Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

Mica Working Design Document
Internal System Services Manual

Revision 0.3
27—-April-1988

This manual, which comprises all current Mica system services, was generated directly from the system
service source files.

Issued by:
Mark Lucovsky, Bill Muse, Charles Qlivier, Lou Perazzoli, and Jim Walker

™

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

Revision History

Revision
Date Number Author Summary of Changes
29 FEB 88 0.1 Lucovsky Initial version.
31 MAR 88 02 Lucovsky and others Second version.

28 APR 88 0.3 Lucovsky and others Third version.

Contents

CHAPTER1 OBJECT SYSTEM SERVICES

1-1

OS$ALLOCATE_OBJECT 1-2
OS$CREATE_CONTAINER 1-4
OS$CREATE_IDENTIFIER 1-5
OS$CREATE_REFERENCE_ID 1-6
OS$DEALLOCATE_OBJECT 1-7
OS$DELETE_OBJECT_ID 1-8
OS$SDELETE_OBJECT_NAME 1-9
OS$GET_OBJCON_INFORMATION 1-10
OS$GET_OBJECT_INFORMATION 1-13
OS$GET_OTD_INFORMATION 1-15
OS$MARK_TEMPORARY 1-16
OS3$SET_OBJECT_NAME 1-17
OS$TRANSFER_MARK_TEMPORARY 1-18
OS$TRANSLATE_OBJECT_NAME 1-20
CHAPTER 2 LOGICAL NAME SYSTEM SERVICES 2-1
OS$SCREATE_LOGICAL_NAME 2-2
OSS$DELETE_LOGICAL_NAME 2-5
OS$TRANSLATE_LOGICAL_NAME 2-6
CHAPTER 3 WAIT SYSTEM SERVICES 3-1
OS$WAIT_MULTIPLE 3-2
OS$WAIT_SINGLE 34
CHAPTER 4 EVENT SYSTEM SERVICES 4-1
OS$CLEAR_EVENT 4-2
OS$CREATE_EVENT 4-3
OS$PULSE_EVENT 4-5
OS$READ_EVENT 4-6
OS$SET_EVENT 4-7

Contents

CHAPTER 5 SEMAPHORE SYSTEM SERVICES 5-1
OS$CREATE_SEMAPHORE 5-2
OS$READ_SEMAPHORE 54
OS$RELEASE_SEMAPHORE 55

CHAPTER 6 INTERVAL SYSTEM SERVICES 61
OS$CANCEL_TIMER 6-2
OS$CREATE_TIMER 6-3
OS$READ_TIMER 6-4
OS$SET_TIMER 6-5

CHAPTER 7 PROCESS SYSTEM SERVICES 7-1
OS$CREATE_EXIT_HANDLER_PROCESS 7-2

~ OS$CREATE_EXIT_HANDLER_THREAD 7-3
OS$CREATE_EXIT_STATUS 7-4
OS$CREATE_JOB 7-5
OS$CREATE_PROCESS 7-8
OS$CREATE_THREAD 7-11
OS$CREATE_USER 7-13
OS$DELETE_EXIT_HANDLER_PROCESS 7-16
OS$DELETE_EXIT_HANDLER_THREAD 7-17
OSS$EXIT_THREAD 7-18
OS$FORCE_EXIT_JOB 7-19
OS$FORCE_EXIT_PROCESS 7-20
OS$FORCE_EXIT_THREAD 7-21
OS$FORCE_EXIT_USER 7-22
OSS$GET_EXIT_STATUS_INFO 7-23
OS$GET_JOB_INFORMATION 7-24
OS$GET_PROCESS_INFORMATION 7-25
OS$GET_THREAD_INFORMATION 7-26
OS$GET_USER_INFORMATION 7-27
OS$HIBERNATE_PROCESS 7-28
OS$HIBERNATE_THREAD 7-29
OS$RESUME_PROCESS 7-30
OS$RESUME_THREAD 7-31
OS$SET_EXIT_STATUS_INFO 7-32
OS$SET_JOB_INFORMATION 7-33
OS$SET_MINOR_THREAD_PRIORITY 7-34
OS$SET_PROCESS_INFORMATION 7-35

Contents

OS$SET_THREAD_INFORMATION 7-36
OS$SET_THREAD_PRIORITY 7-37
OS$SET_USER_INFORMATION 7-38
OS$SIGNAL_PROCESS _ 7-39
OS$SIGNAL_THREAD 7-40
OS$SUSPEND_PROCESS 7-41
OS$SUSPEND_THREAD 7-42
OS$WAKE_PROCESS 7-43
OS$WAKE_THREAD 7-44
CHAPTER 8 MEMORY SYSTEM SERVICES ' 8-1
OS$ADJUST_WORKING_SET_LIMIT 8-2
OS$CREATE_ADDRESS_SPACE 8-3
OS$CREATE_SECTION 8-4
OS$DELETE_ADDRESS_SPACE 8-6
OS$SEXPAND_ADDRESS_SPACE 8-7
OS$EXPAND_USER_STACK 8-8
OS$GET_MAPPING_INFORMATION 8-9
OS$GET_SECTION_INFORMATION 8-10
OS$LOCK_PAGES_IN_MEMORY 811
‘OS$LOCK_PAGES_WORKING_SET 8-12
OS$MAP_SECTION 8-13
OS$SET_PROTECTION_ON_PAGES 8-15
OS$UNLOCK_PAGES_FROM_MEMORY 8-17
OS$UNLOCK_PAGES_WORKING_SET 8-18
OS$UPDATE_MAPPED_SECTION 8-19
OS$ZERO_TO_END_OF_USER_STACK 821
CHAPTER 9 1/O SYSTEM SERVICES 9-1
OS$CANCEL_IO 9-2
OS3$CONFIGURE_FP 9-3
OS$CREATE_CHANNEL 94
OS$CREATE_FPU 9-5
OS$GET_CHANNEL_INFORMATION 9-6
OS$GET_FPU_INFORMATION 9-7
OS$REQUEST _IO 9-8
OS$SYNCHRONIZE_WITH_IO 9-10

OS$SYNCH_CHANNEL_WITH_FPU 9-11

Contents

CHAPTER 10 SECURITY SYSTEM SERVICES 10-1
OS$CREATE_IMPERSONATION 10-2
OS$CREATE_PRIV_OPERATION 104
OS$DELETE_ACCESS_CONTROL_LIST 10-5
OS$DISABLE_IDENTIFIER 10-6
OS$ENABLE_IDENTIFIER 10-7
OS$GET_ACCESS_CONTROL_LIST 10-8
OS$GET_SECURITY_MONITOR 10-9
OS$IMPERSONATE_CLIENT 10-10
OSSRESTORE_SERVER 10-11
OS$SET_ACCESS_CONTROL_LIST 10-12
OS$SET_SECURITY_MONITOR 10-13
OSS$TRANSLATE_ACCESS_TYPE 10-14
OS$TRANSLATE_ACCESS_TYPE_NAME 10-15
OSS$VERIFY_PRIV_OPERATION 10-16

CHAPTER 11 CONDITION AND EXIT HANDLING SYSTEM SERVICES 11-1
OS$CREATE_CONDITION_STACK 11-2
OS$CREATE_LAST_CHANCE_HANDLER 11-3
OS$CREATE_PRIMARY_HANDLER 114
OS$DELETE_LAST_CHANCE_HANDLER 11-5
OS$DELETE_PRIMARY_HANDLER 11-6

CHAPTER 12 MISCELLANEOUS SYSTEM SERVICES 12-1
OS$GET_PERFORMANCE_INFO 12-2
OS$GET_SYSTEM_INFORMATION 12-3
OS$GET_SYSTEM_TIME 12-5
OS$GET_UID 12-6
OS$INSTALL_PAGE_FILE 12-7
OS$NEXT_UID 12-8
OS$SET_SYSTEM _TIME 12-9

vi

Contents

APPENDIX A EXECUTIVE CONSTANTS AND DATA TYPES A-1
A1 EXECUTIVE CONSTANTS A-1
A2 MISCELLANEOUS DATA TYPES A-1
A3 /O DATA TYPES A-3
A4 - LOGICAL NAME DATA TYPES A-3
A5 MEMORY MANAGEMENT DATA TYPES A-4
A.6 PROCESS ARCHITECTURE DATA TYPES A4
A7 OBJECT ARCHITECTURE DATA TYPES A-9
A.8 SECURITY RELATED DATA TYPES A-10
A9 CONDITION HANDLING DATA TYPES A-12

INDEX

vii

1

Object System Services

DIGITAL - Confidential and Proprietary - Restricted Distribution

os$allocate_object

os$allocate_object

(

IN object_id : e$object id;
IN allocation_id : e$object id;
) RETURNS status;

DESCRIPTION

The os$allocate_object service allocates the specified object to the specified
allocation object. An allocation object can be a thread, process, job, user, or
identifier object. '

Each allocation object defines an allocation class. An allocation class is the
set of threads that can access an object allocated to an allocation object.

If an object is allocated and a thread is a member of the allocation class
defined by the allocation object, the thread can access the object (assuming
the object access check performed after the allocation check is successful).

The allocation classes defined for each allocation object are:

thread object - The only member of the thread object allocation class is the
thread of the thread object that an object is allocated to.

process object - The members of the process object allocation class are the
threads of the process object that an object is allocated to and the threads
of any child process of the process object that an object is allocated to.

job object - The members of the job object allocation class are the threads
of the job object that an object is allocated to.

user object - The members of the user object allocation class are the
threads owned by the user who is represented by the user object. An
object is allocated to the user object.

identifier object - The members of the identifier object allocation class are
the threads that hold the identifier represented by the identifier object.

When an allocation object is deleted, any objects allocated to the object are
automatically deallocated.

The visibility of an object determines the allocation objects to which an
object can be allocated.

- If the object is at the system level, the object can be allocated to any
allocation object.

- If the object is at the job level, the object can be allocated to the job,
process, and thread allocation objects.

- If the object is at the process level, the object can be allocated to the
process and thread allocation objects.

ARGUMENTS

object_id
Supplies the object id of the object to allocate.

DIGITAL - Confidential and Proprietary - Restricted Distribution

allocation_id

os$allocate_object

Supplies the object id of the allocation object to which the specified object

is allocated.

RETURN
VALUES

status$_normal
status$_invalid_object_id
status$_invalid_allocation_id

status$_object_type_
mismatch

status$_object_already_alloc

status$_different_alloc_class

status$_invalid_visibility

normal, successful completion.
invalid object id.
invalid allocation id.

the object identified by the allocation id is not an
allocation object.

object is already allocated.

the calling thread is not a member of the allocation
object's allocation class.

the object cannot be allocated because the visibility
of the object prevents it from being allocated to the
specified allocation object.

1-3

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$create_container

os$create container

(

OUT container_id : e$object_id;
IN object_parameters : e$object_parameters = DEFAULT;
) RETURNS STATUS;

DESCRIPTION

The os$create_container service creates a container. Any type of object
except containers and container directories can be inserted into this type
of object container.

If the object container id value is specified in the object parameters record,
it must identify a container directory. A container can only be inserted
into a container directory.

ARGUMENTS container_id
Returns the object id of the created container.
object_parameters
Supplies the object container in which the object is inserted, the name of
the object, and the access control list (ACL) of the object. If this argument
is not supplied or if it is supplied but not all values in the object parameter
record are supplied, the service applies default values. The default object
container is the process container directory, the default name is none, and
the default ACL is none.
RETURN . [[i camo
status$_norma normal, successful completion.
VALUES - '
status$_invalid_object_id the object id of the object container is invalid.
status$_object_type_ the object specified by the object container id was
mismatch not a container directory.
status$_invalid_object the object to insert is not a container.
status$_duplicate_object a container having the same type, mode and name
was found.
status$_quota_exceeded the caller does not have enough quota for the
specified container or for an expanded container
directory.
status$_object_container_full the container directory is full.

DIGITAL - Confidential and Proprietary - Restricted Distribution

os$create_identifier

os$create identifier

(

OUT identifier_id : e$object id;

IN object_parameters : e$object_parameters;
IN identifier : e$identifier;

) RETURNS status;

DESCRIPTION

The os$create_identifier service creates an identifier object. An identifier
object is an allocation object that represents a valid identifier defined on
the system. Because it is an allocation object, objects can be allocated

to the identifier object. Any thread that is a holder of the identifier
represented by the identifier object can access any objects allocated to the
identifier object.

To create an identifier object, the caller must hold the identifier that the
identifier object is to represent.

The identifier object is inserted in the exec$identifier_container system
level container. The name of the object is the alphanumeric name of the
identifier the object represents.

ARGUMENTS -

identifier_id :

Returns the object id of the created identifier object.
object_parameters

Supplies the object container in which the object is inserted, the name of
the object, and the access control list (ACL) of the object. The values for

the name and object container are ignored. If a value for the ACL is not
supplied, the default is

None.

identifier - Suppliés the identifier that the identifier object\ represents.

RETURN
VALUES

status$_normal normal, successful completion.
status$_invalid_identifier the caller is not a holder of the specified identifier.

status$__duplicate_objec't; duplicate object found in abject container.

1-5

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$create_reference_id

os$create reference id

(

IN object_id : e$object_id;

IN container_id : e$object_id = DEFAULT;
OUT reference_id : e$object id;

) RETURNS status;

DESCRIPTION

The os$create_reference_id service creates a reference id to an object. A
reference id ensures that as long as the reference id exists, the object
cannot be deleted.

A reference id can only be created for objects whose principal id still exists.

The container through which the reference id identifies the object must be
at a less visible level than the principal object id’s container.

A reference id cannot be created for an object that does not allow reference
ids. For example, container directories and containers do not allow
reference ids.

ARGUMENTS object_id |
- Supplies the object id of the object that a reference id is created for.
container_id
Supplies the container id of the container thru which the object is
referenced.
reference_id
Returns the reference id.
RETURN tatus$ I | ful leti
status$_norma normal, successful completion.
VALUES e o e °
status$_invalid_object_id invalid object id.
status$_invalid_container_id invalid container id.
status$_object_type_ the object type of the specified container was not a
mismatch container.
status$_reference_not_ the object does not allow reference ids.
allowed
status$_invalid_target_level the level of the container is not more visible than the

1-6

object’s container.

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$deallocate_object

os$deallocate_object

(
IN object_id : e$object id;
) RETURNS STATUS;

DESCRIPTION The os$deallocate_object service deallocates the specified object.

The caller must be a member of the allocation object’s allocation class in
order to deallocate the object.

ARGUMENTS object_id

Supplies the object id of the object to deallocate.

RETURN
VALUES

status$_normal normal, successful completion.
status$_invalid_object_id invalid object id.
status$_object_not_allocated object not allocated.

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$delete_object_id

os$delete_object_id

(
IN object_id : e$object id;
) RETURNS STATUS;

DESCRIPTION The os$delete_object_id service deletes the object id of the specified object.
When all object ids that identify the object have been deleted, the object is
no longer accessible.

Paged or nonpaged pool quota is returned to the correct level when the
object id is deleted. If the object identified by the deleted object id was at
the system level, no quota is returned.

If the object id count decrements to 0, the remove object service
routine specified by the object’s OTD is called. After the remove object
service routine returns, this service dereferences the object by calling
obj$dereference_object.

ARGUMENTS object id
Supplies the object id to delete.

RETURN

status$_normal normal, successful completion.
VALUES nemel FormEn S1eeS P
status$_invalid_object_id invalid object id.

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$delete_object_name

os$delete_object name

(
IN object_id : e$object _id;
) RETURNS status;

DESCRIPTION The os$delete_object_name service deletes the specified object’s name and
removes the name from the object container’s object name table.

ARGUMENTS object id
Supplies the object id of the object whose name is deleted.

RETURN tatus$ I | | ful leti
status$_norma normal, successful completion.

VALUES SO e S et some
status$_invalid_object_id invalid object id.
status$_name_already the object name of the object was already deleted.
deleted

DIGIIAL - Contidential and Proprietary - Restricted Distribution
os$get_objcon_information

os$get_objcon_information

(

IN object_container_id : e$object _id;
IN item_list : POINTER e$item_list_type;
) RETURNS status;

DESCRIPTION

1-10

The os$get_objcon_information service returns the object ids of objects
in the object container and the logical names in the object containers’
logical name table. An object container is either a container directory or
container.

Object ids are returned in the e$c_object_id_list item. This item is of type
e$object_id_list. The e$object_id_list type is made up of the following
fields:

- length - This field is set by the caller and indicates to the service the
number of entries in the object_id field.

- last_valid_entry - This field is set by the service and indicates to the
caller the last entry in the object_id field that contains a valid value.

- context - This field maintains context across multiple calls to the service.
It is set by the caller and the service.

- object_id - This field is set by the service and indicates to the caller the
object ids that identify objects in the object container.

As described above, the last_valid_entry field indicates the last entry in
the object_id field that contains a valid value. This field can have the
following values:

- If the value of this field is zero, the service did not return any object ids.
This means the object container does not hold any objects. A subsequent
call to the service would not return additional object ids.

- If the value is non-zero and is less than the maximum number of entries,
the service returned the object ids that identify all the objects in the object
container. A subsequent call to the service would not return additional
object ids.

- If the value is non-zero and is equal to the maximum number of entries,
the service may have returned the object ids that identify all the objects
in the object container. The caller must examine the status returned by
the service to determine if all the object ids were returned. If the status
returned was status$_no_more_info, the service returned all the object ids
and a subsequent call to the service would not return additional object ids.
If the status returned was status$_normal, the service did not return all
the object ids and a subsequent call to the service might return additional
object ids.

Note that the service might return additional object ids. At the time the
call completed, the service may have found more objects and therefore
more object ids than could be returned. Between the time the first call
completes and a subsequent call is made, the objects could be deleted. The

DIGITAL - Confidential and Proprietary - Restricted Distribution

os$get_objcon_information

subsequent call would then return a status of status$_no_more_info and
the last_valid_entry field would have a value of zero.

As described above, the context field maintains context across multiple
calls to the service. The context field can have the following values:

- zero - When the context field is zéro, the service attempts to set entries
in the object_id field beginning with the object id of the first object found
in the object container.

- nonzero - When the context field is nonzero, the service attempts to set
entries in the object_id field beginning with the object id of the next object
found in the object container.

For the initial call, the caller sets the value of the context field to 0. For
subsequent calls when additional object ids can be returned, the caller
should not modify the value of the context field.

Logical names are returned in the e$c_logical_name_list item. This item
is of type e$logical_name_list. The e$logical_name_list type is made up of
the following fields:

- length - This field is set by the caller and indicates to the service the
number of entries in the logical_name field.

- last_valid_entry - This field is set by the service and indicates to the
caller the last entry in the logical_name field that contains a valid value.

- context - This field maintains context across multiple calls to the service.
It is set by the caller and the service.

- logical_name - This field is set by the service and indicates to the caller
the logical names in the object container’s logical name table.

The use of the last_valid_entry and the context fields is similar as
described for the object id list and is not described.

Note that the caller can request object ids and logical names in the same
item list. If more information can be returned for either the object id
list or the logical name list, the status returned is status$_normal. If no
more information can be returned for either list, the status returned is
status$_no_more_info. In both cases, the caller should examine the last_
valid_entry in each list to determine the number of entries, if any, were
returned.

ARGUMENTS

object_container_id

Supplies the object id of the object container for which information
is returned. The object id identifies either a container directory or a
container.

item_list
Supplies the item list identifying the information the service should
return. —

1-11

DIGITAL - Confidential and Proprietary - Restricted Distribution

os$get_objcon_information

code pointer type

action

e$c_object_id_list e$object_id_list

e$c_logical_name_list e3logical_name_list

Returns a list of object ids that identify the
objects in the object container.

Returns a list of logical names contained in the
object container’s logical name table.

RETURN
VALUES

status$_normal

status$_no_more_info

status$_invalid_object_id

status$_object_type_
mismatch

1-12

normal, successful completion. The object container
was found and some of the object ids or logical
names were returned. A subsequent call to this
service may return additional information.

normal, successful completion. The object container
was found and all of the object ids or logical names
were returned. A subsequent call to this service will
not return additional information.

invalid object id.

the object type of the specified object container was
not a container directory or container.

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$get_object_information

os$get_object_information

(

IN object_id : e$object id;

IN item_list : POINTER e$item_list type
) RETURNS status;

DESCRIPTION The os$get_object_information service returns information about the
spec1ﬁed object. The information is control information about the object
and is general for all objects.

ARGUMENTS object id
Supplies the object id of the object for which information is returned.
item_list
Supplies the item list identifying the information the service should
return.
code pointer type action
e$c_pointer_count’ integer Returns the number of outstanding pointers to
the object.
e$c_object_id_count integer Returns the number of object ids that identify the
‘ object.
e$c_level e$level Returns the level of visibility of the object. The
level can be e$c_process_level, e$c_job_level,
or e$c_system_level.
e$c_object_type_name string Returns the object type name of the object.
e$c_otd_id e$object_id Returns the object id of the object's OTD.
e$c_object_container_id e$object_id Returns the object id of the object's object
container. This object id identifies either a
container directory or a container. This field is
valid only if the object’s principal id has not been
deleted. See e$c_object_state.
e$c_principal_object_id e$object_id Returns the object id of the object's principal id.

This field is valid only if the object's principal id
has not been deleted. See e$c_object_state.

e$c_nonpaged_pool_charge integer Returns the amount of nonpaged pool charged
when the object was inserted into its object
container.

e$c_paged_pool_charge integer Returns the amount of paged pool charged when

e$c_name

varying_string

the object was inserted into its object container.

Returns the object’s name. This field is valid
only if the object’s principal id has not been
deleted. See e$c_object_state.

1-13

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$get_object_information

code pointer type action

e$c_owner e$identifier Returns the object’s owner.

e$c_acl e$access_control_list Returns the object’s access control list.
e$c_allocation_object_id e$object_id Returns the object id of the object’s allocation

e$c_mode

e$c_object_state

e$c_oid_object_container_id

e$c_oid_level

e$c_oid_object_id_type

k$processor_mode

set of eSobject_state

e$object_id

~ e$level

e$object_id_type

object. This field is valid only if the object is
allocated. See e$c_object_state.

Returns the processor mode of the object. The
mode of the object can be k$c_user or k$c_
kernel.

Returns information about the current state of the
object. The states are: e$c_transfer_inhibit —
the object cannot be transferred. e$c_reference_
inhibit — reference ids cannot be created to
identify the object. e$c_temporary — the object
has been marked as temporary. e$c_dispatcher_
object — the object has a kernel dispatcher
object. This allows the object to be waited on.
e$c_allocated — the object is allocated. e$c_
principal_id_deleted — the principal id of the
object has been deleted. e$c_transferred — the
object has been transferred.

Returns the object id of the object container
through which the object is identified by the
specified object id.

Returns the level of visibility of the object when
identified by the specified object.id. The level
can be e$c_process_level, e$c_job_level, or
e$c_system_level.

Returns the type of object id. The type of id can
be e$c_principal_id or e$c_reference_id.

RETURN
VALUES

status$_normal

status$_invalid_object_id

1-14

normal, successful completion.
invalid object id.

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$get_otd_information

os$get otd_information

(

IN otd_id : e$object_id;

IN item_list : POINTER e$item_list_type;
) RETURNS status;

DESCRIPTION The os$get_otd_information service returns information about the specified
object.

ARGUMENTS otd_id

Supplies the object id of the otd object for which information is returned.

item_list
Supplies the item list identifying the information the service should

return.

code pointer type action

e$c_object_type_name string Returns the name of the object type described
by the OTD.

e$c_object_count . integer Returns the count of the number of objects of
this type.

e$c_waitable boolean Returns a value of true if objects of the type
described by the OTD can be waited on.
Returns a value of false if objects cannot be
waited on.

e$c_create_disable boolean Returns the state of the create disable flag. If

the value is false, objects of this type can be
created. If the value is true, objects of this type
cannot be created.

RETURN tatus$ I ! ful leti
status$_norma normal, successful completion.
VALUES e o
status$_invalid_object id invalid object id.
status$_object_type_ the object type of the specified object was not an otd.
mismatch

1-15

DIGIIAL - Contidential and Proprietary - Restricted Distribution
os$mark_temporary

os$mark_temporary

(
IN object_id : e$object _id;
) RETURNS status;

DESCRIPTION The os$mark_temporary service marks the specified object as temporary.

This service is used to cause the principal id of an object to be deleted
when all reference ids to the object have been deleted. If the principal id
has already been deleted, the last deleted reference id causes the object to
be deleted. :

Only job and system level objects can be marked as temporary.

Container directories and containers cannot be marked as temporary.

ARGUMENTS object id
Supplies the object id of the object to mark as temporary.

RETURN tatus$ | | ful leti
status$_norma normal, successful completion.

VALUES sueeme o e s i
status$_invalid_object_id invalid object id.
status$_invalid_object_level the object is a process level abject.
status$_already_temporary the object is already temporary.
status$_temporary_not_ the object cannot be marked as temporary.
allowed

1-16

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$set_object_name

os$set_object_name

(

IN object_id : e$object id;
IN name : string (*);

) RETURNS status;

DESCRIPTION The os$set_object_name service sets the specified object’s name and inserts
the name in the object’s object container object name table.

The name of an object can be set only if the principal id of the object
exists.

ARGUMENTS object id

Supplies the object id of the object whose name is set.

name
Supples the name that the object name’s name is set to.

RETURN N ! cvosmsctul comait
status$_norma normal, successful completion.
VALUES O ome e i
status$_invalid_object_id invalid object id.
status$_duplicate_object object found having the same mode, type, and name.

1-17

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$transfer_mark_temporary

os$transfer_mark_temporary

(

IN container_id : e$object_id;
IN delete : boolean = false;

IN OUT object _id : e$object_id;
) RETURNS status;

DESCRIPTION

The os$transfer_mark_temporary service transfers the object along with
its name to a more visible container and marks the object as temporary.

When an object is transferred to the target container, it is possible that an
object already exists having the same name, object type, and mode. If a
duplicate object does exit, the caller can specify the action to perform. If
the action is not to delete the object specified by the caller, the service does
not transfer the object and returns an error status. Note that the object
id is unchanged. If the action is to delete the object, the service creates

a reference id to the already existing object, deletes the object id of the
object specified by the caller, and returns the reference id to the caller.
The reference id is returned via the object_id parameter.

If a duplicate object does not exist, the service transfers the object to
the target container, creates a reference id to the object, and returns the
reference id to the caller. The reference id is returned via the object_id
parameter.

The object cannot be transferred if any one of the following conditions are
true:

- the object has reference ids. This means that the object id specified by
the object_id parameter is the principal id of the object. - the object is
not allowed to be transferred. - an object having the same name, type,
and mode already exists in the target container and the delete action was
specified as false. '

Container directories and containers cannot be transferred and marked as
temporary.

ARGUMENTS

1-18

container_id
Supplies the object id of the container into which the object is transferred.

delete

Supplies the action to perform if a duplicate object is found in the
container. If the value is false, the service does not transfer the specified
object and returns an error status. If the value is true, the service creates
a reference id to the already existing object, deletes the object specified
by the caller, and returns the reference id to the caller. If a value is not
specified, a value of false is assumed.

DIGITAL - Confidential and Proprietary - Restricted Distribution

object id

os$transfer_mark_temporary

Supplies the object id of the object that is transfered and marked
temporary. This object id must be the object’s principal id. Returns the
reference id of the temporary object.

RETURN
VALUES

status$_normal
status$_invalid_object_id
status$_invalid_container_id

status$_object_type_
mismatch

status$_object_aiready_temp

status$_temparary_not_
allowed

status$_duplicate_temporary

status$_duplicate_not_
temporary

status$_invalid_target_level

status$_object reference_ids

status$_invalid_object_id_
count

normal, successful completion.
invalid object id.
invalid container id.

the object type of the specified container was not a
container.

the object is already temparary.
the object cannot be marked as temporary.

a duplicate object exists in the target container and is
temporary.

a duplicate object exists in the target container and is
not temporary.

the level of the target container is not more visible
than the original container.

the object id has reference ids.
the object id count of the specified object is not 1.

1-19

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$translate_object_name

os$translate_object name

(
IN object_container_id : e$object_id = DEFAULT;

IN name : string (*); |
IN object_type name : string (*);

IN case_sensitive : boolean = true;

OUT object_id : e$object id;

) RETURNS status;

DESCRIPTION The os$translate_object_name service searches the specified object
container for an object having the specified object name and object type
name. If an object is found, the service returns the object id of the object.
The object id is used as input to other services to identify the object that
the service is to operate on.

The service locates the object name using one of two search methods as
specified by the case_sensitive parameter. If the value is false, the service
performs a case blind search. If the value is true, the service performs a
case sensitive search.

A case blind search locates the first object name whose uppercase
representation matches the uppercase representation of the object name
specified by the caller. Multiple object names in the object container may
match but only the first object name found is matched.

A case sensitive search locates the object name whose name exactly
matches the object name specified by the caller. Only one object name can
match.

The service matches the object type name using a case sensitive search.

The caller can optionally specify the object container parameter. If the
parameter is not specified, the service searches the object name tables of
the process, job, and system container directories. If a match is found,
the object id that identifies the object is returned to the caller. If the
parameter is specified, the service searches the object name table of the
specified object container. .

If the previous mode of the caller is user, the service tries to match a user
mode object having the specified name and object type name in the target
object container. If a name is found, the object id of the user mode object
is returned to the caller. If a name is not found, the service tries to match
a kernel mode object with the same search criteria. If a name is found, the
object id of the kernel mode object is returned to the caller.

ARGUMENTS object_container_id
Supplies the name of the object container whose object name table
is searched. The object id identifies either a container directory or a
container.

1-20

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$transiate_object_name

name
Supplies the name of the object to find.

object_type name
Supplies the object type name of the object to find.

case_sensitive

Supplies the search method used to locate the object name. A value
of false indicates a case blind search. A value of true indicates a case
sensitive search. g

object_id
Returns the object id of the matching object.

RETURN

status$ normal normal, successful completion.
VALUES - P

status$_invalid_name_length length of the object name or object type name was
not valid.

status$_invalid_object_type invalid object type specified by the object type name.

status$_invalid_object_id the object id of the object container is invalid.
status$_object_type_ the object specified by the object container id was
mismatch not a container directory or a container.
status$_object_name_not_ object name not found.

found

1-21

2

Logical Name System Services

2-1

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$create_logical_name

os$create logical name

(

IN object_container_id : e$object_id;

IN logical_name : string (*);

IN supersede : boolean = true;

IN logical_name_attributes : SET e$lognam_attributes [..] =[];
IN OUT equivalence_name_list : e$equivalence_name_list;

) RETURNS status; '

DESCRIPTION The os$create_logical_name service creates the specified logical name in
the specified object container.

Before the service creates the logical name, it performs a case sensitive
search for the logical name in the object container. If a logical name is not
found, the service creates the logical name. If a logical name is found, the
service takes the action specified by the supersede parameter. If a value of
false is specified, the logical name specified by the caller is not created and
the service fails. If a value of true is specified, the logical name that was
found is deleted and the logical name specified by the caller is created.

Logical names and equivalence names contain 1-255 characters. The
characters that form the name can be any character in the character set.

A logical name can have 1-128 equivalence names.

Equivalence names are specified in the equivalence_name_list parameter.
This parameter is of type e$equivalence_name_list. The e$equivalence_
name_list type is made up of the following fields:

- length - This field is set by the caller and indicates to the service the
number of entries in the equivalence_name field.

- last_valid_entry - This field is set by the caller and indicates to the
service how many valid entries are in the equivalence_name field.

- context - This field is set by the service when an entry in the equivalence_
name field is invalid. The context field indicates to the caller the entry
that is invalid.

- equivalence_name - This field is set by the caller and indicates to the
service the equivalence name or names to assocaiate with the specified
logical name.

A logical name can have attributes associated with it. An attribute denotes
a characteristic of the logical name. The following logical name attributes
are defined:

- confine - The confine attribute indicates that the logical name should not
be transferred when an object container is transferred. If the logical name
has the confine attribute, the object container transfer service deletes the
logical name as the transfer is performed. The caller gives the logical
name the confine attribute by setting e$c_confine_lognam_attr in the
logical_name_attributes parameter. If the confine attribute is not given to
the logical name, the logical name is transferred.

2-2

DIGITAL - Confidential and Proprietary - Restricted Distribution

os$create_logical_name

- noalias - The noalias attribute indicates to os$create_logical_name that
the logical name cannot be duplicated in the object container at an outer
access mode. If another logical name with the same name already exists
in the object container at an outer access mode and the caller of os$create_
logical_name specifies the noalias attribute, os$create_logical_name first
deletes the logical name at the outer access mode and then creates the
logical name at the inner access mode. The caller gives the logical name
the noalias attribute by setting e$c_noalias_lognam_attr in the logical_
name_attributes parameter. If the noalias attribute is not given to the
logical name, the logical name can have a logical name with the same
name at an outer access mode.

- noshow - The noshow attribute indicates to the caller of os$translate_
logical_name that the logical name should not be displayed. General
show logical name utilities examine this attribute to determine if the
logical name should be displayed. The caller gives the logical name the
noshow attribute by setting e$c_noshow_lognam_attr in the logical_name_
attributes parameter. If the noshow attribute is not given to the logical
name, the logical name can be displayed.

Each entry in the equivalence name list specifies an equivalence name
and the attributes to give to the equivalence name. An attribute denotes
a characteristic of the equivalence name. The following equivalence name
attributes are defined:

- concealed - The concealed attribute indicates to the caller of os$translate_
logical_name that the equivalence name should not be displayed. General
show logical name utilities examine this attribute to determine if the
equivalence name should be displayed. The caller gives the equivalence
name the concealed attribute by setting the e$c_concealed_eqvnam_attr
in the attributes field of the equivalence name entry. If the concealed
attribute is not given to the equivalence name, the equivalence name can
be displayed.

- terminal - The terminal attribute indicates to the caller of os$translate_
logical_name that the equivalence name should not be translated as if it
were a logical name. The caller gives the equivalence name the terminal
attribute by setting the e$c_terminal_eqvnam_attr in the attributes field
of the equivalence name entry. If the terminal attribute is not given to the
equivalence name, the equivalence name can be translated as if it were a
logical name.

ARGUMENTS

object_container_id

Supplies the object id of the object container whose logical name table
the logical name is created in. The object id identifies either a container
directory or a container.

logical _name
Supplies the name of the logical name to create. The size of the name can
be 1 to 255 characters. Any character can be used in the logical name.

supersede
Supplies the action to perform if a matching logical name is found in the
object container’s logical name table.

logical name_atiributes
Supplies a set containing the attributes of the logical name.

2-3

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$create_logical_name

equivalence_name_list

Supplies the equivalence names associated with the logical name. Returns
in the context field the number of the entry that is invalid. If all entries
are valid, the value of the context field is 0.

RETURN
VALUES

2-4

status$_normal

status$_logical_name_
superseded

status$_invalid_object_id

status$_object_type_
mismatch

status$_invalid_name_length

status$_invalid_eqv_name_
count

status$_duplicate_logical_
name

status$_quota_exceeded

normal, successful completion. The logical name was
created.

narmal, successful completion. The logical name was
created and a previously existing logical name with
the same name was deleted.

invalid object container id.

the object type of the specified object container was
not a container directory or container.

length of the logical name or the equivalence name
was not valid.

the count of the number of equivalence names was
invalid.

duplicate logical name was found.

quota was exceeded while trying to create the logical
name. '

DIGITAL - Confidential and Proprietary - Restricted Distribution

os$delete_logical_name

os$delete_logical name

(

IN object_container_id : e$object_id;
IN logical_name : string (*);
) RETURNS status;

DESCRIPTION

The os$delete_logical_name service deletes the specified logical name from
the specified object container.

The service performs a case sensitive search for the logical name in the
object container.

ARGUMENTS object_container_id
Supplies the object id of the object container whose logical name table
is searched. The object id identifies either a container directory or a
container.
logical_name
Supplies the logical name to delete.

RETURN tatus$ | | ful leti
status$_norma normal, successful completion.

VALUES e e e
status$_invalid_object_id invalid object container id.
status$_object_type_ the object type of the specified object container was
mismatch not a container directory or container.

status$_invalid_name_length length of the logical name was not valid.

status$_logical_name_not_ logical name was not found.
found

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$translate_logical_name

os$translate logical name

(

IN object _container_id : e$object id;

IN logical_name : string (*);

IN case_sensitive : boolean = true;

IN OQUT equivalence_name_list : e$equivalence_name_list;

OUT logical_name_attributes : SET e$lognam_attributes [..] OPTIONAL;
) RETURNS status;

DESCRIPTION

2-6

The os$translate_logical name service searches the specified object
container for the specified logical name. If the logical name is found,
the service returns the logical name’s equivalence names.

The service locates the logical name in the object container using one of
two search methods as specified by the case_sensitive parameter. If the
value is false, the service performs a case blind search. If the value is
true, the service performs a case sensitive search.

A case blind search locates the first logical name whose uppercase
representation matches the uppercase representatlon of the logical name
specified by the caller. Multiple logical names in the object container may
match but only the first logical name found is matched.

A case sensitive search locates the logical name whose name exactly
matches the logical name specified by the caller. Only one logical name in
the object container can match.

Equivalence names are returned in the equivalence_name_list parameter.
This parameter is of type e$equivalence_name_list. The e$equivalence_
name_list type is made up of the following fields:

- length - This field is set by the caller and indicates to the service the
number of entries in the equivalence_name field.

- last_valid_entry - This field is set by the service and indicates to the
caller the last entry in the equivalence_name field that contains a valid
value.

- context - This field maintains context across multiple calls to the service.
It is set by the caller and the service.

- equivalence_name - This field is set by the service and indicates to the
caller the equivalence name or names assocaiated with the logical name.

As described above, the last_valid_entry field indicates the last entry in
the equivalence_name field that contains a valid value. This field can have
the following values:

- If the value of this field is zero, the service did not return any equivalence
names asscciated with the logical name. A subsequent call to the service
would not return additional equivalence names.

DIGITAL - Confidential and Proprietary - Restricted Distribution

os$translate_logical_name

- If the value is non-zero and is less than the maximum number of entries,
the service returned all the equivalence names associated with the logical
name. A subsequent call to the service would not return additional
equivalence names.

- If the value is non-zero and is equal to the maximum number of entries,
the service may have returned all the equivalence names associated with
the logical name. The caller must examine the status returned by the
service to determine if all the equivalence names were returned. If the
status returned was status$_no_more_info, the service returned all the
equivalence names and a subsequent call to the service would not return
additional equivalence names. If the status returned was status$_normal,
the service did not return all the equivalence names and a subsequent call
to the service would return additional equivalence names.

As described above, the context field maintains context across multiple
calls to the service. The context field can have the following values:

- zero - When the context field is zero, the service attempts to set entries
in the equivalence_name field beginning with the first equivalence name
associated with the logical name.

- nonzero - When the context field is nonzero, the service attempts to set
entries in the equivalence_name field beginning with the next equivalence
name associated with the logical name indicated by the value in the
context field.

For the initial call, the caller sets the value of the context field to 0. For
subsequent calls when additional equivalence names can be returned, the
caller should not modify the value of the context field.

Note, if multiple calls to the service are required to return all the
equivalence names, the logical name may be deleted in between the
calls.

ARGUMENTS

object _container_id

Supphes the object id of the object container whose logical name table
is searched. The object id identifies either a container directory or a
container.

logical name
Supplies the name of the logical name to translate.

case_sensitive

Supplies the search method used to locate the logical name. A value
of false indicates a case blind search. A value of true indicates a case
sensitive search.

equivalence_name_list

Supplies (in the length field) the number of entries in the equivalence
name field. Supplies (in the context field) the context of the service.
Returns (in the last_valid_entry field) the last entry in the equivalence_
name field that contains a valid value. Returns (in the context field) the
context for the next call to the service. Returns (in the equivalence_name
field) some or all of the equivalence names associated with the logical
name.

2-7

DIGITAL - Confidential and Proprietary - Restricted Distribution

os$translate_logical_name

logical_name_attributes
Returns a set containing the attributes of the logical name. See os$create_
logical_name for an explanation of the logical name attributes.

RETURN
VALUES status$_normal

status$_no_more_info

status$_invalid_object_id

status$_object_type_
mismatch

status$_invalid_name_length

status$_logical_name_not_
found

2-8

normal, successful completion. The logical name
was found and some of the equivalence names were
returned. A subsequent call to this service may

- return additional information.

" normal, successful completion. The logical name

was found and all of the equivalence names were
returned. A subsequent call to this service will not
return additional information.

invalid object container id.

the object type of the specified object container was
not a container directory or container.

length of the logical name was not valid.
logical name was not found.

3

Wait System Services

3-1

DIGITAL - Confidential and Proprietary - Restricted Distribution

os$wait_multiple

os$wait_multiple

(

IN OUT object_id_list : e$object_id_list;

IN time_out : large_integer OPTIONAL;

IN wait_type : e$wait_type = e$c_wait_any;
OUT object_number : integer;

) RETURNS return_status : status;

DESCRIPTION

The os$wait_multiple service suspends the execution of the caller until
one or all of the specified objects become signalled or the specified time
interval expires.

The object ids that identify the objects to wait on are specified in the
object_id_list parameter. This parameter is of type e$object_id_list. The
e3object_id_list type is made up of the following fields:

- length - This field is set by the caller and indicates to the service the
number of entries in the object_id field.

- last_valid_entry - This field is set by the caller and indicates to the
service how many valid entries are in the object_id field.

- context - This field is set by the service when an entry in the object_id
field is invalid. The context field indicates to the caller the entry that is
invalid.

- object_id - This field is set by the caller and indicates to the service the
object ids that identify the objects to wait on.

ARGUMENTS

3-2

object_id_list

Supplies the object ids that identify the objects to wait on. Returns in
the context field the number of the entry that is invalid. If all entries are
valid, the context is 0.

time_out
The amount of time in 100 nanosecond units that can expire before the
wait is timed out.

wait_type

Supplies the type of wait. If e$c_wait_any is specified, any object in the
object list that is signalled satisfies the wait. If e$c_wait_all is specified,
all objects in the object list must be signalled to satisfy the wait. If a value
is not specified, e$c_wait_any is assumed.

object_number
Returns the number of the object in the object id list that satisfied the
wait. If the wait times out, the object number is 0.

DIGITAL - Confidential and Proprietary - Restricted Distribution

os$wait_multiple

RETURN
VALUES

status$_normal
status$_invalid_object_id
status$_invalid_object_count

status$_wait_not_supported

status$_wait_timeout

normal, successful completion.
invalid object id.

the count of the number of objects to wait on was
invalid.

wait not supported by the specified object.
wait was not satisfied before the time out period.

3-3

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$wait_single ‘

os$wait_single

(

IN object_id : e$object_id;

IN time_out : large_integer OPTIONAL;
) RETURNS return_status : status;

DESCRIPTION The os$wait_single service suspends the execution of the caller until the
specified object becomes signalled or the specified time interval expires.

ARGUMENTS object_id
Supplies the object id that identifies the object to wait on.

time_out
The amount of time in 100 nanosecond units that can expire before the
wait is timed out.

RETURN s rorma ! cuscesstul comolat
status$_norma normal, successful completion.

VALUES e o e i
status$_invalid_object_id invalid object id.
status$;object_type_ object type specified does not match the object type
mismatch of the object.
status$_wait_not_supported wait not supported by the specified object.
status$_wait_timeout wait was not satisfied before the time out pericd.

L

4

Event System Services

- 41

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$clear_event

os$clear event

()

IN event_id : e$object id;

OUT previous_state : boolean;

) RETURNS return_status : status;

DESCRIPTION The os$clear_event service clears the state of the specified event to not
signalled.

ARGUMENTS event id

Supplies the object id of the event to clear.

previous_state

Returns the previous state of the event. A value of false indicates that the
state of the event was clear (not signalled). A value of true indicates that
the state of the event was set (signalled).

RETURN tus$ I I ful leti
status$_normal normal, successful completion.
VALUES L me et °
status$_invalid_object_id invalid object id.
status$_object type_ object type specified does not match the object type
mismatch of the object.

DIGITAL - Confidential and Proprietary - Restricted Distribution

os$create_event

os$create _event

(

OUT event_id : e$object_id;

IN object_parameters : e$object parameters = DEFAULT;
IN autoclear_flag : boolean = false;

IN initial_state : boolean = false;

) RETURNS return_status : status;

DESCRIPTION

The os$create_event service creates an event object.

An event can have two states: clear and set. When an event is clear it

is not signalled. When an event is set it is signalled. Only an event that
has been signalled satisfies a wait. An event is signalled by calling os$set_
event.

The creator of an event can specify that the event is automatically cleared
when the event satisfies a wait. If multiple threads are waiting on the
event, only the first thread’s wait is satisfied; the remaining threads must

wait until the event is set again. If the object is created without automatic

clearing, the event remains set until explicitly cleared. If multiple threads
are waiting on the event, all the waits are satisfied. An event is cleared by
calling os$clear_event.

ARGUMENTS

event_id
Returns the object id of the created event.

object_parameters

Supplies the object container in which the object is inserted, the name of
the object, and the access control list (ACL) of the object. If this argument
is not supplied or if it is supplied but not all values in the object parameter
record are supplied, the service applies default values. The default object

container is the process private container, the default name is none, and
the default ACL is none.

autoclear flag

Supplies the action taken when a wait on the event is satisfied. If the
value is false, the state of the event is not changed; otherwise, the state is
cleared. If this argument is not supplied, the state is not changed.

initial _state

Supphes the initial state of the event. If the value is false, the initial state
is cleared (not signalled); otherwise, it is set (signalled). If this argument
is not supplied, the state is cleared.

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$create_event

RETURN tatus$ | | ful et
status$_norma normal, successful completion.
VALUES SO e S i
status$_invalid_object_id invalid object id.
status$_object_type_ object type specified does not match the object type
mismatch of the object.
status$_invalid_object invalid object.
status$_duplicate_object duplicate object found in object container.
status$_object_container_full object container full.

DIGITAL - Confidential and Proprietary - Restricted Distribution

os$pulse_event

os$pulse_event

(

IN event_id : e$object_id;
OUT previous_state : boolean;
) RETURNS return_status : status;

DESCRIPTION

The os$pulse_event service sets the state of the specified event to
signalled, services all the threads waiting on the event, and clears the
state of the specified event to not signalled.

The service ignores the autoclear flag that was specified when the event
was created

ARGUMENTS

event_id
Supplies the object id of the event to clear.

previous_state

Returns the previous state of the event. A value of false indicates that the
state of the event was clear (not signalled). A value of true indicates that
the state of the event was set (signalled).

RETURN
VALUES

status$_normal normal, successful completion.
status$_invalid_object_id invalid object id.

status$_object_type_ object type specified does not match the object type
mismatch of the object.

I

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$read_event

os$read event

(

IN event_id : e$object_id;

OUT state : boolean;

) RETURNS return_status : status;

DESCRIPTION The os$read_event service reads the state of the specified event.

ARGUMENTS event_ id
Supplies the object id of the event to read.

state

Returns the current state of the event. A value of false indicates that the
state of the event is clear (not signalled). A value of true indicates that
the state of the event is set (signalled).

RETURN tatus$ | I ful leti
status$_normal normal, successful completion.
VALUES SO e e P
status$_invalid_object_id invalid object id.
status$_object_type_ object type specified does not match the object type
mismatch of the object.

3

DIGITAL - Confidential and Proprietary - Restricted Distribution
’ os$set_event

os$set_event

(.

IN event_id : e$object _id;

OUT previous_state : boolean;

) RETURNS return_status : status;

DESCRIPTION The osPset_event service sets the state of the specified event to signalled.

ARGUMENTS event id
Supplies the object id of the event to set.

previous_state

Returns the previous state of the event. A value of false indicates that the
state of the event was clear (not signalled). A value of true indicates that
the state of the event was set (signalled).

RETURN tatus$ I I ful leti
status$_norma normal, successful completion.
VALUES e e °
status$_invalid_object_id invalid object id.
status$_object_type_ object type specified does not match the object type
mismatch of the object.

4-

-\'

S

Semaphore System Services

5-1

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$create_semaphore

os$create_semaphore

(

OUT semaphore_id : e$object_id;

IN object_parameters : e$object_parameters;
IN initial_count : integer;

IN maximum_count : integer;

) RETURNS status;

DESCRIPTION

This os$create_semaphore service creates a semaphore object.

(The following description is brought to you by the Kernel.) A semaphore
object is used to control access to a resource but not necessarily in a
mutually exclusive fashion. A semaphore acts as a gate through which a
variable number of threads can pass concurrently, up to a specified limit.
The gate is open (signaled state) as long as there are resources available.
When the number of resources that may be concurrently in use has been
exhausted, the gate is closed (not-signaled state). The gating mechanism
of a semaphore is implemented by a counter. Waiting on a semaphore
waits until a resource is available and decrements the count. Releasing
the semaphore increments the count and allows another thread to pass -
through the gate. ‘

ARGUMENTS

5-2

semaphore_id
Returns the object id of the created semaphore.

object _parameters

Supplies the object container in which the object is inserted, the name of
the object, and the access control list (ACL) of the object. If this argument
is not supplied or if it is supplied but not all values in the object parameter
record are supplied, the service applies default values. The default object
container is the process private container, the default name is none, and
the default ACL is none.

initial_count
Supplies the initial count of the semaphore. The intitial count must be
less than or equal to the maximum count.

maximum_count
Supplies the maximum count the semaphore can attain. The maximum
count must be greater than zero.

DIGITAL - Confidential and Proprietary - Restricted Distribution

os$create_semaphore

RETURN
VALUES

status$_normal
status$_invalid_object_id

status$_object_type_
mismatch

status$_duplicate_object
status$_object_container_full

status$_invalid_initial _count

status$_invalid_maximum_
count

normal, successful completion.
invalid object id.

object type specified does not match the object type
of the object.

duplicate object found in object container.
object container full.

the value specified as the initial count was greater
than the maximum.

the value specified as the maximum count was not
greater than zero.

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$read_semaphore

os$read_semaphore

(
IN semaphore_id : e$object id;

OUT count : integer;
) RETURNS status;

DESCRIPTION The os$read_semaphore service reads the count of the specified semaphore.

ARGUMENTS semaphore_id

Supplies the object id of the semaphore object to read.

count
Returns the count of the semaphore.

RETURN s rorma T
status$_norma normal, successful completion.

VALUES e S i
status$_invalid_object_id invalid object id.
status$_object_type_ object type specified does not match the object type
mismatch of the object. ‘

L

DIGITAL - Confidential and Proprietary - Restricted Distribution

os$release_semaphore

os$release_semaphore

(

IN semaphore_id : e$object_id;
IN release_count : integer = 1;
OUT previous_count : integer;
) RETURNS status;

DESCRIPTION

The os$release_semaphore service releases the specified semaphore. This
action causes the semaphore count to be incremented by the specified
count. If the count was 0 before it was incremented, the the state of the
semaphore is set to signaled.

The release_count argument specifies the value that is added to the
semaphore count. If a value for this argument is not specified, the
semaphore count is incremented by 1. The resulting semaphore count
must not exceed the maximum count of the semaphore.

ARGUMENTS semaphore_id
. Supplies the object id of the semaphore object to release.

release_count
Supplies the value that is added to the semaphore count.
previous_count
Returns the count of the semaphore before the count was incremented.

RETURN tatus$ I I ful leti

us$_norma normal, successful completion.
VALUES S
' U status$_invalid_object_id invalid object id.

status$_object type_ object type specified does not match the object type
mismatch of the object.
status$_invalid_release the release of the semaphore caused the the count

to exceed the maximum count.

8

6

Interval System Services

61

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$cancel_timer

os$cancel_timer

(

IN timer_id : e$object id;
OUT timer_state : boolean;
) RETURNS status;

DESCRIPTION Cancels a timer object. If a timer object has been set with an AST, only
the thread that originally set the timer may cancel it.

ARGUMENTS timer_id
supplies the object id of the timer object

timer_state

returns true if the timer was currently active, false otherwise

RETURN tatus$ | h i leted without
status$_norma the service completed without errors
VALUES . " :
status$_access_violation a specified parameter is not accessable
status$_invalid_cancel_timer the calling thread is not the thread that set the timer
with an AST
others object id transiation errors

DIGIIAL - Confidential and Proprietary - Restricted Distribution
os$create_timer

os$create timer

(

OUT timer_id : e$object id;

IN object_parameters : e$object_parameters = DEFAULT;
) RETURNS status;

DESCRIPTION Creates and initializes a timer object. The default object container is
; process private)

ARGUMENTS timer_id

returns the object id of the resulting timer object

object_parameters
supplies the object type independent parameters governing the creation of
the timer object

RETURN . | A ted with
status$_norma the service completed without errors
VALUES . , .
status$_access_violation a specified parameter is not accessable
status$_duplicate - object a timer with the same name already exists in the

specified container
athers object id translation errors

L

Vil 1AL - Lonnaentual ana rroprietary - Hestricted Distribution
os$read_timer

os$read timer

(

IN timer_id : e$object id;
OUT timer_state : boolean;
) RETURNS status;

DESCRIPTION reads the signaled state of a timer object

ARGUMENTS timer_id

supplies the object id of the timer object

timer_state
returns true if the timer is in the signaled state , false otherwise

RETURN tus$ | th i leted with
status$_norma e service completed without errors

VALUES . o _
status$_access_violation a specified parameter is not accessable
others object id translation errors

L

DIGITAL - Confidential and Proprietary - Restricted Distribution

os$set_timer

os$set_timer

(

IN timer_id : e$object_id;

IN due_time : large_integer;

IN ast_procedure : k$normal_ast_routine = NIL;

IN ast_parameter : POINTER anytype CONFORM = NIL;
) RETURNS status;

DESCRIPTION

Sets a timer to expire in due_time. Timers are waitable objects. Waits are
satisfied when the timer expires.

When timers are used with ASTs, the system_value parameter is the
current system time in absolute UTC.

ARGUMENTS

timer_id
supplies the object id of the timer to set

due_time

supplies the number of 100ns units of time that should elapse before

the timer expires if due_time is negative, the timer is "relative”, or the
timer will expire (-due_time) units of time after the set timer call is made.
Positive values of due_time implys absolute time in UTC.

asl_procedure

supplies the procedure that should be called when the timer expires. If
defaulted, no procedure is called. If the previous mode is k$c_user, then
the procedure is called as a user mode ast procedure, otherwise, it is called
as a kernel mode ast procedure.

ast_parameter
supplies the context passed to the ast procedure. If the ast procedure is
defaulted, then this parameter is ignored. -

RETURN
VALUES

status$_normal - the service completed without errors
status$_access_violation a specified parameter is not accessable

status$_invalid_cancel_timer the timer is set with an AST, and the calling thread
is not the thread that originally set the timer with an
AST

others object id translation errors

L

7

Process System Services

7-1

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$create_exit_handler_process

os$create_exit_handler_process

(

IN handler_procedure : k§normal_ast _routine;

IN handler_context : POINTER anytype CONFORM = NIL;

IN handler_placement : e$exit_handler_placement = e$c_beginning_of _
list;

OUT handler_id : e$exit_handler_id;

) RETURNS status;

DESCRIPTION This service is used to create a process level exit handler. Exit handlers
are called as user mode AST routines during exit. Process level exit
handlers are processed when a the last thread in a process calls os$exit_
thread(), and after all of the thread level exit handlers have been
processed. The exit handler list head stored in the exiting threads PCR
is processed in order. Each handler found in the list is removed and
then called as an AST routine. This interface supports placement of an
exit handler at either the beginning or end of the exit handler list head.
Placement is under the control of the handler_placement parameter which
defaults to beginning of the list. Once created, a handler is assigned
‘a handler_id. This return value may be used to delete an existing exit
handler. '

ARGUMENTS handler_procedure
Supplies the exit handler procedure to be executed when this handler is
processed

handler_context
Supplies a parameter to be passed to the handler_procedure when the
handler is processed.

handler_placement
Supplies exit handler placement control.

handler_id
Returns the handler ID of the exit handler. This argument is only valid if
the service returns with status$_normal.

RETURN

VALUES status$_normal the service completed without errors
status$_access_violation a specified parameter is not accessible
status$_not_supported an aftempt to call this service from a system thread

was made, or the service was called after kernel
mode exit processing has started.

7-2

Vil 1AL - LonHnaenual ana rroprielary - Hestricted Distribution

os$create_exit_handler_thread

os$create exit handler_thread

(

IN handler_procedure : k§normal _ast _routine;
IN handler_context : POINTER anytype CONFORM = NIL;
IN handler_placement : e$exit_handler_placement = e$c_beginning_of_

list;

OUT handler_id : e$exit_handler_id;
) RETURNS status;

DESCRIPTION

This service is used to create a thread level exit handler. Exit handlers
are called as user mode AST routines during exit. Thread level exit
handlers are processed when a thread calls os$exit_thread(). The exit
handler list head stored in the exiting threads TCR is processed in order.
Each handler found in the list is removed and then called as an AST
routine. This interface supports placement of an exit handler at either

the beginning or end of the exit handler list head. Placement is under the
control of the handler_placement parameter which defaults to beginning

of the list. Once created, a handler is assigned a handler_id. This return
value may be used to delete an existing exit handler.

ARGUMENTS

handler_procedure
Supplies the exit handler procedure to be executed when this handler is
processed

handler_context
Supplies a parameter to be passed to the handler_procedure when the
handler is processed.

handler_placement

Supplies exit handler placement control.

handler_id
Returns the handler ID of the created exit handler. This argument is only
valid if the service returns with status$_normal.

RETURN
VALUES

status$_normal the service completed without errors
status$_access_violation a specified parameter is not accessible

status$_not_supported an attempt to call this service from a system thread
was made, or the service was called after kernel
mode exit processing has started.

7-3

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$create_exit_status

os$create exit_status

(
OUT exit_status_id : e$object_id;

IN object_parameters : e$object parameters = DEFAULT;
) RETURNS status;

DESCRIPTION Create and initialize an exit status object. If the container id stored in
object parameters is defaulted, then process private is assumed.

ARGUMENTS exit_status id

object id of created exit status object

object _parameters
the object type independant parameters of the exit status object

VALUES status$_normal the service completed withaut errors
status$_access_violation a specified parameter is not accessable
status$_duplicate_object an exit status object with the same name already

exists in the specified container

others object id translation errors

DIGIIAL - Confidential and Proprietary - Restricted Distribution
os$create_job

osS$create_job

(

OUT job_id : e$object id;

IN object_parameters : e$object_parameters = DEFAULT;

IN job_record : e$job_record = DEFAULT;

IN job_initial_container : e$object id = DEFAULT;

IN job_allocation_list : POINTER e$object_id_list = NIL;

IN process_object parameters : e$object_parameters = DEFAULT;

IN process_record : e$process_record;

IN process_public_container : e$object_id = DEFAULT;

IN process_private_container : e$object_id = DEFAULT;

IN process_allocation_list : POINTER e$object _id_list = NIL;

IN process _data_block : POINTER quadword_data(*) CONFORM = NIL;
IN thread_object_parameters : e$object_parameters = DEFAULT;

IN thread_record : e$thread record = DEFAULT;

IN thread_allocation_list : POINTER e$object_id list = NIL;

 IN thread_data_block : POINTER quadword_data(*) = NIL;

IN thread_immediate_parameter1 : POINTER anytype CONFORM = NIL;
IN thread_immediate_parameter2 : POINTER anytype CONFORM = NIL;
IN thread_status : e$object_id = DEFAULT;

) RETURNS status;

DESCRIPTION Create a job, process, and thread object as specified by the parameters.

ARGUMENTS job id
Returns the object ID of the resulting job object

object_parameters
Supplies the object type independent parameters for the job object the
ACL and container ID are ignored

job_record
Supplies the attributes of the job being created. If not present, then values
are obtained from current user object

job_initial _container

Supplies the JOb level object container to be transfered into the job level
container directory for this job. If not present then container directory
comes up empty

7-5

DIGITAL - Confidential and Proprietary - Restricted Distribution

os$create_job

7-6

job_allocation_list
Supplies the objects to be allocated to the job object. If not present then no
objects are allocated to the job

process_object _parameters

Supplies the object type independent parameters for the process object the
ACL and container ID are ignored

process_record
Supplies the attributes of the process being created

process_public_container

Supplies the process level public container to be transfered into the process
level container directory for the process. If not present then the container
comes up empty. :

process_private_container

Supplies the process level private container to be transfered into the
process level container directory for the process. If not present then
container comes up empty.

process_allocation_list

Supplies the objects to be allocated to the process object. If not present
then no objects are allocated to the process

process_data block _
Supplies an arbitrary data block passed to the process

thread_object_parameters
Supplies the object type independent parameters for the thread object the
ACL and Container ID are ignored

thread_record
Supplies the attributes of the thread being created

thread_allocation_list
Supplies the objects to be allocated to the thread object. If not present
then no objects are allocated to the thread

thread data block

Supplies an arbitrary data block passed to initial thread. Pointer in TCR,
if pointer is NIL, then no data block was passed

thread_immediate_parameter1
Supplies an immediate parameter passed to thread through TCR

thread _immediate _parameter2
Supplies an immediate parameter passed to thread through TCR

thread status

Supplies an exit status object to be bound to the initial thread. If not
present then the thread is created without an exit status object

DIGIIAL - Conftidential and Proprietary - Restricted Distribution

os$create_job

RETURN
VALUES

status$_normal
status$_access_violation

status$_job_name_exists

status$_bad_job_record

status$_bad_job_init_
container

status$_bad_job_allocation

status$_process_name_
exists

status$_bad_process_record

status$_bad_prc_pub_
container

status$_bad_prc_priv_
container

status$_bad_process_
allocation

status$_thread_name_exists

status$_bad_thread_record

status$_bad_thread_
allocation

status$_bad_process_exit_
status

status$_bad _thread_exit_
status

status$_quota_exceeded

the service completed without errors
a specified parameter is not accessable

a job object already exists with the name specified in
the job object parameters

an invalid job record was specified

the specfied job initial container can not be transfered
to the new job

an invalid job allocation list was specified

a process object already exists with the name
specified in the process object parameters

an invalid process record was specified

the specified process public container can not be
transfered to the new process

the specified process private container can not be
transfered to the new process

an invalid process allocation list was specified

a thread object already exists with the name specified
in the thread object parameters

an invalid thread record was specified

an invalid thread allocation list was specified

an error occured translating the object id of the
specified process exit status object

an error cccured translating the object id of the
specified thread exit status object

not enough quota exists to complete the service

7-7

vial 1AL - Conriaential and Propnetary Restricted Distribution
os$create_process

os$create process

(

QUT process_id : e$object id;

IN object_parameters : e$object_parameters = DEFAULT;

IN process_record : e$process_record;

IN process _public_container : e$object_id = DEFAULT;

IN process_private _container : e$object _id = DEFAULT;

IN process_allocation_list : POINTER e$object_id_list = NIL;

IN process_data_block : POINTER quadword_data(*) CONFORM = NIL;
IN thread_object_parameters : e$object_parameters = DEFAULT;

IN thread_record : e$thread record = DEFAULT;

IN thread_allocation_list : POINTER e$object_id_list = NIL;

IN thread_data_block : POINTER quadword_data(*) CONFORM = NIL;
IN thread _immediate_parameter1 : POINTER anytype CONFORM = NIL;
IN thread_immediate_parameter2 : POINTER anytype CONFORM = NIL;
IN thread_status : e$object_id = DEFAULT;

) RETURNS STATUS;

DESCRIPTION Create a Process and thread object as specified by the parameters. Always
results in the creation of a sub-process

ARGUMENTS process _id

Returns the object ID of the resulting process object
object_parameters

Supplies the object type independent parameters for the process object the

ACL and container ID are ignored

process_record
Supplies the attributes of the process being created

process_public_container

Supplies the process level public container to be transfered into the process

level container directory for the process. If not present then the container
comes up empty.

process_private _container

Supplies the process level private container to be transfered into the
process level container directory for the process. If not present then
container comes up empty.

process_allocation_list
Supplies the objects to be allocated to the process object. If not present
then no objects are allocated to the process

DIGITAL - Confidential and Proprietary - Restricted Distribution

os$create_process

process_data_block
Supplies an arbitrary data block passed to the process

thread object_parameters
Supplies the object type independent parameters for the thread object the
ACL and Container ID are ignored

thread _record
Supplies the attributes of the thread being created

thread_allocation_list _
Supplies the objects to be allocated to the thread object. If not present
then no objects are allocated to the thread

thread _data_block

Supplies an arbitrary data block passed to initial thread. Pointer in TCR,
if pointer is NIL, then no data block was passed

thread _immediate_parameter1
Supplies an immediate parameter passed to thread through TCR

thread_immediate_parameter2

Supplies an immediate parameter passed to thread through TCR

thread_status
Supplies an exit status object to be bound to the initial thread. If not
present then the thread is created without an exit status object

RETURN
VALUES

DIGITAL - Confidential and Proprietary - Restricted Distribution

os$create_process

7-10

status$_normal
status$_access_violation

status$_pracess_name_
exists

status$_bad_process_record

status$_bad_prc_pub_
container

status$_bad_prc_priv_
container

status$_bad_process_
allocation

status$_thread_name_exists

status$_bad_thread_record

status$_bad_thread_
allocation

status$_bad_process_exit_
status

status$_bad_thread exit_
status

status$_quota_exceeded

the service completed without errors
a specified parameter is not accessable

a process object already exists with the name
specified in the process abject parameters

an invalid process record was specified

the specified process public container can not be
transfered to the new process

the specified process private container can not be
transfered to the new process

an invalid process allocation list was specified

a thread object already exists with the name specified
in the thread object parameters

an invalid thread record was specified

an invalid thread allocation list was specified

an error occured translating the object id of the
specified process exit status object

an-error occured translating the object id of the
specified thread exit status object

not enough quota exists to complete the service

- = mEm BRI INIWAN MIIM I IWMITWLHE Y T M ICIU IWITW IDU IMULIVIE

os$create_thread

os$create thread

(
OUT thread_id : e$object id;

IN object_parameters : e$object_parameters = DEFAULT;

IN thread_procedure : e$thread _entry point;

IN thread record : e$thread_record = DEFAULT;

IN thread_allocation_list : POINTER e$object _id_list = NIL;

IN thread _data_block : POINTER quadword_data(*) CONFORM = NIL;
IN thread _immediate_parameter1 : POINTER anytype CONFORM = NIL;
IN thread_immediate_parameter2 : POINTER anytype CONFORM = NIL;
IN thread_status : e$object_id = DEFAULT;

) RETURNS STATUS;

DESCRIPTION Create and additional thread object as specified by the parameters.

ARGUMENTS thread id
: Returns the object ID of the resulting process object

object_parameters

Supplies the object type independent parameters for the thread object the
ACL and container ID are ignored

thread _procedure
Supplies the entrypoint for the new thread

thread _record
Supplies the attributes of the thread being created

thread_allocation_list
Supplies the objects to be allocated to the thread object. If not present
then no objects are allocated to the thread

thread_data_block

Supplies an arbitrary data block passed to initial thread. Pointer in TCR,
if pointer is NIL, then no data block was passed

thread _immediate_parameter1
Supplies an immediate parameter passed to thread through TCR

thread immediate_parameter2
Supplies an immediate parameter passed to thread through TCR

thread_status
Supplies an exit status object to be bound to the initial thread. If not
present then the thread is created without an exit status object

7-11

Uil 1AL - Lonriagental ana rroprietary - Hestricted Distribution
os$create_thread

RETURN
VALUES

status$_normal the service completed without errors
status$_access_violation. a specified parameter is not accessable

status$_thread name_exists a thread object already exists with the name specified
in the thread object parameters

status$_bad_thread_record an invalid thread record was specified
status$_bad_thread_ an invalid thread allocation list was specified
allocation :

status$_bad_thread_exit_ an error occured translating the object id of the
status specified thread exit status object
status$_quota_exceeded not enough quota exists to complete the service

7-12

wINAL ML T wULIIUSTILAl dliu rropriewdry = restrictea vistripution
os$create_user

os3$create user

(

OUT user_id : e$object_id;

IN object_parameters : e$object_parameters = DEFAULT;

IN user_record : e$user _record;

IN user_allocation_list : POINTER e$object_id_list = NIL;

IN job_object_parameters : e$object parameters = DEFAULT;

IN job_record : e$job_record = DEFAULT;)

IN job_initial_container : e$object_id = DEFAULT;

IN job_allocation_list : POINTER e$object_id_list = NIL;

IN process_object_parameters : e$object_parameters = DEFAULT;

IN process_record : e$process_record;

IN process_public_container : e$object id = DEFAULT;

IN process_private_container : e$object_id = DEFAULT;

IN process_allocation_list : POINTER e$object_id_list = NIL;

IN process_data_block : POINTER quadword_data(*) CONFORM = NIL;
IN thread _object _parameters : e$object_parameters = DEFAULT;

IN thread _record : e$thread record = DEFAULT;

IN thread_allocation_list : POINTER e$object_id_list = NIL;

IN thread _data_block : POINTER quadword_data(*) CONFORM = NIL;
IN thread_immediate_parameter1 : POINTER anytype CONFORM = NIL;
IN thread _immediate_parameter2 : POINTER anytype CONFORM = NIL;
IN thread_status : e$object_id = DEFAULT;

) RETURNS STATUS;

DESCRIPTION Create a user, job, process, and thread object as specified by the
parameters. If the user object collides with an existing user object, then

use the existing user object.

ARGUMENTS user_id

Returns the object ID of the resulting user object

object_parameters
Supplies the object type independent parameters for the user obJect the
ACL and container ID are ignored

user_record
Supplies the attributes of new user object.

vial 1AL - LOruenudl ana rroprietary - Hestrictea pistribution

os$create_user

7-14

user_allocation_list
Supplies the objects to be allocated to the user object. If not present then
no objects are allocated to the user

job_object parameters
Supplies the object type independent parameters for the job object the
ACL and container ID are ignored

job_record
Supplies the attributes of the job being created. If not present, then values
are obtained from current user object

job_initial _container

Supplies the job level object container to be transfered into the job level
container directory for this job. If not present then container directory
comes up empty

job_allocation_list
Supplies the objects to be allocated to the job object. If not present then no
objects are allocated to the job

process _object parameters

Supplies the object type independent parameters for the process object the
ACL and container ID are ignored

process_record
Supplies the attributes of the process being created

process_public_container

Supplies the process level public container to be transfered into the process
level container directory for the process. If not present then the container
comes up empty.

process_private_container

Supplies the process level private container to be transfered into the
process level container directory for the process. If not present then
container comes up empty.

process_allocation_list
Supplies the objects to be allocated to the process object. If not present
then no objects are allocated to the process

process_data_block
Supplies an arbitrary data block passed to the process

thread_object parameters
Supplies the object type independent parameters for the thread object the
ACL and Container ID are ignored

thread record
Supplies the attributes of the thread being created

thread _allocation_list
Supplies the objects to be allocated to the thread object. If not present
then no objects are allocated to the thread

S Wi I VNS Y T FICIUHIVICU WD INULIVILI

thread_data_block

os$create_user

Supplies an arbitrary data block passed to initial thread. Pointer in TCR,
if pointer is NIL, then no data block was passed

thread_immediate _parameter1
Supplies an immediate parameter passed to thread through TCR

thread_immediate_parameter2
Supplies an immediate parameter passed to thread through TCR

thread_status

Supplies an exit status object to be bound to the initial thread. If not
present then the thread is created without an exit status object

RETURN
VALUES

status$_normal
status$_access_violation
status$_bad_user_record
status$_bad_user_allocation

status$_job_name_exists

status$_bad_job_record

status$_bad_job_init_
container

status$_bad_job_allocation

status$_process_name_
exists

status$_bad_process_record

status$_bad_prc_pub_
container

status$_bad_prc_priv_
container

status$_bad_process_
allocation

status$_thread_name_exists

status$_bad_thread_record

status$_bad_thread_
allocation

status$_bad_process_exit_
status

status$_bad_thread_exit_
status

status$_quota_exceeded

the service completed without errors

a specified parameter is not accessable
an invalid user record was specified

an invalid user allocation list was specified

a job object already exists with the name specified in
the job object parameters

an invalid job record was specified

the specfied job initial container can not be transfered
to the new job

an invalid job allocation list was specified

a process object already exists with the name
specified in the process object parameters

an invalid process record was specified

the specified process public container can not be
transfered to the new process

the specified process private container can not be
transfered to the new process

an invalid process allocation list was specified

a thread object already exists with the name specified
in the thread cbject parameters

an invalid thread record was specified

an invalid thread allocation list was specified

an error occured translating the object id of the
specified process exit status object

an error occured translating the object id of the
specified thread exit status object

not encugh quota exists to complete the service

7-15

Uil 1AL = LvOrliagenudl ana rroprietary - Hestrictea vistripution
os$delete_exit_handler_process

os$delete_exit handler process

(
IN handler_id : e$exit_handler id;

) RETURNS status;

DESCRIPTION This service is used to delete an existing process level exit handler. The
specified exit handler is removed from the process exit handler list. Once
an exit handler is delete, it will not be processed.

ARGUMENTS handler _id
Supplies the handler ID of the exit handler to be deleted.

RETURN tatus$ | th i leted without
status$_norma e service completed without errors
VALUES - 9)
status$_exit_handler_not_ the handler specified by handler_id was not found on
found exit handler list
status$_not_supported an attempt to call this service from a system thread
was made

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$delete_exit_handler_thread

os$delete exit handler thread

(
IN handler_id : e$exit_handler id;

) RETURNS status;

DESCRIPTION This service is used to delete an existing thread level exit handler. The
specified exit handler is removed from the threads exit handler list. Once
an exit handler is deleted, it will not be processed.

ARGUMENTS handler_id
Supplies the handler ID of the exit handler to be deleted.

RETURN tatus$ | th i leted without
status$_norma e service completed without errors
VALUES - »)
status$_exit_handler_not_ the handler specified by handler_id was not found on
found exit handler list
. status$_not_supported an attempt to call this service from a system thread
was made

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$exit_thread

os$exit_thread

(

IN exit_status : status;
) RETURNS status;

DESCRIPTION This service begins kernel mode exit processing. This involves calling all
thread level exit handlers. The thread object id is then removed. If the
: thread is the last thread in its process, then it executes its process level
exit handlers.

ARGUMENTS exit_status
Supplies the reason that the thread is exiting

RETURN tatus$ i S ly by th ice dispatcher. Thi
status$_repeat_service een only by the system service dispatcher. This
VALUES value is returned when dispatching to an exit handler.
If the handler returns, os$exit_thread() is restarted.

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$force_exit_job

os$force_exit_job

(

IN job_id : e$object _id;
IN exit_status : status;
) RETURNS status;

DESCRIPTION Force exit the job specified by job_id. This action causes all of the jobs
) processes to exit

ARGUMENTS job id

supplies object id of the job to be exited.

exit_status
supplies the reason for job to exit

RETURN
VALUES

status$_normal normal completion of the service

others object id translation errors

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$force_exit_process

os$force_exit process

(

IN process_id : e$object id;
IN exit_status : status;

) RETURNS status;

DESCRIPTION Force exit the process specified by process_id. This action causes all of the
processes sub-processes and threads to be force exited.

ARGUMENTS process id

Supplies the object id of the process to be exited.

exilt_status
Supplies the reason for the process exiting

RETURN
VALUES

status$_normal normal completion of the service

others object id translation errors

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$force_exit_thread

os$force exit thread

(

IN thread _id : e$object_id;
IN exit_status : status;

) RETURNS status;

DESCRIPTION Force exit the thread specified by thread_id.

ARGUMENTS thread id
supplies the object id of the thread to be exited.

exit_status
supplies the reason that the thread is force exiting

RETURN
VALUES status$_normal

others object id translation errors

normal completion of the service

wvial 1AL = Lonnaenual ana rroprietary - Hestricted Distribution
os$force_exit_user

os$force exit user

(

IN user_id : e$object_id;
IN exit_status : status;

) RETURNS status;

DESCRIPTION Force exit the user specified by user_obj_id. This action causes all of the
users jobs to be force exited.

ARGUMENTS user_id
Supplies the object id of the user to be exited.

exit_status

Supplies the reason for the user exiting

RETURN
VALUES

status$_normal normal completion of the service
others object id translation errors

VIGil IAL - Contidential and Proprietary - Restricted Distribution
os$get_exit_status_info

os$get_exit_status_info

(
IN exit_status_id : e$object_id = DEFAULT;

IN exit_status_items : POINTER e$itern_list_type;
IN process_status_object : boolean = true;
) RETURNS status;

DESCRIPTION Return information about the specified exit status. The information
returned is item list driven

ARGUMENTS exit_status_id
supplies the object id of the exit status object to get information from. If
defaulted, then either the process exit status object of the current thread,
or the thread exit status object of the current thread is assumed.

exilt_status _items
supplies the item list which specifies the information to be retrieved.

Code : Pointer Type Action

e$c_status_value . status returns the status vaiue from the item list

e$c_status_string varying_string returns the status string stored in the exit status
object

e$c_status_string_set boolean returns and indication of whether a status string

exists in the exit status object. True == exists

e$c_status_summary e$exit_status_summary returns the exit status summary from the exit
status object. (this function does not return the
status string, only its address has no use from
user mode.)

process_status_object

only locked at if exits status id is defaulted. If true, the process level exit
status object of the current thread is assumed, otherwise, the thread level
exit status is assumed

\F;EIH ERg status$_normal the service completed without errors
status$_access_violation a specified parameter is not accessable
status$_invalid_item_code a specified item code is invalid, or its item entry is

invalid
others object id translation errors

—n—m & wmm W EIEEMAWAILILAL I I WMWY T M ICIU IVITW WiIOoU EMUELINLE

os$get_job_information

os$get_job_information

(
IN job_id : e$object_id = DEFAULT;

IN job_get _items : POINTER e$item_list_type;
) RETURNS status;

DESCRIPTION Return information about the job object to the caller. "The information
: returned is item list driven -

ARGUMENTS job id
supplies if present, the object ID of job object that is to be inspected
otherwise, the job object of the calling thread is assumed

job_get _items
supplies the item list identifying job object information to be extracted

Code Pointer Type Action

e$c_user_id . e3object_id return the object id of the jobs user object

e$c_process_count integer return the number of processes for this user
' {subprocesss not included)

e$c_process_ids e$object_id_list . return the object id’s for the users processes

{subprocesss not included)

e$c_quota_usage e$quota_usage return the jobs resource usage

e$c_job_limits e$quota_limits return the per job resource limits

e$c_job_class e$job_class return the job class of the job object

RETURN | |
VALUES status$_normal the service completed without errors
status$_access_violation a specified parameter is not accessable
status$_invalid_item_code a specified item code is invalid, or its item entry is
invalid
others object id transiation errors

7-24

ViUl 1AL = Lonrnaenual ana rroprietary - Hestricted Distribution
os$get_process_information

os$get_process_information

(.

IN process_id : e$object _id = DEFAULT;

IN process_get _items : POINTER e$item_list_type;
) RETURNS status;

DESCRIPTION Return information about the process object to the caller. The information
returned is item list driven

ARGUMENTS process id
supplies if present, the object ID of process object that is to be inspected
otherwise, the process object of the calling thread is assumed

process_get_items
supplies the item list identifying process object information to be extracted

Code Pointer Type Action
e$c_job_id e$object_id return the object id of the processes job
e$c_parent_id ' " e3object _id return the object id of the parent process zero()
') if process is not a subprocess
e$c_sub_process_count integer return the number of sub processes
e$c_sub_process_ids e$object_id_list return the object id’s for the processes sub
processes
e$c_thread_count integer return the number of threads for the process (
threads in sub processes not included)

e$c_thread_ids e$object_id_list return the object ids for the threads of the

, process (threads in sub processes not included)
e$c_process_accounting e$accounting_summary return the process level accounting summary
a3c_pcr_base e$process_control_region return address of the process control region
e$c_quota_usage e$quota_usage return the processes resource usage
e$c_process_limits e$quota_limits return the per process resource limits
RETURN tatus$ I th i leted without

status$_norma e service completed without errors
VALUES o , \

status$_access_violation a specified parameter is not accessable

status$_invalid_item_code a specified item code is invalid, or its item entry is

invalid ’
others object id translation errors .

vIGIIAL - Conridential and Proprietary - Restricted Distribution
os$get_thread_information

os$get thread information

(.

IN thread id : e$object_id = DEFAULT;

IN thread _get items : POINTER e$item_list_type;
) RETURNS status;

DESCRIPTION Return information about the thread object to the caller. The information
returned is item list driven

ARGUMENTS thread id
supplies if present, the object ID of thread object that is to be inspected
otherwise, the thread object of the calling thread is assumed

thread get _items
supplies the item list identifying thread object information to be extracted

Code Pointer Type Action

e$c_process_id e$object_id * returns the object id of the threads process

e$c_ter_base ' e$thread_control_region returns address of the threads ter

e$c_thread_accounting e$cpu_and_io_summary returns the thread specific accounting summary
e$c_thread_perf_counters e$thread_perf_counters returns the thread performance counters
e$c_thread_priority k$combined_priority return the current thread priority
e$c_thread_affinity k$affinity return the current thread affinity

RETURN , ‘ .

VALUES status$_normal o the serlv.lce completed ‘w1thout errors
status$_access_violation a specified parameter is not accessable
status$_invalid_item_code a specified item code is invalid, or its item entry is

invalid
others object id translation errors

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$get_user_information

os$get_user_information

(
IN user_id : e$object_id = DEFAULT;

IN user_get items : POINTER e$item_list_type;
) RETURNS status;

DESCRIPTION Return information about the user object to the caller. The information
i returned is item list driven .

ARGUMENTS user_ id

supplies if present, the object ID of user object that is to be inspected
otherwise, the user object of the calling thread is assumed

user_get_items
supplies the item list identifying user object information to be extracted

Code Pointer Type Action

e$c_job_count integer return the number of jobs for this user
e$c_job_ids _ e$object_id_list return the object id's for the users jobs
e$c_username . varying_string return the user name
e$c_quota_usage e$quota_usage return the users resource usage
e$c_user_limits e$quota_limits return the users resource limits
e$c_job_limits e$quota_limits return the per job resource limits
e$c_process_limits e$quota_limits return the per process resource limits
e$c_thread_priority k$combined_priority return the default thread priority
e$c_thread_affinity k$affinity return the default thread affinity
e$c_access_restrictions e$access_restrictions return the access retrictions

\lezg gg status$_normal the service completed without errors
status$_access_violation a specified parameter is not accessable
status$_invalid_item_code a specified item code is invalid, or its item entry is

invalid
others object id translation errors

7-27

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$hibernate_process

os$hibernate_process

(
IN process_id : e$object_id;
) RETURNS status;

DESCRIPTION Cause all threads owned by the process specified by process_id to issue a
wait on the auto-clearing hibernate event object in their TCB. User mode
AST’s remain enabled

ARGUMENTS process id

supplies the object of the target process

RETURN _ ,

VALUES status$_normal the service completed without errors
status$_access_violation a specified parameter is not accessable
status$_quota_exceeded not enough quota exists to capture the thread or

subprocess ids of the specified process

others abject id translation errors

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$hibernate_thread

os$hibernate thread

(
IN thread_id : e$object_id;
) RETURNS status;

DESCRIPTION Cause the thread specified by thread_id to issue a wait on the auto-
clearing hibernate event object in its TCB User mode AST’s remain
enabled

ARGUMENTS thread_id

supplies the object of the target thread

VALUES status$_normal the service completed without errors
status$_access_violation a specified parameter is not accessable
others object id translation errors

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$resume_process

os$resume_process

(
IN process_id : e$object _id;
) RETURNS status;

DESCRIPTION Cause all threads owned by the process specified by process object_id to
ave their waits on the auto-clearing suspend event object in their TCB to
be satisfied by setting the event. -

ARGUMENTS process_id

supplies the object ID of the target process

VALUES status$_normal the service completed without errors
status$_access_violation a specified parameter is not accessable
status$_quota_exceeded not enough quota exists to capture the thread or

subprocess ids of the specified process

others object id translation etrors

7-30

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$resume_thread

os$resume _thread

(
IN thread_id : e$object _id;
) RETURNS status;

DESCRIPTION Cause the thread specified by thread object_id to have its wait on the
auto-clearing suspend event object in its TCB to be satisfied by setting the
event. .

ARGUMENTS thread id
supplies the object ID of the target thread

VALUES status$_normal the service completed without errors
status$_access_violation a specified parameter is not accessable
others object id translation errors

7-31

DIGITAL - Confidential and Proprletary Restricted Distribution
os$set_exit_status_info

os$set_exit_status_info

(
IN exit_status_id : e$object id = DEFAULT;

IN exit_status_items : POINTER e$itern_list_type;
IN process_status_object : boolean = true;
) RETURNS status;

DESCR]PT]C}N Set information in the specified exit status. The information returned is
item list driven

ARGUMENTS exit_status id
supplies the object id of the exit status object to set information into. If
defaulted, then either the process exit status object of the current thread,
or the thread exit status object of the current thread is assumed. When
this id is defaulted, then the process or thread level exit status object is
used by address (no acl protection) since we assume that you can always
write to your own exit status object.

exit_status_items
supplies the item list which specifies the information to be set.

Code Pointer Type Action

e$c_status_string varying_string places the specified string in the exit status
object

process_status_object

only looked at if exits status id is defaulted. Tf true, the process level exit

status object of the current thread is assumed, otherwise, the thread level
- exit status is assumed :

status$_normal the service completed without errors
VALUES . " ,
status$_access_violation a specified parameter is not accessable
status$_invalid_item_code a specified item code is invalid, or its item entry is
invalid
others object id translation errors

7-32

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$set_job_information

os$set_job_information

(

IN job_id : e$object id = DEFAULT;

IN job_set _itemns : POINTER e$itemn_list_type;
) RETURNS status;

DESCRIPTION Return information about the job object to the caller. The information
returned is item list driven

ARGUMENTS job id
supplies if present, the object ID of job object that is to be modified

otherwise, the job object of the calling thread is assumed

job_set_items
supplies the item list identifying job object information to be modified

Code Pointer Type Action
e$c_job_limits ‘ e$quota_limits set the per job resource limits
RETURN tus$ | th i leted with
status$_norma e service completed without errors
VALUES . " .
status$_access_violation a specified parameter is not accessable
status$_invalid_item_code a specified item code is invalid, or its item entry is
invalid
others object id translation errors

7-33

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$set_minor_thread_priority

os$set_minor_thread_priority

(
IN thread_id : e$object_id = DEFAULT;

IN new_priority : k$minor_priority;
OUT previous_priority : k§combined_priority;
) RETURNS status;

DESCR[PT]ON This system service changes the minor priority of the specified thread.

ARGUMENTS thread id
Supplies the object id of the thread whose priority is to be altered. If this

parameter is defaulted, the current thread is assumed

new_priority
Supplies the minor priority that is to be set in the specified thread.

previous_priority
Returns the specified threads previous combined priority. Only valid if
status$_normal was returned.

RETURN

VALUES status$_normal the service completed without errors
status$_invalid_argument new_priority is not a valid value for k$minor_priority
others object id translation errors

7-34

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$set_process_information

os$set process information

(
IN process_id : e$object id = DEFAULT;

IN process_set _items : POINTER e$item_list_type;
) RETURNS status;

DESCRIPTION Return information about the process object to the caller. The information
returned is item list driven

ARGUMENTS process_id
supplies if present, the object ID of process object that is to be modified

otherwise, the process object of the calling thread is assumed

process_set _items
supplies the item list identifying process object information to be modified

Code Pointer Type Action

e$c_protected_data anytype add block to protected data listhead in the per
(item length determines how many bytes of data
are being linked to the list.)

e$c_process_limits ‘ e$quota_limits replace the per process resource limits

\RIEIS’E:‘Q statﬁs$_normal the service completed without errors
status$_access_violation a specified parameter is not accessable
status$_invalid_item_code a specified item code is invalid, or its item entry is

invalid
others object id translation errors

7-35

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$set_thread_information

os$set_thread information

(
IN thread_id : e$object_id = DEFAULT;

IN thread_set_items : POINTER e$item_list_type;
) RETURNS status;

DESCRIPTION Return information about the thread object to the caller. The information
) returned is item list driven

ARGUMENTS thread id
supplies if present, the object ID of thread object that is to be modified
otherwise, the thread object of the calling thread is assumed

thread_set_items
supplies the item list identifying thread object information to be modified

Code Pointer Type Action

e$c_thread_priority k$combined_priority set the current thread priority
e$c_thread_mnr_pricrity k$minar_priority set the current thread minor priority
e$c_thread_mijr_priority - k$major_priority set the current thread major priority
e$c_thread_affinity k$affinity set the current thread affinity

\F;Ezggg status$_normal the service completed without errors
status$_access_violation a specified parameter is not accessable
status$_invalid_jtem_code a specified item code is invalid, or its item entry is

invalid
others object id translation errors

7-36

DIGITAL - Confidential and Proprietary - Restricted Distribution

os$set_thread_priority

os$set_thread_priority

,

(

IN thread_id : e$object_id = DEFAULT;

IN new_priority : k§combined_priority = 0;
OUT previous_priority : k§combined_priority;
) RETURNS status;

DESCRIPTION This system service changes the combined priority of the specified thread.

ARGUMENTS

thread id
Supplies the object id of the thread whose priority is to be altered. If this
parameter is defaulted, the current thread is assumed

new_priority

Supplies the combined priority that is to be set in the thread. If this
parameter is defaulted, the base priority of the threads process is assumed.
If the major priority in new_priority is greater than the threads current
major priority, then the calling thread must have access to the raise
priority privileged operation object.

This service never allows the priority to be changed out of the priority
class that the thread process is a member of. If the process is not in a
realtime priority class, then the threads priority can not be changed to a
realtime priority class. If the process is within a realtime priority class,
then the threads new priority must stay within a realtime priority class.

previous_priority
Returns the specified threads previous combmed priority. Only valid if
status$_normal was returned.

RETURN
VALUES

status$_normal the service completed without errors

status$_invalid_argument new_priority is not a valid value for k$combined_
priority, or specifies a priority class that is different
from the threads process

others object id translation errors

7-37

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$set_user_information

os$set_user_information

(
IN user_id : e$object_id = DEFAULT;

IN user_set_items : POINTER e$item_list_type;
) RETURNS status;

DESCRIPTION Return information about the user object to the caller. The information
returned is item list driven

ARGUMENTS user id
supplies if present, the object ID of user object that is to be modified
otherwise, the user object of the calling thread is assumed

user_setl _items
supplies the item list identifying user object information to be modified

Code Pointer Type Action

e$c_user_limits e$quota_limits set the users resocurce limits

e$c_job_limits. - e$quota_fimits set the per job resource limits

e$c_process_limits ’ e$quota_limits set the per process resource limits
e$c_thread_priority k$combined_priority set the default thread priority
e$c_thread_affinity k$affinity set the default thread affinity
e$c_access_restrictions e$access_restrictions set the access retrictions

RETURN _ ‘

VALUES status$_normal o the ser'v.ice completed .thhout errors
status$_access_violation a specified parameter is not accessable
status$_invalid_item_code a specified item code is invalid, or its item entry is

invalid
others object id translation errors

7-38

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$signal_process

os$signal_process

(

IN process_id : e$object id;

IN condition_value : status;

IN signal_argument : longword CONFORM = DEFAULT
) RETURNS status;

DESCR]PT[ON Cause a condition of type condition_value to be raised in all threads owned
by the process specified by process_id. The cond1t1on handler is passed

signal_argument.

ARGUMENTS process_id
supplies the object_id of the process to be signaled

condition_value
supplies a condition value to be raised in all threads of the target process

signal_argument
supplies the value that is passed to the condition handler

RETURN , ,

VALUES status$_normal the service completed without errors
status$_access_violation a specified parameter is not accessable
others object id translation errors

7-39

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$signal_thread

os$signal_thread

(

IN thread _id : e$object _id;

IN condition_value : status;

IN signal_argument : longword CONFORM = DEFAULT;
) RETURNS status; o

DESCRIPT]ON Cause a condition of type condition_value to be raised in the thread
specified by thread_id. The condition handler is passed signal_argument.

ARGUMENTS thread id
supplies the object_id of the thread to be signaled

condition_value
supplies a condition value to be raised in all threads of the target thread

signal_argument
supplies the value that is passed to the condition handler

RETURN _ .

VALUES status$_normal o the ser'v.lce completed .w;thout errors
status$_access_violation a specified parameter is not accessable
status$_not_supported the target thread was a system thread
others object id translation errors

7-40

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$suspend_process

os$suspend_process

(
IN process_id : e$object id;
) RETURNS status;

DESCRIPTION Cause all threads owned by the process specified by process_id to issue a
wait on the auto-clearing suspend event object in their TCB. User mode
AST’s are disabled.

ARGUMENTS process id
supplies the object ID of the target process

VALUES status$_normal the service completed without errors
status$_access_violation a specified parameter is not accessable
status$_quota_exceeded not enough quota exists to capture the thread or

subprocess ids of the specified process

others ‘ object id translation errors

7-41

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$suspend_thread

os$suspend_thread

(
IN thread_id : e$object_id;

) RETURNS status;

DESCRIPTION Cause the thread specified by thread_id to issue a wait on the auto-
clearing suspend event object in its TCB. User mode AST’s are disabled.

ARGUMENTS thread id
supplies the object ID of the target thread

VALUES status$_normal the service completed without errors
status$_access_violation *a specified parameter is not accessable
others object id translation errors

7-42

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$wake_process

os$wake process

(
IN process_id : e$object _id;
) RETURNS status;

their waits on the auto-clearing hibernate event object in their TCB to be

DESCRIPTION Cause all threads owned by the process specified by process_id to have
) satisfied by setting the event.

ARGUMENTS process_id
: supplies the object ID of the target process

status$_normal the service completed without errors
VALUES . " ,

status$_access_violation a specified parameter is not accessable

status$_quota_exceeded not enough quata exists to capture the thread or

subprocess ids of the specified process

others object id translation errors

7-43

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$wake_thread

os$wake thread

(
IN thread_id : e$object _id;

) RETURNS status;

DESCRIPTION Cause the thread specified by thread_id to have its wait on the auto-
clearing hibernate event object in its TCB to be satisfied by setting the
event. i

ARGUMENTS thread id
supplies the object ID of the target thread

RETURN

VALUES status$_normal the service completed without errors
status$_access_violation a specified parameter is not accessable
others object id translation errors

8

Memory System Services

8-1

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$adjust_working_set_limit

os$adjust_working_set_limit

(

IN number_of_bytes : integer;
OUT new_working_set_limit : integer [1..];
) RETURNS STATUS;

DESCRIPTION

The Adjust Working Set Limit service adjusts a process’s current working
set limit by the specified number of bytes and returns the new value to the
caller. The specified number of bytes will be converted into pages and the
calculated number of pages will be added to or removed from the working
set. A negative value for the byte count will cause pages to be removed
from the working set.

ARGUMENTS

number_of bytes
Supplies the number of bytes to add or remove from the working set.

new_working_set_limit
Returns the current size of the working set in bytes. The working set is
maintained in pages and converted to bytes.

RETURN
VALUES

status$_normal normal, successful completion.

status$_invalid_address error, either the starting or ending address is not
accessable.

status$_working_set_at__ error, unable to add any more pages to the working
maximum set.

status$_working_set_at_ error, unable to remove any more pages from the
minimum working set.

DIGITAL - Confidential and Proprietary - Restricted Distribution

os$create_address_space

os$create address space

(

IN desired_beginning_address : POINTER anytype CONFORM;
IN desired_ending_address : POINTER anytype CONFORM;
OUT actual_beginning_address : POINTER anytype CONFORM;
OUT actual_ending_address : POINTER anytype CONFORM;

) RETURNS status;

DESCRIPTION

This routine creates address space at the specified address. An error is
returned if any of the desired address range is already mapped, but the
create address will map from the desired address up to the already created
addresses, and that range will be returned.

ARGUMENTS

desired_beginning _address
Supplies the beginning address of the range to create.

desired ending address
Supplies the ending address of the range to create.

actual_beginning address

Returned address of the beginning of the range actually created. The
actual range could differ from the desired range due to 64K byte
alignment.

actual_ending_address
Returned address of the ending of the range actually created.

RETURN
VALUES

status$;normal normal, successful completion.
status$_invalid_begin_ error, the beginning address is invalid.

address

status$_invalid_ending_ error, the ending address is invalid.

address

status$_complete_range_ warning, the complete range of addresses could not
not_map be mapped do to previously mapped addresses.

L

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$create_section

os$create_section

(

OUT section_id : e$object id;

IN object_parameters : e$object_parameters = DEFAULT;
IN file_channel : integer OPTIONAL; ### needs fixed also item list needs to
be added-

IN mapp/ng type : e$mapping_type OPTIONAL

IN size_in_bytes : integer OPTIONAL;

IN virtual_block_number : integer OPTIONAL;

IN protection : e$page _protection OPTIONAL;

IN identification_match : integer OPTIONAL;

) RETURNS status;

DESCRIPTION This routine creates a section which is either backed by an existing file or
backed by paging file.

ARGUMENTS section_id

Returned object ID of the created section.

object_parameters

Supplies the object container in which the object is inserted, the name of
the object, and the access control list (ACL) of the object. If this argument
is not supplied or if it is supplied but not all values in the object parameter
record are supplied, the service applies default values. The default object
container is the process private container, the default name is none, and
the default ACL is none. to map the section into.

file_channel

Supphes the object ID of a prevmusly created channel which has had a file
open performed. If the channel is not supplied, a section backed by paging
file is created.

mapping_type

Supplies the type of section to create, either data or image.

size_in_bytes
Supplies the size of the section to create in bytes. If page file mapping is
performed this parameter is required.

virtual_block_number

Supphes ‘the virtual block number offset within the opened file to begm
mapping. This virtual block number is aligned on a 64K byte boundary.
Hence is the virtual block number is specified as 40 the actual virtual
block number would be 33 (start at vbn 1).

L

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$create_section

protection
Supplies the desired protection to apply to the newly created pages,
optional.

identification_match
Supplies the id to match, optional.

RETURN tatus$ | al ful leti
status$_norma normal, successful completion.
VALUES - .) . .
status$_invalid_address error, either the starting or ending address is not
accessable. .
status$_mapping_conilict error, the specified address range contains pages

which are already mapped.

status$_invalid_section_size error, the size specified for the section is invalid.

status$_requires_channel_ error, the section type requires a channel to be
arg specified,
others any object error in creating an object.

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$delete_address_space

os$delete address space

(
IN desired_beginning_address : POINTER anytype CONFORM;

IN desired_ending_address : POINTER anytype CONFORM;

OUT actual_beginning_address : POINTER anytype CONFORM;
OUT actual_ending_address : POINTER anytype CONFORM

) RE TURNS status;

DESCRIPTION This routine deletes the address space at the specified address. An
warning status is returned if any of the desired address range is mapped
in by a mapping object, i.e. was not created by e$create_virtual_address_
space and only the address space up to the found address is deleted.

ARGUMENTS desired_beginning address

Supplies the beginning address of the range to delete.

desired_ending_address
Supplies the ending address of the range to delete.

actual beginning_address :
Returned address of the beggin of the range actually deleted. The actual
range could differ from the desired range due to 64K byte alignment.

actual_ending_address
Returned address of the ending of the range actually deleted.

RETURN tatus$ l | ful leti
status$_norma normal, successful completion.
VALUES . : o o
status$_invalid_begin_ error, the beginning address is invalid.
address
status$_invalid_ending_ error, the ending address is invalid.
address
status$_total_range_not_ warning, the complete range of addresses could not
deleted be deleted do to previously mapped addresses.

L

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$expand_address_space

os$expand_address_space

(

IN number_of bytes : integer [0..];

OUT actual_beginning _address : POINTER anytype CONFORM:;
OUT actual_ending_address : POINTER anytype CONFORM,;

) RETURNS status;

DESCRIPTION This routine creates address space starting at the highest virtual address
in use by the process for the number of bytes specified.

ARGUMENTS number_of_byles
Supplies the number of bytes to add to the address space.

actual_beginning_address
Returned address of the first byte of the created address range.

actual_ending_address
Returned address of the last byte of the created address range.

RETURN tatus$ | | ful leti
status$_norma normal, successful completion.

VALUES .
status$_complete_range_ warning, the complete range of addresses could not
not_map be mapped do to previously mapped addresses.

8-7

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$expand_user_stack

os$expand_user_stack

(

IN number_of bytes to_add : integer [1..];
OUT new_stack_size : integer [1..];
) RETURNS STATUS;

DESCRIPTION

The Expand User Stack service attempts to adjust the user stack by the
specified number of bytes. The number of bytes is converted into pages
and an attempt is made to expand the stack by the calculated number of
pages.

The stack expansion may fail due to other thead user stacks occupying:
virtual address space and thereby preventing the stack expansion. Note
that there is no way to contract a stack.

ARGUMENTS number_of _byles to_add
Supplies the number of bytes to add to the stack. The number of bytes is
converted to pages.
new_stack_size
Returns the current stack size in bytes.

RETURN s, rorma T
status$_norma normal, successful completion.

VALUES - o
status$_unable_to_expand_ error, stack expansion failed.
stack
status$_partial_expansion warning, not all bytes were added to the stack.
status$_invalid_address error, either the starting or ending address is not

accessable.

L

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$get_mapping_information

os$get_mapping_information

(

IN mapping_id : e$object _id;

IN mapping_get _items : POINTER e$item_list_type;
) RETURNS STATUS;

DESCRIPTION The Get Mapping Information service provides information about the
specified mapping object. The information which may be obtained is
specified in an item list.

ARGUMENTS mapping_id

Supplies the object ID of the desired mapping object on which information
should be extracted.

mapping_get_items
Supplies the item list which specifies the information about the mapping
object to return.

item code description
e$c_mapping_section . The object ID of the section
’ which this mapping object
maps.
e$c_mapping_starting_ The starting address of the
address mapping in the address
space.
e$c_mapping_size The size of the mapping in
bytes.
e$c_mapping_offset The byte offset from the start

of the section object.

RETURN
VALUES

status$_normal normal, successful completion.

object_reference_errars any errors trying to reference an object by id.

8-9

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$get_section_information

os$get_section_information

(

IN section_id : e$object_id;

IN section_get_items : POINTER e$item_list_type;
) RETURNS STATUS;

DESCRIPTION The Get Section Information service provides informaticn about the
specified section object. The information which may be obtained is
specified in an item list.

ARGUMENTS section_id
Supplies the object ID of the desired section on which information should

be extracted.

section_get _items
Supplies the item list which specifies the information about the section to
return.

The following codes are valid:

Item code : action

e$c_section_vbn Virtual block number offset
which the section is based
upon.

e$c_section_size Size of the section in bytes.

e$c_section_protection_code Protection code assigned to
section pages.

e$c_section_ident_match ldentification match specified
on section.

e$c_section_type Type of section (image or
data).

RETURN
VALUES

status$_normal normal, successful completion.

object_reference_errors any errors trying to reference an object by id.

DIGITAL - Confidential and Proprietary - Restricted Distribution

os$lock_pages_in_memory

os$lock_pages_in_memory

(

IN starting_address : POINTER anytype CONFORM;

IN ending_address : POINTER anytype CONFORM;
OUT last_locked_address : POINTER anytype CONFORM;

) RETURNS STATUS;

DESCRIPTION The Lock Pages in Memory service locks a page or range of pages in
memory. The specified virtual pages are forced into the working set,
then locked in memory. A locked page is not removed from memory if its
process’s working set is removed from the balance set.

ARGUMENTS starting_address
Supplies the starting virtual address of the range to be locked into
memory.
ending_address
Supplies the ending virtual address of the the range to be locked into
memory. ‘
last_locked_address
Returns the last address which was actually locked in memory.

RETURN s o R
status$_norma normal, successful completion.

VALUES - | ° |
status$_complete_range_ warning, at least one page was locked in memory.
not_lock .
status$_locked_limit_reached error, no more pages may be locked in memory.
status$_invalid_address error, either the starting or ending address is not

accessable.

8-1

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$lock_pages_working_set

os$lock_pages working_set

(_
IN starting_address : POINTER anytype CONFORM;

IN ending_address : POINTER anytype CONFORM;

OUT last_locked _address : POINTER anytype CONFORM:;
) RETURNS STATUS;

DESCRIPTION The lock pages in working set service locks a page or range of pages in
a process’s working set. The specified virtual pages are forced into the
working set.

ARGUMENTS starting _address
Supplies the starting virtual address of the range to be locked into the

working set.

ending_address
Supplies the ending virtual address of the the range to be locked into the
working set. -

last _locked_address

Returns the last address which was actually locked in the working set.

RETURN . | | —
status$_norma normal, successful completion.

VALUES) , .
status$_complete_range_ warning, at least one page was locked in the working
not_lock set.
status$_working_set_full error, no more pages may be locked in the working

set.
status$_invalid_address error, either the starting or ending address is not
accessable.

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$map_section

os$map_section

(

OUT mapping_id : e$object _id;

IN object_parameters : e$object parameters = DEFAULT;

IN section_id : e$object_id;

IN desired_beginning_address : POINTER anytype CONFORM
OPTIONAL;

IN desired_ending_address : POINTER anytype CONFORM OPTIONAL;
IN protection : e$page_protection OPTIONAL;

IN identification_match : integer OPTIONAL;

IN byte_offset : integer [0..] OPTIONAL;

OUT actual_beginning_address : POINTER anytype CONFORM;
OUT actual_ending_address : POINTER anytype CONFORM;

) RETURNS status;

DESCRIPTION This routine maps a previously created section into the process’s address
space.

ARGUMENTS mapping_id
Returned object ID of the mapping object which describes the memory
section.

object_parameters

Supplies the object container in which the object is inserted, the name of
the object, and the access control list (ACL) of the object. If this argument
is not supplied or if it is supplied but not all values in the object parameter
record are supplied, the service applies default values. The default object
container is the process private container, the default name is none, and
the default ACL is none. ‘

section_id
Supplies the object ID of previously created section.

desired_beginning _address

Supplies the beginning address of the range to map the section into. The
range must not currently have any valid addresses. The actual mapping
occurs on a 64K bytes boundary.

desired_ending_address
Supplies the ending address of the range to map the section into.

protection
Supplies the desired protection to apply to the newly created pages,
optional.

8-13

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$map_section

identification_match
Supplies the id to match, optional.

byte offset
Supplies the offset into the section to beginning mapping, optional.

actual_beginning_address

Returns the actual beginning address of the created range.

actual_ending_address
Returns the actual ending address of the created range.

RETURN tatus$ I | ful leti
status$_norma normal, successful completion.
VALUES o , : , ,
status$_invalid_address error, either the starting or ending address is not
accessable.
status$_mapping_conflict error, the specified address range contains pages
which are already mapped.
status$_invalid_map_ error, the specified container for the mapping object
container was not the default private container.
others any cbject error in creating an object.

8-14

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$set_protection_on_pages

os$set_protection_on_pages

(.
IN starting _address : POINTER anytype CONFORM:;

IN ending_address : POINTER anytype CONFORM;

IN page_protection : e$page_protection;

OUT last_changed_address : POINTER anytype CONFORM;
OUT previous_page_protection : e$page_protection OPTIONAL;
) RETURNS status;)

DESCRIPTION The Set Protection on Pages system service allows a thread to change the
protection on a page or range of pages.

ARGUMENTS starting_address

Supplies the starting virtual address of the range to have its protection
modified.

ending_address
Supplies the ending virtual address of the the range to have its protection
modified.

page_protection

Supplies the page protection to assign to the pages within the specified
address range. The page protection is a set with the following members.
Note that write implies read and for user access, kernel access is always
set to be identical. Also, user execute or kernel execute implies the other.

protection code protection
e$c_page_user_read user read access.
e$c_page_user_write user write,read access.
e$c_page_user_execute user execute access.
e$c_page_kernel_read kernel read access.
e$c_page_kernel_write kernel write access.
e$c_page_kernel_execute kernel exscute access.

last_changed_address
Returns the last address which the protection was actually changed.

previous_page protection
Optionally returns the previous page protection for the first page which
the protection was actually changed.

8-15

DIGIIAL - Confidential and Proprietary - Restricted Distribution
os$set_protection_on_pages

RETURN
VALUES

status$_narmal normal, sucessful completion.

status$_partial_range_done warning, unable to change the protection on the
complete range do to nonexistant pages.

status$_invalid_argument error, unable to access or iterpret argument.
status$_invalid_protection error, protection set contains invalid members.
status$_page_owner_ error, attempt to change kernel protection on kernel
violation owned pages.

8-16

UIGIHIAL - Contidential and Proprietary - Restricted Distribution
os$unlock_pages_from_memory

os$unlock_pages_from_memory

(.
IN starting_address : POINTER anytype CONFORM;

IN ending_address : POINTER anytype CONFORM:;
OUT last_unlocked_address : POINTER anytype CONFORM,;
) RETURNS STATUS; '

DESCR]PT]ON The unlock pages from memory service unlocks a page or range of pages
from memory. The specified virtual pages are unlocked from memory and
become eligible for replacement.

ARGUMENTS starting_address
Supplies the starting virtual address of the range to be unlocked from
memory.

ending _address
Supplies the ending virtual address of the the range to be unlocked from
memory.

last_locked_address

Returns the last address which was actually unlocked from memory.

RETURN s$ | al ful leti
status$_norma normal, successful completion.
VALUES :
status$_complete_range_ warning, at least one page was unlocked from
not_lock memory.
status$_invalid_address error, either the. starting or ending address is not
accessable.

8-17

UiGl 1AL - conriaential ana rroprietary - Kestricted Distribution
os$unlock_pages_working_set

os$unlock_pages working set

(‘
IN starting_address : POINTER anytype CONFORM;

IN ending_address : POINTER anytype CONFORM;
OUT last_unlocked_address : POINTER anytype CONFORM;
) RETURNS STATUS;

DESCR]PT]ON The unlock pages from working set service unlocks a page or range
of pages from a process’s working set. The specified virtual pages are
unlocked from the working set and become eligible for replacement.

ARGUMENTS starting_address
Supplies the starting virtual address of the range to be unlocked from the
working set.

ending _address
Supplies the ending virtual address of the the range to be unlocked from
the working set.

last_locked_address

Returns the last address which was actually unlocked from the working

set.

RETURN tatus$ | | ful leti
status$_norma normal, successful campletion.

VALUES : ,
status$_complete_range_ warning, at least one page was unlocked in the
not_lock working set.
status$_invalid_address errar, either the starting or ending address is not

accessable.

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$update_mapped_section

os$update_mapped_section

(

IN mapping_id : e$object_id;

IN desired_beginning_address : POINTER anytype CONFORM:;
IN desired_ending_address : POINTER anytype CONFORM

IN flags : e$section_update flags;

IN event_id : e$object_id OPTIONAL;

IN ast_procedure : k$normal_ast _routine OPTIONAL;

 IN ast_parameter : LONGWORD CONFORM OPTIONAL;

BIND io_status_block : e$iosb; |

OUT actual_beginning_address : POINTER anytype CONFORM;
OUT actual_ending _address : POINTER anytype CONFORM,;

) RETURNS STATUS;

DESCRIPTION The Update Mapped Section service writes all modified pages in a mapped
section back into the section file on disk. One or more I/O requests are
queued based on the number of pages that have been modified.

ARGUMENTS mapping_id
Supplies the mapping ID of the mapped section to update.

desired_beginning_address

Optionally supplies the beginning address within the mapping to begin
updating the section. If this argument is not specified, the starting address
of the mapping will be used.

desired_ending_address

Optionally supplies the ending address within the mapping to end
updating the section. If this argument is not specified, the endinng
address of the mapping will be used.

flags
Optionally supplies the update specified for updating the section. More
here later.

event_id
Optionally supplies the object ID of an event object which will be set when
the update operation has completed.

ast_procedure
Optionally supplies the address of an AST procedure which will be called
when the update operation has completed.

ast_parameter
Optionally supples the value which will be supplied to the AST procedure
when called.

8-19

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$update_mapped_section

io_status block
Optionally supplies the I/O status block which will receive the final
completion status of the updating operation.

actual_beginning address _
Optionally returns the actual beginning address of the update operation.

actual_ending address
Optionally returns the actual ending address of the update operation.

RETURN tatus$ I l, sucessful lei
status$_normal normal, sucessful completion.

VALUES - < i "
status$_invalid_address_ error, beginning or ending address was not within the
range mapping as specified by the mapping ID.
object_reference_errars any errors trying to reference an object by id.

8-20

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$zero_to_end of user stack

os$zero to _end of user stack

(
) RETURNS STATUS;

DESCRIPTION The Zero to End of User Stack service zeroes all pages from the current
. stack pointer to the end of the stack. The zeroing is accomplished
by releasing any pages in physical memory or in the paging file and
converting the pages into demand zero pages.

ARGUMENTS None.

RETURN
VALUES status$_normal

normal, successful completion.

9

/0 Systém Services

91

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$cancel_io

os$cancel io

(
IN channel_id : e$object id;

) RETURNS status;

DESCRIPTION This service cancels all outstanding I/O request on the specified channel.
Only the outstanding /O requests that were issued by the calling thread
’ are canceled.

Outstanding I/O requests that are canceled are done so, asynchronously to
the the completion of the this service. That is, completion of this service
cannot be used to synchronize with the cancellation of the I/0 requests.

ARGUMENTS channel_id
Supplies an ID of the channel

RETURN tatus$! ! ful leti
status$_norma normal, successful completion.

VALUES i °
status$_invalid_object_id invalid object id
status$_object_type_ invalid object

mismatch

DIGITAL - Confidential and Proprietary - Restricted Distribution

os$configure_fp

os$configure fp

(

IN fod_id : e$object_id;

IN function_code : integer;

IN user_event : e$object id = DEFAULT;

IN fpd_parameters : POINTER anytype CONFORM = DEFAULT;

) RETURNS status;)

DESCRIPTION This service is used to issue configuration and deconfiguration requests to
a function processor. The function code and the fpd_parameters specifies
the reqgeust type.

The user supplied event object is specified if the caller wants to
synchronized with the completion of the request.

ARGUMENTS fpd_id
Supplies the FPD object ID
function_code
Supplies the configuration function code
user_event
Supplies object id of event to be signalled when done
fpd_parameters
Supplies the FPD configuration parameters.

RETURN _

VALUES status$_normal normal, successful completion
status$_invalid_object_id invalid object id
status$_object_type_ invalid object
mismatch

£

DIGIIAL - Contidential and Proprietary - Restricted Distribution

os$create_channel

os$create_channel

(

OUT channel id :

e$object _id;

IN object_parameters : e$object_parameters;
IN fpu_id : e$object _id;
) RETURNS status;

DESCRIPTION

This service is call to create a channel to an existing FPU object. The
FPU object ID parameter specifies the FPU object to which the channel is
attach.

The object ID of the newly created channel is returned in the channel

id parameter. After the channel object is created it is inserted into the
container specified in the object_parameters record. If there is a duplicate
object currently in the container, the newly created channel object is
deleted, and the object ID of the duplicate object is returned. If a container
object ID is not specified, the channel object is placed in the process private
container.

ARGUMENTS

channel_id

Returns a channel id

object_parameters
Supplies the object architecture create object parameters

fpu_id
Supplies an object id of the FPU object to create a channel to

RETURN
VALUES

£

status$_normal normal, successful completion
status$_invalid_object_id invalid object id

status$_duplicate_object duplicate object found in object container
status$_object_contianer_full object container full

status$_object_type_ invalid object
mismatch

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$create_fpu

os$create fpu

(

OUT fpu_id : e$object_id;

IN object_parameters : e$object_parameters;

IN fod_id : e$object id;

IN fpu_parameters : POINTER anytype CONFORM = DEFAULT;
) RETURNS status;

DESCRIPTION This service creates an FPU object for a function processor. The fpd_id
parameter specifies the function processor for which the FPU object is
created for.

The object ID of the newly created FPU object is returned in the fpu_id
parameter. The object parameters specifies the object name, an ACL for
the FPU object, and the object ID of the container where the FPU object is
to be inserted in.

If a container object ID is not supplied, the FPU object is inserted into the
process private container after it is created. If a duplicate object already
exist in the specified container, the newly created FPU object is deleted,
and the object ID of the duplicate object is returned

ARGUMENTS fpu_id
Return the object id of the created FPU object.

object_paramters
Supplies the object parameters.

fpd_id
Supplies the object id of fpd.

fpu_parameters
Supplies the FPU specific parameters used to initialize the the FPU object.

RETURN _
VALUES status$__‘norm.al . | .norm.al, sn‘Jccessfui completion
status$_invalid_object_id invalid object
status$_duplicate_object duplicate object found in object container
status$_object_container_full abject container full

A EWA B T WWIITHWMGHIUGL AW DIV NLIGIaly = NedUIvicu wvISUuipuuulnl
os$get_channel_information

os$get_channel_information

(
IN channel_id : e$object id;

IN channel_items : POINTER e$/tem list_type = DEFAULT;
) RETURNS status;

DESCRIPTION Returns information about a channel object. The information returned is
i item list driven.

ARGUMENTS channel_id
Supplies channel object ID.

channel_items
Supplies a pointer to an item list.

[tem Codes Data Type Description
io$c_item_channel_access BOOLEAN TRUE, if channel is being access.
jo$c_item_granted_access SET[access_type] Returns the access types that have been granted

on this channel.

RETURN s rorma | svocsssiul comet
status$_norma normal, successful completion
VALUES e o, oo °
status$_invalid_object_id invalid object id
status$_object_type_ invalid object
mismatch

£

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$get_fpu_information

os$get fpu_information

(

IN fou_id : e$object_id;

IN fou_items : POINTER e$itern_list_type = DEFAULT;
) RETURNS status;

DESCRIPTION Returns information about an FPU object. The information returned is
; item list driven.

ARGUMENTS fpu_id
Supplies an FPU object ID.

fpu_items
Supplies a pointer to an item list.
ltem Codes Data Type Description
io$c_item_interface_class INTEGER Returns FPU interface class
io$c_item_fpu_state e$fpu_state FPU current state
io$c_fpu_bound ‘ Integer Returns TRUE if FPU is bound
io$c_jtem_fp_params_area_ Integer Returns size of the FP parameter area needed
size by this function processor and all function
processor below it. The size is returned in
quadwords.

RETURN tatus$ l l sful leti
status$_norma normal, successful completion
VALUES e reme i
status$_invalid_object_id invalid object ID
status$_object type_ invalid object
mismaich

9-7

DIGITAL - Confidential and Proprietary - Restricted Distribution

os$request_io

os$request_io

(

IN channel_id : e$object id;

IN function_code : integer;

BIND iosb : e$iosb;

IN completion_event_id : e$object id = DEFAULT;

IN completion_ast : k$normal _ast _routine = DEFAULT;

IN ast_parameter : POINTER anytype CONFORM = DEFAULT;
IN io_parameters : POINTER anytype CONFORM = DEFAULT;
) RETURNS status;

DESCRIPTION

This service is used to issue an I/O request. Two types of /O request may
be issued, they are:

a. Asynchronous I/O request, and
b. Synchronous I/O request

An I/O request is describe by its function code and I/O parameter record
supplied to this service. The request will fail if the channel or event object
is invalid, the function code or I/O parameters are invalid. The returned
status will contain the cause of failure. No information will be written to
the I/O status block.

An asynchronous I/O request is issued if an event object, AST procedure,
or both are specified in the call. Control is return to the caller after
the request has been successfully posted. When the I/0 completes, the
following events can occur:

a. If an event object was specified, it is signalled.

b. If an AST procedure was specified, the AST is queued to the calling
thread. '

¢. If both event object and a AST procedure is specified, the event is signal
first, then the AST is queued.

In the absents of an event object or an AST procedure, will cause the
request to be synchronous. In the case of a synchronous I/O request, the
calling thread is not allow to continue until the request completes.

The I/O request completion status is returned in the I/O status block.

ARGUMENTS

channel_id
Supplies the object id of channel to request io on

function_code
Supplies an I/O request function code

iosb
Supplies an I/O status block

DIGITAL - Confidential and Proprietary - Restricted Distribution

os$request_io

completion_event_id
Supplies a user event object to be signaled after I/O the completes

completion_ast
Supplies an ast procedure address to be called-when the I/O completes.

ast_parameter
Supplies a parameter for an ast procedure

io_parameters
Supplies a pointer to an I/O parameter record

RETURN
VALUES

status$_normal normal, successful completion
status$_invalid_object_id invalid object_id

status$_wrong_record_type Incorrect /O parameter record for this function code.
status$_object_type_ Invalid object

mismatch

status_wrong_device_class Invalid function code for this device.

Interface class specific status

9-9

vl 1AL = vornligaentual ana rroprietary - Hestrictea uistripution
os$synchronize_with_io

os$synchronize_with_io

(

IN event_id : e$object id;
BIND josb : e$iosb;

) RETURNS status;

DESCRIPTION This service synchronize the calling thread with a currently outstanding
) asynchronous I/O request.

This service can only be use for asynchronous request that contians at
least an event object.

The event object and the IOSB of the previously issued asynchronous I/0
request must be supplied as the parameters to this service.

ARGUMENTS Jjosb
Supplies an I0SB.

event id
" Supplies an event object ID.

RETURN ot o | essossetul comolat
status$_norma normal, successful campletion
VALUES remel roTman S oo P
status$_invalid_object_id invalid object id
status$_object_type_ invalid object
mismatch

9-10

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$synch_channel_with_fpu

os$synch_channel_with_fpu

(
IN channel_id : e$object id;

) RETURNS status;

DESCRIPTION This routines synchronizes the channel with an FPU object. This is done
by copying the sequence number in the FPU object to the channel object.

ARGUMENTS channel_id

Supplies a object id of the channel object to be synchronized.

RETURN tatus$ | [ful |t
status$_norma normal, successful complstion
VALUES remsL o e P
status$_invalid_object_id invalid object id
status$_object_type_ invalid object
mismatch

9-11

1 0 Security System Services

. 10-1

VIGIIAL - Contidential and Proprietary - Restricted Distribution
os$create_impersonation

os$create_impersonation

(

OUT impersonation_id : e$object_id;

IN object_parameters : e$object_parameters = DEFAULT;
IN remote_nodename : string (*);

IN remote_username : string (*);

IN password : string (*) OPTIONAL;

) RETURNS status;

DESCRIPTION The os$create_impersonation service allows user mode servers to create an
impersonation object. The impersonation object can then be used as input
to the os$impersonate_client service to impersonate remote clients.

This service verifies that the remote user is a valid user of the system by
requesting the remote user’s local user authorization record. If a record
exists and the specified password, if any, matches the password in the
authorization record, the user is a valid user of the system. If the user is
a valid user, the service creates the impersonation object representing the
remote user from the remote user’s local user authorization record.

The object_parameters parameter is a record consisting of a name, an
object container ID, and an ACL. This record, and values for these fields,
are optionally provided by the caller. The name field is the name of the
object. If a value is not supplied, the object is created without a name.
The object container ID field identifies the object container into which the
object is inserted, but this field is ignored; the object is inserted into the
process-private container. The ACL field supplies additional protection for
“the object. If a value is not supplied, the object is created without an ACL.

Note: The only server calling this service should be the DFS server.

ARGUMENTS impersonation_id

Returns the object id of the created impersonation object.

object _parameters

Supplies the object’s name, object container, and protection.

remote_nodename
Supplies the name of the remote node.

remote_username
Supplies the name of the remote user.

password
Supplies the password specified by the remote user.

DIGIHIAL - Confidential and Proprietary - Restricted Distribution

os$create_impersonation

RETURN
VALUES

status$_normal
status$_duplicate_object
status$_object_container_full
status$_invalid_user

status$_invalid_password

normal, successful completion.
duplicate object found in object container.
object container full. .

the specified user is not authorized to access the
system.

the specified password was not valid.

10-3

wvial 1AL - Lonrnaentail ana rroprietary - Hestricted Distribution
os$create_priv_operation

os$create_priv_operation

(

OUT privileged_operation_id : e$object_id;

IN object_parameters : e$object_parameters = DEFAULT;
) RETURNS status;

DESCRIPTION The os$create_priv_operation creates a privileged operation object. A
privileged operation object represents a privileged operation. This object
allows software that performs a privileged operation, to determine if a
user can perform the privileged operation. If the user has PERFORM_
OPERATION access to the privileged operation object, the user is allowed
to perform the privileged operation.

Software can have multiple privileged operation objects; the name of each
privileged operation object denotes the privileged operation.

The object_parameters parameter is a record consisting of a name, an
object container ID, and an ACL. This record, and values for these fields,
are optionally provided by the caller. The name field is the name of the
object. A value must be supplied because it specifies the name of the
privileged operation. The object container ID field identifies the object
container into which the object is inserted, but this field is ignored; the
object is inserted into the exec$privileged_operation_container system-level
container. The ACL field supplies additional protection for the object. If a
value is not supplied, the object is created without an ACL.

ARGUMENTS privileged_operation_id

Returns the object id of the created privileged operation object.
object _parameters

Supplies the object’s name, object container, and protection.

RETURN tatus$ | | ful leti
status$_norma normal, successful completion.

VALUES e N Ao .
status$_duplicate_object duplicate object found in object container.
status$_object_container_full object container full.

vl 1AL - Lontiaential and Proprietary - Restricted Distribution
os$delete_access_control_list

os$delete _access control list

(
IN object _id : e$object id;
) RETURNS status;

DESCRIPTION The os$delete_access_control_list services deletes the specified object’s
access control list.

ARGUMENTS object id
Supplies the object id of the object whose ACL is deleted.

RETURN
VALUES

status$_normal normal, successful completion.

status$_invalid_object_id invalid object id.

— s em— - esswms wmrsw= = s WA swRwan y B RwAarkE IW LW AL EWULINEE

os$disable_identifier

os$disable identifier

o
IN identifier : e$identifier;
) RETURNS status;

DESCRIPTION The os$enable_identifier service disables an identifier in the caller’s user
identifier list. After the identifier is disabled, it is not used by the system
when determining access to objects.

The caller must hold the specified identifier before it can be disabled.
The identifier must have the dynamic attribute in order to be disabled.

ARGUMENTS identifier
Supplies the identifier to disable.

RETURN tatus$ I I ful leti
status$_norma normal, successful completion.

VALUES g o P o
status$_identifier_not_found the identifier was not found in the user identifier list.
status$_ident_already_ the identifier was already disabled.
disabled ’
status$_identifier_not_ the identifier does not have the dynamic attribute.
dynamic

VIGIIAL - Contidential and Proprietary - Restricted Distribution
os$enable_identifier

os$enable identifier

(

IN identifier : e$identifier;
) RETURNS status;

DESCRIPTION The os$enable_identifier service enables an identifier in the caller’s user
" identifier list. After the identifier is enabled it is used by the system when
determining access to objects.

The caller must hold the specified identifier before it can be enabled.
The identifier must have the dynamic attribute in order to be enabled.

ARGUMENTS identifier
Supplies the identifier to enable.

RETURN tatus$ I | ful leti
status$_norma normal, successful completion.

VALUES o e Pee o
status$_identifier_not_found the identifier was not found in the user identifier list.
status$_ident_already_ the identifier was already enabled.
enabled '
status$_identifier_not_ the identifier does not have the dynamic attribute.
dynamic

10-7

DIGIIAL - Confidential and Proprietary - Restricted Distribution
os$get_access_control_list

os$get_access control_list

(

IN object_id : e$object id;
IN acl : POINTER e$access _control_list;
) RETURNS status;

DESCRIPTION

The os$get_access_control_list service returns the specified object’s access
control list.

When the service is called, it copies the object’s ACL into the ACL pointed
to by the ACL parameter. The memory specified by the ACL parameter is
managed by the caller and must be large enough to hold the object’s ACL.
If the ACL is not large enough, the service copies as many entries as the
ACL can hold and returns an error status.

ARGUMENTS

object_id A
Supplies the object id of the object whose ACL is returned.

acl
Supplies a pointer to the ACL into-which a copy of the object’s ACL is
written. The memory containing the ACL is managed by the caller.

RETURN
VALUES

status$_normal normal, successful completion.
status$_invalid_object_id invalid object id.

status$_acl_length_too_small the size of the specified ACL was not large enough
to hold the object’'s ACL.

vial 1AL - Lonnaenual ana rroprietary - Hestricted Distribution
os$get_security_monitor

os$get_security_monitor

(

OUT security_events_enabled : SET e$security_event|..];
) RETURNS status;

DESCRIPTION The os$get_security_monitor service returns a summary of the security
events that are being monitored.

ARGUMENTS security_events_enabled

Returns the summary of security events that are being monitored.

RETURN
VALUES

status$_normal normal, successful completion.

10-9

WAL IAL = wulHIdCHIUal aliu rigpliclaly = nesticieud wvisitrnouuon
os$impersonate_client

os$impersonate_client

(

IN impersonation_id : e$object_id;
IN identifier_option : e$imp_identifier_option;
) RETURNS status;

DESCRIPTION

The os$impersonate_client service allows a server to impersonate a client.
A server can restore its own identity by calling the os$restore_server
service.

The only context of a client that can be impersonated are the identifiers
held by the client. The server can specify to the service how to
impersonate the client’s identifiers. If the server wants to impersonate the
client only, the service sets the caller’s identifier list to the list contained
in the impersonation object. If the server wants to impersonate the union
of the client and the server, the service allocates pool, combines the caller’s
identifier list and the identifier list in the impersonation object and saves
the resultant list in the pool, and sets the caller’s identifier list to the list
contained in the pool.

Before the service performs the impersonation, it restores the caller’s
previous identifier list. This allows the caller to impersonate multiple
clients in succession without having to make an explicit call to the
os$restore_server service.

When a server impersonates a client, the server can access objects as if it
were the client.

ARGUMENTS

impersonation_id
Supplies the object id of the impersonation object.

identifier_option

Supplies how the service performs the impersonation. If e$c_client_
identifiers value is specified, the service sets the server’s identifiers to the
client’s identifiers in the impersonation object. If the e$c_union_identifiers
value is specified, the service combines the server’s identifiers with the
client’s identifiers in the impersonation object.

RETURN
VALUES

10-10

status$_normal normal, successful completion.
status$_invalid_object_id invalid object id.

status$_object_type_ the object identified by the imersonation id is not an
mismatch impersonation object. :

UIGIHIAL - Contidential and Proprietary - Restricted Distribution
os$restore__server

os$restore server

(

H

N—

DESCRIPTION The os$restore_server service restores a server’s original identifier list.
is service is used by servers that call the os$impersonate_client service
to impersonate clients.

ARGUMENTS None.

RETURN
VALUES

None.

10-11

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$set_access_control_list

os$set_access control_list

(

IN object _id : e$object id;

IN acl : POINTER e$access _control_list;
) RETURNS status;

DESCRIPTION The os$set_access_control_list sets the specified object’s access control list.

The memory specified by the ACL parameter is managed by the caller.
When the service is called, it allocates pool and copies the contents of the
specified ACL into the pool.

ARGUMENTS object _id
Supplies the object id of the object whose ACL is set.

acl
Supplies a pointer to the ACL from which the ACL on the object is set.
The memory containing the ACL is managed by the caller.

RETURN ‘

VALUES status$_.norm'al ' | 'norm‘al, SL.JCCGISSfUI completion.
status$_invalid_object_id invalid object id.
status$_invalid_acl invalid ACL.
status$_invalid_ace invalid ACE.

10-12

DIGITAL - Confidential and Proprietary - Restricted Distribution
os$set_security_monitor

os$set_security_monitor

(

IN security_events_enabled : SET e$security_event][..];
IN security _events_disabled : SET e$security_event]|..];
) RETURNS status;

DESCRIPTION The os$set_security_monitor enables or disables the monitoring of security
events.

ARGUMENTS security _events_enabled

Supplies the summary of security events indicating the security events to
start monitoring.

security_events_disabled
Supplies the summary of security events indicating the security events to
stop monitoring.

RETURN
VALUES

status$_normal ' normal, successful completion.

10-13

viGal 1AL = vonnaenudal ana rroprietary - Hestrictea wistripution
os$translate_access_type

os$translate_access type

(

IN access_type : e$access_type;

IN object_type name : string (*) OPTIONAL;
OUT access_type name : string (*);

) RETURNS status;

DESCRIPTION

The os$translate_access_type service translates an access type to its
corresponding access type name.

The access type can be either a general or specific access type. If the
access type is a general access type, the caller does not have to specify the
object_type_name parameter. If the access type is a specific access type,
the caller must specify the object_type_name parameter. The object type
name denotes the object type that defined the specific access type.

The service performs a case sensitive search to match the object type
name,

ARGUMENTS access_lype
Supplies the access type to translate.
object_type_name
Supplies the object type name of the object type that defined the specific
access type.
access___type__name
Returns the access type name corresponding to the access type.
RETURN e o N
statusd_norma normai, successiul compietion.
VALUES status$_invalid_access_type invalid access type.

10-14

status$_invalid_name_length length of the abject type name was not valid.

status$_invalid_object_type invalid object type specified by the object type name.

UIGIIAL - ConTtidential and Proprietary - Restricted Distribution

os$translate_access_type name

os$translate_access type name

(

IN access_type _name : string (*);

IN object _type name : string (*) OPTIONAL;
OUT access_type : e$access_type;

) RETURNS status;

DESCRIPTION

The os$translate_access_type_name service translates an access type name
to its corresponding access type.

The access type name can correspond to either a general or specific access
type. If the access type name corresponds to a general access type, the
caller does not have to specify the object_type_name parameter. If the
access type name corresponds to a specific access type, the caller must
specify the object_type_name parameter. The object type name denotes the
object type that defined the specific access type.

The service performs a case sensitive search to match the access type
name and object type name.

ARGUMENTS access _type name.
' * Supplies the access type name to translate.
object_type name
Supplies the object type name of the object type that defined the specific
access type.
access__type
Returns the access type corresponding to the access type name.
RETURN ,
VALUES status$_normal normal, successful completion.

status$_invalid_name_length length of the access type name or the object type
name was not valid.

status$_invalid_access_type invalid access type specified by the access type
name.

status$_invalid_object_type invalid object type specified by the object type name.

10-15

— e n o m— — wrssreew A ALIMAE Wi R WM IWLMEL Y VDU IWITW WD IMULIVE

os$verify_priv_operation

os$verify_priv_operation

(
IN privileged_operation_id : e$object_id;
) RETURNS status;

DESCRIPTION The os$verify_priv_operation allows software to determine if a user can
perform the privileged operation represented by the specified privileged
operation object. If the user has PERFORM_QOPERATION access to the
privileged operation object, the user is allowed to perform the privieged
operation.

ARGUMENTS privileged operation_id
Supplies the object id of the privileged operation object.

RETURN S N
status$_norma normal, successful completion.
VALUES o L
status$_invalid_object_id invalid object id.
status$_object_type_ the object identified by the privileged operation id is
mismatch not a privileged operation object.

10-16

11 Condition and Exit Handling System Services

11-1

MInI MR T WwuHIDUGIHHUAI alivg rivpliewaly = nestrciea visuipution
osS$create_condition_stack

‘os$create_condition_stack

(

IN condition_stack_size : integer/0..];
) RETURNS status;

DESCRIPTION This system service creates a condition stack of the specified size. If a
condition stack already exists, then a new stack is not created and an
error status is returned. The stacks size is based on the requested size
parameter and is always rounded up two a system defined value. A single
guard page is placed at the top of the stack.

ARGUMENTS condition_stack size
Supplies the size in bytes for the condition stack being created. This value
is always rounded up toc an appropriate granularity.

RETURN
VALUES

status$_normal Normal succesful completion of the system service

status$_no_user_stack va The condition stack was not created because no
: virtual address space in the stack region could be
found large to staisfy the request.

status$_condition_stack_ A new condition stack was not created since a
exists condition stack already exists.

11-2

mivaIme T wUHHUGIHIUG aliu rIvpiisialy = nesuiciea visitripuuon
os$create_last_chance_handler

os$create last chance_ handler

(

IN condition_handler : e$condition_handler;
OUT handler_id : e$condition_handler_id;

) RETURNS status;

DESCRIPTION This system service creates a last chance vectored condition handler. Last
: chance vectored condition handlers are processed in LIFO order during
condition delivery. This service places the created last chance handler at
the beginning of the last chance vectored condition handler list stored in
the calling threads TCR. The service returns a resulting handler_id which
may be used to delete a last chance vectored condition handler once it has
been created.

The condition handler is linked on the list head in the calling threads TCR
indexed by the processor mode that the call was made in.

e e e
ARGUMENTS condition_handler

Supplies the condition handler routine to be invoked when a condition is
being dispatched.

handler_id
Returns the handler ID of the created last chance handler. This argument
is only valid if the service returns status$_normal.

50
RETURN
VALUES

status$_normal the service completed without errors

status$_access_violation a specified parameter is not accessible

11-3

WINAI /MR T WwWIHHIUGHIUAL allu Fivpiicialy = nedllivieu wisLUipulivi
os$create_primary handler

os$create_primary handler

(

IN condition_handler : e$condition_handler;
OUT handler_id : e$condition_handler_id;
) RETURNS status;

DESCRIPTION

This system service creates a primary vectored condition handler. Primary
vectored condition handlers are processed in FIFO order during condition

delivery. This service places the created primary handler at the end of the
primary vectored condition handler list stored in the calling threads TCR.

The service returns a resulting handler_id which may be used to delete a

primary vectored condition handler once it has been created.

The condition handler is linked on the list head in the calling threads TCR
indexed by the processor mode that the call was made in.

ARGUMENTS

condition_handler

Supplies the condition handler routine to be invoked when a condition is
being dispatched.

handler_id
Returns the handler ID of the created primary handler. This argument is
only valid if the service returns status$_normal.

RETURN
VALUES

114

status$_normal the service completed without errors

status$_access_violation a specified parameter is not accessible

viulIAL - Lonrigentual ana rroprietary - Hestricted Distribution
os$delete_last_chance_handler

os$delete last chance handler

(
IN handler_id : e$condition_handler_id;

) RETURNS status;

DESCRIPTION This service deletes an existing last chance vectored condition handler.
Once deleted, the condition handler will not be called during exception
dispatching.)

The condition handler is deleted from the list head in the calling threads
TCR indexed by the processor mode that the call was made in.

ARGUMENTS handler_id

Supplies the handler id of the last chance vectored condition handler
which is to be deleted.

RETURN tatus$ | th i leted without
statuse_norma e service compiletea without errars

VALUES o P ° 3
status$_condition_handler_ the last chance vectored condition handler specified
not_found by handler_id was not found.

11-5

os$delete_primary_handler

os$delete_primary_handler

(
IN handler_id : e$condition_handler_id;

) RETURNS status;

DESCRIPTION This service deletes an existing primary vectored condition handler.
) Once deleted, the condition handler will not be called during exception
dispatching.
The condition handler is deleted from the list head in the calling threads
TCR indexed by the processor mode that the call was made in.

ARGUMENTS handler_id

Supplies the handler id of the primary vectored condition handler which is
to be deleted.

RETURN tatus$ | th i leted without
status$_norma e service completed without errors

VALUES ~nerma , i ° ;
status$_condition_handler_ the primary vectored condition handler specified by.
not_found handler_id was not found.

1 2 | Miscellaneous System Services

12-1

EAAGARL 1/ ke — WAWIIIIWIWIILIMAT Sasiwe & e e——y . me - - -

os$get_performance_info

os$get_performance_info

(
IN data_list: POINTER e$item_list_type;

IN component_list: POINTER e$item_list_type = NIL;
) RETURNS status;

DESCRIPTION Return requested information about the usage of Mica system resources.

ARGUMENTS data list

Supplies the address of an item list which describes the data items to be
gathered.

component_list

Supplies the address of the data_list item list. If the data_list specifies
data items for a component class, this list specifies the components for
which data is to be gathered. If the component item list is not specified, or
does not include any components of the requested type, then information
is returned for all components of the requested type. If the component_list
includes component types for which data is not requested, those component
types are ignored.

RETURN
VALUES

status$_normal All data was gathered (success)

status$_no_xxx_component A specified compaonent of type xxx is missing from
the system. Data was returned for all other specified
components of that type. (success)

status$_xxx_buffer_overflow The data buffer for item xxx was not large enough to
hold the requested data (failure)

status$_access_violation The service cannot access the locations specified by
one or mare items (failure)

Ilww il IwWiwed WIDWIMWULIVIE

os$get_system_information

T w e sw LAy

os$get_system_information

N
IN system_get_items : POINTER e$item_list_type;

) RETURNS STATUS;

DESCRIPTION The Get System Information system services returns information about
the current system.

ARGUMENTS system_get _items
Supplies the item list which specifies the information about the system to
return. The following codes are valid:

item code action

e$c_syi_boottime
e$c_syi_cpu_type
e$c_syi_software_version
e$c_syi_number_pagefilgé
e$c_syi_pagefile_free
e$c_syi_pagefile_used
e$c_number_of scalar_cpus
e$c_number_of vector_cpus
e$c_memory_size
e$c_free_page_list_size
e$c_zeroed_page_list_size
e$c_modified_page_list_size
e$c_standby page_list_size

e$c_bad_page_list_size

Returns the time when the
system was booted.
Returns the CPU processor
type. '
Returns the current version
of the operating system.

Returns the current number
of pagefiles installed.

Returns the total number of
free pages in all pagefiles.

Returns the total number of
used pages in all pagefiles.
Returns the total number of
scalar processors.

Returns the total number of
vector processors.

Returns the amount of
memory on the system.

Returns the size of the free
page list.

Returns the size of the
zeroced page list.

Returns the size of the
modited page list.

Returns the size of the
standby page list.

Returns the size of the bad
page list.

RETURN
VALUES

— e e - m—— bR EEE b A ELTL THE TR LR 4 AR AL L J B AWAILE EW LWl iRl WLV

os$get_system_information

status$_normal Normal,successful completion.

stauts$_invalid_item_code error, invalid item code found.

124

[e R LA RLTL THE TR N NE 4 AL 4l 1E R IwwiLl WL W WMIDLWU IWNULIVIEL

os$get_system_time

os$get_system_time

(

OUT system_time : e$binary absolute time;
) RETURNS STATUS;

DESCRIPTION The Get System Time service returns the current time in ISO time format.

ARGUMENTS system_time

Returns the current time.

RETURN
VALUES

status$_normal Success, normal completion.

status$_invalid_argument Error, cannot access argument.

12-5

wiva AL - wuLnIUGHUALD allu FTopriewdry - nestrictea vistribution
os$get_uid

os$get uid
(

IN desired_number : integer [1..] = 1;

QU first_uid : e$uid;

OUT number_allocated : integer [0..] OPTIONAL;
) RETURNS STATUS;

DESCRIPTION The Get UID (Unique Identifier) service returns a UID for use in various
components of the Digital Network Architecture.

ARGUMENTS desired_number
Optionally supplies the desired number of UIDs to allocate. This allows
a single call to reserve a group of UIDs for usage. If this argument is not
supplied an allocation group of one is returned.

first_uid
Returns the first unique identifier in the allocated group.

number_allocated
Returns the number of UIDs reserved.

RETURN tatus$ I S | leti
status$_norma uccess, normal completion.
VALUES o
status$_invalid_argument Error, cannot access argument.
status$_not_all_created Warning, the desired number of UIDs could not be
created.

TR aT™ WMV IILML WM L IVMIIGLIEL Y T IITILHIVITW WwIDU IVULIVEH

osSinstall_page_file

osSinstall_page_file

(
IN page_file_name : string (*);
) RETURNS STATUS;

DESCRIPTION The Install Page File service installs the specified file as a paging file. The
specified file must already exist and not be currently accessed.

ARGUMENTS page file_name
Supplies the file name of the specifed page file to install.

RETURN
VALUES

status$_normal Normal, sucessful completion.

file_access_errors whatever.

e e mr r— m = = e e mE o w=w R

os$next_uid

os$next_uid

(

IN previous_uid : e$uid;
QUT next_uid : e$uid;

) RETURNS STATUS;

DESCRIPTION The Next UID (Unique Identlﬁer) service returns a the next UID in a
. created UID range.

ARGUMENTS previous uid
Supplies the previous UID in the range which was returned.

next_uid
Returns the next UID.

RETURN
VALUES status$_normal

status$_invalid_uid ‘ Error, the value for the UID was not a valid UID.

Success, normal completion.

—— s - I IIIMwI LM GiTW VNI Y T NEILIvIeu MIDUIVUUIVIL
os$set_system_time

os$set system time

(

IN system_time : e$binary_absolute_time;
) RETURNS STATUS;

DESCRIPTION The Set System Time service changes the value of the system time.

ARGUMENTS system_time

Supplies the new time value for the system time.

RETURN s | s | comolet
status$_norma uccess, normal completion.
VALUES o
status$_invalid_argument Error, cannot access argument.
status$_no_rights ‘ Error, the thread does not have the proper identifier

to change the system time.

A Executive Constants and Data Types

A.1 Executive Constants

!

! Executive Defined Constants
' .

io$c_deaccess = -1; ! (eSrequest_io,efexecute_io, e$synchronous_io)
io$c_fpu‘accéss = =2; ! (eSrequest_io)

io$c_get_fpu_information = =3; ! (eSrequest_io)
io$c_get~channel_infcrmation = -4 ! (eSrequest_io)
io$c_establish_pallback = =5; ! (eSsynchronous_io_call)
io$c_enable state change_ast = -6; ! (e$request_io, e$synchronous_ioc_call)
io$c_disable state_change_ast = -7; ! (eSrequest_io, e$synchronous_io_call)
io$c_item interface class = -1;

io$c_item_£pu_state = =2;

io$c_item_fpu_bound = =3;

io$c_item_fp_params“area_size = -4;

io$c_item channel access = -1;

io$c_item_granted_access = =2;

io$c_access_request_io : e$access_type = e$c_specific access_l;
io$c_access_get_chn_info : efaccess_type = efc_specific_access_2;
io$c_access _management : e$access_type = e$c_specific access_l;
io$c_access_maintenance : ef$access_type = ef$c_specific_access_ 2;
io$c_access performance : e$access_type = e$c_specific access_3;
io$c_access_diagnostic : e$access_type = e$c_specific access_4;
io$c_access_allow_channel : efaccess_type = ef$c_specific_access_5;
io$c_access_get_fpu_info : efaccess type = efc_specific_access_§;
io$c_access_accounting : e$access_type = efc_specific access_7;
io$c_access_access : e$access_ﬁype = ef$c_specific_access 8;
io$c_access_fpu _read : efaccess_type = efc_specific_access_9;
io$c_access_fpu write : eSaccess_type = efc_specific_access_10;
e$c_ps_max_string = 32767;

e$c_max_image name = 256;

e$c_max name = 255;

e$c_max eqgvnam count = 128;

obj$c_max_object_name = 127; !'# This should be 255.

eSc _max ace count = 255;

e$c_max_user_pame = 32;

k$c_high_priority_level = 63;

k$c~high_processor_number = 31;

e$c_max_ace_identifier_count = 63;

e$c_max_audit_name = 246; ! Specified by ACL Architecture.

A.2 Miscellaneous Data Types

! Misceleneous Data Types
!

UL RS R W W W W IIMLMLILWD Wil dUla YOO

e$binary absolute_time RECORD

utc_value large_integer;
inaccuracy integer [0..] SIZE (BIT,32);
reserved integer [0..2*%*16 - 1] SI2E (BIT,16);
tdf integer [-720.. 780] SIZE (BIT,12);
version integer [0..2**4 - 1] SIZE (BIT,4);
LAYOUT

utc_value;

inaccuracy;

reserved;

tdf;

version;

END LAYOUT;
END RECORD;

! Unique Identifier Format
!

e$uid : RECORD
first_quadword
second _quadword
END RECORD;

large_integer;
large_integer;

! Common Item List Format
!

eSitem list_type(ilv_max entries
CAPTURE ilv_max_entries;

integer) RECORD

111*%% gi] limitation should be 48 bits
t11*x*% gjl limitation...

! max size number of entries
! index of last valid entry
I direction of entire item list

ilv_last_inuse_entry integer;
ilv_direction e$item_list_direction;
ilv list ARRAY[1..ilv_max_entries] OF efitem list_entry;

END RECORD;

(e$c_item list in_out,
e$c_item_list~in,
e$c_item_list_out

)i

efitem list direction

! An Item List Consists of an array of item list entries

efitem list entry RECORD
ile item code : integer;
ile_item_ length integer;

ile item_ address POINTER anytype;
ile_return_length_address POINTER integer;
LAYOUT
ile_item code ;
ile_item length ;
ile_item_address ;
ile_return_length_address ;
END LAYOUT; ,
END RECORD;

!

! Common Linked List Entry/Header
!

eSlinked_list RECORD
1_flink POINTER e$linked list;
1 blink POINTER e$linked list;

END RECORD;

t

! Wait Type
t

internal format of an item code
internal format of an item length
item address

address of return length

Executive Constants and Data Types

eSwait_ﬁype H {
e$c_wait_any,
e$c_wait_all
) ,
k$processor~mode : (k$c_kernel, k$c_user);
!
! AST Procedure Format
1

k$normal_§st_rcutine

PROCEDURE (
IN context : POINTER anytype CONFORM;
IN system value : quadword CONFORM;

)i

A3 1/0 Data Types
i I/0 Status Block

e$iosb : RECORD

condition _value : longword; ! I/O status
byte_count : longword; ! I/0 transfer count
fp_condition : quadword; ! Filled in by the FP.

END RECORD;

e$fpu_state : (io$c_fpu~state-pffline, io$c_fpu_state_available,
io$c_fpu state online, io$c_fpu state_transition,
io$c_fpu_ state_maintenance);

A.4 Logical Name Data Types

e$logical name_list (length : integer [1..]) : RECORD
CAPTURE length;
last_valid entry : integer;
context : large integer;
logical name : ARRAY [l..length] OF varying string (e$c_max_name);
LAYOUT :
length;
last_valid_entry;
context;
logical name;
END LAYOUT;
END RECORD;

e$equivalence_name_list(length : integer [1..e$c_max_eqvnam_count]) : RECORD
CAPTURE length;
last_valid_entry : integer;
context : large integer;
equivalence_pame—: ARRAY [1l..length] OF varying string (e$c_max_name);
LAYOUT
length;
last_valid entry;
context;

equivalence name;
END LAYOUT;
END RECORD;

e$lognam_attributes : (
escaconfine_;ognam_attr,
e$c_noalias_}ognam_attr,
e$c_noshow_lognam_attr

):

A-3

——rw . W W W W W AW AWER IR WA IV e WA LS

sy

\.5

Memory Management Data Types

e$page_protections : (
e$c_page_user read,
eSc_page_user write,
efc_page user_ execute,
eSc_page_kernel read,
e$c_page_kernel write,
e$c_page_kernel execute);

e$mapping_type (e$c_data map, e$c_image_map);

e$page protection SET e$page_protections [..];

e$section_update_flags integer; !!!*** fix this

A.6

A-4

Process Architecture Data Types

Process Accounting Summary

)
!
!
! The final accounting record contains this information in
!
!

eSaccounting summary RECORD

acct_total page_ faults integer;

acct_hard page_faults integer;
acct_soft_page faults integer;
acct_dzro_page_ faults integer; B
acct_com_page faults integer;
acct_peak_virtual memory integer;
acct*peak_wo;king~set“size integer;

acct_start_time large_integer;

acct_end_time large_integer;

acct_page_file usage integer;

acct_paged pool usage integer;

acct_non_paged_pool_ usage integer;

acct_ppu_and_io e$cpu_and_io_summary;
END RECORD;

Cpu and IO accounting summary

TLV format

in addition to fields identifying the process, image name, user

Total number of page faults

Number of page faults for non resident page
Number of page faults fixed from reclaim 1li
Number of demand zero page faults

Number of copy on modify page faults

Peak virtual memory size

Peak working set size

Start time of process

End time of process

Peak page file usage

Peak paged pool usage

Peak non paged pool usage

CPU and IO accounting summary

and in the process control block. Updates to the pcbhb version requires interlocked

instructions.
using

In the TCB version,
interlocked instructions

RECORD
large_integer;

eScpu_and_io_ summary
cis_cpu_cycles

IO Accounting
Request IO’s are counted once.

by incrementing the counter for its class of FPU

!
1
1
! Each FPU that passes on an IRP (execute io’s) must also record the
1
1

integer;
ARRAY [e$fpu_class] OF integer;

cig_request_ io_count
cis_execute_io_count
END RECORD;

!

! Determines the granularity in the execute io count array
!

1

1

!

! An instance of this record exists in both the thread control block

!

! only the execute io counters will have to be updated
!

1

! Number of cycles used by the process or

transfer

! Number of
! Number of

request io’s
execute io’s per fpu class

eSfpu class : (e$c_fpu_disk,

=ASVUULVYE WUIIDLALIWD allu wdala 1yPed

Disk FPU’s
Tape FPU’s
Terminal FPU’as
Network FPU’s
Generic FPU’s

e$c_fpu tape,
e$c_fpu terminal,
e$c_fpu network,
e$c_fpu generic

)i

!
! Quota and Resource Usage Data Structures
!

efquota_vector : ARRAY[e$quota_types] OF integer;

efquota_usage : e$quota_vector;
e$quota_limits : e$quota_vector;
efquota_types : {

e$c_paging_file quota,

. e$c_Paged_pool_quota,
e$c_nonpaged pool_quota,
e$c_cpu_time_quota

)¢

User Job, Processa, and Thread Creation Records

e$user_record : RECORD
user_username : string(e$c_max_user_name); ! User Name
user_security profile : e$security_profile; ! User Security Profile from Authorization F
user per user limits : e$quota limits; ! Per User Resource Limits
user ser job_limits : eS$quota_limits; ! Per Job Resource Limits
user_per_Process_}imits : e$qucta”limits; ! Per Process Resource Limits
user thread priority : k$combined priority; ! Default Thread Priority
user_ thread affinity : k$affinity; ! Default Thread Affinity
user access_restrictions : e$access_;estrictions; ! Users Access Restrictions

END RECORD;

e$job_record : RECORD

job_class : e$job_class;

!

! Per job Resource limits. This value is used as the

! qual_limits value for the job object, and is deducted

! from the qual usage field of the jobs user object.

! A value of zero() in any one of fields means to use the
! corresponding value of the g per job limit from the

! user structure

!

job_per_ job limits : ef$quota limits;

END RECORD;

e$process_record : RECORD
process_status_object : eS$object_id; ! Object ID of processes status object
process_image name : string(e$c_max image_name); ! Image name for process being created

1

! Per Process Resource limits. This value is used as the

! qual_limits value for the process object, and is deducted
! from the qual usage field of the owning job object.

! A value of zero() in any one of fields means to use the

! corresponding value of the g per process_limit from the

! user structure

1

process_per process_limits : ef$quota_limits; ! Resource limits for this process

END RECORD;

eSthread record : RECORD
thread stack size : integer; ! If all 0 then default
thread:priority : kS$combined priority; ! initial thread priority if all 0 then default
thread affinity : k$affinity; ! complement of affinity If all 0 then all processo

END RECORD;

Misceleneous Thread Creation Parameters

A-5

LB v

efthread entry point PROCEDURE ();
k$affinity SET integer[o..kSc_high_processor_number];
k$combined priority integer[0..k$c high priority level];
k$minor_ priority integer[0..3];
e$job_class (e$c_3jc_invalid,
e$c_jc_network,
esc‘jc_interactive,
e$c_jec_batch,
e$c_jc_rsvdl,
e$c_jc_rsvd2,
e$c_je_rsvd3,
e$c_jc_rsvd4,
eSc_jec_rsvd5
)i
!
! The User Visible Process Control Region
!

e$process_control region RECORD
pcer_image_name string(e$c_max_image_name) ;
pcr_total number of threads integer;
per_number running threads integer;
pcr_object_id eSobject_id;

duplicate of p obj_id

per_protected_data_hd e$linked list;
per_data block POINTER anytype;
per_data_block_length integer;
pcr_exit_bandlers ' e$linked_list;

END RECORD;

process image name
total number of threads for this proces
number of running threads for this proc
process object id -

List head of protexted data
Initial process data or NIL
Length rounded to gquad in bytes of data
process level exit handlers

1]

! The User Visible Thread Control Region
1

e$thread control_region RECORD
tcr_object_id e$object id;) !
ter stack_array ARRAY[0..1] OF e$stack_representation;!
ter current_stack_index integer([0..1]; ! index of current stack
ter_per pointer POINTER e$process_control_region; ! Pointer to process control region
ter_handler_array : ARRAY[k$processor_mode] OF e$vectored handlers; ! vectored handlers for kerne
! user mode
Thread exit handlers User mode only
initial start address of thread

Object ID of this thread
ter stack array

ter_exit_handlers
ter start_address

e$linked list; !
e$thread_§ntry_point; !
!

! Initial Thread Parameters

!

Initial thread data or NIL

A6

tcr_data_block

tcr_data block length

tcr_parameterl
tcr_parameter2
LAYOUT

tcr_object_id;

POINTER anytype;
integer;

POINTER anytype;
POINTER anytype;

tcr_stack_array;

ter current_stack_ index;
tcr_Pcr_pointer;

ter _handler array;

ter exit_handlers;
tcr_start_address;

ter data_block;

ter data _block length;
tcr_parameterl;
tcr_parameter2;

END LAYOUT;

END RECORD;

1
!
!

Thread Environment Block User Mode R3 points to this

Length rounded to quad in bytes
Immediate parameter / or zero()
Immediate parameter / or zero()

eSthread_environment_block RECORD
teb_header e$common_teb_tch_header;

teb_ym_zone integer;
tls_array address POINTER anytype;
tls_array free integer;
LAYOUT
teb_header;
teb_vm_zone;
tls_array_address;
tls_array free;
END LAYOUT;
END RECORD;

!
! Misceleneous TCR Constructs
!

RECORD
e$linked_list;
eSlinked_list;

e$vectored handlers
primary_ handlers
last_chance_ handlers
END RECORD;

e$stack_representaticn RECORD
initial_sp POINTER anytype;
stack limit POINTER anytype;
stack_base POINTER anytype;
END RECORD;

!

! Common TEB,
!

TCB Header, R3 always points

e$common_teb tcb header RECORD
UNION CASE * -
WHEN 1 THEN
teb_length integer;

WHEN 2 THEN
tch_previous_mode
END UNION;
tcr_address
LAYOUT
UNION
OVERLAY
teb_length;
OVERLAY
tcb_previous_mode;
END UNION;
tcraaddress;
END LAYOUT;
END RECORD;

!

! Thread performance data

!

eSthread perf counters RECORD
tpc_kernel ticks integer;
tpc_user ticks integer;
tpc_preemption_switch integer;
tpc_voluntary switch integer;
tpc_quantum ends integer;

END RECORD;

1

! Item Cedes For User, and Thread

Job, Process,

to this

k$processor mode; !

POINTER e$thread control_region; !

Executive constants ana Data Types

common teb/tcb header
thread local vm zone
address of thread local storage control

Initial Value of Conditioen SP
Condition Stack Limit
Condition Stack Base

structure kernel mode, or user mode

! When teb header

! byte length of
! When tcb header
saved previous

firat word is length
teb

processor mode

Pointer to TCR

Services

byte offset of first unused tls control array

first word is previous mode

A-8

efujpt_item codes : (e$c_ujpt_nil code,

‘e$c_job_count,
e$c_job~ids,
e$c_username,
e$c_quota_ usage,
e$c_user_limits,
e$c_job_limits,
e$c_process_limits,
e$c_thread_priority,
e$c_thread_affinity,
e$c_access_restrictions,
e$c_user_id,
e$c_process count,
e$c_process_ids,
e$c_job_class,
e$c_job_id,
e$c_parent_id,
e$c_sub_process_count,
esc_sub_process_ids,
e$c_thread count,
e$c_thread_ids,
e$c_Procesa_accounting,
e$c_pcr_base,
e$c_Protected_data,
e$c_Prccess_id,
e$c_tecr_base,
e$c_thread_accounting,
eSc_thread_Perf_counters,
eS$c_thread mnr _priority,
e$c_thread mjr_priority,
e$c_get_entire_object

):

!

! Exit Status Object Data Types
!

e$status_object_;ypes : { e$c_status_process,
e$c_status_thread);
esexit_status_summary : RECORD
status_bound object_type : eS$status object_types;
status_bound object_id : e$object_id;
status value : status;
status_string pointer : POINTER varying string(e$c_es max_strin

END RECORD;
!

! Get Set information item codes for exit status objects
!

efexit status_item codes : (efc_exit status nil code,
e$c status value,
e$c-status_string,
e$c:§tatus:string_set,
e$c_status_summary
)i
e$exit_handler_id : POINTER anytype;
e$exit_handler_placement H (
e$c_beginning of list,
eSc_end of list

)i

!

!

!
g);

Process or Thread
Object ID of object reporting =
Exit Status

Pointer to exit status strinc

e Tt = e et e—dsw— v e muwn g e

a.7 Object Architecture Data Types

All object creation object service routines take as a
parameter an e$object parameters record. This record

specifies the container that the object is to be created in,
the name of the object, and the acl for the object. Any, or
all fields can be defaulted to zero() in which case the object
service routine chooses an appropriate default value.

e$object_parameters : RECORD
object_container_id : eS$object_id;
name : varying string (obj$c_max_object_name);
acl : POINTER e$access_control_}ist;
END RECORD; - -

Item codes used in the get information services for
object architecture defined objects like object containers,
container directories, and all object headers

eSobject_item code : (
e$c_acl,
e$c_allocation_object_id,
e$c_create_disable,
e$c_level,

' e$c_logical name list,

e$c_mode,
e$c_name,
e$c_nonpaged_pool charge,
eSc_object_container_id,
e$c_object_count,
e$c_object id count,
e$c_object_id_list,
e$c_object_state,
e$c_object_ type name,
e$c_oid_level,
e$c_oid_object container id,
e$c_oid object_id type,
eSc_otd_id,
e$c_owner,
eSc_paged pool charge,
e$c_pointer_count,
e$c_principal object_id,
e$c_waitable
)i

!

! representation of an object id
!

e$object_id : QUADWORD;

!
! This data structure is used whenever a variable length list of object
! ids is required

!

e$object_id list (length : integer [1..]) : RECORD
CAPTURE length;
last_valid entry : integer;
context : large_integer;
object_id : ARRAY [1l..length] OF e$object_id;
LAYOUT
length;
last_yalid_entry;
context;
object id;
END LAYOUT;
END RECORD;

A-9

A.8

Security Related Data Types

e$access_;ontrol_list(ace_count : integer [0..e$c _max_ace_count])

CAPTURE ace_count;

VARIANTS CASE ace_count

WHEN 0 THEN
NOTHING;
WHEN OTHERS THEN

ace : ARRAY (1.

END VARIANTS;
LAYOUT
ace count;
VARIANTS
OVERLAY
reserved
ace;
END VARIANTS;
END LAYOUT;

END RECORD;

e$access_type : {

A-10

e$c~general_acceas_1,
e$c_general access_ 2,
e$c_general access_3,
eSc general access_ 4
elc general access 5
e$c_general_access_6
e$c_general_access_7,
e$c_general~access_8,
e$c_general access_9,
e$c_general access_10,
elc general access 11
e$c_general access_ "12,
e$c_general access_ 13,
e$c_general access_ 14
e$c_general access 15
e$c_general access_| “16,
e$c_general access_ 17
eSc_general access_ 18,
e$c_general_access_19
e$c_general~gccess_20,
eSc_generalgaccess_Zl,
e$c_general_access_22,
e$c_general access_23,
e$c_general~access_24,
e$c_general_access_25,
e$c*general_access_26,
e$c_general_access_27,
e$c_general_access_28,
e$c_general access_ 29,
e$c_general access_30,
e$c_general access_31,
e$c_general_access_32,
e$c_specific_access_1,
e$c_specific_access_2,
e$c_specific_access_3,
e$c_specific_access 4,
e$c_specific _access_5,
e$c_specific_access_6,
e$c_specific_§ccess_7,
e$c_specific_gccess_8,
e$c_specific_access_9,
e$c_specific_access_10,
e$c_ _specific access 11
efc_specific_access_ 12
elc _specific_access 13
elc _specific_access 14
eSc spec1f1c access 15
e$c_specific_access 16
e$c_spec1f1c_access_l7

.ace_count] OF e$access_control_entry;

FILLER (longword,*);

RECORD

eSc_specific access_18,
e$q_specific_access_19,
e$c_specific~access_20,
e$c_specific_access 21,
e$c_specific access_22,
e$c_specific_access~23,
e$c_specific_access_24,
e$c_specific access_25,
e$c_specific_access_26,
eSq_specific_gccess_Z?,
e$c_specific_access_28,
e$c_specific_acceas_29,
e$c_specific_access_30,
e$c_specific~access_§l,
efc_specific_access 32
)

efidentifier : longword;

efimp_identifier option : (
e$c_client_ identifiers,
e$c_union_identifiers

);:

e$security event : (
e$c_acl_audit_security_event

)i

eS$access_ace_ flag : (
e$c_nonterminal_ ace_ flag

):

eSace_flag : (
e$c_default ace_flag,
e$c_nopropagate_ace_flag

)7

eSace_type : (
e$c_access_ace,
e$c_audit_ace

)i

e$audit_ace_flag : (
e$c_success_ace_flag,
e$c_failure_ace_flag,
e$c_alarm ace_flag

)i

e$access_control entry : RECORD
ace_type : eSace_type [..] SIZE (byte);
ace_flags : SET e$ace _flag [..] SIZE (byte);
reserved : byte data (2);
UNION CASE *
WHEN 1 THEN ! Access ACE specific
access_flags : SET e$access_ace_flag [..] SIZE (byte);
access_identifier count : integer [1..e$c_max_ace_identifier count] SIZE (byte);
access_access_allowed : SET e$access_type [..];
acceas:identifier : ARRAY [1l..e$c max_ace_identifier count] OF e$identifier;
WHEN 2 THEN ! Audit ACE specific
audit_flags : SET efaudit_ace_ flag [..] SIZE (byte):
audit_access_monitored : SET e$access_type [..];
audit_name : varying string (e$c max_audit_name);

END UNION;
END RECORD;

A-11

A.9 Condition Handling Data Types

eScondition_record pointer : POINTER e$condition_record;
e$mechanism_record_pcinter : POINTER e$mechanism_record;

e$condition_handler : PROCEDURE (
IN condition_record : e$condition_record pointer;

IN mechanism_record : e$mechanism record pointer;
} RETURNS status;

e$condition_handler id : POINTER anytype;

e$condition_record(argument number : integer [0..]) : RECORD
CAPTURE argument number;
condition_name : status;
conditicn_flags : SET e$condition_flags [..1;
condition_list : e$condition_record_pointer;
processor_status : arch$processor_status;
condition_address : e$instruction pointer;
arguments : ARRAY [1..argument number] OF e$argument descriptor;
LAYOUT

condition_name;

condition_ flags;

condition_list;

processor_status;
condition_address;

unused : FILLER (longword, 1 };
argument number;

arguments;
END LAYOUT;
END RECORD;
e$mechanism_record : RECORD
stack_valid : boclean [..] SIZE (longword);
establisher fp : e$frame_pointer;

UNION CASE *.
WHEN 1 THEN

return_status : status;
WHEN 2 THEN
first return register : archéregister;
secong_retur;_register : arch$register;
END UNION;

LAYOUT
stack_valid;
establisher_fp;
UNION

OVERLAY
return_status;

OVERLAY
first_return_register;
second_return register;

END = UNION;
END LAYOUT;
END RECORD;

e$frame pointer : POINTER anytype;

arch$processor_status : integer; ! dummy definition
arch$register : longword;

e$instruction_pointer : POINTER arch$instruction;
arch$instruction : integer; ! dummy definition

A-12

e$argument_descriptor : RECORD
UNION CASE *
WHEN 1 THEN
extent : integer;
ptr : POINTER anytype;
WHEN 2 THEN

immediate : integer;
WHEN 3 THEN
large_immediate : quadword;

END UNION;
class : integer [0..255] SIZE (byte);
datatype : integer [0..255] SIZE (byte);
size : integer;
LAYOUT
UNION
OVERLAY
extent,
ptrx;
OVERLAY
immediate;
OVERLAY
large_immediate;
END UNION;

class;

sbzl : FILLER (byte,2);
datatype;

size;

END LAYOUT;
END RECORD;

e$condition_ flags : {
esc_condition_pnwinding,
,e$c~condition_noncontinuable,
e$c_condition_exit unwind,
e$c_condition_during_ ast,
e$c_condition_async

)i

A-13

IndeXx

C

Condition handiing data types * A-11

E

Executive constants « A—1

l/O data types * A-3

L

Logical name data types * A-3

M

Memary management data types * A-3
Miscellaneous data types * A—1

O

Object architecture data types « A-8
os$adjust_working_set_[imit » 8-2
os$allocate_object « 1-2
os$cancel_io » 9-2

os$cancel_timer « 6-2
os$clear_event s 4-2
os$configure_fp » 9-3
os$create_address_space * 8-3
os$create_channel « 94
os$create_condition_stack « 11-2
os$create_container » 1-4
os$create_event « 4-3
os$create_exit_handler_process » 7-2
os$create_exit_handler_thread « 7-3

os$create_exit_status «.7—4
os$create_fpu « 9-5
os$create_identifier « 1-5
os$create_impersonation » 10-2
os$create_job « 7-5
os$create_last_chance_handler » 11-3
os$create_logical_name +2-2
os$create_primary handler « 11—4
os$create_priv_oparation * 10—4
os$create_process * 7-8
os$create_reference_id + 1-6
os$create_section« 8—4
os$create_semaphore » 5-2
os$create_thread = 7-11
os$create_timer « 6-3
os$create_user«7-13
os$deallocate_object « 1-7
os$delete_access_control_[ists 10-5
os$delete_address_space * 8-6
os$delete_exit_handler_process + 7-16
os$delete_exit_handler_thread » 7-17
os$delete_last_chance_handler « 11-5
os$delete_logical_name «2-5
os$delete_object_id* 1-8
os$delete_object_name * 1-9
os$delete_primary_handler » 11-6
os$disable_identifier » 106
os$enable_identifier » 10~7
os$exit_thread » 7-18
os$expand_address_space *8-7
os$expand_user_stack » 8-8
os$force_exit_job + 7-19
os$force_exit_pracess = 7-20
os$force_exit_thread « 7-21
os$force_exit_user » 7-22
os$get_access_control_list« 10-8
os$get_channel_information « 9-6
os$get_exit_status_info « 7-23
os$get_fpu_information « 9-7
os$get_job_information » 7-24
os$get_mapping_information « 8—9
os$get_objcon_information « 1-10
os$get_object_information «1-13
os$get_otd_information«1-15
os$get_performance_info « 12-2
os$get_process_information « 7-25
os$get_section_information » 8-10

Index—1

os$get_security_monitor 10-9

" os$get_system_information « 12-3
os$get_system_time » 12-5
os$get_thread_information « 7-26
os$get uid - 12-6
os$get_user_information « 7-27
os$hibernate_process « 7-28
os$hibernate_thread « 7-29
os$impersonate_client« 10-10
os$install_page_file « 12-7
os$lock_pages_in_memory « 8—11
os$lock_pages_working_set » 8-12
os$map_section « 8-13
os$mark_temporary « 1-16
os$next_uid « 12-8
os$pulse_event » 4-5
os$read_event » 4-6
os$read_semaphore *« 54
os$read_timer - 64
os$release_semaphore * 5-5
os$request_io * 3-8
os$restore_server « 10-11
os$resume_process » 7-30
os$resume_thread « 7-31
osPset_access_cantrol_list+10~-12
os3set_event «4-7
os$set_exit_status_info « 7-32
os$set_job_information « 7-33
os$set_minor_thread_priority « 7-34
os$set_object_name + 1-17
os$set_process_information « 7-35
os$set_protection_on_pages » 8-15
os$set_security_monitor » 10-13
os$set_system_time « 12-9
os$set_thread_information » 7-36
os$set_thread_priority « 7-37
os$set_timer « 6-5
os$set_user_information « 7-38
os$signal_process « 7-39
os$signal_thread » 7-40
os$suspend_process * 7—41
os$suspend_thread * 7-42
os$synchronize_with_io « 910
os$synch_channel_with_fpu » 9—11
os$transfer_mark_temporary * 1-18
os3translate_access_type » 10-14

os$translate_access_type_name +10-15

os$translate_logical_name «2-6
os$translate_object_name « 1-20
os$uniock_pages_from_memory «8-17
os$unlock_pages_working_set * 8~18

Index—2

os$update_mapped_section » 8-19
os$verify_priv_operation « 10-16
os$wait_multiple + 3-2

os$wait_single « 3—4
os$wake_process ¢ 7-43
os$wake_thread - 7-44
os$zero_to_end_of_user_stack » 8—21

P

Pracess architecture data types » A-4

S

Security related data types * A-8

