
Digital Equipment Corporation .. Confidential and Proprietary

For Internal Use Only

Mica Working Design Document
Internal System Services Manual

Revision 0.3

27 -Apri 1-1988

This manual, which comprises all current Mica system services, was generated directly from the system
service source files.

Issued by:

Mark Lucovsky, Bill Muse, Charles Olivier, Lou Perazzoli, and Jim Walker

Idl i 191 i Itlalll ™

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

Revision History
Revision

Date Number Author

29 FEB 88 0.1 Lucovsky

31 MAR 88 0.2 Lucovsky and others

28 APR 88 0.3 Lucovsky and others

ii

Summary of Changes

Initial version.

Second version.

Third version.

Contents

CHAPTER 1 OBJECT SYSTEM SERVICES
OS$ALLOCATE_OBJECT

OS$CREATE_CONTAINER

OS$CREATE_IDENTIFIER

OS$CREATE_REFERENCE_ID

OS$DEALLOCATE_OBJECT

OS$DELETE_ OBJECT _ID

OS$DELETE_OBJECT_NAME

OS$GET _OBJCON_INFORMATION

OS$GET _OBJECT_INFORMATION

OS$GET _OTD_INFORMATION

OS$MARK_TEMPORARY

OS$SET_OBJECT_NAME

OS$TRANSFER_MARK_TEMPORARY

OS$TRANSLATE_OBJECT_NAME

CHAPTER 2 LOGICAL NAME SYSTEM SERVICES
OS$CREATE_LOGICAL_NAME

OS$DELETE_LOGICAL_NAME

OS$TRANSLATE_LOGICAL_NAME

CHAPTER 3 WAIT SYSTEM SERVICES
OS$WAIT _MULTIPLE

OS$WAIT_SINGLE

CHAPTER 4 EVENT SYSTEM SERVICES
OS$CLEAR_EVENT

OS$CREATE_EVENT

OS$PULSE_EVENT

OS$READ_EVENT

OS$SET_EVENT

1-2
1-4
1-5
1-6
1-7
1-8
1-9

1-10
1-13
1-15
1-16
1-17
1-18
1-20

2-2
2-5
2-6

3-2
3-4

4-2
4-3

4-5

4-6

4-7

1-1

2-1

3-1

4-1

iii

Contents

CHAPTER 5 SEMAPHORE SYSTEM SERVICES
OS$CREATE_SEMAPHORE

OS$READ_SEMAPHORE

OS$RELEASE_SEMAPHORE

CHAPTER 6 INTERVAL SYSTEM SERVICES
OS$CANCEL_ TIMER

OS$CREATE_ TIMER

OS$READ_TIMER

OS$SET_TIMER

CHAPTER 7 PROCESS SYSTEM SERVICES
OS$CREATE _ EXIT_HANDLER _PROCESS

OS$CREATE_EXIT _HANDLER_THREAD

OS$CREATE_EXIT_STATUS

OS$CREATE_JOB

OS$CREATE_PROCESS

OS$CR EAT E_T H READ

OS$CREATE_USER

OS$DELETE_ EXIT_HANDLER _ PROCESS

OS$DELETE_EXIT _HANDLER_THREAD

OS$EXIT_THREAD

OS$FORCE_EXIT_JOB

OS$FORCE_EXIT _PROCESS

OS$FORCE_EXIT _THREAD

OS$FORCE_EXIT _ USER

OS$GET_EXIT_STATUS_INFO

OS$GET _JOB_INFORMATION

OS$GET_PROCESS_INFORMATION

OS$GET _THREAD_INFORMATION

OS$GET _USER_INFORMATION

OS$HIBERNATE_PROCESS

OS$HIBERNATE_ THREAD

OS$RESUME_PROCESS

OS$RESUME_THREAD

OS$SET_EXIT_STATUS_INFO

OS$SET_JOB_INFORMATION

OS$SET _MINOR_THREAD _PRIORITY

OS$SET_PROCESS_INFORMATION

iv

5-2

5-4

5-5

6-2

6-3

6-4

6-5

7-2
7-3
7-4
7-5
7-8

7-11
7-13
7-16
7-17
7-18
7-19
7-20
7-21
7-22
7-23
7-24
7-25
7-26
7-27
7-28
7-29
7-30
7-31
7-32
7-33
7-34
7-35

5-1

6-1

7-1

CHAPTER 8

CHAPTER 9

OS$SET _THREAD_INFORMATION

OS$SET _THREAD_PRIORITY

OS$SET _USER _INFORMATION

OS$SIGNAL_PROCESS

OS$SIGNAL_ THREAD

OS$SUSPEND_PROCESS

OS$SUSPEND_THREAD

OS$WAKE_PROCESS

o S$WAKE_ THREAD

MEMORY SYSTEM SERVICES
OS$ADJ UST _WORKING_SET _LIMIT

OS$CREATE_ADDRESS_SPACE

OS$CREATE_SECTION

OS$DELETE_ADDRESS_SPACE

OS$EXPAND_ADDRESS_SPACE

OS$EXPAND_USER_STACK

OS$GET_MAPPING_INFORMATION

OS$GET _SECTION_INFORMATION

OS$LOCK_PAGES_IN_MEMORY

OS$LOCK_PAGES_WORKING_SET

OS$MAP _SECTION

OS$SET _PROTECTION_ON _PAG ES

OS$UNLOCK_PAG ES_FROM_MEMO RY

OS$UNLOCK_PAGES_WORKING_SET

OS$UPDATE_MAPPED _SECTION

OS$ZERO_TO_END_OF_USER_STACK

1/0 SYSTEM SERVICES
OS$CANCEL_IO

OS$CONFIGURE_FP

OS$CREATE_CHANNEL

OS$CREATE_FPU

OS$GET _CHANNEL_INFORMATION

OS$GET _FPU_INFORMATION

OS$REQUEST _10

OS$SYNCHRONIZE_WITH_IO

OS$SYNCH _CHANNEL_WITH _ FP U

7-36
7-37
7-38
7-39
7-40
7-41
7-42
7-43
7-44

8-2
8-3

8-4

8-6
8-7
8-8

8-9
8-10
8-11
8-12
8-13
8-15
8-17
8-18
8-19
8-21

9-2
9-3

9-4

9-5
9-6

9-7
9-8

9-10
9-11

Contents

8-1

9-1

v

Contents

CHAPTER 10 SECURITY SYSTEM SERVICES 10-1
OS$CREATE_IMPERSONATION 10-2

OS$CREATE_PRIV _OPERATION 10-4

OS$DELETE_ACCESS_CONTROL_LIST 10-5

OS$DISABLE_IDENTIFIER 10-6

OS$ENABLE_IDENTIFIER 10-7

OS$GET _ACCESS_CONTROL_LlST 10-8

OS$G~ _SECURITY_MONITOR 10-9

OS$IMPERSONATE_CLlENT 10-10

OS$RESTORE_SERVER 10-11

OS$SET_ACCESS_CONTROL_LlST 10-12

OS$SET _SECURITY_MONITOR 10-13

OS$TRANSLATE_ACCESS_TYPE 10-14

OS$TRANSLATE_ACCESS_TYPE_NAME 10-15

OS$VERIFY _PRIV _OPERATION 10-16

CHAPTER 11 CONDITION AND EXIT HANDLING SYSTEM SERVICES 11-1
OS$CREATE_CONDITION_STACK

OS$CREATE_LAST_CHANCE_HANDLER

OS$CREATE_PRIMARY _HANDLER

OS$DELETE_LAST_CHANCE_HANDLER

OS$DELETE_PRIMARY _HANDLER

CHAPTER 12 MISCELLANEOUS SYSTEM SERVICES.

vi

OS$GET _PERFORMANCE_INFO

OS$GET _SYSTEM_INFORMATION

OS$GET_SYSTEM_TIME

OS$GET_UID

OS$INSTALL_PAGE_FILE

OS$NEXT_UID

OS$SET_SYSTEM_TIME

11-2

11-3

11-4

11-5

11-6

12-2

12-3

12-5

12-6

12-7

12-8

12-9

12-1

Contents

APPENDIX A EXECUTIVE CONSTANTS AND DATA TYPES A-1

A.1 EXECUTIVE CONSTANTS A-1

A.2 MISCELLANEOUS DATA TYPES A-1

A.3 I/O DATA TYPES A-3

A.4 LOGICAL NAME DATA TYPES A-3

A.S MEMORY MANAGEMENT DATA TYPES A-4

A.6 PROCESS ARCHITECTURE DATA TYPES A-4

A.7 OBJECT ARCHITECTURE DATA TYPES A-9

A.S SECURITY RELATED DATA TYPES A-10

A.9 CONDITION HANDLING DATA TYPES A-12

INDEX

vii

1 Object System Services

1-1

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$allocate _object

os$all ocate_object

(
IN objecLid : e$objecLid;
IN allocation_id : e$objecLid;
) RETURNS status;

DESCRIPTION

ARGUMENTS

1-2

The os$allocate_object service allocates the specified object to the specified
allocation object. An allocation object can be a thread, process, job, user, or
identifier object.

Each allocation object defines an allocation class. An allocation class is the
set of threads that can access an object allocated to an allocation object.
If an object is allocated and a thread is a member of the allocation class
defined by the allocation object, the thread can access the object (assuming
the object access check performed after the allocation check is successful).

The allocation classes defined for each allocation object are:

thread object - The only member of the thread object allocation class is the
thread of the thread object that an object is allocated to.

process object - The members of the process object allocation class are the
threads of the process object that an object is allocated to and the threads
of any child process of the process object that an object is allocated to.

job object - The members of the job object allocation class are the threads
of the job object that an object is allocated to.

user object - The members of the user object allocation class are the
threads owned by the user who is represented by the user object. An
object is allocated to the user object.

identifier object - The members of the identifier object allocation class are
the threads that hold the identifier represented by the identifier object.

When an allocation object is deleted, any objects allocated to the object are
automatically deallocated.

The visibility of an object determines the alloca:tion objects to which an
object can be allocated.

- If the object is at the system level, the object can be allocated to any
allocation object.

- If the object is at the job level, the object can be allocated to the job,
process, and thread allocation objects.

- If the object is at the process level, the object can be allocated to the
process and thread allocation objects.

object_id
Supplies the object id of the object to allocate.

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$allocate _object

RETURN
VALUES

allocation id
Supplies the object id of the allocation object to which the specified object
is allocated.

status$ _normal

status$ jnvalid _ objecCid

status$ _invalid _allocationjd

status$ _ object_type_
mismatch

status$ _ object_already _ alloc

status$ _ differenC alloc _class

status$ jnvalid _ visibil ity

normal, successful completion.

invalid object id.

invalid allocation id.

the object identified by the allocation id is not an
allocation object.

object is already allocated.

the calling thread is not a member of the allocation
object's allocation class.

the object cannot be allocated because the visibility
of the object prevents it from being allocated to the
specified allocation object.

1-3

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$create _container

os$create _container

(
OUT container_id : e$objecLid;
IN objectJ)arameters: e$objecLparameters = DEFAULT;
) RETURNS STATUS;

DESCRIPTION

ARGUMENTS

RETURN
VALUES

1-4

The os$create_container service creates a container. Any type of object
except containers and container directories can be inserted into this type
of object container.

If the object container id value is specified in the object parameters record,
it must identify a container directory. A container can only be inserted
into a container directory.

container id
Returns the object id of the created container.

object-l'aranneters
Supplies the object container in which the object is inserted, the name of
the object, and the access control list (ACL) of the object. If this argument
is not supplied or if it is supplied but not all values in the object parameter
record are supplied, the service applies default values. The default object
container is the process container directory, the default name is none, and
the default ACL is none.

status$_normal

status$ Jnvalid_ objectJd

status$ _ object_type_
mismatch

normal, successful completion.

the object id of -the object container is invalid.

the object specified by the object container id was
not a container directory.

status$Jnvalid_object the object to insert is not a container.

status$_duplicate_object a container having the same type, mode and name
was found.

status$_quota_exceeded the caller does not have enough quota for the
specified container or for an expanded container
directory.

status$_object_container_full the container directory is full.

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$create _identifier

os$create _identifier

(
OUT identifier_id : e$objecLid;
IN objectyarameters : e$objecLparameters;
IN identifier: e$identifier;
) RETURNS status;

DESCRIPTION The os$create_identifier service creates an identifier object. An identifier
object is an allocation object that represents a valid identifier defined on
the system. Because it is an allocation object, objects can be allocated
to the identifier object. Any thread that is a holder of the identifier
represented by the identifier object can access any objects allocated to the
identifier object.

To create an identifier object, the caller must hold the identifier that the
identifier object is to represent.

The identifier object is inserted in the exec$identifier_container system
level container. The name of the object is the alphanumeric name of the
identifier the object represents.

ARGUMENTS - identifier id

RETURN.
VALUES

Returns the object id of the created identifier object.

object-l'aranneters
Supplies the object container in which the object is inserted, the name of
the object, and the access control list (ACL) of the object. The values for
the name and object container are ignored. If a value for the ACL is not
supplied, the default is

None.

identifier - Supplies the identifier that the identifier object represents.

status$ _normal

status$ jnvalid Jdentifier

status$_duplicate_object

normal, successful completion.

the caller is not a holder of the specified identifier.

duplicate object found in object container.

1-5

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$create _reference _ id

(
IN objecLid : e$objecLid;
IN containe,-id : e$objecLid = DEFAULT;
OUT reference_id : e$objecLid;
) RETURNS status;

DESCRIPTION The os$create_reference_id service creates a reference id to an object. A
reference id ensures that as long as the reference id exists, the object
cannot be deleted.

ARGUMENTS

RETURN
VALUES

1-6

A reference id can only be created for objects whose principal id still exists.

The container through which the reference id identifies the object must be
at a less visible level than the principal object id's container.

A reference id cannot be created for an object that does not allow reference
ids. For example, container directories and containers do not allow
reference ids.

object_id
Supplies the object id of the object that a reference id is created for.

container id
Supplies the ~ntainer id of the container thru which the object is
referenced.

reference id
Returns the reference id.

status$ _normal

status$ Jnvalid _ object_id

normal, successful completion.

invalid object id.

status$Jnvalid_containerJd invalid container id.

status$_object_type_ the object type of the specified container was not a
mismatch container.

status$_reference_not_ the object does not allow reference ids.
allowed

status$Jnvalid_targetJeveI the level of the container is not more visible than the
object's container.

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$deallocate _object

os$deallocate _ object

(
IN objecLid : e$objecLid;
) RETURNS STATUS;

DESCRIPTION The os$deallocate_object service deallocates the specified object.

The caller must be a member of the allocation object's allocation class in
order to deallocate the object.

ARGUMENTS

RETURN
VALUES

object_id
Supplies the object id of the object to deallocate.

status$ _normal

status$Jnvalid_object_id

normal, successful completion.

invalid object id.

status$_object_not_allocated object not allocated.

1-7

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$delete _ object_id

(
IN objecLid : e$objecLid;
) RETURNS STATUS;

DESCRIPTION The os$delete_object_id service deletes the object id of the specified object.

ARGUMENTS

RETURN
VALUES

1-8

When all object ids that identify the object have been deleted, the object is
no longer accessible.

Paged or nonpaged pool quota is returned to the correct level when the
object id is deleted. If the object identified by the deleted object id was at
the system level, no quota is returned.

If the object id count decrements to 0, the remove object service
routine specified by the object's OTD is called. After the remove object
service routine returns, this service dereferences the object by calling
obj $dereference_ obj ect.

o bject_id
Supplies the object id to delete.

status$ _normal

status$jnvalid_objectjd

normal, successful completion.

invalid object id.

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$delete _ object_name

os$delete _object_name

(
IN objecLid : e$objecLid;
) RETURNS status;

DESCRIPTION The os$delete_object_name service deletes the specified object's name and
removes the name from the object container's object name table.

ARGUMENTS object_id
Supplies the object id of the object whose name is deleted.

RETURN
VALUES

status$_normal

status$ _invalid _ objectjc;i

status$_name_already_
deleted

normal, successful completion.

invalid object id.

the object name of the object was already deleted.

1-9

UlullAL - l;OnTiaentlal and proprietary - Restricted Distribution
os$get_objcon_information

os$get_ objcon_information

(
IN objecLcontainer_id : e$objecLid;
IN item_list: POINTER e$item_lisLtype;
) RETURNS status;

DESCRIPTION

1-10

The os$get_objcon_information service returns the object ids of objects
in the object container and the logical names in the object containers'
logical name table. An object container is either a container directory or
container.

Object ids are returned in the e$c_object_id_list item. This item is of type
e$object_id_list. The e$object_id_list type is made up of the following
fields:

- length - This field is set by the caller and indicates to the service the
number of entries in the object_id field.

- last_valid_entry - This field is set by the service and indicates to the
caller the last entry in the object_id field that contains a valid value.

- context - This field maintains context across multiple calls to the service.
I t is set by the caller and the service.

- object_id - This field is set by the service and indicates to the caller the
object ids that identify objects in the object container.

As described above, the last_ valicLentry field indicates the last entry in
the object_id field that contains a valid value. This field can have the
following values:

- If the value of this field is zero, the service did not return any object ids.
This means the object container does not hold any objects. A subsequent
call to the service would not return additional object ids.

- If the value is non-zero and is less than the maximum number of entries,
the service returned the object ids that identify all the objects in the object
container. A subsequent call to the service would not return additional
object ids.

- If the value is non-zero and is equal to the maximum number of entries,
the service may have returned the object ids that identify all the objects
in the object container. The caller must examine the status returned by
the service to determine if all the object ids were returned. If the status
returned was status$_no_more_info, the service returned all the object ids
and a subsequent call to the service would not return additional object ids.
If the status returned was status$_normal, the service did not return all
the object ids and a subsequent call to the service might return additional
object ids.

Note that the service might return additional object ids. At the time the
call completed, the service may have found more objects and therefore
more object ids than could be returned. Between the time the first call
completes and a subsequent call is made, the objects could be deleted. The

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$get_objcon_information

ARGUMENTS

subsequent call would then return a status of status$_no_more_info and
the last_valid_entry field would have a value of zero.

As described above, the context field maintains context across multiple
calls to the service. The context field can have the following values:

- zero - When the context field is zero, the service attempts to set entries
in the object_id field beginning with the object id of the first object found
in the object container.

- nonzero - When the context field is nonzero, the service attempts to set
entries in the object_id field beginning with the object id of the next object
found in the object container.

For the initial call, the caller sets the value of the context field to O. For
subsequent calls when additional object ids can be returned, the caller
should not modify the value of the context field.

Logical names are returned in the e$c_Iogical_name_list item. This item
is of type e$logical_name_list. The e$logical_name_Iist type is made up of
the following fields:

- length - This field is set by the caller and indicates to the service the
number of entries in the logical_name field.

- last_ valid_entry - This field is set by the service and indicates to the
caller the last entry in the logical_name field that contains a valid value.

- context - This field maintains context across multiple calls to the service.
I t is set by the caller and the service.

- logical_name - This field is set by the service and indicates to the caller
the logical names in the object container's logical name table.

The use of the last_ valid_entry and the context fields is similar as
described for the object id list and is not described.

Note that the caller can request object ids and logical names in the same
item list. If more information can be returned for either the object id
list or the logical name list, the status returned is status$_normal. If no
more information can be returned for either list, the status returned is
status$_no_more_info. In both cases, the caller should examine the last_
valid_entry in each list to determine the number of entries, if any, were
returned.

object_container_id
Supplies the object id of the object container for which information
is returned. The object id identifies either a container directory or a
container.

item list
Supplies the item list identifying the information the service should
return.

1-11

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$get_objcon_information

code

e$c -'ogicaL name -'ist

RETURN
VALUES

1-12

pointer type

e$objectjd-'ist

e$logical_name -'ist

status$ _normal

status$ _no _more jnfo

status$ _invalid _ objectjd

status$_object_type_
mismatch

action

Returns a list of object ids that identify the
objects in the object container.

Returns a list of .logical names contained in the
object container's logical name table.

normal, successful completion. The object container
was found and some of the object ids or logical
names were returned. A subsequent call to this
service may return additional information.

normal, successful completion. The object container
was found and all of the object ids or logical names
were returned. A subsequent call to this service will
not return additional information.

invalid object id.

the object type of the specified object container was
not a container directory or container.

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$get_ object_information

os$get_ ob ject_ information

(
IN objecLid : e$objecLid;
IN item_list: POINTER e$item_lisLtype;
) RETURNS status;

DESCRIPTION

ARGUMENTS

code

e$cJlointer_count

e$cJevel

e$c_object_type_name

e$c_otdJd

e$c_object_containerJd

e$c JlrincipaL object_id

e$c_nonpagedyool_charge

The os$get_object_information service returns information about the
specified object. The information is control information about the object
and is general for all objects.

object_id
Supplies the object id of the object for which information is returned.

item list
Supplies the item list identifying the information the service should
return.

pointer type

integer

integer

e$level

string

e$objectJd

e$object_id

e$objectJd

integer

integer

varying_string

action

Returns the number of outstanding pointers to
the object.

Returns the number of object ids that identify the
object.

Returns the level of visibility of the object. The
level can be e$cJlrocessJevel, e$cjobJevel,
or e$c_systemJevel.

Returns the object type name of the object.

Returns the object id of the object's OTO.

Returns the object id of the object's object
container. This object id identifies either a
container directory or a container. This field is
valid only if the object's principal id has not been
deleted. See e$c_object_state.

Returns the object id of the object's principal id.
This field is valid only if the object's principal id
has not been deleted. See e$c_object_state.

Returns the amount of nonpaged pool charged
when the object was inserted into its object
container.

Returns the amount of paged pool charged when
the object was inserted into its object container.

Returns the object's name. This field is valid
only if the object's principal id has not been
deleted. See e$c_object_state.

1-13

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$get_ object_information

code

eSc_owner

e$c_acl

eSc _ allocation_ objectjd

pointer type

e$identifier

e$access _ controUist

e$objectjd

k$processor _mode

set of e$object_state

e$c_oid_object_containerjd e$objectJd

RETURN
VALUES

1-14

e$level

e$objecCid_type

status$_normal

status$ jnvalid_objectjd

action

Returns the object's owner.

Returns the object's access control list.

Returns the object id of the object's allocation
object. This field is valid only if the object is
allocated. See e$c_object_state.

Returns the processor mode of the object. The
mode of the object can be k$c_user or k$c_
kernel.

Returns information about the current state of the
object. The states are: e$c_transfer_inhibit
the object cannot be transferred. e$c_reference_
inhibit - reference ids cannot be created to
identify the object. e$c_temporary - the object
has been marked as temporary. e$c_dispatcher_
object - the object has a kernel dispatcher
object. This allows the object to be waited on.
e$c_allocated - the object is allocated. e$c_
principaUd_deleted - the principal id of the
object has been deleted. eSc_transferred - the
object has been transferred.

Returns the object id of the object container
through which the object is identified by the
specified object id.

Returns the level of visibility of the object when
identified by the specified object. id. The level
can be e$cyrocess-,evel, e$cjob-'evel, or
e$c_system-, eve I.

Returns the type of object id. The type of id can
be e$cyrincipaUd or e$c_referencejd.

normal, successful completion.

invalid object id.

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$get_ otd _information

os$get_ otd _i nformati on

(
IN otd_id : e$objecLid;
IN item_list: POINTER e$item_lisLtype;
) RETURNS status;

DESCRIPTION

ARGUMENTS

code

RETURN
VALUES

The os$get_otd_information service returns information about the specified
object.

otd id
Supplies the object id of the otd object for which information is returned.

item list
Supplies the item list identifying the information the service should
return.

pointer type

string

integer

boolean

boolean

status$ _normal

status$ jnvalid _ objectjd

status$ _ object_type_
mismatch

action

Returns the name of the object type described
by the OTD.

Returns the count of the number of objects of
this type.

Returns a value of true if objects of the type
described by the OTD can be waited on.
Returns a value of false if objects cannot be
waited on.

Returns the state of the create disable flag. If
the value is false, objects of this type can be
created. If 'the value is true, objects of this type
cannot be created.

normal, successful completion.

invalid object id.

the object type of the specified object was not an otd.

1-15

UIl:i11 AL - (;onTiaentlal and proprietary - Restricted Distribution
os$mark_temporary

os$mark_temporary

(
IN objecLid : e$objecLid;
) RETURNS status;

DESCRIPTION The os$mark_temporary service marks the specified object as temporary.

ARGUMENTS

RETURN
VALUES

1-16

This service is used to cause the principal id of an object to be deleted
when all reference ids to the object have been deleted. If the principal id
has already been deleted, the last deleted reference id causes the object to
be deleted.

Only job and system level objects can be marked as temporary.

Container directories and containers cannot be marked as temporary.

object_id
Supplies the object id of the object to mark as temporary.

status$_normal

status$Jnvalid_objectJd

status$ Jnvalid _ objectJevel

status$_already_temporary

status$_temporary _not_
allowed

normal, successful completion.

invalid object id.

the object is a process level object.

the object is already temporary.

the object cannot be marked as temporary.

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$set_ object_name

(
IN objecLid : e$objecLid;
IN name: string (*);
) RETURNS status;

DESCRIPTION The os$set_object_name service sets the specified object's name and inserts
the name in the object's object container object name table.

ARGUMENTS

RETURN
VALUES

The name of an object can be set only if the principal id of the object
exists.

o bject_id
Supplies the object id of the object whose name is set.

name
Supples the name that the object name's name is set to.

status$_normal normal, successful completion.

invalid object id. status$ Jnvalid _ objectJd

status$ _ du plicate _object object found having the same mode, type, and name.

1-17

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$transfer_mark_temporary

os$transfer_mark_temporary

(
IN container_id : e$objecLid;
IN delete: boolean = false;
IN OUT objecLid : e$objecLid;
) RETURNS status;

DESCRIPTION

ARGUMENTS

1-18

The os$transfer_mark_temporary service transfers the object along with
its name to a more visible container and marks the object as temporary.

When an object is transferred to the target container, it is possible that an
object already exists having the same name, object type, and mode. If a
duplicate object does exit, the caller can specify the action to perform. If
the action is not to delete the object specified by the caller, the service does
not transfer the object and returns an error status. Note that the object
id is unchanged. If the action is to delete the object, the service creates
a reference id to the already existing object, deletes the object id of the
object specified by the caller, and returns the reference id to the caller.
The reference id is returned via the object_id parameter.

If a duplicate object does not exist,. the service transfers the object to
the target container, creates a reference id to the object, and returns the
reference id, to the caller. The reference id is returned via the object_id
parameter.

The object cannot be transferred if anyone of the following conditions are
true:

- the object has reference ids. This means that the object id specified by
the object_id parameter is the principal id of the object. - the object is
not allowed to be transferred. - an object having the same name, type,
and mode already exists in the target container and the delete action was
specified as false. .

Container directories and containers cannot be transferred and marked as
temporary.

container id
Supplies the object id of the container into which the object is transferred.

delete
Supplies the action to perform if a duplicate object is found in the
container. If the value is false, the service does not transfer the specified
object and returns an error status. If the value is true, the service creates
a reference id to the already existing object, deletes the object specified
by the caller, and returns the reference id to the caller. If a value is not
specified, a value of false is assumed.

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$transfer_mar~temporary

RETURN
VALUES

object_id
Supplies the object id of the object that is transfered and marked
temporary. This object id must be the object's principal id. Returns the
reference id of the temporary object.

status$ _normal

status$ Jnvalid _0 bjectJd

status$ _invalid_container _id

status$ _ object_type_
mismatch

status$_object_already_temp

status$_temporary_not_
allowed

status$_duplicate_temporary

status$_dupi icate_not_
temporary

status$ _invalid _ target-'evel

status$_object_referencejds

status$_invalid_objectjd_
count

normal, successful completion.

invalid object id.

invalid container id.

the object type of the specified container was not a
container.

the object is already temporary.

the object cannot be marked as temporary.

a duplicate object exists in the target container and is
temporary.

a duplicate object exists in the target container and is
not temporary.

the level of the target container is not more visible
than the original container.

the object id has reference ids.

the object id count of the specified object is not 1.

1-19

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$translate_object_name

os$translate _object_name

(
IN objecLcontainer_id : e$objecLid = DEFAULT;
IN name: string (*);
IN objecLtype_name : string (*);
IN case_sensitive: boolean = true;
OUT object_id : e$objecLid;
) RETURNS status;

DESCRIPTION

ARGUMENTS

1-20

The os$translate_object_name service searches the specified object
container for an object having the specified object name and object type
name. If an object is found, the service returns the object id of the object.
The object id is used as input to other services to identify the object that
the service is to operate on.

The service locates the object name using one of two search methods as
specified by the case_sensitive parameter. If the value is false, the service
performs a case blind search. If the value is true, the service performs a
case sensitive search.

A case blind search locates the first object name whose uppercase
representation matches the uppercase representation of the object name
specified by the caller. Multiple object names in the object container may
match but only the first object name found is matched.

A case sensitive search locates the object name whose name exactly
matches the object name specified by the caller. Only one object name can
match.

The service matches the object type name using a case sensitive search.

The caller can optionally specify the object container parameter. If the
parameter is not specified, the service searches the object name tables of
the process, job, and system container directories. If a match is found,
the object id that identifie~ the object is returned to the caller. If the
parameter is specified, the service searches the object name table of the
specified object container.

If the previous mode of the caller is user, the service tries to match a user
mode object having the specified name and object type name in the target
object contai:Q.er. If a name is found, the object id of the user mode object
is returned to the caller. If a name is not found, the service tries to match
a kernel mode object with the same search criteria. If a name is found, the
object id of the kernel mode object is returned to the caller.

object_container_id
Supplies the name of the object container whose object name table
is searched. The object id identifies either a container directory or a
container.

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$translate _ object_name

RETURN
VALUES

name
Supplies the name of the object to find.

object_ type_name
Supplies the object type name of the object to :f?nd.

case sensitive
Supplies the search method used to locate the object name. A value
of false indicates a case blind search. A value of true indicates a case
sensitive search.

object_id
Returns the object id of the matching object.

status$ _normal

status$Jnvalid_nameJength

status$ _invalid _ object_type

status$_invalid_objectJd

status$ _ object_type_
mismatch

status$_object_name_i"Iot_
found

normal, successful completion.

length of the object name or object type name was
not valid.

invalid object type specified by the object type name.

the object id of the object container is invalid.

the object specified by the object container id was
not a container directory or a container.

object name not found.

1-21

2 Logical Name System Services

2-1

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$create_logical_name

(
IN objecLcontainer_id : e$objecLid;
IN logicalname : string (*);
IN supersede: boolean = true;
IN logicalname_attributes : SET e$lognam_attributes [.. J = [J;
IN OUT equivalence_name_list : e$equivalence_name_list;
) RETURNS status;

DESCRIPTION

2-2

The os$create_logicaCname service creates the specified logical name in
the specified object container.

Before the service creates the logical name, it performs a case sensitive
search for the logical name in the object container. If a logical name is not
found, the service creates the logical name. If a logical name is found, the
service takes the action specified by the supersede parameter. If a value of
false is specified, the logical name specified by the caller is not created and
the service fails. If a value of true is specified, the logical name that was
found is deleted and the logical name specified by the caller is created.

Logical names and equivalence names contain 1-255 characters. The
characters that form the name can be any character in the character set.

A logical name can have 1-128 equivalence names.

Equivalence names are specified in the equivalence_name_list parameter.
This parameter is of type e$equivalence_name_list. The e$equivalence_
name_list type is made up of the following fields:

- length - This field is set by the caller and indicates to the service the
number of entries in the equivalence_name field.

- last_ valid_entry - This field is set by the caller and indicates to the
service how many valid entries are in the equivalence_name field.

- context - This field is set by the service when an entry in the equivalence_
name field is invalid. The context field indicates to the caller the entry
that is invalid.

- equivalence_name - This field is set by the caller and indicates to the
service the equivalence name or names to assocaiate with the specified
logical name.

A logical name can have attributes associated with it. An attribute denotes
a characteristic of the logical name. The following logical name attributes
are defined:

- confine - The confine attribute indicates that the logical name should not
be transferred when an object container is transferred. If the logical name
has the confine attribute, the object container transfer service deletes the
logical name as the transfer is performed. The caller gives the logical
name the confine attribute by setting e$c_confine_lognam_attr in the
logical_name_attributes parameter. If the confine attribute is not given to
the logical name, the logical name is transferred.

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$create_logical_name

ARGUMENTS

- noalias - The noalias attribute indicates to os$create_logicaCname that
the logical name cannot be duplicated in the object container at an outer
access mode. If another logical name with the same name already exists
in the object container at an outer access mode and the caller of os$create_
logical_name specifies the noalias attribute, os$create_logicaCname first
deletes the logical name at the outer access mode and then creates the
logical name at the inner access mode. The caller gives the logical name
the noalias attribute by setting e$c_noalias_lognam_attr in the logical_
name_attributes parameter. If the no alias attribute is not given to the
logical name, the logical name can have a logical name with the same
name at an outer access mode.

- noshow - The noshow attribute indicates to the caller of os$translate_
logical_name that the logical name should not be displayed. General
show logical name utilities examine this attribute to determine if the
logical name should be displayed. The caller gives the logical name the
noshow attribute by setting e$c_noshow _lognam_attr in the logical_name_
attributes parameter. If the noshow attribute is not given to the logical
name, the logical name can be displayed.

Each entry in the equivalence name list specifies an equivalence name
and the attributes to give to the equivalence name. An attribute denotes
a characteristic of the equivalence name. The following equivalence name
attributes are defined:

- concealed - The concealed attribute indicates to the caller of os$translate_
logical_name that the equivalence name should not be displayed. General
show logical name utilities examine this attribute to determine if the
equivalence name should be displayed. The caller gives the equivalence
name the concealed attribute by setting the e$c_concealed_eqvnam_attr
in the attributes field of the equivalence name entry. If the concealed
attribute is not given to the equivalence name, the equivalence name can
be displayed.

- terminal - The terminal attribute indicates to the caller of os$translate_
logical_name that the equivalence name should not be translated as if it
were a logical name. The caller gives the equivalence name the terminal
attribute by setting the e$c_terminal_eqvnam_attr in the attributes field
of the equivalence name entry. If the terminal attribute is not given to the
equivalence name, the equivalence name can be translated as if it were a
logical name.

object_ container _ id
Supplies the object id of the object container whose logical name table
the logical name is created in. The object id identifies either a container
directory or a container.

logical_name
Supplies the name of the logical name to create. The size of the name can
be 1 to 255 characters. Any character can be used in the logical name.

supersede
Supplies the action to perform if a matching logical name is found in the
object container's logical name table.

logical_ name _ attributes
Supplies a set containing the attributes of the logical name.

2-3

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$create _logical_name

RETURN
VALUES

2-4

equivalence_name_list
Supplies the equivalence names associated with the logical name. Returns
in the context field the number of the entry that is invalid. If all entries
are valid, the value of the context field is O.

status$_normal

status$ _logicaLname_
superseded

status$_invalid_objectjd

status$ _ object_type_
mismatch

status$ _invalid_name Jength

status$_invalid_eqv_name_
count

status$_duplicateJogicaL
name

status$ _ quota_exceeded

normal, successful completion. The logical name was
created.

normal, successful completion. The logical name was
created and a previously existing logical name with
the same name was deleted.

invalid object container id.

the object type of the specified object container was
not a container directory or container.

length of the logical name or the equivalence name
was not valid.

the count of the number of equivalence names was
invalid.

duplicate logical name was found.

quota was exceeded while trying to create the logical
name.

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$delete _log ical_ name

os$delete_logical_name

(
IN objecLcontainer_id : e$objecLid;
IN logicaLname : string (*);
) RETURNS status;

DESCRIPTION

ARGUMENTS

RETURN
VALUES

The os$delete_logical_name service deletes the specified logical name from
the specified obj ect container.

The service performs a case sensitive search for the logical name in the
object container.

object_ container _ id
Supplies the object id of the object container whose logical name table
is searched. The object id identifies either a container directory or a
container.

logical_name
Supplies the logical name to delete.

status$ _normal normal, successful completion.

invalid object container id. status$ jnvalid _ objectjd

status$ _ object_type_
mismatch

the object type of the specified object container was
not a container directory or container.

status$ jnvalid_name Jength

status$ _logical_name _not_
found

length of the logical name was not valid.

logical name WCj,S not found.

2-5

DIGITAL .. Confidential and Proprietary - Restricted Distribution
os$translate _logical_name

os$translate _log ical_ name

(
IN objecLcontainer_id: e$objecLid;
IN logica,-name : string (*);
IN case_sensitive: boolean = true;
IN OUT equivalence_name_list : e$equivalence_name_list;
OUT logica,-name_attributes : SET e$lognam_attributes f..I OPTIONAL;
) RETURNS status;

DESCRIPTION

2-6

The os$translate_logical_name service searches the specified object
container for the specified logical name. If the logical name is found,
the service returns the logical name's equivalence names.

The service locates the logical name in the object container using one of
two search methods as specified by the case_sensitive parameter. If the
value is false, the service perfornis a case blind search. If the value is
true, the service performs a case sensitive search.

A case blind search locates the first logical name whose uppercase
representation matches the uppercase representation of the logical name
specified by the caller. Multiple logical names in the object container may
match but only the first logical name found is matched.

A case sensitive search locates the logical name whose name exactly
matches the logical name specified by the caller. Only one logical name in
the object container can match.

Equivalence names are returned in the equivalence_name_list parameter.
This parameter is of type e$equivalence_name_list. The e$equivalence_
name_list type is made up of the following fields:

- length - This field is set by the caller arid indicates to the service the
number of entries in the equivalence_name field.

- last_ valid_entry - This field is set by the service and indicates to the
caller the last entry in the equivalence_name field that contains a valid
value.

- context - This field maintains context across multiple calls to the service.
I t is set by the caller and the service.

- equivalence_name - This field is set by the service and indicates to the
caller the equivalence name or names assocaiated with the logical name.

As described above, the last_ valid_entry field indicates the last entry in
the equivalence_name field that contains a valid value. This field can have
the following values:

- If the value of this field is zero, the service did not return any equivalence
names associated with the logical name. A subsequent call to the service
would not return additional equivalence names.

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$translate_'ogical_name

ARGUMENTS

- If the value is non-zero and is less than the maximum number of entries,
the service returned all the equivalence names associated with the logical
name. A subsequent call to the service would not return additional
equivalence names.

- If the value is non-zero and is equal to the maximum number of entries,
the service may have returned all the equivalence names associated with
the logical name. The caller must examine the status returned by the
service to determine if all the equivalence names were returned. If the
status returned was status$_no_more_info, the service returned all the
equivalence names and a subsequent call to the service would not return
additional equivalence names. If the status returned was status$_normal,
the service did not return all the equivalence names and a subsequent call
to the service would return additional equivalence names.

As described above, the context field maintains context across multiple
calls to the service. The context field can have the following values:

- zero - When the context field is zero, the service attempts to set entries
in the equivalence_name field beginning with the first equivalence name
associated with the logical name.

- nonzero - When the context field is nonzero, the service attempts to set
entries in the equivalence_name field beginning with the next equivalence
name associated with the logical name indicated by the value in the
context field.

For the initial call, the caller sets the value of the context field to O. For
subsequent calls when additional equivalence names can be returned, the
caller should not modify the value of the context field.

Note, if multiple calls to the service are required to return all the
equivalence names, the logical name may be deleted in between the
calls.

object_ container _ id
Supplies the object id of the object container whose logical name table
is searched. The object id identifies either a container directory or a
container.

logical_name
Supplies the name of the logical name to translate.

case sensitive
Supplies the search method used to locate the logical name. A value
of false indicates a case blind search. A value of true indicates a case
sensitive search.

equivalence _name_list
Supplies (in the length field) the number of entries in the equivalence
name field. Supplies (in the context field) the context of the service.
Returns (in the last_valid_entry field) the last entry in the equivalence_
name field that contains a valid value. Returns (in the context field) the
context for the next call to the service. Returns (in the equivalence_name
field) some or all of the equivalence names associated with the logical
name.

2-7

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$translate_logical_name

RETURN
VALUES

2--8

logical_name_attributes
Returns a set containing the attributes of the logical name. See os$create_
logical_name for an explanation of the logical name attributes.

status$_normal

status$_no_more_info

status$ _invalid _0 bject_id

status$ _ object_type_
mismatch

status$ jnvalid _name_length

status$JogicaLname _not_
found

normal, successful completion. The logical name
was found and some of the equivalence names were
returned. A subsequent call to this service may
return additional information .

. normal, successful completion. The logical name
was found and all of the equivalence names were
returned. A subsequent call to this service will not
return additional information.

invalid object container id.

the object type of the specified object container was
not a container directory or container.

length of the logical name was not valid.

logical name was not found.

3 Wait System Services

3-1

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$wait_multiple

os$wait_multiple

(
IN OUT object_id_list : e$objecLid_list;
IN time_out: large_integer OPTIONAL;
IN waiLtype: e$waiLtype = e$c_waiLany;
OUT object_number: integer;
) RETURNS return_status: status;

DESCRIPTION The os$wait_multiple service suspends the execution of the caller until
one or all of the specified objects become signalled or the specified time
interval expires.

ARGUMENTS

3-2

The object ids that identify the objects to wait on are specified in the
object_id_list parameter. This parameter is of type e$object_id_list. The
e$object_id_list type is made up of the following fields:

- length - This field is set by the caller and indicates to the service the
number of entries in the object_id field.

- last_ valid_entry - This field is set by the caller and indicates to the
service how many valid entries are in the object_id field.

- context - This field is set by the service when an entry in the object_id
field is invalid. The context field indicates to the caller the entry that is
invalid.

- obj ect_id - This field is set by the caller and indicates to the service the
object ids that identify the objects to wait on.

object_id_list
Supplies the object ids that identify the objects to wait on. Returns in
the context field the number of the entry that is invalid. If all entries are
valid, the context is O.

time out
The amount of time in 100 nanosecond units that can expire before the
wait is timed out.

wait_type
Supplies the type of wait. If e$c_wait_any is specified, any object in the
object list that is signalled satisfies the wait. If e$c_wait_all is specified,
all objects in the object list must be signalled to satisfy the wait. If a value
is not specified, e$c_wait_any is assumed.

object_number
Returns the number of the object in the object id list that satisfied the
wait. If the wait times out, the object number is O.

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$wait_multiple

RETURN
VALUES

status$_normal

status$ jnvalid _objectjd

normal, successful completion.

invalid object id.

status$_invalid_object_count the count of the number of objects to wait on was
invalid.

status$_wait_not_supported wait not supported by the specified object.

status$_wait_timeout wait was not satisfied before the time out period.

3-3

DIGITAL - Confidential and Proprietary .. Restricted Distribution
os$wait_single

os$wait_single

(
IN objecLid : e$objecLid;
IN time_out: large_integer OPTIONAL;
) RETURNS return_status: status;

DESCRIPTION The os$wait_single service suspends the execution of the caller until the
specified object becomes signalled or the specified time interval expires.

ARGUMENTS object_id

RETURN
VALUES

3-4

Supplies the object id that identifies the object to wait on.

time out
The ~ount of time in 100 nanosecond units that can expire before the
wait is timed out.

status$ _normal

status$ jnvalid _ 0 bjectjd

status$ _ object_type_
mismatch

normal, successful completion.

invalid object id.

object type specified does not match the object type
of the object.

status$_wait_not_supported wait not supported by the specified object.

status$_waiCtimeout wait was not satisfied before the time out period.

4 Event System Services

4-1

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$clear _event

os$clear _event

(
IN evenLid : e$objecLid;
OUT previous_state: boolean;
) RETURNS return_status: status;

DESCRIPTION The os$clear_event service clears the state of the specified event to not
signalled.

ARGUMENTS event id

RETURN
VALUES

4-2

SupplieS-the object id of the event to clear.

previous_state
Returns the previous state of the event. A value of false indicates that the
state of the event was clear (not signalled). A value of true indicates that
the state of the event was set (signalled).

status$ _normal

status$ _invalid _object_id

status$ _ object_type_
mismatch

normal, successful completion.

invalid object id.

object type specified does not match the object type
of the object.

DIGITAL - Confidential and Proprietary .. Restricted Distribution
os$create _event

os$create _event

(
OUT evenLid : e$objeeLid;
IN objeetJ)arameters: e$objeeLparameters = DEFAULT;
IN autoelear_flag : boolean = false;
IN initiaLstate : boolean = false;
) RETURNS return_status: status;

DESCRIPTION

ARGUMENTS

The os$create_event service creates an event object.

An event can have two states: clear and set. When an event is clear it
is not signalled. When an event is set it is signalled. Only an event that
has been signalled satisfies a wait. An event is signalled by calling os$set_
event.

The creator of an event can specify that the event is automatically cleared
when the event satisfies a wait. If multiple threads are waiting on the
event, only the first thread's wait is satisfied; the remaining threads must
wait until the event is set again. If the object is created without automatic
clearing, the event remains .set until explicitly cleared. If multiple threads
are waiting on the event, all the waits are satisfied. An event is cleared by
calling os$clear_event.

event id
Returnsthe object id of the created event.

abjeet-l'aranneters
Supplies the object container in which the object is inserted, the name of
the object, and the access control list (ACL) of the object. If this argument
is not supplied or if it is supplied but not all values in the object parameter
record are supplied, the service applies default values. The default object
container is the process private container, the default name is none, and
the default ACL is none.

autaelear_flag
Supplies the action taken when a wait on the event is satisfied. If the
value is false, the state of the event is not changed; otherwise, the state is
cleared. If this argument is not supplied, the state is not changed.

initial state
Supplie;-the initial state of the event. If the value is false, the initial state
is cleared (not signalled); otherwise, it is set (signalled). If this argument
is not supplied, the state is cleared.

4-3

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$create _event

RETURN
VALUES

4-4

status$_normal

status$_invalid_objectJd

status$ _ object_type_
mismatch

normal, successful completion.

invalid object id.

object type specified does not match the object type
of the object.

status$Jnvalid_object invalid object.

status$_du plicate_o bject duplicate object found in object container.

status$_object_container_full object container full.

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$pu Ise _event

os$pulse _event

(
IN evenLid : e$objecLid;
OUT previous_state: boolean;
) RETURNS return_status: status;

DESCRIPTION The os$pulse_event service sets the state of the specified event to
signalled, services all the threads waiting on the event, and clears the
state of the specified event to not signalled.

ARGUMENTS

RETURN
VALUES

The service ignores the autoclear flag that was specified when the event
was created

event id
Suppliesthe object id of the event to clear.

previous_state
Returns the previous state of the event. A value of false indicates that the
state of the event was clear (not signalled). A value of true indicates that
the state of the event was set (signalled).

status$ _normal

status$ _invalid _ objectjd

status$ _ object_type_
mismatch

normal, successful completion.

invalid object id.

object type specified does not match the object type
of the object.

4-5

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$read_event

os$read _event

(
IN evenLid : e$objecLid;
OUT state: boolean;
) RETURNS return_status: status;

DESCRIPTION The os$read_event service reads the state of the specified event.

ARGUMENTS event id

RETURN
VALUES

4-6

SupplieS-the object id of the event to read.

state
Returns the current state of the event. A value of false indicates that the
state of the event is clear (not signalled). A value of true indicates that
the state of the event is set (signalled).

status$ _normal

status$ Jnvalid _ objectJd

status$_object_type_
mismatch

normal, successful completion.

invalid object id.

object type specified does not match the object type
of the object.

DIGITAL - Confidential and Proprietary - Restricted Distribution
~ os$set_event

(
IN evenLid : e$objecLid;
OUT previous_state: boolean;
) RETURNS return_status: status;

DESCRIPTION The os$set_event service sets the state of the specified event to signalled.

ARGUMENTS event id

RETURN
VALUES

SupplieS-the object id of the event to set.

previous_state
Returns the previous state of the event. A value of false indicates that the
state of the event was clear (not signalled). A value of true indicates that
the state of the event was set (signalled).

status$_normal

status$ _invaHd _ objectJd

status$ _ object_type_
mismatch

normal, successful completion.

invalid object id.

object type specified does not match the object type
of the object.

4-7

5 Semaphore System Services

5-1

DIGITAL - Confidential and Proprietary .. Restricted Distribution
os$create _semaphore

os$create _ sem aphore

(
OUT semaphore_id : e$objecLid;
IN objecfyarameters : e$objecLparameters;
IN initiaL count: integer;
IN maximum_count: integer;
) RETURNS status;

DESCRIPTION

ARGUMENTS

5-2

This os$create_semaphore service creates a semaphore object.

(The following description is brought to you by the Kernel.) A semaphore
object is used to control access to a resource but not necessarily in a
mutually exclusive fashion. A semaphore acts as a gate through which a
variable number of threads can pass concurrently, up to a specified limit.
The gate is open (signaled state) as long as there are resources available.
When the number of resources that may be concurrently in use has been
exhausted, the gate is closed (not-signaled state). The gating mechanism
of a semaphore is implemented by a counter. Waiting on a semaphore
waits until a resource is available and decrements the count. Releasing
the semaphore increments the count and allows another thread to pass -
through the gate.

semaphore_id
Returns the object id of the created semaphore.

objectparameters
Supplies the object container in which the object is inserted, the name of
the object, and the access control list (ACL) of the object. If this argument
is not supplied or if it is supplied but not all values in the object parameter
record are supplied, the service applies default values. The default object
container is the process private container, the default name is none, and
the default ACL is none.

initial count
Supplies the initial count of the semaphore. The intitial count must be
less than or equal to the maximum count.

maximum count
Supplies the maximum count the semaphore can attain. The maximum
count must be greater than zero.

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$create_semaphore

RETURN
VALUES status$ _normal

status$ _invalid _0 bjectJd

status$ _ object_type_
mismatch

status$_duplicate_object

status$ _ object_container _fu II

status$JnvalidJnitiaLcount

status$ Jnvalid _maximum_
count

normal, successful completion.

invalid object id.

object type specified does not match the object type
of the object.

duplicate object found in object container.

object container full.

the value specified as the initial count was greater
than the maximum.

the value specified as the maximum count was not
greater than zero.

5-3

DIGITAL - Confidential and Proprietary .. Restricted Distribution
os$read_semaphore

os$read_semaphore

(
IN semaphore_id : e$objecLid;
OUT count: integer;
) RETURNS status;

DESCRIPTION The os$read_semaphore service reads the count of the specified semaphore.

ARGUMENTS semaphore_id

RETURN
VALUES

5-4

Supplies the object id of the semaphore object to read.

count
Returns the count of the semaphore.

status$_normal

status$ _invalid _ objectjd

status$ _ object_type_
mismatch

normal, successful completion.

invalid object id.

object type specified does not match the object type
of the object.

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$release_semaphore

os$release_semaphore

(
IN semaphore_id: e$objecLid;
IN release_count: integer = 1;
OUT previous_count: integer;
) RETURNS status;

DESCRIPTION

ARGUMENTS

RETURN
VALUES

The os$release_semaphore service releases the specified semaphore. This
action causes the semaphore count to be incremented by the specified
count. If the count was 0 before it was incremented, the the state of the
semaphore is set to signaled.

The release_count argument specifies the value that is added to the
semaphore count. If a value for this argument is not specified, the
semaphore count is incremented by 1. The resulting semaphore count
must not exceed the maximum count of the semaphore.

semaphore_id
Supplies the object id of the semaphore object to release.

release count
Supplies the value that is added to the semaphore count.

previous_count
Returns the count of the semaphore before the count was incremented.

normal, successful completion.

invalid object id.

status$_normal

status$Jnvalid_objectJd

status$ _ object_type_
mismatch

object type specified does not match the object type
of the object.

status$ Jnvalid _release the release of the semaphore caused the the count
to exceed the maxim um count.

5-5

6 Interval System Services

6-1

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$cancel_timer

os$cancel_timer

(
IN timer_id : e$objecLid;
OUT timer_state: boolean;
) RETURNS status;

DESCRIPTION

ARGUMENTS

RETURN
VALUES

6-2

Cancels a timer object. If a timer object has been set with an AST, only
the thread that originally set the timer may cancel it.

timer id
supplieS-the object id of the timer object

timer state
returnstrue if the timer was currently active, false otherwise

status$_normal the service completed without errors

status$_access_violation a specified parameter is not accessable

status$jnvalid_canceLtimer the calling thread is not the thread that set the timer
with an AST

others object id translation errors

UIl:.i11 AL - confidential and Proprietary - Restricted Distribution
os$create _timer

os$create _ ti mer

(
OUTtimer_id: e$objecLid;
IN objectyarameters: e$objecLparameters = DEFAULT;
) RETURNS status;

DESCRIPTION

ARGUMENTS

Creates and initializes a timer object. The default object container is
process private

timer id
returns the object id of the resulting timer object

objectyarameters
supplies the object type independent parameters governing the creation of
the timer obj ect

RETURN
VALUES status$ _normal

status$_access_violation

status$_duplicate..:..object

others

the service completed without errors

a specified parameter is not accessable

a'timer with the same name already exists in the
specified container

object id translation errors

6-3

UIUIIAL - \.#onncentlal ana t'roprletary - Hestrlcted Distribution
os$read_ timer

os$read_timer

(
IN timer_id : e$objecLid;
OUT timer state: boolean;
) RETURNS status;

DESCRIPTION reads the signaled state of a timer object

ARGUMENTS timer id

RETURN
VALUES

6-4

suppliesthe object id of the timer object

timer state
returns true if the timer is in the signaled state , false otherwise

status$ _normal

status$_access_violation

others

the service completed without errors

a specified parameter is not accessable

object id translation errors

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$set_ timer

(
IN timer_id : e$objecLid;
IN due_time: large_integer;
IN astyrocedure : k$normaLasLroutine = NIL;
IN astyarameter : POINTER anytype CONFORM = NIL;
) RETURNS _status;

DESCRIPTION

ARGUMENTS

RETURN
VALUES

Sets a timer to expire in due_time. Timers are waitable objects. Waits are
satisfied when the timer expires.

When timers are used with ASTs, the system_value parameter is the
current system time in absolute UTe.

timer id
supplieS-the object id of the timer to set

due time
supplies the number of lOOns units of time that should elapse before
the timer expires if due_time is negative, the timer is "relative", or the
timer will expire (-due_time) units of time after the set timer call is made.
Positive values of due_time implys absolute time in UTe.

astJ'rocedure
supplies the procedure that should be called when the timer expires. If
defaulted, no procedure is called. If the previous mode is k$c_user, then
the procedure is called as a user mode ast procedure, otherwise, it is called
as a kernel mode ast procedure.

asLparameter
supplies the context passed to the ast procedure. If the ast procedure is
defaulted, then this parameter is ignored.

status$_normal ' the service completed without errors

status$_access_violation a specified parameter is not accessable

status$_invalid_canceLtimer the timer is set with an AST, and the calling thread
is not the thread that originally set the timer with an
AST

others object id translatior;'l errors

6-5

7 Process System Services

7-1

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$create _ exit_handler -process

(
IN handleryrocedure : k$norma'-asLroutine;
IN handler_context: POINTER anytype CONFORM = NIL;
IN handlerylacement: e$exiLhandlerylacement = e$c_beginning_oL
list;
OUT handler_id: e$exiLhandler_id;
) RETURNS-status;

DESCRIPTION This service is used to create a process level exit handler. Exit handlers
are called as user mode AST routines during exit. Process level exit
handlers are processed when a the last thread in a process calls os$exit_
threadO, and after all of the thread level exit handlers have been
processed. The exit handler list head stored in the exiting threads peR
is processed in order. Each handler found in the list is removed and
then called as an AST routine. This interface supports placement of an
exit handler at either the beginning or end of the exit handler list head.
Placement is under the control of the handler_placement parameter which
defaults to beginning of the list. Once created, a handler is assigned
a handler_id. This return value may be used to delete an existing exit
handler. '

ARGUMENTS handler_procedure

RETURN
VALUES

7-2

Supplies the exit handler procedure to be executed when this handler is
processed

handler context
Supplies a parameter to be passed to the-handler_procedure when the
handler is processed.

handler_placement
Supplies exit handler placement control.

handler id
Returns th-;handler ID of the exit handler. This argument is only valid if
the service returns with status$_normal.

status$_normal

status$ _access_violation

status$ _ not_ su pported

the service completed without errors

a specified parameter is not accessible

an attempt to call this service from a system thread
was made, or the service was called after kernel
mode exit processing has started.

LlIUII"'L - \"unlluenual ana t"ropnelary - HestrlCtea UlstriDutlon
os$create _ exit_handler _ th read

(
IN handleryrocedure : k$norma,-asLroutine;
IN handler_context: POINTER anytype CONFORM = NIL;
IN handler-p1acement: e$exiLhandler_placement = e$c_beginning_oL
list;
OUT handler_id: e$exiLhandler_id;
) RETURNS status;

DESCRIPTION This service is used to create a thread level exit handler. Exit handlers
are called as user mode AST routines during exit. Thread level exit
handlers are processed when a thread calls os$exit_thread(). The exit
handler list head stored in the exiting threads TCR is processed in order.
Each handler found in the list is removed and then called as an AST
routine. This interface supports placement of an exit handler at either
the beginning or end of the exit handler list head. Placement is under the·
control of the handler_placement parameter which defaults to beginning
of the list. Once created, a handler is assigned a handler_id. This return
value may be used to delete an existing exit handler.

ARGUMENTS' han dlerJ)ro cedure

RETURN
VALUES

Supplies the exit handler procedure to be executed when this handler is
processed

handler context
Supplies a parameter to be passed to the handler_procedure when the
handler is processed.

handler_placement
Supplies exit handler placement control.

handler id
Returns the handler ID of the created exit handler. This argument is only
valid if the service returns with status$_normal.

status$ _normal

status$_access_violation

status$ _not_ su pported

the service completed without errors

a specified parameter is not accessible

an attempt to call this service from a system thread
was made, or the service was called after kernel
mode exit processing has started.

7-3

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$create _ exit_status

os$create _ exit_status

(
OUT exiLstatus_id : e$object_id;
IN objecLparameters: e$objecLparameters = DEFAULT;
) RETURNS status;

DESCRIPTION Create and initialize an exit status object. If the container id stored in
object parameters is defaulted, then process private is assumed.

ARGUMENTS exit status id

RETURN
VALUES

7-4

object id of created exit status object

object-parameters
the object type independant parameters of the exit status object

status$_normal

status$ _access_violation

status$_duplicate_object

others

the service completed without errors

a specified parameter is not accessable

an exit status object with the same name already
exists in the specified container

object id translation errors

UlljllAL - Confidential and Proprietary - Restricted Distribution
os$create .Job

os$create.Job

{
OUT job_id : e$objecLid;
IN objectyarameters : e$objecLparameters = DEFAULT;
IN job_record: e$job_record = DEFAULT;
IN job_initiaL contain er : e$objecLid = DEFAULT;
IN job_allocation_list: POINTER e$objecLid_list = NIL;
IN process_objecLparameters : e$objectyarameters = DEFAULT;
IN process_record: e$process_record;
IN process_public_container: e$objecLid = DEFAULT;
IN process_private_container: e$objecLid = DEFAULT;
IN process_allocation_list: POINTER e$object_id_list = NIL;
IN process_data_block : POINTER quadword_data{*} CONFORM = NIL;
IN thread_objecLparameters : e$objecLparameters = DEFAULT;
IN thread_record: e$thread_record = DEFAULT;
IN thread_allocation_list: POINTER e$objecLid_list = NIL;
IN thread_data_block : POINTER quadword_data{*} = NIL;
IN thread_immediateyarameter1 : POINTER anytype CONFORM = NIL;
IN thread_immediateyarameter2 : POINTER anytype CONFORM = NIL;
IN thread_status: e$objecLid = DEFAULT;
} RETURNS status;

DESCRIPTION Create a job, process, and thread object as specified by the parameters.

ARGUMENTS jOb_id
Returns the object ID of the resulting job object

object-l'aranneters
Supplies the object type independent parameters for the job object the
ACL and container ID are ignored

job_record
Supplies the attributes of the job being created. If not present, then values
are obtained from current user object

job _ initial_ container
Supplies the job level object container to be transfered into the job level
container directory for this job. If not present then container directory
comes up empty

7-5

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$create~ob

7-6

job_allocation_list
Supplies the objects to be allocated to the job object. If not present then no
objects are allocated to the job

process_object-parameters
Supplies the object type independent parameters for the process object the
ACL and container ID are ignored

process_record
Supplies the att?butes of the process being created

process_public_container
Supplies the process level public container to be transfered into the process
level container directory for the process. If not present then the container
comes up empty.

process_private _ container
Supplies the process level private container to be transfered into the
process level container directory for the process. If not present then
container comes up empty.

process_allocation_list
Supplies the objects to be allocated to the process object. If not present
then no objects are allocated to the process

process_data_block
Supplies an arbitrary data block passed to the process

thread _ object_parameters
Supplies the object type independent parameters for the thread object the
ACL and Container ID are ignored

thread record
Supplies the attributes of the thread being created

thread allocation list - -
Supplies the objects to be allocated to the thread object. If not present
then no objects are allocated to the thread

thread data block - -
Supplies an arbitrary data block passed to initial thread. Pointer in TCR,
if pointer is NIL, then no data block was passed

thread_immediate -parameter 1
Supplies an immediate parameter passed to thread through TCR

thread_immediate -parameter2
Supplies an immediate parameter passed to thread through TCR

thread status
Supplies an exit status object to be bound to the initial thread. If not
present then the thread is created without an exit status object

Ullill AL - confidential and proprietary - Restricted Distribution
os$create .Job

RETURN
VALUES status$ _normal

status$ _access_violation

status$job_name_exists

status$_badjob_record

status$ _badjob jnit_
container

status$ _bad job_allocation

status$-process_name_
exists

status$ _bad -process_record

status$ _bad --prc --pu b_
container

status$ _bad _prc --priv_
container

status$ _bad -process_
allocation

status$_thread_name_exists

status$_bad_thread_record

status$_bad_thread_
allocation

status$ _ bad --process _ exit_
status

status$ _bad_thread _ exit_
status

status$ _quota_exceeded

the service completed without errors

a specified parameter is not accessable

a job object already exists with the name specified in
the job object parameters

an invalid job record was specified

the specfied job initial container can not be transfered
to the new job

an invalid job allocation list was specified

a process object already exists with the name
specified in the process object parameters

an invalid process record was specified

the specified process public container can not be
transfered to the new process

the specified process private container can not be
transfered to the new process

an invalid process allocation list was specified

a thread object already exists with the name specified
in the thread object parameters

an invalid thread record was specified

an invalid thread allocation list was specified

an error occured translating the object id of the
specified process exit status object

an error occured translating the object id of the
specified thread exit status object

not enough quota exists to complete the service

7-7

LJIUIIAL - \.,;onTiaentlal ana proprIetary - Restricted Distribution
os$create -process

os$create-process

(
OUT process_id : e$objecLid;
IN objectparameters : e$objecLparameters = DEFAULT;
IN process_record: e$process_record;
IN process_public_container: e$objecLid = DEFAULT;
IN process_private_container: e$objecLid = DEFAULT;
IN process_allocation_list: POINTER e$objecLid_list = NIL;
IN process_data_block : POINTER quadword_data{*) CONFORM = NIL;
IN thread_objectparameters : e$objectparameters = DEFAULT;
IN thread_record: e$thread_record = DEFAUL T;
IN thread_allocation_list: POINTER e$objecLid_list = NIL;
IN thread_data_block : POINTER quadword_data{*) CONFORM = NIL;
IN thread_immediateyarameter1 : POINTER anytype CONFORM = NIL;
IN thread_immediateyarameter2 : POINTER anytype CONFORM = NIL;
IN thread_status: e$objecLid = DEFAULT;
) RETURNS STATUS;

DESCRIPTION

ARGUMENTS

7-8

Create a Process and thread object as specified by the parameters. Always
results in the creation of a sub-process

process_id
Returns the obj ect ID of the resulting process obj ect

object-paranneters
Supplies the object type independent parameters for the process object the
ACL and container ID are ignored

process_record
Supplies the attributes of the process being created

process_public_container
Supplies the process level public container to be transfered into the process
level container directory for the process. If not present then the container
comes up empty.

process_private _ container
Supplies the process level private container to be transfered into the
process level container directory for the process. If not present then
container comes up empty.

process_allocation_list
Supplies the objects to be allocated to the process object. If not present
then no objects are allocated to the process

DIGITAL ... Confidential and Proprietary - Restricted Distribution
os$create -process

RETURN
VALUES

process_data_block
Supplies an arbitrary data block passed to the process

thread_abject_parameters
Supplies the object type independent parameters for the thread object the
ACL and Container ID are ignored

thread record
Supplies the attributes of the thread being created

thread_allocauon_list .
Supplies the objects to be allocated to the thread object. If not present
then no objects are allocated to the thread

thread_data_block
Supplies an arbitrary data block passed to initial thread. Pointer in TCR,
if pointer is NIL, then no data block was passed

thread_immediate -parameter 1
Supplies an immediate parameter passed to thread through TCR

thread_immediate-parameter2
. Supplies an immediate parameter passed to thread through TCR

thread status
Supplies an exit status object to be bound to the initial thread. If not
present then the thread is created without an exit status object

7-9

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$create --process

7-10

status$ _normal

status$ _access_violation

status$ J>rocess _name_
exists

status$ _bad J>rocess _record

status$ _bad J>rc J>u b_
container

status$ _badJ>rcJ>riv_
container

status$ _bad J>rocess_
allocation

status$_thread_name_exists

status$_bad_thread_record

status$ _bad_thread_
allocation

status$_badJ>rocess_exit_
status

status$ _bad_thread _ exit_
status

status$ _ quota_exceeded

the service completed without errors

a specified parameter is not accessable

a process object already exists with the name
specified in the proc~ss object parameters

an invalid process record was specified

the specified process public container can not be
transfered to the new process

the specified process private container can not be
transfered to the new process

an invalid process allocation list was specified

a thread object already exists with the name specified
in the thread object parameters

an invalid thread record was specified

an invalid thread allocation list was specified

an error occured translating the object id of the
specified process exit status object

an· error occured translating the object id of the
specified thread exit status object

not enough quota exists to complete the service

os$create _thread

os$create _ th read

(
OUT thread_id : e$objecLid;
IN objectyarameters: e$objecLparameters = DEFAULT;
IN threadyrocedure: e$thread_entryyoint;
IN thread_record: e$thread_record = DEFAULT;
IN thread_allocation_list: POINTER e$objecLid_list = NIL;
IN thread_data_block : POINTER quadword_data{*) CONFORM = NIL;
IN thread_immediateyarameter1 : POINTER anytype CONFORM = NIL;
IN thread_immediateyarameter2 : POINTER anytype CONFORM = NIL;
IN thread_status: e$objecLid = DEFAULT;
) RETURNS STATUS;

DESCRIPTION Create and additional thread object as specified by the parameters.

ARGUMENTS thread id
Returns the object ID of the resulting process object

objectparameters
Supplies the object type independent parameters for the thread object the
ACL and container ID are ignored

threadyrocedure
Supplies the entrypoint for the new thread

thread record
Supplies the attributes of the thread being created

thread_allocaUon_list
Supplies the objects to be allocated to the thread object. If not present
then no objects are allocated to the thread

thread data block - -
Supplies an arbitrary data block passed to initial thread. Pointer in TCR,
if pointer is NIL, then no data block was passed

thread_immediate JJarameter1
Supplies an immediate parameter passed to thread through TCR

thread_immediate -parameter2
Supplies an immediate parameter passed to thread through TCR

thread status
Supplies an exit status object to be bound to the initial thread. If not
present then the thread is created without an exit status object

7-11

UlullAL - '-#onnaenllal ana I-'ropnetary - Hestrlctea Distribution
os$create _ th read

RETURN
VALUES

7-12

status$ _normal

status$ _access_violation.

status$_thread_name_exists

status$ _bad _ th fa ad_record

status$ _bad_thread_
allocation

status$ _bad_thread _ exit_
status

status$ _quota_exceeded

the service completed without errors

a specified parameter is not accessable

a thread object already exists with the name specified
in the thread object parameters

an invalid thread record was specified

an invalid thread allocation list was specified

an error occured translating the object id of the
specified thread exit status object

not enough quota exists to complete the service

""lUI I"' - vUIIIIUt:IIUi:l1 i:lIlU r-rUpnelctry - neSlflClea UISlrlDUIIOn

os$create _user

os$create _user

(
OUT user_id : e$objecLid;
IN objectyarameters: e$objecLparameters = DEFAULT;
IN user_record: e$user_record;
IN user_allocation_list: POINTER e$objecLid_list = NIL;
INjob_objectyarameters: e$objectyarameters = DEFAULT;
IN job_record: e$job_record = DEFAULT;
IN job_initiaL contain er : e$objecLid = DEFAULT;
IN job_allocation_list: POINTER e$objecLid_list = NIL;
IN process_objectyarameters: e$objectyarameters = DEFAULT;
IN process_record: e$process_record;
IN process_public_container: e$objecLid = DEFAULT;
IN process_private_container: e$objecLid = DEFAULT;
IN process_allocation_list: POINTER e$object_id_list = NIL;
IN process_data_block : POINTER quadword_data(*) CONFORM = NIL;
IN thread_objectyarameters : e$objecLparameters = DEFAULT;
IN thread_record: e$thread_record = DEFAULT;
IN thread_allocation_list: POINTER e$objecLid_list = NIL;
IN thread_data_block : POINTER quadword_data(*) CONFORM = NIL;
IN thread_immediateyarametert : POINTER anytype CONFORM = NIL;
IN thread_immediateyarameter2 : POINTER anytype CONFORM = NIL;
IN thread_status: e$objecLid = DEFAULT;
) RETURNS STATUS;

DESCRIPTION

ARGUMENTS

Create a user, job, process, and thread object as specified by the
parameters. If the user object collides with an existing user object, then
use the existing user object.

user id
Returns the object ID of the resulting user object

object-l'aranneters
Supplies the obj ect type independent parameters for the user object the
ACL and container ID are ignored

user record
Supplies the attributes of new user object.

7-13

LlIUIIJIo\L - \"unlluenucu ana t'fopnelary - HeSlrlCtea ulStrlDUTIOn
os$create _user

7-14

user allocation list
Supplies the objects t;-be allocated to the user object. If not present then
no objects are allocated to the user

job _ objectparameters
Supplies the object type independent parameters for the job object the
ACL and container ID are ignored

job_record
Supplies the attributes of the job being created. If not present, then values
are obtained from current user object

job _initial_ container
Supplies the job level object container to be transfered into the job level
container directory for this job. If not present then container directory
comes up empty

job_allocation_list
Supplies the objects to be allocated to the job object. If not present then no
objects are allocated to the job

process_object-lOarameters
Supplies the object type independent parameters for the process object the
ACL and container ID are ignored

process_record
Supplies the attributes of the process being created

process -lOublic _ container
Supplies the process level public container to be transfered into the process
level container directory for the process. If not present then the container
comes up empty.

process_private _ container
Supplies the process level private container to be transfered into the
process level container directory for the process. If not present then
container comes up empty.

process_allocation_list
Supplies the objects to be allocated to the process object. If not present
then no objects are allocated to the process

process_data_block
Supplies an arbitrary data block passed to the process

thread_object_parameters
Supplies the object type independent parameters for the thread object the
ACL and Container ID are ignored

thread record
Supplies the attributes of the thread being created

thread allocation list
Supplies the objects to b;-allocated to the thread object. If not present
then no objects are allocated to the thread

RETURN
VALUES

__ a ••• __ _. _ •• _ I • "',.,1 Iv""". 1 - I av.;;;;tlll"'lv\.l IJI.::»LIILlULIUII

os$create _user

thread data block
Supplies ~ arbitrary data block passed to initial thread. Pointer in TCR,
if pointer is NIL, then no data block was passed

thread_immediate-parameter1 .
Supplies an immediate parameter passed to thread through TCR

thread_immediate yarameter2
Supplies an immediate parameter passed to thread through TCR

thread status
Supplies an exit status object to be bound to the initial thread. If not
present then the thread is created without an exit status object

status$_normal

status$_access_violation

status$_bad_user_record

status$_bad_user_allocation

status$ job_name _exists

status$ _bad job _record

status$_badjobJnit_
container

status$_badjob_allocation

status$ -process _ nam e_
exists

status$ _bad -process_record

status$ _bad _prc -pu b_
container

status$ _bad yrc -priv _
container

status$ _bad -process_
allocation

status$_thread_name_exists

status$_bad_thread_record

status$ _bad_thread_
allocation

status$ _bad -process _ exit_
status

status$ _bad_thread _ exit_
status

status$ _quota_exceeded

the service completed without errors

a specified parameter is not accessable

an invalid user record was specified

an invalid user allocation list was specified

a job object already exists with the name specified in
the job object parameters

an invalid job record was specified

the specfied job initial container can not be transfered
to the new job

an invalid job allocation list was specified

a process object already exists with the name
specified in the process object parameters

an invalid process record was specified

the specified process public container can not be
transfered to the new process

the specified process private container can not be
transfered to the new process

an invalid process allocation .list was specified

a thread object already exists with the name specified
in the thread object parameters

an invalid thread record was specified

an invalid thread allocation list was specified

an error occured translating the object id of the
specified process exit status object

an error occured translating the object id of the
specified thread exit status o~ject

not enough quota exists to complete the service

7-15

LlIUII.I-\L - ,""urilluenual ana I"rOpnelary .. l1eSlrlClea UISlrlCUllOn

os$delete _ exit_handler -process

os$delete _ exit_hand ler _process

(
IN handler_id: e$exiLhandler_id;
) RETURNS status;

DESCRIPTION This service is used to delete an existing process level exit handler. The
specified exit handler is removed from the process exit handler list. Once
an exit handler is delete, it will not be processed.

ARGUMENTS handler id
Supplies the handler ID of the exit handler to be deleted.

RETURN
VALUES

7-16

status$ _normal

status$ _exit_handler _not_
found

status$_not_supported

the service completed without errors

the handler specified by handler_id was not found on
exit handler list

an attempt to call this service from a system thread
was made

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$delete_exit_handler_thread

os$delete _ exit_hand ler _ th read

(
IN handler id: e$exit handler id; - - -
) RETURNS status;

DESCRIPTION This service is used to delete an existing thread level exit handler. The
specified exit handler is removed from the threads exit handler list. Once
an exit handler is deleted, it will not be processed.

ARGUMENTS handler id
Supplies the handler ID of the exit handler to be deleted.

RETURN
VALUES

status$ _normal

status$_exit_handler_not_
found

status$_not_supported

the service completed without errors

the handler specified by handlerjd was not found on
exit handler list

an attempt to call this service from a system thread
was made

7-17

DIGITAL - Confidential and Proprietary .. Restricted Distribution
os$exit_ th read

os$exit_ th read

(
IN exit status: status;
) RETURNS status;

DESCRIPTION This service begins kernel mode exit processing. This involves calling all
thread level exit handlers. The thread object id is then removed. If the
thread is the last thread in its process, then it executes its process level
exi t handlers.

ARGUMENTS exit status

RETURN
VALUES

7-18

Supplies the reason that the thread is exiting

status$ _repeat_service Seen only by the system service dispatcher. This
value is returned when dispatching to an exit handler.
If the handler returns, os$exit_thread() is restarted.

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$force _ exit.Job

os$force_exit~ob

(
IN job_id : e$objecLid;
IN exit_status: status;
) RETURNS status;

DESCRIPTION Force exit the job specified by job_id. This action causes all of the jobs
processes to exit

ARGUMENTS

RETURN
VALUES

job_id
supplies object id of the job to be exited.

exit status
supplies the reason for job to exit

status$_normal

others

normal completion of the service

object id translation errors

7-19

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$force _ exitj)rocess

os$force _ exit-process

(
IN process_id : e$objecLid;
IN exiLstatus : status;
) RETURNS status;

DESCRIPTION

ARGUMENTS

RETURN
VALUES

7-20

Force exit the process specified by process_id. This action causes all of the
processes sub-processes and threads to be force exited.

process_id
Supplies the object id of the process to be exited.

exit status
Supplies the reason for the process exiting

status$_normal

others

normal completion of the service

object id translation errors

DIGITAL - Confidential and Proprietary .. Restricted Distribution
os$force _ exit_thread

(
IN thread_id : e$objecLid;
IN exiLstatus : status;
) RETURNS status;

DESCRIPTION Force exit the thread specified by thread_id.

ARGUMENTS thread id

RETURN
VALUES

supplies the object id of the thread to be exited.

exit status
supplies the reason that the thread is force exiting

status$_normal

others

normal completion of the service

object id translation errors

7-21

LlIUII"'L - ,",onnoenllal ana t'roprtetary - Restricted Distribution
os$force _ exit_user

(
IN user_id : e$objecLid;
IN exiLstatus : status;
) RETURNS status;

DESCRIPTION Force exit the user specified by user_obj_id. This action causes all of the
users jobs to be force exited.

ARGUMENTS user id

RETURN
VALUES

7-22

Supplies the object id of the user to be exited.

exit status
Supplies the reason for the user exiting

status$_normal

others

normal completion of the service

object id translation errors

UI\:iIIAL - ~onTlaentlal and proprietary - Restricted Distribution
os$get_ exit_ status_info

(
IN exit_status_id: e$objecLid = DEFAULT;
IN exiLstatus_items : POINTER e$item_lisLtype;
IN process_status_object : boolean = true;
) RETURNS status;

DESCRIPTION

ARGUMENTS

Code

e$c_status_value

eSc _status_string

RETURN
VALUES

Return information about the specified exit status. The infonnation
returned is item list driven

exit status id
supplies the object id of the exit status object to get information from. If
defaulted, then either the process exit status object of the current thread,
or the thread exit status object of the current thread is assumed.

exit status items - -
supplies the item list which specifies the information to be retrieved.

Pointer Type

status

varying_string

boolean

Action

returns the status value from the item list

returns the status string stored in the exit status
object

returns and indication of whether a status string
exists in the exit status object. True = = exists

returns the exit status summary from the exit
status object. (this function does not return the
status string, only its address has no use from
user mode.)

process_status _ object
only looked at if exits status id is defaulted. If true, the process level exit
status object of the current thread is assumed, otherwise, the thread level
exit status is assumed

status$_normal

status$ _access_violation

status$jnvalidjtem_code

others

the service completed without errors

a specified parameter is not accessable

a specified item code is invalid, or its item entry is
invalid

object id translation errors

7-23

os$get--.iob_information

os$get.Job_information

(
IN job_id : e$objecLid == DEFAULT;
IN job_geLitems : POINTER e$item_lisLtype;
) RETURNS status;

DESCRIPTION

ARGUMENTS

Code

e$c_user_id

e$c-process_count

e$c -process jds

e$c_quota_usage

e$cjobJimits

e$cjob_class

RETURN
VALUES

7-24

Return information about the job object to the caller. The information
returned is item list driven

job_id
supplies if present, the object ID of job object that is to be inspected
otherwise, the job object of the calling thread is assumed

job_ge L items
supplies the item list identifying job object information to be extract,ed

Pointer Type

e$objectjd

integer

e$objectjdJist

e$quota_usage

e$quotaJimits

e$job_class

status$_normal

status$_access_violation

status$ jnvalid jte m _code

others

Action

return the object id of the jobs user object

return the num ber of processes for this user
(subprocesss not included)

return the object id's for the users processes
(subprocesss not included)

return the jobs resource usage

return the per job resource limits

return the job class of the job object

the service completed without errors

a specified parameter is not accessable

a specified item code is invalid, or its item entry is
invalid

object id translation errors

IJIUIIAL - \JonTlOenllal ana t-'roprletary - Hestrlctea DlstrlDutlon
os$getJlrocess_information

os$get-process _inform ation

(
IN process_id: e$objecLid = DEFAULT;
IN process_geLitems : POINTER e$item_'isLtype;
) RETURNS status;

DESCRIPTION

ARGUMENTS

Code

e$cjobJd

eSc _parentJd

e$c_sub-process_count

e$c_sub-processJds

e$cyrocess_accounting

eSc _pcr _base

e$c_quota_usage

e$c_processJimits

RETURN
VALUES

Return information about the process object to the caller. The information
returned is item list driven

process_id
supplies if present, the object ID of process object that is to be inspected
otherwise, the process object of the calling thread is assumed

process_get_items
supplies the item list identifying process object information to be extracted

Pointer Type

e$objectJd

e$objectJd

integer

e$objectJd Jist

integer

e$objectjd Jist

e$accounting_summary

e$process_control_region

e$quota_usage

e$quota Ji m its

status$ _normal

status$ _access _ vio lation

status$ jnvalid jte m _code

others

Action

return the object id of the processes job

return the object id of the parent process zero()
if process is not a subprocess

return the number of sub processes

return the object id's for the processes sub
processes

return the number of threads for the process (
threads in sub processes not included)

return the object ids for the threads of the
process (threads in sub processes not included)

return the process level accounting summary

return address of the process control region

return the processes resource usage

return the per process resource limits

the service completed without errors

a specified parameter is not accessable

a specified item code is invalid, or its item entry is
invalid

object id translation errors

7-25

LJlul I AL - l,;onTiaentlal and Proprietary - Restricted Distribution
os$get_ th read_information

os$get_ th read _i nform ation

(
IN thread_id : e$objecLid = DEFAUL T;
IN thread_geLitems : POINTER e$item_lisLtype;
) RETURNS status;

DESCRIPTION

ARGUMENTS

Code

e$c_process_id

e$c_tcr_base

e$c_thread_accounting .

e$c_threadyerf_counters

eSc _ threadyriority

e$c_thread_affinity

RETURN
VALUES

7-26

Return information about the thread object to the caller. The information
returned is item list driven

thread id
supplies if present, the object ID of thread object that is to be inspected
otherwise, the thread object of the calling thread is assumed

thread_get_items
supplies the item list identifying thread object information to be extracted

Pointer Type

e$objecCid

e$thread_control_region

e$cpu_and_io_summary

e$threadyerf_counters

k$combinedyriority

k$affinity

status$ _normal

status$_access_violation

status$ _invalidjtem_ code

others

Action

returns the object id of the threads process

returns address of the threads tcr

returns the thread specific accounting summary

returns the thread performance counters

return the current thread priority

return the current thread affinity

the service completed without errors

a specified parameter is not accessable

a specified item code is invalid, or its item entry is
invalid

object id translation errors

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$get_ user_information

os$get_ user _information

(
IN user_id: e$objecLid = DEFAULT;
IN userJjeLitems : POINTER e$item_list_type;
) RETURNS status;

DESCRIPTION

ARGUMENTS

Code

e$cjob_count

e$cjob_ids

e$c_username

e$c_quota_usage

e$c_userJimits

e$cjobJimits

e$c_processJimits

e$c_threadyriority

e$c_thread_affinity

e$c_access_restrictions

RETURN
VALUES

Return information about the user object to the caller. The information
returned is item list driven

user id
supplies if present, the object ID of user object that is to be inspected
otherwise, the user object of the calling thread is assumed

user_get_items
supplies the item li~t identifying user object information to be extracted

Pointer Type

integer

e$objectjd _list

varying_string

e$quota_usage

e$quota_1i m its

e$quotaJimits

e$quotaJimits

k$combinedyriority

k$affinity

e$access _restrictions

status$_normal

status$ _access_violation

status$ jnvalid jtem_code

others

Action

return the number of jobs for this user

return the object id's for the users jobs

return the user name

return the users resource usage

return the users resource limits

return the per job resource limits

return the per process resource limits

return the default thread priority

return the default thread affinity

return the access retrictions

the service completed without errors

a specified parameter is not accessable

a specified item code is invalid, or its item entry is
invalid

object id translation errors

7-27

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$hibernatejlrocess

os$h ibernate _process

(
IN process_id: e$objecLid;
) RETURNS status;

DESCRIPTION Cause all threads owned by the process specified by process_id to issue a
wait on the auto-clearing hibernate event object in their TCB. User mode
AST's remain enabled

ARGUMENTS process_id
supplies the object of the target process

RETURN
VALUES

7-28

status$_normal

status$ _access _ vio lation

status$_quota_exceeded

others

the service completed without errors

a specified parameter is not accessable

not enough quota exists to capture the thread or
subprocess ids of the specified process

object id translation errors

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$h ibernate _thread

os$hibernate_thread

(
IN thread_id : e$objecLid;
) RETURNS status;

DESCRIPTION Cause the thread specified by thread_id to is:;;ue a wait on the auto
clearing hibernate event object in its TCE. User mode AST's remain
enabled

ARGUMENTS thread id
supplies the object of the target thread

RETURN
VALUES

status$ _normal

status$_access_violation

others

the service completed without errors

a specified parameter is not accessable

object id translation errors

7-29

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$resume -process

os$resu me -process

(
IN process_id: e$objecLid;
) RETURNS status;

DESCRIPTION

ARGUMENTS

RETURN
VALUES

7-30

Cause all threads owned by the process specified by process object_id to
have their waits on the auto-clearing suspend event object in their TCB to
be satisfied by setting the event.

process_id
supplies the object ID of the target process

sta tus$ _normal

status$_access_violation

status$ _quota_exceeded

others

the service completed without errors

a specified parameter is not accessable

not enough quota exists to capture the thread or
subprocess ids of the specified process

object id translation errors

DIGITAL - Confidential and Proprietary .. Restricted Distribution
os$resume_thread

os$resume_thread

(
IN thread_id : e$objecLid;
) RETURNS status;

DESCRIPTION Cause the thread specified by thread object_id to have its wait on the
auto-clearing suspend event object in its TCB to be satisfied by setting the
event.

ARGUMENTS thread id
supplies the object ID of the target thread

RETURN
VALUES

status$ _normal

status$ _access _ vio lation

others

the service completed without errors

a specified parameter is not accessable

object id translation errors

7-31

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$set_ exit_status _info

(
IN exiLstatus_id: e$objecLid = DEFAULT;
IN exiLstatus_items : POINTER e$item_lisLtype;
IN process_status_object : boolean = true;
) RETURNS status;

DESCRIPTION Set information in the specified exit status. The information returned is
item list driven

ARGUMENTS exit status id

Code

RETURN
VALUES

7-32

supplies the object id of the exit status object to set information into. If
defaulted, then either the process exit status object of the current thread,
or the thread exit status object of the current thread is assumed. When
this id is defaulted, then the process or thread level exit status object is
used by address (no acl protection) since we assume that you can always
write to your own exit status object.

exit status items - -
supplies the item list which specifies the information to be set.

Pointer Type

varying_string

Action

places the specified string in the exit status
object

process_status _ object
only looked at if exits status id is defaulted. If true, the process level exit
status object of the current thread is assumed, otherwise, the thread level
exit status is assumed

status$ _normal

status$_access_violation

status$JnvalidJtem_code

others

the service completed without errors

a specified parameter is not accessable

a specified item code is invalid, or its item entry is
invalid

object id translation errors

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$set.Job _information

os$set.Job_information

(
INjob_id: e$objecLid = DEFAULT;
IN job_seLitems : POINTER e$item_lisLtype;
) RETURNS status;

DESCRIPTION Return information about the job object to the caller. The information
returned is item list driven

ARGUMENTS job_id

Code

e$c job Ji m its

RETURN
VALUES

supplies if present, the object ID of job object that is to be modified
otherwise, the job object of the calling thread is assumed

job_set_items
supplies the item list identifying job object information to be modified

Pointer Type Action

e$quotaJimits set the per job resource limits

status$ _normal the service completed without errors

a specified parameter is not accessable status$ _access_violation

status$ jnvalid jtem _code a specified item code is invalid, or its item entry is
invalid

others object id translation errors

7-33

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$set_ minor _ threadJlriority

os$set_minor_thread-priority

(
IN thread_id : e$objecLid = DEFAULT;
IN newyriority : k$minor_priority;
OUT previousyriority : k$combined-priority;
) RETURNS status;

DESCRIPTION This system service changes the minor priority of the specified thread.

ARGUMENTS ~~ad m

RETURN
VALUES

7-34

Supplies the object id of the thread whose priority is to be altered. If this
parameter is defaulted, the current thread is assumed

new_priority
Supplies the minor priority that is to be set in the specified thread.

previous -priority
Returns the specified threads previous combined priority. Only valid if
status$_normal was returned.

status$_normal

status$ jnvalid _argument

others

the service completed without errors

newyriority is not a valid value for k$minoryriority

object id translation errors

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$setJ)rocess _information

os$set_process _information

(
IN process_id: e$objecLid = DEFAULT;
IN process_seLitems: POINTER e$item_lisLtype;
) RETURNS status;

DESCRIPTION Return information about the process object to the caller. The information
returned is item list driven

ARGUMENTS process_id

Code

e$c -protected_data

e$c-processJimits

RETURN
VALUES

supplies if present, the object ID of process object that is to be modified
otherwise, the process object of the calling thread is assumed

process _ set_ items
supplies the item list identifying process object information to be modified

Pointer Type

anytype

status$_normal

status$ _access_violation

status$ jnvalidjtem_ code

others

Action

add block to protected data listhead in the pcr
(item length. determines how many bytes of data
are being linked to the list.)

replace the per process resource limits

the service completed without errors

a specified parameter is not accessable

a specified item code is invalid, or its item entry is
invalid

object id translation errors

7-35

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$set_ th read _i nformation

os$set_thread_information

(
IN thread_id : e$objecLid = DEFAULT;
IN thread_seLitems : POINTER e$item_lisLtype;
) RETURNS status;

DESCRIPTION

ARGUMENTS

Code

eSc _thread-priority

e$c_thread_mnr-priority

e$c_thread_mjr-priority .

eSc _thread _ affin ity

RETURN
VALUES

7-36

Return information about the thread object to the caller. The information
returned is item list driven

thread id
supplies if present, the object ID of thread object that is to be modified
otherwise, the thread object of the calling thread is assumed

thread set items
supplies the item list identifying thread object information to be modified

Pointer Type

k$combined-priority

k$minor_priority

k$major -priority

k$affinity

status$_normal

status$_access_violation

status$ _invalid jtem_ code

others

Action

set the current thread priority

set the current thread minor priority

set the current thread major priority

set the current thread affinity

the seNice completed without errors

a specified parameter is not accessable

a specified item code is invalid, or its item entry is
invalid

object id translation errors

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$set_ th read --'priority

(
IN thread_id : e$objecLid = DEFAULT;
IN newyriority : k$combinedyriority = 0;
OUT previousJJriority : k$combinedyriority;
) RETURNS status;

DESCRIPTION

ARGUMENTS

RETURN
VALUES

This system service changes the combined priority of the specified thread.

thread id
Supplies the object id of the thread whose priority is to be altered. If this
parameter is defaulted, the current thread is assumed

new_priority
Supplies the combined priority that is to be set in the thread. If this
parameter is defaulted, the base priority of the threads process is assumed.
If the major priority in new_priority is greater than the threads current
major priority, then the calling thread must have access to the raise
priority privileged operation object.

This service never allows the priority to be changed out of the priority
class that the thread process is a member of. If the process is not in a
realtime priority class, then the threads priority can not be changed to a
realtime priority class. If the process is within a realtime priority class,
then the threads new priority must stay within a realtime priority class.

previous -priority
Returns the specified threads previous combined priority. Only valid if
status$_normal was returned.

status$_normal

status$ Jnvalid _argument

others

the service completed without errors

new-priority is not a valid value for k$combined_
priority, or specifies a priority class that is different
from the threads process

object id translation errors

7-37

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$set_ user_information

os$set_user_information

(
IN user_id : e$objecLid = DEFAULT;
IN user_seLitems : POINTER e$item_lisLtype;
) RETURNS status;

DESCRIPTION

ARGUMENTS

Code

e$c_userJimits

e$cjobJimits.

e$c -process Jim its

e$c _ thread-priority

e$c_thread_affinity

e$c _access_restrictions

RETURN
VALUES

7-38

Return information about the user object to the caller. The information
returned is item list driven

user id
supplies if present, the object ID of user object that is to be modified
otherwise, the user object of the calling thread is assumed

user set items - -
supplies the item list identifying user object information to be modified

Pointer Type

e$quota_limits

e$quotaJimits

e$quota_limits

k$combined_priority

k$affinity

e $access _restrictio ns

status$ _normal

status$_access_violation

status$ jnvalid jtem_ code

others

Action

set the users resource limits

set the per job resource limits

set the per process resource limits

set the default thread priority

set the default thread affinity

set the access retrictions

the service completed without errors

a specified parameter is not accessable

a specified item code is invalid, or its item entry is
invalid

object id translation errors

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$signalJlrocess

os$signal-process

(
IN process_id: e$objecLid;
IN condition_value: status;
IN signaLargument : longword CONFORM = DEFAULT;
) RETURNS status;

DESCRIPTION Cause a condition of type condition_value to be raised in all threads owned
by the process specified by process_id. The condition handler is passed
signal_argument.

ARGUMENTS process_id
supplies the object_id of the process to be signaled

condition value
supplies a condition value to be raised in all threads of the target process

RETURN
VALUES

signal_ argument
supplies the valu,e that is passed to the condition handler

status$_normal

status$_access_violation

others

the service completed without errors

a specified parameter is not accessable

object id translation errors

7-39

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$signal_thread

os$sig nal_ th read

(
IN thread_id : e$objecLid;
IN condition value: status;
IN signaLargument: longword CONFORM = DEFAULT;
) RETURNS status;

DESCRIPTION

ARGUMENTS

RETURN
VALUES

7-40

Cause a condition of type condition_value to be raised in the thread
specified by thread_id. The condition handler is passed signal_argument.

thread id
supplies the object_id of the thread to be signaled

condition value
supplies a condition value to be raised in all threads of the target thread

signal_ argument
supplies the value that is passed to the condition llandler

status$ _normal

status$_access_violation

status$_not_supported

others

the service completed without errors

a specified parameter is not accessable

the target thread was a system thread

object id translation errors

DIGITAL - Confidential and Proprietary - Restricted Distribution'
os$suspend-process .

os$suspend_process

(
IN process_id: e$objecLid;
) RETURNS status;

DESCRIPTION Cause all threads owned by the process specified by process_id to issue a
wait on the auto-clearing suspend event object in their TCB. User mode
AST's are disabled. ..

ARGUMENTS process_id

RETURN
VALUES

supplies the object ID of the target process

status$_normal

status$_access_violation

status$ _quota_exceeded

others

the service completed without errors

a specified parameter is not accessable

not enough quota exists to capture the thread or
subprocess ids of the specified process

object id translation errors

7-41

DIGITAL .. Confidential and Proprietary - Restricted Distribution
os$suspend_ th read

os$suspend _ th read

(
IN thread_id : e$objecLid;
) RETURNS status;

DESCRIPTION Cause the th!ead specified by thread_id to issue a wait on the auto
clearing suspend event object in its TCB. User mode ASTs are disabled.

ARGUMENTS thread id
supplies the object ID of the target thread

RETURN
VALUES

7-42

status$ _normal

status$_access_violation

others

the service completed without errors

'a specified parameter is not accessable

object id translation errors

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$wake -process

os$wake -process

(
IN process_id : e$objecLid;
) RETURNS status;

DESCRIPTION Cause all threads owned by the process specified by process_id to have
their waits on the auto-clearing hibernate event object in their TCB to be
satisfied by setting the event.

ARGUMENTS process_id
supplies the object ID of the target process

RETURN
VALUES

status$ _normal

status$_access_violation

status$ _quota_exceeded

others

the service completed without errors

a specified parameter is not accessable

not enough quota exists to capture the thread or
subprocess ids of the specified process

object id translation errors

7-43

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$wake _ th read

os$wake_thread

(
IN thread_id : e$objecLid;
) RETURNS status;

DESCRIPTION Cause the thread specified by thread_id to have its wait on the auto
clearing hibernate event object in its TCB to be satisfied by setting the
event.

ARGUMENTS thread id
supplies the object ID of the target thread

RETURN
VALUES

7-44

status$ _normal

status$_access_violation

others

•

the service completed without errors

a specified parameter is not accessable

object id translation errors

8 Memory System Services

8-1

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$adjust_workin9_set_limit

(
IN number_oLbytes : integer;
OUT new_working_seLlimit : integer [1 .. J;
) RETURNS STATUS;

DESCRIPTION

ARGUMENTS

RETURN
VALUES

8-2

The Adjust Working Set Limit service adjusts a process's current working
set limit by the specified number of bytes and returns the new value to the
caller. The specified number of bytes will be converted into pages and the
calculated number of pages will be added to or removed from the working
set. A negative value for the byte count will cause pages to be removed
from the working set.

number_o'--bytes
Supplies the number of bytes to add or remove from the working set.

new_working_set_limit
Returns the current size of the working set in bytes. The working set is
maintained in pages and converted to bytes.

status$ _normal

status$ jnvalid _address

status$_working_set_at_
maximum

status$ _ working_ set_ at_
minimum

normal, successful completion.

error, either the starting or ending address is not
accessable.

error, unable to add any more pages to the working
set.

error, unable to, remove any more pages from the
wo rki ng set.

DIGITAL .. Confidential and Proprietary .. Restricted Distribution
os$create _address_space

(
IN desired_beginning_address : POINTER anytype CONFORM;
IN desired_ending_address : POINTER anytype CONFORM;
OUT actuaL beginning_address : POINTER anytype CONFORM;
OUT actuaLending_address : POINTER anytype CONFORM;
) RETURNS status;

DESCRIPTION This routine creates address space at the specified address. An error is
returned if any of the desired address range is already mapped, but the
create address will map from the desired address up to the already created
addresses, and that range will be returned.

ARGUM ENTS desired_beginning_address

RETURN
VALUES

Supplies the beginning address of the range to create.

desired _ en ding_ address
Supplies the ending address of the range to create.

actuaLbeginning_address
Returned address of the beginning of the range actually created. The
actual range could differ from the desired range due to 64K byte
alignment.

actual_ ending_address
Returned address of the ending of the range actually created.

status$_normal

status$_invalid_begin_
address

status$ jnvalid _ ending_
address

normal, successful completion.

error, the beginning address is invalid.

error, the ending address is invalid.

status$ _com plete _range_
not_map

warning, the complete range of addresses could not
be mapped do to previously mapped addresses.

8-3

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$create _section

os$create _section

(
OUT section_id : e$objecLid;
IN objectyarameters: e$objecLparameters = DEFAULT;
IN file_channel: integer OPTIONAL; 1### needs fixed also item list needs to
be added-
IN mapping_type: e$mapping_type OPTIONAL;
IN size_in_bytes : integer OPTIONAL;
IN virtua,-bloc'Lnumber : integer OPTIONAL;
IN protection: e$pageyrotection OPTIONAL;
IN identification_match: integer OPTIONAL;
) RETURNS status;

DESCRIPTION This routine creates a section which is either backed by an existing file or
backed by paging file.

ARGUMENTS section id

8-4

Returned object ID of the created section.

objectyarameters
Supplies the object container in which the object is inserted, the name of
the object, and the access control list (ACL) of the object. If this argument
is not supplied or if it is supplied but not all values in the object parameter
record are supplied, the service applies default values. The default object
container is the process private container, the default name is none, and
the default ACL is none. to map the section into.

file channel
Supplies the object ID of a previously created channel which has had a file
open performed. If the channel is not supplied, a section backed by paging
file is created.

mapping_type
Supplies the type of section to create, either data or image.

size_in_bytes
Supplies the size of the section to create in bytes. If page file mapping is
performed this parameter is required.

virtual block number
Supplies the virtual hlock number offset within the opened file to begin
mapping. This virtual block number is aligned on a 64K byte boundary.
Hence is the virtual block number is specified as 40 the actual virtual
block number would be 33 (start at vbn 1).

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$create _section

RETURN
VALUES

protection
Supplies the desired protection to apply to the newly created pages,
optional.

identification match
Supplies the id to :;;;atch, optional.

status$_normal

status$ _invalid_address

normal, successful completion.

error, either the starting or ending address is not
accessable.

status$_mapping_conflict error, the specified address range contains pages
which are already mapped.

status$_invalid_section_size

status$_requires_channel_
arg

others

error, the size specified for the section is invalid.

error, the section type requires a channel to be
specified.

any object error in creating an object.

8-5

DIGITAL .. Confidential and Proprietary - Restricted Distribution
os$delete _address_space

os$delete _add ress _space

(
IN desired_beginning_address : POINTER anytype CONFORM;
IN desired_ending_address : POINTER anytype CONFORM;
OUT actuaL beginning_address : POINTER anytype CONFORM;
OUT actuaLending_address : POINTER anytype CONFORM,;
) RETURNS status;

DESCRIPTION

ARGUMENTS

RETURN
VALUES

8-6

This routine deletes the address space at the specified address. An
warning status is returned if any of the desired address range is mapped
in by a mapping object, i.e. was not created by e$create_ virlual_address_
space and only the address space up to the found address is deleted.

desired_beginning_address
Supplies the beginning address of the range to delete.

desired_ ending_address
Supplies the ending address of the range to delete.

actual_beginning_ address
Returned· address of the beggin of the range actually deleted. The actual
range could differ from the desired range due to 64K byte alignment.

actual_ ending_address
Returned address of the ending of the range actually deleted.

status$_normal

status$ Jnvalid_begin_
address

status$_invalid_endin9-
address

status$ _ totaLrange _not_
deleted

normal, successful completion.

error, the beginning address is invalid.

error, the ending address is invalid.

warning, the complete range of addresses could not
be deleted do to previously mapped addresses.

DIGITAL - Confidential and Proprietary .. Restricted Distribution
os$expand_address_space

os$expand_address_space

(
IN number_oLbytes : integer [O .. J;
OUT actua'-beginning_address : POINTER anytype CONFORM;
OUT actua'-ending_address : POINTER anytype CONFORM;
) RETURNS status;

DESCRIPTION This routine creates address space starting at the highest virtual address
in use by the process for the number of bytes specified.

ARGUMENTS

RETURN
VALUES

number _ 0'-bytes
Supplies the number of bytes to add to the address space.

actual_ beginning_ address
Returned address of the first byte of the created address range.

actual_ ending_address
Returned address of the last byte of the created address range.

normal, successful completion. status$ _normal

status$_complete_range_
not_map

warning, the complete range of addresses could not
be mapped do to previously mapped addresses.

8-7

Ult.il fAL - Confidential and Proprietary - Restricted Distribution
os$expand_user_stack

(
IN number_oLbytes_to_add : integer [1 . .];
OUT new_stack_size : integer [1 . .];
) RETURNS STATUS;

DESCRIPTION The Expand User Stack service attempts to adjust the user stack by the
specified number of bytes. The number of bytes is converted into pages
and an attempt is made to expand the stack by the calculated number of
pages.

ARGUMENTS

RETURN
VALUES

8-8

The stack expansion may fail due to other thead user stacks occupying
virtual address space and thereby preventing the stack expansion. Note
that there is no way to contract a stack.

number_of_bytes_to_add
Supplies the number of bytes to add to the stack. The number of bytes is
converted to pages.

new stack size
Retu~ the c~ent stack size in bytes.

status$ _normal

status$ _unable_to _expand_
stack

status$ yartial_ expansion

status$ Jnvalid _address

normal, successful completion.

error, stack expansion failed.

warning, not all bytes were added to the stack.

error, either the- starting or ending address is not
accessable.

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$get_mapping_information

os$get_mapping_information

(
IN mapping_id : e$object_id;
IN mapping_geLitems : POINTER e$item_lisLtype;
) RETURNS STATUS;

DESCRIPTION

ARGUMENTS

item code

e$c_mapping_starting_
address

RETURN
VALUES

The Get Mapping Information service provides information about the
specified mapping object. The information which may be obtained is
specified in an item list.

mapping_id
Supplies the object ID of the desired mapping object on which information
should be extracted.

mapping_get_items
Supplies the item list which specifies the information about the mapping
object to return.

description

The object ID of the section
which this mapping object
maps.

The starting address of the
mapping in the address
space.

The size of the mapping in
bytes.

The byte offset from the start
of the section object.

status$ _normal

object_reference _errors

normal, successful completion.

any errors trying to reference an object by id.

8-9

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$get_ section_information

os$get_section_information

(
IN section_id : e$objecLid;
IN section_geLitems : POINTER e$item_list_type;
) RETURNS STATUS;

DESCRIPTION The Get Section Infonnation service provides information about the
specified section object. The information which may be obtained is
specified in an item list.

ARGUMENTS section id
Supplies the object ID of the desired section on which infonnation should
be extracted.

section_get_items
Supplies the item list which specifies the infonnation about the section to
return.

The following codes are valid:

Item code action

Virtual block number offset
which the section is based
upon.

e$c_section_size Size of the section in bytes.

e$c_section-protection_code Protection code assigned to
section pages.

e$c_sectionjdent_match Identification match specified
on section.

e$c_section_type Type of section (image or
data).

RETURN
VALUES

8-10

status$_normal

object_reference _errors

normal, successful completion.

any errors trying to reference an object by ide

DIGITAL • Confidential and Proprietary • Restricted Distribution
os$lock-pages_in_memory

os$lock -pages _i n _memory

(
IN starting_address: POINTER anytype CONFORM;
IN ending_address: POINTER anytype CONFORM;
OUT lasL/ocked_address : POINTER anytype CONFORM;
) RETURNS STATUS;

DESCRIPTION The Lock Pages in Memory service locks a page or range of pages in
memory. The specified virtual pages are forced into the working set,
then locked in memory. A locked page is not removed from memory if its
process's working set is removed from the balance set.

ARGUMENTS starting_address

RETURN
VALUES

Supplies the starting virtual address of the range to be locked into
memory.

ending_ address
Supplies the ending virtual address of the the range to be locked into
memory.

last locked address - -Returns the last address which was actually locked in memory.

normal, successful completion. status$ _normal

status$_complete_range_
not_lock

warning, at least one page was locked in memory.

status$-'ocked-,imit_reached error, no more pages may be locked in memory.

status$_invalid_address error, either the starting or ending address is not
accessable.

8-11

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$lock -pages _ working_set

(
IN starting_address: POINTER anytype CONFORM;
IN ending_address: POINTER anytype CONFORM;
OUT lasL/ocked_address : POINTER anytype CONFORM;
) RETURNS STATUS;

DESCRIPTION The lock pages in working set service locks a page or range of pages in
a process's working set. The specified virtuaL pages are forced into the
working set.

ARGUMENTS starting_address

RETURN
VALUES

8-12

Supplies the starting virtual address of the range to be locked into the
working set.

ending_address
Supplies the ending virtual address of the the range to be locked into the
working set.

last locked address - -
Returns the last address which was actually locked in the working set.

status$ _normal

status$ _com plete _range_
notJock

status$_working_set_full

status$ jnvalid _address

normal, successful completion.

warning, at least one page was locked in the working
set.

error, no more pages may be locked in the working
set.

error, either the starting or ending address is not
accessable.

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$map _section

os$map_section

(
OUT mapping_id : e$objecLid;
IN objectyarameters : e$objecLparameters = DEFAULT;
IN section_id : e$objecLid;
IN desired_beginning_address : POINTER anytypeCONFORM
OPTIONAL;
IN desired_ending_address : POINTER anytype CONFORM OPTIONAL;
IN protection: e$pageyrotection OPTIONAL;
IN identification_match: integer OPTIONAL;
IN byte_offset: integer [O .. J OPTIONAL;
OUT actua,-beginning_address : POINTER anytype CONFORM;
OUT actua'-ending_address : POINTER anytype CONFORM;
) RETURNS status;

DESCRIPTION This routine maps a previously created section into the process's address
space.

ARGUMENTS mapping_id
Returned object ID of the mapping object which describes the memory
section.

object-parameters
Supplies the object container in which the object is inserted, the name of
the object, and the access control list (ACL) of the object. If this argument
is not supplied or if it is supplied but not all values in the object parameter
record are supplied, the service applies default values. The default object
container is the process private container, the default name is none, and
the default ACL is none.

section id
Supplies the object ID of previously created section.

desired _ beginning_address
Supplies the beginning address of the range to map the section into. The
range must not currently have any valid addresses. The actual mapping
occurs on a 64K bytes boundary.

desired _ ending_ address
Supplies the ending address of the range to map the section into.

protection
Supplies the desired protection to apply to the newly created pages,
optional.

8-13

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$map _section

RETURN
VALUES

8-14

identification match
Supplies the id to ~atch, optional.

byte_offset
Supplies the offset into the section to beginning mapping, optional.

a ctuaL beginning_address
Returns the actual beginning address of the created range.

actuaL ending_address
Returns the actual ending.address of the created range.

status$ _normal

status$ Jnvalid _address

status$Jnvalid_map_
container

others

normal, successful completion.

error, either the starting or ending address is not
accessable.

error, the specified address range contains pages
which are already mapped.

error, the specified container for the mapping object
was not the de'fault private container.

any object error in creating an object.

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$setjlrotectio"_onjlages

os$set-protectio"_o"_pages

(
IN starting_address: POINTER anytype CONFORM;
IN ending~address : POINTER anytype CONFORM;
IN page_protection: e$pageyrotection;
OUT lasLchanged_address : POINTER anytype CONFORM;
OUT previousyage-protection : e$page_protection OPTIONAL;
) RETURNS status;

DESCRIPTION The Set Protection on Pages system service allows a thread to change the
protection on a page or range of pages.

ARGUMENTS starting_address

protection code

e$c-page _user_read

e$c -page_user _write

o$c-page_user_execute

e$c -page _kernel_read

e$c-page_kernel_write

e$c -page _kerneL execute

Supplies the starting virtual address of the range to have its protection
modified.

ending_address
Supplies the ending virtual address of the the range to have its protection
modified.

page -protection
Supplies the page protection to assign to the pages within the specified
address range. The page protection is a set with the following members.
Note that write implies read and for user access, kernel access is always
set to be identical. Also, user execute or kernel execute implies the other.

protection

user read access.

user write,read access.

user execute access.

kernel read access.

kernel write access.

kernel execute access.

Jast_ changed_address
Returns the last address which the protection was actually changed.

previous -page -protection
Optionally returns the previous page protection for the first page which
the protection was actually changed:

8-15

UlullAL - confidential and Proprietary - Restricted Distribution
os$set-protection _on -pages

RETURN
VALUES

8-16

status$ _normal

status$ -partial_range _done

stafus$ jnvalid _argument

status$ _invalid -protection

status$ -page_owner_
violation

normal, sucessful completion.

warning, unable to change the protection on the
complete range do to nonexistant pages.

error, unable to access or iterpret argument.

error, protection set contains invalid members.

error, attempt to change kernel protection on kernel
owned pages.

UIl111 AL - (.;ontlaentlal and Proprietary - Restricted Distribution
os$unlockj)ages_from_memory

os$unlock-pages_from_memory

(
IN starting_address: POINTER anytype CONFORM;
IN ending_address: POINTER anytype CONFORM;
OUT lasLunlocked_address : POINTER anytype CONFORM;
) RETURNS STATUS;

DESCRIPTION The unlock pages from memory service unlocks a page or range of pages
from memory. The specified virtual pages are unlocked from memory and
become eligible for replacement.

ARGUMENTS starting_address

RETURN
VALUES

Supplies the starting virtual address of the range to be unlocked from
memory.

ending_ address
Supplies the ending virtual address of the the range to be unlocked from
memory.

last locked address - - .
Returns the last address which was actually unlocked from memory.

status$ _normal

status$_complete_range_
not-'ock

normal, successful completion.

warning, at least one page was unlocked from
memory.

status$ jnvalid _address error, either the. starting or ending address is not
accessable.

8-17

UI\:.iIIAL - \.,;onnaentlal ana t-'roprletary - Hestrlctea DlstrlDutlon
os$unlock.J)ages_ working_set

os$unlockJlages_working_set

(
IN starting_address: POINTER anytype CONFORM;
IN ending_address: POINTER anytype CONFORM;
OUT lasLunlocked_address : POINTER anytype CONFORM;
) RETURNS STATUS;

DESCRIPTION The unlock pages from working set service unlocks a page or range
of pages from a process's working set. The specified virtual pages are
unlocked from the working set and become eligible for replacement.

ARGUMENTS starting_address

RETURN
VALUES

8-18

Supplies the starting virtual address of the range to be unlocked from the
working set.

ending_ address
Supplies the ending virtual address of the the range to be unlocked from
the working set.

last locked address - -
Returns the last address which was actually unlocked from the working
set.

status$ _normal

status$_complete_range_
not_lock

status$_invalid_address

normal, successful completion.

warning, at least one page was unlocked in the
working set.

error, either the starting or ending address is not
accessable.

DIGITAL - Confidential and Proprietary - Restricted Distribution
os~u pdate _mapped_section

os$update_mapped_section

(
IN mapping_id : e$object_id;
IN desired_beginning_address : POINTER anytype CONFORM;
IN desired_ending_address : POINTER anytype CONFORM;
IN flags: e$section_update_flags;
IN event_id : e$objecLid OPTIONAL;
IN astyrocedure: k$normaLasLroutine OPTIONAL;
IN astyarameter : LONGWORD CONFORM OPTIONAL;
BIND io_status_block : e$iosb;
OUT actuaL beginning_address : POINTER anytype CONFORM;
OUT actuaL ending_address : POINTER anytype CONFORM;
) RETURNS STATUS;

DESCRIPTION The Update Mapped Section service writes all modified pages in a mapped
section back into the section file on disk. One or more I/O requests are
queued based on the number of pages that have been modified.

ARGUMENTS mapping_id
Supplies the mapping ID of the mapped section to update.

desired_beginning_address
Optionally supplies the beginning address within the mapping to begin
updating the section. If this argument is not specified, the starting address
of the mapping will be used.

desire d_en ding_a ddress
Optionally supplies the ending address within the mapping to end
updating the section. If this argument is not specified, the endinng
address of the mapping will be used.

flags
Optionally supplies the update specified for updating the section. More
here later.

event id
Optionally supplies the object ID of an event object which will be set when
the update operation has completed.

astyrocedure
Optionally supplies the address of an AST procedure which will be called
when the update operation has completed.

ast_parameter
Optionally supples the value which will be supplied to the AST procedure
when called.

8-19

Ulul fAL - Confidential and Proprietary - Restricted Distribution
os$update _mapped_section

RETURN
VALUES

8-20

io status block
Optionally supplies the I/O status block which will receive the final
completion status of the updating operation.

actual_ beginning_ address _
Optionally returns the actual beginning address of the update operation.

actual_ en ding_ address
Optionally returns the actual ending address of the update operation.

status$_normal

status$ Jnvalid _address_
range

object_reference _errors

normal, sucessful completion.

error, beginning or ending address was not within the
mapping as specified by the mapping 10.

any errors trying to reference an object by id.

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$zero_to_end_of_user_stack

(
) RETURNS STATUS;

DESCRIPTION

ARGUMENTS

RETURN
VALUES

The Zero to End of User Stack service zeroes all pages from the current
stack pointer to the end of the stack. The zeroing is accomplished
by releasing any pages in physical memory or in the paging file and
converting the pages into demand zero pages.

None.

status$ _normal normal, successful completion.

8-21

9 1/0 System Services

9-1

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$cancel_ io

(
IN channeLid : e$objecLid;
) RETURNS status;

DESCRIPTION This service cancels all outstanding I/O request on the specified channel.

ARGUMENTS

RETURN
VALUES

9-2

Only the outstanding I/O requests that were issued by the calling thread
are canceled.

Outstanding I/O requests that are canceled are done so, asynchronously to
the the completion of the this service. That is, completion of this service
cannot be used to synchronize with the cancellation of the I/O requests.

channel id
Supplies anID of the channel

status$ _normal

status$ _invalid _ objectJd

status$ _ object_type_
mismatch

normal, successful completion.

invalid object id

invalid object

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$configu re _ fp

os$configure _fp

(
IN fpd_id : e$objecLid;
IN function_code: integer;
IN user_event: e$objecLid = DEFAULT;
IN fpdyarameters : POINTER anytype CONFORM ~ DEFAULT;
) RETURNS status; .

DESCRIPTION This service is used to issue configuration and deconfiguration requests to
a function processor. The function code and the fpd_parameters specifies
the reqeust type.

ARGUMENTS

RETURN
VALUES

The user supplied event object is specified if the caller wants to
synchronized with the completion of the request.

fpd_id
Supplies the FPD object ID

function code
Supplies the configuration function code

user event
Supplies object id of event to be signalled when done

fpd -parameters
Supplies the FPD configuration parameters.

status$_normal

status$ Jnvalid _ objectJd

status$ _ object_type_
mismatch

normal, successful completion

invalid object id

invalid object

9-3

un.:.ill AL - {.;ontlaentlal ana proprietary - Restricted Distribution
os$create _channel

os$create _channel

(
OUT channeLid : e$objecLid;
IN objecfyarameters : e$objecLparameters;
IN fpu_id : e$objecLid;
) RETURNS status;

DESCRIPTION This service is call to create a channel to an existing FPU object. The
FPU object ID parameter specifies the FPU object to which the channel is
attach.

ARGUMENTS

RETURN
VALUES

9-4

The object ID of the newly created channel is returned in the channel_
id parameter. Mter the channel object is created it is inserted into the
container specified in the object_parameters record. If there is a duplicate
object currently in the container, the newly created channel object is
deleted, and the object ID of the duplicate object is returned. If a container
object ID is not specified, the channel object is placed in the process private
container.

channel id
Returns a channel id

objectyarameters
Supplies the object architecture create object parameters

fpu_id
Supplies an object id of the FPU object to create a channel to

status$_normal

status$jnvalid_objectjd

status$_duplicate_object

status$ _ object_ contianer _fu II

status$ _ object_type_
mismatch

normal, successful completion

invalid object id

duplicate object found in object container

object container full

invalid object

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$create _ fpu

os$create _fpu

(
OUT fpu_id : e$objecLid;
IN objectyarameters : e$objecLparameters;
IN fpd_id : e$objecLid;
IN fpuyarameters : POINTER anytype CONFORM = DEFAULT;
) RETURNS status;

DESCRIPTION This service creates an FPU object for a function processor. The fpd_id
parameter specifies the function processor for which the FPU object is
created for.

ARGUMENTS

RETURN
VALUES

The object ID of the newly created FPU object is returned in the fpu_id
parameter. The object parameters specifies the object name, an ACL for
the FPU object, and the object ID of the container where the FPU object is
to be inserted in.

If a container object ID is not supplied, the FPU object is inserted into the
process private container after it is created. If a duplicate object already
exist in the specified container, the newly created FPU object is deleted,
and the object ID of the duplicate object is returned

fpu_id
Return the object id of the created FPU object.

object-paramters
Supplies the object parameters.

fpd_id
Supplies the object id of fpd.

fpu -parameters
Supplies the FPU specific parameters used to initialize the the FPU object.

status$ _normal

status$ Jnvalid _0 bjectJd

status$_duplicate_object

normal, successful completion

invalid object

duplicate object found in object container

status$_object_container_full object container full

9-5

. •• --- - ~"'. ".Wvl ",1 ... 1 ... 11\01 r I u...,. n:acli J - nc~u I"LCU LlI:::iLr IUUlIUn

os$get_channel_inforrnation

os$get_channel_information

(
IN channeLid : e$objecLid;
IN channeLitems: POINTER e$item_lisLtype = DEFAULT;
) RETURNS status;

DESCRIPTION

ARGUMENTS

Item Codes

io$cjtem_channeLaccess

io$c jtem-9ranted _access

RETURN
VALUES

Returns information about a channel object. The information returned is
item list driven.

channel id
Supplies channel object ID.

channel items
Supplies a pointer to an item list.

Data Type

BOOLEAN

SET[access_type]

status$ _normal

status$ _invalid _ objectjd

status$ _ object_type_
mismatch

Description

TRUE, if channel is being access.

Returns the access types that have been granted
on this channel.

normal, successful completion

invalid object id

invalid object

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$get_fpu_information

os$get_fpu_information

(
IN fpu_id : e$objecLid;
IN fpu_items : POINTER e$item_lisLtype = DEFAULT;
) RETURNS status;

DESCRIPTION Returns information about an FPU object. The information returned is
item list driven.

ARGUMENTS fpu_id
Supplies an FPU object ID.

fpu_items
Supplies a pointer to an item list.

Item Codes

io$cjtemjntertace_class

io$cjtem_fpu_state

io$c_fpu_bound

io$c:"'item_fp -params _ area_
size

Data Type

INTEGER

e$fpu_state

Integer

Integer

RETURN
VALUES

status$ _normal

status$jnvalid_objectjd

status$ _ object_type_
mismatch

Description

Returns FPU interface class

FPU current state

Returns TRUE if FPU is bound

Returns size of the FP parameter area needed
by this function processor and all function
processor below it. The size is returned in
quadwords.

normal, successful completion

invalid object ID

invalid object

9-7

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$request_io

os$request_io

(
IN channeLid : e$objecLid;
IN function_code: integer;
BIND iosb : e$iosb;
IN completion_evenLid: e$objecLid = DEFAULT;
IN completion_ast : k$normaLasLroutine = DEFAULT;
IN astyarameter: POINTER anytype CONFORM = DEFAULT;
IN io_parameters: POINTER anytype CONFORM = DEFAULT;
) RETURNS status;

DESCRIPTION This service is used to issue an I/O request. Two types of I/O request may
be issued, they are:

ARGUMENTS

9-8

a. Asynchronous I/O request, and

b. Synchronous I/O request

An I/O request is describe by its function code and I/O parameter record
supplied to this service. The request will fail if the channel or event object
is invalid, the function code or I/O parameters are invalid. The returned
status will contain the cause of failure. No information will be written to
the I/O status block.

An asynchronous I/O request is issued if an event object, AST procedure,
or both are specified in the call. Control is return to the caller after
the request has been successfully posted. When the I/O completes, the
following events can occur:

a. If an event object was specified, it is signalled.

b. If an AST procedure was specified, the AST is queued to the calling
thread. .

c. If both event object and a AST procedure is specified, the event is signal
first, then the AST is queued.

In the absents of an event object or an AST procedure, will cause the
request to be synchronous. In the case of a synchronous I/O request, the
calling thread is not allow to continue until the request completes.

The I/O request completion status is returned in the I/O status block.

channel id
Supplies the object id of channel to request io on

function code
Supplies an I/O request function code

iosb
Supplies an I/O status block

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$request_io

RETURN
VALUES

completion _ event_ id
Supplies a user event object to be signaled after I/O the completes

completion _ ast
Supplies an ast procedure address to be called-when the I/O completes.

ast_parameter
Supplies a parameter for an ast procedure

io J'arameters
Supplies a pointer to an I/O parameter record

normal, successful completion

invalid objectjd

status$ _normal

status$Jnvalid_objectJd

status$_wro n 9_re co rd_type

status$ _ object_type_
mismatch

Incorrect 110 parameter record for this function code.

Invalid object

status _ wron9_ device_class Invalid function code for this device.

Interface class specific status

9-9

LlIUIIAL - \"OnllOenlial ano t"'rOpnelary - neSlrlClea UISlrlDUllOn

os$synchronize_with_io

os$synchronize_with_io

(
IN evenLid : e$objecLid;
BIND iosb : e$iosb;
) RETURNS status;

DESCRIPTION

ARGUMENTS

RETURN
VALUES

9-10

This service synchronize the calling thread with a currently outstanding
asynchronous I/O request. ..

This service can only be use for asynchronous request that contians at
least an event object.

The event object and the 10SB of the previously issued asynchronous I/O
request must be supplied as the parameters to this service.

iosb
Supplies an 10SB.

event id
Supplies an event object ID.

status$ _normal

status$_invalid_objectjd

status$ _ object_type_
mismatch

normal, successful completion

invalid object id

invalid object

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$synch _ channel_ with_ fpu

os$synch_channel_with_fpu

(
IN channeLid : e$objecLid;
) RETURNS status;

DESCRIPTION This routines synchronizes the channel' with an FPU object. This is done
by copying the sequence number in the FPU object to the channel object.

ARGUMENTS

RETURN
VALUES

channel id
Supplies a object id of the channel object to be synchronized.

status$ _normal

status$Jnvalid_object_id

status$ _ object_type_
mismatch

normal, successful completion

invalid object id

invalid object

9-11

1 0 Security System Services

. 10-1

LJI'-=III AL - l,;onTiaentlal ana proprietary - Restricted Distribution
os$create _impersonation

os$create _i m personation

(
OUT impersonation_id : e$objecLid;
IN objectyarameters: e$objecLparameters = DEFAULT;
IN remote_nodename: string (*);
IN remote_username : string (*);
IN password: string (*) OPTIONAL;
) RETURNS status;

DESCRIPTION

ARGUMENTS

10-2

The os$create_impersonation service allows user mode servers to create an
impersonation object. The impersonation object can then be used as input
to the os$impersonate_client service to impersonate remote clients.

This service verifies that the remote user is a valid user of the system by
requesting the remote user's local user authorization record. If a record
exists and the specified password, if any, matches the password in the
authorization record, the user is a valid user of the system. If the user is
a valid user, the service creates the impersonation object representing the
remote user from the remote user's local user authorization record.

The obj ect_parameters parameter is a record consisting of a name, an
object container ID, and an ACL. This record, and values for these fields,
are optionally provided by the caller. The name field is the name of the
object. If a value is not supplied, the object is created without a name.
The object container ID field identifies the object container into which the
object is inserted, but this field is ignored; the object is inserted into the
process-private container. The ACL field supplies additional protection for
the object. If a value is not supplied, the object is created without an ACL.

Note: The only server calling this service should be the DFS server.

impersonation_id
Returns the object id of the created impersonation object.

object-l'arameters
Supplies the object's name, object container, and protection.

remote nodename
Supplies the name of the remote node.

remote username
Supplies the name of the remote user.

password
Supplies the password specified by the remote user.

Ullill AL - Confidential and Proprietary - Restricted Distribution
os$create _impersonation

RETURN
VALUES

status$_normal normal, successful completion.

status$ _duplicate_object duplicate object found in object container.

status$_object_container_fuII object container full. .

status$_invalid_user the specified user is not authorized to access the
system.

status$_invalidyassword the specified password was not valid.

10-3

UIUIIAL - \...ronTlCenUal ana t-"ropnetary - Hestnctea Distribution
os$create -priv _operation

os$create -priv _operation

(
OUT privi/eged_operation_id: e$objecLid;
IN object-parameters : e$objecLparameters = DEFAULT;
) RETURNS status;

DESCRIPTION

ARGUMENTS

RETURN
VALUES

10-4

The os$create_priv _operation creates a privileged operation object. A
privileged operation object represents a privileged operation. This object
allows software that performs a privileged operation, to detennine if a
user can perform the privileged operation. If the user has PERFORM_
OPERATION access to the privileged operation object, the user is allowed
to perform the privileged operation.

Software can have multiple privileged operation objects; the name of each
privileged operation object denotes the privileged operation.

The object_parameters parameter is a record consisting of a name, an
object container ID, and an ACL. This record, and values for these fields,
are optionally provided by the caller. The name field is the name of the
object. A value must be supplied because it specifies the name of the
privileged operation. The object container ID field identifies the object
cont~ner into which the object is inserted, but this field is ignored; the
object is inserted into the exec$privileged_operation_container system-level
container. The ACL field supplies additional protection for the object. If a
value is not supplied, the object is created without an ACL.

privileged_operation _ id
Returns the object id of the created privileged operation object.

object-1'aranneters
Supplies the object's name, object container, and protection.

status$ _normal

status$_duplicate_object

normal, successful completion.

duplicate object found in object container.

status$_object_container_full object container full.

UIl:iIIAL - \#onTlaentlal ana proprietary - Restricted Distribution
os$delete _access _control_list

os$delete _ access_control_list

(
IN objecLid : e$objecLid;
) RETURNS status;

DESCRIPTION The os$delete_access_control_list services deletes the specified object's
access control list.

ARGUMENTS object_id
Supplies the object id of the object whose ACL is deleted.

RETURN
VALUES

status$_normal

status$jnvalid_objectjd

normal, successful completion.

invalid object id.

10-5

-_ ~ ~ ~
os$disable _identifier

os$disable_identifier

(
IN identifier: e$identifier;
) RETURNS status;

DESCRIPTION

ARGUMENTS

RETURN
VALUES

10-6

The os$enable_identifier service disables an identifier in the caller's user
identifier list. Mter the identifier is disabled, it is not used by the system
when determining access to objects.

The caller must hold the specified identifier before it can be disabled.

The identifier must have the dynamic attribute in order to be disabled.

identifier
Supplies the identifier to disable.

status$_normal

status$ jdentifier _not_found

status$ _ident_ already _
disabled

status$ jdentifier _not_
dynamic

normal, successful completion.

the identifier was not found in the user identifier list.

the identifier was already disabled.

the identifier does not have the dynamic attribute.

UIl:iIIAL - (.;onTiaentlal and proprietary - Restricted Distribution
os$enable _identifier

os$enable _identifier

(
IN identifier: e$identifier;
) RETURNS status;

DESCRIPTION The os$enable_identifier service enables an identifier in the caller's user
identifier list. Mter the identifier is enabled, it is used by the system when
determining access to objects.

ARGUMENTS

RETURN
VALUES

The caller must hold the specified identifier before it can be enabled.

The identifier must have the dynamic attribute in order to be enabled.

identifier
Supplies the identifier to enable.

status$ _normal

status$ jdentifier _not_found

status$ jdent_ already_
enabled

status$ jdentifier _ not_
dynamic

normal, successful completion.

the identifier was not found in the user identifier list.

the identifier was already enabled.

the identifier does not have the dynamic attribute.

10-7

UIl:i11 AL - l,;onTiaentlal and proprietary - Restricted Distri bution
os$get_ access _control_list

os$get_ access _control_list

(
IN object_id : e$object_id;
IN acl : POINTER e$access_contro,-list;
) RETURNS status;

DESCRIPTION The os$get_access_control_list service returns the specified object's access
control list.

ARGUMENTS

RETURN
VALUES

10-8

When the service is called, it copies the object's ACL into the ACL pointed
to by the ACL parameter. The memory specified by the ACL parameter is
managed by the caller and must be large enough to hold the object's ACL.
If the ACL is not large enough, the service copies as many entries as the
ACL can hold and returns an error status.

object_id
Supplies the object id of the object whose ACL is returned.

sci
Supplies a pointer to the ACL into which a copy of the object's ACL is
written. The memory containing the ACL is managed by the caller.

status$ _normal

status$jnvalid_objectjd

normal, successful completion.

invalid object ide

status$_acUength_too_small the size of the specified ACL was not large enough
to hold the object's ACL.

LlIUI I AL - \"onTlOeniial ana tJropnetary - Restricted Distribution
os$get_ security_monitor

(
OUT security_events_enabled : SET e$security_even"t f..J;
) RETURNS status;

DESCRIPTION The os$get_security_monitor service returns a summary of the security
events that are being monitored.

ARGUMENTS security_events_enabJed

RETURN
VALUES

Returns the summary of security events that are being monitored.

status$ _normal normal, successful completion.

10-9

LlIUIIM - "'UIIIIU~IILlCU allu rlupllt:lCUy - nt:::tlfl\.rU::U LJI::tlflOUlIOn

os$impersonate _client

os$impersonate_client

(
IN impersonation_id : e$objecLid;
IN identifier_option: e$imp_identifier_option;
) RETURNS status;

DESCRIPTION

ARGUMENTS

RETURN
VALUES

10-10

The os$impersonate_client service allows a server to impersonate a client.
A server can restore its own identity by calling the os$restore_server
service.

The only context of a client that can be impersonated are the identifiers
held by the client. The server can specify to the service how to
impersonate the client's identifiers. If the server wants to impersonate the
client only, the service sets the caller's identifier list to the list contained
in the impersonation object. If the server wants to impersonate the union
of the client and the server, the service allocates pool, combines the caller's
identifier list and the identifier list in the impersonation object and saves
the resultant list in the pool, and sets the caller's identifier list to the list
contained in the pool.

Before the service performs the impersonation, it restores the caller's
previous identifier list. This allows the caller to impersonate multiple
clients in succession without having to make an explicit call to the
os$restore_server service.

When a server impersonates a client, the server can access objects as if it
were the client.

impersona tion_id
Supplies the object id of the impersonation object.

identifier_option
Supplies how the service performs the impersonation. If e$c_client_
identifiers value is specified, the service sets the server's identifiers to the
client's identifiers in the impersonation object. If the e$c_union_identifiers
value is specified, the service combines the server's identifiers with the
client's identifiers in the impersonation object.

status$ _normal

status$ _invalid _ objectJd

status$ _ object_type_
mismatch

normal, successful completion.

invalid object id.

the object identified by the imersonation id is not an
impersonation object.

LJlullAL - {..;onTiaentl81 ana proprietary - Restricted Distribution
os$restore_server

os$restore _server

(
);

DESCRIPTION

ARGUMENTS

RETURN
VALUES

The os$restore_server service restores a server's original identifier list.
This service is used by servers that call the os$impersonate_client service
to impersonate clients.

None.

None.

10-11

UIGITAL - Confidential and Proprietary • Restricted Distribution
os$set_ access _control_list

os$set_access_control_list

(
IN objecLid : e$objecLid;
IN act: POINTER e$access_contro,-list;
) RETURNS status;

DESCRIPTION The os$set_access_control_list sets the specified object's access control list.

The memory specified by the ACL parameter is managed by the caller.
When the service is called, it allocates pool and copies the contents of the
specified ACL into the pool.

ARGUMENTS object_id

RETURN
VALUES

10-12

Supplies the object id of the object whose ACL is set.

Bcl
Supplies a pointer to the ACL from which the ACL on the object is set.
The memory containing the ACL is managed by the caller.

status$_normal

status$ Jnvalid_ object_id

status$Jnvalid_acl

status$ Jnvalid _ace

normal, successful completion.

invalid object id.

invalid ACL.

invalid ACE.

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$set_ security_monitor

(-

IN security_events_enabled : SET e$security_event (..J;
IN security_events_disabled : SET e$security_event [.. J;
) RETURNS status;

DESCRIPTION The os$set_security_mon1tor enables or disables the monitoring of security
events.

ARGUMENTS security_events_enabled

RETURN
VALUES

Supplies the summary of security events indicating the security events to
start monitoring.

security_events_disabled
Supplies the summary of security events indicating the security events to
stop monitoring.

status$_normal normal, successful completion.

10-13

LlIUII"'L - \"unlluenucu ano r'TOpnelary - MeSlflClea UISlflDUliOn

os$translate _access_type

os$translate _access_type

(
IN access_type: e$access_type;
IN objecLtype_name: string (*) OPTIONAL;
OUT access_type_name : string (*);
) RETURNS status;

DESCRIPTION

ARGUMENTS

RETURN
VALUES

10-14

The os$translate_access_type service translates an access type to its
corresponding access type name.

The access type can be either a general or specific access type. If the
access type is a general access type, the caller does not have to specify the
object_type_name parameter. If the access type is a specific access type,
the caller must specify the object_type_name parameter. The object type
name denotes the object type that defined the specific access type.

The service performs a case sensitive search to match the object type
name.

access_type
Supplies the access type to translate. ,

object_type_name
Supplies the object type name of the object type that defined the specific
access type.

access_type_name
Returns the access type name corresponding to the access type.

status$_normal

status$Jnvalid_access_type

status$_invalid_nameJength

status$ Jnvalid _ object_type

normal, successful completion.

invalid access type.

length of the object type name was not valid.

invalid object type specified by the object type name.

UIl2IIAL - (.;onTiaentlal and proprietary - Restricted Distribution
os$translate _access_type _ name

(
IN access_type_name : string (*);
IN objecLtype_name: string (*) OPTIONAL;
OUT access_type: e$access_type;
) RETURNS status;

DESCRIPTION

ARGUMENTS

RETURN
VALUES

The os$translate_access_type_name service translates an access type name
to its corresponding access type.

The access type name can correspond to either a general or specific access
type. If the access type name corresponds to a general access type, the
caller does not have to specify the object_type_name parameter. If the
access type name corresponds to a specific access type, the caller must
specify the object_type_name parameter. The object type name denotes the
object type that defined the specific access type.

The service performs a case sensitive search to match the access type
name and object type name.

access_type_name.
Supplies the access type name to translate.

object_type_name
Supplies the object type name of the object type that defined the specific
access type.

access_type
Returns the access type corresponding to the access type name.

status$_normal normal, successful completion.

status$_invalid_name_length length of the access type name or the object type
name was not valid.

status$Jnvalid_access_type invalid access type specified by the access type
name.

status$Jnvalid_object_type invalid object type specified by the object type name.

10-15

_ .. - .. -,... .. _"_" ~
os$verify -priv _operation

(
IN privi/eged_operation_id: e$objecLid;
) RETURNS status;

DESCRIPTION The os$verify_priv_operation allows software to determine if a user can
perform the privileged operation represented by the specified privileged
operation object. If the user has PERFORM_OPERATION access to the
privileged operation object, the user is allowed to perform the privieged
operation.

ARGUMENTS privileged_operation_id

RETURN
VALUES

10-16

Supplies the object id of the privileged operation object.

status$_normal

status$ Jnvalid _ object_id

status$ _ object_type_
mismatch

normal, successful completion.

invalid object id.

the object identified by the privileged operati<?n id is
not a privileged operation object.

11 Condition and Exit Handling System Services

11-1

.,.""' •• " .. - "'''''IIIIU'''-1 UIClI ClIIU rl UtJl n::U:1I Y - n~::»l.ncl.eu LlI51f1DUliOn

os$create _condition_stack

os$create_condition_stack

(
IN condition_stack_size : integer[O .. j;
) RETURNS status;

DESCRIPTION

ARGUMENTS

RETURN
VALUES

11-2

This system service creates a condition stack of the specified size. If a
condition stack already exists, then a new stack is not created and an
error status is returned. The stacks size is based on the requested size
parameter and is always rounded up two a system defined value. A single
guard page is placed at the top of the stack.

condition stack size
Supplies the size in bytes for the condition stack being created. This value
is always rounded up to an appropriate granularity.

status$_normal

status$ _no_user _ stack_va

status$ _ condition_stack_
exists

Normal succesful completion of the system service

The condition stack was not created because no
virtual address space in the stack region could be
found large to staisfy the request.

A new condition stack was not created since a
condition stack already exists.

..,."" - """'IIIIU~IIUal allu rl UtJl n:acu y - ne:SLrU;U~O UI5[flDUIIOn

os$create_last_chance_handler

(
IN condition_handler: e$condition_handler;
OUT handler id: e$condition handler id; - --
) RETURNS status;

DESCRIPTION This system service creates a last chance vectored condition handler. Last
chance vectored condition handlers are processed in LIFO order during
condition delivery. This service places the created last chance handler at
the beginning of the last chance vectored condition handler list stored in
the calling threads TCR. The service returns a resulting handler_id which
may be used to delete a last chance vectored condition handler once it has
been created.

ARGUMENTS

RETURN
VALUES

The condition handler is linked on the list head in the calling threads TCR
indexed by the processor mode that the call was made in.

condition handler
Supplies the condition handler routine to be invoked when a condition is
being dispatched.

handler id
Returns the handler ID of the created last chance handler. This argument
is only valid if the service returns status$_normal.

status$_normal the service completed without errors

status$ _access _ vio lation a specified parameter is not accessible

11-3

...,.""' •• "" __ - ""U'III\A~I UICII ClII\A rl Uf.lIICLctl Y - nc~u .\,;U::U LlI:::iU IUUlIUIi

os$create -primary_handler

os$create J)ri mary_hand ler

(
IN condition handler: e$condition handler; - -
OUT handler_id : e$condition_handler_id;
) RETURNS status;

DESCRIPTION

ARGUMENTS

RETURN
VALUES

11-4

This system service creates a primary vectored condition handler. Primary
vectored condition handlers are processed in FIFO order during condition
delivery. This service places the created primary handler at the end of the
primary vectored condition handler list stored in the calling threads TCR.
The service returns a resulting handler_id which may be used to delete a
primary vectored condition handler once it has been created.

The condition handler is linked on the list head in the calling threads TCR
indexed by the processor mode that the call was made in.

condition handler
Supplies the condition handler routine to be invoked when a condition is
being dispatched.

handler id
Returns the handler ID of the created primary handler. This argument is
only valid if the service returns status$_normal.

status$_normal

status$_access_violation

the service completed without errors

a specified parameter is not accessible

IJIUIIAL - \"onTlOenUal ana t"roprletary - Hestrlctea Distribution
os$delete _last_chance _handler

(
IN handler_id : e$condition_handler_id;
) RETURNS status;

DESCRIPTION This service deletes an existing last chance vectored condition handler.

ARGUMENTS

RETURN
VALUES

Once deleted, the condition handler will not be called during exception
dispatching.

The condition handler is deleted from the list head in the calling threads
TCR indexed by the processor mode that the call was made in.

handler id
Supplies the handler id of the last chance vectored condition handler
which is to be deleted.

status$ _normal

status$_condition_handler_
not_found

the service completed without errors

the last chance vectored condition handler specified
by handlerjd was not found.

11-5

os$delete -primary_handler

os$delete -primary_handler

(
IN handler_id: e$condition_handler_id;
) RETURNS status;

DESCRIPTION

ARGUMENTS

RETURN
VALUES

11-6

This service deletes an existing primary vectored condition handler.
Once deleted, the condition handler will not be called during exception
dispatching.

The condition handler is deleted from the list head in the calling threads
TCR indexed by the processor mode that the call was made in.

handler id
Supplies the handler id of the primary vectored condition handler which is
to be deleted.

status$ _normal

status$ _condition_handler_
not_found

the service completed without errors

the primary vectored condition handler specified by
handlerjd was not found.

12 Miscellaneous System Services

12-1

...... ~ .. ~ -----.1
os$getyerformance_info

os$get-performance _info

(
IN data_list: POINTER e$item_lisLtype;
IN componenLlist: POINTER e$item_lisLtype = NIL;
) RETURNS status;

DESCRIPTION

ARGUMENTS

RETURN
VALUES

12-2

Return requested information about the usage of Mica system resources.

data list
Supplies the address of an item list which describes the data items to be
gathered.

componenLlist
Supplies the address of the data_list item list. If the data_list specifies
data items for a component class, this list specifies the components for
which data is to be gathered. If the component item list is not specified, or
does not include any components of the requested type, then information
is returned for all components of the requested type. If the component_list
includes component types for which data is not requested, those component
types are ignored.

status$_normal All data was gathered (success)

A specified component of type xxx is missing from
the system. Data was returned for all other specified
components of that type. (success)

status$_xxx_buffer_overflow The data buffer for item xxx was not large enough to
hold the requested data (failure)

status$_access_violation The service cannot access the locations specified by
one or more items (failure)

- --- ------ - --.. --- -_. ~ ,..,. ~
os$get_system_information

os$get_ system_information

(
IN system_geLitems : POINTER e$item_lisLtype;
) RETURNS STATUS;

DESCRIPTION The Get System Information system services returns information about
the current system.

ARGUMENTS system_get_items
Supplies the item list which specifies the information about the system to
return. The following codes are valid:

item code action

Returns the time when the
system was booted.

e$c_sYLcpu_type Returns the CPU processor
type.

e$c_syi_software_version Returns the current version
of the operating system.

e$c_syLnumber_pagefiles Returns the current number
of pagefiles installed.

e$c_syiyagefile_free Returns the total number of
free pages in all pagefiles.

e$c_syiyagefile_used Returns the total number of
used pages in all pagefiles.

e$c_number_oCscalar_cpus Returns the total number of
scalar processors.

e$c_number_oCvector_cpus Returns the total number of
vector processors.

e$c_memory_size Returns the amount of
memory on the system.

e$c __ modifiedyageJisCsize

e$c _bad -page Jist_size

RETURN
VALUES

Returns the size of the free
page list.

Returns the size of the
zeroed page list.

Returns the size of the
modifed page list.

Returns the size of the
standby page list.

Returns the size of the bad
page list.

12-3

os$get_system_information

status$ _normal

stauts$ jnvalid jtem _code

12-4

Normal,successful completion.

error, invalid item code found.

(
OUT system_time: e$binary_absolute_time;
) RETURNS STATUS;

DESCRIPTION The Get System Time service returns the current time in ISO time format.

ARGUMENTS system_time

RETURN
VALUES

Returns the current time.

status$_normal

status$Jnvalid_argument

Success, normal completion.

Error, cannot access argument.

12-5

_.~ •• "Ao. - ""VIIIIU,:;"UClI allu r-rupneusry - neSlrlClea ulStrlDutlon
os$get_uid

os$get_uid

(
IN desired_number: integer [1 .. J = 1;
OUT firsL uid : e$uid;
OUT number_allocated: integer [O .. J OPTIONAL;
) RETURNS STATUS;

DESCRIPTION The Get mn (Unique Identifier) service returns a mD for use in various
components of the Digital Network Architecture.

ARGUMENTS desired number

RETURN
VALUES

12-6

Optionally supplies the desired number of mDs to allocate. This allows
a single call to reserve a group of UIDs for usage. If this argument is not
supplied an allocation group of one is returned.

first uid
Returns the first unique identifier in the allocated group.

number allocated
Returns the number of UIDs reserved.

status$ _normal

status$Jnvalid_argument

status$ _not_all _created

Success, normal completion.

Error, cannot access argument.

Warning, the desired number of UIDs could not be
created.

(
IN page_tile_name : string (*);
) RETURNS STATUS;

os$i nstal tJ)age _file

DESCRIPTION The Install Page File service installs the specified file as a paging file. The
specified file must already exist and not be currently accessed.

ARGUMENTS page_file_name
Supplies the file name of the specifed page file to install.

RETURN
VALUES

status$ _normal

file_access _errors

Normal, suces'sful completion.

whatever.

12-7

os$next_uid

(
IN previous_uid : e$uid;
OUT next_uid : e$uid;
) RETURNS STATUS;

DESCRIPTION The Next UID (Unique Identifier) service returns a the next llD in a
created llD range.

ARGUMENTS previous_uid
Supplies the previous UID in the range which was returned.

RETURN
VALUES

12-8

next uid
Retu~ the next UIn.

status$_normal

status$Jnvalid_uid

Success, normal completion.

Error, the value for the UID was not a valid UID.

_.-. _ __ __ _. _ •• _ • 1"',.,11"'''.111 - nv;:,un",u:ru LlI;;:tllIUUlIUII

os$set_ system_time

(
IN system_time: e$binary_absolute_time;
) RETURNS STATUS;

DESCRIPTION The Set System Time service changes the value of the system time.

ARGUMENTS system_time
Supplies the new time value for the system time.

RETURN
VALUES

status$ _normal Success, normal completion.

Error, cannot access argument. status$ jnvalid _argum ent

status$ _no _rights Error, the thread does not have the proper identifier
to change the system time.

12-9

A

A.1

A.2

Executive Constants and Data Types

Executive Constants

Executive Defined Constants

io$c deaccess - -1;
io$c-fpu access -2;

(e$request io,e$execute io, e$synchronous_io)
(e$reque;t_io) -

io$c-get-fpu information -3;
iO$c=get=cha~nel_information = -4;
io$c establish callback = -5;
io$c-enable st~te change ast = -6;
iO$c=disabl;_stat;_chang;_ast = -7;
io$c item interface class = -1;
io$c-item-fpu state- -2;
io$c=item=fpu=bound = -3;
io$c_item_fp-params_area_size -4;
io$c item channel access -1;
iO$c=item=granted=access -2;

! (e$request io)
(e$request-io)
(e$synchro~ous io call)
(e$request io,-e$;ynchronous io call)
(e$request=io, e$synchronous=io=call)

io$c access request io: e$access type = e$c specific access 1;
io$c-access-get chn-info e$acce;s type = e$c_specific_acce;s_2;
io$c-access-man;gem;nt: e$access type = e$c specific access 1;
io$c-access-maintenance: e$acces; type = e$; specifi; acces; 2;
iO$c=access:performance: e$access=type = e$c=specific=access=3;
io$c access diagnostic: e$access type = e$c specific access 4;
io$c=access=allow_channel e$acc;ss_type = ;$c_specific_acc;ss_5;
io$c access get fpu info: e$access type = e$c specific access 6;
io$c-access-acc~unting: e$access type = e$c specific a~cess 7;
io$c-access-access: e$access typ; = e$c spe;ific acc;ss 8; -
io$c-access-fpu read: e$acce;s type = e$c specific acce;s 9;
io$c-access-fpu-write: e$acces; type = e$~ specifi~ acces; 10;
e$c_;s_max_;tri~g = 32767; - - - -
e$c max image name = 256;
e$c-max-name ~ 255;
e$c-max-eqvnam count 128;
obj$c m;x obje~t name = 127;
e$c m~ a~e count 255;

!t This should be 255.

e$c=max=use;_name = 32;
k$c_high-priority_level = 63;
k$c_high-processor_nurnber 31;
e$c_max_ace_identifier_count 63;
e$c_max_audit_name 246; Specified by ACL Architecture.

Miscellaneous Data Types

Misceleneous Data Types

A-1

_ ,..... ,..,. ,..,.~ • • ,... WI.", ...,-W..... • J t'v~

A-2

e$binary absolute time: RECORD
utc ;alue: large integer;
ina~curacy: integer [O .. J SIZE (BIT,32);
reserved: integer [0 .. 2**16 - 1] SIZE (BIT,16);
tdf: integer [-720 .. 780] SIZE (BIT,12);
version integer [0 .. 2**4 - 1] SIZE (BIT,4);
LAYOUT

utc_value;
inaccuracy;
reserved;
tdf;
version;

END LAYOUT;
END RECORD;

Unique Identifier Format

e$uid RECORD
first_quadword
second_quadword

END RECORD;

large_integer;
large_integer;

Common Item List Format

e$item_list_type(ilv_IDaX_entries : integer RECORD
CAPTURE ilv max entries;
ilv last in~se ;ntry: integer;
ilv-dire~tion ~ e$item list direction;

!!!*** sil limitation should be 48 bits
!!!*** sil limitation ...

! max size number of entries
index of last valid entry

! direction of entire item list
ilv=list ARRAY[l .. il;_max=entriesl ,OF e$item_list_entry;

END RECORD;

e$ite~list_direction

) ;

e$c_item list in out,
e$c item list in,
e$c=item=list=out

An Item List Consists of an array of item list entries

e$item list entry: RECORD
il; ite; code: integer;
ile=item=length integer;
ile item address: POINTER anytype;
ile=retu~n_length_address POINTER integer;
LAYOUT

ile item code ;
ile=item=length
ile item address ;
ile=retu~n_length_address

END LAYOUT;
END RECORD;

Common Linked List Entry/Header

e$linked list
1 flink
1 blink

END RECORD;

Wait Type

RECORD
POINTER e$linked_list;
POINTER e$linke~list;

internal format of an item code
internal format of an item length
it;em address
address of return length

A.3

A.4

Executive Constants and Data Types

e$wait type :
e$~ wait any,
e,$c:=wai(~all
) ;

k$processor_mode

AST Procedure Format

k$normal_ast routine :
PROCEDURE (

IN context: POINTER anytype CONFORM;
IN system value quadword CONFORM;

); -

I/O Data Types

I/O Status Block

e$iosb RECORD
condition value longword;
byte count: longword;
fp_c~ndition quadword;

END RECORD;

! I/O status
I/O transfer count
! Filled in by the FP.

e$fpu_state (io$c fpu state offline, io$c fpu state available,
iO$c:=fpu:=state=online, io$ c_fpu_;tate_transiti on,

. io$c_fpu_state_maintenance);

Logical Name Data Types
e$logical name list (length : integer

CAPTURE le-;;:gth;
last_valid_entry: integer;
context: large integer;
logical_name ARRAY [1 .. length]
LAYOUT

length;
last valid_entry;
context;
logical_name;

END LAYOUT;
END RECORD;

[1. .]) RECORD

e$equivalence name list (length integer [1 .. e$c_IDaX_eqvnam_count]) RECORD
CAPTURE l;ngth;
last valid entry: integer;
cont;xt : -large integer;
equivalence_name- ARRAY [1 .. length] OF varying_string (e$c_max_name);
LAYOUT

length;
last valid_entry;
context;
equivalence_name;

END LAYOUT;
END RECORD;

e$lognam attributes
e$c ~onfine lognam attr,
e$c-noalias-lognam-attr,
e$c=noshow_lognam_~ttr
) ;

A-3

\.5

A.6

--___ ... __ ~ • '''''~'-.JI

Memory Management Data Types
e$page-protections :

e$c-page_user_read,
e$c-page_user_write,
e$c-page_user_execute,
e$c-page_kernel_read,
e$c-page_kernel_write,
e$c-page_kernel_execute);

e$mapping_type: (e$c_data_map, e$c_image_rnap);

e$page-protection SET e$page-protections [..];

integer; !!!*** fix this

Process Architecture Data Types

A-4

Process Accounting Summary

The final accounting record contains this information in TLV format
in addition to fields identifying the process, image name, user ...

e$accounting_sumrnary RECORD
acct_total_page_faults: integer;
acct_hard-page_faults integer;
acct_soft-page_faults: integer;
acct_dzro-page_faults: integer;
acct_com-pag~_faults: integer;
acct-peak_virtual_memory: integer;
acct-peak_wo~king_set_size: integer;
acct start time: large integer;
acct-end time: large i~teger;
acct:pag;_file_usage :- integer;
acct-paged-pool_usage: integer;
acct_non-paged-pool_usage: integer;
acct_cpu_and_io e$cpu_and_io_summary;

END RECORD;

Cpu and IO accounting summary

Total number of page faults
Number of page faults for non resident page
Number of page faults fixed from reclaim Ii
Number of demand zero page faults
Number of copy on modify page faults
Peak virtual memory size
Peak working set size
Start time of process
End time of process
Peak page file usage
Peak paged pool usage
Peak non paged pool usage
CPU and IO accounting summary

An instance of this record exists in both the thread control block
and in the process control block. Updates to the pcb version requires interlocked
instructions. In the TCB version, only the execute io counters will have to be updated
using interlocked instructions

e$cpu_and_io_surnrnary RECORD
cis_cpu_cycles large_integer; Number of cycles used by the process or

IO Accounting
Request IO's are counted once.
Each FPU that passes on an IRP (execute_io's) must also record the transfer
by incrementing the counter for its class of FPU

cis_request_io_count
cis execute io count - -

END RECORD;

integer;
ARRAY [e$fpu_class] OF integer;

Determines the granularity in the execute io count array

Number of request_io's
Number of execute io's per fpu class

I..Av"U"'Vv vUII,o:,UII U,o:, ClIlU LlClLCI I YfJt::»

eSc fpu disk,
eSc fpu tape,
e$c-fpu-terminal,
e$c-fpu-network,
e$c-fpu-generic
); - -

Quota and Resource Usage Data Structures

Disk FPU's
Tape FPU's
Terminal FPU' s
Network FPU's
Generic FPU's

e$quota vector :
e$quota-usage :
e$quota-limits :
e$quota=types

ARRAY[e$quota types]
e$quota vector;
e$quot~ vector;

OF integer;

(-
e$c-paging_file_quota,
e$c-paged-pool_quota,
e$c_nonpaged-pool_quota,
e$c cpu time quota
); - - -

User Job, Process, and Thread Creation Records

e$user_record: RECORD
User Name user username: string(e$c max user name);

user=security-profile: e$~ecu;ity~rofile;
user_per_user_Iimits: e$quota_limits;

User Security Profile from Authorization F
Per User Resource Limits

user ::-;·er job limits: e$quota limits;
user~er~ro~ess_limits e$~ota_Iimits;
user_thread-priority: k$combined-priority;
user_thread_affinity: k$affinity;
user_access_restrictions e$access_restrictions;

END RECORD;

e$job record
j~b_class
!

RECORD
e$job_class;

Per job Resource limits. This value is used as the
qual_limits value for the job object, and is deducted
from the qual_usage field of the jobs user object.

Per Job Resource Limits
Per Process Resource Limits
Default Thread Priority
Default Thread Affinity
Users Access Restrictions

A value of zero() in anyone of fields means to use the
corresponding value of the ~er_job_limit from the
user structure

job-per_job_limits
END RECORD;

e$process_record RECORD

e$quota_limits;

e$object_id; ! Object ID of processes status object process_status_object
process_image_name : string(e$c_max_image_name); ! Image name for process being created
!

Per Process Resource limits. This value is used as the
qual limits value for the process object, and is deducted
from-the qual_usage field of the owning job object.
A value of zero() in anyone of fields means to use the
corresponding value of the ~er-process_limit from the
user structure

process-per-process_limits
END RECORD;

e$quota_limits; Resource limits for this process

e$thread_record RECORD
thread stack size If all 0 then default - -
thread_priority
thread_affinity

END RECORD;

integer;
k$combined-priority;
k$affinity;

initial thread priority if all 0 then default
complement of affinity If all 0 then all processo:

Misceleneous Thread Creation Parameters

A-5

--------- ----------- ---- -_.- -,r---

e$thread_entry-point: PROCEDURE ();
k$affinity: SET integer[O .. k$c_high-processor_number);
k$combined-priority integer[O .. k$c_high-priority_level);
k$minor-priority: integer[O .. 3];
e$job class (e$c jc invalid,

- e$c JC ~etwork,
e$c-jc-interactive,
e$c-jc-batch,
e$'c-jc-rsvdl,
e$c-jc-rsvd2,
e$c-jc-rsvd3,
e$c - jc - rsvd4,
e$c'::jc'::rsvdS
) ;

The User Visible Process Control Region

e$process_control region RECORD
pcr image nam;: string(e$c max image name);
pcr'::total=number_of_threads 7 i~teger;
pcr number running threads: integer;

process image name

pcr-object-id e$object id;
duplicate of p obj-id -

pcr-pr;tected_data_hd: e$linked_list;
pcr data block: POINTER anytype;
pcr-data-block length: integer;
pcr'::exit'::handl;rs ' e$linked_Iist;

total number of threads for this proces
number of running threads for this proc
process object id -

A-6

END RECORD;

The User Visible Thread Control Region

List head of protexted data
Initial process data or NIL
Length rounded to quad in bytes of d,lta
process level exit handlers

e$thread control region: RECORD
tcr_;bject_id: e$object_id; Object ID of this thread
tcr stack array: ARRAY[O .. 1] OF e$stack representation;! tcr stack array
tcr-curre~t stack index: integer[O .. l];- index of current stack
tcr~cr-poi~ter :- POINTER e$process_control_region; Pointer to process control region
tcr_handler_array ARRAY [k$processor_mode) OF e$vectored_handlers; ! vectored handlers for kerne

tcr exit handlers
tcr start address

e$linked list;
e$thread=entry-point ;

Initial Thread Parameters

tcr data block: POINTER anytype;
tcr'::data'::block_length: integer;
tcr-parameterl POINTER anytype;
tcr-parameter2 POINTER anytype;
LAYOUT

tcr object id;
tcr=stack_;'rray;
tcr current stack index;
tcr~cr-poi~ter; -
tcr_handIer_array;
tcr exit handlers;
tcr-start address;
tcr':: dataj;lock;
tcr_data_block_length;
tcr-parameterl;
tcr_parameter2;

END LAYOUT;
END RECORD;

Thread Environment Block User Mode R3 points to this

! user mode
Thread exit handlers User mode only
initial start address of thread

Initial thread data or NIL
Length rounded to quad in bytes
Immediate parameter I or zero()
Immediate parameter I or zero()

e$thread environment block: RECORD
teb_header: e$~ommon_teb_tcb_header;
teb vm zone: integer;
tls=ar;ay_address POINTER anytype;
tls_array_free: integer;
LAYOUT

teb_header;
teb vm zone;
tls-ar;ay address;
tls=array=free;

END LAYOUT;
END RECORD;

Misceleneous TCR Constructs

e$vectored_handlers RECORD
primary handlers: e$linked list;
last ch;nce handlers e$li~ked_list;

END RECORD;

e$stack representation RECORD
initial_sp: POINTER anytype;
stack limit: POINTER anytype;
stack base POINTER anytype;

END RECORD;

t:XeCUllve \,;onstants ana uata Types

common teb/tcb header
thread local vm zone
address of thread local storage control
byte offset of first unused tIs control array

Initial Value of Condition SP
Condition stack Limit
Condition Stack Base

Common TEB, TCB Header, R3 always points to this structure kernel mode, or user mode

e$common_teb ~cb header
UNION CASE *

WHEN 1 THEN
teb_length

WHEN 2 THEN

RECORD

integer;

tcb-previous_mode: k$processor_mode;
END UNION;
tcr address
LAYOUT

POINTER e$thread_control_region;

UNION
OVERLAY

teb_length;
OVERLAY

tcb-previous_mode;
END UNION;
tcr_address;

END LAYOUT;
END RECORD;

Thread performance data

e$thread-perf_counters RECORD
tpc kernel ticks: integer;
tpc=user_ticks: integer;
tpc-preemption_switch: integer;
tpc_voluntary_switch: integer;
tpc_quanturn_ends integer;

END RECORD;

Item Codes For User, Job, Process, and Thread Services

! When teb header first word is length
! byte length of teb

! When tcb header first word is previous mode
saved previous processor mode

Pointer to TCR

A-7

A-8

) ;

(e$c ujpt nil code,
e$c Job c;unt:-
e$c - job-ids,
e$c:=use;name,
e$c quota usage,
e$c-user limits,
e$c:=job_limits,
e$c-process_limits,
e$c_thread-priority,
e$c thread affinity,
e$c-access-restrictions,
e$c-user id,
e$c~roc;ss_count,
e$c-process_ids,
e$c job class,
e$c:=job:=id,
e$c-parent_id,
e$c_sub-process_count,
e$c_sub-process_ids,
e$c thread count,
e$c-thread-ids,
e$c~roces;_accounting,
e$c-pcr_base,
e$c-protected_data,
e$c-process_id,
e$c tcr base,
e$c-thr;ad accounting,
e$c:=thread:perf_counters,
e$c_thread_mnr-priority,
e$c_thread_mjr-priority,
e$c_get_entire_object

Exit Status Object Data Types

e$c_status-process,
e$c_status_thread);

e$exit status summary: RECORD
st~tus_bo~nd_object_type e$status object types;
status bound object id: e$object_id; -

Process or Thread
Object ID of object reporting ~

Exit Status status:=value-: status;
status_string-pointer POINTER varying_string(e$c_es_max_string);! Pointer to exit status strins

END RECORD;

Get Set information item codes for exit status objects

e$exit_status item codes (e$c exit status nil code,
e$c ;tatu; value~ -
e$c-status-string,
e$c-status-string set,
e$c:=status:=summarY

) ;

e$exit_handler_id: POINTER anytype;

e$exit_handler-placement :
e$c beginning of list,
e$c:=end_of_li;t -
) ;

~.7

---- ----- - ----------- ---- ---- "1.----

Object Architecture Data Types

All object creation object service routines take as a
parameter an e$object-parameters record. This record
specifies the container that the object is to be created in,
the name of the object, and the acl for the object. Any, or
all fields can be defaulted to zero() in which case the object
service routine chooses an appropriate default value.

e$object-parameters RECORD
object container id: e$object id;
name :- varying ;tring (obj$c ~ object name);
acl: POINTER ;$access_contr~l_list; -

END RECORD;

Item codes used in the get information services for
object architecture defined objects like object containers,
container directories, and all object headers

e$object item code
e$c ;cl,
e$c-allocation object id,
e$c-create dis;ble, -
e$c:level,-
e$c logical name list,
e$c -mode, - -
e$c:name,
e$c_nonpaged-pool_charge,
e$c object container id,
e$c-object-count, -
e$c-object-id count,
e$c-object-id-list,
e$c-object-st;te,
e$c-object-type name,
e$c-oid le;el, -
e$c:oid:object_container_id,
e$c oid object id type,
e$c:otd:id, --
e$c owner,
e$c~aged-pool_charge,
e$c-pointer_count,
e$c-principal_object_id,
e$c_waitable
) ;

representation of an object id

e$object_id QUADWORD;

This data structure is used whenever a variable length list of object
ids is required

e$object_id_list(length : integer
CAPTURE length;
last valid entry: integer;
cont;xt : -large_integer;
object_id: ARRAY [1 .. length]
LAYOUT

length;
last_valid_entry;
context;
object_id;

END LAYOUT;
END RECORD;

[1. .1) RECORD

OF e$object_id;

A-9

\.8 Security Related Data Types
e$access_control_list(ace_count : integer [O .. e$c_max_ace_count])

CAPTURE ace_count;
VARIANTS CASE ace count

WHEN 0 THEN
NOTHING;

WHEN OTHERS THEN
ace: ARRAY (1 .. ace_count] OF e$access_control_entry;

END VARIANTS;
LAYOUT

ace_count;
VARIANTS

OVERLAY
reserved
ace;

END VARIANTS;
END LAYOUT;

FILLER (longword,*);

END RECORD;

e$access type
e$c general access 1,
e$c-general-access-2,
e$c-general-access-3,
e$c-general-access-4,
e$c-general-access-S,
e$c-general-access-6,
e$c=general=access=7,
e$c general access 8,
e$c-general-access-9,

A-10

e$c=general=access=10,
e$c general access 11,
e$c-general-acces~-12,
e$c-general-access-13,
e$c-general-access-14,
e$c-general-access-1S,
e$c-general-access-16,
e$c-general-access-17,
e$c-general-access-18,
e$c=general=access=19,
e$c general access 20,
e$c-general-access-21,
e$c-general-access-22,
e$c-general-access-23,
e$c-general-access-24,
e$c-general-access-2S,
e$c-general-access-26,
e$c=general=access=27,
e$c general access 28,
e$c-general-access-29,
e$c=general=access=30,
e$c general access 31,
e$c-general-access-32,
e$c=specifi~_acces~_l,
e$c specific access 2,
e$c=specific=access=3,
e$c specific access 4,
e$c-specific-access-S,
e$c=specific=access=6,
e$c specific access 7,
e$c-specific-access-8,
e$c=specific=access=9,
e$c_specific_access_10,
e$c specific access 11,
e$c=specific=access=12,
e$c specific access 13,
e$c=specific=access=14,
e$c specific access IS,
e$c-specific-access-16,
e$c=specific=access=17,

RECORD

e$c specific access 18,
e$c-specific-access-19,
e$c-specific-access-20,
e$c-specific-access-21,
e$c-specific-access-22,
e$c-specific-access-23,
e$c-specific-access-24,
e$c-specific-access-25,
e$c-specific-access-26,
e$c-specific-access-27,
e$c-specific-access-28,
e$c-specific-access-29,
e$c-specific-access-30,
e$c-specific-access-31,
e$c-specific-access-32
); - - -

e$identifier: longword;

e$imp identifier option :
e$c client identifiers,
e$c-union identifiers
); - -

e$security_event
e$c acl audit security event
); - - - -

e$access_ace_flag :
e$c nonterrninal ace flag
); - - -

e$ace_flag :
e$c default ace flag,
e$c-nopropagate-ace flag
); - - -

e$ace type: (.
e$c access ace,
e$c:=audit_~ce
) ;

e$audit ace flag :
e$c-suc~ess ace flag,
e$c-failure-ace-flag,
e$c-alarm a~e flag
); - --

e$access_control_entry RECORD
ace type: e$ace type [..] SIZE (byte);
ace:=flags: SET ;$ace_flag [..] SIZE (byte);
reserved: byte_data (2);
UNION CASE *

WHEN 1 THEN Access ACE specific
access flags: SET e$access ace flag [..] SIZE (byte);
access:=identifier_count: i~teg;r [l .. e$c_max_ace_identifier_count] SIZE (byte);
access access allowed: SET e$access type [..];
access identifier: ARRAY [1 .. e$c ~ ace identifier count] OF e$identifier;

WHEN 2 THEN ! Audit ACE specific - - - -
audit flags: SET e$audit ace flag [..] SIZE (byte);
audit-access monitored: SET ;$access type [.. J;
audit-name varying_string (e$c_max_~udit_name);

END UNION;
END RECORD;

A-11

A.9 Condition Handling Data Types
e$condition_record-pointer
e$mechanism_record-pointer

POINTER e$condition record;
POINTER e$mechanism=record;

e$condition handler: PROCEDURE
IN condition record e$condition_record-pointer;
IN mechanism record e$mechanism_record-pointer;
) RETURNS status;

POINTER anytype;

e$condition record(argument number: integer [0 .. J) RECORD
CAPTURE-argument number;-
condition name :- status;
condition flags: SET e$condition flags [.. J;
condition-list: e$condition_reco~d-pointer;
processor status: arch$processor status;
condition=address: e$instruction~ointer;
arguments: ARRAY [l .. argument_number J OF e$argument_descriptor;
LAYOUT

condition name;
condition=flags;
condition_list;
processor status;
condition=address;
unused: FILLER (longword, 1);
argument_number;
arguments;

END LAYOUT;
END RECORD;

e$mechanism_record RECORD
stack valid: boolean [.,] SIZE (longword);
est abli sher_fp e$frame-pointer;
UNION CASE *.

WHEN 1 THEN
return status

WHEN 2 THEN
status;

first return register :
second_retur~_register

END UNION;

LAYOUT
stack_valid;
establisher_fp;
UNION

OVERLAY
return_status;

arch$register;
arch$register;

OVERLAY
first_return_register;
second_return_register;

END UNION;
END LAYOUT;

END RECORD;

e$frame-pointer POINTER anytype;

arch$processor_status: integer; dummy definition
arch$register: longword;
e$instruction-pointer: POINTER arch$instruction;
arch$instruction: integer; ! dummy definition

A-12

e$argument descriptor
UNION CASE *

WHEN 1 THEN

RECORD

extent: integer;
ptr: POINTER anytype;

WHEN 2 THEN
immediate: integer;

WHEN 3 THEN
large_immediate: quadword;

END UNION;
class: integer [0 .. 255] SIZE(byte);
datatype: integer [0 .. 255] SIZE(byte);
size: integer;
LAYOUT

UNION
OVERLAY

extent,
ptr;

OVERLAY
immediate;

OVERLAY
large_immediate;

END UNION;
class;
sbzl: FILLER(byte,2);
datatype;
size;

END LAYOUT;
END RECORD;

e$condition_flags :
e$c condition unwinding,

.e$c-condition-noncontinuable,
e$c-condition-exit unwind,
e$c-condition-duri~g ast,
e$c=condition=async -
) ; .

A-13

Index

c
Condition handling data types • A-11

E
Executive constants· A-1

I
1/0 data types • A-3

L
Logical name data types • A-3

M
Memory management data types • A-3
Miscellaneous data types • A-1

o
Object architecture data types • A-8
os$adjust_working_setJimit • 8-2
os$allocate_object ·1-2
os$cariceUo • 9-2
os$cancel_timer • 6-2
os$clear_event • 4-2
os$configure_fp • 9-3
os$create_address_space • 8-3
os$create_channel· 9-4
os$create_condition_stack· 11-2
os$create_container - 1-4
os$create _event • 4-3
os$create_exit_handler-process - 7-2
os$create_exit_handler_thread • 7-3

os$create_exit_status ·.7-4
os$create _fpu • 9-5
os$create jdentifier • 1-5
os$createjmpersonation· 10-2
os$create job • 7-5
os$create Jast_ chance _handler • 11-3
os$createJogicaLname • 2-2
os$create-primary_handler· 11-4
os$create-priv_operation -10-4

os$create -process • 7-8
os$create_referencejd -1-6
os$create _section - 8-4
os$create_semaphore - 5-2
os$create_thread • 7-11
os$create_timer· 6-3
os$create_user - 7-13
os$deallocate_object· 1-7
os$delete_access_controIJist - 10-5
os$delete_address_space· 8-6
os$delete_exit_handler-process • 7-16
os$delete_exit_handler_thread· 7-.17
os$deleteJast_chance_handler • 11-5
oS$deleteJogical_name • 2-5
os$delete_objectjd • 1-8
os$delete_object_name ·1-9
os$delete-primary_handler· 11-6
os$disablejdentifier· 10-6
os$enablejdentifier· 10-7
os$exit_thread • 7-18
os$expand_address_space • 8-7
os$expand_user_stack· 8-8
os$force_exitjob • 7-19
os$force_exit-process· 7-20
os$force_exit_thread • 7-21
os$force_exit_user - 7-22
os$get_access_controIJist - 10-8
os$get_channeUnformation - 9-6
os$get_exit_statusjnfo· 7-23
os$get_fpu_information • 9-7
os$getjob_information • 7-24
os$get_mapping_information • 8-9
os$get_objconjnformation - 1-10
os$get_objectjnformation - 1-13
os$get_otdjnformation -1-15
os$get-performancejnfo - 12-2
os$get-processjnformation - 7-25
os$get_section_information· 8-10

Index-1

os$get_security_monitor·10-9
os$get_systemjnformation • 12-3
os$get_system_time· 12-5
os$get_threadjnformation· 7-26

os$get_uid • 12-6
os$get_user_information· 7-27
os$hibernate yrocess - 7-28
os$hibernate_thread· 7-29
os$impersonate_client· 10-10
os$installyage_file -12-7
os$lockyagesjn_memory - 8-11
os$lockyages_wor.king_set· 8-12
os$map_section· 8-13
os$mark_temporary ·1-16
os$next_uid - 12-8
os$pulse_event - 4-5
os$read_event-4-6
os$read_semaphore • 5-4
os$read_timer • 6-4
os$release_semaphore· 5-5
os$request_io • 9-8
os$restore _server - 10-11
os$resume_process· 7-30
os$resume_thread • 7-31
os$set_access_controUist -10-12
os$set_event· 4-7
os$set_exit_status_info ~ 7-32
os$setjob_information· 7-33
os$set_minor_threadyriority • 7-34
os$set_object_name ·1-17
os$setyrocessjnformation· 7-35
os$setyrotection_onyages· 8-15
os$set_security_monitor·10-13
os$set_system_time • 12-9
os$set_threadjnformation • 7-36
os$set_thread_priority • 7-37
os$set_timer • 6-5
os$set_user_information • 7-38
os$signaLprocess· 7-39
os$signaLthread • 7-40
os$suspendyrocess· 7-41
os$suspend_thread • 7-42
os$synchronize_withjo • 9-10
os$synch_channel_with_fpu • 9-11
os$transfer_mark_temporary ·1-18
os$translate_access_type • 10-14
os$translate_access_type_name • 10-15
os$translate_logical_name • 2-6
os$translate _object_name • 1-20
os$unlockyages_from_memory· 8-17
os$unlockyages_working_set· 8-18

Index-2

os$update_mapped_section • 8-19
os$verifyyriv_operation· 10-16
os$wait_multiple • 3-2
os$wait_single • 3-4
os$wake yrocess • 7-43
os$wake_thread· 7-44
os$zero_to_end_oCuser_stack· 8-21

p
Process architecture data types· A-4

s
Security related data types • A-9

