration database.

Local SYSAPs can use the SCS directory and configuration services as soon as SCS is initialized. Once
a system path is established and the virtual circuit is open, then a SYSAP uses SCS’s connection
services to establish a connection between itself and a SYSAP in a remote system. Thereafter, the
SYSAP uses SCS data exchange services to communicate with the partner.

17.1.3.2 Message and Datagram Buffer Allocation

One of the goals of SCS is to make it unnecessary to copy application data from buffer to buffer as
each software layer adds header information. Therefore, SYSAPs are required to obtain message and
datagram buffers from SCS. SCS acquires these buffers from device function processors. A device
function processor allocates a physically contiguous buffer that is big enough to hold the application
data, along with the SCS header and the device function processor header.

SYSAPs cannot assume anything about the size or content of the SCS and device function processor
layer headers. On the return from buffer allocation, the SYSAP has only a pointer to the beginning
of the application data area.

17.1.3.3 SYSAP-SCS Interface
SCS implements the following request I/O function codes:

* connect establishes an SCA connection to a partner SYSAP. SCS allocates a specified number of
message buffers (initial message credits) and queues them to the adapter’s message free queue
(MFREEQ). Then, a dialog to establish the connection to the partner SYSAP begins. The L/O
request completes when either: a) the connection is established, b) the connection is rejected by
the partner SYSAP, c) the target system becomes inaccessible through the identified path, or d)
the partner SYSAP is not listening for a connect request.

* accept accepts a connect request from a partner SYSAP.

* reject rejects a connect request.

* disconnect disconnects a connection to a partner SYSAP.

* read_block_data transfers a block of data from the partner system to a local buffer.
* write block_data transfers a block of data from a local buffer to a partner system.

SCS implements the following synchronous I/O entry points:

* read_directory searches the local SYSAP directory and returns the information about a specified
SYSAP name or entry number stored there.

* system_configuration searches for information about accessible systems, given a system name or
entry number,

* path_configuration returns information about an available system path.

s : ' 1 i nnect
B e v Sdie e widitist pocaiog recusins $<alla SHia Sumet
with a null AST procedure address.

st establishes the AST procedure to be invoked if the connection to a partner

1 t
® enadle disconnect ast 65 0" PEN state. This AST procedure is not invoked if the local SYSAP

SYSAP transitions from t
initiates a disconnect.

* allocate_datagram allocates a datagram buffer from the datagram free queue (DFREEQ). The
SYSAP thread waits until the datagram can be allocated.

System Communication Services 17-3

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

o send_datagram sends a datagram. The datagram buffer is put on DFREEQ after the datagram
is sent.

* deallocate_datagram returns a datagram to the DFREEQ.

+ allocate_message allocates an application message buffer from non-paged pool. The current
thread waits until the message buffer is allocated.

o send_message sends an application-sequenced message. After t!\e message is sent, the buffer is
deallocated or placed on the MFREEQ, depending on the caller’s wishes.

* add_messages adds message buffers to receive messages from remote partners. The function
terminates when the buffers have actually been added. SCS must coordinate with the partner
system when adding buffers.

deallocate_message returns an application message buffer back to non-paged pool or the MFREEQ.

* map_data_buffer prepares a buffer for block data transfer by initializing a buffer descriptor in
the buffer descriptor table (BDT).

* unmap_data_buffer releases a buffer descriptor for reuse.

17.1.3.4 SCS-Device Function Processor Interface

SCS and device function processors communicate with each other by synchronous 1/O calls and SCS
callback routines. The device function processors use SCS callback routines to announce data recep-
tion.

The SCS data reception callback function processes the received data to completion in the context
of the device function processor thread. SCS determines the type of data received, and proceeds as
follows:

* Datagrams—SCS delivers the datagram to the SYSAP via a callback routine. In most cases, the
SYSAP processes the data immediately, or copies the data from the buffer for future processing.
The SYSAP then returns the datagram buffer, through SCS and the device function processor,
to the DFREEQ. However, the SYSAP has the option to keep the datagram buffer.

* Sequenced application message—SCS delivers the message to the SYSAP via a callback routine.
In most cases, the SYSAP processes the data immediately, or copies the data from the buffer
for future processing. The SYSAP then returns the message buffer, through SCS and the device

guux;fction processor, to the MFREEQ. However, the SYSAP has the option to keep the message
er.

. tBl-‘.)ckfdata transfers—SCS locates the IRP and completes the I/O request associated with the
ransfer.

SCS protocol messages—The processing of protocol messages can cause an 1/O request, such

as a SYSAP-initiated connect, to complete, if the message being processed concludes protocol
commumnication.

17.1.3.5 Flow Control Scheme

Flow control is used to ensure that a sender does not send more data than the receiver has buffer

;_’z:‘ SCA requires flow control for sequenced messages and block data transfers, but not for data-
8. '

Block data transfer is governed by flow control beca
by the remote system to complete the transfer,

use SCA assumes that a message buffer is needed

174 System Communication Services

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

17.1.3.5.1 SCS Protocol Messages

SCS protocol messages are also sequenced messages that require flow control. Flow control for SCS
protocol messages is transparent to SYSAPs, and is applied to paths, rather than to connections.
When the virtual circuit for a path is opened, SCS sets aside one buffer for sending protocol requests
and one buffer for receiving protocol requests. SCS then uses internal mechanisms to ensure that a
simple request/response protocol is maintained. In this way, no new SCS request can be sent on a
path until a response to the previous request on that path is received.

17.1.3.5.2 SCS Application Messages and Block Data Transfers

For application-sequenced messages and block data transfers, SCS maintains flow control for each
SYSAP-to-SYSAP connection by means of a credit scheme. That is, SCS keeps track of the credits for
each connection and does not allow a SYSAP to send any messages or block data transfers without
the proper number of "send credits.”

When a SYSAP establishes a connection with a partner, it specifies an argument called "initial
credits.” This is the partner’s initial number of send credits and determines how many message buffers
SCS must allocate and queue to the MFREEQ for this connection. During connection initialization,
this send credit value is reported to the partner SYSAP.

Communicating credit updates to the remote partner has two parts:

* First, all sequenced message headers have a credit field. Using this field, SCS can piggyback
credit information with each outgoing message. As receive buffers are added for a connection, a
pending receive count is maintained. Whenever a message is sent out on that connection, the
pending receive count is copied to the message header credit field, and then zeroed. As messages
arrive at the remote system, the remote SYSAP's send credit is increased by the amount of the

credit field.

* Second, SCS has a special credit protocol message available to it. SCS always monitors the
remote SYSAP's send credit value. If the send credit reaches a specified threshold and the
pending receive count is not zero, SCS uses the credit protocol message to notify the remote
SYSAP of the additional send credits, and then zeros the pending receive count.

This implementation only allows send credits to be added. Any attempt to delete send credits results
in protocol errors. SYSAPs can add send credits by using the add_messages interface, by sending
an application message with its recycle flag set, or by returning a received message buffer with its

recycle flag set.

17.1.3.6 Error Philosophy
Three types of errors are handled by Mica SCS:
* Invalid /O requests
If SCS receives an invalid VO request, it fails the request with the appropriate error status.

* Adapter errors that result in the loss of the virtual circuit

Adapter errors that result in the loss of the virtual circuit include adapter failure, host powerfail,
and fatal adapter errors that cause adapter reinitialization,

Recovery from an adapter error requires the cooperation of the device function processor, SCS,
and the local SYSAPs. The device function processor is the first to recognize the event. The

device function processor must:
1. Complete all threads waiting on adapter resources with an error

2. Notify SCS of the error via the device FPU state change AST
3. Begin adapter recovery from the event

System Communication Services 17-5

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

The SCS system thread takes the following actions:

1. Marks the virtual circuit as CLOSED for each path through this adapter
2. Terminates all I/O in progress on the connections through this adapter
3. Invalidates all connections for paths through the adapter

4. Contacts previously connected SYSAPs via their disconnect AST

The SYSAPs are responsible for reestablishing connections to their partners and resuming nor-
mal activity using SCS configuration services.

If adapter recovery was unsuccessful, or if SYSAPs do not resume normal activities, the SYS-
APs are then responsible for deallocating all of the resources they hold for the discontinued
connections,

* SCS protocol errors

SCS interprets an invalid request by a remote SYSAP as a protocol error and assumes that
the remote SCS is broken, even though the adapter is considered sane and the device function
processor is unaware of any problem.

Upon recog_'nition of a protocol error involving a remote node, SCS queues the error to a system
thread, which contacts SYSAPs using their disconnect AST.

17-6 System Communication Services

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

CHAPTER 18
XCA FUNCTION PROCESSOR

18.1 Overview
18.1.1 Introduction

The XMI-to-CI Adapter (XCA) port is an intelligent controller that connects the External Memory
Interconnect (XMI) bus to the high speed serial Computer Interconnect (CI). This chapter describes
the XCA device function processor, which is the lowest-level Mica interface to the XCA device.

18.1.2 Requirements

The XCA device function processor is required to:

* Provide CI support for Mica

* Support multiple CI controllers

¢ Provide remote system recognition to ensure a current system configuration

« Provide port-to-port virtual circuit service using the system communication service (SCS) hand-
shake protocol

¢ Deliver sequenced messages and block data in the correct order and without duplications

* Provide hooks for diagnostics, as needed

18.1.3 Goals

XCA device function processor goals are to:

s Isolate SCS from the XCA controller hardware

« Provide a communication medium that is free of undetected transmission errors

e Manage network congestion control by selected use of paths on dual-path CI hardware and

prioritized controller queues

XCA Function Processor 18-1

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

18.1.4 Functionality

The XCA function processor performs the following device-dependent functions for Mica:

» Initializes the XCA controller

¢ Maintains the current controller status for inquiry by higher-level function processors

* Manages memory data structures used for the Mica/controller interface

¢ Handles controller malfunctions and recovery

* Sends information packets (datagrams, sequenced messages, block data) to remote systems

* Receives information packets from remote systems and delivers each packet to its corresponding
higher-level function processor

* Maintains raw data for system performance measurement
* Polls the controller at prescribed intervals to update system configuration data
* Opens and closes virtual circuits to remote systems

18.1.5 Higher-level Interface to XCA Function Processor

The significant functions provided by the XCA function processor for other function processors wishing
to communicate with the XCA controller are:

* SCS port driver (PD) interface functions

The SCS PD interface provides a consistent set of services to the SCS function processor from
each device controller function processor. The XCA function processor implements the SCS PD
interface described in Chapter 17, System Communication Services.

The following is a summary of the available PD services:
— Allocate datagram and message buffers
— Release datagram and message buffers
— Map and unmap block data buffers
— Send datagrams, messages, and block data |
— Receive datagrams, messages, and block data
— Open virtual circuits
— Close virtual circuits
* Controller configuration functions

E;;exﬁém‘;%rﬁ?;s i:’unct.ion processor procedure and function codes control the configuration of

Initialize FPU procedure—Initializes the function processo ¢ . e
and sets the initial FPU state from the controllerPs statusrrl;;stieipu e
io$c_xca_ready_fpu—Initializes the XCA controller and sets the FPU state to ONLINE

— io8c_xca_poll_controller—Forces the function processor to poll the controller’s station ad-

dresses to define the system configuration

— io$c_xca_unr eady_fpu—Changes the FPU sta
hardware and all controller state data in the Ft;éo MECATEE sl rewie the controlhe

18-2 XCA Function Processor

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

Read_ying an XCA controller causes the function processor to begin system configuration polling.
The io$c_xca_poll_controller function is used to configure remote systems without waiting for the
normal polling time interval to elapse.

* Diagnostic functions

The diagnostic capabilities of the XCA function processor will be specified when the requirements
and functions are defined.

18.1.6 XCA Function Processor Interface to the XCA Port
The XCA function processor communicates with the XCA controller through:
* Port registers

The port registers form the low-level path through which basic control and status operations are
performed. The XCA function processor uses these 24 registers to:

~— Initialize the XCA port

— Get basic controller status information

— Control diagnostic operations

— Force command queue reading by the controller

* Command and response queues

Command and response queues control the normal operation of the controller. Port commands
and responses are contained in blocks of host memory called queue packets and linked to an
appropriate command or response queue. Each queue packet corresponds to a datagram or
sequenced message with a standard header that defines the nature and parameters of the com-
mand or response, followed by the data particular to that command or response. Queue packets
that are not in use have undefined contents and reside on free queues from which they can be

obtained as needed. .
The controller is linked to the command and response queues by a data structure called the port

queue block (PQB). The XCA function processor has one response queue, four command queues,
a message free queue (MFREEQ), and a datagram free queue (DFREEQ).

As the result of controller restrictions, the PQB, command and response queue headers, and
queue packets are located in the low 512 MB of physical memory. Each individual PQB, queue
header, and queue packet must be quadword aligned and physically contiguous within itself.

The PQB must also be aligned on a 512-byte boundary.

* Buffer descriptors and host transfer lists

When data movement involves block data transfers, then the host must supply the controller
with buffer descriptors to define the block data buffers. The buffer descriptor is an entry in a
buffer descriptor table (BDT), which is located using the PQB. The buffer descriptor points to a
host transfer list (HTL), which is a list of the segments of memory that together constitute the
buffer. The controller accesses the descriptor, determines the physical memory addresses of the
memory segments, and accesses the block data buffer directly.

The BDT and HTL must each be physically contiguous, quadword aligned, and located in the

low 512 MB of physical memory.

* Interrupt service routines
The XCA function processor uses two interrupt service routines. These routines are connected
to the appropriate vectors for the XCA controller.

IPL 4 ISR—This interrupt service routine is invoked when the XCA controller inserts a
response entry on an empty response queue. The service routine signals the XCA function

processor with a pending response event (see Section 18.1.7.3).

XCA Function Processor 18-3

Digital Equipment Corporation - Confidential and Proprietary r
Restricted Distribution

__ IPL 5 ISR—This interrupt service routine is invoked when the XCA controller declares an
error, or writes its status register as the result of a state change. The service routine sel
the processor’s controller state change event (see Section 18.1.7.4).

18.1.7 XCA Function Processor Implementation

The Mica interface to all XCA controllers is implemented as a single function processor. The XCA
function processor has one or more FPUs, each of which represents an XCA controller.

For each FPU created, the XCA function processor creates one main system thread and several worker |
threads. The worker threads are responsible for dequeuing packets from the controller response
queue. The main system thread handles all other functions within the function processor.

All SCS PD-defined entry points to the XCA function processor are function codes for the e$synchronou_
io_call service that execute in the context of the caller.

The XCA function processor passes received messages and datagrams back to a higher-level function
processor tnrough previously established response callback procedures, The threads executing the
callback routines operate in the context of the XCA function processor.

18.1.7.1 System Recognition

SCS relies on an internal database to determine the system configuration. It is the responsibility o |
the XCA function processor to determine which remote systems each XCA controller can reach and
include this information in the SCS configuration database. To accomplish this, the XCA function
processor’s main system thread periodically polls all 224 controller station addresses, sending request
ID (REQID) packets to each station. The corresponding ID received (IDREC) packets, and any
unsolicited IDREC packets, are then used to configure the system list.

18.1.7.2 Virtual Circuits

The XCA function processor provides virtual circuits for SCS. An ’ ircuit 1 f
datagrams, messages, and block data to be exchanged between sys:ep:at;.“rtMI ik do sedns o8

The XCA function processor's main system thread o i : i : :
) n 0 | pens virtual circuits using a standard 3-way |
handshake._ Durmg system recognition aphmties, the XCA function procesaormfuwmatjmllv begins
the open virtual circuit sequence_whc_an it discovers a path to a remote system that is not in the
configuration database. Virtual circuit initialization also begins when the XCA function processor

receives a start virtual circuit datagram from a remote syste :]
procedure with an io$c_xca_open_ve function code. T S SR s

The XCA function processor closes a virtual circuit when i i i

: : en it notices a virt ircuit fai hen

3 hlghet:-level fpnct;on processor requests a virtual circuit closure. T:le ;é}&?:cn?t::: lurm’e. 0:0‘:5:11

hzt;leé:lt wrtucil m;ailmt fa;h{re during polling activities or data transmissions. The funct?on processar
andles such a failure by issuing a command to disable the virtual circuit in the controller’s interns!

virtual circuit table and signaling the virtual circuit error AST. 3

An example of a higher-level function processor i i scs

- le of a hi _ requesting a virtual circui i :

a virtual circuit failure by finding protocol errors in oommfmications :I:ﬁmr:imnlzun Sdg; l?lrel: |
issues a call to the XCA function processor's Synchronous_io_call procedure with a:? l:sc :x;a close_uc

function code. The XCA function i
disable the virtual circuit on this :;:hc:}i;z; l‘:_gf:::: :L‘esgél’ltmller s internal virtual circuit table @

The system and path information in the SCS configuration database, as well as the controller’s

internal virtual circuit table, 1 :
or closure. are always updated with the results of the virtual circuit initialization

184 XCA Function Processor

R s s 55

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

18.1.7.3 Response Handling

An event is signaled by the interrupt service routine whenever an entry is put on the response queue.
An XCA function processor worker thread that was waiting on the event increments the active request
count, and removes a response entry from the response queue. If the queue is still non-empty, the
thread signals the pending response event again. The thread then decodes the response packet’s
type to decide on the necessary processing. If a higher-level function processor should receive the
packet, then that function processor’s response callback procedure is called. Upon returning from
the callback routine, the system thread decrements the active request count, and loops back to wait
for another pending response event. :

18.1.7.4 Error Handling

The XCA function processor is notified of fatal errors when its main system thread’s wait is satisfied
by a controller_state_change event or a powerfail event.

For the benefit of higher-level function processors, the XCA function processor performs the following
actions:

1. Sets the XCA's FPU state to TRANSITION (and increments the FPU’s sequence number)
2. Completes all threads waiting on controller resources with an error

3. Records the controller's status and error values in an error log packet
B

Begins controller reinitialization actions to recover from the event

No matter what the outcome is of the recovery processing, the XCA function processor guarantees
that the FPU state will not remain in the TRANSITION state indefinitely.

XCA Function Processor 18-5

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

CHAPTER 19
NI FUNCTION PROCESSOR

19.1 Overview

This overview summarizes plans for the Mica NI function processor, a device function processor
providing data link communication between NI (Network Interconnect) devices. Network function
processors call the NI function processor to read from a NI communication device, or to write to such
a device. For the rest of this document, the term NI refers to Ethernet LANs (Local Area Networks)
and to IEEE 802.3 LANS, both of which use CSMA/CD (Carrier Sense Multiple Access with Collision
Detection),

19.1.1 Goals

The goals of the NI function processor are as follows:

* To provide NI support for the data link layer of DECnet, Phase IV and Phase V

* To support multiple NI controllers (XNAs)

* To provide services for applications running in both kernel mode and user mode

* To provide services for multiple pieces of upper-layer software that run concurrently
* To provide hooks for diagnostics, as needed

s To utilize the NI controller to its maximum transmit/receive speed

19.1.2 Features Not Implemented
The NI function processor does not offer the following features:
* Load balancing between controllers

+ Services that allow a remote node to control, dump, load, or diagnose the local node

+ Shared SAP, Protocol type, or SNAP Protocol ID

19.1.3 Capabilities

The NI function processor performs the
Network Architecture (DNA). The main

* Filtering the data link header of each incoming packet
acket to its corresponding upper-layer software

functions of the data link layer as specified by the DIGITAL
tasks of the NI function processor are as follows:

* Delivering each incoming p
* Generating the data link header of each outgoing packet

*+ Maintaining status information about the data link layer

NI Function Processor 19-1

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

The NI function processor provides the following services to the upper-layer software:

» Configuration Services—By calling these services, an upper-layer software specifies the following
information:

— What kind of packet the upper layer receives from the NI function processor (for example,
Ethernet or IEEE 802.3).

— What kind of packet the upper layer sends to the NI function processor. (That is, the NI
function processor specifies the data link header information for outgoing packets).

— How many receive buffers the NI function processor is to allocate.

* Data exchange services—Unlike the configuration services, which specify how packets are to b
sent and received, the data exchange services do the actual sending and receiving. That is, thes
services allow an upper-layer software on one node to exchange packets with a network progrn
on another node.

The data exchange services, however, provide only datagram service. The NI function processor

therefore guarantees neither that transmitted packets have been received nor that packets have
been delivered in the order sent.

* data link status services—The data link status services provide counters and events that relate
to the NI data link layer.

19.1.4 Interface with the Upper Layer

The upper-layer interface to the NI function processor is a set of procedure calls that set the physical
characteristics of controllers, specify the criteria for filtering incoming packets, and transfer data

These procedure calls are of three types: request and execute /O functions, synchronous /O call
functions, and callbacks. .

19.1.4.1 Request and Execute /O Functions

The request and execute I/O functions are invoked by cal

; ling the channel object service routines
ﬁ:‘tf:: gogegs"eqm‘—w) and Execute IO (eexecute_io). These functions support the following

* ioSc_ni_ready_fpu—Configures the NI controller, and sets t ' : =
sor unit) to ONLINE. The information su » and sets the state of the FPU (function proces

pplied includes the physical address of the controller,

, and other related infi ti A
cannot be changed when the FPU state is Om?' The configurations of the NI controller

* io$c_ni_unready _fpu——Chang.&s the FPU state to AVAILABLE, and resets all aspects of the con-

troller configuration to their initial values: f : '
ware address, and the counters are set ::B ;ec:;'example. s T ks i puk 1o Cho fec

* io0$c_ni_get_fpu_counters—Returns the co
- number of packets sent, and the n e

* ioSc_ni

associated with , the
umber of packets received). the controller (for example

. _set_fpu_counters—Sets the counters associated with the controller to zero.

. ﬁﬁ;{f‘fﬁg’;ﬁ‘;ﬁfﬁgﬂﬁﬂ;ﬁﬁf’ r;;.;:work address of the channel, and sets the criteria by
a value that uniquely idt_antiﬁes ag Ef;apert?;;gl guf:wcrrzpt:r:'l; ﬁm t_}':l:a]‘;;:j ws'f'f;{:':‘::

specifies the upper layer's packet formal?i::o:g:n?lit?rggf S?;:! {mfmmfg::;

18-2 NI Function Processor

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

. :'oslc_ger_channe!_infommtion——Retums packet-filtering information associated with the chan-
neil.

* ioSc_ni_send_data—Sends a block of data. The 1/O is completed after the transmit data is sent.
* joSc_ni_receive_data—Receives a block of data.
io8c_deaccess—Deallocates the data structures and buffers associated with the channel.

19.1.4.2 Synchronous VO Call Functions
The NI function processor supports the following synchronous /O call functions:

» io$c_ni_kept_buffer_limit—specifies the maximum number of receive buffers allowed to be kept
by the upper layer software.

» io$c ni enable_receive_callback—Specifies which entry point of the upper layer is to be called
when the NI function processor receives a packet that satisfies the filtering criteria of the channel.

» ioSc_ni_return_buffer—Returns a receive buffer that the upper layer has temporarily kept.

19.1.4.3 Callbacks

The NI function processor supports one procedure type as a callback routine to the upper-layer
software. The NI function processor calls this procedure after receiving a packet intended for the

upper-layer software.

19.1.5 Implementation Strategy

The NI function processor is a single function processor having one or more function processor units
(FPUs), each corresponding to a single NI controller. The NI function processor is loaded and ini-
tialized by the autoconfiguration program. Figure 19-1 shows how the NI function processor is

implemented. i

NI Function Processor 19-3

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

Figure 19-1: How the NI Function Processor is Implemented

ugh a particular NI controller, an upper-layer software first creates an L0
e : per layer then prepares the channel
for reception and transmission.

19-4 NI Function Processor

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

The upper layer, having received the size of the NI data link header from the function io$c_get_
channel_information, leaves enough space in front of its own protocol header to build a data link
header. The NI function processor first adds the data link header in front of the upper layer’s
protocol header. Then, using the buffer-chaining feature of the controller, the NI function processor
combines the resulting header with the upper-layer data being sent to the NI controller.

For the user-mode upper layer, the NI function processor reserves the data link header buffer in the
IRP when the FP parameter record is established. The NI function processor then sends the data
link header with the data to the NI controller.

The I/O function is completed after the transmit buffer is sent.
Figure 19-2: Mapping of Transmit Buffers to Actual Packet

IRP
Fixed Host Transfer List i
Area Current Parameters

—te L0000 Data link hc.a;dtf- NNy
Routing header e
/NSP header @@ . iil!

Protocel Haader s

A v h

OH .} (RH e E :

Packet

19.1.5.2 Recelve

There are two mechanisms provided by the NI function processor for th upper-layer software to
receive incoming data: one is the io$c_ni_receive_data request I/O function and the other is the

receive call back mechanism.

Using lo$c_ni_receive Request IO Function urs
When an incomin cket arrives, if there is an outst.an_dmg receive posted on the channel, then the
NI functi(:n procegaz: stores the address of the NI receive packet in the IRP, and completes the /0
request. When the /O completion routine executes, the NI function processor copies the message
from the NI receive buffer into the buffer specified in the IRP and returns the NI receive buffer to

the NI receive buffer pool.
If there is no IRP outstanding, the NI receive packet is queued to the channel, and the NI thread
returns to wait for another message.

NI Function Processor 13-5

B |

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

To Use Receive Callback

After receiving a packet intended for the upper layer, the NI function processor issues a callback i
the upper layer. That is, the NI function processor directly calls the entry point that the upper layer
specified in its call to the eSsynchronous_io_call function enable_receive_callback,

When the upper layer receives a packet, it either immediately releases the receive buffer containing
the packet, or it keeps the buffer for some period of time. If the upper layer releases the receve
buffer immediately, the NI function processor returns the buffer to the receive-buffer pool as soon as
the thread that delivered the packet returns. If, instead, the upper layer keeps the receive buffe
for a while, the following steps occur. To release the buffer, the upper layer calls the NI function
processor’s Synchronous I/O Call (e$synchronous_io_call) function io8c_ni_return_buffer. Then, the
NI function processor returns the receive buffer to the receive-buffer pool.

The upper-layer software must return all the kept buffers before the channel is deleted. Otherwise,
the system nonpaged pool memory may be lost.

The receive callback mechanism is only supported for the kernel-mode software.

19.1.6 Outstanding Issues

1. The NI function processor may need to provide some extra hooks to interface with the network
management software.

2. The diagnostic capabilities of the NI function process ill be fied w ' s
and functions are defined. P - specified when the requiremen

18-6 NI Function Processor

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

CHAPTER 20
CONSOLE SUPPORT

20.1 Overview

From Mica’s perspective the console is four devices:
* console terminal

* console storage device

* SRM service processor

* configuration processor

A console terminal is required for each processor on all Prism systems. A set of four processor
registers is defined in the Prism SRM, which allows Mica to read and write characters from the
console terminal. A set of these registers exist for each processor in the system.

A console storage device is an optional device. The existence of this device is related to the hardware
system design. The function required from the console storage device depends largely on the hardware
configuration.

Mica depends on the SRM service processor of the console to perform the functions described in the
Prism SRM. Some of these functions are:

* setting up the RPB
loading EPIcode and the primary bootstrap
¢ setting the machine to a defined initial state

-

* synchronizing processors during a multi-processor bootstrap

The SRM service processor performs these functions without Mica’s assistance. Mica is only a con-
sumer of these functions, and cannot provide the console with any support for the functions.

onal device. The existence of the configuration processor is related
e functions Mica performs in conjunction with the configuration
ble functions of the configuration processor that could be con-

A configuration processor is an opti
to the hardware system design. Th
processor vary greatly. Some of possi
trolled by Mica are:

* reporting failed hardware
» disabling hardware modules

¢ executing ROM based diagnostics

Console Support 20-1

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

20.1.1 Requirements

Mica is required to support the console terminal 1/O for:
* kernel-mode debugger

* last-gasp messages

* some primitive off-line diagnostics

* bootstrap messages

Mica does not initially support user use of the console terminal and this includes not allomngfm‘
user to log into the system via the console terminal, On a VAX/VMS system this support is calle
console program I/O mode.

Mica, depending on the hardware configuration, supports the console storage dewice as a storage
device. This device could be used for any operation in which an ordinary disk or ta pe could be used
Possible uses of this device are:

* system and layered-product kit distribution media
* system disk (for functions like off-line backup and initial system installation)
* storage of primary bootstrap image

The interface to this device is not architecturally defined, and may vary greatly between different
implementations of Prism systems.

Depending on the hard‘yare configuration, Mica works with the configuration processor. The informs
tion passed between Mica and the configuration processor is dynamic. Mica does not always reboot
because the configuration has changed. Possible functions of the configuration processsor are:

* notifying of failed hardware
* running low level diagnostics
* disabling hardware components

* notifying of dynamic changes to the configuration (hot swap)

The interface to this device is not architecturall

i : y defined and ; vary : ifferent
implementations of Prism systems, may vary great between differe

20.1.2 Design Highlights
20.1.2.1 Console Terminal

The console terminal is a seldom-used device: h it i :
/ [dom » however, when it i fen
1s usually the result of a major (if not catastrophic) system eme.-nt.l.s FOR DRt eacelt

The console terminal has two software interfaces, synchronous and asynchronous

20-2 Console Support

TR

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

20.1.2.1.1 Synchronous Interface

The synchronous interface implements its functions by polling, and does not use device interrupts.
The consumers of this interface are

* kernel-mode debugger

* last-gasp messages writer

* bootstrap messages writer

This interface is required to work at an IPL higher then the console terminal’s IPL.

The code is a library of routines that are linked into the image. A function-processor interface cannot
be used because the code works in environments in which Mica and function processors do not exist.
The interface is, however, conceptually compatible with the function-processor interface.

The code is very basic. Only simple read-and-write character functions are supported. It is critical
that this code works correctly, because the system debugger uses the code.

20.1.2.1.2 Asynchronous Interface
The asynchronous interface implements its functions using device interrupts and does not use polling.

The consumers of this interface are some primitive off-line diagnostics which cannot be run throught
the system management interface.

A function-processor interface is used. A full Mica system is running when this interface is used.

Only simple read-and-write character and line functions are supported. Complex terminal support,
like command-line editing, is not supported. This is a level of functions supported by a port driver

on VMS.

20.1.2.2 Console Storage Device .
Mica support of the console storage device is largely dependent on the hardware configuration. The

hardware configuration determines whether there is a console storage device accessible to the Mica
software, and which functions the device is required to support.

The console storage device is accessible through a standard function processor interface (for example,
the logical-block-unit interface). Other function processors may be layered on top of the console-
storage-device function processor.

Unlike the console terminal, there is not a separate console storage device for each processor. The
hardware may implement the console storage device interface as per processor registers. The console-

storage-device function processor makes the console storage device appear once per system and not
once per processor. The console-storage-device function processor does not require processes using

the console storage device to have processor affinity.

The console-storage-device function processor also supports the concept of more than one console
storage device (for example, a tape and a disk). Each device has a separate function-processor unit

interface.

Console Support 20-3

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

20.1.2.3 Configuration Processor

Mica can only support the configuration processor if it is present in the hardware. The_ hardware
design determines what configuration-processor functions are supported, and defines the interface

Possible Mica users of these configuration processor functions are hardware-reconfiguration software,
diagnostics, error logging, and system management.

Depending on the functions supplied, both a synchronous interface and an asynchronous interface
are provided.

The interface to these functions is accessible only by system software.

20.1.3 Issues

1. Rock Support

The console terminal is well defined, and a single implementation of the support runs on all
Prism processors, including Rock.

The console device is not well defined, and a new implementation is required for each new
systgménletdm not yet known if Rock has a console device, and thus the interface to the device is
not de >

The conﬁguratiqn processor is not well defined, and a new implementation is required for each
newdsggisnt:?. It is not yet known if Rock has a configuration processor and thus its interface is
not de s

2, Multi-processor Support

H Console Support

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

CHAPTER 21
MESSAGE FUNCTION PROCESSOR

21.1 Overview
This paper summarizes the design and function of the Mica message function processor.

The message function processor passes messages from writing threads to reading threads, thereby
allowing processes to communicate with one another. One use of the message function processor is
as a log for the following kinds of system events: accounting, operator, security, network, and error.

Threads read and write to the message function processor through its function processor units (FPUs).

Figure 21-1 shows how writing threads (Writers) and reading threads (Readers) access FPUs of the
message function processor.

21.1.1 Functionality

The message function processor meets the following requirements.

Sharing

* Shared Message Streams—Reading threads sharing an FPU can also share a single message
stream, that is, a single outgoing connection from the FPU. By default, each message in the
stream is read by only one of the threads, which take turns reading.

* Shared Messages—When threads share an FPU but do not share a message stream, each thread
can read all messages written to the FPU,

Selectivity

* Message Filtering—A reading thread can specify that it receive only messages of a certain type.
For example, a thread reading error messages can specify that it receive only messages signaling
disk errors.

+ Selective Retention of Messages—Depending on how a message FPU is created, it a) retains
messages if no thread is currently registered to rfmd them, or b) discard_s such messages. qu
instance, an FPU receiving events (messages) during system startup retains each message until
a thread registers to read it. In contrast, an FPU receiving accounting messages discards each

message unless a thread is currently registered to read it.

State Control

. i) ing Logging—If the state of a message FPU is changed from ONLINE to
i{l,:_ll) %fﬁd :,Il::gs?-‘brill?grejegg ngew requests to r:ead or write. Using this feature, the system
manager can enable or disable the logging of various system events.

State—When state of a message FPU changes between ONLINE and AVAILABLE,

. Moniton .
e nnge function processor notifies all threads registered on the FPU.

the messag

Message Function Processor 21-1

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

Figure 21-1: How Threads Read and Write through Message FPUs

DER
WRITER MESSAGE ‘> MESSAGE :> ey
FUNCTION
PROCESSOR
UNIT
WRITER MESSAGE >
WRITER MESSAGE by NGSSAGE
FUNCTION
PRCCESSOR
UNIT
WRITER MESSAGE by :> READER
&
&
®
WRITER MESSAGE >
MESSAGE

FUNCTION

WRITER MESSAGE b2 PROCESSOR READER
UNIT

WRITER MESSAGE >

Synchronous or Asynchronous 1/0

* Writing—When writ

Pecifies a) that the operation remain incomplete
ration complete immediately, succeeding

* until there is 2 message to read [read], or b) that the o
only if there is currently a message to read [read_noy).

21-2 Message Function Processor

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

Other Requirements

* Resource Control—Through quotas, the message function processor limits its use of system mem-
ory.

* Kemnel-Mode Support—The message function processor provides buffers so that threads can write
messages in kernel mode with minimal delay.

* Performance Monitoring—The message function processor keeps an accessible set of statistical
information, such as when the message function processor was most recently accessed, and how
many Readers are currently registered. .

21.1.2 Design

Following are the main components of the message function processor:

* Function processor units (FPUs)—The message function processor has one or more FPUs.
* Lists of unread messages—There is one list for each FPU.

* Message stream header—A thread reads on its FPU through a message stream header, of which
each FPU has one or more.

* Object service routines and /O function codes—These routines and codes operate on message
FPUs. (All entries into the message function processor are through procedure-based calls; there
are no system threads.)

There are two types of message FPUs: the first is always ONLINE; the second is ONLINE only if
Readers and Writers both are registered on it. The first type buffers unread messages that lack
Readers; the second type discards such messages.

When a thread creates an FPU, the system charges the requesting thread for the pool necessary
to create the data structures of the FPU, and for the pool to buffer messages written to the FPU.
Similarly, whenever a thread performs a [write]/ operation on an FPU, the system also charges the
writing thread for the pool to buffer the message. (In contrast, [write_now] entails no such charge.)

Before accessing the message function processor for the first time, a thread must register on a message
FPU as a Writer, a Reader, or both. When a reading thread tries to register on an FPU through a
nonexistent message stream header, the message function processor creates a new message stream
header. A reading thread can, however, register through an existing message stream header. The
registering thread then shares the message stream header (and thus the message stream) with

Readers already registered on that block.

A writing thread assigns a 64-bit message type to each message written. The message type shows
the kind of message written. When registering, each reading thread specifies the message types it
accepts. After registering, a reading thread can change this specification, and thereby accept different

message types,

21.1.3 Functional Interface
The message function processor contains an entry for the following I/O executive service calls:
* - execuile 10

* synchronous_io_call

* initiaglize_io_parameters

* create_fpu

* delete_fpu

* cancel_io

Message Function Processor 21-3

—ﬁ

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

* get_fpu_information
The message function processor implements the following Request /O function codes:

* register—Registers a thread as a Writer, a Reader, or both. Specifies the message types thats
thread reads.

* read—Completes only after the attempt to read either succeeds or fails.
* read_now—Completes immediately.

* write—Completes only after all Readers have read the message.

* write_now—Completes immediately.

* deaccess—Called by the I/O system after all threads have closed their channels to the message
function processor. Deallocates data structures and does related cleanup.

* change_types—Changes the messages types that a thread reads.
* ready_fpu—Changes the state of an FPU from AVAILABLE to ONLINE.
* unready_fpu—Changes the state of an FPU from ONLINE to AVAILABLE.

. enabie_;&m,state,_change_,ast—Requests that a thread receive an AST each time the state of its
FPU changes,

* disable_ast—Disables delivery of state-change ASTs.

The message function processor has two entry points through synchronous_io_call used only by
threads writing in kernel mode:

* allocate_buffer—Gets a buffer.

* Queue_buffer—Queues a buffer.

214 Message Function Processor

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

CHAPTER 22
PRISM DIAGNOSTIC MONITOR

22.1 Overview
22.1.1 Introduction

The PRISM Diagnostic Monitor (PDM) is the controlling environment for all loadable PRISM diag-
nostic programs that execute in the on-line or off-line run-time environments (described in a following
paragraph). Its purpose is to provide the following functions:

* A user-diagnostic interface, which ensures that all diagnostic programs present a consistent and
convenient user interface,

+ A set of diagnostic services and other routines that facilitate the writing of diagnostic programs.

* A mechanism for controlling and monitoring the execution of diagnostic programs, singularly or
in parallel.

22.1.2 Diagnostic Run-time Environments
For PRISM systems, several diagnostic run-time environments are used. These environments are:

* Self-test

The self-test environment requires no loadable software. Tests may be ROM resident, or they
may be built into the hardware as “built-in self tests" (BISTs). These tests are activated by a

console command.

« Standalone

Diagnostic programs in the standalone environment may be loqdab]e or ROM resident. They are
free standing in that there is no higher-level software controlling them.

* Off-line

] tics in the off-line environment are not free standing. ’_I'hey reguire the use of system-
aj—;egzg?xfar:‘fmevo and other purposes. For PRISM, the off-line environment is defined as a

subset of MICA, with all of the functionality of MICA except:

— It does not employ paging out.

— It does not require a client. (Testing of links to clients is possible, however.)

— It can be booted from a storage device |
device exists.

The only user interface 18 through a local internal or exte
by specific applications such as diagnostics, installations, or off-line

ocated on a console service processor, if such storage

rnal service processor terminal.

— It can be used only
backups.

PRISM Diagnostic Monitor 22-1

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

ini i “line environment are one function
The minimum hardware needed for running the PRISM off-1i: _ oy
scalar processor, a TBD-sized amount of memory, & boot device (located either on the console o

on one of PRISM’s I/O buses), and a console terminal.
* On-line

The on-line environment is the full operating system, wu.h or without users. It is generally the
case that other users are present while diagnostics are being gxecuted. Depending on the typed
testing taking place and the type of device being tested, a device under test may or may not have
to be exclusively allocated to the diagnostic program performing the testing. As is the caseio
the off-line environment, diagnostics are not free standing and require the use of system services
for /O and other purposes.

For PRISM, self tests are sometimes executed in the on-line environment. That is, a particular
subsystem (such as a single processor) is taken off line by MICA for testing purposes, but the operating
system is still executing and users are still present.

The rest of this discussion deals only with the off-line and on-line diagnostic environments.

22.1.3 Functional Overview

PDM is used in both the off-line and on-line environments. It provides diagnostic users and diagnostc
programs with consistent interfaces in both environments. Thus, the same diagnostics are used o
both environments, with the same user interface.

PDM is implemented in two images, running as separate processes. One image contains the user
interface and the other, referred to as the "PDM server”, contains all other functionality. The use
interface is implemented separately because in some run-time environments it resides in a separal
system. Specifically, in client-server environments, such as Glacier and Cheyenne, the user interfac
resides in a client system, while the PDM server, along with the diagnns'uc programs, resides in
PRISM. Off line, the user interface resides in the external service processor, if one exists. Otherwise
the user interface resides in PRISM, along with the PDM server. There is a separate user interface
process and server process for each user.

'_I'hg user irgterfaoe and PDM server communicate via a Remote Procedure Call (RPC) interface It
is immaterial whether the communicating elements are local to one another or remote; the RPC
interface makes communication path differences transparent to PDM.

Each diagnostic program is a separate image file, executed as an individual subprocess of the PDM
server. Thel_-e is a separate d:agncsuc subprocess for each device selected for testi ng. This is true even
if two 1dent3cal devices are being tested by the same diagnostic program image. These subprocesses
can be run in parallel or they' can be activated serially, depending on the choice of the operator. The
PDM server communicates with the diagnostic subprocesses via an RPC interface

:‘:lﬁmninéggzt rates the layout of PDM and diagnostic subprocesses, for both on-line and offline

22-2 PRISM Diagnostic Monitor

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

Figure 22-1: Layout of PDM and Diagnostic Subprocesses

ONLINE, OR OFFLINE WITH ESP

CLIENT ORESPOS
CLIENT
o MICA SYSTEM MANAGEMENT
ESP USER INTERFACE
PDM USER INTERFACE
OFFLINE WITHOUT ESP
INTERFACE OFFLINE ENVIRONMENT
TO PDM SERVER
PDM USER INTERFACE
MICA RPC INTERFACE
OR OFFLINE ENVIRONMENT TO PDM SERVER
PRISM
PDM SERVER PDM SERVER
I I s = s s o| \EOM/DIAGNOSTIC Teenn POM/DIAGNOSTIC
PRISM RPC INTERFACE RPC INTERFACE
Diagnostic Diagnostic oo Diagnostic Diagnostic ee
Subprocess Subprocess Subprocess Subprocess

POM_Fian

The sequence of operation is as follows:

1. To start the PDM user interface, a user issues a command at a terminal. (If the Mica system
management user interface is present, PDM is accessed from it.) This causes the user interface
process to be activated, which in turn starts the PDM server process.

2. The user, via the PDM user interface, selects the devices to be tested, the types of tests to be
executed, and other run-time options.

3. The user issues a “start testing” command.
4. The PDM server creates a subprocess for each selected device, passing run-time parameters to
the subprocess.

5. The subprocesses execute. If they need to report errors or other information to the user, they
do so by sending messages to the PDM server. The user is provided with a dynamic display of

current execution status.

6. When testing is complete, PDM notifies the user. Diagnostic subprocesses are not killed at this
point, so that the user can obtain a run summary or restart the same tests,

7. The user may restart the same set of tests, or change the selected set. This is effectively "go to
step two". Before testing starts, all diagnostic subprocesses created during the previous run are

deleted.
8. When finished testing, the user exits the PDM user interface, causing the PDM server process
and all diagnostic program subprocesses to be deleted.

PRISM Diagnostic Monitor 22-3

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

22.1.4 Components of a PDM-based Diagnostic Program

Diagnostic programs designed to run under the control of PDM are divided into several callable
procedures. These procedures include:

* A set-up procedure for performing pre-testing operations.

¢ A set of test procedures to perform hardware testing.

* A termination procedure for performing post-testing operations.

* A summary procedure for creating a summary display of test results.

PDM causes a diagnostic program to execute by serially calling the set-up procedure, the selected test
procedures, then the termination procedure. The summary procedure is called if the user requestss
run summary.

PDM-based diagnostic programs perform hardware testing by issuing I/O system service calls. The
quality of error detection and identification for these diagnostic programs is dependent upon the func
tionality provided by the operating system’s device function processors (FPs). Whenever necessary,
device FPs provide special diagnostic functions (such as returning the state of all readable device

registers) for the sake of enhancing system diagnosability. Diagnostic functions provided by function
processors are specified in the chapters for those function processors.

22.1.5 PDM Design Goals
Following are design goals for the development of PDM:

. Provlide an easy-to-use, interactive user interface that is consistent for all diagnostic programs
and identical in all run-time environments (on-line Mica, on-line Ultrix, off line).

* Provide a design that is easily extendible to all future PRISM implementations.

. dpirf(i)‘iﬁdle a design that can support both Mica and Ultrix on-line environments with minimal
culty.

Assist in providing diagnostic programmers with a method to easily write a set of diagnostic
programs that have a consistent user interface, that are portable between different operating

systems (Mica and Ultrix), and that will function without modification on future PRISM imple-
mentations.

. Enlsm'-e that the design of PDM does not inherently place limits on such diagnostic test charac
teristics as level of error detection or isolation. (Specific error detection and isolation goals are

spelled out in diagnostic project plans for PRISM products.)
22.1.6 PDM Design Non-goals
Following are non-goals for PDM development:

: m\gdse?:i?ne diagnostic support for a ported PRISM/Ultrix that does not meet the requirements

Provide a diagnostic environment compatible with existing VAX diagnostic products.

22-4 PRISM Diagnostic Monitor

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

22.1.7 Requirements on Other Products for Meeting Design Goals

* PRISM/Ultrix must be implemented using PRISM/Mica’s /O architecture so that the same device
function processors and I/O service calls are available in both operating systems.

* PRISM/Ultrix (including workstations) must implement Mica’s Remote Procedure Call (RPC)
definition, for both local and remote interprocess communication.

* A Pillar compiler must exist for PRISM/Ultrix.

22.1.8 PDM Interfaces
PDM provides two external interfaces. These are:
1. A user interface for specifying execution parameters of the diagnostic programs.

2. A programmer interface, which is a set of "diagnostic system services" used by diagnostic pro-
grams.

22.1.8.1 User Interface

PDM provides two user interfaces. One is a command line interface. The other is a DECwindows-
based menu interface. The two interfaces provide identical functionality. The command line interface
is available for all run-time environments. The menu interface can be used only on bitmapped

terminals. User friendliness is a goal of both interfaces.
A command line interface is provided because:

» It allows "scripts” or command files of PDM commands to be used.

e It works on any type of terminal.

¢ Some users prefer command line interfaces. Experienced users can issue commands more quickly
with the command line interface than with the menu interface.

DECwindows is used for implementation of the menu interface because:

* Itis possible to produce menus in a format consistent with system management’s user interface,
which also uses DECwindows.

* DECwindows provides a convenient means for producing well-designed, highly-interactive win-

dows.

* DECwindows and bitmapped te
newer software and hardware p

rminals are considered "state-of-the-art” and make use of DEC's
roducts. Using these products is good salesmanship.

PDM user may be located at a terminal on a client system, or may
rnal service processor, if one exists. Off line, the user is
r terminal (whichever one exists).

In the on-line environment, the
use the terminal connected to a PRISM exte ;
located at the PRISM’s internal or external service processo

The user interface allows a diagnostic program user to:

e Select a set of one or more devices for testing.

* (Choose which tests to run on the selected devices.

* Specify whether the devices are to be tested sequentially or in parallel.

* Individually start and stop the selected tests.

¢ View a run summary during testing or after testing has completed.

e Obtain Help information for any PDM user selection, or for the diagnostic tests.
* Run a command file of PDM commands.

PRISM Diagnostic Monitor 22-5

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

e Switch back and forth between menu mode and command line mode, if the environment supports
both modes.

22.1.8.2 Programmer Interface—Diagnostic Services

The PDM programmer interface is a set of "diagnostic services” plus prg-deﬁned Pillar in-line proce
dures and type definitions which facilitate the creation of PDM-based diagnostic programs,

Diagnostic services are calls from the diagnostic to the PDM server. They provide the interfuce
between a diagnostic program and the user’s terminal. There are calls for reading from and writing
to the user’s terminal. These services also provide such capabilities as allocating and deallocating

devices, fetching the name of the device under test, or writing error log records.

Pre-defined in-line procedures and/or type definitions are used to define the various callable diagnosti
procedures (set-up, test, etc.) and local data structures required for a PDM-based diagnostic.

22.1.9 PDM Internal Interfaces
22.1.9.1 Interface Between the User Interface and the PDM Server

The interface between the user interface and the PDM server is based on RPCs. Whether PDM it
used in a client-server configuration or it is entirely PRISM resident, the calls are identical. User
input is fetched from the user terminal by the user interface and passed as an argument to & call 0
the PDM server. Likewise, output is passed as an argument from the server to the user interface

22.1.9.2 PDM/Diagnostic Interface

The PDM/Diagnostic interface is the means by which the PDM server controls the execution of &
agnostic program subprocesses. All communication between these processes is by means of an RPC
interface. This RPC interface is separate from the user /O RPC interface. For this interface, the
PDM server is actually the client, and the diagnostic processes are considered to be multiple servers
The PDM server acts as a client to access the diagnostic’s callable procedures (e.g., set-up, tests, elc.
Calls in the opposite direction, from the diagnostic programs to the PDM server, are also used. Calls

in this direction PDM server are used for requests of user terminal /O (to fetch user input or display
error status) or to send a "testing in progress” indication.

22.1.10 PDM's Interfaces to the On-line and Off-line Environments

In the on-line run-time environments (for FRS, Glacier and Che '
- : 3 yenne), PDM via Mics
system management’s user interface. Off line, PDM is accessed through ?};':r:ﬁ?ﬁc::luser interface.

In all run-time environments, terminal /O for implementation of the command line interface is

mmenugxl:;ﬁi‘:ce‘?a TBD calls to the runtime environment. DECwindows is used to implement the

22.1.11 Other PDM Features

* Diagnostic QA
ggﬁdgogiﬁ :.vr;ht'ié:ng:;a:g tguah'ty assurance feature for diagnostic programs. This featurt
executing tests for multipl e operation of diagnostic tests by performing such functions as

e passes, executing tests in random order, and other TBD operations.
* Installation

Installation of PDM image files involves three separate issues. These are:

* Installation of PDM image files into Mica
associated files, such as message section fil’}e‘h

ese files include the PDM server image and
interface image for off-line, non-ESP operati

o:. diagnostic image files, and the PDM user

22-6 PRISM Diagnostic Monitor

\

K s

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

* Installation of a VAX/VMS-formatted PDM user interface image onto a VAX/VMS-based
client or ESP.

* Installation of diagnostic image files into the PDM'’s diagnostic database.
Specific installation procedures are TBD,
* Message section files

All ASCII text for PDM and for diagnostic programs is stored in message section files, to allow
multiple language support. Language selection is performed on a per-user basis. All message
section files are stored on PRISM. Mica’s message utility will be used for creating, storing, and
referencing all message text.

221.12 Security Issues

On line, when running PDM from a client system, access to PDM is controlled by Mica’s security
features. Refer to the chapter describing system security. When running PDM from PRISM’s external
service processor, the ESP’s VAX/VMS login and user privileges control access to PDM.

Off line, when running from PRISM's ESP, the ESP’s VAX/VMS login and user privileges control
access to PDM. When the user's terminal is the internal service processor’s terminal, any security
features that exist are provided by the console service software. These features are TBD.

22.1.13 Changes from Rev. 1.0 of "The PRISM Diagnostic Environment"

* Support for a Diagnostics/Utilities Protocol (DUP) programming interface is not being provided.
Instead, a "DUP Dialogue Driver” is being supplied. This is a program that runs under PDM
control and provides a user interface to diagnostic programs that run locally in MSCP-type
controllers. These diagnostics use DUP to communicate with the host processor. The DUP
dialogue driver allows a user to select which diagnostics to run, and it receives and displays

error or other messages from the diagnostics.

PRISM Diagnostic Monitor 22-7

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

CHAPTER 23
ERROR LOGGING

23.1 Overview

23.1.1 What Is Error Logging?

Error logging is the creation of a permanent, referencible record of system hardware and software
errors, along with other relevant events. This record is kept online and can be monitored either
dynamically, as events take place or in retrospect, after event information is stored, to determine
when error rates begin to reach a dangerous threshold. The log can also be used for analysis of what
errors or events took place and when they occurred. The goal of such analysis is to identify patterns
that may indicate potential catastrophic failures before they occur, so that corrective action may be
taken before system downtime results, thus providing greater system availability and reliability.

23.1.2 How Is Error Information Stored?

For PRISM, errors and events are recorded in an error log file. This file is sequential and resides, by
default, on the Mica system digk. The file is called the "system error log file", to differentiate it from
other possible error log files, such as the “off-line error log file" (see Section 23.1.13).

23.1.3 What Does the System Error Log File Contaln?

The system error log file consists of error log "records”. Each record represents one detectable error
or event, and contains all of the recorded information about that error or event. "Errors” include
all software-detectable hardware or software errors. "Events” consist of those system events that
are worth noting because they are useful in determining the cause of subsequent failures. Such
events include media mounts, dismounts, and volume changes; hardware configuration changes;
operating system parameter changes; system boots, reboots, and recoveries from power failures; and

the initiation and completion of diagnostic programs.

Additionally, the log file contains a copy of all system configuration information available to Mica.
System configuration information includes the types and number of devices, and can include such
details as module serial numbers. Whenever a new error log file is created or the system is rebooted,
& copy of the current system configuration information (obtained from the system configuration file)
is placed at the beginning of the file. When configuration changes occur, the changes are logged
as events, Thus by scanning the log file, the full configuration for a given point in time can be

determined.

Error Logging 23-1

1

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

23.1.4 What Do System Error Log Records Contain?

Each system error log record contains all of the relevant information about the error or event being
reported that is available to the software reporting the error. Such information might include device
register contents, MSCP error report contents, or machine check'fram_e pointers. The types of records
supported, along with the exact contents of each record, are provided in the full error logging chapter
Additionally, a time stamp and a sequential event number are written in each record.

Sometimes a single error results in multiple system events, such as multiple MSCP messages or
the case of an error being detected and reported at both a low level (e.g., a device FP) and a higher
level (e.g., a file system error). In such cases the system attempts to assign one event number
multiple records. (Each IRP created is assigned a sequence number, and device FPs are provided
with a procedure which returns the sequence number and other record header information.)

23.1.5 Who Creates System Error Log Records?

System error log records are created by Mica software whenever a recordable error or event is de-
tected. The general rule is that the process or thread detecting the error or event is responsible for
creating an appropriate error log record. Thus, a device hardware error detected by a device func-
tion processor is reported by that function processor. Or, the record for a machine check exception
is created by the condition handler. The process or thread creating the record provides all of the
error-specific or event-specific record fields.

23.1.6 How are Records Placed into the Error Log File?

Once a record has been created, it is simply passed as a message to the error message FPU. A
separate process, called the "opcom server”, is responsible for reading error log record messages. It
does this by creating a reader thread for the error message FPU, called the "error message reader”.
This thread reads records from the message function processor and saves them in a buffer. (Referto |
the chapter on operator communications for a discussion of message FPU reader threads.)

Once a TBD number of records have been collected or a TBD amount of time has passed, the error
message reader calls the appropriate I/O service and the records are appended to the system error |

log file. If the system error log file doesn't exist (e.g., the system manager has removed or renamed
the file), a new one is created.

23.1.7 How Can the System Error Log File be Read?

Error log entries are stored as binary records. To create readable displays of

€ s . : : these records, an error
record formattn}g utlhlty (ERF) is provided. This utility is able to rzco:':xiuze e::l: type o? ear?br log
record and provide a display that can label each field within the display. ERF also has the capability
of finding and displaying subsets of error log records, such as all errors for a specified device, all errors

within a time frame, or all errors of a specified type. E i ‘ i '
may optionally be written to a file. T bt i i e planed. o Secinal, o &

23.1.8 Where Does ERF Reside and Execute?

ERF resides and executes on the PRISM system.
(PDM). PDM allows ERF to be environment-indepen:
Ultrix-based PRISMs, or off line without modificatio
error logging.)

It runs under the PRISM Diagnostic Monitor
dent. Thus ERF can run on Glacier, Cheyenne,
n. (See Section 23.1.13 for a discussion of off-line

-2 Error Logging

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

23.1.9 Where Do ERF Users Reside?

Since ERF runs under PDM, the PDM user environment controls the location of the ERF user ter-
minal. Thus, when the PRISM is online in a client-server configuration, the user terminal can be
a client terminal or PRISM’s VAX/VMS-based external service processor, if one exists. Off line, the
user sits at PRISM’s internal or external service processor terminal (whichever one exists).

It i_s also possible to run ERF from a remote CSC diagnostic site. When the PRISM/Mica system is
online, the remote connection is made through a client. When the PRISM/Mica is off line, remote
access is made through the PRISM console, ,

23.1.10 Who can Access the System Error Log File?

Special access rights are required for accessing the system error log file online. Access is controlled
by the fact that a user must enter the system management software in order to reach ERF. (The user
runs system management, selects the diagnostic environment [PDM], then selects ERF.)

23.1.11 Who can Control Error Logging?

Access rights are required for controlling system error logging. The only operator-controllable error
logging options are starting and stopping the error message reader, and deleting or renaming the
system error log file. Starting and stopping the error message reader can be accomplished only via the
system management interface. Deleting or renaming the error log file is controlled by file ownership

and protection codes.

23.1.12 How Is the Error Log Data Used?
There are three ways in which error log data can potentially be used.

* Via ERF, system managers or field service can view error log contents to determine where and
when errors are occurring. System reconfigurations or other corrective actions can be taken,

based on this viewing of the log contents.

* A process running under Mica can monitor the error records as they are being produced and
notify the system manager and/or a field service office if error occurrences approach a predefined
threshold. This or another process could also provide a dynamic display of system error activity.

* An intelligent, rule-based program can analyze the error records. It can be uged in an attempt
to predict future hardware failures based on error and event records being written to the log.

23.1.13 How Does Ofi-line Error Logging Work?

error message reader under the off-line environment. This is accomplished
under PDM. When enabling off-line error logging, the user must specify the
he error log file. It is thus possible to write off-line records to the system
e for off-line records. Off-line error log records are identical
with the exception that the record contains a flag indicating

It is possible to enable the
via an off-line-only option
location and filename for t
error log file, or to create a separate fil
in format and content to online records,
the system is in off-line mode.

23.1.14 Are There Other Error Logging Facllities?

with the log file produced by it, is the only error logging fadility
genfi::dﬁﬁa?p:ﬁ?ﬁfgu may be ths case that some implementations of PRISM/Mica may
provide supplementary error logging facilities, such as a log on the ext,emnl. service processor (ESP)
for recording console-detectable events (e.g., crashes or EMM-readable conditions). Such a_]o.g is not
considered to be a part of Mica, per se. However, if the ESP can send these events to Mica’s error
message reader, they are recorded in the system error log file and thus become a part of the system’s

error history.

Error Logging 23-3

File System

This set of chapters describes the file system components of Mica.

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

CHAPTER 24
DISK FILE SYSTEM FUNCTION PROCESSORS

24.1 Overview

This chapter describes the characteristics and interfaces of a particular class of function processors,
referred to as the disk file system function processors, or DFFPs. The DFFP used to implement Mica's
first file system for locally attached disk storage is called the Files—11 ODS2 function processor, which
is the subject of Chapter 25, Files-11 ODS2 Function Processor. The first remote disk file system
to implement this disk file class interface is the distributed file system client function processor,
described in Chapter 46, Distributed File Service Client Function Processor.

This chapter describes the functions and I/O parameter records that a function processor must im-
plement to conform to the disk file system class interface. This chapter does not discuss the functions
used to implement operations that are specific to a function processor, such as those that initialize
and ready a function processor and its function processor units (FPUs). This chapter also does not
discuss internal design details.

The Files-11 ODS2 function processor accesses locally attached disk storage via a striping, shadowing,
or MSCP function processor. The DFS Client function processor uses the request/response function
processor to access remote file systems. Since both the Files-11 ODS2 and DFS Client function
processors implement the disk file system class interface, the Mica Record Management Services
(RMS) can use this interface to access any disk file, regardless of whether the file resides on locally
attached disk storage, or is accessed through a remote file system.

This scheme is illustrated in Figure 24-1.

24.1.1 Flles and Directories

A file is a named collection of data that is organized into 512-byte blocks. These blocks are referenced
by a virtual block number (VBN). A file also has a set of named file attributes (such as maximum
record size, creation date, disk alignment, and so on), which the file system maintains separately

from the file's data.

A file is named by a character string. Since there may be more than one version of 2 file with the
same character string name, both the character string and version number define a filename.

Filenames are organized into directories. A directory name is a character string that represents a
directorv. A filename in a directory is referred to as a directory entry. Directories and files exist
within a given volume. Every volume has an implicit root directory.

A directory path is a list of directory names. The first element in the list is a subdirectory of the root
directory. -Tﬁ second element in the list is a subdirectory of the first directory, and so on.

A filename path is the combination of a filename ar_;d a directory path. The final element in the
directory path is the directory in which the filename is entered.

A given file may be entered into more than one directory, using one or more filenames. These are
known as synonym filename paths.

Disk File System Function Processors 24-1

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

Figure 24-1: Location of DFFP Layer in the /O System |

(i User_leval program _]

| USER
MOOE
| Request VO System Sewice I
WERNEL
vocs
[Request VO System Servce - TRUSTED J
[Files-11 ODS2 Function Processor | Dstributed File System Funcion Processor
(Client FP)

| Disk Striping FP |

lﬂnuumuoom Function Processor J

[Dsk Shadowing F? |

[MSCP FP] | DECNET l "

Each file has a backlink to a directory. Each directory has a backlink to its parent directory (excep!
the root directory, of course). The filename path, as represented by the sequence of backlinks from a
given file, is referred to as the file's backlink path name.

24.1.2 Volume Sets

In a disk file system, the largest logical unit of a disk structure is a volume, or a collection of volumes,
knqu as a volume set. When volumes are organized into volume sets, the entire volume set is treated
as a single volume. For example, file /O operations, such as reading and writing, are done on the
volume set, rather than on the individual volumes of the set. The implementation of volume sets 18
optional, and is discussed here because the Files—11 ODS2 function processor (Chapter 25, Files-11 |

ODS2 Function Processor) includes volume sets.
Since the interface discussed in this chapter deals with volumes and v parently, the
term volume is used to refer to both volumes and volume sets. B Yolgme efe 8P B

24.1.3 Objects Used By Disk File System Function Processors

Digk file system function processors deal with function processor uni J) obj
. ige mt F hannet
objects. The general use and definition of these objects is explained ?n C}(zast.l;: g?i%u;crﬁt:duﬂ-

24.1.3.1 Function Processor Unit Objects

A DFFP represents a single disk volume or a volume set wi 1
i : : t with a single FPU, known as a volume
FPU. The details of creating and deleting a volume FPU vary with the gpeciﬁc impl::lenat;uon of the

function processor. These details di : . i
25, Files—11 ODS2 Function Procz:esorfscussed in Chapter 28, File Management Utilities, Chapter

Processor. and Chapter 46, Distributed File Service Client Function

24-2 Disk File System Function Processors

| e e

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

24.1.3.2 Channel Objects

A channel object is used to perform disk file system class interface functions on a volume FPU. A
channel uses the standard io$c_fpu_access function described in Chapter 8, I/0 Architecture to access
a volume FPU. Such a channel is referred to as a volume channel.

Once a file has been accessed on a volume channel, that channel becomes known as a file channel.

241.4 Other I/O Architecture Support

The DFFP must provide a function processor definition (FPD) object, which defines the entry points to
the procedures within the function processor. The function-processor-specific support for this object is
discussed in Chapter 25, Files—11 ODS2 Function Processor and Chapter 46, Distributed File Service
Client Function Processor.

24.1.5 Disk File System Class Interface Functions

Following is the list of function codes that are required for a DFFP to conform to the disk file system
class interface.

1. File Access and File Creation:
* io8c_dfile_access_file— open a file (transform a volume channel into a file channel)
s jo$c_dfile_deaccess_file— close a file
* iofc_dfile_create_file— create a new disk file and enter it into a directory
2. Data Transfer:
* ioSc_dfile_read_file_data- read virtual blocks from the file into memory
* o8¢ _dfile_write_file_data— write virtual blocks from memory
* io8c_dfile_security_erase- write a security erase pattern to virtual blocks in the file
3. Directory Entry Search and Modification:

» iofc_dfile_read_directory- read directory entries from a given directory to provide for name
wildcarding by services using the DFFP

* io8c_dfile_modify_dir_entries— make a new directory entry, remove a directory entry and
delete the file

4. Read and Write File Attributes:
e ioSc dfile_read_attributes— read file attributes, directory backlink path
* iofc_dfile_write_attributes— write file attributes
5. File Storage Management:
o jofc_dfile_allocate_storage— allocate free storage on the volume to a file
e jo$c_dfile_deallocate_storage— free and return blocks to the volume pool of available blocks
6. Memory Management Support:
o io$c_dfile_mmelone_access— clone file access types to another channel (for use by memory
management)
» ioSc_dfile_page_read—
o io$c_dfile_page_write— write pages from physical memory

read pages into physical memory (for use by memory management)

Disk File System Function Processors 24-3

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

7. Volume and Channel Query Specified by /O Architecture:

* io$c_get_fpu_information— must return the value io$c_dfile_interface_class for the standar
item code io$c_item_interface_class

* io$c_get_channel_information— must support the item io$c_item_dfile_quota_info to retum
information about disk usage and diskquota information.

24.1.6 Other Topics

The following topics will be addressed in more detail in the detailed design chapters:
¢ Failure handling

The DFFP may encounter unexpected errors during the execution of O requests issued to the
FPUs layered below it. It must provide a method of handling these errors, which will probably
consist of passing the error code back up to the level from which the request was invoked.

A set of standard status codes are defined by this interface.
¢ Caching

Caching is optional in that it is not required to make the function processor work. However,
caching may be required for acceptable performance levels. Specifically, this interface effec
tively requires a directory name cache similar to that implemented by RMS in the VMS systen.
Directory name caching is necessary because files with full directory path names are specified

* Maintenance of disk integrity

Utilities are provided to verify and maintain disk file system structure for Files-11 ODS2 vd-
umes. These utilities are discussed in detail in Chapter 28, File Management Utilities.

* Access control

File*.a_ and volumes must be protected from access by unauthorized users. This protection i
provided by access control lists (ACLs). When a channel is created to a volume or a file, the
ACL is checked against the identifiers of the user invoking the request. Access is denied to thos
users v.m':hout proper access privileges. Security is described in detail in Chapter 10, Security
and Privileges. . ’

* Mount verification

%if a mounted volume goes off line fof any reason, it needs to be checked when it comes back on
ne. The DFFP can request to receive an AST when the volume comes on line, triggering the
mount verification process. Mount verification is the process of ensuring that the correct volume

is still mounted; if not, it should return an erro i
till m ; if not, r status. N e
while it is undergoing mount verification. o operations are allowed on a volum

processor design chapters. s topic is addressed in detail in the specific function

24-4 Disk File System Function Processors

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

CHAPTER 25
FILES-11 ODS2 FUNCTION PROCESSOR

25.1 Overview

This chapter describes a disk file system function processor that supports Files—-11 On Disk Structure
Level 2, Version 3 volumes (ODS2-3), referred to hereafter as F11FP. The F11FP conforms to the
interface described in Chapter 24, Disk File System Function Processors, except that the io$c_add_
to_volume_set function is not implemented.

This chapter presents the internal operations and algorithms used by the F11FP disk file function
processor interface for ODS2-3 volumes. This section summarizes the data structures and some of
the methods used to implement the F11FP. The relationships between the various data structures is
shown in Figure 25-1.

25.1.1 Flles-11 ODS2-3 Data Structures

This section describes both Files—11-specific data structures and common disk file function processor
data structures that have Files—11-specific fields. These data structures are:

* Function processor unit object

There is one FPU object for every vir"tual volume; it is created when the volume is mounted. The
FPU object contains:

— List head of the file object cache
— References to channel objects for system files
— Pointer to the file object container for this volume
— Primary volume control block
* Volume control block (VCB)
There is one VCB for each volume in the volume set. The VCB contains:
— Volume status information
— Volume parameters and default values
— Data from the index and bitmap files

* Relative volume table (RVT)
There is one RVT for each volume set. The RVT contains a pointer to each VCB in the volume
set.

* Volume set continuation
A volume set continuation consists of a RVT and one or more VCBs, depending upon the number
of volumes in the volume set.

* File object

Files—11 ODS2 Function Processor 25-1

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

The ACL on the file object is a copy of the ACL from the file header
The file object contains:
— A copy of the file header data, such as:
* Structure level and version
* File ID and sequence number
* File ID of next extension header
* File ID of directory which contains primary entry for this file (backlink)
* File attributes
* File access privilege levels
* File protection code
* Highwater mark
* Security classification mask
— Status: marked for delete, or open for shared/exclusive read/write
— Number of channels to this file
— Access matrix
— Reference to the file’s map pointer block (MPB)
— Data security erase pattern
* Map pointer block (MPB)

The map pointer block contains retrieval pointers derived from the file header map area. Each
map pointer entry describes one logical extent of the file. The file object contains a pointer to
PB is

the file’s primary MPB. The] is designed to provide very fast £ a1 tual blocks
to volume logical blocks, P ¥ i8St mapping of file vir

25-2 Files-11 oDs2 Function Processor

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

Figure 25-1: Relationship of Files-11 Data Structures

Volume Set Continuation
» RVT
FP e
- — — Channel Objec
! ject
Pounter to RVT —— ; P
fiie foo.e
Pointer 1o prirmary VCB v
Prenary VCB .
— VCE e
P File Object Contaner
File Object
file foo.@ jL
Mapping data

structures

25.1.2 Threads

The F11FP may complete a request in the context of the calling thread by passing the request to
the logical block unit (LBU) function processor described in Chapter 15, Direct Access Mass Storage
Function Processors, or it may use system threads for further processing. Control operations, such
as access and create, are passed off to a system thread. Reads and writes are passed on to the next
lower layer, if they can be done with a single logical I/O operation. In order to free the user’s thread,
a system thread is used to perform read/write operations that require more than one logical /O to
complete the request. During mount verification, all reads and writes are queued to a queue serviced
by one or more system threads, since the function processor is stalled until it returns to the ONLINE

state.

The processing of a request may result in a recursive entry into the F11FP itself, or it may invoke
logical 1/O to the LBU layered beneath the F11FP. The F11FP can call itself to perform /O functions
as needed to complete a request. The create function, for example, calls the F11FP to read the index
file. Recursive calls to the F11FP use the same system thread that is processing the request,

25.1.3 FPU procedures
The following procedures are called by direct entry to the F11FP via the FPD:

* Initialize_fpu—Initialize a newly created FPU object.
* Initialize_io_parameters—Allocate and initialize an IRP for a new efexecute_io request.

* Execute_io—Perform an IO function (functions are listed in Chapter 24, Disk File System Func-

tion Processors).
* Synchronous_io_call—Not supported.
* Get_fpu_information—Retrieve information related to an FPU object.

Files—11 ODS2 Function Processor 25-3

—~7

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

i ; i y FPU. Cause the FPU object 1
. —Finish dismounting the volume represented by the FI : FPU ob
i?:::gejg:avaﬂfgle for further %O, and delete the volume set continuation block, if it exists
* Remove_fpu—No operation.
* Unload_fp—Insure that all data structures are deallocated before deleting the function processr
image.

* Configure_fp—Not implemented by F11FP. This is an entry for function processors supporting
hardware devices.

25.1.4 Mounting a volume
Mount uses the io$c_ready_fpu function code to complete the mount process, which includes:

1. Create and initialize volume set continuation data structures (RVT, VCBs), if mounting a volume |
set

Read and check the home block and the volume label
Initialize the FPU from the home block
Create an object container to hold the file objects for the files to be opened on the volume

Request delivery of an AST to invoke mount verification when the LBU(s) layered beneath the
F11FP makes a state transition

N By

6. "Open" the index file (this is a simulated OPEN, since the OPEN function can not be invoksd
until the index file is opened)

7. Open the system files (storage bitmap file, master file directory) and fill out the volume object
fields from these files

8. Check that the volume was properly dismounted; if not, perform a rebuild

25.1.5 Dismounting a volume

Dismount uses the ioSc_unready_fpu function code to complete the dismount process, which includes
1. Mark the FPU for dismount
2. Wait for all user files to close, then:

1. Write to the volume SCB indicating the volume was properly dismounted

Close the system files (storage bitmap file, master file
Close the index file

directory)

Ao oN

R_:."move the request for an AST from the LBU layered beneath the F11FP on a state trar
sition

Delete cached file objects
Delete cache tables
Delete the file object container

® N o o

Delete the volume set continuation data structures, if dismounting a volume set

254 Files—11 oDs2 Function Processor

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

25.1.6 Volume Sets

MICA supports existing VMS volume sets. Complete volume sets must be mounted; there is no
support for mounting incomplete volume sets. The io$c_add_to_volume_set function is not supported
by the F11FP, Themfore, volume sets cannot be created or expanded in MICA. MICA supports stripe
sets that provide the same service as volume sets, as well as more efficient disk space utilization
with better load balancing.

25.1.7 Object Names

The FPU object is named by the mount facility. The FPU normally has the same name as the volume
name in the volume home block. If an FPU object with the same name already exists, all or part of
the name of the LBU beneath the FPU is appended to the name.

File object names are the same as the file’s file ID.

25.1.8 Access Matrix

There is an access matrix associated with every open file. The access matrix contains information
about the current access modes to the file: read, write, execute, shared read, and shared write. The
io$c_dfile_access (open) function checks the access and sharing modes of the open request with the
file's access matrix. If access to the file is granted, the access mode of the open request is stored in
the channel object, and the file's access matrix is updated to include the current access mode. The
channel object will not contain a pointer to the file object unless access to the file has been granted.
Unshared read access can be overridden by an entry in the volume ACL.

25.1.9 Security

An ACL is associated with a volume object when the object is created. The volume ACL is derived
from the VOLACL.SYS file, and is checked whenever a channel is created to the volume.

File protection is managed by access control lists (ACLs) associated with a file object when the object
is created. The file object ACL is derived from the file's ACL in the file header. The ACL can be
modified (with write privilege) using the io$c_write_attributes function.

25.1.10 Mapping & Retrieval Pointers

When a file is accessed, its map pointer block (MPB) is built from the map area of the file header.
The MPB contains retrieval pointers that map the virtual blocks of the file to the logical blocks of the
volume. Each retrieval pointer describes one file extent. A file extent describes a contiguous group

of logical blocks allocated to the file.

25.1.11 Read/Write

i i tions are processed by the F11FP: paged I/O for memory management
I:; il:::;dg: fcz?::iwwa;;n\‘iinual I!O.p For virtual I/O, the F11FP must build a host transfer list
(HTL), which maps the I/O buffer virtual addresses into physical addresses. The F11FP also locks
the physical pages into memory before initiating the /O transfer. The mapping and locking functions
are performed by a system service. For paging IO, the HTL is already built and the pages are locked

by the memory management facility.
All file system on-disk data structures are written using a careful write strategy that insures their
integrity in the event of a system crash.

Files—11 ODS2 Function Processor 25-5

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

25.1.12 Caches

The F11FP uses a caching mechanism to provide fast access to the contents of the following syyies
files:

Index file bitmap and file headers
Master file directory and other directories
Storage bitmap

25.1.13 Other Topics

Cancel /0

The F11FP provides for /O cancellation under the following conditions:
— When a request is queued to a system thread

— While waiting for mount-verification to complete

Condition values

The F11FP maps the IOSB condit@o'n value returned by the lower-layer LBU into its own set of

Mount verification

Mount verification js implemented on g logical volume basis. The verification procedure checks
that t.]:le home block matches that of the FPU object, While undergmng mount verification, all
operations on the volume are stalled. This feature can be switched off when a volume is mounted

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

CHAPTER 26
RECORD MANAGEMENT SERVICES

26.1 Overview

Mica RMS is a set of generalized library routines that assist user programs in processing and man-
aging files and their contents. The interfaces provided by Mica RMS routines are used to uniformly
access files within the defined client-server environment.

Mica RMS is designed to meet several goals:

* Ease of use—This goal is reflected by the user interface design. Mica RMS services are accessed
through procedure calls. Each service procedure has a few (less than a dozen) parameters,
many of which are optional and default to often-used values. The parameters appearing in the
interface are the commonly-used file attributes, the required buffer pointers, and the outputs
from the services. For infrequently used input options, the services provide an input parameter,
which is an item list. One advantage of using an item list is that the options can be enhanced
without affecting the user interface.

* Fast response time—The data retrieval services are designed to minimize run-time decision
making.
* Device independence—Mica RMS, like VMS RMS, offers device-independent file handling.

* Modularity—The RMS implementation supports the easy addition of enhancements. For exam-
ple, supporting a new device type or file organization is fairly straight-forward. Implementation
avoids special case code as much as possible.

An overview describing the Mica RMS framework is presented in the following order:

* A list of RMS functions that are available in the Mica system and a list of VMS RMS functions
omitted from Mica RMS

* Mica RMS programming interface sampler

* A short note on overall request flow through the Mica RMS services

26.1.1 RMS Functionality

Much of the RMS file processing capabilities are inherited from the unlerlying infrastructure of the
Mica 1/O subsystem. !-’l)owever. record-level management is provided only through RMS. Mica RMS

services operate in user mode and allow user programs to:

* Parse and wildcard file names.

* Specify multiple file organizations (sequential, indexed or relative). At FRS, only sequential files
are supported.

share files and enforce access control to files (shared delete, get, put,

ded interlocking). At FRS, the available support allows multiple pro-
disk file. Also, a file may be shared between a single writer and

* Specfy multiple ways to
update, nil and user-provi
cesses to read share a single
mutiple readers.

Record Management Services 26-1

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

i i i s VOs to disk devices o)
ultiple device types for record access. At FRS, RMS supports . _
ls’apfli:sfyarn; alt;f: ;mf'ided Q:Preconductjng /O to terminal devices connected to the client systems

Specify multiple record formats (fixed, variable, VFC, stream, streamCR, streamLF and unde
fined),

Transparently access files through the local file system or through the distributed file gysten
FS).

Specify multiple ways to lock and unlock records. At FRS, there is no support available for recond
locking,

The following functions are not available at FRS, but are planned for future releases:

The rest of this secti

File organization—Indexed and relative files
File access—Shared write access to disk files
Record locking—Ways to lock and unlock records
Transaction logs—Journal file I/O operations

on lists the VAX/VMS RMS functions that are not planned to be included s

Mica RMS functions.

Transaction log (journal) of file /O operations

Asynchronous /O operations

Direct record access to mailboxes or message devices

Remote file access and task-to-task communication by way of DECnet
Implicit file spooling

DECK and EOD checking

Multiple record streams

File disposition option submit command file on execution of RMS$CLOSE
Set date and time for file creation, revision or backup

The I/O subsystem functions not replicated in Mica RMS are:

$ENTER
$EXTEND
$NXTVOL
$REMOVE
$SPACE

Further, the following system Services are not available through Mica RMS: SYSSRMSRUNDOWN,
. The undocumented VAX/VMS RMS function $MODFY

26-2 Record Management Services

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

26.1.2 RMS Programming Interface

Mica RJ_V!S services are provided by a set of user-mode run-time library procedures. The procedures
are designed with the two goals of ease of use and flexibility. The RMS user specifies various file
at‘mbubes to suit the requirements of a particular application. There are two categories of file at-
tributes: the ones that are used for file-level functions (such as Create and Open) and the ones that
are used for record-level functions (such as Get and Put). The attibutes are specified to the Mica
B.MSlgemces by parameters. The attributes appear either as explict parameters, or as options in
1tem hists.

The Mica disk file system assigns a file_reference to each file. The file_reference can be used to access
a file effeciently. The file_reference is not identical to the VMS file ID. The Mica file system does not
guarantee that a file_reference can always be used to access a file. This implies that while accessing
or deleting a file, the file specification must always be provided.

Each Mica RMS service returns a completion status. The status codes are not yet specified.
Samples of Mica RMS services are shown below.

‘Iin order to to open a file, the user calls the Open (rms$open) procedure. The rms$open procedure is
efined as:

PROCEDURE rmsSopen (
IN file name : string(*);
IN default file string : string(*) OPTIONAL;
IN quick file ref in : rms$file ref identifier OPTIONAL;
IN access request : rmsS5file access control OPTIONAL;
IN cpen_input options : POINTER execSitem list type = NIL;
OUT file handle : rms$Sfile handle;
ouUT file:infomntion : rms$standard file info OPTIONAL;
OUT resultant file : rmsSfile reference OPTIONAL;
OUT quick file ref cut : rms§file ref identifier OPTIONAL;
) RETURNS status;

The caller specifies the name of the file that is to be opened, using the required input parameter
file_name. Using the file_name, and the optional parameter default_file_string, RMS forms a fully
qualified file name, which can then be used to access the file. A fully qualified file name has the
following format:

volume name: [directory specification]file name.type;versicn

A file can be accessed effeciently if the optional input parameter quick_file_ref_in is specified together
with the file_name. The parameter quick_file_ref_in contains the file’s file_reference (as maintained
by the Mica file system), and the volume_object_td (as maintained by the Mica Object Architecture).

The rms$open service returns a status containing the results of the operation, and a file_handle. A
file_handle is a pointer to a data structure that refers to a file context, maintained internally by Mica
RMS. The user is required to input the file handle for subsequent data retrieval and management
services. The user does not interpret the contents of the file handle.

After opening a file, the caller can perform /O operations to the file by calling the appropriate data
retrieval or data output service. The /O services are classified according to the record access mode,
to shorten access path lengths. The record access mode can be sequential, random by record position
(RRP), or random by key. /O operations to files are also dependent upon file characteristics such as
the file organization, record format and device on which the file resides. These file characteristics
are set at the time the file is created, and are known when the file is opened. RMS sets up a data
retrieval and data output vector according to the file characteristics, for each data access mode. The
caller, however, simply invokes the generic retrieval or output procedure, strictly based upon the

record access mode.
cord by the record’s position from a sequential disk file with variable
e Is rrr{sSget_rrp procedure, which is a procedure of the rms$ptype_

1 ord, th imply cal e
e mternally. however, the call is handled by the procedure get_rpSseq._dsk_ufe, which is

also of rms$ptype_get_rrp type.

Record Management Services 26-3

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

Examples of sequential Get and Put services are shown below:

TYPE

rms$ptype get sequential: PROCEDURE(
IN file handle : rmsSfile handle;
IN in :;cord_position : POINTER rmss:eco:dﬂp:sxtxanh;ntc OP TIORAL;
IN move mode : boclean = FALSE;
IN in cEtions : POINTER execSitem list type = NIL;
OUT user input buffer : BYTE DATA(*) CONFORM OPTIONAL;
OUT read data buffer pointer : POINTER anytype CONFORM OPTIONAL:
OUT read data length : integer OPTIONAL;
ouT out record position : POINTER rmaS:eccrd_polxtzon_xn:o OPTIONAL;
) RETURNS status;

rms$ptype put_sequential: PROCEDURE {
IN file handle : rms$file handle;
IN data_ output buffer : BYTE DATA(*) CONFORM;
IN in_record_positicn : POINTER :msSreco:d_pon;t;onF;n!c CPTIONAL;
IN in options : POINTER execSitem list type = NIL;
ouT out record position : POINTER :msS:-co:d_ponitaon_xn!a OPTIONAL;
) RETURNS status;

To close a file, the caller invokes the Close (rms$close) service.

26.1.3 Sample I/0 Request Flow

1. An application calls rms$open to open a file MYFILE. TXT.
2. The rms$open service processes the file name and determines that:
* The volume name is MYVOL

* The directory in which the file is to be opened is BETA
* The file name is MYFILE. TXT

3. The rmsSopen service calls exec$transiate obj i {
: -00ject_name with th lum MYVOL as
Input parameter to obtain the FPU object ID R T n Miing M1

= ;:n mﬁgjpgg ?f;,-ﬂce calls execScreate_channel with the FPU object ID as input to obtain the |

The rms$open service accesses the channel to obtain the necessary security clearance,

The rms$open service calls execSrequest_io with i
de ioSc d = input parameters channel ID, I0SB, function
ﬁ%tewwf:; aa);d;_l 2cgle-es:9_ﬁle, the file name with the complete directory path and the file attribute

7. The rms$open service builds a file context and
» ret
vector has also been set up for all VO operations, uﬁn: \are':l

get_segSseq_dsk_fixed
Put_segSseq dsk fixed
get_rrpSseq dsk fixed
get_keySse q_dsk fixed
Put_key§seq dsk fixed

e handle to the user. A data-retrieve!
tor entries are (for example):

26-4 Record Management Services

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

CHAPTER 27
CACHING

27.1 Overview

The purpose of this chapter is to describe the mechanism for caching disk data blocks in the Mica
operating system. The chapter is not complete. The Mica system architects recognize the need for
data caching to improve application /O performance. The design of the caching mechanism, however,
is deferred until further information is available on the performance of the Mica I/O system.

The purpose of the chapter overview is to summarize the important issues related to data caching
in Mica. Mica has a number of features designed to improve system I/O performance that are sum-
marized below. The decision to defer data caching recognizes these performance features as being
sufficient for the initial release of Mica, given the available engineering resources and development
schedule.

Future work on the data caching design will replace this summary.

27.1.1 Issues Related to the Design of a System-wide Data Cache

* Mica has a number of features in place to reduce the need for a system-wide data cache. For
example, memory management caches segment object descriptors and images on the standby
page list. The image cache reduces a significant amount of disk I/O related to image activation
for programs that are re-invoked during a short time. In addition, RMS also supports multiblock
data buffering for sequential read-ahead and write-behind. Multiblock /O improves application
/O performance by transferring larger units of data on each I/O request.

Significant /O performance improvement is also provided in Mica by disk striping. Applications
in the compute-intensive, scientific domain using large amounts of data will experience signifi-
cant burst rate /O performance improvement because of this feature. New applications can also
use the large address capabilities in Mica to map files into the application's address space.

* The initial release of Mica is designed to support Quartz as well as the compute-intensive server
environment. Quartz will have to implement a cache that is integrated with the Quartz system
recovery techniques. Quartz would have to bypass whatever data cache is implemented in Mica.

. Mi tem architects are also considering future designs for recoverable index files in
g;s. ';E'?e :i?sign of recoverable index files leaves no choice but to cache them directly in RMS.
Caching in RMS puts the cached data closer to the user of t.h_e data t.md allows greater control
over the cache contents. A disadvantage of caching in RMS is the difficulty of sharing cached
data amoung separate users.

The VO characteristics of key target applications for Glacier exhibit patterns that will not benefit
from a system data cache. In particular, applications that _read a small data set, perform ex-
tensive computation or simulation of discrete events, and write large sequences of event records

will not benefit from a data cache.

Caching 27-1

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

27.1.2 Summary

The overview summarizes the relevant issues in the decision to defer the design of data caching in
the system. Future work on data caching will use performance data from applications running o
Mica systems to determine the requirements for data caching.

27-2 Cachlng :

Diglital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

CHAPTER 28
FILE MANAGEMENT UTILITIES

28.1 Overview

File management utilities are system management tools for managing disk and tape devices. In
general, the utilities in Mica support the same functionality as the VMS utilities of the same name.
Additional functionality is added to the Initialize and Mount Utilities for managing virtual devices,
described in Chapter 15, Direct Access Mass Storage Function Processors.

The file management utilities described in the chapter include:
* The Initialize Utility (INITIALIZE)

* The Mount Utility (MOUNT)

* The Dismount Utility (DISMOUNT)

* The Verify Utility (VERIFY)

* The Backup Utility (BACKUP)

INITIALIZE, MOUNT, and DISMOUNT are completely new Mica implementations. VERIFY and
BACKUP are derived from the currently released VMS versions. They are modified to use the Mica

file system interface.

28.1.1 Goals
The goals for the Mica implementation of the file management utilities are the following:
* Provide the tools for configuring virtual and logical devices in the system

* Provide a consistent means to make virtual and logical devices available for processing

* Provide a means to validate and archive the data on storage devices

28.1.2 Requirements for the Flle Management Utllities

The file management utilities must:

* Be callable from the Mica system management environment

* Support the Files—11 ODS-2 standard disk format with ODS2-3 enhancements in INITIALIZE,

BACKUP and VERIFY

* Support management of
* Use VMS BACKUP save-set formats for compatibility with VMS archive media

Use file placement information in BACKUP /IMAGE save sets to save and restore volumes
line system to support system installation

Mica shadow-set and stripe-set virtual disks

* Provide a minimal set of utilities in the off-

File Management Utilities 28-1

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

28.1.3 Utilities in the Off-line System

All of the file management utilities are included in the off-line system for system management oper-

g : : i initialize the system disk
tions. BACKUP and INITIALIZE are used during system installation to initi em
a%?es—ll volume and to restore the system disk from the installation save set. VERIFY is includel

in the off-line system to check that all the system disk directories are properly created if the on-line
system has problems booting from the new system disk.

28.1.4 Integration with System Management

For the initial release of Mica, the file management utilities are integrated with system managemen
to share common Mica functionality.

The utilities are invoked from client systems running the system management user interface (SMUL
In addition, system management provides a means of communication between a utility and the user
on a client system. The utilities communicate with the user to confirm an operation and retrieves
response or to notify the user of special circumstances.

Two utilities require operator communication that is also provided through system management
BACKUP notifies operators when tapes must be mounted to continue a save or restore operation.
Operator-assisted MOUNT also notifies an operator to recover from a non-fatal mount error.

28.1.5 Description of the Utilities

The file management utilities are implemented as user-mode library routines. They are called from
either system management or the configuration manager,

The utilities issue requests to function processor units (FPUs) in the system to carry out specific oper-
ations. The file system and virtual device function processors support operations the file management
utilities use to initialize, configure, and manage volumes and logical devices.

The following sections provide a brief description of the file management utilities.

28.1.5.1 The Initialize Utility

INITIALIZE invokes the appropriate function processor to initialize either a logical block device as
a volume, or a group of logical block devices as a set of members of a virtual device.

There are three types of INITIALIZE operations:
* Initializing a Files~11 ODS2 volume
* Initializing a shadow-set virtual device

* Initializing a stripe-set virtual device

The type of INITIALIZE operation is determined by a function_code parameter to the utility.

INITIALIZE creates a Files-11, shadow-set, or stripe-set FP i ice.
The parameters to the utility are packaged into a.npeUO ot b e atecr siriou] denis

set or stripe set.

After the volume or virtual device is initi

alized, INITIALT g . i
for further processing. ZE optionally mounts the volume or device

28-2 File Management Utilities

————

N 55506

' Digital Equipment Corporation - Confidential and Proprietary
' Restricted Distribution

28.1.5.2 The Mount Utility

MOUNT makes disk and tape volumes available for user access. In addition, MOUNT creates virtual
devices in the Mica I/O hierarchy.

There are six types of MOUNT operations:

* Mounting a Files-=11 ODS-2 volume

* Mounting a remote Files—11 volume (using DFS)
* Mounting a shadow-set virtual disk

* Mounting a stripe-set virtual disk

* Mounting a magnetic tape as a foreign device

* Mounting a disk as a foreign device

The type of MOUNT operation is determined by a function_code parameter to the utility.

All the FPU objects created by MOUNT are entered into a system-level object container. This means
that mounted devices are visible system-wide. Access to mounted devices may be restricted by using
access control lists (ACLs).

MOUNT determines what type of entity the mount operation is trying to mount, for example, a
volume set or a virtual device. The utility parameters are checked for consistency and the mount

device or units of a virtual device are checked to see if they exist.

If a volume is being mounted, MOUNT creates a Files-11 FPU for the volume and brings the volume
FPU ONLINE for further processing.

If & virtual device is being mounted, MOUNT creates a shadow-set or stripe-set FPU for the virtual
device and brings the virtual device ONLINE for further processing.

Foreign devices are mounted by allocating the logical block unit and ensuring that the FPU is ON-
LINE for user access.

28.1.5.3 The Dismount Utility

DISMOUNT makes a volume or virtual device inaccessible. The utility issues a request to a volume
or virtual device FPU to not accept any new /O requests and deletes the FPU after all current

processing completes.

28.1.5.4 The Verity Utility
VERIFY checks the on-disk structure of the Files—11 ODS-2 volume and validates the directory

organization. In addition, VERIFY can rebuild the storage bitmap and recover lost files. The volume
should be mounted with exclusive access to ensure there is no concurrent file activity. VERIFY does

not check that the volume is mounted with exclusive access.

eight phases to validate the index file, storage bitmap, directory struc-
The utility runs entirely in user mode. All reads and writes to the
function processor for virtual block I/O.

VERIFY follows a sequence of
tures, and quota file on a volume,
volume go through the file system

VERIFY currently does not check for con
VERIFY requires enhancements to suppo

sistency across extension headers for sparse file allocation.
rt ODS2-3 modifications for file reference counts.

File Management Utilities 28-3

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

28.1.5.5 The Backup Utility

BACKUP runs entirely in user mode within the system management process. All access to fly
and directories on volumes is through I/O requests to the file system function processor. Acces)
magnetic tape archive media is provided by a TMSCP function processor, described in Chaple 1§
Magnetic Tape Function Processors. The file system and tape function processors are part of beth
the on-line and off-line system. Therefore, BACKUP does not require special functionality to g

the off-line environment.

BACKUP uses the system management services to send confirmation messages to the user and i
receive responses. The utility also communicates through system management with operators f&
assistance in mounting devices.

'VMS BACKUP currently saves file placement information during an /IMAGE save operation, but dos
not use the information when restoring the volume. The Mica implementation will use placemest
information during IMAGE restores to support off-line archiving of database relations

284 File Management Utilities

Image Related

This set of chapters describes the image-related components of Mica.

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

CHAPTER 29
OBJECT MODULE AND IMAGE FILE FORMAT

29.1 Overview

28.1.1 Requirements

There are three requirements for this chapter:

* The chapter specifies the image file format required by the image activator.

. ;l"hi:i chapter specifies the object module format required by the linker and the object module
oagder.

* The chapter specifies the generic module format required by the librarian.

The first two requirements are related to each other because object modules share the same format as

image files. The first two requirements are related to the third requirement because object modules

and image files are examples of the types of files maintained in libraries.

These formats were designed for the following goals:

* The format allows clean extensions in future releases to add functions.

* The format allows for files greater than four gigabytes.

* The module format allows different types of modules to be mixed in one library.

* The object module format allows object modules to be run without linking.

* The object module format allows separate object modules to be combined into one object module.

* The image file format allows fast image activation.

The increasing division of programs into separate object modules leads to an increasing number of
object modules, with a concomitant increase in overhead during linking. Combining separate modules

into a single module is a means of controlling this overhead.

The tendency in VAX/VMS has been to add functionality to object modules and image files, resulting
in larger files. If this trend towards larger files continues, it will become desirable to separate the
different pan._-. of an object module or image file into separate files, and yet maintain them in a
common library, A common module format allows for this separation. A common module format also
allows for a single implementation of the librarian.

in this chapter allow for both 64-bit addresaee:_, and file sizes greater t.'han four
;hg:[:if; “g?:t;::: :}r:a'i :jso cn:tpauppon 64-bit addresses, or file sizes greater t.han' four gigabytes,
must have the upper longword of these fields zero to ensure that the values stored in the fields are
valid 64-bit values.

Object Module and Image File Format 29-1

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

29.1.2 Description

An object module and an image file are both examples of a module. A module can deﬁpe_nnm_e;,
refer to names, and be in a library. An object module and an image file share additional similaritis
because both can be activated, and because image files are created from object modules.

The primary users of object modules are compilers, the linker, and the loader. The primary users of |
image files are the linker, the debugger, and the image activator. Generally, refemnce; to the lmle.'
refer to both the linker and the loader. The loader is activated when an object module is run without
first linking it.

All modules have a common header format and a common name table format so that a commen
librarian utility can be used for different types of libraries. All modules contain within their header
an index to their different sections. Different types of modules may contain different types of sections,

but the module header contains an index that provides a means of accessing sections specific to s
module type.

Module specific sections that are common to both object modules and image files are:
Global symbol table
* Debug symbol table

* Entity consistency check table
* Data sections

* (Code sections

The object module specific sections are:
¢ Linker directive table
* Data relocation table

Image file specific sections are:

* Image section descriptor table
* Image relocation tables

* Activation tables

* Transfer vector table

* Debug module table

29-2 Object Module and Image File Format

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

Figure 28-1: Object Module and Image File Format

Module Header

Module Name Table Index

Module ltem List index

Global Symbol Table Index
Debug Symbol Table Index
Target Record

Creation Time

Data Reiocation Table Index (object)

External Relocation Table Index (image)

ISD Table Index (Image file)

Y

Module Name Table

Giobal Symbol Table

PSECT Definition
PSECT Definition

ISD Table

ISD
ISD

Data Section

Object Module and Image File Format 29-3

S L i

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

29.1.3 Dependencies
* Object module format affects compiler development.

* Image file format affects image activation.

* Image file format affects debugger development,

The requirements of compilers, image activation, and debuggers are reflected in this chapter

29-4 Object Module and Image File Format

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

CHAPTER 30
LINKER

30.1 Overview

The Mica linker produces Mica image files from Mica object modules, just as the VMS linker produces
VMS image files from VMS object modules. Mica object modules and image files are described in
Chapter 29, Object Module and Image File Format.

30.1.1 Requirements

The Mica linker must produce the following:
* Mica executable images

* Mica shareable images

* Mica bootable systems

The Mica linker must accept the following as input:
* Command line input

* Mica option files

* Mica object modules

* Mica shareable images

* Mica object and shareable image libraries

The Mica linker must execute as a Mica resident linker. The Mica resident linker is a Mica image
running on Mica. It accepts Mica object modules, libraries, and images and produces Mica images.

This linker is required for Mica development, and the final Mica product.

ica li te as a cross-linker. The cross-linker is a VMS image running under VMS.
;Eh:c}c{e‘;zslﬁli(:: ?b‘;:tcfnﬁules. libraries, and images and produces Mica images. The cross-linker
linker is required for Mica development.

: i PRISM ULTRIX linker accepts
The Mi be ly portable to PRISM ULTRIX. The ported 1 U1 : :
M::a ‘{:gjae?{n:;d?;s: liberaa?ié,pand images and produces Mica images. This linker is required for

PRISM ULTRIX development and the final PRISM ULTRIX product.

i ide overlapping functions,

Mi d be modular because other Mica cpmpo::nents provide
th‘f:;c:rrg:;;;:;ﬁct r:odules for execution, and merging object modules mt.okonf.hM;iiitﬂaTj c?;de
also allows the code dependent on the operating system to be }solatefi from tl;:;bul o ;ﬁa hca nker
code, which in turn allows the cross-linker and the Mica resident linker to be essentially the same.

The linker should resolve symbols and cluster program sections compatibly with VMS.

Linker 30-1

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

30.1.2 Implementation k
During its execution, the Mica linker maintains a number of internal data structures, exampiesd

which are: 5
e Table for global symbols

e Table for PSECTs)
* Table for environments l

e List for unresolved symbols ‘

1 i
The Mica linker is implemented in two passes which, together with the work before and after ac |
pass, define five linker stages: initial, pass 1, intermediate, pass 2, and final. .

30.1.2.1 Initial Stage

The goal of the initial stage is to understand the command line and the mmmand:_oonmned inthe |
option files. The linker associates its input files with the clusters that have been specified. (Clustenny |

is a means of explicitly grouping modules or PSECTs so that the resulting memory will tend tobe |
together.) 1

30.1.2.2 Pass 1

The goal of pass 1 is to read all of the symbol and PSECT information in the input files asd & [
maintain the specified clustering. During pass 1, the linker reads all its input files. The commands
in the linker command tables in object modules are performed. New clusters are created if needsd. |
Symbols and PSECTs described in object modules and shareable images are organized in the intem& |
tables. Symbols referenced by object modules are either resolved to an already defined symbol orare |
added to the unresolved symbols list. An unresolved symbol can be resolved by a module that is

¢ Explicitly included in a linker command
* In the currently accessed library] .

In a library implicitly or explicitly specified after the currently accessed module [

30.1.2.3 Intermediate

The goal of the intermediate stage is to prepare for reading the data and code from the input files The

linker calculates the virtual memory requirements of each segment of the image from informatios
read during pass 1.

30.1.2.4 Pass 2
The goal of pass 2 is to create the image file with the data : : ales,
and to fix up all the relocations within it. Durin e data and code sections of the object mod

_) it. During pass 2, the linker copies the data and code section*
f}rcn_: th;a:l:];?t modules to their location in the image file. The linker also manages the following

* . Map file information

* Fix-ups

* Demand zero compression
* The image's header

The image’s image section descriptor table
* The image's activation tables

30-2 Linker

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

¢ The image's transfer addresses
¢ The image’s relocation tables
* The image's global symbol table

* The image's debug symbol table

* The image’s target system \Each object module contains targeting information that the linker
must check\

+ The image's use of vector instructions \Each object module contains information on the use of
vector instructions that the linker must check\

30.1.2.5 Final Stage
The goal of the final stage is to write the image file to disk and report the statistics of the link.

30.1.3 Compller Dependency
The Mica linker shares many functions with compilers; both must:

¢+ Maintain tables for identifiers

+ Read and write modules (Definition modules, object modules, and image files all share common
format.)

+ Handle errors and text in a method that allows for internationalization
* Maintain performance statistics

* Manage large amounts of memory

To speed development and ease future support, the Mica linker utilizes the DECwest compilers’
compiler shell and super shell; these are the parts of the DECwest compilers that u:nplement the
above functions. The super shell provides operating system functions, and the compiler shell pro-
vides compiler functions. Both are described in Compiler Shell Documentation for the Pillar and C

Compilers.
The Mica linker utilizes the following mod
e 1O

* Memory management

ules from the DECwest compilers’ super shell:

* Error reporting

¢ System information

The Mica linker utilizes the following modules from the DECwest compilers’ compiler shell:

¢ Text handling
* Generic table
* |dentifier table

* Performance statistics

The linker accesses these modules by linking with the compiler shell and super shell shareable

images.

Linker 30-3

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

CHAPTER 31
IMAGE ACTIVATION

31.1 Overview

The linker produces an executable image as the end product of program development. During process
creation, the thread creating the process specifies the image to be executed by the new process. After
the creation of the process and the initial process thread, the image file is mapped into the newly
created address space. This mapping occurs in the context of the initial process thread.

Image mapping involves several steps that prepare the image for execution. The image activator
opens the image file, thereby establishing a channel to obtain the necessary information to map the
file. If the image does not already have an associated segment object, the image activator creates
a segment object for the image, building prototype PTEs for the image file. The image activator
maps the image into the user’s address space, resolves certain address references, and establishes

the debugger and traceback handlers.

31.1.1 Goals/Requirements
The Mica image activator has the following goals:
* All images are automatically and transparently shared among all users.

* Optimal performance is achieved by issuing a minimal number of disk' reads to initially map the
image and delaying most fixups by delaying the loading of shareable images.

31.1.2 Functional Description

31.1.2.1 Image Initialization

No special code exists in Mica to read images into memory for im't.i_al execution. Instead, the paging
mechanism is used to “page” an image into memory. The image activator configures the process page

tables to reflect all pages in the image file.
Mica performs the following steps to support image activation:

1. Opens the image file
The image activator issues a read-only share open service on the image file. This service returns

a channel ID to the file.

2. Creates a section
Is the execScreate_section system service. The caller specifies the channel

The image activator cal ce call, and a mapping type of e$k_image_map. This service

ID from the previous system servi
returns a section_id.

3. Maps the section JhE=
_ : $map_section system service, specifying the 'SECfZOﬂ_‘d ret.urned
The image activator calls the miem spervice- This service returns the starting and ending ad-

from the exec$create_section sys ; :
dresses that delimit the mapped image 1n the virtual address space.

Image Activation 31-1

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

4. Performs fixups

The starting address identifies where the image’s image header begins. The image activator
examines the image header, and performs the necessary image fixup operations on the image.

5. Handles message sections

If any message sections are present in the image, as indicated by the image header, the image
activator calls the routine to add these message sections to the process. The nature and funcﬁms
of this routine are described in Chapter 3, Status Values, Messages, and Text Formatting

6. Maps shareable images marked "activate immediately”

The image activator examines the image header, and maps any shareable images which are
marked "activate immediately”. The image activator performs the external fixups for thes
shareable images once they are mapped. Note that this is a recursive call to the image activator

7. Calls initialization procedures

Once the image activator maps and fixes up the "activate immediately” images, it examines
the image header, and calls any initialization procedures at their specified entry points. Thes
initialization procedures provide the functionality of the LIBSINTTIALIZE routine in VMS. The
image activator does not guarantee the order between images of initialization procedure calls,
but it does guarantee each procedure is called only once before the user executes any code within
that shareable image.

8. Invokes image

After the image activator has invoked all initialization procedures, it calls the image at its
transfer address.

31.1.2.2 Image Exit

* . Within the shareable image space
* With the WRITE attribute
The Install Utility creates a section obj

) ect for the im hich - it
The segment object has a "syste . . 28%, Which causes a segment object to be built
installed "opened”, ystem channel” to the image which implies that the image is effectively

31-2 Image Activation

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

31.1.25 Images Within Shareable Image Space

When a shareable image is installed in the shareable image space by use of the /BASE qualifier, the
Install Utility opens the image file, and creates a segment causing prototype PTEs to be built. The
segment object for the shareable image contains the base address for the image within the shareable
address space. When the shareable image is loaded, it is mapped at the specified address. If the
image cannot be mapped at the specified address due to addressing conflicts, an error is returned,
and the shareable image is not mapped.

When the shareable image is installed no fixups, internal or external, are performed. Note, however,
that since no external fixups are performed, any referenced shareable images are treated just like
referenced external images. This allows later versions of shareable images to be installed at different
base addresses while the system is running, and the latest image is properly loaded.

Images installed in shareable image space may reference other images though use of the autoload
capability or the activate immediately capability. These referenced images do not need to reside in
shareable image space.

31.1.3 Issues to be Resolved

+ Exact detail of message section addition. This is dependent on the design of message sections
and the definition of the routines.

Image Activation 31-3

System Management and Administration

This set of chapters describes the components of Mica relating to system management
and system administration.

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

CHAPTER 32
SYSTEM MANAGEMENT

32.1 Overview

This chapter provides an overview of Mica system management. First, the chapter lists the system
management functions that a system manager or operator can perform. Second, the chapter describes
a model for system management. Third, the chapter describes how system management on multiple
Glacier or Cheyenne systems is implemented. Next, the chapter briefly describes system security, and
discusses various files that the system management server maintains. Finally, the paper presents
some considerations for the design of the server.

32.1.1 Functional Description

Mica system management allows an operator or system manager to do the following:
* Maintain user accounts.

* Provide user account information for authentication.

* Maintain proxy accounts.

* Provide proxy account information for authentication.

* Define and maintain identifiers.

* Set up and modify access control lists (ACLs).

s Access file utilities (BACKUP, MOUNT, DISMOUNT, INITIALIZE, VERIFY).
* Access the configuration manager.

* Provide Distributed File System (DFS) management.

* Maintain system parameters.

* Set up system level logical names.

* Access diagnostics.

* Access the Monitor utility.

* Set up and modify the system startup facility.

* Access the Error Report utility.

* Issue logging commands.
* Maintain RPC binders.

* Access the User Environment Test Package (UETP).
* Display system information.

* Install software.

System Management 32-1

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

* Manipulate log files.
* Access the Install (Images) utility.
* Access Quartz utilities.

32.1.2 System Management Model

The design of system management separates the user interface from the functional implementation
The system management interface (SMUI) resides on a client system (a VMS client at FRS). The sys
tem management server component resides on a Mica system, and the two components communicate

by means of RPC.

By implementing the user interface on the client system, the user interface can take advantage of the
client software on which it is implemented, and can also be explicitly tailored to a particular client
Figure 32-1 shows these two components.

Figure 32-1: System Management Components

VMS Mca

System Managemant
User Intertace Server

cbucLi @

Facility _.
Help

Facilty

The following sections describe these two components.

32.1.2.1 The System Management User Interface

) is the client component of .
th managemen.
sOflfWare. SMUI provides two mter_faces to system management foF:'othe systeme!:ﬁ::;ner or O::"aw'

easy-to-use, user-oriented interface. If the syste
tarmmal)f only the command line interface i?avzl‘:]l;
a VMS client only, and will exist as a layered prod

nager has a character-cell terminal (or hardcopy
e. For FRS, the interfaces will be available from
uct on the client.

The DECwindows interface is la -
T ethce. {ieﬁide?n top of the command line interface. The DECwindows inter-

SMUI depends on the following VMS facilities:
* Command Definition utility (CDU)

System Management

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

* Command Language Interpreter (CLI) routines
* Help librarian routines (LBR routines)
* DECwindows, DECtoolkit, and the User Interface Language

321.2.2 The System Management Server

The system management server is the server component of the system management software. The
system management server is the only component on Mica with which SMUI communicates.. The
server performs all necessary functions, calls, and utility invocations, and sends any responses back
to the client interface. The server may also consist of more than one server. (For more information,
see the remainder of this section and Section 32.1.8).

SMUI and the server software communicate by means of RPC. This interface resembles a system
service interface.

The system management server resides on both Glacier and Cheyenne systems, although the func-
tionality provided for each system may differ.

The system management server has three main functions:

* Accepting calls from other Mica components

The interface into the system management server are in system service format; the underlying
RPC mechanism is not visible to the caller. This interface will not be available for customer
use by FRS. However, the interface will be available for internal use. Examples of calls used by
other components of Mica include calls for accessing authorization and security information.

* Invoking Utilities
The system management server invokes callable utilities, for example, the Backup utility. The
server passes a parameter list to the utility.

* (Calling Other Servers

The system management server calls other servers, at the request of SMUI. For example, to

perform local DFS management, SMUI requests the system managen}ent_sarver to call the DFS
server. In this case, SMUI calls the system management server, which, in turn, makes a local

RPC connection to the DFS server.

321.3 RPC Interface

yste ment server are accomplished by RPC. The system management server
mu:fa‘gcm E:}bi)ﬂ:niﬁ::?ng:de (from Mica facilities) and inter-node (from SMUI) communications.

i ble to call procedures in
System management requires that the system management server be ak : .
tlfe client whilge the arig:gna] server call is outstanding. This functionality is required to implement

features such as /CONFIRM mode in utilities.
System management will also use the following RPC functionality: disconnect notification, and a

server acting as a client of another server.

32.1.4 Managing Multiple Systems

The following two sections describe ¢
tems.

onsiderations for managing multiple Glacier or Cheyenne sys-

System Management 32-3

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

32.1.4.1 Glacler Systems

A system manager can manage multiple Glacier systems from one client. However, the sisten
manager can only issue system management commands to one Glacier system at a Lme. l|
|
32.1.4.2 Cheyenne Systems

Multiple Cheyenne systems in the Quartz environment will be managed as separate systems. Thus
to perform a function on more than one system, the system manager must issue a command to each
system.

\This plan could change if Quartz requires that one command be issued for all systems. In eithercase

if Quartz requires any coordination in managing multiple Cheyenne systems, system managemenl |
will be performed through SMUI. There will be no coordination between system management senen |
on separate systems, nor will the servers need to communicate with each other.\ |

32.1.5 Security

Access to system management services is controlled by the proxy access to a Mica server. For each
client from which full system management is performed, a specific account is designated on the chienl
The node and account are entered in the proxy file of the Mica server, and the corresponding account
on the server is then granted the identifiers needed to perform system management.

Currently, there are no plans to totally restrict access to the system management server. A process
that has been granted access to a Mica server has the ability to access any server on the systen.

gckbpf held identifiers will prohibit the unauthorized user from performing most system management
nctions
' |

32.1.6 Subset System Management Access

The set of functions visible to a user on a client may differ, depending on whether the user is per
forming system management from a system-management or a non-system-management account.

A person on the client (for example, an operator or a user) can access management
by running SMUI from an account on the client that is diﬁ'erentaf:ouul?“ﬂt):f :;’::nr? management
account. The client node!accm‘mt proxy pair corresponds to an account on the server that has s
subset of’sxstem- management identifiers (or in the case of a user, may have no special identifiers)
The user’s identifiers allow access to some functions of the system management server. Functions

that a user can perform include setting ACLs i ' 1s8ui :
SHOW commands such as SHOW SYSgTEM_ on personal files, showing objects, and issuing ceriain

32.1.7 Authorization, Proxy, Identifier, and Startup Parameter Files

The system management server maintains the user izati he
: ; authorizatio file, t
identifier file, and the startup parameter file. The syst n 2:; the ru.'!work proxy file,
files, and is the sole accessor of these files. & server is the owner of ¢

The system management server also maintains SYSGEN parameters that are stored in the systen

image. These parameters are available to the system directly,

Since indexed files are not available at FRS, s wil coe
: sk ! » System managem i ide i 55
g the information in these files. This may involve creating in;“t alt‘pﬂ-t:w'ulf.e its own keyedhia =
es and/or indexes in memory, and combining files together. exes at system startup, caching

'—4 System Management

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

32.1.8 Server Design Considerations

The system management server will be multithreaded, so that multiple server requests can be ser-
viced at the same time.

321.9 Issues
The following system management issues are still outstanding:

+ In what language should the client software be implemented? The obvious choices are Pillar and
C. How much Pillar support will exist on VMS as a target operating system (messages, ete.)?
Pillar would be a good implementation language simply for speed of coding and debugging. C
is a good choice because of portability to Ultrix; however, it will lengthen implementation time,
and it is questionable how much of our client code will be portable to Ultrix, since much of the
code will be VMS-specific.

System Management 32-5

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

CHAPTER 33
OPERATOR COMMUNICATIONS

33.1 Overview

This document provides an overview of the operator communications facility for Mica (OPCOM).
OPCOM provides 2-way operator communications, as well as terminal and file logging capabilities
for various types of messages on Mica. These messages include operator messages, error messages,
security messages, and account messages.

The first two sections provide a functional description of OPCOM and describe the various OPCOM
components. The next section addresses support for OPCOM within the Applications Integration
Architecture (AIA), followed by a section on native mode OPCOM calls. Finally, any outstanding
OPCOM issues are addressed.

33.1.1 Functional Description

OPCOM provides the following functions:

2.way operator communications. With 2-way operator communications, the following is possible:

o A user can enter an operator request from either a Mica program or a client terminal.

* From a client terminal running system management software, an operator can reply to a request.

* From a client terminal running system management software, an operator can display a list of
outstanding operator requests.

Operator message capability. A client user or operator, or a Mica system facility, can send a

message to the Mica operator.

General message capability. The general message capability allows an operator to do the following:

* Enable a client terminal to receive operator and/or security messages

e Enable a local Mica file to receive operator, security, error,
r terminals in use by a server
nd accounting function processor units (FPUs). (For information on

or accounting messages

* List all log files and operato
¢« Enable or disable the errora
FPUs, see Section 33.1.2.5).

nal enabled on the client system, the broadcast

. : tor termi
Broadeast capability. If there '€ O okt dcast to terminals on a client system.

function allows an operator or system facility to broa

Operator Communications 33-1

1

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

33.1.2 OPCOM Components

OPCOM consists of several components. Some of these components reside on the client, while others
reside on the server.

The OPCOM components on the client are:

e The client system management interface
e A client operator terminal display process
* The client operator request program

The OPCOM components on the server are:
* The OPCOM server
* Mica message FPUs
* Reader threads of message FPUs i

Figure 33-1 shows the relationship of these components. |

Figure 33-1: Relationship of OPCOM Components

VAX Rock
System RPC
Mamagement - System Manmgemers Surver '
Interface (
|
OPCOM Server i
E:quss; RPC 5
ogram — og aat
Database gr:_:.
OPCOM L l |
Display Raacer
Process Thread :"ﬂ T"‘l m‘;
. 4 A
Operator
Display Ii-ff I;?g
Terminal . |
|
!
Message FPU -
Ly Message FPU Message FPU Message FPU
d Security Accounting Emor

The following sections describe these components

33-2 Operator Communications

N e T

Digltal Equipment Corporation - Confidential and Proprietary
Restricted Distribution

33.1.21 Client System Management Interface

The client system management interface allows the operator or system manager to enter OPCOM
commands. Table 1 describes these commands.

Table 33-1: Client System Management Interface Commands
Command Description

STARTALOGGING Starts logging of operator, security, error, and account messages. Logging may be
specified to a terminal on a client system for operator and/or security messages, or
to a file on the server for operator, security, error, and account messages.

STOPLOGGING Stops logging of operator, security, error, and account messages
SHOW LOGGING Shows system logging

REPLY Replies to an operator request

REQUEST Makes a request 1o an operator

SHOW REQUESTS Shows the queue of unanswered operator requests
ENABLE/DISABLE FPU Enables or disables error and account FPUs

SEND Broadcasts a message to client terminals

The client system management interface communicates to the system management server by a remote
procedure call (RPC) interface.

331.2.2 Client Operator Display Process

An operator display process is started when an operator enters the START/LOGGING request through
the system management interface. The display process is connected, by RPC, to an OPCOM reader
thread. (For information on reader threads, see Section 33.1.2.6).

The display process does the following:

* Continually reads messages from the OPCOM reader thread until terminated

* Displays the messages on the operator terminal
* Forwards Mica broadcast messages (such as server shutdown messages) to the client broadcast
faclity

33.1.2.3 Client Operator Request Program

s part of both the VMS and ULTRIX client software. The
k!:rzﬁrz;r:wtr) request. This program is a standard MICA program (run
REQUEST). The request program, whgn running on MICA, calls an
tine to make an operator request. This operator request program is
in provided to allow a user (other than an operator or system mangger) to make an operator request.
See Section 33.1.3 for more information on the AIA operator functions.
r Cheyenne clients. There is no AIA interface on Cheyenne, and
to make operator requests. A Cheyenne operator can still make
ment interface.\

OPCOM provides a request
program allows a user to ma
by some means such as PRUN
AlA operator communication rou

\This capability is not provided fo
there should be no need for a user
operator requests from the system manage

Operator Communications 33-3

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

33.1.24 OPCOM Server
The OPCOM server runs as a protected subsystem on the server.
\The OPCOM server may be the same free running process as the system management server\

The functions of the OPCOM server include maintaining a database of logging tgrminals and files
maintaining a database of outstanding operator requests, and starting and stopping reader threads
(For information on reader threads, see Section 33.1.2.6).

The OPCOM server responds to the commands that are entered through the client system manage
ment interface. The OPCOM server responds to these commands in the following way:

e When the START/LOGGING or STOP/LOGGING command is entered, the OPCOM server staris
or stops a reader thread and updates a database of log files and terminals.

* When the SHOW LOGGING command is entered, the OPCOM server reports the database o
log files and terminals.

¢ When the REPLY or REQUEST command is entered, the OPCOM server writes the requestor
reply to the operator message FPU and updates a queue of outstanding operator requests. Als,

Il;?h;aUOPCOM server periodically scans and rewrites outstanding requests to the operator message

* When thg SHOW REQUESTS command is entered, the OPCOM server reports the queue of
outstanding operator requests.

* When the ENABLE/DISABLE FPU command is entered, the OPCOM fied
FPU state to ONLINE or AVAILABLE. Bris o server sets the spec

* When a SEND command is entered, the OPCOM server writes the message to the operator

message FPU. The message is targeted for the first display proces ' hich, in
turn, forwards the message to the client broadcast facilit; " et e’ gt

All requests to OPCOM are logged to the operator message FPU. This means that the operatar

message log includ history of : ;
replyS.ge g includes a history of commaénds processed by OPCOM, including operator requests and

33.1.2.5 Mica Message Function Processor Units (FPUs)

Message FPU’s are the mechanism provided in MICA to

There are four message FPU’s in MICA that are used J
€ to pass syste FPUS
are the operator, security, error, and account message FPU’s, Mzssa;sm;em\fr?:t‘.e? :;Th?;?vs by

various system components, including OPCOM itself. The messages are read by threads of OPCOM,

and may be read by oth :
i gs). y other system facilities (such as an error detection program reading the error

pass messages from one process to another

-4 Operator Communications

_

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

33.1.2.6 Reader Threads

Areaderisa process that reads messages from one or more message FPUs and writes the messages
to a file or terminal. The readers of the system message FPU’s are threads of OPCOM. A reader
thread exists for each START/LOGGING command that is issued. The reader thread registers with
the appropriate message FPU(s), and either opens a file or establishes an RPC connection with a
display process on a chient. Each message read is either written to a log file or sent to the client
display process. A reader thread is terminated when OPCOM receives a STOP/LOGGING command
or when a client display process terminates, :

The messages, as they are read from an FPU, are in binary format. After a reader thread reads a
message, further processing is required to translate the message into a meaningful format,.

In the case of operator and security messages, the binary message is translatable directly into an
ASCII message. The reader thread is responsible for this translation, which is accomplished by
looking up the message number in a file. Thus when the reader thread writes the operator or security
message to a file and/or a client display process, it is writing a fully formated ASCII message. These
ASCII operator and security messages may be mixed when written to a terminal or to a file, and one
reader can read and translate both security and operator messages.

\The exact method used to translate operator and security messages to their ASCII counterpart is
not defined\

In the case of error and account messages, the reader thread does not translate the message. The
message is in binary format, and can be written only to a file (not to a terminal). The error and
account messages cannot be mixed with any other messages in a file. The error report analyzer must
be run to create error reports from an error file. There will be no support at FRS to generate reports

from information in an account file.

33.1.3 AIA Functionality

There will be support in AIA for operator functions (specifically REQUEST and REPLY functions).
The operator functions will be synchronous only. This means that a program that makes an operator
request and expects a reply will be in a wait state until the reply has occurred. These operator
functions are used in the REQUEST program provided with VMS and ULTRIX clients.

A user can access the AIA operator functions through a MICA program, and can thus perform an
operator request from a user written program.

This AIA functionality is not available on Cheyenne clients.

33.1.4 Native mode OPCOM calls

The native mode service calls withi
such as BACKUP and MOUNT, as well as by th
documented for external use at FRS.

n OPCOM are available for use internally by system utilities
e system shutdown facility. These calls will not be

33.1.5 Manlipulating log files on Cheyenne

: be able to perform some
S : port on Cheyenne, system management must : to per :
ﬁ;:c:urtttﬁl;’ogio[g)ﬁ;isle:urisiding locally on the system. System management will provide specific
functions to manipulate Cheyenne log files, such as COPY, DIRECTORY, and DELETE. The log files
will reside in a known area on the Cheyenne system.

Operator Communications 33-5

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

33.1.6 Issues
The following OPCOM issues are still outstanding:
* Will Mica logging be able to support Decnet logging?

* Will Mica be required to provide operator interface and terminal display facilities on ULTRIX
clients?

* Does the user REQUEST program need to be provided on a Cheyenne client system?
* Does AIA functionality need to include broadcast requests?
Probably not.

* How is security handled between the client and the server?

33-6 Operator Communlcatlons

_-J

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

CHAPTER 34
CONFIGURATION MANAGEMENT SOFTWARE

34.1 Overview

This overview summarizes the design and function of the Mica configuration management software.
This software consists of three components:

* An error-monitor process, running in user mode
* A configuration-manager process, running in user mode

* A configuration function processor, running in kernel mode
(For the rest of this overview, the term monitor process refers to the error-monitor process, except

where otherwise specified. Likewise, manager process refers to the configuration-manager process,
and function processor refers to the configuration function processor.)

34.1.1 Goals

The configuration management software has the following goals:
* To provide sufficient performance for Cheyenne requirements

* To autoconfigure physical devices at system boot time

* To autoconfigure new devices into a running system upon request

* To mount disks at system startup

rs and devices upon request

lability for Mica by monitoring error events; detecting imminent device
ble, reconfiguring hardware

* To reconfigure processo

* To provide required aval
failures; and when possi

341.2 Functional Description

t software performs specific functions at boot time and during normal

The configuration managemen
operation.

Configuration Management Software 341

%

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

34.1.2.1 Actions at System Boot Time
At system boot time, the configuration function processor performs the following tasks:

* Reads the processor configuration from the RPB (restart parameter block), then stores the con-
figuration.

* Reads module information from the RPB—if the processor provides such information—the
stores it.

* Notes vector processor modules.
* Reads the list of bad memory pages that were found during booting, then stores the list.
* Checks on the XMI bus to detect all adapters and controllers.

After the configuration function processor has found all adapters and controllers, the configuration
manager process starts. This manager process then performs the following tasks:

* Reads all information found by the configuration function processor, then writes this information
to a database in memory. It also writes this information to the error-log message FPU, so that
the configuration of the system is available through the Error Log Report Generator (Chapter
23, Error Logging).

* Reads an exclusion file from the system disk: this file tells which devices are not to be configured
into the system. The exclusion file is a fairly static file to be managed by the system manager It
would contain, for example, disks that the system manager did not want automatically mounted

at system startup. It is never updated automatically as a result of operating system actions,
such as configuring a shadow set.

* Creates a notification message FPU, creates a channel to it, then registers on that channel.

* Loads function processors for devices that are to be part of the configuration, if these function
processors were not previously loaded during booting,

* Reads from the notification message FPU all d; _
Access Mass Storage Function Processors), all disks found by MSCP (See Chapter 15, Direct

* Mounts disks not excluded by the exclusion file.
Like the configuration-manager process, the error-

trollers are found. The error-monitor process
message FPU, then issues a read for device e

monitor process is started after all disks and con-

creates a channel to and registers with the errorlog
TTOr messages.

34.1.2.2 Actions During Normal Operation

The actions described i i i : - :
boot’ed. sCn in thlB section occur dunng normal omahon"—th&l is, after Lhe ’.’.sum 18

34.1.2.21 The Error-Monitor Process

During normal operation of the system, th
log message FPU. The Process detects

34-2 Configuration

Management Software

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

34.1.2.22 The Configuration-Manager Process

During normal operation of the system, the configuration-manager process provides an interface
through system management for the following operator-requested operations,

* Autoconfiguring devices

* Adding a counterpart to a shadow set

* Removing a counterpart from a shadow set
* Managing spare disks

* Disabling and enabling processors

The configuration-manager process keeps current configuration information on the system to enable
it to reconfigure in the case of device failures or imminent failures. It does this by configuring the
system at boot time an by monitoring the mounting and dismounting of Files—11 volumes, shadow
sets, and stripe sets. Also, it keeps a current list of spare disks. A spare disk may be specified to be
a spare for any disk of a compatible type, for a disk on a particular controller, or for a specific disk.

When notified of significant configuration error events, the configuration-manager process implements

a strategy that maximizes the availability of the system. In this strategy the process performs the

following operations:

* Ifa disk is failing, and if a spare exists, calls the shadow function processor to add the spare as
a counterpart and to remove the failing counterpart.

* If a failing controller has a backup, initiates failover to the backup controller by calling the
proper function processors.

* Uses the preceding two strategies to respond to a failing bus. In this case, if controllers on the
bus have a backup, the configuration manager process makes the appropriate calls to failover to
the backup controller. If there is no backup for a particular controller, the configuration manager
process attempts to remove any disk attached to the failing controller from any shadow set of
which it is a member and replace the disk with a spare disk attached through a controller on a
good bus.

* Reports failing memory pages to memory management, which must—if possible—replace them
and put them on the bad page list.

* Calls the confi tion function processor to perform self-test and standalone diagnostics on
fa:ln:g p:occ:esogr:,m\Currently. the design has not considered aut.om_atmally invoking diagnostics
on disks or controllers - is this something to be included in the design?\

* Configures processors into the system or out of it by calling the configuration function processor.

34.1.22.3 Configuration Function Processor

The configuration function processor performs the following

llers in an online system. The configuration manager process
tr:o iutoconﬁgure——that is, to find any new devices by checking
hen makes a list of new controllers or adapters, and returns

tasks during normal system operation.

* Finds any new adapters and con
commands the function processor
the buses. The function processor t
this list to the configuration-manager process. e o

S i in response to commands to initiate self-test and standalone
gf;m: 2:0:;:2‘::: T{zf:nc: ruau;n.:lt.spo of the diagnostics to th:t configuration-manager pro-

cess. This interface is described in the Chapter 20, Console Support.

* Calls the kernel software, the console software,
enable a processor.

or both in response to commands to disable or

Configuration Management Software 34-3

34.1.3 Design
Figure 34-1 shows how the error-monitor process, the configuration-manager process and the config-
uration function processor interact.

Figure 34-1: Configuration Manager Design

34.1.3.1 The Error-Monitor Process

Eﬁﬁe inﬁ;‘;:-ign mad.s T“:gs events logged to the error-log FPU, and predicts failures based
to notify the eonﬁgmmnmnnaugmmm thresholds and algorithms that cause !
require action. s MEMBdﬂimhuenmudnmuthﬂmF

The monitor process would re .
process. port as an example, the following events to the Configuration-Mansg®

A processor has been disabled by the machine check code due to a non-recoverable error occurming

A disk has had an excessi
nmdeﬂmofawt;:i?:.pmhthrmhddinfmmﬁmhpthythammiwwl

44 Configuration Management Software

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

* A disk has incurred a non recoverable error.

341.3.2 The Configuration-Manager Process

The configuration-manager process decides what strategy to follow when the error-monitor process
notifies it that a device is failing or has failed. It then implements that strategy.

Depending on the problem, the manager process takes the appropriate action by calling device func-
tion processors to handle device errors, calling the configuration function processor to handle processor
failures, or calling memory management to report bad pages.

If the device is one on which diagnostics can be run online, the decision is made after diagnostics are
run and the results known to the configuration-manager. Then the decision is to attempt reconfig-
uration if a) the device fails diagnostic tests, or b) the device passes diagnostic tests, but has done
80 an excessive number of times after experiencing problems. If the device does not support online
diagnostics, the reconfiguration is always attempted.

Whether a device can be configured out of the system or not depends on if there is a backup for that
device or processor. For instance, if a controller has a backup, the manager process calls the MSCP
function processor and the controller function processor to cause failover to occur. If a failing disk
is part of a shadow set, it is removed from the set. If there is a spare disk which is an appropriate
replacement, it is added to the shadow set. If there is no backup, the decision depends on the
particular device and the type of error. In some cases, the only action that can be taken is to alert
the operator, for instance in the case of a failing disk which is not shadowed; in other cases, the only
action is to shut down the device, for instance, a fatal disk error.

The configuration-manager process handles user requests to enable or disable processors, to add or
remove counterparts from a shadow set, or to autoconfigure a new device on a running system.

The shadow function processor provides an interface which is called by the configuration manager to
request that a counterpart be added to a shadow set or removed from it. When calling this interface,
the configuration-manager process requests the addition, and waits for the completion of the catchup
before removing a failing counterpart. The configuration change is reported to the error-log FPU.
Thus, the error log will contain a history of these configuration changes.

When the configuration-manager process calls lower-level function processors to cause failover to a
backup controller, these changes are recorded in the error log.

The console software provides an interface to enable and disable processors. The configuration man-
ager process makes the decisions to perform these actions either

* [In response to a user request
essor which was disabled by machine check as the result of a failure, but which

-
hissyr el st h that the configuration manager decides it can continue to be used

passes diagnostics suc

These processor changes are sent to the error-log.

ion- rocess keeps an internal database that represents ‘the current cgnﬁgu-
E:n?n'?hgir;:;nb;ns:“:;ie;iis infonnati:on about buses, controllers, adapters, gishe, fapes, Xiiee L1
volumes, shadow sets, and stripe sets. This information is used to respond to failure situations.

b mounts disks at system boot time, doing so in the following man-
B P ocessor finds disks, it writes information about them to the notification
FPU Th a figuration-manager process reads this information fmm - nohﬁcghon Sr L s
: .er con g:l to MSCP to ready the disk, unless the disk is in the exclusion file. Next, the

Sl socpadiogts s requests that the MSCP function processar read the context area of
configuration-manager proces ed, including any stripe sets or shadow sets

: ‘bes how the disk is to be mount : . :
gmw%::: l'{\tl;i:?l:e‘li:n?b’;;is area is maintained by the function processors which do the mounting.

gura anag! i the information in the context
ion- rocess then mounts the disks based on thi ' :
E&%’;ﬁmlel?g it:limro;:c%d to minimize the time needed to accomplish the mounting by creating

multiple threads to do the mounting.

Configuration Management Software 34-5

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

If the system has an external service processor running SPEAR or other SDD tools, the Error Monita
proces?can receive additional problem notification from this external processor. This interfaceisTRD

34.1.3.3 The Configuration Function Processor

To find devices that are to be configured into the system, the configuration function processor checks
the buses. It does so by looking in I/O space at the possible node locations, and reading the deviee
register. This information is returned to the configuration-manager process through an V'O reques

The configuration-manager process requests that the configuration function processor invoke selftex
diagnostics and standalone diagnostics on a processor if either a) the number of recoverable emnn
that processor exceeds a threshold, or b) the processor is hung or has encountered a nonrecoverable
error. The configuration function processor returns the result of the diagnostics to the configuratin
manager process.

The configuration function processor interfaces with the console software to initiate diagnostic tess
and to get the results of such tests. The configuration-manager process logs the diagnostic resulls i
the error-log FPU.

The conﬁguratiun‘ﬁmction processor does hardware disables and enables of processors by callings
console software library routine. Processors are software disabled and enabled by calling the kemel

34.1.4 Relation to Other Software

The configuration management software is, in most cases. onl

U i3, , only an agent of reconfiguration. Oftes, it
reports failing hardware (for gxample_, failing memory) to other software, or it makes requests of other
software when it detects imminent failure. Generally, the con figuration-manager process decides only
that a particular device should be configured out of the system, if possible. The process then als

other software to configure out the device. This secti ; : o
are involved in configuration management. on describes the other Mica components whi

34.1.4.1 Memory Management

The configuration function processor calls ili :
iy e e f;ﬁogg?ﬁlgment to report a failing page. If possible,
34.1.4.2 Shadow Function Processor

When called to replace a failing disk with

] -1 @ Spare counterpart. The shad ' pdates
the spare disk. Also, the shad ilerpa e shadow function processor u
the replacement is up to dat?e.ow function processor is called to remove the faili ng counterpart after

34.1.4.3 MSCP Function Processor and Controller Function Processor
The MSCP function processor releases a faili

e ng controller; the controller function processor unreadies
34.1.4.4 SCS Function Processor

The Configuration Manager process calls the SCS fun, processor at system startup with the
- f i 1 I
of FPUs it has created for the adapters and controller:tgﬁnd on the l?:s startup with the lis

34.1.4.5 Device Function Processors

- E : rocess L
priate device function processo ~ performs autoconfiguration of a device, it calls the appr
not been previously created). i i J

34-6 Configuration Management Software

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

34.1.4.6 Machine Check

The design desq'ibed in this overview assumes that, in a multiprocessor environment, machine check
does the following tasks for processor errors:

* Logs the error to the error-log FPU, recording the reason for the error.

+ Decides whether to crash or not. If not, machine check signals the user thread that was executing
when the machine check occurred.

+ Disables the processor in all cases, whether the error was recoverable, nonrecoverable, or the
processor was hung. The configuration-manager process may reenable the processor, based on
thresholds and on the results of diagnostic tests, if it decides to run them.

34.1.4.7 Console Software

The console software provides an interface to request that processors be hardware disabled or hard-
ware enabled. Also, it provides an interface to initiate self-test and standalone diagnostics on pro-
cessors. Finally, it provides an interface to disable memory modules.

34.1.48 External Service Processor

The ESP will also inform the Error Monitor of imminent hardware failures. This is based on the
assumption that the proprietary software running on the ESP will be more sophisticated in its ability
to predict imminent hardware failures and will provide an additional level of availability above that

provided by the Error Monitor’s simpler thresholding.
The Configuration Manager software does not send any information to the ESP.

This interface from the ESP to the Configuration Manager process is TBD.

34.1.5 Issues
The following issues are unresolved:

1. We need to formalize the interaction of machine

2. Either the Configuration Manager can log configuration changes or the function processor that
implements the change can do this. If the Configuration Manager l’ogs the changes, the function
processors must protect the action such that only the Configuration Manager can request the

changes.

3. We need to define the interaction with N

check and the configuration manager software.

etwork software—DECnet and IPC for Cheyenne.

Configuration Management Software 34-7

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

CHAPTER 35
SYSTEM VOLUME LAYOUT AND SOFTWARE INSTALLATION |

35.1 Overview

This chapter describes the system volume layout for Mica operating system directories and files. The
chapter also describes software installations and updates for the operating system, layered products,
and third-party and client software. The information provided in this chapter applies to both the

Cheyenne and the Glacier products.

35.1.1 System Volume Layout

The system volume is divided into two areas, a read-only area and a read/write area. The dirfectories
in the read/write area are a superset of the directories in the read-only area. The following two

sections describe these areas.

35.1.1.1 The Read-Only Area
Figure 35-1 shows the directories contained in the read-only area.

The read-only area is created initially by the Mica operating system installation. After the instal-
lation. no modification is done to the read-only area, which eliminates the need for backups of this

area. Most operating system modules reside in this area.

Figure 35-1; Read-Only System Volume Area

systemroot_READON LY

I
I | I I I I

SYS§KEANEL SYSSSYSTEM SYSSLIBRARY SYSSLANGUAGE ~ SYSSPROCEDURE SYSSFONT

SYSSENGLISH
|
| | I I I
SYSSOOCUMENTATION SYSSEXAMPLE SYSSHELP SYSSTABLE SYSSMESSAGE
35.1.1.2 The Read/Write Area
plus the additional

The read/write area includes those directories shown above in the read-only area

directories shown in Figure 35-2.

System Volume Layout and Software Installation 35-1

_

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

write area is also created by the Mica operating system installation. However, modife;
g;smt:d:his area occur during the life of the system. Such things as paging files, ervor lops and
configuration files are stored in the read/write area directories. In addition, layered products, sy
operating system updates, and field test updates are also placed in the directories in this ares Thy
area requires backups.

Figure 35-2: Read/Write System Volume Area
systemroot_READWRITE

l l I l

SYSSPAGING SYSSDATA SYSSLOGFILE SYSSERROALOG

35.1.1.3 Read-Only and Read/Write Area Interaction

Because the root directories for both the read-only area and the read/write area are referenced through
a single search list logical, SYS$SYSROOT, these areas appear as a single area. The read/wnieas
is referenced first in the search list so that files placed in the read/write area can supersede thos in
the read-only area.

For booting purposes, the console subsystem maintains a pointer to the read/write area. In tum, s

known file in the read/write area contains a pointer to the read-only area. See Chapter 12, Booting
for more details.

35.1.2 Software Installation

There are three types of Mica installation procedures: standard, special, and front-end/client. The
first section below lists the overall goals of these installation procedures. The remaining sectiont

describe the Mica installation strategy in general, the th : i o2
considerations for high-availability mﬂﬁgurgatio;m_ e three types of installation procedures,

35.1.2.1 Goals
The following are the goals of Mica installation:

* Minimize service interruptions when software is installed (including updates).

* Maintain system integrity during the installation period.

* Eliminate the need for coordination of o

version dependencies. perating system and layered product releases because of

Simplify the installation process (as compared to that of VMS)
* Install both Cheyenne and Glacier systems.
* Install third-party software.

352 1 Volume Layout and Software Installation

| B T S

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

351.2.2 General Description

The software distribution strategy of the Mica operating system and layered products is that, for
the general case, there is no installation procedure per se. Instead, both initial systems and updates
are pre-installed and complete. Pre-installed means that after the system has been transferred from
the distribution media to the system disk, the system is ready to run. Complete means that the
distribution contains the full operating system and layered products. This type of installation is
known as a standard installation. The standard installation is the general procedure used for initial
system installations and updates.

Since all products are shipped to the customer, the License Management Facility (LMF) is used
to provide access to optional products purchased from DIGITAL. Software releases are coordinated
among the operating system and layered products. Simplification of the release process is done by
scheduling releases at regular intervals, such as quarterly or semiannually.

The standard installation procedure is not practical for third-party software, field test updates, and
emergency module replacements (patches). To accommodate this software, an installation procedure
similar to VMSINSTAL is provided. This procedure is known as a special installation. This is the
procedure used for software that cannot be included in the standard distribution; for example, third-
party applications and new layered products.

35.1.2.3 Standard Installation

The major technical design that makes the standard installation strategy work is the layout of the
system disk. The device used for the system read-only area need not be a read-only device. However,
maintaining strict rules as to the use of the read-only area allows future hardware configurations to
incorporate such devices without software modification. Assuming the device is a read/write disk, the
disk may be removable or nonremovable. For FRS, it is assumed that the disk will be nonremovable.

There are two types of standard installations: initial installation and update installation.

351.2.3.1 Initial Installation
An image backup of the read-only area is shipped to the customer, who then restores it to the system
disk using the Software Installation Utility.

After the read-only area has been restored, the read/write area is created and populated with the

default configuration.

35.1.2.3.2 Update Installation

For updates, the same basic procedure used for
software distribution is reshipped.

an initial installation is followed. The complete

i ility i store the new read-only area and a new readf\?'rite area
The Software Installation Uity 1 S50 w:d from the previous read/write area and contains copies

: ite area is crea : i
zzgtfuﬂi: e;;:e:::fawnread/wﬁw area that are not found in the new maq-:lnl}lr:d ar:: tgeime:
’ updates that w
' the old read/write area to the new area removes any speci
:DP;;{::‘F g?ﬁ’p&:&u:&mon of the operating system, but saves third-party and layered product
software previously installed.

35.1.24 Special Instaliation

Special installations apply to third-party
system, field test updates, and emergency

software, layered products not released with the operating
module replacements.

System Volume Layout and Software Installation 35-3

o

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

35.1.2.4.1 Special Installation Types

There are three possible types of special installation:

. -line refers to installing software after user activity on the system is stopped and dissbled
gger the installation is complete, user activity is enabled, and apphi_:luapn are started, g
the new underlying software. The current VMS installation procedure is this type of installstin

* On-line refers to installing software while the system is running user applications. For ool
installations, the application must be restarted to use the new version of the underlying softwar

* Hot module replacement refers to installing software while the system is running user applia-
tions and then using the new underlying software without affecting the application.

On-line installation procedures can be developed for the general case. Hot module rppha!_mean
must be developed depending on individual application requirements and their interaction with the
underlying software. General purpose hot module replacement is not in the scope of Mica softwan
installation.

Special installations on Mica affect the read/write area of the system disk and look much ke
VMSINSTAL, with the exception that the procedure supports on-line software installation.

35.1.2.4.2 Special Installation Procedure

The special installation procedure installs n number of products, updates, etc., and causes them b

appear on the system simultaneously. The Software Installation Utility performs the following steps
for special installations:

1. Creates a temporary, inactive read/write area on the same disk as the current active read/wnie
area.

2. Populates the temporary read/write area with the product/update. Any files that require modif-

cation are copied from the read/write or read-onl 3 eiie aten and
then modified. only areas into the temporary read/write

3. Causes one of the following two sequences to occur.

a. If the incorporation of a product or update requires the operating system to be rebooted:

i The system reboot sequence is initiated. During shutdown, after all user activity has

been terminated, all of the files in the : :
. ' temporary to the
active read/write area. read/write area are renamed in

i The temporary read/write area is deleted.

iii The system shutdown continues and the system reboots.

b. If the in i
e B :ted:comoratxon of a product or update does not require the operating system to b¢

i r’:‘:;f ;ixstt:?re search h'st._of “read/write area, read-only area” is changed to “tempors?y
read/n systemas;. tretg.] flfwns i’m:it.::.ar'ea, read-only area”. The new products and updates appesr
u Files in the temporary read/write area are renamed to the real read/write area.
ii The system search list ig restored to “read/write area, read-only area”
iv. The temporary read/write area is deleted.

354 System Volume Layout and Software Installation

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

35.1.2.5 Front-End and Client Software Installation

\}{S fronlt-en_dl and client software is installed according to the VMS guidelines, using VMSINSTAL.

High availability cquld become an issue for the overall system (client through database machine),

::éce VMS installation procedures do not provide the same availability as do Mica installation pro-
ures,

Ultrix client software is installed according to Ultrix guidelines, using the setld command.

Client software is shipped on media separate from the server software and meets client media re-
quirements.

35.1.26 High-Availability Configuration

For the Cheyenne/multiple Stone configuration, one Stone system is upgraded at a time. During the
installation process, only one Stone system is rebooted at a time. This causes the system workload
to be moved from one Stone system to the others while it reboots the new version of software. The
workload balances out over the database server as the last Stone system is rebooted. The database

server is therefore available 100% of the time during the upgrade.

This procedure does not eliminate the need for compatibility between Mica version n and Mica version
n + 1 on the Cheyenne/multiple Stone configuration. After one machine is upgraded and before the
other machines are upgraded, version n and n + I will be running on the same database server.

System Volume Layout and Software Installation 35-5

Testing and Performance Measurement

This set of chapters describes testing and performance measurement on Mica.

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

CHAPTER 36
PERFORMANCE MONITOR

36.1 Overview

This chapter describes the Monitor utility for the Mica operating system. This utility displays and
records information about system resource usage on a Glacier or Cheyenne system.

Mica Monitor is available only from a VAX/VMS client for FRS. Our long-term goal is to run on all
supported clients.

36.1.1 Goals

Mica Monitor is designed to achieve the following goals:

* Provide a tool that displays, records and summarizes system performance data for a "live” system
* Provide usage data for the widest possible range of Mica system resources

¢ Use a minimum of system resources to gather the performance data

+ Enhance maintainability and reliability of the code by using well-defined interfaces to gather
performance data
Mica Monitor utility may be extended in the future

* Maximize flexibility so that the
36.1.2 Terminology

In discussing the Mica Monitor utility, the terms class,
tems that provide a statistical measure of the performance of a particular

level, and rate mean the following:

* Class—A group of data1
subsystem

* Level—The current value of a data item, that is, a "snapshot”

* Rate—The number of occurrences per second

36.1.3 Functional Overview

Mica Monitor collects data on systemwide usage of
from a Glacier or Cheyenne system. Data is organmiz

information to be collected. I i it A
: i current or previously recor can
The raw data can be recorded to a binary £ ::;eu;"ged viewing irl:t.erva]s. A summary of the data

- at user-
processed and displayed to a user WDASCH Tisting fle.

can also be computed and written to an : oati 0o .
t, ell as simple average, minimum,
Each data item is defined as a 7L €7 levtﬁocrsll;rgrﬁ r::;st. are calculated for each item, and

: i f the
méxiosum values over the SRR poreen muage i prodnced per IEtet SR requested
viewing interval. The dam jtems for a particula.r class may require screen.

Mica resources at user-specified sample intervals
ed into classes. The user specifies the classes of

Performance Monitor 36-1

_

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

36.1.3.1 Time Intervals

The user may specify the observation period, sample interval, and viewing interval:

e Observation period—The beginning and ending times for viewing or summarizing current
previously recorded data

e Sample interval—The time interval at which systemwide performance data is to be collected and
computed

e Viewing interval—The time interval at which current or previously recorded data is to be &
played to the user screen

The minimum sample and viewing intervals defined are one second.

36.1.3.2 Classes

Classes of information to be collected for Mica include the following. This is not intended to bet
complete list.

* Modes

¢ Thread states

e Page faults

« Disk /O

* File system caching
+ DECnet

¢ System summary

The Mica Monitor chapter will include a specification of commands supported.

36.1.4 Implementation Overview

The Mica Monitor server gathers operating system data by calling the kernel mode system servt

f:lcaﬂget_system_performnce. This system service is described in the Internal System Services Ma

The bulk of data manipulation, recording, and dis i ict
: ’ ' play is performed by a user- odl.';:rroc‘rlﬂ!l"“'h’m
rh?:}lc:fg‘:rtto;};e dlf:;:l vm system. To gather data, the client portiim initiall?:es a server on the
system, then calls for data from the server at the requested sample interval until either

* the requested observation period has ended, or

* the user issues an exit request
The client interface to the server is via RPC.

Toe g M Mo gt of e Glcer o Cheyenne Sy Mgt 22
- ; : splay interface is bui MS Screen
Management Run-Time Library (SMG). Mica Monitor may also be invaled e Aerbin fie.

A DECwindows interface is provided for bi . : ,
dows interface are more graphically o;‘;:&mapped dewz. The-dlsp]gyg provided for the DECwir-

If summarizing is requested, the summary output is written to a listing file

Mica Monitor provides a recordi s -
M&wammorm&gﬂgﬁmummdtoabinarydamﬁleandtbcnph."_"d

file will not be documented. the Mica Monitor utility. The format of the

36-2 Performance Monitor

T R = T

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

36.1.5 Issues

Mica Monitor requires a CLI interface. The interface for character cell terminals will be based on
SMG. Do we provide a separate interface for DECwindows devices for FRS, or punt with terminal
emulation for those devices?

Monitor will follow the same interface strategy as system management, in order to provide a consis-
tent user interface.

performance Monitor 36-3

—

Digital Equipment Corporation - Confidentlal and Proprietary
Restricted Distribution

CHAPTER 37
USER-LEVEL SYSTEM EXERCISER

37.1 Overview

The User-Level System Exerciser (USE) is similar to the VAX/VMS User Environment Test Package
(UETP). It enables Digital manufacturing and field service to exercise Glacier on the manufacturing
floor and at the customer site. USE also functions as an installation verification procedure (IVP)
that can be run at system installation to ensure that the hardware and software have been properly

installed.

USE simulates the use of a Mica system on a single Moraine or Stone box. USE tries to exercise the
Moraine or Stone hardware and devices connected to it. USE also exercises many of the functions in

the Mica software.

37.1.1 Goals

The goals for USE are:
* To perform the traditional UETP tasks of testing the hardware connections to peripherals and
of ensuring that the operating system has been correctly installed

* To function as a user-level systems exerciser
* To subject the system to a load test in order to stress the system

* To provide the user with an interface that fits in the spectrum of diagnostics

* To exercise aspects of the system that are specific or critical to Glacier

USE tests tape drives, disk drives, the ethernet, the CPU, and memory. It does not perform any

console or terminal testing.

37.1.2 Non-Goals
USE does not:

* Test every aspect of the Mica operating syste
exhaustively

* Test any layered product, such as a compiler

* Exercise or test any client front end; no hard ;
will be detected by USE—this can be done by runmng

* Test or utilize the Quartz software
e Moraine or Stone boxes and th

m or every feature of the Moraine or Stone hardware

ware or software problems specific to the clients
the client system

; eir front ends concurrently
* Exercise multipl

User-Level System Exerciser 37-1

o

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

37.1.3 Outline of the Functionality

USE is invoked from the client system or console through the PRISM Diagnostic Monitor (PDM) s
executes exclusively on a Moraine or Stone running Mica. Any mfon':'uum that needs o be presentsd
to the user is transmitted to the client through PDM. See Figure 37-1

USE performs individual tests of the devices that the user has selected for testing. It n}_u tests the
Moraine or Stone hardware and all its devices in unison, simulating a multiprogramming envine.
ment. USE attempts to create a heavy load on the system and to test Glacier in different way

USE provides a moderate level of isolation capability. For example, it can tell the user which deris
or device controller failed when that particular device’s test fails. However, there are instances whe
errors will occur for which USE will have either no or imprecise isolation information.

Subsets of USE can be run so that the user can focus testing on particular aspects of the systen
These subsets consist of the individual device tests or the load tests.

When there are no errors, USE displays a message on the terminal saying that the system passed
USE testing. Errors are reported as they occur. In addition, as USE executes each of the tests, azy
;?)DI\? along with information about the failing test and device are entered into & log file throug

Figure 37-1: Interface Hierarchy of USE

SYSTEM
MANAGEMENT
X
PDM
F
F
DIAGNOSTICS -
37.1.3.1 Interactions with Other Software
USE, although using the same interfa. : .
use them or depend on them. ce, does not directly interact with the diagnostics. It does not

The isolation capabilities of USE depend on the E

. ; : rror Lo . v .)
As errors occur during the execution of USE, they uegl%;mdbSﬁ}l:Ptom Directed Diagnosis (SDD).
are invoked by SDD to deal with specific problems, ¥ the Error Logger and diagnostict

37-2 User-Level System Exerciser

——“

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

3714 Outline of the Design

USE consists of three main sections:

* Input and Initialization

* Device Testing

* Load and Application Specific Testing (LAST)

37.1.41 Input and Initialization

USE obtains inputs from the user through PDM. Other system parameters are obtained at this
time—such as the number of CPU modules, the amout of memory, and so on. All of this information
is obtained through Mica operating system services. This information is used to calculate parameters
about the volume of loads and the types of tests to be performed.

37.1.4.2 Device Testing

The basic idea behind device testing is to write a specific, known data pattern to the device and make
sure that it is done properly. In the case of testing disks or tape drives, the written data can be
re-read to ensure that it was written correctly. For the ethernet, loopback mode is used to verify the
transmitted packets. If a device cannot be accessed, then testing of that device is aborted and no

effort will be made to test it in the subsequent load testing.

37143 Load and Application Specific Testing

The load test creates a large number of processes, depending on the CPU configuration and other
resource parameters. The number of processes and even the tasks they are to perform would increase
with the number of processors. These processes include some device tests as well as user-level code.
This user code is chosen so as to exercise the CPU, memory, and the devices in the way that_users
would most likely utilize the system. This specialized testing is now described in greater detail.

37.1.4.3.1 Testing Glacier

Computation-intensive Pillar code is chosen to stress and to exercise the system and can be run on
the system directly. This is discussed in Section 37.1.5.

Hardware e are logged by the Error Logger, which functions indepegdem.ly of USE. Errors that
are visible t;r?.gE :u-e fgportgd to the user and, if not fatal, testing continues.

37.1.4.3.2 Fault Tolerant Testing

Fault tolerance specific to a Moraine or
test is running on a Cheyenne system, a p s
processors from the configuration at random intervals. |
through a slightly different technique. This macroscopic

USE does.

Stone box is tested during the load test. As the load or stress
rocess running on the same system asynchronously removes
1s. Disks can be removed from the configuration
level of fault tolerance checking is all that

3715 Developing Glacler User Tests

USE utilizes typical or representative user-level tests for Glacier. |
Tests for Glacier can consist of industry-standard benchmarks, such as the Whetstone or Linpack

3 . TRAN. Less complex tasks, however, would probably be
b:nmc:imarkis. These a;* r avm;‘a::; cl ens f‘y%?ca] of those that occur in the numerical solution gfh Ma}
;lﬂ'ere:':inl :;3:?::;: nraéxg-lfte element analysis would exercise the parallel processing capabilities o

Glacier.

User-Level System Exerciser 37-3

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

37.1.6 Requirements

USE does not place formal requirements on the hardware or the_ operating system, gince it i the jo
of USE to test a designed system as a user would probably utilize it, not o constrain the
However, there are certain areas of support which would facilitate the flexibility and usefulinass of

USE.

37.1.6.1 User Diagnostics Interface

PDM is the means by which the user will invoke USE. PDM needs to be completed before USE cig
be completed.

37.1.6.2 Error Logging and Symptom Directed Diagnostics

USE does not perform any extraordinary isolation of faults. It does, however, identify devices that
generate errors or whose tests have otherwise failed to perform as expected. It does not identify faults
down to failing FRUs, Many errors reported by USE could be caused by a variety of disparate factars
The Error Logger coupled with SDD is expected to identify points of error, invoke the diagnostis,
and warn the user. In this Way, a user can obtain isolation information and close the information
gap between USE and the diagnostics.

37.1.6.3 Mica System Services

USE requires a means to logically remove Processors and disks from the Moraine or Stone confige-
ration in order to simulate macro-level faults.

37.1.7 Open Issues
Open issues that must be settled are:

* What are the specific user-level applications tests for Glacier? How many are required’
* What are the algorithms to determine the volume of load on & system?

37-4 User-Level System Exerciser

-J

Network

This set of chapters describes the network-related components of Mica.

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

|

|

\ CHAPTER 38

| MICA NETWORK OVERVIEW

38.1 Overview

The Mica-based products (Glacier and Cheyenne) are designed to work only in networked environ-
ments. In this sense, Mica is unique among systems of its size. Mica relies heavily on communica-
tions; therefore, all parts of its network implementation directly affect the success of some portion of

the system.

Because of the varied problems being solved by Mica-based products, several data-communications

| methods are implemented, ranging from packet-based interactions to remote procedure calls (RPCs).
The structural elements of the Mica network implementation (hereinafter called the network) include
data-link drivers, transports, value-added services, and applications.

work software preclude additional capabilities, such as

Neither the design nor the structure of the net .
directly connecting interactive terminals to the local area network. For FRS, however, the Mica-based

products do not require such capabilities.
This chapter is not intended as a technical reference for Mi

covered in other chapters. Instead, this chapter presents the
Mica networks, and describes how these goals are satisfied.

Figure 38-1 and Figure 38-2 show the relationships among Mica-based systems and clients of these
systems. These figures show simple and typical network topologies along with the type of communi-

cations traffic among the systems.

ca networks; such technical detail is
high-level requirements and goals for

Mica Network Overview 38-1

S

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

Figure 38-1: Glacier Communications

vMS S
{CUENT) ®® 0| cupnr

GLACIER GLACIER
(SERVER) BERVER)

= TRAFFIC OF THESE KINDS

SYSTEM MANAGEMENT
APC (REMOTE EXECUTION)
DISTRIBUTED FILE SERVICE

38-2 Mica Network Overview

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

Figure 38-2: Cheyenne Communications

QP> - TRAFFIC OF THESE KINDS

EYSTEM MANAGEMENT
FRONT.END COMMUNICATIONS

<G==P> . PC NTERBOX TRAFFIC

The client of Cheyenne is called a front end. Multiple Mica systems running Quartz software can
make up a single Cheyenne. The traffic between a front end and a Cheyenne can be either database
transactions (using front end communications) or system management requests. There is also traffic
between individual systems in a Cheyenne for managing distributed databases and server failover.

38.1.1 Requirements

The network meets the following external requirements:

The network must provide interbox and Quartz front-end communications

* Support of Cheyenne— A .
availablility, and reliability (see Chapter

that can sustain the goals for Cheyenne performance,
48, Cheyenne Overview).

* Support of Glacier—The network m

ust provide the base for Glacier client-to-server communica-
tions and for remote access to disk based files.

* Support of Mica system management—The network must provide a method for remote system-
management clients to communicate with their respective servers on Mica.

* Heterogeneous intero rability—Mica must coexist with VAXN-MS and ULTRIX systems,‘and
with other Mica 3‘;’“!]::5‘ The network must provide the underlying communication mechanisms
that enable these systems to interoperate in the context of Mica-based products.

Mica Network Overview 383

o

R —F Pt ~uiw s epmemneS R e

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

38.1.2 Goals
The network satisfies the external requirements by meeting the following goals:

* To provide interprocess communications (IPC}—Quartz is made of many components. Thgu,
compponents naelc-lpto communicate quickly and efficiently among t.hemselyes. Also, they can reside
on multiple Mica systems. Mica networks provide a local and remote (interbox) communication
facility intended specifically for this application.

* To provide front-end communications—Quartz is the server portion of a clie.nt/nerver distributed
syslt,em. The protocol communicated between the client and the server is EDSRI (Exundd
DIGITAL Standard Relational Interface). Mica provides support for a Reliable Communication
Service (RCS) tuned specifically for EDSRI and Quartz.

* To provide remote file access—Part of the Glacier environment includes bidirectional remots
access to files. This access is provided by a transparent file-access mechanism available on both
the client and the server.

* To provide RPC support—Many parts of the Mica system, including system management and
most of Glacier, are composed of client/server pairs. The network provides the underlying support
that allows remote procedure calls to be built.

* To provide virtual circuits—Mica networks provide virtual circuits, such as NSP logical links,
for applications and value-added services. This allows minimal porting efforts for applications
that currently use a virtual circuit based communications.

38.1.3 Nongoais

The following items are not among the goals that must be met for the network to satisfy the external
requirements.

* To provide a complete implementation of DNA * Phase V at FRS—Protocols such as TP4 will be

implemented after FRS. Routing will be restricted, initially, to be end node only. Protocols such
as DAP and CTERM will, possibly, never be implememed_y end node only.

* To provide a comprehensive network environment that isolates users from locality or knowledge

of the existence of the network—This transpare is th ti : f software.
(For details, see Chapter 50, Glacier 0v'e.-r\.v-ien\ur.)ncy Ty i g layery ot we

* To support VAXclusters or any other common-management-domain groups, such as workgroups.

* Tosolve the m of distributed security—The design of the Mica security system (see Chapter

proble
%2; OS;S;I';? a;r;%ll;nnleges) is flexible enough to adapt to a secure network, when the architecture

* To directly connect to wide area networks—The

w_-ill reside is on a local area network. Wide
directly connected to Mica systems.

primary environment that Mica-based systems
area networks, although implicit in DNA, are not

To support DNA on the CI—It is not currentl i i i
\ ¥ possible to use the CI effectively with DECnet fron
a VAX/VMS system. Since VMS systems are the major systems on a Clv;ztw; Glacier system

would wish to i . :
isimproved, | ucate, DECnet CI support will not be provided until the VMS performance

* DIGITAL Network Architecture

384 Mica Network Overview

*_J

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

38.1.4 Network Software Components

This section describes each of the network software components of Mica, which are shown in Fig-
ure 38-3. The descriptions are grouped by function. The terms introduced previously (such as data
link, trun.sp::i-t.} value-added service, and application) are used in preference to those of the ISO
reference model.

For convenience, here is a brief explanation of the terms used in this section. The data link is equiv-
alent to the 1SO data link layer. A transport uses the data link to provide end-to-end communication.
Volue-added services use a transport to provide communication that is different or more complex
than that provided by a transport alone. Applications use either value-added services or a transport
to implement a service that the user perceives directly.

Figure 38-3: Software Components of the Network

: GLACIER
::;H'CW! NS :ﬁ CA SYSTEM QUARTZ
MGMT

oFs OFS e PC msce

CLIENT SEAVER o
SCA

DECNET
c
L

38141 Data Link :

rted communi-
The NI (Network Interconnect) and the CI" (Computer Int?msnedt)'loimdjlt:};:ﬂi’u%wﬂ ““"id:'lw
cations media for Mica. Both are local area networks. “Mica"CGoc8

networks.,

The NI is used by the DNA transports. .Phasehvt:ii[r)ig
or [EEE 802 2 network. The NI transmits bot

NA uses the Nl as a data link for an Ethernet
le and multicast addresses.

- .
The Cl is used by the SCS transpor udes multiple controllers. To increase

. ' ically incl ;
For both kinds of data links, & Mica Syster R oy connected through multiple pathe. "

eralailty and perormance, M6 ST T Cicingthsegine. The dat ks cmec
her layers, such as Lhe 8

the system to the immediate Jocal network only.

Mica Network Overview 38-5

e

-

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

38.1.4.2 Transporis

SCS is used for ta d disk access (see Chapter 17, System Communication Services) and IPC
(aS’es éll'nzpter :;, Qm Interprocess Communication. If multirail use of t.he_ Cl is desu-e_d, it is
the responsibility of the users (SYSAPs) of SCS to figure how they want to do it. SCS provides an
interface only to kernel-mode users,

The DECnet transport is NSP (Chapter 39, Network Services). Between NSP and the data link,
DECnet provides a network services layer that performs routing. Routing supports end node_ fgnchm
only (that is, it does not provide packet forwarding services). This layer allows connectivity with
systems not on the same immediate local area network as the Mica system. Also, the network
services layer supports multirail access for increased performance and availability. Since the DECnet
transport is the primary communications mechanism for Mica, its implementation is highly tuned
for performance. DECnet provides both a kernel-mode and a user-mode session interface.

38.1.4.3 Value-Added Services

Layered above the transports, the value-added services allow a user program to communicate bya
different or more complex method than the one directly supported by the transports.

Remote procedure call (see Chapter 54, Protected Subsystems and RPC) provides a procedure-call
interface between a client and a server. RPC manages the associations, (called bindings, between
clients and servers. Also, RPC formats a procedure call into a canonical form, ships it to the server
using a transport, and converts it back into a procedure call to the server. The response from the
server goes through the inverse process. RPC specifies that its transport is either DECnet or a local
transport which is beyond the scope of this chapter.

Interprocess communications (IPC) support for Quartz is layered on CI/SCA using the SCS transport
for interbox commmunications. A memory mapped technique is used for local communications (see
Chapber.42.. Quartz Interprocess Communication). IPC provides high-speed, multiplexed simplex
communications—that is, one-way communications, with multiple writers and multiple readers.

Quartz t‘ron!;-end cm.'xfn:uuni.::at.irms;‘l provides the reliable link between database clients and the Quartz
server running on Mica. This communications mechanism is tuned for both Quartz and EDSRI. Als,
it supports multiple client applications running on multiple front-end systems that are communicating
with a server. Each Quartz server can consist of multiple systems; the front-end communications has
mechanisms that allow both failover and rudimentary load balancing among server systems.

38.1.4.4 Applications

The Mica network implementation includes three applicatione: d:cfos : N
_ ! pplications: distributed file service (DFS), DNA
nD?n:prg st:dn;g?s (DNS), and DNA network management. The distributed file se:vioe (::e Chapter 4,
stribuf ile Service Introduction) provides remote file access among VMS and Mica systems. The
current implementation propagates the VMS XQP QIO interface through a request/response pro

DNA naming services (DNS) provides a tool for di

DNS is used by the DNA session to translate node names into node addresses. Also, DNS is used

by DFS to resolve volume-access ints into t : "R
clerk portion of DNS(see Cha.pterp:(l, DI:T?& N::ﬁi?gg?i;wctﬁ? node. Mica implements only tbe

stributing and managing the global name space

* Also known as Reliable Communications Servi
5 g g catio i -
design discussions for this service mt::::mple;edn. (5083t insrvmnit toJust Front-End Communications when the 0§o¥

38-6 Mica Network Overview

-—J

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

Mica provides DNA network management only in server form (see Chapter 41, DECnet Startup,
Shutdown, Management, and Logging). We assume that DECnet—VMS NCL (management client) will
be available to control the Mica network. On Mica, the only parts of the network implementation that
are controlled by network management are those specified by the DIGITAL Network Architecture.
All other components have their own management tools separately defined and implemented, usually
in cooperation with the Mica system-management design group).

Mica Network Overview 38-7

e

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

CHAPTER 39
NETWORK SERVICES

39.1 Overview

This chapter covers the following aspects of DECnet—~Mica:

* The parts of Phase V that DECnet—~Mica implements

* The user interface to DECnet-Mica

¢ The software components used to implement DECnet-Mica

¢ Unresolved issues regarding the DECnet—Mica project

Phase V is a corporate standard, so this paper does not address architectural issues.

38.1.1 Requirements and Goals

The selection of DECnet as a communications architecture is actually a design decision based upon the
needs of several separate components. Following are the components whose requirements resulted

in the selection of DECnet:

* Front-end to back-end Cheyenne communications

* Remote system-management communications in both Cheyenne and Glacier

* Client-to-server communications in Glaaer

The requirements that resulted in selection of DECnet are as follows:

* Reliable virtual-circuit support

s with the VMS, ULTRIX, and (possibly) MS-DOS™ operating systems

* Interoperabilit
* Support for the DIGITAL corporate RPC

Like all DECnet implementations, DECnet-Mica ot;mlsts
ture, and must include the minimum subset of module

as a data-link device.

conform to the DIGITAL Network Architec-
defined by that architecture.

DECnet-Mica must support the NI
Where possible, DECnet—Mica should be optimized for performan
e = of DNA should be included in

J - tures
T help provide fault tolerat®e ”1: Ch?ﬁ:?gésf?smatug;r::i‘: :::mit. failover within the routing layer
DECnet-Mica. Primary among these

of Phase V.

ce when supporting Cheyenne com-

™ MS.DOS is & trademark of the Microsoft Corporation

Network Services 391

e

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

39.1.2 DNA Components

DECnet-Mica is a small subset of Phase V, including only t_.hose componc_nts_needed to ':mplemgm
a high-performance, fault-tolerant, end-node DECnet. That is, DECnet-Mica includes the following
Phase V components:

* DNA naming services
* Network communication services
* Network management

* Network event-logging server

DNA Naming Services. In Phase V, both the session layer and the distributed file services (DFS)
need the distributed name services provided by the DNA naming services (DNS). DECnet-Mia
implements only a DNS clerk.

Network Communication Services. DECnet—Mica provides network communication services by
implementing the Phase V specifications for the session layer, the Network Services Protocol (NSP),
and the routing layer (end-node only). DECnet—Mica supports communications only over the the NL

Network Management. For most network management tasks, DECnet-Mica nodes are controlled
from a remote DECnet—VAX node. This VMS node runs the Network Control Language (NCL) 2
general-purpose network management utility. On the DECnet-Mica node, a facility called CMIP
(Common Management Information Protocol) processes remote NCL directives. DECnet—Mica in-

clu(;les special local management capabilities to initialize, shut down, and manage the local network
noae.

Network Event-Logging Server. On a DECnet-Mica node, network events are handled locally by
a network event-logging facility. Management utilities on client nodes, such as VMS nodes, can

capture these DECnet—-Mica events, and log them either to a fil the cli the
DECnet~Mica node. g er to a file on the client node or to a file on

Figure 39-1 shows how the components of DECnet-Mica interact. (Note that, though the data-lirk

layer is shown in Figure 39-1, its design is covered in Chapter 1 i The
data-link layer is included here only to complete the figure.) apter 19, NI Function Processor.

39.1.3 User Interface

This section summarizes the user interface to DECnet-Mi - ! :
services is described in Chapter 40, DNA Naming S e“'ice%iezte user interface to the DNA naming

The user interface to DECnet-Mica is based on
objects (ports) and I/O channels to the session fu
between port objects and channels. Primarily,
DECnet-Mica used to keep virtual-circuit st.a'
virtual circuit or a potential virtual circuit (
required for each end of a virtual crcuit.

the services of two Mica software components: porf
nction processor. Figure 39-2 shows the relationship
a port object represents the data structures within
te. Each port object represents one end of either 2
that is, one not yet established), One port object is

Once a port object is used to establish a virtual circui o
: : t, a channel ~Mica" ion FPU is

used to send and receive messages via that virtual circuit. Brieﬂ; ;omDEaCnnf}t‘ iy thm;dl

must go through to create and use a virtual circuit: » e steps a server

1. Create a port, and give it a name (such as *yz_server). There are several ways to do this.
2. Wait for a virtual-circuit connecti
s) et on request to be queued to the port. This is done using the

3. Assign a channel to the session FPU, and associate the channel with the port

39-2 Network Services

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

Figure 38-1: The Components of DECnet-Mica

CONTROL MONT. INTERFACE
PROTOCOL [CMIP} SERVER NAMESERVER CLERK
A USER-MOOE PROGRAM) I i ' D (A PROTECTED SUBSYSTEM)
g i : : EVENT DISPATCHER
(A PROTECTED SUBSYSTEM (A USER-MODE PROGRAM)
- B
Ur ‘VP

SESSION CONTROL
(A FUNCTION PROCESSOR)

/3

\/

NETWORK SERVICES PROTOCOL (NSP)
(A FUNCTION PROCESSOR)

END-NODE ROUTING
(A FUNCTION PROCESSOR)

DATA LUINK (NI)
(A FUNCTION PROCESSCR)

LEQEND
=D + SERVICE WTERFACE
. . CONTROL WTEAFACE

Accept the virtual-circuit request via the channel to the session FPU.

it messages via the channel to the session FPU.

Send and receive virtual-arcu
te the channel.

Discon tual circuit, and dele
sconnect the virtusl & oroceed at Step 2. Otherwise, delete the port.

for another virtual circuit,
uit, a corresponding client thread must go through

N oo s

If the port is to be used

3 irc
To interact with a server thread via a virtual a

the following steps

1. Create a port (it does not need a name).

on FPU, and associate it with the port.

2 Assign a channel to the sessi

Network Services 39-3

o e

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

Figure 39-2: Relationship of Ports and Channels in a Virtual Circult

ETHERNET ETHERNET

APPLICATION
ASSOCIATION)
ﬁ (ASSOCIATION) : {
A
: E @ | - GD
EE |
L
- |
SESSION FPU :
|
|
I -
DECNET-MICA | DECNET-MICA
|
|
|
|
|
]

3. Issue a connection request via the channel. Specify the node on which the server is located and
the name of the server’s port object (xyz_server in this example).

4. If the connection is accepted (instead of rejected) send and receive virtual-circuit messages vis
the channel to the session FPU.

5. Disconnect the virtual circuit, and delete the channel. Also, delete the port object.

These descriptions of how servers and clients act are meant to give a general understanding of ho¥
port objects and channels to the session FPU are used. Many details and variations, however, are
not been covered in these examples, but are covered later in this chapter.

39.1.4 Implementation

The implementation of the DNA naming services is described in Chapter 40, DNA Naming Service
Clerk.

The main portion of DECnet—Mica (session, NSP, and routing) consists of three independent, bu!

tightly-coupled, function processors. Here, tightly-coupled means that the interfaces among these

functio&:l dprocesscn:'s are intended to be as efficient as possible, usi ng special entry points and callbacks
as needed.

Both the CMIP server and the event-control

; ; : components are user-mode s that use special
exec$request_io functions to interact with the S

session, NSP, and routing function processors.

394 Network Services

| i o e RS &

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

CHAPTER 40
DNA NAMING SERVICE CLERK

40.1 Overview

This overview summarizes the function of the Distributed Naming Service (DNS) for the Mica oper-
ating system,

The Distributed Naming Service allows a network user or program to find any tuple in the global
name space, a tuple being a network object, network process, network event, or network entity located
anywhere in the network. In this sense, the Distributed Naming Service is like the white pages of a
typical telephone directory, which allow a telephone user to find the address (the phone number) of
a user located elsewhere in the telephone system. Just as no single telephone d.il:ectory ligt.s all the
numbers of the entire telephone system, no single DNS node stores all the naming information for the
network. Instead, this information is distributed to nodes, called name servers, located throughout

the network,
Following are terms that represent important DNS concepts:

* Clearinghouse—A collection of directories stored on a single node.

* Directory—A name-space entry containing entries of objects, child directories, and soft links.

* DNS Clerk—The client interface to DNS.
* Soft link—A name-space entry that allows a single entry to be referred to b
name, an alias.

y more than one

* Name—A character string that refers to an object.
contains at least one clearinghouse.

starting from a root directory.

* Name server—A node that

* Name space—A tree of directories,
N3 ine it i learinghouse. Each clearinghouse has
DN 1 by storing it 1n m one ¢ ; ¢
1wo°.: T:ui&;sn: g‘éﬁ'ﬁww}fen . clegaringhouﬂe is up, the node stonngtt.hsg I:I:a:ﬂnightﬁze :}i:;; a:n:
name server. A name server can control more than one '::1easmng}.:::::irt:r :r a .
name server fails and the clearinghouse is moved to a new nam)
ave a DNS Clerk. The Clerk contacts name servers

Al ' Namin Service h ‘ ; NS included i
lhitmf: .s:r::: g:;r;?c:fr:.ﬁ o: othgér nodes. The Clerk is the only portion of DNS inc uded in

DECnet-Mica for FRS. . ing Servi
For a more detailed description of the DECnet Naming Service, consult the DNA Naming Service

Punctional Specification.

ore than

DNA Naming Service Clerk 40-1

]

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

40.1.1 Requirements
The Distributed Naming Service is required for the session layer of Phase V DECnet.

DNS must unambiguously label objects, processes, events, and entities over a distr'ibuled system.
DNS therefore needs unique identifiers over time and space. To satisfy this need, DNS requires the
time system service and the unique-identifier system services. The Distributed Time Serve_r is not
implemented; therefore, if the system manager does not set the system time correctly, the time can

go backwards.

40.1.2 Functional Interfaces

The Distributed Naming Service has two interfaces—the client interface and the management inter-
face. Both are part of the DNS Clerk.

The client interface allows the following operations:
* Creation of entries in a name space

* Deletion of entries in a name space

* Modification of entries in a name space

* Retrieval of entries in a name space

The kinds of entries affected are network objects, name-space directories, and soft links. The client
interface allows the replication of directories in multiple clearinghouses.

space as a whole. All functions of the management interface require privilege, and can be performed
only by an authorized user. For management functions affecting only a single name server, this
user could be the system manager of the affected node. In contrast, only the network manager
should perform functions that affect the structure of the name space. Phase V of the DIGITAL
Network Architecture requires that the name server somehow authenticate all management functions
performed through the management intérface. For FRS we do local authentication on the local node;

remote management, however, must have DEChnet atthariticats P
performing privileged functions. i 4 ntication to the local node

The management interface allows authorized users to perform the following tasks:
* Check the status of a name server

* Turn a clearinghouse on and off

* Create and delete a clearinghouse

¢ Check the status of a clearinghouse

* Merge and unmerge name spaces

* Turn a name server on and off

40.1.3 Implementation

?feil?gosm(?l:;kkeis ir?mnemed e o Protected subsystem, thereby isolating any problems in the
The interface to f-llrxr:;:DI\ISt aoullld.be present if the Clerk were implemented as a function processr
makes remote proced Sos. detinedanie run-time library (RTL) routine. The RTL routine
; 12 ure calls to the Clerk, which is also on the local ode. Perfor ints
may ‘ater require that the Clerk be implemen node. Performance constrain

: ; ted as a function ing the
Interface as an RTL routine, however, we minimize the impact ol:'r:zgs:r;:han{:sc: tlj;egélggicfﬁmng

40-2 DNA Naming Service Clerk

;J

Digltal Equipment Corporation - Confidential and Proprietary
Restricted Distribution

CHAPTER 41
DECNET STARTUP, SHUTDOWN, MANAGEMENT, AND LOGGING

41.1 Overview

This chapter covers the following aspects of DECnet—Mica:
+ Network management, and event logging

* Network management security

* DECnet-Mica startup

* DECnet-Mica shutdown

41.1.1 Requirements
The aspects of DECnet—Mica covered in this chapter meet the following requirements:

¢+ Allow DECnet-Mica to be managed from a remote node

+ Adhere to the network management architecture of the DIGITAL Network Architecture, Phase
V [hereinafter, Phase V)

+ Allow DECnet-Mica to be started locally without network links or terminals,
sole

* Allow DECnet-Mica to be managed from the console

including the con-

4112 Network Management and Event Logging :
: Mica network management and event

R o y th ain components of DECnet—V :

It:zg::g :iulu'ro"::eh;:-:;t;c: r;ig*um 41-2 shows a more de_t,mled view of ;or;f of th:iue ;Ot%i:.n:;n::e'

The rest of this section describes components ghown in Flgzre;;il}\?;workgﬁha;gﬁm Saite

detailed information on DECnet network management, see the nera

Description and the DNA Network Management Architecture.

41121 Entities, Directors, and Agents

In Phase V, a network is managed through its €
distributed system—a protocol module, for exam
however, is beyond the scope of this chapter. s
management chapters of the following specifications:

* DNA Network Control Language (NCL) Specification . '
Protocol (CMIP) Specification

iti ity i tof a
ties. An entity 15 & manggeabla component o

n}; is an entity. A discussion of network entities,
l;r 'details on particular entities, see the network

* DNA Common Management Information

* DNA Mgintenance Operations Functional Specification

DECnet Startup, Shutdown, Management, and Logging 411

w s

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

Figure 41-1: Overview of DECnet—-Mica Network Management and Event Logging

CLIENT SYSTEM MICA SYSTEM
CONSOLE
VMS OR ULTRIX
| cusmns;-
|WMODIFIABLE MITIAL
NETWORK CONTROL ZATION SCREPT
LANGUAGE (NCL) DECNET-MICA
MANAGEMENT
oo DEFALLT NCL
INTIALIZATION
L] SCRPT
o|a
z ¢ |wu
M A ¥
(o] L
=
H
MANAGEMENT geu:‘:;ce L35 S
3
REMOTE EVENT LOGGING
REMOT
svgr?r : e EVENT LOCAL
SINK DISPATCHER EVENT

e DNA Session Control Layer Functional Specification
* DNA NSP Functional Specification

* DNA Routing Layer Functional Specification

* DNA CSMA/CD Data Link Functional Specification
* DNA NI Node Product Architecture Specification

A director is a network program that initiates directives, whi) irectiv

: , ch control ;. Directives
are sent using the .Coqtrol Management Interface Protocol (CMIP)mwii:]:“izotrits?:a}d in & later
section. A director is either local (that is, running on the system it'manages) or remote. Unlike 8

remote director, a local director can perform managem i :
ent o
of a network, for example during system init.ializa.gt.ion. DRSS DR e Rt e

An example of a director is the Network Control La
. nguage (NCL), a command-dri director defined
by Phase V. Used to manage DECnet-Mica nodes remotely, NCL providesncommv:;ds defined by &l

the manageable entities i i oo >
Cisirol szenguage WCL?%E;E&(};?;‘E:&SE V. For a complete description of NCL, see the DNA Networt

Using the Common Management Information Protocol (CMIP), NCL on one node communicates with

the CMIP server on another, : p
s pa el o other. The CMIP server, in turn, communicates with the individual entities

41-2 DECnet Startup, Shutdown, Management, and Logging

__-_‘

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

Each entity contains one or more agents. In an entit i 1

y / ents. ; ¥, the agent is the portion that processes mana
ment directives received by the entity. That is, the agent is the the managementlsi'nterface betwege:
directors and the entity in which the agent resides. The management functions that the agent per-
forms are specified in the DNA specification for the entity.

Figure 41-2: Detalls of DECnet-Mica Network Management and Event Logging

CM# BEAVER NODE ENTITY . (:) EVENT DISPATCHER

[VBER MODE (PROTECTED

(PROTECTED
PACGAAM) SUBSYSTEM) SUBSYSTEM)

&
A
NAME BERVEA
o= A MESSAGE
AOTSOTED - _(: >_ FUNCTION
SUBS Y TEM) A PROCESSOR
® ‘
SESSION
ey (FPU) &
E
95)
NSP ENTITY
” (FPU)
AOUTING
ENTITY (FPU)
DATA-LINK ENTITY
(FPU)
LEGEND

. CHANNEL WITH CMIP AND EVENT DCTIVE

AnC WITH CMP DIRECTIVES

apc WiTH EVENT DIRECTIVES

APc WITH CMIP AND EVENT DIRECTIVES

-

Q0000

EVENT AEPORTS

Shutdown, management, and Logging 41-3

DECnet Startup,

e

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

41.1.2.2 Node Entity

node entity is a global entity, encompassing all other entities of the node. These other
il;tli’tll“::e ar‘é tE.lherefore szgordirf:zte entities of the node entity. Roughly eqm_va_lem toa local_ computer
system, the node entity is the focus of network management activities within a system.: it provides
the top-level interface to network management, both local and remote. 'I'h_e nqde entity forwards
directives to any DNA entity of the local system. Also, the node entity maintains the node name,

node address, and node UID.

In DECnet-Mica, the node entity is a protected subsystem. The interface between the node entity and
subordinate entities implemented as FPUs is through channels. In contrast, t_he interface between
the node entity and subordinate entities implemented as protected subsystems is via intranode RPC.

To issue directives to FPUs, the node entity uses execSreguest_io functiqn codes. Some directives
result in multiple responses; the node entity receives these responses by using a special execSrequest_
io function code.

41.1.2.3 CMIP and the CMIP Server

This section describes the Common Management Information Protocol (CMIP), and introduces the
following terms:

* Event—An occurrence of a specific normal or abnormal condition.
* Event report—The set of data structures describing a single event.

* Event sink—Any local or remote consumer of event reports; an event sink displays, stores, or
processes event reports.

* Event source—Any entity that generates an event report.

CMIP is the protocol used in managing Phase V nodes. It supports remote management operations,
allowing directors to manage entities located anywhere in the DNA network. CMIP is composed

of two protocols: the Management Information Control and Excha MICE) and the Management
Event Notification (MEN). xchange (.) and the Manag

* MICE—Allows a network management application to probe and control the entities of a remote
system. Thus, the application can manage the network by managing the parts of the network
MICE uses a request/response protocol that contains no ordering or reliability checks.

. l\flka—Allows the event dispatcher (see Section 41.1.2.4) to send an event report to an event
sink.
Together, MICE and MEN form a complete set of basic network management services.

In Mica, the CMIP server runs as a user-

mode - ita’} : :
remote procedure calls. program; its interface to the node is through intranode

R Tl formation o CHIE, s the DA i Manageent o e

41-4 DECnet Startup, Shutdown,

Management, and Logging

k——

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

41,1.24 DECnet-Mica Event Dispatcher

Each lu_ver‘ of Phase V——_such as routing, NSP, and ISO transport—defines as events certain occur-
rences, actions, transactions, or conditions. These events are reported, and can be logged to assist in
network management. Event logging is the framework for handling these events. The MEN portion
of CMIP is the management protocol for event logging.

The major component of event logging is the DECnet—Mica event dispatcher, which manages the con-
nections between sources and sinks. The event dispatcher is implemented as a protected subsystem.
The interface between the event dispatcher and network entities (sources) is through RPC to the node
entity. The node entity delivers the directives to the appropriate subentity; these directives establish
events for which reports are to be generated.

Event reports are generated by entities, which deliver these reports to the event dispatcher by writing
to a known message function processor unit. The event dispatcher, in turn, creates an outbound
stream for each active event sink. Then, using criteria specified when each event sink is set up, the
event dispatcher filters the event reports it forwards to each event sink.

For more detailed information on DECnet event logging, see the DNA Phase V Event Logging Func-
tional Specification.

41.1.3 Network Management Security

DECnet-Mica network management supports two types of access: control access and monitor access.
To modify network behavior or attributes, an issuing director must have control access. Similarly, to

read attributes or observe network behavior, an issuing director must have monitor access.

Control access and monitor access are each protected by a‘p_rivi]ege operation .ohject._'Ib get control
access, a director must first have access to the control pnwlege operation object. .lakevpse. to get
monitor access, a director must first have access to the monitor privilege operation object. Each

DECnet-Mica agent (data-link agents included) must validate access before carrying out each CMIP

directive.

41.1.4 DECnet-Mica Startup

1 ity 1 ECnet-Mica management
Th DECnet-Mica node entity 1s caltlied-th_e D ; .
m;nﬁn?ﬁﬁoﬁyﬁﬁgﬁ? au?xmaited implementation of NCL, being limited to performing ope];‘:t;long
only on the local node entity. In contrast, a full implementation of NQLI performs operations bot ?ln
the local node entity and on remote node entities. DMD is further limited tﬁ processing command:
relating only to DECnet-Mica—unlike NCL which, when f].llly implemented, proc;zsa{;-s comte::;ign
relating to :11 architected Phase V entities. DMD can be invoked from the console by entering a
command within the console control program. ' : o
DMD runs at boot time, and configures the network as specified in a script file, of which the system

: tomer-modifiable copy of the default
has two versions: (1) a default read 9Bl THC I s il‘f: edi: the file, then copy it back to the

. the modifiable file to a client no .
Bﬁi:kﬁﬁfﬁf::n 'I'T'uoepr{ th?nuzh _syst.em management, the network can be started from either
the default script or the customer-modified copy

To help ensure that customers can stat;tkel':anet-—M.ica,
rupted, the following precautions are g bhsemrmaui,

. : ting from a ¢ X Lo
* If an error is detected while the netwogsgn:trmig is then restarted, using the default ini-

parti is shut down 1 o B ini-

Uahz:l:x);i: t::iﬁ_n;};arrth': :e:,w'ork is p‘rop?rly u:;arﬁed, DECnet—Mica notifies proce
in the system that DECnet is up and ready for us= ‘ e e e
Wh ed back to the Mica system the customer-modaﬁable script is pi

. en copy ck to i ; ’

errors of syntax or range s checkin ' : ing
or { This checking is pe:rformed either by a consistency chec_ker bein
:l loped b t)h DE nel-—VA-.)(group or by alsi ilar tool developed by the DECnet-Mica group.
eveio y the C

even if the modifiable startup script is cor-

Shutdown, Management, and Logging 41-5

DECnet Startup,

e

-

Diglital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

41.1.5 DECnet-Mica Shutdown

The DECnet-Mica management director (DMD) not only starts a DECnet—Mica node, but also shuts
it down. The DMD performs an orderly shutdown of all the entities o'f the nglwork. INot.e that some
network processes, such as the DECnet—Mica node entity and the DNA naming services clerk, must
retain information despite shutdowns. These processes keep this information on the system disk
where it can be accessed at the next system startup.

41.1.6 Issues

1. The DNA Phase V Event Logging Functional Specification has not gone to field test, so its design
is subject to change.

2. The process of creating a node at system installation is not understood. We do not understand
how a system starts off with a name and address, then publishes them in the name server

41-6 DECnet Startup, Shutdown, Management, ang Logging

__—J

| Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

CHAPTER 42
QUARTZ INTERPROCESS COMMUNICATION

42.1 Overview

Mica provides an interprocess communication (IPC) system that specifically addresses the interpro-
cess communication needs of Quartz. Message queues are the primary mechanism for interprocess
communication on Quartz systems. In the message queue model, processes that want to send mes-
sages queue them on a source queue. Messages may then be retreived from an associated sink queue.
The following sections discuss the message queue model in greater detail.

421.1 Requirements/Goals

Quartz has the following requirements for an IPC mechanism:
* Provide an interface transparent mechanism for communicating with local and remote processes.

* Support messages of any size (up to the limit imposed by the size of the memory region created

for buffering messages).

* Allow more than one source queue to be associated with a sink queue.

* Allow a sink queue to have more than one reader.

: : t each source queue, If a
* Present messages at the sink queue in the same order as messages a
sink queue hnfemore than one source queue, then message order need not be preserved among

the source queues.
* Provide a flow control mechanism to control the message rate of delivery at the sink queue.
421.2 Non-Goals

' hile r
It is & non-goal to protect the contents of a message while]
Since the rtgioon 18 :l,-mred between processes, the corr!plexlty involved to
cause a performance degradation of the [PC mechanism.

esiding in the shared memory region.
provide data integrity would

4213 Functional Description . e
processes on a Quartz system, a message region object is created,

bt p—C among source and sink gueues. It provides memory for storing

which is a portion of memory shared
messages.

Sink queues are created
of a source queue establis
interconnected set of queues. 1
queus, the new source gueue Joins
between source and sink queues.

first, followed by the i oftheir:;ﬁ " 'Ii'lt:is act.?:rfl::':hteaz we?;u:E

y BOO8 and si queue. x e '

P al }m: b:reu::?o!:at?e et -5 ent source queue specifies an existing sink
the

he existing f\:: B hat this implies a many to one relationship
the exa

b. Note t

Quartz Interprocess Communication 42-1

L

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

Before interprocess communication can occur, a message gate object (hereafter referred to as a guy)
must be created for each process using the web. Gate creation can occur any time after regin
creation. The Message Gate Creation service maps the s_pc_eaﬁed memory region into the address
space of the process issuing the call. A gate must be explicitly bound to a source or sink queve
join a web, and to subsequently send or receive messages.

After the creation of the memory region, the creation of the necessary queues, the creation of the
corresponding gates, and the binding of gates to source and sink queues, messages can be sent and
received. Messages can be transferred in several different ways. Messages are stored in buffers in
the memory region associated with the gate. The buffers may be preallocated. A thread can later
reference a buffer as part of the process address space. A message may also be copied into a buffer
that is part of the region. In addition, a thread may request to use a message queue in a protected
mode, forcing all messages to be copied, i.e., no user mode access to the region. Note that this mode
is intended for debugging purposes and will incur severe performance degradation.

Gates support an end-of-stream operation. When all gates associated with a source queue have st
end-of-stream, the source queue’s state is set to end-of-stream. When all source queues in the web
have entered end-of-stream, all members of the web transition to web end-of-stream. Any requeststo
send a message while a source queue is in the source queue end-of-stream state result in the message
not being sent. In this case, end-of-stream status is returned to the caller. Any requests to receve
a message while a sink queue is in the web end-of-stream state result in end-of-stream status being
returned to the caller.

42.1.4 Design

Quartz message queues consist of three objects: regions, queues, and gates.

42.1.4.1 Message Reglon Object

A message region object is a portion of memory shared among source and sink queues; it provides

memory for storing messages. The minimum allocata ize i -ti !
default vatus of 198 botes ; catable message size is a run-time constant with2

42.1.4.1.1 Functional Interface

The Message Region Creation object service is used to i j :

' ' create the region. The object architecture
xéeqmr_*es that kernel mode objects not be placed in user mode containef‘s. When theJMesB&Ee Region
orl;leau;)on service is called, the previous mode of the calling thread is temporarily changed to user, it

er to create a user-mode memory section. Message regions are deleted using exec$delete_object.
Since the pages in the section are user read/write, all message allocation data structures reside

in nonpaged 1. : F g s esid
createc?. pool. Allocation and initialization of these data structures occurs when the region 18

Executive service routines are used to allocate :
services are used by the gate system Bemeeaa:sdadeallocate message space from the region. Thes

deallocate) a message associated with o ey result of a request by a thread to allocate (or

42-2 Quariz Interprocess Communication

[

r——ﬁu——_—

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

42142 Message Queue Object

This object provides one end of a uni-directional virtual circuit betw i

! . ‘ tself and another queue

object. It provides flow control, and maintains a list of m gyl i $
5 a list of messages to be sent or delivered, depending

Message queues may be waited on using the Mica wait services. When a thread waits on a source
queue, & change in the queue's state causes the thread to unwait. Table 42-1 describes the various
message queue states. Table 42-2 and Table 423 describe the transitions between source and sink
queue states. Sink queues may be waited on to detect the arrival of a new message. A kernel event
object is used as the dispatch object. -

Flow control bot}veen source and sink queues is accomplished by the use of a message-based credit
w_mdow mechanism associated with each source queue. No messages are queued for delivery at the
sink queue, when the credit value is zero. When a message is removed from the sink queue, the
credit value of the source queue that sent the message is incremented.

The delivery characteristics of a message queue may be modified by two thresholds:

1. Restart Sender—When a thread attempts to send a message on a source queue with no message
credits, the thread is placed in a resource wait state. It will remain in this state until a specified

number of message credits are again available.

2. Restart Receiver—When no messages are available from a sink queue, the sink queue will remain
unsignaled until there are a specified number of messages queued for delivery in the sink queue.

Table 42-1: Message Queue States
Suate Valid For Description

CONFIGURE Source and This is the initial state for all queues. The thresholds and credit imit
Sink Queues associated with a queue can only be changed while the queue is in this
state, A source quaeue’s signal state is cleared when the queue enters this
state. A sink queue's signal state is signaled when in this state. Waiting
on a sink queue while in this state is meaningless, that is, the sink queue’s
signal state does not change implicitly while in the CONFIGURE state.

SOURCE QUEUE READY Source Queues This state provides an intermediate point for web startup synchronization.
The source queue’s signal state remains cleared.

ssage transmission may commence upon entering this state. A source

T et B o A sink queus’s signal state changes

I 2 s p
\ al state is signaled.
| gl s : o be read, or when the last message

| whenever messages are present t

is read out of the sink queue.
ntermediate point for web shutdown synchroniza-

ate is cleared.

SOURCE QUEUE END Source Queues This state provides an i.
OF STREAM tion. The source queue’s signal st

ignifi i by source
'« state signifies that messages will no longer be sent‘ y '
g™ g:-:;“gu:;:ds :::su:s. lE‘I’Imgsour.::a queue’s signal state is cleared. The sink queue'’s

signal state is signaled. 2l B -
i i i the executive service routines detect a ca phic
L and This state is entered :
- gﬁ:::gu.ucs tailure. Transitions out of this state are not allowed.

Quartz Interprocess Communication 42-3

o e

Digital Equipment Corporation - Confidential and Proprietary

Restricted Distribution

Table 42-2: Source Queue State Transitions

Description

From To
CONFIGURE SOURCE QUEUE
READY

SOURCEQUEUE CONFIGURE
READY

SOURCEQUEUE WEB RUNNING
READY

WEB RUNNING SOURCE QUEUE
END OF STREAM

SOURCEQUEUE WEB END OF
END OF STREAM STREAM

Any State FAILURE

A source queue enters this state after it is configured. The execfset_
message_queue_state service is used 1o make this transition.

A source queue enters this state when it needs 1o be reconfigured. The
exec$set_message_queue_state service is used 1o make this vanston.
Source queues make this transition when the web’s sink queus has tan-
sitioned from CONFIGURE 1o WEB RUNNING. Source queues can now
perform message transmission.

A source queue reaches this state when all gates associated with the source
queue have set end-of-stream. A gate is set to end-of-stream by using e
exec¥set_end_of_stream system service.

When all source queues have reached the SOURCE QUEUE END OF
STREAM state, then all queues in the web move o this state.

Any catastrophic failures detected by the executive service routines wi
cause a transition into this state, Transitions out of this stale are nola-
lowed.

Table 42-3: Sink Queue State Transitions

From To

Description

CONFIGURE WEB RUNNING

A sink queue can maka this transition only when all its source queuss ¢
in the SOURCE QUEUE READY state. This transition places the soutce
queues in the WEB RUNNING state and is performed by issusing the
exec$set_message_queue_state service.

WEBRUNNING WEB END OF STREAM As the last source queue in the web transitions from WEB RUNNING &

Any State FAILURE

SOURCE QUEUE END OF STREAM state, all queues in the web move
to WEB END OF STREAM.

Any catastrophic failures detected by the executive service routines wi

cause a transition into this state. Transitions out of this state are nol
allowed.

Figure 42-1 and Figure 42-2 depict the finite state machines for source and sink queues.
Figure 42-1: Source Queue States

Configure

Source
Queue Read

Web Running

I

Failure

42-4 Quartz Interprocess Communication

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

Figure 42-2: Sink Queue States
C Configure)—.—@ab Running Web EOS

l

Failure

421421 Remote Queues

Source and sink queues on Mica systems use Systems Communications Services (SCS) to communi-
cate (see Chapter 17, System Communication Services). Included in the code that implements queue
objects is a section that implements a SCS system application (SYSAP). In this section, the term
duster refers to Mica systems that are members of a SCA cluster, and the term node refers to a Mica

system.
The following list details the major pieces of the SYSAP to implement remote message queues:

* As the message queue object type descriptor is created, a channel to the SCS function processor is

obtained. The queue SYSAP registers with the SCS directory services, and enables the handling
of incoming connect requests from other queue SYSAPs.
A channel is opened to the notification message FPU (see Chapter 34, Configuration Management
Software) mqg:snng messages that indicate new nodes entering the cluster. The SCS function
processor is the source of these messages. This informat:lon pre_rents'tv?o nodes entering the
cluster from missing each other's entry in their configuration services listing.

* SCS can provide multiple paths between nodes in the cluster. As SCS nodes are encountered,

SAP bui ing the queue SYSAP. When
‘ lds a fully connected graph to all nodes running the qui

:.;:l?\u;:rss?he qut::ne S’Y%:P ‘is notified and removes that path from the list of;]faths to o;he
failed node. If this results in the last path being removed, then all webs between the two nodes

move into the FAILURE state.

* Source queues wanting to associate with a remote sink queue must designt:ta the::i ;et;zg? “ff:d:
and sink queue name. A sink queue indicates its ability t0 g ;emo £‘gmocaclmd by the
pcrnmelcfm the sink queue creation service. The name of the sink queue 18 y

queue SYSAP. Association between the two queues occurs if the sink queue name is in the

remote queue SYSAP's list of sink queues.

Chan ueues on other nodes via SCS _sequenced
. e dn fls P of fhis wour 0 p:g:egaszglswaqmissage to its corresponding sink queue.

' urce queue : te th
?ﬂ.::::‘;nt:;inzf::J: ::atc mgy result in more than one message being sent to upda’ e
state of all associated remote source queues.

i ive b
* Messages are transmited by first mapping the send and receive
SYSAP issues a SCS block read function.

uffers with SCS. The sink queue

Quartz interprocess Communication 42-5

s

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

42.1.4.22 Functional Interface

The following system services support Quartz interprocess communication:

* execdcreate_sink_message_queue

e exec§create_source_message_queue

o exec$set_message_queue—Used to set the thresholds and credit value of a queue.

* exec$set_message_queue_state

421.4.3 Message Gate Objects

The gate object maps the section of a region object into the address space for a process. A pale
provides a read or write path to a queue.

42.1.4.3.1 Functional Interface

The following system services support Quartz interprocess communication:

* execYcreate_message_gate

* exec$allocate_message_buffer—Returns a pointer to a message buffer in the region.

» exec$deallocate_message_buffer—Returns a message buffer to the region. The calling thread
passes a pointer to the message.

* exec$bind_gate_to_queue—This service associates a gate with a message queue, and consequently

determines the types of operations that may be performed on the gate, e.g., source gates can only
send, sink gates can only receive.

* exec$unbind_gate_from_queue

* exec$send_allocated_message

exec$receive_allocated_message—If no message is available, then status is returned to the user
exec$send_user_buffer—Requests that a message not in the region be sent. A message bufler

from the region is allocated to hold a copy of the user buffer. The message is transmitted in the
normal fashion.

exec8receive_user_buffer—If a message is available for deli . e eanind
into the user specified address and deallocated. SEEET ST e Dae e

* exec$set_end_of stream

42-6 Quartz Interprocess Communication

Rt b ———

_—

Distributed File Services

This set of chapters describes the components of Mica that provide distributed file service
support.

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

CHAPTER 43
DISTRIBUTED FILE SERVICE INTRODUCTION

43.1 Overview

The Distributed File System (DFS) architecture Version 1.0 is a standard set of protocols for file access
between Digital systems. The VMS implementation (VMS DFS) is provided by a layered product
which is already available to customers. This document describes the implementation of DFS for
the Mica operating system (Mica DFS). An implementation of the DFS Version 1.0 architecture for
ULTRIX is not planned to be available at the time of the first release of Mica DFS.

tions and file utilities do not have to be changed to access remote files
restrictions; these are discussed in Section 43.1.4. For each supported
nent that implements the same block-level /O system in-
dispatching based on the device name directs

Most user programs, applica
using DFS, There are some
operating system, DFS provides a compo
terface as the local file system. Within the /O system,
file VO requests to either the local file system or DFS.

Mica DFS operates with both Glacier and Cheyenne, but it is supported for customer use with Glacier
only.

4311 Goals

The goals of the first release of Mica DFS are:
* To allow VMS systems to transparently access Mica .ﬁles. apd to allow Mica systems to trans-
parently access VMS files, subject to the restrictions in Section 43.1.4.

* To provide a basic distributed file system, from which a network transparent file environment

can be provided on Glacier.

4312 Model
7 :s the software that acts on behalf of the

user, accepting file requests, formatting them as appropriate, a;ld sendti;;gt;:fnm ’;‘.ize“:;::::;iofe};:
server is the software that receives file requests from clients an BI;:CUVMS DPS srodiet con aet 68
for a particular file is on the same system as that file. Note thatl.i:n: 2 g servel:'.

both a client and a server, and that Mica DFS can also act 83 & €

Figure 43-1 shows a network of Mica DFS and VMS DFS clients and servers. i IS
The DPS Version 1.0 architecture provides a virtual block oriented ﬁle‘ﬂs:;ng;k ble pmwitgjn p:;;rg
exchanged between systems describes file system functions that max:izp R VMSOCkSﬁle c Sap
ticular files. The DFS Version 1.0 file protocol is an RPC implementation stem

QIO interface

Distributed File Service Introduction 431

S _

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

Figure 43-1: DFS Clients and Servers in a Network

]] ==
e

vMS vMS
Client =
MNetwork
Mica Mica
Server Climrt
[L.I--r] [Ul J

The DFS protocol does not express logical-block (volume-relative) requests or record-oriented requests.
The DFS protocol is completely unrelated to the Data Access Protocol (DAP) used by VMS today.
DAP is a difficult-to-decode, record-oriented protocol for use between heterogeneous systems. DFSis
a specialized, block-oriented protocol which is optimized for VMS-to-VMS file communication.

43.1.3 Components

Figure 43-2 is an overview of the Mica DFS system. The five major components of the system are
* the DFS client function processor

* the request/response command language

* the request/response function processor
¢ the DFS server

* the DFS management component

43-2 Distributed File Service Introduction

|

I ——

Diglital Equipment Corporation - Confidential and Proprietary

Restricted Distribution
Figure 43-2: Mica DFS System
Mica DFS Client Mica DFS Server
User
AMS
DFS 1 DFS Disk File
Client FP sorer] System FP
oFs | DFS
Ma nt Lt Management _"[RCL
R/R FP L——»| RRFP
DECnet DECnet Disk FP

The request/ dl ¢ (RCL) is a subroutine library that provides argument mar-
e sall (1D The DFS client FP uses this layer to encode

shalin roced (RPC) services.
T‘Kq‘ucsgu.::drfomgme resgszgllh}: Dl)“S server uses R_CL to decode requests and to encode_re—
sponses. RCL, in conjunction with a reliable communication transport, provides an RPC run-time
system for use by DFS clients and servers.

' vides ar uest/response-oriented communica-
Z:: ::qn? : 1;1%?:;{?;:?{’8 L?fl"?}i:s;;ir ok et f th?RfR FP is designed for ct:lmpatibi]ity
with the corresponding VMS DFS R/R component. In general, a request/ ;"espm::e-clment cotx;:mﬁ;;ls-
cation service is desirable because it is the natural transport for RPC-style PTIOOC:IO 5 suc :8 1!: .
file protocol, and because it permits a high-performance m:nplemenpahon on 1 ; -m:tnge‘eméh;a t;
first release of the Mica R/R FP uses DECnet-Mica exclusively as its network transport. p
39, Network Services, for more information on DECnet-Mica. s i :

: 3 L, and then orms the ac-
decodesb;hgll;su::ﬁ::f ‘;%Pu::i%sg%ﬁe server inifnplemented as

functions are invoked as remote procedure calls that

The Mica DFS server receives and
tual requests on the volumes represen
% user-mode, multithreaded program. Server
manipulate files being managed by the server.
Mica DFS management allows authorized individuals anazl;:t‘::nth:xanagement. il folsepitfi s
Mica DFS management is implem mote volume, establishing R/R

: i represent a T€
ment operations include creating ; 31‘335&2 !.Iv.mt t:olusae e be served by a DFS server.

communication characterstics, an

operation of the DFS software.

Dlstributed File Service Introduction 43-3

s

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

43.1.4 Planned Restrictions
The DFS Version 1.0 architecture forces the following restrictions on Mica DFS:

» DFS does not support logical or physical file system functions. Thi_s is because the file protocd
and DFS server are designed to provide virtual (file-relative) functions only.

e DFS does not support management functions (for example ioc_initialize_volume) on remote
volumes. See Chapter 46, Distributed File Service Client Function Processor for a complete
list of unsupported function codes. DFS is not intended to address the issues of remote systen

management.

* Record management processing, if desired, must be performed by the client system. This restric
tion reflects the fundamental block-level model of the DFS Version 1.0 architecture. The DF§
client is intended to receive I/O requests after they have been processed by the client RMS.

* Opens allowing write sharing are converted to exclusive access. The server changes the file
sharing rznode read-allowing-others-write into read-nowrite, and write-allowing-others-read into
write-exclusive.

Like the previous restriction, this restriction also relates to the low-level, block-oriented nature
of the file protocol, that does not provide sufficient information to the server to synchronize more
than one writer at the same time. The file protocol is not designed to express locking at a level
lower than the entire file.

This restriction can be relaxed. Clients may take advantage of application-specific semantics t
makn_e limited guarantees of consistency during shared access. One such application is that of
readmg log files. Readers will be guaranteed to receive a consistent view of a log file as long as
the writer uses append access and flushes buffers on a regular basis.

* Security ideptiﬁers are not exchanged between client and server systems. This restriction pre-
vents the client from reading or modifying access control lists. The reason for this restriction is

mi}?FS cannot guarantee that identifiers from one system mean the same, or even exist, on
Br.

43.1.5 Network Transparency

Transparent execution of programs on Glacier i ' '

: : C requires that the server th execubion

gizwronqaent as _t‘ne.chent. Imph_a-mentat.lons of the DFS version 1.0 ard\itzcr:rriedo :o:a;‘:vide global
e naming or distributed security. Through consistent management between systems, the following

aspects of transparency can be provided: 4 :

* name transparency - File volume names have the same meaning on all systems

* volume

-location tra - i A
ol ton transparency - The location of a file volume can be changed without affecting 115

* application-location transpare - Applicati perd - ;
dent of the system on which thng mﬁ;ﬁ? o i he.aeme fla: opecesions. e

43-4 Distributed File Service Introduction

e ——

—

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

43151 Naming

In DFS, the unit of the file system being distributed is the directory t A di i
available for other systems to mount is called an access point. e i i At i

When an access point is mounted (made available) on a client system, a function processor unit is
created on that client system to represent (act as a local alias for) the remote directory tree. To specify
a file on that access point, the client uses a file specification with the function processor unit name
in the device portion of the specification. Clients have no control over the name that this function
processor unit is given when it is created, and for the same access point it will almost certainly be
different on different systems.

This violates the goal of volume-location transparency, in that the same file must be specified using
different names on different systems. Logical names can be used, however, to assign a user chosen
name to the function processor unit. The illusion of a global name space can be accomplished by the
consistent use of logical names on all systems.

43152 Security

When & DFS server accesses a file on behalf of a client, it assumes the security profile of the proxy
account local to the server, that is associated with the client.

The illusion of distributed authentication can be accomplished by keeping the rights and privileges
of the server proxy accounts consistent with the accounts of their clients.

Distributed File Service introduction 43-5

. e

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

CHAPTER 44
DISTRIBUTED FILE SERVICE MANAGEMENT

4.1 Overview
This chapter discusses management of the Mica distributed file system (Mica DFS) software.

Mica DFS is composed of three major components: the client function processor, the server, and the
request/response function processor. See Chapter 43, Distributed File Service Introduction for more
information. Management of Mica DFS consists of starting these components, and controlling them

while they are running.
Mica DFS management has the following goals:

* To minimize the number of tuning parame
adjust itself according to its environment.
example, is controlled automatically.

ters. This is accomplished by having the software
The number of threads used by a component, for

¢ To minimize the need to tune other components. For gxgm_ple. alt.l.mqgh the request/response
R'R) function processor uses DECnet, it is a goal to minimize or eliminate the need to modify

DECnet performance parameters as part of R/R management.

There are no architected management entities and attributes for DFS like there are for DECnet

Phase V.

4411 Restricting Access o Management Operations
rmed on the two Mica DFS

/O system objects prevent un
pter 8, VO Architecture, for more

function processors using I/O system
ohapunt cpmmcas o peeC authorized users from performing

requests. Access control lists on . {
nformation.
management operations, See Cha s
as separate user-mode processes

Mica system management and the Mica DFS server are implementeFt?P) e i e DFS

on the same system. The request/response function processor (R/R F} o i

network communication, will also be used in & local mode to accomplish inter-p .

. ent operations using

' Mica DFS server to perform managem .

:lr::;; ;\'g;rél management d:r;ect.;“tltz W"Rm does not provide at_:then_twat.w& of sendersh.ﬁtgss senfetar
. oot Apepeane .ding the sender’s 1§iennty to the servege il wt.erml dv,-

:";:??s::; &ﬁﬁi;i,z?fo e d restrict his operations as necessary. e p ;

Security and Privileges, for more information.

Distributed File Service Management 441

R R EEEEEE—EE—————

_

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

44.1.2 Startup

The request/response and DFS client function processors are !oaded automatically with o;h_e-r_ function
processors during system boot. After being loaded, each function processor is called at its initialization
entry point. Function processors do not need to be started explicitly. The order in which the request
/response and client function processors are started does not matter.

Mica DFS is started relatively late in the sequence of startup operations. See Chapter 34, Configurs-
tion Management Software, for a discussion of initial device configuration. The Mica startup program
is responsible for starting the Mica DFS server, and for calling a Mica DFS specific startup routine
to establish the DFS client and server environments.

The Mica DFS startup routine reads the Mica DFS configuration file to determine the previous
environment to restore. The startup routine then issues management operations to the various Mica
DFS components according to the contents of that file. The configuration file is updated whenever 2
management command is issued interactively that changes the state of Mica DFS.

44.1.3 Monitoring

Each Mica DFS component collects performance data and statistics that can be displayed using the
ﬁtc: monitor utility. System management SHOW commands are not used to display performance

The two Mica DFS function processors adhere to the standard data collection interface as defined
in Chapter 36, Perforn_:ance Monitor. The Mica DFS server, which is implemented as a user-mode
server, provides a special message interface to retrieve performance data.

44.1.4 DECnet Name Service

Mica DFS uses the DECnet name service (DNS) to resi i .
: ‘ _ register and look up access point names. DNS
associates an access point name with a particular remote volume and the locatiorf?:f its DFS server.

DNS provides a global i i : ‘
o ch'el:x ¥ ane; aef-v c;r N namespace for the consistent naming of access points regardless of the location

Management of DNS is discussed in Chapter 40, DNA Naming Service Clerk.

44.1.5 Management of Files Accessed Through DFS

File management operations, for exam le directory crea
ﬁl?fi on DFS devices as well as local dlt:vicea. Vg{yume
initialization and disk quota maintenance, do not wor
32, System Management, for a discussion of remote v

tion and file copying, work transparently for
management operations, for example volume
k transparently on DFS devices. See Chapter
olume management.

44.1.6 System Management

Interactive control of Mica DFS ; ; . _
general is discussed in Chapter 31;' IS"led;d by Mica system management. System management I

44-2 Distributed File Service Management

F__———

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

44161 Client Function Processor

Mica system management provides the following commands to control the client function processor:

Command Description

MOUNT/REMOTE invoke the mount utility to create a client unit
DISMOUNT/REMOTE Invoke the mount utility to remove a client unit

SET CLIENT Set DFS specific client device unit characteristics
SHOW CLIENT Show DFS-specific client device unit characteristics
44162 Server

Mica system management provides the following commands to control the server:

Command Description

START SERVER Start the Mica DFS server

STOP SERVER Stop the Mica DFS server

ADD ACCESS_POINT Make a volume available for remote access through the Mica DFS
. sarver: the access point is then registered with DNS

REMOVE ACCESS_POINT Make a served volume unavallable; the access point name is then

removed from DNS. Existing mounts may or may not affected, de-
pending on the qualifiers present

SHOW ACCESS_POINTAOCAL Show access points that are currently being served

SET SERVER Modify server characteristics

SHOW SERVER Show server characteristics

ints that are known to the name service and

s Show the access po Shiios
SHOW ACCESS_PCMNT REMOTE atch the pfﬂVided Wlldcafd spgcmcallon

ticate remote clients and to provide imper-

: ‘ , h imp
The Mica DFS server depends on 30en 0003 o iiloges for information on how the authentication

sonation services. See Chapter 10, Security and Privileges,
database is managed.

44163 Request/Response Function Processor

the following commands to control the request/response function

Mica system management provides

mmt
Command Description
ication characteristics
SET COMMUNICATIONS Set communication P |
Show communication chara
SHOW COMMUNICATIONS

ngle Function Processor Unit (FPU) for

R/R FP) uses - o hen the R/R FP is initialized.

The Request/Response Function Processor (tomatically W

all readers and writers. This FPU is created au

Distributed File Service Management 44-3

e

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

CHAPTER 45

DISTRIBUTED FILE SERVICE
COMMUNICATION FUNCTION PROCESSOR

45.1 Overview

The Request/Response Transaction Protocol (RR) and the Request-Response Command Language
(RCL) together compose a simple RPC communication interface for the Mica Distributed File System
Mica/DFS). RR is & Mica function processor. It accepts communications requests from the DFS
client function processor, DFS server, and possibly other function processors and users, then makes
requests to the function processor that represents the session layer of DECnet. RCL is a collection of
subroutines, called by higher-level function processors and threads, used for formating and packing
messages, sending them to a remote node using a call to RR, and unpacking incoming messages from

remote nodes.

Versions of both RR and RCL currently exist
largely one of implementing an already architec _
have been recognized in the current RR/RCL design, t.he_ Mu:a/Rf_l an
constrained to be compatible with the current VMS design. Design changes

second, post-FRS version of RR/RCL.

for VMS DFS. The Mica RR development effort is
ted communication interface. Although deficiencies
d Mica/RCL implementations is
will be considered for a

4511 AR
\ intermediate-level communications Protoool. The transaction
l:f:::;g‘ns‘e paired communications between c;l:tentg m;zd server:;r A client
ithi text. Each request/response
may make repeated ests within the framework of a common context. _ >
pair is called ?.unn:cg::m and is identified with a unique transaction ID; a series of transactions
i ified with & unique session ID. RR is

ithi : and identi :
within a shared context is referred to as ids?:‘::; of lower-level transport protocols, and its users

an intermediate protocol in that it 18 layer 3 v Yot A
\ ' . This top-level protocol might consist simply a
establish an additional protocol layer on %P Ofoﬁna more elzimr‘at.a get of interactions.

defined set of functions and calling standards, -
to a reasonable, parameterized limit) can estab-

Any number of clients on a particular podsyup blishment of sessions, and the transaction
s wich ¢ owrey 00 il © vor s single connection between the two nedes. T2
connection represents a' reliable communications Pﬂﬂ’f between nOdeBi aflm'lea laudem]ér of how reliable
ing a DECner:-don-lcvel logical link. The RR grchitectire ‘5 !argef{ ‘calplinks for reliable mes-
communications are implemented, but does require the mpeﬂ:::;: m‘;ﬁlvm at the message level,
sage transfer, congestion control, data segmentation, routing,

and node authentication.

RR is a simple transaction-o
model is that of simple reques

tributed File Service communication Function Processor 45-1
Dis

4___-_

- ..

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

45.1.1.1 Interface to Higher-Level Function Processors and Threads

RR can be viewed, from the standpoint of higher-level entities using it, as a very simple set of
functions for effecting transactions:

* Open_Port

This function is used by either a client or server to create an RR port for communications with
a remote server or client, respectively. The port is simply an access path for the client or server
to RR, and is represented in the Mica/RR implementation by a /O channel. If the port is being
created for use by a server, then the server's availability is made known to remote clients (via
the DECnet name server).

* Close_Port

Either a client or server port is closed using this function, preventing further_accgss to tl)e'p_ori.
In both cases, appropriate actions are taken to gracefully terminate communications activitie

®* Access_Connection

A client uses this function to establish a connection to a remote server. An actual session-Jevel
logical link is created only if one had not been previously established. Once established, logical
links are maintained on a semipermanent basis. The basic asymmetry in the protocol is reflected
in this function’s availability only to clients. Servers do not request establishment of connections
or sessions.

* Session_Transaction

Clients use this function to make all requests. in one call, a session can be opened, a transaction
requested, and the session closed. This translates into a single RR message, saving message
and packet overhead for simple transactions. In more complex cases, this function can be used
to establish a session, subsequently closed by a later call, with the unique session ID supplied
as an argument. Sessions allow the client-side user to identify a transaction as belonging to 8
group of transactions, which the server may then choose to process within a common context
Requests are received by a server in the order in which they are made by a remote client.

* Request_Receive
A server uses this function to receive requests from remote clients. Requests are identified

by transaction, session'. and connection IDs. As noted in Section 45.1.1.4, there are design
alternatives for processing incoming requests for servers,

* Response_Transmit

The server uses this function to respond to requests from remote clients,

Detailed description of these functions, their argum i and
associations are included in the design portion of this Zir::;;t::d . e
45.1.1.2 Interface to DECnet Session Layer

In the current VMS implementation, RR interfaces

s . s e to the DECnet ion | h a set of
MictRR. T terince i o s g R0 probably smpler inerac il e e
; s in . g 5 . :
in Section 45.1.1.4. The interface mnugsg al]oﬁemb;etr}:‘:rg ?hg: gﬁ?&ﬁ'ﬁ:ﬂ-mm g
* Open and maintain connections .

* Accept and reject connection requests
* Obtain status information

* Transmit and receive data over the connections

45-2 Distributed File Service Communication Function Processor

D

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

+ Allocate and return message buffers

451.1.3 Interface lo System Management

RR provides a system management interface that allows read access to RR’s state information and
causing t.hou state changes in RR necessary for effective management. For example, the man-
agement interface will allow reading and changing the RR parameters for setting maximum limits
on connectivity and the number of outstanding transactions. More complex operations, including
manipulating internal data structures, will be provided as needed for debugging and management
purposes. The management interface will be discussed in detail in Chapter 44, Distributed File
Service Management.

45114 Implementation

RR is implemented as a multithreaded Mica function processor. On intialization, RR creates a RR
function processor unit, to which separate channels may be connected by the DFS client FP, the DFS
server, and by any other function processor or system thread that uses RR.

451141 Data Structures

In the current VMS implementation, RR manages an internal database containing separate data
structures describing each transaction, session, and logical link, as’well as each client and server
port. Mica/RR manages equivalent data structures, but, where possible, uses basic data structures
specified by the Mica /O architecture instead of specific data structures internal to the RR function

processor.

The VMS/RR database contains a single port block for each g].ient or server process that opens a
port to RR. In the VMS implementation, each process is I.}:mt,ed to having at mﬁt orI:!eORR porél
Information contained in the VMS/RR port block is maintained by Mica/RR in a Mica chann

ohject object, created by the DFS client and server.
ode with which it exchanges mes-

VMSARR establishes one DECnet logical link for aal, FamouR B0 a linked list within its internal
sages. For each link a connection block is crea .d . ed through of the ports
database. Linked lists of session blocks, corresponding to sessions JPUC which gransactions within
are attached to the connection block that represgcamR uses the channel objects corresponding to

the context of th .on are communicated. Mica/RR U ! . s
DECnet mn:&:nrzlgnnecuon blocks, and maintains internal lists of session blocks pointing to

them,

The ¢ . VMS/RR correspond to Mica ¢ : 2 TMS/RR
depenrg:;? cﬁtf:o:?st::eﬁ{g contains those fields assoCl,at'ed i ;mgsmeglog: ::I:::xint,ai?u'n;:g
necessary for managing requests and responses” o r?<l%‘sPU and subsequent layers, and
the transaction information while it is being processed byrtF}‘];U

for returning the request completion to the user process 0 1

451,142 rations and Issues J
Caiarn il <limination of data copying as data moves o

There are two main desi considerations in RR: A PU or and minimizing context
the lowest layers of DECf::!. up through RR to the calel:'l;g ik suppop! rtocet.hat. RR smmupp]jeuslflor servers

switches as control of the data moves between the ::y T ents simply make requests, via Mica VO

: ' lien her hand, must be
is somewhat different than that supplied to € . ovent. Servers, on the other
' i i i t kn
S e et o 8 A7 ST et o i ot 107
e

hand,

Communication Function Processor 45-3

Distributed File Service

e

—ﬁ

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

On transmit, data copying is avoided by providing a rpechaniam for messages to be constructed in the
user’s address space, for that message to be locked in memory, and for a pointer to the message to
then be passed through DECnet to the NI controller. Because messages are built dynmcallylusing
RCL in-line procedures, the user is required to know beforehand the message format and the sizes of
its various components, to allocate a region of the appropriate size for building the message, and 1o
construct it contiguously within this region. Otherwise, due to fundmental NI controller limitations
on the number of discontiguous regions that can be combined to form a single message, the message
needs to be copied at least once.

On receive, at least one data copy is necessary, because many users are multiplexed over logical
links by RR. RR receives the messages as a linked list of ordered fragments from DECnet, and then
copies them into a user-provided buffer. Additional copies may be required by the user to position
the received data correctly within its address space. If buffers have not been provided ahead of time
by the users, then RR holds on to the incoming messages, notifying the user that it needs to provide
buffer space for the incoming message, until either the buffers are provided, or the message is timed
out and discarded.

Much context switching will be avoided by allowing the user thread to pass through RR and continue
down through DECnet. This will, in fact, be necessary to avoid data copying. Similarly, DECnet
threads will be able to execute the RR code necessary to complete a request through a callback
mechanism.

The detailed design for eliminating both data copying and context switching depends on the specifi-
cation of the DECnet interface, and is thoroughly described in the chapternlfody?e e

45.1.2 RCL

RCL can be thought of as a higher-level protocol layered on top of RR to provide a general RPC
facility. RCL is responsible, on the client side, for packaging pF:"ocedum call,ls ‘:: a rct‘:ote service
into formatted messages, sending them through the RR transport, and unpackaging the formatted
response messages returned by RR, and for the corresponding functionality on the server side.

Although logically a separate layer, RCL is impl i i
s plemented in VMS as a set of sub and macros.
DF'S uses these to format remote file requests and to pass the reques:: t: tl:: Rr;uéle:::e driver, For

effici f desi i i e e
Bys:let:::cg'ugmu?;inﬁ;nmdl;:xemnon, Mica/RCL uses a similar approach. RCL is implemented as 3

45.1.21 Structure of RCL Messages

Each RCL message contains one and onl
i : LOly one program ele : 3 o0CUTS in the
?;:?;ﬂt’e,o:ntg rl::mn_n!-lsed either to describe the overal] contenl:;e:; th: :;:;?ge in thm of 8
this data element. It Tosponse data. .Unfc'nm‘ell’- "pProgram” is a rather misleading name for
nt. 1t 1s simply the highest-leve] descriptor within an RCL message, describing

. how many of the next lowest 1 1 - :
and an overall status or result ?‘:: t]::xeﬁ:l:ts’ called "functions”, are present in the messag®

dependent. sage. Its use and meaning are entirely application
* Function

The basic entity transported ;

of element destg;-iptom tha In RCL messages are functions. Functions are simply grouping®

programs, but above the retmm'nmt‘mngn tahc:eem data. They represent an mnmmﬁ Tevel belo*

entirely aPPﬁcation-dePenden? M ;ypes of elements. Their meaning and use are 38"
+ ressages generally include one or more fux?cgn‘uns. each of which

45-4 Distributed File Service Communication Function Pro
cessor

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

ol g g o ot o e
* Integer

A simple data element describing a 32-bit signed integer
¢ Vector

A data element used for describing logically contiguous collections of bytes; interpretation
of the data is left to the higher-level software using RCL :

¢« Nil

A placeholder element for marking the absence of arguments

451.22 Subroutines
The RCL subroutine library includes the following types of subroutines:

Message Building Subroutines

Included in this category are the necessary subroutines for constructing RCL element lists. For
example, there are separate routines for adding function elemc_ants, adding integer elements, and
s on. Also included are subroutines for allocating and initializing RCL messages.

Message Unpacking Subroutines

sage building subroutines are the routines for unpacking the RCL
de those for getting the server-supplied
and for copying vector data into user-

Corresponding to the mes: g 3
messages on the other end. Routines in this category inclu
status, for getting the next element within the message,

defined memory locations.

Communication Subroutines
These are a set of subroutines for sending RCL messages. 1“51“‘,19‘1 are subr_outmes .forr sending
messages on the client and server side and subroutines for opening and closing sessions.

istributed File Service Communication Function Processor 45-5
Distr

e

——

r—_i e ——

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

CHAPTER 46
DISTRIBUTED FILE SERVICE CLIENT FUNCTION PROCESSOR

46.1 Overview

This overview summarizes the design and function of the Mica DFS client function processor (Mica
DFS client), which allows a Mica system to access files on remote Mica or VMS systems.

46.1.1 Requirements

The Mica DFS client satisfies the following requirements:

* To provide a transparent interface from a Mica system to files on a remote Mica or VMS system

* T translate Mica 1/O requests into the protocol understood by other DFS implementations

* Tobe controlled through Mica system management

' 1 i to remote files, the
Transparent Interface. To provide a transparent mt,grface from a Mica system ;
Mica DFS client implements the Mica disk-file function processor interface c]as:l(see Chaab;r 12!‘(1)’
Disk File System Function Processors). The Mica DFS client, however, supports only sogetnth :gj
functions lf;pporud by the disk-file function processor class. For a list of the functions that the Jica

DFS client supports, see Section 46.1.2. y

Mica-to-DFS Translation. The Mica DFS client translates o 1 9 reth;'eét{i mtl',ongl:ngl;lp:;eg} uﬁrllt;
derstood by the other DFS components. Currently, this protocol is an = I:;}g :nechzmism i {hn
QIO interface to the extended QIO processor of the VMS e sysbem-l 'he DFS uses, see the DFS
request/response transaction protocol (RR). For a description of protocol that uses,

File Protocol Document. . t
the Mica DFS client is controlled by Mica system managemen’,

Management. _Configuration of Chapter 32, System Management, and Chapter 43,

using general MOUNT facilities. For details, see
Distributed File Service Introduction.

4.1.2 Functional Interface .
: tion-processor entry

The Mica DFS client is an /O function processor; it supports the common function-pro

points documented in Chapter 8, VO Architecture:

- : 8sor,
Of the functions supported by the Mica disk-file function processor,
only the following ones:

* FPU Functions
— io§c_get_fpu_info
~ io§c_ready_fpu
~ io$c_unready_fpu

the Mica DFS client supports

service Client Function Processor 46-1

pistributed File

-

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

e Directory Functions
— iaSc__dﬁle_read_dir_eanies
— mSc_dﬁIe_nwdi;Si_dir_entries
e Access, Creation and Deaccess Functions
— io%c. _access
— io$c_dfile_create
— io$c_dfile_deaccess
e Attribute Functions
— io$c_dfile_read_attributes
— io8c_dfile_write_attributes
e File Storage Functions
— io$c_dfile_allocate_storage
— io$c_dfile_deallocate_storage
e Data Transfer Functions
— io$c_dfile_read_file_data
— io$c_dfile_security_erase
— io$c_dfile_write_file_data
¢+ Memory-Management Support Functions
— io$c_dfile_mmclone_access
— i08c_page_read ¥
— io$c_page_write

The following function codes, though supported by the Mi isk- i are not
supported by the Mica DFS cient. ppo y the Mica disk-file function processor,

* io$c_item_nonpaged

46.1.3 Internal Design

The Mica DFS client operates on requests sent as '

The Mi : arguments to the Mica request_io system servict-
;Mhﬁa DﬁFl‘sI%ent first captures these arguments, and checks them flor validity. It then transiate
Re ca file-1/O request into the DFS file-protocol format understood by the remote DFS serve”

Multiple Operations

Some operations that can be expressed in a single Mica /O) :

! : request translate into] intermedis’®
DFS VO rﬁq:e;gl o?mpcfl‘:ms ﬂ;?eTl!:li?rmedI;te requests, the Mica DI-‘Smcli;:eur:es one !Fﬂ:;
t.hregd awaits the wifnpletion of each request beforl:a proo::i:chh:et?e‘;? t’;}}:m c}?rlzlmm eesé
continues either until an error occurs or until all the operations cumpl-ete s::t}:;sﬁﬂl)'

Error Reporting
If an error occurs on the remote server system duri ; toco

: : . uring execution of a DFS function, &%
server returns error information to the Mica DFS client as a VMS?foI:m;g: pl;?) stalt.us block "nﬂ

status. Then, before the I/O completes Mica - .
e tadis sk by the Mica di;ﬁ}.’&e o groﬁ client t;rornnsln:ea this returned information %

46—2 Distributed File Service Client Function Processor

——————_____"“

P

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

FPU Naming

DFS accesses remote disks and directories by way of access points, each of which translates to a
DECnet node address and an access point ID. Each access point is registered with the DECnet name
server.

In Mica DFS, access points are mounted by calling the Mica DFS client at its create_fpu entry point,
supplying as a call parameter the name of the access point to be made available. To translate this
name, the Mica DFS client calls the DECnet name server, then communicates with the remote server
10 declare the new access point available for further activity. Next, the client converts the access point
name to an FPU name, which it then enters in the $SBACKTRANS logical name table. This logical
name table is documented in Chapter 43, Distributed File Service Introduction.

For details of the translation from an access point name to an FPU name, see the internal design of
the intialize_fpu routine described later in this chapter.

pistributed File Service Client Function Processor 46-3
s

. I o =

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

CHAPTER 47
DISTRIBUTED FILE SERVICE SERVER

471 Overview

This chapter discusses the Mica Distributed File System (Mica DFS) server. For an introduction
to Mica DFS in general, and the Mica DFS server in particular, see Chapter 43, Distributed File
Service Introduction. Management of the Mica DFS server is discussed in Chapter 44, Distributed

File Service Management.

4711 Sessions

The Mica DFS server uses the request/response function p
dients. The R/R FP provides RPC-style communication on top
such as DECnet.

As R/R session is a conversation about a particular object within the context of a service, such as
Mics DFS. A session is used to represent state being stored on a server across multiple transactions.

The R/R FP is responsible for fair allocation of communication resources between sessions. Chapter

45, Distributed File Service Communication Function Processor, provides an overview of sessions.
ated identity of a user,

Mica DFS t the following state on the server: the authenticated id :
and the ch:;;tlog::';;?: rf"'llc!.- ifeone is currently open. Note that it is the responsibility of t}}:::);' gs.egce,
not /R, to authenticate its users. Two different users, using the same instance ofi {,hih Mica l ent
software, that open the same file, are assigned different sessions and different file channels.

text of a session. Fach user’s messages m'aed to be sent
thenticated. A gession can al_ao be assocxat,e;l with an
open file. File operations intended for a particular open file need to be sent in thaf-t ?ﬁt:rxtoo a %T:?EE
associated with the desired file. File operations which are :;,t directed at any p pen
example directory loockup) can be sent on any authenticated session.

rocessor (R/R FP) to communicate with its
of a reliable communication service,

All messages are sent to the server in the con
on a session on which that user has been au

4712 Server Process Implementation

i user-mode process. A mn]t.it.hr_eaded de-
G e implementzdma:cammt;lzl; htmd::r; be mker‘ n advantage of by multiprocessor

50 desrabl bncause it increases SOOCOTTSRC cud e by the servsprocst i SRS
matically, The server is implemented in user-mode for reasons
y to affect the rest of the system.

. - - is less llkel . .
BN e ”“"; ntage of user-mode impersonation services, which provide for
agva

controlled manner. ok oo
i uest, each thread

o L i R

o . s Apt bringdydy)

::M m;:in:::zl]ea :;:ellasbcs DF:Z Ef:;'.’%e R/R FP has responslblllt]? for flow control of unread

messages

* A user-mode server can take
the changing of identities in &

Distributed Flle Service Server 471

—

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

An thread is capable of processing any request on any session. Session state (that is cex
idei;g'T:;d file c]::anneﬁ?bis shared between threads. Because of the multithreaded nature of te
DFS server, the order in which requests are processed may be different from the order in which they

were received, even for requests on the same session.

47.1.3 File Protocol

The file protocol implemented by the Mica DFS server is a RPC implementation of the VMS fle
system XQP QIO interface. Translation is required to execute the VMS-style requests unnnbgmn
disk file system function processor. The difficulty of translation is relatively small since the Mica fle
interface is an evolution of the VMS interface on which the file protocol is based.

The file protocol expects the file server to do wildcard processing. The Mica file system :Fm ot
handle wildcards and leaves this function to higher layers. The Mica DFS server therefore includs
the capability to resolve wildcards.

Both the Mica and VMS file systems depend on a lock manager to coordinate access to parts of a fle
DFS users on different nodes are in different lockspaces and will not be informed of conflicting acces
to the same file. Mica DFS prevents any inconsistencies by converting opens allowing write sharing
to exclusive access. A mode may be specified in the file protocol for the open operation to cause the
server to relax this restriction.

47.1.4 Security

.A'B d.iscussed in Section 47.1.1, DFS, not the R/R communication laver, is responsible for authes-
tication of users. When a new session is to be authenticated for n'part.icular user, DFS sends &
special set_environment message to the server providing the user’s node and username. The Mia
DFS server then uses Mica security services to map the user's remote identity into a Jocal secunity
profile. Chapter 10, Security and Privileges, discusses Mica security in more detail.

When a Mica DFS server thread receives a request. it must :] iated
with that session before issuing any Mica ﬁl;?peratt:iong_ ust assume the security profile assoca

47.1.5 Caching

The disk file system function processor will not be implementing a disk block cache for first release.

The Mica DFS server, whose function is closely rel i : : it and
not implement one either. The reasons for thiys t.l.r;Ill t:sdf;?l;?::: S g progemscs, ill SR et

* Caching is enhanced functionality which is not required for first release.

* Waiting until we can anal

caching. yze & working system will give us greater insight into the need ¢

¢ For efficient use of memory and reduced mechanj : : :
; 3 sm, th 1o the disk
block cache provided by the disk file system function ° MJ::O !I'.)mFSs ;ea:;re:;_ ::;oz‘l;lnu tilize the
* Mica has support in other parts of A .
structure caching, image caching,onntgm;tf-:d?] reduce disk accesses, specifically file syste™

47.1.6 Buffering
Each Mica DFS server thread will .
That buffer will be used to receive ;‘:;nu:l;:t: k-?:hj?hc buffer allocated in the server's address sp**

is used to form the reply. Tranfers to/fro - Aﬁerthereqmtha,b,mpm_ the buffer
fromito this buller, i m the disk file system jrectly

47-2 Distributed File Service Server

e —

p—

4717 Accounting and Quota Enforcement

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

An accounting record answering for aggregate server resource usage will be generated when the Mica
DFS server exits. \It has not been decided if accounting records will also be generated to answer for
per-client server thread resource usage.\

The Mica DFS server is subject to process-wide quotas on resources such as executive pool. Enforce-
ment of such quotas by Mica will prevent the server itself from acting unfairly.

Per-client quotas apply to high level resources (for example files) and are enforced by the providers
of those resources. The Mica DFS server does not provide any resources itself, and thus enforces
no quotas itself. The disk file system function processor is responsible for enforcing any file-related
quotas, for example disk block usage.

4718 Fallure Recovery

The Mica DFS server expects the R/R FP to provide notification of session termination in the event of
s client failure. These sessions will be removed and will no longer be recognized. The files associated

with these sessions will be closed.

If the Mica DFS server crashes and restarts, all files open on any client are no longer recognized.
Access points previously mounted by a client system are transparently remounted on use.

Distributed File Service Server 47-3

EEE—

- AR e

Database Server

This set of chapters describes the com ; _
sunport. omponents of Mica that provide database server

B 00

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

CHAPTER 48
CHEYENNE OVERVIEW

48.1 Overview

Cheyenne provides customers with highly available, very fast, relational database capability. Its
target applications mostly involve on-line transaction processing (OLTP) environments. Cheyenne
implements the DIGITAL Database Architecture (DDA), allowing the growing body of applications
built using DIGITAL's Rdb product set to access Cheyenne databases with little or no change.

Cheyenne is unique from other DIGITAL DDA products in that it has both hardware and software
components. Current DIGITAL database products run as privileged application programs on the
same system as the users' application code. Cheyenne consists of one or more PRISM systems run-
ning the Mica operating system. Only one application runs on the PRISM systems: the Quartz
relational database system. User application programs run on client systems that communicate with
the database server over a network connection (NI or Ethernet).

Most Cheyenne systems are used in transaction processing applications. These inclugle financial
applications (for example, funds transfer, bank machines, stock transactions), r-esev_rvatmn systems
(for example, hotel reservations, sporting events), inventory ma_.nagement n:pplmatmns, and so on.
Such transaction systems consist largely of two types of application transactions:

* Well-defined, short query-and-update transactions
* Long, background, read-only report generation or roll-up update transactions

The transaction processing monitor and application programs run on the client systems, not the
database server. Cheyenne provides only the database services to these applications.

Cheyenne systems are available in two basic configurations:
* Standard

* Highly available

) i i d hierarchical fault man-
Th) use Mica features, such as disk shadowing an .
'i':n::'l? dgg:::ﬁ f:;:;lli‘:::::iuns with a high mean time between failure (MTBF). Most failures result

3 ilabili i discussed later, however,
: t instead of service unavailability. As _vnll be di , ho .
m':?;::fe (::ft?t: ?a:“ ?:11 111:: that result in the database becoming unavailable to applications.

The highly available Cheyenne configurations tie together multiple Quartrlhﬁﬁtonmmﬁ to
form agdn{nbue server that is considerably more fauj."mlem?:ﬂtm ﬂl:Ie St'anle fai]czre (withot?xse-:
Highly available systems are il;npe“";;“’ tf ;;‘:Z,f;,ﬂ'ﬁf c‘i:se t?lr:'dammgm be unavailable to
: ; nstituen X S g z
?ﬁ;:ﬁ:.:—foﬁwﬁzﬂﬁ:mw - ceczm)’ degrade, but the database remains 50 et g e

multiple-point failures only degrade performance.

The highly available Cheyenro confga ey e lable front-end systems and communications

:;’3;‘;?,.‘;‘.’.?.' 8;2;::;? can ﬂeﬁ;;?f;dii}:hg?h};:ev&h to produce complete application systems

that are impervious to single points of failure.

rovided as tools for building highly available

Cheyenne Overview 48-1

e

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

Figure 48-1 shows an example of a highly available Cheyenne and client system configuration,
Figure 48-1: Highly Available Cheyenne Configuration

VAXVMS
Client Systems

Ethernet (NI) LANs

Cheyenne
Quartz/Mica/Stone
Systems

I\

Extended ’ 4
Sarvice
Processor — —— -

I l }c: Switches > CILAN

E HSC Mass
L Storage Controliers

L

m-

T
Jronnnining

RAS0 Disk
Farm

BRIy
LT

L

LT

11111

3

Q

48.1.1 Product Goals

The priority of Cheyenne product goals is uncommon for a DIGITAL product:
1. 100% data integrity

2. High reliability and availability

3. High performance

This set of goals presents uni ue chall i ifvi
recognize that these challengesqezdst, it i:lg]egef::mtzsnng B e vingShe < g v

time before they are resolved.

48-2 Cheyenne Overview

GO0 TR e S

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

£1.1.1 Data Integrity

Cheyenne's primary goal is to handle user data without corrupting it. This impli

must be detected and dealt with appropriately. These includepdislf errors, cl;zgle?sai}:ia :)‘:11;] ee:-rﬁo.r?
mu-dlg‘m memory errors, data path errors, and failures of computational elements. It is the
hardware's responsibility to detect and report such errors; Mica records every error in an error log.
Mica then attempts to correct the error transparently, for example through the use of a counterpart
in & disk shadow set. Errors that cannot be corrected are reported to and handled by Quartz, the
database system software. ’

@112 Reliabliity and Availability

The second product goal is to provide a highly reliable, highly available system. High reliability
means that the system seldom fails to operate. High availability means that the data managed by
the server is rarely unavailable to client systems. All Cheyenne configurations are highly reliable;
customers can elect to purchase highly available configurations,

High reliability is achieved by detecting, recovering, and logging every hardware error. Error recovery
may be performed by the hardware, by Mica, or may require the intervention of Quartz. Some failures
require the intervention of front-end software to resubmit transactions that were aborted because of
the error. A Mica process monitors the error log to detect patterns. If a failing pattern is discovered,
the failing component is automatically removed from the active system configuration and redundant
components take over the load. The result may be a degradation of performance, but the database
remains available to the application. Failures of unreplicated components may result in the data
becoming unavailable. Service personnel eventually replace components that are moved out of the
configuration.

High availability is achieved by replicating hardware components within Cheyenne. _'Ifhe load is
shared by the components until one fails. The entire load is then taken up by the remaining compo-
nents. Thus, replicated hardware provides Cheyenne with high availability and high performance.
For example, two or more Quartz/Mica/Stone systems can be bound together to form a highly avail-
sble database server. Both are busy servicing the transaﬁtioln load. If any one Quartz/Mica/Stone
system fails completely, the remaining systems pick up the load. r]

to applications .g long) as at least one constituent ca/Stone system remains fﬁperﬂtilﬂ'!'lﬁIl
and is configured to access the disks on which the database resides. Mass storage and intersystem
communications components can also be replicated.

High availability is achieved by binding together two or more 'Jca!’St.one systems to form a
hi gghly amlableydnta base smei. If any one Quart,z/hﬁm:uSt.one system faJ_ls comp'{etely, thetrtlamatmng
systems pick up the load. The database remains ava:tlable to a:pphcatmnsdas ong as 31 sgtsksone
constituent Quartz/Mica/Stone system remains operational and is configured to access the disks on

which the database resides.

48.1.1.3 Performance |

' i t performance system is

-ariety of performance ranges. The lowes -

ggﬁnt;y:u:mfwm;:;u::r;-:mda{ﬂ debit/credit Lransact.:ona’eecond. (’iI'he lughesth perfor.ma:igg
configuration can run over 600 of these transactions each second. The atabase software is

3 iently.
designed to handle large, read-only transactions efficient
#ie database manipulation algorithms,

High performance is achieved thrm;gl';‘ semicpoitn sopha_sticaht:t(iiow sets, extensive data caching, and
ﬂwﬂiﬁlgﬁ?sﬂ;\%ﬂﬁ:ﬁmu - ;i‘nzerfaces. The software is d:dﬁgnesdtom jiksiapeyecen
large numbez:lof processors and enormous physical memory providec by ERE

Cheyenne Overview 48-3

Digltal Equipment Corporation - Confidential and Proprietary
Restricted Distribution

48.1.2 Components

The following sections enumerate Cheyenne’s many components. Figure 48-2 shows how the compo.
nents fit together (Cheyenne components are highlighted).

Figure 48-2: Software Layering

VAX/VMS Client System

Mica OLTP and Application software

system

mgmt. DDA
interface

Client/Server
communications

Cheyenne

Quartz
database software

48.1.2.1 Stone

Cheyenne is built with Stone systems, which im
database server consists of one or more Stone
processor. Each Stone system has the followi

plement the 32-bit PRISM architecture. A Cheyenne

systems, mass storage, and an optional extended service
ng components:

* 2 to 8 scalar processors

* 64 Mbytes to 1 Gbyte of main memory
* 1or 2 XMI VO busses

Assorted intersystem communications adapters

* Wildcat disk and tape controllers (optional)

Each Cheyenne s t : _ ta
556 Gbyte); o use‘:pdg:ga_s up to 1 Thyte of disk storage, thus allowing a Cheyenne to manage up ¥

48-4 Cheyenne Overview

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

4122 Extended Service Processor

The Stone systems share an optional extended service i i

: _) processor. The extended service processor

3 VAXstation running VMS, hnked to the Stone systems through a private Ethernet nel;work, Tli:
extended service processor provides comprehensive symptom-directed diagnostic services as well as

sccess to the system management interface.
48123 Mass Storage

Cheyenne supports both DSA-1 and DSA-2 disks. DSA-1 disks (RA8x, RA70, and RAS0 b

accessed through Wildcat (HSX) disk controllers. They can also be conm;cted bo' the syat.em}thc::ugg
}{.SC‘mm storage con trollers attached to the Stone systems through CI (XCA) adapters. Each DSA-2
disk includes its own controller. DSA-2 disks are attached to the Stone systems through CI adapters.

Removable media is provided through one of the following (a choice has not yet been made):
v TA90 cartridge tape, from either the Wildcat or HSC controllers
+ Avanant of the TAS0, from an as-yet undefined XMI controller

+ Ptolemy write-once optical media

481.24 Mica

The Mica operating system runs on the Stone systems. Cheyenne uses the following Mica features
extensively:

Component Special Features Required by Cheyenne
Kernel Symmetric multiprocessing (SMP)
Exmcutive Common logging

1O subsystem Disk and tape function processors

ODS-2+ disk volume support
Disk shadowing and striping
intersystem communications DECnet
Remote procedure calls
ClienVserver
Interprocess communications between Stone systems
Cl and NI suppont
Configuration management
Network management
Security
On-line diagnostics

System management

48.1.25 Quartz : B
Cheyenne's relational database system is Quartz, developed by Sartz : Sy:iw?l:énfcl?lsse ; E::—Illig;
Quartz is a DDA-compliant database manager. Although Q o opthm;zmakc; 3¢ amgcﬁw., for
transaction processing applications, Quartz also contains many features tha

end-user information management.

Cheyenne Overview 48-5

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

48.1.2.6 Client Software

Portions of the Cheyenne product are software running on VMS client systems. The following sections
enumerate these components.

48.1.2.6.1 Communications

The client side of the client/server communications runs on client systems. There are three compo-
nents to the client/server communications:

* Database communications layer
* Reliable communications service (RCS)
* DECnet

48.1.2.6.2 Mica and Quartz System Management and Database Administration

The system management requirements of the Quartz/Mica/Stone systems that make up a Cheyenne
system include software installation, network configuration, system security, mass storage configura-
tion, running on-line diagnostics, and mass storage backup. All of these functions can be accomplished
remotely from a properly authorized client system. They can also be performed from the Stone console
subsystem.

The Cheyenne database administration functions include database creation, tuning, security, man-
agement, and backup; allocation of resources to various databases; and resource usage accounting.
All of these functions can be accomplished remotely from a properly authorized client system, They
cannot be performed from the Stone console subsystem.

48.1.2.6.3 Security

Cheyenne resources and databases are protected from unauthorized access through a hierarchical
authorization scheme. The layers include:

* DECnet-Mica

This la}_VEI: validates connections based on the originating system and user name. Note, however,
that this is t:he user name for the process that sets up the connection, which is usually not the
process making the DDA request. Mica's security scheme allows the system manager to restrict
network access based on system identification and user name.

* Reliable communications service

"I'hjs }ayer provides thg Quartz database management software with information it needs to
identify processes that issue database requests.

* Database communications layer

The database communications layer translates DDA

roce i the
RCS layer. No authentication is performed by this la nescreolls Juinmemmmsee aUA

yer.
* Quartz database management software

- The database software uses the identi

t 1 , . ’
access. This validation is in two steps: ¥y provided by the RCS layer to validate the intended

— Database file protection

Quartz identifies the accessor to Mica and asks Mica if the access is to be allowed.
— DDA-defined database protection

48-6 Cheyenne Overview

.

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

uses security information pl i ¥
R Bitns i the intended accens iz? ;ng :11] ::eeiatahaae by the database administrator to
481264 Database Tools

The database access method (Quartz) is only on
gystem. Other components include: y one component of a modern database management

+ Database definition tools

« Database tuning tools

+ Database analysis, backup, and repair tools
+ Program development environment

+ Interactive query package

Some of Ithue tools are generic to any DDA offering (for example, program development environment,
interactive query package, and possibly the database definition tools), while others are unique to
Cheyenne (the database analysis and repair tools, and some of the tuning tools).

482 Target Customer Base

Cheyenne's primary target market is on-line transaction processing (OLTP) applications. OLTP ap-
plications are charactenized by relatively short, well-defined transactions. Although the number of
transaction types is small, fantastically large numbers of transaction instances are run. For exam-
ple, the high-end Cheyenne configurations are targeted towards performing 600 qualified Debit/Credit
transactions/second (see the CRDK Tutorial for a description of a qualified Debit/Credit transaction).
A large proportion of OLTP transactions update the database.

Cheyenne is also targeted towards transactions that up to now have been referred to as ad-hoc.
Ad-hoe transactions are usually not repeated, and may not be defined until the transaction is run.
Most ad-hoc transactions read the database, but do not update it. Ad-hoc trang.actions may require
scanning or accessing significant portions of the entire database. Ad-hoc applications are also referred

o a8 end-user information management (EUTM).

Cheyenne includes many features that enable it to address these target markets:

* High availability

Current DIGITAL systems are not highly

' b " Cheyenne hardware an
oy g e 2 peennn 4 thin two minutes of a failure. Self-

running transactions; new transactions can be starte wi :
conmn‘ed transactions can be automatically resubmitted by front-end software, thus masking

the failure from applications and application users.
al to many transaction processing appl
eek, 24 hours per day; anything less wo
their applications.

available. Cheyenne is specifically designed to pro-
d software failures affect only

High availability is critic :fﬁu;ie S?;wz;%ﬁ?iﬁi
100% uptime, 7 days per W P

customer to use Cheyenne to run

* High throughput ! W e B e
Cheyenne has considerably more processing power and VO ba?d‘:ldt}.‘ﬁgan cat;ﬂort:d :oward:
processing than DIGITAL lay:cred datﬁ:;?:irgi%méppwﬁcaﬁoni:. A‘;e:cons:quence. Cheyenna
l::dhns :};eut)';:ar:rtr:unggo:? 1.::1‘e\-r=mcmlm5 in a given period of time than other DIGITAL

database products.

Cheyenne Overview 48-7

Diglital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

* Faster transactions

uartz is designed to process relatively short update transactions very quickly. This is extremely
S-itica.l for mai!;' OLTII”T applications. At the same time, Quartz is also designed to handle large
queries efficiently. Quartz takes advantage of the large nur_nber of processors, €normous memory
capacity, and high /O bandwidth to decompose large queries and execute the pieces in paralle]
This makes it possible to execute large transactions in reasonable amounts of time. Cheyengg
is fast enough to make practical queries that would not be possible in smaller systems. This
feature is essential for ad-hoc queries on large databases.

* Bigger databases

Cheyenne is designed to support databases up to 256 Gbytes in size (this requires about one Thyte
of mass storage, due to Quartz overhead and data-shadowing reqm_rement.s). Quartz can not only
query such databases, but can load, backup, and reorganize them in reasoz_mble amounts of time
(less than a single eight-hour shift). This capability makes it practical to implement large-scale
applications on top of Cheyenne.

These application classes describe the types of applications that run on Cheyenne, but they do not
describe the people who interact with Cheyenne. It is useful to consider how various classes of users
view Cheyenne. We can use these perspectives to tune interfaces for the people we expect to use them,
The following sections describe the ways in which various classes of users interact with Cheyenne.

48.2.1 Application Users

Cheyenne makes it possible for DIGITAL to reach new classes of applications. These are primarily
commercial, transaction-processing applications, in areas such as as banking, brokerages, inventory
control, and personnel. Users of these applications may never know that Cheyenne is there, but
they will notice that their work proceeds faster, with fewer interruptions. This allows more work

téohbe done in a given amount of time than is possible using DIGITAL layered products instead of
eyenne.

48.2.2 Application Writers

Writers of application programs may develop their programs on top of existing DIGITAL layered
products (for example, Rdb/VMS). The database accessed by a progragn may be nfanaged initiail,\' by
a layered product, then later migrated to Cheyenne. Programs should require no changes to access
the migrated dat’abase, with the possible exception of the database name (logical names can be used
to mask even this small change). Alternatively, application programs can be developed directly on

top of Cheyenne databases. Migrated applications may need to 1 1 f
they can access their database on the Cheyenne sysbem}: i i Lt

iI: ;g;’;puasggilcabon programmers, like application users, may be unaware of when, or if, Cheyenne

48.2.3 Database Administrators

Datqba_lse adm'inistrabora belong to the class of users most
administrator is responsible for designing the database defini
database manager, and for tuning the database to meet the de icati ‘

Although Cheyenne databases are DDA- :
are unique to Cheyenne. compliant, many of

Database administrators manage the following aspects of a Cheyenne system:
* The number and power of the Stone Systems in the Cheyenne server
* The number and type of disks

The partitioning of databases among disks and Stone systems

488 Cheyenne Overview

B T T

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

. L relati i
md.lubtmhyoul of relations and choice of fast access structures for each database (tuning the

+ The use of security to limit unauthorized access to Cheyenne databases

+ Day-to-day management of the database, including backup

+ Repair of broken databases

Database administrators have additional duties not included in this list. These include logical
database design, a function common to all DDA databases, not just Cheyenne databases. g

In summary, database administrators are concerned with the configuration of a Cheyenne syste
and with how these resources are distributed among databases. = hiie

4824 System Managers

The role of the Cheyenne system manager overlaps with that of the database administrator. Sys-
tem managers are oriented even more towards dealing with the physical resources in the Cheyenne
configuration. System managers concern themselves with the following:

+ (lhentserver network management

+ Binding multiple Stone systems together to form a highly available Cheyenne system

* Intra-Cheyenne (inter-Stone) communications management

* Assignment of physical mass storage to various uses (this clearly overlaps with the database
administrator role)

* Accounting for resource usage

* Taking corrective actions when components fail or are about to fail
* Physically configuring the system

stem management and database administration is that database ad-

On :
s Getul distinotion betweeh &y allocation of system resources, while system managers

ministrators manage the static and long-term
concern themselves with short-term control of resources.

4825 Operations Staf!
Opera { i ith duties defined by the system
tors are responsible for the day-to-day operation of Cheyenne, Wi :
manager and d:lﬁf)&ne administrator. Generally, operators perform ba_ckupa aqd manage the ;ned;a:
following a device or system failover;

containing long-term journals. They also int,eract‘w:ith Cheyenne 1
for mm;ﬁe, o:erator':s may implement policy decisions regarding when to remove failing components

such as disks) from the system.

4826 Software Support Personnel =
Software support personnel are the first resources]:n cuslt:amerocf:.aﬂ: ‘:;;;r; f:;skt:::w\]w?lilggfusede.ye'i‘lﬁs.
Th :alist needs extensive know ge = g
dl;w??f::.:;e;‘ﬁmﬂw.adviulind train the customers database administrators and programmers

Software support personnel are also the first line '?:lf d;i;n:heewc2§35tt£;c?:g:§:s:y;ﬁ§:z :ﬁ
no hardware cause can be found. Thel}' atwml?;- ::‘;m?:;s extensive knowledge of the internals of the
determine why the failure 18 taking place. m as well as a failed system.

: running syste e
3.:““’1- It alm.;qu:;:’ t::cti;ools be available to analyze : aroundgthe problem. The specialist needs
erever possible, the s

list helps the customer WOT s oo, @ o ir utilities to fix a
thorough knowledge about themon-fliﬂk structure of the data to use ‘the ropaix WY
damaged database.

Cheyenne Overview 48-9

R T T

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

o : 3 ds : i : he problem has
The specialist works with engineering to resolve especially difficult problems. Once the prot .
been identified, the specialist may apply emergency software updates provided by engineering. It is
extremely unlikely that software specialists will patch, modify, or customize Cheyenne software,
In summary, software support personnel need extensive knowledge about the internals of the im-
plementation, and details about the on-disk structure. They need tools to analyze the system, and
utilities to probe and repair damaged database files. Finally, they need a means of applying emer.
gency software updates.

48.2.7 Hardware Service Personnel

Hardware service personnel install and repair systems. They need to be aware of the issues affecting
high availability (see Section 48.5.1).

The primary distinction between Glacier and high availability Cheyenne conﬁgurat.io_ns is !.he number
of Stone systems each may include. Standard Cheyenne configurations are essentially identical to
Glacier systems, differing only in that Glacier processor modules can have scalar/vector processors,
while Cheyenne uses scalar/scalar processor modules. Service personnel will view the two systems as
very similar, and practical considerations suggest that the same people will service both Glacier and
Cheyenne systems. Thus, it is unlikely that service personnel will be aware they are dealing with a
database machine. For highly available Cheyenne systems, however, service personnel must be aware
of how to service portions of the Cheyenne system without affecting overall system availability,

48.3 Hardware Components
The following sections briefly describe the hardware components used by Cheyenne.

48.3.1 Client Systems

To be a Cheygnm_a client, a computer system must implement DECnet, and have client-resident
DDA communications software. For the initial release of Cheyenne, only VMS systems meet these
requirements. Future releases of client-resident software may enable ULTRIX systems to be clients.

Although IBM systems cannot connect directly to Cheyenne, they can become Cheyenne clients by
using layered DDA products (for example, VIDA) that are connected to Cheyenne through VMS.

48.3.2 Standard Configurations

The standard Cheyenne configuration consists of a single Stone system, optional extended service
processor, mass storage, and client communications hardware.

The Stone system consists of from one to four scalar/scalar PRISM processor pai ory, 1O
airs, memory,
adapters and busses, power and packaging, and a console subsystem. . "

The mass storage for a standard Cheyenne configuration is described in Section 48.3.4.

Client systems communicate with Cheyenne using DECnet and on i ects

" 2 " e or more network interconn
(NI or Ethernet). Additional NIs provide additional throughput and im ;::veea‘::j = I::;l o Pobrs
versions of Cheyenne will allow clients to be attached to Cheyenne using the CI bus

48-10 Cheyenne Overview

L —

-

833 Highly Avallable Configurations

A highly nra.ihhle Cheyenne configuration is built from two or m -
extended service processor, mass storage, and client communjcatjonsor}?afdb:rg:;ysms' an optional

The Stone systems are identical to those used for the standard confi i system

within 8 Cheyenne are tied together usiqg the CI bus. The Cheyeni‘;r?vt;?ﬁ]sc'md,rh; fﬁ.::d amon;
the Stone systems during nm-ma]‘op.arahon. If a Stone system fails, its workload is reassigned
to the remaining Stone systems within the Cheyenne; client systems see a momentary glitch, and
many outstanding transactions are aborted. The client systems can immediately resubmit their
transactions, usually transparently to both the transaction processing monitor and users.

The mass storage for highly available Cheyenne configurations is described in Section 48.3.4.

The client communications hardware for highly available Cheyenne systems is identical to that for
:hﬂ'.m :;ﬁgunuom. All of the Stone systems that make up a Cheyenne must be linked to each
ent sys .

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

4834 Mass Storage

The initial release of Cheyenne uses DSA-1 disks and tapes for mass storage. All DSA-1 disks are
supported, although we expect that only RA70 and RA90 disks actually will be used. The TAS0 tape
drive is the only tape drive that we expect will be used. Some systems may include optical disk drives
for backup and to store long-term journals.

DSA-1 devices can be attached to the Stone systems ina Cheyenne through either the HSX (Wildeat)
controller or the HSC controller. The HSX and HSC controllers can be used for system disks in all
wofigurations. Database and logging devices can be attached through the HSX only in standard
wnfigurations; highly available configurations require the HSC.

The CI busses used for Cheyenne mass storage must be used only to connect Stone systems and HSC
controllers; no VAX may be attached to a Cheyenne CI bus. In addition, only Stone systems that are
bound into the same Cheyenne system may share a CI. Further, all Stone systems in a Cheyenne
system must be connected to every CI that is used for mass storage, o0 that all Cl-based mass storage

is visible to all the Stone systems in the Cheyenne system.

484 Software Components

the software components used by Cheyenne. Some components exe-

™ : !
e following sections describe Stone systems that make up the Cheyenne system.

cute on client systems, but most execute on the

441 Components on Client Systems

Cheyenne components execute on client systems to provide acces
wmponents provide several functions:

* Access to Cheyenne databases through DDA
* Cheyenne system management, network managem

* Cheyenne diagnosis and maintenance

s to the Cheyenne system. These

ent, and database administration

These components are packaged as one or more layered p‘tﬂ;‘dﬁl;t Kits for the client operating system.
We expect to provide the following layered product kits a 1

* VMS full client

: lient.
This kit includes all three functions, ed for a VMS clien

packag

Cheyenrie Overview 48-11

. I~

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

* VMS run-time client
This kit includes only the ability to access Cheyenne databases from a VMS client system,

48.4.1.1 Access to Cheyenne Databases

This function provides application users the ability to run programs that access databqses ona
Cheyenne system. It includes the client DDA communications modules. It could also include a
number of end-user query tools (for example, an interactive SQL query processor or query-by-forms
utility), but these are more likely to be packaged as layered products.

Figure 48-3 shows the components necessary for an application program to communicate with a
Cheyenne system; client-resident Cheyenne components are highlighted. Rdb/Dispatch allows DDA
calls to be directed to any DDA-compliant database manager. The database communications (DBC)
layer provides the ability to remotely access a database. The reliable communications service (RCS)
layer concentrates multiple DDA sessions over a limited number of DECnet logical links.

Figure 48-3: Cllent-Resident Cheyenne Communication Components

Application Application
program program

Rdb/Dispatch

Communications

Reliable Communications

i)

DECnet/VAX

Cheyenne

OWPTER!
Es:;};fof these com_;l)onents could be used by all VMS DDA implementations, assuming that the DBC
Ln aﬁz 1:dn?t tailored sgemﬁca.l]g to Cheyenne. If these components became common, they would
e packagec Into a generic VMS "DDA run-time” kit. In this case, th rould o need for 8
Cheyenne VMS run-time client kit, » there would be no n :

48-12 Cheyenne Overview

s

r *

D
Igital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

8412 System Management! and Database Administration

Because the distinction between system m
in §) anagement and datab ini :
: it i _ atabase] i
S ks s o o o oo ane ke o b et S
b - .po nts u to implement remote system mana eme tlgu;e l_-;ag:-mlmw5 ey
istratio ons. System management and database administration Eom;:neanr;s ::etah.i h.]iaﬁ]t:;ldm
ghhg .

Figure 48-4: Cheyenne Remote System Management

SOt VAX Client VAX
Cheyenne remote
system management Cheyenne remote
system management

uses Intertace
user Interface

VAX/VMS RPC VAX/VMS RPC
DECnet/VAX DECnet/VAX
Local Area
Network
DECnet/Mica
Mica RPC
implementation
System Database
Management Administration
Cheyenne
CHAPTER-Z

ce program fulfills several purposes:

k management, and database ad-
d-line interface and an interactive

The Cheyenne remote system management user interfa

e Lo system management, networ
nterfaces are available: a comman

It provides the user interfac
ministration functions. Two1
DECwindows interface.

* It is the means by which the PRISM diagnostic monitor is invoked.

ogram may be implemented as several programs,

The remote system management user interface pr

led together to act as one

Cheyenne Overview 48-13

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

The client resident user interface uses remote procedure calls (RPC) to communicate with thg 8ys-
tem management and database administration components on Cheyenne. The Cheyenne-resident
components perform the actual system management and database administration fuqctmns; the user
interface directs which functions are to be performed. The user interface can also direct commands
to any or all of the Stone system in a Cheyenne system. Most system management functions are
directed to a specific Stone system. Database administration functions can be directed to any Stone

system in the Cheyenne system.

48.4.1.3 Database Tools

Users will be provided with many different tools for creating, manipulating and tuning Cheyenne
databases. These tools fall into several classes:

* Generic DDA tools

Generic DDA utilities can be used with any DDA-compliant database manager. Thg.-y communi-
cate with the database server through DDA. These tools include query processors (like SQL and
Datatrieve) and data manipulation language preprocessors.

Most, if not all, of the generic DDA tools are packaged as layered products on the client operating
system.

* Cheyenne DDA tools

Cheyenne DDA tools are utilities that are specific to Cheyenne, but communicate with the server
through DDA. An example is a data definition language (DDL) compiler. Although it is entirely
possible to create a generic DDL compiler, Cheyenne probably will include its own DDL compiler,
providing database administrators with the means to specify Cheyenne-specific tuning parame-
ters when creating databases.

* Cheyenne database administration and tuning tools

These tools are utilities that communicate with Cheyenne using remote procedure calls, and
are accessed through the remote system management interface. They control such functions as
server resource allocation and server-wide tuning. Because these functions apply to the server as
a whole and not to any specific database, they cannot use DDA to communicate with Cheyenne.

In addition, because the functions being performed are so specific to Cheyenne, it is unreasonable
to burden DDA with them.

48.4.1.4 Communications

All client/Cheyenne communications is layered on top of DECnet Phase V. The following transports
are supported:

* NI (Ethernet)

* CI (computer interconnect)

We will not support DECnet/CI for the first release of Che
' yenne because of the r grmance
of DECne_t/VAXs ‘CI support. Because DECnet/VAX is actually faster over thm'l l:;!\:fn on the
CI, there is little incentive to support DECnet/CI until performance improves.
Three forms of client/Cheyenne communication are supported:
* DDA

This is used by client applications to

access Ch -
of remote system management. eyenne databases. It is also used for some forms

48-14 Cheyenne Overview

S D

L [N

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

Cheyenne provides an efficient mechanism for trans i
; cient mechs porting DDA
server. 15 ghuncle;ljllt l%; time if this mechanism is un.iquge to Ch:;%ﬁf:s o?i?i? vﬁ%n;xm?:
m _ f::p:) é ét:;l lc.::‘ gieﬂ:nk:;e élr?gemgtatti;n mul}t;iplexes multifﬂe DDA sessions over

: — nating the overhead of logical link creation that is
present in the current remote DDA implementation, and using fi essage exchang

_ _ tion, g fewer m to

between the client and Cheyenne than in the existing protocol. This layer is alsso reb:ponsible t%i
identifying client processes to the Quartz software for security authentication.

+ Remote Procedure Call

Remote procedure calls are used to link remote system management, diagnostic, and database
sdministration components with their counterparts on a Stone system.

+ Network management through NCL

This allows the network manager to manage the Mica DECnet implementation from remote
gystems.

#42 Components on Stone Systems

Most of Cheyenne's software components execute on the Stone systems that make up the server. This
section briefly describes those components.

48421 Quartz

The application that runs on Cheyenne is a DDA-compliant database manager called Quartz. It
implements a superset of Codd’s relational data model, as specified in the DDA specifications. Be-
cause Quartz is DDA-compliant, user applications are transportable between Cheyenne databases
and databases managed by other DDA-compliant database managers.

Quartz is divided into several major components, each of which is further subdivided. Several
overview documents detailing the design of the database manager are available from the Quartz

group. The major components of Quartz include:
* Query preparation and metadata manager

This component is responsible for converting D_DA_request,s into internal forms. Part of this
translation consists of choosing a general optimization strategy for executing the request. The
metadata manager is responsible for managing precompiled requests and the metadata (that is,

database definition) associated with the database.

Query execution

The query-execution component con sists of a scheduler :mc:e vaﬁ&t:ss:las?;o&:l ggzgt;rre?ﬁaut]ii%
The query scheduler evaluates the general execution strategy _ 5
mm:onegl and determines what resources are to be dedicated to executing the query. The

relational operator modules are threads that perform one or n::: a:l:tiona] l;)p:gté:nti (for
example, join, projection, selection, an). Relational opera el t.awrtedm erﬂ i smbause
scheduler when it detects that a sufficient number of -t.uples ar:l avmdamzulm i p
cost. Several relational operators can be executing in parallel, an pelined

between relational operatlors.

* . Client DDA communications " =
The client communications module accepgissethg a:a;ﬁg:;-;:;l mugn c:zpomnt; ;:gﬁgx;on
components. Most message types are para

' t.
data messages are always passed to the query-executnon componen

Cheyenne Overview 48-15

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

Quartz has other components not mentioned here. For example, Quartz monitors the hardware con.
figuration, because the execution scheduler needs this information. Another example is the &at.ah_a.w
administration component, which includes the ability to create databases, move them around, adjust
various tuning parameters, back them up, restore them, enable afterimage journalling, disable jour.
nalling, and so on. See the Quartz design documents for details of the design of the database manager,

48.4.22 Mica Executive

The full range of capabilities present in the Mica executive and kernel are used in Cheyenne, with
the possible exception of object security. Quartz is highly dependent on several features of Mica:

* Symmetric multiprocessing

* Multithreading within a process

* Shared memory between processes

¢ Hierarchical fault management architecture

* Configuration manager, error logging, and associated support throughout the executive
* Mass storage I/O, including disk shadowing

* Remote procedure call (RPC) facility

* Interprocess communications facility

* Reliable communications service

Because Cheyenne is a closed system, there is little reason to make use of Mica’s object-based security.
If all the interfaces into the system (that is, console and DECnet) are secure, we can take advantage
of the added speed that results from not using object-based security within the system. This does

not mean that object-based security should not be implemented, but that Cheyenne will probably not
make use of it. .

48.4.23 System Management
Several major system management components run on the Stone systems in a Cheyenne:
* System management server
This is the remote procedure call server that executes system management functions.
* System management command-line interface
This is exactly the same component that runs on client systems. It implements the command-

line interface to system management, diagnostics, and database administration functions. When

§ ows interface i rted h the
console terminal, because the console terminal is a characwr-c;f%;iﬁl:::tj i i

Providing the command-line interface on the console termi i i '
: rminal makes it possible for secure sites t
dlsa}_ale remote s;tst.em management, Note that most sites can be ex; po toe n:e - gxun:ied
- Service processor; such sites can run both system management interfaces from the extended

service processor.
* Configuration manager and fault monitor

See Section 48.4.2.6 for details of these components,

48-16 Cheyenne Overview

' B T e

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

18424 Network Management

Cheyenne makes extensive use of the following Mica network components:
+ DECnet Phase V

tﬁf: :s highly dependent on DECnet Phase V. Cheyenne requires the foll owing DECnet Phisse
/ features:

— Multiple-rail support
— Virtual-circuit failover to alternate paths
+ DECnet/NI

For the first version of Chgyer_me. it is likely that all client/server communications will take place
over _Lhe NI lEthame_tl. Mica implements DECnet Phase V, which allows us to take advantage of
multiple Nls to provide greater throughput and availability between clients and Cheyenne than
is possible under DECnet Phase IV.

+ DECnet over the CI

The CI bus provides considerably higher throughput than the NI. Unfortunately, the DECnet
VAX support of the CI is marginal at best. Although it appears that the CI should be the
interconnect of choice between clients and Cheyenne, we will not use it for the first version of
Cheyenne. The Cl will become a practical interconnect when the DECnet/VAX performance is
significantly improved.

* Reliable communications service
RCS is the layer between DBC and DECnet. It multiplexes multiple DDA sessions into a few
DECnet logical links. It also identifies client processes to Quartz software for authentication
Purposes.

* Remote procedure call support

Remote procedure calls are used between the system management interfaces and the system
management server. The use of RPCs provides a layer of insulation between c.h.ent systems
and Cheyenne system management. This layer will yield us considerable flexibility when we

interface new client operating systems to Cheyenne.
ystem and between Stone systems)

* Interprocess communications (both within a Stone s

Chey ' interprocess communications mechanism for use both within, and between,
Stmi: :;::E:::‘ d’l?‘;n:nmechfmsm is based on half-duplex message queues. There arel two ty?:ﬁ
of message queves: sources and sinks. A source message queue 18 conrl;ected toee;%rct y glx;e :;nk
message queue. All messages sent to the source message queue may be receiv Omasofﬁmd
message queue. A sink message queue may have one or more source message queues a

with it
Local message queues are designed to allow message
copying them. This is accomplished by passing the m

y CI to pass mes
mote message queues use SCA over the
1o use the SCA block-data services to transport messages.

s to be passed between processes without
essages in shared memory segments. Re-
sages. The interface is carefully designed

* Distributed name service - ctrib A N RO
= - riou .
ts DECnet Phase V, it requires access to a dis ted
Because Cheyenne implemen enli?)' 2&31. systems in the network.

The name server is used to id

* Distributed file service :
- rvice processor runs
i ide of the distributed ﬁl_e service. The extended se thp i

Cheyenne runs the client side - allows Cheyenne to access the co

the server side of the distributed file gervice.
device on the extended service processor:

Cheyenne Overview 48-17

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

48.4.25 Transaction Management

¢ $hs in distri ions. Such transactions may only
It is clear that Cheyenne must participate in distributed transactions _ 3
involve two nodes, the client and the Cheyenne server, or they may be cons:derably_ more qlmp_lex
An example of a complex distributed transaction is a retail and:-of-day mll:up operation. This might
involve reading sales records from a set of cash registers, updating centralized ﬁn&_ﬂf_ﬂi:l records, and
updating stock records kept at the same site as the cash registers. This is a nontrivial application.

To participate in distributed transactions, Cheyenne must implement a distributed two-phase commit
protocol. Because the vast majority of distributed transactions are quite g:mple, 1t is necessary that
Cheyenne be able to participate in a distributed transaction as the commit coordinator. Because we
must support distributed transactions involving more than one Cheyenne, Cheyenne must also be
able to participate as a leaf node.

Mica provides Cheyenne with sophisticated transaction management and logging services. These
services are initially only used by Quartz. We expect that they will be used by other facilities in
future versions of the product (see Section 48.6.2).

Mica provides both local transaction services, and the ability to in_teract with remote transaction
managers. The local transaction services are procedure-based. Mica communicates with remote
transaction managers through the yet-to-be-defined corporate distributed transaction management
protocol. This protocol defines the interactions required and allowed between distributed transaction
managers.

48.4.26 Cheyenne Diagnosis and Maintenance

Cheyenne diagnosis and maintenance functions are performed mostly while the system is still run-
ning. Hardware maintenance of a highly available Cheyenne may require taking down one of the
Stone systems in the server, but the server remains available through the remaining Stone systems.

Diagnosis is performed with one or more of the following tools:
* Automatic diagnostic tools

These tools always run while the Cheyenne server is up. They constantly monitor faults, and
record and attempt recovery when faults do occur.

— System error and event log
This log is maintained by Mica on a disk. It contains the following types of information:
* System configuration

* Significant media events (for example, disk mounts and dismounts, tape volume mounts
and dismounts)

* Arecord of every fault experienced by the system (for example, machine checks, software
bugchecks, disk errors)

* A record of configuration changes (for exampl) s,
controller failovers) g ple, shadow-set counterpart replacemen

— Automatic configuration management running on Mica

patterns to attempt to predict hardware fail . i $
such predictions onto the configuration manager, :

The configuration manager responds to external even
uration changes and predicted device failures
ration to minimize the effects of such failures Finally,

other software (for example, Quartz and the exte
changes and nonrecoverable faults. . e

48-18 Cheyenne Overview

R

-

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

— Automati : : X .
g ‘:rnnuc symptom directed diagnosis (SDD) running on the optional extended service pro-

The extended service processor is an option that is present if the site has i

from DIGITAL. CSSE will supply various SDD tools that will analyze fault gams;ﬁc;
failing field-replaceable units. These tools may also be able to predict field-replaceable units
that will soon fail. The CSSE SDD tools are considerably more sophisticated than the fault
monitor provided by Mica. The extended service processor will also send failure predictions

to the Mica configuration manager. This gives Mica the opportunity to al figurati
to minimize the impact of the am.if.:ipat.e%l.j hardware failﬁre. ad —ph e

— Execution of self-test diagnostics

Each Stone compopent. includes an automatic self-test. This self-test is run when the system
is .powared up. Mica can also request execution of some of the self-tests. Components that
fail self-test are not configured into the system when it boots. The self-test failure is recorded
in the system error and event log when the system configuration is recorded.

— Execution of background diagnostics
Idle processor time is soaked up by nondestructive diagnostics that run at low priority.
* Manual diagnostic tools

Most problems are expected to be found by the automatic diagnostic tools. Manual tools are
provided for those problems that are not caught by the automatic tools.

Most of these tools run under the PRISM Diagnostic Monitor (PDM), which is supplied with Mica.
The PDM. in turn, executes under the system management user interface. Thus these tools can
be run through the remote system management interface, or locally through the console. PDM
can be used from the console in both the on-line and off-line environments.

— Manual analysis of the system error and event log

An error log-formatting program is provided to view the error log. T'_he program can format
and display any error-log record. It can also apply elementary selection criteria to the error
log (for example, choose records based on time, device, device class, and record type).

— Execution of on-line and off-line diagnostics

i] i i i llers and
On-line di tics are mostly used to exercise and functionally test VO contro ;

pe';;;::ml:.‘n'le}:e:: dingnostici execute under the PRISM Dl_agnostlc Monitor. All on-line
diagnostics allow Cheyenne to continue running. Some require that the_devme under test
be dedicated to the diagnostic. Others allow the device under test to continue to be used by

Cheyenne. Lars
) i i i : d may arise for off-line

-1 d off-line diagnostics are the same The nee ’ :
L?nt:no;:t::::;‘;:nmg:o:!;»e run with other activity on the system. These diagnostics n?i? mtz
on the off-line Mica system, & stripped-down Mica that supplies only mug_h fux(?l;ho xamtyle
run off-line diagnostics and perform elementary system management ctions (for example,

off-line backup and disk verify).

— Execution of standalone diagnostics o . =
' j i ics used when the hardware cannot fica. The
3:::::.‘:2: ::: ﬁﬁiﬁi&:ﬁ%ﬁn@dﬂm self-sufficient. Standalone diagnostic execution
is controlled from the console. P2
: : i d Quartz software. Software updates are app
idz\urse maintenance mvotl_l::: u::;lgg:i}:_i hrgbc:oz?ng%%e Stone syst»e:l}ll boChtake e:fr?:‘:;rv Fi:ch Stqng
'?“:; ir?;e,é.hfymm'r:eanyswﬁl is updated, one after the other. Thus the Chey remain
available while its software is being u

Cheyenne Overview 48-19

e e

FEEEEIIESIIIIIIIIIIIIIITTTRTTTTTTT -

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

i i garding the tools that will be provided for altering Cheyenne software,
gfleozrtlrg:estil: ntom;:oa:r:p;er;o tools, and to require that crash dumps be sent to Englnemng for
analysis. The other extreme is to provide a suph.iat:imtgd 'cmsh dump analyzer, symbolic debuggers,
internals documentation, and training to software specialists, or even customers.

Regardless of what is shipped with the product, Mica and Quartz development require the crash
dump analyzer and debuggers. Three debuggers are being built:

* Delta
This is an elementary high-IPL kernel debugger. It is not symbolic; its interface is through the
console.

* Pdebug

This is an interim remote symbolic debugger based on VAXELN's EDEBUG. It does not allow
high-IPL debugging, although it does allow both user-mode and IPL 0 kernel debugging. Its
interface runs on a client system and uses DECnet to communicate with the server.

* SDT debugger

This debugger is being developed for use with the Glacier compute server. It is a sophigticated,
easy-to-use, remote, user-mode debugger. It may also allow IPL 0 kernel-mode debugging. The
user interface runs on a client system and uses DECnet to communicate with the server.

48.5 Special Challenges

Cheyenne poses several significant technical challenges that must be solved if it is to be success-
ful. These include achieving high availability, support, testing, and meeting internationalization
requirements. The following sections discuss these challenges in more depth.

48.5.1 Achieving High Avallability

One of Cheyenne’s most significant features is that it provides highly available access to its databases.
?—ﬁgh availability refers to the ability for an application to start a transaction at any time. Cheyenne
is also highly reliable. High reliability assures applications that once they start a transaction, there
is a high probability that the transaction will be able to run to completion.

The availability goal for Cheyenne is 100%. CSSE defines an unavailable database as one that an
application must wait at least two minutes before it can start a transaction that accesses a database.
The goal is for applications to never have to wait more than two minutes to access a database, Because

hardware occasionally fails, as does software, Cheyenn the fi : : that
databases remain highly reliable: yenne uses the following techniques to ensure

* Replicated hardware

Much of Cheyenne’s hardware is replicated,
usually fail over to backup hardware witho
hardware include disk shadowing, dual
of multiple processors.

greatly increasing system reliability. Cheyenne can
ut aﬂ'es:tmg any transaction. Examples of replicated
-porting disks to multiple controllers, and the presence

_ Some failures of replicated hardware may result in reduced

48-20 Cheyenne Overview

J

rf——‘

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

The Stone systems in a Cheyenne are interconnected usin. i

] the CL. F : pecti
Stone systems are independent of one another. Only the int;gerprooess cr::mhl?ncfc:g:: tmn::étg:
management, Quartz, DECnet, and possibly system management components need be aware that
the Stone systems are all part of the same Cheyenne system.

Mica's interprocess communication mechanism operates direct] is i :
anism by which software on one Stone system communicates aidwmft&sﬁfhﬁoﬁ;%n
the other Stone systems in the Cheyenne. Although the interprocess communication software

is able to communicate with the other Stone systems, it is otherwise unaware and unconcerned
that the Stone systems are cooperating to form Cheyenne. '

The transaction management software is one of the primary com i

_ ponents that tie the Stone
systems into one database server. Two-phase commit protocols are used extensively to coordinate
updates made on behalf of a transaction by more than one Stone system.

Quartz software is w'hntl makes the Cheyenne highly available. Although Mica provides various
tools that Quartz uses, it is Quartz’ responsibility to recover from the failure of a Stone system.

DECnet is used to communicate between client systems and the Stone systems in Cheyenne.
DECnet and RCS collaborate to make the Stone systems appear to DBC as one database server.

There may be some system management functions that need to be performed on all the Stone
systems in a Cheyenne, rather than just on one Stone system. The system management user
interface fans out such requests to the appropriate Stone systems. The system management
server is unaware and unconcerned that the Stone systems are cooperating to form Cheyenne.

* Fast restart

Although we are building the most reliable hardware and software we can, there will be times
when an entire Cheyenne system crashes. This may be due to power failure, or may be due to
a software error. Regardless of the cause of the failure, the Stone systems in a Cheyenne must
restart and be ready to accept new requests in under two minutes.

This fast restart places significant constraints on how Mica software is designed. For example, it
is not practical to mount disks serially; instead, Mica mounts disks using as much parallelism as
the disk controller hardware will allow. Decisions like this are widespread in the system. Each
must be handled in a case-by-case manner, but parallel algorithms are usually used to meet the

two-minute restart requirement.

4852 Support

i icati icati rded as
Cheyenne's pri , target market is OLTP applications. Most OLTP applications are rega
m¥m11 ﬁ;;?;:)uonfup to now, most commercial applications have been built on top of other
vendors' offerings, with IBM being the primary vendor in the commercial glata pmcessmglm[?rrﬁ?-
place. DIGITAL has not had a strong presence in commercial data processing. Instead, DIG s
strength has been in scientific applications.

i idely from those of most scientific
The expectati al customers for support differ widely | .
m‘tomm ulg:!n:n:ioﬁzﬁms provided a very high level of support toits largl.e wmb?ei?&ale:‘;foitg{
Thus mppﬁr% l.'tu included on-site software and hardware support personnel; pro

: . i to gracefully recover from faults
installation; guaranteed fast problem response, products deslgqsec}ndustw: anc{ so on. DIGITAL, on

tad :] les staffs familiar with the customer . ' L, on
the ﬂmd‘? ﬁ:@:dm'?f;u provided off-site support personnel; falult-;ntolera:t ﬁ?or;dgpitéi 'E:L
smaller, less-specialized sales staffs. OLTP customers will expect_:g:] 1211;3?3, bt DECHTAL
milar to that they have come to expect frorf II?EM. This poses speci

manufacturing, support, and sales orgamzations. : e .
g ot ot e oy sl A T

3) e ¢ v ' i
xzif;mﬁ'wﬁ-ﬂ;;ﬁﬂﬁ?:,3',,&%22;'3 ?.hus the customers’ support needs. Support
uce e €

needs are further reduced because Cheyenne 13 DDA-compliant, allowing Cheyenne to be used w1

Cheyenne Overview 48-21

@

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

existing applications and tools, and allowing customers to take advantage of their familiarity with
existing DDA products.

There will need to be a way to quickly fix bugs for customers. Most DIGITAL products rely on
workarounds and FCOs to gx ha‘.lrdwage problems, and workarounds and updates to fix software
problems, Because Cheyenne is a closed system, there is a good chance that workarounds will be
less applicable as short-term fixes than in existing products. Hardware changes have inherently long
lead times, so Cheyenne will require a fast way to transport emergency software updates to customer
systems.

The sales and support organizations are faced with a challenge: the need to evolve new methods for
selling and servicing Cheyenne systems. They will be competing head-to-head with vendors that are
already familiar to the customers, whereas DIGITAL will be the new guy on the block. DIGITALs
OLTP offerings will have to be perceived as clearly superior to other vendor’s products if they are to
gain market share.

48.5.3 Testing

Cheyenne's reliability and availability goals exceed those of any other major DIGITAL product, Meet-
ing those goals will be difficult; demonstrating that we have met them will be even harder. The
following strategies are used to meet these goals:

* Development of a comprehensive test plan for each Mica and Quartz component

These plans cover functional testing (including stress tests) and regression testing. The develop-
ers working on the components are responsible for implementing the tests. Once built, the tests
become part of the permanent Cheyenne test suite.

* Development of a comprehensive test plan for single and multi-Stone Cheyenne configurations

This plan includes functional testing, stress testing, and fault-insertion testing. Special emphasis
on fault-insertion testing will help ensure that the multi-Stone failover capability works.

* Development of a system performarice testing strategy

This serves two purposes: providing exercisers to stress test the system, and providing much-
needed benchmark data for the sales force,

Testing is such an important facet of the overall Cheyenne program that all developers will partic-

pate. Additionally, the Mica and Quartz development groups each have subgroups dedicated to the
testing function.

48.5.4 Ease of Use and Internationallzation Requirements

Cheyenne always acts as an agent of a client. For exam i

. nt. ple, Cheyenne will not spontaneously start
a transaction to roll-up the year end financial results. Instead, thJ:: year-end roll—up;appljcatjon runs
on a client system and runs requests on Cheyenne to query and update the financial database.

Cheyenne should appear to users as if it is an extension of the client system. This has two benefils

The similarity to the already familiar client system reduces training time and reduces mistakes

* - Eliminating the need to think of Cheye : . :
users to conceptualize Cheyenne. T}u};.l;ne arn, eikan 1o LCered entity makes it easies fix N6

=ik n turn, makes it easier to interact with and manage the

three classes of tools; each of the three classe

48-22 Cheyenne Overview

r—fi

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

¢« Geperic DDA tools

These tools are supplied as lay
various layered products.

+ Cheyenne-specific DDA tools

ered products, and thus conform to models appropriate for the

These tools are mainly used by database administrators. Because database administrators use
both of the other classes of tools, these tools follow the guidelines for the other classe::l

+ Cheyenne database administration and tuning tools

These tools are used by database administrators and system managers, and all share a common
interface style. Two types of interfaces are supported: a command-line interface, and an interac-
tive DECwindows interface. The command-line interface is chosen to resemble that of the client
system (initially VMS). The interactive interface is chosen to be easy-to-use and informative. As
such, it currently has no existing model in DIGITAL.

Each tool must conform to DIGITAL's internationalization requirements, Engineers must consider
both input and output internationalization requirements when designing tool interfaces. The manual
Producing International Products, available from the International Products Group, contains valuable
guidelines and suggestions for creating products that are easy to translate into many languages. In
addition, 8 paper containing specific guidelines for Cheyenne will be available in February to Mica
and Quartz developers. This paper describes the techniques to be used by developers to insure that
Cheyenne meets the International Products Group's requirements.

486 Related Products

461 Other DIGITAL Products

The following list enumerates many of the products that are related to Cheyenne:
e VMS

VMS is the primary operating system for VAX computers. It is the only system supported as a
directly connected Cheyenne client at FRS.

* DECnet/VAX
DECnet/VAX is the primary local- and wide-area network for VMS,
* ULTRIX-32

TRIX-32i i . It is gaining in popularity, especially
v . rating system for VAX computers :
lr:L the mii:ﬁ:n:;l;z:;p;m mgrgetplace. Although it 1s not supported as a Cheyenne client at

FRS, we expect that it will soon after be a supported client.

* DECnetULTRIX B,
DECnet/ULTRIX is a local- and wide-area network for ULgRD{t:S&s It provides the primary
means by which ULTRIX-32 systems communicate with VMS systems.

* Glacier 4 £
Glacier is a compute server based upon Moraine and Mica. Both Glacier and Cheyenne are being

ts.
developed in parallel and share a great number of cOmPonea

* Moraine :
wer, packaging, /O, memory, and
Moraine is the precursor to Stone. Stone uses the same po G s, while Btons

1 sSsor
console subsystem as Moraine, but Moramel uses scalar/vector proce
uses shadowed scalar/scalar processor modules.

Cheyenne Overview 48-23

Diglital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

* Rdb/VMS

b/VMS i liant relational database management system. It is packaged as a
ﬁgered pr:::hfctDzA\X'oﬂlg?MS covers the low end of the relational database marketplace
for VMS. Cheyenne covers the middle-to-high end.

* Rdb/Star
i i istri DDA-compliant databases,
Rdb/Star is a product in development that supports true, distributed, p
It will allow applications to access databases implemented on Rdb/VMS and Cheyenne.

¢ VIDA

VIDA is a DIGITAL layered product for IBM and VMS systems. It allows IBM-reside:nt applica-
tions to access DDA databases. VIDA accesses Cheyenne databases through the SNA gateway
software running on a VAX.

* ACMS

ACMS is a transaction processing monitor for VMS systems. It it a DIGITAL layered product.
ACMS applications will be able to access Cheyenne databases.

* Intact

Intact is another transaction processing monitor for VMS systems. It is currently under devel-
opment as a DIGITAL layered product. Intact applications will also be able to access Cheyenne
databases.

* Datatrieve and others

VAX Datatrieve is a fourth-generation query language processor running on VMS. It, along with
similar products, allows users to generate ad-hoc queries against DDA databases.

48.6.2 Future Versions of Cheyenne

The first version of Cheyenne is a DDA-compliant relational database server. No user application
programs execute on Cheyenne. Version 2.0 of Cheyenne will continue to act as a database server,
but it will also run a transaction processing monitor. User application programs will run under the

transaction processing monitor. There will not be any provision for interactive programs (there will
not be a command-language interpreter).

The development environment for the first two versions of Cheyenne is VMS. Other development
environments may be added (for example, ULTRIX). Neither of the first two versions support general

interactive timesharing or batch-mode execution. Cheyenne will not host a development environment
until Version 3.0, at the soonest,.

Some of the many component improvements expected in the second version of Cheyenne include:

* RMS—Support for additional file or
recoverable files

ganizations (for example, indexed file support), support for
* DECnet—Support for use of the CI as a LAN

* RPC—Support for heterogeneous systems

* DFS—Support for DFS Version 2.0

* Quartz—Improved performance an

d reliabili : " . d
Coakibly) alteinitize tata-modeie reliability, along with support for additional data types an

48-24 Cheyenne Overview

- _—

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

48.7 Issues and TBD

1. Client/server communications

The model for client/server communications is not clear, The distribution of functions between
the database communications and RCS layers has yet to be done. In addition, the corporation’s
recent efforts in support of the Distributed Transaction Architecture (DDTA) make it possible

that the model for clientserver communication will be radically different that what is proposed
in this chapter

This issue should be resolved by 15 March 1988.

Cheyenne Overview 48-25

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

CHAPTER 49
TRANSACTION SERVICES

49.1 Overview

This paper summanizes the transaction services for the Mica operating system, which provide the
following functionality:

+ Common logging support with log checkpoints
+ Basic transaction control services (exec$start_transaction, exec$commit_transaction, execSabort_
transaction) with Two-Phase Commit

¢ Recovery from the common log after system failure

Note that in the processing of commit, abort, log checkpoints, and recovery, the Mica services are
only providing the central control; facility-specific processing of these events is coordinated by Mica,

but always performed by the facility itself.

For the FRS products, this support would be shipped with the Cheyenne database server only. How-
ever, it will not be bound to the database server in such a way as to preclude its inclusion in a

subsequent release of the compute server or other Mica-based systems.

\This overview does not attempt to define or explain any of the fundamental concepts of transaction
processing. Please see the references at the end of this section. The chapter will ultimately attempt

10 be a little more self-standing.\

4911 Goals

The goals of the transaction services for Mica are as follows:

' i he recoverability and

* Pro hich, together with the Quartz software, support.a t _ it;

mf‘:i::n?:“r::q‘:?:m‘:nl; of Sxe Cheyenne database server, consistent with thlf deﬁ:;:rimn od’t:
the goals and requirements of the database server product. (For a summary of these goals an

requirements, see the Cheyenne chapter overview.)
* Support the recoverability requirements of other Mica facilities which will be present at both
FRS and beyond.

* Design these services in such a way
based TP platform.

* Attempt to define the structure _of the
policy or algorithms of the individual recov

processing.

as to allow Mica to ultimately become the basis for a PRISM-

in such a way as to not dictate the

transaction gervices G a
e nor to subsume any facility-specific

erable facilities,

Transaction Services 491

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

49.1.2 Functional Overview

Transactions are represented in Mica by transaction objects. The object architecture provides efficient
mechanisms for naming, identifying, and protecting transaction objects. The object ID is used for
fast access to a transaction object within a single system. For distributed transactions, a global
transaction ID is used as the name of the transaction object, which is formed from the coordinator
node identification, and a serial number for that node,

The standard ACL-based protection mechanism of the object architecture may be used to protect who
can control or write log records on behalf of a transaction; or else a dedicated system like Cheyenne
may eliminate protection checking by simply not using ACLs,

The object architecture also provides a very efficient and protected interface to the transaction con-
trol services: effectively, a synchronous call to a procedure in kernel mode. The use of a synchronous
interface dictates an implementation utilizing a large number of threads, each servicing only one
transaction at a time. Threads and transaction objects do not have to be created and deleted for each
transaction. A large transaction system may use hundreds of threads, each creating its own transac-
tion object during initialization, and reusing this transaction object to service successive transactions.
These threads may all being driven off of shared transaction request queues.

This thread-based design is consistent with the philosophy of Mica. Note the following benefits over
a solution where threads service multiple transactions in parallel via ASTs:

* Maximal parallel processing is utilized in a large multiprocessor system with a thread-based
solution. An AST-driven solution introduces unnecessary serialization when a number of ASTs
are queued to a single thread.

* Given the knowledge of when threads commit transactions, the kernel can distinguish short-
running transactions from long-running ones, and optimize scheduling in transaction systems,
by decaying the priority of long-running transactions, and restoring the priority on commit.

* Transient faults handled by Mica, such as nonrecoverable machine checks, may be limited to
affecting at most one transaction at a time.

* The coding of transaction programs is greatly simplified, through the use of straightforward
sequential programming,

The central support for the Mica transaction services is implemented by two components: the trans-
action object service routines and the recovery manager. Figure 49-1 depicts these two components,
and how they fit into Mica with transaction programs and recoverable facilities.

The Mica transaction services have two types of clients: transaction processes and recoverable fa-
cilities. In some cases, such as the Quartz processes in the database software, these two processes
may be one in the same. Both transaction processes and recoverable facilities call the transaction
services, In addition, recoverable facilities receive asynchronous "calls” from the transaction services
via message queues. \The exact queueing mechanism is TBD.\

The interface between transaction processes and recoverable facilities is not dictated by the transac-
tion services, but rather, determined by the recoverable facility. Recoverable facilities, when separate
from the transaction process, will typically be protected subsystems.

The file system in Figure 49-1 is the normal Mica ODS-2+ file system. (The file system may also
interfaces to the transaction services as a recoverable facility, but this is not shown.)

The transaction services and recovery manager are capable of supporting multiple recovery systems
at once. A recovery system is a set of recoverable resources serviced by a set of recoverable facilities
and a log file. Thus recoverable facilities must also expect to be called for multiple recovery systems.
For performance reasons, there is normally only one recovery system per Mica system, but multiple
recovery systems may run on a single Mica system after failover of one of the recovery systems from
another Mica system.

49-2 Transaction Services

—7

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

Figure 48-1: Transaction Services Block Diagram

TRANSACTION TRANSACTION RECOVERABLE
PROCESS RECOVERY
2 RECOVER PROCESS FACILITY
RECOVERABLE
FACILITY

TRANSACTION
OBJECT
SERVICES

FILE SYSTEM

The following sections present a brief discussion of the transaction object service routines and the
recovery manager.

49.1.2.1 Transaction Object Service Routines

The transaction object service routines provide a set of procedures called by both transaction threads
and recoverable facility threads. In addition, the transaction object services notify recoverable facil-
ities of asynchronous events via predeclared message queues.

Transaction threads call the transaction services for exec$start_transaction, exec$commit_transaction,
and exec8abort_transaction. Recoverable facilities call the transaction services to write log file records,
declare message queues, and signify completion of operations requested via the message queues.

The message queues are used to effectively “call” recoverable facilities with events related to trans-
actions, checkpoints, recovery, and maintenance operations.

Transaction Services 49-3

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

49.1.2.2 Recovery Manager

The recovery manager is a process responsible for performing the initial start of a new recoverable
system, as well as starting and performing recovery for an existing system after graceful shutdown
or system failure. RMS is used only for opening and closing these files; special-purpose log file record
access is implemented by common routines used by both the recovery manager and the transaction
object service routines. Log file writes occur directly in kernel mode in the transaction object service
routines.

For the recovery case, the recovery manager coordinates recovery from the log file.

49.1.3 Algorithms

This section briefly specifies the central algorithms that have been chosen to implement logging and
recovery.

49.1.3.1 Redo and Undo/Redo Logging

The techniques that have been chosen to implement atomicity of transactions are Redo and Undo/Redo
transaction logging. The database software will use Redo logging. The file system and ultimately
RMS index files are candidates for Undo/Redo logging. These two techniques can be mixed in the
same log file without an adverse performance impact.

The log file is a large file written cyclically; when the last record that fits is written to end of the log
file, the next record is written at the beginning of the file, overwriting the first record from the last
cycle. The file size will generally be quite large, so that it does not wrap for an arbitrary number of
hours. The log file is used only for short-term recovery by the recovery manager after a system failure
without media loss. It is not used for aborting or commiting transactions in the running system, or
as an after image (AI) journal for the recovery of lost disks from the last backup.

All exec§write_log requests are simply copied to the log file buffer and completed immediately. Commit
processing and exec$force_write_log calls require forced writes to disk. All forced writes are batched.

The use of process pairs for atomicity, as an alternative to logging, has been rejected, since process
pairs entail a much greater run-time overhead for a small improvement in recovery time. It is
also nearly impossible to build an efficient solution based on process pairs that makes recoverability
transparent to the transaction program writer.

49.1.3.2 Two-Phase Commit with Presumed Abort

The commit protocol which has been chosen is standard Two-Phase Commit protocol (2PC) with the
presumed abort (PA) optimization. This protocol dictates the interaction between the transaction
object service routines and all recoverable facilities within a single node during commit processing.
It also dictates the message protocol for commits in the distributed TP case where a transaction
modifies recoverable resources on multiple nodes in a network.

The presumed commit optimization to 2PC was rejected since it requires an additional forced write
on the coordinator.

49-4 Transaction Services

L T

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

49.1.3.3 Other Techniques
Following is a brief list of the other key techniques that will be employed:

A fuzzy checkpoint strategy is employed to periodically force the flushing of cache data managed
by the recoverable facilities. Checkpointing expends a little bit of extra run-time overhead for
the purpose of reducing the worst-case time to recovery from a failure.

Failover to a warm standby system is supported as the quickest way to recover from a system
failure. The standby system must have access to the log file disk(s) and all disks required by
recoverable facilities on the original system. Note that if the front ends are intelligent enough to
detect the failover and resubmit outstanding transactions, then no transactions will be lost due
to the failure, and the failover will be transparent. (Sequence numbers may be used to eliminate
duplicate transaction requests. Driving the transactions off of recoverable queues would be
another approach.)

Disk shadowing (with a run-time catch-up facility to replace failed disks) is used for redundancy
of the log file, and for redundancy of storage used by recoverable facilities. \Optimizations are
being considered which increase the performance to shadowed disks as well as solve the problem
of broken transfers at the time of crash without safe RAM.\

49.1.4 |Issues

The following list presents some issues related to the transaction services:

We need to define our distributed/multibox model. I propose that if a single, possibly fully-
configured system can deliver the required performance for a given application, and if another
system is being added for availability, then the transaction load should be handled by one system
with the other system as warm standby. A full distributed transaction model should only be
implemented for FRS if we cannot achieve our performance goals on a single system. \The
current performance estimates for Rock put us in the right ballpark for meeting our performance
goals in a single system.\

Based on current discussions, | am assuming that we are not attempting to implement centralized
locking. Thus, in a distributed system, or in a single system with multiple facilities implementing
their own locking, there is a potential for distributed deadlocks. Given the distributed deadlock
detection techniques proposed by Bernstein, et al., this may be acceptable. Alternately, a more
centralized locking strategy could be considered for a subsequent release of Mica.

This should not be a problem for the Cheyenne database system.

It would be convenient to rely solely on shadowing for redundancy of disk-resident data. If it
is necessary to implement recovery of a lost disk by applying an after-image (Al) journal to a
recent backup, then this Al journal is best written by the recoverable facility during its commit
processing. Ifit is decided for Cheyenne that the Quartz software must implement Al journaling,
then many things must be thought out very carefully, such as coordination of the Al journal and
the log file, resynchronization of the Al journal and log after normal recovery without media loss,
and recovery of lost media from the Al journal and subsequent resynchronization with the log,
and so on.

A distributed system requires a distributed security model. We do not have one now.

. I assume that the ODS-2+ file system must also be implemented as a recoverable facility. Is this

true?

Transaction Services 49-5

Digital Equipment Corporation - Confidentlal and Proprietary
Restricted Distribution

49.1.5 Bibllography

The first reference is the most complete and up-to-date overview I have seen. The second describes
two optimization techniques not found in Bernstein. The third is a short easy-to-read overview.

Bernstein, Philip A.; Hadzilacos, Vassos; Goodman, Nathan; Concurrency Control and Recovery in
Database Systems, Addison-Wesley Publishing Company, Reading, MA, 1987.

Mohan, C; Lindsay, B.; "Efficient Commit Protocols for the Tree of Processes Model of Distributed
Transactions”, Proceedings of the Second ACM Symposium on Principles of Distributed Computing,
1983. -

Gray, Jim, The Transaction Concept: Virtues and Limitations, Tandem Technical Report 81.3, Tandem
Computers Incorporated, Cupertino, CA, June, 1981.

49-6 Transaction Services

e i i o R s A DR S s R B o e

Compute Server

This set of chapters describes the compon
support.

ents of Mica that provide compute server

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

CHAPTER 50
GLACIER OVERVIEW

50.1 Overview

The Glacier compute server provides users access to the vectorized, parallel-computing, high-
bandwidth I/O environment inherent in the Mica operating system and Moraine hardware. Glacier
is explictly designed for applications that can be characterized by long mean time of execution, in-
tense CPU utilization, and/or large data sets. Such applications include circuit simulation, reservoir
simulation, finite element analysis, and molecular modeling.

The Glacier system can be viewed as a "compute accelerator” for the client system. The Glacier
software design is based on an integrated client/server interface through which applications can be
developed and executed. The system appears to the user as simply a higher performance client. This
characteristic of Glacier is referred to as seamlessness.

As an application executes, the underlying Glacier software (client- and server-based) interacts to pro-
vide window support, distributed file services, context services, and management functions, among
others. The client communicates with the server via DECnet using an Ethernet or Computer Inter-
connect (CI) link.

System management, operator communication, and performance monitoring and tuning facilities are
activated and controlled through the client system. This allows for flexible compute server manage-
ment. A remote operator or system manager can support multiple compute servers from a single
client system.

50.1.1 Goals

The Glacier product has a set of goals that extend the basic goals of the underlying Mica operating
system.

* Provide client/server integration such that server application activation is initiated from the
client system using standard client commands. Context established in the client enviroment is
communicated to the server during program execution.

* Provide a compute server programming environment that conforms to the Application Integration
Architecture (AIA).

* Support multiple operating systems as clients.
* Require no modifications to the native client operating system.

50.1.1.1 Client/Server Integration

The compute server is a logical extension of the client’s computing resources. The client and compute
server cooperate to provide the feel of a single environment to the user. This is accomplished through
the client’s user interface, bidirectional shared file access, and by providing server access to client
environmental context such as logical names. The compute server may have local file storage for
increased I/0 bandwidth.

Glacler Overview 50-1

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

50.1.1.2 Application Integration Architecture

The Application Integration Architecture (AIA) is designed to provide a system-independent represen-
tation of system services and high-level functions such as window management through DECwindows.
AIA includes basic system services such as math libraries and multiple thread support. Higher-level
services, such as RMS, and access to environmental context are also represented through AIA. The
application programmer is shielded from the internal nature of Mica system services. The result of
ATA conformance is application portability.

50.1.1.3 Multiple Operating Systems Support

The client/server interface is designed for support of multiple, heterogeneous operating systems. This
is accomplished by implementing a well-defined, extensible interface that ties the two enviroments
together. Those AIA services that require client support use RPC to call native services in the context
of the appropriate client. The extent of cross-system RPC compatibility factors into the ability to
support heterogeneous systems.

50.1.1.4 Client Modification

All Glacier client software is layered on the client without modifying the client operating system.
Modification of the client's native system would create complex dependencies between the client
operating system and the compute server. This would require Glacier software to be in lock step with
each client system software release or it would necessitate the negotiation of permanent changes to
the client operating system. Modification to the client system also makes the support of new client
operating systems significantly more difficult.

50.2 Target Customer Base

Glacier’s primary target market is the compute-intensive scientific and technical community, cur-
rently being served by vendors such as IBM and Cray, with strong inroads being made by Convex
and Alliant. Apollo and Sun are now entering this market as well.

Applications in the scientific and technical market cover diverse areas such as modeling, finite ele-
ment analysis, earth resources, and fluid dynamics. Although these applications span a wide variety
of scientific disciplines and program behaviors, some general observations can be made about their
computational needs, which include high performance program execution, fast and efficient vector
and matrix manipulation, fast I/O, multiuser access, security capabilities, and quality vendor support.

Although market analysis determines the types of applications that will run on Glacier, it does
not describe the people who will interact with Glacier. It is useful to consider how various classes
of Glacier users will view Glacier, in order to tune the system interfaces for them. The following
sections describe the ways in which these various classes of users will interact with Glacier.

50.2.1 Application Users

Today, some users run their scientific and technical applications on Convex, Alliant, IBM, and Cray
systems. Other users, at less affluent companies, run applications on less-capable systems, which
greatly increases their execution time. Still other users have access to supercomputing systems
through complicated gateway programs or procedures.

Application users are interested primarily in results. They expect a simple interface, consistent with
the rest of the often minimal command set they use, to request program execution.

When a Glacier system is installed, application users will notice only that their application programs
run significantly faster than previously. Job submission and execution will be seamless.

50-2 Glacler Overview

————-‘

T | . -

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

50.2.2 Application Developers

Application developers need to have some level of understanding of the Glacier system. Specifically,
they need to know the following:

* Significant system features that can be utilized to the advantage of the application

Developers may want to restructure the code to take advantage of vectorization and program
decomposition.

* Commands to compile and link programs targeted for Glacier

The Glacier client user will have access to commands which are compatible with the client oper-
ating system. For VAX/VMS, Glacier program development tools will be accessed with approved
DCL commands. Developers using ULTRIX client systems will access commands compatible
with the ULTRIX environment.

50.2.3 System Managers

A system manager is responsible for the hardware, software, and data integrity of the Glacier system,
and for administrative duties, such as maintenance of the user authorization database. To perform
these duties, the system manager must be aware of Glacier as an entity distinct from the client
system.

However, the interfaces by which Glacier is controlled are tightly integrated with the client environ-
ment, such that Glacier appears to the system manager to be an extension of the client system.

50.2.4 Operations Staff

Operators are responsible for the day-to-day operation of Glacier, with duties defined by the system
manager. Typically, operators perform backups and their storage, and may be the first level of
interaction with failing hardware components.

Operators interact with the Glacier system through a client interface, and, like the system manager,
view Glacier as an extension of the client system.

50.2.5 Software Support Personnel

Software support personnel are the first DIGITAL personnel that a customer contacts for support
and technical information regarding Glacier. The software support specialist will typically be called
on in two instances: for questions regarding program vectorization/decomposition and for problem
resolution in the event of system failures.

Providing quality customer support for vectorization and decomposition requires knowledge of the
concepts and mechanisms utilized within Mica and the language run-time libraries which implement
the underlying support for user programs. The specialist needs to be skilled in utilizing application
analysis tools such as PCA (Performance and Coverage Analyzer) as aids in resolving applications
problems.

In order to support difficult system problems, the specialist must understand the operating system
internals, including system design and synchronization mechanisms. It is expected, however, that
specialists will not provide on-site corrections to Glacier or Mica software; rather these fixes will be
generated by engineering once the problem has been identified and a solution developed. The modular
design of the Mica operating system and its extensive working design document will substantially
reduce the job of problem isolation.

Glacler Overview 50-3

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

50.2.6 Hardware Service Personnel

Hardware service personnel install and repair systems. They need to know how to install the hard-
ware configuration and the system software. In addition, hardware service personnel are responsible
for running the USE (User-level System Exerciser) to ensure correct system installation, and for
executing diagnostics to identify failing components when failures occur.

50.2.7 Internal Software Developers

DIGITAL internal software developers build software products for Glacier, such as language com-
pilers and run-time systems, and application analysis tools. Developers require complete functional
interface specifications to which they can build their software. Run-time debug and analysis tools
aid in debugging and verifying the correctness of the product execution.

Most software developers building products will utilize the Application Integration Architecture (AIA)
interfaces to the system to promote software portability across PRISM and VAX systems. Only a small
number of products, such as the debugger and performance analysis tools, require system interfaces
not provided by AIA or utilize direct interfaces to the operating system.

50.3 First Revenue Ship Applications

Although Glacier satisfies many of the computational needs of its target markets, it is imperative
that a suite of applications used within these target markets be available at Glacier FRS.

To address this need, a program is being put in place to insure that key applications from several
application segments are ported to the Glacier computing platform. Activities within central engi-
neering, the product marketing groups, and the field organization are critical to the success of this
program.

50.4 Glacier Components

The following sections describe the various components of Glacier, which include: client hardware,
client software, server hardware, and server software.

50.4.1 Client Hardware Components

The primary interconnect used by client system hardware to connect to Glacier systems is the Ether-
net (NI). DECnet and TCP/IP networking protocols utilized over the Ethernet provide a high-speed
interface to Glacier. For the FRS Glacier product, Ethernet and DECnet provide the only supported
network interfaces.

The CI will become the interface of choice when connecting large client systems (for example, VAX
8800) to Glacier and may be used for higher throughput for client communications than the NI can
provide. Glacier support for the CI will be provided in a subsequent release.

Other than the network interconnect, Glacier places no hardware requirements on the client system.
Other client system hardware components which may be utilized with Glacier include:

* Bitmap displays

- Bitmap displays on client systems supporting DECwindows may be used by Glacier applications
for high resolution display. To the end user, the application appears to be executing locally on
the client system.

* Character-cell terminals

Glacier applications may be started from character-cell terminals connected to client systems.
Application terminal output is directed to the terminal through the Glacier client system soft-
ware, providing seamless application behavior for the user.

¢ Mass storage

50-4 Glacier Overview

e R e

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

Glacier client systems need not contain large amounts of mass storage. The only requirement
for client system mass storage is storage for the Glacier client system software. Through the use
of distributed file services, virtually all other mass storage requirements can be satisfied by use
of storage on Glacier.

50.4.2 Client Software Components

Glacier requires a compute server client system to support several software components. These
components are layered on top of the client’s native environment. Several goals have been factored
into the design and use of these components:

* The Glacier components must not require changes to be made to the underlying client operating
system or to the software bundled with that operating system.

* The environment presented to the application user while using the compute server must appear
as nearly as possible like the native client system environment, Relevant context established
within the client system must be conveyed to the compute server during program execution.
These goals are the initial basis for seamless computing.

* The software interfaces between the client system and the compute server are based on either
corporate or industry standards. For example, DNA, RPC and DFS. This allows future client sys-
tems to be added with relative ease. Failing standards, the software interfaces used to integrate
the systems are closed, internal mechanisms which could be replaced by standard components
in the future.

50.4.2.1 Software Run-Time Environment

The application user’s run-time environment is at the center of the design for seamless computing.
Several software components aid in this integration. The cornerstone component is the client con-
text server (CCS). Its name indicates the primary function of the component: to deliver the context
previously established in the client system environment to the running application. For example,
logical name translation is done within the client context at the time the application running on the
compute server references a logical name.

A substantial list of context services are provided by the CCS. The goal of these services is to allow
the invocation and execution of the application program to proceed as if it were running on the client
system. Below is a partial list of services:

e Application activation
e Command line parsing
- Logical name creation and translation

» Standard input and output interaction for support of character-cell terminals, command proce-
dures, and batch file submission

= Application suspension and resumption via client interrupt (for example, CTRL/C)

e Debugger activation (typically, this service would not be used by the application user, but is
required by the application developer)

e . Client defaults such as current directory path and terminal type
. Status value manipulation including exit status emission
A second critical component is Glacier’s windowing software. This functionality is provided by

DECwindows using the industry-supported X protocol. DECwindows provides integrated, workstation-
based, client support, as well as application portability.

Glacler Overview 50-5

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

To round out the seamless environment, disk-based mass storage devices are reciprocally accessible
by the client or compute server system. That is, disks connected to the client system can be accessed
as if they were connected to the compute server. Likewise, disks directly connected to the server
may be accessed locally from the client system. The software providing this service is considered an
underlying mechanism. See Section 50.4.2.4.3 for further details.

504.2.2 Software Development Environment

The Glacier product provides a number of software development tools used to produce application
programs. These tools include a host of programming languages, a linker, a librarian, and a de-
bugger, among others. In general, these tools run directly on the Glacier system and are accessed
by client-based command interfaces. Using the CCS services allows software development to take
place using command syntax that is familiar to the software developer. While it is not an FRS goal
to provide seamless compute server interaction for software developers, the process used to develop
applications for the Glacier environment is very similar to that of the native client system. Exam-
ple 50—1 shows the compilation, linking and execution of a typical Glacier FORTRAN program in
the VAX/VMS environment. More details on the Glacier software development tools may be found in
Section 50.4.4.2,

Example 50-1: Typical Glacier Program Development

S FORTRAN/GLACIER APPLICSSOURCE :PROGRAM
S LINK/GLACIER/EXECUTABLE=APPLICSIMAGE :PROGRAM APPLICSSOURCE :PROGRAM
5 RUN APPLICSIMAGE:PROGRAM

Jote that the commands in Example 50-1 are for explanatory purposes only. The command qualifier
names are to be determined.

As with the application user’s environment, the application developer can use Glacier’s bidirectional
disk services to access source files or target output files.

50.4.2.3 System Management

All Glacier system administration is difected from a consistent system management user interface
(SMUI). In the FRS product, this interface is command line oriented. The interface may be accessed
from either an authorized client system or the Glacier system console. In future versions, the system
management user interface will support a window interface.

The Glacier SMUI incorporates many of the latest concepts in both local and remote system ad-
ministration. The interface presents a task-oriented approach to such problems as authorizing new
system users and configuring network topology. While this interface is not seamless with the client’s
system management interface, it is both culturally compatible with VAX/VMS functions and follows
the evolutionary path planned for VMS,

Below is a partial list of functions accessible through SMUTL:
* User authorization and authentication

* Configuration management

¢ Network management

* Performance monitoring

* Operator communication

* Diagnostics

* System backup and restoration

50-6 Glacier Overview

L R L W N SR B iy A i s i i el e e

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

50.4.2.4 Underlying Software Mechanisms

The Glacier system relies on several underlying software components that must be provided by the
client system for the layered Glacier software to operate correctly. These components are related
primarily to network communication.

50.4.2.4.1 Network Support

For a system to act as a compute server client, it must support either DECnet, using the NSP
transport protocol, or TCP/IP. For FRS, only DECnet-based clients are supported. Likewise, only
Ethernet (NI) connections are provided. Future releases may provide support for TCP/IP on the NI
connection and DECnet on computer interconnect (CI).

50.4.24.2 Remote Procedure Calls (RPC)

Remote procedure calls are the mechanism used to communicate between client and server systems.
For the FRS product, remote procedure calls are used as an underlying mechanism and are not
available for general application use. Once the corporate RPC architecture is in place, future releases
of Glacier will provide a general RPC facility.

The Mica RPC facility is designed to interoperate with the VAX RPC protocol. The VAX RPC facility is
used by several Glacier components in support of VAX/VMS client systems. These components include
the client context server, the system management user interface, and the performance monitor.

To achieve the goal of supporting a heterogeneous set of client systems, a common RPC mechanism
must be available. Currently, VAX RPC is only available for VAX/VMS, although a corporate RPC
architecture is being developed. A plan for migrating Mica RPC from the VAX RPC protocol to the
corporate RPC protocol will be executed to achieve corporate RPC interoperability.

50.4.2.4.3 Served Disks

Fundamental to Glacier's seamless environment is the ability to access client disk devices from the
server and to access server disk devices from the client system. This presents an integrated view of
system resources to the user. A user accesses the files located on a remote or "served" disk, as if the

device were connected to the local system.,

Two such facilities are in widespread use: Distributed File Services (DFS) for VAX/VMS systems and
Networked File System (NFS) for ULTRIX systems. Each of these facilities supports their native file
systems. For FRS, a DFS implementation for Glacier supports VMS client systems. Future versions
may use NFS to provide support of ULTRIX and general UNIX client systems.

50.4.3 Server Hardware Components

Glacier hardware platforms have several characteristics that address the requirements of the target
customer base:

* Hardware vectors

Hardware vectors provide the capability to operate on up to 64 elements simultaneously. Vectors
are utilized by compilers to significantly enhance the performance of programs operating on large
matrices, which are used by virtually all of the target applications.

¢ Symmetric multiprocessing
Through symmetric multiprocessing, multiple processors provide enhanced capabilities in two
dimensions:

— In conjunction with program decomposition by compilers, utilizing multiple processors con-
currently to run a single program significantly reduces the elapsed time required to complete
the program execution.

Glacier Overview 50-7

— EEEaEE—— L e

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

— Multiple computational elements permit the system to service more users concurrently, ex-
tending the overall capacity of the system.

* High throughput I/O subsystem

The Glacier I/O subsystem is based on the XMI bus. Up to two XMI buses are supported in a
single Glacier package.

* Pipelined execution and a large number of registers

The PRISM architecture supports pipelined instruction execution on a single processor. A very
large set of general purpose registers available to compilers, in conjunction with compiler knowl-
edge of the hardware run-time platform, permit compiler code generation techniques that fully
utilize the hardware for optimal program execution.

50.4.3.1 FRS Hardware Configuration

The first revenue ship configuration is built on the Moraine platform, which is a CMOS-2 implemen-
tation of the PRISM architecture. Moraine has:

* Two XMI buses for increased I/O capacity. The I/O system is capable of delivering 100-Mbytes/sec
throughput.

* Up to four scalar/vector processor pairs each providing 15 VUPs scalar performance and an
estimated performance on the double-precision 100x100 Linpack benchmark of 12 Mflops.

Each scalar/vector processor has a 128-Kbyte scalar cache and a 2-Mbyte vector cache. Most
problems that run on Glacier should fit in cache. Larger problems which do not fit will take
advantage of the 80-Mbyte/sec/processor memory throughput. The scalar and vector caches use
a write-back-to-memory strategy for improved performance.

* A nine-way, fully-connected CMOS-2 crossbar switch for connections between processor, memory
modules, and an /O port.

Crossbar connection of processors and memory modules avoids the contention of multiple pro-
cessors connected to a single system bus, providing increased per-processor bandwidth.

* An n+l redundant power supply and integral motor generator set.

These components greatly improve system reliability, serviceability, and availability. The CEAG
power supplies provide hot swap and optional n+1 redundancy. The motor generator set provides
power conditioning and increased efficiency, improving availability and reducing the required
power supply and overall system size.

(Although this high availability is not a requirement of the Glacier target markets, it is being
implemented in Glacier to provide a platform shakeout for Cheyenne, a database system built
on Stone, the CMOS-3 Moraine follow-on platform. Customers utilizing the Cheyenne database
system will be putting the well-being of their entire businesses in the hands of the Cheyenne
system. As such, these customers want field-proven hardware and software. Shaking down Mica
and the hardware platform with Glacier provides the in-field experience Cheyenne customers
require.)

The initial release of Glacier uses DSA-1 disks and tapes for mass storage. All DSA-1 disks are
supported, although we exepect that only RA70 and RA90 disks will actually be used. The TA90 tape
drive is the only drive capable of providing the high performance required for backup of large disk
subsystems. DSA-1 devices are attached to Glacier systems through the HSX (Wildcat) controller.

Client systems communicate with Glacier via Ethernet (NI) or computer interconnect (CI) interfaces,
with CI support being delivered in a post-FRS version. Additional NI interfaces may be added to
Gladier for expanded throughput.

50-8 Glacier Overview

P R T Rt e oo]

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

50.4.3.2 Follow-On Configuration

Stone, the follow-on platform to Moraine, will deliver approximately 20 to 25% additional computa-
tional capability through the use of CMOS-3 technology in the Moraine package.

50.44 Server Software Components
The Glacier server software components are designed with two basic goals:

* To ensure server integration into a client environment such that the server appears to be a
seamless extension of the client system

* To ensure that applications written using the Application Integration Architecture are extremely
portable to and from other systems supporting the architecture

50.4.4.1 Software Run-Time Environment

The run-time environment is key to achieving the goals of the Glacier system. This layer of software
provides the software functions that integrate both the Mica services and the remote client services.
Within this layer, services such as file/record access, system services, and windowing support are
found. All of the run-time software components are available to the software developer.

The run-time software available to applications is designed around a software architecture common
to PRISM/Mica and PRISM/ULTRIX. This common software architecture:

* Permits applications built for one target system platform to be readily ported to another

* Provides the capability for supporting a larger number of third-party applications on both soft-
ware platforms, satisfying a broader spectrum of customers

¢ Permits DIGITAL to build a single set of layered software products which execute on either
software platform with a much smaller engineering investment

50.4.4.1.1 Application Integration Architecture

The interface to Glacier’s run-time environment is based on the Application Integration Architecture
(AIA). In this context, application integration means users integrating with applications (via a com-
mon interface), applications integrating with the underlying system (via a rich set of services), and
applications integrating with applications (via common methods of passing control and of passing
and representing data).! Within Glacier, three components of AIA are used:

* DECwindows for graphical data display
¢ The Application Run-Time Utility Services (ARUS) for:
— Memory allocation/deallocation
— Condition handling
— Conversion routines
— Bottom of the stack condition handler
— String mapping
— String formatting
— Process status
* The miscellaneous run-time library routines for:

— Low-level math routines

1 This definition is based on a memo authored by Scott G. Davis on 16-February-1988 titled "The Application Integration
Architecture (AIA) Program”.

Glacler Overview 50-9

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

— Common Multithread Architecture (CMA) routines
— Print System Model (PSM) routines
* Remote Procedure Calls (RPC), which are discussed in Section 50.4.4.4.3

50.4.4.1.2 Application Migration

To enhance and ease the migration of applications from other platforms such as VMS, ULTRIX, and
POSIX, a set of run-time interface libraries may be used. These libraries implement a limited number
of the system-specific interfaces on top of the Mica system services. Application developers will be
encouraged to use the AIA libraries as the best means of achieving portability across the DIGITAL
set of products. The use of the system-specific libraries will be discouraged.

Applications which use VAX/VMS system services are provided access to a restricted set of VMS
service interfaces on Glacier. The exact list of services is to be determined.

Applications written using the ULTRIX or POSIX service interface may take advantage of the exten-
sive Mica C Run-time Library interface as well as the Mica-POSIX interface.

50.4.4.1.3 Record Management Services

Mica RMS, together with the Application Integration Architecture (AIA), provides the highest user-
level file and record access interface in the Glacier system. RMS is designed to promote the building
of a common set of software components for PRISM/Mica and PRISM/ULTRIX. The interface to
Mica RMS is designed to be a straightforward interface taking into account functionality of previous
implementations. Through this interface and by direct use of Mica I/O subsystem functions, most of
VMS RMS'’s functionality has been preserved.

The functionality of Mica RMS will be developed in stages across several releases. Key to the FRS
requirements is transparent access of files through the local file system or through the distributed
file system (DFS). Transparent access to standard input and output files is provided for as well.

50.4.4.2 Software Development Environment

The Glacier software development environment can be described in terms of the software which may
be utilized by the application (see Section 50.4.4.1) and the tools available to the application developer.

Components of the common software architecture include:
* Calling standard and condition handling

The PRISM calling standard specifies the instruction sequence and register conventions used
when invoking a procedure. An interprocedure calling standard permits interoperability between
procedures written in any conforming PRISM language. The calling standard has been optimized
for the PRISM architecture, taking advantage of the large number of registers.

Architected condition handling provides additional support for interlanguage operability, and a
consistent and complete mechanism for program handling of hardware and software conditions
arising during program execution.

* Object module and image file format

A single architected format for object modules and image files supports building a single set of
program development tools and language compilers across PRISM operating systems.

* Common Multithread Architecture

The Common Multithread Architecture (CMA) provides applications and compiler-generated code
with a consistent mechanism for implementing multithreading independently of the underlying
hardware/software platform.

50-10 Glacier Overview

.

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

50.4.4.21 Program Development Tools

Program development tools for Glacier include:

* Linker
The PRISM linker binds a collection of PRISM object modules into an image file for execution on
the PRISM hardware. The linker design is closely integrated with the PRISM calling standard,
the language compilers, and the PRISM software platforms to provide efficient, high-performance
run-time image setup and execution,

* Librarian
The PRISM librarian implements libraries of modules, such as object modules. Object module
libraries increase programmer productivity and link-time performance by collecting many PRISM
object modules into a single indexed file.

* Language compilers
Glacier supports a full complement of programming languages:

— PRISM FORTRAN provides a VAX-compatible FORTRAN language, implementing vector-
ization and parallel decomposition,

— PRISM C is an ANSI-X3J11-compliant implementation with VAX C extensions.

— Pillar, the PRISM systems implementation language, is supported for customer use, and is
used within DIGITAL for PRISM layered product development.

— VAX ADA will be ported to PRISM as a post-FRS product.
— Pascal will likely be post-FRS product.
— LISP is also likely to be a post-FRS product.
* Language Sensitive Editor (LSE) and Source Code Analyzer (SCA)

LSE and SCA provide support for writing PRISM-based applications. LSE and SCA execute in
the client system environment, enhancing application developers' ability to build programs for
Glacielr. LSE utilizes the Glacier client system interfaces to invoke the appropriate language
compiler.

PRISM language compilers optionally generate SCA files. SCA, which is integrated with LSE,
provides developers with the ability to quickly locate usage of variables within large applications,
thereby increasing programmer productivity.

* DEBUG

PRISM DEBUG provides application developers with a highly interactive, language-oriented
debugging tool. A DEBUG kernel executes along with the Glacier application being debugged.
The DEBUG user interface executes on the client system, interacting with the DEBUG kernel
via RPC. The PRISM DEBUG user interface is compatible with the client system debugger. For
FRS, a VAX/VMS-compatible user interface is provided.

* Performance and Coverage Analyzer (PCA)

The PRISM PCA is a tool that the application developer can use to analyze the run-time behavior
of an application. PCA executes with the application on the PRISM system, writing the collected
data to a disk file. Later, the PCA analyzer, running on the client system, can be used to analyze
the data to pinpoint program bottlenecks, or determine program execution coverage.

Glacier Overview 50-11

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

50.4.4.3 System Management

The interface to Glacier system management executes on the client system or on Glacier, through the
system console terminal. In either case, the system management user interface uses RPC to request
the system management server, running on Glacier, to execute the specified management functions.

At initial system installation, the system manager specifies the password required for access to system
management functions on the console terminal. In addition, the system manager defines which users
on Glacier client systems throughout the network are permitted to execute system management
functions remotely.

50.4.4.3.1 System Management Server

The Glacier system management user interface, executing on the client system, interacts with the
system management server executing on Glacier to complete the requested management commands.
In addition, the system management server is responsible for:

* Maintenance of the user authorization database

The system management server is solely responsible for creation and maintenance of the on-disk
user authorization database. No other process within the system directly accesses the on-disk
database.

* Retrieving user authorization information for Glacier-based system software.

System software on Glacier utilizes RPC to call the system management server when authoriza-
tion information must be obtained.

50.4.4.3.2 Performance Monitor

Another important component of system management is the ability to monitor the performance of the
Glacier system. The performance monitor user interface, integrated with the system management
user interface, connects to the performance monitor server on Glacier to gather the performance
information.

The performance monitor permits the system manager to view key system performance statistics and
provides some capabilities for diagnosing potential system performance bottlenecks.

The performance monitor utilizes standard Mica operating system interfaces to gather performance
information. The server is capable of supporting multiple users monitoring system performance
concurrently.

50.4.4.3.3 Console Support

The Glacier console terminal interface can be used, rather than a client system, for execution of
system management functions, diagnostics, or the User-level System Exerciser (USE). Access to
these functions is password protected.

50.4.4.3.4 System Dump Analyzer

The system dump analyzer is utilized by DIGITAL support personnel and engineering to determine
the cause of system failures.

50.4.4.3.5 Error Logging

All hardware errors are logged to an on-disk error log file. An error log display utility permits system
management and DIGITAL support personnel to examine the error log contents.

50-12 Glacier Overview

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

50.4.4.4 Underlying Software Mechanisms

The following sections describe the underlying software mechanisms of Glacier, including the Mica
operating system and networking mechanisms.

50.4.44.1 Mica Operating System

| Glacier is built around hardware which implements the PRISM architecture and a base operating
system which implements the Mica design. :

Mica has been designed as an object-oriented system with a rich set of services available from user
mode (note that most of these services will eventually be accessed via the Application Integration Ar-
chitecture library). It is designed to support both the 32- and 64-bit PRISM architectures and should
require minimal effort to move from a 32-bit-only implementation to a 32/64-bit implementation when
64-bit systems become available. The key points in the design are:

* Priority-based preemptive scheduling with provision for class scheduling

* A flexible memory management system which supports all allowed PRISM memory management
implementations

* Multiple threads of execution within a single address space

* A layered /O architecture for the support of physical devices, file systems, and concepts, such
as volume shadowing, volume striping, virtual terminals, and so on

* A centralized ACL-based security architecture for all objects

* Protected subsystems, that is, user processes which act as servers with amplified security profiles
on behalf of client processes, charging back resource usage to those clients

* An implementation written almost entirely in the Pillar language, which provides block struc-
ture, strong typing, and structured condition handling, and has been designed as a portable
system implementation language

50.4.44.2 DECnet-Mica Phase V

The client/server nature of Glacier requires strong network support. An implementation of the DIG-
ITAL Network Architecture (DNA), Phase V is used to provide the required network services. The
components of DNA that are included in the FRS product are:

* DNA naming services
* Network communication services
* Network management

* Network event-logging server

50.4.4.4.3 Remote Procedure Calls

As mentioned earlier, a remote procedure call (RPC) facility is used throughout Glacier for interpro-
cess communication. This communication may be with off-node entities, such as the client context
server, and with local node entities (protected subsystems), such as the system management server.

Mica RPC comprises two main components: an RPC stub generator, and RPC run-time fadlity. The
RPC stub generator provides a language interface to the RPC run-time facility. Stubs are written in
a high-level language similar to Pillar, which is the implementation language for Glacier software,
Stubs are simply the local procedure definition of the procedure being called remotely. Stubs are
easy to write and they insulate the user from the underlying RPC run-time facility and transport
mechanism. The stub generator is used in developing the Mica system and is not intended to be
included in the product.

Glacler Overview 50-13

T R R N N RN I S s e

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

The Mica RPC run-time facility provides the mechanisms used by the stubs. These include data
marshaling, multiple context maintenance and client/server binding.

50.4.444 Distributed File Services (DFS)

The Distributed File Services for Glacier comprise three main components:
* Disk services for accessing client disks from a Glacier server

* Disk services for accessing Glacier disks from a client system

* Management services for administering DFS remotely

For FRS, DFS Version 1 protocol is supported. This protocol enables systems with ODS-II-based file
systems to interoperate. In future versions, heterogeneous file system interoperation may be allowed.

504.44.5 Job Controller Server

The focal point for application activation requests are serviced by a Glacier-based server, called the job
controller server (JCS). The JCS services requests from the client context server to activate, suspend,
resume, and debug the application programs. The JCS also provides the CCS with the application’s
exit status information.

50.5 Special Challenges

The Glacier product is a computing element, specifically a compute server, designed to provide cost-
effective computational resources to an array of workstations. The compute server environment
presents several challenges that were not addressed by previous computing environments. Those
challenges are:

* Seamless client integration
* Remote management

Integration of the compute server with a group of heterogeneous client workstations is essential.
Workstations, like other computer systems, differ in functionality, cost, and performance. It is ex-
pected that a workstation-based network will have several different stations requiring various levels
of service by a range of users. Users must be able to access Glacier from each workstation in a
manner similar to the familiar workstation environment.

Glacier’s lack of a user interface requires that system management be done remotely. Glacier must
require only minimal interaction from the console terminal before becoming available as a remotely

managed system.

50.6 Outstanding Issues

* The support of ULTRIX client systems has a number of unknowns associated with it. As men-
tioned earlier, VAX RPC supports only VMS systems today. Secondly, the DFS Version 1 protocol
supports only ODS-II file systems. The Version 2 protocol may include support for the UL-

"TRIX file system. An alternative to DFS for ULTRIX is NFS. This would require that NFS be
implemented for Mica.

These are only a couple of the open ULTRIX client issues. A preliminary ULTRIX client support
chapter outlines the issue more completely. In any case, ULTRIX support is planned for shipment
after VMS client support.

50-14 Glacler Overview

P L o P e e e

Digital Equipment Corporation - Confidential and
Restricted Distribution

CHAPTER 51
MICA COMPUTE SERVER SUPPORT

51.1 Overview

This chapter describes the software support required on Mica to allow a user on VAX/VMS or
VAX/ULTRIX to execute or debug a program on the Mica under a tightly coupled model.

Under this compute server model, there is software on the client system called the Client Context
Server. The Mica support software and the Client Context Server work together to enable the exe-
cution of programs on the Mica system. The Client Context Server supports the compute server job
on the Mica system by providing client system services that can not or should not be performed on
the Mica system itself.

The tightly coupled model is designed for large compute-bound application programs. These are
single stream monolithic programs written in high-level languages. They operate in user mode and
use few system services or privileged functions. For example, these programs would not create or
delete processes or modify user privileges. The user on the client system is provided access to Mica-
based compilers, a linker and a debugger to produce the Mica image and a mechanism to execute the
Mica image on the compute server. The development environment is that of the client system.

Under this tightly coupled model, the compute server runs the Mica image on behalf of the client
system. The environment of the Mica image on the compute serveris that of the client system. All VO
from SYSSINPUT (stdin) and to SYSSOUTPUT, SYSSERROR (stdout, stderr) is handled by Remote
Procedure Calls (RPCs) to the Client Context Server. The Client Context Server then performs
| the /O on the client system. The image appears to be running on the client system, reading from
standard input and writing to standard output/error. Use of the Client Context Server ensures that
the compute server job interacts properly with other components of the client operating system, such
as redirected files, pipes, and sockets. Logical names, environment variables, networking visibility,
and process visibility are taken from the client system.

51.1.1 Goals
The Mica support for the compute server product has these basic goals:
* Provide the Mica portion of the mechanism for activating a Mica image from the client system.

* Provide the Application Integration Architecture (AIA) environment for the compute server pro-
grams.

* . Provide support for development tools including the Debugger.

Mica Compute Server Support 51-1

- R - R R N e R N N D R T, S e 1=

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

51.1.1.1 Activation of a Mica Image

Mica provides a mechanism for the client system to activate Mica images on the compute server.
This mechanism is independent of the client operating system and notifies the client system of the
termination of the compute server image. The image is activated on behalf of the client system and
is considered an extension of the client’s computing resources. All files that are available on the
client are available to the compute server. This is accomplished via Mica RMS, which handles file
parsing and uses the Distributed File System (DFS) to access files. The environment of the image
(logical names, shell environment variables, process permanent files, command line information) on
the compute server is that of the Client Context Server running on the client system. Termination
of either the user’s process on the client or a Mica compute server image means the termination of
the other.

\ It is unknown at this time if DFS will support the ULTRIX file system. \

51.1.1.2 Application Integration Architecture

The AIA on the compute server provides a system-independent representation of system services and
the DECwindows user interface. In the AIA environment, the user does not see the Mica system
service calls or have access to them. AIA calls are carried out in one of three ways:

* An AlA call may be carried out solely on Mica via system service calls.

* An AJA call may result in an RPC to the Client Context Server to carry out the AIA call solely
on the client.

* An AlA call may result in a Remote Procedure Call (RPC) to the client for client context infor-
mation and then make additional calls to Mica system services.
51.1.1.3 Support for Development Tools

g'he Mica software will provide support for the SDT development tools. This includes the SDT
ebugger.

\ The support that is to be built into Mica is TBD.\

51.1.2 Components
The tightly coupled client/server model consists of several components as shown in Figure 51-1.

51-2 Mica Compute Server Support

DU o ok S e | L O o SRR T R QIR T LY

Digital Equipment Corporation - Confidential and Proprietary

| Restricted Distribution
|
Figure 51-1: Mica Compute Server Support
CLIENT SYSTEM COMPUTE SERVER
IMAGE ACTIVATION —
JOB CONTROL SERVER
IMAGE TERMINATION —
- 1
CLIENT CONTEXT < IMAGE STARTUP
SERVER AIA SERVER
RUN-TIME
- AIA SERVICE LIBRARY A
—p CONDITION HANDLING
CONDITION HANDLING s
USER PROGRAM

MICA_SUPPORT_AG

51.1.2.1 Mica Components

The Mica compute server support consists of two major parts: the Job Control Server and the Run
Time Environment.

The Job Control Server handles requests from the Client Context Server to execute a Mica image.
Upon receiving an RPC to start a compute server image, the Job Control Server creates a thread
that acts as a monitor for the compute server job. This new thread authenticates the client's request
and creates the compute server job. It then waits for the compute server job to terminate. There is a
one-to-one mapping between compute server jobs and Job Control Server threads. Once the compute
server job terminates, the Job Control Server thread performs an RPC to the Client Context Server
to convey the exit status and accounting information.

\ The thread per job design is required to handle status objects. Fewer threads may be required
given a different mechanism for handling status return, for example by using a message FPU for
status information. \

The Run Time Environment in Mica for the Compute Server consists of three parts:

* Image Startup Procedure—This procedure is called before the user code is executed. It sets up all
handlers and general environment. The procedure is passed enough information to identify the
corresponding Client Context Server. This procedure initiates the first RPC to the Client Context
Server, which returns the DFS specification of the default directory and process permanent files.

* AJA Service Library—This library contains the AIA routines available in the Mica environment.

* " Error and Condition Handling Routines—These routines communicate conditions and errors to
and from the Mica image and the Client Context Server. If a software error or interrupt occurs
during the execution of the Mica image, these routines inform the Client Context Server via an
RPC. If the Client Context Server receives an interrupt, an RPC is sent to the Mica image to
inform it of the condition.

Mica Compute Server Support 51-3

L RN U s N A

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

CHAPTER 52
VMS COMPUTE SERVER SUPPORT

52.1 Overview

The purpose of this chapter is to describe the support required on VMS to enable users of VMS
systems to execute Mica programs remotely on Glacier. VMS compute server support performs the
following functions:

* Initiates activation of the user’s program on Glacier.

* Provides a focal point for any remote procedure calls (RPCs) made on behalf of the user’s Mica
program, to retrieve context information from the corresponding process on the VMS client sys-
tem. '

* Handles notification of any errors that might occur during program execution on Glacier.
* Handles notification of the Mica image termination, and performs any required cleanup.

521.1 Requirements

Glacier is targeted toward two types of application programs at FRS: single stream high-level lan-
guage applications, and utilities written by Digital. Support must be provided which enables a VMS
user to execute these programs and utilities on Glacier. Little or no modification to user-written
programs should be required, except for those that use VMS system routines not supported on Mica.

The program execution environment must appear "seamless” to the VMS user. "Seamless” means, at
a minimum, the following:

* A program isinvoked through some variant of the RUN command issued by the user on the local
VMS system. (For utilities written by Digital, a program is invoked using other DCL commands.)

* Terminal dialogue with the user appears identical to the dialogue that occurs when the program
is executed locally on the VMS system, with the exception of DCL CLI calls.

* Termination of execution is indicated to the user.

* Qutput from the program is identical to the output that results from execution on the VMS
system.

* The user has the capability to interrupt and/or terminate execution (through the CTRL/Y mech-
anism), just as when the program is run locally.

VMS compute server support must provide access to a limited number of VMS system routines
through the RPC mechanism. In particular, support must be provided which enables the compute
server to access devices that are not directly attached to the Mica system and are not served by the
Distrib;ted File Service. These devices, instead, are attached to the user's VMS system, such as
terminals.

The stated aim of the Mica programming environment is to support applications that adhere to
the principles of AIA. VMS compute server support must provide distributed support for some Mica
non-local AIA services.

VMS Compute Server Support 52-1

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

52.1.2 Assumptions
The following assumptions have been made:

* That the VMS system and the Mica system have compatible RPC implementations which are
both efficient and reliable.

* That a user identification and rights list exist on Mica for each user; it is not necessary that the
user quotas on both the VMS system and the Mica system be identical.

52.1.3 Functional Description

Compute server support under VMS is provided by a single VMS executable image. When a VMS
user requests execution of a Mica image, the VMS compute server support image runs in the context
of the user’s VMS process.

52.1.3.1 Image Activation

VMS compute server support software initiates activation of the user's Mica program by using an
RPC call to a job controller server that resides on Mica. The Mica job controller server effects the
image activation of the Mica program, and returns the status of image startup to the VMS support
software. A successful completion of the image activation call puts the VMS compute server software
into an RPC wait state, as a client context server. The client context server can emerge from an RPC
wait state at any time to handle RPC calls from the executing Mica program.

52.1.3.2 RPC Calls for VMS Services

The VMS client context server services RPC calls that occur during execution of the user's Mica
program. The requests to be serviced result from either an AIA service call or from an RMS request
to perform VO to a device on the user’s VMS system. The client context server executes the required
services and returns the results to the user’s program. Examples of VMS performed services include
VO from and to the user's terminal and calls for user-specific context information such as logical
name translation.

52.1.3.3 Condition Handling

Conditions that occur during the program execution on Mica cause notification to be sent to the VMS
client context server, which in turn notifies the user of execution status. If either partner (on VMS or |
Mica) terminates, the RPC run-time system provides notification to the remaining partner, which will
exit. If the user interrupts program execution through a CTRL/Y, the Mica program will be notified
to exit.

52.1.3.4 Termination

Normal program termination is reported to the VMS client context server, which passes ext status
to the user. Any RPC bindings are broken down by the VMS client context server at termination.
52.1.3.5 Debugger Support

The VMS client context server provides support for the VAX/PRISM Distributed Debugger.

§52-2 VMS Compute Server Support

R R N e | s -

| T R T T]

Digital Equipment Corporation - Confidential and Proprietary
| Restricted Distribution

CHAPTER 53
ULTRIX COMPUTE SERVER SUPPORT

53.1 Overview

This chapter describes the software support that enables a user on ULTRIX to execute or debug a
program on a Glacier compute server. A Glacier compute server can be connected to one or more
ULTRIX systems to provide high-performance computation capabilities. The compute server is an
extension of the ULTRIX client computing environment. The compute server operates with its client
in a "seamless” fashion. The client support software on ULTRIX interacts with software on Glacier
to execute Mica images on the Glacier system on behalf of the client users. The images appear to
be executing on the client system, and the client users are unaware that the images are actually
executing on Mica,

53.1.1 Goals
The ULTRIX software support for the compute server product has these basic goals:

* Provide the mechanism on ULTRIX to allow users to execute a Mica image on Glacier in a
"seamless” fashion.

* Provide access to the client environment for compute server programs.
* Provide support for Mica development tools on ULTRIX.

5§3.1.1.1 Execution of a Mica Image

The ULTRIX compute server support software provides a "seamless” mechanism for executing a Mica
image on Glacier. To execute a Mica image an ULTRIX user should simply invoke a user command
just as they would execute an image locally on the ULTRIX client system. The activities of the
ULTRIX compute server support software must be transparent. The user can redirect standard
input, output and error to/from files or ULTRIX pipes to other commands. The user can invoke a
Mica compute server program from a shell procedure.

53.1.1.2 Access to the Client Environment.

The ULTRIX compute server support software must provide access to the client environment for the
compute server program. This support includes:

* . Communication with other processes via ULTRIX pipes, named pipes (FIFO), or sockets.

* Handle all remote procedure calls (RPC) from the compute server image that are the result of
an Application Integration Architecture (AIA) call.

* Performing /O to/from standard input, output and error.

This compute server model is designed to handle large, compute-bound application programs. These
applications are written in high-level languages and:

* Use few system services.

ULTRIX Compute Server Support 53-1

Digital Equipment Corporation - Confldential and Proprietary
Restricted Distribution

* Do not fork/exec other processes.

* Do not use shared memory for inter-process communication.

53.1.1.3 Development Tool Support

All program development tools for the compute server must run under the tightly-coupled model.
They should be invoked using the same syntax as any other ULTRIX development tool. The names
of these tools will be different from the standard ULTRIX tools to avoid naming conflicts.

The client compute server support software for these development tools will handle RPCs resulting
from AIA Command Language Interpreter (CLI) calls. These RPCs will take the ULTRIX command
line arguments and interpret them for the tool running on the compute server.

53.1.2 Functional Description

The tightly-coupled client/server model consists of several components as shown in Figure 53-1.
There are three major components to this compute server model:

* Job control server—The job control server is a registered server running on the compute server.

* Client context server—The client context server is the compute server support software that runs
on the ULTRIX system when the user executes the user command.

* User’s program— The user’s program is the Mica image that will be activated by the job control
server.

The ULTRIX user issues a user command that creates a child process to the shell and executes the
client context server code. The process registers itself with the remote procedure call (RPC) binder
as a server. The process then sends an RPC to the job control server, requesting activation of the
compute server image on Glacier. When this RPC returns with a successful status the compute
server image has been started. The client context server then loops on an RPC wait, and comes out

of the wait state to handle any RPC requests from the compute server image, including its eventual
termination.

\ The exact sequence of the initial RPC and binding request are TBD but we have the requirement
that there should be no window of vulnerability where a binding does not exist. \

53-2 ULTRIX Compute Server Support

L BRSBTS

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

Figure 53-1: ULTRIX Compute Server Support

CLIENT SYSTEM COMPUTE SERVER
IMAGE ACTIVATION —-l
JOB CONTROL SERVER
IMAGE TERMINATION i

I

CLIENT CONTEXT —nd IMAGE STARTUP
SERVER AIA SERVER

< AIA SERVICE LIBRARY > ?h’\'fxﬁé“fmm

—> CONDITION HANDLING

CONDITION HANDLING

USER PROGRAM

53.1.2.1 The Client Context Server
The ULTRIX compute server support software, called the client context server, consists of four parts:

* Image Activation—The first task of the client context server is to activate the Mica image on
the compute server. This is done by sending an RPC to the job control server on the appropriate
Glacier system. The RPC returns tothe client context server with a status. The status indicates
whether the compute server image has been started successfully or not. If the client context
server can not start the compute server image successfully it displays a message to the user and
terminates.

* Image Termination—When the compute server image terminates the client context server re-
ceives an RPC containing the compute server image’s exit status. The client context server then
exits with this status.

* AJA Server—The ULTRIX client context server handles RPCs from the compute server image.
The request to be serviced results from either an AIA service call or from an RMS request to
perform I/O to a special file on the user's ULTRIX system. The client context server executes
the appropriate service and returns the results to the compute server image. The ULTRIX client
context server translates RMS RPC request from the compute server image by calling ULTRIX
system calls.

* Condition Handling—Interrupts and error conditions that occur during the execution of a Mica
image on the compute server are communicated to the ULTRIX client context server. If either
partner (on ULTRIX or Mica) terminates, the RPC run-time system provides notification to the
remaining partner, which exits. If the ULTRIX client context server receives a signal it will
terminate and thereby causing the termination of the Mica compute server job.

ULTRIX Compute Server Support 53-3

e e e = o & e b b b T e o LA

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

53.1.2.2 Mica Program Development on ULTRIX

A user on ULTRIX will use Mica development tools which can be activated from the client system.
The Mica compilers are activated like any other ULTRIX development tool and will produce Mica
object files. The Mica linker accepts Mica object files as input and produces a Mica image file. The
ULTRIX compute server support software for the linker will also produce a client context server
image file. The name of the client context server image file, which is the user command name, is
dictated by the user via a linker option. The name of the Mica image file will be based on the client
context server image file name. To execute their program the user issues the user command name,
which starts the client context server running on the client.

53-4 ULTRIX Compute Server Support

RN,

' Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

CHAPTER 54
PROTECTED SUBSYSTEMS AND RPC

54.1 Overview

The Mica Remote Procedure Call (RPC) Facility provides a mechanism to accomplish interprocess
communication using familiar high-level language procedure call semantics. The term remote refers
to the fact that the procedure being called is outside the current procedure’s address space.

Using common RPC terminology, the procedure that initiates the call is known as the client. The
procedure that is the target of the call is known as the server. This relationship is referred to as
a client/server model. The client and server may reside on the same system or on different nodes
communicating via a network.

A server may assume the security profile of the client. This type of a server is referred to as a
protected subsystem. A complete description of how security profiles are assumed is found in Chapter
10, Security and Privileges.

There are two key components to the Mica RPC facility: a stub generator and the run-time facility.
The stub generator is used to describe a procedure's interface. For each interface, a client and server
stub is created that hides the communication between client and server. A complete description of
the stub generator is found in Chapter 55, RPC Stub Generator. The Mica RPC run-time facility
provides a high-level interface to the communication transport mechanism, Its interface defines the

types of messages needed to invoke and pass arguments to a procedure in a remote environment.
This chapter focuses on the Mica RPC run-time facility.

Figure 541 illustrates the relationship between the various interfaces used during an RPC call. This
model depicts the current DNA RPC architecture. The highlighted region of the illustration is the
focus of this chapter.

54.1.1 Goals

The RPC mechanism is used extensively throughout Mica. In fact, the nature of Glacier is derived
from its RPC interface. For example, a program is started on Glacier is through an RPC call from
the client system.

The Mica RPC run-time facility is designed with the following goals:

* Provide the RPC functionality required by Mica system components

* Provide a functional basis for protected subsystems

* Provide an easy migration path to corporate RPC

¢ Provide RPC functionality that allows most usage to be hidden by the stub generator

Protected Subsystems and RPC 54-1

e ———————

Digital Equipment Corporation - Confidential and Proprietary

Restricted Distribution

Figure 54-1: The RPC Architecture Model

Client Sarver
Apolication Routines
call (arg...) call (arg...)
{Language/OS-specific) (Language/OS-specific)
Local Local
Language/OS Interface Interface Language/OS
Intertace Definition Definition Interface
Network Inter!
call (arg...) Mm:ﬂ ol 10 call (arg..) |
(Canonical representation) (Canonical representation)
Ciient ¥ Server
Stub Stub
requestiresponsa/exception Name Service requestresponsa/axception
impont T
RPC Protocol
connectsend/receve/disconnect connectsend/receive/disconnect
Session Transport Protocol Session
Interface — Interface

54.1.1.1 Functionality for Mica System Components

The concept of RPC seems simple. However, the actual implementation of an RPC mechanism that
provides the same level of functionality found in standard local procedure calls is quite complex. The
level of complexity is increased further when the client and server are running on heterogeneous

operating systems.

Mica system components require the following RPC functionality:
* Interoperation—The RPC mechanism used by Mica is designed to interoperate with VAX/VMS,

Ultrix, and Mica.

* Procedure call behavior—By default, an RPC behaves like a procedure call. That is, when the
server routine returns, it is finished. The server routine is guaranteed to be called only once per
client call. Any deviation from this (for example, idempotent and stream calls), is a special case

and does not compromise the true procedure call semantics.

* Clients as servers—A client may act as a server to another client. A client can obtain a binding
to itself for a specific interface, and would pass that binding in a call to a server. The server may

then use that binding to make RPC calls back to the client.

* Servers as clients—A server may act as a client to another server,

54-2 Protected Subsystems and RPC

T—WWTW;JWM

Restricted Distribution

* Binding—The binding service is used by a client to obtain information required to communicate
with a server. At FRS, Glacier requires limited automatic binding and naming services. The
ability to provide run-time binding information without changing the call stub is done using
logical names.

¢ Context—Context may be maintained across server calls through the use of context handles. A
context handle is an opaque datatype that is passed on cach call to a server to identify a specific
context. The scope of the context handle is an instance of the server. This allows authentication,
file context, and other context to be maintained across server calls and significantly increases
performance.

* Disconnect notification—Notification of failure is provided to a server if the client holding an
opaque context handle dies or disconnects, to the caller if the server dies or disconnects during
a call, and to a server if the caller dies during a call.

54.1.1.2 Functional Basis for Protected Subsystems

The Mica RPC mechanism is used extensively to call normal servers and protected subsystems. A
protected subsystem differs from a normal server in two key areas: the RPC protocol transport
mechanism and client impersonation.

The performance of the communication transport between a local client and a protected subsystem
must be extremely good. It appears that DECnet does not provide sufficient performance for local
protected subsystem calls. A function processor providing local virtual circuit functionality provides
an alternative transport path. The RPC mechanism will select the appropriate transport mechanism
given the locality of the server.

A protected subsystem receives the identifiers of a client so that it may service the request using the
identity of the client. The access rights of any client are based on local authentication and identifiers.
Mica provides a set of impersonation services that are used by the protected subsystem to manipulate
its own identity.

54.1.1.3 Easy Migration to Corporate RPC

An aggressive corporate RPC architecture plan is being pursued. If a corporate architecture is not
available, then Mica RPC will be designed to allow for migration to the corporate version at some
later date.

\The first step in building Mica RPC will be to interoperate with VAX RPC. Should a DNA RPC
architecture not be approved, VAX RPC can meet all Mica RPC requirements and will be shipped
with the client support software.\

54.1.1.4 Hide RPC Usage Behind the Stub Generator

The functionality provided by the Mica RPC run-time facility is invisible to most applications. That
is, most applications call a remote procedure exactly as they would call a local procedure. This is
accomplished by generating a stub procedure for each remote procedure. The stub procedure is simply
a routine that converts a procedure call into a set of RPC run-time facility calls.

Besides simplicity of application development, the use of a robust stub generator has another key
benefit. The stub generator isolates the application from the underlying RPC implementation. This
allows protocols and other implementation details to undergo substantial change without affecting
the higher level applications.

Protected Subsystems and RPC 54-3

_—

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution
54.1.2 Nongoals

The Mica RPC nongoals are those items that will be deferred to a future release. The design of Mica
RPC does not preclude their implementation at the appropriate time. The RPC run-time facility
nongoals include the following:

* Provide a customer-visible RPC facility
* Provide an all-encompassing mechanism for inter- and intranode communication
* Provide RPC functionality that interoperates with other RPC protocols

54.1.2.1 Customer Visibility

The underlying Mica RPC facility will not be visible to external customers in the FRS product. Future
releases will provide RPC stub generation and RPC run-time support for direct customer use.

54.1.2.2 All-Encompassing Mechanism

A robust RPC facility requires a significant number of features that are not being considered for FRS
implementation on Mica. The following list describes some of the features that are commonly found
in an RPC facility, but which will not be present in Mica RPC at FRS:

* Stream calls—A stream call is a call or callback that is queued to the procedure that executes
the call. The client continues as soon as the call is queued. A stream call does not have output
and cannot generate a condition or return status.

* Idempotent calls—An idempotent call allows the client to repeat a command until a response
is reci;ed with the knowledge that the server’s state is consistent even though the call was
repeated.

* Condition handling—Conditions generated by a procedure may cause an action routine or handler
in the caller’s environment to be invoked.

* Call-back procedures—A client may provide call-back procedure arguments to the server. A
new binding is not required for the server to call a callback via a procedure argument. \This
functionality may be required by the DNA architecture.\

* (Call interrupt—The interrupt message instructs the partner to abort processing a service request.
\This functionality may be required by the DNA architecture.\

* Load balancing—The binding services may select the server to be used based on loading balance
/performance algorithms.

54.1.2.3 Interoperation with other RPC protocols

The interoperation with other RPC protocols includes common data type representation, server bind-
ing, and condition handling. RPC interoperation could eventually occur with the following:

* PRISM 64-bit systems
* Significant workstations (for example, SUN and Apollo)
* * Emerging industry standards (for example, OSI)

.:|: 54-4 Protected Subsystems and RPC

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

541.3 Communications Transport

The communications transport mechanism varies depending upon the relative location of the client
and server. The Mica RPC mechanism is transport independent. It assumes that the transport
provides logical links for reliable message transport.

For FRS, two transport mechanisms are available. The DECnet session interface is used for intern-
ode communication. Intranode communication is accomplished through either the DECnet session
function processor or a local transport function processor with a session-like interface.

54.1.4 Issues

The Glacier field test is scheduled to begin September 1989. In order for DECwest to implement and
make use of an RPC mechanism that conforms to the corporate architecture, an architecture that
meets the basic requirements must be in place no later than March 1988.

Protected Subsystems and RPC 54-5

RTINS

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

CHAPTER 55
RPC STUB GENERATOR

55.1 Overview
The Mica RPC Stub Generator provides transparent access to remote procedure calls.

A procedure call is the action of invoking a procedure. A local procedure call is a procedure call in
which the called routine is in the same address space as the calling routine. A remote procedure call
(RPC) is a procedure call in which the called routine is in a different address space than the calling
routine. (A local RPC is a special case of RPC in which the two address spaces are on the same
system.)

When a remote procedure is called, the calling routine’s environment is suspended, the parameters
are passed across a communications medium to the called routine’s environment, and the desired
procedure is executed there. When the procedure completes, the results are passed back to the calling
routine’s environment, where execution resumes. An underlying run-time facility handles passing
of parameters and control between environments. The Mica RPC Run-Time Facility is described in
Chapter 54, Protected Subsystems and RPC.

A remote procedure call can be made to look and behave almost exactly the same as a local procedure
call. The Mica RPC Stub Generator does this by hiding the differences in stub modules. When the
calling program (the client) calls what it thinks is a local procedure, it actually calls a client stub
routine in the client stub module. The client stub routes the call to the server using the Mica RPC
Run-Time Facility. A server stub routine in the server stub module receives the call and makes the
call to the real server procedure. To the server procedure, it appears as though the server procedure
had been called locally.

Figure 55-1 shows the flow of a typical remote procedure call.

RPC Stub Generator 55-1

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

Figure 55-1: The Flow of a Remote Procedure Call

O R0 . DO | T R Server System __ _ _ _ _
| | | |
| | | |
| Ciient Program I [Server Program |
t Client : l Server Stub Modula :
| : | | procedure main() |
{ o rsmo:e‘_proc (args) : : call remote » proc{args) :

v e » R
| F | | * i
: % Client Stub Module I : Sever ¥ |
| |
edu
1 procedure remote_proc{args) : : Wm m:e_pmc{a:ys) :
| | | |
| ¥ | | |
l | I |
{ RPC Run-Time Faciiity : : RPC Run-Time Facility :
| | I |
| 2 I | 1 |
=T e e il d e e e A TR =)
A 4
{Transport)

STUB-CAGRAM

In practice, the client and the server may need to be aware that they are operating in an RPC en-
vironment. The use of stubs cannot eliminate some essential differences between local and remote
procedure calls. In a distributed environment, the client and server can fail independently, perfor-
mance can be quite different, and there is no shared address space. Some applications may want
a specific server to process their calls, or they may want to communicate with a number of similar
servers.

The Mica RPC Stub Generator can operate in a semi-transparent mode that allows the client and
the server to use some of the capabilities of the underlying RPC mechanism. For example, the client
can specify which server is to execute a remote procedure by supplying a binding argument on the
call, and the server can ask to be informed of client termination if it needs to clean up client-specific
context. Clients and servers must call the Mica RPC Run-Time Facility directly when they need to
use a capability to which the stub generator does not give them access.

55.1.1 Requirements, Goals, and Nongoals

This section outlines the requirements, goals, and nongoals of the Mica RPC Stub Generator. Re-
quirements are those attributes the stub generator must have; goals are those attributes the stub
generator should have, but may not completely satisfy; nongoals are those attributes which the stub
generator does not have.

55-2 RPC Stub Generator

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

55.1.1.1 Requirements
The stub generator must support user-supplied server initialization and termination routines.

The stub generator must support all argument data types and all argument-passing mechanisms
supported by the Mica RPC Run-Time Facility.

The stub generator must support the following items, if they are supported by the Mica RPC Run-

Time Facility:

* Server-maintained, client-specific context—This includes notifying the server of client termina-
tion when such context is being maintained.

* (Calls from the server to procedures in the client—These callbacks can only be made by a server
when it is executing a call from the client it is calling back.

* Streamed calls—These calls allow the client to resume execution immediately when the call has
been sent to the server, without waiting for the server to complete execution of the call.

* Multithreaded applications—This is done using binding arguments.
* Call interruption.

55.1.1.2 Goals

The stub generator should support the following items, if they are supported by the Mica RPC Run-
Time Facility:

* Raising of conditions in the caller’s environment as a result of unhandled conditions in the called
routine’s environment.

* Version control.

* (Call ID parameter on all procedure calls, if requested—The call ID is used to provide support
for client authentication.

55.1.1.3 Nongoals

At FRS, the Mica RPC Run-Time Facility will not be available to user-written applications. Thus
there is no need for the stub generator to be shipped with Mica; it will instead be used as a tool for
the development of internal applications that need RPC. These applications include Monitor, system
management, the client/server interface software, and various components of AIA. The long-term
strategy for the stub generator is discussed in Section 55.1.5.

The stub generator does not support asynchronous remote procedure calls.

The stub generator does not produce language-specific header modules. A header module contains
a source-language representation of the data types and procedures defined in the package. Instead
of producing header modules, the stub generator produces definition modules, as described in Sec-
tion 55.1.2.

55.1.2 Operation of the Stub Generator

The stub generator takes as input a package definition written in Stub, the package definition lan-
guage. Stub is based on Pillar. Language elements required for package definition are added, and
elements of Pillar that do not make sense in a package definition are deleted. In addition, the use of
certain language elements is restricted. This prevents the use of data types and argument-passing
mechanisms that are not supported by the Mica RPC Run-Time Facility.

RPC Stub Generator 55-3

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

The stub generator produces as output the Pillar source modules described in the following table:

Module Contents

Definition module This module contains definitions of the data types and procedures defined in the pack-
age. The definition module also defines the package definition block, a global record
used by the Mica RPC Run-Time Facility. The compiled version of the defin'rtior_t motj.l-
ule may be imported by client programs and server implementations that are written in
a language whose compiler accepts definition modules.

Client stub module This module contains client stubs for each procedure implemented in the server. The
client stub module imports the definition module.
Server stub module This module contains the server stub for a package. The server stub, which is the main

entry point of the server image, calls server procedures as remote procedure calls are
received from the Mica RPC Run-Time Facility. The server stub module imports the
definition module.

55.1.3 Implementation Strategy

The Mica RPC Stub Generator is implemented using the compiler shell and super shell developed by
the DECwest compiler group. As their names imply, these shells are designed as a framework around
which various compilers can be built. They provide routines for handling language-independent tasks
that are common to the various compilers.

The following table explains the various components of the stub generator. (In the table, “host”
refers to the system on which the stub generator runs, and “target” refers to the system on which
the compiled program runs.)

Component Purpose Dependencies

Language driver (xLD) Command line parsing and opening and closing language- Language and host OS
specific files. Main entry point for stub generator image.
Calls CS Master (see balow) to begin compilation.

Super shell (SS) VO, memory management, and error handling. Interface Host OS
between host operating system and remainder of the stub
generator.

Compiler shell (CS) Common support routines, including the lexical analyzer. None
Also contains CS Master routine, which controls compila-
tion by calling FE and BE.

Front end (FE) Syntax and semantic analysis. Language
Back end (BE) Code generation. Target RPC architecture

The super shell and the compiler shell are provided by the DECwest compiler group. The language
driver, front end, and back end are part of the Mica RPC Stub Generator project. Parts of the

language driver and the front end (notably, command line parsing) are based on their counterparts
in the Pillar compiler.

The code generated by the back end is Pillar source code, as described in Section 55.1.2, rather than
the object code normally produced by a compiler back end.

554 RPC Stub Generator

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

55.1.4 Dependencies

The stub generator depends on the stability of the compiler shell and the super shell. The shells exist
as of this writing, but are subject to change as development of the Pillar and C compilers continues.
The stub generator does not depend on the Pillar front end or back end.

The stub generator needs to know the details of the interface to the Mica RPC Run-Time Facility.
These details are not currently available, but the stub generator is designed in a modular fashion so
that it can easily adapt to various RPC mechanisms.

55.1.5 Long-Term Mica RPC Stub Generator Strategy

The stub generator described in this chapter is intended to be used as a tool for internal development
of distributed applications. When the Mica RPC Run-Time Facility becomes available to users, the
atu;) gg:;;rator also needs to be available. The form that the user-visible stub generator takes is
undecided.

The internal version of the stub generator produces Pillar source code. This source code needs to
be separately compiled using the Pillar compiler. It is probably (but not certainly) desirable for the
user-visible stub generator to produce object code directly. This could be accomplished by modifying
the stub generator to use the back end developed by the DECwest compiler group.

The corporate RPC effort includes the work of a group in SDT that is defining the language require-
ments created by RPC. That group is also defining the required program development tools, which
may or may not include a stub generator and an associated stub language. The Mica RPC Stub Gen-
erator is designed and implemented in a way that makes it relatively easy to adapt to the corporate
RPC model, if necessary. Because it will not be user-visible at FRS, we will not have compatibility
problems.

RPC Stub Generator 55-5

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

CHAPTER 56
AlA USER INTERFACE

56.1 Overview

This chapter describes the interface between Mica application programs and their human users.
DECwindows provides the user interface when the user is at a workstation with a bitmap (graphics)
terminal. This chapter describes the DECwindows implementation on Mica.

RMS provides the only character-cell terminal support in the initial release of Mica. RMS supports
only a simple interface to these terminals; essentially, an application can only read and write line-
oriented data. See Chapter 26, Record Management Services, for a description of RMS's support for
character-cell terminals.

56.1.1 Goals

Because of Mica's compute-server nature, Mica applications and their users will be on separate
systems. The AIA User Interface must provide support for this separation.

A state-of-the-art user interface must be provided for workstation users. For users at character-cell
terminals, only a simple interface is required.

56.1.2 DECwindows

DECwindows” is built upon the industry-standard X Window System Version 11™ to give workstation
users a network-transparent application programming environment for windowing, graphics, and
state-of-the-art user interface services. When coupled with a base set of DIGITAL-developed core
applications and a library of third-party applications, DECwindows provides DIGITAL's customers
with a single, consistent view of application development and user interfaces.

By implementing DECwindows on Mica, we allow applications running on Mica to communicate with
users on remote workstations. These remote workstations do not necessarily have to be direct clients
of the compute server, as long as they are part of the compute server’s DECnet network. A user
on a nonclient workstation must access a client system via DECnet in order to get the application
running on the compute server, but the compute server can communicate directly back to the nonclient
workstation.

A full implementation of DECwindows consists of the following components:
* The X Window System (including device support)

* Application programming libraries. For example, the DECtoolkit

* The User environment. For example, the window manager

¢ Core applications. For example, the EPIC/WRITER

! The descriptions of DECwindows and its components in this section are to a large extent extracted and adapted from Peter
George's VMS DECwindows Version 1.0 Project Plan.
™ X Window System, Version 11 is a trademark of the Massachusetts Instituts of Technology.

AlA User Interface 56-1

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

Figure 56-1 shows the major components of a DECwindows implementation, with the various com-
ponents listed above broken into their subcomponents® . These subcomponents are described in the
following sections.

NOTE

Because of Mica’s compute server nature, its implementation of DECwindows does
not include the device support and user environment components. These compo-
nents execute as part of the compute server client’s DECwindows software. In addi-
tion, we have no plans to provide any core applications. Most of these applications
are not compute-intensive, and are therefore not suited for running on the compute

server.
Figure 56-1: DECwindows Components
Compute Server/ Compute Server Client/
—— — DECwindows Client _ _ = __ DECwindows Server _ _ _
| | | |
| | | |
| Aoplication | | Input and Output I E‘pdu!
| | | Device Drivers 1_. Output
| . s | | | Devices
, 5 A
I | | |
: DECtoolkit l : Ol I
{inciudes | Depandent Extensions |
| | Xtootkn) | I Modules |
: | I y |
| | |
| = | I |
: Xio Extensions | | : DECwindows Server Kemel I
| |
| I | | 4 |
| r | , 1
| | | I
| Transport Layer Modules | | Transport Layer Modules |
| o Tl T
DRV g o M [T T | DebSlagig LB o aliaiem . o I
X Natwork Protocol
DW-DIAGRAM

56.1.2.1 The X Window System

The X Window System provides the base upon which DECwindows is built. It consists of the following
components:

* DECwindows server and device drivers

* . Network protocol and transport mechanism

¢ Xlib and Xtoolkit programming libraries

| ? Please note the difference in definition of servers and clients in the compute server environment and the DECwindows
I environment. In this document we will avoid such confusion by using the terms exactly as presented in Figure 56-1 when
referring to the client-server relationship in DECwindows.

?7_

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

56.1.2.1.1 DECwindows Server and Device Drivers

The DECwindows server and its associated device drivers handle window management, drawing
operations, and user input. The Mica implementation of DECwindows does not include these compo-
nents.

|

56.1.2.1.2 Network Protocol and Transport Mechanism |

The X network protocol specifies the common language spoken by DECwindows clients and DECwin-
dows servers, It allows an application and its user interface to be logically separated across a network.

The transport mechanism used by Mica DECwindows is DECnet. Because there is no DECwindows
server for Mica, a local transport mechanism is not needed.

Direct support for other transport mechanisms at FRS, for example TCP/IP, is not provided.

56.1.2.1.3 Xlib and Xtoolkit Programming Libraries

Xlib provides the lowest-level applications interface to the system. It acts as a thin veneer over the
network protocol and transport mechanisms, converting procedure calls into packets that are trans-
mitted to the DECwindows server. Xlib provides basic resource management and bitmap graphics
services. Examples of the resources managed through Xlib are windows, color maps, and input ‘
devices. |
The Xtoolkit is a library layered on Xlib. It gives applications tools for building high-level user Ji
interface objects like menus and scroll bars. The Xtoolkit is often considered to be a part of the '
DECtoolkit, which is described in Section 56.1.2.2.1.

56.1.2.2 Application Programming Libraries
This section describes the programming libraries that are used to develop DECwindows applications.

56.1.2.21 The DECtoolkit

The DECtoolkit determines the application model for DIGITAL and third party software tailored for |
the DECwindows environment. It establishes the conventions and styles that are encouraged for

applications that share a DECwindows workstation. Applications use the DECtoolkit to build user '
interfaces that look and feel like integrated members of the DIGITAL computing environment. f

The DECtoolkit is built as a superset of the Xtoolkit. It comprises:
* Xtoolkit intrinsics—Tools for creating, managing, and modifying user interface objects (widgets)

* DECwindows widgets—Common user interface abstractions such as scroll bars, menus, and |
buttons (
1

|

|

i

!

|

* Utility routines—Functions that perform common tasks like cut and paste

56.1.2.2.2 DDIF Toolkit

The DDIF Toolkit provides routines for creating, reading, and writing Digital Document Interchange
Format (DDIF) files. DDIF files provide an interchange medium for the exchange of compound text
and graphics images between applications.

AlA User Interface 56-3

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

56.1.2.3 Implementation Strategy

DECwindows is currently being implemented for VAX/VMS, VAX/ULTRIX, PRISM ULTRIX, and MS-
DOS™ . Portability is a high-priority goal for these implementations; code sharing is prevalent. Most
of Mica DECwindows will be implemented by porting the VAX/VMS DECwindows V1.0 code to Mica.

The following components of DECwindows will be ported by DECwest for Mica FRS:

* Xlib
¢ Xtoolkit
* DECtoolkit

Additional DECwindows software, such as the DDIF Toolkit, will be ported by SDT for Mica FRS.
Further details are TBS.

The Mica X transport mechanism (the interface between Xlib and DECnet) will be based on its
VAX/VMS counterpart, but it will not be a port of the VAX/VMS code,

The following components of DECwindows will not be available on Mica at FRS:

* DECwindows server and device drivers
* User environment
* Layered libraries

* Core applications

56.1.2.4 Dependencies

The development of Mica DECwindows depends upon the availability of source code from VAX/VMS
and on the availability of a PRISM C compiler. The source code will be available by August 1988.

™ MS-DOS is a trademark of Microsoft Corporation

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

CHAPTER 57

MISCELLANEOUS RUN-TIME LIBRARY ROUTINES

57.1 Overview

n
1
|
This chapter describes the following three groups of routines that are contained in the Mica applica- 'l
tions run-time library: |

* Low-level math routines implemented by SDT
* Common Multithread Architecture (CMA) routines implemented by DECwest I
* Print System Model (PSM) client’ routines implemented by DECwest

These routines provide a portion of the application program interface to Mica. Most of the routines
are designed to adhere to the emerging Application Integration Architecture (AIA). As noted in the
list above, the definition and development of the miscellaneous run-time library routines is the result
of a cooperative effort between DECwest and SDT. \

| Except for the Print System Model client routines, all of the miscellaneous run-time library routines
| are implemented directly on Mica. The Print System Model client routines are provided via remote
‘ procedure call to an implementation of PSM on the client. “

Each of these three groups of library routines is discussed in turn starting with Section 57.1.2, which |
describes the low-level math routines. ‘ .

The Mica applications run-time library also contains other application program interface routines
that complement the capabilities provided by the routines described in this chapter. These additional
routines are described in Chapter 58, Application Run-Time Utility Services.

57.1.1 Goals and Requirements

The miscellaneous run-time library routines share many of the goals and requirements of the AIA
program. Requirements include:

l * Library routine interface implementations must be feasible on all Glacier client systems.
* Library routine definitions must allow for implementations with good performance.

* Library routine implementations must be compatible with other non-Mica implementations of
the routines.

Goals include:

* To provide as complete a program interface to Mica as possible, without including nonportable
concepts or constructs into the libranes.

‘ ! The term "client” in this context refers to a client of the PSM, namely a program running on the compute server that
invokes PSM to perform some action on the compute server client.

' Miscellaneous Run-Time Library Routines 57-1

&—

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

* To provide a set of routines that are architected in such a fashion as to allow efficient library
routine code implementations on all Glaaer client systems.

Nongoals include:

* The code for these library routines must be inherently portable. The AIA architecture requires
only that the interfaces to AIA routines be portable.

* The routines provide interfaces to every underlying operating system capability or architecture-
specific hardware feature.

* The performance of these routines must on average exceed that of similar, non-AIA operating-
system- or architecture-specific routines. \There is a cost for portability.\

571.2 Low-Level Math Routines
Math support routines exist at two levels on Mica:

* A set of low-level routines designed for use by language run-time libraries and other run-time
library routines where absolute performance is paramount. The interfaces to these routines are
compatible with the VAX/VMS implementations of the routines.

The low-level math routines are described in this chapter. Table 57-1 lists the entry points for
these routines.

* A set of high-level routines with AIA-conformant interfaces. These routines are used where
absolute performance is secondary to portability.

The high-level math routines are part of the Application Run-Time Utility Services (ARUS) and
are described in Chapter 58, Application Run-Time Utility Services. The routine names do not
conform to the Mica naming standard for reasons of compatibility with prior implementations.

57-2 Miscellaneous Run-Time Library Routines

_—

Digital Equipment Corporation - Confidential and Proprietary

Restricted Distribution

Table 57-1:

Low-Level Math Routines

mth8abs
mth$acos
mth$acosd
mth$aimag
mth$aimax0
mth$aimin0
mth$aint
mth$ajmax0
mth$ajmin0
mth$amaxl

‘ mth8aminl

’ mth$amod
mthéanint
mth$asin
mthdasind
mth$atan
mth¥atan2
mth$atand
mth$atand?2
mthdatanh
mth$cabs
mth$ccos
mth$cexp
mth$cgabs
mth$cgcos
mth$cgexp
mth$cglog
mth8cgsin
mth$cgsqrt
mth$clog
mthSemplx

| mth$conjg

mth$cos
mth$cosd
mth$cosh
mth8csin
mth8csqrt
mth$cvt_d_g
mth$cvt_da_ga
mth8cuvt_g_d
mth$cvt_ga_da
mth8dim
mth$exp
mth$floati
mth$floatj
mth$floor
mth$gabs
mth$gacos
mth$gacosd
mth$gasin
mth$gasind
mth$gatan
mth$gatan2
mth$gatand
mth$gatand2
mth$gatanh
mth8gemplx
mth$gconjg
mth$gcos
mth$gcosd
mth$gcosh
mth8gdble
mth$gdim
mth$gexp

mth$gfloor
mth8gfloti
mthigflotj
mth$gimag
mthdgint
mth¥glog
mth$glog10
mthiglog2
mthégmaxl
mth$gminl
mth$gmod
mth$gnint
mth$gprod
mth$greal
mth$gsign
mthgsin
mth8gsincos
mth$gsincosd
mth8gsind
mth8gsinh
mth$gsqrt
mthigtan
mthégtand
mth$gtanh
mthdiiabs
mth8iiand
mth$iidim
mth&iieor
mth¥iifix
mthiigint
mth$iignnt
mth$iint

mth3iior
mthSiishft
mthiisign
mth$imax0
mth$imaxl
mth$imin0
mth$iminl
mth$imod
mth$inint
mth$inot
mth$jiabs
mth$jiand
mth$jidim
mth8jieor
mthjifix
mth$jigint
mth$jignnt
mth$jint
mth$jior
mth8jishft
mth$jisign
mth$imax0
mth$jmax1
mth$jmin0
mth8iminl
mth$imod
mth$jnint
mth$jnot
mth$log
mth$logl0
mth$log2
mth$random

mthéreal
mth$sgn
mth$sign
mth$sin
mth$sincos
mth$sincosd
mth$sind
mth$sinh
mth¥snglg
mth8sqrt
mth$tan
mth$tand
mth$tanh
mth$umax
mth$umin
ots$dive
ots¥diveg
ots$mulcg
ots$powce
ots$powcgcg
ots$powcgj
ots$powcj
otsSpowgg
ots$powgj
ots$powglu
ots$powii
ots$powjj
ots$powlulu
ots$powry
ots$powrlu
ots$powrr

| 57.1.3 Common Multithread Architecture Routines
The Common Multithread Architecture (CMA) specifies the essential semantics of executing multiple

threads of control within a single process's address space. CMA also defines a set of capabilities used
to execute these threads on different processors of a multiprocessor system. A series of CMA routines
with system-independent interfaces are included with Mica. These routines provide for the creation
and control of threads, and provide a full set of synchronization and notification primitives.

CMA is described in detail in the CMA draft functional specification. Table 57-2 lists the entry points
for the CMA routines. The routine names do not conform to the Mica naming standard for reasons
of compatibility with the Common Multithread Architecture.

Miscellaneous Run-Time Library Routines 57-3

i

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

Table 57-2: CMA Routines

thd$abort_thread thd$enable_asynch_exception thdSread_barrier
thd$add_thread_exit_handler thd$end_critical thd$read_event
thdSbegin_critical thd$enqueue_ast thd$read_mutex
thd$clear_event thdSenqueue_asynch_exception thdS$reschedule_thread
thd$create_barrier thdSenter_serial_region thd$set_context
thd$create_event thd$get_context thd$set_debug_exit_handler

thd$create_mutex thd$get_cpu_time thd$set_debug_init_routine
thd$create_serial_region thd$get_current_thread_id thd$set_pause_enable
thd$create_thread thd$get_number_of_processors thd$set_priority
thd$dcl_thread_ast thd$get_thread_info thdSthread_ast_handler
thd$decr_barrier thd®incr_barrier thdStimed_lock_mutex
thd$delay_thread thd$leave_serial_region thd$timed_wait_barrier
thd$delete_barrier thd$lock_mutex thd$timed_wait_event
thd$delete_event thd$next_thread thd$unlock_mutex
thd$delete_mutex thd$notify_event thd$wait_barrier
thd$delete_serial_region thd$no_thread thdSwait_event
thd$dequeue_ast thd$pause_thread

thd$disable_asynch_exception thd$permit_asynch_exception

57.1.4 Print System Model Client Routines

The PSM client routines provide the program interface to the Print System Model. These routines
are not yet specified; they will be specified by the PSM task group in 1988.

The PSM client routines are implemented as RPC stubs that perform RPC calls to the actual imple-
mentation of the routines on the client system.

57.1.5 Open Issues

The concept of seamlessness between Glacier and its clients suggests that the miscellaneous
run-time routines need to be implemented at or near FRS on all possible Glacier client systems.
This increases the overall effort and is potentially problematic under the current manpower
constraints.

This chapter discusses the scalar low-level math routines only. No mention is made of the
vector math routines. The interface for these routines is TBD and is expected to closely match
the VAX implementation of the routines. The vector routines are not user-visible. The Mica
implementations of the vector routines are not guaranteed to be bit-for-bit equivalent to their
VAX/VMS counterparts.

This chapter does not include the definition of the Basic Linear Algebra Subprogram (BLAS), a
series of public domain low-level math routines. We assume that Mica will provide at least two
versions of this capability: the public domain BLAS, and a DIGITAL-modified vectorized BLAS.
The library the user links his or her image against determines which of these versions of BLAS
a user will use.

The PSM interface routines are not currently defined. The definition is expected in mid-1988. If
not produced in time, a possible fallback is to provide RPC access to client-specific print facilities.

57-4 Miscellaneous Run-Time Library Routines

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

CHAPTER 58
APPLICATION RUN-TIME UTILITY SERVICES

58.1 Overview

This chapter describes the Mica implementation of the Application Run-Time Utility Services (ARUS)
library. This library contains routines that provide the application program interface to Mica on
Glacier. These routines are designed to adhere to the emerging Application Integration Architecture
(AJA). The definition and development of ARUS on Mica is the result of a cooperative effort between
DECwest and SDT. The major part of the implementation of ARUS is performed by SDT.

There are several discrete groups of routines contained in ARUS. Each of these groups is discussed in
turn starting with Section 58.1.2.1, which describes the ARUS routines used to allocate and deallocate
virtual memory.

The Mica applications run-time library also contains other application program interface routines
that complement the capabilities provided by the routines described in this chapter. These additional
routines are described in Chapter 57, Miscellaneous Run-Time Library Routines.

58.1.1 Goals and Requirements

ARUS shares many of the goals and requirements of the AIA program. Requirements include:
* ARUS routine interface implementations must be feasible on all Glacier client systems.

* ARUS routine definitions must allow for implementations with good performance.

* ARUS routine implementations must be compatible with other non-Mica implementations of the
routines.

Goals include:

* To provide as complete a program interface as possible to contemporary DIGITAL-supplied op-
erating systems such as Mica, VAX/VMS, and ULTRIX without including nonportable concepts
or constructs.

* To provide a set of routines that are architected in such a fashion as to allow effident library
routine code implementations on all such contemporary DIGITAL operating systems.

Nongoals include:

¢ - The code for ARUS routines must be inherently portable. (The AIA architecture requires that
only the interfaces to AIA routines be portable.)

* ARUS routines provide interfaces to every underlying operating system capability or architecture-
f y
specific hardware feature.

* The performance of ARUS routines must on average exceed that of similar, non-AIA operating-
system or architecture-specific routines. \There is a cost for portability.\

Application Run-Time Utility Services 58-1

I Digital Equipment Corporation - Confidential and Proprietary
1l Restricted Distribution
I

Although the ultimate version of ARUS will include a wide range of routines, the FRS offering is
necessarily limited in scope. The FRS version of ARUS comprises those routines needed to support the
FRS layered products and bundled utilities. This section discusses only the utility RTL capabilities
for those areas in which there are FRS requirements.’

Jﬁ | 58.1.2 ARUS Routines

l ARUS is composed of two conceptually different types of routines: generic operating system services
and general purpose utility routines.

manner, those services normally associated with an operating system, such as virtual memory allo-

i ‘ The generic operating system services provide, in an operating-system- and architecture-independent
|‘ ; cation. These routines are described starting at Section 58.1.2.1.

The general purpose utility routines provide access to common capabilities generally identified with
run-time libraries, such as various data conversion routines. These routines are described starting
at Section 58.1.2.7.

58.1.2.1 User Mode Virtual Memory Allocation/Deallocation Routines

ARUS contains user-level memory allocation and deallocation routines similar to the VAX/VMS
i LIBSVM routines. Unlike the LIBSVM routines, the ARUS routine interfaces do not use hardware-
i ! 'i||| specific allocation units, such as pages. All quantities are expressed in terms of bytes.

"_ | \It is interesting to note that in a measurement made of the VMS RTL, the memory management
‘il routines were the most frequently used of any RTL routines by a factor of 10. The performance of
these routines is critical, especially of asi$get_memory.2

| User mode virtual memory allocation/deallocation routines include:
' * asi$get_memory—mandatory for FRS

p——

* asi$free_memory—mandatory for FRS

a | ‘} * asiScreate_memory_zone—mandatory for FRS
i * asiSdelete_memory_zone—mandatory for FRS

g * asi$reset_memory_zone

I I The ARUS condition handling routines provide an AlA-compatible interface to the Mica condition
‘. i handling system. They allow the user to raise, modify, handle, and obtain information about condi-

|
'|‘ :‘I
'!‘ | 58.1.2.2 Condition Handling Routines
|
|I1
I tions in an operating-system-independent manner.

ﬂ ll .|:|. The condition handling routines implement a dynamic condition dispatching environment whose
8 .||| | semantics are based on the order of procedure invocation. This style of condition handling is identical
‘ 1 to that present on VAX/VMS, Mica, and PRISM ULTRIX. The implementation of these routines
‘I o | utilizes the underlying operating-system-specific condition handling features. Note, however, that
HI ll‘ .‘ these routines do not operate with the traditional UNIX™ static signal handling capabilities.?

|

' ! The document "Overview of a New Utility RTL" by Al Simons (contained in the "AlA Strawman”) contains descriptions of
| | | capabilities for the eventual ARUS library that are not represented in this chapter. All such omissions indicate that the
| i capability described is not a realistic FRS deliverable.
I 2 The spelling of all ARUS routine name prefixes, is TBD. The final routine names will have prefixes that serve to reinforce
i the logical grouping of the routines.
| il ™ UNIX is a trademark of AT&T
M * That is, the condition handling routines available in UNIX whose actions are determined by the contents of a program's
||> “signal vector.” For more information about these incompatible condition handling routines, please see Chapter 2 of the
| UNIX documentation.

58-2 Application Run-Time Utility Services

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

The Mica implementation of the ARUS condition handling routines allows for access to the infor-
mation in a Mica condition record in an operating-system-independent manner. The routines do not
provide access to the Mica mechanism record except in a controlled way, for example, to replace the
return value registers contained therein.

Note that these routines do not provide the capability of VAX/VMS routines LIBSESTABLISH and
LIBSREVERT. As discussed in Chapter 11, Condition, Exit, and AST Handling, those routines do not
exist on Mica.

Condition handling routines include:

* arus$raise_condition—mandatory for FRS (FORTRAN, Pascal)

* arus$replace_condition

* arus$add_primary_condition

* arus$add_secondary_condition

* arus$examine_condition—mandatory for FRS (for applications not coded in Pillar)
* arusdunwind_to_caller—mandatory for FRS (FORTRAN, Pascal)

* arusS$unwind_to_exit—mandatory for FRS (FORTRAN, Pascal)

* arus$store_return_value—mandatory for FRS (FORTRAN, Pascal)

* arusSexamine_return_value

* arus$add_primary_handler—not mandatory if DEBUG goes straight to the system as expected
* arus®add_last_chance_handler—mandatory for FRS (FORTRAN, Pascal)

* arus$delete_primary_handler

* arus$delete_last_chance_handler

\It has not been decided whether there will be routines to map conditions from the underlying
system'’s condition facility into common AIA conditions, or whether there will be routines to provide
the means to obtain the condition name in a system-independent manner.

The question is: how does an application test for a condition such as end-of-file when the language
does not provide that mapping? Will an ARUS routine map SS$§_ENDOFFILE to the equivalent
PRISM ULTRIX and Mica condition names or is that the responsibility of the application?

How thoroughly can we isolate the user from the underlying condition handling system?\

58.1.2.3 Date and Time Conversion Routines

The date and time conversion routines are used to convert internal format time into text, text into
internal format time, and to obtain and manipulate internal format time values. They allow flexibility
of natural language and format in both directions of conversion. These routines recognize and process
the DIGITAL standard internal time format, as specified in standard <TBS>. On ULTRIX, there are
additional routines to convert between the UNIX standard internal time format and the DIGITAL
standard format.

Date and time conversion routines include:

* aur$get_system_time—mandatory for FRS

* aur$format_date_time—mandatory for FRS

* aur$format_relative_time—mandatory for FRS

* qgur$convert_date_string—mandatory for FRS

* aur$convert_relative_time_string—mandatory for FRS

Application Run-Time Utllity Services 58-3

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

* aurdfree_date_time_context—mandatory for FRS

* aurdget_date_format—mandatory for FRS

* aur$get_maximum_date_length—mandatory for FRS
* gur$cut_to_numeric_rel_time—mandatory for FRS

* agur$cuvt_to_numeric_abs_time—mandatory for FRS

* gur$cut_from_numeric_rel_time—mandatory for FRS
* aur$cvt_from_numeric_abs_time—mandatory for FRS
* qur$cuvt_to_binary_rel_time—mandatory for FRS

e aur$cutf_to_binary_rel_time—mandatory for FRS

* aurfcvt_from_binary_rel_time—mandatory for FRS
* qur$cutf from_binary_rel_time—mandatory for FRS
* aurScvt_from_binary_abs_time—mandatory for FRS
* qurdinit_date_time_context—mandatory for FRS

* agur$add_mixed_times

* aur$add_relative_times

* aurSsubtract_absolute_times

* aur$subtract_relative_times

o qgurSsubtract_mixed_times

*» aur$compare_relative_times

* aur$compare_absolute_times ’

* aur$get_users_language—mandatory for FRS

58.1.24 String Mapping Routines

The string mapping routines provide the ability to map one string to another. The complete archi-
tecture for these routines provides for a capability similar to that available with VAX/VMS logical
names, including the ability to have secure mappings.

The FRS offering of string mapping routines is more modest. At a minimum level of capability for
FRS, these routines provide a uniform access to the underlying operating system string mapping ca-
pability. Such string mapping capabilities are known as logical names on VAX/VMS and environment
variables on ULTRIX. This FRS support includes the ability to map a string to a single string, but
without any protection from user modification of the mapping.

\We don't like these routine names. "String mapping” requires too much explanation and "logical
name” is too embedded in the past, when the primary use for these mappings was providing de-
vice name independence. For this chapter, we'll use the term string mapping, but suggestions are
welcome.\

String mapping routines include:

e arusScreate_string_mapping—mandatory for FRS
* arus$map_string—mandatory for FRS

» arus$delete_string_mapping—mandatory for FRS
o arus$create_string_mapping_table

58-4 Application Run-Time Utility Services

I . = =]

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

* arus$delete_string_mapping_table

58.1.2.5 Process Information Routines

Pascal has a requirement to obtain the amount of CPU time consumed by the process. That is the
only currently known requirement for process information routines.

58.1.26 Command Language Interpreter Interface Routines

The command language interpreter (CLI) interface routines are used to provide a portable method
for applications to receive and parse simple command lines. The format of the command lines is
operating system specific and these routines only enforce the concepts of command verb, command
parameter, command qualifier, and so on, without resorting to describing the lexical representation
of these entities. The method for describing commands, parameters, and qualifiers is <TBS>.

The CLI interface routines also provide for obtaining the unparsed command line. Additionally, a
routine is provided to meet the requirement of the FORTRAN RTL to be able to pause program
execution and return control to the CLI.

58.1.2.7 Data Conversion Routines

Virtually all of the capabilities present in the VAX/VMS OTSS$ routines are required at FRS to support
FORTRAN. Please see the documented OTS$ definitions.

58.1.2.8 Text String and Message Formatting Routines

The capability needed for text string and message formatting is similar to the $FAO system service
on VAX/VMS, and the printf statement in the C language. Like those facilities, the Mica text string
and formatting routines are driven by a control string. Unlike those facilities, they include inherent
support for internationalization.

Text string and message formatting routines include:
* arus$format_text_string—mandatory for FRS
* arus$get_message_text

58.1.2.9 String Routines

The string routines handle string allocation, copying, and deallocation. They closely resemble the
current VAX/VMS STR$ routines that provide these capabilities. Please refer to the VAX/VMS doc-

umentation.

58.1.2.10 Table-Driven Parsing Routines

FORTRAN NAMELIST I/O currently utilizes the VAX/VMS routine named LIB$TPARSE to perform
the parsing actions required. This general capability should be provided eventually in ARUS; if it is
not available at FRS, the FORTRAN RTL will have to provide its own parsing routines.

Application Run-Time Utility Services 58-5

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

58.1.2.11 Math Routines
Math support routines exist at two levels on Mica:

A set of low-level routines designed for use by language run-time libraries and other callers
where absolute performance is paramount. The interfaces to these routines are compatible with
the VAX/VMS implementations of the routines. The low-level routines are described in Chapter
57, Miscellaneous Run-Time Library Routines.

A set of high-level math routines with AIA-conformant interfaces. These routines are used where
absolute performance is secondary to portability. The high-level routines are described in this
chapter. Table 58-1 lists the entry points for these routines.

Table 58-1: High-Level Math Routines

math$tbs

58.1.3 Open Issues

How to provide transportable condition handling is the area that is currently least understood.
We believe that the routines described in Section 58,1.2.2 are necessary and feasible. Our current
model may, however, change over the next several months as we learn more in this area.

The most pressing issue in the area of the math routines is the lack of a definition of AIA-
conformant math routine interfaces. This is delayed by the lack of a precise definition of the
phrase "AIA-conformant.”

The concept of seamlessness between Glacier and its clients suggests that ARUS needs to be
implemented at or near FRS on all possible Glacier client systems. This increases the overall
effort and is potentially problematic under the current manpower constraints.

58-6 Application Run-Time Utility Services

Glossary

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

GLOSSARY

access violation: An attempt to reference a virtual address to which the protection field in the PTE
indicates the reference is not allowed in the specified access mode.

activated image: An image file that has been laid out in the address space of a process. All relocations
gd fixups have been performed, and control can be transferred to defined entry points within
e image.

active partner SYSAP: The SYSAP that initiates a connection to another SYSAP.

adapter: An adapter is a communication interface that connects the XMI bus to the Computer Inter- (Il
connect (CI) bus. The main function of the adapter is to move information between the Mica i
host and another CI node. As used here, adapter refers to a specialized port.

address space: The set of all possible virtual addresses available to a process.

address space number: A 16-bit number that is unique for each address space in the balance set. See |
the PRISM System Reference Manual for more details. il

address space tables: Structures that reside in the last 4 MB of hyperspace used for managing the
process’s address space such as the working set list.

AlA: Application Integration Architecture.

ARUS: Application Run-Time Utility Services.

AST: See asynchronous system trap.

AST handler: A procedure that is intended to receive notification of a user-mode AST. These procedures
are part of the program and are associated with a particular event or system service completion
notification required by the thread during its execution.

AST handling facility: The Mica AST handling facility provides a mechanism for delivering asyn-
chronous event notification in user mode to threads.

AST object: A kernel object used to interrupt the execution of a thread and cause a procedure to be
called in a specified processor mode. An AST object is in the category of kernel objects called
control objects.

asynchronous system trap (AST): An event that occurs asynchronous to a thread’s execution, causing
the thread’s normal execution to be interrupted and an AST handler to be called. An AST cannot
occur unless the thread has established an AST handler for it.

atomic name: A name in the module name table that is not qualified by another name.

autoloader: A routine supplied with the Mica system that performs the dynamic activation of share-
able images at run time.

Glossary-1

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

autoload routine: See autoloader,

autoload vector: An autoload vector contains the information needed by the transfer routine to dis-
patch to either the autoloader or the target routine. It also contains a self-relative pointer to
the information needed by the autoloader to fixup the target routine’s image. (See also image
autoload vector.)

backlink: A link from a file or directory to its parent directory.

backlink path name: The "backwards" file name path, as represented by the sequence of backlinks
from a given file.

balance set: The set of all address space working sets currently resident in physical memory.

balance set manager: A system thread executing in kernel mode, responsible for increasing the number
of free pages in memory.

binder: The system thread of the upper-level function processor that initiated the binding operation.

binding: (1) The process of joining one or more lower-level FPUs to a single upper-level FPU. (2) A
data structure containing information linking an RPC client to an RPC server.

block: The 512-byte unit of data that is transferred to and from mass storage devices.

block data transfers: Allow arbitrary quantities of data to be transported between systems. All data is
guaranteed to arrive in the order sent and without duplication, or an error condition is reported

to the sender.

bootable Image: Bootable images are just code and data with no image header that are loaded by the
console according to the PRISM System Reference Manual.

bound job: A Mica User, Job, Process, Thread hierarchy whose execution is controlled by compute
server support software and whose context information is derived from that of the user who
initiated execution of the bound job.

buffer handle: The location of the start of the buffer header.

buffer header: A data structure found at the start of each allocated recieve buffer.

built-in self tests: Logic tests built into hardware components.

bundled shadowing: Shadowing technique used by VMS that relies on the disk controller to support
some of the shadow set maintenance.

callback: A call from an RPC server procedure to a procedure in the calling client.
callback table: A data structure containing the callback entry points received by a lower-level function
processor from an upper-level function proessor. The callback table is created in the channel
~ object FPU data area.
calling standard: See PRISM calling standard.

captured: A process in which parameters are copied to safe storage within the executive's address
space (typically the IRP).

channel: An object that specifies a path or a point of connection to an FPU.

Glossary-2

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

channel index: A unique identifier assigned to a channel by the NI function processor. The NI
function processor assigns this channel when the io$c_configure_channel function is invoked.
The channel index identifies the channel for packet reception.

Cheyenne: A database server that provides DDA-compliant relational database services to applica-
tions executing on a VAX front end. Cheyenne includes Mica, Quartz, and Stone.

class: For the Monitor Utility, a group of data items that provide a statistical measure of the perfor-
mance of a particular subsystem.

client: The calling program in an RPC environment.

client context server: A component of compute server support software that executes on the client
system. Together with the Glacier job controller server, the client context server provides the
mechanism by which user Mica images are executed on Glacier.

client installation: A software installation performed on a client machine, for example, a VMS machine.

client stub: A routine in the client stub module that is called by the user code and routes the call to
the server using the RPC run-time facility.

clone: Duplicate.

cluster: A cluster of program sections combined into one or several image sections, Program sections
can be clustered either by specifying the programs sections directly, or by specifying the modules
that contain the program sections.

cluster factor: The unit of space allocation on Files—-11 volumes.

CMA: Common Multithread Architecture.

code section: A section containing all the executable code for a module. It is directly generated by
the compiler and is not modified by the linker, except to combine like-named PSECT (program
section) contributions into image sections.

COM: See copy on modify.
combined priority: See thread priority.

command ring: An NI controller-related data structure located in the host memory. It is used to
communicate the NI function processor’s special command and transmit packet requests to the
NI controller.

composite object module: A module created as the result of merging multiple object modules into a
single object module; when this is done, all intermodule relationships are resolved, PSECTSs are
concatenated, and a new symbol table is generated.

compound name: A name in the module name table that is qualified by other names. Compound
~ names provide a means for languages to implement multiple name spaces in a way supported
by both the linker and librarian.

condition: An error state that results from an error encountered during thread execution. When
a condition is raised, the thread’s execution is interrupted and the thread starts executing a
system-supplied dispatch procedure, which locates a condition handler.

condition handler: A procedure written as a part of a program or supplied by a run-time facility to
handle conditions if they occur during the execution of that program.

Glossary-3

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

condition handling facility: The Mica condition handling facility provides the mechanism by which
condition handlers are found and established (either at runtime or compile time). This facility
provides a mechanism by which all error conditions encountered during a thread’s execution
may be reliably handled by the thread in a controlled manner.

condition record: A data structure that contains all condition values and arguments associated with
a condition.

condition vector: Each quadword-aligned entry in a condition record. All condition-specific a.rguments
present in a condition vector are in descriptor format.

connection: The logical link between two SCS clients. The state of the connection between two
clients must be open for them to communicate. A connection is implemented on top of a virtual
circuit. There are many connections to each virtual circuit. If the virtual circuit "breaks,” then
all connections that are implemented on that virtual circuit are also broken.

context handle: A handle that identifies state information (context) being held by a server on behalf
of a client.

controller: A controller is the hardware interface between the XMI bus and a directly-connected
device.

control object: A kernel object used to direct the operation of the kernel and to control processor execu-
tion. Control objects differ from dispatcher objects in that they are not used for synchronization,
cannot be waited on, and do not have a state.

control space: A 64-megabyte region of virtual address space reserved for address space specific
kernel structures, such as the kernel stack.

copy on modify (COM): The method used by memory management to allowing sharing of data. A page
may be read freely, but it must be copied before the modification can be made.

counterpart: One of two or more logical block units in a shadow set. Each counterpart holds the same
data as every other counterpart in the shadow set.

create-if-nonexistent: This option can be specified at disk file creation time. It indicates that the
specified file will be created if a file of the same name does not exist in the specified directory.

credit: A "send credit” is the permission for an SCS client to send one message to a remote client. A
"receive credit” is the permission given to a remote SCS client to send one message.

datagram free queue (DFREEQ): A datagram free queue is used by a Computer Interconnect (CI) adapter
as a buffer source to format and deliver unsequenced CI packets. A seperate queue is established
for each CI adapter by the device function processor controlling the adapter. The device function
processor maintains the buffers allocated to this queue,

datagrams: Relatively short messages that have a high probability of being received by the partner.
There are no guarantees that the partner will receive the datagram, that the datagram will not
be duplicated, or when the datagram will be delivered. Datagrams are typically used to send
error log packets.

datagrams: Short messages used by the MSCP controllers to notify the host of certain events.

data relocation table: A table describing all fixups that must be performed by the linker to the data
and linkage sections of the module, based on program section addresses.

data section: A section containing all the data defined in the module. Some of this data is read only

and some is read/write. This section also contains the linkage ($LINK) section and all entry
descriptors for routines defined in the module.

Glossary—4

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

data transfer functions: Functions which include: reading, writing, comparing, erasing, and accessing
data on disks. These functions are supported by all logical block unit function processors.

DDA: DIGITAL Database Architecture.

debug symbol table: A symbol table built by a compiler containing sufficient information for the
debugger to interpret user commands and display memory contents in “the current programming

language.”

demand zero: A page that is initialized to contain all zeros when dynamically created in mem'ory as
a result of a page fault.

device: Any piece of hardware that can be the target of a diagnostic test.

device function processor (DFP): A type of function processor used to transport commands to the device
hardware. The device function processor provides the same support as the device driver provides
in VMS,

device work queue object: A repository for device work queue entries that is used to communicate
between a driver thread and its interrupt service routine. A device work queue object is in the
category of kernel objects called control objects.

DFP: See device function processor.

DFREEQ: See datagram free queue.

diagnostic file: An executable image file containing a diagnostic program.

diagnostic pass: The execution of all selected diagnostic tests on a particular device, one time.

diagnostic run: The execution of all selected diagnostic tests on all selected devices, for the selected
number of times.

diagnostic subprocess: Diagnostic programs are run as subprocesses started by the PDM server, and
are known as diagnostic subprocesses.

diagnostic subtest: A set of procedures making up a diagnostic test.

diagnostic test: A set of diagnostic subtests making up a diagnostic program.

DIGITAL Storage Architecture (DSA): The DIGITAL Storage Architecture (DSA) defines the algorithms
and protocols used to communicate with disks, tapes, and mass storage controllers, along with
a process for managing evolution and enhancements to these algorithms and protocols.

direct message section descriptor: A pointer to a message section.

directory: A list of files or directories on a mass storage device.

directory backlink: A backlink from a directory to its parent directory.

directory entry: A filename in a directory.

directory name: Character string that represents a directory.

directory path: A list of directory names. The first element in the list is a directory in the root
directory. The second element in the list is a directory in the first directory, and so on.

Glossary-5

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

disk configuration functions: Functions which include bringing a unit online, initializing a stripe or
shadow set, adding a counterpart to an existing shadow set, and so on. Most of the configuration
functions are unique to a specific function processor.

dispatcher; A system-supplied dispatch procedure that locates and calls condition handlers. The
dispatcher executes as if it had been called immediately after a condition was raised.

dispatcher object: A kernel object that is used to control and synchronize thread access to data
structures and external events.

DSA: See DIGITAL Storage Architecture.
DSA 1: Refers to the current generation of the DIGITAL Storage Architecture.

DSA 2: Refers to the next generation of the DIGITAL Storage Architecture. DSA 2 is under devel-
opment and is not well defined at this time.

DSRI: DIGITAL Standard Relational Interface—the component of DDA that specifies a mechanism
used by host programs to interface to relational database systems.

DSRL: DIGITAL Standard Relational Languages—the compaonent of DDA that specifies the DML and
DDL used within programming languages to access relational database systems.

DSRP: DIGITAL Standard Relational Protocols—the component of DDA that specifies database-
related intersystem protocols, used to communicate between host programs and remote database
systems or between multiple database systems.

dynamic activation: Delaying the activation of an image (into memory) until it is actually referenced.

environment: A name space in which local or internal symbols are defined. Global symbols may
be viewed as being in the “root” environment and therefore do not need to be qualified by an
environment name.

event object: A kernel object used to record and synchronize the occurrence of an event with some ac-
tion that is to be performed. An event object is in the category of kernel objects called dispatcher
objects,

executable image: An image produced by the linker, with a base address of 64K (or 10000 hex)
assigned to the image. Executable images must have a transfer address or the linker generates
a warning at link time.

exit handlers: There are two types of exit handlers: thread and process exit handlers. Thread exit
handlers are called when a thread exits. Process exit handlers are called when the last thread in
a process has finished executing the last of its thread exit handlers. Exit handlers are established
using a system service and kept as a list in either the TCR (for thread exit handlers) or the PCR
(for process exit handlers).

exit handling facllity: The Mica exit handling facility gives threads the capability of specifying and
executing procedures in user mode during thread rundown. This facility allows threads and
processes to perform overall clean-up actions on their environment, deallocation of system re-
sources, or emergency actions.

expanded file specification: A fully defaulted and translated file specification.

facllity-registered status: A 64-bit value which contains a facility-registered status value.

facllity-registered status value: A status value unique across the entire system.

Glossary-6

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

fault on execute: Indicates that a user or kernel program attempted to execute information on that
page.

fault on read: Indicates that a user or kernel program attempted to read information on that page.
fault on write: Indicates that a user or kernel program attempted to write information on that page.

field replaceable unit: A piece of hardware that can easily be replaced at a customer’s site. The
smallest piece of a hardware subsystem that is typically replaced at a customer’s site when
repairs are being made.

file: A named collection of data that is organized into blocks.

file access: Defines the type of record operations that the program will perform on the file. The
record operations that can be performed are: delete, get, put, truncate and update. (See also

file share options.)

file allocation options: Options that can specify the file space allocation amount, default extension
amount, and placement control.

file attributes: Characteristics of a file that are used by software, such as RMS, to specify and deter- [
mine the current condition and organization of the file. ‘
|

file channel: A channel to an accessed file, as represented by the presence of the file's access types in
the function code access type (FCAT) table for the channel. |

II
flename: The character string and version used to identify a file. |

filename path; The combination of a filename and a directory path. The final element in the directory
path is the directory in which the filename is entered. (

file organization: The arrangement of data within a file. (

file rohro}r:ce: : A function-processor-specific reference to a file, which might be used to optimize access |
to the file.

file share options: Defines the type of record operations that the program allows other programs |
sharing access to the specified file to perform. (See also file access.) !

fix-up: An action taken by the linker to alter an image so that it becomes memory-ready. .'
Flint: See PRISM ULTRIX.

flow control: Flow control inhibits a sender from sending information until the receiver has provided
a buffer to hold the information. Credit accounting is used to implement flow control.

FP context area: An area reserved by a function processor following its FP parameter record in an
IRP’s free area. This area is allocated by the function processor if it needs to store additional
context information in the IRP.

FPD: See function processor descriptor.

FP parameter record: Function processor parameter records hold the user /O parameters for the
request in an internal format, or the parameters of an internal request passed from one function
processor to another. In addition, an FP parameter record may hold a certain amount of internal
context for the request.

FPU: See function processor unit.

Glossary-7

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

front-end Installation: See client installation.

function code access type (FCAT) table: A table that defines the access types for all legal function
codes.

function processor: A collection of kernel-mode procedures and threads that execute /O requests.

function processor callback: The mechanism used by a lower-level function processor to communicate
with an upper-level function processor.

function processor descriptor (FPD): Each function processor has a function processor descriptor (FPD)
object that maintains the addresses of each global procedure in that function processor, as well
as certain function-processor-specific parameters. When the function processor is needed to
process an /O request, the address of the appropriate procedure within the function processor
15 looked up via the FPD object.

function processor unit (FPU): A function processor accepts requests on one or more function processor
units (FPUs). An FPU is an object that represents a particular resource to higher levels of
software, All requests to a resource are directed to its respective FPU.

Glacier: A high-performance compute server with vector capabilities for VAX and PRISM worksta-
tions. Glacier includes Mica and Moraine, plus the compute server support software that runs
on its clients. Another implementation of Glacier includes PRISM ULTRIX and Moraine. A
later implementation of Glacier includes Stone in the place of Moraine.

Glacler job controller server: A component of compute server support software that executes on Mica.
Together with a client context server, the Glacier job controller server provides the mechanism
by which user Mica images are executed on Glacier.

global symbol: A symbol (value or location) defined in one object module, whose value is made
available by the linker to other object modules.

global symbol table: A table describing ;ymbols defined or referenced in a module. The global symbol
table parallels the module name table. That is, programs must walk both tables at the same
time to obtain all the attributes of an element in the global symbol table.

hardware conditions: Conditions that occur when a thread attempts some action defined as incorrect,
impossible, or not yet possible by the hardware. Such action results in a hardware exception
interrupting execution, which in turn causes a condition to be raised in the thread which was
executing,

host area: The area of a disk reserved for host-specific information.

host transfer list (HTL): A data structure used to describe the direct I/O buffer with an array of physical
addresses. When a function processor is called at its initialize I/O parameters entry point, an
HTL is created by the function processor if direct I/O is to be done.

HTL: See host transfer list.

hyper space: An 8-megabyte region of virtual address space reserved for mapping page tables, work-
ing set, and address space specific structures.

image: A file resulting from linking several object modules together. PSECTSs are gathered into image
sections, and there are no unresolved external references.

Image activator: The part of the system responsible for loading image files into memory and preparing
them for execution.

Glossary-8

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

Image autoload vector: A set of entry descriptors generated by the linker to implement the automatic
loading of shareable images at run time (rather than activating all referenced images at image
activation). (See also autoload vector.)

image fix-up: See fix-up.

image relocation tables: A relocation table within an image describing how memory locations within
the data section are fixed up once the image has been activated. The linker generates relocation
tables for symbols defined within the image, symbols defined in other images, and TLS region
counts.

image section: A collection of PSECTs with like protection attributes, found only in images.

Image section descriptor (ISD): Part of an image header for a section. Contains information about the
image section.

indirect message section descriptor: A pointer to a file which contains a message section and a null
message section pointer,

Initial installation: A type of standard installation used when a system is being installed for the first
time.

|
Initialization routines: Routines called by the image activator when an image is first activated. !
Interface class: Function processors sharing similar access characteristics are said to belong to the |‘

same interface class. All of the function processors in a class make up a single programming

interface. Examples of common interface classes are the directory structured file system class, ‘

logical block class, logical magtape class, and so on. |
|

Internal status: A 64-bit value which contains a facility-registered status value and a 32-bit facility-
defined data entity. ‘
|

Interprocessor Interrupt: A synchronization mechanism used by one processor to notify another pro- [
cessor of pending work it is to perform.

Interrupt callback: A procedure specified by a thread to synchronize with an interrupt procedure across {
all processors in the system. I

Interrupt object: A kernel object used by a driver thread to connect an interrupt vector in the system
control block (SCB) to a device interrupt service routine, or to disconnect such a vector. An
interrupt object is in the category of kernel objects called control objects.

invalld PTE: A PTE with a zero in the VALID bit.

Invocation descriptor: A quadword-aligned data structure that provides basic information about a
routine. This structure is used in calls between separately compiled routines, and in interpreting
the call stack that exists at any point in the execution of an image. Entry descriptors are defined
by the PRISM calling standard.

Invocation descriptor-based handlers: These handlers are located from a procedure’s invocation de-
scriptor. They are used to implement a particular language’s condition handling semantics.
For the Pillar language, they are used to implement structured condition handling. Invocation
descriptor-based handlers are established at compile time and may be called multiple times
when multiple conditions are active.

VO parameter record: A data structure containing a combination of /O parameters, pointers to pa-

rameters, and buffer descriptors. An /O parameter record is defined specifically for the function
processor class and function code of the request in which I/O parameters are 3

Glossary-9

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

IO request packet (IRP): An I/O request packet (IRP) is a data structure used internally by the I/O
system to represent an individual request for 1/0. An IRP is created by the I/O subsystem when
a request for I/O is issued and remains in memory until the I/O operation completes. During
the course of an /O operation, an IRP may be passed from one function processor to another.

I0SB: See I/O status block.

VO status block (I0SB): A data structure into which status information is written by the e.tecS‘request_
io service upon successful completion of a request. The format of an /O status block (IOSB) is
the same as the IOSB in VMS, only each field is double in size.

IRP; See I/O reguest packet.
ISD: See image section descriptor.

kernel mode entry page: A page which is protected as user read, kernel read, kernel write, with fault
on execute enabled. Kernel mode entry pages are used to dispatch to system services

kernel object: A data abstraction used to control processor execution or synchronization. There are
two kinds of kernel objects: dispatcher objects and control objects. Unlike an object defined by
the object architecture, a kernel object is not directly available to user software.

layered product software: A software product not part of the base system.

level: For the Monitor Utility, the current value of a data item, that is, & "snapshot.”

linkage (SLINK) section: The portion of the module data section that contains pointers to data. The
linkage section is generated by the compiler, and address relocations to this section are per-
formed by the linker, using information in the address relocation table. The linkage section
must not be shareable, as it contains process-private addresses.

linkage pair: A linkage pair consists of the addresses of a procedure’s invocation descriptor and entry
point.
loader: The part of the system responsible for loading object modules into memory, resolving external

references, and preparing object modules for execution. The loader may be implemented as part
of the image activator.

local procedure call: A procedure call in which the called routine is in the same address space as the
calling routine.

local RPC: A special remote procedure call in which the two address spaces are on the same system.

local status: A 64-bit value which contains a local status value and the address of a message data
structure.

local status value: A status value local to a particular facility.

locate mode: Technique used for record retrieval operation in which RMS returns a pointer to the
record which is in the RMS /O buffer and the record length of the retrieved record. (See also
move mode.)

logical block interface: A set of procedure calls used to configure disks and access data on disks. These
procedures support data transfer and disk configuration functions.

major priority: That part of thread priority that is controlled by the kernel.

Glossary-10

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

manager thread: A system thread, created by the NI function processor, that is associated with an NI
controller. This thread is responsible for the general management of the NI function processor.
This includes controller configuration and reconfiguration, powerfail recovery, allocating receive
buffers, and self deletion.

mapping object: Contains a pointer to the section object for a section, and the virtual address ranges
of the section.

master save set: A master file containing a directory of all other save sets. (See also save set.)

maximize version: This option can be specified at disk file creation time. It indicates that the specified
file will be created with a version number one greater than a file of the same name in the specified
directory.

mechanism record: A data structure that contains information regarding the environment at the time
of a condition, together with the environment of a handler when it is called.

memory management subsystem: A combination of hardware and software functions that performs
the mapping of physical address space into a process’s virtual address space.

|
|
memory-ready: Ready to be loaded into memory. A memory-ready image is one requiring no fix ups. |
|

message category: A 32-bit field in the header portion of a message; identifies a subset of a message
class.

message class: A 32-bit field in the header portion of a message; identifies the set of all message
categories relating to a particular subject.

message FPU: See message function processor unit. |

message free queue (MFREEQ): A message free queue is used by a CI adapter as a buffer source to
format and deliver incoming sequenced messages. The device function processor controlling the (
CI adapter establishes a seperate queue for each adapter. Each connection over the adapter's (
virtual circuits allocates buffers to the queue by using the SCA flow control mechanisms. |

message function processor unit: Any one of the FPUs through which threads access the message
function processor.

message section: A data structure which contains message numbers and the associated message text.

message type: A quadword specifying a message class and one or more message categories within
that class.

MFREEQ: See message free queue.

Mica: An object-based, modular operating system that supports symmetric multiprocessing and mul-
tithreaded processes. It is the base system software for Glacier and Cheyenne. Mica is written
in a high-level language (Pillar) so as to be readily maintainable and extensible.

minor priority: That part of thread priority that can be explicitly modified in order to give preference
within a major priority level.

modified page writer: Writes pages from the modified page list to backing store as needed.

modu}a: A file, containing names and related information, that conforms to the described module
ormat.

module header: The first record in a module. All information in a module can be located directly or
indirectly through information in the module header.

Glossary-11

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

module name table: A table containing the names of all symbols and PSECTs defined or referenced in
the module. It contains both atomic and compound names. Entries in the module name table
correspond one-to-one with entries in the global symbol table.

Monitor Utility: A Mica utility that displays and records information about system resource usage.

Moraine: A multiprocessor, bounded system built by DECwest. It includes one-to-four scalar/vector
processor pairs, a crossbar-switching backplane, and XMI 1/O; it uses CMOS II technology.

move mode: Technique used for a record retrieval in which the data records are copied from: RMS
I/O buffer to the program buffer,

multicast address: A predefined datalink address associated with one or more logically related stations
on the NI.

mutex object: A kernel object used to control exclusive access to a resource. A mutex object is in the
category of kernel objects called dispatcher objects.

Network Interconnect: See NI.

NI: Network Interconnect. A network interconnect can be either an Ethernet LAN or an IEEE 802.3
LAN.

NI physical address: A datalink address associated with a particular link attachment of a node on
the NI.

notification messages: Messages written to a message FPU that announce the asynchronous arrival
and departure of units (these units are disks for the MSCP function processor, and counterparts
within the shadow set for the disk shadowing function processor). Notification messages are
used to report changes in the configuration for /O requests.

object module: The output of a compiler, a single module generated from the source language.

observation period: For the Monitor Utility, the beginning and ending times for viewing or summa-
rizing current or previously recorded data.

ODS file identifier: The ID number assigned to a file.

on-disk context: Context stored on the disk, which is independent from the context used by the file
system.

on-disk context sector: This is a sector of reserved space at the end of the host area on the disk. This
context area is used by the striping and shadowing function processors to store non-file context
information.

on-line Installation: A software installation that occurs while the system is performing normal activity.

operating system software: The base system software (Mica).

package definition: An instance of the definition of an RPC package, written in the package definition
language, Stub.

package definition block: A global record defined in the package definition module generated by the
stub generator, and used by the RPC run-time faality.

package definition language: A programming language that is used to define an RPC package.

page: A set of 8192 contiguous byte locations beginning at an even 8192-byte boundary, used as the
unit of memory mapping and protection.

Glossary-12

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

page fault: An exception generated by a reference to a page that is not in the working set of the
faulting address space.

page fault clustering: The act of reading more than one page from the disk to satisfy a page fault.

page file format: A form of an invalid PTE which refers to a page which currently resides in the
paging file,

page frame number (PFN): The high-order 32 bits of the physical address of a page in physical memory.

page frame number database: A memory-resident structure containing information about each page
in physical memory.

pager: A set of executive procedures which execute in kernel mode as the result of a page fault.
The pager makes the page for which the fault occurred available in physical memory so that

the image can continue execution. The pager and the image activator provide the operating
system’s memory management functions.

page table base register: See the PRISM System Reference Manual for more details.

page table entry (PTE): The data structure that identifies the physical location and status of a page
of virtual address space. When a virtual page is in memory, the PTE contains the page frame
number which maps the virtual page to a physical page. When it is not in memory, the PTE
contains the information needed to locate the page.

page table pages: Lists of page table entries, these lists manage the complete address space.

paging: The action of adding and removing pages from the working set.

paging file: The file which modified pages are written to when the physical page is reused.

passive partner SYSAP: The SYSAP to which an active partner SYSAP initiates a connection,

path: At least one path exists between any two systems that can communicate. A path corresponds

to the underlying physical interconnect that joins the two systems. If multiple interconnects
join two systems, there can be multiple paths between them.

PB: See processor control block.

PDM: See PRISM Diagnostic Monitor.

PDM server: The portion of the PRISM Diagnostic Monitor that resides in PRISM and controls the
operation of PDM-based diagnostic programs.

PDM User Interface Module: The portion of the PRISM Diagnostic Monitor that provides PDM's user
interface, and resides on the client in a client-server environment.

PFN: See page frame number.
physical address: The address used by hardware to identify a page in physical memory.

physical address space: The set of all possible 45-bit physical addresses that can be used to refer to
locations in memory space or I/O space.

piggyback AST: An AST edure used to unmark the state change data structure. The piggyback
AST executes the io$state_change_ast_cleanup procedure when the state change AST is delivered
to the thread by the kernel. After the piggyback AST procedure completes, the kernel delivers
the normal AST to the thread, and the thread’s AST procedure.

Glossary-13

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

Pillar: A high-level, state-of-the-art systems programming language designed for 32-bit and 64-bit
DIGITAL systems. Pillar is the software development language for the Mica operating system.

port: A port is an intelligent hardware interface to a CI bus. A CI port implements parts of the SCA.

port data block: An NI controller-related data structure used during the controller initialization. The
port data block gives the NI controller the location of a data structure in the host memory to be
used by the controller and NI function processor to exchange data.

power-up request object: A kernel object used to request that an AST be queued when a power
recovery interrupt is generated. A power-up request object is in the category of kernel objects
called control objects.

power-up status object: A kernel object used to request that a specified variable’s value be set to TRUE
when a power recovery interrupt is generated. A power-up status object is in the category of
kernel objects called control objects.

preliminary connections: Preliminary connections are connection requests by remote SYSAP partners
that are not yet accepted or rejected by the local SYSAP. The connect data structures for these
requests are associated with the /O channel used by the SYSAP to enter its name in the listen
directory.

primary file specification: The file specification to which defaults are applied.

primary system thread: A type of system thread used to configure a stripe set or shadow set for
modification by secondary system threads.

PRISM: New computer architecture designed to be simple, flexible, expandable, and fast. All the
hardware described in this glossary uses the 32-bit PRISM architecture; the architecture is
designed to permit expansion to 64 bits in the future.

PRISM calling standard: The standard sequence used to call a routine. The PRISM calling standard
is defined in the PRISM Extended Calling Standard.

PRISM Diagnostic Monitor (PDM): A controlling environment for all loadable PRISM diagnostic pro-
grams.

PRISM ULTRIX: A world-class UNIX product tailored to PRISM workstations and compute servers
that supports DECwindows and AIA. PRISM ULTRIX shares some low-level components and
architectures with Mica,

procedure call: The action of invoking a procedure.

process object: A kernel object that represents the address space and control information necessary
for the execution of a set of thread dispatcher objects. A process object is in the category of
kernel objects called control objects.

processor control block (PB): A structure that contains processor-specific information, such as a pointer
to the thread object of the current thread, and the processor-specific fork queune header.

processor Index: The processor index is an index into the array that catalogs the PBs in a system.
This index can be used to locate the PB for a given processor.

program section: See PSECT.

protocol type: A 16-bit field in the Ethernet packet format for protocol demultiplexing among multiple
users of a datalink.

Glossary-14

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

prototype PTE: A PTE which is created during a call to the Create Section service and is used to allow
complete sharing of the pages in the section.

PSECT: Program section. PSECTs describe a contiguous piece of memory. With concatenated
PSECTS, all contributions for a particular PSECT are gathered contiguously in memory. If
the PSECT is overlaid, all contributions for a particular PSECT begin at the same virtual ad-
dIéBES, and the module that has the largest contribution to a PSECT defines the length of the
PSECT.

PSM: Print System Model.
PTE: See page table entry.

Quartz: High-performance relational database server software that complies with the DIGITAL
Database Architecture (DDA). See also Cheyenne.

queue object: A repository for queue entries that is used to synchronize activity between producer
and consumer threads. A queue object is in the category of kernel objects called dispatcher
objects.

quick mode: A mode of operation in which diagnostic programs execute an abbreviated testing se-
quence.,

random access: A record retrieval or storage mode. For sequentially organized files, random access
to records can be done by specifying the record’s position. If the sequential file has fixed length
records, the records for such files can be accessed randomly by specifying the relative record
number. Indexed file records can be accessed randomly by specifying either the primary or
alternate key.

rate: For the Monitor Utility, the number of occurrences per second.
reader: A thread that reads from the message function processor.

readers only: The condition in which (a) only readers are registered on a particular message FPU,
and (b) no messages are pending on that FPU.

read-only area: A directory structure on the system read-only disk that contains system files that are
of read-only nature.

read/write area: A directory structure on the system read/write disk that contains system files that
must be updated during the life of the system. It also contains replacement files for files in the

read-only area.

receive buffer pool: A pool of receive buffers allocated by the NI function processor when the io$c_
ready_fpu function is invoked. The NI function processor attaches the recieve buffers from the
recieve buffer pool to the NI controller’s receive ring.

recelve ring: An NI controller-related data structure located in the host memory. It is used to com-
municate NI function processor’s receive packet requests to the controller.

record: A record is a collection of related data items that is treated as a unit.
record attributes: Defines the type of record control information associated with each record.
record format: Indicates the way in which records appear physically on the recording surface of the

storage medium. Record format is defined in terms of record length. The record format can be
fixed length, variable length, variable length with fixed length control, stream, or undefined.

Glossary-15

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

record-locking facility: A facility that prevents access to a record by more than one thread until the
initiating thread releases the record.

record position: Indicates a record’s physical position in a file.

registration: The process by which threads identify themselves to the messsage function processor as
either readers or writers (or both).

relative record number: A positive integer that is used to indicate the position of a fixed-length record
in a sequential file. b

remote procedure call (RPC): A procedure call in which the called routine is in a different address
space than the calling routine.

resource: A unit or volume, as represented by an FPU.
Rock: See Stone.

root directory: The first directory in the directory hierarchy.
RPC: See remote procedure call.

sample interval: For the Monitor Utility, the time interval at which systemwide performance data is
to be collected and computed.

SAP: See service access point.

save set: A file created by the backup utility that contains other files.
SCA: See Systern Communication Architecture.

SCB: See system control block.

script: A command file. An ASCII file containing PDM commands.

secondary object: An /O object, such as a file object or a port object, that is indirectly pointed to by
the FPU context in a channel object.

secondary system thread: A type of system thread used to process the /O requests that modify a
stripe set or shadow set.

section: The basic unit of sharing data among processes. A section can be a disk file, a portion of a
disk file, or a paging file.

segment: An object created as a side effect of a Create Section service. Every section refers to some
segment object. The segment object provides the mechanism for allowing multiple users to share
pages within a section.

segment 1 PTE: The first level page table which is located using bits <31:23> of the virtual address
and the PTBR.

segment 2 PTE: The second level page table which is located using bits <22:13> of the virtual address
and the contents previously located in the segment 1 PTE.

semaphore object: A kernel object used to control access to a resource. A semaphore acts as a gate

through which a variable number of threads can pass concurrently, up to a specified limit. A
semaphore object is in the category of kernel objects called dispatcher objects.

Glossary-16

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

sequenced messages: Relatively short messages that are guaranteed to be delivered to the partner
port. The sender is notified if they are not delivered. Sequenced messages are always delivered
in the order sent, and are never duplicated.

sequential record access: A record retrieval or storage mode that starts accessing records at a desig-
nated point of the file and continues in one-after-the-other fashion through the file. That is, the
records are accessed in the order in which they physically appear in the file.

server: Software that executes remote procedure calls on behalf of a client.

server stub: A routine in the server stub module that receives an RPC and makes the call to the real
server procedure.

service access point (SAP): An 8-bit field in the IEEE802 format packet for protocol demultiplexing
among multiple users of a datalink.

session layer: The session layer of a network protocol tower is the user’s interface into the network.
The user must use this layer to establish a connection to a process on another machine.

shadowing: A process which keeps duplicate data up to date on two or more disks.
shadow set: Two or more logical block units containing the same data.

shareable Image: A special form of executable image that contains a global symbol table and can be
input to the linker in subsequent linking operations.

shareable image space: A one half gigabyte region of virtual address space reserved for permanently
mapping shareable images.

SIU: See Software Installation Utility.

SNAP Protocol ID: Subnetwork Access Protocol Identification field. A 40-bit field in the SNAP SAP
packet format for demultiplexing among multiple users of a single SNAP SAP address.

SNAP SAP: Subnetwork Access Protocol. A reserved SAP address for protocol multiplexing and
demultiplexing among multiple users of a datalink.

software audit log: A file created and appended to by the Software Installation Utility that maintains
a list of operations that occured during a software installation.

software conditions: Conditions that result from an explicit use of condition handling by a thread.
Software conditions may be raised at any point during thread execution. This allows appli-
cations or language run-time libraries to notify threads that some action defined as incorrect,
impossible, or not yet possible was attempted by the thread. In Mica, software conditions may
occur synchronously and asynchronously to thread execution.

Software Installation Utility: The utility that is used to perform standard and special software instal-
lations. The utility is invoked through system management.

software priority: See thread priority.

special Installation: The installation procedure used to install layered product software, third-party
software, and partial system updates.

spin lock: A synchronization mechanism for implementing mutual exclusion across processors in a
multiprocessor configuration.

standard Installation: The installation procedure used to install the operating system software.

Glossary-17

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

status value: A 32-bit value used to return information regarding the success or failure of a process,
thread, I/O service, or procedure back to the thread which created or called it. There are two
types of status values: facility-registered status values and local status values.

Stone: A multiprocessor high-reliability system built by DECwest. It includes one-to-four scalar/vector
or scalar/scalar processor pairs, a crossbar-switching backplane, and XMI I/0; it uses CMOS III
technology.

stripe fragments: A portion of a stripe residing on a single unit. All of the stripe fragments in a stnpe
cover the same range of logical block numbers on each unit.

stripes: Individual units of data in a stripe set.

stripe set: The virtual representation of all of the disk units used in the striping process. Higher
levels of software view the stripe set as a single continuous vector of logical blocks.

striping: A process which presents two or more disks as a single disk to higher levels of software.
Stub: The Mica RPC package definition language.

stub modules: Modules containing client stubs or server stubs. Stub modules are generated by the
stub generator.

Subnetwork Access Protocol ID: See SNAP Protocol ID.

subsection: Structure which is contained within the segment control area which provides the in-
formation to translate a virtual address to a range of virtual block numbers within a mapped
file.

subsection format: Format of a prototype PTE when it refers to a subsection.
supersede version: This option can be specified at disk file creation time. A file created with this

option supersedes any file in the specified directory with the same file name, file type, and
version number.

SVA: See system virtual address.

synonym fllename path: The filename path given to a file when it is entered into more than one
directory, using one or more file names.

SYSAP: Functions within the operating systems of hosts, as well as the firmware of disks and tape
controllers that need to communicate over the CI interconnect. Examples of SYSAPs include
disk and tape class drivers, DECnet software, and the VAXcluster connection manager.

system catchall handler: A user-executable procedure, mapped in system space, that catches all im-
properly handled conditions.

System Communication Architecture (SCA): Defines how data traffic is handled among systems over
the CI interconnect.

system control block (SCB): An architecturally defined structure that contains addresses of exception
and interrupt service routines. The routines cataloged in the SCB are used to handle system
interrupts and exception conditions.

system Image: System images are both executable and shareable images that are loaded into system
memory. These images are used by all kernel mode software.

system space: A one and one half gigabyte region of virtual address space reserved for mapping the
operating system and operating system data structures.

Glossary-18

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

system virtual address (SVA): A virtual address identifying a location in system space.
target system: The hardware system on which the software is being installed.

temporary marked for delete: This option can be specified at disk file creation time. A file created with
this option is created without any directory entry. The file is automatically deleted when the
file is closed.

temporary read/write area: A directory structure on the system read/write disk that is created by
the Software Installation Utility during a special installation. Products are first placed in this
directory structure before being placed in the real system read/write area.

third-party software: Software products created by vendors other than DIGITAL.
thread-local storage: See TLS,

thread object: The agent that executes program code and is dispatched for execution by the kernel.
A thread object is in the category of kernel objects called dispatcher objects.

thread priority (or combined priority, or software priority): The importance level of a thread, in the range
from 0 to 63, used by the thread dispatcher. Thread priority is divided into a major priority and

a minor priority.

timer object: A kernel object used to synchronize thread activities based on the passage of time. A
timer object is in the category of kernel objects called dispatcher objects.

TLS: Thread-local storage. TLS is per-thread storage with FORTRAN COMMON semantics, and
storage allocated at run time.

TMSCP: Tape Mass Storage Control Protocol is the name of the interface used to communicate with
DSA magnetic tape drives and controllers,

transfer address: The address of an invocation descriptor in an executable image that is called when
the image is run.

transfer code: The code generated by the linker that transfers a call to a routine in another image to
the autoloader.

transfer vector: The offset from the beginning of a mapped shareable image to the invocation descrip-
tor of the routine it represents.

transition page: A page currently on the standby list or modify list, or a page in the process of being
read.

translation buffer: An internal processor cache virtual to physical translations for recently used virtual
addresses.

translation not valid fault: This fault invokes the pager. Also referred to as a page fault

unwind facllity: The Mica unwind facility centrally provides the capability to perform nonlocal GOTOs
within a thread. It is implemented as a user-mode procedure, mapped in system space, and
reached via a procedure variable in the process control region.

update Installation: See upgrade installation.

upgrade Installation: A type of standard installation used when a system is being upgraded from one

version to another version. During this type of installation some information from the previous
version must be transfered to the new version, for example, the system authorization file.

Glossary-19

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

USE: See User-Level System Exerciser.

User-Level System Exerciser (USE): The User-Level System Exerciser is similar to the VAX/VMS UETP.
It tests device connections to the hardware and simulates load testing.

user space: A two gigabyte region of virtual address space reserved for user mode images.

VAX port queue object: A repository for VAX port queue entries that is used to communicate between
a PRISM processor and a VAX port device controller. A VAX port queue object is in the category
of kernel objects called control objects.

VBN: See virtual block number.

vectored handlers; There are two types of vectored handlers: primary and last chance. Primary
vectored handlers are the first searched for when a condition is raised. The list of primary
handlers is called in FIFO order with respect to when they were established. Last chance
vectored handlers are called in LIFO order with respect to when they were established. Vectored
handlers may only be established at runtime, by using a system service.

version: A value that distinguishes files with the same character string.

viewing Interval: For the Monitor Utility, the time interval at which current or previously recorded
data is to be displayed to the user screen.

virtual address; A 32-bit unsigned integer that specifies a byte location within the virtual address
space.

virtual address space: The set of all possible virtual addresses that an image can reference.

virtual block number (VBN): The file-relative address of a block on a mass storage device. VBNs are
512-byte entities on the disk. If the size of the virtual blocks of the on-disk structure changes,
software must convert 512-byte V'BN numbers to the new values, which should be a multiple of
512 bytes.

virtual clreult: A virtual circuit is the logical link between two CI ports. The SCS layers of different
systems can only communicate when a virtual circuit is open. An open virtual circuit provides
sequence message service, datagram service, and block data transfer service.

virtual function processor: A type of function processor used to implement the virtual layers of the /O
system. Virtual function processors are used to implement all of the virtual-level operations,
such as the file system, disk striping, virtual terminal support, and so on.

virtual memory: The set of storage locations in physical memory and on disk that is referred to by
virtual addresses.

virtual page number (VPN): Bits <31:13> of the virtual address.

volume: A mass storage medium, such as a disk pack or reel of magnetic tape.

volume channel: An accessed channel to a volume FPU.

volume FPU: An FPU representing a single disk volume or a volume set.

volume set: A collection of volumes that is interpreted as a single volume by higher layers of software.

VPN: See virtual page number.

Glossary-20

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

worker’s threads: System threads created by the NI function processor. Worker threads process
the receive packets and deliver the packets to the upper-layer function processor; handle the
completion of packets transmission and controller command completion; queue error requests
when errors occur.

working set list: The set of pages to which an executing thread can refer without incurring a page
fault.

working set list entries (WSLE): The elements used to manage the working set. Each page m the
working set is represented by a working set list entry.

writer: A thread that writes to the message function processor.
writers only: The condition in which only writing threads are registered on a particular message FPU.

WSLE: See working set list entry.

Glossary-21

