
PRISM SYSTEMS

C~ "it' lL

Mica Working Design Document
Chapter Overviews

Digital Equipment Corporation
Confidential and Proprietary

. Restricted Distribution

t

f

- - -- - -- . -

Mica Working Design Document
Chapter Overviews

Digital Equipment Corporation
Confidential and Proprietary

ThIs ~ on unpublished wOlle and b the properly of Dlgffal
Equipment CO!pOfation. ThIs wOlle b conftdenflal and b
maintained os a trade secret, in the event of Inadvertent or
deHberote publication. Dlgffol Equ~t Corporation wiA
enforce Its rlghts In thb wOlle under the copyright lows os a
published wor1<. ThIs wor1<. and the Inlormot1on contained In
ff may not be used. copied. or dbclosed without the express
wr1tten consent of Dlgffal Equipment CO!pOfation.

© 1988 Digital Equipment Corporation
All Rights Reserved

lhb Information sholl not be disclosed to nc:>rHJtgffal Equip­
ment Corporation persomel or generally distributed within
Ddigffal Equpment Corporation. DistTIbuI10n ~ restr1cted to
persons outhortzed and designated by the responsible Engl­
neer or Manager,

ThIs document sholl not be left unattended. and. when not
In use. sholl be stored In a locked storage area.

These restr1ctions ore to be enforced until noted otherwise.

~ bIe EngIneet/ Monoger
I u """""",b. 988

Dole

Document Copy: 71

Restricted Distribution

Digital Equipment Corporation . Confidential and Proprietary
Restricted Distribution

Revision History

Dale

March 1988

II

Revision
Number

1.0

Author

DECwesl Engineering

Summary of Changes

Initial Distribution

Digital Equipment Corpor. tlon - Confldentl.1 and Proprietary
Restricted Distribution

TABLE OF CONTENTS

GENERAL

CHAPTER 1 INTRODUCTION TO MICA • . . • • • . . . 1-1

1.1 Overview , . , ,•... , .. , , . . , . , , , , , . 1-1
1.1.1 Erpandable Base-System Functionality . . ' . , , .•. , , , , ... , 1-1

1.1.1.1 Object Architecture , , , ... , , . , ..•.•.. , . . . , 1-1
1.1.1.2 Layered 110 System , , . •... . . ' ... , .• ' .•. , 1-2
1.1.1.3 Protected Subsystems, , , , , , .. , .•..• ' . , . . . , 1-2
1.1.1.4 ClientlServer Toole ... , "., ,.". , .. ,., . .. , , 1-3

1.1.2 Process Structure and Threads , , . . ,., . . . ,.'" , 1-3
1.1.3 Cheyenne Database Server , . , '•....•..... , . ' . . . 1-3
1.1.4 Glscier Compute Server , . , , , , , , ... , 1-5

1.2 WOO Structure .. ", ... , .,." ... " , ., .. , .", ... , , 1-5

CHAPTER 2 NAMING STANDARDS AND PILLAR CODING STYLE
GUIDELINES .. 2-1

2 .1 Overview . , ' ' ... , , ' ... , . ,• ,. 2-1
2.1.1 Goals , . , , , ' , •..• ' •.•.. f • • •• • ' • , ••• • ' , • • • 2-1
2.1.2 Naming S tandards " , ., .. "" , •. , .. • . .. , . . . , 2-1
2.1.3 Pillar Coding Sty le Guidelines, . . , , , , , , . , , , . . . 2-2

CHAPTER 3 STATUS VALUES, MESSAGES, AND TEXT FORMATTING
.. , , .. ' , , . , , ' . , , , , , .. .

3.1 Overview , , . , ' , , , , ' , , ..
3. 1.1 Goals ." . ,•..•.. ,•..••.. ' , •... .
3,1.2 Status on Mica ' . , ... , , , , .. , . ' .. .
3.1.3 Status Valuea ,

3.1.3.1 SEVERITY F;.ld (b;u <2,0»
3.1.3.2 MESSAGEynJMBER F;.ld (b;u <16,3»•......
8.1.3.3 FAC1LlTYynJMBER F;.ld (b;tI <2H6»•..
8.1.3.4 LOCALftESSAGE_l\"UMBER F;.ld (b;u <27,3»•.• . .• . ..
3.1.3.6 LOCAL_STATUS y;.ld (b;l 28)•. .. .•.••.. . . .
3.1.3.6 FACILITY_SPECIFIC y;.ld (b;, 29) •..•
8. 1.3.7 CUSTOMER]AClLITY Y;.ld (b;l 30) •• • . •...... . •..
3.1.3.8 INHlBIT,.MESSAGE]RINTlNG F;.ld (b;l 31) • .•.••.. • ..

3.1.4 Status and len Messages , ..•
3.1.4.1 Statua Message Format
3.1.4.2 Message Source Files and Compilation•...
3.1.4.3 In· Memory Measage Organization , ,

3.1.4..4 Accessing and Displaying Meu agea
3.1.5 Text Formatting ,

3-1

3-1
3-1
3-2
S-3
S-3
S-3
H
H
H
H
H
H
H
S-6
S-6
S-6
S-6
S-6

III

Digital Equlprr.nt Corporation _ Confldtlntllll llnd ProprIetary
Restricted DIstrIbutIon

3.1.6 Open Issues•. . •. ...•.......• •........•.•......

EXECUTIVE

CHAPTER 4 THE KERNEL•..••. . •• •.• • . ..•......... 4-1

4-1
4-1
4-1
4-1
4-2
4-2
4....'l
4-4

4.1 Overview • • .. •... • .• .. •...
4.1.1 Requirements•....•..•.. .•... ...• • . ••. ..
4.1.2 Functional Description•...••...•. .. .

4.1.2.1 Environment of the Kernel•••....•
4.1.2.2 Inter action With the Executive• . .•...•.•
4.1.2.3 Primary Kernel Data Structures ...•.• . •• • •• • .•.•....••..••..
4.1.2.4 Primary Kernel Functions•... ... •...••......•
4.1.2.5 Performance Data Conection •...•..•. .. •.•.......

CHAPTER 5 OBJECT ARCHITECTURE•. ••.... 5-1

5-1
5-1
5-1

5.1 Overview ..•..•..••. . •••...• . .•..
5.1.1 Introduction•..............••. .•••...•......
5.1.2 What is an Object?•...•... . .••..•. .•. .••......•.. .. .
5.1.3 Scope • . • . . • • • • • . • • . . • . . • • • • 5-1
5.1.4 Requirements and Goals • • . • . . • • . . . • . • . . . • • 5-1
5.1.5 Functional Description. • . . • . • . . . • . . . • . • • 5-2
5.1.6 Object-Related Operations••... ... ••••.... 5--4

CHAPTER 6 PROCESS STRUCTURE • • • . . • • • . . . 6-1

6.1 Overview . • . . . • . . • • . . . ~1
6.1.1 GoalslRequirements • . . . • • . • . . . • • . . • • • 6-1
6.1.2 UJPT liierarchy • . • . . . • • . . . • . . . • 6-1

6.1.2.1 The User Object. • • • . • • • . . . • 6-1
6.1.2 .1.1 Functional Interface • • . 6-1

6.1.2.2 The Job Object. • . . . • . • • • . . . • • . • . . . ~l
6.1.2.2.1 Functional Interface • . • • • . . • • • . . . • • ~2

6.1.2.3 The Process Object. • . . • • • • . • • 6-2
6.1.2 .3. 1 Functionallnterlace • . . . • • • • 6-2

6.1.2.4 The Thread Object • • • . . . • • . .. 6-2
6.1.2 .4.1 Functional Interface • . • • • • 6-2

6.1.3 UJPT Setu~ardown• ..• ...•........ . . •• ...•... .. S-3
6.1.3.1 UJPI' Setup•.. . ••..•••••. 6-3
6.1.3.2 UJPl' Teardown • • • • • • • . . . S-3

Iv

CHAPTER 7

DIgital EquIpment Corporation _ Confidential and Proprietary
RestrIcted DIstrIbution

MEMORY MANAGEMENT 7-1

7.1 Overview .• . • • . . . • 7-1
7.1.1 Requirements . • . • . . • . . • . • . . . • • . . 7-1
7.1.2 Functional Description • • • • . . • . • . . • . . 7-1

7.1.2.1 Environment o(Memory Management. • . . 7-1
7.1.3 Memory Management Data Structures . • . . 7-2
7.1.4 Differences from the VAXNMS Memory Mansgement Subsystem • 7-4

CHAPTER 8 UO ARCHITECTURE• . .•. . 8-1

8.1 Overview . • • • . . 8-1
8.1.1 Function Processon • • • .. 8-1
8.1.2 Object.s Used by the UO System • . . • • . . . • . . . • . . . • • . . 8-1

8.1.2.1 FPU Object• ••. •.• . . 8-2
8.1.2.2 Channel Object. • • . . • . . • . . . • • . • .. 8-2
8.1.2.3 FPD Object •.... 8-2

8.1.3 UO Request Synchronizstion • • . • . . • • • . . . • • • • • . 8-2
8.1.4 UO SeTVice Routines• ..• . . . •. . ••. •......•.... 8-2
8.1.6 YO Security . • . • . . • . • .. B-3

CHAPTER 9 SYSTEM SERVICE ARCHITECTURE•. . ••. . .•. • •.•.. 9-1

9.1 Overview .. ~1

9.1.1 Functional Description • • . . • . • • . . . • ~1

9.1.1.1 System Service Oispatcller• • . . . • • . . . • . . • . • ~2

9.1.1.2 The System Service . • • • 9-3
9.1.1.3 System Service Completion . • 9-3
9.1.1.4 Repeatable and Resumable System Services • 9-3

9.1.2 Changes to the Existin, Chapter. • • • 9-4

CHAPTER 10 SECURITY AND PRIVILEGES • . . . • • . . • 1()..1

10.1 Overview . • . . . • • 10-1
10.1.1 Authentication • .. • ..•...... .• . . •...•.... ••. .. 10-1
10.1.2 Aooess Control•. . •. . • . . . •.. .. •........ 10-2

10.1.2.1 User Access Rights. • . • • • . • . • . • . • • • . . . 10-2
10.1.2.2 Object. Acceal Controllnfonnation• ...•.. ..•....• . .. 10-2
10.1.2.3 Access Conirol AlgoriUun ••..•.... . 10--3

10.1.3 Security Audits . • . . . • . . • . . • • 10-3
10.1.4 Illues . • . . • . • . . . • • • . • • • . • . • . . • . . • .. 10-3

v

Digital Equipment CorporaUon ~ ConfJdenUal and Proprietary
Restricted Distribution

CHAPTER 11 CONDITION, EXIT, AND AST HANDLING•..•...

11.1 Overview•...
11.1.1 Condition Handling•...•....

11.1.2 Unwinding•......

11.1.3 Exit Handling•. . ..•............
11 .1.4 User-Mode AST Handling•.....•...

11.1.5 Dependencies •..•..•....

CHAPTER 12 BOOTING •... ••••••••...•.••....

12.1 Overview

12.1.1 Bootstrap Structure••...•..•.. . •..........•...
12.1.2 Hardware Bootstrap •....•.. .. • . •

12.1.3 Primary Software Bootstrap•.. . •..........•......•....
12.1.4 Secondary Software Bootstrap ••.• ... •.....

12.1.4 .1 tntrix Secondary Bootstrap•.. •...•.•..•..
12.1.4.2 Mica Secondary Bootatrap•...•. . •...

12.1.5 Mica Bootstrap Summary

CHAPTER 13 SYSTEM DUMP ANALYZER AND SYSTEM DEBUGGER

13.1 Overview

13. 1.1 System Dump Analyzer•.........

13. 1.1.1 Requirements & Goals•..•. . .•....•....
13.1.1.2 Design Highlights•••••. . ••..•..•..•..
13.1.1 .3 Issues•..

13.1.2 System Debugger

13.1.2 .1 Requirements & Goals•..• •.......••.......
13.1 .2.2 Design Highlights
13.1.2 .3 Issues••.

EXECUTIVE ROUTINES

11-1

11-1
11-1
11-2
11...,"1
11...,"1
11-4

12-1

12-1
12-1
12-1
12-2
12-2
12-2
12...,"1
12...,"1

13-1

13-1
13-1
13-1
13-2
13-2
13...,"1

13...,"1

13...,"1

13-4

CHAPTER 14 EXECUTIVE ROUTINES • • . • • . .. 14-1

vi

14 .1 Overview•.

14.1.1 System Routines••
14.1.2 Executive Routine Interface Guidelines•...•..

14 .1.2 .1 General Guidelines•.

14.1.2.1.1 Parameter Options•............
14.1.2 .1.2 Parameter Ordering ••....

14. 1.2 .1.3 Parameter Types •..•.•. •..
14.1.2.1.3.1 Reco<d Type. •

14.1.2 .1.4 Return Value : . . : '•...........

14 .1.2.2 Object Service Routines :.:::: :•.........

14.1.2 .2 .1 Object Creation Executive Routines•......•.••

14.1.2 .2 .2 GetlSet Information Executive Routin~~ •.•.
14 .1.2 .3 General Executive Routi nes•......•.......

14-1
14-1
14-2
14-2
14-2
14-2
14-3
14-3
14-3
14-4

14-4
lohS
lohS

14.1.3 System Service Definitions

1/0

Dlgttal Equipment Corporation - ConfIdential and PropdetJry
R .. trlcted DIs tri bution

........ 14-5

CHAPTER 15 DIRECT ACCESS MASS STORAGE FUNCTION
PROCESSORS 15-1

15.1 Oven;ew•...•.....• . •••..••.•.. .. ' 15-1
15.1.1 Gosh . • . . • • . . . • . • . • • .. 15-1
15.1.2 Disk Logical Block Interface•• . • . •.•.....•. 15-2
15.1.3 Function ProceSSOT'S • • • . • • • . . • • • . • • • • . • • • • • • • • . . • • . . • . 15-3

15.1.3.1 MSCP Function Processor • . . • • • . • • 15-3
15.1.3.2 Disk Striping Function Processor • . • . . . • • 15-3
15.1.3.3 Disk Shadowing Function Processor• . . . • 15-4

15.1.4 ErTOr Handling and Diagnostics. • • . • 15-5
15.1.4.1 Invalid 110 Request • • . . • • . • • . • . • . . • . .. 15-5
15.1.4.2 Power Failure • • . . • • . .. 15-5

15.1.5 Sample 110 Request Flow . • . . . • • . .. 15-5

CHAPTER 16 MAGNETIC TAPE FUNCTION PROCESSORS ••. •.... 16-1

16.1 Overview . • .. 16-1
16.1.1 Goals and Requirements • . . . • . • . . • • . . • • 16-1
16.1.2 Tape Logica1-Block Interface • . . . • . . • • • • • • 1~2
16.1.3 TMSCP CIa .. Function Processor • • . • • .. 16-3

CHAPTER 17 SYSTEM COMMUNICATION SERVICES • .• . • 17-1

17.1 Overview.. •.•• . •.. . . . 17-1
17.1.1 Goals and Requirements • • • . . • • . • . • • .. 17-1
17.1.2 SCS Functionality. • . . . • . . . • 17-1
17.1.3 Implementation Strategy• •.. •... .• 11-2

17.1.S.1 Initialization and Syst.em/Path Recognition • . . . • . . . • . . • 17-2
17.1.3.2 Message and Datagram Buffer Allocation • 17-3
17.1.3.3 SYSAP·SCS In",riace . • . . . • • 17...,'l
17.1.3.4 SCS-Device Function Processor Interface. • • . . . • . . • 17-4
17.1.3.5 Flow Control Scheme . • 17-4

17.1.3.5.1 SCS Protocol Messages•. .. ' 17-5
17.1.3.5.2 SCS Application Messages and Block nata Transfen • . • .. 17-5

17.1.3.6 Error PhilosophY • • • • • • • • . . 17-5

vII

Dlglta' Equipment Corporation ~ Confldantla' and proprlatary
Aestrlctad Distribution

CHAPTER 18 XCA FUNCTION PROCESSOR•..•...•.. IS-I

IS-I
IS-I
IS-I
IS-I
1S-2
18-2
18-3
IS-<
IS-<
IS-<
IIhS
I IhS

18.1 Overview•.•••..•• .. , .. . •..
18.1.1 lntroduction•. .. .•• . •........ . •••..
18.1.2 Requirements ,
18.1.3 Goals •.......
18. 1.4 Functionality•.......
18.1.5 Higher-Ievellnterface to XCA Function Processor••..••• . •.. . •..
18.1.6 XCA Function Processor Interlace to the XCA Port.• •••••....
18.1.7 XCA Function Processor Implementation•••...•....

18.1.7.1 System Recognition••.........
18.1.7.2 Virtual Circuits•.....•...•...•.......
18.1.7.3 Response Handling •... ••..•.....••..•..
18.1.7.4 Error Handling••.•.•.•..•..

CHAPTER 19 NI FUNCTION PROCESSOR • . . • . • • • • I~I

19.1 Overview•. . ..•• . .•. , • • 19--1
19.1.1 Goals . • • 19--1
19.1.2 Features Not Implemented • . • • . . • • • . . . • • .. 19-1
19.1.3 Capabilities . • • • . • . .. 19-1
19.1.4 Interface with the Upper Layer • • • • • 19-2

19.1.4.1 Request and Execute YO Functions • . • 19--2
19.1.4.2 Synchronous YO Call Functions. • . . • • • .. 19-3
19.1.4.3 Callbacks . • 19-3

19.1.5 Implementation Strategy•..•... . •..•.••... 19-3
19.1.5.1 Transmit ' • . . . • • . . • . .. 19-4
19.1.5.2 Receive•.•.....•..•••...... 19-5

19.1.6 Outstanding Issues•.•...•....• 19-6

CHAPTER 20 CONSOLE SUPPORT•. . • . .•. • • 2G-I

20.1 Overview . • • . . • • . . • • 20-1
20.1.1 Requirements • . . • • • . • . • • .. 20-2
20.1.2 Design Highlights • • • • . . • .. 20-2

20.1.2.1 Console Terminal • . . . • • . • 20-2
20.1.2.1.1 Synchronous Interface •........•••........ . 20-3
20.1.2.1.2 Asynchronous Interface • . • • • • . • . • • • .. 20-3

20.1.2.2 Console Storage Device • . . . • • • 20-3
20.1.2.3 Configuration Processor••...... . •. •... .•••....... 20--4

20.1.3 Issues . • . . . • • 20-4

CHAPTER 21 MESSAGE FUNCTION PROCESSOR
21.1 Overview•......••.

21.1.1 Functionality•.. .
21.1.2 Design••... '" " ..•.....•••.•.
21.1.3 Functional Interface•......•.. "

vIII

21-1

21-1
21-1
U-S
21-3

•

Digital Equipment Corporation - Confidential and Proprletary
Restllcted Distribution

CHAPTER 22 PRISM DIAGNOSTIC MONITOR 22-1

22.1 Overview . • 22-1
22.1.1 Introduction • • . . • • 22-1
22.1.2 Diagnostic Run-time Environments • . • • • . • • • . • • 22-1
22.1.3 Functional Overview 22-2
22.1.4 Components oC a PDM-based Diagnostic Program • . . . • 22-4
22.1.5 PDM Design Goals . • 22-4
22.1.6 PDM Design Non-goals . • . . • 22-4
22.1.7 Requirement.s on Other Products for Meeting Design Goals. • • • . . . 22-5
22.1.8 PDM Interfaces . • . • 22-5

22.1.8.1 User Interface. • 22-5
22.1.8.2 Programmer Interface-Diagnostic Services. 22-6

22.1.9 PDM Internal Interf'acn . • . • 2~

22.1.9.1 Interface Between the User Interface and the PDM Server 22-6
22.1.9.2 PDMlDiagnostic Interface . • . .. 22-6

22.1.10 PDM's Interfaces to the On-line and Off-line Environment.s • . . . 22-6
22.1.11 Other PDM Features• ... 22-6
22.1.12 Security Issues 22-7
22.1.13 Changes &om Rev. 1.0 of "The PRISM Diagnostic Environment'. • . .. 22-7

CHAPTER 23 ERROR LOGGING .. 23-1

23.1 Overview . • • • 23-1
23.1.1 What i, ErTOr Logging? . • . . . • • . • . • • . . 23-1
23.1.2 How Is Error Information Stored? _ . . . • • . . • . . 23-1
23.1.3 What Doe, the System Error Log File Contain?•... ••..• . . 23-1
23.1.4 What Do System Error Log Records Contain? • • . . • • • 23-2
23.1.5 Who Creates System Error Log Records? • • • . . • .. 23-2
23.1.6 How are Records Placed into the Error Log File? • • .. 23-2
23.1.7 How Can the System Error Log File be Read? • • 23-2
23.1.8 Where Does ERF Reside and Execute? • . • . • . . . • . . • 23-2
23.1.9 Where Do ERF Usen Reside? • . . . • . . • • . • • 23-3
23.1.10 Who can Access the System Error Log File? • . . . • 23-3
23.1.11 Who can Control ErTOr Logging? • . . . • • 23-3
23.1.12 How Is the ErTOr Log Data Used? • . . • • . . . • • 23-3
23.1.13 How Does Off-line Error Logging Work?•..... ' 23--3
23.1.14 Are There Other ErTOr Logging Facilities? • • • 23--3

FILE SYSTEM

Ix

Digital Equipment Corporation _ Confidential and Proprietary
Restricted Distribution

CHAPTER 24 DISK FILE SYSTEM FUNCTION PROCESSORS 24-1

24.1 Overview
24.1.1 Files and Directories•.•....
24.1.2 Volume Sets •...
24.1.3 Objects Used By Disk File System Function Processors •••

24.1.3.1 Function Processor Unit Objects••••..
24.1.3.2 ChannelObjects•••• . •.. .

24.1.4 Other UO Architecture Support•..
24.1.5 Disk File System Class Interface Functions ...•..•..........•......
24.1.6 Other Topics•.•. .. .

CHAPTER 25 FILES-11 ODS2 FUNCTION PROCESSOR•.

25.1 Overview •...• •.....
25.1.1 FiJe~l1 ODS2·3 Data Structures•.•••.•.•......
25.1.2 Threads•.. .• •... •..... . _ ..•...
25.1.3 FPU procedures••..•......•..•....
25.1.4 Mounting a volume•• .. .•.•.....•••..
25.1.5 Dismounting a volume•.••.•... •.. . •. ... ••.... .
25.1.6 Volume Sets•.. . .•........... .. .•......•..•...
25.1.7 Object Names•.•.•• . ••.... . ••......

24-1
24-1
24-2
24-2
24-2
24-<1
24-<1
24-<1
24-4

2&-1

2&-1
2&-1
25-3
25-3
25-4
25-4
2&-5
2&-5

25.1.8 Access Matrix. • . . • • . . • 25-6
25.1.9 Security. • . . . • . . . • • . . • • . .. 25-6
25.1.10 Mapping & Retrieval Pointers •................•. .• . .. 25-6
25.1.11 ReadlWrite . • . . . • • 25-5
25.1.12 Caches . • .. 25--6
25.1.13 Other Topics. • 25--6

CHAPTER 26 RECORD MANAGEMENT SERVICES 26-1

26.1 Overview. • • . • . . . 26-1
26.1.1 R.\iS Functionality. • • . • • • 26-1
26.1.2 RMS Programming Interlace • • 26-3
26.1.3 Sample VO Request. Flow • • . • 26--4

CHAPTER 27 CACHING 27-1
27.1 Overview. • • • • .. 27-1

27.1.1 Issues Related to the Design of a System-wide Data Cache 27-1
27.1.2 Sum.mary . • . . • 27-2

x

Digital EqulpfT'lllnt COfporat!on . Conlldentlal end Proprietary
Restricted Distribution

CHAPTER 28 FILE MANAGEMENT UTILITIES .. 2S-1

28.1 Overview. • . . . • . • 2~1

28.1.1 Goal.. • • 2S-1
28.1.2 Requirements for the File Management Utilities. • • • 2~1

28.1.3 Utilities in t.he Off·line System. • • . . • . • .. 2~2

28.1.4 Integration with System Management. • • • 28-2
28.1.5 Description of the Utilities•... •.............. 2~2

28.1.5.1 The Initialize Utility• . . . ••. . •...... 28-2
28.1.5.2 The Mount. Utility • • . • . • • . . • . . • • . . . • 28-3
28.1.5.3 The Dismount Utility • . . . • • • . . . • 28-3
28.1.5.4 The Verify Utility • . . . • • 28-3
28.1.5.6 The Backup Utility••..• . .•.. . .•........•.•.. 28-4

IMAGE RELATED

CHAPTER 29 OBJECT MODULE AND IMAGE FILE FORMAT 29-1

29.1 Overview. .. 29-1
29.1.1 Requirements . . . • • . • . . . • . . . • . . . • . • . . • . . • 29-1
29.1.2 Description•.. . . • • . . . •. ..•• . ..•.•. T • • • • • • •• 29-2
29.1.3 Dependencies • • . • . . • • . . • 29-4

CHAPTER 30 LINKER 3(H

30.1 Overview • • . • • . • . . • . . 30-1
30.1.1 Requirements. • • . • . . • • . . . • • . . • . • . . • . . . • • . . • .. 30-1
30.1.2 Implementation • . • . . . • • . • . . • . • • • . • . • • . • . • • . . 3()....2

30.1.2.1 Initial Stage. • • • • • . • . . • .. 30-2
30.1.2.2 Pass I • • . . . • . . . • • 30-2
30.1.2.3 Int.ennediate•...•..•. ••...... W • • • •• 30-2
30.1.2.4 Pass 2 • . . . • • . • • . . • . • • . • . • • .. 30-2
30.1.2.5 Final Stage • . • • .. 30-3

30.LS Compiler Dependency. • . . . • • .. 30-3

CHAPTER 31 IMAGE ACTIVATION•...........•..•.. 31-1

31.1 Overview .. • . • • . • • . . . • . . . • 31-1
31.1.1 GoalslRequiremente • . . . • . . • . . . • • • • . • 31-1
31.1.2 Functional Description • • • . . • . . . • • . . • . . 31-1

31.1.2.1 Image Initialization • . . . • • • 31-1
31.1.2.2 Image ED'••.. . .•.. . .•........•....•... ' 31-2
31.1.2.3 Autoload Procedure • . . • • . • • . . . • . • • 31-2
31.1.2.4 Installation of Images . • • . • . . • . • .. 31-2
31.1.2.5 Images Within Shareable Image Space ... •••... . 31-3

31.1.3 ISluel to be Resolved . • . . • • 31-3

SYSTEM MANAGEMENT AND ADMINISTRATION

xl

Digital Equipment Corporation - Confidential and Propdetary
Restricted Distribution

CHAPTER 32 SYSTEM MANAGEMENT••.•.........•••.......

32.1 Overview •.....• ••....•.....
32.1.1 Functional Description •.
32.1.2 System Management Model••..•..••••••

32.1.2.1 The System Management User Interface ...•...•......••.......
32.1.2.2 The System Management Server•.......

32.1.3 RPC Interface• . ..••... . .•.....
32.1.4 Managing Multiple Systems•..•.••.•....•...•..

32.1.4.1 Glacier Systems ••. .• • ..••.••.••.. •..• . ..
32.1.4.2 Cbeyenne Systems•.. • .. .•........ . .•. . •

32.1.5 Security•..
32.1.6 Subset System Management Access ••.••..
32.1.7 Authorization, Proxy, Identifier, and Startup Parameter Files ...•••...•..
32.1.8 Server Design Considerations , ,
32.1.9 Issues•......

CHAPTER 33 OPERATOR COMMUNICATIONS •.•...

33.1 Overview•.
33.1.1 Functional Description•..•.•••........•...
33.1.2 OPCOM Components••.....•..•..•.

33.1.2.1 Client System Management Interface•.•• . .•....•••..
33.1.2.2 Client Operator Display Process••••...
33.1.2.3 Client Operator Request Program•...
33.1.2.4 OPCOM Server•..•....
33.1.2.5 Mica Message Function Processor Units (FPUI)•... ...•..
33.1.2.6 Reader Threads•...•....•.....

33.1.3 AlA Functionality••• . ..
33.1.4 Native mode OPCOM calls •... . •.......••......
33.1.5 ManipuJating log files on Cheyenne •••.......
33.1.6 Issues•.

CHAPTER 34 CONFIGURATION MANAGEMENT SOFTWARE•....

xII

34.1 Overview •.. • . . .
34.1.1 Goals••••......
34.1.2 Functional Description•.•.. . •..•...

34.1.2.1 Actions at System Boot Time •....•..•••••...
34.1.2.2 Actions During Normal Operation•. ••••.. • ...

34.1.2.2.1 The Error·Monitor Process•. . •....•••......
34.1.2.2.2 The Configuration.Manager Process ...•..•. . •... • . .•..•.. •
34.1.2.2.3 Configuration Function Processor •

34.1.3 Design•.. .•.••.....
34.1.3.1 The Error·Monitor Proceas
34.1.3.2 The Configuration.Manager Process
34.1.3.3 The Configuration Function Processor . .•.••..• . .• ••...

32-1

32-1
32-1
32-2
32-2
32-<1
32-<1
32-<1
32-<1
32-<1
32-<1
32-<1
32-<1
32-5
32-5

33-1

33-1
33-1
33-2
33-3
33-3
33-3
33-4
33-4
33-5
33-5
33-5
33-5
33-5

34-1

34-1
34-1
34-1
34-2
34-2
34-2
34-<1
34-<1
~

~

34-S
34-6

..

DIgItal Equlpn-.nt Corporation _ ConfIdentIal and ProprIetary
RestrIcted DIstrIbution

34.1.4 Relation to Other Software•. . • .•. •.• , • 34-6
34.1.4.1 Memory Management. • . . • .. 34-6
34.1.4.2 Shadow Function Processor , . • • .. 34-6
34.1.4.3 MSCP Function Processor and Cont.roller Function Processor . . .•.. • .. 34-6
34.1.4.4 SCS Function Processor .. 34-6
34.1.4.5 Device Function Processors. • .. 34-6
34.1.4.6 Machine Check•.......•..• .. ••• , • . • . .. 34-7
34.1.4.7 Console Software. • • . • . • • 34-7
34.1.4.8 Enemal Service Processor•.•.••.•••.... 34-7

34 ,1.5 Issues . • . . • 34-7

CHAPTER 35 SYSTEM VOLUME LAYOUT AND SOFTWARE
INSTALLATION • 3;;-1

35 .1 Overview ,•• ..•.. .• . . . * •••••••••••• • • • • * • •• 35-1
35.1.1 System Volume Layout••..•••• * •• * • ••••• • , • • • • • • • •• 35-1

35.1.1.1 The Read·Only Ana . • • . . • . . . • 3;;-1
35.1.1.2 The ReadIWriLe Area •.....• . . .• * • •• 35-1
35.1.1.3 Read-Only and ReadlWrit.e Area Interaction • 35-2

35.1.2 Software Installation•. . •. * • • • • • • •• 35-2
35.1.2.1 Goal.. • 3;;-2
35.1.2.2 General Description * •• • •••••• * • • • • •• 35-3
35.1.2.3 Standard Installation. • 35-3

35.1.2.3.1 Initial Installation • . . . • . • . . • • . . • • 35-3
35.1.2.3.2 Update Installation .. ,•.. , • . • • • • . • 35-3

35.1.2.4 Spedallnstallation • ...•....• . •.• * •• 35-3
35.1.2.4.1 Specla1lnstallation Types•...•..... . •.. * • • 35-4
35.1.2.4.2 Speclallnstallation Procedure• • ..•..•.. 35-4

35.1.2.5 Front·End and Client Software Installation• * • • • • • • • • • • •• 35-5
35.1.2.6 High·A ailability Configuration•. . .•....• .•..• .. 35-5

TESTING AND PERFORMANCE MEASUREMENT

CHAPTER 36 PERFORMANCE MONITOR • • . . . • • . • 36-1

36.1 Overview •. _•. . .• . .. ' 36-1
36.1.1 Goals • • • . . . • 36-1
36.1.2 Tenninology * •• 36-1
36.1.3 functional Overview ...•.•...•... •••.••...•.•.. ,.. 36-1

36.1.3.1 Time Intervals •...... •.•...•.••.... 36-2
36.1.3.2 Classes•........•....•... 36-2

36.1.4 Implementation Overview. • • • • • 36-2
36.1.5 Issuea . • . . • . • . • • • • . . • . . . 36-3

xIII

Dlglt.1 Equipment Corporation _ ConfldenU.1 and Proprietary
Restricted Distribution

CHAPTER 37 USER-LEVEL SYSTEM EXERCISER -.. 37-1

37.1 Overview.. • . • . • . . . • . . •. •• 37-1
37.1.1 Goal •............. _ . . . • •• •• ••••• 37-1
37.1.2 Non-GoaJs • _• • • • • 37-1
37.1.3 Outline of the Functionality • . • • • "... •.• 37-2

37.1.3.1 Interactions with Other Software • . . • . . . • . . • • • • . • 37-2
37.1.4 Outline of the Design• . •. •• .• ••..• • • •• • • ••••••

37.1.4.1 Input and Initialization•.••.••.
37.1.4.2 Device 'Jesting. •• . " •
37.1.4.3 Load and Application Specific '!esting . . . • • ••••••

37.1.4.3.1 Testing Glacier . • • • .• •• • •••
37.1.4.3.2 Fault Tolerant Testing•••• •. • ••

37.1.5 Developing Glacier User Tests • • • . • • . •• • •••
37.1.6 Requirements ••.•••••.•••

37.1.6.1 User Diagnostics Interface•.....•..• . • . •.••
37.1.6.2 ElTor Logging and Symptom Directed Diagno.tica . . • . .•
37.1.6.3 Mica System Services . • • • • • •• ••

37.1.7 Open Issues. • • • .. • •• ••

NETWORK

CHAPTER 38 MICA NETWORK OVERVIEW . . . • . • .. • •.•••••••.•

38.1 Overview ·
38.1.1 Requirements
38.1.2 Goals ::·:::· · · ·· · · · ···· · ··········
38.1.3 Nongoals
38.1.4 Network Software Components' : : . : : : : : : . •••••••• •

38.1.4.1 Data Link • •.•.••••• • ••••
.

38.1.4.2 Transports
38.1.4.3 Value-Added Servi~a' : : • • ...••.•••••
38.1.4.4 Applications • • . . • • • • . ••••••.

·
CHAPTER 39 NETWORK SERVICES •..

39.1 Overview
39.1.1 Requirements and Goals• •••• • ••••

·
39.1.2 DNA Co to • • • •• ••••• • •••• mponen• . .•. .•
39.1.3 User Interface • .. •••• • ••.•••
39.1.4 Implementatio~: : : : : : : : . . • . • • .. • . • .. • • • "

CHAPTER 40 DNA NAMING SERVICE CLERK
.

40.1 Overview
40.1.1 Requirements .. • • . ••••••• •
40.1.2 Functional Interfaces . . : . • • •. '" .•••••••••
40.1.3 Implementation . • .. .••... .. .••.••••••••

.

.....

xlv

37."
37."
37."
37."
37."
37."
37."
37..-
37..-
37..-
37..-
37..-

38-1

38-1
38-3
sa-.
sa-.
38-3
38-3
~

38-3
38-3

40-1

41)-1
41)-:

40-2

411-2

-

Digital Equipment Corporation 4 Conlidenti.1 .nd Proprietary
Restrlctltd Distribution

CHAPTER 41
LOGGING

DECNET STARTUP, SHUTDOWN, MANAGEMENT, AND
.................................... 41-1

41.1 Overview. • • . . . • 41- 1
41.1.1 Requirements. • . . . • • .. 41-1
41.1.2 Network Management and Event Logging • 41-1

41.1.2.1 Entities, Directon, and Agents. • 41- 1
41.1.2.2 Node Entity•.•.• ~ . . . • . • 41-4
41.1.2 .3 C~'lIP and the CMlP Server • . . • • 41-4
41.1.2.4 DECnet.-Mica Event Dispatcher. • • . • . • • . . 41-5

41.1 .3 Netw01"k Management Security•.... .. •...... 41-5
41.1.4 DECnet.-Mica Startup • . . • • • • • 41-5
41.1.5 DECnet.-Mica Shutdown. • . . . • • • . . • . • 41-6
41.1.6 Issues. • • . • 41-6

CHAPTER 42 QUARTZ INTER PROCESS COMMUNICATION • 42-1

42.1 Overview . • . .. 42-1
42.1.1 Requirement.slGoals ~ • . . • . • . . . • • . .. 42-1
42.1.2 Non-Goals•......•..• 42-1
42.1.3 Functiona1 Description• , • • . . • . . • . . • • • . .. 42-1
42.1.4 Design . • • . . • . . • • • 42-2

42.1.4.1 Me588ge Region Object. • . . • • . . . • • • • . .. 42-2
42.1.4.1.1 Functional Interface • . . . • • 42-2

42.1.4.2 Message Queue Object. • • . • . . • .. 42-3
42 .1.4.2.1 Remot.e Queues • . . . • . • • . • • . . • . . • • . .. 42-5
42 .1.4.2.2 Functional Interface • • . . • . . • . . • . . . • . • • . .. 42-0

42.1.4 .3 Message Gate Objects • .. 42-6
42 .1.4.3. 1 Functional Interface • • • • • 42-6

DISTRIBUTED FILE SERVICES

CHAPTER 43 DISTRIBUTED FILE SERVICE INTRODUCTION 43-1

43.1 Overview. • . . • .. 43-1
43.1.1 Goals • • . . • . . • • . • . • • . • . • • • 43-1
43.1.2 Mod.1 • . . • . . . • • . • . • • • • . • • • . . • . • 43-1
43.1.3 Components • • • • • • • .. 43-2
43.1.4 Planned Rest.rictions•..•••. . 43-4
43.1.5 Network Tr-ansparency • . . . • . . . • • . . . • . • 43-4

43.1.5.1 Nami ng • . . • • . • • . • • . . . • 43-5
43.1.5.2 Security • . . • . • • . . . • • • 43-5

xv

Digital Equipment Corporation· Confidential and Proprietary
RestrtcttKI DIstrIbution

CHAPTER 44 DISTRIBUTED FILE SERVICE MANAGEMENT •..•

44.1 Overview•.•.•
44.1.1 Restricting Access to Management Operations•••••.
44.1.2 Startup . • •• "
44 .1.3 Monitoring •.• • •••..••.•
44.1.4 OECnet Name Service •••..•••••••
44.1.5 Management of Files Accessed Througb OFS • • • • . . •• •
44.1.6 System Management •...••.•••.• . ••••••

44.1.6.1 Client Function Processor•. • •• . .•...••••••
44.1.6.2 Server . • • • . . •• ••
44.1.6.3 RequestJResponse Function Processor

CHAPTER 45 DISTRIBUTED FILE SERVICE COMMUNICATION FUNCTION
PROCESSOR

45.1 Overview. • . . • • • . • • •• ••
45.1.1 RR••• . ..••.•••

45.1.1.1 Interface to Higber·Level Function Processon and Thread • . " .• •• •
45.1.1.2 Interface to DECnet Session Layer. • . . • . • • •. •
45 .1.1.3 Interface to System Management••.••••••
45.1.1.4 Implementation•...••••...••

45.1.1.4.1 Dat.a Structures. • . . . • • • • . . . • . • • • •• ••
45 .1.1.4.2 Design Considerations and Issues••...••....•••••

45. 1.2 RCL• . ..••.•..••
45.1.2.1 Structure ofRCL Messages •.•.. , ••••••
45.1.2.2 Subroutines•

CHAPTER 46 DISTRIBUTED FILE SERVICE CLIENT FUNCTION
PROCESSOR

46.1 Overview •.• ·
46.1.1 Requirements•..... • • ••• .• ...•..•••••••
46.1.2 Functional Interface • • •

46.1.3 Internal Design : . . ~ : : : : ~ : ~ : : : : ~ : : : : : : : : : : . :: •

CHAPTER 47 DISTRIBUTED FILE SERVICE SERVER ·
47.1 Overvie~ . • . • • • •• .•

47.1.1 Sessions • •..
47.1.2 Server Process Implementation . . •••..•••••
47 13 Fil Pro 1 •• . ..•• . •• . •• . ••.•••••

.. e . toco••• . ..•••.
47.1.4 Secunty • • • . . . •. • •••
47.1.5 Caching . • . • . . • . • • • " " •
4716B"~ '• . .•.••••••••••• .. uuenng
47.1.7 Accounting and Quota Enforcement ...•... . ••.....•. . •••• " _.

.
47. 1.8 F811ure Recovery • • • . . • •. . •••• ·

DATABASE SERVER

xvi

«-1

«-1
«-1
«-2
«-2
«-2
44-2
44-2

«-3
«-3
«-3

45-1

45-1
45-1
45-2
45-2
45-l1

45-l1
45-l1
45-l1
45-4
45-4
45-5

47-1

47-1
47-1
47-1
47-2
47-2
47-2
47-2
47..,'1

47..,'1

DigItal Equipment Corporation ~ ConlidantJa\ and Proprietary
Restricted Distribution

CHAPTER 48 CHEYENNE OVERVIEW•.•. 48-1

48.1 Overview . • • • .. 48-1
48.1.1 Product Goals • • • • . • . • • .. 48-2

48.1.1.1 Data Integri ty , . •• , , . . . • • . • . • • . . 48--3
48.1.1.2 Reliability and Availability , • . • . • • . . 48--3
48.1.1.3 Performance • • • • .. 48--3

48.1.2 Components•.. . •• •. .. ••. , 48-4
48.1.2.1 Stone , , • . • . . • . . . • . • 48-4
48.1.2.2 Extended Service Processor . • . . . • . • . . • .. 48-5
48.1.2.3 Mass SLarage ,..... 48-5
48.1.2.4 ~tica • . . . • . . . • • • . . . • . . . • . • 48-5
48.1.2.5 Quartz . • • . . . • . . . • . • 48-5
48.1.2.6 Client Software , , . . . 48-6

48.1.2.6.1 Communications , .. , ... , , ,..... 48-6
48.1.2,6.2 Mica and Quartz System Management and Database Administration . 48-6
48. 1.2.6.3 Security .. 48-6
48.1.2.6.4 Database Tools , , 48-7

48.2 1'arget Customer Sase • • . . . • • • . . . • . . • . . • . . . • • . .. 48-7
48.2.1 Application Users , ..•.•.•.••..•...•.. . .•.•.. , . . 48-8
48.2.2 Application Writers , •..••. . , •• . • , 48-8
48.2.3 Database Administrators ••.. ,•. , •. . . ,. 48-8
48.2.4 System Managers .,.,• ,•... , . •...• , ,.. . 48-9
48.2.5 Operations St.aff , , • .. • .. .•.. • •..... , , . . 48-9
48.2.6 Software Support Personnel .. " , •. • • . .••.•...... ,. . 48-9
48.2.7 Hardware Service Personnel•.. , , . . .•...• , •. . .•.•... 48-10

48.3 Hardware Components•.•.• . •.....•...• , . , 48-10
48.S.1 Client. Syst.ems . . , . , , •.• . •.•.. . •...•... , ... , . ,. 48-10
48.3.2 Standard Configurations , . . . • . • • • . • • 48-10
48.S.S Highly Available Configurations .. , .. , •.• . •. . , . , , . . . • . • . . • • 48-11
48.3.4 Mass Storage , ••.•...••..•. ,........ 48-11

48.4 Software Components•.•....• , , . • . . • • 48-11
48.4.1 Component.l on Client Systems ... , 48-11

48.4.1.1 Access La Cheyenne Da tabases , .. , , , . • 48-12
48.4.1.2 System Management and Database Administration • 48-13
48.4 .1.3 Database Tool. 48-14
48.4.1.4 Communications , • • . . . • 48-14

48.4.2 Component.8 on Stone Systems .. . , •.. . •...... , ... • ..• ,•.... 48-15
48,4.2.1 Quam ,•• , .•. ••. . ..•. . .•. , ..•.. ' 48-15
48.4.2.2 Mica E1I:ccutive • • . . • . . • 48-16
48.4.2.3 System Ma nagement••..•.•• • ...••. • 48-16
48.4.2.4 Network Management•.•.•.. . 48-17
48.4.2.5 1Tanaaction Management •.... , 48-18
48.4.2.6 Cheyenne Diagnosis and Maintenance•.•••...... . • , 4&-18

48.5 Special Challenges , , . . • • . • . • • 48-20

xvII

DIgItal EquIpment Corporation. ConfIdential and Propritltary
Restricted DIstrIbution

48.5.1 Ach.ieving High Availability ••..••.•.. . ••. . ••..•.

48.5.2 Support
48.5.3 Testing
48.5.4 Ease of Use and Internationalization Requirements • • • . .. •.

48.6 Related Prnducts•....•..
48.6.1 Other DIGITAL Products• ••••.
48.6.2 Future Versions of Cheyenne ••••.....

48.7 Issues and TBD
CHAPTER 49 TRANSACTION SERVICES •.. .. •....•.....•

49.1 Overview••... . •••••.••...••• .
49.1.1 Goals . ,•.•....•••
49.1.2 Functional Overview •. . .• . •. . •••.•••

49.1.2 .1 Transaction Object Service Routines••.. . . .•••.••..•.
49.1.2.2 Recovery Manager • • • • • . . • • . . •• •• ••

49.1.3 Algorithms. •• .• ••
49.1.3.1 Redo and Undo/Redo Logging. • . . • . ••••
49.1.3.2 Two-Phase Commit with Presumed Abort•. " ••••••
49.1.3.3 Other Techniques••

49.1.4 Issues ••.•••. . ..

48-20
48-2\
48-22
48-22

48-23
48-23
48-24

48-25

4~\

4~\

4~\

4~2

4~

4~

4~

4~

.~

4~

4~

49.1.5 Bibliography. • . . • • • • . . • • • . • • • • • •• 49---6

COMPUTE SERVER

CHAPTER 50 GLACIER OVERVIEW
50.1 Overview• • . •... I • • • • • • •• •

50.1.1 Goals••......•••.••••••
50.1.1.1 ClienVServer Integration•.. . . •••.•.•••
50.1.1.2 Application Integration Archi tecture •...•... . •• . .

50.1.1.3 Multiple Operating Systems Support . . . • • • . . • . • . . •• . •••••
50.1.1.4 Client Modification•.• . ..•.•.••••.•••

50.2 Target Customer Base • • • • . • • . . • •. • •
50.2.1 Application Users •
50.2.2 Application Developers • .• . : : : : ... • ••.• . .•..•••••

50.2.3 System Managers• • . : : .•... • •. . . . •.• . •••••

50.2.4 Operations Staff• ••••. . : : : .' : : :
50.2.5 Software Support Personnel• •

50.2.6 Hardware Service Personnel•• : : : ~ : : ~ : : : : : : : : : : : :
50.2.7 Internal Software Developers ••..

50.3 First Revenue Ship Applications
50.4 Glacier Components •.• ...

50.4.1 Client Hardware Components ...••. : : : : . I • • ••••••••••••••

xvIII

5G-\

5G-I
66-1
66-1
5G-2
5G-2
66-2

6G-2
66-2
6G-3
6G-3
6G-3
5~

6G-4
6G-4

6G-4

6G-4
6G-4

Digital EqulplMnt Corporation - Confidential and Proprletary
Restricted Distribution

50.4.2 Client Software Components
50.4.2.1 Software Run-Time Environment • ...• .• .. .• . •...
50.4.2.2 Software Development Environment•...•. .
50.4.2.3 System Management • •
60.4.2.4 Underlying Software Mechanisms • . .• ... •.... . . •

50.4.2.4 .1 Network Support•....• . .• . •....
50.4.2.4.2 Remote Procedure Call. (RPC)•. •. ..•..•.•..
60.4.2.4.3 Served Disks••.• . ..•...•

60.4.3 Server Hardware Components•. • . . • . . •• ..•..
50.4.3.1 FRS Hardware Configuration•.•....•...•. .• •• ... •. ...
50.4.3.2 FoUow-On Configuration•.................••...

50.4.4 Server Software Components•...•. . ..•...
SO.4.4.1 Software Run-Time Environment•......•.....

50.4.4.1.1 Application IntegTation Architecture•..•..... . . •
50.4.4.1.2 Application Migration•... . •• .•...
50.4.4.1.3 Record Management Services • .•.• . •... ..

50.4.4.2 Software Development Environment•.•.........•....
50.4.4.2.1 Program Development Tools• .• •• • • . • . .•..• .•

50.4.4.3 System Management• . .•.•• . •.•... .
50.4.4.3.1 SysLem Management Server•..•... . ..•.• .•. - • .. .
50.4.4.3.2 Performance Monitor•. . • ..•...•..•.•........
50.4.4.3.3 Console Support•...•.•.........•.. .
50.4.4.3.4 System Dump Analyzer•.... • • .••.... •.
50.4.4.3.5 Et'TOr Logging •...•.•.•• . •.

50.4.4.4 Underlying Software Mechanisms•..... - ...•.•.•...
50.4.4 .4.1 Mica Operating System•.• .•. .••...•.... ,
50.4.4.4.2 DECnet-Mica Phase V , .. .• •.••. , ..•.......
50.4.4.4.3 Remot.e Pl-oc:edure Calle•.. • •.••
50.4.4.4 .4 Distributed File Services (DFS) , .•..•...•

50--5
50-5
50-0
50-0
5(}"7
5(}..7
5(}..7
5(}..7
5(}..7

50-0
5(}..9
5(}"9
5(}"9
5(}"9

5(}..IO
5(}"IO
5(}..10
5(}..1l

50-12
5(}..12
50-12
5(}..12
5(}..12
5(}..12
5(}..13
50-13
5(}"13
50-13
5(}"14

50.4.4.4.5 Job Controller Server•.•... . ..•. ... 50-14

60.5 Special Challenges•....•..... . ..•.. . . , . . • 50-14

50.6 Outstanding ISluel . • . • • 50-14

CHAPTER 51 MICA COMPUTE SERVER SUPPORT . . • • • • • • • • • 51-1

Sl.l Overview. • . • . • SI-1
51.1.1 Goal.. • • . • • . • • • . .. 51-1

51.1.1.1 Activation of a Mica lmage • . • . . . • 51-2
S1.1.1.2 Application Integration Architecture • • . • • SI-2
S1.1.1.3 Support for Development Tools • . . . • . . • . • . .. 51-2

51.1.2 Componenu , . • . • . . . • . . . • • • .. SI-2
51.1.2.1 Mica Components•••...•.• .. 51-3

xix

Dlyltal Equipment Corporatlon _ Confldentlal and Proprietary
Restricted Dlstrlbutlon

CHAPTER 52 VMS COMPUTE SERVER SUPPORT•

-2 Ov •• • •.••• 0.1 ervlew
52.1.1 Requirements•. . • ••. •• •• ••. •
52.1.2 Assumptions. • . . . • . • . • . . • •••
52.1.3 Functional Description • . • • . . . • • . • • ••• . •

52.1.3.1 Image Activation
52.1.3.2 RPC Cans for VMS Services•.• •• ••.... •
52.1.3.3 Condition Handling • • . • . • . •• • ••
52.1.3.4 Termination •• .•• .. .•. . ••• • ••
62.1.3.5 Debugger Suppor t. • •. •

CHAPTER 53 ULTRIX COMPUTE SERVER SUPPORT • •

63.1 Overview. .. • ••.•
53.1.1 Goals. • • • . • • • . . • • • • . . . • • . • .• •.

63.1.1.1 Execution of a Mica Image ••..••... .•• .•. •..••. . .
53.1.1.2 Access to the Client Environment.. . .•. . . ••.. ...•• . •• . •••
53.1.1.3 Development 1001 Support•... • •••••••

53.1.2 Functional Description . • . . • • • . •• •
53.1.2.1 The Client Context Server • • • . .. •
53.1.2.2 Mica Program Deve1opment. on ULTRIX •• . •.•••

CHAPTER 54 PROTECTED SUBSYSTEMS AND RPC• .•. . •

54.1 Overview•• . • • •.
54 .1.1 Goals '" • •• . •••

54.1.1.1 Functionality for Mica System Com ponents • • • • •
54.1.1.2 Functional Basis for PrtItect.ed Subsys tems•••.•••••
54.1.1.3 Easy Migration to Corpora te RPC • • . •• • ••
54.1.1.4 Hide RPC Usage Behind t.he Stub Generator • • .•

54.1.2 Nongoals .•• •
54.1.2.1 Customer Visibility •..• . ••• . ••
54.1.2.2 All·Encompassing Mechanism
54 .1.2.3 Interoperat.ion with other RPC protocols •.. • •. • . ..••

64.1.3 Communications Transport
54.1.4 Issues•• • •. . . . • •• . •

CHAPTER 55 RPC STUB GENERATOR•. .•• • •.. ..

55.1 Overview. • . • . . . • • • . . . •. .
55.1.1 Requin!ments, Goals, and Nongoa1s •• . . .

55.1.1.1 Requirements. • •.. . . .• • •. . ..
55.1.1.2 Goals : . : : : : : : •. • •• •• • • . • .• • • • . •• .• •.
55.1.1.3 Nongoals• . . •.. • • . •••

.
55.1.2 Operation of the Stub Generator••..
55.1.3 Implementation Strategy

55.1.4 Dependencies : .• . .
55.1.5 Long-Term Mica RPC Stub Generator Stra tegy

xx

62-1

52-1
52-1
52-2
62-2
52-2
52-2
52-2
52-2
52-2

63-1

63-1
63-1
63-1
63-1
5S-2
63-2
53-S
5S-4

54-1

54-1
54-1
54-2
54-,1

/ioI-3
54-,1

54-4
5
54-4
54-4
54-5
54-5

55-1

5&-1
55-2
5&-3
5&-3
5&-3
5&-3
55-4
55-6
5&-5

•

Digital EqulpI'Mnt Corporation - Conlldentlal and ProprJetary
Restricted DIstribution

CHAPTER 56 AlA USER INTERFACE • • 56-1

56.1 Overview . • • . • . • . . • . . • • . . • . • • . . . 56-1
56.1.1 Goals . • • • • . .. 56-1
56.1.2 DECwindowa•.. •.•... 56-1

56.1.2.1 The X Window System , • • • . . . 56-2
56.1.2.1.1 DECwindowa Server and Device Drivers •... 56-3
56.1.2.1.2 Network Protocol and 'll-aruport Mechanism • • 56-3
56.1.2.1.3 Xlib and Xtoolkit Programming Libraries • • . .. 56-3

56.1.2.2 Application Programming Libraries , •. .. .• ..• . • , .. 56-3
56.1.2.2.1 The DECtoolki' . • . . • • . • • 5G-,'l
56.1.2.2.2 DDW Tholkit • . . • . . . • • . • 5G-,'l

56.1.2.3 implementation Strategy , . • ... , • .• ... " 56-4
56.1.2.4 Dependencies ". , .. ". • . . 56-4

CHAPTER 57 MISCELLANEOUS RUN·TIME LIBRARY ROUTINES 57-1

57.1 Overview , , .. , , . , , , , . , . , , ., 57-1
57.1.1 Goals and Requirements , , , • . . . • . • . . . • 57-1
57,1.2 low·Level Math Routines , , .. , • 57-2
67,1.3 Common Multithread Arc.hited.ure Routines , , , • .•. ,. 57-3
57,1.4 Print System Model Client Routines• " . . •• . • • , , .. 57~

57,1.5 Open Issues , , , , . , • . . • 57~

CHAPTER 58 APPLICATION RUN·TIME UTILITY SERVICES 5S-1

58.1 Overview .. , , , , , , , • . .•. ,. ~l

68.1.1 Goals and Requirements .. , . , , . , ,•.... ,. 5~1

58.1.2 ARUS Routines , .. . , . . , , , , . , , . . . • . • 58-2
58,1.2.1 Uaer Mode Virtual Memory AllocationlDeal1ocation Routines . . . • . . • . .. 5~2

58,1.2.2 Condition Handling Routines , , . , , ' 5~2

68.1.2.3 Date and Time Conversion Routines , . , , ..• ' 58-3
58.1.2.4 String Mapping Routine! • .. ••... 58-4
58,1.2.5 Process Information Routines , . , , • . . • • . . . 58--5
58.1.2.6 Command Language interpreter interlace Routines , 58-5
58.1.2.7 Data Convenrion Routines . , , , . , , , , . . . 58-5
58.1.2.8 Ted String and Message Fonnatting Routines ,• , . • . .. ~
58.1,2,9 String Routi nes , . • . . • . • • . .. 58-5
58.1.2. 10 Table-Driven Parsing Routines , • . . • . • • . .. 58-5
68.1.2. 11 Math Routines • . . • . . • . . . • 58-6

68.1.3 Open Issues. • • . • • . . • 58-6

GLOSSARY •••......•.......•....... .. Glossary-l

xxi

Digital Equipment Corporation _ Confidential and Proprietary
Restrlctltd Distribution

EXAMPLES
14-1
14-2
14-3
50-1

Ro . • •••• ••• • • Prototype Object Creation ubne :•.
Prototype GetlSet 1nformation Object SeTV1ce Rouunea • • •
Sample System Service Definition • • . . • •. .
'!YpicaJ Glacier Program Development••.•....••.•..••

FIGURES
1-1 Glacier ClientlServer Model • • • • •. ...•. . . 14

~2

s."
6-C
7-3

3-1
3-2
6-1
7-1
6-1
9-1
1&-1
I&-2
15-.3
15-4
16-1
17-1
19-1
19-2
21-1
22-1
24-1
2&-1
29-1
32-1
33-1
34-1
3&-1
3&-2
37-1
36-1
36-2
36-3
39-1
39-2
41-1
41-2
42-1
42-2
43-1
43-2
46-1
46-2
46-3

xxII

Mica Status. •
libSsta tus_ value •••...••••..
Complex UJP'I'Tree "
Virtual Address Space Layout •

......

. '"

Overview of Mica's 110 Architecture • . • • . . • • .. •
Dispatching System Services " •.•..••
Direct Access Mass Storage Functi on Proceuorw and Cllmta .•..•.

S..l
~2

16-2
16-C
I~

16-7

Sample Stripe Set . •••.
110 Structure Layout for a Shadowed and S triped Filel-ll Volume ••
I/O Request Packets Used to Sa tisfy the Sample Request . . ••
Magnetic Tape Function Processors••.•••
SCS Function Processor in the I/O System • . •• ..•.. .•
How the Nt Function Processor is Implem ented • . ••.

16-2
1M
19-<
19-.\
21-2
22-3
24-2
U-.l
29-3
32-2
S3-2
~
~1

»-:!
37-2
35-2
35-2
3&-.,\

29-3
39-<
41-2
'1-3
6-4
,2-.1
43-2
43-3
46-2
46-<

46-12

Mapping of Transmit Buffers to Actua] Packet '" . " .• • ••
How Threads Read and Write through Menage FPU. • • " .. •
Layout of PDM and Diagnostic Subprocesses.•. . " •..•

Location ofDFFP Layer in the I/O System•••.•..• . •
Relationship of FiJe!J-ll Data S tructures•....••.. .• ... ••.
Object Module and Image File Forma t ~ •• '" •.. ..
System Management Components

Relationship of OPCOM Components••.. •

Configuration Manager Design • • • • • . • . • . •. .
Read-Only System Volume Area - ReadlWrite System Volume Area
Interface Hierarchy of USE '"

Glacier Communications : :: : : : : : : : : : .' 0" •••••••••••

-. Cheyenne Communications . . " .
Software Componenta of the Net~ork•... " -........ • ••..

.... - - " The Components of DECnet--Mica
Relationship of Ports and Channels in a Virtual Cirau&. •• ..•..•..
Overview of DEC net-Mica Network Management d E 'I~"""'"
Detaj"1 f DEC 'Mi N an Vent """'Mlft& •••• ••

so ne..... ca etwork Ma nageme n t and Event LoUJ"I' •
Source Queue States
Sink Queue States _ . • • .• • .•
DFS Clients and Servers in a Network - - .. " '" _ ..•.• . •
Mica DF'S System•....... • __ . .• . .•..•.

Highly Available Cheyenne Confi~~ti~n' _ ... "
Software Layering : _ ... _ .. __ . • • • . ..
Client-Residen&. Cheyenne Communication Co' •• • - • • • • • • ••••

mponent. •....... ~

.
o 0

48-4
49-1
51- 1
53--1
54-1
55-1
66-1

TABLES
5-1
38-1
42--1
42-2
42--S
67-1
57-2
68-1

Digital Equipment Corporation - ConfIdential and Proprietary
Restricted Distribution

Cheyenne Remote System Management
'Itanaaciion Services Block Diagram
Mica Compute Server Support•....•...
ULTRlX Compute Server S upport • • ••.. . .
The RPC Architecture Model
The Flow of a Remote Procedure Call•
DECwindows Components •.

Object Architecture: Terms and Definitions
Client. System Management Interface Commands
Message Queue StaLes ,
Source Queue St.at.e Transitions . .. ,
Sink Queue State Transitions
Low-Level Ma th Routines•...
C~ Routines
High-Level Mat.h Routines

48-13
49-3
51-3
63--3
64-2
65-2
66-2

5-2
33--3
4:h'l
42-4
42--4
67-3
67-4
6~

xxIII

J

General
This set of chapters coyers general topics relating to the Mica operating system.

1.1 Overview

Digital Equ ipment Corporation _ Confidential and Proprietary
Restricted Distr ibution

CHAPTER 1

INTRODUCTION TO MICA

Mica i. DIGITAL'. proprietary operating system for the 1990s and beyond, targeted initially for the
PRISM architecture,

The most important aspect ofthe design of Mica is the emphasis on building a modular system base
for the future development of all types of software products, Mica is explicitly designed to break
the "product P cannot ship until feature F is in the operating system" cycle, by allowing most new
functionality to be added without modifying the base system. The modular design features and strong
base-system functionality of :Mica are summarized in this Introduction.

Mica has also become a vehicle for work in distributed system design. The two initial FRS products
are the Cheyenne database server and the Glacier compute server. Both exploit client/server models,
with inleractive front-end processing being handled by a potentially large number of client systems,
and high · performance compute- and/or UO-intenaive processing handled by a Mica-based back-end
server.

The entire design of Mica is rich in innovative design concepts, with its object·based executive, layered
UO system, protected subsystems, and the exploitation of a thread·based architecture, to name just a
few points. In addition, the system is written in a high-level language, La enhance its maintainability,
extensibility and portability to future hardware architectures. Rounding off'the base functionality of
Mica i , a set of superior compilers that exploit t he underlying hardware and software functionality,
This includes a FORTRAN compiler supporting automatic vectorization and decomposition.

The following subsection describes what makes Mica ideal 81 an expandable base system. The second
, ubsection describes the process structure of Mica. The last two subsections briefly describe the initial
Mica-booed FRS produd.ll .

1.1.1 Expandable e ase-System Functionality

The following subsections present the modular design features oCMica, which allow it to be ezpanded
at. four different levels.

1.1.1.1 Object Architecture

Fundamental to the design of Mica is the object architecture. Objects are abstract entities provided
by the system that require a data structure to represent. Objects are organized into types defined
in term. of the operations that may be performed. on them. These operations are implemented by a
collection of procedures referred to as object service routines. A few examples of objects ar e event.l,
sections, processes, UO channels, device units, volumes, open files, and timers.

The most important aspect of the object architecture is that it provides a single mechanism for
controlling the identification, naming, visibility, and security of all system entities. There is a single
identification mechanism fOT all objects in the system, based on a 64-biL object ID. Optionally, any
object may allO have an ASell name, which may be translat.ed. (qualified by object type) to find its ID.
Objects are referenced via object IDs stored in object containers at three levels of visibility: system,
job, and procell. Vi sibility of objects may be allowed for all processes in a system, all processes in a

Int roducll on to Mica 1- 1

Digital Equipment Corporation - Confidential and proprletuy
Restricted Distribution

. th ob·eel. is created in a 'Yat.tm object conL.l1ner.JOi ,'ob or a single process depending on whether e. ~
, ' .. pecuvely: object container or process object container, res .

. E ery object can optioft&ll,. have aD acw:. Objects are the single focus of securit>: m the Syste~~ v a per-obJed. bun The ACL LI matched
control list (ACL), which allows protection to be s~ on !.he objecL
against the security profile of any thread attempting accels t.o

Therefore, at the lowest level of the system, new functionality may be added by loacbn, new ol,ect
types and object service routines into the system.

1.1 .1.2 Layered 1/0 System

The 110 system of Mica is implemented as a layer on t.op of the object ardutecture

The I/O architecture is designed to facilitate the s uccessive .layerina of virtual IUpport on top 01
actual physical devices. Each layer is implemented ~y an .e:ntity ref~n-ed to .. a functaon ps~
Function processors implement many levels of 110. mc1uding thOle Implemented In VMS by dl'YlCe
drivers, pseudo drivers. ancillary control processors (ACPa), ~d extended QIO p:I"OOeMOr'I QP,
Mica has additional function processors to implement s uch thi nas .. dUk .mpln •• dill.; thadOWlI1&.
each of the DNA network layers. and 80 on.

Function processor units (FPUs) are objects created for function PTOCeUOf'So to which channel. mI.Y
be created for subsequent 110 operations. For example, the Filee-ll funelion pl"OCleUOr has funct,aa
processor units for volumes, device function processors have function pl"'OCeUOr unita (or deY1,*- aDd
so 00.

Function processors may be layered by creating a channel to one FPU and re(erel1ClJll the ehaaOll
in another FPU.

Thus. the VO architecture provides another mechanism by whieb new (unc:uonahty may be .ddtd
to the system in a modular fashion. In fact, by implemenbne new (uncuon proces.lOTllhat IUppGft
pre.existing function processor interfaces, it becomes possible to "plUC in" new (uodJonahty such u
a new file system or network transport.

1.1 .1.3 Protected Subsystems

A protected subsystem in Mica is a process that implementl a protected area o((unctaonaht, In u..r
~ode. Protected subsystems accept requests via r emote procedu.re call (RPC). The use o(RPC m.aket
It completely transparent that the protected. subsystem is runnine .. a eeparate. proceu..

Ke>: to the protected subsy~tem support is the passing of a security profile With the RPC (rom lhe
calling t~read .to a thread In the protected subsystem. The protected sub.y.te thread can then
access obJ~ts 10 the sys~m aCCOrding to either ita caller'. secunty profile, Itil 0:0 8eCUnt1 profile.
or a secunty profile that IS a merger of the two.

Protected subsystems are t~e favored way of adding functionality to MIca. SInce protected IUbqstmlJ
run as separate processes 1ft user mode, they are more robus t -: 10 cod __ , '-b d
to "taj" Th d t " h . , e auo gc U," an ... rr malI~ r:" ey . 0 no compromlse t e Integrity of the hue -ratem. Protected sub. l.Cma abo
generalize m a stnughtforward manner to distributed s - ," pI . _ . , _~ RPC.

-~ m emen ... bona vta net'I'I"UTX
Some examples of functionality implemented U protected ,uba tern . U : 01.._ Confi
Manager, System Management, and OPCOM. ya • In lJ>ual are \.f1e ,urauon

1-2 Introduction to Mica

Digital Equlprr.nt Corporation - Confidential end Proprietary
Restricted Distribution

1.1.1.4 CllentlServer Tools

The following components, which are part of the clienUserver interface for Mica, could be useful in
developing other client/server systems:

•
•

•

The underlying Mica network architecture, including network RPC.

The Distributed File System (DFS), which implements file access within a distributed system.

The server-oriented job controller, which handJes remote image activatlon requests on a Mica
server. It also facilitates binding back to the client for accessing the initiating tennina.1 and
retrieving environment infonnation <such as 10gica1 names, defaults. and 80 on) from a "client
context server" on the client.

\ Cheyenne uses a subset of the above. \

Figure 1-1 depicts Glacier as an example of a client/server model.

There are some good reasons why future software products after Cheyenne and Glacier may also wish
to use a client/server implementation. In the two initial client/server products, the user interface
is removed. from the powerfu1 Moraine server system to frontends that have much less compute
power. But since the user interface is mostly characterued. by high I/O latency and low compute
requirements, the user still receives good response time. If, on the other hand, the server implemented
the user interface directly, and attempted to support hundreds ofusen simu1taneously, the aggregrate
compute requirements for the user interface could be substantial. The server is thus much better
utilized. and is capable of supporting more users if it is 1imjted to work dispatched. to it from clients
that it more characterized by high VO bandwidth and compute requirements.

1.1.2 Procell Structure and Thre.ds

Mica supports job and process object.. which are very limilar to jobs and processes in VMS. It also
supports user objects, which represent users that have been validated in the system and are allowed
to have jobs. However, a very important aspect of the Mica architecture comes from the fact that
Mica supportIJ the concept of threads.

A thread is the entity of execution within a process. All threads within a process share the same
address spact and object containers, but they have separate stacks, registers, hardware context, eDt
handle", and AST queues . A process may support multiple threads of execution in parallel; in fact,
these thread. may run on multiple processors at the same time.

Mica employt multiple threads to increase the level of parallelism within the operating system itself.
More important, however, is the use of threads in compute-inunsive user software. Compilers for
Mlca can generate code that uses threads to implement parallel decomposition.

Through the use of threads at both the system and application levels, It'lica is inherently a parallel
system. This fact further enhances Mica's suitability as a powerful software base for the future.

1.1.3 Cheyenne Database Server

Cheyenne is a highly reliable. highly available database server implemented on Mica. Cheyenne
conslSU of one or more Stone systems with the Quarlt relational database software, front.-ended by
VAX client systems. The client/server communication uses the DIGITAL Standard Relational Inter­
face (DSRl) protocol. \ Use of the evolving corporate DIGITAL Distributed Transaction Processing
Architecture (DOTA) is yet to be decided.\

The main goals ofthe Cheyenne pnxluct are absolute data integrity, high reliability and availability,
and high perionnance. As a basi.s for Cheyenne in meeting these goa1s, :M.ica provides the following
important features:

• 1Tanaaction services with logging, recovery, and wann standby

Introduction to Mica 1-3

Digital Equipment Corporation. Confidential and Propr .. tary
Restricted Distribution

Figure 1-1: Glacier CllenVServer Model

1-4 Introduction to Mica

JOB
CONTROLLER

~
L:::J
~
L-=:J

CUENTiSERVER
COMMUNICATION

EXEC;
Protkled &bsystema:
lIMr, Job, Proceu, ~

SMP
KERNEL

ALE
svsn ...

USER
INTVIFACE

CUENTISEAVER
COMMUNICAnOH

CUENT
os

•
•
•
•
•

Disk shadowing

Dlglt.l Equipment Corporation - Confldentl.1 and Proprietary
Re. trlcted Distribution

Automatic hardware reconfiguration. including a spare strategy for shadowed disks

An aggressive strategy for the handling of transient machine faults

Thread! for parallel processing of transactions

A special interprDCes8 communication mechanism for database processes

These features will also help Mica to evolve as a strong base for general purpose transaction process­
ing.

1.1.4 Glacier Compute Server

Glacier is a high· performance compute server for scientific and other compute-intensive applications.
A typicaJ Glacier system consista of a Glacier-based Moraine 8MP system with 8C:a1ar-vector or scalar­
only modules, front-ended by a potentially large number of workstations or VAX. frontends. The
client/server interface employs RPC, and is designed in such a way as to allow the support of a
variety of systems as front ends.

The main features of Mica erploited in Glacier are:

• High·performance and reliable disk VO via striping and shadowing

•
•

The use of multiple threads for parallel processing of single-stream applications

Large virtual and physical address space

• The Distributed File System (DFS)

• A set of lIuperior compilers

• The Applications Integration Architecture (AlA)

An important part of the compute server concept is the philosophy of aJlowing multiple client systems
to provide their own user interface and software development environment, complete with client­
specific command languages, editon, and file utilities. This allows the user to develop compute­
intensive applications on the client system in a familiar environment (initiaJly VMS, later ULTRIX
and othen), and then execute these applications transparently on the server. Some compute-intensive
DIGITAL software also executes on the server, such as the compilers and linker.

The server itself is designed to support portable appHcations that do not specify system·specific calls .
This is made possible via the use ofstate-of-the-art standard compilers (such as FORTRAN, C, Ads,
and Pascal) and the Applications Integration An:hitecture (AlA).

1.2 WOO Structure

Following is a complete list of the WDD chapter overviews, in the order they appear in the Mica
Overview Document. They are grouped into logical areal, which are named in the following list in
all uppereaae. The chapters within each area are indented below their corresponding area title.

GENERAL
Introduction to Mica
Naming Standards and Pillar Coding Style Guidelines
Status Values, Messages, and Text Formatting

EXEClITIVE
The Kernel
Object Architecture
Process Structure
Memory Management

Introduction to Mica 1-5

Digital Equipment Corporation _ Confldantlal and Proprietary
Restricted DistrIbution

I/O Archit.eclure
System Service Architecture
Security and Privileges
Condition, Exit, and AST Handling
Booting
System Dump Analyzer and System Debugger

EXECUTIVE ROUTINES

110

Executive Routines

Direct Access Mass Storage Function Processors
Magnetic Tape Function Processors
System Communication Services
XCA Function Processor
NI Function Processor
Console Support
Message Function Processor
PRISM Diagnostic Monitor
Error Logging

FILE SYSTEM
Disk File System Function ProceSBOTS
Files-ll ODS2 Function Processor
Record Management Sel"'\l'ices
Caching
File Management Utilities

IMAGE RELATED
Object Module and Image File Format
Linker
Image Activation

SYSTEM MA."AGMENT and ADMINISTRATION
System Management
Operator Communications
Configuration Management Software
System Volume Layout and Software lnat.a.llation

TESTING and PERFORMAl\TCE MEASUREMENT
Performance Monitor
User-Level System Exerciser

NETWORK
Mica Network Overview
Network Services
DNA Naming Service Clerk
DECnet Startup, Shutdown, Management, and Logging
Quartz Interprocess Communication

DISTRIBUTED FILE SERVICES
Distributed File Service Introduction
Distributed File Service Management
~s~buted F~Ie Se~ce C:mmunication Function Processor
Distributed File Service Client Function Processor
Distributed File Service Server

DATABASE SERVER
Cheyenne Overview
Transaction Services

1-6 Introduction to Mica

COMPUTE SERVER
Glacier Overview
MIca Compute Server Support
VMS Compute Server Support
ULTRIX Compute Server Support
Protected Subsystems and RPC
RPC Stub Generator
AlA User Interface

Digital Equipment Corporatlon • Confidential and Proprietary
Restricted Distribution

l\fiscellaneous Run-1Une Library Routines
Application Run-Time Utility Services

Introduction to Mica 1- 7

Digital Equipment Corporation ~ Confidential and Proprietary
Restricted Distribution

CHAPTER 2

NAMING STANDARDS AND PILLAR CODING STYLE GUIDELINES

2.1 Overview

This chapter defines the naming conventions to be used for names accessible from user-mode programs
throughout Mica. IL also presents coding style guidelines for all code written in Pillar, the software
development language for the Mica operating system.

2.1.1 Goals

The overall goal in setting naming standards and coding guidelines is to ensure consistency across
code written for the Mica operating system. Specifically:

• Naming standards:

•

Present a consistent, easy-to-remember name space to users and developers

Aid futu.r-e developers in maintaining and extending the software

Enlure that customer-written software is not invalidated by future releases of DIGITAL
products that add new names

Pillar coding style guidelines:

Eruure that Mica system sonware written in Pillar is more maintainable and extensible

Improve the overall presentation of Pillar code examples in Mica documentation

2.1 .2 Naming Standards

Naming standards wi.11 be used to define names for all public software interlaces for layered products
and bundled Mica software. The Naming Standards and Pillar Coding Style Guidelines chapter
provides convention. for:

•
•
•
•

•
•
•
•
•
•

Facility names

Module names

System service and system routine names

Procedure parameter names

Mica s)'ltem files and directory names

Named types

Global variables

Compile-time named constanta

Mcssage names

Item codes ~ed in item lists

Naming Standards and Pil lar Coding Style Guidelines 2- 1

Digital Equipment Corporation _ Confidential and proprieta ry
Restricted Distribution

•
•

System and group logical names used to alter, define, or control a racibty

Compile-time facility macros and procedures

2.1.3 Pillar Coding Style Guidelines

Pillar coding guidelines will be used by an Mica software developen to promote code col\Iit:tency
across all Mica system software. The Naming Standards and PiJlar CodJne Style GwdehDel Wpter
provides conventions for:

•
•
•
•
•
•
•
•

•

Statement indentation policy

Capitalization policy

Source line length

Order of declarations

Format and policy of multi-line statements and multi-statement unell

Block and line comment format

Use of HwhitespaceH to improve code readability

Pillar statement fonnats including:

Executable statements such as IFtrHENIELSE, CASE, and LOOP

Record, enumerated type, and set declaration formata

Procedure declarations (external and procedure completions)

Procedure invocations

Module and procedure layout format

2-2 Naming Standards and Pillar Coding Style GUidelines

Digital Equlp",.nt Corporation - Confidential and Proprietary
Restricted Distribution

CHAPTER 3

STATUS VALUES, MESSAGES, AND TEXT FORMATIING

3.1 Overview
A statu.! 1I01ut. passes information regarding t.he success or failure of a process, t.hread, I/O service,
or procedure back to the t.hread which created or called it. Stat.us values are also used to organize
and index messages that. convey information about status values in textual form .

nus chapter:

•

•
•
•

•
•

3.1 .1

Defines the format. of Mica status, t.he data structure which contains a stat.us value.

Defines the format. of stat.us values.

Describes Lhe mechanisms used to translate status values in ten strings.

DeBCribes the organization of messages and message files .

Deaaibes t,he \I.e of messages and message files for internationalizing text.

Outlines the text formatting support provided on Mica. While such support is an important
part of menage access and display, it is general purpose in nature and may be used in any
programming situation where tez:t formatting is required.

Goals

The primary goal of this implementation is to provide a consistent, e8sy-tG-understand, and easy-to­
use way of organizing definition of and aceess to status information, message text, or bot.h. Within
this general goal are the following specific goals:

• To provide a local menage capability which allows message definition and aceess without the
requirement. of facility registration

• To provide a convenient way of separating text from an image that uses it, and to allow the text
to be rewritten in another natural language without affecting the image

• To deaoibe and encourage the use of the message capabilities for all user-displayed text in a
program, not just status messages, as a way to internationalize programs more easily

• Tb provide a tezt formatting capability that addresses internationalization requirements

status Values, Messages, and Text Formatting 3-1

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

3.1.2 Status on Mica

Mica status is 64 bits. The first 32 bits are the status value; depending on the type of statu.. !.he
second 32 bits mayor may not be used. Mica defines three t.ypea of status: foudJl~·fT8..,urrd ateM,
local status, and internal status. The format of each type is shown in Figure 3-1

•

•

•

Facility-registered status-The status value contains a number ind.ieatinl which facility rener­
ated the status. The second 32 bits are not used .

Local status-The status value bas the locaJ status bit set. A fuJl 25 bi~ are UHd for the m-,e
number as a facility number is not required . The second 32 biLS ofth8 .t.atUJ contain the add,...
of a message data structure used to acquire the message ten.
Internal statue--This type of status is used internally by a particuJar Caobty The first 32 baLI
is a facility·registered status value. The second 32 bila may be used tn whatever way the facihl,.
desires. An internal status normally does not appear ouLaide the fadbty that UMI it becaua
outside the facility, the second 32 bits of the status are ignored.

Agure ~1 : Mica Status

" •
FAClUT't'·REGISTERED STATUS VAlUE

" •

I
_LOCAL STATUS VAWE

MESSAGE DATA STRUCTURE ADDRESS

""'
"

I
FAC1UT't'·REGlSTERfO STArus VALUE

FAClUTY·OEFlNED INFORMATION

o

Irllemll Stcu,

mo

Pinar 's predefined data type STATUS is 64 biLs, For lan .
values, such as C and FORTRAN, procedures which retu~fe5 which do not support 64 I»t return
argu?lent to the procedure which returns a condition record OC8:1 statu. ,should Include an opuonal
64 bIt status, all of which are required for local mes.. t' , This conmuon record conl&i.na the full ge re neva!.

3-2 Status Values, Messages, and Text FormattIng

--~--~------~-~

Digital Equipment Corporation. Confidential and Proprietary
Restricted Distribution

3.1.3 Status Values

There are two lcinds of status values: facility·registered status ualues, and local status ualu.es. Status
values are lonpord values used to:

•
•
•
•
•
•

Indicate the exit status of a process

Indicate the exit stat.us of 8 thread

Return statUI from 8 remote procedure call

Return completion status from an 110 request

Return. status from a procedure or function call (such 88 a run·time library function)

Organite local messages. that is, internal messages within a program

Additionally, values in status value fonnat are used to organiz.e and access nonmessage text local to
a facility.

StalWl values have the binary format shown in Figure 3-2:

Agura 3-2: IIbSstllus_value

31 30 a 28 'l1 16 15 3 , o

3130312127 3 , o

seveRITY

LccaI Slaw. Value
AO,

The secLions below describe each field of a status value.

3.1.3.1 SEVERITY Aeld (bits <2:0,.)

The seUf!rity field of 8 status value indicales the basic success or failure of the producer of the status.
Seve.nty i. represented as a binary value in the range 0 to 4 (values in the range of 6 to 7 are reserved
to DIGITAL).

Successful completion is indicated by an odd·valued severity. Even severity values indicale partial
or complete failure.

3.1 .3.2 MESSAGE_NUMBER field (bits <15:3»

The 1MUll8e_numbu field of a status value is used to identify which of a set of several possible
conditions this status value represents. The message routines use this value to index into a message
section to obtain the corresponding message len. This field is defined only for facility·registered
status values.

Status Valuus, Messages, and Text Formatting 3-3

Digital Equipment Corporation. Confidential and Propr ietary
Restricted Distribution

3.1.3.3 FACIUTY_NUMBEA Aeld (bits <27:1 6»

The facility_number field of a status value is used to id~ntify ~e producer of the ltatul value Each
facility must have its own unique facility number. This field II defined only for faahty-rqutt:recl
status values.

The facility number 0 is reserved for system-wide status values. The facility name corret:ponchnc to
facility number 0 is STATUS.

3.1.3.4 LOCAL_MESSAGE_NUMBEA FIe ld (bits <27:3»

The locaCTTU!ssage_number field of a status value is used to index into • meua,e MCtJon to obt.aJ.n
message text for a local message. This field is defined on1y for local sLatu. valuee.

3.1.3.5 LOCAL_STATUS Field (bit 28)

The local status field is used to indicate that the status value i,local . Local .tatue values are UNd \0
organize facility local messages without the requirement of facility registration . Local .taw. n1uea
have this bit set; facility-registered status values have thi. bit dear.

3.1.3.6 FACIUTY_SPECIRC Reid (bit 29)

The facility_specific field is used to indicate that the status value i. specifie to • IIn,te facility
Status values with this bit clear are used to identify system·w:ide .tatu. codes. for sY"t.e:m and.hared
messages.

3.1.3.7 CUSTOMERJACILITY Reid (bit 30)

!he customerfac.~ity field is used to indicate that the ~umber specified in the faciht, number 6e1d
IS a customer raality. Status va1ues for DIGITAL facilities have this bit. dear.

3.1.3.8 INHIBIT_MESSAGE_ PRINTING Field (bit 31)

~e inhi~iCrr:e~sage..printing field i~ used to in.hibit display of the me.uaae by meaap OUlput rou.
bnes .. This bIt IS. set by system routmes that display the resultine me.sl&fe- ., that the meua,e u
not displayed tWlce. •

3.1.4 Status and Text Messages

Status messages are text strings used to describe a status value to a us · ural 1 A
complete status message consists of: er In • nat ancuare

Facility name-A short string of characters indicating the faalit to Lc h th .
tered.. . Y WfUC e statUI u rep

•

Severity-A single letter indication corresponding to the seve ·, (the
" yo slatu • .

Abbreviated condition name-A short string of characters id ..:.~.: h . ..,
manner. enw'.1~ng t e ltatus In an abbrenaloCU

•
•

Message text-A string of characters describing the status ' d _I . .
parameters specific to the error occurrence. In etai. poMIbly With formatted

•

Ten messages are text strings used to provide non status I Led ' nfi
language. A text message is the same as the message text re ~ lor°Tmation to. user 10 • natural

po on a atat\l8 meuap.

3-4 Status Values, Messages. and Tex1 Formatti ng

3.1 .4.1 Status Message Format

DIgital EquIpment Corporation - Conflct.ntlal and ProprHttary
R.strlcted Distribution

By default, status messages are assembled in the following format:

\FACILITY-S-ACONDNAME, m •• sag_ text

'"FACILITY"' is the facility name, "s" is the seventy, and '"ACONDNAME" is the abbreviated condition
name. A user or facility may request that certain parts of a status message be excluded when the
message is assembled. The default. message format may be changed with a CLI command (such
as SET MESSAGE for DCL). A logical name is used to convey the current message format setting
between a eLl running on a client system and a program running on the server.

3.1.4.2 Message Source Flies and Compilation

Messages are created in text format using a text editor. A file consisting of a collection of facility
name, abb~viated condition names, severity condition values, and message teJ:t is called a message
source file. Message compilation is the process of creating a message object file from a message source
file. Mica provides message compilation capabilities as part of the Pillar compiler.

The message compilation facility provides a way to intemationaliite messages by allowing the message
teJ:t and formatting information to be separated from the image file. The message source file is
compiled twice:

1. The first compilation produces a direct message object module containing the facility names,
severities, abbreviated condition names, :lnd message text. This module is then linked to form
a message image file which is accessed. when the message text is required.

2. The second compilation creates an indirect message object module which is linked with other
program object modules to (orm the program image file. In this case, the compiler generates the
message object file without the message text itaelf. Instead, the data structures which would
nonnally point to the message text contain the specification for the corresponding message image
file that contains the message text.

Once a particular message IOUrce 6.1e is translated into another natural language, the first step
described above is repeated on the translated file. The result is a message image file in another
language that can be accessed by the application without requiring that the application be relinked.

3.1.4.3 In· Memory Message Organization

Mica status value and message support stores message information in a rrre~sagt section. Message
seetiOtU are pointed to by message section descriptors. There are two types of message section
descriptors: the direct menage section descriptor and the indirect message section dacriptor.

• Direct message section descriptors contain a pointer to a message section that is generated at the
time the message file is compiled. This is the case when the entire message section (including
text) is linked with the image.

• Indirect message section descriptors contain a pointer to the name of the file containing the
messap section and a null message section pointer. When the message section is first accessed,
the message image file containing the corresponding message section is read into memory and the
pointer to the message section is updated. This is the case when the tw~step process described
in Section 3.1.4.2 is used to create intemationalinble messages.

Message support also allows message sections to be chained together. This allows multiple language
versions of a given message seetion to be available at the same time. Such support. is required for
multithreaded server processes whose clienta may have different default languages.

Status Values, Messages, and Text Formatting 3-5

Digital Equipment Corporation . Confidential and Proprlewry
R .. trlcted Distribution

3.1.4.4 Accessing and Displaying Messages

Mica provides three routines for accessing and displaying messacea:

• The libSgeCrnessage routine is used to obtain and format status metsapa. nu. rouline Lab.
a condition record as input and obtains and formats t.he atatw; meu.ace COrTetlponclin, to the
status value in the condition record.

• The lib$display_rnessage routine is ~sed to obtain,. format. and display stalUI me.aps nu.
routine takes a condition array as Input and obwns and form. La the ,tat us m~l. ~
sponding to each condition record's status value.

• The lib$geUert routine is used to obtain and format a message cotTU"pondirll \0 • wppbed locaJ
status value and message section.

Translation of a status value to a message depends on tbe type of at.a t\l.l:

•

•

Facility-registered status values-Translation is accomplished by searchinl one at" more m_ce
sections. Each process has access to two groups of message section.; imace and .y.tem. Jmqe
message sections are those loaded with the image. System me.saee teCtionJl are Lhoee .hand
across the entire system. The translation routines search imap meaage aectiona tint., followed
by system message sections.

Local status values-Translation is accompHshed by aearching the spec:2fied me:8Ap Hdion U
the specified message seelion does not contain the index specified by the loco1.JfU.UQ6~_nwrlbtT
field, the translation fails. No other message sections are searched.

3.1.5 Text Formatting

Mi~ status .and message support also includes text fonnatting capabilib9. The hbSfOl'7"lllt301
routine proVIdes support for a new set of fonnatting directives. Specific~. for this (unctjonabl1
are:

•

•

Th move data t~ and access information out of the fOnn.8tbng motro) .l:I"\nc. pl.anl It WlLh
the arguments tnstead

'.Th ~rovide full parameter positiorung and formatting capabilibel required for (ull International. lzation support

The directives provide:

• Formatting information such as width. radix, and fill

Positioning information that allows parameters to be positioned diffe tl ~ _LI'r raJ
languages ren y or UHlerent natu

•

• Special fonnatting requests such as system date and time

• A means of specifying that directives are to be repeated in a controlled Cashion

3.1 .6 Open Issues

• Message compilation support. will be provided by the P 'Uar Co .
Pillar Message Compiler will Dot OCCur untillat.e caJe~dar 1 mpder Group. Deve.lopmeot of \he
and message data structures may have to be modified u th 988. The teJl:t formatting lancuace

e messaee compiler 1.1 developed.

3-6 Status Values, Messages, and Text Formatting

Executive

This set of chapters describes the components of the Mica executive.

4.1 Overview

4.1.1 Requ irements

Digital Equipment CorporaUon - Confidential and Proprietary
Restricted Distribution

CHAPTER 4

THE KERNEL

'The kernel is the lowest layer of software in the system and, as such, is positioned closest to the actual
hardware. The kernel is a single layer of code that must implement all interproces80r synchronization,
thread dispatching, exception handling, and fork processing. It must also keep the system time and
provide services to device drivers for handling interrupts.

The kernel presents a formal interface to the next higher level of software (the executive) that is free
of the problems associated with synchronizing various activities on mwtiple processors and which
automatically implements symmetrical mwtiprocessing (SMP) capabilities.

The kernel attempts to implement no policy. That is the province of the higher levels of software
in the syatem. There are, however, some algorithms that must be implemented in the kernel for
efficiency, and therefore, some policy will be included in the kernel. Such a case is the way in which
the priority of a thread decays over time. For those cases where it is essential for policy to be located
in the kernel, external controls will be provided so that executive software can influence, if not. direct1y
eontTol, the actions of the kernel.

4.1.2 Functional Des cription

4.1.2.1 Environme nt 01 the Kernel

The kernel runs in kernel mode. usually at an interrupt priority level (IPL) of 2. This is the priority
level at which dispatching occurs. The kernel can be executed simultaneously on all processors in a
multiprocessor configuration, and synchronizes access to critical regions as appropriate.

Software within the kernel is not context switch able, whereas all software outside the kem el is always
context. switcbable. In genera1. executive software is not allowed to raise IPL above 1, or otherwise
block context switching, and must use kernel procedures to synchronize ita activities.

The kernel is not pageable and cannot take page (awts.

All software oullide the kernel is written in Pillar. Kernel software is a mixture of Pillar and
a..uembly langoare. All interfaces to the kernel are defined in Pillar and exported to other programs.
It is expected that the size of the kernel will be approximately 8K instTUctions.

The Kernel 4-1

Digital Equipment Corporation _ Confldantlal and Proprietary
Restricted Distribution

4.1.2.2 Interaction WIth the Executive

Ezecutive software also runs in kernel mode . It implements system services, memory manapment.
user-level object support, the file system, network access, and device drive ... ; and It aeu system pohq.

Ezecutive software communicates with the kernel via a set of data abstractions ealJed kernel ob;terta.
and a set of operations that can be performed on these objectt. Kernel obJed.I are Tefernd \.0 by
address and should not be confused with user objects as defined by the object ardut.ectun:. Kemel
objecte are not accessible to user software. An ezampJe of a kernel object i. an event., which pnmd.
a form of synchronization.

There is no firewall protection provided between the kernel and executive ItOftware. ,",ey both run 1ft

kernel mode and can potentially disrupt each other's activity. There i., however. a formal tnter!aoe
between executive software and the kernel, and a well-defined eel. of rules that mUit be obeyed.

Normally, the kernel does littJe or no checlring of procedure argumenta supplied by the uecuUYf,
however, debugging software can be conditionally compiled into the kernel 1.0 eNure the con-ect~of
calls to kernel procedures. For those cases that the kernel does check argument values for COl1lJJtenc:y.
an elTOr condition is raised via the standard condit.ion mechanism when a parameter value I' found
to be in elTor.

4.1.2.3 Primary Kernel Data Structures

The following are the primary data structures defined and used by the kernel :

•

•

•

•

•

The system control block (SCB)-The SCB is an architecturally defined It.ructure that conlalnt
an arr.sy of elt~~ption and interrupt. service routine addressee uaed to IIe:T'V1ce IfttelTUpU and
e.zception conditions. The base address of the SeB is stored in the eyatem control block hue
register (SCBB).

The processor con.trol bl~ (PB)-~e p~ contain •. 8 collection of procealOr--.peo6e 1Oformatlon.
Examples of the tnformation contained 10 the PB mclude a pointer to the thread object of th,
cu.rrent thread, the processor-specific fork queue header. and count.li of the int.erproc:eJ:aor in\er­
ru~ts t~at have occurred. The address of the PB is stored in the pn.:JoC:eUOr hue rqilLer (PRBR
which IS defined by t.he PRISM architecture. '

An ~y o~ poin~rs to the PBs-There is a pointer to t.he PB for each pf'OCeAOr 1ft the I tem.
The mdex moo t.his array for each processor is stored in the WHAMI recilter for the p~
Spin locks-Spin locks are. used to achie~e multiprocessor synehroniuuon. In the kernel 'pin
locks are used to synchroruze access to eIght kinds of entities: •

1. Dispatcher database

2. Power-up request queue

3. Power-up status queue

4. VAX port queues

5. Device work queues

6. Active 110 interrupts

. 7. Processor request.

8. Kernel debugger

Kernel objectll-Kernel objects are data abstractions th t
elt~t.ion and synchronization. Kernel objects parallel c:. are necessary .to control pcoct':UOr
Architecture, but are not direct.ly available to user soft rJecta as defined In Chapter £i, ObJect
than object IDs. Kernel objects are divided into tw ;ware ~d are.addressed by potntera rather
objects. The kernel objects are: 0 categones, dispatcher objec:tt and control

4-2 The Kernel

•

•

•

•

DIspatcher objects

Event

Mutex

Queue

Semaphore

Timer

n..od

Digital Equipment Corporation _ Confidential and Proprietary
Rastrlct~ Dlstrlbutlon

Control objects

AST

Device work queue

Interrupt

Power-up request

Power-up status

Process
VAX pcr1 queue

Dispatcher database-The dispatcher database is used when choosing which threads should
be active at any point in time. The database is a collection of data structures that contains
information such as a list of threads ready for execution, and a record of which processors are
executing threads at which priority levels.

Timer queu~The timer queue is a binary tree of timer objects that are each set to expire at a
specified time.

Power-up request and status queues-The power-up request and status queues are used to notify
threads when a power recovery interrupt is received by PRISM hardware.

Performance data-The kernel collects and stores performance data in various private data struc­
tures .

4.1.2.4 Primary Kernel Functions

The primary functions of the kernel include:

• Multiprocessor coordination-To coordinate the activity of multiple proceSSOMJ the kernel uses
spin locks for synchronization and int.erproc.e.ssor interrupts for notifying other processors of
work to be done. Es.ecutive code outside the kernel can use either spin locks or mutex objects to
implement mutual uclusion.

• Thread dispatching-The kernel supports 64 levels of thread priority. The highest 16 levels
are referred to as real -time priorities and the lowelt 48 levels as class priorities. The kernel
implements dispatching, which chooses exactly which thread to execute next. Scheduling, which
selecLl the threads that are eligible for execution, is the province of higher levels of software.

• AST Processing-The kemel provides services for queuing and delivering asynchronous system
traps (ASTI) to target threads. A combination of software state and hardware registers is used
to determine the COJ"T'e(:t time to interrupt thread execution.

• Interval timer support and the system time-The interval timer is used. by the kernel for main­
wning the system time, accumulating accounting and performance information, updating thread
quantums, and timer queue maintenance. The system time is maintained as a quad word count
of 100ni intervals and is initialized to zero when the system is booted.

• Address space number (ASN) Management--The kernel provides for complete management of
the assignment of address space numbers (ASNs). ASNs are used to tag translation buffer entries
and therefore avoid ftusrung at every conte:rt switch.

• Powerfail Recovery-Powerfail recovery support is provided by the kernel via power-up request
and status objects. In conjunction with raising IPL, these objects provide a driver thread with
the capability to interTUpt iLl execution and/or have s status variable set when a power recovery
interTUpt is received by PRISM hardware. Power-up status objects may only be used directly by
kemel-mode code. Power-up request objects are intended primarily for use by driver threads,
but can also be provided to Uler-mode programs via executive objects.

The Kernel 4-3

Digital Equipment Corporation _ Confidential and Proprietary
Restricted Distribution

4.1 .2.5 Performance Data Collection

The kernel collects various categories of performance da ta during its ex~bon ., that both the
designers and users of the system can analyze and improve ita performance. The data .t.rurtW'tl
required to record this data are private to the kemel and , th erefore, are not dJrectl.1 aa:eaable \0
executive software. Executive software can retrieve the following data, however. by c:aJhn, a kernel
procedure that returns the desired category of data:

•
•
•
•
•
•
•
•

Number of currently computable and waiting threads

Processor fork queue depth

Context switch headway

Number ofinterprocessor interrupts (for each kind of request)

Interrupt data for an intetnlpt vector

Contention data for device work queues and mutexes

Processor mode data

Dispatcher object wait queue depth

4-4 The Kernel

Digital Equipment Corporation ~ Confidential and Proprietary
Restricted Distribution

CHAPTER 5

OBJECT ARCHITECTURE

5.1 Overview

5.1.1 Introduction

This chapter describes the software arehitecture of objects. It describes what objects are, and defines
the data structures and operations necessary to support objects.

5.1 .2 What Is an Object?

Objects are abstract elements provided by an operating system that may be accessed by a user or
a program. Typically, objects are defined in terms of the operations that may be perfonned upon
them (for example, create, clear, set, get information, wait, delete) and their relationships to otber
objects. The reason for categorizing these elements as objects il to provide a single, atandardized set
of rules for creating, naming, protecting, accessing, and managing them. For example, each object
has a unique ID value (called an object 10) which may be used to identify it. Objects at the job and
process levels are only directly expressible by threads in that job or process.

5.1 .3 Scope

It is important to understand that this chapter only defines the arerutecture of objects, not all object
types. It. is necessary that some objects or parts of objects be defined as part of this architecture.

5.1.4 Requ irements and Goals

•

•

Software development goals

Provide an en.ensible, yet rigorous framework for the definition and manipulation of
executive-controlled data structures.

MiUntain management conaille-ney. 'Mle management. of objects, in terms of actions taken
to fulfill service requests, should be as object.-type independent as pouible. For example,
standard routines and procedures can be established for determining whether access to an
object. should be granted.

Provide new object. definition IUpport. It should be possible t.o add new object. types to
the system without. having to modify existing system code. This means that the interface
between the kemeVexecutive system software and objects must be well-defined, and that
the kemeVexecutive need not have knowledge of the internals of all objects.

In t.erface goaJs

Provide consistent specification. The ways in which each object in the system may be spec·
ified by users should be minimized and kept consistent wit.h the manner in which other
object.s a.re referenced.

Object Architecture &-1

0191181 Equipment Corporation - Confidential and Proprietary
Restricted Dlstrlbutlon

. me operations that apply to. Rt. orobjeett.,thm
Provide consistent oper.8tions. dTh~= :: what these ope,..llOM mean to e.ac:h obJect MoaId
the syste~. siu ch ads ~81~I· Thtoe the eir definition for other obJe<:u. be kept Slmp e an SIIIll ar

Wh saible the OperatiOIU that mar be pe:rf0f1DlCl 01:1
Support level independence. . ere r b'e'ct should not be dependent upoa the
an object type. and the beha,?OT of L : . 0 ~ ~ been created nu, allow. appbcaboau.
(system, job. ~r process) ~t which thart lJect and JO' b levell tJ,e.(ore bem, moved LO • IDCIrI:
be developed m the relative safety 0 process ,
shareable level. with minimal change 10 behaY1or.

Provide security and protection. 'I11e met.hod of dete.mUni~ which oO,ec:t. • wer may m.
to and which operations may be performed on those obJec:t.a. ahould be th. aIDe far . .
objects. This is the basis for Mica secunty.

5.1.5 Functional Description

The object architecture runs in kernel mode at ~L O. Throueh the \de or mutuu. ob,ect ardu&«tw1
procedures can simultaneously execute on mulbple proceuora.

The object architecture provides a fram~work for creaLine object--.pec:dlc KrV1,*- Th ... ~
include creating, deleting, allocating, referencing, name tra.n.tabna, and ,.'bnclntorm.aUCIQ ahaat
objects. For example, the object service to create an event, and t.he objOC1 lel"'Vlte 1.0 c::r.te a t.hrMd
both invoke the same object archit.ecture·defined routine to create the object.

The object architecture provides a hierarchical visibility .truc:ture for obJecu. When an objed. IJ
created, it is placed at one of three levels: system, job, or proceu. Objec1.a at th • .,..tcm leTtI..,.
visible to all threads on the system. Objects at the job level for a pal"'tlcular Job an onl, onuble kI
threads in tbatjob. Objects at the process level for a particular proceu are only YUlbl. to lhrMdJ loA
that process. For eumple, a thread cannot acccsi an object that i. a, the pl"OCMI lev. (or a.notber
process, because it cannot express an object ID for that objec:L

Each level can contain one or more object containers to eataloe object. &, tha" level. 1'he:re art two
types of object containers at the process level: Procea •• private object CODwn and di~,. obJId
containers. Objects stored in a process· private object container are only Yiatble to the pl"oc.M WlLh
which the container is associated. Objecu stored in a di,play object eont&lner ..,.. Ylaabl. to the
associated process, and any of its descendant proce8let.

Objects are referred to by object In. If a program refers to an object name Ou, name mutt be
translated to an object ro. An object name is unique within a container for ea~h obJett type at.-ch
p.rocessor mode. When a user attempts t:o refer to an object uaine an object 10, th. ueer'l acoetI
nghts are compared to the .access control Information assodated with an obj~ _ Ir lhenIll • autdt.
the user may access the object.

An object may be a1.I~ated to a user, identifier !D, job, procell, or thread _ 'Ilu. allows objeCLI to be
shared among restnctive classes of users.

An obj~ct 10 i~ delet.t:d. when the object con~n!r holding the correlpondinc object it deleted. or wtwo
the object to IS exphotly ~eleted. The object ltaelf, however i, not d 1 ted bl the to dele-ted.
and there are no outstanding references to the object. ' e. e un la

Table 5-1 summarizes key object architecture term. and compo ••
nen

T.ble >1 : Object Architecture : Terms and Defln lUon.

To"" Typo
Object ldenbfiC81ion and Name.

DefnrtlOn
Object 10 64--bit Value

UMd to ref ... to an obte<:t.

5-2 Object Architecture

Digital Equipment Corporation· Confldentlel end Proprietary
Restricted Distribution

Table ~1 (Cont.): Object Architecture : Terms and Definitions

To""

Princlpa' Object 10

Reference Object 10

Object Name

Object Nama Table

To""

Object Containfi

Obj.ct Level

System Laval

Job Level

Process Level

DIsplay Container

Privata Container

Container Oltectory

Object Identification and Names

Type

Object 10

Object 10

Character String

Data Structure

Oefirition

Object Type

Object Level

Object Level

Object Leval

Object Container

Object Container

Oata Structure

Data Structure

Oalll SWct1Jre

OI;flnltion

Associated wrth an object at object creation. An object
has exactly one principal object 10.

Optionally associated with an object. An object may
have zero, one, or more relerence IDs.
Together with type and mode. an object name can be
translated to an object 10. The combination of object
type, modt, and name string is unique within a single
object container.

Tracks object names within an object container. When
an object container is created, a name table Is a/so al­
located, and that address Is stored In the object con­
tainer's body.

Object Hierarchy

OI;scription

Objects 01 this type cantaln pointers to other objects.
They ara uMd to organize large numbers of objects.

Indicates the IICOpe of visibility of an object container.

Objects at this level are potentially accessible to a.
processes on the system.

Objects at this \evel are potentially accessible to au
processes in • given job.

Ob;ects .t this \eval are potentially accessible to aB
threads in e given process. Containers at this level
can be ether display or prtola".

Objects In such cantalner, are accessible to a given
process and all of Its dascendants.

ObJects in such cantalners ara accessible only to a
gIVen process, and not to ita descendants.

Used to organize large numbers of containers. AU
threads halva the same system container directory. All
threads In 8 Job have the same Job container direc­
tory. All threads In 8 process have the same process
container directory.

Fb:ed-format data structure that containa object type.
Inde~ndan1 data. This header Is used by the exec­
utive without necessarily knowing the type of object ~
is accessing.

A data structure that Is specific to an object type.

Object Architecture &-3

Digital Equipment Corporation ~ Confldentla' and Proprletllry
Restricted Distribution

Table 5-1 (Cont.): Object Architecture : Term s an d Dellnhlon.

T."" Definition

Object Type

Object Type Desaiptot (DID) Data Structure

Term Definition

Object Service Routines System Routines

Object Allocation Block Data Structure

5.1.6 Object·Related Operations

ObJltCt Type

Ob;ect type delerm"'" WhIII opetatorw CIIn _ ...

formed on an obtKt.
o.-=nbe. wtwl operatION an SLlpported lor
jec1 typtI. TM,. .. one oro few ..a-. oe,.a IyPt

Mlscellaneou.

Implement opet1lhO,.. hi CM be perfOiillld Ott ..

J-cts. Some objec:1 .. Mce routine. ate prItIIcI.JW IDa

cenaln type of o~. othe,. W. ILIpponId .ao.
Ob;ec1 types.

Cont .. ns mform.lIOn about 0t!tta daceWl.

The following types of operations can be performed on mOsL type. of objecu::

• Creating an object

• Protecting an object

• Translating an object ID

• Deleting an object

• Creating references to an object

• Making a temporary object

• Marking a new object as temporary

• Allocating an object

• Deallocating an object

• Getting information about an objecL

• Changing the name of an object

5-4 Oblect Architecture

6.1 Overview

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

CHAPTER 6

PROCESS STRUCTURE

This paper describes the components of the Process Chapter for the working design document of the
MlCA system. The PTocess Chapter describes Lhe architecture of the User, Job, Process, Thread
(UJPT) hierarchy in tenns of its external interfaces and data structures. The chapter also describes
the UJPT implementation in terms of its algorithms and dependencies on other portions oftbe MICA
system (e.g. the kemel and object architecture).

6.1.1 Go.IS/Requlrements

The goal of the UJPI' architecture is to provide a vehicle for controlling multiple threads of execution
in a single addresl space. The architecture provides facilities for resource usage control, security
profiJe management, address space and image management, and object container directory services.

6.1.2 UJPT Hierarchy

The UJPT architecture consists of a hierarchy of objects. The objects provide a logical grouping of
functionality and control.

6.1.2.1 The User Object

The User object appears althe highest level of the UJPT hierarchy. Its primary function is t.o provide
a focal point for acquiring security profiles and resource quotasllimita for ita underlying objects.

The User object is implemented as a system level object in the MUSERSOBJEC'r_CONTAlNER
M

object
container.

6.1.2.1 .1 Functional Interlace

The MlCA executive provides entry points capable of setting and extracting various attributes of a
User object. An entry point also exists to delete, or "force exitM, a particular User object which simple
-force exits- all jobs of that user. There is no user interface for creating User objects since they are
only created as a side effect of creating a Job object.

6.1.2.2 The Job Object

The Job object appears at the second level of the UJPT hierarchy. Its sole function is to provide a set
or resource limits for a collection of processes running together as a job. The job object also provides
a job level object container directory.

The Job object. il implemented as a Iystem level object in the MJOBSOBJEC'r_CONTAINER- object
container.

Process Structure 6-1

Digital Equipment Corporation _ Confldenti. 1 and proprietary
Restricted Distribution

6.1 .2.2.1 Functlonallnterface

. bl f ling and del.line lob ob)ecu, and .,
The MICA executive provides entry pomts cab~ e; ere8 ation of a the first.)Ob for • ~OCA __
and extracting various attributes of a Job 0 ~ect.. e c::re
causes the user object for that user to be created.

As part of Job object creation all o£the neces~ support. dat.a Itructurea are creal«! mduchn& 1jc6
level object container directory and, the asSOCIated kernel mut.ex..

6.1.2.3 The Process Obj ect

The Process object appears at. the t.hird level of the UJPT hierarchy. Ita pnmary (unrooo II tCI ~
an address space and a program image for a set of t.hread •. The Pt«eu object. II the tarte' ol an
accounting information. The Process object can also act al a (oca] pennt. (or control OperaUOM.

There can be multiple processes in a job. Processes created al a relult o(Job creation.,.. top lite
processes. Once established, a process may cause the creation of othe- prooe "I'ht!M new pte- "'1.
are sub-processes ,or child processes . The refer to t.he creating pT"OCOU .. thetr porenl J1I'O't*j ,

The Process object is implemented as a system level object. in the "PROCESS$08JECT_CO!\~'IR'
object container.

6.1.2.3.1 Functional Interface

The MICA executive provides entry points capable of creatine and deletint Proceu obJKlI. Itl1Ulf
and extracting various attributes of a Process object. and performjnc control opt.rauon. 00 all thr.da
of the process.

Control ope1'8tions are SuspendlResume Process, Hibe.mat.e'\Vue Proceu, and SIena! Procaa. ec.
trol operations performed on Process simply perform the operabon on aU threadJ of the proceIt.

As part of Process object creation aU of the necessary support data ILructwu an created lndudmr
the read on1y process control region (PCR), and a Procesl level object con Latner d.trect.ary. The PCR
is part of the processes user-mode read only address space. The MICA exeeubve pt.ce:s uUormIUOG
in the PCR so that the process can read it. without. entering the ~.t.em,

6.1 .2.4 The Thread Object

The .Thread object ap~ at the lowest level of the UJPT hieran:by. III primary fuocuon " to
pro:-,",de. a thread of execution. Th~ Thread object. is the .chedulable entity In the MICA tyltem It
mamtains the processor state as It executes the program st eps of an ima Th Thread obJect II
the cons~er of resources, but the a~unting for these resources OCCUn j:e

lhe
~ .. obJK\. Tbt

Thread object can also act as a focal pomt for control operation •.

~e Thread ~bject is implemented as a process level object in the "THREADSOBJECT CO~'"TAL.'"ER. object cont81ner. _ •

\ I think threads should be system level objects 1\

6.1 .2.4,1 Functionallnterface

The MICA executive provides entry points capable of cr li _
and extracting various attributes ofa Thread object.. ande:an':olli~ d~!!;::. obJects. -t11DC

Thread object control services are SuspendlResume Th d Hibe
Thread. ru , maLelWake Thread, and s."w
As part of Thread object creation al1 of the neces s
the read only thread control region ('OCR), the re~:;;'th:!a data l.lructW'etl a.t'e created IndodJnC
and kernel stacks. The TCR is Part of the processes d e.nVlrOnmenl bloclr: (TED), and UMI'
executive places information in the TCR so that the ~aef\-dode read _onl~ addrea apace. The MJCA

rea can read It Wlt.bout enterin, the '}'Item.

6-2 Process Structure

Digital Equipment Corporation ~ ConlldentJal and Proprietary
Restricted Distribution

The TEB i, part of tbe user-mode thread a.rchjt.ecture. The MlCA executive initializes the TEB to
point to the TCR.

6.1.3 UJPT SetuplTeardown

A UJPT hierarchy i, created, extended, and deleted by using the create and delete interfaces for
User, Job, Process, and Thread objects.

6.1.3.1 UJPT Setup

nte creation of the first Job object for a MlCA user is the event. that triggers the creation of a UJPI'
hierarchy. Onte established, a UJPI' hierarchy is extended by creating additional Job, Process, and
Thread objects. Figure 6-1 illustrates a complex UJPT hierarchy.

6.1.3,2 UJPT Te.rdown

The collapse of a UJPT hiel'8.rchy is started when any component of the hierarchy "exits", The
collapse follows two basic paths, A bottom up collapse is the normal case and occurs when thread
objects "exit-. The following actions occur in a bottom up collapse,

•
•
•
•

If the eziting thread ia the last thread in its process, then cause the process to exit.

If the exiting process has any sub-processes, then cause ita su~processes to exit.

If Lbe emun, process is the last process in its job, then cause t.he job to exit.

If Lbe exiting job is the last job in its user, then cause the user to exit..

A top down collapse occurs when any object other then a thread is "exited·. The following actions
occur in a top down collapse,

•
•
•

If the exiting object. is a user object, then cause all jobs for that user object to exit.

If the exiting object is 8 job object, then cause all processes for that job to exit.

If the exi ting object i. a process object then cause all sub-processes for that process to exit, and
cause all threads for that job to exit.

Process Structure 6-3

Digital Equipment Corporation _ Confidential and propr5etary
Restricted Distribution

F1gure 6-1: Complex UJPT Tree

Use'.O
2,1 100

.IobCt 1

Job Container Dlrec:gry

Job.'
3,1 10 1

Proc:8II. Ct 2

--, . ,1 102
Sut; Proceu Ct I
ThreadCI2

x. Y. Poil1t ... Coull~ Object 10 Courd

6-4 Process Structure

""-.1
2,1 IDA

101

L_--* '02 105

L----tI "" 10.
IDO

-,
~I 10$
"'~CTO
""-Ct - -.

DIgItal EquIpment CorporatIon. Confldantlal and Proprietary
Rastrlcted DIstrIbution

CHAPTER 7

MEMORY MANAGEMENT

7.1 Overview

7.1.1 RequIrements

The memory managerMnl subsystem provides a combination of hardware and software functions
to accomplish the mapping of physical address space into the virt.ual address space of a process.
The physical address is used by hardware to identify a page in physical memory. The memory
management subsystem has six principal requirements:

•

•
•

•
•
•

A number of processes may occupy main memory simultaneously, all freely using their O 'll

unique address spaces, while only sccessing their own data and code.

Only a portion of the total address space for a process needs to be resident at anyone time.

The data and code belonging to a process are scattered throughout. physical memory and need
not be contiguous.

Processes can automatically share code and data.

Proce.sses are protect.ed from themselves and from other processes.

Support for the I/O system. This includes mapping of I/O space, and locking pages in memory
for 110.

7.1.2 FunctIonal DescrIption

The Mica memory management is designed to support a large user virtual address space (2 gigabytes
per address space) ,and large working sets (4 gigabytes per address space) . Figure 7-1 illustrates
the layout of the virtual address space associated with a process.

7.1.2.1 Environment of Memory Management

The memory m&n8gement subsystem executes in kernel mode. Through the use of mute xes, multiple
~S!lOrs may be executing within the memory management .Jubsyatem simultaneously. During
handling of the translation not valid fault, ASTs are disabled. This prevents an AST from inLetTUpting
the translation not valid fault processing, causing a recursive entry into the translation not valid code.

The memory' management subsystem consists of t.he fonowing features.

• Fault handlers for accuS violation - Checks to see if the offending page is a guard page for a
user'. Slack. If so, the guard page is unprotected and a condition indicating the alack guard page
was accessed is raised. Otherwise, an access violation condition is raised.

• Fault on nod-Raises an acceSl violation condition.

• Fa.ult on Write-Implements copy-on-modify semantics, and helps to track the modified state of
• page.

Memory Management 7-1

Digital Equipment Corporation _ Confidential and Proprietary
Restricted Distribution

•

•

. kIt page for system service dispatc.hina_ Fault on execute-Checks to see if the page 18 a erne en ry ' ce Otherwise it raises an acceu
If so, it saves appropri~te .registers, and calls the Sr!~:: ::~te' nonuecu~ble daLa.
violation condition indicating that the user attempLCU

Translation not valid-Implements the pager. The page ta~le entry for th!:~!!.n: !:';:d
examined to determine how to make the page valid. The fau1~ng page ~: the latter esu,eP the
file, a paging file, a page of ze~s, ~r a ~ge that is. ~ready In me~:!d with another addreu
page that is already in memory 18 ~ther ~n .a tran81tion state, or s {null
space that already bas the page valid. This IS also refered to as a page .

In addition, there are a number of system routines that contribute to memory managemenL
include:

The ..

•
•

•
•

System services-Affect an address space

Executive services-Manage and allocate pages from paged and non paged pools; also probe, lock,
and unlock JJO buffers from memory

Balance set manage1"-Ensures ample tree pages

Modified page write1"-Wri tes morufied pages

7.1.3 Memory Management Data Structures

'The following system data structures are used by the memory management subsystem:

• Page frame number (PFN) database -'lTacks physical pages and their states. Each physical
page 1S in one of five states:

•

•

1. Active and valid- A page in this state is mapped in some add.reu space'. woren, eeL

2. Free--Available for immediate reuse.

3. Zeroed-Available for immediate reuse.

4. Standby- A page in this state is marked as in transition in a (prototype) page table ent.ry
(PTE), and may be reactivated as the result. of a page fault for the transition page. This pa, e
can be reused, but the page table entry must change from a transition state to an lnvalid
state.

5. Modified-A page in this state is marked as in transition in a (prototype) PTE, and may
be reactivated as the resu1t of a page fau1t for the transition page. Before the pare c:an be
reused its contents must be written to disk. Once ita contents are written to disk., the page
enters into the standby stale.

Worhi118 set list-Manages the physical pages owned by an address space. Each .ddrua apace
is guaranteed a certain number of physical pages. When a page fault occurs which would cause
that number of pages to be exceeded, a physic:al page is removed from that address s pace by
making the page table entry invalid and decrementing a usage count for the page. The workin,
set list is a list of virtual page numben which are currently valid .

Page table pages -Manage the complete address space. Each address space contains one segment
1 page table page which is one page in size and contains 512 page table entries. There are
mu1tiple, up to 512, segment 2 page table pages which are one page in size and contain 1024 page table entries.

Each page table entry is a quadword and indicates whether a page exists at the eorrespondinc
address, and whether the page is valid or not. If a page i. not. valid, ita page table entry indicata
how to make the page valid.

7-2 Memory Management

Digital Equipment Corporation - Confidential and Proptletary
Restricted Distribution

• Mapping objects, section objects and sqm.ent objects-Track mapped files.

Flgure 7-1: Virtual Address Space Layout

o No AeonI - s. KB

lINt s!*» - 2 GS ('I_ 64 KB)

All ~ 0WMd brt 111«.
Kernel ~ and 1,1_ aa: ..
art &'w¥ays ideru..!.

2.B SIwHbIt IITI8Qt ~ _ 0.5 G8

All ~ owntd t7f iliff .

KtmtI KOIU and 1,1 .. '

~ .,. --)'11 tdentK:al .

2.5 GB
CorcroI Sf*:e - 64 MB

OwMdby~

:sy.Iem s.p.:. - 15 GBIe_ (64 ~ • 8 MBl

Plgtcl sp:,..

~Sys:tmAt_

H)oet~ - Aloe

H)'ptlf s.-ce Wonung SM 1JtI:s - "" '.B
Notes on Figure 7-1:

oooooooo

""'0000

FFaooooo

FFCOOOOO

• Uler apace-Mapa user code and data . Includes 64 KB that is set no access to catch programming
elTOn.

• Sharmble unage space-Maps system-wide installed shareable images.

• Control .pace-Maps kernel-mode stacks and ot.her thread-related structures.

• Sy.tem space: Paged area-Maps pages that can be paged to disk. This area includes code, data,
and pool.

• System apace: Nonpaged area-Maps pages that. must be memory resident. This area includes
code, data, and pool.

• Hyper space-Mapa address space page tables and data structures.

Memory Management 7-3

Digital Equipment Corporation - Confidential and PtOptMlwry
Restricted DistribUtion

7.1.4 Differences from the VAX/VMS Memory Management Subsystem

Mica memory management supports several enhancements over VM:S memory management, includ­
ing the following:

• An address space's page table pages are only valid within that address space.

•
•
•
•
•

•
•

Image files are automatically shared among all address spaces e.z:ecuting t.he image file.

Copy-on-modify operations.

Large and sparse address spaces.

Standby and zeroed page lists.

No system working set. Each address space's working set contains the portion of the system lhat
can be paged that is used by that address space.

No swapper. Reduction of address space use is accomplished by paging the process out of memory.

Virtual addresses cannot be overmapped, without firsl deleting t.he previous virtual addresses.

7-4 Memory Management

----_ ----------------

Digital Equipment Corporation - Confidential and Propdetary
Restricted Distribution

CHAPTER 8

1/0 ARCHITECTURE

8.1 Overview

The Mjca va architecture defines the fundamenta.1 components of the va system, the interlace of
each component, and the relationships between th e components. The objective of this architecture
is to provide a framework in which simple or complex va structures can be built in an efficient and
modular fashion .

The Mica va architecture is designed to allow va abstractions to be built in successive virtual layers
on LOp of physical or pseudo devices. Examples of th ese va abstractions are file systems, shadowi ng,
atripin" and 10 on .

8.1.1 Function Processors

va abst.ractions and devices are represented by components called fumtion. procusors. A function
processor is an image that contains the code necessary to implement an va abstraction . The purpose
of the function processor is LO satisfy va requests. If an va request cannot be completely satisfied by
a function procesaor, then that function processor may pass the request on to a lower-level function
processor for further processing.

The function processor can execute an va request in either a procedure-based manner or by using
aystem threads . Procedure-based calla to the function processor allow the function processor to
complete execution within the calling thread. System thrtads provide function processors with the
mechanism to do extended processing, including va waiting, after returning control to the user
thread Syatern threads belong to the function processors that queue requests to them.

8.1.2 Objects Used by the 110 System

The Mica UO architecture defines three va ohjeets:

• Function Processor Unit (FPU) object

• Channel object

• Function Processor Descriptor (FPC) object

The functions of these objects are described in the following sections. The UO architecture defines
two significant data atructures that are not owned by any particula r object. These two structures are
the I / O roquu' PO' ''''' (lRP) and the I / O sta,", blodt (lOS8).

The rRP maintajns the user', VO request, as well as some bookkeeping information that is used by
variou. components and objects in the VO system. The IRP ia allocated when an va request i, made
and i. deallocated when the request i, completed .

The ua statue block contain. the final status of the VO request and other data (such as byte transfer
count) that is wntten t.o it when the va request completes.

110 Architecture 8-1

DIgital Equipment Corporation - ConfldenUal and Proprietary
RestrIcted DIstrIbution

8.1.2.1 FPU Object

A function processor accepts requests on one or more function processor units (FPUa). ~ FP~
represents a particular resource to higher levels of so~ware. ~ request.! to a resource are rec
to its respective FPU, which then specifies the appropnate.func~o? p~sor ~ JlroCe.88 the requ~t.
Examples of these FPUs are the ODS II unit. shadow urut, stripmg urul, deYlce urut, MSCP urnt,
and so on.

8.1.2.2 Channel Object

A channel object describes a logical 110 path to an FPU on which liD requests can be issued. ~e
channel object receiving the inilia1 user request maintains a llsthead of all outstanmng IRPs. Thi.
listhead is only used. in the event that all outstanding requests on this channel need to be canceled.

Channel objects are oruy associated with FPU objects and thread objects.

8.1.2.3 FPD Object

The function processor descriptor (FPD) object maintains the addresses of each global procedure in
the function processor. The liD architecture has a defined 8et of procedures that are common to all
function processors. When the function processor is needed to process an VO request, the addreu of
the appropriate function processor procedure is looked up via the FPD object.

8.1.3 VO Request SynchronIzatIon

The Mica 110 architecture supports two types of 110 requesta:

• Synchronous

• Asynchronous

If a synchronous request is specified, the issuing thread it blocked until the request completes. If
the request is asynchronous, then the issuing thread il not blocked, but continues to execute. The
program issuing an asynchronou s 110 request has the choice of specifying an AST procedure, an event
object, or both to synchronize its execution with the completion of the request. When an asynchronous
110 request completes. the speci6ed event object is signaled andlor the specified AST is queued.

8.1.4 1/0 Service Routines

The VO Architecture specifies a set of well·defined interfaces to the VO system for the purpose of
initiating, canceling, and synchrOnizing liD request.s; as well 8S ror creating, manipuJatJng, and
deleting of objects. Some of these interfaces to the 110 system are available via system service
routines. Other interfaces are designated as internal, and are only available to componenu of the
liD system, such as function processor and Iystem threads .

The diagram in Figure ~1 shows a typical configuration of the 110 system. Before the VO system
can be used, an FPD object must be created for each function processor and an FPU object must be
created for each available resource. After the system has been set up, the user can then create a
channel object to an FPU, and issue an VO request via the RequesLJO system service routine . The
user is notified when the request. has been satiafied.

8-2 1/0 Architecture

o lgttal Equipment Corporation ~ Confidential and Proprietary
Restricted Distribution

Figure 8-1: Overview of Mica 's VO Architecture

"'-~
User
01

tho va
System

8.1.5 110 Security

vo System
Services

F*l_II_1O

"'-'-"
Syrcflrontz.

"
c.._
en.,M'

0."
""M~
II'IlormatlOtl

CN.1e FPU

0.,"'" ""--
COnI9Y'"

FPU

,
"'I""

FPO

FPU
OBJECrr;_.--\ ()BJIEC

FP IMAGE

. . .

FPO &FP

Device
FPU
or

Pseudo
Device

lIO requellt! are subject to access permlssion checks by Mica security and 110 system suppor t routines.
Mica aecurity provides mechanisms for granting and denying access t.o channel and FPU objects.
Additional lee-unty checking is done by the lIO system support routines to determine if the function
code specified for the va request can be issued over the channel.

See Chapter 10, Security and Privileges and Chapter 8, lIO Architecture fo r more infonnation.

VO Architecture 8-3

.

Digital Equipment Corporation _ Confldantlal and Proprietary
Restricted Distribution

CHAPTER 9

SYSTEM SERVICE ARCHITECTURE

9.1 Overview

System services are kernel-mode routines invoked by user-mode threads. They control access to
shared resources, and protect. the integrity of the executive and other users. System services execute
within the Mica e:zecutive. Create Event (euc$creat.e_event) is an example of a system service.

System servicea are the interlace between a user program and the executive. Wben an image i&
artivated and a Iystem service is first called, the autoloader resolves the address of the system
service'. entry vector 10 system space.

The system service archit.ecture defines the mechanisms for placing system services into the system
image, and diJpatching system service calls into the executive.

The Jystem service architecture has the fonowing goals:

•

•
•
•
•

9.1.1

Programs that use system services do not require recompilation or relinking on subsequent
vemolU of Mica.

Synan service dispat.ch.ing is efficient and identical for all system services.

User sonware can filter system services.

SYltern services are noL at a fixed location in the address space.

User execution of system services is secure.

Functional Description

When an image is builL that calls system services, Mica resolves the references to the system services
from a Iha.reable imale. The system service shareable image contains the entry descriptors for all
Iyltem services. The autoload mechanism, discussed in Chapter 31, Image Activation and Chapter
30, Linker, is used to Tesolve the references to system services to their proper addresses within t.he
Mica executive.

When the autoload routine loads the system service shareable image into the process's address space,
it perfonns the shareable image Axups. The fixup for the entry descriptors involves adding the base
addreu of Lhe ayltem service vector page to the entry descriptor found in the shareable image.

The sYltem eervice vector page resides in the nonpaged portion of the system address space. protected
u user read, kernel read, fault on execute. Vlhen a user caUs a system service, a JSR instruction
executes, Ulin& lhe addreu located in the entry descriptor 88 a target. [n lhis case, the address is
within Lhe Iy.tern service vector page. Figure 9-1 depicts the flow of control involved in this process.

Since the ',Item service vector page is valid and has fault on execute enabled, a fault on execute
(FOE) faulL i.generat.ed. The fault vectors through t.he SeB to the syatem service dispatcher.

System ServIce Architecture 9-1

Digital Equipment Corporation - ConfldentJal and Proprietary
Restricted DIstr ibution

FIgure ~1 : Dispatching System Services

USER COD E ENTRY DESCRIPTOR FOR exec$lOO

axoc$foo ADDRESS Of exec$foo
IN VECTOR PAGE • • •

veCTOR PAGE

ADORESS OF ENTRY DESCRIPTOR
FOReSfoo

9.1.1.1 System Service Dispatcher

I--

EflrfRY OeSCRIPTOR FOR e$foo

ADDRESS OF e$foo I-

CODE FOR eSfoo

The system service dispatcher analyz.es the page table entry (PTE) for t.he faulting address, and if
the page is not. a kernel entry page for the system service, an access violation i. reported. Otherwise,
the system service is dispatched.

The dispatching consists of:

• Saving the appropriate registers so the system service can be repeated.

• Loading R3 with the address of the thread control block for the current thJ"ead.

• Loading the first longword of the thread control block with the previous mode argument £rom
the PS.

• The address which was the target of the JSR instruction contains the addJ"eSl of the entry
descriptor for the system service. The linkage mechanism i. set up and the system service i.
called at its entry point.

9-2 System Service Architecture

DIgital EquIpment Corporation . Confldantlal and ProprIetary
RestrIcted Distribution

9.1.1.2 The Sys tem Service

The code tor each system service is responsible for ensuring that all arguments are probed and
captured B;I necessary. S~l V2.0. and Pillar will have some support. for probing and capturing, but that
support Wlll not handle Item list elements or record elements. All writers of system services must
ensure that all arguments are probed and captured as appropriate.

The system service must declare a handler to catch access violations and other conditions that can
be raised by the executive or kernel. Any conditions nol handled are caught by the prebuilt handler
for the .ystem service dispatcher. The handler for system services causes a bug check.

When the system service completes, it returns to the system service dispatcher with the system
service status,

9.1.1.3 System Service Completion

Upon return, the system service dispatcher checks the status values, If the status values are not
either repeat service or resume service, the service is complete and will return to the caller.
'The return is accomplished by:

•
•
•
•
•

•

Restoring R3 and the frame pointer to their original contents

Setting the linkaae registers tor the return

Clearina any volatile registers which could contain sensitive information

Popping the stack back to the PC'JPS pair

Modifying the original PC to return to the caller rather than the address within the system
service vector page.

luuing an REI to return to the caller

9.1.1 .4 Rep .. table and Resumable System Services

When a system ae:rviee iuues a wait, it has the option to accept delivery of user-mode ASTs. This
i. accomplished by declaring to the kernel wait can that the service is willing to accept the "deliver
use.r.mode AST'" condition and haJ handlers set up to clean up from the system service. Services
that accept delivery of uaer.mode ASTs taU into two categories, Repeatable services are completely
ree.xecuted ai\.er the delivery ot the A.S1'9, In contrast, resunwble services cause another system
service that penorml a continuation of the original service using the original arguments,

The following steps occur if a "deliver user·mode AST' condition is raised:

• The kemel unwaita the waiting thread with the status "deliver user·mode AST".

• The "deliver uaer·mode ASr" condition is raised,

• The .ystem service condition handlers clean up the service by deal10cating any resources, deere.
menting counter', etc. This is necessary because the REI transfers control to user--mode code
and the IYstem service does not have to be repeated.

• The system service dispatcher notices that the retumed status is either "repeat" or "resume" and
restores the argument. registers, eLe.

• If the statUi is "resume system service," the system service dispatcher increments the PC stored
in the kemel stack by four, and stores it. back in the kemelstack. so that an REI win cause the
nut. entry vector to (ault,

• The system service dispatcher pops the stack back to the PC/PS pair.

At this point the ree1sters contain the same values they contained when the system service
dispatcher was invoked,

• The aystem service dispatcher executes an REI instruction.

System Service Architecture 9-3

Digital Equipment Corporation - Confidential and Propdetary
Rastrlcted DlstrlbU1Jon

• When user mode is r estored by the REI instruction, the user-mode AST is deHvered . Before the
AST is executed, the current context. is saved. and after the AST is completed, the context is
restored. Part of the context that is saved and restored is the current PC. which is the address
of the system service's entry vector.

• When the user-mode AST is completed. execution is attempted at the entry vector, and the result­
ing FOE fault dispatches to the desired system service which repeats or resumes the execution
of the system service.

9.1.2 Changes to the Existing Chapter

The following changes will be made to the existing chapter.

•
•
•

Remove system service entry page. System services will be autoloaded.

Remove previous mode argument. The previous mode argument is the first.longword of the TeB.

Remove the fixed system service vector page. Thls page i. buHt at system initialization and the
autoloader knows how to find it.

9-4 System Service Architecture

10.1 Overview

Digital Equipment CorporaUon - ConfidenUal and Proprietary
Rastricted Distribution

CHAPTER 10

SECURITY AND PRIVILEGES

This paper ie the overview of the Security and Privileges Chapter of the Mica Working Design Doc­
ument. The overview describes the security model for the base Mica operating system. The security
requirement. of the compute server are not discussed specifically as they are believed to be a subset
of the security model presented in this overview. The security requirements of the database server
are not diacuued at this time because they are not known.

The security model is described. in terms of authentication, access control, and security audits. It
does not assume the existence of workgroups. It treats a Mica system as an independent security
domain with iUl own authorization database. A user must be entered in the authorization database
in order to gain access to the system. Any objects that are located on Mica and are accessed on behalf
of the u.er are accessed with the user's M.iea access rights.

10.'.' Aut hentication

When a ueer attempts to gain access to the system, the system must verify the identity of the
user. The act of verifying the identity of a user i. ca11ed authentication. Requests to gain access to
the syBt.em onginate from many sources, including a request to connect to a server from a local or
remote node, or a request. to create a process that has a different usemame. On Mica, the software
that manages requesta to gain access to the system must authenticate the request before aUowing
atteU. If the authenticat.ion succeeds, the software can allow the user access to the system. If the
authentication fails, the software cannot allow the user access to the system.

'The e.u.ct method used t.o authenticate a user is stiU under design. One method is to bave each server
perform authentication. Another method is to have one centralized protecLed sub-system perform the
authenticat.ion. Whatever method is selected, the checks perfonned would include verifying that
the user is • valid w;er of the system, and checking the day of the week and time of day that the
uaer u aUowed accese. Other checks can be added if they are needed. The information for user
authentication is kepi in a system authorization file .

On Mica, aCi:eSl t.o the system from remote nodes is via DECnet-like proxy access. If the remote
user's nodename-usemame pair is not registered in the system authorization database, the user is
refused access. If the user's nodename-usemame pair is registered, the user gains access.

Security snd Privileges ,~,

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

10.1.2 Access Control

After a user has gained access to tbe system, the user can access re80ur~s tbat are on t.he system.
On Mica, a resource can have no protection, so that all users can access It, or the resource can b~ve
protection so that only certain users can access it. The system ~ntro18 ~cce8S to ~sources by checking
the user's access rights against the resource's access controilnformabon to venfy that the user has
access to the resource.

On Mica, any resource that needs to be protected must be an object as deso-ibed by the Object Archi·
tecture. The access to a resource is checked indirectly by the procedure ESREFERENCE_OBJEcr_
BY ID. Software calls ESREFERENCE_OBJECT_BY_ID and passes it the object 10 of an object
to obtain tbe address of the object (reference the object). One of the things that ESREFERENCE_
OBJECT_BY_ID does is can the procedure ESVERlFY_ACCESS to vemy that the ~ler .has acce ..
to the object. Therefore, whenever software references an object, the access to the object IS checked.
This is the only place in Mica that ESVERIFY.-ACCESS is called..

10.1.2.1 User Access Rights

Each user tbat is allowed to use a Mica system is given a set of access rights. A.ceeu righta represent
the user's claims to resources on the system. On Mica, t.he access rights are kept in each thread that.
is owned by a user.

\ Are access rights a per·process or a per· thread attribute? Can threads witrun the same process
have different access rights? If a server handles requesu for only one client, the access rights should
be kept in each process; then all threads within one process would have the same access righta. On
the other hand, if a server handles requests for multiple clients, each thread could assume the access
rights of a client; in this case, each thread bas different accelS rights and they should be kept in each
thread. \

The access rights of a user is made up of two parts: a mode and an identifier IiIL The mode it the
processor mode that the thread is executing in. On Mica, the mode is either user or kernel. The
identifier list is a list of 52· bit values, called identifien, that represent who the user i. and what
groups the user is a member of. Each time a user gains accel!l to t.he system, the u.ser is assicned
the same identifiers. Each identifier also has an alphanumeric name at the human interface level.

Each user is assigned a unique identifier, called the user identifier, that identifie!l the u.&er to the
system. Note that this is different from VMS where a user is identified by a mc. Thi!l identifier i.
always included in audit messages.

Privileges are not included in the access rights of a user because there are no privileges on Mica.
Privileged access to objects is implemented using identifier lists and aexes. control on objec18. For
example, privileged executive code could be implemented as an object. The user would have to have
the appropriate identifiers to access the object. and execute the code.

10.1.2.2 Object Access ControllnformatJon

As stated above, r;soun:es . on Mica tha~ need protection. are required to be objects. Each object
has access cont:0} lOform~bon that desc:nbes the access nghts needed by a user to gain access to •
resource. On Mica, the object header of each object contains the access control information.

The access control information of an object is made up of three part.s. a mode an owner identifier:
and an. acce~s co~trollist (A~L) . ~e mode is the processor mode that the objeci was created. in. Tb~
owner Identifier IS the u.ser ldenbfier of the user who created the object. The ACL is a list of one or
more access con~i entries (ACE). Each ACE contains a list of one or more identifien and the access
allowed. to the object. If ~ user has the identifiers listed in the ACE, and the aexes. uested is •
subset of the access that 18 allowed by the ACE, the user is allowed the requested a~.

10-2 Security and Privileges

-
Digital Equipment Corporation - Confidential and Proprietary

Restricted Distribution

10.1.2.3 Access Control Algorithm

When a user tries to aecess an object, the system examines the user's access rights and the object's
access cont.rol tnformation to determine if the user has access to the object. The following are the
steps taken by the system to determine access: (Note that "desired access mode" is the processor
mode of the user at the time the user requested access to the object; it is not the CWTent mode of the
thread because when the system checks access to an object, the current mode ofthe thread is always
kernel.)

1. If the desired access mode is kernel, access is allowed.

2. If the desired access mode is user and the object does not have an ACL the access is detennined
from the mode of the object: I

•

•
If the mode is user, access is allowed.

If the mode is kernel, access is denied.

3. If the desired access mode is user, t.he object. has an ACL, t.he user is the owner of t.he object,
and the access desired is CONTROL, the ACL is ignored and access is allowed.

4. If the desired access mode is user and the object has an ACL, the access is detennined from the
ACL. The system examines each ACE in the ACL until either an ACE is found whose identifiers
are allBsled in the user's identifier list, or the end of the ACL is reached:

•

•

10.1.3

If an ACE is found, the access requested by the user is checked against the access allowed
by the ACE. If the requested access is a subset of the access allowed by the ACE, the user
i. allowed aoc:eu. If the requested access is rwt a subset, the user is denied access.

If an ACE is not found, the user is denied access.

Security Audits

Security auchu allow certain system events to be auditted. These events include the login and logout
of uaen, the mounting and dismounting of devices, and the successful or unsuccessful access to
objects. CUf'T'ently on Mica, the only system event that will be auditted is access to objects.

The auditting of access to objects is implemented by audit entries that are located in an object's audit
list. On ~Lca, the object header of each object points to the audit list. Each audit entry contains
the type of accell t.o audit. and the names of one or more audit sinks. When access to an object is
allowed or denied, t.he system checks aJl the audit ent.ries in the audit list. to determine if the access
request should be audit.ted. Mica will use the message function processor to collect and dispene audit
measages to the appropriate audit sink.

The software that handles the messages in an audit sink detennines the characteristics of the sink.
For example, the software that handles a log sink would write the messages to a disk file. The
software that handles an alarm sink would write the messages to a security termina1 or console.

Aucbt maules are generated. by ESVERIFY-.ACCESS. No other procedures are allowed t.o generate
audit. messages.

10.1.4 Issues

• The Mica. operating system will rwt have the capability and functionality to apply for a C2 class
security rating as defined by the Department of Defense. Why? Because we do not have a secure
communication channel bet.ween a client system and a Mica system. Plus, there is no way to
verify a client's · connect.-t.o-server" request to make sure that t.he request actually came from the

client.
• If the Ulumption i, made that a .client's "connect-~server" request actually cam~ fr?m th~t

client, how is the user 8uthenticabon done? Does each server perform user authenllcallon or lS

there a centralized authentication service?

Security and Privileges lG--3

Digital Equipment Corporation . Confldentfal and Proprietary
Restricted Distri bution

•
•

•
•

•

The access control requirements of the database server are not known.

Is there a one-to-one or a many-to-one relationship between a client and server? Ir there is •
many-to-one relationship. the server could have minimal access right.s 80 that the threads that
service client requests assume the access rights of the client when accessing objects . Or, the
server could have maximum access rights (enough to access aU objects) so that threads aerviong
client requests check to ensure the client has access to the object.. If the client has accen, the
thread accesses the object using the server's rights.

This specification may not. play wen with workgroups.

Does an ODS 2+ disk on a Mica system exhibit the same access control behavior as an ODS 2+
disk on a VMS system?

How does a user on a client system create, modify, or delete ACLs for objecu on a Mica sys tem?

10-4 Security and Privileges

--~ ------------------

Digital Equipment Corporation - Confldentl.1 and Proprltlblry
Restricted Distribution

CHAPTER 11

CONDITION, EXIT, AND AST HANDLING

11.1 Overview

This chapter describes four facilities: condition handling, unwinding, support for exit handlers, and
support for user-mode asynchronous system trap (AST) handlers. The chapter specifies goals. in­
terfaces, and algorithms for the areas. These facilil..ies are all related and are designed to work
together.

There are currenUy no outstanding issues for this chapter and the only planned modifications are
those resultine from the last group-wide review, with the addition of a section on user-mode AST
handlers-previously undocumented for Mica.

Each facility is described separately.

11.1.1 Co ndition Handling

A condition results from an elTor encountered during thread execution. It may be due to a hardware
or IOftware failure. Examples of such hardware errors are arithmetic traps, access violations, and
SO on. Examples of such sonware errors are range checking, argument checking, and so on. The
Mica conditton hGndling faculty provides the capability for programs to process such conditions in a
conll'Olled fashion.

A conmtion hc.ndJu is a procedure written as a part of a program or supplied by a run-time facility to
handle condltiOTlB if they occur during the execution of that program. Should a condition occur during
program execution, Mica must be able to find a thread's condition handlers. The condition handling
facility provides the mechaniam by which handlers are found and established (either at runtime or
compile time).

When a condition occurs, it is said to be raised in the thread which caused it. Raising a condition
int.elTUpt.a the nonnal control Row in a thread, saves its context, and causes a searc.h to be made
Cor a condition handler established by the thread. If a handler is found. it is called as a procedure,
with arguments describing the nature of the condition (the condition record) and the environment in
which it occurred (the ~chanism. record).

A condition handler may choose to handle the condition (that is, perform some actions relating to the
condition) or may choose to reraise the condition (normally done for conditions which that handler is
not written to handle). In the second case, the search for handlers continues and the next handler
round is called. This process continues until some handJer either indicates that the thread should
continue (either from the location of the condition or using the unwind facility from a different
location) or causes the thread to exit. or until no more established. handlers can be found. In this
Ian ca.se, the 1Y8urn catchall handhr is called.

There are three type. of condition handlers:

• Vectored handlers

• Invocation descriptor·based handlers

Condltlon, ExIt, and AST Handling 11-1

-

Digital Equ ipment Corporation. Confidential and proprietary
Restricted Distribution

• The system catchall handler

There may be many vectored handlers or invocation descriptor-.bas~ handlers. ~one of w~eh are
supplied by Mica. There is only one system catchall handler. which lS always proVlded by Mica.

vectored handlers may only be established at runtime. by using a system service. There are two types
of vectored handlers: primary and last chance. Primary vectored handlers are th.e first searehed ror
when a condition is raised. The list of primary handlers is called in FIFO order Wlth respect to when
they were established. If all have been called and reraised. the invocation ~escriptor-based handlers
are then called for currently active procedures. &om the moat recently active to. the oldest. fi~y,
if all these reraise the condition, the last chance vectored handlers are called 111 LIFO order Wlth

respect. to when they were establisbed. Should all these reraise as well. then the system catc.haU
handler is called, which produces an error message and causes the thread to exit.

Invocation descriptor-based handlers are established at compile time . They are located from a pr0ce­

dure's invocation descriptor. These handlers are used to implement a particular language's condition
handling semantics. For the Pillar language, they are used to implement structured condition han­
dling.

Mica condition handling is designed to allow the processing of nested conditiOnJ and also to handle
boundary problems with stack limitations. It also provides the following additional features:

•

•

•

•

Invocation descriptor-based handlers may be called multiple times when multiple conditions are
active. This behavior may be enabled per handler. (Note that this is required for PUl support.)

Environment information relating to a condition contains the set of scratch registers used in a
PRISM procedure call, together with the stack pointer (SP) and frame potoLer (FP) at the time
of the condition (that is, registers RI through RSI, inclusive).

Co~dition information is complete. including information relating to mes8age fUes and argument
typmg.

A separate stack is available for the execution of vectored handlers . This improves the capabili­
ties of the Mica debugger.

11.1 .2 Unwinding

The Mica ~n~ind facility centrally provides the capability to perform nonloeal GOTOs WlthJn a
thread. It 18 ~mple~ented. as a user-mode procedure, mapped in syatem space, and reached via a
procedure vanable to the process control region (peR).

A call ~ the Unwind sen?ce specifies a target procedure and point in that procedure (rom which
to continue thread ~xecutl~n. ~e ta:&"et p:ocedure .must be an ancestor of the callinr procedure.
A. target procedure tovocation 15 speafied eIther by 1t& stack frame pointer (procedure invocations
W1th?~t stack frames may .n?l be unwound to). or as the caller of the establisher or the Jut active
con~tion handler. A co~dition re~rd may be specified along with this target to glVe lDformation
relating to why the unwlOd operahon is taking place.

Prior to returning execution to the target procedure invocation ,h. un-'nd 'a "lit ----., d 11 . ti d . bas l; Cl y \;.Ues lor an ;a sd·benYtlnvocahoncalli~scnptor. ed condition handlers established for any procedure lDVocatiOM
loun.. ween t e ng proc~dure and the target procedure invocation. The.e are called with lhe
con~tion record and a mech~sm record (constructed by the Unwind service) relatina to where the
unwmd request was made. This allows procedure invocations that are being dUca:n!ed chance
clean up; for example, to deallocate any virtual storage they have allocated. a to

?nce t~s phase has completed, the target invocation'. register conted i. re.sto eel d the .
IS contin~ed. from the specific point. Note that in the case of an unwind after a r ~ ~ecu=
been active, R8 and R9 are restored from the mechani-- nI all . con on er-

g reco. OWlng a return status to be set.

11-2 Condition, Exit. and AST Handling

.............. --------------------~.

Digital Equlpm.nt Corporation· Confidential and Proprietary
Restricted Distribution

Since processes in Mica are multithreaded, it is necessary for each thread to dean up its use of the
common addre~ space. 'I.'he unwind algorithm is designed to help this take place: instead of exiting
a thn:ad by usmg the EXIt system service, a call to Unwind is msde, specifying the beginning of the
call J:ierarchy as the target. Unwind then calls all established invocation descriptor-based handlers,
cauSing them all to clean up their own environments. When the beginning of the call hierarchy is
reached, Unwind calls the thread Exit system service, with the input condition record argument as
status.

Thus, in Mica, user-mode thread exit is accomplished using the unwind facility, not by using the
thread Elril system service directly.

11 .1.3 exit Ha ndli ng

The Mica exit handli"IJ facility allows threads and processes to perfonn overall clean-up actions on
their environment or deaUocation of system resources. Exit handlers are procedures established by
a thread during execution and called in user mode after a thread has caned the thread (or process)
Exit system service. There is no way in Mica a thread or process can exit without attempting to call
exit handlers.

There are two types of ezit handlers: thread and process exit handlers. Thread exit handlers are
called when a thread exits. Process exit handlers are called when the last thread in a process has
finished executing the last of its thread exit handlers.

Exit handlers are established using a system service and kept as a list in either the PCR or the thread
control region (TCR). This helps ensure that the exit handler list cannot be accidentally corrupted.
The hsts are called in LIFO order. Each list entry has a procedure variable and a non typed 64-bit
parameter, which may be used to pass information to the handler when it is activated during thread
exit. Entries may only be removed by using the Establish Exit Handler system service with the
apprapriate. arguments.

Exit handlers are called with the 64-bit, user-specified argument kept in the list entry and a condition
record. This is the condition record that was used in the call to the thread Exit system service which
activated the exit handler. An exit handler completes it processing by calling the thread Exit system
service. Thus, each call to the Exit .ystem service removes a handler from the list and calls it, until
the lilt is empty, in which case the rest of thread rundown continues.

If, during the execution of an exit handler, a forced exit request is made for that thread, then the
CUJ'Tent exit handler 115 terminated, and the next one on the list is called. All handlers are allowed. to
run until they exhaust CPU quota. They may not establish new exit handleTS. Should an exit handler
exceed the tMud's CPU quota. it is terminated. The thread's CPU quota is then incremented by a
fixed amount and the next handler found and called.

Note that a forced exit request for a thread which is not executing exit handlers causes an exit unwind
operauon to occur pnor to calling any exit handlers.

11.1.4 User-Mode AST Hand li ng

The Mica user-mode AST MndJiTl8 facility provides a mechanism for delivering asynchronous event
notification in user mode to threads. Many Mica system services have the capability of executing in
parallel with a thread's execution andlor causing subsequent asynchronous event notification to the
thread. Thus, a thread may issue a system service, the service may return with a pending status,
and the thread may continue executing. When the service later completes the requested action or
an event aaaociated with that service occun, if the thread established an AST handler in the service
can a user-mode AST is queued to the thread. The AST is delivered as soon 88 the thread is next
eligible to run, un1ell an AST has already been delivered and is being processed by the thread, or if
the thread hu disabled the delivery of user-mode ASTa.

An AST Iwndlu is a procedure that il. intended .to receive such notification .. These p~ures ~e p~
of the program and are associated Wlth a partlcular event or system BeI'VIce completion notificatton
required by the thread during ita execution. An AST cannot occur unless the thread has established
an AST handler for it.

Condition, Exit, and AST Handling 11-3

=

Digital Equ ipment Corporation - Confidential and Proprietary
Rastrleted Distr ibuti on

'lb establish an AST handler, a thread uses a procedure variable for the handler in the 8YSt~ service
call that can cause the desired AST. Along with trus procedure variable, the thread may specify a 64-
bit quadword untyped parameter. When the procedure is subsequently called to process the AST, this
parameter, together with an AST-specific, 64-bit quad word untyped parameter, i. used as an input
argument. These arguments are used to identify the AST and to pass information to the thread
coneern.ing the AST.

Once a user-mode AST has been delivered. no other user-mode AS'I'3 can be delivered until it has
finished being processed. SubsequentASTs are blocked by hardware until the thread explic:iUy leaves
AST state. thereby removing the block. The AST is delivered to system-supplied code in user mode.
This procedure sets up a stack frame and then, in tum, calla the specified AST procedure with the
AST parameters. When the AST procedure returns, the system procedure uses a system service to
remove the AST In Progress flag for the thread and dismisses the AST state, allowing the delivery of
further user-mode ASTs (if any are pending). The stack is then cleaned and an REI instruetion used
to continue the thread's previous execution.

Note that the "false" stack frame is important: it is used to provide continuity when attemptinr an
unwind through an AST event. The system procedure has an invocation descriptor·baaed condition
handler established specifically to deal with this possibility.

At any time, a thread may disable or enable the deli very of user-mode AS,... Thls is accomplished
using the SWASTEN instruction and does not involve any system services.

11.1.5 Dependencies

This chapter depends on the:

1. PRISM SRM-specifically, hardware exceptions

2. PRISM Calling Standard

3. Mica process architecture design

4. Mica kernel design

Note that the Mica debugger design depends on this chapter.

11-4 CondItion, Exit, and AST Handling

..

-

12.1 Overview

Digital Equ ipment Corporation - Confidential and Proprietary
Restricted Distribution

CHAPTER 12

BOOTING

~il chapter discusses the boot.straping process for PRISM processors, how the Mica system uses
this process to bootstrap itself, a nd £mally, t.he provisions made that allow operating systems other
than Mica to bootstrap themselves.

NOTE
It i. a goal of the PRISM bootstrapping process to remain completely decoupled
from the existence oC and external service processor.

12.1.1 Bootstrap Structure

'The purpose of the hoot.8lrap process is to define a process capable of handing over a cold machine to
l)'It.em IOftware. On PRISM processors, this bootstrap process occurs in three phases.

1. Hardware BooLatrap

2. Primary Software Bootstrap

3. Secondary Software Bootstrap

The three phases of bootstrap are responsible for initializing the PRISM processors to a known
and art:hit.ec:tura11y defined sLate, loading and passing control to an operating system independent
primary bootstr.p program, and finally loading and passing control to an operating 8ystem dependent
secondary bootaltap program.

12.1,2 H.rdware Boo1strap

The hardware boot.atrap is defined by the PRISM System Reference Manual. The purpose of the
hardware bootatrap is to:

• initialize each PRISM processor to an architecturally defined state

• inibalite portion. of system memory to an architecturally defined state

load the PRISM primary software bootstrap program (PSB) into 8ystem memory, and pass control

to it..

Bl)otlng 12-1

Olgltlll Equipment Corporation - Confidential and proprietllry
Restricted Distribution

12.1 .3 Primary Software Bootstrap

The primary software bootstrap is implemen~ as PSB. Il is ~tended to be a rela~vely operating
system independent piece of software. It WIn however contain some OD~D speCl6c file system
primitives.

The OD~n file operations exist to support Mica booting. tntrix.booting is accomplished through
logical block bootinjf; an OD~D file system does not have to eJ:lsl on the boot deVlce to support
tntrix booting.

The primary software bootstrap is responsible for.

•
•

•
•
•

•

•

•
•

Determining system type and performing system specific initialization.

Creating an allocated physical memory descriptor which describes all of physical memory. allo­
cated memory, and bad memory.

Sizing and testing available memory.

Initializing a System Control Block (SCB) for the bootstrap master processor.

Detennining the bootstrap device to be used by the secondary software bootatrap by searching
the 10 space, and examining values stored. in the system-wide rest.a.rt paramec.er block.

Initializing the bootstrap device drivers, and creating a bootstrap device driver interface descrip­
tor such that the bootstrap device drivers may be used by the secondary IOftware booutrap.

The bootstrap device drivers export a standard read logical block interlace. The driven run .t
an elevated IPL. The drivers are modeled after the VAXNMS bootstrap device driven. They are
not FPU based, or otherwise related to the 10 device drivers present in the M1C:a . ystem The
drivers provide a read logical block interface to possibly two boot. devices .

Creating a primary and an alternate path to the read-write and read~nly system disks.

This step is only perfonned if the underlying file system available throUib the primary intenace
is ODS-II. The purpose of the primary and alternate interface is to provide a -search list­
capability for loading system files.

Locate and load the secondary bootstrap program.

Transfer control to the secondary bootstrap program.

12.1.4 Secondary Software Bootstrap

The secondary software bootstrap .program is an ~~~.ting sys~m specific boot.atrap. 'The secondary
software bootstrap program has different responslblhties for different operating 'Y,tems. There are
currently two forms of secondary software bootstraps.

• U1trix logical block bootstrap

• Mica secondary software bootstrap

12.1.4.1 Ultrlx Secondary Bootstrap

In the case of U1tnx booting, the se:ondary bootstrap consiste of a single 512 byte boot bId that it
loaded and transfered to. Once active. the program. will load a -real- d A.. __ boo
which is intelligent enough to understand the tntri% file sy.\ Th'""'!"reaJar:! IOl~-dan:: ~,:*p
bootstr' 'bl ' I ..:I: etn. e JeCOn a.ry 101 ~Ware ap 18 responSl e lor oaY..lng, and transferring control to tntrix..

NOTE

~~~~~~ ~~ forces. the load ?f a. c agle boot b lock i. due to the PRISM 
1 . I bl k e es a n ngle locatio n In the Sf.tem-wid e RPB to be Wied as a 

aO~':nbe~cof~~:: ;!:a=eo~:~~~ ~:;:aa: :M;~notna11Y n~!:o~.iolU ~or sto~, 
eo 8-.e ,Or lntri. boobng. 

'2-2 Booting 

.. 



-
Digital Equipment Corporation - Confldantla' and Proprietary 

Restricted Distribution 

12.1.4.2 Mica Secondary Bootstrap 

The secondary sonware bootstrap for the Mica system is implemented in [sysS/cerMljmica$sysboot,e»!. 
It is responsible for loading the portions of the Mica operating system that are required to initialize 
the system and load the modules required by the system. 

12.1 .5 Mica Bootstrap Summary 

The following summarizes the flow taken during a bootstrap of the Mica Operating System. 

• 

• 

• 

• 

• 

The hardware booLstrap occurs to initialize the PRISM processor to the state described in the 
PRISM SRM. 

PSB il loaded and invoked. PSB further initializes the system. This includes establishing a 
bootstrap device driver which supports a logical block read interface to the primary and alternate 
system disks. 

PSB uses the bootstrap device driver to load ( "activate- ) the Mica SSB implemented in 
(Jtya$lffmul)mica$$Ysboot.u.e. 

The Mica sse is invoked. sse opens the file (sys$Jr.ernel}mica$components.dat. For each file 
name stored in this file, its image is loaded and "linked" to the other components loaded in with 
the initial system. After all files have been processed, SSB t ransfers control to micaSsystem_ 
mltialize(), Lhe initial entry point of Mica. 

The mlCQ.$6Ystem_initiolize() entry point is responsible for initializing both the core Mica system 
and the non-core Mica system. Once initiali zation is complete, the initial user-mode process is 
created. Thi. process is implemented in [sys$lt:erMl}micaSstortup.e.u. 

Booting 12-3 





= 

Dlglta' Equipment Corporation - Confi dential and ProprSetary 
R .. trlct.d Distribution 

CHAPTER 13 

SYSTEM DUMP ANALYZER AND SYSTEM DEBUGGER 

13.1 Overview 

The Sy.tern Dump Analyzer and the System Debugger are tools used to probe and debug a Mlca 
.ystem. The SYaLem Dump Analyzer is a utility that is used to help determine the cause of system 
failures. nus utility can also be ute to examine a running system. The System Debugger is a 
lOLeractive debuwng tool that is used to monitor the execution of the Mica operating system. 

The primary group of use" of both the tools are system programmerS. The System Dump Analyzer 
oou1d also be used by system managers to diagnose system problems including performance analysis. 

13.1.1 System Dump Analyzer 

The System Dump Analyzer (SDA) reads, formats, and displays the cont.ents of the system dump file 
or • running system. 

When a ratal error causes a system failure, the Mica operating system writes information concerning 
its atatus to a system dump file. Thia file contains a copy of the contents of memory and a copy of 
the hardware context at the time the failure was detected . 

In adebuon to examining the contents ot the system dump file, SDA can also examine the currently 
running system. This feature is not committed for FRS. 

The Syatem Management interface is used to activate the System Dump Analyzer. 

13.1.1.1 Requirements & Go als 

The reqwrements for the System Dump Analyzer are: 

• A mechanism for customers to lupply Mica failure information to the support organization 

• A mechanism fOT" Mica developers to ana1yze system failure 

The System Dump Analyzer goal. are. to: 

• 
• 
• 

• 

• 
• 
• 

Eumine the data structures symbolically 

Allow symbols to be defined 

Have a command line interlace compatible with the symbolic debugger being developed by the 
Sof\.ware Development Technologies (SOT) group at Spithrook 

Write system dump files to disk other than the system disk 

Write system dump 61es to tape in addition to disks. 

Display IWDmaty information about Mica and its sub-components 

Eui1y add new functions to the utility 

System Dump Analyzer and System Debugger 1~1 



Digital Equipment Corporation - Confidential and Proprietary 
Restricted Distribution 

13.1.1.2 Design Highlights 

The code that writes the system dump rue is activated by the systeI? crash mechanism. When. 
system error h8.8 happened, the system crash mechanism is responSIble fo: deoding whether the 
error is fatal and what actions need to be taken. The system crash mecharusm always attempt. to 
write errorlog information into a special preallocated erTOrlog crash file. Optionally the system cn.sh 
mechanism may write a system dump file. A system dump is not wntt.en if 

• The fault of the crash is know to he a hardware problem or 

• The writing of dumps is disabled by TBD mechanism or 

• A preallocated dump file does not exist 

The system dump file writer is strictly a slave to the system crash code, and works at lPL 7. It 
cannot depend on the failed system to perform any functions. The system dump rue writer UJeS the 
bootstrap device drivers. All the code which is used to write a dump rue il checbumed and before a 
dump is written the checksum is checked. 

Because of the large amount of memory that a Prism sYltem can support, only part of the ayat.em 
memory is written to the system dump file. A subset algorithm specifies what. part of Lhe SYltem 
memory to save. The contents of memory are divided into logical grouping., 

Virtual memory database 
Pooled memory 
System space 
CUITent process' memory 
Server prOCi!sses' memory 
Memory associated with other processes 

These groupings are prioritiz.ed .as listed ~ve, ~th essential paru alway. hem, writt.en to the 
system dump rue and non-essential parts being wntten as space allowl in the ay.te.m dump file.. 

A dump file for a system is preallocated and is ovel'WT'itten. A system manaaer must t.ak.e an aeboo 
to save a dump file. 

13.1.1.3 Issues 

1. Is the subset. memory dumps sufficient to analy%e crashes? 

2. 

3. 

Not all systems failure.s can be isolated by examining dumps. UBin, the lubset memory 8)'1' 
tern dump files, there 18 a strong possibility that fewer failures can be delated by uamini 
dumps .. However, the use of subset rues may not greatly impact the usef I (._ d III mechamsm. u ne •• 0 l)'B_m ump 

One a1ter~ativ~ to subset dumps is aft.e~ a crash, boot. "small- system which run. only SOA and 
:~ :e=;~:n:s c:rn!:~~ ~i ~~~ory directly. However it is nol. clear il lhi, alternative meeti 

Can a system memory get co ted . ch . • groups? rrup 10 su a way thatll IS impossible to ide.ntify the aubeet 

Possible primitive user interface at FRS 

Because of scheduling constraints and sin Mi d I 
suPPOrted. system programmers al'FRS th ce ~a ~ve opment croup membe.n are the ani, 

, e user mtenaee may be pnmlb"'e at FRS. 

13-2 System Dump Analyzer and System Debugger 



-

13.1.2 System Debugger 

Digital Equipment Corporation _ Confidential and Proprietary 
Restricted Distribution 

The S~tem Debugger (SO) is a debugging tool that is used to monitor the execution of the Mica 
ope:sung Iy~tem and user ~rograms. The user of the SD can interactively examine memory. de­
potuL values. til me~ory loca~onsl set breakpoints, perform single-step execution, define symbols. and 
evaluate anthmetic expressIons. 

Unlike th,: other debugging tools supplied by Mica, the system debugger works in the harsh envi· 
ronm~nts 1n kernel mode at non-zero IPL. The SO is therefore very primitive. The debugger is self 
c:ont.aJned and does not use the Mica system which it is debugging for any services. 

Allbaugh SO will be used for a short period of time to debug user mode programs, the preferred 
debuwr for user mode progT'ams is SOT's debugger. 

13.1.2.1 Requirements & Goals 

The requirements of the SO are that it: 

• 
• 
• 

• 

Run. at any IPL 

Runs in both user and kernel mode 

Does not use the Mica services 

Does not require special hardware 

The SO pall are to: 

• 
• 

Allow .ymbols to be defined 

00 instruction decoding 

• Have a command line interface compatible with the SOT debugger 

13.1.2.2 Design Highlights 

The implementation of t.he SO is straightforward. The SO performs all of its functions without the 
uaista.nce of the Mica operating system. 

The SO i. loaded as part. of the system, and is hooked. into the 8Y8tem as an interrupt 8ervice routine 
aSR) in the .y.tem control block (SCB). 

Tbe SO uses the console terminal as its user interface. The console terminal is the only 110 device 
used by the SO. The SO lUIes polling to perform the 110, and does not employ interrupts. 

The Mica System Debugger commands are less cryptic than VMS' XDELTA commands, and are 
compatible with the SOT debugger command line intenace. 

CWTently there are no plana for SD to make use of the debugger Iymbol table included in an image. 

Two side effecta of the debugger implemetation are: 

• Use of the SO requires a ltandalone system because the entire system is stalled when a break­
point happens. 

• On1y the conlentl of physical memory may be es:amined. Virtual memory which is not in physical 
memory can not be examined or altered (including setting breakpoints). 

System Dump Analyzer and System Oebugger 13-3 



Digital Equipment Corporatlon ~ Confidential and Proprietary 
Restricted Dlstrlbutlon 

13.1.2.3 Issues 

1. The SOT debugger runs in Kernel Mode at IPL 0 

It is a goal to have the SOT debugger run in kernel mode at IPL O. Therefore, the only environ­
ment in which the SO would have to be used is at kernel mode at non-z.ero IPL. 

2. A command line interface like that implemented by the SOT parser may be too complicated. 

In the context of the SO, the parser needed to handle SOT commands may be over complicated. 
Therefore, the need for a parser may be in opposition to the goal of keeping the SO simple and 
straightforward. 

3. Step-Single-Instruction Function and Instruction Pipeline 

The Step-Single-Instruction function causes many instructions to be executed as the result of 
one Step-Single-Instruction command. The machine's instruction pipeline is also flushed. On. 
broken machine, a posgjble side effect is that code may run differently depending on whether 
the Step-Single-Instruction function is bejng used. 

4. Slep-Over-This-Call function requires instruction decode knowledge 

The SO, in order to implement the Step-Over-This-Call function, requires instruction decode 
~ogic and knowledge of the calling standard. The same instruction, Jump-to-Subroutine (JSR). 
IS used for both procedure calls and unconditiona1 branches. 

13-4 System Dump Analyzer and System Debugger 



Executive Routines 

This chapter summarizes the Mica executive routines. 





-
Digital Equlpmlnt Corporation - Conlldentlal and Proprietary 

Restricted Distribution 

CHAPTER 14 

EXECUTIVE ROUTINES 

14.1 Overview 

This overview contains guidelines for designing Mica executive routines, and the protocol fo r submit.. 
on, system service definitions to the author of the Internal System Services Manual . 

NOTE 

Ii i, the in Lent of Mica to provide a stable platfOMnt with respect to system 8ervices, 
that all user-mod e a ppli ca tions can depend on. From time to time user-visible data 
struct.ure. and procedure interfaces will change. Mica intends to provide a system 
service in terlace s uch tha t use r-mode application. do not have to re--eompile or 
re-li n k to run on n ew versioDs of the ope rating system. 

14.1.1 System Routines 

System f"Oulinea exist. in three different forms: 

1. User-visible, implemented. in user-mode. 

2. User-vilible, implemented in kernel-mode. 

3. User-invisible, implement.ed in kernel- mode. 

This paper only discusses system routines that are implemented in kernel-mode. The name assigned 
to this class of" system routines is eueutiue routines. 

System-routines implemented in kernel-mode t.hat are visible in user-mode are known as system 
SUUlCes . Mica .Yltem .ervices have the facility name execS. 

Sy. tern-routines implemented in kernel-mode that. are invisible in user-mode are known as executiue 
suuices . Mjca executive services have many different. facility names, wit.h the most common facility 
name being ~$ . 

The rest of thi. paper contains some code fragments and naming guidelines. The facility name used 
in .n of the examples is execS. This is for convenience only. When dealing with system services, the 
execS facility name is COl'T"eCt, but for executive services the facility name is not execS. 

Executive Routines 14-1 



Digital Equipment Corporation - Confidential and proprietary 
Restricted Dlstrlbutfon 

14.1 .2 Executive Routine Interlace Guidelines 

. I r. all tive routines in the Mica system. The intent is 
'l1tis section describes the mterface sty e o~ ex~ that they can design system aervice.s that 
to provide a framework for the system seI'Vl.ce aut ors t~ th Mica syst.em and to ensure that the 
are similar in style to all other system seI'Vlces presen In e . ! e &eMcel 
styles used for system services are compatible with the style used 10 execubv . 

All guidelines will be expres8~ in te"?s of P~l1ar. No gwhi '~elin~s (~~:~h~ ~:~~~q::dl':r 
pass by reference, value, descnptor will be gIven as t 8 18 a un 
the PRISM calling standard. 

The guidelines are broken up into three areas: 

- Genera1 Guidelines 

- Object Service Routines 

- General Service Routines 

14.1.2.1 General Guidelines 

'l1tis section describes the "prototype" executive routine. The important alpectJ are: 

- Parameter Options 

• Parameter Ordering 

- Parameter types 

- Return Value 

14.1.2.1.1 Parameter OpUons 

The options for executive routine parameters should either be -required parameter", or defawL n-e 
use of the Pillar optional parameter option is discouraged ainee these gel. pasted by reference which 
is slow and needs to be probed and captured by the executive. 

If a parameter is default, then it is assumed to be an optional parameter with respect to the eaUer 
of the executive routine. For the rest of this document, it is allumed Lhat ·opbonal- parameters use 
the default keyword. 

14.1.2.1.2 Parameter Ordering 

The parameter ordering for Mica executive TOutines is as follows: 

- Required IN parameters. 

- Optional IN parameters. 

- Required IN OUT parameters. 

• Optional IN OUT parameters. 

- OUT parameters. 

While the above parameter ordering scheme is encouraged, there are some inat.ances where the: rule. 
are somewhat relaxed. The two primary reasons for using an alternate ..... _ ... eter orouin. tcbeme are: ,.-. -...... -. 

• 
The executive routine has a complex parameter list with a natural parameter lTOuping In tlU. 
case, the above scheme is enforced oruy for related groups of parameters. . 

Thfir e executive routine is an object service routine. In this case the object. identifier is alwa- the 8t parameter. .~_ 
• 

14-2 Executive Routines 



14.1.2.1.3 Parameter Types 

Digital Equlpn.nt Corporation - Confidential and Proprietary 
Restricted Distribution 

P~eter types are alw8!S .described in terms of named data types of the form execSC:r::r.xx where 
~ IS a re~so~able de~ptioD ~f the d~ta type. The use of builtin Pillar data types is discouraged 
In the descnPbon of Mica executive routine parameters. The primary reason is to provide an easier 
migration path to the eventual 64 bit PRISM architecture. 

The use of lum list.! is discouraged. The only endorsed use of item lists is in Mica executive routines 
that are used in configuring portions of the system or in the "geUset information" object service 
routinea . 

Where possible, parameters should be sized such that they will fit into a register. 

14.1.2.1.3.1 Record Types 

The uae of Pillar records is diacoun.ged since they must be captured and probed by the executive, 
and they will typically not be passed in registers. Executive routine designers should be aware that 
the use of recorda will significantly decrease performance. The use of records should be avoided. for 
Ngh bandwith executive routines. 

NOTE 

The reat of thi. section speaks in terms of executive routines, but it is really ad· 
drea.ing uecutive routines that are system services. Executive services will always 
be compiled totether. Record incompatibilities will not be an issue within the ex­
ecutive. 

Ir an executive routine must use a record, then it. must provide a mechanism where the record may 
change yet old code will still work properly. This allows for expansion without the use of item lists. 
The mechanlam used to aasore compatibility between exported records, and the executive routines 
that have record argument.s is bound by the following goals: 

• The caller of the executive routine should only ever lee a single data type that describes the 
~rd. 

• If the executive routine changes the definition of the record. but the caller does not recompile, 
then the call should still work and the executive routine may only use the previous version of 
the record. This strategy should hold for all versions of Mica. Only upward-compatible changes 
.hould be made to records. 

• If the caller recompiles, then the new venion of the record is in effect. 

• The burden of det.ennining which version of t.he record that. the caller is using is placed on the 
executive routine. 

NOTE 

It is expocted that Pillar will provide language support (or detecting and con· 
vertin, venrioned records. All executive code should be written in terms of 
u~to-d.ie recorda. The method (or automatic recognitiollt capturing, and con· 
verting verlioned record.s i, TBD. 

14.1.2.1A Return Value 

All Mica executive routines that return complex information, or are system services should return a 
value of type ,tatua. Executive routines that rarely fail, should report exceptional failures by raising 
condiLions and should not return any values. 

Executive Routines 14-3 



Digital Equipment Corporation _ Confldantlal and Proprietary 
Restricted Distribution 

14.1.2.2 Object Service Routines 

The gujdelines expressed in Section 14.1.2.1 apply to objec~ servi~ ro~tines with a few exceptions. 
As stated previously, the object identifier for the object seTVlce routine t~ a1way~ the ~ parameter 
In adclition to this deviation, others exist. for the following classes of object 5eJ"Vlce rouunes. 

e Object Creation Executive Routines 

e GetlSet Information E xecutive Routines 

14.1.2.2.1 Object Creation Executive Routines 

Object creation executive routines impose the following restrictions: 

e The name of the executive routine is euc$creau_:u¥.% where ;a:xr i . the type of object heina 
created. 

e The first two parameter s of the executive routine are: 

• 

• 

1. The object identifier of the object being creat.ed. 

2. The object type independent parameters of the object. 

The object type independent parameters oftbe object is described by the u;rc$cob.J«t~. 
TlUs data structure contains the object name, the access control list for the object, and the con­
tainer that the object is to be created in. 

Following the two required parameters are object type specific parameters. The ordenne of the. 
parameters is per Section 14.1.2.1.2. 

Object creation executive routines should simply CTeate and initialize the new object. They should 
Dot perform other functions on the newly created object. 

Example 14-1 illustrates a ·prototype- object creation executive routine. 

Example '4-1 : Prototype Object Creation Routine 

~ Obje e : C"&""1o~ R<i<lIlJ.n::l i',.~."..t. :. , 
Olr." obje et._10: ..... e5~_objeet_1d; I ,..t.llm.4 loot the ft.'" !.~tI .~t 
I N obj.et,.J>&,. ..... t.:~: .... eeSt_obj.ct..J>e,,_t,&u _ ncrAUL':", 

! Obj..,t. tW& .~"i!' J." p,." ... te". , 
I II ! uaitl_"t"':..: .leC$~_!: a:IIi ~. "tat •• : 
IN CU :" !ram.l.t."_" Aq".""., e ... K5t._" 'O,,nter: 
OUf ! ramitz_ 1en9"I\, e x..,St. 1 ..... 9th : 
I U:"U'P.!:S . ~ at".: -

It is. important t.o note that for the optional p&.T.ametera, it is up to the deli er of the executive 
rou~ne to use proper ~alues when actual1y creating the objecL This alao me:. that the exec:utive 
routIne may choose to Ignore some of the optional parameten when appropriate. 

14-4 Executive Routines 



= 

Dlgftal Equipment Corporation - Confidential and Proprietary 
Restricted Distribution 

example 14-2: Prototype GetlSet Information Object Service Routines 

Pl';OCl~ UK.S9.~_!r_lt1_1nton.atlon ( 
:M oc,.ct_ld: ...... c:St_ob,.ct_ld: 
!. In t Or.Atlon: ax.c$t it .. 11 .:." 
I 1Ui:TtllUfS u.a:.,,., - - . 

PI'IOCI.DC.'IU uK.hat_h"_ltl_ln!'or_tlcn ( 
:. oh,.c:t_ld: all_St_obJact_ld: 
Ilf In t orwAtlon, ...... c.t_lt __ lht.: 

U'nJIUIa at.aLla: 

14.1.2.2.2 GetlSet Information Executive Routines 

Obje<;t IOot !'ramitr Ob,. Cl 
S~=lHc.tlon ot In!onut!on t o be raturn.d 

! Obi-c:t Itl or tra.itl. objaet 
Specl!'l~tlon or intonution to be .at 

For each object type present in the Mica system. an interface capable of extracting or setting various 
attribute. of the object should exilt. While thia is not a requirement, it is the preferred method 
of reading information from an object. or configuring an object. The procedure name for the get 
llet information object service routines is in the form ezecSgecu.r.:a_information(), exec$seCxxx:a_ 
mformatum.() where X%.r.U is the name of the associated object type. When present, the format of the 
let/set information object service routinell is as in Example 14-2. 

The only acceptable deviation from the prototype interfaces described in Emmple 14-2 ill to make 
the obftcCul parame1.er optional . Thill is only acceptable when the notion of ·cWTent" object makes 
aeose. An ezample of this would be in a can to erec$geUhread_information() . The object identifier 
or the thread can be opt.ional since the notion of "CWTent thread" is reasonable. 

It i. important to note that item list.l are present in the prototype get/set information object service 
routines. This il acceptable in these cases due to the relatively low performance requirements of this 
c:Iau of executive service, and the potentially large number of items. 

14.1.2.3 Generlt Executive Routines 

There are no special rules that have not already been covered that apply to general executive routines. 
It is however the intent of the Mica system to provide simple interfaces that perform a single function 
with fairly well defined error modes. If at all possible, there should only be one way to perform a 
given function through the Mica executive routine interface. 'lb illustrate this point, assume that for 
event obJec!lI there is a create interiace and a wait interface. It would be inappropriate to add an 
option to the create interlace that let. the caller immediately wait on the object. 

14.1.3 System ServIce Definit ions 

The detignen of Mica system services are responsible for lIubmitting the definitions for their system 
service. to the author of Internal SysLem Services Manual . The author of this chapLer is currently 
8iU Mose. 

SYltem service definitions are submitted when the chapter identifying the lIystem services has passed 
itt formal review. The layout of a system service defirution is based on the Pillar coding standards for 
external procedure definitions and the comme?t. block ~o.r procedure implementations .. E~mple 14-3 
ilIustratel the proper layout of a Iystem Servlce definition for the e:uc$seCthretJd-lJrlcnty() system 
service. 

Executive Routines 14-5 



Digital EquIpment Corporation - Confidential and Proprietary 
Restrlcted Distribution 

Example 14-3: Sample System Service Definition 

~ROCEDURE ••• ~$ •• t_th~ •• ~-prlority 
n: th~ •• ~_id: ... e$t_obj.e~_id _ OEFAU!.T: 
IN n ... -"dority: .",.eSt-pr!.odty: 
otr. o ld-"dodty: ... eSt-"riority: 
I R.tnIRNS 'U;I:': 
EX':'DINAL: 

<::1'1''''9' th. priodty of th •• ~c1t1..:! thn.d 1M ~.tum a, old p r tor ay. "'. e l l hr 
",u.t h.v ... dt •• ee ••• to th. thr •• d;. 

tn n.v-",iorlty 
Out old_priority 

.x.cSt non:.al 

.XlcSk:no_.cc ••• 

::11. obj.et 1D of th. thr •• d .. ho •• priority 1. t o oh .. "~. I t t~ • • ' . e t :D,. .. 
til. dar. lilt ... 1111, th.n ttl. c:\Irr.nt thr •• d 1 •••• UJMod 
Th. n ... prio:!ty tor ttl •• ~c: l t1..t th, •• d 
.h. pr.viou. pdorlty of ttl. 'pleHl..:! thr •• ~. 1'1'11 . !l.ld 1. ",,1y " .a2 i t ~ 
r.tUrn c:odI 1. IX.eSe_no,..,l 

Th. priority chan9' _ •• ~,tor.ed 
;'cc ••• to th ..... =it1ad thr •• d .... d_l..t 

14-6 Executive Routines 

• 



= 

1/0 

This set of chapters describes 1/0 components of Mica. 



• 



• 

Dlglta' Equlpl'Mnt Corporation - Confidential lind Proprietary 
Restricted Distribution 

CHAPTER 15 

DIRECT ACCESS MASS STORAGE FUNCTION PROCESSORS 

15.1 Overview 
This chapter describes the logical block interface to disks, which is used by function processors to 
accoSi data residing on the disks. This chapter also describes th e three function processors that 
implement. the disk logical block interface: 

• MSCP clus function processor 

• SLripin& function processor 

• Shadowin, function processor 

Fipre 15-1 shows the relationships between these function processors, the function processors they 
use, and function processors that. use the disk logical block interface. 

User-mode threads request disk 110 operations through tbe system services described in Chapter 8, 
UO Architecture. Data transfer requests are always handled first by a file system function processor. 
The rue .ystem function processor uses the disk function process01'1l to actually perform the data 
transfer. 

Each of the shadowirJ8 and !triping function processon implement and use the disk logical block 
interface. nu. allow. stripe seLa, shadow sets, and individual disk volumes to be transparently 
supported by file system function processors. 

'The mau storaKe control prot.ocol (MSCP) class function processor implements the disk logical block 
interface. However, it usee the systems communications services (SeS) class interface to communicate 
with device function proce8sors, which interact directly with the device controllers. 

15.1.1 Go.ls 

The objective of the disk logical block interlace is to: 

• Support all features of OSA 1 and OSA 2 diso 

• Provide hiKh lhrouKhput and low latency access to disk·resident data 

• Provide features to support high availability and reliability of disk-resident data 

Direct Access Mass Storage Function Processors 15-1 



Digital Equipment Corporation . Confidential and Propt~tary 
Restricted Distribution 

P oussors and Clients Figure 15-1 : Direct Access Mass Storage Functi on r 

Applications and Utllftl_ 

~ystem {I File ... " 
Flio 
Lay. 

h 

Acc .. s 
torag' 

J I 

01 .. 
Striping 

f 
I 

01'" 
Direct 
MaasS 
Funeti 
Proces 

.n I- Shadowing .... 

System Com- { 
munleaUon. 
Services 

'-

Disk Cevlce 
Function 
Processors 

J 
{ l HSX 

DFP 
'----

J 
MSCP 
Class 

L 
, 

scs 

15.1.2 Disk Logical Block Interface 

l 

Foreign 

J 

J 

0 1'" 

-.J 

J 
XCA 
DFP 

User Mode 

K""'" MoO. 

DUP 
Cia .. 

J 

. . . . . . . 

SCS CIau 
Inlerteca 

SCS Port 
InI,rfeee 

The disk logical block interface is a set of procedure calls that configure dj.ka and aeceu data on 
disks. The actual procedure calls are defined in Chapter 8, VO Architecture. The (umboD codes and 
parameter records that make u p the remainder of the interface are dela"1bed Ul. thi. ehapte:r. 

The disk logica1 block interface su pports reading, writing, comparing. erasing. and acx:easinc data on 
disks. These operations are called ckJta transfer functioTl3. which are aupported by alllol1C:a1 block urut 
function processors. The logical block interface also supports various diU. conNurtltWn functWnI, 
which include bringing a UT..i t online, initializing a stripe or shadow let. addinc a counterpart. to an 
existing shadow set, and so on. Most of the connguration functions are unique to • apeofie fu.ncbOO processor. 

15-2 Direct Access Mass Storage Function Processors 



15.1.3 Function Processors 

Digital Equipment Corporation - Confidential and Proprietary 
Restricted Distribution 

The c¥.k logical block. interf~ce is implemented by the MSCP function processor, the disk striping 
funcllon processor, and the disk shadowing function processor. 

15.1.3.1 MSCP Function Processor 

The MSCP clan function processor implements the logical block. interface to disk device function 
processors. Each of ita function processor unit WPU) objects represents a disk unit. 

The MS.CP fun~Uon p~es80r'8 main purpose is to build MSCP requests, and queue them to the 
appropnate deVice funcllon processors. It also manages changes in the pbysical configuration and 
renerata error log packets. 

15.1.3.2 Ofsk Striping Function Processor 

Di.k striping i. one of the features used to provide high throughput and low latency to disk·resident 
data. The disk striping function processor binds two or more homogenous logical block unit8 together, 
and presents them to higher levels of software as a single, large, unified virtual unit. This unit is 
presented as a single continuous vector of logical blocks that is used exactly as if it were a single 
ph~eal unit. This virtuaJ unit is tenned a stripe set. 

The data in a Itripe set is organi%ed by stripes. A stripe is made up of a set of stripe frogTMnts. Each 
Itripe fragment resides on a single unit. All of the stripe fragments in a stripe cover the same range 
of logical block numbers on each unit. The primary configuration parameter for a stripe 8et is the 
lize of a Itripe fragment. Figure 15-2 shows a stripe set consisting of two disks with a track size of 
8 blocks and a stripe fragment size of 3 blocks. 

Anal,.is by Mike RiRIe has shown that the optimal size of a stripe fTagment is the track size of the 
underlying disks. However, the striping function processor allows this default value to be overridden 
when a stripe set is initialized. 

Each FPU manaced by the dlsk striping function processor represent8 a stripe set. The function 
processor examine. the range of logical blocks for each UO request it receives. If the blocks do not 
l pan more than one of the bound unita, the request is simply passed down to the function processor 
managing the target unit. Otherwise, the request is passed to a system thread that breaks the 
request down into two or more requesLs, each of which is isolated to a single unit. The system thread 
then issues these sub-requesta to the function processors managing the target uniLs. The original 
110 request does not complete until each of these sub-requests has completed. Similarly, the originaJ 
110 request's completion status is computed from the status values returned for the lub-requests. 

Direct Access Mass Storage Function Processors 15-3 

- -



Digital Equipment Corporation - Confidential and proprietary 
Restricted Distribution 

Agure 15--2: Sample Stripe Set 

,......:;; .... 
r-.. .-;' , 

2 S • 0 3 • 
Unit LBN 

~ 
I 2 7 8 %: /: ~ S1rlp. Se1 LB" 6 

15 
0 2 " " ~ I" 

, 
/: r;- 13 

" IS 19 20 ~ 
23 

7 • 21 ~ /: • 20 

~ .... 25 26 30 31 32 ~ 

Disk Unn A 

First stripe 

Second Stripe f's'2 
AO " .. .. ." " 13 " 15 16 17 18 

15.1.3.3 Disk Shadowing Function Processor 

/"' 
...., 

t:-.. - 1' , 
2 • • 'l' 3 

, • • 5 9 10 " [2; V • .. 
0 2 " " /,-

~ 
, 

"', 16 17 21 22 23 k' • I" 7 • .. 'l''l 2 • 20 

I"- 28 29 33 3' 35 Y 

Disk Unit B 

" .13 ." ." ." 
19 20 21 22 23 

Disk shadowing is a feature used to provide high data availability and enhanced reliability. The disk 
shadowing function processor binds two or more homogenous logical block units LOgether LO increase 
data r eliability and availability. Each logical block urut. contains a complete copy of the data on the 
others. If the data on one unit becomes unavailable. t.he data is still available on one of the others. 

Each FPU managed by the disk shadowing function processor represents a tAadow nt. A shadow 
set consists of one or more counterparts. Each counterpart is a single logical hloc.k unit. Ideally. eatb 
counterpart holds exactly the same data as every other count.erparl. in the shadow seL 

Disk shadowing has the potential to increase throughput and reduce laLeney for read operation., 
since the function processor can balance the load between the coun1.erpart.s in the shadow set. 

Much of the complexity of the shadowing function processor ties in error handling and recovery. 
The disk shadowing function processor win automatically and transparently replace damapd data 
(such as uncorrectable ECC error) on one counterpart. with undamaged dat::t. from anolhe.r counter­
part. Counterparts are added to an existing shadow sel while the shadow !Jet is onlioe. The new 
counterparts are automatically brought up to date with the data from the existing eounte.rparta. 

15-4 Direct Access Mass Storage Function Processors 



Digital Equipment Corporation ~ Confidential and Proprietary 
Restricted Distributi on 

15.1.4 Error Hl ndllng and Diagnostics 

15.1.4.1 Invali d va Request 

An I/O requeat is invalid if any of the following is true: 

• 

• 

• 
• 

Th~ t.a..r&et device (physical or logical) is not in an appropriate state to perform the requested 
aellon 

The VO request does not contain a required parameter 

A field in the VO request contains a value outside the domain of allowed values for that field 

The VO request contains parameters that are not applicable to the requested action 

Eac::h function processor will detect. the first three cases and terminate the 110 request with an error. 
The last case il very difficult to catch, and no attempts will be made to do so. Function processors 
aimply ignore luch fields. 

15.1.4.2 Power Fa ilu re 

Function processors are e.xpecteci to gracefully recover from power failure. Function processor power 
recovery involves the following Stepl: 

1. Terminating eac::h outstanding 110 request with POWERFAJL or BAD_STATE status. 

When a function processor notices that an 110 request completed wit.h POWERFAlL or BAD_ 
STATE status, it needs to make a decision: 

• Allow the request to fail 

• Queue the requelt so it can be retried after the power recovery activity has completed 

Generally, only file Iylteml have enough context to retry the request. Other disk function pro­
cesaon do not retry reqUe!lta following powerfail recovery. 

2. Returning all unit.. back to their state before the failure. 

This ia a bottom up procels that involves reinitializing controllers. bringing units back on·line, 
re-establi. hing . hadow and stripe sets. and performing mount verification at the file system level. 
The TRANSITION FPU staU is provided by the va architecture to allow function processors to 
coordinate t.heir powerfail recovery actions. 

3. Retrying the requelta that were requeued. 

15.1.5 Sample VO Re que st Flow 

This section providea an overview of the flow of a disk 110 request through the UO system. It. should 
enable you to ~get the feel~ of how the various component. fit together. The acenario is an application 
program that aaka RMS to read a record from a disk file . The ~sk .file resides ~n a st~pe set. which 
i •• hadowed. Each shadow set has two counterparts. each ofwhic::h IS an RA90 disk urut. Both RA90s 
are connected to the host through an HSX controller. The stripe set fragment size is 69 sectors (the 
aize of an RA90 track). Figure 15-3 ahowl the function processors. function processor units. and 
channel, referenced in this uample. 

Ficure 15-4 . how. the 110 request packets. (lRPs) used ~ satisfy the request . The following descri~ 
tion details the actions that are taken dunng the execution of the reqUe8t: 

1. The application calls RMS at ita $GET entry point 

Direct Access Mass Storage Function Processors 15-5 



" 

DIgital EquIpment COf'poraUon - Confidential and Proprietary 
RestrIcted Distribution 

d nd Striped Flles-11 Volume Figure 15-3: 1I0 Structure Layout for 8 Shadowe a 

User Mode 

KenaI modi: 

scs 

FPU. 

2. RMS determines that it must read the record from the rue. RMS can. the uecSru,uuCio aystem 
service. passing the object ID of the channel object on which it h .. previously accessed the file_ 
The function code is wSc_d/ileJead, starting at virlual block 1361, for 16 Kb. 

3. 

4. 

5. 

The e:recSrequesCio system service entry point dispatches to e$reque$l._io, pu:sinC it the ume 
parameters as RMS passed to euc$req~s,-io. plus the aeceu mode (user~ 

The eSreqUl!SCio service then calls eSrequesCio_trtuted, which finds the FPO dispatch t.ahle 
from the channel, and invokes the Files--ll function proceSSOr at ill Initialize lIO Parameten procedure. 

The Files-ll function processor's lnitialize 110 Parameten Procedure allocates an YO Tequell 
packet (marked lRP 1 in Figure 15-4), interprets the parameter record, fill. in the va request 
packet, and returns to e$requaCio_trusted. The eSrequut_io_truJlted aerviee then fillt in the 
termination parameters (IOSB, event, AST) and call. the e$erecuu w service which. in turn. 
invokes the function processor's Execute UO procedure. _ • 

15-6 Direct Access Mass Storage Function Processors 

1 



DIgItal EquIpment Corpor81tlon - Confidential and Proprietary 
Restricted Distribution 

FIgura 15-4: 1/0 Aequest Packets Used to Satisfy the Sample Aequest 

IRP 3 

~ ... 
."'" • 13K 

I Sh~.~ng I 
r-:::IR::..P..::3~ 

.... c., 
LON ..... 
Saa 13K 
.... c., 
LBN 16001 
s.u 13K 

EJ 

IRP 1 

R*V"'~ 
VSN \361 
SIH \6K 

STAG 

IRP 1 

RMd'l11t. 
vaN 1361 
Siz,'6K ........ 
LBN 32010 
Sin 16K 

User mode 

Kernel mode 

IRP 2 

-c., . 
l.8N ,6Q02 

SIl,' I< 

IRP 2 

R ....... 

l.8N "'" Slz.3 I< -..... LaN 16002 
SIn 31< 

6. The File~ll Execute I/O procedure detennines that virtual block!! 1361 through 1392 fan into 
• single 61e ext.ent starting at logical block 32010. It a1locates a second FP parameter record in 
Lhe JRP. and places the following information into it: 

_ 'o$cdWtJeo.d function 

_ Starlin, allogical block 32010 for 16 Kb 

The function processor calls e$u.ecure_io, p8.8sing it the I/O request packet (IRP 1) and the ad­
dress ofa channel object created by the File&-ll function procesaor. The channel object identifies 
the FPU for the s tripe set holding the file (STAO in Figure 15-4). 

Direct Access Mass $1orage Function Processors 1>7 



Olgltlll Equipment Corporation - Confidential and Proprietary 
Restricted Disttibutlon 

. h iabI from the channel and invokes the Slnpinc 7. The 110 subsystem finds thellOFPD died spate e 
function processor's Execute proc ure. . 

. a1 blocks 32010 through 32015 map onto logtcaJ 8. The striping function processor finds that J0gJ.\ in the stripe set (SHAJ In Fieure ls.-..c), and 
blocks 16002 through 16007 OD the secon urn to logical blocks 16008 through 16033 on the 
that logical blocks .32016 through 32041 ~~p o~ cUon roceS80r must use II system th:ud to 
first unit in the stripe set (S~O). Thede stri~ng ~ing fu~ct.ion processor'. transfer work qutue process this request. The IRP 18 queu to e 8 p. . 
and the issuing thread returns from the e$uecute_w IH!n'lce. 

9. The issuing thread returns from the Files-ll function processor'. Es:ec:ut.e YO procedure.. 

10. The issuing thread returns from the exec$requesCio system service. 

11. RMS places the thread into a wait state for the completion event used in the e.u.c$nquUCIQ 
system service. 

12. A system thread starts up and dequeues the I/O request packet. from the striping function pr0-
cessor 's transfer work queue. 

The 8 stem thread interprets the 110 request. It finds that it will need to g.ene:rate two U? 
13. reque;ts (caned lRP 2 and IRP 3 in Figure 15-4). The first (IRP 2) has the following parameters: 

Function ioSc_disJt]ead 

Starting at logical block 16002 for 3.0Kb 

Directed to the second logical block unit in the stripe set (SHAl) 

The second (JRP 3) has these parameters: 

Function ioSc_disJt]ead 

- Starting at logical block 16008 for 13.0Kb 

- Directed to the first logical block unit in the stripe set (SHAO) 

The system thread cans eSrequesCio_trusted twice: onee for each 110 request. Jt then calli 
JtSwoiCmultiple to wait on the events associated with the 110 requests. Each IUb-request follows a similar path: 

a . The e$requesCio_trusted service calls the shadowing function proceltor'. Initialize VO Pa, 
rameters procedure. 

b. The shadowing function processor's lnitializ.e VO Paramete~ procedure allocalel an 110 
request packet, allO<:ates an FP parameter record in the 110 reque.t packet., copies the 
parameters to the FP parameter record, and returns to eSrequest_io_trutkd. 

c. The e$requesCio_trusted service fills in the termination parameters and calls the eS~uU_ 
io service, which, in tum, invokes the shadOwing function processor'. Execute 110 proc::edun:. 

d. The Execute I/O procedure interprets the I/O request packet and determines that the request 
is a logical block read. It selects an up to date counterpart to service the request and allocates 
a second FP parameter record in the 110 request packet. Next, the Execute I/O procedure 
copies the parameters from its original FP parameter record into the new FP panmettr 
record. \ The shadOwing function proceSSOr haa to keep ita FP parameter record 10 thal it 
can intercept errors and reissue the command. \ Fina1ly, the shadowina: fundion pJ"OCeSSCllr 
calls e$execute_io to pass the 110 request to the MSCP funcbon prooeuor. 

e . Thee~cute_io service uses the channel passed to it to locate the MSCP function proceuor's 
FPD object. It then calls the MSCP function processor at ita Execute 110 procedure. 

f. The Execute I/O procedure interprets the VO request., and performs the followiDg actions: 

i Calls e$SYn.chronous_i03all to invoke the SCS function proceuor to alJocat.e a Ie' quenced message buffer. 

15-8 Direct Access Mass Storage Function Processors 



-

. 

g. 

h. 

I. 

J. 

k. 

Digital Equipment Corporation. Confidentiliand Proprietary 
Restricted Distribution 

ii Cans e$synchronous_w3all to invoke the SCS function processor to allocate a named 
buffer descriptor for the data buffer. 

ill Filla in the message buffer to construct an MSCP READ command. Allocates a refer­
ence identifier fo r the command. 

iv Queues the VO request to the FPtrs outstanding request queue. 

v Can. e$synchroMludo3all to invoke the SCS function processor to send the sequenced 
mesaage to the controller. The SCS function processor then uses e$sync.hronous_io3011 
to invoke the HSX device function processor. 

vi The HSX device function processor queues the sequenced message to the HSX controller. 

vii The system thread returns from the HSX device function processor's Synchronous va 
Call procedure. 

viii The .yat.em thread returns from the SCS function processor's Synchronous 110 Call 
procedure. 

iz The system thread returns from the MSCP function processor's Execute 110 procedure. 

The .ystem thread returns from the shadowing function processor'. Execute 1/0 procedure. 

The system thread returns from e$requ.esCwjrusted to the striping function processor. 

The disk controller reads the command packet and executes it. Eventually, it transfers the 
data from the disk to the designated buffer. Finally, it queues an END packet to the port's 
response queue and interrupts the PRISM processor. 

The HSX function processor's interrupt service routine runs and signals an autodearing 
event. The Interrupt is then dismissed. 

A .yst.em thread created by the HSX function processor wakes up and dequeues the re­
.pon.se from the controller's response queue. It calls back to the SCS function processor's 
.c.$receiue...,process_routiru. procedure. 

I. The SCS function prooe!lSOr's .cs$reCf!iue...,proces.]outinf! procedure interprets the message 
header and calls the procedure in the MSCP function processor that has been r egistered to 
procell sequenced messages. 

m. The MSCP sequenced message callback procedure interprets the MSCP reference identifier 
and use. it to find the VO request packet associated with the END packet. The system 
thread created by the HSX function processor is then removed from the FPU's outstanding 
request queue, and the MSCP reference identifier is invalidated. 

n. The END packet is used to set the final status and transfer length fields of the I/O request 
packet. 

o. 

p. 

q. 

r. 

s. 

t. 

The .ystem thread calls e$complete_io to terminate the I/O request. A special kernel mode 
AST i. queued to the .triping function processor's thread. 

The .ystem thread returns from e$complete_io. 

The .y.tem thread returns from the MSCP function processor 's sequenced message ca1lback 

procecl ure. 
The S)'ltem thread returns from the SCS function processor's scs$receive...,process]outine 
procedure. 
The .y.tem thread checks {or another processor response, and wails if there is none. 

The lpedal kernel-mode AST is delivered to the striping function processor thread. The 
AST procedure terminates the processing for the sub-request (lRP 2 or IRP 3) and deletes 
the I/O request packet. The AST is then terminated. 

Direct Access Mass Storage Funcllon Processors 15-9 



Digital Equipment Corporation - ConfidentIal and Proprietary 
Restricted DistributIon 

14. The striping function processor's system thread becomes ready to run when Lhe t.,t or ita suO. 
requests have completed. 

15. The system thread computes the final s tat us, and calls e$compk~_1/) to t.enrunate the 110 request 
(IRP 1 ). 

16. The system thread goes back to waiting for work on the striping function proceuor', worlr: qutut. 

17. A special kernel-mode AST is delivered to the process thread that i .. ued Lhe onelnallO requm 
The AST procedure writes the 110 status block., then signal. the completion event. The L'O 
request packet (IRP 1 ) is deleted, and the AST is terminated. 

18. The process thread resumes running in user m ode and eucutes RMS oode to check: the c:ompleboa 
status of its YO request. RMS deblocks the r ecord from th e buffer and pntlentl it to the calJu. 

19. The process thread returns back to the caller from RMS . 

15-10 
Direct Access Mass Storage Function Processors 



Digital Equipment Corporation - Confidential and Proprietary 
Restricted Distribution 

CHAPTER 16 

MAGNETIC TAPE FUNCTION PROCESSORS 

16.1 Overview 

~ chapter describes the support for magnetic tapes in Mica. Mica provides aceess to unlabeled, 
forelgn-mo~ted msgetic tapes. While the initial product set does not include ANSI-tape support, 
future vermons of the software probably will include such support. 

The (oUowin, interface and function processor are described in this chapter: 

• Thpe logical-block interface 

• 7bpe Mau St01'01l1! Control Protocol (TMSCP) function processor 

Ficure 16-1 shows the relationship between the TMSCP function processor and other function pro­
ceSlOrs it uael. 

The TMSCP function procenor implements the Tape Mass Storage Control Protocol. Threads request 
tape YO operations througb the system services described in Chapter 8, YO Architecture. The TMSCP 
function pJ'OCelllOr supports requesta from kernel- and user-mode threads. 

16.1.1 Goals end Requirements 

l\bca tape IUpport meets the following requirements: 

• Support al1 DSA-l and OSA-2 TMSCP-compliant storage elements supported by HSX controllers, 
HSC controllers, or both 

ThiSCP storage elements that are not supported by these controllers are not supported by Mica. 
Although little or no development would need to take place to 8Upport them, they are not included 
in system testing. 

• Allow streaming tape drives to run at their muimum data rates 

• Support the Ptolemy optical-storage device jf required by Glacier or Cheyenne 

The Ptolemy optical disk is 8 write-once, TMSCP-compliant storage device. Supporting Ptolemy 
jslimlted to including it in the system test plans, and providing support in the error-log display 
program. The optional media loader is supported in its transparent, automatic mode, but not in 
III program-control mode. This IUpport allows a stack. of media t.o be loaded into the drive and 
prooeued in FIFO order. 

• Support es.c1W1ive accesl to tape drives 

A tape drive is only allowed to be ONLINE through a single host. AVAILABLE tape drives are 
allowed to be AVAlLABLE to any host. Thil allows a pool of tape drives to be shared among 
Hveral hoa:tI, but limits the processing of data to one host for each drive. 

Magnetic Tape Function Processors 1~1 



Digital Equipment Corporation - Confidential and Proprietary 
Restricted Distribution 

Figure 16-1 : Magnetic Tape Function Processors 

ApplalJonI and Lhllltl .. 

u... ..... _ 
........... ,. ........ T-.................. "j-:::~::~ ,~ 

Kernel Mode 1na.1.~ 

Form.ltld { ' .... FuncUon "'.- ANSI Tiplo 

--+--+--"""-i;;:;;;';'~ 

Tiplo Mill 
Slor'g. 
FuncUon 
Proc.'lor 

{ DUP 

•.................... ~;;;;;;;;;;;;;;;;;;;: .......... ~a.. ..... , .. 
.,,,"" Com- { munlcatJon. 
SoMoM scs 

SCSPon ...................... -r ................................ · InMrl.~ 

T~O'vlot { 
Function 
Proceuor. 

HSX OFP 

1 6.1.2 Tape Logical-Block Interface 

XCA DFP . . . . . . 

The tape logical. block ;ntenace ;, • set of procedure call. uoed to configure tapes and • .,.... d;.:d 
on tapes. The procedure calls are defined in Chapter 8, 110 Architecture . The (unwon codes 
parameter records that make up the remainder of the interfaee are d~bed in t.hiI cbapw. 

The tape logical·block interface supports reading, writing. eomparina. erasinC. ac::cessin&:. and 
positioning-to data on tapes. These functions are called data.tra1'l.$tu {un.ctioM. It aJso aupporll 
various tape·configuration. functions. These include bringing a unit. on line, If!tbng physical parame­
ters goveming the media (such as density, speed, caching mode), and 50 on. 

The tape logical-block interface does not support any form of labeled tapes. The interface merd, 
provides the ability to access data on TMSCP-compliant storage devices; interpreting thia daLa 15 the responsibility of higher layers of software. 

TMSCP supports cached tape drives. The tape logicaJ·block interface aJ.lo
wl 

appbcations to cbOQ5t 
cached or uncached operation for data· transfer requests that. modify the media. The UtN! ofachine lOr 
other data-transfer operations is transparent to the function processor. and thus ea.nnot be Belec:ud. 

16-2 Magnetic Tape Function Processors 



Digital Equipment Corporation. Confidential lind Proprietary 
Restricted Distribution 

Uncached write operations do not. complete until the data is on the media. Cached operations com plete 
when the controller has read the data from the host, but possibly before the data is on the media. 
The use of caching dramatically improves throughput (by up to a factor of ten for some drives) 
at the expense of reliability. Reliability suffers because applications may be told their YO request 
w completed befoTe the data is actually recorded on the media. The tape logical-block interface 
provides mechanisms whereby applications can enable write caching, but suU synchronize with the 
media when necessary (for example, by writing data with the io$c_uem3ochi1l.8 flag set to FALSE, 
or by using the io$e_tapeJlush function). 

16.1.3 TMSCP Class Function Processor 

The TMSCP class function processor implements the tape logical-block interface. Each TMSCP func­
tion p1'OCeSIOt' unit (FPU) represents a tape drive. 

The TMSCP clan function processor's primary purpose is to translate application VO requests into 
their TMSCP counterparts. It also manages the configuration of TMSCP tape drives, and perfonns 
erTOr logging for TMSCP tape drives. 

Data-transfer Tequesta are processed in the contest of the thread isswng the request. The TMSCP 
function processor communicates with device function processors through the SY6tem Communioo· 
lion Services (SCS) function processor. End-packet processing is performed in the context of device 
function proceSlOr threads. 

The TMSCP function processor creates one thread to manage each tape controUer. This thread is used 
to confi,-u.re units on the controller, and for access-path failover and powerfail-recovery processing. 

Much of the design and implementation of the TMSCP function processor is derived from the Mas3 
Storage Control Protocol (MSCP) class function processor, described in Chapter 16, Direct Access 
Mass Storage Function Proceason. 

Magnetic Tape Function Processors 16-3 





D[gltal Equipment Corporation ~ Confldantlal and Proprietary 
RestrIcted DIstribution 

CHAPTER 17 

SYSTEM COMMUNICATION SERVICES 

17.1 Overview 
nua chapLer apec:ifiea the System Communication Services (SCS) available in the Mica system. It 
also outlinea the SCS implemenLation strategies identified to date. 

Please see the at.tached glossary for a shoTt list of SCS terms and definitions. In this chapter, port is 
UBed to refer to a remote node's interface to the Computer Interconnect (Cn, bus and adaptu refers 
to the local Mica CI interface, namely the External Memory Interconnect (XM1)-tA>CI Adapter (XCA). 
Any toca1 Mica controller" such as the Hierarchical Storage Controller for XMI (HSX), using System 
Commumeotwn Architt!cture (SCA) are treated as adapters by SCS. 

17.1.1 Goals end Requirements 

The objective of the Mica SCS interface is to: 

• Conform to the SCA specification for message formats, protocol, and implementation-independent 
interface models 

• Provide SCA communication services for concurrent Mica system applications running in kernel 
mode LO remote computer systems over one or more multi-access interconnects 

Functions not implemented in the Mica SCS interface are: 

• Failover support . SCS reports the failure of a communication path to the Mica system applica­
tions, but the individual application is responsible for reinitiating contact to a remote partner 
over another path. 

• Management of load balancing between many patba to a single, remote system. 

• The C'Uf'T'ent implementation of SCA in CI port hardware can not guarantee that a sequenced 
mes.a,e ia alwaya delivered or that the sender is always notified of an error. Consequently, the 
Mica impleme.ntation of SCS limite its efforts in this area. The design of system application 
aon.ware should take this limitation into account. 

17.1.2 SCS Functlonellty 

SCS perfonnJ the functions of the seuion laru of the ~EC System Comm~ca~on Arc:hitect~ 
(SeA). N sueh, SCS is responsible for managing con.nectums between commurucating system appli· 
cation. (SYSAPs). controlling the ~ of buffer r~ourceB,. co~trolLing the flow of mesl8ges and data, 
and mu1t:iplexing different connections onto the virtual CITCUlLJ between systems. 

SCS provides user applications with the fonowing services: 

• Directory serviee.a 

System Communication Services 17-1 



Digital EqulptMnt Corpor.tlon - Confldentl.1 .nd Proprlewry 
R_tricted Distribution 

These services malntain a directory of local SYSAPs that are waiting for active connect1on rt­
quests from remote partners. A local SYSAP uses the services t.o register or delete itaelf &om 
the directory. A remote user cannot directly access the directory, but raLher Cl)l.OmurucatH Wlth 
a local Mica SYSAP, named scs$diTectory. The scs$directory SYSAP usee the direc:t.ory se:rvlCtl 

to provide directory lookup functions for remote users. 

• Configuration services 
These services maintain the identity ofremole systems reachable through SCS. They 'keep mror­
mation about the remote systems' hardware and software, and the connecting paLhs lD them. The 
local SYSAP uses these services to determine which remote systems are reachable, the number 
of paths to the remote system, and the state of the virtual circuit on each path. 

• Connection services 
These services are used to establish a connection between two SYSAPs over. virtua1 omnt. 
Connection services give SYSAPs the capability to: a) request a connection to another SYSAP. 
b) accept or reject a connection request, c) disconnect from an established connecbon. or d , be 
notified when a connection is broken. 

• Data exchange services 
Data exchange services allow two connected SY$APs to exchange information. TheM: seni.~ 
send and receive datagrarns, sequenced messages, and block data tranuctiOnl -

17.1.3 Implementation Strategy 

17.1.3.1 Initialization and System/Path Recognition 

S~ is implemented as a ~ngl~ function processor with a single function procellOT unit (FPm. 
~gure 17-1 shows the relationship between the SCS function processor and other function PIOC:euol"l 
In the system. 

Figure 17-1 : SCS Function Processor In the va System 

SYSAPI {I IISCP 

eo,. { 
:'Ionl 

System 
munlc 
5«vk 

n { lorl 

l 

1 
H5X 
OF. 

TMSCP I I RPe 

5CS l 

1 

l I xc. I Of. 

I . . . , . 

. . . . . . . 

SCS ClaN 
,"'ertK. 

SCS Port 
Int-nac. 

The SCS function processor is initialized when the . 
first adapter that uses SCA protocol Thereaf\:.e t.h configuratJon function proc:essor TeCOgruUS the 
about every SCA adapter it successfu"lly nfi r, ( e configuration function pf"OCleUOT uuonnl SCS 
ware). SCS responds by establishing a ~a~le~ ~ ct;-pter 34, Configuration Management Soft.· 

tea apter FPU. and by binding the SCS fPU 

17-2 System Communication Services 



Dl;ltal Equipment Corporation . Confidential and Proprietary 
Restricted Distribution 

to the adapter FPU. The adapter 's device function processor finds the remote systems with which 
the adapter can communicate, establishes virtual circuits to each system, and records the resulting 
system Information in the SCS connguration database. 

Local SYSAPs can use the 8eS directory and configuration services as soon as SCS is initialized. Once 
a system path is established and the virtual circuit is open, then a SYSAP uses SCS's connection 
services to establish a connection between itself and a SYSAP in a remote system. Thereafter, the 
SYSAP uses SCS data exchange services to commurucate with the partner. 

17.1.3.2 Message and Datagram Suffer Allocation 

One of the goa1s of SCS is to make it unnecessary to copy application data from buffer to buffer as 
tach software layer adds header information. Therefore, SYSAPs are required to obtain message and 
datagram buffers from SCS. 8eS acquires these buffers from device function processors. A device 
function processor allocates a physically contiguous buffer that is big enough to hold the application 
data, along with the SCS header and the device function processor header. 

SYSAPs cannot assume anything about the size or content of the 8C8 and device function processor 
layer headen. On the return from buffer allocation, the SYSAP has only a pointer to the beginning 
of the application da La area. 

17.1.3.3 SYSAP-SCS Interface 

SCS implements the following request VO function codea: 

• C01VU!Ct establishes an SCA connection to a partner SYSAP. SC8 allocates a specified number of 
message buffer. (initial message credits) and queues them to the adapter's message free queue 
(MFREEQ). Then, a dialog to establish the connection to the partner SYSAP begins. The va 
request completes when either. a ) the connection is established, b) the connection is rejected by 
the partner SYSAP, c) the target system becomes inaccessible through the identified path. or d) 
the partner SYSAP is not listening for a connect request. 

• o.c«pt accepts a connect request from a partner SYSAP. 

• ~ject rejects a connect request. 

• di&conn«t dieconnect& a connection to a partner SYSAP. 

• rwd_blocA_data transfers a block of data from the partner system to a local buffer. 

• wrlU_blocA_dato transfers a block of data from a local buffer to a partner system. 

SCS implementa the following synchronous I/O entry points: 

• reJld_d.tnctory searches the local SYSAP directory and returns the information about a specified 
SYSAP name or entry number stored there. 

• 'Ystvn_confi8urotion searches for information ahout accessible systems, given a system name or 
entry number. 

• path_configuration return. information about an available system path. 

• enab~Jisten_o..st registers a SYSAP in. the local di~tory and requests an ~ for ea~h conn~ 
request. If the SYSAP is unwilling to listen for additional connect requests, tt calls this function 
WIth a null AST procedure address. 

• enable di.$conn«ct cut establiahes the AST procedure to be invoked if the connection to a partner 
SYSAP transitioni from the OPEN state. This AST procedure is not invoked if the local SYSAP 
initia tes a di teOnnect. 

• cUocate_datagram .Uocatea a datagram buffer from the datagram free queue (DFREEQ). The 
5YSA.P thread waits until the datagram can be allocated. 

System Communication Services 17-3 



Digital Equlprr.nt Corporation - Confidential and Proprietary 
Restricted Distribution 

• 

• 
• 

• 

• 

• 
• 

• 

seTu:Cdatagram sends a datagram. The datagram buffer ill put on DFREEQ after the daucram 
is sent.. 

deallocate_datagram returns a datagram. t.o the DFREEQ. 

allocattunessage allocates an applica?on message buffer from non-paged pool. The eurrent 
thread waits until the message buffer 18 allocated . 

send message sends an application-sequenced message. Af\.er the I?euage i. lent., the buffer 11 

deallocated or placed on the MFREEQ, depending on the caller'lI Wl.he •. 

addJnessages adds message buffers t.o receive messages from remote partnerL The function 
tenninate!l when t.he buffers have act.ually been added. . SCS must coordinatA With the partner 
syst.em when adding buffers. 

deallocate message returns an application message butTer back t.o non-paeed pool or the MFREEQ 

map_data_buffer prepares a buffer for block data vClMfer by initializing a buffer" de.scriptoor irI 
the buffer descriptor table (BOT). 

un.map_oota_buffer releases a buffer descriptor for reuse. 

17.1 .3.4 SCS-Devlce Function Processor Intertace 

SCS and device function processors communicate with each other by synchronoUJ VO call. and SCS 
callback routines. The device function processors use SCS callback routines to announce data recep­
tion. 

The SCS data reception callback function processes the received. data to completion in the context 
of the device function processor thread. SCS determinell the type of data received, and proceedJ .. 
follows: 

• 

• 

• 

• 

Datagrams-SCS delivers the datagram to the SYSAP via a c:allback routine. In mOil c.uea, W 
SYSAP processes the data immediately, 01' copies the data from the buffer for future proee. ·nnr. 
The SYSAP then returns the datagram buffer, through SCS and the device function processor, 
to the DFREEQ. However, the SYSAP has the option to keep the dataeram buffer-. 

Sequenced application message--SCS delivers the message to the SYSAP via • callback routine. 
In most cases, the SYSAP processes the dais immediately, or copies the data from the buffer 
fOT fu.ture processing. The SYSAP then returns the message butTer, thro\llh SCS and the device 
function processor, to the MFREEQ. However, the SYSAP has the option to keep the me_sap 
buffer. 

Block data transfere--SCS locates the IRP and completes the I/O requellt associated with the 
transfer. 

SCS protocol . ~e.ssages-The processing of protocol messages can cause an 110 request, ruch 
as a SY~AP:lrutiated connect, to complete, if the message being processed concludes prot.ocOl 
commurucation. 

17.1 .3.5 Flow Control Scheme 

Flotp control is ll:sed to ensure t.hat a sender does not. send mOTe data than the receiver has buffer 
space. SCA reqwres flow control for sequenced messages and block data t.r&.nsfen but. not for datll-
grams. ' 

Block data transfer is governed by flow control because SCA asllumes that a me e buffer i. needed 
by the remote system to complete the transfer. uag 

17-4 System Communication Services 



17.1.3.5.1 SCS Protocol Messages 

Digital Equipment Corporation - Conlldential and Proprietary 
Restricted Distribution 

SCS protocol messages are also aequenced messages that require How control. Flow control {or SCS 
protocol messages is transparent to SYSAPs, and is applied to paths, rather than to connections. 
When the virtual circ:ujt for a path is opened, SCS sets aside one buffer for sending protocol requests 
and one buffer fo r receiving protocol requests. ses then uses internal mechanisms to ensure that a 
simple r~uesVresponse protocol is maintained. In thls way, no new 8eS request can be sent on a 
path until a nusponae to the previous request on that path is received. 

17.1.3.5.2 SCS Application Messages and Block Data Transfers 

For application·sequenced messages and block data transfers, SCS maintains How control for each 
SYSAP-to-SYSAP connection by means of a credit scheme. That is, SCS keeps track of the credits for 
each connection and does not allow s SYSAP to send any messages or block data transfers without 
the proper number of "send credits." 

When a SYSAP establishes a conne<:tion with a partner, it specifies an argument c.alled "initial 
credits." This is the partner's initial number of send credits and determines how many message buffers 
SCS must allocate and queue to the MFREEQ for this connection. During connection initialization, 
this send credit value is reported to the partner SYSAP. 

Communicating credit updates to the remote partner hal two parts: 

• First, all sequenced message headere have a credit field . Using this field, 8es can piggyback 
credit information with each outgoing message . .A3. receive buffers are added for a connection, a 
pending receive count. is maintained. Whenever a message is sent out on that connection, the 
pendinl receive count is copied to the message header credit field, and then zeroed. As messages 
arrive at the remote system, the remote SYSAP's send credit is increased by the amount of the 
crodit field . 

• Second, SCS has a special credit protocol message available to it. 8CS always monitors the 
remote SYSAP's send credit vaJue. If the send credit reaches a specified threshold and the 
pending receive count i8 not tero, SCS uses the crM.it. protocol message to notify the remote 
SYSAP of the additional send credits, and then zeros the pending receive count. 

Thil implementation only allow. send credits to be added. Any at.tempt to delete send credits results 
in protocol elTOn. SYSAPs can add &end credits by using the add_messages interface, by sending 
an application menage with ita recycle Hag set, or by returning a received message buffer with its 
recycle flair let. 

17.1.3.6 Error Philosophy 

Three types of errors are: handled by Mica SCS: 

• Invalid UO requests 

If SCS rece.ivel an invalid UO request, it fails the request with the appropriate error sLatus. 

• Adapter errors that result in the loss of the virtual circuit 

Adapter errors that result in the loss of the virtual circuit include adapter failure, host powerfail, 
and fatal adapter elTOn that. cause adapter reinitialization. 

Recovery from an adapter error requires the cooperation of t.he device func~on processor, SCS, 
and the local SYSAPs. The device function processor is the first to recogruze the event. The 
device function procesSO!' must: 

1. Complete all threads waiting on adapter resources with an error 

2. Notify SCS of the error via the device FPU state change AST 

3. Becin adapter recovery from the event 

System Communication Services 17-5 



Digital EquIpment Corporation - ConfidentIal and Proprietary 
Restricted DistributIon 

The SCS system thread takes the fonowing actions: 

1. Marks the virtual circuit as CLOSED for each path through this adapter 

2. Terminates all 110 in progress on the connections througb this adapter 

3. Invalidates all connections for paths through the adapter 

4. Contacts previously connected SYSAPs via their disconnect AST 

The SYSAPs are responsible for reestablishing connections to their partners and reauaun, DOt> 

mal activity using SCS configuration services. 

If adapter recovery was unsuccessful. or if SYSAPs do not resume nonnal activities, the SYS­
APs are then responsible for deallocating all of the resources they hold for the diaconbnued 
connections. 

• SCS proiocol errors 

SCS interprets an invalid request by a remote SYSAP as a protocol error and ..... um. that 
the remote SCS is broken, even though the adapter is considered sane and the device funcbOll 
processor is unaware of any problem. 

Upon reco~tion of a protocol error involving a remote node, SCS queue. the eTTOr to • I1stem 
thread, which contacts SYSAPs using their disconnect AST. 

17--6 System Communication Services 



Digital EqulprMnt Corporation - Confidential and Proprietary 
Restricted Distribution 

CHAPTER 18 

XCA FUNCTION PROCESSOR 

18.1 Overview 

18.1.1 Introduction 

'The XMJ-to-CI Adapter (XCA) port is an intelligent controller that connects the External Memory 
Int.eT'COnneci (XMI) bus to t.he high speed serial Computer Interconnect (CI). This chapter describes 
the XCA device function processor, which is t he lowest-level Mica interface to the XCA device. 

18.1.2 Requirements 

'M1e XCA device function processor is required to: 

• 

• 

ProVIde Cl support. for Mica 

Support mulLiple CI controllers 

• Provide remote system recognition to ensure a cWTent system configuration 

• 

• 
• 

Provide po~to-port virtual circuit. service using t.he system communication service (SCS) band­
&hake protocol 

Deliver sequenced messages and block daia in Lhe COITeCt. order and without duplications 

Provide hooks for diagnostics, as needed 

18.1.3 GOII, 

XCA device function processor goals are to: 

• Isolate 8eS from the XCA controller hardware 

• Provide a communication medium that is free of undetected transmlssion errors 

• Mamie neLwork congestion control by selected use of paths on dual-path CI hardware and 
priontixed controller queues 

XCA Function Processor 18-1 



Digital Equlpl'Mnt Corporation - ConfldenUal and Proprlet.ry 
R .. tricted Dt.trlbutlon 

18.1.4 Functionality 

The XCA function processor performs the following device-dependent functions fOT ~bca: 

• Initializes the XCA controUer 

• 
• 
• 
• 
• 

• 
• 
• 

Maintains the current controller status fOT inquiry by higher-level fundlon proceuora 

Manages memory data structures used for the Mica/con troll er interface 

Handles controller malfunctions and recovery 

Sends information packets (datagram,s, sequenced messages, block data) to remote .y.temJ 

Receives information packets from remote systems and deli vert: each packet to IU conespondq 
higber-level function pTocessor 

Maintains Taw data for system performance measurement 

Polls tbe controller at prescribed intervals to update system configuration data 

Opens and doses virtual circuits to remote systems 

18.1.5 Higher-level Interface to XCA Function Processor 

The significant functions provided by the XCA function proc:ea80r for other function procetlOn wi..huIe 
to communicate with the XCA controller are: 

• SCS port driver (PD) interlace functions 

The SCS PD interface provides a consistent. set. of services to t.he SCS function proce:uor fnIm 
eacb device controller function proceSSOT. The XCA function proceuor implemenu the SCS PO 
interface described in Chapter 17, System Comm unication Services. 

The following is a summary of the available PO services: 

Allocate datagram and message buffers 

Release datagram and message buffers 

Map and unmap block data buffers 

Send datagrams, messages, and block data 

Receive dat.agrams, messages, and block data 

Open virtual circuits 

Close virtua1 circui ts 

• Controller configuration functions 

The following XCA function processor procedure and function codes control Ih .. ,. .... ration of 
the XCA controllers: e COW'6" 

Initialize FPl! ~~dure-Initializes the function processor uni t (FPU) for an XCA c:ontrolll!t' 
and sets the UllOal FPU state from the controller's status regis ter 

ioSc_XCQJeadyJpu-lnitializes the XCA controller and sets the FPU state to O!,\'Lll'-"E 

'doOSC_xctl.JJOICcontroller-FOrf:es the function proceSSOT to poll the controller's station ad· 
resees to define the system configura tion 

io$cJcc_unreadyJpu-Changes the FPU state to AVAILABLE d resetl the controller 
hardware and all controller state data in the FPU an 

1&-2 XCA Function Processor 



• 

Digital Equipment Corporation - Confidential end Proprietary 
Restricted Distribution 

Rea~ying an XCA controller cause:s t~e function processor to begin system configuration polling. 
The ioSc_xcoJ>OICcontroller function IS used to configure remote systems without waiting for the 
normal polling time interval to elapse. 

Diagnostic functions 

The diagnostic capabilities of the XCA function processor will be specified when the requirements 
and functions are defined. 

18.1.6 XCA Function Processor Interlace to the XCA Port 

The XCA function processor communicates with the XCA controller through: 

• Port TellS ten 

The port registers form the low-level path through which basic control and status operations are 
performed. The XCA function processor uses these 24 registers to: 

lrotiahe the XCA port 

Get basic controller status information 

Control diagnostic operations 

Force command queue reading by the controller 

• Command and response queues 

Command and response queues control the norma] operation of the controller. Port commands 
and responses are contained in blocks of host memory called queUl! pocJr.ets and linked to an 
appropriate command or response queue. Each queue packet con-esponds to a datagram or 
sequenced message with a standard header that defines the nature and parameters of the com­
mand or response, followed by the data particular to that command or r1!sponse. Queue packets 
that are not in use have undefined contents and reside on free queues from which they can be 
obtained as needed. 

The controller is linked to the command and response queues by a data structure called the port 
queue block (PQB). The XCA function processor has one response queue, four command queues, 
• message free queue (MFREEQ), and a daLagram free queue (DFREEQ). 

At the resulL of controller restrictioDs, the PQB. command and response queue headers, and 
queue packeL. are located in lhe low 512 MB of physica1 memory. Each individual PQB, queue 
header, and queue packet mUlL be quadword aligned and physically contiguous wiLhin itself. 
The PQB muat also be aligned on a 512-byte boundary. 

• Buffer descriptors and host lransfer lists 

When dsta movement involves block data transfers, then the host. must supply the controller 
wit.h buffer descriptors to define the block data buffers. The buffer descriptor is an entry in a 
buffer descriptor table (BOT), which is located using the PQB. The buffer descriptor points to a 
hOlt transfer list (HTL), which ia a list of the legments of memory that together constitute the 
buffer. The controller accesses the descriptor, determines the physical memory addresses of the 
memory segments, and accesses the block data buffer directly. 

The BOT and HTL must each be physically contiguous, quadword aligned, and located in the 
low 512 MB of phyaica1 memory. 

• Interrupt service routines 

The XCA function processor uses t.wo interrupt service routines. These routines are connected 
to the appropriate vectors for the XCA controller. 

IPL 4 ISR-Thia inteJTUpt service routine is invoked when t.he XCA controller inserts a 
response entry on an empty response queue. The .service routine signals the XCA function 
p1"OCtSSOT with a pending response event (see Section 18.1.7.3)_ 

XCA Function Processor 18-3 



Digital Equipment Corporation - Confidential and Prop, .. tary 
R_ tI'lcted Distribution 

. . ' . oked when the XCA controller declUWII!I 
IPL 5 ISR- This interrupt se~ce ro~~n~;,~vof a state change. The IIeTVlce routine Itl.I 
error or writes its status reg:aster as e . 8 1 74) 
the p'roceSSOr '8 controller state change event (see SecIJon 1 . . . . 

18.1 .7 XCA Function Processor Implementation 

The Mica interface to all XCA controllers is implemented as a lingle ~~on ~r. 'The XCI. 
function processor has one or more FPUs, each of which represe.nts an con er. 

For each FPU created the XCA function processor creates one main system thread .nd llevera.i worker 
threads. The worke; threads are responsible for deqll:euing . pa~kets from .the conlroller n!llponIt 
queue. The main system thread handles all other functions WIthin the function proceuor. 

All SCS PO-defined entry points to the XCA function processor are function code. for the dlyncAltIMIII_ 
w3all service that execute in the context of the caner. 

The XCA function processor passes received messages and datagram. back to a higher-level (une: 
processor through previously established response callba.ck pTOOedures . The thread. uecuunr 
callback routines operate in the context of the XCA function proceuor. 

18.1.7.1 System Recognition 

SCS relies on an internal database to determine the system configuration. It. i. the ruponlibiht)' 01 
the XCA function processor to determine which remote systema each XCA controller can ruc:h and 
include this information in the SCS configuration database. To accomplieh thi., the XCA (1,1DCUOD 
processor 's main system thread periodically polls all 224 controller station .ddres .... llendlnc request 
ID (REQID) packets to each station. The corresponding ID received ([OREC) pawu. and an, 
unsolicited IDREC packets, are then used to configure the system list. 

18.1.7.2 Virtual Circuits 

The XCA function processor provides virtual circuits for SCS. An open virtual circuit i. needed for 
datagrams, messages, and block data to be exchanged bet.ween .ystems. 

The XCA function processor's main system thread opens virtual circuits usmc •• tandard 3-ft)' 

handshake. During system recognition activities, the XCA function processor automatically bepn! 
the open virtual circuit sequence when it discovers a path to a remote system that it not in the 
configuration database. Virtual circuit initialization also begins when the XCA funcbon plocetlOl" 
receives a start virtual circuit datagram from a remote system, or a call to it.l Synchronous-,o_call 
procedure with an io$c..;u:a_open_1JC function code. 

The XCA function processor closes a virtual circuit when it notices a virtual circuit failure, or wMD 
a high er-level function processor requests a virtual circuit closure. The XCA function proccuor can 
detect virtual circuit failure during polling activities or data transmisaions. The funebon proce .... 
handles such a failure by issuing a command to disable t.he virtual cin::uit in the controller', inwnal 
virtual circuit table and signaling t.he virtual circuit error AST. 

An example of a higher-level function processor requesting a virtual circuit closure is SCS det.ectinC 
~ virtu al circuit failure by fin~ng protocol, elTOn in communications with remote system.s. SCS then 
lssue~ a call to the XCA funcllo.n processor s Synchronousjo_call procedure with an w$cJCtl_'*--'" 
function code. The XCA function processor updates the mntroller'. internal virtual circwt table LO 
disable the virtual circuit on this path, then returns to SCS. 

'!he syste?' and 'pat~ information in the SCS configuration database, as well as the controller'S 
mternal VlrtUal o rcwt table, are always updated with the resulta of the virtual cif'CWl initialUauoo 
or closure. 

18-4 XCA Function Processor 



18.1.7.3 Response Hand ling 

Digital Equipment Corporation - Confidential and Proprietary 
Restricted Distribution 

An event illignaled by the interrupL service routine whenever an entry is put on the response queue. 
An XCA function processor worker thread thaL was waiting on the evenL increments the active request 
count, and removes a response entry from the response queue. If the queue is still non-empty, the 
thread signal. the pending response event again. The thread then decodes the response packet's 
type to decide on the necessary processing. If a higher-level function processor should receive the 
packet.. then that function processor's response callback procedure is called. Upon returning from 
the callback routine, the .ystem thread decrements the active request oount, and loops back to wait 
for another pending response event. 

18.1.7.4 Error H.nd llng 

The XCA function processor is notified of fata1 ef'TOl'S when its main system thread's wait is satisfied 
by a controller_state_change event or a powerfail event. 

For the benefit of higher-level function processors, the XCA function processor performs the following 
actions: 

1. Seta the XCA's FPU state to TRANSITION (and increments the FPU's sequence number) 

2. Completes all threads waiting on controller resourtes wiLh an elTor 

3. Records the controller's statuI and error values in an error log packet 

4. Begin. controller reinitiali2.ation actions to recover from the event 

No matter what the outcome is of the recovery processing. the XCA function processor guarantees 
that the FPU .tate will not remain in the TRANSITION .tate indefinitely. 

XCA Funct ion Processor 18-5 



• 



Dig ital Equlpmlnt Corporation . Conlldantlal and Proprietary 
Restricted Distribution 

CHAPTER 19 

NI FUNCTION PROCESSOR 

19.1 Overview 
This overview summari2:es plans for the Mica NI function processor, a device function processor 
providing data link communication between Nt (Network Interconnect) devices. Network function 
processors call the Nt function processor to read from a NI communication device, or to write to such 
a device. For the rest. of this document, the tenn NI refers to Ethernet LANs (Local Area Net.works) 
and to IEEE 802.3 LANa, both of which use CSMAlCD (Carrier Sense Mu1tiple Access with Collision 
Detection). 

19.1.1 Goa ls 

The Coals of the N1 function processor are as follows: 

• To provide NY IUpport for the data link layer of DECnet, Phase IV and Phase V 

• To support mu1tiple !'II' controllers (XNAs) 

• To provide services for applications running in both kernel mode and user mode 

• To provide services for multiple pieces of upper-layer software that run concurrently 

• 10 provide hooks for diagnostics, as needed 

• To utihr.e the Nt controller to its marimum transmitJreceive 8peed 

19.1.2 Features Not Implem ented 

The ~, function processor does not offer the following features: 

• Load balancinc between controllers 
• SeTVice. that anow a remote node to control, dump, load, or diagnose the Ioea) node 

• Shared SAP, Protocol type, or SNAP Protocol ID 

19.1.3 Capabilities 

The N1 function processor perfonns the functions of the data link layer as specified by the DIGITAL 
Setwork Architecture (DNA). The main tasks of the Nt function processor are as follows: 

• FiltennC the data link header of each incoming packet 

• OeliverinC each incoming packet to its cotTesponding upper-layer sonware 

• Generating the data link header of each outgoing packet 

• Maintaining status infOnDation about. t.he data link layer 

NI FunctJon Processor 19--1 



DIgital Equipment Corporatl on - Confldentlal and Proprietary 
RlIlStrlcted Distribution 

The NI function processor provides the following services to the upper-layer eonware; 

• Configuration Services-By ca1Ung these services, an upper-layer software specifiel the fol1owuc 
information: 

What kind of packet the upper layer receivu from the Nt fu nction pnx:ellOr (for example, 
Ethernet or IEEE 802.3). 

What kind of packet the upper layer sends to the Nt function processor, (That ii, the ~1 
function processor specifies the data link header information for out.goinl peaeLil. 

How many receive buffers the NI function processor is to allocat.e. 

• Data exchange services-Unlike the configuration services, which Specify how pac&e_tI are to" 
sent and received, the data exchange services do the actual sendin& and receivine . TIlat is, thete 
services allow an upper-layer software on one node to exchanee packeu vnth • network procnm 
on another node. 

• 

The data exchange services, however, provide only datagram tervice. The 1'.;'1 function proceo:r 
therefore guarantees neither that transmitted packett; have been rece.ived nor that pacUti haft 
been delivered in the order sent. 

data link status services-The data link status services provide counters and eventl that relate 
to the Nl data link. layer. 

19.1.4 Interface with the Upper layer 

The uppe:-l~yer interface to the NI function processor is a set of procedure calli that tet the pbymcal 
charactenstics of controllers, specify the criteria for fil tering incom.in& packeLl and transfer dlta. 
These procedure calls are of three types: request and execute YO functiona sYnehronow 110 call 
functions, and ca1lbacks. ' 

19.1 .4.1 Request and Execute 110 Functions 

The request and execu~ I/O functions are invoked by calling the channel object ae.rvice roubMl 
Requ~st I/O (e$request_w) and Execute YO (e$e:ceeuu_io). These functions IUpport tbe foUo"';l1I 
function codes: 

• 

• 

• 

• 

• 
• 

io$e_n~_ready.hlb-Confi~s the ~ controller, and &eLI the state of the FPU (function procet­
sor UIUt) to O~. The 1Oformation supplied. include ll the phY8U!ol oddnu of the controller, 
the CRC generation, and other related information . The conficurati of th t\"'1 ntrdlu 
cannot be changed when the FPU state is ONLINE. ona e co 

io$c_nC u1lI'eadyJpu-Changes the FPU s tate 10 AVAILABLE d 
troller configuration to their ini tial val . t ,an: resell aU .. peeLS of the con· 
ware address, and the counters are setu:~e%.example, the phYSIcal address lJ set to the bani· 

ioSc...,get-.JPu_information- Returns configuration ' r. . , 
mation includes the default hardware ddr th 10 ormation about the controller, Thilinfor' 
packet size. a eS8, e current phylical address, and the muunUlD 

ioSc_ni"getJPu_counters_Returns the counters . , _..J . 
. number of packets sent and the number of k"""""ts a~ WIth the control1er «(or example, the , pac e rece2ved.). 

io$c_nCsetJpu3 0unters-8ets the Counters as!JOCia'-..J ·th th 
• • \oCU WI . e controller to zero. 
io$c_n'3on!igure3 honnel-8ets the network dd 
which the channel filters incomin cket a :eas of the channel, and sell the eriteria by 
? value that uniquely identifies a! ~ r-i' (In t~ chapter, the. te~ netu:ork oddnSl refers to 
IS n~t to be confused with any net!::k . .!~~r is: w.~' oo1y Wllhin the local node. This value 
speci?es the upper layer's packet fonnat r enti er.) The code ioICni_eonfiKun_ehanntl 
multicast addresses and re1a' - . '-'0 b.' P ot.ocol type, SAP (Service Acc:eu Point) acid.reIIt 

, Io<:U. UUI nna on. 

19-2 NI Function Processor 



• 

• 
• 
• 

Digital Equipment Corporation - Confidantlat and Proprietary 
R •• trlcted Distribution 

io$C...8tCchonn.eCill(ormatwn-Retums packet-filtering infonnation associated with the chan­
nel. 

io$c_nCM!IUCdata-5ends 8 block of data. The VO is completed after the transmit data is sent. 

io$c_nl]tceult_daUJ-Receivts a block of data. 

io$<uieocceu-Dea1locat.es the data structures and bufTen associated with the channel. 

19.1.4.2 Synchronous lIC Call Functions 

The N1 function processor suppona the following synchronous VO call functions: 

• 

• 

• 

io$c._"iJupCbuffer _limit-'6pecifies the maximum number of receive buffers al10wed to be kept 
by the upper layer software. 

io$c_"CtnabltJecei~_callbad-Specifies which entry point of the upper layer is to be called 
when the NI function processor receives a packet that satisfies the filtering criteria of the channel. 

ioSc_"cretur"_buffer-Returns a receive buffer that the upper layer has temporarily kept. 

19.1.4.3 C.Ub. cks 

The Nt function pnxeS50r supports one procedure type 8.5 a callback routine to the upper-layer 
software. The N1 function processor calls this procedure after receiving a packet intended for the 
upper-layer software. 

19.1.5 ImplemenlaUon Strategy 

The r-..'1 function processor is a single function processor having one or more function processor units 
(FPU.), each corn.ponding to a single N1 controller. The Nt function processor is loaded and ini­
tialized by the autoconfiguration program. Figure 19--1 shows how the Nl function processor is 
implemented. 

NI Function Processor 19-3 



DigitI' EqulplTIffnt Corporation - Confidential and Proprl.lI ry 
Restricted Distribution 

How the NI Function Processor Is Implemented Figure 19-1 : 

L i+-- Channel 

I Mode 

-
'lb communicate through a particular NT controller, an upper-layer .aftware first aeatel an LO 
channel to the NI FPU corresponding tc that controller. The upper layer then preJ*1U the c.hannII 
for reception and transmission. 

To prepare the channel for reception, the upper layer Specifies the criteria by wruch the Nl funclK1ll 
processor selects or rejects the packets received on the channel (For eumple, one such cntenOll 
might be that the upper layer receives only Ethernet packet.a.) UsinC these critena. the N1 fu.ncum 
processor then filters packets received on the channel, delivering to the Upper layer just those packeU selected. 

'Ib prepare the channel for tranSmiSSion, the upper layer Specifies the format or the packetl it JeDdJ. 
and its network address. With this infonnation, the Nl function proceaaor build. the data link header of the packets that the upper layer sends. 

19.1.5.1 Transmit 

The transmit buff~ is allocated by the upper-layer. To send a packeL. the Nt function pl'OCdSOt uses 
the' thread requesting that the packet be sent. The Nl function proces.aor provides io$c_tu __ M_clDJ4. 
which is a e$requescic function, to transmit a packet. 

When calli~g the :NI transm.i t fll;Dcti~ns. the upper layer passe. two main piecea of jnformation aboo1 
the transmJt buffers: the first pIece 1S a buffer address, w;ua11y c:onta..inine the Upper layer'. proe.ocoI 
header. The second piece is the address of the host t:ra.nsfer lilt lOCated in the IRP (lIO requess packet). 

19-4 NI Funcllon Processor 



Digital Equipment Corporation - Confidential and Proprietary 
Resulcted Distribution 

The upper layer, having received the size of the NI data link header from the function io$c~eC 
ehanlll!'-mformation, leaves enough space in front of its own protocol header to build a data link 
header. The NI function processor first adds the data link header in front of the upper layer's 
protocol header. Then, using the buffer-c:haining reature or the controller, the l\TJ function processor 
combines the resulting header with the upper-layer data being sent to the NI controller. 

For the user-mode upper layer, the NI function processor reserves the data link header buffer in the 
IRP when the FP parameter record is established.. The NI function proce850r then sends the data 
link header with the dat.a to the Nl controller. 

The YO function i. completed after the transmit buffer is sent. 

Agure 19-2: Mapping ot Transmit Buffers to Actual Picket 

IRP 

Ho.t TNne.f., LI.t 

Cl.lrNnt PtI,..m.t.,.. 

19.1.5.2 Receive 

u_ d811 

There are two mechanisms provided by the NI function processor for the upper-layer software to 
receive incoming data: one i. the ioSc_nCreceive_data request I/O function and the other is the 
rtceilH coll back mechanism. 

Using loSc_nl_recelve Request VO Function 
When an incoming packet arrives if there is an outstanding receive posted on the channel, then the 
~, function processor storeS the ~ddreS~ of the N1 receive packet i.n the IRP, and co.mpletes the 110 
request.. When the YO completion TOutine executes, the hTJ function processor COPIes the message 
£rom the !\1 receive buffer into the buffer specified in the IRP and retums the Nt receive buffer to 

the l\1 receive buffer pool. 
If there i . no TRP outstanding, the NI receive packet is queued to the channel , and the 1\.'1 thread 
ret~ to wait for anot.her message. 

NI Function Processor 19-5 



Digital Equipment Corporation - Confidential and Proprietary 
Restricted Distribution 

To Use Receive Callback 
After receiving a packet intended for the upper layer, the 1\' fuaction pl"Oce"or iuues a ca1lbaei 10 
the upper layer. That is, the NI function processor directly calls the entry potnt. that the upper layer 
specified in its call to the e$synchroTlOus_io3tlll fuaction en.abkJecel~3tllJbccJc 

When the upper layer receives a packet, it either immediately releases the receive butTer c:ontairuac 
the packet, or it keeps the buffer for some period of time. U the upper layer ~leueJ the recem 
buffer immediately, the Nt function processor returns the buffer to the receive-buffer pool U IOOnu 
the thread that delivered the packet returns. If, imtead, the upper layer lceeps the receive baft'er 
for a while, the following steps occur. Tb release the buffer, the upper layer call. the l'.TJ funCboa 
processor 's Synchronous I/O Call (e$synchronous_io_call) function wSc_nCreturn_buffv. Thtn. the 
NI function processor returns the receive buffer to the r eceive-buffer pool. 

The upper-layer software must return all the kept buffers before the channel i. deleted . Otherwut. 
the system non paged pool memory may be lost. 

The receive callback mechanism is only supported for the kernel-mode IOftware. 

19.1.6 Outstanding Issues 

1. 

2. 

The NI function processor may need to provide some extra hookJ La interlace Wlth the network 
management software. 

The diagn.ostic capabilities of the Nl function processor will be .pec:ified when the reqwre.menla 
and functions are defined. 

19-6 NI FUnction Processor 



Digital Equipment Corporation - Confidential and Proprietary 
Restricted Distribution 

CHAPTER 20 

CONSOLE SUPPORT 

20.1 Overview 

From Mica's per$pective the console is four devices: 

• 
• 
• 
• 

console Lenninal 

console .torage device 

SfL1I,1 service processor 

configuration processor 

A console terminal is required for each processor on all Prism systems. A set of four processor 
regiatera is defined in the Prism SfLl'd, which allows Mica t.o read and write characters from the 
console terminal. A set of these registers enst for each processor in the system. 

A console storage device is an optional device. The existence of this device is related to the hardware 
system de.len. The function required from the console storage device depends largely on the hardware 
configuration. 

Mu:a depend, on the SRM service processor of the console to perform the functions described in the 
Prism SfL1I,1. Some of these functions are: 

• 

• 

• 
• 

letting up the RPB 

loadinr EPlcode and the primary bootstrap 

letting the machine to a defined inWal state 

synchroniz.ing processors during a multi-processor bootstrap 

The SRM aervice processor performs these functions without l.fica's assistance. Mica is only a con· 
sumer of these functions, and cannot. provide the console with any support for the functions. 

A configuration processor is an optional dev:iee. Th.e mstenee o~the ~nfi~ratio~ processor is rela~ed 
to the hardware system design. The functions Mica performs in coOJunction WIth the configuration 
proceuor vary enatly. Some of possible functions of the configuration processor that could be can· 

trolled by Mica are: 

• reportine failed hardware 

• dil8bline hardware modules 

• e:zecutine ROM baaed diagnostics 

Console Support 20-1 



Digital Equipment Corporati on - Confidential and Proprhltary 
Restricted DtstrlbuUon 

20.1 .1 Requirements 

I\fica is required to support the console term.inalllO for: 

• kernel-mode debugger 

• lastrgasp messages 

• some primitive off-line diagnostics 

• bootstrap mesaages 

Mica does not i.nitially support user use of the console terminal and thi.indudea not aUowinllht 
user to log into the system via the console terminal. On a VAXlYMS .y.tem tha aupport 11 can.! 
console program I/O mode. 

Mica, depending on the hardware configuration, supports the console ltorare devu:e .. a ILon&t 
device. This device cou1d be used for any operation in whlch an ordina..ry di.k or ta..pe could be_ 
Possible uses of this device are: 

• system and layered-product lcit distribution media 

• system disk (for functions like off-line backup and initial system irtlwlation) 

• storage of primary bootstrap image 

The interface to this device is not architecturally defined, and may vary creally between dtft"mcl 
implementations of Prism systems. 

Depending on the hardware configuration, Mica worka with the configul"altion pf"'OiCUaOt"". The informa. 
tion passed between Mica and the configuration processor is dynamic. Mica dOet not alwall rtbooC 
because the configuration has changed. Possible functions of the configuration proceuor are.. 
• notifying of failed hardware 

• 
• 
• 

running low level diagnostics 

disabling hardware components 

notifying of dynamic changes to the configuration (hot. swap) 

The interface to this device is not architect.urally defined and may vary great between cWf'etelll implementations of Prism systems. 

20.1 .2 Design Highlights 

20.1.2.1 Console Terminal 

!he console terminal is a sel.dom-used device; however, when it is used the information tran.r~ 
IS usually the result of a major (if not catastrophic) system event. 

The console terminal has two software interfaces, synchronous and asynchronous. 

20--2 Console Support 



20.1.2.1.1 Synchronous Interface 

Digital Equipment Corporation - Confldenti,1 and Proprietary 
Restricted Distribution 

The synchronous interface implements its functions by polling, and does not use device interrupts. 

The consumers of this interface are 

• 
• 
• 

kernel-mode debugger 

last.-gasp messages writer 

booLltrap messages writer 

This interface is required to work at an rPL higher then the console terminaJ's IPL. 

The code i, a library of routines that are linked into the image. A function-processor interface cannot 
be used because the code works in environments in which Mica and function processors do not exist. 
The interface ia, however, conceptually compatible with the function-processor interface. 

The code i. very basic. Only simple read-and-write character functions are supported. It is critical 
that thi. code works correct.ly, because the system debugger uses the code. 

20.1.2.1 .2 Asynchronous Interface 

The uynchronous interface implements its functions using device interrupts and does not use polling. 

The consumers of this interface are some primitive off-line diagnostics which cannot be run throught 
the system management interface. 

A function-proceasor interface is used. A full Mica system i8 TWllling when this interface is used. 

Only simple read-and-write character and line functions are supported. Complex Lenninal support, 
like command-line editing, is not supported. This is a level of functions supported by a port. driver 
on VMS. 

20.' .2.2 Conso~ Storage Device 

Mica support of the console storage device is largely dependent on the hardware configuration. The 
hardware conficuration determines whether there is a console storage device accessible to the Mica 
software, and which functions the device is required to support. 

The console storage device is accessible through a standard function processor interface (for example, 
the 10gica1-block-unit interface). Other function processors may be layered on top of the console­
.torage-device function prcx::essor. 

Unlike the conaole terminal, there is not. a separate console storage device for each processor. The 
hardware may implement. the con.ole storage device interface as per processor registers. The console­
.torage-device function processor makes the console storage device appear once per system and not 
once per proces80r. The console-storage-device function processor does not require processes using 
the conaole storage device to have processor affinity. 

The console-storace-device function processor also supports the concept of more than one console 
.torage device (for example, a tape and a disk). Each device has a separate function-processor unit 
interlace. 

Console Support 20-3 



DigItal EquIpment Corporation. Confidential and ProprJelary 
Restricted Distribution 

20.1.2.3 Configuration Processor 

Mica can only support the configuration processor if it is present in the hardware. The. haniwan 
design detennines what configuration-processor functions are supported, and defines the tnterf'~ 

Possible Mica users of these configuration processor functions are hardware-reconfieuntion IORWlJt, 
diagnostics, error logging, and system management. 

Depending on the functions supplied, both a synchronous interface and an uynchronoUi mterlaoe 
are provided. 

The interface to these functions is accessible only by system software. 

20.1.3 Issues 

1. Rock Support 

The console terminal is wel1 defined, and a single implementation of the support runs on aJI 
Prism processors, including Rock. 

The console device is not well defined, and a new implementation i, required for eaclt new 
system. It is not yet known if Rock has a console device, and thus the interlace to the device it 
not defined. 

The configuration processor is not wen defined, and a new implementation i. required for ud! 
new system. It is not yet known if Rock has a configuration processor and thus ita inte.riaoe 11 
not defined. 

2. Multi-processor Support 

The Rock console allows the software to control the processors in the Rock IY'tem throu,t. 
commands defined in the SRM. The support should allow usefu1 and fleJdble control of each of 
the processors. The method for displaying Rock's 16 logieaJ console t.erminata on one physics! 
console terminal wiD require careful design. Mica does not control the display on the phySIcs! console terminal 

J.--4 Console Support 



DIgItal EquIpment CorporatIon - Confldantlal and ProprIetary 
RestrIcted DIstrIbuti on 

CHAPTER 21 

MESSAGE FUNCTION PROCESSOR 

21.1 Overv iew 

Thil paper aummari:tes t.he design and function of the Mica message function processor. 

The mellage function processor passel messages from writing threads to reading threads, thereby 
allowing prooeslea to communicate with one another. One use of the message function processor is 
as a loa for the following kinds of system events: accounting, operator, security, network, and elTOr. 

Thread, Tead and write to the measage function processor through its function processor units (FPUs). 
Firure 21-1 shows how writing threads (Writers) and reading threads (Readers) access FPUs of the 
message function processor. 

21.1.1 Functionality 

The mellage function processor meets the following requirements. 

Shlrlng 

• 

• 

Shared Menage Streama-Reading threads sharing an FPU can also share a single message 
Itrtam, that ii, a lingle outgoing connection from the FPU. By default, each message in the 
stream is read by only one of the threads, which take turns reading. 

Shared Meaaagea-When threads share an FPU but do not share a message stream, each thread 
can read all meaaages written to t.he FPU. 

Selectivity 

• Mellage Filtering-A reading thread can specify that it receive only messages of a certain type. 
For uample, a thread reading error messages can specify that it receive only messages signaling 
disk elTOn. 

• Selective Retention of MeaS&ges-Depending on how a message FPU is created, it a) retains 
messages if no thread is currently registered to read them, or b) discards such messages. For 
irutance an FPU receivin& events (messages) during system startup retains each message until 
• threai registers to read it. In contrast! an FPU recei~ng accounting messages discards each 
message unless a thread i. currently regtstered to read It. 

State Control 

• Enabhng and Disabling Logging-If the state of a messag~ FPU i.s ch~ged from ONLINE to 
AVAlLABLE the FPU rejects new requests to read or wnt.e. UalOg this feature, the system 
m&na&e-r can' enable or disable the logging of various system events. 

• Monitoring Stat.e-When state of a. message FPU c~ges between Oro..tt.INE and AVAILABLE, 
the meuqe function processor nobfies all threads regrstered on the FPU. 

Message Function Processor 21-1 



Digital Equipment Corporation - Confidential and Proprietary 
Restricted Distribution 

Figure 21 - 1: How Threads Read and Write through Message FPUs 

"""'. A£S~GE 

"""'. '-£'''"' 

"""'. KSSilGE 

"""'. KSs.o.GE 

I--j '-£ ..... '" 

""'" MftS~GE 

...,." ME"SSilGE 

SynChronous or Asynchronous 110 

V 

-" 
.) 

• 

V 

> 
J.. 

" V 

"""''' "-"'-
"'0,,,,,,,,, 
"'" 

MESSAGE 

FUNCTION 

""0'''""" ...., 

• • • 

MESSAoe 

FUNCTION 

-''''''' "'IT 

-" ....... 

, 7 

....... 
j ". 

J. ....... 

:> ....... • 

• Writing-Wben writing on an FPU. a thread specifies 0) that the Operation complete immediately 
{write_Mw}. or b) that it complete only when the oorresponding read operation compleies (wnu). 

• Reading-Wben reading from an FPU. a thread specifies 0 ) that the operation remain incompl~te 
until there is a message to read [ read}, or b) that the Operation complete immediately, succeeding 
only if there is currently a message to read fread_now). 

21- 2 Message FunCtion Processor 

c 



Dlglta' Equipment Corporation _ Confidential and Proprietary 
Restricted Distribution 

Other Requirements 

• 

• 

• 

Resource Control-Through quotas, the message function processor limits its use of system mem­
ory. 

Kernel-Mode Support-The message function processor provides buffers so that threads can write 
messages in kernel mode with minimal delay. 

~eriorm~ce Monitoring-The message function processor keeps an accessible set of statistical 
Informabon, such as when the message function processor was most recently accessed, and how 
many Readen are currently registered. 

21.1.2 Design 

Following are the main components of the message function processor: 

• 
• 
• 

• 

Function processor units (FPUs}-The message function processor has one or more FPUs. 

Lists of unread messages-There is one list for each FPU. 

Meuace stream header-A thread reads on its FPU through a message stream header, of which 
each FPU h8J one or more. 

Object eemce routines and 110 function codes-These routines and codes operate on message 
FPUs. (AU entries into the message function processor are through procedure-based calls; there 
are no Iy.t.em threads.) 

There are two types of message FPUs: the first. is always ONLINE; the second is ONLlNE only if 
Readers and Writers both are registered on it. The first type buffers unread messages that lack 
Readers; the IecCnd type discards such messages. 

When a thread creates an FPU, the system charges the requesting thread for the pool necessary 
to create the data structures of the FPU, and for the pool to buffer messages written to the FPU. 
Similarly, whenever a t.hread peTfOnDS a [write] operation on an FPU, the system also charges the 
wnting thread for the pool to buffer the message. (In contrast, fwriu_Mw] entails no such charge.) 

Before accelt1ng the message function processor for the first time, a thread must register on a message 
FPU al a Writer, a Reader, or both. When a reading thread tries to register on an FPU through a 
nonexistent meua,e .tream header, the message function processor creates a new message strum 
header. A reading thread can, however, register through an existing message stream header. The 
registering thread then shares the message stream header (and thus the message stream) with 
Readers already ree1stered on that block... 

A wribng thread assigns a 64-bit mus~e ~pe to each m~8sage written .. The message type sho,",:s 
the kind of messa,e wrltten. When Teglstenng, each re~ding ~hrea? speo6es the message ~ypes It 
accepts. A1\.er registering, a reading thread can change thisspec:1ficabon, and thereby accept different 
messace types. 

21.1.3 Funetlonllinterlace 

The message function processor conta.ins an entry for the following I/O executive service calls: 

• eUlCuU_W 

• ~nchro"ou&_ID_ca1l 

• uutt.aliu_ioJ'Orarmtua 

• CFetJkJpu 

• tkt. .. ..fp. 

• canaJ_1O 

Message FuncUon Processor 21-3 



Dlglta' EquIpment Corporation - Confidential and ProprJetary 
R .. trlctad DistrIbution 

• getJpU_informatWn 

The message function processor implements the following Request I/O function codes: 

• register- Registers a thread as a Writer, a Reader, or both. Specifie. the meuaae typel that. 
thread reads. 

• 
• 

read-COmpletes only after the attempt to read either succeeds or fail •. 

read_Mw-Completes immediately. 
• 
• 
• 

• 
• 
• 
• 

• 

write-Completes only after all Readers have read the message. 

write_Mw-Completes immediately. 

deaccess-CaJJed by the 110 system after all threads have closed their channel. to the melll(l: 
function processor. Deallocates data structures and does related cleanup. 

change_types-Changes the messages types that a thread read •. 

ready...{pu- Changes the state of an FPU from AVAILABLE to ONLINE. 

UlveadY.....!pu- Changes the state of an FPU from ONLINE to AVAJLABLE. 

enable...{pu_stauu:han,ge_ast_Requests that a thread receive an A.ST Neb time the .tate 0(111 FPU changes. 

disable_ast- Disables delivery of state-change ASTa. 

The message function processor has two entry pointe through aJlnchronofU_",_«t1l u.ed only by threads writing in kernel mode: 

• aUocate_buffer-Gets a buffer. 
• queue_huffer- Queues a buffer. 

21-...4 Message FunCtion Processor 



Digital Equipment Corporation - Confidential and Proprietary 
Rastrlcted Distribution 

CHAPTER 22 

PRISM DIAGNOSTIC MONITOR 

22.1 Overview 

22.1.1 IntroductIon 

The PRISM DiarnolLic Monitor (PDM) is the controlling environment for a1l1oadable PRISM diag· 
nostic programs that execute in the on-line 01' off-line run·time environments (described in a following 
J»r8.graph). Ita purpose is to provide the following functions: 

• 

• 

• 

A user.diagnOitic interface, ..... hich ensures that all diagnostic programs present a consistent and 
convenient user interface. 

A tel. of diagnostic services and other routines that facilitate the writing of diagnostic programs. 

A meeh.ani.sm for controlling and monitoring the execution of diagnostic programs, singularly or 
in para.llel 

22.1.2 DI.gnostic Run-time Environments 

For PRISM J)'atems, several diagnostic run·time environments are used. These environments are: 

• Self· ... ' 
The .elf'leSt environment requires no loadable 8Onware. Testa may be ROM resident, or they 
may be built into the hardware as -built-in self teata- (BISTs). These testa are activated by a 
coMole command. 

• Standalone 
Diagnostic programs in the standalone environment may be lo~dable or ROM resident. They are 
free standing in that there is no higher-level software controlling them. 

• Off·hne 
Diagnostica in the off-line environment are not free standing. They require the use of system­
type IOftW&l"e for VO and other purposes. For PRISM, the off-line environment is defined as a 
subset or MICA. with all of the functionality of MlCA except: 

It does not employ paging out. 
It does not require a client. (Testing of links to clients is possible, however.) 

Il can be booted from a atorage device located on a console service processor, if such storage 

deY1ce exista. 
The only uau interface is through a local internal or external service processor terminal. 

It can be used ooly by specific applications such as diagnostics, installalions, or off-line 

backups. 

PRISM Diagnostic Monitor 22-1 



Digital Equlpnwnt COf'poratJon - Conflct.ntJal and Proprlewry 
R_trlcted Distribution 

The minimum hardware needed fOT running the PRISM of'f-li!'e environment are one f~ 
seal TBD ,," ed amount of memory a boot deVlcc Oocatee! ellher on the c:olllOlt~ ar processor, a - z '. 
on one of PRISM's 110 buses}, and a console tenrunaJ . 

• On-line 
The on-line environment is the full operating system, wi~ OT without uten. It. i, aenually the 
case that other users are present while diagnostics are being !-"ecuted. Dependmc on the typeti 
testing taking place and the type of device being tested. a deVlc:e under teI~ mayor may not haft 
to be exc1usively allocated to the diagnostic program ~rfonrung ~e te.ttinC· M 11 the cue III 
the off-line environment, diagnostics are noL free standing and reqwre the uae of Iyt:tem semca 
for 110 and other purposes. 

For PRISM self tests are sometimes executed in the on-line environment. That iI, • particulat 
Bubsystem (~uch as a single processor) is taken off line by MlCA for teating purpotet, but the opetlLlIII 
system is still executing and users are still present. 

The rest of this discussion dea1s oruy with the off·line and on·line diagnostic environment.&. 

22.1.3 Functional Overview 

PDM is used in both the off· line and on·line environments. It providea di8JTloetie usen and dlaano* 
programs with consistent interfaces in both environments. Thus, the same diarna.ties are used in 
both environments, with the same user interface. 

PDM is implemented in two images, running as separate processes. One imap contatns the UIeJ 
interface and the other, referred to as the "PDM serverM

, contains all other funcbonallty. The UJI! 
interface is implemented separately because in some run-time environmenll it resides 10 a Itpan.tt 
system. Specifically, in client.server environments, such u Glacier and Cheyenne, the UIU interf.ace 
resides in a client system, while the PDM server, along with the dlagnostic programs. residel III 

PRISM. Off line, the user interface resides in the external service processor, If one exists.. Othe.nrue 
the user interface resides in PRISM, along with the PDM server. There il a sepa.rat.e u.eer int.e.rfatt 
process and server process for each user. 

The user interface and PDM server communicate via a Remote Procedure Call (RPC) interface It 
is immaterial whether the communicating elements are local to one another or remote· the. RPC 
interface makes communication path differences transparent to PDM. ' 

Each diagnos~c program is ~ sep~te image file, executed as an individual subproc:eu of the PO)! 
:rerver .. The~e IS a s~parate d.ia~ost.ic subprocess for each device selected for testinl'. Thi. is t:ruee\'tf! 
If two Iden~cal deVIces are hemg tested ~y the ~e diagnostic program image. These lubpl""'OC:t:S!d 
can he run 10 para11e~ or they. can be 8;ctivat.e~ senally, depending on the choice of the operator. The 
PDM server commumcates WIth the diagnostic subprocesses via an RPC intuface. 

Fi~ 1 illustrates the layout of PDM and diagnostic s ubprocesses fo r both on-line and off.lint 
envrronments. ' 

22-2 PRISM Diagnostic Monitor 



Digital Equipment Corporation _ Confidential end Proprietary 
Restricted Distribution 

Figure 22-1 Layout of PDM and Diagnostic Subprocesses 

IHE, OR OFFLINE WITH ESP 

CUEm 

"" ESI' 

...... 

ONL 

ClIENT OR ESP os 

WICA SVSTEIroI MANAGEMENT 
USER INTERFACE 

~ USER INTERFACE 

.. "" 
OR OFfUNE ENVIRONMENT 

PON SERVER 

Suo 

1NmV''''' TO POt.I SERVER 

'"'''' 
OM/OIAGNOSTIC 
RfOC INTERFACE 

OFfliNE WITHOUT ESP 

OFFUNE ENVIRONMENT 

POM USER INTERFACE 

! 
""" SERVER 

I I ..... 
~"~ II ~fN)t~ I· . -- --

RPC INTERFACE 
TO POM SERVER }! 

l} POMJDIAGNOSTIC 
APe INTERFACE 

The leque:n ce of operation is as follows: 

1. 

2-

3. 

4. 

5. 

6. 

7. 

8. 

To .tart lhe PDM user interface, a UBer tuues a command at a terminal. (If the Mica system 
menL user interface is present., PDM is accessed from it.) This causes the user interface 
to be activated. which in tum starts the PDM server process. 

manage 

P"""" 
The WItt • via the PDM user interface, &electa the devices to be tested, the types of tests to be 

and other run-time options. executed. 

The Ultr iaues a "start testing" command. 

The PD. M server creates a subprocess for each selected device, passing run-time parameters to 
prooeu. the sub 

The lubp roeeaaes execute. If they need to report elTOn or other information to the user, they 
sending messages to the PDM server. The user is provided with a dynamic display of 

uecution s tatus. 
do eo by 
curn:nt 

When tel tine is complete, PDM notifies the user. Diagnostic subprocesses are not killed at this 
that the user can obtain a run summary or restart the same tesls. point., so 

The user 
step two· 
deleted. 

may re.tart the same set of testa, or change the selected set. This is effectively ~go to 
. Before testine starts, all diagnostic subprocesses created during the previous run are 

When fini ,hed testing, the user exits the PDM user interface, causing the PDM server process 
a.gnoetie program subprocesses to be deleted . and aU di 

PRISM Diagnostic MonHor 22-3 



Dlglta[ Equipment Corporation - Confidential and Proprletllry 
Restricted D[strlbution 

22.1.4 Components of a PDM--based Diagnostic Program 

Diagnostic programs designed to run under the control of PDM are divided Into eeveral eaIlahit 
procedures. These procedures include: 

• A set-up procedure for performing pre-testing operations. 

• A set ohest procedures to perform hardware testing. 

• A tennination procedure for performing post-testing operations. 

• A summary procedure for creating a summary display of test results. 

PDM causes a diagnostic program to execute by seria11y calling the set-up procedure, the ,ejected tal. 
procedures, then the termination procedure. The summary procedure is called if the uar requeltu 
run summary. 

PDM-based diagnostic programs perform hardware testing by issuing YO aylt.em service calla. 1'ht 
quality of error detection and identification for these diagnostic prograou i, dependent upon the rune. 
bonality provided by the operating system's device function processors (FPs). Whenever neceuary, 
device FPs provide special diagnostic functions (such as returning the state of an rudable dem 
registers) for the sake of enhancing system diagnosability. Diagnostic funcbons provided by funC'tlCII 

processors are specified in the chapters for those function processors. 

22.1.5 PDM Design Goals 

Following are design goals for the development of PDM: 

• 

• 
• 

• 

• 

Provide an easy-to-use, interactive user interface t.hat is consistent ror all diacnc.tic procrams 
and identica1 in all run·time environments (on-line Mica, on-line Ultri.z. off line). 

Provide a design that is easily extendible to all future PRlSM implementations. 

Provide a design that can support both Mica and tntn. on-line environment. with minimal 
difficulty. 

Assist in providing diagno~tic progra.m,mers with a method. to easily write • aet or cilagnOlbc: 
programs t~at have a ~n81stent user . mt.erface, that are portable between cbfferent operabIl( 
systems (M1C8 and tntnz), and that wtIl function without modification on fut.ure PRIS.\i lmpl~ 
mentations. 

E~u~ that the design of PDM. does ~ot inherently place limits on auch diagnostic teat chane­
tensl1cs as ~eve~ of err~r det:ection or Isolation. (Specific et'TOr detection and isolation roala art 
spelled out. m diagnostic prOject plans for PRISM products.) 

22.1.6 PDM Design Non.goals 

Following are non·goa1s for PDM development: 

• Provide on-line diagnostic support for a ported PRlSMIUltrix that d l h . " listed below. oes no meet. t. e reqwremen 

• Provide a diagnostic environment compatible with ens.: "" v ~ , . _~ .... ng "IV\,. wagnostic pJVUucta. 

22-4 PRISM Olagnostlc Monitor 



Digital Equipment Corporation - Conlldential and Proprietary 
Restricted Distribution 

22.1.7 Requirements on Other Produets lor Meeting Design Goals 

• 

• 

• 

PRISMIUltrix must be implemented using PRISM/Mica'sllO architecture 80 t.hst. t.he same device 
function proceuora and I/O service cans are available in bot.h operating systems. 

PRIS.\Wltri.x (including workstations) must implement. Mica's Remote Procedure Call (RPC) 
definition, for bot.h local and remote int.erprocess communication. 

A Pillar compiler must. exist for PRISMIUltrix. 

22.1.8 PDM Interlaces 

PDM provides two external interfaces. These are: 

1. A user interface for specifying execution parameters of the diagnostic programs. 

2. A prorrammer interlace, which is a set of "diagnostic system services
w 

used by diagnostic pro­
eN"M. 

22.1.B.1 User Interface 

PDM provides two user interfaces. One is a command line interface. The other is a DECwindows­
hued menu inLerface. The two interfaces provide identical functionality. The command line interface 
is available for all run-time environments. The menu interface can be used only on bitmapped 
terminal •. U.er friendliness is a goal of both interfaces. 

A command Hne interface is provided because: 

• It aIloWf "lCT'ipu" or command files of PDM commands to be used. 

• It woru on any type of terminal. 

• Some usen prefer command line interfaces. Experienced users can iSBue rommands more quickly 
with the command hne interface than with the menu interface. 

DECwindoWf i. used for implementation of the menu interlace because: 

• It i. poaible to produce menus in a format consistent with system management's user interface, 
which alao UUI DECwindowl. 

• DECwindowl provides a convenienL means for producing well·designed, highly-interactive win· 

dows. 
• DECwindows and biLmapped terminals are considered Mstate_of_the-an

M 
and make use of DEC's 

newer IOnware and hardware produCLS. Using these product.s is good salesmanship. 

In the on-hne environment. the PDM user may be located at a terminal on a client system, or may 
use the terminal connect.ed' to a PRISM external service processor, if one exists. Off line, the UBeT is 
located at the PRlSM'. intemal or external service processor terminal (whichever one exists). 

The user interlace allowl a diagnostic program user to: 

• 

• 
• 

• 
• 
• 
• 

Select a tet of one or more device, for testing. 

ChooM which testa to ron on the selected devices. 

Specify whether the devices are to be tested sequentially or in parallel. 

Individually I1.a.rt and atop the selected tests. 
View a run lummary during testing or afl.er testing has completed. 

Obt.am Help information for any PDM user selection, or for the diagnostic tests. 

Run • command file of PDM commands. 

PRISM DI.gnostic Monitor 22-5 



Olgttal Equipment Corporation · confidential and propr.t.ry 
RM trlctlld Distribution 

• Switch back and forth between menu mode and command line mode, if the envlrol'lDlent IUppoN 

both modes. 

22.1.8.2 Programmer Interface-Diagnosti c Services 

The PDM programmer interface is a set of "diagnos~c services" plus ~-defined Pillar in-line pr0ce­

dures and type definitions which facilitate the creation of POM-ba.aed diagnottlc pfOlT&DU. 

Diagnostic services are calls from the diagnostic to the PDM server. They provide the mt.erflct 
between a diagnostic program and the user's terminal. There a~ calls for reading from and wnl1llC 
to the user's terminal. These services also provide such capabilit.1es .. a110catlng Lnd deallocabl!( 
devices, fetching the name of the device under test., or writing erTOr log reconb. 

Pre-defined. in-line procedures and/or type definitions are used to define the vanoUl callable diqDOltie: 
procedures (set,..up, test.. etc.) and local data structures required for • PDM-bued dlacooabc. 

22.1.9 POM Internal Interlaces 

22.1.9.1 Interface a etween the User Interface and the PDM Server 

The interface between the user interface and the PDM server is based on RPC .. Whether PO~ d 

used in a client-server configuration Or it is entirely PRISM resident, the call. are idenucal. Ulitt 
input is fetched from the user terminal by the user intenaee and paued a. an arcument to • ea1110 
the PDM server. Likewise, output is passed as an argument from the server to the UR.T inte.rfact. 

22.1.9.2 PDMlDlagnostic Interlace 

The PDMlDiagnostic interlace is the means by which the PDM serve.T controls the execution of di· 
agnostic program subpTocesses. All communication between these processes il by mean. of an RPC 
interface. This RPC interlace is separate from the user VO RPC int.erface. FaT this intuface. tht 
POM server is actually the client, and the diagnostic processes are considered to be multiple .erven. 
The P~M server a~ts a.s a ~ient. to access the diagnostic'. callable procedure. (8.1., set-up, testl, etc.) 
~a1ls. m ~he ~PPOS1te direction, from the diagnostic programs to the PDM serv~, are &1eo uted. ean.. 
In this direction PDM server are used for request.s of user terminal 110 (to fetch user input or display 
error status) or to send a "testing in progress" indication. 

22.1.1 0 POM's Interfaces to the On·llne an d OH· llne Environments 

In the on-line run-time environments (for FRS, Glacier and Cheyenne) wen acceu POlloi via Mica 
system management's user interface. Off line, PDM is accesaed. through the off.hne user interface. 

In all ";l"-time. environments, terminal VO for implementation of the command line inter£ace is 
accom~lished Vla TBD calls to the runtime environment. DECwindowl i, used to implement the 
menu mterface. 

22.1.11 Other PDM F. atures 

• 

• 

Diagnostic QA 

PDM provides a rudimentary quality assurance Ii t Ii di ~ 
provid~s simple validati.on of the operatio,: of dia~o~~ ::sts b~os~~=~=h 1::ti:-:: 
executing tests for multiple passes, executing testa in random oni:' and oth~r TBO open-tiOOJ. 

Installation 

Installation ofPDM image files involves three. s. ,- . Th para_ l&.sUes. ese are: 
• Installation of PDM image files' to Mi Th ._J 

associated files, such as mes ~n sectio:fiJe e~ files i?cl.ude. the PDM server image all'-' 

interface image for off-line, n:!ESP operatio~'. diagnostic Image fil9, and the. PDM user-

22-6 PRISM DIagnOstic Monito r 



• 

• 

Dig ital Equipment COI"poration - Confidantlal and Proprietary 
Restricted Distribution 

tnstallation of a VAX/VMS-formatted PDM user interface image onto a VAXNMS-based 
client or ESP. 

• Installation of diagnostic image files into the PDM'a diagnostic database. 

Specific installation proceduns are TBo. 

Message eection files 

All A;Scn text for PDM and for diagnostic programs is stored in message section files, to allow 
multiple language support. Language selection is performed on a per-user basis. All message 
sec:tion ~el are stored on PRISM. Mica's message utility will be used for creating, storing, and 
~ferenong all message text. 

22.1.12 Security Issues 

On line, when running PDM from a client system, access to PDM is controlled by Mica's security 
(eatun:l. Refer to the chapter describing system security. When running PDM from PRISM's external 
service processor, the ESP's VAXlVMS login and user privileges control access to PDM. 

Off line, when running from PRISM's ESP, the ESP's VAXlVMS login and user privileges control 
aocetl to PDM. When the user's tenninal is the internal service processor's terminal, any security 
features that exilt are provided by the console service software. These features are TBD. 

22.1.13 Changes trom Rev. 1.0 of "The PRISM Diagnostic Environment" 

• Support for a OiagnosticafUtilities Protocol (DUP) programming interface is not being provided. 
Instead, a "OUP Oialogue Driver" is being supplied. This is a program that ~s under PDM 
control and provides a user interface to diagnostic programs that run localJy In MSCP-type 
controllers. These diagnostics use DUP to communicate with the host processor. The DUP 
dia10eue dnver allowl a user to select which diagnostics to run, and it receives and displays 
el'TOr or other messages from the die.gnostics. 

PRISM Diagnostic Monitor 22-7 





23.1 Overview 

23.1.1 What Is Error Logging? 

Digital Equipment Corporation - Conlldentlal and Proprietary 
Restrlctad Distribution 

CHAPTER 23 

ERROR LOGGING 

Enw loUin, is the c:reation of 8 permanent, referenable record of system hardware and software 
erTOn, along wjt.h other relevant event.. Thi. record is kept online and can be monitored either 
dynamically, as evenLa take place or in retrospect, after event information is stored, to determine 
when error r&to berin to reach a dangerous threshold. The log can also be used for ana1ysis of what 
errors or event. took place and when they occurT'ed. The goal of such analysis is to identify patterns 
that may indicate potential catastrophic failure8 before they occur, 80 that corrective action may be 
l.I..ken before IYltern downtime results. thus providing greater system availability and reliability. 

23.1~ How I, Error Information Siored? 

For PRISM, errors and events are recorded in an error log file. This file is sequentiaJ and resides, by 
default, on the Mica system disk. The rue is called the "system errOl" log file", to differentiate it from 
other potlible enor log filel, such sa the "off· line erTor log file" (see Section 23.1.13). 

23.1.3 Whit Does the System Error Log File Contain? 

The l)'ltem efT'Or lac file consists of error log "records". Each record represents one detectable error 
or event, and contains all of the recorded infonnation aboul that error or event. "Errors" include 
all IOftware-detectable hardware or software errors. -Events" consist of those system eventa that 
are worth notilll because they are useful in determining the cauae of subsequent failures. Such 
eventa include media mounts, dismounLa, and volume changes; hardware configuration changes; 
operatin, Iy.tem parameter changes; Iystem boots, reboots, and recoveries from power failures; and 
the initiation and completion of dia(Oostic programs. 

AdditionaUy, the log file contains a copy of all aystem configuration info:mation avail~ble to Mica. 
System c:onfigurabon information includes the types and nu.m~r of deVlces, and can l~clude such 
detail ... module serial numbers. Whenever a new error log file IS created or the Iystem IS rebooted, 
a oopy of the rurre.nt.tptem configuration information (obtained from the system configuration file) 
is placed at the be(inning of the file. When configuration changes occur, the changes are logged 
as events: . ThUl by KIlnning the log file, the fuJI configuration for a given point in time can be 
determined.. 

Error Logging 23-1 



Digital Equipment Corporation - Confidential and Propr,-tary 
Restricted Distribution 

23.1.4 What Do System Error Log Records Contain? 

Each system error log record contains aJl of the relevant informat.i~n about .the e~ ~r event btin& 
reported that is available to the software reporting the. elTOl'. Such tnfO~abon rmght Include deY1Ct 
register contents, MSCP error report contents, or machine check.frall!e pomters. The t~ ofrecotds 
supported, along with the e.z.act contents of each record, are proVld~ tn ~e full error loggtnl' ebapLer 
AdditionaJly. a time stamp and a sequentiaJ event number are wntt.en 10 each record.. 

Sometimes a single error results in multiple system events, such .. multiple. MSCP m~ .. 
the case of an error being detected and reported at both a low level (e.g., a deVlce FP) and a bieber 
level (e.g., a file system error). In such cases the system attempts to assign ~ne event number "" 
multiple records. (Each IRP created is assigned a sequence number, and deVlce FP. are pnmded 
with a procedure which returns the sequence number and other record header inform. bon.) 

23.1.5 Who Creates System Error Log Records? 

System error log records are created by Mica software. whenever a recordable error or event i, de. 
tected . The general rule is that the process or thread det.e<:ting the error or event is relponlible fof 
creating an appropriate error log record . Thus, a device hardware error detected by a devlce func­
tion processor is reported by that function processor. Or, the record for a rDalchine check exoeptiOll 
is created by the condition handler. The process or thread creating the record provides all of the 
error-specific or event--specifie record fields. 

23.1.6 How are Records Placed Into the Error Log Ale? 

Once a record has been created, it is simply passed as a message to the error menage FPU. A 
separate process, called the "opcom server", is responsible for reading eTTOr log record mesu.pt. II 
d~s this by creating a reader thrud for the error message FPU, called the -erTOT' mesaace reader' 
This thread reads records from the message function processor and saves them in a buffer. (Refer tAl 
the ch apter on operator communications for a discussion of message FPU reader thread •. ) 

Once a TBD number of records have been collected or a TBD amount of time ha.s pal5eci the error 
message reader calls the appropriate 110 service and the recorda are appended to the sy;tem error 
log file. If the system error log file doesn't exist (e.g., the system manager h .. removed or renamed 
the file ), a new one is created. 

23.1.7 How Can the System Error Log File be Read? 

Error log entri~s are .s.tored as b~nary ~rds. To create readable displays of these records. an mTOr 

record formatti~g utili.ty (ERF) 18 proVlded. This utility is able to recognize each type of erTOr 10( 
record. and pro,":de a ~lsplay that can label each field within the display. ERF also hu the capability 
of, fi~ding ~d displaymg subsets of error log records, such as all errors for a apecified device, all errort 
WIthin a. bme frame, ~r all elTOn of a specified type. ERF output is be displayed on a Lerminal or it 
may optionally be wn tlen to a file. ' 

23.1.8 Where Does ERF Reside and Execute? 

ERF resides and executes on the .PRISM system. It runs under the PRISM Dia ostic Monitor 
(PDM). PDM allows ERF to be envu'Onment-independenl Thus ERF Gl ~ Ch 
tntrix.bas.ed PRISMs, or off' line without modification . (See Section 23 C:-~3~ on..J! 80~, ofey!~e~ 
error loggmg. ) .. I-OT a UJseusalon OLl' uu 

Error logging 



Digital Equipment Corporation . Confidential and Proprietary 
Restricted Distribution 

23.1.9 Where Do ERF Users Reside? 

Since ERF runs under PDM, the PDM user environment controls the location of the ERF user ter· 
mln.aJ. Thus,. when the P~SM is online in a client-server configuration, the user terminal can be 
• clie~t ternunal o~ ~RISM. VAXNMS-based external service processor, if one exists. Off line, the 
user mts at PRISM s Internal or es:ternal service processor terminal (whichever one ensts). 

It i~ also possible 1.0 run E~ ~om a remote esc diagnostic site. When th e PRISMlMiea system is 
online, the remote connection lS made through a client. When the PRISMlMiea is off line remote 
acceal is made through the PRISM console. ' 

23.1.10 Who can Access the System Error Log File? 

Special access rights are required for accessing the system error log file online. Access is controlled. 
by the fact that a user mU1Jt enter the system management software in order to reach ERF. (The user 
run • .,.,tem management, selects the diagnostic environment [PDM), then selects ERF.) 

23.1.11 Who c.n Control Error logging? 

Aeceu rightl are required for controlling system error logging. The on1y operator-controllable error 
IOCgull options are starting and stopping the error message reader, and deleting or renaming the 
.,.tem error log rue. Starting and stopping the error message reader can be accomplished only via the 
'Y'tem management. interface. Deleting or renaming the elTor log file is controlled by file ownership 
and protection codes. 

23.1.12 How is the Error L og O.ta Used? 

There are three way. in which error log data can potentially be used. 

• Via ERF, system managers or field service can view error log contents to determine where and 
when errors &re occurring. System reeonfigurations or other cOITeCtive actions can be taken, 
based on t.hi. viewing of the Jog contents. 

• A proces. running under M.ica can monitor t.he error records as they are being produced and 
notify the I)'stem manager and/or a field service office if error occurrences approach a predefined 
threshold. This or another process could also provide a dynamic display of system error activity. 

• An intelligent, ruJe·based program can ana1yze the error records. It ~ be u~ed in an attempt 
to predict future hardware failures based on erTor and event records hemg wnt.ten to the log. 

23.1.13 How Does OH~lne Error Logging Work? 

It i. possible to enable the erTOr message reader under the off-line environment. This is accomplished 
via an ofJ"-bne-only option under PDM. When enabling off-line error logging, the user must specify the 
location and filename for the erTOr log file. It is thus possible to write off-line records to the system 
trTOr Joe file, or to create a separate file ~or off-line reC?rds. Off·line error log ~cords ar~ id~nti.cal 
10 form.t and content to online recorda, Wlth the exception that tbe record contains a flag lOdicating 
the .y.t.em i. in off-line mode. 

23.1 .14 Are There Other Error logging Facilities? 

Th euaee reader: along with the log file produced by it, is the only error logging facility 
e ,~":t ~ be • part of Mica. It may be the case that some implementations 0: PRISM/Miea may 

COQSJ del t&ry erTOT logging facilities, sucb as a log on the external Servlce processor (ESP) 
r;~= ::n:le-det.ect.able events (e.g., crasbe.s or EMM-readable conditions). Such a.lo~ is not 
considered to be • t of Mica, per se. However, If the ESP can send these events to Mica S ~r 

d 
.L par ___ --led In the system error log rue and thU1J become a part of the systems menap rea er, UJey are • ~1i,In.& 

error hittory. 

Error Logging 23-3 





File System 

This set of chapters describes the file system components of Mica. 





Dlgllal Equlpn.nl COfporation • Confidential and Proprietary 
Restricted Distribution 

CHAPTER 24 

DISK FILE SYSTEM FUNCTION PROCESSORS 

24.1 Overview 

This chapter describes the characteristica and interfaces of a particular class of function processors 
refe'r'Ted to as the disk file system function processon, or DFFPs. The DFFP used to implement Mica'~ 
tint file system for locally attached disk storage is called the Files-ll 0082 function processor, which 
i. the subject of Chapter 25, Files-ll 00S2 Function Processor. The first remote disk file system 
to implement this disk file class interface is the distributed tne system client function processor, 
descnbed in Chapter 46, Distributed File Service Client Function Processor. 

'I'hi. chapter describes the functions and I/O parameter records that a function processor must im· 
plement to conform to the di,k tile system clus interface. This chapter does not discuss the functions 
used. to implement operations that are specific to a function processor, such as those that initialize 
&nd ready a function proceaaor and ita function processor units (FPUs). This chapter also does not 
diacuu intemal delign details. 

The Files-ll ODS2 function processor accesses locaJly attached disk storage via a striping, shadowing, 
or MSCP function processor. The DFS Client function processor uses the request/response function 
prooe.saor to acce .. remote tile systems. Since both the Files-ll 00S2 and DFS Client function 
proeeuort implement the disk file system class interface, the Mica Record Management Services 
(R..'!S) can use this interface to access any disk 61e, regardless of whether the file resides on locally 
attached. disk storage, or is accessed through a remote file system. 

This scheme i. illustrated in Fieure 24-1. 

24.1.1 FUn and Dlrectorlas 

Afilt i. a named collection of data that is organized into 512·byte blocks. These blocks are referenced 
by a (Jtrtual blocJt nwnbu (VBN). A file a1so has a set of named file attributes (such as maximum 
record aize, creation date, disk alignment, and so on), which the file system maintains separately 
from t.he 61e'. data. 

A 6le i. named by 8 character .tring. Since there may be more than one version of a file with the 
same character .bing name, both the character string and version number define a filenarm. 

Filenamet are organized into directoriu. A directory na~ is a character ~tring .that represen~ a 
direc:tory. A filename in a directory is ref~ ~ ~. a dlr~ctory entry. Olrectones and files eZlst 
within a given uolume. Every volume has an Impliot root dU'tctory. 

A dvtt:tory path is a list. of directory names. The first element in the list is a subdirectory of the root 
direc:tory. The aecond element in the list is a subdirectory of the first directory, and so on. 

A {ihfJl;l.fM path is the combination . of a filename ~d a directory path. The final element. in the 
directory path i. the directory in which the 61ename IS entered. 

A given file may be entered into more than one directory, using one or more filenames. These are 
known at Jynonyrn filename paths. 

Disk Ale System Function Processors 24-1 



Digital Equlprr.nt Corporation - Confidential and proprietary 
Restrlct~ Distribution 

Figure 24-1 : Location of DFFP Layer In the lIO s ystem 

I User leY-' 1!!251r8l'T1 I 
I Ads I 

I 
RICN .. I 110 SVcem ~a 

I Reaue&l ~ system Serva . TR~D 

I 

e.._ 

I 
I 

I ,., ." 0052 Func;\!O(l PloceuOl' lo.tri:IWd FN s:y.em F~ ~ 
(Cbt>rt FP) 

OlSk Sin FP I 
IReau .. IIR",,*,," Fu~ ~ 

0"", FP 

I I 

I MSCP FP I I DEeNEr I 

I 

I 

i ..... 
""'" 

Each file has a backlink to a directory. Each directory hu a backlink to ita parent directory (except 
the root directory, of course). The filename path, as represented by the aequenc:e of backlJ..nks from. 
given file, is referred to as the file's backlink path IUlrm. 

24.1.2 Volume Sets 

In a disk file system, the largest logica1 unit of a disk Itructure i. a volume, or a collection of volumes. 
known as a volume. set. When volumes are organized into volume sets, the entire volume lel i. treated 
as a single volume. FOT example, file I/O operations, such as reading and writing. are done on ~ 
volume set, rather than on the individual volumes of the set.. The implement.abon of volume .. U II 
optional, and is discussed here because the Files-ll 0082 function processor (Chapt.er 25, Filu-ll 
OD82 Function Processor ) includes volume sets. 

Since the interface discussed in thls chapter deals with volumes and volume sets tranparently, the 
term volu.me is used to refer to both volumes and volume set.s. 

24.1.3 Objects Used By Disk File System Function Processors 

Disk file system function processors deal with function processor unit (FPU) objec:l.I and channel 
objects. The general use and definition of these objects is explained in Chapter B. 110 Architecture. 

24.1.3.1 Function Processor Unit Objects 

A DFFP repre~ents a si~gle disk vol'!me or a volume set with a single FPU. known .. a uolumt 
FPU .. The details of creating an~ delet:i.n:g a volume FPU vary with the specific implementabon oftbe 
function processor. These details are dlscussed in Chapter 28 FHe Management Utilities Chapter 
25, Files-ll 0 0 82 Function P rocessor, and Chapter 46, Distributed File Service Client' Fundlon 
Processor. 

24-2 Disk File System Function Processors 



Digital Equipment Corporation - Confidential and Proprietary 
R.strlct.cl Distribution 

24.1.3.2 Channel ObJects 

A channel object is used to perform disk file system class interface functions on a volume FPU. A 
channel URS the standard ioScJpu_aecess function described in Chapter 8, 110 Architecture to access 
a volume FPU. Such a channel is refen-ed to as a uolwne channel. 

Once a file has been accessed. on a volume channel, that channel becomes known as a file channel. 

24.1.4 Other 110 Architecture Support 

The DFFP must provide a function processor definition (FPO) object, which defines the entry points to 
the procedures within the function processor. The funclion-proces80r-apecific support for this object is 
discussed in Chapter 25. Filea-ll 0052 Function Processor and Cbapter 46. Distributed File Service 
Client Function Processor. 

24.1.5 Disk File System Class Interface Functions 

Following is the list. of function codes that. are required for a OFFP to conform to the disk file system 
class interface. 

1. File Access and File Creation: 

• ioScdfile_cecess../i/e- open a file (transform a volume channel into a file channel) 

• loScdfile...,SkDceess../ile- close a tile 

• ioScdfile_creauJile- create a new disk file and enter it into a directory 

2. Data Transfer: 

• ioSc_dfile]eadJilejiata- read virtual blocks from the file into memory 

• ioScdfile_wriU.file_data- write virtual blocks from memory 

• ioScdfile_securify_erase- write a security erase pattern to virtual blocks in the file 

3. Directory Entry Search and Modification: 

• io$c_dfileJ«1d_directory- read directory entries from a given directory to provide for name 
wildcarding by services using the DFFP 

• io$c_d/Ue_modi{Y_dir _entrie.s- make a new directory entry, remove a directory entry and 
delete the file 

4. Read and Write File Attributes: 

• ioSc_d/ileJead_ottributes- read file attributes, directory backlink path 

• w$c_dfile_wrlte_cttributu- write file attributes 

5. File Stora,e Management: 

• ioSc_dfile_olloccle_Btorage- allocate free storage on the volume to a file 

• io$c_dfil~_deallocate_storage- free and return blocks to the volume pool of available blocks 

6. Memory Management Support: 
• io$c_dfile_mmcloM_occus- clone file access types to another channel (for use by memory 

management) 
• toSc-,lfue..JXlgeJead- read pages into physical memory (for use by memory management) 

• ioScdfile..JXl8e_wrt1e- write pages from physical memory 

Disk File System Function Processors 24-3 



DlgltaJ Equipment Corporation · Confidential and ProprMot.ery 
R_trict«i Dletrlbutlon 

1. Volume and Channel Query Specified by I/O Archit.ect.ure: 

• W$c-BetJpu_information- must return the value ioSc_dfiJf!_'ntfrfoce_clQ.l' (or the .tandard 
item code ioSc_item_interface_class 

• io$c-BeCchanneCin{ormation- mus~ support. the it.e~ io$c_Ilf!f71_dfih_quomJllfo to return 
information about disk usage and diskquota IDformation. 

24.1 .6 Other Topics 

The following topics will be addressed in more detail in the detailed demen chapter.: 

• Failure handling 

The DFFP may encounter unexpected errors during the ~ec:ution of 110 reque:'tI i,:,ued 10 tht 
FPUs layered below it. It must provide a method of handhng these errors, which WlU probably 
consist of passing the error code back up to the level from which the reque.t wU Invoked. 

A set of standard status codes are defined by this interlace. 

• Caching 

Caching is optiona1 in that it is not required to make the func.tion proceuor work.. How,"" 
caching may be required for acceptable performance levels. Specifically, this interface effee­
tively requires a directory name cache similar to that implemented by Rl\1S 10 the VMS .,-te:m. 
Directory name caching is necessary because files with full directory path names art .pecfied.. 

• Maintenance of disk integrity 

Utilities are provided to verify and maintain disk file system structure (or Filu-ll 0052 v0l­
umes. These utilities are discussed in detail in Chapter 28, File Management UtilibeJ. 

• Access control 

Files and volumes must be protected from access by unauthorized users. Thi. proLecUon 11 

provided by access control lists (ACLs). When a channel i, created to • volume or a file, the: 
ACL is ~ecked against the ide~ti.fiers of the user invoking the requelt. A.cces. i. derued to Lb_ 
users WItbout proper access pnvileges. Security is described in detail in Chapter 10 Secunty 
and Privileges. ' 

• Mount verification 

I! a mounted volume goes off line for any reason, it needs to be checked when it comel back oa 
line. The ~FF~ can request to receiv~ an ~ when the volume comel on line, triggenng the 
~ou~t venficati~~ pro~ss. Mount venficatlon IS the process of enauriD, that the correct volume 
18 S.till. ~ounted, If. not, It should. retu:n an error status. No operations are allowed on a volume 
while It IS un~ergomg mount venfication. This topic is addressed in detail in the lpec:inc functiOll 
processor deSign chapters. 

24-4 Disk File System Function Processors 



Digital Equipment Corporation. Conlldentlal and Proprietary 
Restricted Distribution 

CHAPTER 25 

FILE5-11 00S2 FUNCTION PROCESSOR 

25.1 Overview 

Thit chapter describes a disk file system function processor that. suppor ts File~ll On Disk Structure 
Level 2, Version 3 volumes (0052-3), referred to hereafter as F llFP. The FllFP conforms to the 
interface described in Chapter 2-4, Disk File System Function Processors, except that the io$c_add_ 
",_volurn.e_,et function is not implement.ed. 

Thi. ehapter presents the internal operations and algorithms used by the FllFP disk file function 
proceUOT interface fOT 0082-3 volumes. This section summarizes the data Itructures and BOrne of 
the methodl used to implement the FUFF. The relationships between the various data structures is 
shown in Figure 2~ 1. 

25.1.1 FlIe .... 11 0052-3 Data structures 

Thi. aection describe. both Filea-ll·specific data structures and coromon disk fi le function processor 
data ItruClures that have File&-1l-speci6c fields. These data structures are: 

• Function processor unit object. 

There is one FPU object fOT every virtual volume; it is created when the volume is mounted. The 
FPU object contains: 

Wit head of the file object cache 

References to channel objects for system files 

Pointer to the file object container for this volume 

Primary volume control block 

• Volume control block (VCS) 

'There is one vca for each volume in the volume set. The vea contains: 

Volume status infol'mation 

_ Volume parameters and default values 

_ Data from the indes: and bitmap files 

• Relative volume table (RVf) 

There il one Rvr for each volume set. The RVf contains a pointer to each VCB in the volume 
.. t. 

• Volume set continuation 
A volume set continuation consists of a RVT and one or more vcas, depending upon the number 
of volume. in the volume set. 

• File object 

Ales-11 0052 Function Processor 2>1 



Digital Equipment Corporation· Confldantlal and Proprietary 
Restricted Distribution 

The ACL on the file object is a copy of the ACL from the file h eader 

The file object contains: 

A copy of the file header data, such as : 

• 
• 
• 
• 
• 
• 
• 
• 
• 

Structure level and version 

File ID and sequence number 

File ID of next extension header 

File ID of directory which contains primary entry for this file (baddink) 
File attribu tes 

File access privilege levels 

File protection code 

Highwater mark 

Security classification mask 

Status: marked for delete, or open for shared/exclusive read/write 

Number of channels to this file 

Access matrix 

Reference to the file 's map pointer block (l!.fP8) 

Data security erase pattern 

• Map pointer block (MPB) 

The map pointer block contains retrieval pointers derived from the file header map area. Each 
map pointer entry describes one logical extent of the file . The file object conLaitu a pennla' to 
the file's primary MPB. The MP8 is designed to provide very fast mapping of file virtual blocks to volume logical blocks. 

25-2 Flles-11 00S2 Function Processor 



Digital Equipment Corporation ~ Confidential and Proprietary 
Restricted Distribution 

FTgure 2~1: Relationship of Flles-11 Data Structures 

V.",. Set eo"lI.I&bOft 

RVT 

FPIJ """" r "'"""" ",-, _.RVT 
-~-fit too .• 

r ,...., 10 I"'"IIY vee veo 

, 
veo 

File Ob K\ Conlan« 

File ObJIICI 

,ietoo .• --
25.1.2 Threads 

The FUFP may complete a request in the context of the calling thread by passing the request to 
the logical block UNt (LBU) function processor described in Chapter 15. Direct Access Mass Storage 
Functlon ProceuoTS. OT it may use system threads for further processing. Control operations, such 
u access and create, are paased off to a system thread. Reads and writes are passed on to the next 
lower layer, if they can be done with a aingle 10gica1 lIO operation. In order to free the user's thread, 
• .ystem thread ia uaed to perform readlwrite operations that require more than one logical UO to 
complete the request. During mount verification, a11 reads and writes are queued to a queue serviced 
by one or more aystem threads. since the function processor is stalled until it ret.urns to the ONLINE 
atate. 

The proceuin& of a request may result in a recursive entry into the FUFP itself, or it may invoke 
logical I/O to the LBU layered beneat.h the FI1FP. The FUFP can call itselflo perfonn 110 functions 
.. needed to complete a request.. The create function, for example, calls the FUFP to read the index 
fiJe . Recursive calls to the FUFP use the same aystem thread that is processing the request. 

25.1.3 FPU procedures 

The following procedure. are called by direct entry to the FllFP via the FPD: 

• lruualizeJpu-Init.ialiu a newly created FPU object.. 

• lnitialize_io_parameten--Allocate and initialize an IRP for a new e$execute_io request. 

• Execute_io-Perform an UO function (functions are listed in Chapter 24, Disk File System Func­
tion Proc:eason). 

• SynchronoUJ_i03all-Not lupported. 

• GetjpuJruormation--Retrieve information related to an FPU object. 

F1les-11 0052 Function Processor 2$-3 



Digital Equipment Corporation - Confldantlal and proprietary 
Restricted DIstrIbution 

• 

• 
• 

Delete fpu-Finish dismounting the volume represented by the FPU. ~UJe the ~~U ob,ect 10 
beeom; unavailable for further 110, and delete the volume set conltou.lton block. If It emu. 

Removejpu-No operation. 

Unload3p-Insure that all data structures are deallocated before delebng the function proc:eaa 
image. 

• Configure3p-Not implemented by FllFP. This ill an entry for function processors IUpportmc 
hardware devices. 

25.1.4 Mounting a volume 

Mount uses the io$c]eatiyJpu function code to complete the mount PT'OOeU, wluch includes: 

1. Create and initialize volume set continuation data structures (RVf, ves.), ifmountinc a volu.me 
set 

2. Read and check the home block and the volume label 

3. Initialize the FPU from the home block 

4. Create an object container to bold the file objects fOT the tiles to be opened on the vulume 

5. Request delivery of an AST to invoke mount verification when the LBU(s) layered beneath the 
FllFP makes a state transition 

6. "Open~ the index file (this is a simulated OPEN, since the OPEN function can not be invoked 
until the index file is opened) 

7. Open the system files (storage bitmap file, master file directory) and fill out the volume object 
fields from these files 

8. Check that the volume was properly dismounted; if not, perform a rebuild 

25.1.5 Dismounting 8 volume 

Dismount uses the io$c_unreadyJpu. function code to complete the dismount process. wruch indudel' 
1. Mark the FPU for dismount 

2. Wait for all user files to close, then: 

1 . 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

Write to the volume SCB indicating the volume was properly dismounted 

Close the system files (storage bitmap file, master file directory) 
Close the index file 

Retimove the request for an AST from the LBU layered beneath the FllFP on a state uu-81 on 

Delete cached file objects 

Delete cache tables 

Delete the file object container 

Delete the volume set continuation data struct if ., . 
UTeS, Q.I$lDounbne a volume set 

25-4 Flles-11 ODS2 Function Processor 



25.1.6 Volume Sets 

Dlgtta( Equipment CorporaUon - ConfldenU.1 and Proprietary 
Rastrlcted Distribution 

MICA supports existing ~{S volume lets. Complete volume sets must be mounted: there is no 
support for mountmg incomplete volume seta. The wSc_add_to_uolurne_set function is ~ot supported 
by the FllFP. !herefore. volume. seta cannot be created or expanded in MICA. MICA supports stripe 
sell that proVlde the same 8eT'VJce as volume sets as well as more efficient disk space utilization 
with better load balancing. ' 

25.1.7 Object N.mes 

The FPU object is named by the mount facility. The FPU nonnally has the same name as the volume 
name in the volume home block. If an FPU object with the same name already exists, all or part of 
the name or the LBU beneath the FPU is appended to the name. 

File object namet are the same as the file's file 10. 

There i. an accesa matrix associated with every open file. The access matrix contains infonnation 
about the C\lrTent access modes to the file: read, write, execute, shared read, and shared write. The 
UJ$c_dfiJ.e_occu8 (ope n) function checks the access and sharing modes of the open request with the 
fiJe'. acces. matri..z. If access to the file ill granted, t.he access mode of the open request is stored in 
the channel object, and the rue's access matrix is updated to include the CWTtmt access mode. The 
chan.nel object win not contain a pointer to the file object unless access to the file has been granted. 
Un.hared read access can be overridden by an entry in the volume ACL. 

25.1.9 Secur1ty 

An ACL i •• !lociated with a volume object when the object is created. The volume ACL is derived 
from the VOLACL.SYS file, and is checked whenever. channel is created to the volume. 

File protection i. managed by access conlrollista (AClA) associated with a file object when the object 
III ereated. The file object. ACL is derived from the file'. ACL in the file header. The ACL can be 
modified (with write privilege) using the wSc_write_attribut.es function. 

25.1.1 0 MIIpplng & Retrieval Pointers 

When a file i. acoessed ill map pointer block (MFB) is built from the map area of the file header. 
The MPB contain. retri~val pointen that map the virtua1 blocks of the file to the logical blocks of the 
volume Each retrieval pointer describes one file extent. A file extent describes a contiguous group 
of 10Clca1 blocks allocated to the fiJe , 

25.1.11 ReldJWrlte 

'IWo kind. of read/write functions are processed by the FllFP: paged I/O for memory management 
and image activation, and virtual I/O. For virtual ~O, the F.llFP must build a host transfer list 
(HTL), which map. the I/O buffer virt.~l . a~dresses mto phYSIcal address~. The Fl~P al80 l~ks 
the physical page. lOto memory before lruti!-ting the I/O tran.sfer, The mapping and locking functions 
a.re performed by a system service. For p8glng I/O, the HTL 18 already bwlt and the pages are locked 
by the memory management facility. 

All file system on-disk data structures are written using a careful write strategy that insures their 
inLevity in the event of a system crash. 

Ales-11 OD52 Function Processor 25-5 



Dlglta' Equipment Corporation· Confldentla' and Propr'-t.ry 
Restricted DistrIbution 

25.1.12 Caches 

The FllFP uses a caching mechanism to provide faat acce •• to the conLenta of the (olJOWUI(".. rues: 

• Index file bitmap and 61e headers 

• Master file directory and other directories 

• Storage bitmap 

The FllFP also maintains a cache of deaccessed file objecta to avoid the COlt 0{ rereadJt1J the !It 
headers. Directory file objects, and possibly other file objects, are c:a~ed The cached tile ob}edlltl 
available for deletion if system space is needed. No other cache. are nnplemented by the FUFP 

25.1.13 Other Topics 

• Cancel I/O 

The FllFP provides for I/O cancellation under the fol1owina conditio",: 

When a request. is queued to a system t.hread 

- While waiting for mount-verification to complete 
• Condition values 

The FllFP maps t.he IOSB condition value returned by the lower-layer LBU into it. own Itt. 
values. Details on I/O status condition values are TBD. 

• Mount verification 

Mount verificaUon ;s ;mplemented on a 10g;ca1 volume bu; •. Tho verific:abon procod"", che<h 
that the borne block matche, that of the FPU object. Whilo undo,.,.,,,. mount venfica"'" 011 
operations on t.he volume are stalled. This feature can be Switched ofJ"whe.n a volume it mOWltei 

• Quotas 

Quota, are ;mple~.nted by. quota file, as described ;n Chapter 24, O;.k File System Funcboa 
Processo .... There 's one entry per user contahun, the u5er', quota, amOunt of space used, ..,; 
?verdra/l. Quot .. can be enabled and wsabled on a per· volume basis. \Quotas";l1 nol be Implement.ed at FRS. \ 

25--0 Flles-11 OOS2 Function Processor 



Digital Equipment Corporation - Confld.ntl.1 and Proprl.tary 
Restricted Distribution 

CHAPTER 26 

RECORD MANAGEMENT SERVICES 

26.1 Overview 

Mica R..l\1S it a set of generalized library routines that assist user programs in processing and man­
aeml file. and their cxmtents. The interfaces provided by Mica RMS routines are used to unifonnly 
acces. file. within the defined client-server environment. 

MIca RM.S is deaicned to meet several goals: 

• 

• 

• 
• 

Ease of~This goal is reflected by the user interface design. Mica RMS services are accessed 
throueh procedure calls. Each service procedure has a few (less than a dozen) parameters, 
many of which are optional and default to often-used values. The parameters appearing in the 
interface are Lhe common1y-used file attributes, the required buffer pointers, and the outputs 
from the services. For infrequently used input options, the services provide an input parameter, 
which is an item list. One advantage of using an item list is that the options can be enhanced 
Wlthout affecbng the user interface. 

Fut response time--The data retrieval services are designed to minimize run-time decision 
making. 

Device independence--Mica RMS, like VM:S RMS, offers device-independent file handling. 

Modularity-The RMS implementation supports the easy addition of enhancements. For exam­
ple, supportin, a new device type or file organization is fai rly straight·forward. Implementation 
avoids spedal case code as much as possible. 

An overview describing the Mica RMS framework is presented in the following order: 

• A list of RMS functions that are available in the Mica system and a list of VMS RMS functions 
omitted from Mica RMS 

• Mica RMS programming interface sampler 

• A short note on overall request flow through the Mica Rl\1.S services 

26.1.1 RMS Functionality 

Much of the R.1\1.S file processing capabilities are inherited from the unlerlying infrastructure of the 
Mica YO subsystem. However, record·level management is provided only through RMS. Mica R.\1S 
services operate in user mode and allow user programs to: 

• Pane and wildcard file names. 

• Specify multiple file organiutions (sequential, indexed or relative). At FRS, only sequential files 
are supported. 

• Specify multiple ways to share files and enforce access contr:ol to fi les (shared delete, ~et, put, 
update nil and user-provided interlocking). At FRS, the avaIlable support allows mUltiple pro­
celSel i.e read .hare a single disk file. Also, a file may be shared between a single writer and 
mutiple readers. 

Record Management Services 2~1 



Digital Equipment Corporation . Confidential and Propr5et.ry 
Restrleted Distribution 

• 

• 

• 

• 

Specify multiple device types for record access, At FRS, RMS .upport.t Vc. to dilk d~cdr 
Paths are also provided for conducting 110 to terminal devices connected to the client IJ'It.t=s. 

Specify mu1tiple record formats (fixed, variable, VFC, stream, streamCR, Itre.amLF and _ 
fined). 

Transparently access files through the local file system or throueh the distributed fiJe IJ'1I«I 
(DFS). 

Specify multiple ways to lock and un10ck records. At FRS, there i, no support available forl"l!Cl:lr! 
locking. 

The follOwing functions are not available at FRS, but are planned for future releases: 
• 
• 
• 
• 

File organization-Indexed and relative files 

File access--Shared write access to disk files 

Record locking-Ways to lock and unlock records 

Transaction logs-Joumal file 110 operations 

The rest of this section lists the VAXNMS R..'\1S function. that are not planned to be included . Mica RMS functions. 

• 
• 
• 
• 
• 
• 

Transaction log (journal) of file 110 operations 

Asynchronous 110 operations 

Direct record access to mailboxes or message devices 

Remote file access and task·to ·t&sk communication by way of DECnet 
Implicit file spooling 

DECK and EOD checking 

• Multiple record streams 

• File disposition option submit COmmand file on execution of RMSSCLOSE 

• Set date and time for rue creation, revision or backup 

The 110 subsystem functions not replicated in Mica Rl\iS are: 
• $ENTER 

• $EXTEND 

• $NXTVOL 

• $REMOVE 

• SSPACE 

Further, the following system services are t ail b 
SYS$SETDDlR. SYS$SETDFPROT and S';;:1T

av 
a I. through M;ca R.'dS: SYSSRMSRUNOO\\'N. 

is a lso not available in Mica RMS. ' . The undocumented VAXNMS RMS funcbon $MOOF'Y 

26-2 Record Management Services 



26.1.2 RMS Programming Interface 

Digital Equipment Corporation. Confldantlal and Proprietary 
Restricted Distribution 

MIca ~S 8en~ces are provided by a aet o( useT-mode run-time library procedures. The procedures 
ate .des1ened M.th the two. goals o( ease o( use and 8exibility. The RMS user specifies various file 
at,tributes to swt the reqwrements o( a particular application. There are two categories of 61e at.­
tnbutes: the ones that are us~ for file-level functions (euch 8..8 Create and Open) and the ones that 
are used for record-level (unCtions (euc~ as Get and Put). The attibutes are specified to the Mica 
~.MS ~ces by parameters. The attnbutes appear either as explid parameters, or 8..8 options in 
Item hsLl. 

The M,ica ~sk file system anigns a fil,creference to each file, The file_reference can be used to accese 
• file effecently. The fikJ'eferen.ce is not identical to the VMS file !D. The Mica file system does not 
cuarantef! that a fileJ'efuen~ can always be used to access a file. This implies that while accessing 
or deleting a file, the file specification must always be provided. 

Each ~1iea RMS service returns a completion status. The etatus codes are not yet specified. 

Samples of Mica RMS services are shown below. 

In oroer to 1.0 open a file , the user caJls the Open (rm.s$open) procedure. The rms$open procedure ie 
defined lUI: 

PROCEDURE rm.$opeo( 
IN file_o.me ; .tring(·); 
IN default_tile_atrin9 : atrinq( *) OPTIONAL; 
IN quick tile ret in : rma$tile ret identifier OPTIONAL: 
IN .ecea; requeat-: rmaStile .cceaa-control OPTIONAL; 
!N open_input_optiona : POINTER exec$ite~_list_type _ NIL; 
OUT file handle : rma$tile handle; 
OUT tile-intormAtion : rmaiatandard !ile into OPTIONAL; 
OCT reaultant tile 1 rm.Stile reter.nee OPTIONAL; 
OCT quick til. ret out: rmaSfile ret identitier OP~IONAL; 
) ltE'!ORNS-natua; - - -

The callu specifie. the name of the file that is to be opened. using the required input parameter 
filtJKl~. Ulin&, the filtJKJrM, and the optional parameter default.../ile_striTl8, RMS forms a fully 
qualified file name, which can then be used to access the file. A fully qualified file name has the 
follOwing format: 

volume_name: {directory_apeci!ie.tionJfile_nam..type;veraion 

A file can be acceseed etreciently i(the optional input parameter quiclt..fileJef_in is specified together 
with lhe /iIt_1I4n'U!. The parameter quicJcJileJef_in conlains the file's fileJeference (as maintained 
by the M.ica file system), and the voluTM_ob;tcCitl (8..8 maintained by the Mica Object .An:hitecture). 

The Tm&$open lernce returns a status containing the results of the operation, and a filejl4ndle. A 
filtj14ndJe is a pointer to a data structure that refers to a file context, maintained internal1y by Mica 
RMS. The user is required to input the file handle for subsequent data retrieval and management 
.. nices. The user does nol interpret the contents of the file handle. 

Mer openine a rue. the caller can perform 110 operation. to the file by calling the appropriate data 
retrieval or data output service. The 110 services are classified according to the record access mode, 
to shorten access path lengths. The record access mode can be sequential. random by r~:cl position 
(RRP) or random by key. 110 operations to files are also dependent upon 61e charactensbcs such as 
the fil~ orpnizatJon, record format and device on which the file reS;ides . These file characteristics 
are set at the time the file is created. and are known when the file IS opened. RAiS sets up a data 
retrieval and data output vector according.to the .file characteristics, for each d~ta acces9 mode. The 
caller, however. limply invokes the genenc retrieval or output procedure, stndly based upon the 
record a.eceu mode. 

FOT eumple to get a random record by the record's position from a sequential disk file with variable 
length record the user simply calls rm.s$geCrrp procedure. which is a procedure of the nnsSptype_ 
Bd_"p type. internally, however, the call is handled by the procedure geCf7'p$~qJ1,sJt_f)(c, which is 
abo of rm..spty~~etJ'rp type. 

Record Management Services 25-3 



Digital Equipment Corporatfon ~ Confldantfal and Proprietary 
Restricted Dlstrlbutfon 

Examples of sequential Get an u gervtce d P t '9 are shown below: 

TYPE rm.;$ptype 9"et sequential: PROCEDORE ( 
N '1-1 h:-~dle ' rma:S~ile handle; in! OPTIO •••• 

I ... ._..... " 1 'POINTER rmsSr.eord..?Osition_ 0 ...... IN in reeord-P0s1t on , 
IN mo;e mod. : booleen - FALSE; Ir 

i o-tions' POINTER exeeSitem list_type _ N _; 
IN n_ p '. ff . BYTE DATA'* ' CONFORM OPtIONAL; OtlT user input u er, - CONFORH OPTIONAL: 
OUT read-data buffer-POinter : POINTER anytyp. 

OtlT read-data~)ength : integer OPTIONAL; d sition into OPT 10m.!.: 
OOT out_reeord-position : POINTER rma$recor -PO _ 
) RETURNS status; 

rm.;Sptype-put_sequential: PROCEDORE ( 
IN file handle : rma:S~ile_handle; 
IN data-output buffer, BYTE_DATAC*) CONFORM; . 
IN in reeord-position : POINTER ~Sr.cord-PO.ition_into OPtIOSAL. 
IN in-options: POINTER exeeSitem_liat_typ. - NI!.; OPTIONAl; 
OUT out_reeord-poaition : POINTER r~Sr.cord-PO.ition_into 
) RETURNS status; 

'Ib close a file, the caller invokes the Close (rrns$clo~) service. 

26.1.3 Sample 1/0 Request Flow 

1. An application cans rms$open to open a file MYF'ILE.TXT. 

2. The rrnsSopen service processes the file name and determines that: 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

• The volume name is MYVOL 

• The directory in which the file is to be opened is BETA 

• The file name is 1fYFILE. TXT 

The rrnsSopen service calls e:r.ecStranslate_objecCnam.e with the volume name ItnnJ" MYVOL as 
input parameter to obtain the FPU object lD. 

The rm.sSopen service calls e:r.ec$create3han~1 with the FPU object 10 .. input to obtain the channel object ID, 

The rrns$open service accesses the channel to obtain the necessary lecurity clearance. 

The rmsSopen service calls e:r.ecSreQU4!st_io with input parameten: channel ID, 10SB, rundicll 
code ioSc_dfi1e_access..file. the file name with the complete directory path and the file attnbutt list to access the tile. 

The rms$open service builds a file context. and retu.rna a tile handle to the user. A data-retnenl 
vector has also been set up for all I/O operations. The vector enb'iea are «(or example): 

9.t_seq$.e~dsk_fixed 
put_s.q$se~d.k_!ixed 
get_rrpSs.~dsk_fix.d 
q.t_key$se~d.k_fixed 
put_k.ySse~d.k_fixed 

At this point, I/O operations can be done on the file. 

The user closes the file by invoking the rms$clo~ service. The rm.r$ciou service checks that 
there are no 1I0s outstanding on the file , writes out the dirty buffeTI and caUs uec$rrquaUD 
with the function code io$c_d/ile-,uaccess to dose the file. The rrn.a$ciout service deletes the L(l 
channel by calling exec$delete_object_id. The file conten area. is deallocated and the poinW '" the file context area is initialized to nu]]. • 

26--4 Record Management Services 



Digital Equipment Corporation _ Conlict.ntlel end Proprletlry 
R.strlcted Distribution 

CHAPTER 27 

CACHING 

27.1 Overview 

The p~rpose of this chapter is ~ describe the mechanism for caching disk data blocks in the :M,iea 
operabn, system. The chapter lS not complete. The Mica system a.n::hitects recognize the need for 
data caching to improve application 110 performance. The design of the caching mechanism, however 
i. deferred until further infonnation i8 available on the performance of the Mica VO system. ' 

The purpose of the chapter overview is to summarize the important issues related. to data caching 
in Mica. Mica haa a number of features designed to improve system 110 performance that are sum­
mariz.ed below. The decision to defer data caching recognizes these performance features as being 
sufficient for the initial release of Mica, given the available engineering re80un:e9 and development 
schedule. 

Future work on the data caching design will replace this summary. 

27.1.1 Issues Related to the Design of a System-wide Data Cache 

• Mica has a number of features in place to reduce the need for a system-wide data cache. For 
example, meDlory management caches segment object descriptors and images on the standby 
pag'e list. The image cache reduces a significant amount of disk liD related to image activation 
(or prorra.ms that are re-invoked during a short time. In addition, RMS &180 supports multiblock 
data buffering for sequential read-ahead and write-behind. Multiblock 110 improves application 
110 performance by transferring larger units of data on each lIO request. 

Significant VO performance improvement is also provided in Mica by disk striping. Applications 
in the comput,e..int.ensive. scientific domain using large amounts of data will experience signifi. 
canL burst rate lIO performance improvement because of this feature. New applications can also 
u.e the large address capabilities in Mica to map files into the application's address space. 

• The initial release ofMiea is designed to support Quartz as well as the compute-intensive server 
environment. Quartz will have to implement. a cache that is integrated with the Quartz system 
recovery t.ec:hniques. Quartz would have to bypass whatever data cache is implemented in Mica. 

• The Mica ',Item architects are also considering fut.ure designs for recoverable index files in 
RMS. The design of recoverable index files leaves no choice but to cache them directly in RMS. 
Caching in R.1\1.S puts t.he cached data closer to t~e ~r of th;e data ~d allows grea~r control 
over the cache contents. A disadvantage of caching In RMS 18 t.he difficult.y of sharing cached 
datil amoung separate users. 

• The 110 characteristics of key target applications for Glacier exhibit. patterns that will not benefit 
from. system dat.a cache. In particular, applications that ~ad a small data set, perform ex­
t.ensh'e computation or simulation of discrete events, and wnte large sequences of event records 
will not benefiL &om a data cache. 

Caching 27-1 



Digital Equipment Corporation - Confidential and Proprietary 
Restricted DlstrlbuUon 

27.1.2 Summary 

The overview summarizes the relevant issues in the decision toO defer the desirn of data cacluD( ill 
the system. Future work on data caching will use performance data from application. tunninr GIl 
Mica systems to determine the requirements fOT data caching. 

27-2 Caching 
• 



Digital Equipment Corporation - Conlldentlal and Proprietary 
Restricted Dlstrlbutlon 

CHAPTER 28 

FILE MANAGEMENT UTILITIES 

28.1 Overview 

File management utilities are system management tools for managing disk and tape devices . In 
If:neral. the utilities in Mica support the same functionality 8S the VMS utilities of the same name. 
AddtuonaJ functJonality i. added to the Initialize and Mount Utilities for managing virtua1 devices 
described in Chapter 16, Direct Access Mass Storage Function Processors. ' 

The file management utilities deseribed in the chapter include: 

• 
• 
• 
• 
• 

The InitialUe Utility (INITIALIZE) 

The Mount Utility (MOUNT) 

The Dismount Utility (DISMOUNT) 

The Verify Utility (VERIFY) 

The Backup Utility (BACKUP) 

Il\'iTlAUZE. MOUNT, and DISMOUNT are completely new Mica implementations. VERIFY and 
BACKUP are derived from the cun-ently released VMS versions. They are modified to use the Mica 
file IYltem interface. 

28.1.1 GOlls 

The goale for the Mica implementation of the file management u tilities are the following: 

• Provide the tool, for configuring virtual and logical devices in the system 

• Provide a consi.tent means to make virtual and logical devices available for processing 

• Provide a mean. to validate and archive the data on storage devices 

28.1.2 RequIrements for the Ale Management Utilities 

The file manapment utilities must: 

• 
• 

• 
• 
• 

• 

Be callable from the Mica system management environment 

Support the File.-ll 005-2 standard disk format with 0082-3 enhancements in INITIALIZE. 
BACKUP and VERIFY 

Support. management of Mica shadow-set and stripe-sel virtual disks 

Ute VMS BACKUP lave-set formats fOT compatibility with VMS archive media 

Ute file plaeement infonnation in BACKUP /IMAGE save sets to save and restore volumes 

Provide a minimal set of utilities in the off-line system to support system installation 

File Management Utilities 28-1 



Digital Equipment CorporaUon - Conflct.ntlal and Proprletllry 
R_trtcted Distribution 

28.1.3 Utilities in the Off..flne System 

All of the file management utilities are included in the off· line syst~ ror ay._te~ manapment optra­
tions. BACKUP and INITIALIZE are used during system i':lstallati~n to lrubalir.e the .y.tem daiu 
a Files-ll volume and to restore the system disk from the 1nswlation Ave teL VERIFY II mdodrd 
in the off-line system to check that all the system disk directonea are properly crear.ed Ir the on-Ime 
system bas problems booting from the new system disk. 

28.1.4 integration with System Management 

For th e initial release of Mica, the file management utilitiea are int.ecrated with .y.tem man.a,ttwt 
to share common Mica functionality. 

The utilities are invoked from client. systems running the system manapment user interface (S.\lt.1l 
In addition, system management provides a means or communication between. utility and the Iller 
on a client system. The u tilities communicate with the user to confirm an operation and retnen I 
response or to notify the user or special circumstances. 

Two utilities require operator communication that is also provided through Iyt:tem manqtmenL 
BACKUP notifies operators when tapes must be mounted to continue a save or restore ope,.bOlL 
Operator-assisted MOUNT also notifies an operator to recover from a non·r.tal mount enw. 

28.1 .5 Descr1ptlon at the Utilities 

The file management utilities are implemented as user-mode library routine.. They are called from 
either system management or the configuration manager. 

The utilities issue requests to function processor units (FPUa) in the system to ca.rTY oui. .pecitlt oper' 
ations. The file system and virtual device function processors support operations the file manqement 
utilities use to initialize, configure, and manage volumes and logical devices. 

The following sections provide a brief deScription of the file management utilities. 

28.1.5.1 The Initialize Utility 

lNlTlALIZE invokes the appropriate fur:-ction processor to initialize either a logical blod, device u 
a volume, or a group of lOgical block deVlces as a set. of members of a virtual device. 

There are three types of INITIALIZE operatiol18: 

• 
• 
• 

Initializing a Files-ll OD82 volume 

Initializing a shadow-set. virtual device 

Initializing a stripe-set virtual device 

The type of ThTJTIALIZE operation is determined by a fu~tkJn_code parameter to the utility. 

INITIALIZE creates a Fil~~l1, shadow·set, ~r stripe-set FPU for the new volume or virtuaJ device. 
The pa:am.e~ .to ~e utility are packaged into an 110 request to the FPU. The utility iuues the 
respective lrutialization request for the volume or virtual device Tb f Ii' ,_ the 

., k d ta t t th bli h b . . e -nnc on proceuor c:rea ___ on-ws a s ruc ures at esta ate 10glcal block unit as a vol L__ r shadow 
set or stripe set. ume, or as a meml1ef" 0 a 

After the volume 0: virtual device is initialized, INITIALIZE optional I th I r device 
for further proceSSlOg. Y moUiltl e vo ume 0 

28-2 File Management Utilities 



Digital EquIpment Corporation - ConlidanUal and Proprietary 
Re.trlcted Ol.trlbutlon 

28.1.5.2 The Mount Util ity 

MO.u!\~ makes disk and ~pe volumes available for user access. In addition, MOUNT creates virtual 
deVIces In the Mica VO hierarchy. 

There are aix types of MOUNT operations: 

• 
• 
• 
• 
• 
• 

Mounting a Filee-ll OD5·2 volume 

Mounting a remote Files-ll volume (using OF'S) 

Mounting a shadow-set virtual disk 

Mounting a stripe-set virtual disk 

Mounting a magnetic tape 88 a foreign device 

Mounting a diak as a foreign device 

The type of MOUNT operation is determined by a fun.ction_CJXk parameter to the utility. 

All the FPU objecu created by MOUNT are entered into a system-level object container. This means 
that mounted device. are visible system-wide. Access to mounted devices may be restricted by using 
acceal controllil'" (AClA). 

MOUl\1"f determine. what type of entity the mount operation is trying to mount, for example, a 
volume set or a virtual device. The utility parameters are checked for consistency and the mount 
devioe or units of a virtual device are checked to see if they eDst. 

If a volume is being mounted, MOUNT creates a File&-ll FPU for the volume and brings the volume 
FPU 01\tUl\"'E for further processing. 

If a virtual device is being mounted, MOUNT creates a shadow-set or stripe-set FPU for the virtua1 
device and brings the virtual device ONLI!\TE for further processing. 

Fomen devices are mounted by allocating the logical block unit and ensuring that the FPU is ON­
Ul\"E for uter access. 

28.1.5.3 The Dismount Utility 

Dl5..\iOlJ?\'"T make. a volume or virtual device inaccessible. The utility issues a request to a volume 
or virtual device FPU to not accept any new UO requests and deletes the FPU after all curnmt 
proceu:ine completes. 

211.1.5.4 The Verily U11111y 

VERIFY theca the on-diak structure of the Files-ll 008-2 volume and validates the directory 
orpniution. In addition, VERIFY can rebuild the storag~ bitmap and recover l~t .files. The volume 
should be mounted with exclusive access to ensure there 18 no concurrent file actiVlty. VERIFY does 
not check that the volume il mounted with exclusive access. 

VERlFY followl a Mquence of eight phases to validate the index file, storage bitmap, direct:ory struc­
tures and quota file on a volume. The utility runs entirely in user mode. AU reads and wntes to the 
vol~e eo throuCh the file syatem function processor {or virtual block I/O. 

VERIFY cu:rTently does not check for consistency across eItenlion headers for sparse file al1ocation. 
VERIFY requires enhancements to support OD52·3 modifications for file reference counts. 

Ale Management Utilities 28-3 



Digital EqulprMnt Corpo,..Uon - Confidential and Propr..,tary 
R_trlet8d Distribution 

28.1 .5.5 The Backup Utility 

BACKUP runs entirely in user mode within the system management procesa. All aCDellIo S­
and directories on volumes is through VO requesta to the file syat.em function proceuor. Aec:aI_ 
magnetic tape archive media is provided by a TMSCP function proc::euor, deKribed in Chapl« 1~ 
Magnetic Tape Function Processors. The file .ystem and tape function proce .. or .. are part rtlloQ 
the on-line and off-line system.. Therefore, BACKUP does not require .pecial funeuonahty Lo NIlS 

the off-line environment. 

BACKUP uses the system management services to send confirmation meuac" to the tder IDd III 
receive responses. The utility also communicates through .y8t.em manaaement with ope:rat.or1b 
assistance in mounting devices. 

VMS BACKUP currently saves file placement information duri ng an IIMAGE .. ve operation. bu.1_ 
not use the information when restoring the volume. The MIca implementation wi1) u.e pIacemtat 
information during !IMAGE restores to support. off-line archiving of dat.a.bue relaoona. 

28-4 File Management Utilities 



Image Related 

This set 01 chapters describes the image-related components 01 Mica. 





Digital Equipment Corporation. Conlldentlal and Proprietary 
Restricted Distribution 

CHAPTER 29 

OBJECT MODULE AND IMAGE FILE FORMAT 

29.1 Overview 

2i.1.1 Requirements 

There are three requirementa for this chapter: 

• The chapter specifies the image file (ormat required by the image activator. 

The chapter . peci6es the object module format. required by the linker and the object. module 
loader. 

• 

• The chapter apeci6e. the generic module format. required. by the librarian. 

!he firs t two requirement.s are related. Lo each other because object modu1es share the same format as 
Jalap filel. The first two requirements are related to the third requirement because object modules 
and Jmep filet: are example. of the types of files maintained in libraries. 

TheN fonnat.s were designed for the following goal.: 

• 
• 
• 
• 
• 
• 

The format al low. clean extensions in future releases to add functions. 

The format allows for files greater than four gigabytes. 

The module format. allows different types of modules to be mixed in one library. 

The object. module format allows object modules to be run without linking. 

The object module format. allows separate object modules to be combined into one object module. 

The imap file (orma t allows fast image acti vation. 

The mcrea.ainc division of programs into separate object modules leads to an increasing number of 
ob.Ject module., with a conoomi tant increase in overhead during linking. Combining separate modules 
into a Iill&le module i. a means of controlling this overhead. 

The tendency in VAX/V'MS has been to add functionality to object modu1es and image files, resulting 
in larger files . if thi. tre.nd towards larger files continues, it will become desirable to separate the 
tbfferent paru of an object module or image file into separate files, and yet maintain them in a 
common library. A common module format allows for this separation. A common module format also 
aUOWI for a .inc1e implemen tation of the librarian. 

The data .tructurea in this chapter allow for both 64·bit addresses, and file sizes greater than fou r 
Clpbytes. Systems that do not. support. 64-bit addresses, or file sizes greater than four gigabytes, 
mwt have the upper lonpord of these fields zero to ensure that the values sLored in the fields are 
valid 64-hlt values. 

Object Module and Image File Format 29-1 



DlgHal Equipment Corporation - Confidential and Proprletalry 
Restricted Distribution 

29.1.2 Description 

An object module and an image file are both examples of a .module. A module ~ define .n&mea, 
r efer to names, and be in a library. An object module and an Image file share .ddiuona! &J.m.\lanue. 
because both can be activated, and because image rues are created from object module •. 

The primary useTS of object modules are compilers, the linker, and the loader. The primary uaen tI 
image files are the linker, the debugger. and the image activator. GenenJly. references to the hnker 
refer to botb the linker and the loader. The loader is activated when an object module i. run withoul 
first linking it. 

All modules have a common header format and a common name Lable format so that a ccmmoa 
librarian utility can be used for different types of libraries. All modules contain willun their headtr 
an index to their different sections. Different types of modules may contain different lypel ofltC'tions, 
but the module header contains an indu that provides a mean. of acoeuin, sections speofic 1.0 l 
module type. 

Module specific sections that are common to both object modu1es and image filee are: 

• Global symbol table 

• 
• 
• 
• 

Debug symbol table 

Entity consistency check table 

Data sections 

Code sections 

The object module specific sections are: 

• Linker directive table 

• Data relocation table 

Image file specific sections are: 

• 
• 
• 
• 
• 

Image section descriptor table 

Image relocation tables 

Activation tables 

Transfer vector table 

Debug module table 

2~2 Object Module and Image File Format 



Digital Equipment Corporation _ Confidential and Propdellry 
Restricted Distribution 

Figure 29-1: Object Module and Image Ale Format 

Moau. He._ 
~u. Name r"'_',..,.r 

I 
MoxIu. lI.rn l.Ja\ lreln 

Global Syl!'M)Ol T.,. In:i.r 

o.oug SyrnDOI TtOJ.ll'IOIo. T __ 

c:. .. tJon TIm. 

0 .. ~lO(::atlol'l nos. '1'I0I0. (CICj~l 
&temaJ RNx:atlon TIID. lnon ~) 

ISO TilDS. Ina-. (Im~ I") 

Moc:tuJ. Na7N T~ 

GIoOaI SyrnDOI TIO" 

PSEcr o.lirutJon 

PSECT o.llnltlo!l 

ISO no .. 

'so 
'so 

0 __ 

""'" """"" 

Object Module and Image File Format 29-3 



Digital Equipment Corporation. Confidential and Proprietary 
Restricted Distribution 

29.1.3 Dependencies 

• Object module format affects compiJer development. 

• Image file format affects image activation. 

• Image file format affects debugger development. 

The requirements of compilers, image activation, and debugger. are reflected in tha chapter. 

29-4 Object Module and Image File Format 



Digital Equipment cOI"poratJon • Conlldantlal and Proprietary 
Restrlctad Distribution 

CHAPTER 30 

LINKER 

3Q.1 Overview 

~:SM=.~n~~;:~~~cab~mage :ei from ~ca o~ject modules. just. as t.he VMS linker produces 
Chapter 29 Ob' l Modul °d''''l t m ~ e9. Mica object. modules and image fiJes are described in 

• ~ec e an mage Flle Fonnat. 

30_1.1 Requirements 

The Mica linker mUll produce t.he fonowing: 

• 

• 

MJCI. executable lOlages 

Mica ,hare.ble image. 

Mica boaLable .,.\.em. 

The Mica linker mult. accept. the following as input: 

• 
• 

• 
• 

Command line input. 

Mica option filet 

Mica object. modules 

Mica shareable imales 

Mica object. and .hareable image libraries 

1'be l\-bca linker mUlt. e .. ecut.e as a Mica resident linker. The Mica resident linker is a tvlica image 
runninr on Mica.. It. accept.s Mica object modules. libraries. and images and produces Mica images. 
Th.u linker i. required for Mica development.., and the final Mica product.. 

The Mica linker must. execute .. a cross-linker. The cross-linker is a VMS image running under VMS. 
It acoe.pt.s Mica object modules. libraries, and images and produces Mica images, The cross-linker 

linker ia required (or Mica development.. 
The Mica hnur must. be euity portable to PRISM ULTRIX. The ported PRISM ULTRIX linker accepts 
MIca object modules, libraries, and images and produces Mica images. This linker is required for 
PRlS)i ULTRIX development. and t.he final PRISM ULTRIX product.. 
The Mica hnller . hould be modul&r because other Mica components provide overlapping functions. 
IUCh .. prepannl object. modules for execution, and merging object. modules into one. Modular code 
u.o allQ'tQ the code dependent. on t.he operating syst.e~ to be ~sola~ from the bulk of,the Mica linker 
code. wluch in tum allo\Q the CJ"OU"linker and t.he Mica remdent hnker to be essential1y t.he same. 

The linker . hould ruolve symbols and cluster program sections compatibly with VMS, 

LInker 30-1 



Digital Equipment CorporatJon - ConfldentJal and proprietary 

R_ tnc*' Distribution 

30.1.2 Implementation 

During its execution, the Mica linker maintains a number of interna] data. atructUNS, oam' i 

which are: 

• Table for global symbols 

• Table for PSECTs 

• Table for environments 

• List for unresolved symbols 

The Mica linker is implemented in two passes which, together wlth the work before and &ft._ 
pass, define five linker stages: initial, pass 1, intermediate, pau 2, and final . 

30.1.2.1 Initial Stage 

The goal of the initial stage is to understand the command line and the ccnnmand. c:onwned tD W 
option files. The linker associates its input files with the clusterlthat have been .peofi«i. (OUlttlq 
is a means of explicitly grouping modu1es or PSECTs 10 that the raultu11 memory ...,u tend til be 
together.) 

30.1.2.2 Pass 1 

The goal of pass 1 is to read all of the symbol and PSECT information In the input 6leI 1M II 
maintain the speci£ed clustering. During pass I, the linker rea.d.. .11 ill mput filea. The c:cII'lIm1w 
in the linker command tables in object modu1es are performed. New du.ten are created If oeedeIL 
Symbols and PSEC'ns described in object modules and shareable 1maaes are orpniz.ed Ul the in_ 
tables. Symbols referenced by object modules are either resolved to an already defined symbol arlIt 
added to the unresolved symbols list. An unresolved symbol can be re.olvcd by a module thalli: 

• 
• 
• 

Explicitly included in a linker command 

In the currently accessed library 

In a library implicitly or explicitly specified af\.er the cu.rrently acceued module 

30.1.2.3 Intermediate 

~e goal of the int.erme~ate stage is to prepare for reading the data and code from the input 61_ 1'be 
linker calculates the VIrtual memory requirements of each segment of the imap from lOfonnaDOfl 
read during pass 1. 

30.1 .2.4 Pass 2 

The goal of pass 2 is to cre.ate th~ iT?a~ file with the data and code section. of the object modults. 
and to fU. u~ all the relocations .Wlthin It. During pass 2, the linker copies the data and code ltCtloaJ 
fro~ the object modules to their location in the image file . The linker abo manaces the foUO'I'1t( 
dunng pass 2: 

• . Map file information 

• 
• 
• 
• 
• 

Fix-ups 

Demand zero compression 

The image's header 

The image's image section descriptor table 

The image's activation tables 

30-2 Linker 



• 
• 

• 
• 

The image" transfer addresses 

The image', relocation tables 

The image's ,Iobal symbol table 

The imace', debug symbol table 

Digital EquIpment Corporation - Confidential and Proprietary 
Restricted Distribution 

• The imale', t.ar&et eystem \Each object module contains targeting information that the linker 
must check.\ 

• The ima,e', use of vector instructions \Each object module contains information on the use of 
vector inatTUcuona that the linker must check\ 

30.1.2.5 Fln.1 St.ge 
The Coal of the final stage is to write the image file to disk and report the statistics of the link. 

30.1.3 Complier Depen dency 

The Mica linker ,hare. many functions with compilers; both must: 

• Maintain table. for identifiers 
• Read and write modules (Definition modules, object modules, and image files all share common 

formaL) 

• Handle elTon and teltt in a method that allows for internationalization 

Maintain performance ,tatistics 

• M.anaa:e 1al"le amounts of memory 

Th speed development and ease future support, the Mica linker utilizes the DECwest compilers' 
compiler sheU and super shell; these are the parts of the DECwest compilers that implement the 
above function.. The super shell provides operating system functions, and the compiler shell pro­
VIdes compiler functions , Both are described. in Compiler Slull Documentation for the Pillar and C 

Compilu • . 
The MIca linker utilizes the following modules from the DECwest compilen' super shell: 

• vo 
• 
• 
• 

Memory management 

ErTOr reporting 

System information 

The Mica linker utilizes the following modules from the DECwest compilers' compiler shell: 

• 

• 

• 

Text handling 

Ge.neric table 

ldentdler table 

• Penormance statiabca 
The linker a.c:ceues these modules by linking with the compiler shell and super shell shareable 

l.macea· 

linker 30-3 





Dig ital Equipment Corporation _ Confidential and Proprietary 
Restricted Distribution 

CHAPTER 31 

IMAGE ACTIVATION 

31.1 Overview 

TbeUnker produces an executable image as the end product of program development. During process 
aeation, the thread creating the process specifies the image to be executed by the new process. After 
the creation of the process and the initial process thread, the image file is mapped into the newly 
c:reated addl"'US space. This mapping occurs in the context of the initial process thread. 

lmaee mapptng involvea several steps that prepare the image for execution. The image activator 
opens the image file, thereby establishing a channel to obtain the necessary in/onnation to map the 
rue. If the image does not already have an associated segment object, the image activator creates 
a .cement object for the image, building prototype P'I'Es for the image file. The image activator 
maps the image into the user's address space, resolves certain address references, and establishes 
the debuuer and traceback handlers. 

31.1 .1 Goals/Requi re m ents 

The Mica image activator has the following goals: 

• All iJDatea are automatically and transparently shared among all users. 

• Optimal performance is achieved by issuing a minimal number of disk reads to initially map the 
image and delaying most IUups by delaying the loading of shareable images. 

31 .1.2 Functional Descri ptio n 

31.1.2.1 Image Inltlallutlon 

No lpeoal code e.xiltl in Mica to read images into memory for ini~al execution. Instead, the paging 
mechanirm i. used to "page" an image into memory. The lIDage activator configures the process page 
tables to reflect. all page. in the image file. 

Mica performl the following steps to support image activation: 

1. Opens the image file 

The image activator issues a read-only share open service on the image file. This service returns 
• channel ID to the file. 

2. CreatH a .ection 
~ . to II the euc$create section lIystem service. The caller specifies the channel loelmageacbva rca. - . f Sk . Thi' m from the previoUi system service call, and a mappmg type 0 e _lrtlIJ8eJ'wp, s serv1ce 
returns a .ecuon_w. 

3. Mapi the section 
Tb . . call th e;uc$nwPJection system service, specifying the section_id returned 
, • ""!haee ac~~ator, "'"n' aY,'Am service. This service returns the starting and ending ad-
lrom e er.teolH,:rea e sec ..., ..... . . uaI dd 
dreaes that delurUt the mapped image 1n the virt a ress space. 

Image Activation 31- 1 



DigItal Equipment Corporation . Confidential and Proprletllry 
Restrlct~ DIstrIbution 

4. Performs fixups 

The starling address identifies where the image's imag~ header begins. ~e image ~eQnl« 
examines the image header, and perfonns the necessary lmage fixup opera bona on the lma", 

5. Handles message sections 

If any message sections are present in the image, as indicated by the image he.du, the imqt 
activator ca11s the routine to add these message sections to the procesl. The nature and functioc. 
of this routine are described in Chapter 3, Status VaJues, Messages, and Tut Fonnatbn,. 

6. Maps shareable images marked "activate immediately" 

The image activator e.umines the image header, and maps any shareable imagel whieb an 
marked "activate immediately". The image activator performs the ert.emal fixu.,. (or lhae 
shareable images once they are mapped. Note that this i, a recursive caJl to the Image activltor. 

7. Calls initialization procedures 

Once the image activator maps and fixes up the "activate immediately" image., it eu.mines 
the image header, and ca1ls any initialization procedures at their specified entry points. Thett 
initialization procedures provide the functionality of the LIB$INlTlALlZE routine in VMS. The 
image activator does not guarantee the order between images of initialiution procedure c:an.. 
but it does guarantee each Procedure is called only once before the UlU ueeutes any code WlUun 
that shareable image. 

8. Invokes image 

A.fl.er the image activator has invoked all initialization procedures, it calli the image .t IU 
transfer address. 

31 .1.2.2 Image Exit 

Wh~n an image ret~rn~ to the image activator, the ~c$thrrad_ttit system service is ilsued, _hid! 
beg:rns thread termmation. The ex.ecSthread_exit system service aimply eatl. each ezit handler that 
has been declared by the threa~, and then invokes the eJl%c$chJeu_t.hrmd Iystem service. If tbt 
process has other thr:ads executing, t~ose threads continue to execute normally. Image e.zit ocxun: 
when the last. t!n"ead .In the pr~ess ex::tta and the mapping objects and secLion object.. for the imap 
are deleted dunng object container rundown. 

31.1 .2.3 Autoload Procedure 

The autoload procedure operates si~larly to the "activate immediately" method de:aaibed abo\'e. The 
!lutoload procedure loads shareable lmages and resolves the exte a1 t; h th r~ 
IS encountered, rather than at initial image activa":on tim' <rL~ edre erencethl w en

h 
d .... r " "._' 

· ..:.: d h ... e.... 1l.I8 r uc::ea e over ea 0 101 " Image acW.vawon, an maps s areable images only when they are actUally required. 

31 .1.2.4 Installation 01 Images 

The Install Utility serves two purposes. It provides for the installation of a shareable ima,e; 
• . Within the shareable image space 

• With the WRITE attribute 

The Install Utility creates a section object fo th . . 
The segment object has a ~system channel" ~ the I.mage, w~cb .causes • segment object io be buill 
installed "opened". e nnage which lmplie.a that. the unage i. efJ'ectl\-ely 

31-2 Image Actrvatlon 



Digital Equlpl'Mnt Corporation . Confldantlal and Proprietary 
Rutrlctad Distribution 

31.1.2.5 Imlges Within Shareable Image Space 

When a shareable image is installed in the shareable image space by use of the /BASE qualifier, the 
Install Utility opens t.he image 6.1e, and creates a segment causing prototype PTEs to be built . The 
aerment object for the shareable image contains the base address for the image within the shareable 
address lpace. When the ahareable image is loaded, it is mapped at the specified address. H the 
Imap cannot be mapped at the apecified address due to addressing conflicts, an error is returned, 
and the shareable image is not mapped. 

When the ahareable image is installed no fixups, internal or external, are performed. Note, hoy\ever, 
that since no e:rlernal fixups are performed. any referenced shareable images are treated just like 
referenced e.xtemal images. This allows later versions of shareable images to be installed at different 
base Iddresle. while the system is running, and the latest image is proper ly loaded. 

Imaget inlLalled in ahareable image space may reference other images though use of the autoload 
capability or the activate immediately capability. These referenced images do not need to reside in 
shareable imace apace . 

31.1.3 Issue, 10 be Resolved 

• Exact detail of message section addition. This is dependent on the design of message sections 
and the definition of the routines. 

Image Activation 31-3 





System Management and Administration 

This set of chapters describes the components of Mica relating to system management 
and system administration. 





• 

Dlgltllli Equipment Corporation _ Confidential and Proprietary 
Ru:trlcted Distribution 

CHAPTER 32 

SYSTEM MANAGEMENT 

32.1 Overview 
nu, chapter provides an overview of Mica system management. First, the chapter lists the system 
management function. that a system manager or operator can perform. Second, the chapter describes 
III model for Iy.tern management. Third. the chapter describes h ow system management on multiple 
Glacier or Cheyenne aYlt.ema i , implemented. Next, the chapter briefly describes system security, and 
cblCUUel VariOld file. that the system management server maintains. Finally, the paper presents 
lOme cons:iderationa for the d esign of the server. 

32.1.1 Functional Description 

Mica ry.t.em management allows an operator or system manager to do the fonowing: 

• Maintain u.ee:r accounts. 

• Provide user account information for a uthentication. 

• 
• 

• 

Maintain proxy acc:ounta. 

Provide proxy account infonnation fo r au t.hentication. 

Define and mainLain identifiers. 

Set. up and modify access control lists (ACLs). 

Ace ... file utilities (BACKUP, MOUNT, DISMOUNT. INITIALIZE, VERIFY). • 

• 
• 
• 
• 

• 
• 
• 
• 
• 
• 
• 
• 

Acce:lll the c:onfiruraLion manager. 

Provide Diltributed Fila System (DFS) management. 

Maint.a.in Iystem parameters. 

Set up IYltem level logical names. 

Accesl dia&nOlticl. 

Accesl the Monitor utility. 

Set up and modJ fy the sYltem at.artup facility. 

Acx:ess the Error Report. utility. 

laue loginl commanda. 

Maint.a.in RPC binders. 
Acce .. the Uaer Environment Test Package (UETP). 

Displa, .yttem information. 

1 nltalllOf\;ware. 

System Management 32-1 



Digital Equipment CorporatJon - Confld.ntf.1 and Propr5etary 
Restrict" Distribution 

• Manipulate log files. 

• Access the Install (Images) utility. 

• Access Quartz utilities . 

32.1.2 System Management Model 

The design of system management separates the user interface from the functional impiementitIGIL 
The system management interlace (SMUT) resides on a client syst.em Ca VMS client at FRS~ 'Mw:.,. 
tem management server component resides on a Mica system, and the two componenu ec:emwucalt 
by means of RPC. 

By implementing the user interface on the client system, the user interface can take advantqe altht 
client software on which it is implemented, and can also be explio tly tai lored to • perl1cular ditDL 
Figure 32-1 shows these two components. 

Figure 32-1: System Management Components 

VMS -

The following sections describe these two components. 

32.1.2.1 The System Management User Interface 

The system management user interface (SMut)· h Ii 
software. SMUI provides two interfaces to te 18 t e cent component of the system man.agement 

an interactive De L-like command line inteJ:8 m maf'l:agemen.t for the system manager or operattr. 
provides a batch-oriented DCL-like command~ an~;'hmteractive DECwindowl interface. S.\flJ1sllO 
both the command line and DECwindows intert t e sys~m manager has a bit..mapped terminal. 
easy-to-use, user-oriented interface If the te aces are avadable. The DECwindows interface i. an 
terminal), only the command line i~terfaoe ~~8a ~lmanager has a charact.er-cell terminal (or hardCOPY 
a VMS client oo1y, and will exist as a layered ~.:ble. For F~, the interlaoe. will be available from 

... ' uu.uct on the client. 
The DECwindows interface is layered on to of h . . 
face therefore creates a command line. Pte command line tnterface. The DECwindow. inter-

SMUI depends on the fOllOwing VMS facilities: 

• Command Definition utility (CDU) 

System Management 



• 

• 

Dlglt.l Equipment Corpotlltlon _ Confidentl.1 .nd Proprlet.ry 
R •• trlcted Distribution 

Command Language Interpreter (eLI) routines 

Help librarian routines (LBR routines) 

DECwindows, DECtoolkit, and t.he User Interface Language 

32.1.2.2 The System Management Server 

'The -rate.m management. aer:ver is the server component. of the system management. software. The 
IJltem management server IS the only component on Mica with which SMUI communicates .. The 
server ~"orm.s all necesa&ry functions, calls, and utility invocations, and sends any responses bsck 
to the client Interface. The server may also consist. of more than one server. (For more information 
see the remainder of this section and Section 32.1.8). ' 

&\fU1 and the server IIOftware communicate by means of RPC. This interface resembles a system 
lemce interlsce. 

The I)'1tem management. .erver reaides on both Glacier and Cheyenne systems, although the func­
t;onality provided (or each system may differ. 

The ."t.ern management. &erver haa t.hree main functions: 

• 

• 

• 

Accepting call. &-om other Mica components 

The interlace into the system management server are in system service format; the underlying 
RPC mechanism is not visible to t.he caller. This interface will not be available for customer 
use by FRS. However, the interface will be available for internal use. Examples of calls used by 
other componentl of Mlca include calls for accessing authorization and security information. 

invoking Utilities 

The .,..tem management &erver invokes callable utilities, for example, the Backup utility. The 
_rver passes a parameter list to the utility. 

Calling Other Serven 

The eyltem management server calls ot.her servers, at the request. of SMUl. For example, to 
petform loc:aI DFS management, SMUT requests the system management server to ca1lthe DFS 
server. In this case, SMUl calls the system management server, which, in turn, makes a local 
RPC connection to the DFS server. 

32.1.3 RPC Interrace 

Reque.t.e to the .,.tem management server are a~mplish~ by RPC. The s)'Btem manageme~t 8~rver 
will use RPC for both mira-node (£rom Mica faolities) and mter-node (from SMUJ) commurucations. 

S"tem management. requires that the system managem~nt se~er ~ a~le to c:an ~ures in 
the client. while the original server caU is outstanding. This functionality J8 reqwred to lmplement 
features such as ICONFIRM mode in utilities. 

Syt:tem management will also use the following RPC functionality: disconnect notification, and a 
eerver acuna: at a client. of another server. 

32.1.4 Man.glng Multiple Systems 
~ 'II . . d • .... be considerations for managing multiple Glacier or Cheyenne sys-I De.o owmg two aecUons e ...... . -.. 

System Management 32-3 



DlgttaJ Equipment Corporation · Confldtlntl.1 .nd Propr_wry 
R .. trlct.d Distribution 

32.1.4.1 Glacier Systems 

A system manager can manage multiple Glacier systems from one client. However. tht IJIlot= 
manager can only issue system management commands to one Glaaer ->,Item at. brne. 

32.1.4.2 Cheyenne Systems 

Multiple Cheyenne systems in the Quartz environment will be manaaed a.aep&ra&.e.,..temJ ~ 
to perform a function on more lhan one system, the system manager mUlttuue. command IOI1Ch 
system. 

\This plan could change if Quartz requires that one command be iuued ror aD .y.t.eml. In f:llMrc:ut, 
if Quartz requires any coordination in managing multiple Cheyenne Jy.tems, .,-.te.m m.a.oapnetll 
will be performed through SMm. There will be no coordination between system ma.nacemenllleTl!l'l 
on separate systems, nor will the servers need to communicate with each other.\ 

32.1.5 Securlty 

Access to system management services is controlled by the proxy acceu to a Mica aerver. For_ 
client from which full system management is performed, a specific account i. designated on the cbec1. 
The node and account are entered in the proxy file of the M.ica 8et'Yer. and the COrTUpondinC alX:Ollnl 
on the server is then granted the identi6era needed to perform syst.e.m manaeement. 

CUlTently, there are no plans to totally restrict access to the system man_cement aerver. A procell 
that has been granted access to a Mica server has the ability to ac:::ceu any server on the 1)'Item. 

Lack ofbeld identifiers will prohibit the unauthorized user from periormin, mottsy.tem manapnent 
functions. 

32.1.6 Subset System Management Access 

The set of functions visible to a user on a client may differ dependin, on whether the uter 11 p«' 
forming system management from a system-management 0; a non-system-manaee-mentact'OUl'lL 

A perso~ on the client (for example, an operator or a user) can access a subset of system tna.Q.ICtU1elll 
by runrung SMUI from an account on the client that is different from the IJltem rnanaceme:1 
account. The client node/account proxy pair COI""Tesponds to an ~ccouDt on the Hr"V8r that ball 
subset of, s~stem. management identifiers (or in the case of a user, may h8ve no special identifienL 
The user S Identifiers all~w access ~ some functions of the system maDe(ement server. FuncbCIDI 
that a user can perfonn mc1ude setting ACLs on penona! 61es shOwing objecu and iNuina: oerlilll 
SHOW commands such as SHOW SYSTEM. • • 

32.1 .7 Authorization, Proxy, Identifier. and Startup Parameter Files 

!he ~ystem management server maintains the user autboriut.ion file, the network proxy 61e, the 
IdentIfier file, and the startup parameter 61e The system mana- I . .L of th ... 
fil d . . o_men server '8 !,.I)e owner es, an IS the sole accessor of these files. 

The system management server also maintains SYSGEN p. __ te.1.. __ ..l ' .L ..-'_ . Th . ..... ....... e r1I ,,""at are stof1:!U In \.De ~ .. -...-
Im~ge. eBe parameters are aV8J.lable to the system directly. 

Since indexed files are not available at FRS system manag I '11'd k ed _ 
to th ._1" .: • th fil . ' emen Wl pl"'OVl e Its own ey a~­e llllorma .... on m ese es. This may involve creati. . d . lung the 
files andlor indexes in memory, and combining fUes togeth~~. 10 exes at system start.up. cae 

~-4 System Management 



32.1.8 Server Design Considerations 

Digital Equlpnwnt Corpo,..tlon - Confidential and ProprleUry 
Rutrlct.d Dlatrlbutlon 

The l)'St.e.m management server will be multithreaded, so that multiple server requests can be ser­
VIced at the lime time. 

32.1.9 Issue. 

The foUowina IYltem management issues are still outstanding: 

• In what language showd the c.lient software be implemented? The obvious choices are Pillar and 
C. How much Pillar support will exist on VMS as a target operating system (messages, etc.)? 
Pillar would be a good implementation language simply for speed of coding and debugging. C 
ia. rood choice because of portability t.o Ultrix; however, it will lengthen implementation time, 
and it i. questionable how much of our c.lient code will be portable to Wtrix. since much of the 
code will be VMS-specific. 

System Management 32-5 





Digital Equipment Corporation - Confidential and Proprietary 
Restricted Distribution 

CHAPTER 33 

OPERATOR COMMUNICATIONS 

33.1 Overview 
nu. document provide. an overview of the operator communications facility for Mica (OPCOM). 
OPCOM provtde. 2.way operator communications, as well as terminal and file logging capabilities 
(or vanoUi type. of meuages on Mica. These messages include operator messages, error messages, 
tec:Unty meua,f!I, and account messages. 
The first two sections provide a functional description of OPCOM and describe the various OPCOM 
componenu The next section addresses support for OPCOM within the Applications Integration 
ArchiLerture (AlA), fonowed by a section on native mode OPCOM calls. Finally, any outstanding 

OPCOM iuues are addrelsed. 

33.1.1 Functional Desctlptlon 

OPCO~1 pro\-idel the fonowing functions: 
2-way operator communication • . With 2-way operator commurucations, the following is possible: 

• 

• 

A UJer can enter an operator request from either a Mica program or a client terminal. 

From. cljent terminal 'rUnning system management software, an operator can reply to a request. 

From a client tenninal running system management software. an operator can display a list of 

ouuLandinl operator requesta. 

Operator mena,e capability. A client user or operator, or a Mica system facility, can send a 

metsage to the Mlea operator. 
General me.laie capability. The general message capability allows an operator to do the following: 

• Enable a client Le.nninaJ to receive operator and/or security messages 

Enable a local ~ilea fUe to receive operator, security, error, or accounting messages 

• !..tit &11 lac fUel and operator terminals in use by a server 

• Enable or disable the erTor and accounting function processor units (FPUa). (For information on 

PPt.: .. tee SectIon 33.1.2.5). 
Broadcut capability. If then i. an operator terminal enabled o~ the client ~yst.em, the broadcast 
£Uncbon allow. an operator or Iystem facility to broadcast to temunala on a client system. 

operator Communications 33-1 



Digital Equipment corporation - Confidential and propr.tary 
Restricted Distribution 

33.1 .2 OPCOM Components 

OPCOM consists of several components.. Some of these componenta retide on the client, wMe Illes 
reside on the server. 

The OPCOM components on the client are: 

o 

o 

o 

The client system management interface 

A client operator terminal display process 

The client operator request program 

The OPCOM components on the server are: 

• The OPCOM server 

o Mica message FPUs 

o Reader threads of message FPUs 

Figure 33-1 shows the relationship of these component.8. 

Figure 33--1: Relationship 01 OPCOM Components 

VAX 

System APe 
Ma.<nag&meru 
Inter1ac. 

Request RPC 
Program 

OPeD" APe 
Ooplo, -. -- ".... 

""""" DIsplay 
To"""" r-

. 
4 

_FPU 

"-"~ 

The following sections describe these components. 

33--2 Operator Communications 

Rock 

5yIl-~~ 

OPCOMs.-

@;J EJ C>._ 

I 
I I -. -""- "..., 

1 

L-- 1;.-:1 "" A. 
L... L 

-- _FPU 
_FPIJ 

-.., AcCIJ'bilg <-



r Digital Equipment Corporation _ Confidential and Propr~tary 
Restricted Distribution 

33.1.2.1 CUent System Management Interface 

The c.lient system manaeement interl 11 h command •. Table 1 describes these oo~C;:n:;8 t . e operator or system manager t.o enter OPCOM 

Table 33-1: Client System Management Interface Commands 
Command o.SCfiption 

STARTA..OGGING 

STOPIlOGGING 
SHOW LOGGING 

REPlY 
REOUEST 

SHOW REOUESTS 

ENABlEIDISABLE FPU 

SEND 

Starts,logglng of operator, security, .rror, and account messages. logging may be 
spK~)ed to a terminal on a client system lor operator andrer security messages, or 
to • tile on the server lor operator, security, error, and account messages. 

Stops logging of operator, secunty. arror, and account messages 

Shows system logging 

Reph •• 10 an operator request 

Make. a requast 10 an operator 
ShaWl! the queue of unanswered operator requests 

Enabla. or disables error and account FPUs 

Broadcasts a massag8 to chent ,erminals 

Tbechent l)"I~m management interface communicates to the system management server by a remote 
procedure call (aPC) interface. 

33.1 .2.2 Client Operator Display Process 

An operator di.play protess is started when an operator enters the STARTILOGGING request through 
the .y.tem management int.erface. The display process is connected, by RPC, to an OPCOM reader 
thread (For information on reader threads, see Section 33.1.2.6). 

The dISplay process does the following: 

• 
• 

• 

Continually reads message. from the OPCOM reader thread until terminated 

OiJ;play. the menages on the operator t.erminal 
Forwards MlC8 broadca.st messages (such as server shutdown messages) to the client broadcast 

racility 

33.1.2.3 Client Operator Request Program 

OPCOM providu a request program 8..1 part. of both the VMS and ULTRIX client software. The 
prorram allowl a user to make an operator request. This program is a standard MICA program (run 
by tome meant IUch as PRUN REQUEST). The request program, when running on MICA, caiis an 
AlA operator communication routine to make an operator request. This operator request program is 
in provided to allow. user (other than an operator or system manager) to make an operator request. 
See Section 33.1.3 for more information on tbe AlA operator functions. 

\ Thil capability i.I not provided for Cheyenne clients. There is no AlA interface on Cheyenne, and 
there .hould be no need for a user to make operator requests. A Cheyenne operator can still make 
operator requeatl from t.he .ystem management. interface. \ 

Operator Communications 33-3 



Digital Equipment Corporation - ContldentJal and Proprietary 
Rest ricted Distribution 

33.1.2.4 OPCOM Server 

The OPCOM server runs as a protected subsystem on t.he server. 

\The OPCOM server may be the same free running process as t.he sy.tem ma.nacement server\ 

The functions of the OPCOM server include maintaining a database of louin, te.nzunal. and ~ 
maintaining a database of outstanding operator requesta, and It.artmg and It.opP1n& reader thrun 
(For information on reader threads, see Section 33.1.2.6). 

The OPCOM server responds to the commands that are entered through the client ')"Item m&nIIt­
ment interface. The OPCOM server responds to these commands in the {oUOWln& .... r. 
• When the STARTILOGGING or STOPILOGGlNG command i. entered, the OPCOM Itrver stw 

or stops a reader thread and updates a database of log files and terminal • . 

• 

• 

• 

• 

• 

When the SHOW LOGGING command is entered, the OPCOM IierveT reportl the databue r.i 
log files and terminals. 

When the REPLY or REQUEST command is entered, the OPCOM server wntel the request or 
reply to the operator message FPU and updates a queue of outatanding operator reqUHlI. Abo, 
the OPCOM server perioclica.lly scans and rewrites outstanding reques~ to the operator mtlllit 
FPU. 

When the SHOW REQUESTS command is entered, the OPCOM server reportl the queue r.i 
outstanding operator requests. 

When the ENABLEIDISABLE FPU command is entered, the OPCOM server setA the tpeafie:l 
FPU stale to ONLrnE or AVAILABLE. 

When a SEND command is entered, the OPCOM server writes the message t.o the operator 
message FPU. The message is targeted for the first display proceu on each went.. which, ill 
turn, forwards the message to the client broadcast facility. 

All requests to OPCOM are logged to the operator message FPU. Thil mean. that the opertlGr 
message log includes a history of commands processed by OPCOM, includin& operator requeslJ ar.d 
replys. 

33.1.2.5 Mica Message Function Processor Units (FPUs) 

Message FPtrs are the mech~sm provided in MICA to pass messages from one process to another 
There are fOUT messag~ FPU's 10 MICA that are used to pass system message •. These (our FPlil 
are. the operator, secunty, er:or, &.n:d account message FPU's. Messages are written t.o the FPli) 111 
vanous system components, lOcluding .~~COM itself. The messages are read by threads ofOPCOY. 
and may be read by other system faolities (such as an error det ti ..I: lh error 
messages). ec on program reawng e 

R~der threads register with a message FPU before reading mess fro th FPU A thread can 
reglster to read a subset of messages in an FPU For eumpl Uu':'ds me . 'b th tor 
FPU to. read only tape operator messages. The.:e will be au;;:rt in ti.e~~OGGiNG ::::'nd. 
to SpeCIfy a subset of messages for a reader to read. 

- 4 Operator Communications 



Dlg lt . 1 Equipment CorporatIon ~ Confld.ntlal and Proprlellry 
Restricted Distribution 

33.1 .2.6 Re.der Threads 

A reader i,. procell that reads messages from one or more message FPUs and writes the messages 
to • file or terminal. The readers of the system message FPU's are threads of OPCOM. A reader 
thread e.csta for each STARTILOGGlNG command that is issued.. The reader thread registers with 
the appropnate mesJage FPU(a), and either opens a file or establishes an RPC connection with a 
chapl., proces. on • client. Each message read is either written to a log file or sent to the client 
chspl.y proceu. A reader thread is terminated when OPCOM receives a STOPn..OGGING command 
or when. chent display process terminates. 

The menaces, .. they are read from an FPU. are in binary format. After a reader thread reads a 
meuace. further proce .. ing is required to translate the message into a meaningful fonnat. 

In the cue of operator and security messages, the binary message is translatable directly into an 
ASCII meua,e. The reader thread is responsible for this translation, which is accomplished by 
loolanc up the meuage number in a file. Thus when the reader thread writes the operator or security 
m~e to a 61e andlor a client display process, it is writing a fully formated AScn message. These 
ASCII operator and aeeurity messages may be mixed when written to a tennina1 or to a file, and one 
reader can read and translate both security and operator messages. 

\The exact method used to translate operator and security messages to their ASCII counterpart is 
not defined\ 

In the cue of el'Tor and account messages, the reader thread does not translate the message. The 
meuap i. in binary format , and can be 'W'1'itten only to a file (not to a tenninal). The etTor and 
account meuaa:ea cannot be mixed with any other messages in a file . The error report analyzer must 
be run to create error reportl from an eTTOr file . There will be no support at FRS to generate reports 
&om Inform.tion in an account file. 

33.1.3 AlA Functionality 

There will be ,upport in AlA for operator function s (specifically REQUEST and REPLY functions). 
The operator (unction. will be synchronous oruy. Thls means that a program that makes an operator 
request and expects a reply will be in a wait state until the reply has occurred. These operator 
funcbon. are u.&ed in the REQUEST program provided with VMS and ULTRlX cHents. 

A user can accea. the AlA operator function.s through a MICA program, and can thus perform an 
operator requut from a llSel' written program. 

nus AlA functionality is not available on Cheyenne clients . 

33.1.4 Nltlve mode OPCOM c.lls 

The native mode service calls within OPCOM are available for use i~~rnany by systeID: utilities 
auc:h .. BACKUP and MOUNT, as well as by the system shutdown faCllity. These calls MIl not be 
doeu.ment.ed for exLernal use at FRS. 

33.1.5 Manipulating log flies on Cheyenne 

5 th . OFS port on Cheyenne system management must be able to perform some 
Ince ere I' no sup' S t ·11 ·d ·6 fil fu · I fi1 'd.i locally on the system. ystem managemen W1 proVl e speo c 

fu
e mbons on oe

ul 
e'C"'h SI ng log files such as COPY DIRECTORY, and DELETE. The log files 

nctlona to marup ate eyenne. ' 
will reside in a lmown area on the Cheyenne system. 

Operator Communications 33-5 



Digital Equipment Corporation - Confidential and Proprietary 
Restricted DistributIon 

33.1.6 Issues 

The following OPCOM issues are still outstanding: 

• 
• 

• 
• 

• 

Will Mica logging be able to support Decnet logging? 

W"tll Mica be required to provide operator interface and terminal dilplay facilities on ULTRIX 
clients? 

Does the user REQUEST program need to be provided on a Cheyenne client system? 

Does AIA functionality need to include broadcast requests? 

Probably not. 

How is security handled between the client and the server? 

33-6 Operator Communications 



• 

Digital Equipment Corporation. Confidential and Proprietary 
Restricted Distribution 

CHAPTER 34 

CONFIGURATION MANAGEMENT SOFTWARE 

34.1 Overv iew 
This overview .ummarizea the design and function of the Mica configuration management software. 
nu. IOftware con,i'La of t.hree components: 

An f:rTOr-monitor process, running in user mode 

A confi(uraLion-manager process, running in user mode 

• A confirurabon functJon processor, running in kernel mode 

(For the rest of this overview, the Lenn monitor procesl refers to the etTOr-rnonitor process, except 
where otherwi .. ,peaSe<!, Likewise, manager process refen to the configuration-manager process, 
and fun.ctum procalOr refers to t.he configuration function processor.) 

34.1.1 Go.ls 
The eonficuraLion management software has the fonowing goals: 

• 
• 

• 

To proVide lufficient performance for Cheyenne requirements 

To autoconfirure physical devices at system boot time 

To autoconficure new devices into a running system upon request 

To mount di,b at .y.\.em etartup 

To reconfigure proceaaon and devices upon request 
To proVlde required availability for Mic:a by monitoring error events; detecting imminent device 
Ca.iluret; and when possible, reconfigunng hardware 

~.1 .2 Functional Description 

Th fi
· t ,."ware performs specific functions at boot time and during nonnal 

II con ruratJon ma,nagemen ..... 110. 

openouon. 

Configuration Management Software 34-1 



Digital Equipment Corporation - Confldantlal and Proprietary 
Restricted Distribution 

34.1.2.1 Actions at System Boot TIme 

At system boot time, the configuration function processor performs the followin, LUlu: 

• Reads the processor configuration from the RPB (restart parameter block), then uores the a& 

figuration. 

• Reads module information from the RP~if the prGCe850r providel luch mformatioo--Ulen 
stores it. 

• Notes vector processor modules. 

• Reads the list of bad memory pages that were found during booting, then nores the liJt. 

• Checks on the XMI bus to detect all adapters and controllers. 

After the configuration function processor has found all adapten and controllers, the configuration­
manager process starts. This manager process then performs the following Lulu:: 

• Reads all information found by the configuration function processor, then writ.et thil informatlOll 
to a database in memory. It also writes this information to the elTOr-log menage FPU. 10 thai 
the configuration of the system is available through the EtTor l..oc Report Generator (Chapter 
23, Error Logging). 

• 

• 
• 

• 
• 

• 

• 

Reads an exclusion file from the system disk; this file tell, which devices are not to be confiJl.lf1d 
into the system. The exclusion file is a fairly static file to be managed by the 'Yltem m~ It 
would contain, for example, disks that the system manager did not want automatically mounted 
at system startup. It is never updated automatically as a reswt of operatin, IyStem ad1OOS, 
such as configuring a shadow set. 

Creates a notification message FPU, creates a channel to it. then regjaten on that c.ba.n.oe1. 

Loads function processors for devices that are to be part of the configura lion if these fUDdiarI 
processors were not previously loaded during booting. • 

Calls the appropriate function processors to create FPU. that represent the physical derioes. 

Calls the function processors for the Mass Storage Control Protocol (MSCP) and the Tla.pe Mass .. 
Storage Control Protocol (TMSCP) to find all disks and tapes on conficured controll~. 
Reads from the notificatio~ message FPU all disks found by MSCP (See Chapter 15, Dued 
Access Mass Storage Function Processors). 

Mounts disks not excluded by the exclusion file. 

Like the configuration-manager process, the error-monitor process is ltarted after all dialta and o:rt. 
trollers are found. ~e error-monitor p~ss creates a channel to and registers with the error-loe 
message FPU, then Issues a read for deVIce error messages. 

34.1.2.2 Actions During Normal Operation 

The actions described in this section occur during no al .. .L_ 
booted. rm operatioo--u'Ot ii, after the Iy.tem d 

34.1.2.2.1 The Error-Monitor Process 

During normal operation of the system the error m . 
log message FPU. The process det.ect..s a:nd re~ d ~to~ ~SI reada error events £rem the emr­
process. For example it reports whe d' eVlce Bllure eventll to the configurabon-managtt 
threshold or when a levice has incurr"ect a ;aV;: e~S:r~ number of recoverable erron that exoeeds . 

34-2 Configuration Management Software 



• 

Digital Equipment Corporation _ Confidential and Proprietary 
Restricted Distribution 

34.1.2.2.2 The Configuration-Manager Process 

=:'h normal operation of the system, the configuration-manager process provides an interface 
J Iyttem management for the follOwing operator-requested. operations. 

• 

• 

Autoconfieurinc devices 

Addinc a counterpart to a shadow set 

RemovinC a counterpart from a shadow set. 

Mana(ine lpare. wag 

Oiaabling and enabling processors 

The configuration-manager process keeps curT'ent configuration information on the system to enable 
It to reconfi(W"e ,tn the case of ~evi.ce failures or imminent. faHures . It does this by configuring the 
system at boot time an by .morutonng the mounting and dismounting of Files-ll volumes, shadow 
liLa, and Itnpe ~t.a. Also, It keeps a current list of spare disks. A spare disk may be specified to be 
• .pare for any disk of. compatible type, for a disk on a particu1ar controller, or for a specific disk. 

When nobfied ofaiptificant configuration error events, the configuration-manager process implements 
• Itrat.ecy that mu:amiu. the availability of the system. In this strategy the process performs the 
followin, operation.: 

• 

• 

If. di.k i. failing. and if a .pare exists, cans the shadow function processor to add the spare as 
• counterpa.rt and t.o remove the failing counterpart. 

If • failing controller h .. a backup. initiates failover to the backup controller by calling the 
proper func\ion processors. 

UIeS the preceding two Itrategies to respond to a failing bus. In this case, if controllers on the 
bua have a backup, the configuration manager process makes the appropriate calls to failover to 
the backup CODtrol1er. If there is no backup for a particular controller, the configuration manager 
procell altemptl t.o remove any disk attached to the failing controller from any shadow set of 
wruch lllS a membu and replace the disk with a spare disk attached through a controller on a 
cood b .... 

ReporU (aiUne memory pages to memory management., which must-if possibl~replace them 
and pUl them on the bad page ust. 

• can. the configuration function processor to perform self· test and standalone diagnostics on 
failJne procealOTt. 'Currently, the desi.gn has n~t conside;ed autoID:atica1ly invoking diagnostics 
on eli,b or controlleTl _ is this something to be mcluded In the desIgn?\ 

Configure. processors into the system or out of it by calling the configuration function p1"OCt!ssor. 

34.1.2.2.3 Configuration Function Processor 

The eonfirura tion function processor performs the following tasks during norma1system operation. 

Find. any new adapters and controllers in an online system. The configuration manager process 
com anda the f dion processor to autoconfigure-that is, to find any new devices by checking 
the ~UMS. The ;:'ction processor then makes a list of new controllers or adapters, and returns 

tha bit to the configuration-manager process. 
• Calla the console aof\.ware interface in response to c~mman.d8 to initiate self.te~t and standalone 

..1,_ ' _ Returns results of the diagnostICS to the configtuation-manager pro-
w.cnosUCI on proeeslJO. D . CIS rl 
CHI. This mterf.ce is described in the Chapter 20. onso e uppo . 

Call. the kernel aof\.ware, the console software, or both in reSponse to commands to disable or 

enable a proc:e.uor. 

Configuration Management Software 34-3 



tlon • ConUdentl.1 .nd proprJet8ry 
Olglt8l Equipment Corpora 
Aestrtct.ct Distribution 

34.1.3 Design coM tiOD'~ pl"OOUl and lheDDll6t 
Figure 34-1 shows how the. error-monitor process, the gun 
uration function processor Ult.eract.. 

Figure 34-1: Configuration Manager Design 

"''''" """""" """"" 

34.1.3.1 TIM Error-Monitor Process 

- :---, , , , 
_.J 

.-----, 
I c::MATl I ,- , ,- , , 

~­-....... 

---I , , , 

The error-monitor process reads error events logged to t.he error-log FPU, and predieu failures buId 
on the information read. This user-mode process contains thresholds and aleonthms that c::tu.lt 1\ 
to qotify the configuration-manager process, indicating that a device has entered a state thS\ maY 
require action. 

The monitor process would report. as an example, the following events to the Conficu-ration-J\~ 
process. 

• A processor has been disabled by the machine chef!k code due to. non-recoverable error occurnDl· 

• A disk has had an excessive (compared to t.hreshold information k.ept by the monitor processl 
number of errors of a certain type. 

\4-4 Configuration Management Software 



• 

DigItal EqulplT'Ient COI"poratlon _ Confldentlll l lind Proprietary 
RestrIcted DlstrlbLition 

A di.k h .. incu rred a non recoverable erTOr . 

34.1.3.2 The Configuratio n-Manage r Proce ss 

The confieuraLion-m~~er p:ocess decides what strategy to follow when the erTOr-monitor process 
noufies It that a deV1ce IS f8Jling or has failed. It. then implements that strategy. 

~pendinl on the problem, ':he manager p.TOCe8S takes the appropriate action by calling device func­
tion processors to handle deVIce el'TOrS, calhng the configuration function processor to handle processor 
failure., or callin, memory management to report bad pages. 

II the device i. one on which diagnostics can be run online, the decision is made after diagnostics are 
run and . the re.uJr.a known to the configuration-manager. Then the decision is to attempt r econfig­
uratJon If 0 ) the device fails diagnostic tests, or b) the device passes diagnostic tests. but has done 
10 an excessive number of times after experiencing problems. If the device does not support online 
dial(DOlbcs. the rea)nfil'W"ation is always attempted. 

Whether a device can be configured out of the system or not depends on if there is a backup for that 
device or proeeuor. For instance, if 8 controller has 8 backup, the manager process calls the MSCP 
function processor and the controller function processor to cause failover to occur. If a failing disk 
is part of a .hadow set, it il removed. from the set. If there is a spare disk which is an appropriate 
replacement, it i. added to the shadow set. If there is no backup, the decision depends on the 
pugcular dfl'Vlce and the type of error. In some cases, t.he only action that can be taken is to alert 
the: operator, for instance in the case or a failing disk which is not shadowed; in ot.her cases, the only 
ad:Ion is to .hut. down the device, for instance, a fatal disk erTOT. 

The conficura-Lion-mana,er process handlea user requests to enable or disable processors, to add or 
remove eounterparta from a shadow set, or to aut.oconfigure a new device on a running system. 

The ahadow function processor provides an interface which is called by the configuration manager to 
requut that a rount.erpart. be added to a shadow set or removed from it. 'When calling this interface, 
the configuration-manaeer prootss request.s the additi0':l' and waits. for the completion of the cat.chup 
before removin, a failing counterpart. The configuratton change IS reported to the error-log FPU. 
Thus, the error loa: will contain a history of these configuration changes. 

When the confieuration-manager process calls lower-level function processors to cause failover to a 
backup control1er. these changes are recorded in the elTOr log. 

The coruole IOnware provides an int.erface to enable ~d di~ble processors. The configuration man­
aeer proceu makes the decisions to perform these actions either 

• In TUponM to a user request 

'lb reenable a processor which was disabled by machine chdeckd&s ~hte result °uf a f8.1
to
"lur

b
e, buedt which 

pa.ues dia,ano.tics IUch that the conAguration manager eo es 1 can con nue e us 
• 

These proce .. or changes are sent to the error-log. 

Tb nIi · -IS keeps an internal database that represents the current conAgu­
e co guralion-manager p.......... 11 d te di ks La Fil 11 

rabon. nul data.bue contaira information about b~s, .contro
ed 

ers, a aP
d 

"'to', "I' , "tpes:: es-
I had d " ..... This information IS us to respon 181 ure SI ua ... ons. vo urnes, • ow Mta. an st.npe . 

. mounts disks at system boot time, doing so in the following man-
The c:onfigurat.ion-man.~eT procell Ands disks it writes information about. them to the notification 
Mr_ AA the MSCP func:bon processor d this information from the notification FPU then is­
FPU. The confirurat.lo~~nage:r ~docu:'e ~s~ unless the disk is in the exclusion file. Next, the 
wet: VO ~Ue:ltl to ~ to re Y ts t.hat t.he MSCP function processor read the context area. of 
c:onficuraUon-mana,er proces~ i~eI di k 's to be mounted including any stripe sets or shadow sets 
the (hsk. This.rea describes . ow ! s . ~tained by the function processors which do t.he mounting. 
to which the disk belonp. This area :b m81 t the disks based on the information in the context 
The c:onlipabon-ma..nager process . ~n. m0t.~ ~me needed to accomplish the mounting by creating 
area. Parallebam i. introduced to DlJnlDlJze 
multiple thread. to do t.he mounting. 

Configuration Management Software 34-5 



Digital Equlp".nt Corporation - Confidential and propr'-wry 
Restricted Distributi on 

I f the system has an external service proceS80r running S~EAR or other SOD tools~ the EITOZ' Wam!r. 
pr ocess can receive additional problem ootmeation from this ext.ernal proc:euor TN. uu.erllt'eu1!O 

34.1.3.3 The Configuration Function Processor 

1b find devices that are to be con6gured into the system, the confieuration function proceaord.:b 
the buses. It does 80 by looking in 110 space at the poasible node location .. and readinC tht~ 
register. This information is returned to the configuration-manacer procet.l throuah aD 110 reqra 

The configuration-manager process requests thal the configuration function pl"OCllaDOr invou "·1eI 
diagnostics and standalone diagnostics on a processor if either a ) the number of recoverable errcn. 
that processor exceeds a thresho1d, or b ) the prooe.ssor i. hune or hu encountered a noo~ 
elT'Or. The configuration function processor returns the result of the di&Jl101bCl to the confirm_ 
manager process. 

The configuration function processor interfaces wilh the console .onware to lrubat.e ~ IMI 
and to get the results of such tests. The configuration-manager proee .. lop the dia(noIuc: _!.III 
the error-log FPU. 

The configuration function processor does hardware disable. and enables of proceuon by eaIhac' 
console software library routine. Processors are software disabled and enabled by callin, the bmtl. 

34.1.4 Relation to Other Software 

The confi.~tion management software is, in most cases, only an agent Ofreconfi(UT8bOft. Of\eD.d 
reports failing l,tardware ~for ~:r.a.mple, failing memory) to other IIOflware, or it mUei reqUtsU 01'. 
software w~en lt de~ts lIIlDllnenl failure . Generally, the configuratJon-manaeer procell deadeuol,. 
that a particular deVlce should be configured oul of the system If potlibJe. The proceu then (I!II 
otbe.r softwa~e to configur~ out the device. This section describe's Lhe other M.ica componentl whM:D 
are Involved 10 configuration management. 

34.1.4 .1 Memory Management 

The configuration function processor calls memo m . , If ~.;u. 
memory management puts the page on the bad ~ge u::~ement. to report a f&.lIing pace. ~ 

34.1.4.2 Shadow Function Processor 

When called to replace a failing disk with a 8 
the spare disk. Also, the shadow function p~:s:~tecalrpalrt. The shadow fun~tion prooeuor updateli 
the replacement is up to date. 15 ed to remove the failing counterpl1'lafttr 

34.1 .4 .3 MSCP Function Processor and Controller F II P 
unc on rocessor 

The MSCP function processor releases a failin ' 
one. g con troller, the controller (unction proc:eaaor unreadief 

34.1 .4.4 SCS Function Processor 

The Co~guration Manager process calls the SCS . , 
of FPUs lt has created. for the adapters and f

1
un
l 

cbon processor at system startup with !.he list 
contro ers found on the bus. 

34.1.4.5 Device Function Processors 

When th e Configuration Manager proce ri 
priate device function processor to creat:

s
: F;~8 aut.oconfiguration of a device, it calls the appl'O' 

not been previously created). or any controller it finds on a bu. (if the FPU baS 

34-0 ConfiguratIon Management Software 



Digital Equipment Corporation _ Confidential and Proprietary 
Restricted Distribution 

~.1 .4 .6 M.chlne Check 

The design delCribed in this overview assumes that. in a multiprocessor environment machine check 
does the following uus\u: for proceUOT elTOn: • , 

• 
• 

• 

Lors the erTOr to the error-log FPU. recording the reason for the error. 

Decides whether t.o crash or not. [f not, machine check signals the user thread that was executing 
when the machine check occurred. 

Disables the proceuor in all cases. whether the erTOr was recoverable. nonreeoverable. o~ the 
proceuor wu hung. The configuration-manager process may reenable the processor, based on 
thresholds and on the results of diagnostic tests, if it decides to run them. 

34.1 .4.7 Con,ole Softw.re 
The eonlOle software provides an interface to request. that processors be hardware disabled or hard­
ware enabled. AlIO, it provides an interface to initiate self-test and standa10ne diagnostics on pro­
ceuon. FinaUy, it provides an interface to disable memory modules. 

34.1.4.8 Extem.1 Service Processor 

The ESP will allO inform the ErTOr Monitor of imminent hardware failures . This is based on the 
.... umpuon that Lb. proprieLaJ')' software running on the ESP will be more sophisticated in ita ability 
to predict imnunent hardware failures and ",-ill provide an additional level of availability above that 
provided by th. ErTOr Monitor's simpler thresholding. 

The Confi,urauon Manaret' software does not send any information to the ESP. 

This interface from the ESP to the Configuration Manager process is TBD. 

34.1.5 Issues 

The followin, iuues are unresolved: 
1. We need to formalin the interaction of machine check and the configuration manager software. 

2. 

3. 

Either lhe Confiruralion Manager can log configura~on changes or the function processor t~at 
lmplemenl.llhe change can do this. If the ConfiguratIOn Manager ~ogs the changes, the functl0n 
proceuon mUlt protect the action s uch that only the Configuration Manager can request the 

chanp •. 
We need to define the interaction with Network software-DECnet and IPC for Cheyenne. 

Configuration Management Software 34-7 





Digital Equipment Corporation - Confidential and Proprietary 
Restricted Distribution 

CHAPTER 35 

SYSTEM VOLUME LAYOUT AND SOFTWARE INSTALLATION 

35.1 Overview 
Thi. chapLer describe. the system volume layout for Mica operating system directories and files. The 
chapter .1110 describe. sof\ware installations and updates for the operating system, layered products, 
and third-party and client software. The information provided in this chapter applies to both the 
Cheyenne and the Glacier producLl. 

35.1.1 System Volume Leyout 

The J)'It.em volume i. divided into two areas, a read-only area and a read/write area. The directories 
in the rudlwnte area are a .uperset of the directories in the read-only area. The following two 
IediOnt delCribe these areas. 

35.1.1.1 The Read-Only Are . 

Ficure 3~1 .how. the directories contained in the read-only area. 

The read-only area i. created initially by the Mica oper~ting .sy~tem installation. After the ins~­
labOn. no modification i. done to the read-only area, which elirrunates the need for backups of this 
area Mo.t opu.una .y.tem modules reside in this area. 

Flgur.3S-1 : R.ad-Only System Volume Area 

SYSJoI'.!Rtd.l SY6ISYSTEM SYSSUBRARY SYSSLANGlJAGE 
SYSSPROCEDURE SYSSFONT 

SVS$ENGUSH 

I 

svssEXAMf'lf SVS$HElP syssrABlE SYSSMESSAGE 

35.1.1.2 The RudIWrite Area 

d th di
rectories shown above in the read-only area plus the additional 

The readlwnte area Indu e. cse 
directones shown in Ficure 35-2. 

System Volume Layout and Software Installation 35-1 



Dlgttal Equlpnwnt Corporation - Confldentlar and Proprleltary 
R .. trleted DIstribution 

The read/write area is also created by the Mica operating system lD.Lallation How: IDDIilfa. 
tions to this area occur during the liCe of the system. SuC;h troop .. , pal'l'" files. ~ Q! 
configuration files are stored in the read/write area directones. In addJuon. layered prodllC1l.lj111C1/ 
operating system updates, and field test updates are allO placed 1.0 the clirect.one.J In thu atel. ThIs 
area requires backups. 

Figure 35-2: ReadIWrlte System Volume A rea 

I)"II~READWRITE 

I 

SYS$PAGING SYSSOATA SYSSLOGFIlE 

35.1.1.3 Read-Only and ReadIWrlte Area Inleraction 

Because the root directories for both the read-only area and the read/writ.e area are referenced thrauP 
a single search list logical, SYSSSYSROOT, these areu appear ... single area.. The readlwrstu:et 
is referenced first in the search list so that files placed in the readlWTite area can supenede u..1D 
the read-only area. 

For booting purposes, the con BOle subsystem maintains a pointer to the readlwrite a.rea. In turD,' 
known file in the read/write area contains a pointer to the read-only area. See Chapter 12, Bootmc. 
for more details. 

35.1.2 Software Installallon 

There ~ three ty~s of Mica installation procedures: standard, special, and front~ndlcliellt. Tht 
first section below lists the overall goals of these installation procedures. The re.mauunc sedXItJ 
describe the Mica installation strategy in general, the three t.ypes of lrllLallation procedum, and 
considerations for high-availability configurations. 

35.1.2.1 Goals 

The following are the goals of !\fica installation: 

• 
• 
• 

• 
• 
• 

Minimize service interruptions when software is installed (including updates). 

Maintain system integrity during the installation period. 

Eli~inate the nee~ for coordination of operating system and la ered rod rei becataeri 
verslOn dependences. Y p uct eases 

Simplify the installation process (as compared to that of VMS). 

Install both Cheyenne and Glacier systems. 

Install third-party software. 

35--2 ., Volume Layout and Software Instanatlon 



• 

35.1.2.2 General Descripti on 

Dlglt81 Equipment Corporation - Confidential and Proprietary 
R.strlcted Distribution 

The .oftware dj.tributi~n 'a:at.egy of the Mica operating system and layered products is that, for 
the general tale, there II no Installation procedure per Be. Instead, both initial systems and updates 
are P"!.~tlJl.1ed and ,complete. Pre·installed means that after the system has beeD transferred from 
the ~Itnbuuon ~edia. to the Byatem disk, the system is ready to run. Complete means that the 
diltnbubon contams ,the full.opeT8ting system and layered products. This type of installation is 
known ... standard tn.tall.tion. The standard installation is the general procedure used for initial 
system irutallatioru and updates. 

Since all product.. are shipped to the customer, the License Management Facility (LMF) is ' used 
to provide ecce .. to optional products purchased from DIGITAL. Software releases are coordinated 
amon, the operabnC sy.tern and layered products. Simplification of the Telease process is done by 
tehedulinc releues at rerular intervals, such as quarterly or semiannually. 

The standard inata1lation procedure is not practica1 for third-party sonware, field test updates, and 
emergency module repIacement.B (patches). 'Th accommodate this software, an installation procedure 
similar to VMSINSTAL i, provided. This procedure is known as a special installation. This is the 
procedure used far .onware that cannot be included in the standard distribution; for example, third­
~ty application. and new layered products. 

35.1.2.3 Standard Installation 

The major technical de.il1l that makes the standard installation strategy work is the layout of the 
tyltem disk. The device u.ed for the sy.tem read-only area need not be a read-only device. However, 
maint.alnin, atriet rule ... to the use of the read-only area allows future hardware configurations to 
inc:orporate auch device. without software modification. Assuming the device is a read/write disk, the 
di,k may be removable or non removable. For FRS, it is assumed that the disk will be nonremovable. 

There are two types of ltandard installations: initial installation and update installation. 

35.1.2.3.1 Inltlallnswllatlon 
A1l ima,6 backup of the read.only area is shipped to the customer, who then restores it to the system 
dUk usin, the Software In.tallation Utility. 
After the read.only area has been restored, the read/write area is created and populated with the 

default confilW'ation. 

35.1.2.3.2 Update Installation 
For updates, the same basie procedure used for an initial installation is followed. The complete 

IOftware distribution ia reshipped. 
The Software InllaUabon Utility is used to restore the new read-only ar~ and a new readl~te ru:ea 
is crated. The new readfwrite area is created from the previol.l;s readlwnte are

d
" annl d cont.ainSe'lco~es 

or 61 &0 th vio readlwrite area that are not found In the new rea :o y area. ecl.lve 
eI m e pre us d dlwrite area to the new area removes any speoal updates that were 

COpyIhedDl of filth" fro~ the 01 ~a r the operating system but saves third-party and layered product 
app to e PreYlO\d venlon 0 • 

software previously iMtalled. 

35.1.2.4 SpeclallnstaUation 
.,. third ..... ~ software, layered products not Teleased with the operating 

SpeciallDlwlabona apply to ..- ~y odule replacements . 
.,nem. field tett updatel, and emergency m 

System Volume Layout and Software Insta llation 35-3 



Digital Equipment Corporation · Confld.ntJal and Proprltllairy 
Restricted Dlstrlbutlon 

35.1.2.4.1 Special Installation Types 

There are three possible types of special installation: 

_ Off-line refers to installing software after '!~ ~ctivity on the .ystem i •• topped and chahW. 
After the installation is complete, user actiVlty 1S enabled, and application. are stamd, .. 
the new underlying software. The CUJTent VMS installation procedW"e is thi. type oIirLsta.Il1l1C. 

• 

• 

On·line refers to installing software while the system is runni0l UJer applieationa. Far oo-a. 
installations, the application must be restarted to use the new verllon o{tho uoderlyull dwa:t 

Hot module repla.cermnt refers to installing software white t.he .ynem i. runwtlJ UKT appbca-
tions and then using the new underlying software without afredlnl the applleauoa. 

On· line installation procedures can be developed {or the general cue. Hot module ~plaotmet:l 
must be developed depending on individual application requiremenLi and tbe.lr tnt.eracboO Wllb Iht 
underlying software. General purpose hot module replacement i. not 10 the ICOpe of Mlca IIIftwan 
inatal1ation. 

SpeciaJ installations on Mica affect the read/write area of the .,-Item di.k and look ana hb 
VMSINSTAL, with the exception that the procedure supports oo.lIne software in.tallauon. 

35.1 .2.4.2 Special Installation Procedure 

The special installatio~ procedure installs n number of products, update., etc., and taU18S Lbm 10 
appear on the system Blmu]taneously. The Software Installation Utihty performs the {oUO'9f1f111W'J1 
for special installations: 

1. 

2. 

3. 

Creates a temporary, inactive read/write area on the same diak at the ell.rTeIlt active l"MIcl.'rn:t 
area. 

POI?ulates the .temporary read/wri~ area with the product/update. Any ruea Lhat require ~ 
cation a.n:: COpIed from the read/wnte or read-on1y a.rea.a into the temporary readlwnt,e ane ar.d 
then modified. 

Causes one of the follOwing two sequences to occur. 

a . IT the incorporation of a product or update requires the operating system to be ~booud: 

b. 

The syste.m reboot sequence is initiated. During shutdown, after all wer activity hal 
beEl:n tennlna~d, all of the files in the temporary readlwnte area are renamed mto tht 
active read/wnte area. 

u The temporary read/write area is deleted.. 

iii The system shutdown continues and the system reboot.s. 

If the incorporation of a prod t pc! 
rebooted: uc or u ate does not require the operatin& syatem 10 be 

ill 

The system search list of "'r dI · te 
read/write area read! "te ea"Wrl area, read·only areaW is chanced io -temporU1 
on the system ~t thi "Wrltim area, read-<lnly areaw

• The new product.a and updates appear • •• 
Files in the temporary ~ •. ~te 

reaUl ...... n area are renamed to the real r-e.adlwrite area.. 
The system sean::h list is restored to ~d!write a_a d nl • 

- -. rea -<I y area . 
iv The temporary read/write area is deleted. 

35-4 System Volume Layout and S Itw I 
o are nstanaHon 



Digital Equipment Corporation - Confidential and Proprietary 
Restricted Distribution 

35.1 .2.5 Front-End and Client Software Installation 

~S mmt-e.~d and client software i~ installed according to the VMS guidelines, using VMSINSTAL. 
Hilh avlJlabllity cou1d become. an lssue for the overall system (client thrnugh database machine), 
amce. VMS in,tall,tion procedure. do not provide the same availability as do Mica installation pro­
cedure •. 

UJtru: client IOnware i. installed according to Ultrix guidelines. using the setld command. 

Chent aof\ware i. shipped on media separate from the server software and meets client media re­
quirementl. 

35.1.2.6 High-Availability Configuration 

For the Cheyennelmultiple Stone configuration. one Stone system is upgraded at a time. During the 
in.tall.tion proces., only one Stone syatem is rebooted at a time. This causes the system workload 
to be moved from one Stone system to t.he others while it reboots the new version of software. The 
workload balance. out over the database server as the last Stone system is rebooted. The database 
llerver i. therefore available 100% of the time during the upgrade. 

Thit procedure doe. not eliminat.e the need for compatibility between Mica version n and Mica version 
11 ... 1 on the Cheyennelmultiple Stone configuration. After one machine is upgraded and before the 
other machine. are upgraded, venion n and n + 1 will be running on the same database server. 

System Volume Layout and Software Installation 35-5 





Testing and Performance Measurement 

ThIs set of chapters describes testing and pertormance measurement on Mica. 





• 

Digital Equipment Corporation. Confidential and proprietary 
Restricted Distribution 

CHAPTER 36 

PERFORMANCE MONITOR 

36.1 Overview 
~ ~pr de~be. the Monitor utility for the Mica operating system. This utility displays and 

• 10 ormation about system resource usage on a Glacier or Cheyenne system. 

~lJca ~~cIitor i. available only from a VAXNMS client for FRS. OUT long·term goal is to run on all 
IUppon.ev anLi. 

36.1 .1 Go.l, 

Mica Monitor i, desicned to achieve the following goala: 

• 

• 
• 

• 

• 

Provide I toollhat eliaplay., records and summarizes system performance data for a '1ive~ system 

ProVIde uu.p data (or the widest possible range or Mica system resources 

Ute. mJrumum of .y.tem resources to gather the performance data 

Enhance maJDtainability and reliability of the code by using well-defined interfaces to gather 

performance data 
MaXImIze flexibility 110 that the Mica Monitor utility may be extended in the future 

36.1.2 Terminology 
In diacuwn, the Mica Monitor utility. the terms class, level, and rate mean the following: 

• Cl ........ A If'OUp of dat.a item. that provide a statistical measure of the perfonnance of a particular 

tubtYltam 
Level-The current value ora dat.a item, that is, a "snapshot" • 

• Rate-The number of occurrences per second 

36.1.3 Functional Overview 
Msc::a Monitor col1ec:u data on sy.t.emwide usage of Mica resources at user-specified sample intervals 
&om a Glaaer or Cheyenne system. Data is orga.niJ;ed into classes. The user specifies the classes of 

mformation to be ool1ected. 
The raw d.ta can be recorded to a binary file. Either current or previously recorded data can be 
prore_d and d.Ltplayed to a UNr screen at user:-s~fied viewing intervala. A summary of the data 

<::an alto be computed and written to an ASCU listing file. 
Each data item ia defined .. a rate or a level. Current, as well as simple average, miniT?um, and 
manmum ruUeI OVfl:t' the duration of the MONITOR request are calculated for each Item, and 
daplayed to the lICreen. In leneral. one ~n image ia producec;l per requested class per requested 
-newinC interval. The data items for a particular class may reqwre more than one screen. 

Per10rmance Monitor 36-1 



Digital Equipment eorporlltlon • Confldentl8l and Propn-lairy 

Restrlctlld Distribution 

36.1 .3.1 ,,"me Intervals . . 
. riod ..1. interval and IJ&.tWI"8 tn~rvo.l 

The user may specify the obseruatwn pe , samr- ' 
• Observation period-The beginning and ending times for viewinc or sum.tnannnl CIlITW II 

previously recorded data . La is to be callec\edllld 
• SampJe interval-The time interval at which systemWIde performance da 

computed ed d . bem. 
• Viewing interval-The time interval at. which current. or pJ"'eviously record ata II CO 

played to the user screen 

The minimum sample and viewing intervals defined are one second. 

36.1.3.2 Classes 

Classes of information to be oollected for Mica include the followin.c. 
complete list. 

• Modes 

• Thread states 

• Page faults 

• Disk 110 

• File system caching 

• DECnet. 

• System summary 

The Mica Monitor chapter will include a specification of commands supported. 

36.1.4 Imp~mentatlon Overview 

The Mica Monitor server gathers operating system da ta by callin g the kernel mode system R~ 
execSgeCsysrem.,per(ormance. This system service is described in the Internal System Servlcel . 
uaI. 

The bulk of data manipulation, recording, and display is performed by • user-mode procram which 
runs on the client VAXNMS system. To gat.her da ta, the client portion initialit.es a JetV~ on the 
Mica!Stone system, then calls for data from the server at. the requ est.ed. sample mterval until e:ltle 

• the requested observation period haa ended, or 

• the user issues an ent request 

The client interface to the server is via RPC. 

The user interface to ~ca Moni~r ~s p~ of the Glacier or Cheyenne System Management lOwfact. 
Fot: character cell ternun~ls, a nurumallDput and display interface is built on the vAXNMS ScretC 
Management Run-Time LIbrary (SMG). Mica Monitor may also be invoked via • command file.. 

A DECwindows interlace is provided for bit-mapped devices. The displays pro'Vided for the DE(}tnlI­
dows interface are more graphically oriented than those for terminal • . 

If summarizing is requested, the summary output is written to • listin l file. 

Mica Monitor provides a recordin~ capability. Data i. recorded to a binary datA file and then played 
back to a user screen or summanzed through the Mica Monitor u tility The format. or the ~ 
file will not be documented. . . 

3~ Per10nnance Monitor 



• 

36.1.5 Issues 

Digital Equipment Corporation _ ConfidentIal and Proprietary 
Re.trlcted Distribution 

Mica Monitor requires a eLI interlace. The interface for character cell terminals win be based on 
SMG. Do we provide a separate interface for DECwindows devices for FRS, or punt with terminal 
emulation for those devices? 

Morutor wiD follow the same interface strategy a s system management, in order to provide 8 consis­
tent user tnterface. 

Performance Monitor 36-3 





DIgital EqulprMnt Corporation _ ConfIdential and ProprIetary 
Rutrlctltd DistrIbution 

CHAPTER 37 

USER-LEVEL SYSTEM EXERCISER 

37.1 Overview 
The U.r-Ltud Sy.um Exerciser (USE) is similar to the VAXJVMS User Environment Test Package 
(UETP). It enables Digtta l ma nufacturing and field service to exercise Glacier on the manufacturing 
floor &nd at the customer site. USE also functions as an installation verification procedure (IVP) 
that can be run at .ystem installation to ensure that the hardware and software have been properly 
installed. 
USE simulates Lhe use of a Mica system on a single Moraine or Stone box- USE tries to exercise the 
MoraJne or Stone hardware and devices connected to it. USE also exercises many of the functions in 

the Mica aoI\ware. 

37.t .1 GOlls 

The pal. for USE are: 
• Tb perform the Lradibonal UETP task s of testing the hardware connections to peripherals and 

of ensunna t.hat the operatina system has been correctly installed 

To function ... uae,....level systems exerciser 

To tub.1ect the system to a load test in order to stress the system 

Tb provide the user with an interface that fits in the spectrum of diagnostics 

• lb exercise .spects of the .ystem that are specific or critical to Glacier 

L"SE te.ta tape drives. disk drives. the ethernet, the CPU. and memory. It does not perl'onn any 

console or tenrun.1 telbn, . 

37.L2 Non.oolll 

L"sE does not; 
• ~_ f h ... u· ng system or every feature of the Moraine or Stone hardware 

1I:.t every .spect 0 L e j.u .. ca opera 
uhau.bvely 

• Teat &.nyl.ye:red product., luch u a compiler 
. . fro t d' no hardware or sonware problems specific to the clients 

• EumJe OT Lelt any ellent n en ' d b ruling the client system UETP 
will be deLeCted by USE-this can be one y Tn 

• Test or utiliz.e the Qu.a.rt.z software 

E 
. 1 . M· S· .. ne boxes and their front ends concurrently 

xeroae mu uple oralne or ..... • 

User-Level System Exerciser 37-1 



Digital Equlpn.nt Corpo ... tlon - ConfldenU.1 and Propr .. tary 
R_trlctKl Distribution 

37.1.3 Ou1llne of the Functionality 

USE is invoked from the client sys tem or console t hrough t.he PRlS.\1 DiqnOluc Moru\ol' PDlf c; 
executes exclusively on a Moraine or Stone running Mica. Any inform.uOD that need. LObe~ 
to the user is transmitted to the client through PDM. See Flaure 37-1. 

USE performs individual tests of the devices tha t the use.r hu .Iec:t.ed (or labnc- It alto_!hI 
Moraine or Stone hardware and all its devices in unison, mmulaUIlI a mulLJprocra.mJlWll ermr. 
ment. USE attempts to create a heavy load on the sy.tem and to lett Glacier- tn cUffeNflt wa,... 
USE provides a moderate level of isolation capability. For example, It can tell the UJef wluch4m:t 
or device controller failed. when that particular device', teat fail • . However, the,..,. um&nceIwia 
errors will occur for which USE will have either no or imprec:i.te iaolabon tnform.bon 

Subsets of USE can be run so that the user can (OCUI tettin, on particular upeeLl o( the .,.. 
These subsets consist of the individual device testa or the load telu. 

When there are no errors, USE displays a mesl8.ge on the terminal "yin, Wt the IYltaD pa.t 
USE testing. Errors are reported as they occur. In addi tion, .. USE executes uch of the tall. &:1 
errors along with information about the failing tes t and device are ente-red Into. toe file ~ 
PDM. 

Agure 37-1: Interlace Hierarchy of USE 

. 

37.1.3.1 Interactions with Other Software 

sma. 
......... "" 

""" 

I 
[2] 

-

USE, although using the same interface, does not di ·1 . . 
use them or depend on them. reet y m t.eract WI th the diacnosuca. It doa DOl 

The isolation capabilities of USE depend on the E 
As errors occur during the execution of USE th",or Lo~ger and Symptom Directed Diqnolil (SDD~ 
are invoked by SOD to deal with specific proble ey are ogged by t he Error Loceer and diapostlCl ms. 

USE executes exclusively on the MOraine or 8to 
functionality of the front ends, the software th ~e sys tem. Therefore, USE cannot test an10ftht 
Moraine or Stone h?xes and client systems. Thi: t executes ~ere. or the COnfiguration of mulupie 
developed for the client systems. ype of testing ea.n be done by SYltemt exerosetl 

USE depends on PDM to perform all the commu' . 
rueationa with the cUent system. 

37-2 User· Level System exerciser 



r 
37.1.4 Outline of the Design 

USE consisLa of three main sections: 

• 

• 
Input and Initialiution 

Device Teating 

Digital Equipment Corporation _ Confidential and Proprietary 
Restricted Distribution 

• Load and Application Specific Testing (LAST) 

37.1 .• • 1 Input and Init ialization 

USE obtains inpuu from the user t.hrough PDM. Other system parameters are obtained at. this 
bm~uch u the number of CPU modules, the amout of memory, and so on . All of this information 
it obwned throuah Mica operating system services. nus information is used to ea1culate parameters 
about the volume of load. and the types of tests to be performed. 

37.1.4.2 Device Testing 

The boic idea behind device testing i. to write a specific, known data pattern to the device and make 
l ure that. it. i, done properly. In the case of testing disks or tape drives, the written data can be 
re-read to enJute that i t was written correctly. For the ethemet. loopback mode is used to verify the 
tranlD'U t ted pecketl . U . device cannot be accessed, then testing of that device is aborted and no 
effort will be: made to test it in the subsequent load testing. 

37.1.4.3 load and Application Spec if ic Testing 

'The load tel t creates a large number of processes, depending on the CPU configuration and other 
teIOun::e parameters. The number of processes and even the tasks they are to perform would increase 
WIth the number of pTOOe.SorS. These processes include some device tests as well as user-level code. 
nUl UIeT code is chosen ' 0 as to exercise the CPU, memory, and the devices in the way that users 
wou1d me»tlikely u tilize the system. This specialized testing is now described in greater detail. 

37.1.4.3.1 Testing Glacie r 

CompuLation.int.ensive Pillar code is chosen to stress and to exercise the system and can be run on 
the I)'l tem directly nul is discussed in Section 37.1.5. 

Hardware elTOn are: 10Ued by the Error Logger, .which functio~ indepe;,dently of USE. EITOrs that 
are visible to USE are reported to the user and, If not fatal , testing contmues. 

37.1.4.3.2 Flult Tolerant Testing 

Fauh tolerance specific to a Moraine or Stone box is f:ested during the load test. AB the load or stress 
... , Ch 

-.'-m a ~ss runrun. on the same system asynchronously removes 
1J, runrune on I eyenne . J IoC • r'~- . ed fr h fi . 

proceaort &om the conficuntion at. T8.Ddom interva1s. Disks can be remov om t. e.con. guration 
throu.ch I .liehuy different technique. This macroscopic level of fault tolerance checking 18 all that 

USEd .... 

37.1.5 Developing Glacier User Tests 

USE uuliut tYPIcal or representative user-level testa for Glacier. 
f ' d try s tandard benchmarks such as the Whetstone or Linpack 

'IHt.a ror Glacier can conaist.. o In .us FO·RTRAN' LeSIl compl~ tasks, however, would probably be 
bmehm.arlu. Th~ are aV811able. 1n 'cal f those that occur in the numerical solution of partial 
tuffioent . Invf!rSlon of 1aree m aLnces tYP1

al 
~ Id exercise the parallel processing capabilities of 

dUferenuaJ equluons OT fini te element an YSls wou 
Glaaer. 

user-Level System exerciser 37-3 



Digital Equipment Corporatlon - ConfidentJa' and Proprletllty 
Restricted Distribution 

37.1.6 RequIrements 

USE does not place forma1 requirements on the hanlware or the, operabn&' 1)'Uem. IlDCe It ilille. 
of USE to test 8 designed system as a user would probably .Ublae It, not _to canatram the dIap. 
However, there are certain areas of support which would facilitate the fleJabahty ud u.lul:ar.­
USE. 

37.1 .6.1 User Diagnostics Interface 

PDM is the means by which the user will invoke USE. PDM needs to be completed before USE CIa be completed. 

37.1 .6.2 Error Logging and Symptom Directed D'agnostlcs 

USE does not perform any extraordinary isolation of f.uJta . It dou, however, Idenuf, dmc. thai 
generate errors or whose testa have otherwise failed to perform .. upoc:ted. It doee no, idenl1f:rfaulu 
down to failing FRUs. Many errors reported by USE could be caused by a vanety or dJapm1.te!a.:un. 
The Error Logger coupled with son is expected to identify point. of error, invoke lhe ~ 
and warn the user. In this way, a user can obtain ieolatioo information and dON the mlormata 
gap between USE and the diagnostics. 

37.1 .6.3 Mica System Services 

USE requires a means to 10gica1ly remove processors and di.1c.a &om the Moraine or Stone coc..6p ration in order to simulate macro-level faulls. 

37.1.7 Open Issues 

Open issues that must be settled are: 
• 
• 
• 

What are the speci1ic user-level applications tests for Glacier? How many are reqwred? 

What are the algorithms tc determine the volume of load on a .y.tem? 

What are the means to logically remove Processors or J'OL_ ~ __ '1 ' 5'-' 
w .... IHn:n lo. Or&.lne or .... oe. 

37-4 User· Level System ExerCiser 



-

Network 

This set of chapters describes the network-related components of Mica. 





Dig ital Equipment Corporation _ ConfidenUal and Proprietary 
Restricted Distribution 

CHAPTER 38 

MICA NETWORK OVERVIEW 

38.1 Overview 
The Mica-hued product. (Glacier and Cheyenne) are designed to work only in networked environ­
menu. In thil lenee, Mica il unique among systems of its size. Mica relies heavily on communica­
boos; therefore, all part.I of ita network implement.ation directly affect the success of some portion of 
the JYltem. 

8eeause of the varied problem. being solved by Mica-based products, several data-communications 
methods art implemented, ranging from packet-based. interactions to remote procedure calls (RPCs). 
The structural elementa of the Mica network implementation (hereinafter called the network) include 
data.link driven, tranlporta, value-added services. and applications. 

Neither the duirn nor the ItruCture of the network software preclude additional capabilities, 8uch as 
cbreetly connect:ina inte.ractive terminals to the toca1 area network. For FRS, however, the ~1ica-based 
produdI: do not reqwre IUch capabilities. 
'I'b.ia chapter il not. intended as a technical reference for Mica networks; 8uch technical detail is 
covered In other chapters. lrateali. this chapter pre~nt8 the high-level requirements and goals for 
MJca networu, and describes hoW' these goals are satisfied. 

Firure 38-1 and Firure 38-2 show the relationships among Mic~-based sys~ms and clients of thes~ 
S)'Iteml. TheM firure. Ihow simple and typical network topologtes along Wlth the type of commuru· 

QUODS traffic amona the systems. 

Mica Network Overview 38-1 



Digital EquIpment Corporation - Confidential and Ptoprltltary 
Rastriclad Distribution 

Figure 38-1: Glacier Communications 

""'''"'' 

,." 
"""'" • • 

QUe,," 

(SE.lWER) 

TIW"FIC OF THESE KINOS. 
8'I'STBo MNWla. EHT 
APe (FtB.Mm EXEctmoN) 
OISTRIamo FI.£ SERVICE 

... • .,"N'> 

........ '"-
There are three primary uses of the network to support Glacier servers. Glacier serve" ute RmoIt 
Procedure Calls (RPC) to effect remote execution of work for clients. A de.taiptJon of the UJt cl 
RPC for Glacier sUpport can be found in Chapter 50, Glacier Overview. The dient and arTet use 
the Distributed File Service (OFS) for ~mote access to each others duk hued 6lu. OF'S it dec­
mented in Chapter 43, Distributed FiJe Service Introduction. Management chents commurucatt WlUI 
Glacier servers through syStem management requests. System. man_Iement', ac:c.uaJ commuruCiIlDO 
(described in Chapter 32, System Management) is layered on RPC. 

38--2 Mica Network Overview 



Digital Equipment Corporation . Confldantlal and Proprietary 
Restricted Distribution 

Flgure 38-2: Cheyenne Communications 

w. • • • . ""'" ... 
.... -

c 
M , 
y 

"""'" • CSEltt'EA) • • • 
....,., 
..rQs"s'$>. TlWnc t:tI' ntER KINOS 

SVST80I ~DoI£HT 
,ftOHT.(..., CQlr,tMUHlCAllOHS 

<I===C>. .c HnMI:)XTlW'f'1C 

w • 
(FAONTN) 

r.;'1 e,,,,,", 
(SE.lWERJ 

The client of Cheyenne i. caned a front end. Multiple Mica systems running Qua.rt:z software can 
make up • n nrle Cheyenne. The traffic between a front end and a Cheyenne can be either database 
ttantactionl Cum.na: front end communications) or system management requests. There is also traffic 
between lDdlVldual sy.tem. In a Cheyenne for managing distributed databases and server failover. 

38.1.1 RequIrement. 

The network meet. the following external requirements: 
SupportofCheyenne--The network must provide interbox and Quartz front-end communications 
that can lustain the ,oal. for Cheyenne performance. availablility, and reliability (see Chapter 

• 

• 

• 

48, Cheyenne Overview). 
Support ofGlaoer-The network must provide the base for Glacier client--to-server communica­

tiont and for remote access to disk based files. 
Support of Mica system ma.nagemen~The network m,:,st provide a me~hod for remote system· 
mana,ement client.s: to communicate with their respective servers on Mica. 

Ke\.m)l'eneoua int.e.roperabiHty-Mica must coexist with vAXNMS and ULTRIX systems, and 
with other Mica .ysteall. The network must provide the unde~lying communication mechanisms 
that enable theae systemS to interoperate in t.he context of Mica-based products. 

Mica Network Overview 38-3 



Digital Equipment Corporation - Confidential and Proprietary 
Restricted Distribution 

38.1.2 Goals 

The network satisfies the external requirements by meeting the foHowing goall: 

• 

• 

• 

• 

• 

'Ib provide interprocess communications (IPC~uartz is made of many components. These 
components need to communicate quickly and ef!1ciently among themael~es. A1ao, they can f'eSldt 
on mu1tiple Mica systems. Mica networks proVlde a local and remote (mt.erbox) commurucallDrl 
facility intended specifically for this application. 

'Ib provide front-end communications-Quartz is the server portion of. clienVaervu diltributed 
system. The protocol communicated between the client and the server i. EDSRl (Eztendej 
DIGITAL Standard Relational Interface). Mica provides support for a Reliable CommuniatiaD 
Service (RCS) tuned specifically for EDSRI and Qua.rtz . 

'Ib provide remote file access-Part of the Glacier environment. includel bidi1"flCtionaJ remote 
access to files. This access is provided by a transparent file-acce •• mechanism available on both 
the client and the server. 

'Ib provide RPC support-Many parts of the Mica system, including SYltem management and 
most of Glacier, are composed of clienUserver pain. The network provides the underlyinl IUPpm 
that allows remote procedure calls to be built. 

'Ib provide virtual circuits-1fica networks provide virtual circuita, luch AI NSP logica1linb, 
for applications and value-added services. This allows minimal porting efforta for appbCltiofts 
that currently use a virtual circuit based communications. 

38.1.3 Nongoals 

The ~ollowing items are not among the goals that must be met fOT the network to aatisfy the external 
reqwrements. 

• 

• 

• 
• 

• 

• 

:ro provide a complete implementation of DNA 10 Phase V at FRS-Protocols .uclt as TP4 will be 
Implemented after F~. Rou~g will be restricted, initially, to be end node only. Protocols such 
as DAP and CTERM Wlll, poSSIbly, never be implemented. 

To provi~e a comprehensive networ~ environment that isolates users from locality or knowl. 
of the eXl~t.ence of the network-This transparency is the function of higher layers of softwv!. 
(For details, see Chapter 50, Glacier Overview.) 

To support VAXclusters or any other common-management_domain groups, IUch 81 workgroupa. 

'Ib solve t~e proble~ ~f distributed security-The design of the Mica security .y.tem (see Chapter 
10, Secunty ~nd PnVlleges) is flexible enough to adapt to a secure network, when the arclutecture becomes available. 

~ dire~tly ~nnect to wide area networks-The primary environment that Mica-based S)'5te!I!J 

;;;~7f;:d::~~ ~~::ea~s~::s~rk. Wide area networka, although implicit in DNA. art not 

~ ~=~~~~~thS·CI-~snot currently possible to use the CI effectively with DECnetfruD 
would wish to com~~~:~ DEC sy~~~s are the ~ajor systems on a CI that • Glac:ier systsD 

. is improved. ,ne support will not be provided until the VMS perfonnant! 

• DJGITAL Network Architecture 

38-4 Mica Network Overview 



Digital Equipment Corporation . Confidential and Proprietary 
Restrlctad Distribution 

38.1.4 Netwonc Sottw.re Components 

'I'bi. leCUon descnba each of the network software components of Mica, which are shown in Fig­
ure 38-3_ The delO'1ptlon. are grouped by function . The tenns introduced previously (such as data 
ltd, tralllport. &JC1~-(JtUhd UT1JU:e. and application ) are used. in preference to those of the ISO 
rtference model. 

For COIlYeruence, here i, • brief u pla nation of the terms used in this section. The data link is equiv­
alent \.0 the ISO data hole layer. A tra1Lllpor t uses the data link to provide end-to--end communication. 
\b.lue~d lef'V1eM uae a transport to provide communication that is different or more complex 
than that provided by • t ransport alone. Applications use either value-added services or a transport 
to unplement a aerviee that the u ser perceives directly. 

Agu,. 38-3: Software Components ot the Network 

...- "...",.. ....,,'" ... ."" ... co,,", 

""" """ ..... , 

... ... ... PC "'" '" ....., .. "" . 
." .. -

0 

~ 

38.U .l DIm Link Com uur Interconnect) are the supported co~muni­
The t\1 (Network Interconnect) and the CI ( t p ,__ Mica does not directly support Wlde-area 

_ local area ne worlU. 
caban. mecha for Mlca. Both an 

networb. V of DNA uses the Nt as a data link for an Ethernet 
The!\.1 1..1 UJed by the DNA transports .. Ph~h to single and multicast addresses. 
or IEEE 802.2 network... The N1 transuutJJ 

The C1 1..1 used by the SCS transport . ' __ 11 • I d • multiple controllers. To increase 
'" typu;auy mc u e . I hs Th For both kind, of data linD • • Mica lIys tIl; sometimes connected through multip e. pat. e 

a'l&ilabibty and performance, Mica .yste~: ar:sible for effecting these gains. The data links connect 

hither layen, aueb .. the, tran::U' :re 
rk !iy. 

the &)'stem to the Immediate 1 ne ~o 

Mica Network Overview 38-5 



Dlg'ta' Equipment Corporatlon - Confidential and Proprietary 
Restricted Distribution 

38.1.4.2 Transports 

SCS is used for tape and disk access (see Chapter 17, System .Co.mmunication Se~cel) and ,IPC 
(see Chapter 42, Quart.z lnterprocess Communication. If mulur8Jl use of the. CI II d~ It 11 

the responsibility of the users (SYSAPs) of SCS to figure bow they want to do Ii. SCS proVJdtt III 
interface ooly to kernel-mode users. 

The DECnet transport is NSP (Chapter 39, Network Se~ces). Be~een NSP and the dati link. 
DECnet provides a network services layer that pe~orms ro~ting. Ro~ting IUPPOrts end node functiODl 
only (that is, it does not provide packet forwarding serv1c:eS). This. layer allows connecbVlty trltb 
systems not on the same immediate local area network as the Mica s~te~. AlIO, the Mtwwl 
services layer supports multirail access for increased perfonn~ce. an~ aVallablhty. SI~ce the DECD!t 
transport is the primary communications mechanism for Mica, Ita lmplementa~on II highly tuned 
for performance. DECnet provides both a kernel-mode and a user-mode lesSlon tnt.erfac:e. 

38.1.4.3 Value-Added Services 

Layered above the transports, the va1ue-added services allow a user program to communicate by. 
different or more complex method than the one directly support.ed by the transporta. 

Remote procedure call (see Chapter 54, Protected Subsystems and RPC) provides a procedUJHlll 
interface between a client and a server. RPC manages the associations, (called bind""., between 
clients and servers. Also, RPC formats a procedure caJI into a canonical form, ship. it. to the aemr 
using a transport, and converts it back into a procedure call to the server. The reaponte from the 
server goes through the inverse process. RPC specifies that. its tranaport i. ether OECnet or.locIl 
transport which is beyond the scope of this chapter. 

Interprocess communications (lPC) support for Quartz is layered on CJJSCA using the SCS tra.D.!pOrt 
for interbox commmunications. A memory mapped technique is used for local c:ommunieationt (. 
Chapter 42, Quartz Interprocess Communication). IPC provides high.lpeed, multiplexed simplu 
communications-that is, one-way communications, with multiple wnten and multiple readera. 

Quartz front-end communications· provides the reliable link between databue clientland the Quaru 
server running on Mica. This communications mechanism is tuned for both Quartz and EDSRl. Aha, 
it ,supports multiple client applications running on multiple front-end syste.ms that are commurucaUIli 
Wlth a s~rver. Each Quartz se~er can consist of multiple systems; the front.-end communicallons hal 
mecharusms that allow both f81lover and rudimentary load ba1ancing among server .yst.ems. 

38.1 .4.4 Applications 

The ~ca ne.twork implementation includes three applications: distributed rue service (DFS), DSA 
n~rru!1g servlc::eS (ONS), and DNA network management. The distributed file service (tee Chapter 43, 
Distnbu~d FIle Se~ce Int-roduction) provides remote file access among VMS and Mica IYStem.l. The 
current ImplementatIon propagates the VMS XQP QIO interface through a requestlresportJe protoc:Gi 
layered on DECnet NSP. 

DNA ~aming services (DNS) provides a tool for distributing and managing the global name lpact. 
DNS IS used by the DNA session to translate node names into node ddrea Al DNS iluted 
by DFS ~ resolve volume-access points into the appropriate serve ad. Mi 1eIi: 110, 'u on1,. the 
clerk portion of DNS(see Chapter 40, DNA Naming Service Clerk{ n e. ea Imp ernen 

\ DNA Time Services are not currently being' I ted. 1--__ VMS. 
DNS will just have to wing it and h Ii Ih,m

bes
p eme!" ~U8e we lack. time provider on . 

ope or e t WIth unsynchroniz.ed clock.a. \ 

38-6 Mica Network Overview 



• 
Digital Equipment Corporation ~ Confidential and Proprietary 

Restricted Distribution 

Mlca provides DNA net.work management only in server fann (see Chapter 41, DECnet StartuP. 
Shutdown, Management, and Logging). We assume that DECnet.-VMS NCL (management client) will 
be available to control the Mica network. On Mica, the only parts of the network implementation that 
are controlled by network management are those specified by the DIGITAL Network Architecture. 
All other component.. have their own management. tools separately defined and implemented, usually 
tn cooper_bon with "be Mica system-management design group). 

Mica Network Overview 38-7 





p 

Digital Equipment Corporation - Confidential and Proprietary 
Restricted Distribution 

CHAPTER 39 

NETWORK SERVICES 

39.1 Overview 
nu, chapter covert the following aspects of DECnet-Mica: 

• 

• 

The parU of Phale V that DECnet-Mica implements 

The \lief" interlace to DECnet.-Mica 

The aon .... are c:omponenta Uled to implement DECoet-Mica 

Unt"9)IYed iuuel reprding the DECoet-Mica project 

Phue V i •• COt porate ltandard, so this paper does not address architectural issues. 

39.1.1 Requirements and Goal' 
The .1ecuon o(OECnet.s • communications architecture is actually a design decision based upon the 
need. of leveltl Mparat.e componenu. Following are the components whose requirements resulted 

111 the .eled.Jon of DEC net: 
Fronl-end to back-end Cheyenne communicati ons 
Remote 'Ylte:m.manacement. communications in both Cheyenne and Glacier 

Client-t.o-eerver communications in Glacier 

The reqwrement.l lMt relult.ed in selection of DECoet. are a 8 follows: 

Reliabl. virtual-circuit .uPpor1. 
InteTOptrabilily with the VMS, ULTRIX. and (possibly) MS_DOSTM operating systems 

Support for the DIGITAL corporate RPe • 
like all DECnet Implementations, DECnet- Mica must conform to the DIG1:r'AL Network Architec­
ture, and mu.l include the minimum subset of modules defined by that architecture. 

DECneL-M.lea mUJ"l support the 1\"1 as a data-link device. 
"~pouible, DECnetr-Mjca should be optimi z.ed for performance when supporting Cheyenne com-

murueations. 
To help provide fault tolerance in Cheyenne, f8ult-tolera~t f~l~e9 .of DNA. sh~u1d be in:luded in 
DECneL-~bCL Pnmary among these feat ures is automatJc orcwt fallo

ver 
Within the routing layer 

aCPhuo V. 

Network Services 39-1 



DigItal EquIpment CorporatIon _ ConfidentIal and Proprietary 
Restricted DIstrIbutIon 

39.1.2 DNA Components 

DECnet-Mica is a small subset of Phase V, including only those components . needed to implemtnl 
a high.performance, fault·tolerant, end-node DECnet . That is, DECnet-Mlca tnclude. the follOWUli 
Phase V components: 

• DNA naming services 

• Network communication services 

• Network management 

• Network event--logging server 

DNA Naming Services. In Phase V, both the session layer and the distributed file lemoes (DFS) 
need the distributed name services provided by the DNA naming services (ONS). DECne,,""Mica 
implements only a DNS clerk . 

Network Communication Services. DECnetr-Mica provides n etwork communication ten'iees by 
implementing the Phase V specifications for the session layer, the Network Senice. Protocoll1''"SP~ 
and the routing layer (end·node on1y). DECnet-Mica supports com municatiolUl only over the theNl. 

Network Management. For most network management wh, DECnet.-Mica nodes are cnntroIled 
from a remote DECnet-VAX node. This VMS node runs the Network Control I...ancuace 'CL\ I 
general·purpose networ k management utility. On the DECne t..-Mica node, a facility called CMlP 
(Common Management Information Protocol) processes remote NCL directivel. DECnet-Mic:a if!­
eludes special local management capabilities to initialize , ahut down, and manap the local network 
node. 

Network Event-Logging Server. On a DECnet-Mica node, network eventa are handled locall, by 
a network evenlrlogging facility. Management utilities on client nodes, such u VMS nodes., can 
capture these DECnet-Mica events, and log them either to a file on the client node or to a file on the 
DECnet-Mica node. 

Figun: 39-1 sho:-vs ~ow the com~nents. of J?ECnet-Mica interact. (Note. that, thouah the data·link 
layer IS shown 10 Figure 39-1, Ita deSIgn IS covered in Cha pter 19 Nt Funcuon Processor. The 
data-link layer is included here only to comple te the figure .) I 

39.1.3 User Interface 

This. sec~on s~~es the user interface to DECnet.-Mica. The user interface to the DNA nanuDI 
seI'Vlces IS descnbed 10 Chapter 40, DNA Naming Service Clerk. 

Th.e user interface to DECnet-Mica is based on the services of two Mica software components: pori 
objects (ports) an.d 110 channels to the s~ssio~ function processor . Figure 39-2 shows the relationilup 
between po:t objects and c~ela. ~anly, a port object represents the data atructures wilhln 
n:ECnet-:Mi~ used to keep Yl~ua1-C1~wt. state. Each port object repreaenta one end of either I 
YlrtU;BI Cl.r cwt or a pountl.a.l virtual ClrcU,t (that ii , one not yet tabli hed) 0 - ob'-l 11 
reqwred for each end of a Ylrtual circuit. es s . ne port 'r'~. 

Once a port object is ~ed to estsbli~h a virt~al circuit, a channel to DECnet-Mica' session FPU is 
used to send and receIve messages Vla that Ylrtual circuit B . fl h th • w.ad 
must go through to create and use a virtual circuit: . ne y, ere &ree steps a server 

1. 

2. 
Create a port, and give it a name (such as YV7 suuer ) Th.- __ _. to d .e ,_ -J-_ . . ... __ .. &evenu ways 0 1,.il,U. 

Wait for a virtual·circuit connection request to be eel . . the 
executive wait services. queu to the port. This II done UJinf 

3. Assign a channel to the session FPU and 88S . Ie 'h chann . 
• OCla e . el With the port. 

39-2 Network Services 



Dig ital Equipment Corporation ~ Contlantlal and Proprietary 
Restllcted Distribution 

FlgUN 39-1 : The Components of OECnet-Mlca 

--- lo(l'[AI'ACI! 
rw.tESVIYEA ClERK 

1fIIIIIO'I'0000jCWP1 ~ IA PROTECTED SU8S'fSTal) 
"UI£"'1IIOC)f ~I 

, 

..... "'= EVeNT DISPATCHER 

\A MCnCttD ......-n. ... ) - IA IJSEA.MOOE PAOGRAIroI) 

""""" """"""-
IA FUNCTION PROCES$OA) 

, 

NE1WOAK SERVICES P'AOTOCOL jNsP) 

IA fUNCTlOH PfIOCES90A3 

ENO-h OOE RQIJTINO 

IA FU",CTtOJrj PAOC~ 

~TA UNK INII 
IA FUNCTION PAOCE.SSOAI 

Accept the 'rir'lua1~c:ircUi l request via the channel to the session FPU. 

Send and recewe virtual-cireuit messages via the channel to the session FPU. 

IMconnect the virtua1 circuit. and delete the channel. 

<. 
5. 

I . 

7. 
lithe port d to be u.ed ror another vi rtual circuit, proceed at Step 2. Otherwise, delete the port-

To int4!ract WIth. H'f"Yer thread via a virtual circuit. a corresponding cHent thread must go througb 

the fol1owtnc atepe: 

1. Create' port (it d~ not need a name). 
2. A.icn. channel to the _ .mon FPU, and associate it with the port. 

Network Services 39-3 



Digital Equlpnwnt Corporation - Confidential and proprietary 
R .. trlcttld Distribution 

Figure 39-2: Relationship 01 Ports and Channels In a VIrtual Cl rcuH 

I 
o· K. I I" APPlICATION [':.,. :J p VIRTU ..... CIRCUIT ) • 0 T :· ~ ."1 IV • ~'AT1ONI 

~ l{ASSOC'~) T 11 Ii': 
T 

iIJ) 1:0' ~H --o:®~ - I ..... L.....-

' ~ 77' L- : 

.., I SESSION FPU 
I 
I 
I 
I 

OECNET·~IC'" I 
I 
I 
I 

ETHERNET ~ ET>£AHET 

""1'l1CA11OH 

c ;o.. 
I-T " A 

." H 
N 

-, ~ 7 

....... "" 

O£CH£1"'1CA 

I 

3. Issue a connection request via the channel. Specify the node on which the eerver i, located and 
the name of the server's port object (xyz_servu in this example). 

4. 

5. 

If the connection is accepted (instead of rejected) send and recelve virtual-circuit messages nt 
the channel to the session FPU. 

Disconnect the virtual circuit, and delete the channel. Also, delete the port objec:L 

These descriptions of how servers and clients act are meant to give a genera) undentanding ofbo1f 
port objects and channels to the session FPU are used. Many deLa.ils and varia bon., howe\-er, art! 

not been covered in these examples, but are covered later in this chapter. 

39.1 .4 Imp~mentatlon 

The implementation of the DNA naming services is described in Chapter 40, DNA Naming Serrice 
Clerk.. 

The main portion of DECnet-Mica (session, NSP, and routing) consist. of three independent, but 
tightly-coupled, function processors. Here, ti8htly-coupled means that the interlaces among thdt 
function processors are intended. to be as efficient as possible, using special entry points and callbac.ks 
as needed. 

Both the C~P serv~r and ~he event-~ontTol components are user-mode program. that use speoal 
u.ec$requesUo functions to Interact WIth the session, NSP, and routing function proceuors. 

39-4 Network Services 



Digital Equipment Corporation . Confidential and Proprietary 
Restricted Distribution 

CHAPTER 40 

DNA NAMING SERVICE CLERK 

40.1 Ove rvlew 
TN. ovemtw .ummarizes Lhe function of the Distributed Naming Service (DNS) for the Mica opeI'· 
ablll ')'Item. 
The DI..tribut.ed Namm, Service allows a network user or program to find any tuple in the global 
name.pace. • tuple heine a neLwork object, network process, network event, or network entity located 
anywhere tn the network.. In this sense, the Distributed Naming Service is like the white pages of a 
typcal telephone directory, which allow a telephone user to find the address (the phone number) of 
a oar located elaewhere lD the t.elephone system. Just as no single telephone directory lists all the 
numben of the enure telephone .~tem. no single DNS node stores all the naming information for the 
oetwork. Jnlt.ead, Lh.i. information i, distributed to nodes. caned name seruers, located throughout 

the network. 

FoUowtnt .,. \emu that repTesent important DNS concepts: 

Clcrovh4uu-A collecbon of directories stored on a single node . 

DU'CdtJry-A name-.pace entry containing entries of objeeta, child directories. and soft links. 

D.vS Clull-The chenL interlace to DNS. 
Soft IlIlA-A name-.pace entry that allows a single entry to be referred to by more than one 

D&me, an ali ... 
Nanw-A ch.a.racter strine that refers 1.0 an object. 

Na~ w-uer-A node that contains at least one clearinghouse. 

/t.'0IM . poce-A tree of directories, starting from a root directory. 

O~S h eli b t.ori it in more than one clearinghouse. Each clearinghouse has 
. rep cala a T~rywn'" f' . house is up the node s toring that clearinghouse acts as a 

tlIrO SLates, UP or DO •. en 8 c ear;n, ore than on~ clearinghouse at a time, as is true when one 
name: sener A name .enel" ea.n contro m er 
name: Mn'er fail. and the dearinahouse is moved to a new name aerY . 

. Se . have a DNS Clerk. The Clerk contacts name servers 
AD nodes nAn, the OlJllribut.ed Nanung TV10dce The Clerk is the only portion of DNS included in 
that, ,n aome INtancu, ~de on other n es. 
DECOtt.-!tof.Jca for FRS_ . . 
• . f th DECnet Naming Service, consult the DNA Nam'ng Servu:e 
cor a more dt:La11ed dHCnptlOn 0 e 
F.n.etJo~ Sp«t{iI;4lton . 

DNA Naming Service Clerk 40-1 



DIgItal EquIpment Corporatfon • Confldentja! and Proprieta ry 
Restricted DIstributIon 

40.1.1 Requirements 

The Distributed Naming Service is required for the session layer of Phaae V OECneL 

DNS must unambiguously label objects. pr~sses. events, ~ en?~e~ver ~ di~~~uted ~~ 
DNS therefore needs uruque identifiers over time and spac::e. sab >: .• n ' . ' reqwns 
time system service and the unique-identifier system sef'V1.ces. The Distnbut.ed Time Server 11 DOt 
implemented; therefore. if the system manager does not set the system bme corTeCt1y, the bmt can 
go backwards. 

40.1.2 Functlonallnteriaces 

The Distributed Naming Service has two interface5-the client interface and the management inter. 
face. Both are part of the DNS Clerk. 

The client interface allows the fonowing operations: 

• Creation of entries in a name space 

• Deletion of entries in a name space 

• Modification of entries in a name space 

• Retrieval of en tries in a name space 

The kinds of entries affected are network objects, name-space directories, and eoft linka. The c:hent 
interface anows the replication of directories in multiple clearinghouses. 

The management interlace allows control of the name servers, the clearinghouses, and the name: 
space as a whole. All functions of the management interlace require privilege, and can be performtd 
only by an authorized user. For management functions affocting only a single name aerveT, ihiJ 
user could be the system manager of the affected node. In contrast, only the network manarer 
should perfonn functions that affect the structure of the name space. Phase V of the DIGItAL 
Network Architecture requires that the name server somehow aut.henticate all management funCbOllJ 
performed through the management interface. For FRS we do local authentication on the local node; 
remote management, however, must have DECnet proxy aut.hentication to the local node btfcn 
performing privileged functions. 

The management interface allows authorized users to perform the follOwing taslu: 
• Check the status of a name server 

Tum a clearinghouse on and off 

Create and delete a clearinghouse 

Check the status of a clearinghouse 

Merge and unmerge name spaces 

Turn a name server on and off 

• 
• 
• 
• 
• 

40.1.3 Implementation 

The DNS Clerk is implemented as a protected subsystem, thereb isolatin an blem..s in th! 
Clerk from the kernel that would be present if the Clerk we", . IY 0_" fY pro -ICII' Th . te~ to 'h DNS CI k' . Imp eIDen!oClll at a uncbon p .......... 

e in uaee e er IS defined as a run-time library CRn) routine. The RTL routine 
makes remote ~rocedure calls to the Clerk, which is also on the local node. Performance COOl~ts 
may later reqwre that the Clerk be implemented as a functio B tJ d fi . ,the 
interface as an RTI.. routine, however, we minimize the imp,c"' oPfroce. hl80r. banY eua:end >: e run 

uc . a c ge 10 e!Dgn. 

40--2 DNA Naming ServIce Clerk 



• 
DIgital Equipment Corporation _ Confidential and Proprietary 

Restricted Distribution 

CHAPTER 41 

DECNET STARTUP, SHUTDOWN, MANAGEMENT, AND LOGGING 

41 .1 OvervIew 
ThiI chapter coven the fonowing •• peets of DECnet-Mica: 

Network man_cement, and event logging 

Network ma.napment aecurity 

OECnet.-MJC& .tartup 

DECnet.-~tica .hutdown 

. '.1.1 Requirements 
'The upec\.l or OECnet--Mica covered in this chapter meet the following requirements: 

Allow DECnet--Mlca to be managed from a remote node 
AdM.", to the network management architecture of the DIGITAL Network Architecture, Phase 

V (heromaller. PIuu« V] 
Allow DECnet--M.u:a to be .tarted locally without net.work links or terminws, including the con-

.. I. 
Anow DECnet--~'bea to be managed from the console 

. '.1.2 Network Management and Event Logging 
Fi"", 41-1 .bo," how t.he main components of DECnet-Mica network management and event 
1occ

m
, relate La one another. Figure 41-2 shows a more detailed view of some of these components. 

The J'Mt of thi. teCtion describes components shown in Figure 41-1 and Figure 41-2. For more 
detailed nuormatlon on OECnet. network management, see the DNA Network Architecture General 
Dacnptum and the DNA Network ManLl8emLnt Architecture. 

41.1.2.1 EntlU ... Directors, .nd Agents 
In Phue V • network i. mana.eed through its entities. An entity is a manageable component of a 
d1l1::ributed'l)'It.em-e protocol module, for example, is ~ entity. ~ discu8Si~n. of network entities, 
howe'lu, 11 beyond the ICOpe of thil ehap~r. ~or details on particular entities, see the network 

~ment chapten of the following speoficau
ons

: 

DNA N<t"",,1t Control /AnguaB< (NeL) specific·
tWn 

• D.VA Common MonagUJUnl Information protocol (CMIP) specification 

DNA MOUlUntJllee OpuatiolU FunctwTUll speci{il:o.tio
n 

DECn
et 

Startup, Shutdown, Management, snd Logging 41-1 



Digital EqulprMnt CCH'por.t1on • Confidential and Propr .. tary 
Restricted Distribution 

Figure 41-1 : o verv DEC ~ ulea Network Management and Event Logging 
lew of n8t'""'f'1'1 

CUENT SYSTEM """ ....... 
"'""" WS OR LA. TOW( 

Cu.Towu. ~ 

~ 
"""'"'"" ..,..., 1""-""""" J ... """ .,.., OECH[T""CA 

LANGUA.GE (HC~ frolANA,QEWEHT 

.'"""". "Al.l.T NCl. ........ "'" , • ...... 
" • .. , • , .. , 

• , 
0 , , 
MANAGEMENT ... """ ..,.,. DICHfT'" ....... 

REMOTE £VENT LOQGNG 

I REMOTE L "'. ""'" """ """ ""'" I OIUATCI'mII -"'" 

• DNA Session Control Layer Functional Specification 

• DNA NSP Functional SpecifU;atwn 

• DNA Routing Layer Functional Specification 

• DNA CSMAICD Da.ta Link Functional Specification. 

• DNA NI Node Product Architecture Specifica.tion 

A director is a network program that initiates directives, which control a network entity. DirediVtl 

are sent using the Control Management Interface Protocol (CMIP). which i, described in a ~~ 
section. A director is either local (that is, running on the system it manages) or remote. Unlike' 
remote director, a local director can perform management operations when the .Yltem is not yet put. 
of a network, for example during system initialization. 

An example of a director is the Network Control Language (NCL), a command-driven director defined 
by Phase V. Used to manage DECnet-Mica nodes remotely, NCL provide. commands defined by all 
the manageable entities specified in Phase V. For a complete description ofNCL, see the DNA. NdWon 
Control Language (NCL) Speci/Untion. 

Using the Common Management Information Protocol (CMJP), NCL on one node communicateS with 
the CMIP server on another. The CMIP server, in turn, communicates with the individual enutld 
of its local node. 

41-2 oeCnet Startup, Shutdown, Management, and Logging 



Digital Equipment Corporation - Confidential and Proprietary 
Restricted Distribution 

Each enbty contain. one or more C6tnts. In an entity, the agent is the portion that processes manage­
mt.I'It directives rece:tved by the entity. That is, the agent is the the management interface between 
direetors and the entity in which the agent resides. The management functions that t.he agent per­
fonnJ are lpec:i6ed in the DNA specification for the entity. 

FIgure 41-2: Det_UI of DECn.t~IC:8 Network Management and Event Logging 

.-... 
o _ CoW*Ol1. W'm4 001'" ""'0 MHT DlMCnll'ES 

® ....c ~ CIoIJI' IJIMC1'IYU 

® III'C ..".. .....". ()IMCT1II£S 

® IiIIIC W'TW ~ Nm ~ QUllEc;T1VES 

o .--

",'&<mY 
,""> 

" ..... "","ON 
PROCESSOR 

DAT .... UN( ENTITY 1----' , .... 

, 

Shutdown, Management, and Logging 
DECnet Startup, 

41-3 



Digital Equipment Corporation· Confidential and Proprietary 
Restricted Distribution 

41 .1.2.2 Node Entity 

In Phase V. a node entity is a global entity, encompassing all other entities of the node. TheJe other 
entities ~ therefore subordinate entities of the node entity. Roughly equivalent to a local OCXDptlter 

system, the node entity is the focus of network management activities within a sy.tem; It provides 
the top-level interface to network management, both local and remote. The node entity forwards 
directives to any DNA entity of the local system. Also, the node entity maintaiN the node tI&me, 
node address, and node mo. 
In DECnet-Mica, the node entity is a protected subsystem. The interface between the node entity and 
subordinate entities implemented as FPUs is through channels. In contrast, the i.nterface bet'll'eelI 
the node entity and subordinate entities implemented as protected subsystem. i. vi. intranode RPC_ 

'lb issue directives to FPUs, the node entity uses euc$requaCio function codes . Some directives 
result in multiple responses; the node entity receives these responses by using •• pecial tJC«$rtqua( 
io function code. 

41 .1.2.3 CMIP and the CMIP Server 

'I1ris section describes the Common Management Information Protocol (CMIP) and introduces the 
following terms; • 

• 
• 

Event- An occurrence of a specific normal or abnormal condition. 

Event report- The set of data slnlctures describing a single event. 

• Event sinA-Any local or remote consumer of event reports; an event sink dit:play .. stores, or 
processes event repor ts. 

• Event source-Any entity that generates an event report.. 

CMI~ is t~e protocol used in managing Phase V nodes. It. supporta remote management operatioos. 
allOWIng directors to manage entities located anywhere in t.he DNA network. CMIP i. oomposeci 
of two pro!«ol~: the Management Information Control and Exchange (MICE) and the MOJIIJItmtJIi 
Event Not,/icatwn (MEN). • 

• 

• 

MIC~Allows a netwo:k n;tanagement application to probe and control the entities of a remote 
~~;. Thus, the application can manage the network by managing the pa.rta of t.he network. 

uses a requesVresponse protocol that contains no ordering or reliability checlu. 

MEkN- AlJows the event dispatcher (see Section 41.1.2.4) to send an event report to an e\ut 
sm. 

Together, MICE and MEN fonn a complete set of basic netwo-k mana t . • gemen servu:el. 
In Mica, the CMIP server runs as a user mode . . . ___ l 
remote procedure calls. . prDgTa.m; Ita mterface to the node i. through intranWe 

For more detailed information on CMIP th DN. 
(CMIP) Specification. ,see e :A Common Ma1UJ6I!TMnJ Inforrrwtion protocol 

41-4 DEenel Startup, Shutdown, Management, a nd Logging 



Digital Equ ipment Corporation - ConfidenUal and Proprietary 
Restricted Distribution 

.1.1.2.. DECn.t~lc. Event Dispatcher 

Each layer o( Ph .. " ~uch aa TOutine, NSP, and 150 transport.---ciefines as events certain occur· 
rtncet, leLlOnl, b"anl4cu ona, or oo!1dit:ions . These events are reported, and can be logged to assist in 
Dttwtln. manaeemenL Event loeglne 111 the framework (or handline these events. The MEN portion 
af'CMlP ,a the manalement protocol for event logging. 

The .mtjor component of event loggi ng is the DECnet.-Mica euent dispatcher, which manages the con­
Q«t:IOnl between lOurcea and links. The event dispatcher is implemented as a protected subsystem. 
The interface between the event dispatcher and network entities (sources) is through RPC to theilode 
enbty. The node enuty delivers the directives to the appropriate subentitYi these directives establish 
evenu for which reporta are to be generated. 

Event ~port.Iare cenersted. by entities. which deliver these reports to the event dispatcher by writing 
to • known me .. ace (uncuon processor unit. The event dispatcher, in turn, creates an outbound 
IUeam for tach active event ai nk. Then, using criteria specified when each event sink is set up, the 
event dupat.c:her filLert the even t reports it forwards to each event sink. 

For more detailed information on DECnet event logging, Bee the DNA Phase V Euent Loggi"8 Func­
f10nal S~c'fkoIUJn. 

. 1.1.3 Network Management Security 

DECnet.-?tlica network. mana Bement supports two types ot access: control access and mon~to: access. 
To modify network behavior or at-tributes. an issuing director must have control ~ccess. Slmilariy, to 
read attributes or obaerve network behavior, a n issuing director must bave morut.or access. 

Control acc:ea and monit-or acce •• are each protected by a p;ivilege ope~tion .object .. To ~et control 
~ .. I mrector mu..t fint have access to the control priVllege ope:a.bon object . . Like~8e, to get 
monitor accHI, a dn'8Ct-or muet firs t bave access to tb,,: monitor pnVllege oper~tion object. Each 
DECnet.-~lica qent (data.link alent-a included) must validate access betore canylng out each CMIP 

dnoct>ve. 

.1. t.. DECnal~lca Startup 
1h 1\ he DEC et.-Mica node entity is called the DECnet-Mica management 

e 10 ware t t at-ar:ta up a. .~ lemen tation ot NCL, being limited to performing operations 
~ (DMD). DMD ,. a bmlted, P full im lementation ofNCL performs operations both on 
0I1l)' on the local node enuty. In contrut, ~ntiti es p DMD is further limited to processing commands 
the loc:a.1 node enuty and on remote. nod~CL hi~h wben fully implemented, processes commands 
rtiabn, only to DECnet.-Mlca-unlike . . wDMD ' be invoked from the console by entering a 
rel.Un, to ~l arclut-ec:ted Phase V enuties. can 
command wilrun the conaole con trol program . 

h k as specified in a script file, of which the system 
OM!) runs at boot ume, and configures t e ne~wor d (2) a customer-modifiable copy of the default 
baa two vtrllona: (1) a detault read-o.nlY VeTffil0n, :nclient node, edit the file, then copy it back to the 
'WSlon. A customer can copy the modifiable e to agement the network can be started from either 
DECDet.-Mlca .,atem. Then, through system man ' 
the ddauh tcnpt or tho CUlwmer-modi£ed copy . . 

DEC t.-Mica even if the modUiable startup Script IS cor-
Ta help efllUJ"8 that cuatome"" can atart De • 
rupted the fI U . I TeC8utione are taken: • 0 OWln p . . startin from a customer-modifiable script, ~h.e 
• If an eTTOr i.e det.eet.ed while the network ~ t.-Mi! is then restarted. using the detault Im­

paruall, ltarted nel.W01"k. ja .hut do~. DE rle started, DECnet.-Mica notifies other processes 
tlahution IO'ipL AJ\.er the network , s pro~ y 

C 
. p a nd ready lor use. 

III the .,-st-em that DE net ,a u odifiable script is compiled and checked 
, te- t.he customer·m . b k be' • When COpied back to the Mica sys ..... _ . pert rmed either by a conmstency c ec er 109 

fot erron of .yntax or range. Thia checking '~mil':; tool developed by t.he DECnet-Mica group. 
deweloped by the OECnet--VAX group or by a 

S
hutdown Management, and logging 

oecnet Startup. • 
41-5 



Digital Equipment Corporation. Confidential and ProprJet8ry 
Restricted Distribution 

41.1.5 DECnet-Mlca Shutdown 

The DECnet-Mica management director (DMD) not on1y st.arta a DECnet-Mica node, but allO shuu 
it down. The DMD performs an orderly shutdown of all the entities of the network. Note th.t lome 
network processes, such as the DECnet-Mica node entity and the DNA naming service. clerk. must 
retain information despite shutdowns. These processes keep this information on the -)'Item cbIk, 
where it can be accessed at the next system startup. 

41.1 .6 Issues 

1. The DNA Phase V Event LoggiTll/ Functional Specification has not gone to field teat., 10 ita deIIID 
is subject to change. 

2. The process of creating a node at system installation is not understood. We do not undtrtWld 
how a system starts off with a name and address, then publishes them in lhe name 1UVn. 

41-6 DEenet Startup, Shutdown Ma 
, nagement, and Logging 



Digital Equipment Corporation _ Confidential and Proprietary 
Re.trlcted Distribution 

CHAPTER 42 

QUARTZ INTERPROCESS COMMUNICATION 

42.1 Overview 
MIca providel an mterproce .. communication (lPC) system that specifically addresses the interpro­
cell communication neede of Quartz. Message queues are the primary mechanism for interprocess 
commuruClition on Quartz .y.temJ. In the message queue model, processes that want to send roes­
SIIH queue them on a .ouret queue. Messages may then be retreived from an associated sink qlUue. 
The (oUoWln, aect.iora dilCu" the message queue model in greater detail. 

U.1.1 Requirements/Goals 

Qu.art.a: hu the (ol1owinl requirements for an IPC mechanism: 

• 

Provide an int.erfaee transparent mechanism for communicating with local and remote processes. 

Support meuaee' o( any lIize (up to the limit. imposed by the size of t.he memory region created 
(or buJrmn.c meualet). 

Allow more than one .aurce queue to be associated wit.h a sink. queue. 

Allow. ti1lk queue to have more than one reader . 
Praent m~aaea at the aink queue in the same order as messages at each source queue. If a 
link queue hu more than one source queue, then message order need not be preserved among 

the eouroe queue • . 
Provide. flow control mechaniam to control t.he message rate of delivery at the sink queue. 

42.1.2 Non-Golll, 
It th te 18 of a message while residing in the shared memory region. 

$o
lI "1..~n.pl to ~~tbe e con ~sse!l the complexity involved to provide data integrity would 
nee ~ rellon t. 'oaTe\l tween y' ---. • 

mUM. performance derradation of the IPC mechafUsm. 

42.1.3 FuneUon.1 DeScription , . a Quartz system, a message region object is crea~, 
To e.tabhah com.mwucabon amona: processes on ce and sink queues. It provides memory for storing 
wluch lJ • portaon of memory .hared among BOUT 
_ Tb ., 

ti of their associated source queues. e crea ... on 
Sud&: queues are ~ted first.. (onowed by the crea on e and sink queue. This action creates a web, an 
fila eoarce que.ue enahu.lhes a link betw~n the :;~r;sequent source queue specifies an ex:is~ si~ 
ltIt.ereonnect.d Nt o( queUei . I.r the crea.bo.n o~eb Note that this implies s many to one relationship 
queue. the ~ IIOUtce queuejOtn.the CXlsltng . 
bet.." .ource and 111M queue • . 

Quartz Inter process Communication 42-1 



Digital Equlp.,...nt Corporation - Confidential and Proprietary 
Restricted Distribution 

Before interprocess communication can occur, a message gate o~ject CheTea.f\.er referred to U '&tit 
must be created. for each process using the web. Gate crea~on can occur any llme aI\.er I'tpoo 
creation. The Message Gate Crea tion service maps the speofied memory regton Into Lhe addma 
space of the process issuing the call . A gate must. be explicitly bound to. lOurce or mnk queut to 
join a web, and to subsequently send or receive messages. 

Mer the creation of the memory region, the creation of the necessary queues, the creabOD cithr: 
corresponding gates, and the binding of gates to source and sink queu~, menages can be IttIllDd 
received. Messages can be transferred in several differen t ways. Messages are stored in buffers III 
the memory region associated with the gate. The buffers may be preallocated. A thread caD later 
reference a buffer as part of the process address space. A message may also be COPied Into, buffu 
that is part of the region. In addition, a t.hread may request to use • messap queue In • ~ 
mode, forcing all messages to be copied, i.e., no user mode access to the relion. Note that thit modt 
is intended for debugging purposes and will incur severe perfonnanee darn-dation. 

Gates support an end-of-stream operation. When all gates associated with a lOurce queue have: Jet 
end-of-stream, the source queue's state is se t to end-of-stre&m. When all aource queues in the ... eb 
have entered end-of-stream, all members of the web transition to web end-of-stream An, requtlU Io 
send a message while a source queue is in the source queue en d-of·stream state result in the mtlllP 
not being sent. In this case, end-of-stream status is returned to the ea.lIer. Any requetU to men 
a message while a sink queue is in the web end-of-stream state result in end-oC-stn.am ,talW ben&: 
returned to the caller. 

42.1.4 Design 

Quartz message queues consist of three objects: regions, queues. and pte.. 

42.1.4.1 Message Region Object 

A message regio~ object is a portion of memory shared among aource and sink queues' it pnmdeI 
md ~mul°ry for slonng messages. The minimu m allocatable message size is • run-time co~t.ant with . 

eta t value of 128 bytes. ~ 

42.1.4.1.1 Functional Interface 

The !"1essage Region Creatio.n object service is used to create the region . The ob'ect arehit«turt 
req\ll~es that ,keT;tel mode ohjects not be placed. in user mode containen When the~M RePn 
C~ation serYlce IS called, the previous mode of the calli ng thread is tem·pora.rily ch.an~ Ultl': iD 
or er to create a user-mode memory section. Message regions are deleted using euc$d.ekt~_ob;t. 
Since the pages in the section are user read/wri te al l . d 
in nonpaged pool. Allocation and initiali ti f h' . message allocation data structures resi ,e 
created. za on 0 t ese data structures oec:un when the rq:I(II1J 

Executive service routines are used to allocate and dea1l 
services are used by the gate system service ocate message space from the z-erjon. Thee 
deallocate) a message associated with a gate. s as a result of a request by a thread to allocate (or 

42-2 Quartz Interprocess Communication 



Dlgttal Equipment Corporation - Confidential and Proprietary 
Restricted Distribution 

U,U ,2 MeSHg. Queue ObJect 

'llUI object provide. one end of a uni-directional virtual circuit between itself and another queue 
obJect. It pronde.s flow control, and maint.a.ins a list of messages to be sent or delivered, depending 
011 the type of menace queue. 

Meaare queue. may be wai ted on using the Mica wait services, When a thread waits on a source 
queue, • d\ance in the q ueue' •• tate causes t.he thread to unwait, Table 42-1 describes the various 
meaqe queue stala. Table 42-2 and Table 42-3 describe the transitions between source and sink 
queue ltat.e.. Sink queuet may be waited on to detect the arrival of a new message, A kernel ~vent 
obJect lJ uaed .. the dispatch object. 

now control between tou rce and aink queues is accomplished by the use of a message-based credit 
window mec.hanillD auociated with each aource queue. No messages are queued for delivery at the 
Jini queue, when the credit val ue is zero, When a message is removed from the sink queue, the 
aedit value of the eoUJ"Ce queue that lent the message is incremented, 

The delivery characteristic. of a mellsage queue may be modified by two thresholds: 

1. Restart. Sender-When a Lhread attempts to send a measage on a source queue with no message 
a.btl, the thread i . placed in 8 resource wait state, It will remain in this slate until a specified 
number of me...,e credit. are agai n available, 

Restart. Recelv~When no messages are available from a sink queue, the, sink ~ueue ,,?U remain 
unsa.rnaled UDt:iJ there a re a specified. number of messages queued fOT delivery to the stok queue, 

Table 112- 1: 
,.". 

....... g. Queue St.l .. 

CONfIGURE 

V8Jid For Oesc:rlptlOn 

nu. Is the initial state for all queues, ThfI thresholds and cred1t lim1t 
UOC\. ted with a queue can only be changed while the queue is in this :tata, A source queua's signal 8tate is cleared when ~e ~ueue enters,this 

state. A sink queue's signal state is signaled when '",thiS sta,te, Waitln,9 
on 8 aink queue whne in this state Is meaningless, that IS, the Sink queue s 
algnal state does not change Implicitly while In the CQNAGURE :ta~ , 

SOURCE OUEUE READY Source Queue' This ' tate provides an intermediate point for web startup synd'lronlzabon, 
The source q ueue" signal state remains cleared, 

WEB RUNNING 

SOURCE OUEUE END 
OFSTREAM 

WEB END OF STREAM 

fAliJRE 

Message transmission may commence upon ante,ring this state, A source 
, ' al state Is signaled A sink queua s signal state changes 

queue 8 SIgn ' 
ssag .. 

a'a present to be read, or when ths last massaga 
whenever me ... 
.. read out of the sink queue, . 

'd • an Intermediate point for web shutdown synchronlza-
So au as This state provi e , 

wee.u The source queue's signal stata IS cleared, 

Source and 
Slt\kOueue. 

""n, b b , . ' that messages will no longar a sent Y source 
This stats sign "8 , ' k ' 

queue's signal state IS cleared, The sm queue 5 
queues, The source 
signal state Is signaled, " ' 

, od ' th executive S8rY1C8 rout ines detect a catastrophiC 
This state IS enter e od 

. T 'n'ons out of this state are not allow ' 
lallure, rans I 

Quartz Interprocess Communication 42-3 



Olgltsl Equipment Corporation - Conlidtlntfal and propr'-tliry 
Restricted Distribution 

Table 42-2: Source Queue State Transitions 
From To Desaiption 

CONAGURE 

SOURCE OUEUE 
READY 

SOURCE QUEUE 
READY 

WEB RUNNING 

SOURCE QUEUE 
END OF STREAM 

Any State 

SOURCE QUEUE 
READY 

CONFIGURE 

WEB RUNNiNG 

SOURCE QUEUE 
END OF STREAM 

WEe END OF 
STREAM 

FAILURE 

A source queue enl.rs thls stat • .rt.t h .. conflgUrltd The md.i. 
message_qULue_state saMCIt Is uNCI to mw ~ tranSboI\. 

A source queue .mers th,S atat. whitn it nHdI 10 be taconf9J11d n. 
e:»ec$se1_rJ'U!.Uage_qfU~_sta~ .. tvlCe • uMd 10 make ttw; r--.on 

Source qu.ues make thIS UatwibOn ~n the web's .nk quau. his h'\o 

sitioned from CONFIGURE to WEB RUNNING Sourct q ... CIII fOIl 

perform message uanamfsSlOn. 

A source queue reaches this Sl.t. when aJl "ate8 auoc&attd WIt. hlOlm 
queue have sat .nd-ol-str.am. A ".1. It: .. tlO .nd-o,-SUNm by I.IW9h 
exec$secend_of_stream system service. 
When all source queues have t .. ehed the SOURCE auEUE END Of 
STREAM state, then .n queue. in the w.b move 10 ttvs.late . 
Any catastrophic f.lIur.s detected by the a.eartH ... MOe rOI/trIII 'III 
cause a transition loto thIS state. TransctJOns out 01 ths sa. art rae ... 
lowed. 

Table 42-3: Sink Queue State Transitions 
From To 

CONFIGURE WEB RUNNING 

WEB RUNNING WEB END OF STREAM 

Any State FAILURE 

Description 

A sink queue can make this tra.naitlon only when aft h. MKII'ce qwutlill 

in the SOURCE QUEUE READY state. This nnshion P'K*S 1M ~ 
queues in the WEB RUNNING state and is performe<! by ia8UIU'9"' 
exec$seCrn.essage_qULUL_state .. tvlCe. 

As the last SOUlce queua In the web traNrtJOns from WEB RUNNING I) 
SOURCE QUEUE END OF STREAM state , aD q\leue-a WI N wtb rrIOYI 
to WEB END OF STREAM. 

Any catastrophic falluras detected by the e.ec:utiWI .. tviC8 routnlS wi 
causa a transition Into this state. T,.ns.tIona out 01 thIS sta_ all noI 
anowed. 

Figure 42--1 and Figure 42-2 depict the finite state machines for source and link queues. 

Flgure 42-1: Source Queue states 

Config ure WebEOS 

Failure 

42~ Quartz Interprocess Communication 



p 

Digital Equipment Corporation _ Confldentlal and Proprietary 
Restricted Distribution 

AgUrI 42- 2: Sink Queue States 

Configure Web Running Web EOS 

Failure 

42.1 .4.2.1 Remote Queue. 

Source and link queue. on Mica sYltem s use Systems Communications Services (SCS) to communi­
Cite (see CMptel" 17, S~~m Communication Services). Included in the code that implements queue 
~KtI i.a • MCUon that Im plements a ses system application (SYSAP). In this section, the term 

wru reJen to MJ(a systems tha t are m embers of a SCA cluster and the term node refers to a Mi-­~~, . ~ 
The (oUowinl hit detail. the rnl\lor pieces of the SYSAP to implement remote message queues: 

N the meaace queue obJect type descriptor is created, a channel to the ses function processor is 
obwneci , The queue SYSAP reiJietera with the SCS directory services, and enables the handling 
or mcoaunc connect requelu from othe r queue SYSAPs. 

A channel i. opened to the noufication message FPU (see Chapter 34, Configuration Management 
Sof\ware) requelbnc me-lsages that indicate new nodes entering the cluster. The SCS function 
proctNOT i. the .ource of these messages. This information prevents two nodes entering the 
dIUtel' (rom millln, each other's entry in their configuration services listing. 

SCS can pn)Ylde multiple path. between nodes in the cluster. As SCS nodes are encountered, 
.. ch queue SYSAP buildJ a fWly connected graph to all nodes running the queue SYSAP. When 
• path fail .. the queue SYSAP i. notified and removes that path from the list of paths to the 
Cailed node If tNl relult..1 in the last pa th being removed, then all webs between the two nodes 

mO\"e Into the FAILURE .Late. 
Souree queue. wanlin, to .. sociate with a remo~ si~ .queue must designate the .re~ote ~ode 
and link queue name. A alnk queue indicates Its abllity to accep.t remote a~sOClatJOns Vla a 
pan..metar In the alnk queue creation service. The name of the Sink queue IS cached by the 
queue SYSAP. A. .. oc:iation between th e two queues occurs jf the sink queue name is in the 

remote queue SYSAP'. bit of link que ues. 
Cba.n,.. in the .taU of the web are propagated to queues on o~er nodes via .SCS .sequenced 
meu.apL A chan,. in .ouroe queue sLate sends a message to Its con:esponding smk queue. 
Cbanpsln link queue .tate may result in more than one message being sent to update the 

state 0{ all .. lOCiaLed re.mOU lOurce queues . 
... •• b fi p' ng the send and receive buffers with SCS. The sink queue 
.on-ces are transtm\CU Y "t map 1 

SYSAP 1.-0_ a SCS block. read function. 

Quartz Interprocess Communication 42-5 



Dlgltall EqulprMnt Corpo,..tlon - Confidential and Proprietary 
A_trlctecl Distribution 

42.1.4.2.2 Functlon.llnterfac. 

The fonowing system services support Quartz interprocess communication: 

• 
• 
• 
• 

e:ac$create_sink_17U!SS06Cqueue 

exec$create_souree_17U!ssage_queue 

exec$sec message_queue-Used to set the thresholds and credit value of a queue. 

exec$seCmessage_queue_sta.te 

42.1.4.3 Message Gate Objects 

The gate object maps the section of a region object into the addreu space for a process. A pte 
provides a read or write path to a queue. 

42.1.4.3.1 Functlonallnterface 

The following system services support Quartz interprocess communication: 

• 
• 
• 

• 

• 
• 
• 
• 

• 

• 

exec$create_message...8ote 

exec$allocate_message_buffe:r-Returns a pointer to a message buffer in the region. 

e:r.ec$deallocate_m.essage_buffer- Returns a message buffer to the region. The callilll thread 
passes a pointer to the message. 

execSbind.,gote_to_queue-Tbis service associates a gate with a messa&e queue, and con.tequtntly 
determines the types of operations that may be performed on the gate, e.g., 1OUl'Ce ptes can only 
send, sink gates can only receive. 

exec$U11bin.d...8ateJrom_queue 

exec$send_allocated_message 

exec$receiue_ollocated_message- If no message is available, then status is returned to the U)tI'. 

exec$send_~er _~u.ffer-Requests that a message not in the region be sent. A message ~uffer 
from the regIon IS allocated to hold a copy of the user buffer. The message i. transmitted 10 the 
normal fashion. 

exec$receive_user _buffer-If a message is available for delivery at the sink queue then it i. CJ:Ipif!d 
into the user specified address and deallocated . ' 

exec$set_end_of_stret:lm 

42~ Quartz Interproeess Communication 



Distributed File Services 

This set of chapters describes the components of Mica that provide distributed file service 
support. 





Digital Equipment Corporation _ Confidential and Proprietary 
Restricted Distribution 

CHAPTER 43 

DISTRIBUTED FILE SERVICE INTRODUCTION 

43.1 Overview 

'IbeDiJtributed File Sy.tern (DFS) architecture Version 1.0 is a standard set of protocols for file access 
between Dl,;tal .y.te-m.. The VMS implementation (VMS DFS) is provided by a layered product 
.Neb II already available to customers. This document describes the implementation of DFS for 
the MIca openlln, .y.tem (Mica DFS). An implementation of the DFS Version 1.0 architecture for 
lILTRIX i.J not planned to be available at the time of the first release of Mlca DFS. 

Moct UM1' procram', application. and file utilities do not have to be changed to access remote files 
\lSin, oFS. 1'he.re are lome restrictions; these are discussed in Section 43.1.4. For each supported 
operaun.r IYltem, DFS providel a component that implements the same block-level 110 system in­
te1ace u Lhe local 61e 'Ylte.m. Within the 110 system, dispatching based on the device name directs 
file 110 r"*luestt to esther the local file Iystern or DFS. 

MIca Of'S opert.LeI Wlth both Glader and Cheyenne, but it is supported for cu.stomer use with Glacier 
001,. 

43.1.1 Go.I, 

The coal. 01 the fint releue of Mica DFS are: 

To allow VMS .y.tem. to tran.parently acces~ ~ca .files. a.nd to allow Mica systems to trans­
parentl, aoteI. VMS files, subject to the restnctioru 10 Section 43.1.4. 

Th pr'OY1d. a buac distributed file system. from which a network transparent file environment 

can be provided on Glacier. 

43.1 .2 Model Drs . . t/ odel The client is the soft.ware that acts on behalf of the 
11 orp.ru&ed taln, a eben llerv~:r m · ro nate and sending them to the server. The 

uer, acorpUnc ftJe raquette, (onnalbnc them : ~r! lenta :md executes them. The server process 
IG'tlIU it the .on .. .,.. that. receIve. file reques bat fil Note that the VMS DFS product can act as 
for. put.lcular file " on the .. me ·Miy~t.e:mD;.sS tean al:C; act as a client and a server. 
bath. ebent and a HrYer, and that . ca 

FS d VMS DFS clients and servers, 
f"1(W'e 4.3-1 thews a network of Mica 0 an . . . ua1 block oriented file service. The protocol betng 
1be oFS Ven:ion 1.0 a.rchit.ec1.ure provtdes a lIirt functions that manipulate disk blocks within par­
txdt.anpcl be.tween -r-te.mt deacnbea 6le sy~~m RPC implementation oftbe VMS file system XQP 
btulat files. The OFS Version 1.0 file protoco 18 an 
QlO ",..nac.. 

Distributed File Service Introduction 43---1 



Digital Equipment Corporation - Confidential and Proprietary 
Restricted Distribution 

Figure 43-1: DFS Clients and Servers In a Network 

I u_, I I u_, I l 

----- ~ VMS 

Client 

M'~ 

""~, 

....--:: ~ .::---
l I J J 

I I J J 

---- J ------
VMS 

-~, 

N.tvooo<to. 

M '_ 

Client 

/' ~ 
Lu-, J U_ J 

The DFS protocol does not expresslogica1-block (volume-relat.ive) requests or reeord~riented req:.", 
The DFS protocol is completely unrelated to the Data Accen Protocol (DAP) used by VMS y. 
DAF is a difficult-to-decode record-oriented protocol for use between heterogeneous 'Yltems. DPS IS 
a specialized, block-oriented protocol which is optimized for VMS-to-VMS file communication. 

43.1.3 Components 

Figure 43-2 is an overview of the Mica DFS system. The five major componenta of the syatem are 

• the DFS client function processor 

• the requestJresponse command language 

• the requestJresponse function proceSsor 

• the DFS server 

• the DFS management. component 

The Mica. DFS client function processor (client. FP) belongs to the disk file function prDCe8lOr (OFFP) 
class ~see Chapter 24, Dis,k File System Funct.ion Processors), and t.hus presents the same inte~ 15 
the disk file system function processor (see Chapter 25, File~ll 0082 Function Processor). Umta of 
the. client FP represent volumes on remote systems instead of local devices. Higher levels ofloftw~, 
for. example, RJ\.~S and ~ACKUP. are n~t genera1ly aware of whether they are uting a local deVIce 
umt or a DFS c~e~t urut, Wbe.n operations are issued to a DFS client unit., Lhe client FP generates 
a message descnbmg the function and sends it. to the server. 

43-2 Distributed File Service Int roduction 



Digital Equip t C men orporatlon - Confidential and Proprietary 
Rastrlcted Distribution 

f1.gurt 0-2: Mlc. OFS System 

IIica DfS Client Mica DFS Server 

Use, l -I 
RMS l 
J. 
DFS 

Client FP 
DFS H DlskFile I 

Server System FP 

DFS 
MIN..."." f---o RCL I DFS l RCL 

Management I 

l t 
RoR FP 

I RlR FP 

l t 
DECnet DECnet I Disk FP l 

~lIUt lrupo,," command language (RCL) is a subroutine library that provides argument mar-
I and remote procedure ca11 (RPC) services. The DFS client FP uses this layer to encode 

requestl and to decode responaesi the DFS server uses RCL to decode requests and to encode re­
IplnMl.. RCL, in conjunction with a reliable communication transport, provides an RPC run-time 

I}'Item (or UN by OF'S clJent. and tervers. 
The rrquat/lUponIC {uncuo

n 
proctuor (RIR FP) provides a request/response-oriented communic.a­

bot! Mr'Vice that ,. used by RCL. The Mica implementation of the RIR FP is designed for compatibility 
Wlth \Ae COTT'ttpOndlnl VMS DFS R/R component. In general, a requestJ response-oriented communi­
cation Ier¥1ce 'I dwrable becaUIO it is the natural transport for RPC-style protocols such as the DFS 
6lt proUlc:ol, and becaUM It penrutl a high_performance i~plemen:ation on a local-area network. The 
fintrtlua ohh. Mica RIR FP UA~ DECoet-Mica exclUSively as Its network transport. See Chapter 

39, Setwork 5er'YJc:eI. for mOTe information on DECnet-Mica. 
1'ht Msc:a DPS NTIJIT rece.iveJ .nd decodes client messages using RCL, and then performs the ac­
ta&] "CIuettic 00 th. volumel represented by DFS client FP units. The server is implemented as 
• UIIet.tDOd-, muluthrea.ded propm. Server functions are invoked as remote procedure calls that 

ma.m-pulaLe til. heme m.a.na&"ed by the server. 
M.a. DPS MGIl4.I'f tallows. thoraed individuals to control the operation of the DFS software. 
kIca DPS m«n . l~ent.ed as part of Mic:a system lI1anagement. Common manage­
IDIot opua~~~ :'=:nc • cuent FP unit to represent a remote volume, establishing RIR 
Ga.mWDauon cha,r-a.cum.UCI. and allowing a local volume to be served by a DFS server. 

Distributed Fila Servlca Introduction 43-3 



Digital Equipment Corporation - Confidential and ProprMltary 
Restricted Distribution 

43.1.4 Planned Restrictions 

The DFS Version 1.0 architecture forces the following restrictions on Mica DFS: 

• DFS does not support logical or physical rue system func~ons. ~. ia because the file protocd 
and DFS server are designed to provide virtual (file-relabve) funcbona only. 

• DFS does not support management functions (for example io$c_initiaIlZe_uolUIM) on remtU 
volumes. See Chapter 46, Distributed File Service Client Function ~r for a c:omple~ 
list of unsupported function codes. OFS is not intended to addres. the 1 .. uee of remote IJItem 
management. 

• Record management processing, if desired, must be performed by the client .yatern. Thil rtStnc­
lion reflects the fundamental block-level model of the OFS Version 1.0 architecture. The DFS 
client is intended to receive 110 requests after they have been proceased by the client RMS. 

• Opens allowing write sharing are converted to ewusive acce... The aerver c:hanres the fiIc 
sharing mode read-allowi11ll-others-write into read-nowrtte, and wrtte~wtll8-othu.·rtad into 
write-e.xclusiue. 

• 

Like the previous restriction, this restriction also relalea to the low-level, bloc.k-oriented nature 
of the file protocol, that. does not provide sufficient information to the server to synchroruu mart 
than one writer at the same time. The file protocol is not. designed to express lockine at • left! 
lower than the entire file. 

This restriction can be relaxed. Clients may take advantage of application-specific eemanbcs to 
make limited guarantees of consistency during shared access. One auch application il that rJ 
reading log files. Readers will be guaranteed to receive a consiatent view ofa lOl61e .. lonru 
the writer uses append access and flushes buffers on a regular basi • . 

Security ide.ntifiers are nO.t exchange.d ?etween client and server system • . Thi. resLrictioo ptt­
vents the client from reading or modifying access control lists. The reason for th.iJ reatncbOD is 
that DFS cannot guarantee that identifiers from one system mean Lhe aame or even uil~ on 
another. ' 

43.1 .5 Network Transparency 

~spa.rent executio? of programs on Glacier requires that. the server provide the aame exeeu.tion 
enV1ronment as the client. Implementations ofthe DFS version 1 0 arclu'-' d I 'de..lobal 
fi1 . eli trib ted . Th h . --. ure 0 no provt I' e nanung or S u Bccunty. roug consistent. management between aystetIU the (oUoWUli 
aspects of transparency can be provided: • 

• name transparency - File volume names have the same meaning on all lysLema 

uolume-location tran.sparency - The location of a file volu be .L. _ -' ·th _c:r .:",ritJ name me can QUlD5c..& Wl ouL aul!lC __ .. 
• 

• application·location transparency - Applications can pen th fil - - d ptn. 
denl of the system on which they are executed orm e same e operations In t 

43-4 Distributed File Service Introduction 



411 .5.1 NamIng 

Digital Equipment Corporation _ Confidential and Proprietary 
Restrlct.ct Distr ibution 

In Drs. the urut of the rue Iy.tem being distributed is the directory tree. A directory tree that is 
.rai1able for other I)'lteml La mount i. called an access point. 

Vrnen an accas point II mounted (made available) on a client system, a function processor unit is 
~.ted on that chent IYltem La represent (act as a local alias for) the remote directory tree. 'lb specify 
• tile on that aeceu point. the client uses a rue specification with the function processor unit name 
ttl the deVIce portion of the lpecification. Clients have no control over the name that this function 
pn .. ;e.or urut i. riven when it i. created, and for the same access point it will almost certainly be 
chffe:rt.nt on different Iyatema. 

This rio1lt.e1 the &oal of volume-location transparency, in that the same file must be specified using 
chfI'erent namel on different Iy.ternl. Logical names can be used, however, to assign a user chosen 
name to the function proceaor unit. The illusion of a global name space can be accomplished by the 
consi.tent UN of lor'cal namel on all systems. 

411 .5.2 5ec:urtly 

When a DFS te.1'Yer aeee ... a file on behalf of a client, it aSBumes the security profile of the proxy 
accourlt local to the H.rver, that i. associated with the client. 

The illumon of di.tribut.ed authentication can be accomplished by keeping the rights and privileges 
tithe .rver proxy aec:ount.l c:onailtent with the accounts of their clients. 

Distributed File Service Introduction 43-5 





Digital Equipment Corporation _ Confidential and Proprietary 
Restricted DlstrlblJtlon 

CHAPTER 44 

DISTRIBUTED FILE SERVICE MANAGEMENT 

44.1 Overview 
ThiJ ch. pter ditc:uae. m&naa:emenl of the Mica distributed file system (Mica DFS) software. 

M1CS DFS i. composed of three major components: the client function processor, the server, and the 
requesvretpOnM (unction proce .. or. S ee Cha pter 43, Distributed File Service Introduction for more 
i:n!1mDation. Manace-ment of M.ica DFS consists of st.arting these components, and controlling them 
wlule they art nmrunl· 

MIca Df'S manacemenL has the following goals: 
10 minnniu t he number of t unin g parameters . This is accomplished by having the software 
ad,J\1It ILlt-lf ac:cordinc to iu environment. The number of threads wed by a component, for 
uample. i. controlled automatically. 
To aurumne the need to tune other components. For example, although the requesVresponse 
R.'R t fWKUon proceuor- usee DECnet, it is a goal to minimize or eliminate the need to modify 

DEenet perfonnance paramet.en as part of RIR management. 

There: .,. no arcltit.ecLed maMIe-ment enti ties and attributes for DFS like there are for DECnet 

PbuoV 

~.1 . 1 RHtr1ctJng Aecen to Management Operations 
Manqcnent operations are perfonned on the two Mica DFS function 1?rocessors using I/O sys~m 
reques.La. Aa:eu control UlLa on VO system objects prevent unau~honzed. users from perfornung 
ma.na.,eme.nt operabonl . See Chapter 8, UO Architecture, for more mformation. 
~ •. _ d h Mica DFS server are implemented as separate user-mode processes 

UfOa q.tcm manqementan t e . FP) c , h' al d d' DFS GO the Th tires function processor (RIR ,WIUC IS rea y use ,or 
.... .........1.. lame .,.tem. • ~IIU"I '- _ ~~~. • local mode to accomplish inter·process communication. 
_.~ communication, WI a so u.:; U5CU In 
Mxa t.h Mi DFS server to perform management operatio~s using 

I1flem manaremenL dlrect.l. e C8 d not rovide authentication of senders, this server 
III RIR RPC m .. ..,. protoCOl. .~~nc:; RIR vid:, Lh: sender's identity to the server. Mica security 
maD.l(ement protocol II reapon.. e dor Prod t . ct his operations as necessary. See Chapter 10, 
II then uaed \0 authenucaUl the sen er an res n 
Secuntyand PriY'i1eces. {or more information . 

Distributed File Service Management 44-1 



Digital Equipment Corporation - Confidential and Proprtetary 
Restricted Distribution 

44.1 .2 Startup 

The request/response and OFS client function processors are ~oaded autom~lically wi0 otherr~~ 
processors during system boot. After being loaded. each funcbon. ~roceslOr I. call~ .tJ~ lrut:ialiu.b:oo 
entry point. Function processors do not need to be started expliCItly. The order In which the request 
/response and client function processors are started does not matt.er. 

Mica OF'S is started relatively late in the sequence of startup operatioM. See Chapter 34, Conficun. 
tion Management Software, for a discussion of initial device configuration. The Mica . tartup JNlWraM 
is responsible for starting the Mica DFS server, and for calling a Miea DFS specific startup routine 
to establish the DFS client and server environmenta. 

The Mica OFS startup routine reads the Mica DFS confiBurotlon fih to determine the previous 
environment to restore. The startup routine then issues management operations to the various Mica 
DFS ccmponenta according to the contents of that file . The configuration file i, updated whenever I 
management command is issued interactively that changes the etate of Mica OFS. 

44.1.3 Monitoring 

Each Mica OFS component collects performance data and statistics that can be displayed U!iDf Lhe 
Mica monitor utility. System management SHOW commands are noL used to display perlOl'tl1lDCt 
data. 

The two Mica OFS function processors adhere to the standard data collection interfac:e as defined 
in Chapter ~6, Perfo~ance Mon,j~r. The Mica DFS server, which i. implemented as • UJer.mode 
server, proVldes a speClaJ message tnterface to retrieve performance data. 

44.1 .4 DECnet Name Service 

Mica PFS uses the DECnet name service CDNS) to register and look. up access point names. D~"S 
as~ates. an access point name with a particular remote volume and the location of it. Of'S .erver. 
DN~ proVIdes a globaJ namespace for the COnsistent naming of access point.a re-"""lel8 oflhe loeatxm 
of chents and servers. a..u .. 

Management of DNS is discussed in Chapter 40, DNA Naming Service Clerk. 

44.1.5 Management of Flies Accessed Through DFS 

File management operations for example di to . ~ 
files on DFS devices as well ' 8.8 local d . ~? creation and file copying, work transparently or 
initialization and disk uota mai eVlceS. 0 ume management. opera tiona, for eumple volume 
32, System Managemeit, for a di~!::~e~:~e:!:ork.1 transparently on OFS devices. See Chapter 

vo ume management. 

44.1.6 System Management 

Interactive control of Mica OFS is provided b Mi 
general is discussed in Chapter 32 Sv<>tem ManaY ca system managemenL System management in 

, J~ gement. 

44-2 Distributed File Service Management 



" .1.6.1 Client Function Processor 

Digital Equipment Corporation - Confidential and Proprletary 
Restricted Distribution 

Ulen un on processor: Mica IJltetD manapment provides the following commands to control the -" t f cti" 

IIOlJ/T /REMOTE 
OISMOUNTIREMOTE 

SET ctJOO 
SHOViCUOO 

44.1.6.2 Servtr 

Description 

Invoke the mount utility to create a client unit 

Invoke the mount utility to remove a cl ient unit 

Set OFS specific client device unit characteristics 

Show OF8-specific diant device unit characteristics 

Mica ""Le.m man,qemenl provides the following commands to control the server: 

STAAT SERVER 
STOf' SERVER 
ADO ACCESS_POINT 

SHOWACCESS_pOINTIlOCAl 

SET SERVER 
SH:)W SERVER 
SHO'N ACCESS_POiNTIREMOTE 

Oescriptlon 

Start the Mica OFS server 

Stop the Mica DFS server 
Mab • volume available for remole access through the Mica DFS 
... rver; the access point Is then registered with DNS 
Make • served volume unavailable; the access point name is then 
removed from DNS. Existing mounts mayor may not affecled. d .. 

pending on the qua1iliers present 
Show access points that are currently being served 

Modify server characteristics 

Show server characteristics 
Show the access points that are known to the name service and 

match the provided wildcard specification 

TbeMJc:e DFS terver depend. on Mica security to authenticate remote .clients and to provide ~mP:er. 
IOnabon KmcelL See Chapter 10. Security and Privileges, for information on how the authentication 

database i. manapd. 

« .1.6.3 Rlque.VA •• ponse Function Processor 
Mtt:a system manacement providetl the following commands to control the requesVresponse function _r 

()escription 

Set communication characteristics 

Show communication characteristiCS SET CC)MMUNICATIONS 

SHOW COIM.o<ICATIONS 
Th . (R/R FP) wes a single Function Processor Unit (FPm for 
_" t ReqUes.V'RuponM Funcuon P~-...z totllatically when the RIR FP is initialized. 
au reader. and wnte.ra. nul ypU 11 crealoCU au 

Distributed File Service Management ~ 





Digital Eq uipment Corporat ion - Confldantlal and Proprietary 
Restricted Dlstrlbutlon 

CHAPTER 45 

DISTRIBUTED FILE SERVICE 
COMMUNICATION FUNCTION PROCESSOR 

45.1 Overview 
The ReqUeI\lRetpOlUe Transaction Protocol (RR) and the RequestrResponse Command Language 
rRCL) lOpther compoee a .. mple RPC communication interface for the Mica Distributed File System 
(MicalDFS). RR 18 a MJal function processor. It accepts communications requests from the DFS 
ebent (undioa proc:euor. DFS server, and possibly other function processors and users, then makes 
f!qunU to the function proceuor that represents the session layer of DECnet. RCL is a collection of 
rubroobnel, called by Nlher-Ievel function processors and threads, used for formating and packing 
~ MOCiJn, them Lo a remote node using a call to RR. and unpacking incoming messages from 

remoc.e nod ... 
VtrDORi of both RR and RCL curTently exist for VMS DFS. The Mica RR development effort is 
larplr ont of Implemenur\I an already architected communication interface. Although deficiencies 
baTt been rtcOJfli&ed in the CUJ"Tf:nt RRlRCL design, th~ Mi~ and MicalRqL implem~ntations is 
COClIlralDed to be compauble with the current VMS deSlgn. DeSign changes will be conBldered for a 

oocood, _FRS ve,..;on of RRlRCL. 

45.1.1 RR 
RR I' • JUDple tra.nPcC.ion-oriented. intermediate-level co~munications protocol. The transa~on 
model i, that oIl1mple requeatlrelponae paired communications between clients and servers. A client 
mar make repeaLed reqUfIIU within the framework of a common C?ntext. Eac~ requestlres~nse 
~r lJ called a t,.ranaacllon and i, identified with a uniq~e ~sact~on ID; B: senes o~ transactio~ 
.,Lhln a Jhared context. i. referred t.o as a session and ldentified WIth a uruque seSSlon I~. RR IS 
IJ:l mt.tnned.iate .........t~1 in that it ia layered on top of lower-level transport protocols~ an~ ItS users 
eso-'L. I: _'L. _ .J.J .t"'v--aJ~ II n top of RR This top-level protocol trught conSlst mmply of a 
~uan an aowUon protocO ayer o· f' ter t' 

de6ned Ht or functiona and c.a1linJ .tandards, or a more elaborate set 0 In ac Ions. 
AzJ 'L._ _I . .cu1 ode (up to a reasonable. parameterized limit) can estab-
I'_{ numlJlll'T of QlenLl on a partl a.r n od Th ."blishment of sessions, and the transaction 
UN! MUlOnI WIth a .erveT on a remote n e. e es_ . bet th t od Th _..L ... __ ... ul . I ed ver a single connection ween e wo n es. e 
-.-.-..>&_ wlthln them, an are m bp ~ li:ns ath between nodes, and currently is obtained us­
<rICJ:Iectioa repreeenu a reliabl~ COn;'m:ru.n: RR !.chitecture is largely independent of how reliable 
me: • DEeMt .-mon.leve11011callin e . th properties of logical links for reliable mes­
oommumcabonl are unplemen~, but does ~re e uting error recovery at the message level, 
lap: tra.n.fe.r, c:once,uon control, data segmen on, ro • 

&ad node authenu.c:abon. 

1 Comm'-,nlcatlon Function Processor 
Distributed Ale serv ce 

45-1 



Digital Equipment Corporation. Confidential and Proprle18ry 
Restricted Distribution 

45.1.1 .1 Interface to Hlgher·Level Function Processors and Threads 

RR can be viewed, from the standpoint of higher·level entities uaing it, as a very limple Itt U 
functions for effecting transactions: 

• OpelLPort 

This function is u sed by either a client or server to create an RR port for commu~Cltioal 1I'Ith 
a remote server or client, respectively. The port is sim~ly an access path fOT the client or It~ 
to RR, and is represented in the Mica/RR implementation by a VO channel. If the port II beiDa: 
created for use by a server, then the server's availability is made known to remote client.l (m 
the DECnet name server). 

• Close_Port 

Either a client or server port is closed using this function, preventing further aceeu to the port. 
In both cases, appropriate actions are taken to gracefully terntinate communications activities. 

• Access_Connection 

A client uses this function to establish a connection to a remote server. An actual JUlien.level 
logical link is created only if one had not been previously established. Once established, locical 
links are maintained on a semipermanent basis. The basic asymmetry in the protocol i. refleeted 
in this function's availability only to clients. Servers do not Tequest establishment ol conned:iolll 
or sessions . 

• SesIDon_1ransaction 

Clients use this function to make all requests. in one call, a session can be opened. a tn.nsactioa 
requested., and the session dosed . This translates into a single RR message, savine mnap 
and packet overhead for simple transactions. In more complex cases, t.h.is funcbon can be uJed 
to establish a session, subsequently closed by a later call, with the unique ses.sion ID luppbe:l 
as an argument .. Sessions. allow the client-side user to identify a transaction u be.loneirli to. 
group of transactions, which the server may then choose to process within a ~mmon conttIt. 
Requests are received by a server 19 the order in which they are made by a remote client. 

• Request_Receive 

A server u~s this ~unction to recei~e requests from remote clients. Requests are ide.ntified 
by tran~ction, sesSlon: ~d connection IDs. As noted in Section 45.1.1.4, there are dtsllll 
alternatives fo r proceSSIng mcoming req uests for servers. 

• Response_1ransmi t 

The server uses this function to respond to requests from remote clients. 

Oetai.le~ descrip?on of t~ese funct~ons, their arguments, and corresponding data structures and 
assoCIations are mcluded 1Il the deSIgn POrti on of this chapter. 

45.1.1.2 Interface to DECnet SeSSion Layer 

In the current VMS implementation RR interla to th DEC Jet rl 
thir teen functions. A logically equiv~ent. althou;hS Probahl . n~l st;ssion layer throud,b ~-' for 
Mi~R. This interface will be stron I inOu ~ Slmp er Interface will be eII,,~1.a.oI 
in Section 45.1.1.4. The interface m!l alloweAA~by ~e de8I

th
gn ;onsi~era.tiODSand ioue! d~ 

penonn e IOUOWlng funCb.ons: 
• Open and maintain connections 

• 
• 
• 

Accept and reject connection requests 

Obtain status information 

Transmit and receive data over the connections 

45-2 Distributed File Service Communlc tI 
a on FunCtion Pro cesso r 



Digital Equipment Corporation . Confldentlal and Proprietary 
R.strlcted Distribution 

Allocate and "tum me ... ,-e buffers 

45.1.1.3 Interl.ce to Syatem Mlin.gemenl 

RR pronda • l)'Stem man~ment. interface that allows read access to RR's state im ti d 
eaUll.DC thole ltatechancee In RR necessary for effectiv m orma on an arem

mt 
1nt.e.rf.ce Wlll allow reading and ch . th R e anagement. For. example, the man-

Dedi d h be angmg e R parameters for setting maximum limits 

::'pul.ti~tln~~ da'::':U:c~~ta::;e~:o~~cti~n~~~~ codblex ~peratidons, inch~ding 
~. The manaremenL interface' will be discussed in detail i: C:a;~~~ ~ :s:a:~lt 
Service ManapmenL. ' sue 

45.1.1.. Implement.tlon 

RR it unple.me.nt.ed a~ a multithreaded Mica function processor. On intialization, RR creates a RR 
function Pioott.or urut, to which aeparate channels may be connected by the DFS client FP the DFS 
~. and by any other runcLion processor or system thread that uses RR. • 

45.1.U.1 D.t. Struc1ures 
1ft the turr"eIlt VMS implementation, RR manages an internal database containing separate data 
Ilnlct.uret ducnbln, each tran .. c:tion, session, and logical link, as well as each client and server 
p:n-t. M1caIRR manap. equivalent data structures, but, where possible, uses basic data structures 
tperified bJ the Mica 110 arcrutecture instead of specific data structures internal to the RR function 

proc:eImt. 
Th. VMSIRR databue cont.&1n.l • single port block for each client 0'1' server process that opens a 
port to RR. In the VMS 1mplementation, each process is limited to having at most one RR pati. 
lnfurmauon c:onl&lned in the VMSIRR port bloclt is maintained by MicaIRR in a Mica 110 channel 
object ob)fld. c-eated by the OF'S client and server. 
\'MS'RR .Labli.h. one OECnet logical link for each n:mot:e n~e wi~h whi~ it. ex~~n~s mes­
.,. For each link • connection block is created and mamtained 1.0 a linked list WIthin lts mternal 
databue. Linked lisu or ""l.On blocb corresponding to sessions opened through any of the ports, 
are attached to the connection block ~t. represents the logical link over whi~ transactions ~thin 
the c:oat.est or the Mllion are communicated. MicalRR uses the c~annel obJ~ts colTespo~~ng to 
DECnet c:onnectiont u connection blocH, and maintains internal lists of sessIon blocks pomting to 

them. 
The tI"o.IUOd bl«4.a UHd ' VMSIRR correspond to Mica I/O request packets (IRPs). The request-
depeDdent ~on or the IRP contains those fields associated with transaction blocks in .VM~R '* 1 try COT n ueal.l and responses: for queuing requests to channels, for mamtaining 
the tnnucUo~!tir: while it i. being processed by the RR FPU and subsequent layers, and 

fOr ntuminc the f'tIqUHt completion La the user proceBl or FPU. 

45.1.1..4.2 Design Considerations and Issues n-e . . . RR: elimination of data copying as data moves from 
are two main desarn c:oD-lJderabons }n he caJlin FPU or process, and minimizing context 

thelow.-L layers 0( OECnet up tbrou,h RR to ~ layera g The support that RR supplies for servers 
nnt.ebet as control of the data move. ~tween li':t.s clients simply make requests, via Mica 110 
" IIIIDIeWhat different than ~t lupplied to c AST ~ event. Servers, on the o~ber. hand. must be 
~ and rlCttve oompleboM throu,b art ts the numbeT and size or which 1t cannot know 
prtpared to recei .... requ.U from remote c en • 

~. 

I c ommunIcation Function Processor 45--3 
Distributed File Se1"l ce 



Digital Equipment Corporation. Confidential and ProprMitary 
Restricted Distribution 

On transmit data copying is avoided by providing a mechanism for messages to be constructed in tht 
user's addre~s space for that message to be locked in memory, and (or a point.eT to the DlfSIlp to 
then be passed thro~gh OECnet to the NY controller. Because messages are built dynanucallyUlUl( 
RCL in-line procedures, the user is required to know be(ore.hand .the m~~ (ormal and thel1UlfJi 
its various components, to allocate a region o( the appropnate 8lze (or bwlding the m~ IDd 10 
construct it contiguously within this region. Otherwise, due to fundamental N1 controller limltlbOl:lr; 

on the number of discontiguous regions that can be combined to form a single message, the mtIII&t 
needs to be copied at least once. 

On receive, at least one data copy is necessary, beeause many uaera are multiplexed over Jop:aI 
links by RR. RR receives the messages as a linked list of ordered fragment. from DECnet, and then 
copies them into a user-provided buffer. Additional copie. may be required by the user to poIitioa 
the received data correctly within its address space. If buffers have not been provided ahead ohime 
by the users, then RR bolds on to the incoming mesaages. notifying the user that it needs to pnrnde 
buffer space for the incoming message, until either the buffers are provided, or the meuqt II tuned 
out and discarded. 

Much context switching will be avoided by allowing the user thread to pass through RR and coatinl.lt 
down through OECnet. This will, in fact, be necessary to avoid data copying. Similarly, DEena 
threads win be able to execute the RR code necessary to complete a request through a callback 
mechani sm. 

Th~ detailed design f~r eliminating ~th data copying and context. lwitching depends on the Ipeci6-
cation of the OECnet mterface, and IS thoroughly described in the chapter body. 

45.1.2 RCL 

RC.L, can be t~ought of ~ a higher-le~el pr~tocol layered on top of RR to provide a renenJ RPC 
~Cllity. RCL IS respoIlSlble, on the client SIde, for packaging procedure calls to a remo\.e IWYe 

mto formatted messages, sending them through the RR transport. and unpack.agm, the formatted 
response messages returned by RR, and for the corresponding functionality on the server mdt. 

Alt~ough logically a separate layer, RCL is implemented in VMS as a set of subroutines and mJaOI. 
OF . uses these ~ format remote file requests and to pass the requests to the RR device driver For 
:~~:c:u~~~'::~tr;li~~tion. Mica/RCL uses a similar approach_ RCL i.s implemeoted u' 

45.1.2.1 Structure of RCL Messages 

~e RCL message format is based on expressing procedure call d can ... 
lists constructed from a small set of fundamental elements: s an rellponaes to procedure 
• Pl-ogram 

Each RCL message contains one and only one ' the 
message, and is used either to describe th pro~ element. It always ooeurt first In 
request, or to return response data Unfort e overal .. content. ~f the meu&p in the caJe of. 
this data element. It is simply the iughea~i::;e~~ p.rogram." l~ a rather mialeadin& nam:e far 

. how many of the next lowest level elements call~ptor ~t.h!n an RCL message. descnbmC 
and an overall status or result for the mes' Ita functions, ~ present in the mesJIP. 
dependent. sage. use and mearung are entirely appliCSDOD 

• Function 

The basic entity transported in RCL . 
of element descriptors that contain a:::Zsa~s are functions. Functions are simply eroupnCS 
propams, b,:t 8?ove the remaining three type tao f ~ey represent an organiution level beIo« 
entirely application-dependent. Messages ge sall ~ ementa. Their meaning and UK are ~ 

ner y mc.lude one or more funcbona. eac.b or_hieb 

45-4 Distributed File Service Commu I tI 
n ca On Function Processor 



Digital Equipment Corporation _ Confidential and Proprietary 
Restricted Distribution 

~~'=e~~9:~e f~~oonn el~ ••• n. l, fol1~wteded by! a list o~ associated elements which describe 
_._ • . 8S9OCla e ements Include: 

Jntere-r 

A IImpte data eleme nt dClcribin g a 32·bit signed integer 

Vector 

A data e1emenl used (or ~escribi ng logically contiguous collections of bytes; interpretation 
of the data l' left to the hiah er-Ievel software using RCL . 

Nil 

A plate-holdeT element for marlting the absence of arguments 

.5.1.2.2 SYbroutlna. 

The RCL IUbroutine library includes the foUowing types of subroutines: 

Meuace Builcbnl Subroutine. 
Included in t.hiJ cateCOry are the necessary subroutines for constnlcting RCL element lists. For 
uampJe. there are MlpA.rat..e routi nes for adding function elements, adding integer elements, and 
10 on . AlIO Included are lubrout ines for allocating and initializing RCL messages. 

M ..... Unpac.kin, Subroutines 
Carretpondinl to the me .. ace building subroutines are the routines for unpacking the RCL 
m.u.ru on the other end. Routi nes in this category include those for getting the server-supplied 
ltalua. (or pt.tin, the next.. element within the message, and for copying vector data into user-

defi.Ded memory locabOM. 

Commurutauon SubroutinM 
Th ... an a aet 0( subroutines (or tending RCL messages. Included are subroutines for sending 
m-..apl on the went and aerver aide and s ubroutines for opening and closing sessions. 

I communication Function Processor 
Distributed File Serv ce 

45-5 



4 



Digital Equipment Corporatlon • Confidential and Proprietary 
Re. trlcted Dis tribution 

CHAPTER 46 

DISTRIBUTED FILE SERVICE CLIENT FUNCTION PROCESSOR· 

46.1 Overview 
~ ~e" .ummari~e. Lh«: design and function of the Mica DFS client function processor (Mica 

e.nt), wbieh allo ..... a M.ica IYlt.em to access files on remote Mica or VMS systems. 

-'6.1.1 Requirements 

The MJca OFS went .. ti,fiea the following requirements: 

To pnmd. a tranlpare.n t. in terface from a Mica system to files on a remote Mica or VMS system 

Th tran.IlaLe Mica I/O requelt.l in to the protocol understood by other DFS implementations 

To be conLrOlled throu,h M lC8 Iy.tem management. 

TrlMpl,..n! InwrflC4!. 'I'b provide a transparent interface from a Mica system to remote files, the 
Wa Drs ebent lmplement. the Mica disk· file function processor interface class (see Chapter 24, 
DIsk Fila Sy.t.e.m Function ProceUOrl). The Mica OF'S client., however, supports only some of the 110 
fuDctunu IUppor1.ed by the cli'k-file fu nction processor class. For a list of the functions that the Mica 

Drs c:bent IUPPOrU, .. Section 46.1.2. 
ilQ.lo-DFS T,..nat_lIon. The Mica OFS client. translates Mica 110 requests into the protocol un­
derttood by the other OFS componenu. Currently, t.his protocol is an RPC implementation of the 
QIO interlace to the «tended QIO processor of the VMS file system. The RPC mechanism is the 
requeatlrt:lPOnM tranaa.ction protocol eRR). For a description of protocol that DFS uses, see the DFS 

Fila Protoool Doaunent. 
Mln.gtmtnt Cont1ru

raLion 
of the Mica DFS client. is controlled by Mica system management, 

Ulnllt'lWtal MOUNT fac::ibtie •. For details, see Chapter 32, System Management, and Chapter 43, 

Dwnbut.ed fll. &"1C)8 IntroductJon . 

46.1..2 FuncUonallnter1.ce 
The Mlca DPS client II an VO function processor; it supports the common function-processor entry 

paatl; documt.nted in ChapleT 8, 1/0 Architecture . 
()( the fuDctionJ supported by the Mica disk-file function processor, the Mica DFS client supports 

ooJy \he fon.w.n, on.: 

PPU Yu.nctionl 

U>l<J<I./pu_Ulfo 

U>l<ftOdy./pu 

U>I<_unI"f04yJpu 

d FII Se
rvice Client Function Processor 46-1 

Dlstrtbute e 



COnfldentlal and proprilttary 
Digital Equipment Corporation -
Restricted DlstrlbuUon 

• 

• 

Directory Functions 

_ wSc_dfileJ'ead_dir _entTie.s 

_ ioSc_dfile_nwdify_dir _entries 

Access, Creation and Deaccess Functions 

ioSc_dfUe_access 

wScdfil.ccreate 

io$c_dfile_deo.ccess 

• Attribute Functions 

_ io$c_d{i1eJ'ea<Cattributes 

_ io$c_d/ile_write_attributes 

• File Storage Functions 

_ io$c_dfile_allocate_storage 

_ ioScdfile_deallocau_storoge 

• Data Transfer Functions 

io$c_dfileJead..fiJe_data 

ioSc_dfile_security_uase 

io$c_dfile_write...filej1ata 

• Memory-Management Support Functions 

io$c_dfile_m.mclone_access 

wScJXl6eJ'ead 

ioSC...P08e_write 

The following function codes, though supported by the Mica disk-file function proceuoT, 1ft Dot 
supported by the Mica DFS client. 

• i.o$cjtem_nonpaged 

46.1.3 Intemat Design 

The Mica DFS client operates on requests sent. as argumenta to lbe Mica requuCio system ~ 
The Mica DFS client first captures these arguments, and checks them for validity. It wn uansla 
each Mica file-1I0 request into the DFS file-protocol format understood by the remote Of'S 1et"I"tf. 

Multiple Operations 
Some operations that can be expressed in a single Mica 110 request b'anllate into several in~edilte 
DFS 110 requests. To process th ese intermediate requesta, the Mica DFS client uses one ~ 
thread from a pool of 8U~ threads. This thread processes each requesl synchronously-thalli, 
thread awaits the completion of each request before processing the next. Thi. synchronoua~ 
continues either until an error occurs or until all the operations complete aucceut'ully. 

Error Reporting 

If an e1T'OT OC:Cur1l on .the rem~te server sy~tem during execution of. OFS file-protocol func;tioO, ~ 
server returns error lOformation to the Mica OFS client as a VMS-formatted VO statui block ~ 
status. Then, before the 110 completes, the Mica DFS client tranalat.ee this returned informati0l11E1U1 
error codes understood by the Mica disk·fUe function processor. 

46-2 Dlstr1buted File Service Client Function Processo r 



FPU Naming 

Digital Equipment Corporation . Confidential and Proprietary 
Restricted Distribution 

Of'S ac:ceuet remote disb and directories by way of access points. each of which translates to a 
DECntI node address and an access POlOt 10. Each access point is registered with the OECnet name ,.,..... 
In Mlc:a OF'S, ICCUI pointl are mounted by calling the ~1.ica OF'S client at ita createJpu entry point, 
tcpp!]'Inl u • call parameter the name of the access point to be made available. 'Ib translate this 
came, the MIca OFS clienl callI the OECnet name server, then communicates with the remote server 
10 declare the DeW acce .. point available for further activity. Next, the client converts the access point 
DImt Lo an FPU name. whlch 1t then enten in lohe SBACKTRANS logical name table. This logica1 
name tabla i. documenLed in Chapter 43. Distributed File Service Introduction. 

for detail. rA the tran.tation from a.n access point name to an FPU name, see the internal design of 
\be IIWOllUJpu roubne d,escribed later in this chapLer. 

I Client Function Processor 
Olstrlbu1ed File SeN ce 

46-3 



4 



Dlgltel Equipment COfporation _ Confidential and Proprietary 
R.strlcted Distribution 

CHAPTER 47 

DIST RIBUTED FILE SERVICE SERVER 

47.1 Overview 
~~pt.er cblCU .... the Mica Di~t.ributed File System (Mica DFS) server. For an introduction 

OPS In "nerat. and the Mica DFS. server in particular. see Chapter 43. Distributed File 
~ lntroduClJon Man.,ement. of the Mica DFS server is discussed in Chapter 44 Distributed 
rue Samot Manapment ' 

47.1.1 Session, 
The Mlea OF'S eerve.r u.u the requut/respon.se {unction processor (RIR FP) to communicate with its 
~\I. The RIR FP provide. RPC-Ityle communication on top of a reliable communication service 
-...;I u DECnet. • 
~!!R ..,lDn is. conversalion about. particular object within the context of a service, such as 
alta CPS_ A ..-on i, wed to represent state being stored on a server across multiple transactions. 
The RIR FP IS ... ponsible (or wr allocation of communication resources between sessions. Chapter 
4S, Ihstnbuud Fdt Suvioe Communication Function Processor, provides an overview of sessions. 

Wlc:a CPS ~n. represent Lhe following state on the server. the authenticated identity of a user, 
aDd the channel to an open file if one il currently open. Note that it is the responsibility of the service. 
DO\ RIR. c.oaulhenbcate 1\.1 \lien. Two different users, using the same instance oft-he Mica DFS client 
IOI\ware. Lhlt. open the ume file, are assigned different sessions and different file channels. 

AD tDes .. CU are .nt LO the .. rver in the context of a session. Each user's messages need to be sent 
11ft. JeUl,on on which that. uaer has been authenticated. A session can also be associated with an 
optrI file rd. opert.bOnJI inLended for a particular open file ne~ to be sent in the ~ontext of a session 
UIOCata:lW1lh the d • .,ed Rle. File operations which are not directed at any particular open file (for 
tumpl. dJrec1.or)' lookup) can be tent on any authenticated session. 

47.1.2 Server Process Implementation 
n.. Yo," DFS aev .... is implemented ... multithreaded. user-mode process. A multithreaded de­
-en it dearabl. beca\LM It Increases concurrency t.hat can be taken advantage of b?, m1l;ltiprocess

or 

hardware and chik controllers. The number of threads used by the ~er-:'~r process 18 adjusted auto-
mabeall,. The arver d implemented in user-mode for reasons of reliability: 

A 
,_" ocI's Ie" likely to affect the rest of the system. 
aauW"e 10 a uMr-m e .. rver I 

A 

__ , _.,. d {user-mode impersonation services. which provide for 
UMr'muue ler"Ye1' c:a.n 1.a&C. vantage 0 

the chancln, of identibee 1.0 • contrOlled roann
er

. 
AD RIR FP When ready to """,ive a file request. each thread 

Ier'V'er Uu-.ds share one channel toF~eTh R/R' FP completes the reads in order of arrival when 
lIWeI • .,nchronow read 1.0 ~e RIR . e threads are executing requests, no additional requests 
~are • .,ulable. IraII Mica OF'S aerve'1:h RIR FP has responsibility for flow contTOl of unread 

tall be ~Md until. thread beCOmes free· e -- Distributed File Service Server 47-1 



Dlgttal Equipment Corporation - Confldentla' and Proprletalry 
R .. trlcted Distribution 

Any server thread is capable of processing any reques t on any MUion. Se .. ion mte (that 11 ~ 
identity and fi1e channel) is shared between threads . Becauae. of the mulut.hr.ded nature oflht 
DFS server the order in which requests are processed m ay be different from the orde- III whid! they 
were receiv~, even for requests on the same session. 

47.1.3 A~ Protocol 

The file protocol implemented by the Mica DFS server- is a RPC 1mplementation of the VVS file 
system XQP QIO interface. Translation is required to execute the VMS-.tyle reqUelta Ulinrlhe& 
disk file system function processor. The difficulty of translation i. relauve)y .maU I1DCe the.Mia6le 
interface is an evolution of the VMS interface on which the file protocol i. bued~ 

The file protocol expects the file server to do wildcard processin,. The Mica file aystem do. .... 
handle wildcards and leaves this function to higher layers. The Mica DFS Mrver therefore iDdcdes 
the capability to resolve wildcards. 

Both the Mica and VMS file systems depend on a lock manager to coordinate acceA to paru or. &It. 
DFS users on different nodes are in different locbpaces and wilt noL be informed alconthcbn(1C:(M 
to the same file . Mica DFS prevents any inconsistencies by convertinc opens allowinc WTltt sb.annc 
to exclusive access. A mode may be specified in the file protocol for the open opention to ClUJe the 
server to rela.:r. this restriction. 

47.1.4 Security 

~ ~scussed in Section 47 .1.1, DFS, not the RIR communica tion layer, i. responsible (Of .uthert­
ticat,i0n of us~s. When a new session is to be a uthen ticated for a particular lder. Drs Itllda. 
SpecIal seCenvvonment ~essage .to the ~erver providing the user'. node and u.emame. The MiCi 
DFS server then uses Mic.a secunty. S~1'Vlces to map the user-'s remote identity into a localleClJl'l.ty 
profile. Chapter 10, Secunty and PriVIleges, discusses Mica security in more detail. 

W?en a Mica .DFS server thread r-eceives a request.. i t m ust assume the eecunty profile ...,oattd 
WIth that seSSIon before issuing any Mica file operation s . 

47.1.5 Caching 

The di~k file system function proa:sso: will not be implem enting a di sk block cache for first rtle&Je. 
The Mica DFS server, whose function 1S closely related to th.i f diU follt and 
not implement one either. The reasons for this are as follow:: un on proceS8or, W1 ow lUI 

• Caching is enhanced functionality which is not _ . ed r fi I '_'!Iwr lor rat re eale. 
• Waiting until we can ana1yze a wo ki '1 . ~ caching. r ng system W1 I glve u s grea ter ins:i&ht into the need j\o; 

• For efficient use of memory and reduced mechani h . - - chsk 
block cache provided by the disk til .~ fun~' t e Mica DFS server should utili:r.e the 

e syS"",m ctlon processor instead. of it. own. 
Mica has sup~rt ~n other parts of the system to redu di k 
structure caching, Image caching, and RMS readahead. ce s acceDeS, specifically file IJSteIII 

• 

47.1.6 Buffe ring 

Each Mica DFS server thread will own one 1 . 
That buffer will be used to receive requests ~e.~tlc buffer allocated in the server's addreu Splat. 
is used to fonn the reply. Tranfers toIfrom th di k fil' Aner the request has been processed, the bu!c 
from/to this buffer. e 8 e system function processor will be made dirteUy 

47-2 Distributed File Service Server 



Digital Equipment Corporation. Confidential and Proprietary 
Rastrlcted Distribution 

'1.1.7 Accounting .nd Quat. Enforcement 

M aecountlftl record answerinc for aggregate seTVer resource usage will be generated when the Mica 
DfS ttner Ultl. \It hu not been decided if accounting records will a lso be generated to answer for 
~-cbtDt tene.r thread re~urce usa,e. \ 

The lbca Drs .rver i •• ubJec:t to process· wide quotas on resources such as executive pool. Enforce­
ment rI auch quotU by !Iob ca will prevent the 8eTVer itself from acting unfairly. 

Per-client quCUI apply to hilh level resoUttes (for example tiles) and are enforced by the providers 
rJ u.e~. The MIca DFS server does not provide any resources itself, and thus enforces 
DO quow ItNtf The dI.le: file .ystem funct ion processor is responsible for enforcing any file-related 
quow., for eu.mpl. dI.le: block ueap . 

• 7.1.' FIJlu,.. Recovery 
The ~llca DFS terVer e.xpocLl the RIR FP to provide notification of session te~n8tion in t.he ev~nt of 
• dient wlure . Theee .euionl will be removed and will no longer be recogruzed. The files 8SS008ted 
Wlth th_ .-iON win be dOled . 

If the Mlc:a DFS teneT cruhes and rtlt.arta. all files open on any client are no longer r ecognized. 
Aa:eII pcnnta previoualy mounted by a client system are transparently remounted on use. 

Distributed File Service Server 47-3 



c 



Database Server 
This sat of chapters describes the components of Mica that provide database server 
support. 





Dig ital Equipment Corporation _ ConfidenUal and Propr ietary 
R .. trlcted Distribution 

CHAPTER 48 

CHEYENNE OVERVIEW 

48.1 Overview 
CAt;rr1lJ1t p,rovldes cu.tom~n with highly available, very fast, relational database capability, Its 
Wltl IPpUcaWOns mOltly ,"volve on-Hne transaction processing (OLTP) environments. Cheyenne 
tmplemen~ the DIGITAL Database Architecture (DDA). allowing the growing body of applications 
bWlt u.aI\l DIGITAL', Rdb product set to access Cheyenne dat.abases with little or no change. 

CheytMt i. unique from other DIGITAL DDA products in that it has both hardware and software 
CIImponenti. Cun-ent DIGITAL database product..s run as privileged application programs on the 
ame .,-.tem .. the uae.n' application code. Cheyenne consists of one or more PRISM systems run­
lUna: the MlCA op«ratinl 'Yltem. Only one application runs on the PRISM systems: the Quartz 
ret.bonal databue l)'It.em. U.er application programs run on client systems that communicate with 
the ciatlbue .rver oyer a network connection (N1 or Ethernet). 

MOlt Cheyenne aYlteml are used in lTansaetion proc.essing applications. These include financial 
appbeauoM (for example, fundi transfer, bank machines, stock transactions), reservation systems 
(or uample, hotel rtlM-rvaUon., 'poTting events), inventory management applications, and so on. 
Such tranJacbon .y.tem. consist largely of two types of application transactions: 

• Well-defined •• hoTt query-&nd-update transactions 

Lon" backrround, read-only report generation or roll-up update transactions 

The tranuction proceuine monitor and application progr~s run on the ~lie~t systems, not the 
databue teNer. Cheyenne provides only the database serv'lces to these applications. 

Cheyenne 1,ltem. are available in two basic configurations: 

St&ndanl 

tiJlhly available 
The ltandard conn ationa use Mica features, such as disk shad~wing and hierarchica~ fault man-rur li ti 'th a high mean time between failure (MTBF). Most f8J.lures result 
acem~l, 10 preaednt .~p ~ ons :ad of service unavailability. AB will be discussed later, however, 
~_~ ormance

l 
e~ atrl~n"1 on. that esult in the database becoming unavailable to applications. 

~ are linl e points 0 ~81 ute r 

11> 
nfi rations tie together multiple Qua.rtzlMicalStone systems to 

e hi,hl, aY&ilable Cheyenne co gu bl r. ult tolerant than the standard configurations 
fonD a databue lervel' that i. considera y more ,8 - . . I '1 (. b th ' 
u. . . - s to single points of f811ure. No SlOg e f8J. ure Wlt e OJ,hl, avad.bIe IYltem. are Imperv'l~U te) can cause the database to be unavailable to 
ex.ce U f fi -1 e to all constituent sys rna .' Lik ' , P on a power 8.l or d de but the database remalOS aVBllable. eWlse, most 
It1appbcationa. The performance may egra , 
muIupl6-p01nt failure.s only degrade performance. 

. . ti s are provided as tools for building highly available 
Thehi,hl, avadahle Cheyenne c:on~~ ~ hJ vailable frontrend .ystems and communications 
applications. Other neceuat)' tool. b'':' edu ~~ t~~ tools to produce complete application systems 
componmta. Cheyenne can be com m . 
that are impervioul to mnc1e points of fallure. 

Cheyenne Overvlew 48-1 



Confld ntlal end Proprietary Digital Equipment Corporation· • 
Restricted Distribution 

'1 bl Cheyenne and client system configuration. I of a highly aV81 a e Figure 48-1 shows an examp e 

Highly Available Cheyenne Configuration Flgure~1; 

} Cf Switches 

48.1.1 Product Goals 

} 
} 

} 

} 

} 

VAXNMS 
Cnenf Systems 

Ethe,nel (NQ LAN. 

Cheyenne 
QuartzJMlcliSfon. 
Systems 

CI LAN 

HSC Mass 
Slo,ago Control~" 

RA90 Disk 
Fa,m 

The priority of Cheyenne product goals is uncommon for a DIGITAL product: 
1. 100% data integrity 

2. High reliability and availability 

3. High performance 

This 8et of goals presents unique challenges for testing and verifying the product. Altbouch on 
recognize that these challenges exist, it will be BOrne time before they are resolved. 

~2 Cheyenne Overview 



Dig ital Equipment Corporation _ Confidential and Proprietary 
Restricted Distribution 

•. 1.1.1 DltJ Integrity 

c:r~:~r:~~ t.o.~&ndle us~ dalta Thwithout corrupting it. This implies that all errors 
III W1 appropnate y. ese include disk errors channel and bus errors 
~~l .. , errtn. m~b.li0l'}' UTO

d 
.... daladP&th error'S. and failures of compuu:.tiona1 elements. It is th~ 

II&l1Iwarel relPOIlSJ 1 ty t.o etect an report such erro .... · ""08 -nl. . I .L._ . ... ! _U .......... every error 1n an error og. 
Mlc:a ~ IltempLi t.o c:orTeCt the error transparently, for example through the use of a counterpart 
ID' ell. shado .... MIL. ErTOrs that cannot be COrTected are reported to and handled by Qu.art.z the 
dataU .,..wn eot\ware. • 

•. 1.1.2 ReUablllty and Availability 

llte second product. aoal is to provide a highly reliable, highly available system. High reliability 
mean. lhIt the IyStem MI~om (&1ls f:O operate. High availability means that. the data managed by 
the sener 11 rarely uMvlllable to client. systema. All Cheyenne configurations are highly reliable; 
CUlt.omtn can elect t.o porcha.ee highly available configurations. 

HiCh reb.bility is aclueved by deLecting, recovering, and logging every h ardware error. Error recovery 
may be perlormed by the hardware, by Mica, or may require the intervention ofQuarlz. Some failures 
reqUire the Inte.rveotion of front-end aoftware to resubmit transactions that were aborted because of 
the error. A Mica proceu mONtors the error log t.o detect. patterns. I( a failing pattern is discovered, 
the Cailinc component is automatically removed from the active system configuration and redundant 
axmponenll take over the load. The result. may be a degradation o( performance. but the database 
remains Ivailable to t.h. application. Failures of unreplicated components may result in the data 
becoaunC unavailable. Service penonnel event.ua1ly replace components t.hat are moved out o( the 

confirw"auon. 
HJch uailablbty i. achieved. by replicati ng hardware components within Cheyenne. The load is 
Ihar.d by the component.8 until one fails. The entire load is then taken up by the remaining compo­
nenll, ThUl, replicaLed hardware provides Cheyenne with high availability and high J>E:rionnanc.e. 
For uample. two or more Qua.rtUMicalSlone systems can be bound together to form a highly aVaII­
Ih1t daLabaN len'eT 80th are busy servicing t.he transaction load. l( any one Quart~~tone 
.,..t.em (ail. complet.e.ly. the remaining systems pick up t.he load. The database re,,?ams av~able 
to Ipplicsbon. u lona: .. at leut. one constituent Quartz1Mic~tone system remams .operational 
t.nd II conlirured to aooul the diska on which the database reSides . Mass storage and Intersystem. 

aJmmurucalioOl componenu can also be replicated. 
H..iCh availability i. achieved by binding together two or more Qu~ica!Stone systems to fo.~ a 
bJChl,svulable databaM server. tr anyone QuartzlMicaJStone syslet? f8l:1s completely, the remrurung 
l)'I\eml pick up the load. The database remains available to ~pplications as long as at l~st one 
eonruluent Qulru/M1C:alStone aystem remains operat.ional and lS configured to access the disks on 

which the databue resides. 

48.1.1.3 Pertorm.n~ 
Cbe . ' t of performsnce ranges. The lowest performance system is 
des.~~ 1y.t.em:

OO
co.md In ·.:~d~ debiVcredit. transactions/second. The highest perfor;nance 

5'-' Lo run Ul USlr)'600 f th transactions each second. The database software 1S also 
oonfirurauon can run oveT 0 ese . deI:trned l.o bandle larae. read-only transactions effiCiently. 

_ . h th use o( sophisticated database manipwation algorit.hms. 
lUp performance I. achieved thro{' h .~ memory disk shadow sets, extensive data caching, and 
pualle1 proce_tnC, larp amoun~ 0 ~ YSln The 'software is designed to take advantage o( the 
careful d.,CO of MJea and daLabaae I.nte a:s:ca1 memory provided by Stone. 
Iarp: number of proceuo" and enormous p y81 

Cheyenne Overview 48-3 



Digital Equipment Corporation . Confidential and Propr .. tary 
Restricted Distribution 

48.1.2 Components Figure 48-2 shows how thec:om ...... 
Ch ' many components. ,....-The following sections enumerate eyennes hi hli hted) 

nents fit together (Cheyenne components are g g . 

Agu~48-2: so~;:a~re~la:y~e~r:ln:g~~~~~~~~~~~~~~~~~ __ ~ I VAXNMS Client 

48.1.2.1 Stone 

01. TP lid Application soltwaie 

Cheyenne 

Quartz 
database software 

Mica 

Cheyenne is built with Stone systems, which implemenllhe 52.bit PRISM architecture. A Cbtyell;D' 
database server consists of one or more Stone systems, mass storage, and an optional extended sernce 
processor. Each Stone system has the foUowing components: 

• 2 to 8 scalar processors 

• 64 Mbytes to 1 Gbyte of main memory 

• 1 or 2 XMI UO busses 

• Assorted intersystem communications adapters 

• Wildcat disk and tape controllers (optional) 

Each Cheyenne supports up to 1 Tbyte of disk storage, thus allowing a Cheyenne to manage up 1.0 256 Gbytes of user data. 

48-4 Cheyenne Overview 



41.2.2 Ext.nded Service Processor 

Digital Equipment COI"poraUon _ Confide ntial and Proprietary 
Restricted Distribution 

The Stone .,.tems .hare an ~ptional extended service processor. The extended service processor is 
• VAXttabon nl.IUUrlI VMS, lin.ked to the Stone systems through a private Ethernet network. The 
!lW)ded ItM~ p1"OCeUOr proVIdes comprehensive symptom-directed. diagnostic services as well as 
aa:eu to me t)"ltem manace-ment inLerface. 

41.2.3 Man 510r.g. 

Cho,..,.,. IUPPOrto both DSA·l and DSA·2 rusks. DSA·l rusks (RABx, RA70, and RA9O) can be 
__ ted \hrou,h Wildcat (HSX) disk controllers. They can also be connected to the system through 
HSC mIIItto,..,. controllen attached to the SLone systems through CI (XCA) adapters. Each DSA-2 
dak mdudu ltl own controller. DSA-2 disks are attached to the Stone systems through CI adapters. 

Rtmoftbl. mecha i. proVlded throUih one of the following (a choice has not yet been made): 

tA90 cartndce Lape, from either the Wildcat or HSC controllers 

A nrisnL of the TA90, tTom an as· yet undefined XM1 controller 

}\aIemy wnte--onoe oplica1 media 

44.1.2.. MIca 
The lWCI operatinl .,..tem run. on the Stone systems. Cheyenne uses the following Mica features 

utmIively: 

Special Hi8tufes Required by Cheyenntl 

Symmetnc multprocessing (SMP) 

Common logging 
Disk and tape function processors 

005-2+ disk volume support 

Dtsk shadowing and s1riping 

DECnat 
Remote procedure calls 

ClienVserver 
Interprocass communications between Stone systems 

CI and NI support 

Configuratlon management 

Network management 

Securi1y 
On-line diagnostics 

<8.1.2.5 Ouartz . Col d S . . developed by Storage Systems 10 ora 0 pnn.gs. 
Cbeye:nne'. relational databue system IS Quartz, AI h h Quartz is optimized for use by on-line 
Quartz i. a DDA-complian1. database man&a1ger. ~~~:: many features that make it attractive for 

"b' Quartz. so con .... \raruactson procHIlf\l appuca OM, 
eod.wtr informaLlon m&nalemenL 

Cheyenne Overview 48-5 



Digital Equ ipment Corporation · Confidential and proprietary 
Restricted Distribution 

48.1 .2.6 Client Software 

Portions of the Cbeyenne product are software running on VMS client systems. The following sections 
enumerate these components. 

48.1.2.6.1 Communications 

The client side of the client/server communications runs on client systems. There are ~ compo­
nents to the client/server communications: 

• Database communications layer 

• Reliable communications service (RGS) 

• DECnet 

48.1.2.6.2 Mica and Quartz System Management and Database Administrat ion 

The system management requirements of the QuartzJMicalStone systems that make up a Cheyenne 
system include software installation, network configuration, system security, mass storage configura· 
tion, running on-line diagnostics, and mass storage backup. All of these functions can be accomplished 
remotely from a properly authorized client system. They can also be performed from the Stone COIlllOle 
subsystem. 

The Cheyenne database administration functions include database creation, tuning, security, man· 
agement, and backup; allocation of resourcea to varioua databases; and resource usage accounting. 
All of these functions can be accomplished remotely from a properly authorized client system. They 
cannot be performed from the Stone console subsystem. 

48.1.2.6.3 Securi ty 

Cheyenne resources and databases are protected from unauthorized access through a hienrthical 
authorization scheme. The layers include: 

• DECnet-Mica 

This la:rer: validates connections based on the originating system and user name. Note, however, 
that this IS ~he user name for the Pr.oc~ss that sets up the connection. which i. usually not the 
process making the DDA request. Mica s security scheme allows the system manager t.o restrict 
network access based on system identification and user name. 

• Reliable communications service 

• 

• 

This layer provides the Quartz database management software with information it needs to 
identify processes that issue database requests. 

Database communications layer 

The database communications layer translates DDA p-d call " . t •• ". 
RCS I N th ti 

. . ......... ure sin ..... messagel sen .... IU<' 
ayer. 0 au en cation IS performed by this layer. 

Quartz database management software 

The datab~se ~ftw~re .uses the identity provided by the RCS layer to validate the intended 
access. This validation 1S in two steps: 

Database file protection 

Quartz. identifies the accessor to Mica and asks ... ' f h . 
1.1'uC& 1 t e access 15 to be a1lowed. 

DDA-defined database protection 

48--6 Cheyenne Overview 



Olgl\al Equipment Corporation _ Conf ldentlal and Proprietary 
Restricted DIstrlbutlon 

QuarU \.LIeS IeCUn\y information placed i n th d t b 
delel"UUne If the tntended access is to be allow~.a a ase by the database administrator to 

a1 .1.U O.t.baM Tool. 

1\Ie daLabue a.c:ceu method (Quaru) i. only one component of a modern datab t 
1J'lLem.. Other c:omponenll Include: ase managemen 

Databue defiruLion tools 

OItahue tUNo, tool. 

Oatabue analyli., backup, And repair tools 

Prorram development environment 

InteraCUve query paekaee 

&me. olthue tool. are ,en erie to I..ny.ODA offering (for example, program development environment, 
Ulwrartlve query pack.a,e. and. poselbly t~e database definition tools), while others are unique to 
Cheyenne (the da\.&baae analY'I' and repan tools . and some of the tuning tools). 

48.2 Targ.t Customer Base 
CbeyennI'. primary tar'If:\ market i. on -line tl"8.l1saction processing (OLTP) applications. OLTP ap­
pbc:abons are cbancte.riud by relatively short, well·defined transactions. Although the number of 
t:ranJac:b0ll types IS arnall, fantutically large numbers of transaction instances are run. For exam­
ple, the hi,h-end Cheyenne conficurabona are target.ed towards performing 600 qualified Debit/Credit 
traDUCUCXl .. NCOnd (eee the CRDK TUtorial for a description ofa qualified Debit/Credit transaction). 
A \arct pnlporUon o( OLTP tra.naactions update the database . 

Cheymne " a.110 tar'let.ed toWard. transactions that up to now have been referred to as ad-hoc. 
Ad-hoc transact,on. are Ulua1ly not repeated. and may not be defined until the transaction is run. 
MOlt ad.hoc: tranaacuons read the database . bUl do not update it . Ad-hoc transactions may require 
IClI\mnc or ICCHIDI\I si,ruficant portions of the entire database. Ad-hoc applications are also referred 

to u end·UMf infol"'DUuon man_aement (EUlM). 

Cheyenne mdudes many features thal enable it to address these target markets: 

Hl,h availability 
C\lI'ftnt DIGITAL systetna are not highly a vailable. Cheyenne is specifically .designed to pro­
.,d. hl,hly aVa.1lable aece. s to databases. Cheyenne hard~a~ and BO~ware fal lures. affect only 
runnin, Lta.naaCtions; new transact ions can be started WIthin two mlDutes of a frulure. S~lf­
con\a.lMd trtn .. ct.Jons can be automa tically resubmitted by front·end software, thus masking 

the (ailure from applications and a pplication users. 
HI h -lab·l - -tical to many transaction processing applications. Customers demand 

I
n!..-&"faJ 1 7't~_1' en k 24 ho"- per day· anything less would make it impossible for the 
~ uptlme, oay. pe.r wee , 0.:-' .. ..' 

rult.omer to UM Cheyenne to run tbeU" a pplications. 

IUlh Ihn>u,hpul eM ·d Tabl rocessing power and UO bandwidth dedicated to database 
yenne hal COnil e Y mO~Pdat.abase products. Quartz is specifically tailored towards 

ptOC:l'aln, than DIGITAL lay! alent in OLTP applications. As a consequence, Cheyenne 
handhnc the types o(transa~~onaf pre:vsa tiona in a given period of time than other DIGITAL 
can proc:eu a rreat.eT nwn~T 0 tran c 
dalabuo p.oclUCU. 

Cheyenne Overview 48-7 



Digital Equipment Corporation - Confidential and Proprietary 
Restricted Distribution 

• Faster transactions 

Quartz is designed to process relatively sbort update transaction~ very qui~y. This is extremel, 
critical for many OLTP applications. At the same time, Qua.rU IS also deSlgned to handle IllJe 
queries efficiently. Quartz takes advantage of the large nw;nber of PTOOeS&Ors, e~onDo~ memory 
capacity, and high 110 bandwidth to decompose l~ge .quenes and ea:ecute the PI~S to paRDe!. 
This makes it possible to execute large transactions I.n rea90nabl~ ~ounta of lime. Che~ 
is fast enougb to make practical queries that would not be posSIble 10 smaller systems. This 
feature is essential for ad·boc queries on large databases. 

• Bigger databases 

Cheyenne is designed to support databases up to 256 Gbytes in ail:e (this requires .bout oneTbyte 
of mass storage due to Quartz overhead and data-shadowing requirements). Qu.art.z can notonl, 
query such da~bases, but can load, ba~up, an~ ~rga.ni%e .tbem i~ reaso?able amounl.l of time 
(less than a single eight-bour shift). This capability makes It practical to Implement la.rp-lCIle 
applications on top of Cheyenne. 

These application classes describe tbe types of applications that run on Cheyenne, but they do not 
describe the people who in teract with Cheyenne, It is useful to consider how various classel ofu!en 
view Cheyenne. We can use these perspectives to tune interfaces for the people we expect to use them. 
The following sections describe the ways in which various classes of users interact with Cheyenne. 

48,2.1 Application Users 

Cheyenne makes it possible for DIGITAL to reach new classes of applications. These are pnmuil, 
commercial, transaction-processing applications, in areas such as as banking, brokerages. inventory 
control, and personnel. Users of these applications may never know that Cheyenne is there. but 
they will notice that their work proceeds faster. with fewer interruptions. This allows mo~ work 
to be done in a given amount of time than is possible using DIGITAL layered prociUt::UlDstead of 
Cheyenne. 

48.2.2 Application Wrhers 

Writers of application programs may develop their programs on top of existing DIGlTAL layered 
products (for example, RdhIVM~). The database accessed by a program may be managed initiall, by 
a laye.red product, then ~ter mJgratt:d to Chey~nne. Programs should require no Changel to ao:ess 
the Dllgrated dat:abase, WIth the posslble ex.ception of the database name (logical names can be used 
to mask even this small change), Alternatively, application programs can be developed dlf~t1y on 
top of Cheyenne d~tabases. Migrated applications may need to be recompiled and relinked be{tn 
they can access their database on the Cheyenne system. 

~n s~ort, application programmers, like application users, may be unaware of when, or it: CheytMe 
IS bemg used. ' 

48.2.3 Database Administrators 

Da~~se a~strator:' belong to. t~e class of users most affected b Ch enne. The databut 
admirustrator 15 responslble for deSlgrung the database definin .. .. . y try d I _,_ •• , 
database manage H t . th d L.___ , . g 1_ structure an .yout, ............... 

r, an or urung e ataUK!te to meet the demands of a lication users and wnttrL 
Although Cheyenne databases are DDA-compliant. many of th d ta'_!'!'1a d ' _, __ 
are unique to Cheyenne. e a LJCUM:: yout an turon( ~ 

Database administrators manage the follOwing aspects f Cb 
o a eyenne system: 

• The number and power of the Stone systems ",' th Cb 
e eyenne server 

• The number and type of disks 

• The partitioning of databases among disks "'-d S'-..... ....ne systems 

48-8 Cheyenne Overview 



Digital EquIpment Corporation _ Confidential and Proprietary 
Restricted DIstribution 

'nl.e layout of relatioM and choice (fa t o 8 access stTuctures for each database (.uning .he 
<1> ........ ) 

1'bt ute of Ml:Unty to hmi t unauthori1ed access to Cheyenne databases 

Day·'O-da, manapment. of the database, including backup 

Rtpa>T of bn>lton d .... b .... 

Databue admini.trator'S haye addit.ional duties not included in this list. These include logical 
databut desJro. a fundlon common to a ll DOA databases, not just Cheyenne databases . . 

in lummi", databaae .dminiat raton are concerned with the configuration of a Cheyenne system 
aDd 'II'lth how theM relOu.rce. are cliat.ributed among databases. 

U. System Managers 

TM role o( the Cheyenne Iy.t.em manager overlaps with that of the database administrator. Sys­
tem manqtnI are mented eYen more towards dealing with the physical resources in the Cheyenne 
tonfipnbon. Sy.te.m man ... " concern themselyes with the following; 

Cbent.itervtr network manalemont. 

Bmch", multiple Stone .yat.ema tocether to (orm a highly ayailable Cheyenne system 

lntrll-Cheyenne (inter-Stone) communicatiora management 

Allirnment of phyau:.aJ ma .. ltonle to various uses (this clearly overlaps with the database 

admlru.1rator role' 

Accounbnl for ntIOW'OI u.u.ce 

Tabnc correctlv. ad.iOnl when components £ail or are about to fail 

PbyscaJl,. con~nl the a,..tem 

One UNCul cbabnctiOn between .,..tem management and database adm.inistratio~ is that database ad­
IZIUUItn.ton ma.na.ae the .tauc and long.term allocation of system resources, while system managers 
eoncem themMlvea with .hQTt.-t.enn cont rol of resources. 

'11.2.5 OperlUonl StaN 
n...- -bl fi th d _to-day operation of Cheyenne. wit.h duties defined by the syste~ 
v~.ton are ruponJl e 01' , e ay all 0 rators perfonn backups and manage t.he media 
manapr id d.ta~e aw:;ru~ato~~~~:raJ.· ~ Cheyenne following a device or system failover; 
~t&1runl OOI·tnm JOurn I . 1 ey • '1 ' d 08ions regarding when to remove failing components 
.:;IJ'tDmple, Oper8tof'S may Imp emen po ICY e 
Iluch u dl.U from the .y.tem. 

Q .2.6 Software Support Personnel a customer calls upon for knowledge of Cheyenne. 
Scil:ware .uppoT\. penonnel are the first. reSOu:ces kn ledge of how the system win be used. This 
!be software IUPport. tpeeialilt need~ ext.e

h 
nSlV~me~~ database administrators and programmers. 

allowt tht tpeOahlt to advise and traln t. e c:us . . of defense when the Cheyenne system falls and 
Software aupport penonnel are al.o the first line 'd tify t.he conditions t.hat. cause the failure and 
GO hardware Quae can be found : They at. t.em~t to luie~s extensive knowledge of the inte!'"a1s of the 
det.enmne why the failure 1.8 t.aldnl pla~ . ~s req 1 e a running system as well as a faded system. 
1JIUm. It al., reqwres that ~I. be .v811ab e to a.r: ~ork around the problem. ~e s~~st needs 
Wherevar poaaible, the .peclalist hel.ps t.he cus tom f the database to use the repIUI utilities to fix a 
thorouch knowledae about. the on-disk s tructure a 
damacod da .. _ 

Cheyenne Overview ~9 



D[gltal Equipment Corporation - Confidential and Proprietary 
Restricted Distribution 

The specialist wor ks with engineering to r esolve especially difficult proble~8. Once th~ ~lem ~ 
been identified. the specialist may apply emergency sonwa~ updates pro,V1ded by engtneenng. It 11 
extremely unlikely that software specialists will patch, modify, or custoIIllze Cheyenne software. 

In summary, software support personnel need extensive knowledge about the inlemaU or the im· 
plementation and details about the on-disk structure. They need tools to analyze the system, and 
utilities to ~be and repair damaged database files . Finally, they need a means of applying emer­
gency software updates. 

48.2.7 Hardware Service Personnel 

Hardware service personnel install and r epair systems. They need to be aware of the issues affecting 
high availability (see Section 4B.5.1), 

The primary distinction between Glacier and high availability Cheyenne configurations is the number 
of Stone systems each may include. Standard Cheyenne configurations are essentially identical to 
Glacier systems, differing only in that Glacier processor modules can have scalar/vector prooeuon, 
while Cheyenne uses scalar/scalar processor modules. Service personnel will view the two Byltems as 
very similar, and practical considerations suggest that the same people will service both Glacier and 
Cheyenne systems. Thus, it is unlikely that service personnel will be aware they are deahn, with_ 
database machine. For highly available Cheyenne systems, however, service personnel must be _wan 
of how to service portions of the Cheyenne system without affecting overall system availability. 

48.3 Hardware Components 

The following sections briefly describe the hardware components used by Cheyenne. 

48.3.1 Client Systems 

'lb be a Cheyenne client, a computer system must implement DECnet, and have client.resident 
DDA: communications software. For th~ initial release of Cheyenne, only VMS systems meet these 
reqwrements. Future releases of client-resident software may enable ULTRlX systems to be clients. 

A1~hough IBM systems cannot connect directly to Cheyenne, they can become Cheyenne clients by 
usmg layered DDA products (for example, VIDA ) that are connected to Cheyenne t.hrougb VMS. 

48.3.2 Standard Configurations 

The standard Cheyenne confi~ation consists of a si ngle Slone system optional extended Jervice 
processor, mass storage, and client communications hardware. ' 

The Stone system consists of from one to four scalar/scalar PRISM processor pairs memory 1/0 
adapters and busses, power and packaging, and a console subsystem. ., 

The mass storage for a standard Cheyenne configuration is described in Section 4-8.3.4. 

Client systems communicate with Cheyenne using DECn., and 0 k . '- ~. 
(Nl Eth ) Addi · al' ne or more networ lD~n::onn~ .. 

or emet . tion NIs proVIde additional through t d ' ·Iabili· F tun 
versions of Cheyenne will allow clients to be ttached pu an . lrnprove aVal ty. U 

a to Cheyenne usmg the C1 bus. 

48--10 Cheyenne Overview 

... 



Digital Equipment Corporati on _ Confidential and Proprietary 
Restricted Distribution 

4&13 Highly Available Configurations 

., hIIW,. a,·ail.ble Cheyenne eonfiguration u built from t S ___ ,~ ___ p_____ ;wo or more tone systems an optional 
U\CDU~ -... .,."'... .~ •• lOa,. storace, and client commurucations hardware. ' 

!be Swne .,.teml are tdentical to those used for the standard confi . 
..,tlun a CheytMe are tied together using the CI bus The Che gurationskl - Thd .e Stone systems _,_ 5 d al' . yenne war oa IS shared among 
.. \One ')'Item, unnl norm operation. If a Slone system f '} '1s kI d - -to the rema.tIWlI Stone .yaLe ' thi th Ch 8l S , I war oa IS reasSlgned tItand.i m. Wl n e eyenne; client systems see a momentary glitch, and 
m&rIJ ou nl t.raJ\Iactlon. are aborted. The clie~t systems can immediately resubmit -their 
us,nJaC:Uona. usually tran.parently to both the transaction processing monitor and users. 

The llWI.to ..... for hilhI), available Cheyenne configurations is described in Section 48.3.4. 

'The cbaal commurucation. hardware for highly available Cheyenne systems is identical to that for 
IWldatd conficuraLlon •. All of the Stone systems that make up a Cheyenne must be linked to each 
chent .,Item. 

U4 Mall Storage 

The uutW releue of Cheyenne UR' DSA· l disks and tapes for mass storage. All DSA-l disks are 
Itlpported, althoUCh wa expect that only RA70 and RA90 disks actually will be used. The TA90 tape 
dn", 11 the only Llpe dnv. that we expect will be used. Some systems may include optical disk drives 
lOr baaup and to ltore lonl-tenD journals. 
DSA..1 d..,;CM ean be attached t.o the Stone systems in a Cheyenne through either the HSX (Wildcat) 
eontrollfr or the HSC controller. The HSX and HSC controllers can be used for system disks in all 
~bOnli DatabaH and loging devices can be attached through the HSX only in standard 
amfirutaUOIU; Nlht, available configurations require Lbe HSC. 
lbe Cl bu.Jeet UMd fOT Cheyenne mas •• torage must be used only to connect Stone systems and HSe 
CDntrolltn. no VAX may be attached to a Cheyenne CI bus. In addition, only Stone systems that are 
bow:.! mto the lII.I0. Cheyenne .y.tem may share a CI. Further, all Stone systems in a Cheyenne 
IJ'ttm mUlt be connecwd to every CI that is used for mass storage, 80 that all CI-based mass storage 
is Yilible to alllhe Stone 'ylt..eml in the Cheyenne system. 

48.4 Software Components 
The (ollowinc ICICtiOI'U detcribe the software components used by Cheyenne. Some components exe­
cute on cbmt Iy.tem., bUL mo.t exeeute on the Stone systems that make up the Cheyenne system. 

48.4.1 CompoMnt. on Client Systems 
Cbeyanne componene. execute on client systems to provide access to the Cheyenne system. These 

CDmponenu provide .. veral (unction.: 

A.caet to Cheyenne daLabale-a through DDA 
k 

emen+ and database administration 
Cbeyanne Iytt.em manapment., networ manag ... 

Cheyenne ~. and maintenance 
'n..___ . layered product kits for the client operating system. 
,~ componenta are packaled as one or mote . RS' 
~'e aped. to provide the {oHowinllayered product kits at. F . 

VMS full chent . '--ged (or a VMS client. 
1luJ kit includ .. all three functiOns, pac_ 

Cheyenne Overview 48-11 



Dig ital Equipment Corporation - Confidential end Proprietary 
Restricted Dlatrlbutlon 

• VMS nm-time client 

This kit includes only the ability to access Cheyenne databases from a VMS client system. 

48.4.1.1 Access to Cheyenne Databases 

This function provides application users the ability to run programs that. access databases on a 
Cheyenne system. It includes the client DDA communications modules. It. could allO indudt a 
number of t!:nd-u.ser query tools (for example, an interactive SQL query processor or qut!:ry·by·forms 
utility), but these are mOTe likely to be packaged as layered products. 

Figure 48-3 shows the components necessary for an application program to communicate with a 
Cheyenne system; client-resident Cheyenne components are highlighted. Rdb / Dispatch allows DDA 
calls to be directed to any DDA-compliant database manager. The databcse communieationa (DBC) 
layer provides the ability to remotely access a database . The reliable com1J\unicatiolU servicf (ReS) 
layer concentrates m ultiple DDA sessions over a limited number of DECnet.logical 1inka. 

Figure 48-3: Cllent·Resldent Cheyenne Communication Components 

Application 
progrwn 

OECn.IIVAX 

Cheyenne 

Appllcallon 

"""'..." 

-"', 
~ach of t~ese components could be used b all VMS 00 . . . 
mtenact!: is not. tailored specifically to Ch:yenn If th A lmplemt!:ntations, usWIllng that the eBC 
be packaged into a generic VMS "DDA run-w:~.. . ese ~ponents became common, they .... auld 
Cheyenne V'1I.iS run-time client kit. kit. In this case, there would be no need (Of a 

48-12 Cheyenne Overview 



Digital Equipment Corporation. Confidential and Proprietary 
Restricted Distribution 

44.1.2 Syltem Management and Oatabase Administrati on 

BecaDM the eli,bnction between IYlt.em management and database administration is blurred in 
CheJeMe, It maltellflllM to include both functions in one package of tools. Figure 48--4 shows the 
.-an0UI bieh-leveJ components used to implement remote system management and database admin­
isU'lbOD runCOona. System menace-ment and database administration components are highlighted. 

figure 48-4: Cheyenne Ramota System Management 

Client VAX 

....... ------
V Al.MtII APC 

OECnetIYAX 

Client VAX 

a.y_nlmole 
spr.n mar.gemert 

u.er Intcnf.~ 

VAXlVMS RPC 

DECnetNAX 

. 
____________ 1. ______________ -r ______________ 1-______________ l0~I Ama 

Network 

DECnetIMlca 

Mica APC 

Cheyenne 

. l riace program fulfills several purposes: 
gernent. user 111 e 

The Che,t:DDe remote .yat.e.m mana t k management, and database ad-
te management, ne wor . . ...r. d interactive 

It nMVldel the uaer interface to.ya m 'lable' a command-line mtenace an an 
~.- . t.erl ce8 are aVBl . 

miruttnbon (uoeLionl. Two 11\ a 
OECwindowa 1nte:rface. . ·to·s invoked. 

ell th PRISM diagnostic morn r 1 

• It \Ii UM m-.n. by whi e be implemented as several programs, 
The remote system manaeement u.e.r interface program may 

bed ~ther La act .. one. 

Cheyenne Overview 48-13 



Digital Equipment Corporation - Confidential and proprkttary 
Restricted Distribution 

The client resident user interface uses remote procedure calls (RPC) to communicate with th~ I}'S­
tem management and database administration components on Cheye.~e. ~e Chey~nne-remdent 
components perform the actual system management and databa~ adDllDlstration ~ction.; the user 
interface directs which functions are to be performed. The user mterface can also direct co~ma.nds 
to any or all of the Stone system in a Cheyenne system. Most s~stem mana~ment funet.ion. are 
directed to a specific Stone system. Database administration functions can be directed to an, Stone 
system in the Cheyenne system. 

48.4.1 .3 Database Tools 

Users will be provided with many different tools for creating, manipulating and tuning Cheyenne 
databases. These tools fall into several classes: 

• Generic DDA tools 

Generic DDA utilities can be used with any DDA-compliant database manager. They communi· 
cate with the database server through DDA These tools include query processors (like SQL and 
Datatrieve) and data manipulation language preprocessors. 

Most, if not all, of the generic DDA tools are packaged as layered products on the client operatifl( 
system. 

• Cheyenne DDA tools 

Cheyenne DDA tools are utilities that are specific to Cheyenne. but communicate with the tervu 
through DDA. An example is a data definition language (DDL) compiler. Althougb it i, entirely 
possible to create a generic DDL compiler, Cheyenne probably will include its own DOL compiler. 
providing database administrators with the means to specify Cheyenne-specific t.uning parame­
ten when creating databases. 

• Cheyenne database administration and tuning tools 

These tools are utilities that communicate with Cheyenne using remote procedure calla, and 
are accessed through the remote system management interface. They control such functions u 
server resource allocation and server-wide tuning. Because these functions apply to the server u 
a whole and not to any specific database, they cannot use DDA to communicate with Cheyenne. 
In addition, beca~e the functions being periormed are so specific to Cheyenne. it i, unreuonable 
to burden DDA Wlth them. 

48.4.1.4 Communications 

All clienVCheyenne communications is lsyered on top of DECnet Phase V. The foUowing traOlporta 
are supported: 

• 
• 

N1 (Ethernet) 

CI (computer interconnect) 

We will not support DECneVCI for the first release of Cheyenne because of the poor performance 
of DECne~~ s .eI su~port. Because DECnetIVAX is actuaIJy faster over the 1\'1 than on the 
CIt there 18 little lncentive to support DECneVCI until performance improves. 

Three forms of clienVCheyenne communication are suPPOrted: 

• DDA 

TIlls is used by client applications to access Cheyenne databases It ' a1 sed f, (orms 
of remote system management. . 18 80 U or some 

48-14 Cheyenne Overview 



Digital Equipment C orporatlon - Confidential and Proprietary 
Rastrlcted Distribution 

Cheyenne providee an effioent mechani r , I ' cl .'- . " am lor tTansportln DDA .m:er, t II un ear at. uul bme If this mec.hani . . g requests over DECnet to the 
ctM

nt 
DDA c:apabiln.y The Cheyenne iar leme~~ I~ uruque. to Cheyenne, or if it will become a 

• rtlabvt1y few DECnel IOClcal linb eli~ ti :n multiplexes multiple DDA sessions over 
~t In tM CWTent remote DDA i~plemer:ta~gn e dver~ead of logical link creation that is 
bet ... n the client and Cheyenne than in t.he eD8~ ,an uamg fe,,:,er mesS;Ilges to be exchanged 
Ideou(yln, chent. proceue. to the Quart.% soft. , protoc~l. This layer IS also responsible for 

ware lor &ecunty aut.hentication 

Rem'" Pn>codure Call ' 

Remote procedure ca11, are uted to link reInO adawuJVabon componenll Wlth their counte learlsyst.em msanagement, diagnostic, and database 
rp s on a tone system. 

Network man.cement throulh NCL 

nu, allows the network manaler to manage the M ' DEC ' ' t)'1\em.. lC8 net Implementation from remote 

".U Component. on Stone Sys'tems 

~!bnCh~mdne's IOben.w.~re components execute on t.he Stone systems t.hat. make up t.he server. This 
_-.. eny eec:n I UlON componenla. 

11.4.2.1 Quartz 
The apphc.lbOn !hat run. on <?eyen?e is a DDA-compliant database manager called Quartz. It 
tmplemtnt. a lOpe-net or Codd. relational data model, as specified in the DDA specifications. Be­
ClIIIe Qu.aru. 11 DDA-eomphant. uaer applications are transportable bet.ween Cheyenne databases 
&lid databuet man.acecl by other DOA-compliant database managers. 

Quaru 11 mv1ded Into teYeral aajor components, each of whlch is further subdivided. Several 
Ofen'lew' dacu:menu dewltn' the design of the database manager are available from the Quartz 
IfOUP The I'MJOT component... of Qua.rt.z include: 

~ p"p&rallon and metadat.a. manager 
nu. component it responaible for converting DDA requests into internal forms. Part of this 
tnnllabon contilll of chOOliOi a general optimi%ation strategy for executing the request. The 
mdadata manaae

r 
ia reaponsible for managing precompiled requests and t.he metadata (that. is, 

d.\Abue defirullon) ultOCiated with the database . 

Que" uecuuon 
'The query-uecution component. con_ista of a scheduler and various relational operator modules. 
The query Kheduler evaluates the general execution st.rategy chosen by t.he query-preparation 
component and det.erminel what resources are to be dedicated to executing t.he query. The 
rtlational operator modules are threads ~at perfo~ one or more relational operations (for 
uample, jolO, projection, lelect.ion, and aorllOg). Relational operaton.are started br the database 
lCbeduler when It det.ect.a that a aufficient. number of tuples are aV811able to men t. t.he start-up 
eoIL Sneral rel.bonal operator. can be executing in parallel, and results can be pipelined 

between relauonal operators. 

Client DnA communicabonl n. went communicationa module accepts ODA messages and rou~ them to the app~pri~te 
oomponent.a. Ma.t. mesaa,e types are passed to the ~uery_preparabon component; application 
cl.a\a m .... p. are always paued to the query_execubon component. 

Cheyenne Overview 48-15 



Digital Equipment Corporation ~ Confidential and Proprietary 
Restricted Distribution 

. ed h F example Quartz monitors the hardware COlI· 
Quartz has other components. not mention eedere. hi o~ ~ ti~n Another example is the data~ 
figuration. because tbe executi~n ~heduler n s .t . s 10 orm~ databases move them around adjUSt 
administration component, which lOcludes the ability to crea

bl 
aft.e . '. alli cl.isabl ' 

various tunin arameters back them up, restore them, ena e nm~ge Jaunt ng, e JOUr· 
nalling, and s! ~n. See the Qu.aru design documents for details of the deSIgn of the database manager. 

48.4.2.2 Mica executive 

The full range of capabilities present in the Mi~ ~ecutive and kernel are used in Cheyenn~, ~th 
the possible exception ofobjed security. Quartz IS highly dependent on several features ofMiea. 

• Symmetric multiprocessing 

• Multithreading within a process 

• Shared memory between processes 

• Hierarchical fawt management architecture 

• Configuration manager, error logging, and associated support throughout the executive 

• Mass storage YO, including disk shadowing 

• Remote procedure call (RPC) facility 

• Interprocess communications facility 

• Reliable communications service 

Because Cheyenne is a closed system, there is little reason to make use of~fica'8 object-based JealIity. 
If all the interfaces into the system (that is, conaole and DECnet) are secure, we can take advantqe 
of the added speed that results from not using object-based security within the system. This does 
not mean that object-based security should not be implemented, but that Cheyenne will probably not 
make use of it. 

48.4.2.3 System Management 

Several mQjor system management components run on the Stone systems in a Cheyenne: 
• System management server 

This is the remote procedure call server tbat executes system management functions. 

• System management command·line interface 

This is exactly the same component that runs on client systems. It implements the command. 
line interface to system management, diagnostics, and database administration functions. When 
running on a Stone system, it reads commands from the console terminal and write. retulttto 
tbe same co~le terminal The interactive DECwindowa interface is not supported throurh the 
console ternunal, because tbe condole terminaJ is a charact.er.cell device. 

P;oviding the command-line interface on the conaole termina1 makes it possible fOT sec:ur'tJites to 
disa~le remote system m~agement. Note that most sites can be expected to have an enended 

. 8ervlce processor; such SItes can run both system management interfaces from the enezxIed 
service processor. 

• Configuration manager and fawt monitor 

See Section 48.4.2.6 for details of these components. 

48-16 Cheyenne Overview 



Dig ital Equipment Corporation _ ConfIdential end Proprietary 
Restricted Distribution 

.a,U.4 Network Mlnagement 

Cbtyenne mUM exten.live use of the follo1Nin Mi g ca network components' 
• DECn« Phue V " 

Mica i. hi,h1y dependent on DECnet Phase V . V fellure.: . Cheyenne reqwres the following DECnet Phase 

Multlple--rail IUpport 

Virtu.a1-arcu.it. {ailover to alternate paths 

DEC •• tIN! 

Forlhe fint version ofChcyenne it i,lik 1 th t 11 cl' 
oyer the Nt (Ethemet.). Mice implementse6EC~e~ Ph len~seh:rhcommunications will take place 
mulbple Nl. to provide greaLer t.hroughput and ·tb-li I wbe c allow.s us to take advantage of 
i. pCIIllble under DECnet. Phue rv aVal a 1 ty tween clients and Cheyenne than 

DECnct over the Cl 

'Z:xC~ub~td:, ct.iderabl?, higher throughput t.han the NI. Unfortunately, the DECnet 
t.mJD p ; ~ ,8 SI margt.nal at best. Although it appears that. the CI should be the 
~ ... ~ec:;.;: eC~ce:I~tween cli~ts ~nd ~heyenne, we will not use it. for the first. version of 
-~1~~t1 _ e Wl beeome a pracbcal mterconncct. when t.he DECnetNAX performance is 
alcni~ y Improved. 

Rebable communication. service 

RCS iJ th. layer. bel-ween DBC and DECnet. It multiplexes multiple DDA sessions into a few 
=~OC'cal linb. It alto identifies client processes to Quartz software for aut.hentication 

Remote procedure call .upport 
Remote procedure can. are uaed between the system management. interfaces and the system 
manace-mMl .erver. The uee of RPCs provides a layer of insulation between client systems 
and Cheyenn • .,.tem manapment. This layer will yield us considerable flexibility when we 
mt.rr!aee new client ope-ratin, .y.tems to Cheyenne. 

lnteipnx ... communication. (both within a SLOne system and bet.ween Stone systems) 

Cheyenn. pTOvide. an Int.erproceas communications mechanism for use both within, and bet.ween, 
Sl.One .,Iteml. nul mechanilm is based on half~duplex message queues. There are two types 
or meslap queues: lOurcel and sinks. A source message queue is connected to exactly one sink 
me .... ,. queue , All m .... get sent 1.0 the source message queue may be received from the sink 
mtllN(e queue. A Ilink me.sa,e queue may have one or more source message queues associated 

With it., 
Loeal meeup queues are demcned to allow messages to be passed bet.ween processes wit.hout 
copytnr them. nu. ,. accomplished by passing the messages in shared memory segments. Re­
mote m.....,. queue. u.M SCA over t.he CI to pass messages. The interface is carefully designed 
1.0 UN the SCA block-dat.a .ervicet to transport messages. 

Outributed name llervice 
Bec:tUH CbeyennetmplemtnlA DECnet Phase V, it.requires access to a distributed name server. 
Th. name ...-vu 11 u.ted to Identify other systems In t.he network. 

Oi.atnbuted til. lervice 
n...... cl."d fth distributed file service. The extended service processor runs 
...... , .. nn• runt the lent. II eo e . Thi all Cheyenne to access the console load 
the server lid. of the di.tributed file seTVlce. sows 
d.moe on the e:.ne.nded service processor. 

Cheyenne Overview 48-17 



Digital Equipment Corporati on - Confidential and proprJ.tary 
Restricted Distributi on 

48.4.2.5 Transaction Management 

-

It is clear that Cheyenne must participate in distributed tT'8.I1sactiona. Such, transactions may only 
involve two nodes the client and the Cheyenne server, OT they may be consIderably more complex. 
An example of a ~mplex distributed transaction is a retail end:-of-day roll:up opera~on. This might 
involve reading sales records from a set of cash registers, u~tmg cen_~ed ~~ ~~ and 
updating stock records kept at the same site as the cash reglsters. nus t8 a nonlnVlal application. 

'Ib participate in distributed transactions Cheyenne must implement a distributed two--phasecornntit 
protocol. Because the vast majority of di~tribut.ed transactions are quite simple, it is necessuy that 
Cheyenne he able to participate in a distributed transaction 8S the commit coordinator. Beeause we 
must support distributed transactions involving more than one Cheyenne, Cheyenne must also be 
able to participate as a leaf node. 

Mica provides Cheyenne with sophisticated transaction management and logging services. These 
services are initially on1y used by Quartz. We expect that they will be used by other facilities in 
future versions of the product (see Section 48.6.2). 

Mica provides both local transaction services, and the ability to interact with remote transaction 
managers. The local transaction services are procedure-based. Mica communicates with remote 
transaction managers through the yet·to-be-defmed corporate distributed transaction management 
protocol. This protocol defines the interactions required and allowed between distributed. transaction 
managers. 

48,4.2.6 Cheyenne Diag nosis and Maintenance 

Cbeyenne diagnosis and maintenance functions are performed mosliy while the system is still run· 
ning. Hardwa.r:e maintenance of a highly available Cbeyenne may require taking down one of the 
Stone systems 10 the server, but the server remains available through the remaining Stone S)'ltemJ. 

Diagnosis is performed with one or more of the follOwing tools: 

• Automatic diagnostic tools 

These tools always run while the Cheyenne server is up. They constantly monitor fault&, and 
record and attempt recovery when faults do oceur. 

System error and event log 

This log is maintained by Mica on a disk. It contains the following types of information: 

• System configuration 

Signi~cant media events (for example, disk mounts and dismounts tape volume mounts 
and dIsmounts) , 

• 

A record of e~ery fault experienced by the system (for ezample machine checlu software 
bugcbeck.s. disk errors) " 

• 

A '.,cotro) 0; ~o) nfigw") ation changes (for example, sbadow-set c.ounte ......... P1' replacements. con TO er l8.1 oven .,...... .. 
• 

Automatic configuration management running on Mica 

This. set of software consists of a fault monitor and a c:onfi ... ,. .... ti The fault 
morutor watches for hardware faults r rded ' h .- - on manager. 
patterns to attempt to predict hardwa~ailurel~ ~r.e erTOr log. 1t applies heuristi.CI to error 
such predictions onto the configu ti ore they OCCUr. The fault moruLar passes ra on manager. 

The configuration manager responds to external 
uration changes and predicted device £ '1 I event.s such as openllor·requested config· 
ration to minimize the effects of such fi:.u: L .attempts to adjust ~e hardwan CDn~' 
other software (for example, Quartz. and the ' Finally, the c:on.figuratlon manager no~es 
changes and nonrecoverable faults, e:d.ended aeTVlee proceuor) of oonfigunbon 

4~18 Cheyenne Overview 



Digital Equipment Corporation _ Confidential and Proprietary 
Restricted Distribution 

Automabc symptom directed diagn . (SOD) . oeuor OSlS runrung on the optional extended service pro-

The extended lervlce processor is an ti tha · from DIGITAL essE willsu 1 .op on t 1S present if the site has purchased service 
failin,field-re;lace.able unitiP ~::~~~~~ ~18 ~at will ana1y~e fault patterns to isolate 
that WlU lOOn fail. The essE SOD tool y ~o able to predic~ 6?ld-replaceable units 
mONtor provided by Mica. The extended -: ~nS1derably mo.re BOphisticate.d than the fault 
to the Mica configuration manager This . rvJ.~ pl"'OCe88Qr will alBO send failure predictions 
to mJrumiz.e the impact of the anticipa~~:roW~f~~~~~tunity to alter the configuration 

E.ecution of lelf-telt diagnostics 

~ch S':te com~tent includes an automatic self-test. This self-test is run when the system i' -fi: te tUP. ea cannfi al_~o~ ~uest execution of some of the self-tests. Components that 
11 Ie - I are not co gun:a mto the system when it boots. The self-test failure is recorded 

in the IYltem error and event log when the system configuration is recorded. 

Execution of bae.karound diagnostics 

Idle proeel.or Lime i. soaked up by nondestructive diagnostics that run at low priority. 

Manual cbacnOltJC tooll 

MOlt problem. are expected to be found by the automatic diagnostic tools. Manual tools are 
pnmded for tho .. problems that are not caught by the automatic tools. 

MOlt ofthae \.001. run under the PRISM Diagnostic Monitor (POM), which is supplied with Mica. 
ns. PDM, m tum, Uecutel under t.he system management user interlace. Thus these tools can 
be run throuch the remote aystem management interlace, or locally through the console. PDM 
can be uted &om the console In both the on-line and off-line environments. 

Manual analysis of the Iyltem eTT'Or and event log 

An t:rTOT 'oa:-{ormat.ting program is provided to view the error log. The program can format 
a.nd eliapl.y any error-loe record. It can also apply elementary selection criteria to the error 
ioe (for uample, choose records based on time, device. device class, and record type). 

E.uc:ution of on.line and off-line diagnostics 
On.line diacnoatica are mostly used to exercise and functionally test 110 controllers and 
penpherall. 'MleK diaenostiCS execute under the PRISM Diagnostic Monitor. Allan-line 
dJaanOi

tict 
allow Cheyenne to continue running. Some require that the device under test 

be dedicated to the diamostic. Others allow the device under test to continue to be used by 

Cheyenne. 
In mOlt caHl. on-line and olf-line diagnostics are the same. The need ma! arise !or off-line 
cliacnOlua that cannot be run with other activity on the sY8~m. These d.iagnosti~ ar? run 
on the off-line Mica 'Yat.em. a stri pped-down Mica that 8upplies only enouK:h functionality to 
run olI'-line di.",o.tICS and perform elementary system management functions (for example. 

of!'.l.ane backup and dilk verify). 

E.acuuon of ltandalone diagnostics 
Standalone di OItiCS are diagnostics used when th~ hardware canno~ boot ~ca. Tb7'e 
d.ia(nOitiCl are *t.roware--dependent and are self-suffioent. Standalone diagnostic execution 

i. mntroUed from the conlOle. 
Sal\ th Mi nd Quartz software. Software updates are applied 

Wart tnalntananee Involve, updating . e ::ting the St.one 8ystem to take effect. Each Stone 
\0 one Stone Iystem at a bme, ~nd req~ re aft. the other. Thus the Cheyenne server remains 
~ 10 the Cheyenne IYltem 11 upda\oCU' one er 
... .ilable. ..,lule III lOf\ware il being updated. 

Cheyenne Overview 48-19 



Digital Equlpnwnt Corporation ~ Confidential and proprietary 
Restricted Dlstrlbutlon 

An open question remains regarding the tools that will be proVl
h
· dded for a1~ringt C~er~e !IO~Wart, 

One extreme is to provide no tools, and to require that eras umps sen n~ntenng for 
analysis. The other extreme is to provide a sopbisticau:ct .crash dump analy%er, symbolic debuggm, 
internals documentation, and training to software speoalists, or even customers. 

Regardless of what is shipped with the product, Mica. and ~uartt development require the crash 
dump analyzer and debuggers. Three debuggers are bemg bwlt: 

• Delta 
This is an elementary high.IPL kernel debugger. It is not symbolic; its interface is througb the 
console. 

• Pdebug 

This is an interim remote symbolic debugger based on VAXELN's EDEBUG. It does not allow 
high.IPL debugging, alth ough it does allow both user--mode 8.!'d IPL.O kernel debugging, Ita 
interface runs on a client system and u ses DECnet to commurucate Wlth the server. 

• SOT debugger 

This debugger is being developed for use with the Glacier compute server. It is a sophisticated, 
easy·to-use, remote, user--mode debugger. It may abo allow IPL 0 kernel·mode debugging. The 
user interface r uns on a client system and uses DEenet to communicate. with the server. 

48.5 Special Challenges 

Cheyenne poses several significant technical challenges that must be 80lved if it is to be IUcoes.s­

ful. These include achieving high availability, support, testing, and meeting intemationaliutioo 
requirements. The following sections discuss these challenges in more depth. 

48,5.1 Achieving High Availability 

One of Cheyenne's most signi£cant features is that it provides hiBhly available access to ita databases. 
High availability refers to the ability for an application to 8tart a transaction at any time. Cheyenne 
~s als~ highly rel.~ble. High reliability. assures applications that once they st.art a transaction, tbm: 
IS a high probabllity that the transaction will be able to run to completion. 

The availability goal for Cheyenne is 100%. essE defines an unavailable database ... one that an 
application must wait at least two minutes before it can start. a transaction that accesses. d.tabase. 
The goal is for a.pplicatio~s to never have to wait more than two minutes to access a database. BecaU5e 
hardware occasionally fruls, as does software, Cheyenne uses the following techniques to e.nsutt thaI 
databases remain highly reliable: 

• Replicated hardware 

• 

Much of C?eyenne's hardware is replicated, greatly increasing system reliability. Cheyenne can 
usually fru~ over to ~ackup har~ware without affecting any transaction. E:u.mples of replicated 
hardwa;e m clude disk shadowmg, dual-porting disks to multi I t n d the _fIl'f. of multiple processors. p e con ro . en, an .......... - . 

. Some failures o~ replicated hardware may result in reduced. rformance but do oat make the 
database ~vrulable. An eI8.lD.ple would be the noncatas~ hi fail ' f The 
processor IS removed from the configuration and proc ' ~ c Th 0 • p~ _ 
behalf the processor was working might be aborted, ~S;:~hC:rn=·ctio:. :c::~n; 
Multiple Stone systems in a Cheyenne configuration 

The ultimate in hardware replication is hi ed b 
highly available Cheyenne database BC ~v y using multiple Stane systems to fll1D Ii 

its workload and continue processin se~er. . en one Stone system eraahes. the others ptck up 
system are aborted. Note, boweve:' tha~hctions tbeba~ were ~g processed on the failed S~ 
Stone systems. • ey can Immediately restarted on the reuwoiDi 

~20 Cheyenne Overview 



Digital Equipment Corporation _ Confidential and Propdetary 
Restricted Distribution 

The Stone IYlteml. in a Cheyenne are interconnected using the Cl. From Mica's perspective, the 
Stone '}'Items are Independent of one another. Only the interprocess communication transaction 
management, Quart.%, DECnet, and possibly system management components need ~ aware that 
the Stone systems are all part of the same Cheyenne system. 

Mica's lOterproceSS communication mechanism operates directly over the CI. This is the mech­
&n11m by which software on one Stone system communicates and coordinates with software on 
the other Stone .y.tem. in the Cheyenne. Although the interprocess communication software 
i, able to communicate with the other Stone systems, it is otherwise unaware and unconcerned 
that the Stone .y.tems are cooperating to form Cheyenne. . 

The tranaaction manacement software is one of the primary components that tie the Stone 
I)'I~' into one database server. 'l\v~phase commit protocols are used extensively to coordinate 
updates made on behalf of a transaction by more than one Stone system. 

Quartz IOftware ia what makes the Cheyenne highly available. Although Mica provides various 
toolt that Quartz ute., iL i, Quam' responsibility to recover from the failure of a Stone system. 

DEenet i. used to communicate between client systems and the Stone systems in Cheyenne. 
DEenet and RCS coUaborate to make the Stone systems appear to DBC as one database server. 

There may be 80me .y.tem management functions that need to be performed on all the Stone 
Jyltem. 10 a Cheyenne, ralher than just on one Stone system. The system management user 
in~ee fana oul .uch requeat4 to the appropriate Stone systems. The system management 
tener i, unaware and unconcerned thal the Stone systems are cooperating to form Cheyenne. 

rllt ruLatt 

AhhoUlh w. are buiJdini the most. reliable hardware and software we can, there will be times 
whm an entire Cheyenne .y.tem crashes. This may be due to power failure, or may be due to 
a .n\ware erTOr Recardle .. of the cause of the failure, the Stone systems in a Cheyenne must 
reII\&rt and be ready U) accept new requests in under two minutes. 

Thi, rut reltart place •• icnificant constraints on how Mica so~ware i~ designed. For e~ple, it 
is not prt,ClIcallO mount dj.kJ; aerially; instead, Mica mounts dis~ usmg as ~uch parallelism as 
the ell" controller hardware win allow. Decisions like this a~ WIdespread In the system. Each 
mUit be handled in • cue-by-caH manner, but parallel algonthms are usually used to meet the 
t'W'()omtnute rtlltart requirement. 

48.5.2 Support 
. rrp lications Most OLTP applications are regarded as 

Cheyenne'. primary tarcet ma.rket II OU app erdal a~plications have been built on top of other 
comm.-cal IpphcatJona. Up to now, most comm d 'n the commercial data processing market­
tendon' offmnp. Wlth ISM betng the primary . ven 0:n,lercia1 data procesBing. Instead, DIGITAL's 
plue, DIGITAL h.u noi had a ttrong presence In com 
Itzu.I\h hat been in acienufic application. . . . 

rt differ widely from those of most scenbfic 
The upeaatiOnJI or oommeroal cu.~mer. for ~uhfevel of support to its large commercial accounts. 
CDltomtn, IBM historically hu,pt'OVlded a veI'Y

d 
hgardware support personnel; problem-free product 

nu. support has included on-ate software an. roducts designed to gracefully recover from faults 
maallr.bon; ruarant.eed rut problem re~~n.se!J. the customer'B industry; and so on. DIGITAL, on 
and problems; dedicated .. t •• taff_ f~liar "":Ite su rt personnel; fault-intolerant products; and 
tba other hand., ru.tonca1l,. hu pl'OVlded off·sl ppo '11 expect levels of BUpport from DIGITAL 
smaDtt, 1"lpIClali1ed wet .taffa. OLTP cus~mTh~ ~es special challengeB for our engineering, 
cmilar to that the,. have come to expect. r;romti IS;. IS 
manu!ac:t. ..-.1. and wei organn:a on . . unnc. sup ...... _.. . 11 d build in the capability for recovenng froro 
Enpnecnn, mUll deal'" Cheyenne to be easy to iOsts '~ould be as easy to use as poSSible, because 
IDDIt flwtl tra.napa.rently 1.0 the application. Ch~ye::~ thus the customers' support needs. Sup~rt 
tha win reduce \he product'. apparent compl~lOifDA_comp1iant, allowing Cheyenne to be used Wlth 
oeedt are further reduced because Cheyenne IS 

Cheyenne Overview 48-21 



Digital EqulpIMnt Corporation - Confidential and Proprietary 
Restricted Distribution 

existing applications and tools, and allowing customers to take advantage of their familiarity with 
existing DDA products. 

There win need to be a way to quickly fix bugs for customers. Most DIGITAL products rely 00 

workarounds and FCOs to fix hardware problems, and workarounds and updates to fi.z software 
problems. Because Cheyenne is a closed. system, there is a good chance that wor~unds will be 
less applicable as short-term fixes than in existing products. Hardware changes have inherently long 
lead times, 80 Cheyenne will require a fast way to transport emergency software updates to customer 
systems. 

The sales and support organizations are faced with a challenge: the need to evolve new methods (or 

selling and servicing Cheyenne systems. They will be competing head-to-head with vendors that are 
already familiar to the customers, whereas DIGITAL will be the new guy on the block. DIGITAL'. 
OLTP offerings will have to be perceived as clearly superior to other vendor's products if they are to 
gain market share. 

48.5.3 Testing 

Cheyenne's reliability and availability goals exceed those of any other major DIGITAL product. Meet· 
ing those goals will be difficult; demonstrating that we have met them will be even harder. The 
following strategies are used to meet these goals: 

• 

• 

• 

Development of a comprehensive test plan for each Mica and Quartz component 

These plans cover functional testing (including stress testa) and regression testing. The develop­
ers working on the components are responsible for implementing the tests. Once built, the tau 
become part of the permanent Cheyenne test. suite. 

Development of a comprehensive test plan fOT single and multi-Stone Cheyenne COnfiruratioOi 

This pl~ incill:des fun~iona} testing, stress testing, and fault-insertion testing. Special emphuiJ 
on fault-Insertion testing will help ensure that the multi-Stone failover capability work&. 

Development of a system performance testing stn.tegy 

This serves t.wo purposes: providing exercisers to stress test the system and providinc much· 
needed benchmark data for the sales force. ' 

Testing is .8?,ch an impo~t facet of the overall Cheyenne program that all developers Wl11 partici· 
pat~. Ad.diti~nal1y, the Mica and Quartz development groups each have subgroups dedicated to the 
testing functIon. 

48.5.4 Ease 01 Use and Internationalization ReqUirements 

Cheyenne always acts as an agent of a client. For example Ch '1l eou.al IW1 
a transaction to roll-up the year end financial I ,eyenne Wl not. spontan y 
on a client system and runs requests Ch resu ta. Instead, the year~nd ron-up application runI 

on eyenne to query and update the finanoal databue. 

Cheyenne should appear to users as if it is an extension of the client system. This bas two benefitl: 

• The similarity to the already familiar client system reduces training time and redueet mistake&. 
• . Eliminating the need. to think of Cheyenne as a .. . 

users to conceptualize Cheyenne. This i t seakpara~ sha.red e~tity m..aku It euler (or manr 
server. ' n urn, m es It eaSIer to mt.eract with and tna.nA&t the 

One of the primary means by which a system. ' 
in the user's native language. Another is buirs~ars comfortable to its users is to presentinronnauoa 
different users. Each interface is designed to be ide :rte~ s~ that different. interfaces can be used bJ 
three classes of tools; each of the three classes ~ fir I~ Intended user. Section ..a.4.1.3 described 
interface model most familiar to those users: 0 too s IS used by different usen, and (0110" the 

48-22 Cheyenne Overview 



Digital Equlp l"l'Mtnt Corporation _ Confidential and Proprietary 
Rastrlcted Distribution 

Generic DDA tool. 

TbeM ~._~ .upplied .. layered products, and thus confonn to models appropriate for the 
\-anOlJ.1ayenN proclucta. 

Cbtye:nn~.pec:ific DDA tool. 

n. tool. are mamly uaed by database administrators. Because database admini strators use 
both ollhe other daaael or tool., these tools follow the guidelines for the other classes. 

Chey~e database administration and tuning I.ools 

ThOle tool. are uaed by dat.a.~ administrators and system managers, and all share a common 
interface .tyle. Two typel of mterf'ac:es are supported: a command-line interlace, and an interac­
tive DEC...,odow, interlace. The command-line interface is chosen to resemble that of the client 
l)'ltem (irubally VMS). The interactive interface is cbosen to be easy·t,o.use and informative. As 
tuc.h. 1t t:U.tTentiy baa no eli.tine model in DIGITAL. 

Each tool must oonfonn to DIGITAL', internationalization requirements. Engineers must consider 
both mput and output int.eTnationaliution requirements when designing tool interfaces. The manual 
Produ.clllllntunatlDrvll Producu, available from the International Products Group, contains valuable 
pdebnet and. ' uccestiODl for creating products that are easy to translate into many languages .. In 
addluOP, a paper contairunl specific cuidelinea for Cheyenne win be available in Feb~ry to Mica 
aDd Quartz deve1open. nul paper describes the techniques to be used by developers to lDsure that 
CbeJe.n.ne meeLi the International Product.a Group's requirements. 

48.6 Rellted Products 

"-6.1 Ot.her otGITAL Product. 
The (ollowinc l.1tt enumerates many of the products that are related to Cheyenne: 

VMS 
VMS l' the primary operatinl .ystem for VAX computers. It is the only system supported as a 
dtnctly conn.:ted Cheyenne client at. FRS. 

DEC •• WAX 
DeCnetIVAX i, th. primary local- and wide-area network for VMS. 

ULTRIX·32 
. ~ VAX computers It is gaining in popularity, especially 

ULTRIX-32 i. another o~raLinlSystelm or Alth h it is n'ot supported as a Cheyenne client at 
1ft the latnllfic workltation marketp ace. ou~ li t 
fRS, we upec:t that it will .oen af\.er be a suppor c en. 

DECnellUL:rRIX . . 

DEC 
""':rRIX ' local- and wide-area network for ULTRIX-32. It proVldes the pnmary 

ne",...,... II • . te with VMS systems. 
tDtIM by which ULTRIX-32 Iy.teml commuJUca 

Gloaer be' 
M 

. and Mica Both Glacier and Cheyenne are 109 
GI_-, ' rver ba.led upon Or8lne • 
.-0«11. compute.. t 'umber of components. 

deveJoped in parallel and .bare a grea n 

Moraute the same power, packaging, 110, memory, and 
M.oraJ.ne II the precursor to SLone. Ston~ uses calar/vector processor modules, while Stone 
conaol. SUbtylt.em .. Moraine, but Mor~el uses s 
UMI shadowed .calarltcalar processor m u ea. 

Cheyenne Overview 48-23 



Digital Equipment Corporation - Confidential and proprietary 
Restricted Distributi on 

• RdbIVMS 
RdbIVMS is a DDA-eompliant relational database management s~stem. It is packaged as I 

layered product on VMS. Rdh'VMS covers the low end of the relational database marntp1act 
for VMS. Cheyenne covers the middle-to-high end. 

• RdblStar 
RdblStar is a product in development that supports true, distributed, DDA-compliant databues. 
It will allow applications to access databases implemented on RdbIVMS and Cheyenne. 

• VIDA 
VIDA is a DIGITAL layered product for IBM and VMS systems. It allows mM-residenl applica· 
tions to access DDA databases. VIDA accesses Cheyenne databases through the SNA gateway 
software running on a VAX.. 

• ACMS 

ACMS is a transaction processing monitor for VMS systems. It it a DIGITAL layered product. 
ACMS applications will be able to access Cheyenne databases. 

• Intact 

Intact is another transaction processing monitor for VMS systems. It is currently under deyel· 
opment as a DIGITAL layered product. Intact applications will also be able to acce51 Cheyenne 
dstabases. 

• Datatrieve and others 

VAX Datatrieve is a fourth-generation query language processor running on VMS. It, alon&' with 
similar products, allows users to generate ad-hoc queries against DDA databaset. 

48.6.2 Future Versions of Cheyen ne 

The first version of Cheyenne is a DDA-compliant relational database SI!TVU. No Uler application 
programs execute on Cheyenne. Version 2.0 of Cheyenne will continue to act as a database server, 
but it will also run a transaction processing monitor. User application programs will run under tht 
transaction processing monitor. There will not be any provision for interactive programs (thert will 
not be a command-language interpreter). 

The development environment for the first two versions of Cheyenne is VMS. Other development 
environments may be added (for example, ULTRIX). Neither of the first two versionl supporl central 
interactive timesharing or batch-mode execution. Cheyenne will nol hoat a development enril"Onment 
until Version 3.0, at the soonest. 

Some of the many component improvements expected in the second version of CheYl!nne include: 
• 

• 
• 

RMS-Support for additional file organizations (for example, indexed file support), IUpporl for 
recoverable files 

DECnet-Support fOT' use of the CI as a LAN 

RPC-Support for heterogeneous systems 

• . DFS-Support for DFS Version 2.0 

• Quar~-lmproved. performance and reliability, along with support fot' additional data types and 
(poSSIbly) alternative data models 

48-24 Cheyenne Overview 



48.7 Issues and TBD 

1. ChentiterYer commurucallONl 

Digital Equipment Corporation _ Confldentlal and Proprietary 
Restricted Distribution 

The model for client/server communications is not clear. The distribution of functions between 
the daLaban commutucationa a nd RCS layers has yet to be done. In addition, the corporation's 
rectnt etTON 1n IUpport of the Distributed Transaction Architecture (DDTA) make it possible 
that the model for chent/server communication will be radically different that what is proposed 
in tN. ehapter. 

nul illue Ihould be resolved by 15 March 1988. 

Cheyenne Overview 48-25 





Digital Equipment Corporation . Confidential and Proprietary 
Restricted Distribution 

CHAPTER 49 

TRANSACTION SERVICES 

49.1 Overview 
'IluJ plptr wmma..tl&et the transaction services for the Mica operating system which provide the 
fi)l.low1nc (uncbonahty: , 

COIIUDOD login, .upport with log cbeckpoints 

Sulc tranuction contT'OI .eme_ (euc.$sta.rt_t1'(l1LS(J.ction, exec$commiCtransaction, exec$abort 
etGAICJCbOlI ) Wlth Two-Pba,. Commit -

Recovur from the common 10, after .ystem failure 

Sole tNt in the proceuin, of commit.. abort., log checkpoints, and recovery, the Mica services are 
cml, ptOvuiln, the central control; facility.specific. processing of these events is coordinated by Mica, 
but alwaJl perlormod by the facility it.&elf. 
For the FRS proclueta. WI .upport would be shipped with the Cheyenne database server only. How· 
rver, it will nO\. be bound Lo the database Ie'rver in suc.h a way as to preclude its inclusion in. a 
.w..qUtnl releue of the compute server or other Mica·based systems. 

\T1tiJ overview doa not auempt to define or explain any of the fundamental conc.epts of transaction 
proce.m,. Pleue lee the Tefere.nc.ee at the end of this section. The c.hapter will ultimately attempt 

toO be • little more le-lf-.t.anchnl·' 

.;.1.1 Go.l. 

The pal. 0( the tta.nUction tetvicel for l'fica are as follows: 
Pnmde a framework wruth together with the Quartz 8oftware, supports the recoverability and 
perfonnance requtremenu ~( the Cheyenne database server, consistent with the definition of 
the coal •• nd reqwremen~ of tbe database se~er product. (For a summary of these goals and 

reqwre.menLl, lee the Cheyenne chapter ovetvlew.) 
Support the recoverabllity requirements of other Mica facilities which will be present at both 

FRS and beyond. ~~ h to allow Mica to ultimately become the basis for a PRlSl\l:' 
uaI.(b thne aervu::ealO .uc a way as 
buod TP plalfOMD. . f th transaction services in such a way as to not dictate the 
Attempt to define the atructure ~ ,e bl {; "lit' es nor to subsume any facility-specific. 
pobey or a1conthml of the lnmV1dual recovera e aa 1 , 

proc:eu:lnl_ 

Transaction Services 49-1 



Digital Equipment Corporati on - Confidential and Proprietary 
Restricted Distribution 

49.1.2 Functiona l Overview 

Transactions are represented in Mica by transaction objects. The object architecture provides efficient 
mecharusms for naming, identifying, and protecting transaction objects. The object ID is used for 
fast access to a transaction object within a single system. For distributed transactions, a global 
transaction ID is used as the name of the transaction object, which is fonned from the coordinator 
node identification, and a serial number for that node. 

The standard AClrba.sed protection mechanism of the object architecture may be used. to protect who 
can control or write log records on behalf of a transaction; or else a dedicated system like Cheyenne 
may eliminate protection checking by simply not using ACLs. 

The object architecture also provides a very efficient and protected interface to the transaction con­
trol services: effectively, a synchronous call to a procedure in kernel mode. The use of a synchronous 
interface dictates an implementation utilizing a large number of threads, each servicing only one 
transaction at. a time. Threads and transaction objects do not have to be created and deleted for each 
t.ransaction. A large transaction system may use hundreds of t.hreads, each creating its own transac­
tion object during initialization, and reusing this transaction object to service successive transactions. 
These threads may all being driven off of shared transaction request queues. 

This thread-based design is consistent with the philosophy of Mica. Note the following benefits over 
a solution where threads service multiple transactions in parallel via AS1's: 

• Maximal para1lel processing is utilized in a large multiprocessor system with a thread-based 
solution. An AST-driven solution introduces unnecessary serialization when a number of ~ 
are queued to a single thread. 

• Given the knowledge of when threads commit transactions, the kernel can distinguish short­
running transactions from long-nmning ones, and optimize scheduling in transaction systems, 
by decaying the priority of long-running transactions, and restoring the priority on commit. 

• Transient faults handled by M.ica, such as nonrecoverable machine checks, may be limited to 
affecting at most one transaction at a time. 

• The coding of transaction programs is greatly simplified, through the use of straightforward 
sequential programming. 

The central support for the Mica transaction services is implemented by two components: the trans­
action object service routines and the recovery manager. Figure 49-1 depicts these two components, 
and how they fit into Mica with transaction programs and recoverable facilities. 

The Mica transaction services have two types of clients: transaction processes and recoverable fa­
cilities. In some cases, such as the Quartz processes in the database software. these two processes 
may be one in the same. Both transaction processes and recoverable facilities call the transaction 
services. In addition. recoverable facilities receive asynchronous ~cal1s~ from the transaction services 
via message queues. \ The exact queueing mechanism is TBD. \ 

The interface between transaction processes and recoverable facilities is not dictated by the transac­
tion services, but rather, determined by the recoverable facility. Recoverable facilities, when separate 
from the t.ransaction process, will typically be protected subsystems. 

The file system in Figure 49-1 is the normal Mica 008-2+ file system. (The file system may also 
interfaces to the transaction services as a recoverable facility, but this is not shown.) 

The transaction services and recovery manager are capable of supporting multiple recovery systems 
at once. A recovery system is a set of recoverable resources serviced by a set of recoverable facilities 
and a log fiJe . Thus recoverable facilities must also expect to be called for multiple recovery systems. 
For performance reasons, there is normally only one recovery system per Mica system, but multiple 
recovery systems may run on a single Mica system after failover of one of the recovery systems from 
another Mica system. 

4~2 Transaction Services 



Digital Equipment CorpOl'tltlon • Confldentl.1 end Proprietary 
Restricted Distribution 

Figure 49-1 : Transaction Services Block Diagram 

TRANSACTION 
PROCESS 

• RECOVERABlE 
FACILITY 

RECOVERY 
tMNAGER 

TRANSACTION 
OBJECT 

SERVICES 

ALE SYSTEM 

TRANSACTION 
PROCESS 

RECOVERABLE 
FACIlITY 

The following sections present a brief discussion of the transaction object service routines and the 
recovery manager. 

49.1.2.1 Transaction Object Service Routines 

The transaction object service routines provide a set of proced urea called by both transaction threads 
and recoverable facility threads. In addition, the transaction object. services notify recoverable facil­
ities of asynchronous events via predeclared message queues. 

Transaction threads call the transaction services for e:a:c$starCtro.n.sa.ction, ezc$commiCtrallStlCtion, 
and ~c$aborCtransactwn. Recoverable facilities can the transaction services to write log file records, 
declare message queues, and signify completion of operations requested via the message queues. 

TIle message queues are used to effectively ftcall~ recoverable facilities with events related to trans· 
actions, checkpoints, recovery, and maintenance operations. 

Trlnsactlon Services 49-3 



Digital Equlp ...... nt Corporation - Confidential and Propr~tary 

Restrlcttd Distr ibution 

49.1.2.2 Recovery Manager 

The recovery manager is a process responsible for performing the initial start of a new recoverable 
system, as well as starting and performing recovery for an existing system after graceful shutdown 
or system failure. RMS is used only for opening and closing these rues; special-purpose log tile record 
access is implemented by common routines used by both the recovery manager and the transaction 
object service routines. Log file writes occur directly in kernel mode in the transaction object service 
routines. 

For the recovery case, the recovery manager coordinates recovery from the log file. 

49.1.3 Algortthms 

This section briefly specifies the central a1gorithms that have been chosen to implement logging and 
recovery. 

49.1.3.1 Redo and Undo/Redo Logging 

The techniques that have been chosen to implement atomicity of transactions are Redo and UndolRedo 
transaction logging. The database software will use Redo logging. The file system and ultimately 
RMS index fiJes are candidates for UndolRedo logging. These two techniques can be mixed in the 
same log file without an adverse performance impact. 

The log file is a large file written cyclically; when the last record that fits is written to end of the log 
file, the next record is written at the beginning of the file, overwriting the first record from the last 
cyc1e. The file size will generally be quite large, 80 that it does not WT9.p for an arbitrary number of 
hours. The log file is used only for short-term recovery by the recovery manager after a system failure 
without media loss . It is not used for aborting or commiting transactions in the running system, or 
as an afl.er image (AI) journal for the recovery of lost disks from the last backup. 

All exec$write_lOjf requests are simply copied to the log file buffer and completed immediately. Commit 
processing and execS{orce_write_log calls require forced writes to disk. All forced writes are batched. 

The use of proceS.!I pairs for atonticity, as an alternative to logging, has been rejected, since process 
pairs entail a much greater run-time overhead for a small improvement in recovery time. It is 
also nearly impossible to build an efficient 8OIution based on process pairs that makes reooverability 
transparent to the transaction program. writer. 

49.1.3.2 Two-Phase Commit with Presumed Abort 

The commit protocol which has been chosen is standard Two-Phase Commit protocol (2PC) with the 
presumed abort (PA) optimization. This protocol dictates the interaction between the transaction 
object service routines and all recoverable facilities within a single node during commit processing. 
It also dictates the message protocol for commits in the distributed TP case where a transaction 
modifies recoverable resources on multiple nodes in a network. 

The presumed commit optimization to 2PC was rejected since it requires an additionaJ forced write 
on the coordinator. 

49-4 Transact ion Services 

= 



Digital Equipment Corporation - Confidential and Proprietary 
R •• trlcted DI.trlbutlon 

49.1 .3.3 Other Techniques 

Following is a brief list of the other key techniques that win be employed: 

• A fuzzy checkpoint strategy is employed. to periodically force the flushing of cache data managed 
by the recoverable facilities. Checkpointing expends a little bit of extra run-time overhead for 
the purpose of reducing the worst-case time to recovery from a failure. 

• Failover to a warm standby system is supported as the quickest way to recover from a system 
failure. The standby system must have access to the log 6.1e disk(.) and all disks required by 
recoverable facilities on the original system. Note that if the front ends are intelligent enough to 
detect the failover and resubmit outstanding transactions, then no transaction! will be lost. due 
to the failure, and the failover will be transparent. (Sequence numben may be used to eliminate 
duplicate transaction requests. Driving the transactions off of recoverable queues would be 
another approach.) 

• Disk shadOwing (with a run-time catch-up facility to replace failed. disk!) is used for redundancy 
of the log file, and for redundancy of storage used by recoverable facilities. \Optimizations are 
being considered which increase the performance to shadowed. disks as well as solve the problem 
of broken transfers at the time of crash without safe RAM.\ 

49.1.4 Issues 

The following list presents some issues related. to the transaction services: 

• We need to define our distributedlmultibox model. I propose that if a single, possibly fully­
configured system can deliver the required performance for a given application, and if another 
system is being added for availability, then the transaction load should be handled by one system 
with the other system as warm standby. A full distributed transaction model should only be 
implemented for FRS if we cannot achieve our performance goals on a single system. \The 
current perfonnance estimates for Rock put us in the right ballpark for meeting our perfonnance 
goals in a single system. \ 

• 

• 

• 
• 

Based on CW'Ttmt discussions, I am assuming that we are not attempting to implement centralixed 
locking. Thus, in a distributed system, or in a single system with multiple facilities implementing 
their own locking, there is a potential for distributed. deadlocks. Given the distributed deadlock 
detection techniques proposed by Bemslein, et ai., this may be acceptable. Alternately, a more 
cenlralited locking strategy could be considered for a subsequent release of Mica. 

This should not be a problem for the Cheyenne database system. 

It would be convenient to rely solely on shadowing for redundancy of disk-resident data. If it 
is necessary to implement recovery of a lost disk by applying an after-image (AI) journal to a 
recent backup, then this Al journal is best. written by the recoverable facility during its commit 
processing. Hit is decided for Cheyenne that the Quartz software must implement AI joumaling, 
then many things must be thought out very carefully, such 8!1 coordination of the AI journal and 
the log file, resynchronization of the AI journal and log after normal recovery without media loss, 
and recovery of lost media from the AI jou.ma.l and subsequent resynchron.itation with the log, 
and so on. 

A distributed system requires a distributed security model. We do not have one now. 

I assume that the 008·2+ file system must also be implemented aa a recoverable facility. Is this 
true? 

Transaction Services 4g....s 



Digital Equipment Corporation . Confidential and Proprkltary 
Restricted Distribution 

49.1.5 Bibliography 

The first reference is the most complete and u~to.date overview I have seen. The second describes 
two optimi.zation techniques not found in Bernstein. The third is a short easy-to.read overview. 

Bernstein, Philip A.i Hadrilacos, Vassos; Goodman, Nathan; Concurrency Control and Recovery in 
Database Systems, Addison-Wesley Publishing Company, Reading, MA., 1987. 

Mohan, C.; Lindsay, B.; ~Efficient Commit Protocols for the Tree of Processes Model of Distributed 
Transaction8~. Proceedings of the Second ACM Symposium on Principles of Distributed Computing, 
1983. 

G1"8.Y, Jim, The Transaction Concept: VU'tues and Limitations, Tantkm Technical Report 81.3, Tandem 
Computers Incorporated, Cupertino, CA, June, 1981. 

49-6 Transaetlon Services 



Compute Server 
This set of chapters describes the components of Mica that provide compute server 

support. 



-



Digital Equipment Corporation - Conlldentlal and ProprletJIry 
Restricted Distribution 

CHAPTER 50 

GLACIER OVERVIEW 

50.1 Overview 

The Glacier compute server provides users access to the vedorized, parallel-computing, high­
bandwidth I/O environment inherent in the Mica operating system and Moraine hardware. Glacier 
is explictly designed (or applications that can be characteri:ted by long mean time o( execution, in­
tense CPU utilization, andlor large data sets. Such applications include circuit simulation, reservoir 
simulation, finite element analysis, and molecu1ar modeling. 

The Glacier system can be viewed. as a "compute accelerator- for the client system. The Glacier 
software design is based on an integrated client/server interface through which applications can be 
developed and executed. The system appears to the user as simply a higher performance client. This 
characteristic of Glacier is refelTed. to as seamlessness. 

As an application executes, the underlying Glacier software (client- and server-based) interacts to pr0-

vide window support, distributed. file services, context services, and management (unctions, among 
othen, The client communicates with the server via DECnet using an Ethernet or Computer Inter­
connect (el) link.. 

System management, operaUn' communication, and perfonnance monitoring and tuning (acilice. are 
activated and controlled through the client system. This a110ws (or flexible compute server manage­
ment. A remote operator or system manager can support multiple compute servers from a single 
client system. 

50.1.1 Goals 

The Glacier product has a set o( goals that extend the basic goals of the underlying Mica operating 
syst.em. 

• Provide client/server integration such that server application activation is initiated from the 
client system using standard client commands. Context established. in the client enviroment is 
communicated to the server during program execution. 

• Provide a compute server programming environment that conforms to the Application Integration 
iln:hitecture (AlA). 

• Support multiple operating systems as clients. 

• Require no modifications to the native client operating system. 

50.1.1.1 Client/Server Integration 

The compute server is a logical extension of the client's computing resources. The client and compute 
server cooperate to provide the (ee] o( a single environment to the user. This is accomplished through 
the client's user interface, bidirectiona1 shared. file access, and by providing server access to client 
environmental context such as logical names. The compute server may have local file storage (or 
increased 110 bandwidth. 

Glacier Overview ~1 



Digital Equipment Corporation - Confldentlal and Proprietary 
Restricted Dlstributlon 

50.1.1.2 Application Integration Archftecture 

The Application Integration Architecture (AlA) is designed to provide a system-independent represen­
tation of system services and high-level functions such as window management through DECwindows. 
AIA includes basic system services such as math libraries and multiple thread support. Higher-level 
services, such as RMS, and access to environmental context are also represented through AlA. The 
application programmer is shielded from the internal nature of Mica system services. The result of 
AIA conformance is application portability. 

50.1.1.3 Multiple Operating Systems Support 

The client/server interface is designed for support of multiple, heterogeneous operating systems. This 
is accomplished by implementing a well-defined, extenaible interlace that ties the two enviroments 
together. Those AlA services that require client support use RPC to call native services in the context 
of the appropriate client. The extent of cross-system RPC compatibility factors into the ability to 
support heterogeneous systems. 

50.1.1.4 Client Modification 

All Glacier client software is layered on the client without modifying the client operating system. 
Modification of the client's native system would create complex dependencies between the client 
operating system and the compute server. This would require Glacier software to be in lock step with 
each client system software release or it would necessitate the negotiation of permanent changes to 
the client operating system. Modification to the client system a1se makes the support of new client 
operating systems significantly more difficult. 

50.2 Target Customer Base 

Glacier's primary target market is the compute-intensive scientific and teehnical community, cur­
rently being served by vendors such as IBM and Gray, with strong inroads being made by Convex 
and Alliant. Apollo and Sun are now entering this market as well. 

Applications in the scientific and technical market cover diverse areas such ss modeling, finite ele­
ment analysis, earth resources, and fluid dynamics. Although these applications span a wide variety 
of scientific disciplines and program behaviors, some general observations can be made about their 
computational needs, which include high performance program execution, fast and efficient Vector 
and matrix manipulation, fast 110, multiuser access, security capabilities, and quality vendor support. 

Although market analysis detennines the types of applications that will run on Glacier, it does 
not describe the people who will interact with Glacier. It is useful to consider how various classes 
of Glacier users will view Glacier, in order to tune the system interfaces for them. The following 
sections describe the ways in which these various classes of users will interact with Glacier. 

50.2.1 Application Users 

'lbday, some users run their scientific and technical applications on Ccnvex. Amant, IBM, and Cray 
systems. Other users, at less affluent companies, run spplications on less-capable systems, which 
greatly increases their execution time. Still other users have access to supercomputing systems 
t~ugh complicated gateway programs or procedures. 

Application users are interested primarily in results. They expect a simple interface, consistent with 
the rest of the often minima1 command set they use, to request program execution. 

When a Glacier system is installed, application users will notice only that their spplication programs 
run significantly faster than previously. Job submission and execution will be seamless. 

5~2 Glacier Overview 

.. 



Digital Equipment Corporati on - Confidential and Propr'-tary 
Re.trlcted Distribution 

50.2.2 Application Developers 

Application developers need to have some level of understanding of the Glacier system. Specifically, 
they need to know the following: 

• 

• 

Significant system features that can be utilized to the advantage of the application 

Developers may want to restructure the code to take advantage of vectorization and program 
decomposition. 

Commands to compile and link programs targeted for Glacier 

The Glacier client user will have access to commands which are compatible with the client oper­
ating system. For VAXIVMS, Glacier program development toole will be aceessed with approved 
DCL commands. Developers using ULTRIX client systems will access commande compatible 
wi th the ULTRIX environment. 

50.2.3 System Managers 

A system manager is responsible for the hardware, software, and data integrity of the Glacier system, 
and for administrative duties, such as maintenance of the user authoritation database. Th perform 
t.hese duties, the system manager must be aware of Glacier as an entity distinct from the client 
system. 

However, the interfaces by which Glacier is controlled are tightly integrated with the client environ­
ment, such that Glacier appears to the system manager to be an extension of the client system. 

50.2.4 Operations Staff 

Operators are responsible for the day-t,.o..day operation of Glacier, with duties defined by the system 
manager. Typically, operators perform backups and their storage, and may be the first level of 
interaction with failing hardware components. 

Operators interact with the Glacier system through a client interface, and, like the system manager, 
view Glacier 85 an extension of the client system. 

50.2.5 Software Support Personnel 

Software support personnel are the first DIGITAL personnel that a customer contacts for support 
and technical information regarding Glacier. The software support specialist will typically be called 
on in two instances: for questions regarding program vectorizationldecomposition and for problem 
resolution in the event of system failures. 

Providing quality customer support for vectorization and decomposition requires knowledge of the 
concepts and mechanisms utilized within Mica and the language run-time libraries which implement 
the underlyi ng support for user programs. The specialist needs to be skilled in utilizing application 
analysis tools such as PCA (Performance and Coverage Analyzer) as aids in resolving applications 
problems. 

In order to support difficult system problems, the specialist must understand the operating system 
internals, including system design and synchronization mechanisms. It is expected, however, that 
specialists will not provide on-site corrections to Glacier or Mica software; rather these fixes win be 
generated by engineering once the problem has been identified and a solution developed. The modular 
design of the Mica operating system and its extensive working design document will substantially 
reduce the job of problem isolation. 

Glacier Overview 50-3 



Digital Equipment CorporaUon - ConfldenUal and Proprle;tary 
Restricted Distribution 

50.2.6 Hardware Service Personnel 

Hardware service personnel install and repair systems. They need to know how to install the hard­
ware configuration and the system software. In addition, hardware service personnel are responsible 
for running the USE (User-level System Exerciser) to ensure correct system installation, and for 
executing diagnostics to identify failing components when failures occur. 

50.2.7 Internal Software Developers 

DIGITAL internal software developers build software products for Glacier, such as language ·com­
pilers and run-time systems, and application anaJysis tools. Developers require complete functional 
interface specifications to which they can build their software. Run-time debug and analysis tools 
aid in debugging and verifying the correctness of the product execution. 

Most software developers building products will utilize the Application Integration Architecture (AlA) 
interfaces to the system to promote software portability across PRISM and VAX systems. On1y a small 
number of products, such as the debugger and performance analysis tools, require system interfaces 
not provided by AlA. or utilize direct interfaces to the operating system. 

50.3 First Revenue Ship Applications 

Although Glacier satisfies many of the computational needs of its target markets, it is imperative 
that a suite of applications used within these target markets be available at Glacier FRS. 

To address this need, a program is being put in place to insure that key applications from severaJ 
application segments are ported to the Glacier computing platform. Activities within central engi­
neering, the product marketing groups, and the field organization are critical to the success of this 
program. 

50.4 Glacier Components 

The following sections describe the various components of Glacier, which include: client hardware, 
client software, server hardware, and server software. 

50.4.1 Client Hardware Components 

The primary interconnect used by client system hardware to connect to Glacier systems is the Ether­
net (Nl). DECnet and TCPIIP networking protocols utilized over the Ethernet provide a high-speed 
interface to Glacier. For the FRS Glacier product, Ethernet and DECnet provide the only supported 
network interfaces. 

The CI will become the interface of choice when connecting large client systems (for example, VAX 
8800) to Glacier and may be used for higher throughput for client communications than the NI can 
provide. Glacier support for the Cl will be provided in a subsequent release. 

Other than the network interconnect. Glacier places no hardware requirements on the client system. 
Other client system hardware components which may be utilized with Glacier inc1ude: 

• Bitmap displays 

. Bitmap displays on client systems supporting DECwindows may be used by Glacier applications 
for high resolution display_ To the end user, the application appears to be executing locally on 
the client system. 

• Character-cell terminals 

Glacier applications may be started from character-cell terminals connected to client systems. 
Application terminal output is directed to the terminal through the Glacier client system soft... 
ware, providing seamless application behavior for the user. 

• Mass storage 

50-4 Glacier Overview 



Digital Equipment Corporation - Conlldentlal and Proprletllry 
Restricted Distribution 

Glacier client systems need not contain large amounts of mass storage. The on1y requirement 
for client system mass storage is storage for the Glacier client system software. Through the use 
of distributed file services, virtually all other mass storage requirements can be satisfied by use 
of storage on Glacier. 

50.4.2 Client Software Components 

Glacier requires a compute server client system to support several software components. These 
components are layered on top of the client's native environment. Several goals have been factored 
into the design and use of these components: 

• 

• 

• 

The Glacier components must not require changes to be made to the underlying client operating 
system or to the software bundled with that operating system. 

The environment presented to the application user while using the compute server must appear 
as nearly as possible like the native client system environment. Relevant context established 
within the client system must be conveyed to the compute server during program execution. 
These goals are the initial basis for seamless computing. 

The software interfaces between the client system and the compute server are based on either 
corporate or industry standards. For example, DNA, RPC and DFS. This allows future client sys­
tems to be added with relative ease. Failing standards, the software interfaces used to integrate 
the systems are closed, i.nternal mechanisms which could be replaced by standard components 
in the future . 

50.4.2.1 Software Run-TIme Environment 

The application user's run-time environment is at the center of the design for seamless computing. 
Several software components aid in this integration. The cornerstone component is the client. con· 
text server (CCS). Its name indicates the primary function of the component: to deliver the context 
previously established in the client system environment to the running application . For examp1e, 
logical name trans1ation is done witmn the client context at the time the application running on the 
compute server references a logical name. 

A substantial list of context services are provided by the CCS. The goal of these services is to allow 
the invocation and execution of the application program to proceed as if it were running on the client 
system. Below is a partial list of services: 

• Application activation 

• Command line parsing 

• Logical name creation and translation 

• Standard input and output interaction for support of character·cell terminals, command proce­
dures, and batch file submission 

• Application suspension and resumption via client interrupt (for emmple, CTRUC) 

• Debugger activation (typically, this service would not be used by the application user, but is 
required by the application developer) 

• Client defaults such as current directory path and terminal type 

• Status value manipulation including ezit status emission 

A second critical component is Glacier's windowing software. This functionality is provided by 
DECwindows using the industry-supported X protocol. DECwindows provides integrated, workstation­
based, client support, as well ss application portability. 

GlacIer Overview 50-5 



D1gha1 Equipment Corporation. Confld_ntlal and propr,-tary 
Restrlcted Distribution 

'Ib round out the seamless environment, disk-based mass storage devices are reciprocally accessible 
by the client 01' compute server system. That is, disks connected to the client system can be accessed 
as if they were connected to the compute server. Likewise, disks directly connected to the server 
may be accessed locally from the client system. The software providing this service is considered an 
underlying mechanism. See Section 50.4.2.4.3 for further details. 

50.4.2.2 Software Development Environment 

The Glacier product provides a number of software development tools used to produce application 
programs. These tools include a host of programming languages, a linker, a librarian, and a de­
bugger, among others. In general, these tools run directly on the Glacier system and are accessed 
by client-based command interfaces. Using the CCS services allows software development to take 
place using command syntax that is familiar to the software developer, While it is not an FRS goal 
to provide seamless compute server interaction for software developers, the process used to develop 
applications for the Glacier environment is very similar to that of the native client system. Exam­
ple 50-1 shows the compilation, linking and execution of a typical Glacier FORTRAN program in 
the VAXNMS environment. More details on the Glacier software development tools may be found in 
Section 50.4.4.2. 

Example 50-1: Typical Glacier Program Development 
$ FORTRAN/ GLACIER APPLIC$SOURCE:PROGRAH 
$ LINK/ GLACIER/ EXECOTABLE-APPLIC$IMAGE:PROGRAM APPLIC$SOURCE:PROGRAM 
5 RON APPLICSrMAGE:PROGRAM 

Note that the commands in Example 6~1 are for explanatory purposes omy. The command qualifier 
names are to be determined. 

As with the application user's environment, the application developer can uae Glacier's bidirectional 
disk services to access source files or target output files. 

50.4.2.3 System Management 

All Glacier system administration is directed from a consistent system management user interface 
(SMUI). In the FRS product, this interface is command line oriented, The interface may be accessed 
from either an authorized client system or the Glacier system console. In future versions, the system 
management user interface will support a window interface. 

The Glacier SMUI incorporates many of the latest concepts in both local and remote system ad­
ministration. The interface presents a task-oriented approach to such problems as authorizing new 
system users and configuring network topology. While this interface is not seamless with the client's 
system management interface, it is both culturally compatible with VAX/VMS functions and follows 
the evolutionary path planned for VMS. 

Below is a partial list of functions accessible through SMUI: 

• 
• 
• 
• 
• 
• 

• 

User authorization and authentication 

Configuration management 

Network management 

Performance monitoring 

Operator communication 

Diagnostics 

System backup and restoration 

50-6 Glacier OVerview 



Dlgltel Equlprr.nt CcwPOrJUon - ConfldenUel end Propr6etery 
R .. trlcMd DlstrlbutJon 

50.4.2.4 Undertylng Softwere Mechanisms 

The Glacier system relies on several underlying software components that must be provided by the 
client system for the layered Glacier software to operate con-ectly. These components are related 
primarily to network communication. 

50.4.2.4.1 Network Support 

For a system to act 85 a compute server client, it must support either DECnet, using the NSP 
transport protocol, or TCPIIP. For FRS, only DECnet-based clients are supported. Likewise, on1y 
Ethernet eN]) connections are provided. Future releases may provide support for TCPIIP on the N1 
connection and DECnet on computer interconnect (eI). 

50.4.2.4.2 Remote Procedure ellis (RPe) 

Remote procedure calls are the mechanism used to communicate between client and server systems. 
For the FRS product, remote procedure calls are used as an underlying mechanism and are not. 
available for general application use. Once the corporate RPC architecture is in place, future releases 
of Glacier win provide a general RPC facility. 

The Mica RPC facility is designed to intemperate with the VAX RPC protocol . The VAX RPC facility is 
used by several Glacier components in support ofVAXNMS client systems. These components include 
the client context server, the system management user interlace, and the performance monitor. 

To achieve the goal of supporting a heterogeneous set of client systems, a common RPC mechanism 
must be available. Currently, VAX RPC is only available fo r VAXlVMS, although a corporate RPC 
architecture is being developed. A plan for migrating ~fica RPC from the VAX RPC protocol to the 
corporate RPC protocol will be executed to achieve corpon.te RPC interoperability. 

50.4.2.4.3 served Dilks 

Fundamental to Glacier's seamless environment is the ability to access client disk devices from the 
server and to access server disk devices from the client system. nus present. an integrated view of 
system resources to the user. A user accesses the files located on a remote or ~served~ disk, 85 if the 
device were connected to the local system. 

'tWo such facilities are in widespread use: Distributed File Services (OF'S) for V~1S systems and 
l-ietworked File System (NFS) fo r ULTRIX systems. Each of these facilities suppor ts their native file 
systems. For FRS, a DFS implementation for Glacier supports VMS client systems. Future versions 
may use NFS to provide suppor t of ULTRIX and genera1 UNIX client systems. 

50.4.3 Server Hardware Components 

Glacier hardware platforms have several characteristics that address the requir ements of the target 
customer base: 

• Hardware vectors 

Hardware vectors provide the capability to operate on up to 64 elements simultaneously. Vectors 
are utilUed by compilers to significantly enhance the performance of programs operating on large 
matrices, which are used by virtually all of the target applications. 

• Symmetric multiprocessing 

Through symmetric multiprocessing, muJtiple processors provide enhanced capabilities in two 
dimensions: 

In conjunction with program decomposition by compilers, utilizing multiple processors con­
currently to run a single program significantly reduces the elapsed time required to complete 
the program execution. 

Glacier Overv .. w ~7 



DIgItal Equipment Corporetlon - Confidential and Proprietary 
Restricted DIstrIbution 

• 

- Multiple computational elements permit the system to service more users concurrently, ex­
tending the overall capacity of the system. 

High throughput 110 subsystem 

The Glacier 110 subsystem is based on the XMI bus. Up to two XMl buses are supported in a 
single Glacier package. 

• Pipelined execution and a large number of registers 

The PRISM architecture supports pipelined instruction execution on a single processor. A very 
large set of general purpose registers available to compilers, in conjunction with compiler know)­
edge of the hardware run-time platform, pennit compiler code generation techniques that fully 
utilize the hardware for optimal program execution. 

50.4.3.1 FRS Hardware Configuration 

The first revenue ship configuration is built on the Moraine platform, which is a CMOS-2 implemen­
tation of the PRISM architecture. Moraine has: 

• Two XMJ buses for increased I/O capacity. The 110 system is capable of delivering lOO-Mbyteslsec 
throughput. 

• Up to four scalar/vector processor pairs each providing 15 VUPs scalar performance and an 
estimated performance on the double-precision lOOxlOO Linpack benchmark of 12 MAops. 

Each scalarlvector processor has a 128-Kbyte scalar cache and a 2-Mbyte vector cache. Most 
problems that run on Glacier should fit in cache. Larger problems which do not fit will take 
advantage of the SO-Mbytelseclprocessor memory throughput. The scalar and vector caches use 
a write-back-to-memory strategy for improved performance. 

• A nine-way, fully-connected CMOS-2 crossbar switch for connections between processor, memory 
modules, and an I/O port. 

Crossbar connection of processors and memory modules avoids the contention of multiple pr0-

cessors connected to a single system bus, providing increased per-processor bandwidth. 

• An n+l redundant power supply and integral motor generator set. 

'These components greatly improve system reliability. serviceability, and availability. The CEAG 
power supplies provide hot swap and optional n+l redundancy. The motor generator set provides 
power conditioning and increased efficiency, improving availability and reducing the required 
power supply and overall system size. 

(Although this high availability is not a requirement of the Glacier target markets, it is being 
implemented in Glacier to provide a platform shakeout for Cheyenne, a database system built 
on Stone, the CMOS-3 Moraine follow-on platform. Customers utilizing the Cheyenne database 
system will be putting the well-being of their entire businesses in the hands of the Cheyenne 
system.. As such, these customers want field-proven hardware and software. Shaking down Mica 
and the hardware platform with Glacier provides the in-field experience Cheyenne customers 
require.) 

The initial release of Glacier uses DSA-l disks and tapes for mass storage. All OSA-l disks are 
supported, although we exepect that only RA70 and RA90 disks will actually be used. The TA90 tape 
drive is the only drive capable of providing the high perfonnance required for backup of large disk 
subsystems. DSA-l devices are attached to Glacier systems through the HSX (Wildcat) controller. 

Client systems communicate with Glacier via Ethernet (NI) or computer interconnect (CI) interfaces, 
with CI support being delivered in a post-FRS version . Additional NI interfaces may be added to 
Glacier for expanded throughput. 

5()....3 Glacier Overview 



DIgItal Equipment Corpor.tlon _ Confldentlal .nd Proprietary 
RestrIcted Dlstrlbutlon 

50.4.3.2 Follow-On Configuration 

StoDe, the follow-on platform to Moraine, will deliver approximately 20 to 25% additional computa­
tiona1 capability through the use of CMOS-3 technology in the Moraine package. 

50.4.4 Server Software Components 

The Glacier server software components are designed with two basic goals: 

• To ensure server integration into a client environment such that the server appears to be a 
seamless extension of the client system 

• To ensure that applications written using the Application Integration Architecture are extremely 
portable to and from other systems supporting tbe architecture 

50.4.4.1 Software Run-Time Environment 

The run-time environment is key to achieving the goals of the Glacier system. This layer of software 
provides the software functions that integrate both the Mica services and the remote client services. 
Within this layer, services such as filelrec.ord access, system services, and windowing support are 
found. All of the run-time software components are available to the software developer. 

The run-time software available to applications is designed around a software architecture common 
to PRlSMlMica and PRISMIULTRIX. This common software architecture: 

• Permits applications built for one target system platform to be readily ported to another 

• Provides the capability for supporting a larger number of third-party applications on both 80ft­

ware platforms, satisfying a broader spectrum of customers 

• Permits DIGITAL to build a single set of layered software products which execute on either 
software platform with a much smaller engineering investment 

50.4.4.1.1 Application Integration Architecture 

The interface to Glacier's run-time environment is based on the Application Integration Architecture 
(AlA). In this context, application integration means users integrating with applications (via a com­
mon interiace), applications integrating with the underlying system (via a rich set of services), and 
applications integrating with applications (via common methods of passing control and of passing 
and representing data).l Within Glacier, three components of AlA are used: 

• DECwindows for graphical data display 

• The Application Run-Time Utility Services (ARUS) for: 

Memory allocationldeallocation 

Condition handling 

Conversion routines 

Bottom of the stack condition handler 

String mapping 

String fonnatting 

Process status 

• The miscellaneous run-time library routines for: 

Low-level math routines 

1 This d.finitiOQ iI bated on a memo authored by Seort G. Dam on 1&.Febl'\lary-1988 titled ~Tb. Application lntegnCOD. 
A:rebiLKtuH (AlA.) ProgTam~. 

Glacier Overvlew 50--9 



Dlglta' Equipment Corporation - Confidential and Proprietary 
Restricted Distribution 

Common Multithread Architecture (CMA) routines 

Print System Model (PSM) routines 

• Remote Procedure Calls (RPC), which are discussed in Section 50.4.4.4.3 

50.4.4.1 .2 Application Migration 

10 enhance and ease the migration of applications from other platforms such as VMS, ULTRIX. and 
POSIX, a set of run-time interface libraries may be used. These libraries implement a limited number 
of the system-specific interfaces on top of the Mica system services. Application developers will be 
encouraged to use the AlA libraries as the best means of achieving portability across the DIGITAL 
set of products. The use of the system-specific libraries will be discouraged. 

Applications which use VAXlVMS system services are provided access to a restricted set of VMS 
service interfaces on Glacier. The exact list of services is to be determined. 

Applications written using the ULTRIX or POSIX service interface may take advantage of the exten­
sive Mica C Run-time Library interface as well as the Mica-POSIX interface. 

50.4.4.1.3 Record Management Services 

Mica RMS, together with the Application Integration Architecture (AlA), provides the highest user­
level file and recor d access interface in the Glacier system. RMS is designed to promote the building 
of a common set of software components for PRISMJMica and PRISMfULTRIX. The interface to 
Mica RMS is designed to be a straightforward interface taking into account functionality of previous 
implementations. Through this interface and by direct use of Mica I/O subsystem functions, most of 
VMS RMS's functionality has been preserved. 

The functionality of Mica RMS will be developed in stages across several releases . Key to the FRS 
requirements is transparent access of files through the local file system or through the distributed 
file system (DFS). Transparent access to standard input and output files is provided for as welL 

50.4.4.2 Software Development Environment 

The Glacier software development environment can be described. in terms of the software which may 
be utilized by the application (see Section 50.4.4.1) and the tools available to the application developer. 

Components of the common BOftware architecture include: 

• Calling standard and condition handling 

The PRISM calling standard specifies the instruction sequence and register conventions used 
when invoking a procedure. An interprocedure calling standard permits interoperability between 
procedures written in any conforming PRISM language. The calling standard has been optimized 
for the PRISM architecture, taking advantage of the large number of registers. 

Arehite<:ted condition handling provides additional support for interlanguage operability, and a 
consistent and complete mecharusm for program handling of hardware and software conditions 
arising during program execution. 

• Object module and image file format 

A single architected format for object modules and image files supports huilding a single set of 
program development tools and language compilers across PRISM operating systems. 

• Common Multithread Architecture 

The Common Multithread Architecture (CMA) provides applications and compiler-generated code 
with a consistent mechanism for implementing multithreading independently of the underlying 
hardware/software platform. 

50-10 Glacier Overview 



Digit.' Equipment COfpo,..Uon • ContldenU.1 .nd Proprlet.ry 
Restricted Distribution 

50.4.4.2.1 Program Development Tools 

Program development tools for Glacier include: 

• Linker 

The PRISM linker binds a collection of PRISM object modules into an image file for execution on 
the PRISM hardware. The linker design is closely integrated with the PRlSM calling standard, 
the language compilers, and the PRISM software platronns to provide efficient, high-perfonnance 
run-time image setup and execution. 

• Librarian 

The PRISM librarian implements libraries of modu1es, such as object modules. Object module 
libraries increase programmer productivity and link-time performance by collecting many PRISM 
object modu1es into a single indexed file . 

• Language compilers 

Glacier supports a full complement of programming languagel: 

PRISM FORTRAN provides a VAX-compatible FORTRAN language, implementing vector­
ization and parallel decomposition. 

PRISM C is an ANSI-XSJll-compliant implementation with VAX C extensions. 

Pillar, the PRISM systems implementation language, is supported for customer use, and i. 
used within DIGITAL for PRISM layered product development. 

VAX ADA will be ported to PRISM as a post-FRS product. 

PascaJ wiUlikely be post-FRS product. 

LISP is also likely to be a post-FRS product. 

• Language Sensitive Editor (LSE) and Source Code Analyzer (SeA) 

LSE and SCA provide support for writing PRISM-based applications. LSE and SeA ezecute in 
the client system environment, enhancing application developers' ability to build programs for 
Glacier. LSE utilizes the Glacier client system interfaces to invoke the appropriate language 
compiler. 

PRISM language compilers optionally generate SCA files . SeA, which is integrated with LSE, 
provides developers with the ability to quiclcly locate usage of variables within large applications, 
thereby increasing programmer productivity. 

• DEBUG 

PRISM DEBUG provides application developers with a highly interactive, language-oriented 
debugging tool. A DEBUG kernel executes along with the Glacier application being debugged. 
The DEBUG user interlace executes on the client system, interacting with the DEBUG kernel 
via RPC. The PRISM DEBUG user interlace is compatible with the client system debugger. For 
FRS, a V.AXfVh.iS-compatible user interface is provided. 

• Performance and Coverage Analyzer (PCA) 

The PRISM peA is a tool that the application developer can use to analyze the run-time behavior 
of an application. peA executes with the application on the PRISM system, writing the collected 
data to a disk file . Later, the peA analyzer, running on the client system, can be used to analyze 
the data to pinpoint program bottlenecks, or detennine program execution coverage. 

Glacier Overvtew 50-11 



Digital Equipment Corporation - Confidential and Proprietary 
Restricted Dis tribution 

50.4.4.3 System Management 

The interface to Glacier system management executes on the client system or on Glacier, through the 
system console tenn.inal. In either case, the system management user interlace uses RPC to request 
the system management server, running on Glacier, to execute the specified management functions. 

At initial system installation. the system manager specifies the password required for access to system 
management functions on the console terminal. In addition, the system manager defines which users 
on Glacier client systems throughout the network are permitted to execute system management 
functions remotely. 

50.4.4.3.1 System Management Server 

The Glacier system management user interface, executing on the client system, interacts with the 
system management server executing on Glacier to complete the requested management commands. 
In addition, the system management server is responsible for. 

• Maintenance of the user authorization database 

The system management server is solely responsible for creation and maintenance of the on-disk 
user authorization database. No other process within the system directly accesses the on-disk 
database. 

• Retrieving user authori.tation information for Glacier-based system software. 

System software on Glacier utilizes RPC to call the system management server when authori%.a­
Lion information must be obtained. 

50.4.4.3.2 Performance Monitor 

Another important component of system management is the ability to monitor the performance of the 
Glacier system. The performance monitor user interface, integrated with the system management 
user interlace, connects to the performance monitor server on Glacier to gather the performance 
information. 

The performance monitor permits the system manager to view key system perlormance statistics and 
provides some capabilities for diagnosing potential system performance bottlenecks. 

The performance monitor utilizes standard Mica operating system interfaces to gather performance 
information. The server is capable of supporting multiple users monitoring system performance 
concurrently. 

50.4.4.3.3 Console Support 

The Glacier console termina1 interface can be uaed, rather than a client system, for exeeution of 
syatem management functiona, diagnostics, or the User-level System Exerciser (USE). Access to 
these functions is password protected.. 

50.4.4.3.4 System Dump Analyzer 

The system dump analyzer is utilized by DIGITAL support. personnel and engineering to determine 
the cause of system failures. 

50.4.4.3.5 Error Logging 

All hardware errors are logged to an on-disk error log file. An en'Or log display utility permits system 
management and DIGITAL support personnel to examine the error log contents. 

50-12 Glacier Overview 



• 

Digital Equipment Corporation . Confidential and Proprietary 
Ru trlcted Distributi on 

50.4.4.4 Underlying SoHware Mechanisms 

The following sections describe the underlying software mechanisms of Glacier, including the l\.fica 
operating system and networking mechanisms. 

50.4.4.4.1 Mica Operating System 

Glacier is built around hardware which implements the PRISM architecture and a base operating 
system which implements the Mica design. 

Mica has been designed as an object-oriented system with a rich set of services available from user 
mode (note that most of these services will eventually be accessed via the Application Integration Ar· 
chitecture library). It is designed to support both the 32· and 54-bit PRISM architectures and should 
require minimal effort to move from a 32-bit-only implementation to a 32164-bit implementation when 
64-bit systems become available. The key points in the design are: 

• 
• 

• 
• 

• 
• 

• 

Priority-based preemptive scheduling with provision for class scheduling 

A flexible memory management system which supports all allowed PRISM memory management 
implementations 

Multiple threads of execution within a single address space 

A layered va architecture for the support of physical devices, file systems, and concepts, such 
as volume shadowing, volume striping, virtual terminals, and 8 0 on 

A centralit.ed ACL-based security architecture for all objects 

Protected subsystems, that is, user processes which act as servers with amplified seewity pro6Jes 
on beha1f of client processes, charging back resource usage to those clients 

An implementation written almost entirely in the Pillar language, which provides block struc­
ture, strong typing, and structured condition handling, and has been designed as a portable 
system implementation language 

50.4.4.4.2 OECnet·Mlca Phase V 

The clienVserver nature of Glacier requires strong network support. An implementation of the DIG­
ITAL Network Architecture (DNA), Phase V is used to provide the required network services. The 
components of DNA that are included in the FRS product are: 

• 

• 
• 
• 

DNA naming services 

Network communication services 

Network management 

Network event-logging server 

50.4.4.4.3 Remote Procedure Calls 

As mentioned earlier, a remote procedure call (RPC) facility is used throughout Glacier for interpro-­
cess communication. This communication may be with off-node entities, such as the client context 
server, and with local node entities (protected subsystems), such as the system management server. 

Mica RPC comprises two main components: an RPC stub generator, and RPC run-time facility. The 
RPC stub generator provides a language interface to the RPC run-time facility. Stubs are written in 
a rugh·levellanguage similar to Pillar, which is the implementation language for Glacier 8Of\.ware. 
Stubs are simply the local procedure definition of the procedure being called remotely. Slubs are 
easy to write and they insulate the useT from the underlying RPC run-time facility and transport 
mechanism. The stub generator is used in developing the Mica system and is not intended to be 
included in the pToduct. 

Glacier Overview 5G-13 



Digital EquipI'Mnt CorporaUon - Confidential and Proprietary 
R .. trtctlld Distribution 

The Mica RPC ruo-time facility provides t.he mechanisms used by the stubs. These include data 
marshaling, mu1tiple context maintenance and client/server binding. 

50.4.4.4.4 Distributed File Services (DFS) 

The Distributed File Services for Glacier comprise three main components: 

• 
• 
• 

Disk services for accessing client disks from a Glacier server 

Disk services for accessing Glacier disks from a client system 

Management services for administering OF'S remotely 

For FRS, OFS Version 1 protocol is supported. This protocol enables systems with OOS-n-based file 
systems to intemperate. In future versions, heterogeneous file system interoperation may be allowed. 

50.4.4.4.5 Job Controller Server 

The focal point for application activation requests are serviced by a Glacier-based server, called thejob 
controller seroer (JCS). The JCS services requesta from the client context server to activate, suspend, 
resume, and debug the application programs. The JCS also provides the CCS with the application's 
exit status information. 

50.5 Special Challenges 

The Glacier product is a computing element, specifically a compute server, designed. to provide cost­
effective computational resources to an array of workstations. The compute server environment 
presents several challenges that were not. addressed by previous computing environments. Those 
challenges are: 

• 
• 

Seamless client integration 

Remote management 

Integration of the compute server with a group of heterogeneous client workstations is essential. 
Workstations, like other computer systems, differ in functionality, cost., and performance. It is ex­
pected that a workstation-based, network will have several different stations requiring various levels 
of service by a range of users. Users must be able to access Glacier from each workstation in a 
manner similar to the familiar workstation environment. 

Glacier's lack of a user interface requires that system management be done remotely. Glacier must 
require only minimal interaction from the console terminal before becoming available as a remotely 
managed system. 

50.6 Outstanding Issues 

• The support of ULTRIX client systems has a number of unknowns associated with it. AiJ men­
tioned earlier, VAX RPC supports only VMS systems today. Second.1y, the OFS Version I protocol 
supports only ODS-II file systems. The Version 2 protocol may include support for the Ulr 
TRIX file system. An alternative to OFS for ULTRIX is NFS. This would require that NFS be. 
implemented for Mica. 

These are oo1y a couple of the open ULTRIX. client issues. A preliminary ULTRIX client support 
chapter outlines the issue more completely. In any case, ULTRIX support is planned for shipment. 
after VMS client support. 

50-14 Glacier Overview 

.. 



b 

51.1 Overview 

DlgltaJ Equlpnwnt Corporation - ConflMntl.1 .nd Propr. t.ry 
R.s trlcted Distribution 

CHAPTER 51 

MICA COMPUTE SERVER SUPPORT 

This chapter describes the software support required on Mica to allow a user on VAXNMS or 
VAXlULTRIX to execute or debug a program on the Mica under a tightly coupled model. 

Under this compute server model, there is software on the client system ealled the Client Context 
Server. The Mica support software and the Client Context Server work together to enable the exe­
cution of programs on the Mica system. The Client. Cont.e.xt. SeT"Ver supports the compute &eT"Ver job 
on the Mica system by providing client system services that can not or should not be performed on 
the Mica system itself. 

The tightly coupled model is designed for JaTge compute-bound application programs. These are 
single stream monolithic programs written in high-level languages. They operate in user mode and 
use few system services or privileged functions. For e:umple, these programs would not tteate or 
delete processes or modify user privileges. The user on the client system is provided access to Mica­
based compilers, a linker and a debugger to produce the Mica image and a mechanism to execute the 
Mica image on the compute server. The development environment is that of the client system. 

Under this tightly coupled model, the compute server runs the Mica image on behalf of the client 
system. The environment of the Mica image on the compute server is that of the client system. All YO 
trom SYSSINPUT (sldin) and to SYSSOUTPlIT. SYS$ERROR (stdout, stderr) is handled by Remote 
Procedure Calls (RPCs) to the Client Context Server. The Client Context Server then performs 
the 110 on the client system. The image appears to be running on the client system, reading from 
standard input and writing to standard output/error. Use of the Client Context Server ensures that 
the compute server job interacts properly with other components of the client operating system, such 
as redir ected files, pipes, and sockets. Logical names, environment variables, networking visibility, 
and process visibility are taken from the client syat.em. 

51 .1.1 Goals 

The Mica support for the compute server product has these basic goa1s: 

• Provide the Mica portion of the mechanism for activating a Mica image from the client system. 

• Provide the Application Integration Architecture (AlA) environment for the compute server pro-­
grams. 

• Provide support for development tools including the Debugger. 

Mica Compute Server Support 51-1 



Digital Equipment CorPOt1ltlon - Confidential and Proprietary 
Restrlct-.d Distribution 

51.1.1 .1 AcHvation of 8 Mica Image 

Mica provides a mechanism for the client system to activate Mica images on the compute server. 
This mechanism iB independent of the client operating system and notifies the client system of the 
termination of the compute server image. The image is activated on behalf of the client system and 
is considered an extension of the client's computing resources. All files that are available on the 
client are available to the compute server. This is accomplished via Mica RMS, which handles file 
parsing and uses the Distributed File System (OF'S) to access files . The environment of the image 
Oogical names, shell environment variables, process pen:Danent files, command line information) on 
the compute server is that of the Client Context Server running on the client system. Termination 
of either the user's process on the client or a Mica compute server image means the termination of 
the other. 

\ It is unknown at this time if DFS will support the ULTRIX file system. \ 

51.1.1.2 ApplIcation Integration Architecture 

The AlA on the compute server provides a system-independent representation of system services and 
the DECwindows user interface. In the AlA environment, the user does not see the Mica system 
service calls or have access to them. AlA calls are carried out in one of three ways: 

• 
• 

• 

An AlA call may be carried out solely on Mica via system service calls. 

An AlA call may result in an RPC to the Client Context Server to carry out the AlA caU solely 
on the client. 

An AlA call may result in a Remote Procedure Call (RPC) to the client for client context infor­
mation and then make additional calls to Mica system services. 

51.1.1.3 Support for Development Tools 

The Mica software will provide support for the SOT development tools. This includes the SDT 
debugger. 

\ The support that is to be built into Mica is TBO. \ 

51 .1.2 Components 

The tightly coupled client/server model consists of several components as shown in Figure 51-1. 

51- 2 Mica Compute Server Support 



Dig ital Equipment CorporaUon • Confidential and Proprieta ry 
Ru trlcted Distribution 

FIgure 51 - 1: Mica Compute Server Support 

CLIENT SYSTEM 

CUENTCO~ 
SERVER 

ItMOE ACTIVATION 

IMAGE TERMINATION 

AJA SERVER 

CONDITION HANDUNG 

51.1.2.1 Mica Components 

COMPUTE SERVER 

JOB CONTROL SERVER 

! 
IMA.GE STARTUP 

AJA SERVICE LIBRARY 

CONDITION HANDLING 

USER PROGRAM 

RUN·TlME 
ENVIRONMENT 

The :Mica compute server support consists of two major parts: the Job Control Server and the Run 
Time Environment 

The Job Control Server handles requests from the Client Context. Server to execute a holica image. 
Upon receiving an RPC to start a compute server image, the Job Control Server creates a thread 
that acla 8.B a monitor for the compute server job. This new thread authenticates the client's request. 
and creates the compute server job. It then waits for t.he compute server job to terminate. There is a 
one--to.-one mapping between compute server jobs and Job Control Server threads. Once the compute 
server job terminates, the Job Control Server thread perfonns an RPC to the Client Context Server 
to convey the exit stat.us and accounting infonnation. 

\ The t.hread per job design is required to handle status objects. Fewer threads may be required 
given a different mechanism for handling status return, for example by using a message FPU for 
status information. \ 

The Run Time Environment in Mica for the Compute Server conaista of three parts: 

• Image Startup Procedure-This procedure is called before the user code is executed. It sets up all 
handlers and generaJ environment.. The procedure is passed enough information to identify the 
corresponding Client Context Server. This procedure initiates the first RPC to the Client. Context 
Server, which returns t.he DFS specification of t.he default directory and process permanent fiJes. 

• AlA Service Library-This library contains the AlA routines available in the Mica environment. 

• Error and Condition Handling Routines--These routines communicate conditions and errors to 
and from the Mica image and t.he Client Context Server. If a software error or interrupt occurs 
during the execution of the Mica image, these routines inform t.he Client Context Server via an 
RPC. If the Client Context Server receives an interrupt., an RPC is sent to the Mica image to 
inform it of the condition. 

Mica Compute Server Support 51-3 





Digital Equlpl'Mnt CoIporatfon - Confl~ntlal and Proprietary 
R.strlcted Distribution 

CHAPTER 52 

VMS COMPUTE SERVER SUPPORT 

52.1 Overview 
The purpose of this chapter is to describe the support required on VMS to enable users of VM:S 
systems to execute Mica programs remotely on Glacier. VMS compute server support perlonns the 
following functions: 

• Initiates activation of the user's program on Glacier. 

• Provides a focal point for any remote procedure calls (RPCs) made on behalf of the user's Mica 
program, to retrieve context information from tbe corTesponding proceas on the VMS client sys­
"'m. 

• Handles notification of any erTOTS that might occur during program execution on Glacier. 

• Handles notification of the Mica image termination, and performs any required cleanup. 

52.1.1 Requirements 

Glacier is targeted toward two types of application programs at FRS: single stream high-level lan­
guage applications, and utilities written by Digital. Support must be provided which enables a VMS 
user to execute these programs and utilities on Glacier. Little or no modification to user-written 
programs sbould be required, except for those that use VMS system routinea not supported on Mica. 

The program execution environment must appear "seamless" to the VMS user. "Seamless" means, at 
a minimum, the following: 

• 

• 

• 
• 

• 

A program is invoked through some variant of the RUN command issued by the user on the local 
VMS system. (For utilities written by Digital, a program is invoked using other DCL commands.) 

Terminal dialogue with the user appears identical to the dialogue that occurs when the program 
is executed locally on the VMS system, with the exception of DCL eLI calla. 

Thrmination of execution is indicated to the user. 

Output from the program is identical to the output that results from execution on the VMS 
system. 

The user bas the capability to interrupt and/or tenninate execution (through the CTRUY mech-
ani5JD.), just as when the program is run locally. 

VMS compute server support must provide access to a limited number of VMS system routines 
through the RPC mechanism. In particular, support must be provided which enables the compute 
server to access devices that are not directly attached to tbe Mica system and art'! not served by the 
Distributed File Service. These devices, instead, are attached to the user's VMS sYll tem, such as 
terminals. 

The stated aim of the Mica programming environment is to support applications that adhere to 
the principles of AlA VMS compute server support must provide distributed support for some Mica 
non-local AlA services. 

VMS Compute Server Support 52-1 



Dlglt.1 Equipment Corpor.tion - Confidential and Proprietary 
Ratrlctl8d Distribution 

52.1 .2 Assumptions 

The following assumptions have been made: 

• That the VMS system and the Mica system have compatible RPC implementations which are 
both efficient and reliable. 

• That a user identification and rights list e:z:ist on Mica for each user, it is not necessary that the 
user quotas on both the VMS system and the Mica system be identical . 

52.1.3 Functional Description 

Compute sener support under VMS is provided by a single VMS executable image. Wben a VMS 
user requesLs e:r.ecution of a Mica image, the VMS compute server support image runs in the context 
of the user's VMS pT0Ce9S. 

52.1 .3.1 Image Activation 

VMS compute sener support software initiates activation of the wer's Mica program by using an 
RPC call to a job controller server that resides on Mica. The Mica job controller server effects the 
imsge activation of the Mica program, and returns the status of image startup to the VMS support 
software. A successful completion of the image activation call puts the VMS compute &elVer software 
into an RPC wait state, as a client conterl server. The client context server can emerge from an RPC 
wait state at any time to handle RPC calls from the executing Mica program. 

52.1.3.2 APC Calls for VMS ServIces 

The VMS client context server services RPC calls that occur during execution of the user's Mica 
program. The requests to be serviced. result from either an AlA service call or from an RMS request 
to perform 110 to a device on the user's VMS system. The client conten server executes the required 
services and returns the results to the user's program. E:r.amples of VMS performed services include 
110 from and to the user's terminal and calls for user-specific context information such 88 Jogical 
name translation. 

52.1.3.3 Condition Handling 

Conditions that occur during the program execution on Mica cause notification to be sent to the VMS 
client context server, which in turn notifies the user of execution status. If either partner (on VMS or 
Mica) terminates, the RPC run·time system provides notification to the remaining partner, which will 
exit. If the user interTUpts program execution through a CTRlIY. the Mica program will be notified 
to exit, 

52.1.3.4 Termination 

Normal program term.ination is reported. to the VMS client context server, which passes exit status 
to the user. Any RPC bindings are broken down by the VMS client context server at termination. 

52.1.3.5 Debugger Support 

The VMS client context server provides support for the VAXlPRISM Distributed Debugger. 

52-2 VMS Compute Server Support 



... 

DigItal EquIpment COfporatlon • Confidential and Proprletliry 
RestrIcted Distribution 

CHAPTER 53 

ULTRIX COMPUTE SERVER SUPPORT 

53.1 Overview 

This chapter describes the software support that enables a user on ULTRIX to execute or debug a 
program on a Glacier compute server. A Glacier compute server can be connected to one or more 
ULTRIX systems to provide high-performance computation capabilities. The compute server is an 
extension of the ULTRIX client computing environment. The compute server operates with ita client 
in a "seamless" fashion, The client support software on ULTRlX interacts with software on Glacier 
to execute Mica images on the Glacier system on behalf of the client users. The images appear to 
be executing on the client system, and the client users are unaware that the images are actually 
executing on Mica. 

53.1.1 Goals 

The ULTRIX software support for the compute server product has these basic goals: 

• 

• 
• 

Provide the mechaniam on ULTRIX to allow users to execute a Mica image on Glacier in a 
"seamless" fashion. 

Provide access to the client environment for compute server programs. 

Provide support for Mica development tools on ULTRIX.. 

53.1.1.1 Execution of a Mica Image 

The ULTRIX compute server support software provides a "seamless" mechanism for executing a Mica 
image on Glacier. To eIecute a Mica image an ULTRIX user shou1d simply invoke a user command 
just 8S they would execute an image locslly on the ULTRIX client system. The activities of the 
ULTRIX. compute server support software must be transparent. The user can redirect standard 
input, output and error toIfrom rues or ULTRIX pipes to other commands, The user can invoke a 
Mica compute server program from 8 shell procedure. 

53.1.1.2 Access to the Client EnvIronment_ 

The ULTRIX compute server support software must provide access to the client environment for the 
compute server program, This support includes: 

• . Communication with other processes via ULTRIX pipes, named pipes (FIFO), or sockets. 

• Handle all remote procedure calls (RPC) from the compute server image that are the result of 
an Application Integration Architecture (AlA) call. 

• Perfornring UO toIfrom standard input, output and error. 

This compute server model is designed to handle large, compute-bound application programs. These 
applications are written in high-Ievel1anguages and: 

• Use few system services. 

ULTRIX Compute Server Support 53-1 



Dlglt.l EquIpment Corpor.tlon - Confldentl.l .nd Propd.tary 
Resttlcted Distribution 

• Do not. fork/exec other processes. 

• Do no1. use shared memory for inter-process communication. 

53.1.1.3 Development Tool Support 

All program development. tools fo r the compute server must. run under t.he tight.ly-coupled model. 
They shou1d be invoked using t.he same syntax as any other ULTRIX development. tool. The names 
of these tools will be different from t.he standard ULTRIX tools to avoid naming conflicts. 

The client compute server support. software for these development tools will handle RPCs resulting 
from AJA Command Language Interpreter (CU) calls. These RPCs will take t.he ULTRIX command 
line arguments and interpret. them for the tool running on the compute server. 

53.1.2 Functional Description 

The t.ightly-coupled dienVserver model conaists of several components as shown in Figure 5~1. 
There are three major components to this compute server model: 

• Job control servet'-Tbe job cont.rol server is a registered server running on the compute server. 

• Client context server-The client. context. server is the compute server support. software that runs 
on the ULTRIX system when the user executes the user command. 

• User's program- The user's program is the Mica image that. will be activated by the job control 
server. 

The ULTRIX user issues a user command that creates a child process to the shell and e:s:ecutes the 
client context server code. The process registers itself with the remote procedure call (RPC) binder 
as a server. The process then sends an RPC to the job control server, requesting activation of the 
compute server image on Glacier. When t.his RPC returns with a successful status the compute 
server image has been started. The client. context server then loops on an RPC wait, and comes out 
of the wait state to handle any RPC requests from the compute server image, including its eventua1 
termination. 

\ The exact sequence of the initial RPC and binding request are TBD but we have the requirement 
that there should be no window of vulnerability where a binding does not exist. \ 

53-2 ULTRIX Compute Server Support 



Digital Equipment Corporation - Confidential lind Proprietary 
Restricted Distribution 

Flgure 53-1 : ULTRIX Compute Server Support 

CUENT SYSTEM 

CUENT CONTEXT 
SERVER 

IWoGE ACTIVATION 

IMAGE TERMINATION 

AlA SERVER 

CONOITION HANDlING 

53.1 .2.1 The Cl ient Context Server 

COMPUTE SERVER 

JOB CONTROl SERVER 

~ 
IMAGE STARTUP 

AlA SERVICE LIBRARY 

CONomoN HANDLING 

USER PROGRAM 

RUN·TIME 
ENVIRONt.ENT 

The ULTRDC compute server support software, called the client context server, consists offour parts: 

• Image Activation-The first task of the client context server is to activate the Mica image on 
the compute server. This is done by sending an RPC to the job control server on the appropriate 
Glacier system. The RPC returns to.the client context server with a status. The status indicates 
whether the compute server image has been started successfully or not. If the client context 
server can not start the compute server image successfully it displays a message to the user and 
terminates. 

• Image Termination-When the compute server image terminates the client context server re­
ceives an RPC containing the compute server image's exit status. The client context server then 
8%lt8 with this status. 

• AlA Server-The ULTRlX client context server handles RPCs from the compute server image. 
The request to be serviced results from either an AlA service caU or from an RMS request to 
perform liD to a specia1 rue on the user's ULTRIX system. The client context server executes 
the appropriate service and returns the results to the compute server image. The ULTRIX client 
conterl server translates RMS RPC request from the compute server image by calling ULTRlX 
system calls. 

• Condition Handling-Interrupts and error conditions that occur during the execution of a Mica 
image on the compute server are communicated to the ULTRIX client context server. If either 
partner (on ULTRIX or Mica) tenninates. the RPC run-time system provides notification to the 
remaining partner, which exits. If the ULTRIX client context server receives a signal it will 
terminate and thereby causing the termination of the Mica compute server job. 

ULTAIX Compute Server Support 53--3 



Digital Equipment Corporation - Confidential and Proprietary 
Restrlctltd Distribution 

53.1.2.2 Mica Program Development on ULTRIX 

A user on ULTRIX will use Mica development tools which can be activated from the client system. 
The Mica compilers are activated like any other ULTRIX development tool and win produce Mica 
object fi1es . The Mica linker accepts Mica object files as input and produces a Mica image file. The 
ULTRIX compute server support software for the linker will a1so produce a client context server 
image file . The name of the client context server image file, which is the user command name, is 
dictated by the user via a linker option. The name of the Mica image fi1e will be based on the client 
context server image file name. 'lb execute their program the user issues the user command name, 
which starts the client context server running on the client. 

53-4 ULTRIX Compute Server Support 



54.1 Overview 

Digital Equipment CorPOl1ltlon - Confidential and Proprietary 
Rastrlct.cf Dlatrlbutlon 

CHAPTER 54 

PROTECTED SUBSYSTEMS AND RPC 

The Mica Remote Procedure Call (RPC) Facility provides a mechanism to accomplish interprocess 
communication using familiar high -level language procedure call semantics. The term remote refers 
to the fact that the procedure being called is outside the current procedure'a address apace. 

Using common RPC terminology, the procedure that initiates the call ia known 88 the client. The 
procedure that is the target of the call is known as the server. Thia relationship ia referred to as 
a client/server model. The client and server may reside on the same aystem or on different nodes 
communicating via a network. 

A server may assume the security profile of the client. This type of a server is referred to as a 
protected subsystem. A complete description of bow security profiles are assumed is found in Chapter 
la, Security and Privileges. 

There are two key components to the Mica RPC facility: a stub generator and the run-time facility. 
The stub generator is used to describe a procedure's interface. For each interlace, a client and server 
stub is created that hides the communication between client and server. A complete description of 
the stub generator is found in Chapter 55, RPC Stub Generator. The Mica RPC run·time facility 
provides a high-level interface to the communication transport mechanism. Ita interface defines the 
types of messages needed to invoke and pass arguments to a procedure in a remote environment. 
This chapter focuses on the Mica RPC run-time facility. 

Figure 64-1 illustrates the relationship between the various interfaces used during an RPC call. This 
model depicts the current DNA RPC architecture. The highlighted region of tbe illustration is the 
focus of this chapter. 

54.1 .1 Goals 

The RPC mecharu!JIll is used extensively throughout h-fica. In fact, tbe nature of Glacier is derived 
from its RPC interface. For example, a program is started on Glacier is through an RPC call from 
the client system. 

The Mica RPC run-time facility is designed with the following goals: 

• Provide the RPC functionality required by Mica system components 

• . Provide a functional basis for protected subsystems 

• Provide an easy migration path to corporate RPC 

• Provide RPC functionality that allows most usage to be hidden by the stub generator 

Protected Subsystems and RPe 54-1 

, 



Olgltal Equipment Corporation - Confidential and Proprietary 
R_trlcted Distribution 

FIgure 54-1: The RPe Architecture Model 

eM .....-... 
cal (atg ... l 
(lang~iIic) 

10- ""'" 1= ......... """ Interface 
Inten.:. """'Ion 

cal (atg-l 
~Inl.rl_ 

(Canonca/ ~) 
DofuO~ 

II 
e .... 
SWb 

~~~n 
NomoSo_

....... I i uoon
""" - ... I: F_

RPC ProlOCai

eonnecllMnGf~/Y .. 'dlseoMKt

I r TIaI'l$POl1 Protocol
InlerlK'

54,1,1 .1 Functionality lor Mica Sys tem Compone nts

H I \.q"",o'OS

"""'''''
cd (atgM.)
(Canoncal ~tion)

.... «
SWb

~u~.)Cc.ption

lIPC -n--
conrl«::r .. odI~I¥-'d",eonMCt

~ -~ I In .. l1ec.

""-"""

The concept of RPC seems simple. However, the actual implementation of an RPC mechanism that
provides the same level offunctionalit.y found in standard local procedure calls is quite complex. The
level of complexity is increased further when the client. and server are running on heterogeneous
operating systems.

Mica system components require the following RPC functionality:

• Interoperation-The RPC mechanism used by Mica is designed to intemperate with VAXJVMS,
tnt.m, and Mica.

• Procedure call behavior-By default, an RPC behaves like a procedure call. That is, when the
server routine returns, it. is finished. The server routine is guaranteed to be called only once per
client. call. Any deviation from t.his (for example, idempotent. and stream calls), is a special case
and does not compromise the true procedure call semantics.

• Clients as servers-A client may act as a server to another client. A client can obtain a binding
to it.selffor a specific interface, and would pass that binding in a call to a server. The server may
then use that binding to make RPC calls back to the client.

• Servers as clients-A server may act 8.5 a client to another server.

54--2 Protected Subsystems and RPe

m

Digital Equipment COfporatl on • Confld.ntlal and Propr'-lIIry
R •• trlctttd Dlstrlbutl on

• Binding-The binding service is used by a client to obtain information required to communicate
with a server. At FRS, Glacier requires limited automatic binding and naming services. The
ability to provide run-time binding information without changing the call stub is done using
logical names.

• Contert.--Context may be maintained across server calls through the use of context handles. A
context hand1e is an opaque datatype that is passed on each call to a server to identify a specific
context. The scope of the context handle is an instance of the server. This allowa authentication,
rue context, and other context to be maintained across server calls and significantly increases
performance.

• Disconnect notification-Notification of failure is provided to a server if the client holding an
opaque context hand1e dies or disconnects, to the caller if the server dies or disconnects during
a call, and to a server if the caller dies during a call.

54.1.1.2 Functional Basis for Protected Subsystems

The Mica RPC mechanism is used extensively to call normal servers and protected subsystems. A
protected subsystem differs from a norma1 server in two key areas: the RPC protocol transport
mechanism and client impersonation.

The performance of the communication tT8.Dsport between a local client and a protect.ed subsystem
must be erlremely good. It appears that DECnet does not provide aufficient performance for local
protected subsystem calls. A function proceasor providing local virtual circuit functionality provides
an alternative transport path. The RPC mechanism will select the appropriate transport mechanism
given the locality of the server.

A protected subsystem receives the identifiers of a client 80 that it may service the request using the
identity of the client. The access rights of any client are based on local authentication and identifiers.
Mica provides a set of impersonation services that are used by the protected subsystem to manipwate
its own identity.

54.1.1.3 Easy Migration to Corporate APC

An aggressive corporate RPC architecture plan is being pursued. If a corporate architecture is not
available, then Mica RPC will be designed to allow for migration to the corporate version at some
later date.

\Tbe first step in building Mica RPC will be to interoperate with VAX RPC. Should a DNA RPC
architecture not be approved, VAX RPC can meet all Mica RPC requirements and will be shipped
with the client support software. \

54.1.1.4 Hide RPe Usage Behind the Stub Generator

The functionality provided by the Mica RPC run-time facility is invisible to most applications. That
is, most applications call a remote procedure exactly as they wowd call a local procec:lure. This is
accomplished by generating a stub procedure for each remote procedure. The stub procedure is simply
a routine that converts a procedure call into a set of RPC run-time facility calls.

Besides simplicity of application development, the use of a robust stub generator has another key
benefit. The stub generator isolates the application &om the underlying RPC implementation. This
allows protocols and other implementation details to undergo lubstantial change without affecting
the higher level applications .

Protected Subsystems and APe 54-3

II

III

I I

III

III

I ~I

Digital Equipment Corporation - Confidential and Proprietary
R .. trlctltd Distribution

54.1.2 Nongoals

The Mica RPC nongoals are those items that win be deferred to a future release. The design of Mica
RPC does not preclude their implementation at the appropriate time. The RPC run·time facility
nongoals include the following:

• Provide a customer-visible RPC facility

• Provide an all-encompassing mechanism for inter- and intranode communication

• Provide RPC functionality that intemperates with other RPC protocols

54.1.2.1 Customer vtslbillty

The underlying Mica RPC facility win net be visible to external customers in the FRS product. Future
releases will provide RPC stub generation and RPC run-time support for direct customer use.

54.1.2.2 AlI·Encompasslng Mechanism

A robust RPC facility requires a significant number of features that are not being considered for FRS
implementation on Mjca. The following list describes some of the features that are commonly found
in an RPC facility, but which will not be present in Mica RPC at FRS:

• Stream calls-A stream call is a call or callback that is queued to the procedure that executes
the call. The client continues as soon as the call is queued. A stream call does not have output
and cannot generate a condition or return status.

• Idempotent call~An idempotent can allows the client to repeat a command until a response
is received with the knowledge that the server's state is consistent even though the call was
repeated.

•

•

•

Condition handling-Conditions generated by a procedure may cause an action routine or handler
in the caller's environment to be invoked.

Call·back procedtll"'e&-A client may provide call-back procedure arguments to the server. A
new binding is not required for the server to call a callback via a procedure argument. \This
functionality may be required by the DNA architecture.\

Call interrupt-The interrupt message instructs the partner to abort processing a service request.
\ This functionality may be required by the DNA architecture.\

• Load balancing-The binding services may select the server to be used based on loading balance
/performance algorithms.

54.1.2.3 Interoperatlon with other RPC protocols

The interoperation with other RPC protocols includes common data type representation, server bind­
ing, and condition handling. RPC interoperation could eventually occur with the following:

• PRISM 54-bit systems

• Significant workstations (for example, SUN and Apollo)

• Emerging industry standards (for e.umple, OSI)

54--4 Protected Subsystems and RPC

..

54.1.3 Communications Transport

Digital Equipment Corporation - Confidential and Proprietary
Restricted Dlstrlbutlon

The communications transport mechanism varies depending upon the relative location of the client
and server. The Mica RPC mecbanism is transport independent. It assumes that the transport
provides logical links for reliable message transport.

For FRS, two transport mechanisms are available. The DECnet session interface is used for intern­
ode communication. Intranode communication is accomplished through either the DECnet session
function processor or a local transport function processor with a session-like interface.

54.1.4 Issues

The Glacier field test is sc.hedu1ed to begin September 1989. In order for DECwest to implement and
make use of an RPC mechanism that confOnDS to the corporate architecture, an architecture that.
meets the basic requirements must be in place no later t.han March 1988.

Protected Subsystems and RPe 54-5

\.1

III

55.1 Overview

Digital Equipment Corporation ~ Confidential .nd Proprietary
Restricted O!i;trlbutlon

CHAPTER 55

RPC STUB GENERATOR

'The Mica RPC Stub Generator provides transparent access to remote procedure calls.

A procedure call is the action of invoking a procedure. A locol procedure call is a procedure call in
which the called routine is in the same address space as the calling routine. A remote procedure call
(RPC) is a procedure call in which the called routine is in a different address space than the calling
routine. (A local RPC is a special case of RPC in which the two address spaces are on the same
system.)

When a remote procedure is called, the calling routine's environment is suspended, the parameters
are passed across a communications medium to the caned. routine's environment, and the delrired
procedure is executed there . When the procedure completes, the resulta are passed back to the calling
routine's environment, where execution resumes. An underlying run-time facility bandles passing
of parameters and control between environments. The Mica RPC Run-Time Facility is described in
Chapter 54, Protected Subsys tems and RPC.

A remote procedure call can be made to look and behave almost exactly the same as a local procedure
call. The Mica RPC Stub Generator does this by hiding the differences in stub modules. When tbe
calling program (the client) calls what it thinks is a local procedure, it actually caUs a client stub
routine in the client stub module . The client stub routes the call to the seroer using the Mica RPe
Run.Time Facility. A server stub routine in the server stub module receives the call and makes the
call to the real server procedure. 'Ib the server procedure, it appears as though the server procedure
had been called locally.

Figure 55-1 shows the flow of a typical remote procedure call.

APe Stub Generator 5>1

Digital Equ ipment Corporation - Confidential and Proprietary
Restricted Distribution

Agure 55-1 : The Flow of a Remote Procedure Call

_ _ _ _ Cli!!'t~ystem ___ _ _

Chn! Pn ram

c_

cal rwnot.JKOC(.rp.)

ellen! Stub Modul.-

prrx:edJ,. ,..mot •Proc(.rg.)

I
I
I
I

APe Run-Thle FII::I~
I
I
I
I
I

"". "" m

Server Stub Modullo

prr1C8I2Jf8 f"Ii'InO

cal ,..mof •Proc(.rg.)
r---I r---I _.

"""""~ ,..mof •PfOC(.rp.)

APe Run-l'me Facility

-- ----------- ---r-------
....,."

--

In practice, the client and the server may need to be aware that they are operating in an RPC en­
vironment. The use of stubs cannot eliminate some essential differences between local and remote
procedure calls. In a distributed environment, the client and server can fail independently, perfor­
mance can be quite different, and there is no shared address space. Some applications may want
a specific server to process their calls, or t.hey may want to communicate with a number or similar
servers.

The Mica RPC Stub Generator can operate in a semi-transparent mode that allows the client and
the server to use some of the capabilities of the underlying RPC mechanism. For example, the client.
can specify which server is to execute a remote procedure by supplying a binding argument. on the
call, and the server can ask to be informed of client termination ifit needs to clean up client-specific
context.. Clients and servers must call the Mica RPC Run-Time Facility directly when they need to
use a capability to which the stub generator does not give them access.

55.1.1 Requ irements, Goals, and Nongoals

This section outlines the requirements, goals, and nongoa1s of the Mica RPC Stub Generator. Re­
quirements are those attributes !.he stub generator must have; goals are t.hose attributes the stub
generator should have, but may not completely satisfy; nongoals are t.hose 3ttrihutes which the st.ub
generator does not have.

55-2 RPe stub Generator

b

55.1.1.1 Requlremen1s

Digital Equipment Corporati on . Confidential and Proprietary
Restricted Dlstrlbut10n

The stub generator must support user-supplied server initialization and termination routines.

The stub generator mUit support all argument data types and all argument-passing mechanisms
supported by the Mica RPC Run-Time Facility.

The stub generator must support the foUowing items, if they are supported by the Mica RPC Run­
Time Facility:

• Server-maintained, client-specific context-This includes notifying the server of client termina­
tion when such context is being maintained.

• Calls from the server to procedures in the client-These callbacks can only be made by a server
when it is executing a call from the client it is calling back.

• Streamed calls-These calls allow the client to resume execution immediately when the call has
been sent to the server, without waiting for the server to complete execution of the call.

• Multithreaded application&-This is done using binding arguments .

• Call interruption.

55.1.1.2 Goals

The stub generator should support the following items, if they are supported by the Mica RPC Run­
Time Facility:

• Raising of conditions in the caller's environment as a result. of unhand led conditions in the called
routine's environment.

• Version control.

• Call 10 parameter on all procedure calls, if request.ed-The call [0 i. used to provide support
for client authentication.

55.1.1.3 Nongoals

At FRS, the Mica RPC Run-Time Facility win not be available to user-written applications. Thus
there is no need for the stub generator to be shipped with Mica; it. will instead be used as a tool for
the development of internal applications that need. RPC. These applications include Monitor. system
management. the client/server interface software, a nd various components of AlA. The long-term
strat.egy for the stub generator is discussed in Section 55.1.5.

The stub generator does not support asynchronous remote procedure calls.

The stub generator does not produce language-specific header modules. A header module contains
a source-language representation of the data types and procedures defined in the package. Instead
of producing header modules, the stub generator produces definition modules, as described in Sec­
tion 55.1.2.

55.1.2 Operat ion of the Stub Generator

The stub generator takes as input a pacJuzge d2finition written in Stub. the pocJwge definition lan ­
guage. Stub is based on Pillar. Language elements required for package definition are added, and
elements of Pillar that. do not make sense in a package definition are deleted . In addition, the use of
certain language elements is restricted . This prevents the use of data types and argument·passing
mechanisms that are not supported by the Mica RPC Run-Time Facility.

RPe Stub Generator 55-3

II

II

Olgltal EquIpment Corporation - Confidential and ProprIetary
Restricted DI.trlbution

The stub generator produces as output the Pillar source modules described in the following table:

Module Contents

Definition module This module contains defiritlons 01 the data types and procedures dellned in the pack­
age. The def.,ition module also delnes the package definition block. a global r!KOrd
used by the Mica RPC Run-lime Facili ty. The compiled version of the delinition mod­
ule may be imponed by cliant programs and server Implementations that are written In
a language whose compiler accepts definition modules.

Client stub module This module contains client stuba for each procedure implemented in the salVer. The
client stub module imports the definition module.

Server stub module This module contains the server srub for a package. The seIVer stub, which ia the main
entry point 01 the server image, calls server procedures as remote procedure calls are
received Irom the Mica RPC Run-lime Facility. The server stub module Imports the
definition module.

55.1.3 Implementation Strategy

The Mica RPC Stub Generator is implemented using the eompiler shell and super shell developed by
the DECwest compiler group. As their names imply, these sbells are designed as a framework around
which various eompilers can be built. They provide routines for handling language-independent tasks
that are common to the various compilers.

The following table uplaiN tbe vanous components of the stub generator. (In the table, "host­
refers to the system on which the stub generator runs, and -target- reCers to the system on which
the compiled program runs.)

Component Purpose

language driver (xlD) Command line parsing and opening and closing language·
specific tiles. Main entry point tor stub generator image.
Calls CS Master (see below) to begin compilation.

Super shell (SS) va, memory management, and error handling. Interface
between host operating system and remainder of the stub
generator.

Compiler sheft (CS) Cammon support routines, includ ing the lexical analyzer.
Also contains CS Master routine, which controls compila.
tion by calling FE and BE.

Front end (FE) Syntax and semantic analysis.

Back end (BE) Code generation.

Dependencies

language and host as

Host as

No","

Language

Target APC architectura

The super shell and the compiler shell are provided by the DECwest eompiler group. The language
driver, front end, and back. end are part oC the Mica RPC Stub Generator project. Parts oC the
language driver and the front end (notably, command line parsing) are based on their counterparts
in the Pillar compiler.

The code generated by the back end is Pillar source code, as described in Section 55.1.2, rather than
the object code normally produced by a compiler back end.

55-4 RPe Stub Generator

55.1.4 Oependenc~s

Digital Equipment Corpotltlon - Contldentlel and ProprIetary
Restricted Dlstrlbutlon

The stub generator depends on the stability of the compiler shell and the super shell. The shells exist
as of this writing, but are subject to change as development of the Pillar and C compilers continues.
The stub generator does not depend on the Pillar front end or back end.

The stub generator needs to know the details of the interface to the Mica RPC Run-TIme Facility.
These details are not currently available, but the stub generator is designed in a modular fashion 80

that it can easily adapt to various RPe mechanisms.

55.1.5 Long-Tenn Mica RPC Stub Generator Strategy

The stub generator described in this chapter is intended to be used as a tool for internal development
of distributed applications. When the Mica RPC Run-Time Facility becomes available to users, the
stub generator also needs to be available. The form that the user-visible stub generator takes is
undecided.

The internal version of the stub generator produces Pillar &ourre code. This source code needs to
be separately compiled using the Pillar compiler. It is probably (but not certainly) desirable for the
user-visible stub generator to produce object code directly. This could be accomplished by modifying
the stub generator to use the back end developed by the OECwest compiler group.

The corporate RPC effort includes the work of a group in SOT that is defining the language require­
ments created by RPe. That group is also defining the required program development tools, which
mayor may not include a stub generator and an associated stub language. The Mica RPC Stub Gen­
erator is designed and implemented in a way that makes it rela tively easy to adapt to the corporate
RPC model, if necessary. Because it will not be user-visible at FRS, we will not have compatibility
problems.

RPe Stub Generator 55-5

[I'

I
I

b

Digital EqulprMnt Corporation . ConfldenU.1 and Proprleblry
R • • trlcted Distribution

CHAPTER 56

AlA USER INTERFACE

56.1 Overview

This chapter describes the interface between Mica application programs and their human users.
DECwindows provides the user interface when the user is at a workstation with a bitmap (graphics)
terminal. This chapter describes the DECwindows implementation on Mica.

RMS provides the only character-cell tenninal support in the initial release of Mica. RMS supports
only a simple interface to these terminals; essentially, an application can only read and write line­
oriented data. See Chapter 26, Record Management Services, for a description of RMS's support for
character-cell tenninals.

56.1.1 Goats

Because of Mica's compute-server nature, Mica applications and their users will be on separate
systems. The AlA User Interface must provide support for this separation.

A state-or-the-ari user interface must be provided for workstation users. For users at character-cell
terminals, only a simple interface is required.

56.1.2 DECwIndow5

DECwindows l is built upon the industry·standard. X Window System Version llTN to give workstation
users a network· transparent application programming environment for windowing, graphics, and
state·of·the-art user interface services. When coupled with a base set of DIGITA.L-developed core
applications a.nd a library of third·party applications, DECwindows provides DIGITAL's customers
with a single, consistent view of application development and user interfaces.

By implementing DECwindow8 on Mica, we anow applications running on Mica to communicate with
users on remote workstations. These remote workstations do not necessarily have to be direct clients
of the compute server, as long as they are part of the compute server'. DECnet network.. A user
on a non client workstation must access a client system via DECnet in order to get the application
running on the compute server, but the compute server can communicate directly back to the nonclient
workstation.

A full implementation of DECwindows consists of the following components:

• . The X Window System (including device support)

•
•
•

Application programming libraries. For example, the DECtooikit

The User environment. For example, the window manager

Core applications. For example, the EPICIWRlTER

I Tha d..mptionl oI'DECwindoWil and ita compoMtltl in lhi. ~on an to alUJa anent utTacted and acbpted froaI Pater
Georg.'. VMS DECwi .. rJ.ow. VeN"''' 1.0 Prvjcct Ploro..

no X Window Syatem, V,nion 11 i •• {.TIdemark of the MUlac:bu.aetl.l: i.natitutl of TkhnolOJY.

AlA User Inlerlace 56-1

Digital Equlpm.nt Corporation - Confidential and Propr~t8ry
Restrlct~ Distribution

Figure 5~1 shows the major components of a DECwindows implementation, with the various com­
ponents listed above broken into their subcomponents2 . These subcomponents are described in the
fonowing sections.

NOTE

Because of Mica's compute server nature, its implementation of DECwindows does
not include the device support and user environment components. These compo­
nent. esecute as part of the compute server client's DECwindow8 software. In addi­
tion, we have no plans to provide any core applications. Most of these applications
are not compute-intensive, and are therefore not suited for running on the compute
server.

Agure 56-1 : DECwlndows Components

Compute Serverl
DECwlndows Client

I
I -- I
I

! I
I

oectoolkll I
r-
~-)

l
XI. "'-

! !
Tra~ Layer MaduIiM

I
I
I
I
I
I
I
I
)

I
)

I
)

I
I
I
I
I
I
I
I

Compute Server Client!
DECwlndows Server

Input arc! 0u1pJl
.",.. D<N~

! !
0..0. -, "' ... ~ M,,""

I I
OECwndows s.tv ... KrneI

I
TrafIIPOI'I\.ayer Modules

-------r------
x Netwottt Ptc)!ocoI

56.1.2.1 The X Window System

I
I '''''' .. , "'

""""

The X Window System provides the base upon which DECwindows is built. It consists of the following
components:

• DECwindows server and device driveT'8

• Network protocol and transport mechanism

• Xlib and Xtoolkit programming libraries

1 Plea .. not. the cWre,..rKII in definitioo. of _ and cliea.t.l ill the mmpute .. ,.,er eDvirorLment and the DECwindoon
enYiTonmen.L 10. th1a doamm:ll we will .. oId .ucb ronfwlion by u.ain8 the t.er=e eualJ as presented in f'i.guH 56-1 ""ban
referring to the dlllDt-lJervU nlationahip in DEC...mdO'Wl.

56-2 AlA User Interface

•

Digital Equipment Corporation . Confidential and Proprietary
Restricted Distribution

56.1.2.1 .1 OECwlndows Server and Device Drivers

The DECwindows server and its associated device drivers handle window management, drawing
operations, and user input. The Mica impleTMntation of DECwindows does TWt include iMse compo­
nents.

56.1 .2.1 .2 Network Protocol and Transport Mechanism

The X network protocol specifies the common language spoken by DECwindowlI clients and DECwin·
dews servers. It allows an application and its user interface La be Jogically separated across a network.

The transport mechanism used by ~{ica DECwindows is DECnet. Because there is no DECwindow8
server for Mica. a local transport mechanism is not needed.

Direct support for other transport mechanisms at FRS, for example TCPIIP, is not provided.

56.1.2.1.3 Xllb and Xtoolklt Programming Ubrarles

Xlib provides the lowest-level applications interface to the system. It acts as a thin veneer over the
network protocol and transport mechanisms, converting procedure calls into packets that are trans~
mitled to the DECwindows server. Xlib provides basic resource management and bitmap graphics
services. Examples of the resources managed t.hrough Xlib are windows, COIOT maps, and input
devices.

The Xtoolkit is a library layered on Xlib. It gives applications tools fOT building high-level user
interface objects like menus and scroll ban. The Xtoolkit is often considered to be a part of the
DECtoolkit, which is described in Section 56.1.2.2.1.

56.1.2.2 Application Programming Libraries

This section describes the programming libraries that are used to develop DECwindows applications .

56.1.2.2.1 The OEctoolklt

The DECtooikit detennines the application model for DIGITAL and third party software tailored for
the DECwindows environment. It establishes the conventions and styles that are encouraged for
applications that share a DECwindows workstation. Applications use the DECtooikit to build user
interfaces that look and feel like integrated members of the DIGITAL computing environment .

The DECtoolkit is built as a superset of the Xtoolkit. It comprises:

• Xtoolkit intrinsia-Tools for creating, managing, and modifying user interface objects (widgets)

• DECwindows widgets-Common user interface abstractions such as scrolJ bars, menw, and
buttons

• Utility routines-Functions that perform common tasks like cut and paste

56.1 .2.2.2 OOIF Toolkit

The DDIF Toolkit provides routines for creating, reading, and writing Digital Document Interchange
Format (DDlF) files. DDIF files provide an interchange medium for the exchange of compound text
and graphics images between applications.

AlA User Interface 56-3

Digital Equipment CorporaUon - Confldentlal and Proprietary
Restricted Distribution

56.1 .2.3 Implementation Strategy

DECwindows is currently being implemented for VAXNMS, VAXlULTRIX, PRlSM ULTRIX. and MS­
DOSTM . Portability is a high-priority goal for these implementations; code sharing is prevalent. ~ost
of Mica DECwindows will be implemented by porting the VAXNMS DECwindows Vl.O code to Mica.

The following components of DECwindows will be ported by DECwest for Mica FRS:

• Xlib

• Xtoolk:it

• DECtoollOt

Additional DECwindows software, such as the DDIF Tholkit, will be ported by SOT for Mica FRS.
Further details are TBS.

The Mica X transport mechanism (the interface between Xlib and DECnet) win be based on its
VAXNMS counterpart, but it win not be a port of the VAXNMS code.

The following components of DECwindows will not be available on Mica at FRS:

• DECwindows server and device driven

• User environment

• Layered libraries

Core applications

56.1 .2.4 Dependencies

The development of Mica DECwindows depends upon the availability of source code from VAXNMS
and on the availability of a PRISM C compiler. The source code will be available by August 1988.

TM MS.DOS i •• trademark of Mieroaoft Corpontion

56-4 AlA User Interface

Digital Equlp"..nt Corporation - Confidential and Proprietary
Restricted Distributi on

CHAPTER 57

MISCELLANEOUS RUN·TIME LIBRARY ROUTINES

57.1 Overview

This chapter describes the following three groups of routines that are contained in the Mica applica­
tions run-time library;

• Low-level math routines implemented by SDT

• Common Multithread Architecture (CMA) routines implemented by DECwest

• Print System Model (PSM) client1 routines implemented by OECwest

These routines provide a portion of the application program interface to Mica. Most of the routines
are designed to adhere to the emerging Application Integration Architecture (AlA). As noted in the
list above, the definition and development of the miscellaneous run-time library routines is the result
of a cooperative effort between OECwest and SOT.

Except for the Print System Model client routines, all of the miscellaneous run-time library routines
are implemented directly on Mica. The Print System Model client routines are provided via remote
procedure call to an implementation of PSM on the client.

Each of these three groups of library routines is discussed in turn starting with Section 57.1.2, which
describes the low-level math routines.

The Mica applications run-time library al80 contains other application program interface routines
that complement the capabilities provided by the routines described in this chapter. These additional
routines are described in Chapter 58, Application Run-Time Utility Services.

57.1 .1 Goals and Requirements

The miscellaneous run-time library routines share many of the goals and requirements of the AlA
program. Requirements include:

•
•
•

Library routine interface implementations must be feasible on all Glacier client systems.

Library routine definitions must allow for implementations with good performance.

Library routine implementations must be compatible with other non-Mica implementations of
the routines.

Goals include:

• To provide as complete a program interface to Mica a8 possible, without. including non portable
concepts or constructs into the lib.aries.

I Th. 1AI"m "ell.ct- in tb1.. ton~n r.f.,.. to _ eli.lll of lb_ PSM, nam..Jy _ pfOlt'alD I'I.lZlIling on lb_ eompu1.a HrvV that
lovo"" PSM to perform lOme _ctiCID on lb. compuI4 MnlU cli.Pll .

Miscellaneous Run-Time Ubrary Routines 57- 1

-
Dlglt.l EquIpment Corporation - Confidential and Proprietary
Restricted Dlstrl butlon

• To provide a set of routines that are architected in such a fashion as to allow efficient library
routine code implementations on all Glacier client systems.

Nongoals include:

•

•

•

The code for these library routines must be inherently portable. The AlA architecture requires
only that the interfrues to AlA routines be portable.

The routines provide interfaces to every underlying operating system capability or architecture­
specific hardware fealure.

The perfonnance of these routines must on average exceed that of similar, non-AlA operating­
system- or architecture-specific routines. \There is a cost for portability.\

57.1.2 Low-Level Math Routines

Math suppor t routines exist at two levels on Mica:

• A set of low-level routines designed for use by language run-time libraries and other run-time
library routines where absolute performance is paramount. The interfaces to these routines are
compatible with the VAXNMS implementations of the routines.

The low-level math routines are described in this chapter. Table 57-1 lists the entry points for
these routines.

• A set of high-level routines with AIA-confonnant interfaces. These routines are used where
absolute perlormance is secondary to portability.

The high-level math routines are part of the Application Run·Time Utility Services (ARUS) and
are described in Chapter 58, Application Run-Time Utility Services. The routine names do not
conform to the Mica naming standard for reasons of compatibility with prior implementations.

57- 2 Miscellaneous Run-TIme library Routines

.

Table 57-1 :

mth$obs
mthSacos
mtkSacosd
mthSaimag
mth$aimaxO
mthSaiminO
mthSaint
mthSqj=O
m,th$ajminO
mthSam.axl
mth$aminl
mth$amod
mthSanint
mthSa.sin
mthSa.sind
mth$atan
mthSatan2
mthSatand
mthSatand2
mthSatanh
mthScabs
mthSccos
mth$cexp
mthScgabs
mth$cgcos
mthScgexp
mthScglog
mtkScgsin
mthScgsqrt
mthSclog
mthScmplx
mthScorVg

Digital Equipment C()(por. t1 on - Confldentl. 1 . nd Proprlet.ry
Restricted Distribution

low-Level Math Routines

mthScos mthSgfioor mthSiior mth$reol
mthScosd mthSgfioti mthSiishft mthSsgn
mthScosh mth$gflotj mth$iu;,n mth$sign
mth$csin. mthSgimag mth$imaxO mth$sin
mth$csqrt mthSgint mthSima.xl mth$sincos
mthScuCd....8 mtMglog mth$iminO mthSsincosd
mthScuCda....ea mthSgloglO mthSiminl mthSsind
mthScut....8_d mthSglog2 mth$imod mth$sinh
mth$cut....eo_da mthSgmaxl mthSinint mth$snglg
mth$dim mtUgminl mth$inex mth$sqrt
mthSexp mthSgmod mth$jiabs mth$tan
mth$/looti mth$gnint mth$jiand mth$tand

mthSfIoa'j mthSgprod mth$jidim mthStanh
mth$fIoar mth$greal mth$j~or mth$uma..:r
mthSgabs mth$gsign mth$jifix mth$umin
mth$gacos mth$gsin mth$j;,int ots$diuc
mthSgacosd mthSgsincos mth$j;,nnt ots$diucg
mthSgasin mthSgsincosd mth$jint ots$mulcg
mthSgasind mth$gsind mth$jwr ots$powcc
mth$gatan mth$gsinh mth$jishft ots$powcgcg
mth$gatan2 mthSgsqrt mth$juign otsSpowC/li
mth$gatand mth$gtan mth$jmaxO ots$powcj
mth$gatand2 mthSgtand mth$jma.xl ots$powgg
mth$gatanh mth$gtanh mth$jminO otsSpowgj
mthSgcmplx mthSiiabs mth$jminl ots$powglu
mthSgconjg mth$iiand mtkSjmoci ots$powii
mth$gcos mth$iidim mth$jnint otsSpowjj
mth$gcosd mth$iieor mth$jnot ots$powlulu
mthSgcosh mth$iifix mthSlog otsSpowrj
mthSgdble mth$iigint mth$laglO otsSpowrlu
mthSgdim mthSiignnt mthSlog2 ots$powrr
mthSgexp mthSiint mth$rondom

57.1.3 Common Multithread Architecture Routines

The Common Multithread Architecture (CMA) specifies the essentiaJ semantics of executing multiple
threads of control within a single process's address space. CMA al80 defines a set of capabilities uaed
to execute these threads on different processors of a multiprocessor system. A series of CMA routines
with system-independent interfaces are included with Mica. These routines provide for the creation
and control of threads, and provide a full set of synchronization and notification primitives.

CMA is described in detail in the CMA dran functional specification. Table 57-2 lists the entry points
for the CMA routines. The routine names do not conform to the Mica naming standard for reasons
of compatibility with the Common Multithread Architecture.

Miscellaneous Run-TIme Ubrary RoutInes 57-3

Digital Equipment Corporation - Confidential and Proprleary
Restricted Distribution

Table 57- 2: CMA Routines

thd&>bo,Uh.-.ad
thd&>,uCth.-ead_exi'_handier
thdSbegin3ritical
thd$clear _elJent
thd$create_borriu
thdScreate_euent
thd$create_mutex:
thdScreate_serialJ'€8ion
thd$create_thread
thd$d<Uh.-.ad_O$'
thdSdecr _barrier
thd$delay _thread
thdSdelete_borriu
thdSdelete_elJent
thd$delete_mutex
thdSdelete_urio.l_region
thd$dequ.eu.e_ost
thdSdisobu_asynch_exception

thd$enable_asynch_exception

thd$ernCcriti.ca1
thd$enqu.eu.e_ClSt
thd$enqueue_osynch_ez.ception
thd$enter _seriaCregion
thd.$geCcontext
thd$geCcpu_time
thd$geCcurrenUhread_id
thd$gecnumber _ofJJrocessors
thd$geCthread)nfo
thd.$incr _barrier
thd$leaue_serioCregion
thd$loclcmutex
thd$nexCthread
thdS1lIJtify3uent
thdSno_thread
'luI.$paust_thnnd
thd$permit_osynch_erception

57.1.4 Print System Model Client Routines

thd$reacCbarrier
t~reGUi_euent

thdSread_mute:r
thdSreschedule_thread
thdSseCcontext
thdSseUkbu.g_uichandler
thdSseCdebug_iniCroutine .

thdSset-POuse3nobie
thd$setJ)riority
thd$thread_ast_hondler
thdStimed_loclc_ rnutu
thdStimed_waiCbarrier
thdStimed_waiceuent
thd$unlock_mute:r
thd$waiCbarrier
thd$woicelJent

The PSM client routines provide the program interface to the Print System Model. These routines
are not. yet specified; they will be specified by the PSM task group in 1988.

The PSM client routines are implemented as RPC stubs that perform RPC calls to the actual imple­
mentation of the routines on the client system.

57.1.5 Open Issues

•

•

•

•

The concept of sea.mlessness between Glacier and its clients suggests that the miscellaneous
run-time routines need to be implemented at or near FRS on all possible Glacier client systems.
This increases the overall effort and is potentially problematic under the current manpower
constraints.

This chapter discusses the scalar low-level math routines only. No mention is made of the
vector math routines. The interface for these routines is TBD and is expected to closely match
the VAX implementation of the routines. The vector routines are not user-visible. The Mica
implementations of the vector routines are not guaranteed to be bit-for-bit equivalent to their
VAXNMS counterparts.

This chapter does not include the definition of the Basic Linear Algebra Subprogram (BLAS), a
series of public domain low-level math routines. We assume that Mica will provide at least two
versions of this capability: the public domain BLAS, and a DIGITAL-modified vectorized BLAS.
The library the user links his or her image against determines which of these versions of BLAS
a user will use.

The PSM interface routines are not currently defined.. The definition is expected in mid-1988. If
not produced in time, a possible fallback is to provide RPC access to client-specific print facilities,

57~ Miscellaneous Run-Tlme Ubrary Routines

•

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distr ibution

CHAPTER 58

APPLICATION RUN-TIME UTILITY SERVICES

58.1 Overview

This chapter describes the Mica implementation of the Application Run-Time Utility Services (ARUS)
library. This library contains routines that provide the application program interface to Mica on
Glacier. These routines are designed to adhere to the emerging Application Integration Architecture
(AlA). The definition and development of ARUS on Mica is the result of a cooperative effort between
DECwest and SDT. The major part. of the implementation of MUS is performed by SDT.

There are severa1 discrete groups of routines contained in ARUS. Each of these groups is discussed in
turn starting with Section 58.1.2.1, which describes the ARUS routines used to allocate and deallocate
virtual memory.

The Mica applications run-time library also contains other application program interface routines
t.hat complement the capabilities provided by the routines described in this chapter. These additional
routines are described in Chapt.er 57, Miscellaneous Run-Time Library Routines.

58.1.1 Goals and Requirements

ARUS shares many of the goa1s and requirements of the AlA program. Requirements include:

• ARUS routine interface implementations must be feasible on all Glacier client systems.

• ARUS routine definitions must allow for implementations with good performance.

• ARUS routine implementations must be compatible with other non-Mica implementations of the
routines.

Goals include:

• To provide as complete a program interface as possible to contemporary DIGITAL-supplied o~
erating systems such as Mica, VAXNMS, and ULTRIX without including non portable concepts
or constructs.

• To provide a set of routines that are architected in such a fashion as to allow efficient library
routine code implementations on all such contemporary DIGITAL operating systems.

Nongoals include:

• The code for ARUS routines must be inherently portable. (The AlA architecture reqwres that
only the interfaces to AlA routines be portable.)

• ARUS routines provide interfaces to every underlying operating system capability or architecture­
specific hardware feature.

• The performance of ARUS routines must on average exceed that of similar, non-AlA operating­
system or architecture-specific routines. \ There is a cost for portability.\

Application Run-Tlme Utility Services 58-1

Digital Equipment Corpor.tlon - Confldentl.1 .nd Proprlewry
Restricted Distribution

58.1.2 ARUS Rout ines

Although the ultimate version of ARUS win include a wide range of TOutines, the FRS offering is
necessarily limited in scope. The FRS version of ARUS comprises those routines needed to support the
FRS layered products and bundled utilities. This section discusses only the utility RTL capabilities
fo r those areas in which there are FRS requirements.1

ARUS ia composed of two conceptually different types of routines: generic operating system services
and general purpose utility routines.

The generic operating system services provide, in an operating-system- and architedure-independent
manner, those services normally associated with an operating system, such as virtual memory allo­
cation. These routines are described starting at Section 58.1.2.1.

The general purpose utility routines provide access to common capabilities generally identified with
run·time libraries, such as various data conversion routines. These routines are described starting
at Section 58.1.2.7.

58.1.2.1 User Mode Virtual Memory AllocallontDeallocatlon Routines

ARUS contains user-level memory allocation and deallocation routines similar to the VAXlVMS
UBSVM routines. Unlike the LIBSVM TOutines, the ARUS routine interfaces do not use hardware­
specific allocation units, such as pages. All quantities are ez:pressed in terms of bytes.

\It is interesting to note that in a measurement made of the VMS RTL, the memory management
routines were the most frequently used of any RTL TOutines by a factor of 10. The perfonnance of
these routines is critical, especially of asi$geCm.emory.2

User mode virtual memory allocationldeallocation routines include:

• asi$geCmemory- mandatory for FRS

•
•

asi$free_memory-mandatory fo r FRS

asi$cre.au_memory _zone-mandatory for FRS

asiSdeleu_memory_zone-mandatory for FRS

asiSreseCm.em.ory ..zOf'll!

•
•

58.1.2.2 Condition Handling Routines

The ARUS condition handling routinea provide an AlA-compatible interface to the Mica condition
handling system. They allow the user to raise, modify, handle, and obtain information about condi­
tions in an operating-system-independent manner.

The condition handling routines implement a dynamic condition dispatching environment whose
semantics are based on the order of procedure invocation. This style of condition handling is identica.J
to that. present on VAXNMS, Mica, and PRISM ULTRIX. The implementation of these routines
utilizes the underlying operating-system-specific condition handling features. Note, however, that
these routines do not operate with the traditional tJNIXTw static signal handling capabilities.3

I Tbt. document ~(ho.m.w 0(. New Utility RTL" by AI Simons (contained in th. -AlA StTawma.n~) cont.aiM dac:riptiom of
eapabiliti .. for th. ,,,.aUla! ARUS b'bruy that an not rep~ent.ad in this eh'pWr. All .ucb OJUiaaiotUl indic.te that the
eapability dacribed ia not.. realiItic FRS d.U"erabl ..

I The.pellinr of aU ARUS routine name preft1u, i. TBD. The final routine nama will ha .. prefiJ: .. that .arv' to reinforca
the lotica1 groupin& of the routinaa.

.". UNIX is. tndamarlr. of AT&T
• That ia, the ooodition bandlitla routlna nail.ble In UNIX wt- .ctions are determined by the coolants or. pros:ram'e

-signal Vk\or.- For more inform.tion about !.haM l=orupatl.'ble c:ondltl.on handling ",uUn_. plUlllI! .ee Ch'pter 2 of th,
UNIX documentation.

58--2 Application Aun-TIme Utility Services

..

Digital Equipment Corporation - Confidential and Proprletalry
R .. trlcted Distribution

The Mica implementation of the ARUS condition handling TOutines allows for access to the infor­
mation in a Mica condition record in an operating-system-independent manner. The routines do not
provide access to the Mica mechanism record ezcept in a controlled way, for example, to replace the
return value registers contained therein.

Note that these routines do not provide the capability of VAXlVMS routines UBSESTABLISH and
UBSREVERT. As discussed. in Chapter 11, Condition, Exit, and AST Handling, those routines do not
exist on Mica.

Condition handling routines include:

•
•
•
•

•
•
•
•
•
•

•
•
•

arusSroise3ondition-mandatory for FRS (FORTRAN, Pascal)

arus$rep14cccondition

arus$odd-primary3ondition

arus$odd_secoruJary3ondition

arus$examine3ondition-mandatory for FRS (for applications not coded. in Pillar)

orusSunwiruCto301ler-mandatory for FRS (FORTRAN, Pascal)

arus$unwintCto_uit-mandatory for FRS (FORTRAN, Pascal)

arus$store]eturn_value-mandat.ory for FRS (FORTRAN, Pascal)

arus$exami1ll!Jeturn_oolue

arusSaddJJrimary_handler- not mandatory if DEBUG goes straight to the system as u:pected

arus$a.dd_lasCchanceJlandler-mandatory for FRS (FORTRAN, Pascal)

arusSdeleU..primary_handhr

arusSdelete_last_chance...ftancJler

\ It ha s not been decided whether there will be routines to map conditions from the underlying
system's condition facility into common AlA conditions, or whether there will be routines to provide
the means to obtain the condition name in a system-independent manner.

The question is: how does an application test for a condition such 88 end·of-file when the language
does not provide that mapping? Will an ARUS routine map SSS_ENDOFFILE to the equivalent
PRISM ULTRIX and Mica condition names or is that the responsibility of the application?

How thoroughly can we isolate the user from the underlying condition handling system?\

58.1.2.3 Date and TIme Conversion Routines

The date and time conversion routines are used to convert internal format time into te.rl, text into
internal format time, and to obtain and manipulate internal format time values. They allow flexibility
of natural language and format in both directions of conversion. These routines recogniu and process
the DIGITAL standard internal time format, 8S specified in standard <TBS>. On ULTRIX, there are
additional routines to convert between the UNIX standard intema1 time format and the DIGITAL
standard format.

Date and time conversion routines include:

• aur$geCsy,tem_time-mandatory for FRS

• aur$formoUiate_time-mandatory for FRS

• aur$formaCrelative_time-mandatory for FRS

• aur$converCdate_string-mandatory for FRS

• our$conuercrelative_time_string- mandatory for FRS

Application Run·T1me Utility Services 58-3

Digital Equlprl'Mlnt Corporation - Confidential and Proprietary
Restricted Distribution

•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•
•
•
•
•

our$free_date_time_context-mandatory for FRS

aurSgeCdateJormat-mandatory for FRS

aurSgeUTIluimum-,tate_length-mandatory for FRS

ourScllUo_numeric_reCtime-mandatory for FRS

aur$clIUo_numeric_abs_time-mandatory for FRS

aurScll(jrom_numericJeCtime-mandatory for FRS

ourSclItJrom_numeric_abs_time-mandatory for FRS

aur$clIUo_binaryJeCtim.e-mandatory for FRS

aur$clItf-to_binary_reCtim.e-mandatory for FRS

aur$clItJrom_binaryJeCtime-mandatory for FRS

aur$clItfJrom_binaryJeCtime-mandatory for FRS

aurSclItJrom_binary_obs_time-mandatory for FRS

aur$iniCdate_time_conte.xt-mandatory for FRS

aurSadd_mixed_times

aurSaddJei4tiue_times

aur$subtmcCabsolule_tirnes

aur$subtrocCrelatille_times

our$subtraccmi.xed_times

aur$compare_rei4tiue_tirnes

aurScompare_obsolute_times

aur$geCusers_i4nguage-mandatory for FRS

58.1.2.4 String Mapping Routines

The string mapping routines provide the ability to map one string to another. The complete archi­
tecture for these routines provides for a capability similsr to that available with VAXlVMS logical
names, including the ability to have secure mappings.

The FRS offering of string mapping routines is more modest. At a minimum level of capability for
FRS, these routines provide a uniform access to the underlying operating system string mapping ca­
pability. Such string mapping capabilities are known as logical namea on VAXNMS and environment
variables on ULTRIX.. Twa FRS support includes the ability to map a string to a single string, but
without any protection from user modification of the mapping.

\ We don't like these routine names. "String mapping~ requires too much explanation and RlogicaJ
name" is too embedded in the past, when the primary use for these mappings was providing de­
vice name independence. For tbis chapter, we'll use the term string mapping, but suggestions are
welcome.\

String mapping routines include:

• arus$create_strins_mLlpping- mandatory for FRS

• arus$mop_string-mandatory for FRS

• arus$delete_stri"l_mapping-mandatory for FRS

• arus$create_stringJTIllppingJable

58--4 Application Run-Time Utility ServIces

Digital Equipment CofporaUon - Confldentl.1 .nd Proprietary
Restricted Distribution

58.1.2.5 Process Information Routines

Pascal has a requirement to obtain the amount of CPU time consumed by the process. That is the
only currently known requirement for process information routines.

58.1.2.6 Command Language Interpreter Interface Routines

The command language interpreter (CLI) interface routines are used to provide a portable method.
for applications to receive and parse simple command lines. The format of the command lines is
operating system specific and these routines only enforce the concepts of command verb, command
parameter, command qualifier, and so on, without resorting to describing the lexical representation
of these entities. The method for describing commands. parameters, and qualifiers is cTBS:>.

The CLI interface routines also provide for obtaining the unparsed command line. Additionally, a
routine is provided to meet the requirement of the FORTRAN RTL to be able to pause program
execution and return control to the CLI.

58.1.2.7 Data Conversion Routines

Vu1.ually all of the capabilities present in the VAXNMS OTS$ routines are required at FRS to support
FORTRAN. Please see the documented OTS$ definitions.

58.1.2.8 Text String and Message Formatting Routines

The capability needed for text string and message fonnatling is similar to the SFAO system service
on VAXNMS, and the print{ statement in tbe C language. Like those facilities, the Mica text string
and formatting routines are driven by a control string. Unlike those facilities, they include inherent
support for internationalization.

Text string and message formatting routines include:

• arusSformaCtuCstri118-mandatory for FRS

• arus$geCmessage_text

58.1.2.9 String Routines

The string routines handle string allocation, copying, and deallocation. They closely resemble the
current VAXNMS STRS routines that provide these capabilities. Please refer to the VAXNMS doc­
umentation.

58.1.2.10 Table-Driven Parsing Routines

FORTRAN NAMELIST 110 currently utilizes the VAXlVMS routine named. LlBSTPARSE to perfonn
the parsing actions required. This general capability should be provided eventually in ARUS; if it is
not available at FRS, the FORTRAN RTL will have to provide its own parsing routines.

Application Run-TIme Utility Services 58-5

I

-

Digital EqulplT'llnt Corporation - Confidential and Proprietary
Restricted DI.trlbutlon

58.1.2.11 Math Routines

Math support TOutines exist at two levels on Mica:

•

•

A set. of low. level routines designed for use by language run-time libraries and other callers
where absolute performance is paramount. The interfaces to these routines are compatible with
the VAXNMS implementations of the routines. The low-level routines are described in Chapter
57, Miscellaneous Run-Time Library Routines.

A set. of high-level mat.h routines with AlA-oonfonnant. interfaces. These TOutines are used where
absolute performance is secondary to portability. The high-level routines are described in this
chapter. Table 5~1 lists t.he entry points for these routines.

Table 58--1 : Hlgh.Level Math Routines

math$tbs

58.1.3 Open Issues

• How to provide transportable condition handling is the area that is currently least understood .
We believe that the routines described in Section 58.1.2.2 are necessary and feasible. Our current
model may, however, change over the next several months as we learn more in this area.

• The most pressing issue in the area of the math routines is the lack of a defirUtion of AlA­
conformani math routine interlaces. This is delayed by the lack of a precise definition of the
phrase · AlA-confonnani.·

• The concepi of seamlessness between Glacier and its clients suggests that ARUS needs to be
implemented at or near FRS on all possible Glacier client systems. This increases the overall
effort. and is potentially problematic under the current manpower constraints.

58-6 Application Run-TIme Utility Services

Glossary

i

I

=

Dlglte' Equipment Corporetlon - Confldentlel end Proprlelllry
Res tricted Distribution

GLOSSARY

access vloletl on: An attempt to reference a virtual address to which the protection field in the PTE
indicates the reference is not allowed in the specified. access mode.

actlveted Image: An image file that has been laid out in the address space of a process. All relocations
and fixups have been performed, and control can be transferred to defined entry points within
the image.

active partne r SYSAP: The SYSAP that initiates a connection to another SYSAP.

adapter: An adapter is a communication intenace that connects the XMI bus to the Computer Inter­
connect (el) bus. The main function of the adapter is to move information between the Mica
host and another CI node. As used here, adapter refers to a specialized port.

address space: The set of all possible virtual addresses available to a process.

address s pace number: A 16-bit number that is unique for each address space in the balance let. See
the PRISM System Reference. Marwal for more details.

add ress space tables: St.ructures that reside in the last 4 MB of hyperspace used for managing the
process's address space such as the working set list.

AlA: Application Integration Architecture.

ARUS: Application Run-Time Utility Services.

AST: See asynchronous systl!m trap.

AST hand ler: A procedure that is intended to receive notification of a user-mode AST. These procedures
are part of the program and are associated with a particular event or system service completion
notification required by the thread during its execution.

AST handling fac ili ty: The Mica AST handling facility provides a mechanism for delivering asyn­
chronous event notification in user mode to threads.

AST object: A kernel object. used to interrupt the execution of a thread and cause a procedure to be
called in a specified processor mode. An AST object is in the category of kernel objects called.
control objects.

asynchronous system trap (AST): An even t that occurs asynchronous to a thread's execution, causing
the thread's normal execution to be intefT'U pted and an AST handler to be called. An AST cannot
occur unless the thread has established an AST handler for it.

atomic name: A name in the module name table that is not qualified by another name.

autoloader: A routine supplied with the Mica system that performs the dynamic activation of share­
able images at run time.

Glossary-1

Digital Equipment Corporation . Confidential and Proprietary
Restricted Distribution

autoload routine: See autoloader.

autoload vector: An autoload vector contains the information needed by the transfer routine to dis·
patch to either the autoloader or the target routine. It also oontains a self·relative pointer to
the information needed. by the sutoloader to fixup the target routine's image. (See also image
autoload lJecter.)

beckllnk; A link from a file or directory to its parent directory.

beckllnk p. th n.me: The "backwards· file name path, as represented by the sequence of backlinks
from a given file.

belance set: The set of all address space working seta currently resident in physical memory.

belance set manager: A system thread executing in kernel mode, responsible for increasing the number
of free pages in memory.

~nder: The system thread of the upper-level function processor that initiated the binding operation.

binding: (1) The process of joining one or more lower-level FPUs to a single upper-level FPU. (2) A
data structure containing information linking an RPC client to an RPC server.

block: The 512·byte unit of data that is transferred to and from mass storage devices.

block data tr. nsfers: Allow arbitrary quantities of data to be transported between systems. All data is
guaranteed to arrive in the order sent and without duplication, or an error condition is reported
to the sender.

bootable lmage: Bootable images are just code and data with no image header that are loaded by the
console according to the PRISM Sysu:m Reference Manual.

bound job: A Mica User, Job, ProceS5, Thread hierarchy whose execution is controlled by compute
server support software and whose context information is derived from that of the user who
initiated execution of the bound job.

buller handle; The location of the start of the buffer header.

buffer header: A data structure found at the start of each allocated rec:ieve buffer,

bullt·ln self tests: Logic tests built into hardware components.

bundled shadowing: Shadowing technique used by VMS that relies on the disk controller to support
some of the shadow set maintenance.

callbeck: A call from an RPC server procedure to a procedure in the calling client

c.ll bllck table: A data structure containing the callback entry points received by a lower·level function
processor from an upper-level function proessor. The callback table is created in the channel
object FPU data area.

calling stand.rd: See PRISM calling standard.

captured: A process in which parameters are copied to safe storage within the executive's address
space (typically the [RP).

channel: An object that specifies a path or a point of connection to a n FPU.

Glossary-2

Digital Equipment Corporation _ Confidential and Proprietary
Restricted Distribution

channel Index: A unique identifier assigned to a channel by the NY function processor. The 1\'1
function processor assigns this channel when the io$C3onfigure3hann.e1 function is invoked.
The channel index identifies the channel for packet reception.

Cheyenne: A database server that provides DDA-compliant relational database services to appUca­
tions executing on a VAX front end. Cheyenne includes Mica, Quartz, and Stone.

class: For the Monitor Utility, a group of data items that provide a statistical measure of the perior­
mance of a particular subsystem.

client; The calling program in an RPC environment.

client context server: A component of compute server support software that executes on the client
system. Together with the Glacier job oontroller server, the client context server provides the
mechanism by which user Mica images are executed on Glacier.

client In.tallatlon: A software installation performed on a client machine, for example, a VMS machine.

client .tub: A routine in the client stub module that is called by the user code and routes the call to
the server using the RPC run-time facility.

clone: Duplicate.

cluster: A cluster of program sections combined into one or several image sections. Program aed:ions
can be clustered either by specifying the programs sections directly, or by specifying the modules
that contain the program sections.

cluster factor: The unit of space allocation on Files-ll volumes.

CMA: Common Multithread Architecture.

code Mctlon: A section containing all the executable code for a module. It is directly generated by
the compiler and is not modified by the linker, except to combine like-named PSECT (program
section) contributions into image sections.

COM: See copy on modify.

combined priority: See thread priority.

command ring: An 1\' controller-related data structure located in the host memory. It is used to
communicate the Nt function processor's special command and transmit packet requests to the
Nt controller.

composite object module; A module created as the result of merging multiple object modules into a
s.ingle object module; when this is done, all intermodule relationships are resolved, PSEC"I'lI are
concatenated, and a new symbol table is generated.

compound name: A name in the module name table that is qualified by other names. Compound
names provide a means for languages to implement multiple name spaces in a way supported
by both the linker and librarian.

condit/on: An error state that results from an error encountered during thread execution. When
a condition is raised, the thread's execution is interrupted and the thread atarts executing a
system-supplied dispatch procedure, which locates a condition handler.

condition handler: A procedure written as a part of a program or supplied by a run-time facility to
handle conditions if they oceur during the execution of that program..

Glossary-3

i

...

Digital Equipment Corporati on - Confidential and Proprietary
Restricted Distribution

condition handling fllclllty: 'The Mica condition handling facility provides the mechanism by which
condition handlers are found and established (either at runtime or compile time). This facility
provides a mechanism by which all error conditions encountered during a thread's execution
may be reliably handled by the thread in a controUed manner.

condition record: A data structure that contains all condition values and arguments associated with
a condition.

condition .,ector: Each quad word-aligned entry in a condition record. All condition-specific arguments
present in a condition vector are in descriptor fonnal.

connllction: The logical link between two SCS cliente. The state of the connection between two
clients must be open for them to communicate. A eonneetion is implemented on top of a vir tual
circuit. There are many connections to each virtual circuit. If the virtual circuit "breaks,M then
all connections that are implemented on that virtua1 circuit are also broken.

context handla : A handle that identifies state information (contezt) being held by a server OIl behalf
of a elient.

controller: A control1er is the hardware interface between the XMl bus and a directly-connected
device.

control obJect: A kernel object used to direct the operation of the kernel and to control processor execu­
tion. Control objects differ from dispatcher objects in that they are not used for synehronization,
cannot be waited on, and do not have a state.

control space: A 64--megabyte region of virtual address space reserved for address space specifie
kernel structures, sueh as the kernel stack.

copy on modify (COM): The method used by memory management to allowing sharing of data. A page
may be read freely, but it must be copied before the modifieation can be made.

counterpart: One of two or more logical bloek u nits in a Bhadow set. Each counterpart holds the same
data. as every other counterpart in the Bhadow Bet.

cr.at..,f·nonexistent: This option can be Bpecified at disk file creation time. It indicates that the
specified file will be created if B file of the same name does not mst in the specified direct.ory.

cr. dit; A "send creditM is the permission for an 8CS client to send one menage to a remote client. A
Mreceive credit" is the permission given to a remote SCS client to Bend one message.

datagrllm f queue (DFREEQ): A datagram free queue is used by a Computer Interconnect (en adapter
as a buffer source to format and deliver unsequenced CI pac:kets. A IeperBte queue is established
for eaeh CI adapter by the device function processor controlling the adapter. The device function
processor maintains the buffers allocated to this queue.

datagr. ms: Relatively short messages that have a high probability of being received by the partner.
There are no guarantees that the partner will receive the datagram, that the datagram will not
be duplieated, or when the datagram will be delivered. Datagrama are typically used to send
error log packets.

detagrams: Short messages used by the MSCP controllers to notify the host of eertain events.

deta r.\oc.tJon tabla: A table describing all fixupa that must be performed by the linker to the data
and linkage sections of the module, based on program section addresses.

data section: A section containing a11 the data defined i n the module. Some of this data is read only
and some is read/write. This section also contains the linkage ($LINK) 1JeCti0n and all entry
descriptors for routines defined in the module.

Glossary-4

m

Digital Equlpnwnt Corporation - Confidential and Proprietary
Restricted Distribution

data transfar functions: Functions which include: reacling, writing, comparing, erasing, and accessing
data on disks. These functions are supported by all logical block unit function processors.

DDA: DIGITAL Database Architecture.

debug symbol table: A symbol table built by a compiler containing sufficient information for the
debugger to interpret. user commands and display memory contents in "the cutTent. programming
language."

demand zero: A page that ia initialized to contain a11 zeros wben dynamica1ly created in memOry as
a result. of a page fault .

device: Any piece of hardware that can be the target of a cliagnostic lest.

device function processor (DFP): A type of function processor used to transport commands to the device
hardware. The device function processor provides the same support aa the device driver provides
in VMS.

device work queue Object: A repoai tory for device work queue entries that ill used to communicate
between a driver thread and its interrupt service routine. A device work queue object ia in the
category of kernel objects called control objects.

DFP; See device function processor .

DFREEQ: See datagram. free queue.

diagnostic tile: An executable image file containing a diagnostic program.

diagnostic pass: The execution of a1l selected diagnostic tests on a particular device, one time.

dIagnostic run: The execution of all selected diagnostic teats on all selected devices. for the aelected
number of times .

diagnostic subprocess: Diagnostic programs are run as subprocessea started by the PDM server, and
are known as diagnostic subprocesses.

diagnostic subtest: A set of procedures making up a diagnostic test.

diagnostic test: A set of diagnostic subt.ests making up a diagnostic program.

DIGITAL Storage Architecture (DSA): The DIGITAL Storage Architecture (DSA) defines the a1gorithms
and protocols used to communicate with disks, tapes, and mass storage controllers, aJong with
a process for managing evolution and enhancements to these algorithms and protocol • .

direct massage section descriptor; A pointer to a message section.

directory: A list of files or directories on a mass storage device.

directory backllnk: A backlink from a directory to its parent directory.

directory entry: A filename in a directory.

directory name: Character string that represents a directory.

directory path: A list of directory names. The first element in the list is a directory in the root
directory. The aeeond element in the list is a directory in the first directory, and &0 on.

Glossary-S

J.

Digital Equipment Corporation - Confidential and Proprietary
Restricted Dis tributi on

disk config uration functions: Functions which include bringing a unit online, initializing a stripe or
shadow set, addi.ng a counterpart to an existing shadow set, and so on. Most of the configuration
functions are unique to a specific function processor.

dispatcher : A system-supplied dispatch procedure that locates and calls condition handlers. The
di spatcher executes as if it had been called immediately after a condition was raised.

dispatcher object: A kernel object that is used to control and synchronize thread access to data
structures and external events.

DSA: See DIGITAL Storage Architecture.

DSA 1: Refers to the C'UJ'T'ent generation of the DIGITAL Storage Architecture .

DSA 2: Refers to the next generation of the DIGITAL Storage Architecture. DSA 2 is under devel­
opment and is not well defined at this time.

DSRI : DIGITAL Standard Relational Interface-the component of DDA that specifies a mechani sm
used by host programs to interface to relationaJ database systems.

DSRl: DIGITAL Standard Relational Languages-the component ofODA that specifies the DML and
DOL used within programming languages to access relational database systems.

DSRP: DIGITAL Standard Relational Protocols-the component of OOA that specifies database­
rela ted intel"System protocols, used to communicate between host programs and remote database
systems or between multiple database systems.

dynamic activation: Delaying the activation of an image (into memory) until it is actually referenced .

environment: A name space in which local or internal symbols are defined. Global symbols may
be viewed as being in the -root- environment and therefore do not need t.o be qualified by an
environment name.

event object: A kernel object used to record and synchronize the occurrence of an event with some ac­
tion that is to be performed. An event object is in the category of kernel objects called dispatcher
objects.

executable Image: An image produced by the linker, with a base address of 64K (or 10000 hex)
assigned t.o the image. Executable images must have a transfer address or the linker generates
a warning at link time.

exit handlers: There are two types of exit handlers: thread and process exit handlers. Thread exit
handlers are called when a thread exits. Process exit handlers are called when the last thread in
a process has finished executing the last of its thread exit handlel"S . Exit handlers are established
using a system service and kept as a list in either the TCR (for thread exit handlen) or the peR
(for process exit handlen).

n it handling tacntty: The Mica exit hand1ing facility gives threads the capability of specifying and
executing procedures in user mode during thread rundown. This facility allows threads and
processes to perform overaJl clean-up actions on their environment, deallocation of system re·
sources, or emergency actions.

ex~nded file . peclflcatl on: A fully defaulted and translated file specification.

taclll ty-regis tered s tatus: A 64-bit value which contains a facility-registered status value.

taclllty-registered s tatus value: A status val ue unique across the entire system.

Glossary-6

Digital Equipment Corporation - Confidential and Proprietary
Rn trlcted Distribution

fault on execute: Incllcates that a user or kernel program attempted to execute infonnation on that
page.

fault on read: Indicates that. a user or kemel program attempted to read information on that page.

fault on write: Indicates that a user or kemel program attempted to write information on that page.

field replaceable unit: A piece of hardware that can easiJy be replaced at a customer's lite. The
amallesl piece of a hardware subsystem that is typically replaced at a customer's site when
repairs are being made .

fila: A named collection of data that is organlzed int.c blocka.

file access: Defines the type of record operations that the program win perform on the fiJe. The
record operations that can be performed are: delete, get, put, truncate and update. (See ruso
file share options .)

file allocation options: Options that can specify the file space allocation amount, default extension
amount, and placement control.

file attributes: Characteristics of a file that are used by software, such as RMS, to specify and deter­
mine the current condition and organization of the file .

fUa channel : A channel to an accessed file, as represented by the presence of the file's access types in
the function code access type (FCAT) table for the channel.

fil ename: The character string and venion used t.c identify a file .

filename path: The combination of a filename and a directory path. The final element in the directory
path is the directory in which the fiJename is entered.

fila organlz.atlon: The arrangement. of data within a file .

fila raference: A function-processor-specific reference to a fiJe, which might. be used to optimize access
to the file .

fil e s ha re options: Defines the type of record operations t.hat the program allows other programs
sharing access to the specified file to perform. (See also file access.)

fix-up; An action taken by the linker to ruter an image 80 that it becomes memory-ready.

Flint: See PRISM ULTRIX.

How control: Flow control inhibit.s a sender from sending information until the receiver has provided
a buffer to hold the information. Crecllt. accounting is used to implement flow control.

FP contaxt ' rea: An area reserved by a function processor following its FP parameter record in an
IRP's free area. This area is allocated by the function procelJ.8()r if it. needa t.c store additional
context information in the IRP.

FPD: See fu~tion. processor descriptor.

FP paramatar record: Function processor parameter records hold the user VO parameters for the
request in an internal format., or the parameters of an internal request passed from ODe function
processor to another. In addition, an FP parameter record may bold a certain amount ofinternal
context for t.he request.

FPU: See fu~tion processor unit.

Glosslry-7

Digital Equipment Corporation - Confidential and Proprietary
Restrleted Distribution

front-end Installation: See client installation.

funetion code access type (Fe AT) teble: A table t.hat defines the access types for a11 legal function
codes.

function processor: A collection of kernel-mode procedures and threads that execute 110 requests.

function processor callback: The mechanism used by a lower-level function processor to communicate
with an upper-level function processor.

function processor descriptor (FPC): Each function processor has a function processor descriptor (FPD)
object that maintains the addresses of each globa1 procedure in that function processor. as well
as cert.ain function-processor-specific parameters. When the function processor is needed to
process an 110 request.. the address of the appropriate procedure within the function processor
is looked up via the FPD object.

function processor unit (FPU): A function processor accepts requests on one or more function processor
units (FPUs). An FPU is an object that represents a particular resource to higher levels of
software. All requests to a resource are directed to its respective FPU.

Glacier: A rugh-performance compute server wit.h vector capabilities for VAX and PRISM worksta­
tions. Glacier includes Mica and Moraine, plus the compute server support. software that runs
on its clients. Another implementation of Glacier includes PRISM ULTRIX and Moraine. A
later implementation of Glacier includes Stone in the plaee of Moraine.

Glacier Job controller server: A component of compute server support software that executes on Mica.
Together with a client context server, the Glacier job controller server provides the mechanism
by which user Mica images are executed on Glacier.

global symbol: A symbol (vaJue or location) defined in one object moduJe. whose value is made
available by the linker to other object modules.

global $ymbol table : A table describing symbols defined or refereneed in a moduJe. The global symbol
table parallels the module name table. That is, programs must walk both tables at the same
time to obtain all the attributes of an element in the global symbol table.

hardware conditions: Conditions that. occur when a thread attempts some action defined as incorrect,
impossible. or not. yet possible by the hardware. Such action results in a hardware exception
interrupting execution, which in tum causes a condition to be -raised in the t.hread which was
executing.

hos t area: The area of a disk reserved for host-specific information.

host transfer list (HTl): A data structure used to describe the direct 110 buffer with an array ofphysica.l
addresses. When a function processor is caned at its initiali.r.e 110 parameters entry point, an
HTL is created by the function processor if direct 110 is to be done.

Hn.: See host transfer list.

hyper s !>'ce: An B-megabyte region of virtual address space reserved for mapping page tables, work­
ing set, and address space specifie structures.

Image: A file resuJting from linking several object. modules together. PSEC'lB are gathered into image
sections, and there are no unresolved external references.

lmaga activator: The part of t.he system responsible for loading image rues into memory and preparing
them for execution.

Glossary-8

Digital Equlpl'Mnt Corporation - Confidential and Proprietary
Restricted Distribution

Image autoload vector: A set of entry descriptors generated by the linker to implement the automatic
loading of shareable images at run time (rather than activating all referenced images at image
activation). (See. also autoload vector.)

Image fix-up: See fix·up .

Image relocation tables : A relocation table ,,-ithin an image describing how memory locations ",ithin
the data section are fixed up once the image has been activated. The linker generates relocation
tables for symbols defined within the image. symbols defined in other images, and TLS region
counts.

Image section: A collecLion of PSECTs with like protection attributes, found only in images.

Image section descriptor (ISO): Part of an image header for a section. Contains information about the
image section.

IndlrKt message section descriptor; A pointer to a file which contains a message section and a null
message section poin ter.

Initial Ins tellatlon: A type of standard installation used when a system is being installed for the first
time .

Inltlallutlon routines : Routines called by the image activator when an image is first activated.

Interface class: Function processors sharing similar access characteristics are said to belong to the
same interlace class. AIl of the function processors in a class make up a single programming
interlace. Examples of common interface classe8 are the directory structured file system class,
logical block class, logical magtape class, and 80 on.

Internal status: A 64·bit va1ue which contains a facility·registered status value and a S2·bit facility­
defined data entity.

Interprocessor Interrupt: A synchronization mechanism used by one processor to notify another pro­
cessor of pending work it is to perfonn.

Interrupt callback: A procedure specified by a thread to synchronize with an interrupt procedure across
all processors in the system.

Interrupt object: A kernel object used by a driver thread to connect an interT'Upt vector in the system
control block (SCB) to a device interrupt aervice routine, or to dilCOnnect 8uch a vector. An
interrupt object is in the category of kernel objects called control objects.

Invalid PTE: A PTE with a zero in the VALID bit.

Invocation descriptor: A Quad word-aligned data structure that provides basic information about a
routine. This structure is used in calls between separately compiled routines, and in interpreting
the call stack that exists at any point in the execution of an image. Entry descriptors are defined
by the PRISM oalling standard.

Invocation descrlptor-based handlers : These handlers are located from a procedure's invocation de­
scriptor. They are used to implement a particular language's condition handling aemantics.
For the PiUar language, they are used to implement structured condition handling. Invocation
descriptor-based handlera are established at compile time and may be called multiple times
when multiple conditions are active.

va parameter record: A data structure containing a combination or 110 parameters, pointers to pa.
rameters, and buffer descriptors. An I/O parameter record is defined specificaUy for the function
procesBOr class and function code of the request in which 110 parameters are specified.

GlosSIIry-8

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

VO request packet (IRP): An I/O request packet (IRP) is a data structure used intemal1y by the 110
system to represent an individuaJ request for I/O. An IRP is created by the I/O subsystem when
a request for I/O is issued and remains in memory until the I/O operation completes. During
the course of an 110 operation, an IRP may be passed from one function processor to another.

10SB: See I/O status block.

uo status block (IOSB): A data structure into whlch status information is written by the e:w:$reque.sC
io service upon successful completion of a request. The format of an I/O status block (IOSB) is
the same as the JOSB in VMS, on1y each field is double in size.

IRP: See 110 request packet.

ISO: See image section tkscriptor.

kernel mode entry page: A page which is protected as user read, kernel read, kernel write. with fault
on execute enabled. Kernel mode entry pages are used to dispatch to system services

kernel object: A data abstraction used to control processor execution or synchroniz.ation. There are
two kinds of kernel objects: dispatcher objects and control objects. Unlike an object defined by
the object architecture, a kernel object is not directly available to user software.

layered product software: A software product not part of the base system.

level : For the Monitor Utility. the current vaJue of a data item, that is. a -snapshot."

IInkege ($L1NK) 'ectlon: The portion of the module data section that contains pointers to data. The
linkage section is generated by the compiler. and address relocations to this section are per­
formed by the linker, using information in the address relocation table. The linkage section
must not be shareable, as it contaiJl!l process-private addresses.

linkage pair: A linkage pair consists of the addresses of a procedure's invocation descriptor and entry
point.

loader: The part of the system responsible for loading object modules into memory, resolving external
references, and preparing object modules for execution. The loader may be implemented as part
of the image activaLOr.

local procedure call : A procedure call in which the called routine is in the same address space as the
calling routine.

local RPC: A special remote procedure call in which the two address spaces are on the same system.

local status: A 64-bit value which cont.a.ins a local status vaJue and the address of a message data
structure.

local status value: A status va1ue loca1 to a particular facility.

locate mode: Thchnique used for record retrieval operation in which RMS returns a pointer to the
record which is in the RMS I/O buffer and the record length of the retrieved record. (See also
moue mode.)

logical block Interfac.: A set. of procedure calls used to configure disks and access data on disks. These
procedures support data transfer and disk configuration functions.

major priorHy: That part of thread priority that is controlled by the kernel.

Glossary-l0

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

manager thread: A system thread, created by the NI function processor, that is associated with an NI
controller. This thread is responsible for the general management of the NI function processor.
This includes controller configuration and reronfiguration, powerfail recovery, allocating receive
buffers, and self deletion.

mapping object: Contains a point.er to the section object for a section, and the virtua1 address ranges
of the section.

mastar sava sat: A master file containing a directory of all other save sets. (See al80 aaue Bet.)

maximize vatslon: This option can be specified at disk file creation time. It. indicates that the specified
file will be created with a version number one greater than a file of the same name in the specified
directory.

mechanism record: A data structure that contains information regarding the environment. at the time
of a condition, together with the environment of a hand1er when it is called.

memory managament aubsystem: A combination of hardware and software functions that performs
the mapping of physical address space into a process's virtual address space.

memory-ready: Ready to be loaded into memory. A memory-ready image is one requiring no fix ups.

message category: A 32-bit field in the header portion of a message; identifies a subset of a message
class.

message class: A 32-bit field in the header portion of 8 message; identifies the set of &11 message
categories relating to a particular subject.

messaga FPU: See message function processor unit.

message frea queue (MFREEQ): A message free queue is used by a CI adapter as a buffer BOurce to
format and deliver incoming sequenced messages. The device function proces80r cont.TOlling the
CI adapter establishes a seperate queue for each adapter. Eacb connection over the adapter's
virtual circuits a1locates butTers to the queue by using the SCA flow control mechanism •.

messege function processor unit: Anyone of the FPUs through which threads accels the message
function processor.

message . actlon: A data structure which contains message numbers and the associated message text.

messaga type: A quadword specifying a message class and one or more message categories within
that. class.

MFREEQ: See message free queue.

Mica: An object-baaed, modular operating system that supporta symmetric multiprocessing and mul·
tithreaded processes. It. is the base system 80ftware for Glacier and Cheyenne. Mica is written
in a higb-levellanguage (PiUar) so as to be readily maintainable and ert.enaible.

minor priority: That part of thread priority that can be explicitly modified in order to give preference
within 8 major priority level.

modified page writer: Writes pages from the modified page list. to backing .tore as needed.

module; A file, containing names and related information, that conforms to the described module
format.

module Madar: The first record in a module. A1l information in a module can be located directly or
indirectly through information in the module header.

Digital Eq uipment Corporation - ConfidentIal and Proprietary
Restricted Distribution

module name table: A table containing the names of 811 symbols and PSECTs defined or referenced in
the module. It contains both atomic and compound names. Entries in the module name table
correspond one-to-one with entries in the globa1 symbol table.

Monitor Utility: A 1fica utility that displays and records information about system resource usage.

Moraine: A multiprocessor, bounded system built by OECwest. It includes one-to-four scalarlvector
processor pairs, a crossbar-switching backplane, and XMI 1/0; it. uses CMOS D technology.

move mode: Technique used for a record retrieval in which the data records are copied from·RMS
1/0 buffer to the program buffer.

multicast address : A predefined datalink address associated. with one or more logically related stations
on the :NI.

mutax object: A kernel object. used to control exclusive aca:ss to a resource. A mutex object is in the
category of kernel objects called dispatcher objects.

Network Interconnect : See NI.

NI: Network Interconnect. A network interconnect can be either an Ethernet LAN or an IEEE 802.3
LAN.

NI physl~1 eddress: A datalink address associated with a particular link attachment. of a node on
the Nt.

notification messages: Messages written to a message FPU that announce the asynchronous arrival
and departure ofuniis (these units are disks for the MSCP function proce880T, and counterparts
within the shadow set for the disk shadowing function processor). Notification messages are
used to report changes in the configuration for 110 requests.

object module: The output of a compiler, a single module generated from the source language.

observation petlod: For the Monitor Utility, the beginning and ending times for viewing or summa­
rizing current or previously recorded data.

ODS file IdentlfJar: The 10 number assigned to a file .

on-dlsk contaxt: Context stored on the disk, which is independent from the context used by the file
system.

on-disk context sector: This is a sector of reserved space at the end of the host. area on the disk. This
context area is used by the striping and shadowing function processors to store noo-file context
information.

on-line Install,tlon: A software installation that occurs whiJe the system is performing normal activity.

operetlng system software: The base system software (Mica).

p,ackage definition: An instance of the definition of an RPC package, writteo in the package definition
language, Stub.

p,ackage definition block: A global record defined in the package definjtion module generated by the
stub generator, and used by the RPC run-time facility.

p,ackage definition language: A programming language that is used to define an RPC package.

p,age: A set of8192 contiguous byte locations beginning at an even 8192-byte boundary, used 88 the
unit of memory mapping and protection.

Glossary-12

..

Digital Equipment Corpotlltlon ~ ConflcMntlal and ProprMitliry
R.strlct.d Distribution

page fault: An exception generated by a reference to a page that is not in the working set of the
faulting address space.

page fault clustering: The act of reading more than one page from the disk to satisfy a page fault.

page file format: A form of an invalid PrE which refers to a page which currently resides in the
paging rue.

page frame number (PFN): The high·order 32 bits ofthe physical address of a page in physical mt;mory.

page frame number database: A memory·resident structure containing information about each page
in physical memory.

pager: A set of executive procedures which execute in kernel mode 8B the result of a page fault.
The pager makes the page for which t.he fault OCCUlTed available in pbysical memory 80 that
the image can continue execution. The pager and the image activator provide the operating
system's memory management functions .

page table ba .. register: See the PRiSM System Reference Manual for more details.

page table entry (PTE): The data structure that identifies the physical location and status of a page
of virtuaJ address space. 'When a virtual page is in memory, the PrE contains the page frame
number which maps the virtual page to a physical page. When it is not in memory, the PTE
contains the information needed to locate the page.

page table pages: Lists of page table entries, these lists manage the complete address space.

paging: The action of adding and removing pages from the working set.

paging file: The rue which modified pages are written to when the physical page is reused.

passive partner SYSAP: The SYSAP to which an active partner SYSAP initiates a connection.

path: At leas t. one path exlsts between any two systems that can communicate. A path corresponds
to the underlying physical interconnect that joins the two systems. If multiple intereonnec:t.s
join two systems, there can be multiple paths between them.

PB: See processor control block .

POM: See PRISM Diagnostic Monitor.

POM .. rver: The portion of the PRISM Diagnostic Monitor that resides in PRISM and controls the
operation of PDM·based diagnostic programs.

POU User Interfac. Module: The portion of the PRISM Diagnostic Monitor that provides PDM's user
interface, and resides on the client in a client·server environment.

PFN: See page {roTM number.

phvslcal addr.ss : The address used by hardware to identify a page in physical memory.

physical eddress space: The set of all possible 4-S·bit phymcal addresses that can be used to refer to
locations in memory space or 110 space.

piggyback AST: An AST procedure used to unmark the state change data structure. The piggyback
AST executes the wSstate3hange_ClSccleonup procedure when the state change AST is delivered
to the thread by the kernel. After the piggyback AST procedure completes, the kernel delivers
the normal AST to the thread, and the thread's AST procedure.

Glossary-13

DIgItal EquIpment Corporation - Confidential and Proprlatary
RestrIcted DIstrIbutIon

Pillar: A high-level, stat.e..of-the-art systems programming language designed for 32-bit and 64-bit
DIGITAL systems. Pillar is the software development language for the Mica operating system.

port: A port is an intelligent hardware interface to a CI bus. A CI port implements parts of the SCA.

port data block: An Nt controller-related data structure used during the controller initialization. The
port data block gives the Nt controller the location of a data structure in the host memory to be
used by the controller and NI function processor to e.z:change data..

power-up request object: A kernel object used to request that an AST be queued when a power
recovery interrupt is generated. A power-up request object is in the category of kernel objects
called control objects.

power-up status object : A kernel object used to request that a specified. variable's value be set to TRUE
when a power recovery interrupt is generated. A power-up status object is in the category of
kernel objects ca.Iled control objects.

pt'eUmlnary connections: Preliminary connections are connection requests by remote SYSAP partners
that are not yet accepted or rejected by the loca1 SYSAP. The connect data structures for these
requests are associated with the UO channel used by the SYSAP to enter its name in the listen
directory.

prImary flte specification: The file speci6cation to which defaults are applied.

prImary system thread: A type of system thread used to configure a stripe set or shadow set for
modification by secondary system threads.

PRISM: New computer architecture designed. to be simple, flexible, expandable, and fast. All the
hardware described in this glossary uses the 32-bit PRISM architecture; the architecture is
designed to permit expansion to 64 bits in the future.

PRISM calling standard: The standard sequence used to call a routine. The PRISM calling standard
is defined in the PRISM Extended Calling Standard.

PRISM DiagnostIc Monttor (PDM): A controlling environment for all loadable PRISM diagnostic pro­
grams.

PRISM ULTRIX: A world-class Ul\'1X product tailored to PRISM workstations and compute servers
that supports DECwindows and AlA. PRISM ULTRIX shares some low-level components and
architectures with Mica..

procedura call : The action of invoking a procedure.

process object: A kernel object that represents the address apace and control information necessary
for the execution of a set of thread dispatcher objects. A process object is in the category of
kernel objects called control objects.

processor control block (PB): A structure that contains processor-specific information, such as a pointer
to the thread object of the current thread, and the processor-specific fork queue header.

processor Index: The processor index is an index into the array that catalogs the PBs in a Bystem.
Thia index can be used to locate the PB for a given processor.

program section: See PSECT.

protocol type: A IS-bit field in the Ethernet packet format for protocol demultiplexing among multiple
users of a datalink.

Glossary-14

Digital Equipment Corporlltion - Confidential and Proprietary
Restricted Distribution

prototype PTE: A PTE which is created during a call to the Create Section service and is used to allow
complete sharing of the pages in the section.

PSECT: Program section. PSECTs describe a contiguous piece of memory. With concatenated
PSECTs, all contributions for a particular PSECT are gathered contiguously in memory. If
the PSECT is overlaid, all contributions for a particuJar PSECT begin at the same virtual ad­
dress, and the module that has the largest contribution to a PSECT defines the length of the
PSECT.

PSM : Print. System Model.

PTE: See page table entry.

Quartz: High-performance relational database server software that complies with the DIGITAL
Database Architecture (ODA). See also Cheyenne.

queue obJeet: A repository for queue entries t.hat is used to synchronize activit.y between producer
and consumer threads. A queue object is in the category of kernel objects called dispatcher
objects.

quick mode: A mode of operation in which diagnostic programs execute an abbreviated testing se­
quence.

random access: A record retrieval or storage mode. For sequentia1ly organized files, random access
to records can be done by specifying the record's position. If the sequential file has fU:ed length
records, the records for such files can be accessed randomly by specifying the relative record
number. Indexed file records can be accessed randomly by specifying either the primary or
alternate key.

rate: For the Monitor Utility, the number of occurrences per 8eO)nd.

reader: A thread that reads from the message function processor.

read.n only: The condition in which (a) only readers are registered. on a partieular message FPU.
and (b) no messages are pending on that FPU.

read-only area : A directory structure on the system read-only disk that contains system files that are
of read-only nature.

readlwrlte erea: A directory structure on the system readlwrite disk that contains system files that
must be updat.ed during the life of the system. It also contains replacement files for files in the
read-onJy area.

receive buffer pool: A pool of receive buffers allocated by the Nt function processor when the io$c_
recdyJpu function is invoked. The Nt function processor attaches the recieve buffers from the
recieve buffer pool to the NI controller's receive ring.

receive ring: An Nt controller-related data structure located in the host memory. It is used to com·
munica.te Nl function processor's receive packet requesta to the controller.

record : A record is a collection of related data items that is treated as a unit.

record attributes : Defines the type ofrecorcl control information a.saociated with each re<X)rd.

record format: Indicates the way in which records appear physically on the recording surface of the
storage medium. Record format is defined in terms of record length. The record format can be
fixed length, variable length, variable length with fixed length control, atrea:m. or undefined.

Glossary-15

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

recotd-locklng facility: A facility that prevents access to a record by more than one thread until the
initiating thread releases the record.

record position: Indicates a record's physical position in a file.

registration: The process by which threads identify themselves to the messsage function processor as
either readers or writers (or both).

,.laUve record number: A positive integer that is used to indicate the position of a fixed-length record
in a sequentiaJ file. ..

remote procedure can (APC): A procedure call in which the called routine is in a different address
space than the calling routine.

resoure. : A unit or volume, as represented by an FPU.

Rock: See Stone.

root dh .. ctory: The first directory in the directory hierarchy.

RPC: See remote procedure call .

• ample Interval : For the Monitor Utility, the time interval at which systemwide perfonnance data is
to be collected and computed.

SAP: See serviu access point.

Dve set: A file created by the backup utility that contains other rues.

SCA: See System Communication Architecture.

SCB: See system control block.

script: A command file. An ASCII file containing PDM commands.

Mcondary object: An I/O object, such as a file object or a port object., that is indirectly pointed to by
the FPU context in a channel object.

secondary system thread: A type of system thread used to proceaa the I/O requests that modify a
stripe set or shadow set.

Mctlon: The basic unit of sharing data among processes. A section can be a disk file, a portion of a
disk file, or a paging file .

.. gment: An object created as a aide effect of a Create Section service. Every section refers to some
segmelltobject. The segment object provides the mechanism for allowing multiple users to share
pages within a section .

.. gment 1 PTE: The tint level page table which is located using bits cln:23> of the virtual address
and the PTBR.

.. gment 2 PTE: The second level page table which is located using bits <22:13> ofthe virtual address
and the contents previously located in the segment 1 PTE.

Mmapho object: A kernel object used to control access to a resource. A semaphore acts as a gate
through which a variable number of threads can pass conCUTTelltly, up to a specified limit. A
semaphore object is in the category of kernel objects called diepatcher objects.

Glossary- 16

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

sequenced messages: Relatively shoTt messages that are guaranteed to be delivered to the partner
port. The sender is notified if they are not delivered. Sequenced messages are always delivered
in the order sent, and are never duplicated.

sequentia l record access: A record retrie\·a1 or storage mode that starts accessing records at a desig­
nated point of the file and continues in one-af'ter-the-other fashion through the file. That is, the
records are accessed in the order in which they physicaJly appear in the file .

server: Software that executes remote procedure caJls on behalf of a client.

server stub: A routine in the server stub module that receives an RPC and makes the call to the real
server procedure.

service IIccess point (SAP): An B-bit field in the IEEEB02 format packel for protocol demultiplexing
among mulliple users of 8 datalink.

session layer: The session layer of a network protocol tower is the user's interface into the network.
The user must use this layer to establish a connection to a process on another machine.

shadowing: A process which keeps duplicate data u p to date on two or more disks.

shadow set: Two or more logical block units containing the same data.

shareeble Image: A special form of executable image that contains a global symbol table and can be
input to the linker in subsequent linking operations.

shareable Image space: A one half gigabyte region of virtual address space reserved for permanently
mapping shareable images.

SIU: See Soft ware Installation Utility .

SNAP Protocol 10: Subnetwork Access Protocol Identification field. A 40-bil field in the SNAP SAP
packet fonnat for demultiplexing among mu1tiple users of a single SNAP SAP address.

SNAP SAP: Subnetwork Access Protocol. A reserved SAP address for protocol multiplexing and
demultiplexing among multiple users of a datalink.

software audit log: A file created and appended to by the Software Installation Utility that maintains
a list of operations that occured during a software installation.

software conditions : Conditions that result from an e%plicit use of condi tion handling by a thread.
Software conditions may be raised at any point during thread execution. This allows appli­
cations or language run-time libraries to notify threads that lOme action defined as incorrect..
impossible, or not yet possible was attempted by the thread. In Mica. IOftware conditions may
occur synchronously and asynchronously to thread uecution .

Software Installetlon Utility: The utility that is used to perform standard and 8pecial software instal­
lations. The utility is invoked through system management.

software priority: See thread priority.

special Installation: The instal lation procedure used to insta1llayered. producl software, third-party
software, and partial system updates.

spin lock: A synchronitation mechanism for implementing mutual exclusion across processors in a
multiprocessor configuration.

standard Ins tallation: The installation procedure used to install the operating system 8Of\.\\"'are.

Glossary-17

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

status value: A 32-bit va1ue used to return information regarding the success or failure of a process,
thread, 110 service, or procedure back to the thread which created or called it. There are two
types of status values: facility-registered status va1ues and local status values.

Stone: A multiprocessor high-reliability system built by DECwest. It includes one--to-four scalar/vector
or sealar/scaJar processor pairs, a crossbar-switching backplane, and XM1 110; it uses CMOS III
technology.

stripe fragments: A portion of a stripe residing on a single unit. All of the stripe fragments in a stripe
cover the same range of logical block numbers on each unit. .

stripes: Individual units of data in a stripe set.

stripe set: The virtua] representation of all of the disk units used in the striping process. Higher
levels of software view the stripe set as a single continuous vector of logical blocks.

striping: A process which presents t.wo or more disks as a single disk to higher levels of software.

Stub: The Mica RPC package definition language.

stub modules: Modu1es containing client stubs or server stubs. Stub modules are generated by the
stub generator.

Subnetwork Access Protocol 10: See SNAP Protocol ID .

subsection; Structure which is contained within the segment control area which provides the in­
formation to translate a virtua1 address to a range of virtual block numbers within a mapped
file .

subsection format: Format of a prototype PTE when it refers to a subsection.

supersede version: This option can be specified at disk file creation time. A file created with this
option supenedes any file in the specified directory with the same file name, file type, and
version number.

SVA: See system virtual address.

synonym fllen.me path: The filename path given to a file when it is entered into more than one
directory, using one or more file names.

SYSAP: Functions within the operating systems of hosts, 8S well as the firmware of disks and tape
controllers that need to communicate over the CI interconnect. Ezamples of SYSAPs include
disk and tape class drivers, DECnet software, and the VAXcluster connection manager.

system catchall handler: A user-executable procedure, mapped in system space, that catches all im­
properly handled conditions.

System Communication Architecture (SeA): Defines bow data traffic is handJed among systems over
the CI interconnect.

IIYstem control block (SeB): An architecturally defined structure that contains addresses of exception
and interrupt service routines. The routines cataloged in the SeB are used to bandJe system
interrupts and exception conditions.

system IrMg_: System images are both e:zecutable and shareable images that are loaded into system
memory. These images are used by all kernel mode software.

IIYstem space: A one and one half gigabyte region of virtual address space reserved for mapping the
operating system and operating system data structures.

Glossary-18

•

Digital Equipment Corporation - Confidential and Propr'-t.ry
R •• trlct.d Distribution

system vlrtuel address (SVA): A virtual address identifying a location in system space.

target system: The hardware system on which the soft are is being installed.

temporary marked for delete: This option can be specified at disk file creation time. A file created with
this option is created without any directory entry. The file is automatically deleted when the
file is closed.

temporary readlwrlte area: A directory structure on the system read/write disk that is created by
the Software Installation Utility during a special instal1aLion. Products are first placed in this
directory structure before being placed in the real system read/write &rea.

third-party software: Software products created by vendors other than DIGITAL.

thread-local stor8g8: See ns.
thread object: The agent that executes program code and is dispatched for execution by the kernel.

A thread object is in the category of kernel objects called dispatcher objects.

thread prIority (or combined priority, or software priority) : The importance level of a thread, in the range
from 0 to 63, used by the thread dispatcher. Thread priority is divided into a m~or priority and
a minor priority.

timer object: A kernel object used to synchronize thread activities based on the passage of time. A
timer object is in the category of kernel objects called dispatcher objects.

TLS: Thread-local storage. TLS is per-thread storage with FORTRAN COMMON semantics, and
storage allocated at run time.

TMSCP: Tape Mass Storage Control Protocol is the name of the interface uaed to communicate with
DSA magnetic tape drives and controllers.

transfer addrass : The address of an invocation descriptor in an executable image that. is called when
the image is run.

transfer code: The code generated by the linker that transfers a call to a routine in another image to
the autoloader.

transfer vector: The offset from the beginning of a mapped shareable image to the invocation descrip­
tor of the routine it represents.

transition page: A page currently on the standby list or modify list, or a page in the procell of being
read.

translation buffer: An internal processor cache virtual to physica1 translations for recently used virtual
addresses.

translation not valid fault : This fault invokes the pager. A1so referred to aa a page fault

unwind facility: The Mica unwind facility centrally provides the capability to perform nonlocal GOTOs
within a thread . It is implemented as a user-mode procedure, mapped in system space, and
reached via a procedure variable in the process oontrol region.

update Inst.UaUon: See upgradt!. installation..

upgrade Installation: A type of standard installation used when a system is being upgraded from one
version to another version. During this type of installation some information from the previous
version must be transfered to the new version, for example, the system authorization file.

Glosury-19

Digital Equipment Corporation - Confidential and Proprietary
Restricted Distribution

USE: See User-Level System Exerciser.

User·Level System Exerciser (USE): The User-Level System Exerciser is similar to the VAXlVMS UETP.
It tests device connedions to the hardware and simulates load testing.

user space: A two gigabyte region of virtual address space reserved for user mode images.

VAX port queue object: A repository for VAX port queue entries that is used to communicate between
a PRISM processor and a VAX port device controller. A VAX. port queue objeci is in the category
of kernel objects called control objects.

VBN: See virtual bloch number.

vectored handlers: There are two types of vectored handlers: primary and last chance. Primary
vectored handlers are the first searched for when a condition is raised. The list of primary
handlers is called in FIFO order with respect to when they were established. Last chance
vectored handlers are called in LIFO order with respect to when they were established. Vectored
handlers may only be established at runtime, by using a system service.

version: A value that distinguishes files with the same character string.

viewing Interval : For the Monitor Utility, the time interval at which current or previously recorded
data is to be displayed to the user screen.

vtrtual address: A 32-bit unsigned integer that specifies a byte location within the virtual address
space.

vtrtual address space: The set of all possible virtual addresses that an image can reference.

vtrtua' block number (VBN): The rue-relative address of a block on a mB68 storage device. VBNs are
512-byte entities on the disk. If the size of the virtuaJ blocks of the on-disk structure changes,
software must convert 512-byte VBN numbers to the new values, which should be a multiple of
612 byte.. •

virtual circuit: A virtual circuit is the logical link between two CI ports. The SCS layers of different
systems can only communicate when a virtual circuit is open. An open virtual circuit provides
sequence message service, datagram service, and block data transfer service.

virtual function processor: A type of function processor used to implement the virtua1layers of the 110
system. Virtual function processors are used to implement all of the virtual-level operations,
such as the file syst.em, disk striping, virtual terminal support, and 80 on.

vtrtual memory: The set of storage locations in physical memory and on disk that is referred to by
virtual addresses.

vtrtuaJ page number (VPN): Bits <31:13> of the virtual address.

volume: A mass storage medium, such as a disk pack or reel of magnetic tape.

volume channel: An accessed channel to a volume FPU.

volume FPU: An FPU representing a single disk volume or a volume set.

volume aet: A collection ofvolumes that is interpreted as a single volume by higher layers of80ftware.

VPN: See virtual JKl8t! number.

Glossary-20

DIgital EquIpment CorporatIon - Confidential and ProprHitary
Restricted Distribution

worker's threads: System threads created by the hTI function processor. Worker threads process
the receive packets and deliver the packets to the upper-layer function processor; handle the
completion of packets transmission and controller command completion; queue eITOr requests
when errors occur.

working set list: The set of pages to which an executing thread can refer without incurring a page
fau1t.

working .et list .ntrlu (WSLE): The elements used to manage the working set. Each page in t.he
working set is represented by a working set list entry.

wri ter: A thread that writes to the message function processor.

writers only: The condition in which only writing threads are registered on a particular message FPU.

WSLE: See working set list entry.

Glosslry-21

-

