
PRISM Common Layered Product Software Architecture

Types: A = part of AlA (*probably*)
P = PRISM-specific (necessarily)
N Not by nature PRISM-specific, but not part of AlA

Note: "When" == When a product ships that needs this

Note: n*" == could temporarily finesse without it, but much better off
with it.

Note: Some of these are just architectural specs, and some have real
deliverable code associated with them.

Type Description When Who Responsible

P

P

P

N

1. Extended Calling Standard

2. PRISM condition handling

3. Extended object language

4. Librarian Interface

3/89 Nylander, Calling Std Group

3/89 Bismuth and Calling Std Group

3/89 Peterson, Title, Grove,
MacLaren, PCA, et. ale

3/89 Walp

? 5. Status codes, message files, 3/89 Ballenger

A

P

message language, message formatting
and reporting routines.

6. IPSE architectural spec
(SCA data files, LSE diag
files, callable interfaces)

7. Name Space rules

3/90 Beander, et. ale

3/89 Calling Standard

A 8. Common record management 3/89* Chatterjee
interfaces, including transperent
filespec interpretation

N 9. Transperent command language 3/89* Ballenger
interface

A 10. Remote Procedure Calls 3/90 Corporate RPC architecture

A 11. Common Multithread Architecture 3/90 Conti and CMA working group

A 12. Common date/time format and 3/89* NAC and Al Simons
run-time interfaces

A 13. Common AlA utiility RTL 3/89* Simons

A 14. Common Language RTL 3/89 Lapine

A 15. Common Math RTL 3/89 Wiener

A 16. Windows (DECwindows) 3/89 Corporate

? 17. Dumb terminal I/O 3/89 Connors and Simons

A 18. Memory allocation and freeing 3/89 Simons

A 19. String format(s) and run-time 3/89 Simons
interfaces

A 20. %DIF architecture and run-time 3/90 Corporate (and Core Applications?)
interfaces (DDIF, TDIF, etc.)

Outline of PRISM Common Layered Product Software Architecture

+---------------+
! dig ita 1 ! I n t e r 0 f f ice M e m 0 ran dum
+---------------+

To: List Date:
From:
Dept:
DTN. :

13 November 1987
Chip Nylander
Technical Languages
381-2057 Loc.: ZK 2-3/N30

Subj: Outline of PRISM Common Layered Product Software Architecture

Types: A part of AlA (*probably*)
P PRISM-specific (necessarily)
N == Not by nature PRISM-specific, but not part of AIA

Note: "When" == When a product ships that needs this

Note: "*" == could temporarily finesse without it, but much better
off with it.

Note: Some of these are just architectural specs, and some have real
deliverable code associated with them.

Type Description

P 1. Extended Calling Standard

P 2. PRISM condition handling

P 3. Extended object language

N 4. Librarian Interface

When Who Responsible

3/89 Nylander and Calling Std
Working Group

3/89 Bismuth and Calling std
Working Group

3/89 Peterson, Title, Grove,
MacLaren, PCA, et. al.

3/89 Walp

? 5. S t a t'l scad P. S, m p S S ;:::j g e f i 1 e s , 3/89 B all C) n g e r

A

P

A

message language, message formatting
and reporting routines.

6. IPSE architectural spec
(SeA data files, LSE diag
files, callable interfaces)

7. Name Space rules

8. Common record management

3/90 Beander, et. ale

3/89 Calling Standard Working
Group

3/89* Chatterjee

outline of PRISM Common Layered Product Software Architecture Pa.ge 2

interfaces, including transperent
filespec interpretation

N 9. Transperent command language
interface

A 10. Remote Procedure Calls

3/89* Ballenger

3/90 Corporate RPC
Architecture

A 11. Common Multithread Architecture 3/90 Conti and CMA Working
Group

A 12. Common date/time format and
run-time interfaces

A 13. Common AlA utiility RTL

3/89* NAC and Al Simons

3/89* Simons

A 14. Common Language RTL 3/89 Lapine

A 15. Common Math RTL 3/89 Wiener

A 16. Windows (DECwindows) 3/89 Corporate

? 17. Dumb terminal I/O 3/89 Connors and Simons

A 18. Memory allocation and freeing 3/89 Simons

A 19. String format(s) and run-time 3/89 Simons
interfaces

A 20. %DIF architecture and run-time 3/90 CDA Program
interfaces (DDIF, TDIF, etc.)

From: TLE::RTL::SIMONS "AI Simons 381-2187 24-Nov-1987 1623" 24-NOV-1987 16::
To:
Subj:

DECWET::CUTLER,DECWET::DON,DECWET::SCHREIBER,TLE::NYLANDER,SIMONS,CLT::(
The PRISM Software architecture: who, when?

I was asked by Dave Cutler for a summary of the PRISM software architecture
indicating who was responsible for each component, and for those for which
I had responsibility, when the spec would be available. The dates in this note
indicate my current best guess. I plan to start formal scheduling at about the
start of the new year.

Here is a list of the software architecture responsibilities, as we
decided them on 02-0ct-87 at DECwest.

The list was initially typed in by Chip. I have verified the list against my
notes, and have put in more information on items for which I think the RTL
has full or partial responsibility.

-AI

PRISM Common Layered Product Software Architecture

Types: A = part of AlA (*probably*)
P = PRISM-specific (necessarily)
N = Not by nature PRISM-specific, but not part of AlA

Note: "When" == When a product ships that needs this

Note: "*" == could temporarily finesse without it, but much better off
with it.

Note: Some of these are just architectural specs, and some have real
deliverable code associated with them.

Type Description

P 1. Extended Calling Standard

P 2. PRISM condition handling

P 3. Extended object language

N 4. Librarian Interface

When Who Responsible

3/89 Nylander, Calling Std Group

3/89 Bismuth and Calling Std Group

3/89 Peterson, Title, Grove,
MacLaren, PCA, et. al.

3/89 Walp

? 5. Status codes, message files, 3/89 Ballenger

A

P

message language, message formatting
and reporting routines.

6. IPSE architectural spec
(SeA data files, LSE diag
files, callable interfaces)

7. Name Space rules

3/90 Beander, et. ale

3/89 Calling Standard

A 8. Common record management 3/89* Chatterjee

N

interfaces, including transparent
filespec interpretation

9. Transparent command language
interface

3/89* Ballenger

A 10. Remote Procedure Calls 3/90 Corporate RPC architecture

A 11. Common Multithread Architecture 3/90 Conti and CMA working group
+++

SOT will be implementing on VAXjVMS. I have seen papers
saying that this is planned to be implemented by OECwest.
I am currently NOT planning on implementing this for MICA
at SOT.

A 12. Common date/time format and
run-time interfaces

3/89* NAC and Al Simons

+++
Common date/time format specification: NAC

Run time conversion interfaces: Simons

To/from u*x format (If this format is adopted for use in the Ultrix
system also.)

To/from VAXjVMS quadword format (needed for file system in workgroups)
To/from text strings.

SOT design responsibility; undetermined implementation responsibility.
(Some of the conversion routines could conceivably reside in the exec,
I presume that OECwest would want to implement them.)

Actual timekeeping / storing / retrieving routines are OECwest
responsibility.

Spec responsibility (conversions) is Simons.
Spec date is Apr 88.

A 13. Common AIA utility RTL 3/89* Simons
+++

Common utility RTL consists of:
OS interface routines
utility routines

See the ARUS WOO chapter overview for more info.
Joint design responsibility (SOT primary). SOT
primary implementation group. OECwest assistance
will probably be necessary in implementing some
of the system interfaces.

Spec responsibility is Simons.
Spec date is probably Apr 88. (Some portions sooner.)

A 14. Common Language RTL 3/89 Lapine
+++

Currently working on FORTRAN and PASCAL specs.
SOT responsible for design and implementation.
Specs have been written for selected portions
of the language RTLs, for instance the Fortran
I/O system. These specs are available now by
contacting CLT::LAPINE.

Spec responsibility is Lapine.
Overall spec date is Feb '88.

A 15. Common Math RTL 3/89 Wiener
+++

Currently working on VAX/VECTORS. No current date for
PRISM work. Relying on the availability of PILLAR to
write routines for 3/89. SDT responsible for design
and implementation.

Spec responsibility is Wiener.
Spec date is TBD.

A 16. Windows (DECwindows) 3/89 Corporate

? 17. Dumb terminal I/O 3/89 Connors and Simons
+++

Simons is SDT contact person for this item. Actual
engineer working with Myles is Tom Scarpelli.
Joint design, undecided implementation.
Spec responsibility is Connors. (We understand that this
is currently under discussion at DECwest.)

A 18. Memory allocation and freeing 3/89 Simons
+++

Actually a part of the utility RTL item above, but
important enough to be called out separately. We believe
that this is the most important piece of RTL code, because
of the frequency of use. It will be designed first.
SOT or DECwest implementation is undecided at this point.

We expect to begin the interface design in early January
so that we can have significant review.

Spec responsibility is Simons.
Spec date is Feb '88.

A 19. String format(s) and run-time
interfaces

3/89 Simons

+++
Also part of the utility RTL. Separate from that
grouping because at least some parts of this package
will be defined in the PRISM Extended Calling Standard
as the system defined method for allocating/deallocating
dynamic strings. [Decision of the calling std. meeting,
Nov-87] The portions that directly affect the completion
of the calling standard will be architected immediately after
the memory allocation/deallocation routines. The remainder
will be architected along with the rest of the utility RTL,
specifically the general utility routines portion.
SDT implementation.

Spec responsibility is Simons.
Spec date is Mar '88 for Call Std. portion.

A 20. %DIF architecture and run-time 3/90 Corporate (and Core Applications?
interfaces (DDIF, TDIF, etc.)

Digital Equipment Corporation - Confidential and Proprietary

For Internal Use Only

Mica Working Design Document
Status Values, Messages,
and Text Formatting

Revision 0.7

6-April-1988

Issued by:

Kris K. Barker

TABLE OF CONTENTS

CHAPTER 1 STATUS VALUES, MESSAGES, AND TEXT FORMATTING

1.1 Introduction .. .

1.2 Goals .. .

1.3 Terrn.inology .. .

1.4 Status on Mica ..

1.5 Status Values
1.5.1 SEVERITY Field (bits <2:0»
1.5.2 MESSAGE_NUMBER Field (bits <15:3»
1.5.3 FACILITY_NUMBER Field (bits <27:16»
1.5.4 LOCAL_MESSAGE_NUMBER Field (bits <27:3»
1.5.5 LOCAL_STATUS Field (bit 28)
1.5.6 FACILITY_SPECIFIC Field (bit 29)
1.5.7 CUSTOMER_FACILITY Field (bit 30)
1.5.8 INHIBIT_MESSAGE_PRINTING Field (bit 31)
1.5.9 Pending Status

1.6 Status Messages
1.6.1 Status Message Format
1.6.2 Message Creation
1.6.3 Message Compilation
1.6.4 Obtaining and Forrn.atting Status Messages-lib$gecmessage
1.6.5 Obtaining and Displaying Status Messages-Zib$display_message
1.6.6 Local Messages
1.6.7 Shared Messages .. .

1.7 Text Messages
1. 7.1 Relationship to Status Messages
1. 7.2 Obtaining and Formatting Text Messages-lib$get_text

1.8 Message Data Structures
1.8.1 Message Vector Header and Message Vectors
1.8.2 Message Section Descriptor Tables
1.8.3 Message Section Descriptors
1.8.4 Message Sections

1.9 Status Value to Message Translation
1.9.1 Which Message Sections are Searched

1.9.1.1 Nonlocal Messages
1. 9 .1.2 Local Messages .
1.9.1.3 Shared Messages

1-1

1-1

1-1

1-2

1-2

1-3
1-5
1-5
1-5
1-5
1-6
1-6
1-6
1-6
1-6

1-6
1-7
1-7
1-7
1-8

1-10
1-11
1-11

1-11
1-12
1-12

1-12
1-15
1-15
1-15
1-18

1-22
1-22
1-22
1-22
1-22

iii

1.9.2 How Message Sections are Searched. .. 1-23
1.9.2.1 Deciding Which Message Section Descriptors to Examine. 1-23
1.9.2.2 Examining a Message Section Descriptor. .. 1-23
1.9.2.3 Searching a Message Section. .. 1-23
1.9.2.4 Mapping Message Image Files. .. 1-24

1.9.3 Initialization of Message Vectors and Loading of Message ISDs 1-24

1.10 Internationalization

1.11 Text Formatting
1.11.1 Formatting Directives
1.11.2 Formatting Text

1.11.2.1 Single String Text Formatting-lib$formaCsingle_string
1.11.2.2 Multiple String Text Formatting-lib$format_multiple_strings
1.11.2.3 Allowable Parameter and Constant Types for Directives
1.11.2.4 Examples .

1.12 Dependencies

1-25

1-25
1-26

1-30
1-30
1-31
1-32
1-33

1-33

INDEX

FIGURES
1-1
1-2
1-3
1-4
1-5
1-6
1-7
1-8
1-9

TABLES
1-1
1-2
1-3

iv

Mica Status . . .
exec$status_ value
In-Memory Message Data Structure Organization
lib$message_section_desc .
lib$counted_string .. .
lib$message_section
lib$facility _name
lib$message_index_table
lib$message_record .

Status Terminology .
Formatting Directives .
Data Type Rules for Formatting Directives

1-3
1-4

1-14
1-15
1-17
1-18
1-19
1-20
1-21

1-2
1-27
1-32

Digital Equipment Corporation-Confidential and Proprietary
For Internal Use Only

Revision History

Date

5-NOV-1986

11-DEC-1986

14-JAN-1987

14-JAN-1988

29-JAN-1988

16-MAR-1988

6-APR-1988

iv

Revision
Number

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Author

Kris Barker

Kris Barker

Kris Barker

Kris Barker

Kris Barker

Kris Barker

Kris Barker

Summary of Changes

Original.

Modifications prior to general review.

Modifications following general review.

Convert to SDML format and modify prior to primary review.

Misc. revisions following primary review.

Revisions following architect review and 64- vs. 32-bit status
meetings.

Revisions following text formatting support discussions.

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

CHAPTER 1

STATUS VALUES, MESSAGES, AND TEXT FORMATTING

1.1 Introduction

Status values pass information regarding the success or failure of a process, thread, 1/0 service, or
procedure back to the thread which created or called it. Status values are also used to organize and
index messages that convey information about status values in textural form.

This chapter:

• Defines the format of status values.

• Describes the mechanisms used to translate status values in text strings.

• Describes the organization of messages and message files.

• Describes the use of messages and message files for internationalizing text.

• Outlines the text formatting support provided on Mica. While such support is an important
part of message access and display, it is general purpose in nature and may be used in any
programming situation where text formatting is required.

1.2 Goals

The primary goal of this implementation is to provide a consistent, easy-to-understand, and easy-to
use way of organizing definition of and access to status information, message text, or both. Within
this general goal are the following specific goals:

• To provide a local message capability which allows message definition and access without the
requirement of facility registration.

• To provide a convenient way of separating text from an image that uses it, and to allow the text
to be rewritten in another natural language without affecting the image.

• To describe and encourage the use of the message capabilities for all user-displayed text in a
program, not just status messages, as a way to internationalize programs more easily.

• To provide a text formatting capability that addresses internationalization requirements.

Status Values, Messages, and Text Formatting 1-1

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

1.3 Terminology

Table 1-1 summarizes key terms introduced in this chapter.

Table 1-1: Status Terminology
Term Definition

Abbreviated condition name

Facility or Facility number

Facility name

Formatting directive

Local message

Message section

Message section descriptor

Message section descriptor table

Message stri ng

Message text

Message vector

Severity

Shared message

Status

Status value

1.4 Status on Mica

A string of characters that briefly describes a particular condition.

A 12-bit binary value that identifies the facility that produced the status value.

A string of characters that identifies the facility that produced the status value.

A command to the text formatting routine that specifies how a parameter to
that routine is to be formatted.

A message local to a specific program. Local messages do not need to be
registered, as access to them is through a single facility. Local messages are
also used to internationalize message text.

A data structure that contains message text, severity information, abbreviated
condition names, and facility names for the messages of a facility.

A data structure that contains information about a message section. It may
contain a self-relative pointer to the message section itself (direct message
section descriptor) or a self-relative pointer to a filename which contains the
message section (indirect message section descriptor).

A zero-terminated array of message section descriptors (direct or indirect).

A string of characters that describes a particular condition. It may contain
message text, an abbreviated condition name, a severity character, and a
facility name.

A string of characters that:

describes a particUlar condition in detail, or

contains noncondition information displayed to the user.

A table of self-relative offsets, each of which points to a message section
descriptor table.

Either a value or a single character (depending on the context) that describes
the basic success or failure indicated by the condition.

A system-wide message that inherits the facility name from the program that
accesses it. Shared messages are used to provide consistency in message
text across multiple programs. Shared messages also change the message
searching rules; see Section 1.9.2 for a discussion on message searching.

A 64-bit numeric value containing a 32-bit status value and 32 bits of additional
information, the interpretation of which depends on the status value.

A 32-bit numeric value containing information about the status of a thread,
process, procedure, or lID request.

Mica status is 64 bits. The first 32 bits are the status value; depending on the type of status, the
second 32 bits mayor may not be used. Mica defines three types of status: facility-registered status,
local status, and internal status. The format of each type is shown in Figure 1-1. Status value
formats are defined in Section 1.5.

• Facility-registered status-The status value contains a number indicating which facility gener
ated the status. The second 32 bits are not used.

1-2 Status Values, Messages, and Text Formatting

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

• Local status-The status value has the local status bit set. A full 25 bits are used for the message
number as a facility number is not required. The second 32 bits of the status contain the address
of a message data structure used to acquire the message text.

• Internal status-This type of status is used internally by a particular facility. The first 32 bits
is a facility-registered status value. The second 32 bits may be used in whatever way the facility
desires. An internal status normally does not appear outside the facility that uses it because
outside the facility, the second 32 bits of the status are ignored.

Figure 1-1: Mica Status

31

FACILllY-REGISTERED STATUS VALUE

(undefined)

Facility-registered Status

31

LOCAL STATUS VALUE

MESSAGE DATA STRUCTURE ADDRESS

Local Status

31 o

FACILllY-REGISTERED STATUS VALUE

FACILllY-DEFINED INFORMATION

Internal Status
FIGO

Pillar's predefined data type STATUS is 64 bits. For languages which do not support 64-bit return
values, such as C and FORTRAN, procedures which return local status should include an optional
argument that returns a condition vector. This condition vector contains the full 64-bit status; the
entire status is required for local message retrieval.

1.5 Status Values

Status values are longword values used to:

• Indicate the exit status of a process

• Indicate the exit status of a thread

• Return status from a remote procedure call

• Return completion status from an I/O request

• Return status from a procedure or function call (such as a run-time library function)

• Organize local messages, that is, internal messages within a program

Status Values, Messages, and Text Formatting 1-3

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

Additionally, values in status value format are used to organize and access nonmessage text local to
a facility.

Throughout this chapter, the term producer is used to indicate the process, thread, or procedure
returning or raising status and the term consumer is used to indicate the process, thread, or procedure
which receives that status.

Status values have the following binary format:

Figure 1-2: exec$status_value

31 30 29 28 27 16 15 3 2 o

FACILITY_NUMBER MESSAGE_NUMBER

Facility-registered Status Value

31 30 29 28 27 320

Local Status Value

exec$status_value : RECORD
severity: integer[O .. 7] SIZE(BIT,3);
UNION CASE *

WHEN 1 THEN
message_number: integer[O .. 8191] SIZE(BIT,13);
facility_number: integer[O .. 4095] SIZE(BIT,12);

WHEN 2 THEN
local_message_number : integer[O .. 2**25-1] SIZE(BIT,25);

END CASE;
local status : bit;
facility_specific : bit;
customer facility : bit;
inhibit_;essage-printing bit;
LAYOUT

severity;
UNION

OVERLAY
message number;
facility_number;

OVERLAY
local_message_number;

END UNION;
local_status POSITION(BIT,28);
facility specific POSITION(BIT,29);
customer-facility POSITION(BIT,30);
inhibit_;essage_printing POSITION(BIT,31);

END LAYOUT;
END RECORD;

SEVERITY

FIG1

Mica facility-registered status values are similar to status values on VAXlVMS. The differences
are the inhibit_message-printing bit (bit 31 on Mica), the localJacility bit (bit 28 on Mica), and
the locations of the customer Jacility and facility_specific bits (bits 30 and 29, respectively). Moving
the customer Jacility and facility _specific bits out of the facility _number and message_number fields
effectively doubles the number of facility and message numbers over that allowed on VAXJVM:S.

The sections below describe each field of a status value.

1-4 Status Values, Messages, and Text Formatting

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

1.5.1 SEVERITY Field (bits <2:0>)

The severity field of a status value indicates the basic success or failure of the producer of the status.
Severity is represented as a binary value in the range 0 to 7 (values of 5 and 6 are reserved to
DIGITAL).

Successful completion is indicated by an odd-valued severity.

Value

3

7

Meaning

Success

Information

Text

Success

This value indicates successful completion.

This value indicates successful completion with some associated information for the
consumer.

This value is used to indicate that the status value is being used to access a text
message rather than a status message. In this case, the concept of severity does
not apply. It is an error to attempt to obtain and format a text message with lib$geC
message or lib$display _message.

Even severity values indicate partial or complete failure.

Value Meaning

o Warning

2 Error

4 Fatal

Failure

This value indicates that the producer of the status encountered a nonfatal problem, but
was able to complete processing the request. The status returned warns the consumer
that the result of processing the request may not be what was expected.

This value indicates that an error occurred, however, the error was not severe enough
to force premature termination of the producer.

This value indicates that a fatal error occurred. Such an error is severe enough that
the producer of the status was forced to exit or return prematurely.

1.5.2 MESSAGE_NUMBER Field (bits <15:3>)

The message_number field of a status value is used to identifiy which of a set of several possible
conditions this status value represents. The message routines use this value to index into a message
section to obtain the corresponding message text. Message sections are described in Section 1.8.4.
This field is defined only for facility-registered status values.

1.5.3 FACILITY_NUMBER Field (bits <27:16>)

The facility_number field of a status value is used to identify the producer of the status value. Each
facility must have its own unique facility number. This field is defined only for facility-registered
status values.

The facility number 0 is reserved for system-wide status values. The facility name corresponding to
facility number 0 is STATUS.

1.5.4 LOCAL_MESSAGE_NUMBER Field (bits <27:3>)

The local_message_number field of a status value is used to index into a message section to obtain
message text for a local message. This field is defined only for local status values.

Status Values, Messages, and Text Formatting 1-5

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

1.5.5 LOCAL_STATUS Field (bit 28)

The local_status field is used to indicate that the status value is local. Local status values have this
bit set; facility-registered status values have this bit clear.

1.5.6 FACILITY_SPECIFIC Field (bit 29)

The facility _specific field is used to indicate that the status value is specific to a single facility. Status
values with this bit clear are used to identify system-wide status codes (for system and shared
messages). Use of this bit for shared messages is described in Section 1.6.7.

1.5.7 CUSTOMER_FACILITY Field (bit 30)

The customer Jacility field is used to indicate that the number specified in the facility number field
is a customer facility. Status values for DIGITAL facilities have this bit clear.

1.5.8 INHIBIT_MESSAGE_PRINTING Field (bit 31)

The inhibit_messageyrinting field is used to inhibit display of the message by message output rou
tines. This bit is set by system routines that display the resulting message, so that the message is
not displayed twice.

1.5.9 Pending Status

A status value with all fields zeroed is reserved to indicate pending status. Processes, threads, I/O
requests, and so on, which return status asynchronously should always initialize returned status to
status$yending (the zero status value). This informs the consumer that the final status value has
not yet been set.

1 .6 Status Messages
Status messages are text strings used to describe a status value to the user in a natural language.
A complete status message consists of:

• Facility name-A short string of characters indicating the facility to which the status is regis
tered.

• Severity-A single letter indication corresponding to the severity of the status:

Field
Value Severity Letter Meaning

S Success

3 Information

0 W Warning

2 E Error

4 F Fatal

• Abbreviated condition name-A short string of characters identifying the status in an abbreviated
manner.

• Message text-A string of characters describing the status in detail, possibly with formatted
parameters specific to the error occurrence.

1-6 Status Values, Messages, and Text Formatting

1.6.1 Status Message Format

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

By default, status messages are assembled in the following format:

%FACILITY-S-ACONDNAME, message text

"FACILITY" is the facility name, "S" is the severity, and "ACONDNAME" is the abbreviated condition
name.

A user or facility may request that certain parts of a status message be excluded when the message
is assembled. The default message format may be changed with a CLI command (such as SET
MESSAGE for DCL). The logical name SYSTEM$MESSAGE_FORMATis used to convey the current
message format setting between a CLI running on a client system and a program running on the
server.

The message access and display routines use the message format setting along with the following
rules to determine the final format of a status message:

• The leading "%" is present only if the facility, severity, or abbreviated condition name are present
(in other words, if only the message text is requested, no leading "%" will be returned).

• If only the message text is returned, the first character of the text string is converted to upper
case.

• The message display routine lib$display_message supports display of multiple messages. In
this case, the first message formatted is termed the primary message; successive messages are
termed secondary messages. The lib$get_message routine provides an argument that allows the
caller to specify that the message is to be formatted as a secondary message. The format of the
secondary message is the same as that of a primary message except that the "%" sign (if present)
is replaced by a "-" sign. The lib$geCmessage and lib$display_message routines are describe in
Section 1.6.4 and Section 1.6.5.

1.6.2 Message Creation

Messages are created in text format using a text editor. A file consisting of a collection of facility
names, abbreviated condition n~mes, severity condition values, and message text is called a message
source file. A message source file is processed by the Pillar message compilation facility into a message
object module which is then linked with other object modules to form an image file.

1.6.3 Message Compilation

Message compilation is the process of creating a message object file from a message source file. Mica
provides message compilation capabilities as part of the Pillar compiler.

The message compilation facility provides a way to internationalize messages by allowing the message
text and formatting information to be separated from the image file. The message source file is
compiled twice:

1. The first compilation produces a direct message object module containing the facility names,
severities, abbreviated condition names, and message text. This module is then linked to form a
message image file which is accessed when the message text is required. Note that this message
image file must be linked by itself; resolution of indirect message section descriptors does not
allow multiple direct object modules to be linked together unless they are linked into the program
image. Section 1.9.2.4 discusses how and when these direct message image files are read.

2. The second compilation creates an indirect message object module which is linked with other
program object modules to form the program image file. In this case, the compiler generates
the message object file without the message text itself. Instead, the message section descriptors,
which would normally point to message sections containing message text, contain the specifica
tion for the corresponding message image file that contains the message text. See Section 1.8
for a discussion of message data structures.

Status Values, Messages, and Text Formatting 1-7

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

Once a particular message source file is translated into another natural language, the first step
described above is repeated on the translated file. The result is a message image file in another
language that can be accessed by the application without requiring that the application be relinked.
The location of multiple language versions of message files is described in Section 1.10 and in Chapter
35, System Volume Layout and Software Installation.

1.6.4 Obtaining and Formatting Status Messages-Jib$geLmessage

The lib$get_Tnessage routine obtains and formats status messages. The interface to this procedure
is:

PROCEDURE lib$get message (

Parameters:

IN co~dition_vector : exec$condition_vector;
OUT message buffer : varying string(*);
IN facility=name : string (*)-OPTIONAL;
IN format : boolean = true;
IN flags : lib$message_options OPTIONAL;
IN secondary : boolean = false;
OUT argument_count : integer OPTIONAL;
OUT user_value : lib$message_user_value OPTIONAL;
) RETURNS status;

1-8 Status Values, Messages, and Text Formatting

Parameter

condition_vector

message_buffer

facility_name

format

flags

secondary

argument_ cou nt

user_value

Description

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

Supplies a condition vector containing the status for which a message is to be re
turned. Only the message corresponding to the primary condition is returned. For
local messages, the status in the condition vector contains the address of the mes
sage section descriptor which points to the message section containing the local
message. The format and content of condition vectors is presented in Chapter 11,
Condition, Exit, and AST Handling. Message section descriptors and message sec
tions are discussed in Section 1.8.

Supplies the address of the buffer in which the message string is returned.

Optionally supplies a facility name which overrides the facility name indicated by the
facility number field of the status value. This parameter is useful when a program
requests translation of a local or shared message and wants to replace the default fa
cility name with a more meaningful facility name. See Section 1.6.6 and Section 1.6.7
for more information on local and shared messages.

Optionally supplies a Boolean value which, if TRUE, indicates that formatting di
rectives in the message string are to be interpreted. See Section 1.11 for more
information on formatting directives.

Optionally supplies a set of type lib$message_options that indicates which portions
of the status message are to be returned. Each element of the set that is supplied
- lib$cJacility, lib$c_severity, lib$c_condition_name, lib$c_message_text
- indicates that the corresponding field should be included in the formatted status
message. If this argument is not supplied, the default format is used, as specified
by the SYSTEM$MESSAGE_FORMAT logical name supplied by the client. The data
type lib$message_options is defined as:

lib$message_options_type : (
lib$c_severity,
lib$c_facility,
lib$c_condit ion_name ,
lib$c_message_text
) i

lib$message_options : SET[lib$message_options_type];

Optionally supplies a Boolean value which, if true, specifies that the message should
be formatted as a secondary message. By default, the message is formatted as a
primary message.

Optionally returns the number of parameters associated with the message.

Optionally returns the value associated with the message as specified in the message
source file. The data type lib$message_user _value is defined as:

lib$message_user_value : longword;

The interpretation of this value is the responsibility of the caller of lib$geCmessage.

This routine searches the message sections pointed to by both the image and system message vectors
to obtain the message string corresponding to the specified status value. See Section 1.8 and Sec
tion 1.9 for more information on the organization of message vectors and message sections and the
mechanisms used to traverse them.

Status Values, Messages, and Text Formatting 1-9

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

1.6.5 Obtaining and Displaying Status Messages--lib$disp/ay_message

The lib$display _message routine obtains and displays one or more status messages based on a spec
ified condition vector. The interface to this procedure is:

PROCEDURE lib$display_message (

Parameters:

Parameter

condition_vector

flags

action_routi ne

IN condition_vector : exec$condition_vector;
IN flags : lib$message_options OPTIONAL;
IN- facility_name : string(*) OPTIONAL;
IN action routine : lib$action-procedure OPTIONAL;
IN action_parameter : lib$action-parameter = zero;
) RETURNS status;

Description

Supplies a condition_vector containing the status values to be formatted and output. Unlike
lib$get_message described above, lib$display_message translates status values for the
primary condition and all secondary conditions specified by the condition record.

Optionally supplies a set of type lib$message_options that indicates which portions of the
status message are to be displayed. Each element of the set that is supplied - lib$c_
facility, lib$c_severity, lib$c_condition_name, lib$c_message_text - indicates that
the corresponding field should be included in the formatted status messages. If this argu
ment is not supplied, the default format is used, as specified by the SYSTEM$MESSAGE_
FORMAT logical name supplied by the client.

\This method of specifying the message formatting flags makes it impossible, using the
lib$display _message routine, to specify different formatting for each status value in the
specified condition vector. This is possible on VAXNMS.\

Optionally supplies a facility name which overrides the facility name indicated by the facility
number portion for the primary condition.

Optionally supplies the address of an action routine to be called after each message text
line is formatted, but before it is displayed.

PROCEDURE lib$action-procedure (
IN message_string: string(*) CONFORM;
IN action-parameter : lib$action-parameter = zero;
) RETURNS boolean;

The two arguments to this routine are the formatted message string and the action param
eter (see below) supplied in the call to lib$display _message. This routine must return a
Boolean value: if TRUE, the message is output by lib$display_message; if FALSE, it is
not.

Optionally supplies a value of type lib$action-parameter that is passed to the action
routine. The data type lib$action-parameter is defined as:

lib$action-parameter : longword;

This routine searches the message sections pointed to by both the image and system message vectors
to obtain the message string corresponding to the specified status value. See Section 1.8 and Sec
tion 1.9 for more information on the organization of message vectors and message sections and the
mechanisms used to traverse them.

1-10 Status Values, Messages, and Text Formatting

1.6.6 Local Messages

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

Local messages provide programs a way to store message and other text separately from the actual
image file without the normal requirement to register a facility number. Status values with the
local_status bit set are used to reference local messages. Note that since a facility number is not
needed, a full 25 bits are used as the message number for local status values.

The data structures used to organize local message data are the same as those used for nonlocal
messages. Local message section descriptors, however, are specified explicitly-via address in the
status contained in condition vector or passed by procedure argument-rather than implicitly by
their presence in a message section descriptor table whose address is in a message vector. When
lib$get_message or lib$display_message is called to obtain the text for a local message, the status
contained in the supplied condition vector specifies the address of the message section descriptor to
be examined. When lib$get_text is called to obtain the text for a local message, the status_argument
argument supplies the local status value and the address of the message section descriptor to examine.

Only the specified message section descriptor is examined; if the local message number is not found in
the section pointed to by the message section descriptor, the search fails. This is unlike the nonlocal
message case, where the search continues by examining other message section descriptors.

See Section 1.9 for more information on the mechanisms used to translate status values to status
and text messages.

1.6.7 Shared Messages

Shared messages are used to define status values and message text that can be shared by several
facilities, thus providing a way to guarantee consistency of messages across facilities. These are
different from system messages in that the name of the facility producing the status value is used as
the facility name (as opposed to SYSTEM for system messages). Also, shared status values alter the
default search order during message translation.

Shared status values are defined with a facility code and severity of O. Within the status value,
the customer Jacility, facility_specific, and local_status bits are clear. To use shared status values, a
facility must merge its own facility code and the status severity with the shared status value. This
is done as follows:

status value facility_number * lib$c_facility_offset +
shared status value +
severity

This calculation yields a status value that contains the message code of a shared message, and the
facility number and severity specified by the program producing the status value.

Section 1.9 describes the mechanisms used to translate status values to status and text messages.
Section 1.9.1.3 describes how these mechanisms are affected by shared messages.

1.7 Text Messages

Text messages provide a way to define, organize, and access text that is user-visible and not related
to a condition. This capability is required to provide support for internationalization of text displayed
to users.

Status Values, Messages, and Text Formatting 1-11

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

1.7.1 Relationship to Status Messages

Definition and organization of text messages is the same as that described for status messages in
Section 1.6 with the following exceptions:

• The routine which accesses and formats text messages only returns the message text, not the
severity, facility, or abbreviated condition name.

• Text messages are usually local; that is, the status value used to access them normally has the
locaCstatus bit set.

• The routine which accesses and formats text messages does not require that access and parameter
information be supplied in condition vector format. This means that programs which use this
functionality to organize user-visible text will not be required to handcraft condition vectors.

1.7.2 Obtaining and Formatting Text Messages-lib$geLtext

The lib$get_text routine obtains and formats a text message based on a supplied status. The interface
to this procedure is:

PROCEDURE lib$get_text (

Parameters:

Parameter

status_argument

parameters

message_buffer

format

argument_count

user_value

IN status_argument : status;
IN parameters: exec$argument array(*);
OUT message_buffer: varying_;tring(*);
IN format : boolean = true;
OUT argument_count : integer OPTIONAL;
OUT user_value : lib$message_user_value OPTIONAL;
) RETURNS status;

Description

Supplies a status value and, for local messages, the address of a message section
descriptor, used to locate the text message.

Supplies an array of parameters to be formatted into the resultant string. The data
type exec$argument_array is an array of exec$argumenCdescriptor. The data
type exec$argument_descriptor is defined in PRISM Calling Standard.

Supplies the address of the buffer in which the message text string is returned.

Optionally supplies a Boolean value which, if TRUE, indicates that the message string
is to be formatted; that is, formatting directives are interpreted.

Optionally returns the number of parameters associated with the message.

Optionally returns the value associated with the message as specified in the message
source file.

1.8 Message Data Structu res
The outputs of Mica's message compilation facility are message object modules. These modules contain
message information in structures called message sections, message section descriptors, and message
section descriptor tables. Once in memory, message information is organized into:

• Message vector header-This structure provides a multiple reader/single writer lock to control
updating of message structures. It also contains pointers to the system and image message
vectors for the process.

• Message vectors-These structures are tables of pointers, each of which points to a message
section descriptor table.

• Message section descriptor tables-These structures are arrays of message section descriptors.

1-12 Status Values, Messages, and Text Formatting

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

• Message section descriptors-These structures contain information about message sections in
cluding message section type (direct or indirect), facility number, a self-relative pointer to the
message section, and, for indirect sections, a self-relative pointer to the name of the file that
contains the actual message text (message file specification).

• Message sections-These structures contain a facility name, facility number and abbreviated
condition names and message text. Message sections are organized by the message compilation
facility so that they can be indexed by message number. Each message section contains the
messages for one facility in one natural language. Message sections may be chained together to
provide support for multiple languages within one process.

The following figure shows how all of these structures are related.

Status Values, Messages, and Text Formatting 1-13

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

Figure 1-3: In-Memory Message Data Structure Organization

ReadIWrite
Lock

Image Message
Vector Pointer

System Message
Vector Pointer

Message Vector
Header

Lr
-

+

- -
• - • -
• - -

Image Message
Vector

- -
• - • -• - -

System Message
Vector

--+
-

-

~

Message Section
Descriptor

Message Section
Descriptor

•
•
•

Zero

Message Section
Descriptor Table

Message Section
Descriptor

Message Section
Descri tor

•
•
•

Zero

Message Section
Descriptor Table

•
•
•

r--+

-
-

4

..

....

Message Message
Section Section

...

....

Message Message
Section Section

I Message Filename

I Message Filename

FIG2

The following sections describe the format and content of each of these data structures. In all cases,
the data structures are aligned on natural boundaries.

1-14 Status Values, Messages, and Text Formatting

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

1.8.1 Message Vector Header and Message Vectors

The message vector header is the top level structure used to access all other message data structures.
It contains a multiple reader/single writer lock used to control updating of message data structures
and pointers to two message vectors.

Within the address space of a given process, there are two message vectors: the system message
vector and the image message vector. When status code translation is requested, these two vectors
supply pointers to tables of message section descriptors to be searched.

1.8.2 Message Section Descriptor Tables

A message section descriptor table is a zero-terminated list of message section descriptors. Message
section descriptors are placed in either the message$system_section_descriptor or the message$image_
section_descriptor PSECT. This PSECT is concatenated with like PSECTS from other message object
files by the linker to form a message section descriptor table. An image section that contains message
section descriptor tables will have a flag indicating this in the image section descriptor (ISD).

The terminator of a message section descriptor table is a zero longword. This zero longword resides in
the overlaid message$section_descriptor _table_end PSECT so that only one such entry actually ends
up in the resulting image file. Allowable values for the section_descriptor_type, system, and facility
fields are such that all of these fields being zero is not a valid combination.

1.8.3 Message Section Descriptors

A message section descriptor is a data structure that describes the facility associated with a set of
messages and provides a pointer to the message section where the message text is found. It has the
following binary format:

Figure 1-4: Ii b$message_section_desc

31 16 15 8 7

FACILITY_NUMBER I SECTION_FLAGS I
SECTION
DESCRIPTOR_TYPE

IDENTIFICATION

VERSION

MESSAGE_SECTION_POINTER

MESSAGEJILENAME_POINTER

RRST_M ESSAG E_SECTION_DESCRIPTOR_POINTER

FIG3

Status Values, Messages, and Text Formatting 1-15

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

lib$message_section_desc : RECORD
section descriptor type: lib$message section desc types[.. J SIZE(BYTE);
section-flags: lib$message section d~sc flag; SIZE(BYTE);
facility number : lib$facility numb;r; -
ident : longword; -
version : longword;
message_section~ointer : POINTER lib$message_section~ointer;
message_filename~ointer : POINTER lib$counted_string;
first_msg_section_desc~ointer : POINTER lib$message_section_desc;
LAYOUT

section_descriptor_type;
system POSITION(BYTE,l);
facility_number POSITION(WORD,l);
ident;
version;
message_section~ointer;

message_filename~ointer;

first_message_section_desc~ointer;

END LAYOUT;
END RECORD;

lib$message section desc types :
lib$c direct se;tion-desc,
lib$c=indire;t_secti~n_desc
) ;

lib$msg section desc flag type
lib$c syste; section desc,
lib$c=local_;ection_desc
) ;

lib$message_section_desc_flags : SET lib$msg_section_desc_flag_type[.. J;

lib$facility_number : integer[O .. 4095] SIZE(WORD)i

lib$message_section~ointer : POINTER lib$message_section;

These fields are defined as follows:

• section_descriptor _type-This field indicates the type of the message section descriptor:

lib$c_direct_section_desc-This type indicates that the message section is loaded into mem
ory with the section descriptor. This means that the section descriptor and message section
are part of the program image file. Message section descriptors whose sec tion_des crip tor_
type is lib$c_direct_section_desc are referred to as direct message section descriptors.

lib$c_indirecCsection_desc-This type indicates that the message section is contained in a
separate message image file. The filename of the separate message image file is contained
in a data structure pointed to by the messageJilenameyointer field in the message sec
tion descriptor. Message section descriptors whose section_descriptor _type is lib$c_indirect_
section_desc are referred to as indirect message section descriptors. When an indirect mes
sage section descriptor is first accessed, the corresponding direct message image file is read
into memory in the image's address space, or mapped, and the message_sectionyointer fields
for all message section descriptors which refer to that direct message image file are set to
point to the actual message sections.

• sectionJlags-Flags used to identify system and local message section descriptors.

If the lib$c_system_section_desc bit is TRUE, the address of the message section descriptor
table containing the message section descriptor is to be placed in the system message vector
rather than the image message vector. To avoid mixing system and nonsystem messages in
the same message source file, a command line qualifier to the message compilation facility
is used to indicate that this byte should be nonzero.

\ The intent is that this is for DIGITAL use only. PSECT naming conventions are be used to
handle the case where system and nonsystem section descriptors are linked into the same
file. \

1-16 Status Values, Messages, and Text Formatting

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

If the lib$c_local_section_desc bit is TRUE, the message section contains local messages
rather than facility-registered messages.

• facility_number-The facility number associated with the messages in the section pointed to by
this section descriptor. For local messages, this value is not used.

• ident-This longword contains a binary identification value used in message section verification.
This value is set by the message compilation facility and is used to verify that this data structure
is actually a message section descriptor.

• version-This longword contains a binary version number of the message section. This value is
set by the message compilation facility and provides a way to handle message data structure
changes in future versions.

• message_sectionJJointer-A self-relative pointer to a self-relative pointer to the message section
associated with this message section descriptor. For indirect message section descriptors, this
pointer initially points to a pointer whose value is nil, indicating that the message image file
containing the corresponding direct message section has not been mapped. Once the message
image file is mapped, this pointer is updated to point to the message section.

\ This is a pointer (rather than actually placing the message section offset in the structure
itself) so that write access to message section descriptors is not required. Note that due to size
constraints, this extra level of indirection is not shown in Figure 1-3.\

• messageJilenameJJointer-A self-relative pointer to a data structure containing the filename of
the message image file containing the message sections. For direct message section descriptors,
this pointer is nil. This data structure is described in Figure 1-5.

• first_msg_section_descJJointer-A self-relative pointer to the first message section descriptor in
the message section descriptor table produced by the message compilation facility. Because mul
tiple message object modules may be linked together (and, therefore, multiple message section
descriptor tables may be combined into one) in the image file, this pointer may not point to the
first message section descriptor in the in-memory message section descriptor table. This pointer
provides a way to get to the first section descriptor from the same message source file as the cur
rent section descriptor. It is used when mapping indirect message section descriptors to resolve
all such descriptors which came from the same message source file.

Figure 1-5: lib$counted_string

31 16 15

reserved

COUNTED_STRING

lib$counted_string (string_length: integer[O .. 65535]
CAPTURE string_length;
counted_string: string(string_length);
LAYOUT

string_length;
counted_string POSITION(BYTE,4);

END LAYOUT;
END RECORD;

FIG8

RECORD

Status Values, Messages, and Text Formatting 1-17

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

1.8.4 Message Sections

Message sections are generated by Mica's message compilation facility. Each contains messages
defined for one facility. If the message source used to create the message section contains messages
for more than one facility, the message compilation facility creates a separate message section for
each facility.

Message sections always contain full message text. They are placed in normal read-only data PSECTs
(readable, nowrite, noexecute) and contain pointers to the facility name, index table, and language
in which the messages were written.

A message section has the following binary format:

Figure 1-6: lib$message_section

31

IDENTIFICATION

VERSION

SECTION_HEADER_LENGTH

FACILITY_POINTER

INDEX_ TABLE_POINTER

LANGUAGE_NAME_POINTER

NEXT_MESSAGE_SECTION

lib$message section : RECORD
ident :-longwordi
version : longwordi
section header length : integer;
facility-point;r : POINTER lib$facility_name;
index_table-pointer : POINTER lib$message_index_table;
language_name-pointer : POINTER lib$counted_string;
next_message_section : lib$message_section-pointeri
LAYOUT

ident;
version;
section_header length;
facility-pointer;
index_table-pointer;
language_name-pointer;
next_message_section;

END LAYOUT;
END RECORD;

These fields are defined as follows:

FIG4

• ident-This longword contains a binary identification value used in message section verification.

• version-This longword contains the binary version number of the message section.

• section_header _length-This longword contains the length of the message section header in bytes.

1-18 Status Values, Messages, and Text Formatting

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

• facility yointer-A self-relative pointer to a data structure of type lib$facility _name that contains
the facility number and name for messages in the section, as shown in Figure 1-7. For local
message sections, this pointer is NIL.

• index_tableyointer-A self-relative pointer to the message index table that is used to index the
messages themselves.

• language_nameyointer-A self-relative pointer to a data structure that contains the language
in which this section was written.

The language name is a string of uppercase characters which expresses the name of the language
spelled in English.

• next_message_section-A pointer to another message section. This field is used to chain mes
sage sections of different languages together. Such support is required for multithreaded server
processes that serve multiple clients, each of which may h~ve a different default language.

Figure 1-7: lib$facility_name

31 16 15

FACILITY_NUMBER

lib$facility_name (facility_name_length : integer[O .. 65535] SIZE(WORD))
CAPTURE facility_name_length;
facility number : lib$facility number;
facility=name : string(facility_name_length);
LAYOUT

facility_number;
facility name length;
facility=name;

END LAYOUT;
END RECORD;

o

FIGS

RECORD

The message index table is an ordered table containing message numbers and message record pointers
for each record in the section.

The message index table has the following binary format:

Status Values, Messages, and Text Formatting 1-19

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

Figure 1-8: lib$message_index_table

31 16 15

MESSAGE_NUMBER

MESSAGE_NUMBER

MESSAGE_RECORD _POI NTER

lib$message_index_table (message_count: integer [0 .. 2**25-1]
CAPTURE message_count;
message_number: ARRAY [0 .. message_count] OF integer;

o

FIG6

RECORD

message_record-pointer ARRAY[O .. message_countJ OF POINTER lib$message_record;
LAYOUT

message_count;
reserved1 : FILLER(WORD,*);
message_number POSITION(WORD,2);
reserved2 : FILLER(WORD,*);
message_record-pointer;

END LAYOUT;
END RECORD;

These fields are defined as follows:

• message_count-The number of messages indexed by this table.

• message_number-An array of message numbers. The message compilation facility generates
this array in increasing message number order.

• message_recordyointer-An array of pointers to message records. Each pointer points to the
message record corresponding to the message number at the same offset in the message_number
array.

A binary search is done on the message_number array to locate a specific message. If found, the
corresponding pointer in the message_recordyointer array is used to access the message record. The
message record contains the message text and abbreviated condition name. Message records have
the following binary format:

1-20 Status Values, Messages, and Text Formatting

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

Figure 1-9: lib$message_record

31 16 15 o

ARGUMENT_COUNT RECORD_LENGTH

CONDITION_LENGTH

ABBREVIATED _ CONDITION_NAM E

FIG?

lib$message_record (condition_length, text_length integer[O .. 65535] SIZE(WORD» : RECORD
CAPTURE condition length, text length;
record_length : i~teger[O .. 65535] SIZE(WORD);
argument count: integer[O .. 65535] SIZE(WORD);
user_value : lib$message_user_value;
abbreviated condition name: string(condition length);
message_text: lib$ddIs_structure; !More-info TBS
LAYOUT

record_length;
argument_count;
user_value;
condition_length;
text_length;
abbreviated condition_name;
message_text;

END LAYOUT;
END RECORD;

These fields are defined as follows:

• record_length-The length of the message record in bytes.

• argument_count-The number of arguments which are to be formatted into the message text.

• user _value-A user-defined value of type lib$message_user _value specified in the message source
file which can be returned to the caller of lib$get_message or lib$geCtext.

• condition_length-The length of the abbreviated condition name string in bytes.

• text_length-The length of the message text string in bytes.

• abbreviated_condition_name-The string of characters representing the abbreviated form of the
condition.

• message_text-The actual message text itself. The message text is stored in Digital Data In
terchange Syntax (DDIS) form. This will allow future versions of message support to store not
only ASCII text, but graphical information as well. For Mica FRS, however, only ASCII text is
supported.

Status Values, Messages, and Text Formatting 1-21

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

1.9 Status Value to Message Translation

The following sections describe the mechanisms used to translate a status value into a status or text
message. It discusses how message vectors, message section descriptors, and message sections are
searched and how indirect message section descriptors are mapped.

The translation from status value to message involves examining one or more message section descrip
tors and searching message sections in an attempt to match both the facility _number and message_
number fields in the status value with those in the message section descriptor and message section.

1.9.1 Which Message Sections are Searched

As mentioned above, the status value translation routines, lib$geCmessage, lib$display_message, and
lib$get_text, will search one or more message sections to obtain the message text associated with a
specified status value. The decision to search a particular message section is based on the facility_
number, facility_specific, and local_status fields in the status value. These fields indicate whether
the message is local or nonlocal and whether or not it is shared.

This section describes which message sections are searched.

1.9.1.1 Nonlocal Messages

Message searching for nonlocal messages involves examining two sets of message section descriptors:

• Image message section descriptors-These are message section descriptors contained in message
section descriptor tables whose addresses are contained in the Image Message Vector. Such
message section descriptors are part of the executing process' image file or part of a shareable
image's image file.

• System message section descriptors-These are message section descriptors contained in message
section descriptor tables whose addresses are contained in the System Message Vector. Such
message section descriptors contain system-wide message information.

A message search routine first examines the image message section descriptors and attempts to
translate the status value. If no match is made, the routine continues by examining the system
message section descriptors. If this search fails, the status value cannot be translated.

1.9.1.2 Local Messages

When a status value translation routine searches for a local message, the search is done on just one
message section. The message section descriptor to search is specified by an address in the second
32 bits of a status. This status is contained in a condition vector or passed as a procedure argument.

1.9.1.3 Shared Messages

When a shared status value translation is requested, the status value translation routines first look
at the facility_specific bit in the status value. If this bit is clear and the facility number is not zero,
the routines know that the status value is for a shared message. The translation from status value
to message string is done in two parts:

1. First, a copy of the status value is made with the facility number set to zero. System message
section descriptors are then examined to locate the section in which the message resides. Note
that this is a different search order from the normal nonshared message case.

2. If the message is found and the facility name has been requested, all image message sections
are searched to resolve the facility name. When a descriptor whose facility number matches that
specified in the original status value is found, the facility name is immediately taken from the
message section.

1-22 Status Values, Messages, and Text Formatting

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

1.9.2 How Message Sections are Searched

This section describes how message sections are searched.

1.9.2.1 Deciding Which Message Section Descriptors to Examine

Based on the specified status value, the status value translation routines first determine which
message section descriptors to examine. The following pseudocode describes how this is determined:

set lock mode to read
acquire lock specified by lock mode ! lock point
if status value indicates local message then

examine message section descriptor specified by condition vector or parameter
else

if status value is not shared then
for all message section descriptor tables pointed to by the Image Message Vector

for all message section descriptors in this message section descriptor table
examine message section descriptor

if translation not successful or status value is shared then
for all message section descriptor tables pointed to by the System Message Vector

for all message section descriptors in this message section descriptor table
if status value is shared then

examine message section descriptor with with modified status value
else

examine message section descriptor
release lock specified by lock mode

1.9.2.2 Examining a Message Section Descriptor

The following pseudocode describes the steps taken when a message section descriptor is examined:

if status value indicates local message then

else

if message section descriptor is indirect then
if message section for desired language is not mapped then

map corresponding message image file
search message section for message

if facility number matches facility in message section descriptor then
if message section descriptor is indirect then

if message section for desired language is not mapped then
map corresponding message image file

search message section for message

1.9.2.3 Searching a Message Section

The following pseudocode describes the steps taken when a message section is searched for a message:

if local status bit in status value matches local field in message section descriptor then
if section language matches current language then

else

else

search message index table for message number
if message number found then

else

copy requested portions of message into message string
return message_found

search English message section for message
return warning indicating language is not what was requested

return local/facility-registered status translation mismatch

Status Values, Messages, and Text Formatting 1-23

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

1.9.2.4 Mapping Message Image Files

The following pseudocode describes the steps taken when a message image file is mapped to resolve
an indirect message section descriptor:

if lock mode is read then
release lock
update lock mode to write
goto lock point (uplevel goto)

open message image file specified in indirect message section descriptor
if file is found then

else

map file into memory
for all message section descriptors in mapped message image file

calculate offset from indirect message section descriptor
to mapped message section

if indirect message section descriptor not mapped then
update offset pointed to by message_section-pointer

else
update next_message_section field in last message section in chain

return file not found

The firsCmsg_section_descJJointer field in both the indirect message section descriptor and the newly
mapped direct message section descriptor allows the mapping routine to walk the message section
descriptor table to resolve all indirect message section descriptors which refer to the file just mapped.

If the indirect message section descriptor has already been mapped, the newly mapped message
sections are chained off of the last message sections in the chain.

The process of mapping a direct message section descriptor must acquire the write lock to prevent
another thread from attempting to map the same message image file.

1.9.3 Initialization of Message Vectors and Loading of Message ISOs

As described in Section 1.9.1.1, the status value translation routines may examine two sets of message
section descriptors when attempting to translate a status value. The Image and System Message
Vectors are used to access these two sets of message section descriptors. The vectors are initially
allocated at image startup by the a routine in the mica$fm_share shareable module. The mica$fm_
share module also contains a pointer to the message vector header, the status value translation
routines, and the lib$install_message_isd routine. The lib$install_message_isd routine is called by
the image loader whenever an image section descriptor is encountered with the message bit set. It
is this routine that is responsible for installing message section descriptor table addresses in the
message vectors. This routine is also responsible for allocation of larger message vectors should
either vector become full. In this case, the write lock is acquired, a new, larger vector is allocated,
the entries from the old vector are copied, the pointer to the vector is changed to point to the new
vector, the old vector is deallocated, and the write lock is released.

The lib$install_message_isd routine examines the first message section descriptor entry in the mes
sage section descriptor table. If the system field indicates a system message section descriptor, the
address of the message section descriptor table is added to the System Message Vector; otherwise it
is added to the Image Message Vector.

1-24 Status Values, Messages, and Text Formatting

1.10 Internationalization

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

As mentioned previously, indirect message sections provide a way to keep message text separate
from a program that references it, allowing it to be easily internationalized. Indirect message section
descriptors contain the filename of the message image file which contains the corresponding direct
message section descriptors and message sections. When this text is needed, the file containing the
text is mapped, allowing it to be accessed. Mapping message image files is discussed in Section 1.9.2.4.

Message files on Mica are contained in the SYSTEM$MESSAGE subdirectory of a directory tree set
up for each language supported on the system. For example, the message subdirectory containing
messages in English is [SYSTEM$LANGUAGE.SYSTEM$ENGLISH.SYSTEM$MESSAGE].

The arus$get_user _language routine is used to obtain the user's default natural language. This
default language is then used to build the complete file specification when the message image file
is opened. For example, if the message image filename specified in the indirect message section
descriptor is MY$MESSAGES and arus$get_user _language returns "GERMAN" as the user's default
language, the complete file specification is:

[SYSTEM$LANGUAGE.SYSTEM$GERMAN.SYSTEM$MESSAGE]MY$MESSAGES.IMAGE

The organization of the system directories and a list of logical names which point to them is presented
in Chapter 35, System Volume Layout and Software Installation.

1.11 Text Formatting

A text formatting capability is provided with Mica. As stated in Section 1.2, the overall goal is to
provide a text formatting capability that addresses internationalization requirements. More specific
goals for this functionality are:

• To move data type and access information out of the formatting control string, placing it with
the arguments instead

• To provide full parameter positioning and formatting capabilities required for full international
ization support

The directives provide:

• Formatting information such as width, radix, and fill

• Positioning information that allows parameters to be positioned differently for different natural
languages

• Special formatting requests such as date and time

• A means of specifying that directives are to be repeated in a controlled fashon

• A means of including text based on parameter value or length

The basic formatting process is to take zero or more parameters and a source string containing
text and formatting directives and produce a resultant string containing the text and parameters
formatted as specified by the directives in the source string.

Status Values, Messages, and Text Formatting 1-25

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

1.11.1 Formatting Directives

A formatting directive is a string that specifies either how a parameter is to be formatted or what
information is to be placed in the resultant string. Formatting directives are specified in the following
form:

%directive[,directive ...]%

In other words, a directive or comma-separated list of directives is enclosed within percent characters
(%).

Table 1-2 describes each formatting directive. In these examples, the following syntax notation is
used:

• "N" is used to represent a number that is the number of the parameter to be formatted using
this directive.

• "W" is used to represent a number that specifies the minimum width of the formatting field. If
the formatted parameter requires more than "W" characters, a larger field is used.

• "Z" indicates that a numeric conversion will be done with leading zeros to fill to the specified
width (leading blanks are used to fill by default).

• "N" may be specified in the format "N .. M" in which case it refers to parameters "N" through "M"
inclusive.

• If only certain bits of the specified parameterCs) are desired, the parameter number may be
followed by:

• [x:yJ-this form indicates that "y" bits starting at bit "x" will be considered.

• [x .. y}-this form indicates that bits "x" through "y" will be considered.

• [..xJ-this form indicates that bits 0 through "x" will be considered.

• [x .. J-this form indicates that bits "x" through the most significant bit of the parameter will
be considered.

These bit forms are only allowed with parameters of type libc_byte_data, libc_ word_data, lib$c_
longword_data, and lib$c_quadword data. See the PRISM Calling Standard for a description of
parameter data types.

\ This is certainly a poor solution to the problem of extracting bits. Ideally, field names should
be used, however, this method provides a usable way to do this, if necessary. \

• "V' is used to represent either a parameter number or a numeric or string constant. Parameter
numbers are specified by a number only. Numeric constants are specified by preceeding the value
with a "#" sign. String constants are enclosed in double quotation marks ("string"). The length
directive returns a value that can be used wherever a numeric constant is allowed.

To better facilitate use of repeated directives, the formatting routine maintains a special internal
parameter number which may be set, incremented, and decremented. This internal parameter num
ber is accessed as if it were parameter number 0 (zero). Upon entry to either the lib$formaCsingle_
string or lib$multiple_strings routine, its value is set to 1. When the internal parameter number
(0) is used in an inserting formatting directive, such as %left% or %binary%, its value is used to
refer to a parameter number. For example, if the directive %left(O)% is specified and the value of the
internal parameter is 5, the 5th parameter would be formatted as a left justified string. When the
internal parameter number is used in a comparison or controlling formatting directive, such as %if%
or %repeat%, its value is used directly.

1-26 Status Values, Messages, and Text Formatting

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

\Note that there are no plans to allow internationalization of the formatting directives themselves.\

Table 1-2: Formatting Directives
Directive 1 Description

decimal(N[: W[Z]]L "RT'1J

hex(N[: W[Z]J)

octal(N[:W[Z]J)

binary(N[: W[Z]J)

date ([N][:F][,ALIGNJ)

time([N][:F][,ALIGNJ)

The parameter is formatted in decimal. For floating point parameters, the
width may optionally be specified as "W.P" where "P" specifies the precision.
The field is zero filled if "Z" is present. Normally, floating point parameters
are formatting with the user's preferred radix point and thousands separator
character. This may be optionally overridden by specifying "RT" as part of
the directive, where "R" is the radix point character and "T" is the thousands
separator character. For example:

%decimal(5:10.2,", .")%

specifies that the 5th parameter is to be formatted in decimal in a field of width
1 0 and a precision of 2. Additionally, the "," character is used to specify the
radix point and the "." character is used as the thousands seperator.

Decimal is the only supported directive for formatting floating point values. For
floating point parameters, the optional brackets used to select certain bits of
a parameter are not allowed.

The parameter is formatted in hexadecimal. The field is zero filled if "Z" is
present. Note that no leading characters indicating hexadecimal formatting
are inserted. Example:

%hex(2)%

specifies that the 2nd parameter is to be formatted in hexadecimal in a field
just large enough to hold the entire value.

The parameter is formatted in octal. The field is zero filled if liZ" is present.
Note that no leading characters indicating octal formatting are inserted.

The parameter is formatted in binary. The field is zero filled if "Z" is present.
Note that no leading characters indicating binary formatting are inserted.

The specified parameter is formatted in date format. If no parameter is sup
plied, the current system date is formatted. 2Normally, the date is formatted
using the user's preferred date format. If ":F" is specified, the date is for
matted using date format "F". See Chapter 58, Application Run-lime Utility
Services for more information on date formats. If "ALIGN" is specified, the
formatting routine will force the date field width to be the maximum produced
by the specified date format. This is useful when text is formatted in columns.

The specified parameter is formatted in time format. If no parameter is sup
plied, the current system time is formatted.2Normally, the time is formatted
using the user's preferred time format. If ":F" is specified, the time is for
matted using time format "P. See Chapter 58, Application Run-lime Utility
Services for more information on time formats. If "ALIGN" is specified, the
formatting routine will force the time field width to be the maximum produced
by the specified time format. This is useful when text is formatted in columns.

ITable 1-3 presents the rules for which parameters and constants are allowed with which directives.

2The lib$formaCsingle_string and lib$formaCmultiple_strings routines use the ARUS date/time formatting services to format
the date and time. These services provide full internationalization capabilities as well as support for multiple date/time
formats. See Chapter 58, Application Run-Time Utility Services for more information.

Status Values, Messages, and Text Formatting 1-27

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

Table 1-2 (Cont.): Formatting Directives
Directive 1 Description

date_time([N][:F:G][,ALIGN]) The specified parameter is formatted in date/time format. If no parameter is
supplied, the current system date and time are formatted. 2 Normally, the date
and time are formatted using the user's preferred date and time formats. If
":F:G" is specified, the date is formatted using date format ifF" and the time
is formatted using time format "G". See Chapter 58, Application Run-Time
Utility Services for more information on date and time formats. If "ALIGN" is
specified, the formatting routine will force the date/time field width to be the
maximum produced by the specified date/time formats. This is useful when
text is formatted in columns.

right(N[:W]) The string parameter is formatted in a right-justified field "W" characters wide.
If the string parameter is longer than "W", it is not truncated.

le{t(N[:W]) The string parameter is formatted in a left-justified field "W" characters wide.
If the string parameter is longer than "W", it is not truncated.

center(N[:W]) The string parameter is centered in a field "W" characters wide. If the string
parameter is longer than "W", it is not truncated.

length(directive) The specified directive is evaluated and the formatted string is returned as
an integer constant. Note that this is the only directive that does not insert
characters into the resultant string. This directive may be used wherever a
numeric constant is allowed.

plural(N[, "zero string"[, "singular This directive is used to control pluralization. The directive allows specification
string"[, "2 string", ... , "n string']]]) of different strings to be inserted into the resultant string for different values

of the specified parameter. The first string corresponds to a value of zero, the
second string to a value of one, the third to a value of two, and so on. The
final string is used for values greater than or equal to "n".

If only the parameter number is supplied, '!I' is used for the singular case and
"s" is used for the zero and more than singular case.

system(item[,item .. .]) Insert the specified system item(s) into the resultant string at this location.

co ntrol (item£, item .. .])

character(V, c)

System items are typically specific to a particular operating system and should
be avoided in cases where format strings are used across multiple systems.
Supported system items on Mica are:

object(N)-the parameter is the id of an object whose name is to be
translated and inserted into the resultant string. If no name exists for the
object, the id is output in hexadecimal.

Insert the specified format control item{s) into the resultant string at this loca
tion. Supported format items are:

tab-insert <tab> character

new_line-new line indicator; for the lib$format_single_string rou
tine, this inserts <carriage_return><lineJeed> characters; for the
lib$formaCmultiple_strings routine, this advances to the next output
string in the resultant string array

form_feed-insert <formJeed> character

Insert the character "c" in the resultant string n times, where n is the value of
the specified parameter or the specified constant.

ITable 1-3 presents the rules for which parameters and constants are allowed with which directives.

2The lib$formaCsingle_string and lib$format_multiple_strings routines use the ARUS date/time formatting services to format
the date and time. These services provide full internationalization capabilities as well as support for multiple date/time
formats. See Chapter 58, Application Run-Time Utility Services for more information.

1-28 Status Values, Messages, and Text Formatting

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

Table 1-2 (Cont.): Formatting Directives
Directive 1 Description

set(V) Set the internal parameter value to the value of the specified parameter or
constant. This is normally used prior to the repeat directive.

increment(NJ) Increment the internal parameter value by the value of the specified param
eter or the specified constant. If "V" is not specified, the constant value 1 is
assumed.

decrement(NJ) Decrement the internal parameter value by the value of the specified param
eter or the specified constant. If "V" is not specified, the constant value 1 is
assumed.

repeat(V, directive[, directive ... J)

text(V)

if(V{op}V,directive[,directiveJ)

Repeat the specified list of directives. The number of times to repeat may
be specified by the value of a parameter or by constant value. The repeat
directive in conjunction with the internal parameter value provides a short way
to specify output of a list of parameters.

Output the specified text string. This is useful in conjunction with the repeat
directive.

Execute the first directive if the operation specified by {op} is true; otherwise,
execute the second directive, if specified. Operations compare the value of the
first specified parameter or constant with the second parameter or constant.
The following comparison operations are supported:

Operation Description

true if the first parameter or constant is equal to the second
parameter or constant

<> true if the first parameter or constant is not equal to the second
parameter or constant

< true if the first parameter or constant is less than the second
parameter or constant

> true if the first parameter or constant is greater than the second
parameter or constant

<= true if the first parameter or constant is less than or equal to the
second parameter or constant

>= true if the first parameter or constant is greater than or equal to
the second parameter or constant

ITable 1-3 presents the rules for which parameters and constants are allowed with which directives.

Status Values, Messages, and Text Formatting 1-29

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

Table 1-2 (Cont.): Formatting Directives
Directive 1 Description

case (V, {op}V:directive
& (op}V:directive, .. .])

Case on value. The value of the first parameter or constant is compared
sequentially with each other parameter or constant according to the specified
operator {op}. If the comparison is true, the directive is executed and the
comparisons stop. The table below lists the supported comparison operations:

Operation Description

true if the first parameter or constant is equal to the specified
parameter or constant

<> true if the first parameter or constant is not equal to the specified
parameter or constant

< true if the first parameter or constant is less than the specified
parameter or constant

> true if the first parameter or constant is greater than the specified
parameter or constant

<= true if the first parameter or constant is less than or equal to the
specified parameter or constant

>= true if the first parameter or constant is greater than or equal to
the specified parameter or constant

Two percent signs (%%) are used to insert a single percent sign at the current
position in the resultant string.

ITable 1-3 presents the rules for which parameters and constants are allowed with which directives.

\Are justification directives needed for entities other than strings (that is, numeric values, etc.)? If
so, the direct formats could be enhanced to indicate such justification (use of "R" or "L", for example).
This would eliminate the need for the "right" and "left" directives in favor of a more general "string"
directive. \

1.11.2 Formatting Text

Two routines are provided to support the text formatting directives described above. These are
described in the following sections.

1.11.2.1 Single String Text FormaHing-lib$formaLsingJe_string

The lib$format_single_string routine provides text formatting support producing a single resultant
string. The interface to this procedure is:

PROCEDURE lib$format_single_string (

Parameters:

IN source_string: string(*);
OUT resultant_string: varying_string(*);
OUT resultant length : integer;
IN parameters-: exec$argument_array(*) OPTIONAL;
IN language : string(*) OPTIONAL;
) RETURNS status;

1-30 Status Values, Messages, and Text Formatting

Parameter

source_string

resultant_string

resu Ita nt_Ie ngth

parameters

language

Description

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

Supplies the source string containing text and formatting directives.

Returns the resultant formatted string.

Returns the number of characters used in the resultant string.

Optionally supplies an array of parameters to be formatted into the resultant string.
The data type exec$argument_array is an array of exec$argument_descriptor.
The data type exec$argumenCdescriptor is defined in the PRISM Calling Stan
dard.

An optional string that supplies a language name to override the current default lan
guage. Language is used to determine language-dependent formats for parameters
formatted into the message string.

The lib$formaCsingle_string routine copies text from the source string into the resultant string,
formatting parameters as formatting directives are encountered.

1.11.2.2 Multiple String Text Formatting-lib$formaCmultiple_strings

The lib$format_multiple_strings routine provides text formatting support producing multiple resul
tant strings. The interface to this procedure is:

PROCEDURE lib$format multiple strings (
IN sourc;_string 7 string(*);
IN array size : integer;

Parameters:

Parameter

source_string

array_size

string_size

resultant_string

string_Ie ngths

strings_used

parameters

language

OUT resultant_string: lib$string_array(array_size);
OUT string lengths: ARRAY [I .. array size] of integer;
OUT string~_used : integer; -
IN parameters : exec$argument array(*) OPTIONAL;
IN language : string(*) OPTIONAL;
} RETURNS status;

Description

Supplies the source string containing text and formatting directives.

Supplies the number of strings in the resultanCstring array.

Supplies the length of each string in the resultanCstring array.

Returns the resultant formatted strings.

Returns the length of each of the resultant formatted strings.

Returns the number of strings in the array that were actually used in the formatting.

Optionally supplies an array of parameters to be formatted into the resultant string.
The data type exec$argument_array is an array of exec$argumenCdescriptor.
The data type exec$argument_descriptor is defined in the PRISM Calling Stan
dard.

An optional string that supplies a language name to override the current default lan
guage. Language is used to determine language-dependent formats for parameters
formatted into the message string.

The lib$format_multiple_strings routine copies text from the source string into the resultant_string
array, formatting parameters as formatting directives are encountered. Formatting begins by using
the first string in the array. When a new_line control item is encountered, formatting continues with
the next element in the array.

Status Values, Messages, and Text Formatting 1-31

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

1.11.2.3 Allowable Parameter and Constant Types for Directives

\ The current version of the PRISM Calling Standard does not include a list of supported data types
for the exec$argument_descriptor data type. Following is a list of data types required for the text
formatting routines:

lib$data types : (
lib$-;_integer, Signed integer

\

lib$c large integer,
lib$c=:real,-
lib$c double,
lib$c=:byte_data,
lib$c word data,
lib$c=:long;ord_data,
lib$c quadword data,
lib$c=:string, -
lib$c varying string,
lib$c=:asciz_string,
lib$c absolute time,
lib$c=relative=:time
) ;

Signed 64-bit integer
32-bit real
64-bit real
Byte array
Word array
Longword array
Quadword array
Fixed length string
Varying string
ASCIZ string
128-bit absolute time
128-bit relative time

The following is a list of which parameter and constant data types are allowed for each formatting
directive:

Table 1-3: Data Type Rules for Formatting Directives
Directive

decimal

hex

octal

binary

date

time

date_time

left, right, center

length

plural

system

control

character

set, increment, decrement

repeat

text

if, case

Allowable Data Types for Parameters and Constants

lib$c_integer, lib$c_large_integer, libc_real, libc_double
lib$c_integer, lib$c_large_integer, libc_byte_data, libc_word_data, lib$c_
lo ngword_data, lib$c _quadword _data, 1 ib$c _string, lib$c _varying_string,
lib$c _asciz _string
lib$c_integer, lib$c_large_integer, libc_byte_data, libc_word_data, lib$c_
longword_data, lib$c_quadword_data
lib$c_integer, lib$c_large_integer, libc_byte_data, libc_word_data, lib$c_
longword_data, lib$c_quadword_data
lib$c_absolute_time
lib$c_absolute_time, lib$c_relative_time
lib$c _absol ute _time, lib$c _relative _time
string constant, libc_string, libc_varying_string, lib$c_asciz_string
N/A-argument must be decimal, hex, octal, binary, date, time, date_time, left, right,
center, plural, system, control, character, text, if, or case formatting directive

lib$c_integer
System items are of type libc_byte_data, libc_word_data, lib$c_longword_
data, lib$c_quadword_data, or ??

N/A-arguments are keywords

positive integer constant, lib$c_integer
signed integer constant, lib$c_integer
positive integer constant, lib$c_integer
string constant, libc_string, libc_varying_string, lib$c_asciz_string
signed integer constant, real constant, string constant, lib$c_integer, lib$c_large_
integer, libc_real, libc_double, libc_string, libc_varying_string, lib$c_
asciz_string

1-32 Status Values, Messages, and Text Formatting

1.11.2.4 Examples

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

Following are several examples using the formatting capabilities described above. In all cases, En
glish is assumed to be the current language.

Control string: "Integer divide by zero at PC=%%x%hex(l)%, PSL=%%x%hex(2)%"
Parameters: %x4782a7, %x4003a2
Formatted string: "Integer divide by zero at PC=%x4782A7, PSL=%x4003A2"

Control string: "Undefined symbol %left(l)% referenced in "+
"psect %left(2)%, offset %%x%hex(3)% in module "+
"%left(4)%, file %left(5)%"

Parameters: FROBOTZ, MY$$PSECT, %x4896b, MY MODULE, MY.OBJ
Formatted string: "Undefined symbol FROBOTZ-referenced in

psect MY$$PSECT, offset %x4896B in module
MY_MODULE, file MY.OBJ"

Control string: "%decimal(l)% file%plural(l,"s were"," was","s were")% deleted"
Parameter: 10
Formatted string: "10 files were deleted"
Parameter: 1
Formatted string: "1 file was deleted"

Control string: "%set(#2),repeat(1, (left(O)," +
"if(O<l:text(",I),text(" 1I»,increment)% deleted"

Parameters: 4, file1.dat, another. file, third. one, last.file
Formatted string: "file1.dat, another. file, third.one, last. file deleted"

Control string: "Current system date and time is %system(date_time)%"
Parameters: none
Formatted string: "Current system date and time is 18-Dec-1986, 08:42.45"

Control string: "We shipped %decimal(l)% units in the last %decimal(2)% months." +
"%control(new_line)%" +

%character(length(decimal(l»,-)%"
Parameters: 41000, 6
Formatted strings: "We shipped 41,000 units in the last 6 months."

1.12 Dependencies

The implementation of the status and message support described in this chapter depends on certain
capabilities provided by other system components. These dependencies are listed below.

• Message Compilation Facility

• Linker

• Image Activation Mechanism

• Condition Handling Data Structures

• Client Context ServerlMica Job Controller Logical Name Transfer

Status Values, Messages, and Text Formatting 1-33

Digital Equipment Corporation - Confidential and Proprietary

For Internal Use Only

Mica Working Design Document
Object Module And Image File Format

Revision 1.4

26-February-1988

Issued by:

Kim Peterson

TABLE OF CONTENTS

CHAPTER 1 OBJECT MODULE AND IMAGE FILE FORMAT. 1-1

1.1 Overview. 1-1
1.1.1 Requirements. 1-1
1.1.2 Description .. 1-2
1.1.3 Dependencies . 1-4

1.2 Module Format. 1-4
1.2.1 System Identification. 1-6
1.2.2 Module Type ... 1-7
1.2.3 Module Block Size. 1-7
1.2.4 Module Name Table. 1-7

1.2.4.1 Atomic Name Entry. 1-9
1.2.4.2 Compound Name Entries . 1-9

1.2.5 Module Item List .. 1-11
1.2.5.1 Item List Entry. .. 1-12
1.2.5.2 Defined Module Item Codes. .. 1-14
1.2.5.3 Defined Object Module Item Codes .. 1-14
1.2.5.4 Defined Image File Item Codes 1-15

1.3 Object Module and Image File Data Structures 1-16
1.3.1 Code Section ... 1-16
1.3.2 Data Section ... 1-17
1.3.3 Global Symbol Table 1-17

1.3.3.1 Module .. 1-18
1.3.3.2 PSECT Definition Entry. .. 1-19
1.3.3.3 FORTRAN Common Definition 1-22
1.3.3.4 PSECT Definition and Symbol Reference Entry. 1-23
1.3.3.5 Global Symbol Reference Entry. .. 1-25
1.3.3.6 Global Symbol Or PSECT Reference Entry. .. 1-26
1.3.3.7 Global Symbol Definition 1-27

1.3.3.7.1 Absolute Global Symbol Definition with Longword Value 1-28
1.3.3.7.2 Absolute Global Symbol Definition with Quadword Value 1-28
1.3.3.7.3 Relocatable Symbol Definition with Longword Value 1-29
1.3.3.7.4 Relocatable Symbol Definition with Quadword Value 1-30
1.3.3.7.5 Global Procedure Definition Entry with Longword Value. 1-31
1.3.3.7.6 Global Procedure Definition Entry with Quadword Value 1-32
1.3.3.7.7 Global Transfer Definition Entry 1-34

1.3.4 Target Record. .. 1-35
1.3.5 Match Record. .. 1-36
1.3.6 Entity Consistency Check Table. .. 1-37

1.3.6.8 Entity Check with Binary Identification 1-38
1.3.6.9 Entity Check with ASCII Identification. .. 1-40

1.3.7 Debug Symbol Table 1-41

iii

1.4 Data Structures Specific to Object Modules .. 1-41
1.4.1 Linker Directive Table .. 1-41
1.4.2 Data Relocation Table .. 1-41

1.4.2.1 Global Symbol and PSECT Relocations .. 1-42
1.4.2.2 Procedure Relocations 1-44
1.4.2.3 FORTRAN String Argument Coercion. .. 1-45
1.4.2.4 Store PSECT Size. .. 1-48
1.4.2.5 Store TLS Offset .. 1-49

1.5 Data Structures Specific to Image Files. .. 1-50
1.5.1 Image Section Descriptor Table .. 1-51
1.5.2 Thread Local Storage Relocation Table .. 1-53
1.5.3 Local Relocation Table .. 1-53
1.5.4 External Relocation Table. .. 1-54
1.5.5 Deferred Activation Table. .. 1-54
1.5.6 Immediate Activation Table 1-56
1.5.7 Transfer Vector Table. .. 1-57
1.5.8 Initialization Routine Table. .. 1-58
1.5.9 Debug Module Table 1-58

1.6 Linker .. 1--60
1.6.1 Symbol References ... 1--60

1.6.1.1 Building an Executable Image with Object Modules. 1--60
1.6.1.2 Building a Shareable Image with Object Modules 1--60
1.6.1.3 Resolving Procedure Symbols from Shareable Images. 1--61
1.6.1.4 Resolving Data Symbols from Shareable Images. 1--62

1.6.2 Overlaid PSECT References 1--62
1.6.2.1 Building an Executable Image with Object Modules. 1--62
1.6.2.2 Building a Shareable Image with Object Modules 1--63
1.6.2.3 Referencing an Overlaid PSECT in a Shareable Image. 1--63

1.6.3 Virtual Address Preassignment for Shareable Images 1--63
1.6.4 Image Header Mapping .. 1--63

1. 7 Open Issues. 1--63

GLOSSARy Glossary-l

INDEX

FIGURES
1-1 Object Module and Image File Format . 1-3
1-2 Module Header Layout 1-5
1-3 Module Name Table Entry Layout/Atomic Names. 1-9
1-4 Module Name Table Entry Layout For Compound Names 1-10
1-5 Module Item List Entry Layout with Offset Format 1-12
1-6 Module Item List Entry Layout with Nonoffset Format. 1-13
1-7 GST Module Entry .. 1-18

iv

1-8
1-9
1-10
1-11
1-12
1-13
1-14
1-15
1-16
1-17
1-18
1-19
1-20
1-21
1-22
1-23
1-24
1-25
1-26
1-27
1-28
1-29
1-30
1-31
1-32
1-33

GST PSECT Definition Entry
GST PSECT Definition/Symbol Reference Entry ..
GST Global Symbol Reference Entry ...
GST Global Symbo1JPSECT Reference Entry .
GST Absolute Global Symbol Definition Entry with Longword Value
GST Absolute Global Symbol Definition Entry with Quadword Value
GST Global Symbol Definition Entry with Longword Value
GST Global Symbol Definition Entry with Quadword Value
GST Global Procedure Definition Entry
GST Global Procedure Definition Entry, Quadword Value
GST Global Transfer Definition Entry
Target Record
Match Record .. .
Entity Check with Binary Identification
Entity Check with ASCII Identification
DRT Global Symbol and PSECT Entry .
DRT Procedure Entry
DRT FORTRAN String Entry
DRT PSECT Size Entry
DRT TLS Index Entry
Image Section Descriptor
Activation Table Entry.
Transfer Vector Table
Debug Module Table Entry.
Debug Module Table Entry Item
Image Autoload Vector

1-20
1-24
1-25
1-26
1-28
1-28
1-29
1-30
1-31
1-33
1-34
1-36
1-37
1-38
1-40
1-43
1-44
1-46
1-48
1-49
1-52
1-55
1-57
1-58
1-59
1-61

v

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

Revision History
Date

26-Mar-1986

6-May-1986

13-May-1986

13-Jun-1986

1-Aug-1986

27-Jan-1987

8-Mar-1987

8-Sep-1987

2-0ct-1987

20-Nov-1987

26-Jan-1988

28-Jan-1988

iv

Revision Number

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

Author/Summary of Changes

B. Schreiber / Original

B. Schreiber / Name table, etc.

B. Schreiber / Changes from review

B. Schreiber / Compiler status

B. Schreiber / Changes from review

B. Schreiber / Remove SYSTEM_SERVICE, add lengths
to all structures

B. Schreiber / ISO message section, remove global
ISOs, fixup table descriptions

B. Schreiber / Support for thread local storage

K. Peterson / 64-bit revisions, breakout generic mod
ule format from object module/image file specific format,
make goals explicit, abbreviate module-local and inter
nal module-local symbols

K. Peterson / Editorial changes, minor data structure
changes, explicit rules for module name table, universal
symbol support added to GST, added linker checking of
entity consistency check table, optimized image file data
structures for the target instruction size, and positive
integers and large integers changed to longword and
quadword

K. Peterson / Final review draft; editorial corrections; ad
dition of virtual address size and count of demand zero
sections in image header; incorporate semantics agreed
to at Nov 1987 calling standard committee for initializa
tion routines; fuller specification of linker directive table;
elimination of object module's initialization routine table;
addition of global/local PSECT attribute in GST PSECT
definition; addition of PILLAR declarations for autoload
data structures

K. Peterson / ECO RKP008 / Incorporated support for
qualified names in the module name table

K. Peterson / ECO RKP009 / Removal of references to
environments; null entry in global symbol table; support
for new calling sequence in global symbol table, data re
location table, image activation table, and autoload vec
tor; expand size of module header system id and module
type; modify field names for consistency and translation
to BLISS; addition of facility code names; modification
of data relocation TLS entries

Date Revision Number

25-Feb-1988 1.4

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

Author/Summary of Changes

K. Peterson / ECO RKP022 / Restriction on compound
name ordering; prohibit duplicate names; word align
name table; change name_size to entry_size in name
table entry; add name_index field to all entries in GST;
remove null entry from GST; add GST entry for referenc
ing symbols and psects; change common symbol def to
own entry in GST and allow it to reference symbols; ex
plicitly define psect attributes for FORTRAN common;
change semantics of SHARE psect attribute; add gen
eral psect initialization mechanism; redo TLS support;
add field prefixing for BLISS; modify autoloading and
ECC; specify rules for object module layout

v

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

CHAPTER 1

OBJECT MODULE AND IMAGE FILE FORMAT

1.1 Overview

1.1.1 Requirements

There are three requirements for this chapter:

• The chapter specifies the image file format required by the image activator.

• The chapter specifies the object module format required by the linker and the object module
loader.

• The chapter specifies the generic module format required by the librarian.

The first two requirements are related to each other because object modules share the same format as
image files. The first two requirements are related to the third requirement because object modules
and image files are examples of the types of files maintained in libraries.

These formats were designed for the following goals:

• The format allows clean extensions in future releases to add functions.

• The format allows for files greater than four gigabytes.

• The module format allows different types of modules to be mixed in one library.

• The object module format allows object modules to be run without linking.

• The object module format allows separate object modules to be combined into one object module.

• The image file format allows fast image activation.

The increasing division of programs into separate object modules leads to an increasing number of
object modules, with a concomitant increase in overhead during linking. Combining separate modules
into a single module is a means of controlling this overhead.

The tendency in VAXJVMS has been to add functionality to object modules and image files, resulting
in larger files. If this trend towards larger files continues, it will become desirable to separate the
different parts of an object module or image file into separate files, and yet maintain them in a
common library. A common module format allows for this separation. A common module format also
allows for a single implementation of the librarian.

The data structures in this chapter allow for both 64-bit addresses, and file sizes greater than four
gigabytes. Systems that do not support 64-bit addresses, or file sizes greater than four gigabytes,
must have the upper longword of these fields zero to ensure that the values stored in the fields are
valid 64-bit values.

Object Module and Image File Format 1-1

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

1.1.2 Description

An object module and an image file are both examples of a module. A module can define names,
refer to names, and be in a library. An object module and an image file share additional similarities
because both can be activated, and because image files are created from object modules.

The primary users of object modules are compilers, the linker, and the loader. The primary users of
image files are the linker, the debugger, and the image activator. Generally, references to the linker
refer to both the linker and the loader. The loader is activated when an object module is run without
first linking it.

All modules have a common header format and a common name table format so that a common
librarian utility can be used for different types of libraries. All modules contain within their header
an index to their different sections. Different types of modules may contain different types of sections,
but the module header contains an index that provides a means of accessing sections specific to a
module type.

Module specific sections that are common to both object modules and image files are:

• Global symbol table

• Debug symbol table

• Entity consistency check table

• Data sections

• Code sections

The object module specific sections are:

• Linker directive table

• Data relocation table

Image file specific sections are:

• Image section descriptor table

• Image relocation tables

• Activation tables

• Transfer vector table

• Debug module table

1-2 Object Module and Image File Format

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

Figure 1-1: Object Module and Image File Format

Object Module and Image File Format 1-3

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

1.1.3 Dependencies

• Object module format affects compiler development.

• Image file format affects image activation.

• Image file format affects debugger development.

The requirements of compilers, image activation, and debuggers are reflected in this chapter.

1.2 Modu Ie Format

All PRISM modules are constructed as block-oriented files. The file attributes are fixed-length 512-
byte records (similar to library files and image files on VMS). All PRISM modules have a common
module header, which is at the beginning of the first block of the module (zero byte offset from
the starting virtual block number). The module header contains sufficient information to permit all
consumers of the module to locate the various other sections and tables within it. The module header
consists of the following fields:

• Type

• System identification

• Module size

• Module name table offset

• Module name table size

• Module specific item list offset

• Module specific item list size

The module header has the following declaration and layout:

! \BLISS uses prefix MODULE$HDR \
module$header : RECORD -

system_identifier : longword;
module type : word;
module-block size quadword;
name table offset : quadword;
name=table=size : quadword;
item list offset : quadword;
item=list=size : quadword;
END RECORD;

\ To fully specify record field names, a prefix is specified for each record for use with languages like
BLISS. The prefix is added to the record's field name as part of the automatic translation of PILLAR
declarations to BLISS. \

1-4 Object Module and Image File Format

Figure 1-2: Module Header Layout

3
1

1 1
6 5

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

o
+---+
I SYSTEM IDENTIFIER I
I I
+-------------------------------+-------------------------------+
I SBZ I MODULE TYPE I
I I I
+-------------------------------+-------------------------------+
I MODULE BLOCK SIZE I
I I
+
I
I

+
I
I

+---+
I NAME TABLE OFFSET I
I I
+
I
I

+
I
I

+---+
I NAME TABLE SIZE I
I I
+
I
I

+
I
I

+---+
Figure 1-2 Cont'd. on next page

Object Module and Image File Format 1-5

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

Figure 1-2 (Cont.): Module Header Layout
I ITEM LIST OFFSET
I
+
I
I

+
I
I

+---+
I ITEM LIST SIZE I
I I
+
I
I

+
I
I

+---+
The following types are used throughout this document:

module$entry_type : byte;
module$entry size: integer[O .. 65535];
module$entry-size word: module$entry size[..] SIZE(word);
mOdule$string siz; : integer[O .. 65535];
module$string-size word: module$string size[..] SIZE(word);
module$name size :-integer[O .. 255]; -
module$name=size_byte : module$name_size[..] SIZE(byte);

\ The following types are used only as a convenience in this document:

unsigned_byte: integer[O .. 255] SIZE(byte);
unsigned_word: integer[O .. 65535] SIZE(word);

Also as a convenience in this document, Pillar layouts are not specified for data structures laid out
in figures. All such data structures will be declared with Pillar layouts in their definition modules to
correspond with their figures. \

1.2.1 System Identification

The SYSTEM_IDENTIFIER field contains the identification MODULE$C_PRISM_IDENTIFIER.
This identification is used to distinguish PRISM objects and images from VMS and ULTRIX objects
and images.

In VMS, the first word of an object module is the RMS byte count of the first record in the object
module. The third byte is the record type (symbolically, OBJ$B_RECTYP). In order to give PRISM
the ability to differentiate VMS object modules from PRISM object modules and images, the third
and fourth bytes of MODULE$C_PRISM_IDENTIFIER are distinct from the values used in VMS
object modules.

Because VMS object modules are variable-length record-oriented files, while PRISM object modules
and images are fixed-length 512-byte records, object modules could be differentiated by their record
attributes. However, since this is not also true for images, the SYSTEM_IDENTIFIER field is used.

In ULTRIX, the first longword of an image is used to identify image types. The value MODULE$C_
PRISM_IDENTIFIER is distinct from the values used in ULTRIX.

\ The values for SYSTEM_IDENTIFIER can be chosen so that they cannot be mistaken for part of
ULTRIX magic information. The values that may be mistaken for ULTRIX magic information are
those that can be interpreted as printable ASCII characters (which are used by ULTRIX to indicate
shell scripts). \

\Note that SYSTEM_IDENTIFIER identifies only the target system; it does not identify the system
that created the module. \

1-6 Object Module and Image File Format

1.2.2 Module Type

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

The MODULE_TYPE field specifies the type of module described by the header. This chapter de
scribes the following types of modules in detail:

• MODULE$C_OBJECT_MODULE, which specifies an object module

• MODULE$C_EXECUTABLE_IMAGE, which specifies an executable image

• MODULE$C_SHAREABLE_IMAGE, which specifies a shareable (linkable) image

1.2.3 Module Block Size

The MODULE_BLOCK_SIZE field specifies the total number of virtual blocks in the module. This
allows modules to be concatenated without combining them in a single module.

1.2.4 Module Name Table

The module name table contains all of the module's names that can be accessed by a consumer of
the module. In the case of an object module, this includes all global symbols and PSECTs (program
sections) defined or referenced in the module.

The NAME_TABLE_OFFSET field specifies the offset of the module's name table in bytes from the
beginning of the module. The NAME_TABLE_SIZE field specifies the size of the module's name table
in bytes. The module name table is not at a fixed location within the module in order to optimize the
location of the module name table for the specific module.

Names are gathered in one general table to represent them independently of any module-type-specific
data structure. This general table provides a clean interface (which VMS does not have) between
librarian functions and module specific functions; for instance, in VMS, object module names are
contained within the global symbol table, which is specific to object modules. Inserting an object
module into a library requires an understanding of object module data structures.

The module name table supports names that are qualified by other names in the module name table
through the use of compound names. The module name table defines two types of names: atomic and
compound. Atomic names define the string of characters that make up a name. Compound names
are an ordered tuple of atomic names. The linker and librarian handle compound names as they
handle atomic names; for example, the librarian would use a compound name as a key to a module
just as it would use an atomic name as a key.

The module name table is a byte-stream-oriented table with word-aligned entries, each entry rep
resenting a name. Each entry contains a byte that specifies the format of the entry, the size of the
entry in bytes, and the library index(es) of the name, if the name is a key in a library. The name can
be either a library key, or invisible in a library. If the name is a library key, it can be in any of the
library's indexes. Each entry for an atomic name also contains the name string itself. Each entry for
a compound name contains instead the indexes to two other entries in the module name table. The
first entry indexed can be either atomic or compound, but the second entry indexed must be atomic.

\The type field would be used for future extensions to the name table for such things as multiple
byte character sets. To make such extensions as easy as possible, the meaning of the value in the
length field is based upon its entry's type. \

The following rules apply to the module name table:

• Atomic names cannot contain the NUL character (numeric value zero).

• The maximum length of atomic names is 255.

• The first name in the module name table has an index of one. The index is incremented by one
for each subsequent name.

• The indexes used in a compound name entry must be less than the index of the compound name's
entry. In other words, a compound name entry cannot make a forward reference.

Object Module and Image File Format 1-7

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

• The maximum number of atomic names in a compound name is 255.

• The module name table can be sorted or unsorted.

• The module name table can not contain duplicate names.

• Case-sensitive names retain their case in the module name table, but case-insensitive names
must be lowercase.

• A name's index(es) is a matter of convention among the users of the module. The convention for
object modules and image files is that the first index keys are module names, and the second
index keys are global and universal symbol definitions.

\Case-insensitive names are lowercased to allow case-insensitive languages to match the ULTRIX
case conventions naturally. \

The name table is word aligned, and each entry in it has the following declaration:

module$name table type : (
module$c name-atomic,
module$c-name-compound byte,
module $c-name-compound-word ,
module $ c=name=compound=long
) ;

module$library index : (
module$c_library_indexl,
module$c library index2,
module$c=library=index3,
module$c library index4,
module$c-library-index5,
module$c-library-index6,
module$c=library=index7,
module$c_library_index8
) ;

\BLISS uses prefix MODULE$NTE \
module$name table entry (-

entry_type: ;odule$name_table_type[.. J SIZE(byte);
entry_size : unsigned_byte): RECORD
CAPTURE entry type, entry size;
library_index-: SET modul;$library_index[.. J SIZE(byte);
VARIANTS

CASE entry_type
WHEN module$c_name atomic THEN

name string: string(entry_size-4);
WHEN module$c name compound byte THEN

byte_inde~l : unsigned_byte;
byte index2 : unsigned byte;

WHEN mOdule$c_name_compound_word THEN
word_indexl : unsigned_word;
word_index2 : unsigned_word;

WHEN module$c_name_compound_long THEN
long_indexl longword;
long_index2 : longword;

END VARIANTS;
END RECORD;

1-8 Object Module and Image File Format

1.2.4.1 Atomic Name Entry

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

Atomic name entries contain the string that defines the atomic name. The layout of atomic names is
shown in Figure 1-3.

Figure 1-3: Module Name Table Entry Layout/Atomic Names

1
5 8 7 o

+---------------+---------------+
I LIBRARY_INDEX I ENTRY_TYPE I
+---------------+---------------+
I ENTRY_SIZE I
+-------------------------------+
I NAME_STRING I

• ENTRY_TYPE is the value MODULE$C_NAME_ATOMIC.

• LIBRARY_INDEX is the set of all key indexes in the library in which that name occurs. MOD
ULE$C_LIBRARY_INDEX1 is the index where the module names reside in an object module
library. MODULE$C_LIBRARY_INDEX2 is the index where the global names reside in an ob
ject module library. The other indexes are not used in an object module library. If no bits are
set, the name is not a library key and is not visible in a library.

• ENTRY_SIZE is the size of the entry itself. The size of the name string is ENTRY_SIZE-4.

• NAME_STRING is the characters that make up the name. Name look-up for object modules and
image files is case-sensitive.

1.2.4.2 Compound Name Entries

Compound name entries contain the indexes to two other name entries that define the compound
name. Compound names can be nested, so that either or both of the indexes can refer to other
compound names. Compound name entries have the layouts shown in Figure 1-4.

Object Module and Image File Format 1-9

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

Figure 1-4: Module Name Table Entry Layout For Compound Names

1
5 8 7 o

+---------------+---------------+
I LIBRARY_INDEX I ENTRY_TYPE I
+---------------+---------------+
I ENTRY_SIZE I
+---------------+---------------+
I BYTE_INDEXl I BYTE_INDEX2 I
+---------------+---------------+

1
5 8 7 o

+---------------+---------------+
I LIBRARY_INDEX I ENTRY_TYPE I
+---------------+---------------+
I ENTRY_SIZE I
+-------------------------------+
I WORD_INDEXl I
+-------------------------------+
I WORD_INDEXl I
+-------------------------------+

Figure 1-4 Cont'd. on next page

1-10 Object Module and Image File Format

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

Figure 1-4 (Cont.): Module Name Table Entry Layout For Compound Names

1
5 8 7 o

+---------------+---------------+
I LIBRARY_INDEX I ENTRY_TYPE I
+---------------+---------------+
I ENTRY_SIZE I
+-------------------------------+
I LONG_INDEXl I
+
I LONG_INDEXl

+
I

+-------------------------------+
I LONG_INDEX2 I
+
I LONG_INDEX2

+
I

+-------------------------------+
• ENTRY_TYPE is the value MODULE $C_NAME_COMPOUND_BYTE , MODULE$C_NAME_

COMPOUND_WORD, or MODULE$C_NAME_COMPOUND_LONG.

• LIBRARY_INDEX is the set of all key indexes in the library in which that name occurs. MOD
ULE$C_LIBRARY_INDEXI is the index where the module names reside in an object module
library. MODULE$C_LIBRARY_INDEX2 is the index where the global names reside in an ob
ject module library. The other indexes are not used in an object module library. If no bits are
set, the name is not a library key and is not visible in a library.

• ENTRY_SIZE is six for MODULE$C_NAME_COMPOUND_BYTE, eight for MODULE$C_NAME_
COMPOUND_WORD, and twelve for MODULE$C_NAME_COMPOUND_LONG.

• BYTE_INDEXl, WORD_INDEXl, and LONGWORD_INDEXI are each an index to a name that
makes up the first part of the current name. The indexed name can be an atomic name or a
compound name.

• BYTE_INDEX2, WORD_INDEX2, and LONGWORD_INDEX2 are each an index to a name that
makes up the last part of the current name. The indexed name can only be an atomic name.

1.2.5 Module Item List

Modules can contain any number of data structures that describe the specific module layout for users
of that module. These data structures are themselves described within the module item list. Each
item list entry contains the length of the item entry, the facility that defines the item, the type of
item within the facility, flags that define the format of the entry, and optionally the offset and length
of the data structure, if it is not contained within the item list entry.

The ITEM_LIST_OFFSET field specifies the offset of the module's item list in bytes from the beginning
of the module. The ITEM_LIST_SIZE field specifies the size of the module's item list in bytes. The
module's item list is not at a fixed location within the module in order to optimize the location of the
item list for the specific module.

Object Module and Image File Format 1-11

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

1.2.5.1 Item List Entry

Each entry in the item list is quadword aligned and has the following declaration and layouts:

! \BLISS uses prefix MODULE$ILE \
mOdule$item_list_entry(-

item entry size : unsigned word;
offs;t_for;at : bit) : RECORD

CAPTURE item entry size,offset format;
item_facility : wo~d; -
item_code : word;
item_flags: SET integer[O .. 7] SIZE(byte);
VARIANTS CASE offset format

WHEN true THEN
item offset : quadword;
item size : quadword;

WHEN false THEN
item specific:

quadword_data«item_entry_size-l)/8);
END VARIANT S;

END RECORD;

Figure 1-5: Module Item List Entry Layout with Offset Format

3
1

2 2
4 3

111
765 o

+---------------+---------------+-------------------------------+
1 ITEM FACILITY 1 ITEM ENTRY SIZE 1

1 I 1

+---------------+-------------+-+-------------------------------+
I ITEM~LAGS I SBZ 101 ITEM CODE 1

I 1 IFI 1
+---------------+-------------+-+-------------------------------+
I ITEM SIZE 1

1 I

+
1

1

+
I
I

+---+
1 ITEM OFFSET I

1 I

+
1

I

+
1

I
+---+
Figure 1-5 Cont'd. on next page

1-12 Object Module and Image File Format

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

Figure 1-5 (Cont.): Module Item List Entry Layout with Offset Format

Figure 1-6: Module Item List Entry Layout with Nonoffset Format

3
1

2 2
4 3

111
765 o

+---------------+---------------+-------------------------------+
I ITEM FACILITY I ITEM ENTRY SIZE I

I I I

+---------------+-------------+-+-------------------------------+
I ITEM~LAGS I SBZ 101 ITEM_CODE I

I I I I I

+---------------+-------------+-+-------------------------------+
I file-specification or item-specific data I
I I

• ITEM_ENTRY_SIZE contains the size (in bytes) of the entire entry, including the words ITEM_
ENTRY_SIZE, ITEM_FACILITY, ITEM_CODE, and ITEM_FLAGS. This field has the value of
24 when OFFSET_FORMAT is set. Note that the size of the item list entry does not include any
padding used to maintain the quadword alignment of the entries.

• ITEM_FACILITY contains the facility code. Facility codes are described in Chapter 3, Status
Values, Messages, and Text Formatting. The following facilities each have their own unique
facility code and are defined in this chapter:

Generic module facility, which has names prefixed by MODULE$ and has the facility code
MODULE$C_FACILITY.

Object module facility, which has names prefixed by MODOBJ$, and also includes items
common with image files and has the facility code MODOBJ$C_FACILITY.

Image file facility, which has names prefixed by MODIMG$ and has the facility code MOD
IMG$C_FACILITY.

• ITEM_CODE contains the item code. The item code assignments are facility specific. Item
codes specific to the module, object module, and image file facilities are listed in Section 1.2.5.2,
Section 1.2.5.3, and Section 1.2.5.4. The following sections describe the data structures associated
with many of the listed items.

• OFFSET_FORMAT (OF) when set specifies that theitem-specific data is in offset format. Offset
format specifies the size (in bytes) of the item-specific information within the current module,
and the offset (in bytes) from the beginning of the module to the data. When this flag is set,
the value of the ITEM_ENTRY_SIZE field must be 24. The layout of the item entry is shown in
Figure 1-5.

• \File format is a possible extension to the module format after FRS.

FILE_FORMAT (bit 17 in the second longword) when set specifies that the item-specific data is
contained within the specified file. If the OFFSET_FORMAT flag is clear, the file specification
is within the item list entry. If the OFFSET_FORMAT flag is set, the file specification for the

Object Module and Image File Format 1-13

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

item-specific data is of the size and at the offset specified by the ITEM_SIZE and ITEM_OFFSET
fields. Interpretation of information within the file is facility dependent.\

• ITEM_FLAGS contains item-specific flags. The following item-specific flags are specified in this
chapter:

MODOBJ$C_ WEAK_TRANSFER_ADDRESS is specific to object modules. If it is set, the
transfer address specified in the item list entry is weak. Only valid on MODOBJ$C_
ACTIVATE_INFORMATION entry.

MODIMG$C_DEBUG_FLAG. The image was linked /DEBUG. When this image is run, the
debugger is started unless RUN INODEBUG was specified. Only valid on MODIMG$C_
IMAGE_SECTION entry.

MODIMG$C_ALIGN_FLAG. The image was linked with page alignment less than 64K.
When this image is run, the image activator must check that the page size of the system is
compatible with the page size that the image was linked with. Only valid on MODIMG$C_
IMAGE_SECTION entry.

1.2.5.2 Defined Module Item Codes

The following item codes provide general information and are useful to different types of modules:

• MODULE$C_CREATE_STATUS contains the severity of the creation of the module. This item
is a longword in nonoffset format.

• MODULE$C_ CREATOR_NAME contains a string for identifying the creator of the module. This
would be the compiler's name for object modules, and the linker's name for images. This item is
a string in nonoffset format.

• MODULE$C_ENTITY_CONSISTENCY contains the entity consistency check table, which pro
vides information about the dependencies of this module on other modules. This table is described
in Section 1.3.6. It is in offset format.

• MODULE$C_CPU_TARGET contains the target CPU type, the target's subset of the PRISM
architecture, and the register size. This record is described in Section 1.3.4.

• MODULE$C_CREATION_TIME contains the date and time at which the module was created.
This item is a quad word in nonoffset format.

• MODULE$C_MATCH contains the segment match control along with the major and minor iden
tifier specified by the user when the module was created. This record is described in Section 1.3.5.

• MODULE$C_NAME contains a string that can be supplied to identify the module. This item is
in nonoffset format.

• MODULE$C_ VERSION contains a string that can be supplied to identify the module version.
This item is in nonoffset format.

1.2.5.3 Defined Object Module Item Codes

The following item codes provide information that may be specific to object modules or specific to both
object modules and image files.

• MODOBJ$C_ACTIVATE_INFORMATION contains the transfer address for the module. This
item is a longword in nonoffset format. It contains the index for the global symbol that defines
the invocation descriptor of the routine. This item is specific to object modules. The MODOBJ$C_
WEAK_TRANSFER_ADDRESS flag can be set for this item code if the transfer address is weak.
A weak transfer address can be overridden by a nonweak transfer address. If the transfer
addresses of all modules included in the link are weak, the first transfer address becomes the
image transfer address.

1-14 Object Module and Image File Format

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

• MODOBJ$C_RELOCATE contains the data relocation table, which allows the linker to do link
time fixups. This table is described in Section 1.4.2. It is in offset format and is specific to object
modules.

• MODOBJ$C_DEBUG_SYMBOL contains the information needed by the debugger to understand
symbols used in the image. This table is described in Section 1.3.7. It is in offset format and is
common to both object modules and image files.

• MODOBJ$C_GLOBAL_SYMBOL contains the information needed by the linker and debugger
to understand symbolic references. This table is described in Section 1.3.3. It is in offset format
and is common to both object modules and image files.

• MODOBJ$C_LINKER_DIRECTIVE contains the linker directives provided by the compiler to
the linker, which allow compilers to specify initialization routines and additional files for the
link. This table is described in Section 1.4.1. It is in offset format and is specific to object
modules.

1.2.5.4 Defined Image File Item Codes

The following item codes provide information that is specific to image files:

• MODIMG$C_ACTIVATE_DEFERRED contains information about the images that can be ref
erenced by the current image. This table is described in Section 1.5.5. It is in offset format.

• MODIMG$C_ACTIVATE_IMMEDIATE contains information about the images that must be ac
tivated concurrently with the current image. This table is described in Section 1.5.6. It is in
offset format.

• MODIMG$C_AUTOLOAD contains all of the image's autoload vectors. This item supports the
image analyzer, but is not needed for autoloading since the autoloader accesses the autoload
vectors through the linkage pairs that refer to it.

• MODIMG$C_DEBUG_MODULE contains the information needed by the debugger to understand
each module's contribution to the image and the virtual address of each PSECT within a module.
This table is described in Section 1.5.9. It is in offset format.

• MODIMG$C_DEMAND_ZERO_COVNT contains the number of demand zero sections in the
image. This item is a longword in nonoffset format.

• MODIMG$C_INITIAL_ROUTINE contains the information needed by the image activator to
identify the initialization routines. This table is described in Section 1.5.8. It is in offset format.

• MODIMG$C_IMAGE_SECTION contains the information needed by the image activator to set
up users' virtual address space correctly. This table is described in Section 1.5.1. It is in offset
format.

• MODIMG$C_LINK_ VPN specifies the virtual address at which the image has been based. If the
image activator finds itself loading this image at a different address, all fixups described in the
local relocation table must be performed. This item is a quadword in nonoffset format.

• MODIMG$C_RELOCATE_EXTERNAL contains the external relocation table, which allows the
image activator to perform fixups at image activation that depend upon external images. This
table is described in Section 1.5.4. It is in offset format.

• MODIMG$C_RELOCATE_LOCAL contains the local relocation table, which allows the image
activator to perform fixups at image activation within the current image: This table is described
in Section 1.5.3. It is in offset format.

• MODIMG$C_RELOCATE_TLS contains the thread local storage count relocation table, which
allows the image activator to perform fixups dependent upon the number of thread local storage
regions already created at image activation. This table is described in Section 1.5.2. It is in
offset format.

Object Module and Image File Format 1-15

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

• MODIMG$C_TLS_INDEX_COUNT specifies the number of TLS (thread local storage) regions
defined in the image. This item is a longword in nonoffset format and is specific to object modules.

• MODIMG$C_TRANSFER_ VECTOR contains the offsets to the routines that can be called from
outside the shareable image (see Section 1.5.7). This item is in offset format.

• MODIMG$C_ VIRTUAL_AD DRESS_SIZE contains the total size of the virtual address space
mapped by the image. This item is a longword in nonoffset format.

1.3 Object Module and Image File Data Structures

Object modules and image files are modules, and both follow the module format specified above. In
addition, object modules and image files share many common data structures. These common data
structures allow object modules to be executed without being linked, and allow images to be linked
with other images.

\The object module should be laid out according to the following rules. These rules result in an object
module that is optimized for the linker to access.

• The module's item list should immediately follow the module's header

• The module's name table and the global symbol table should be grouped together in that order

• The module should not duplicate item list entries

1.3.1 Code Section

On PRISM, compilers can generate code sections directly; there is no need for any fixups by the
linker. Therefore, a code section for each PSECT appears in the object file exactly as it will be laid
out in memory. The linker gathers up all modules' contributions for each PSECT and concatenates
them at link time. In other words, the STACK/ADD/STORE commands used in object files on VMS
are not found in PRISM object files. The compiler is responsible for generating code directly.

\ The lack of the STACK/ADD/STORE commands makes linker fixups of instruction literals, branch
displacements, and load/store displacements impossible. \

Code sections are not listed in the module item list; in image files, the first code section is found
through the image section descriptors, and a code section is aligned on a virtual block number (512-
byte unit) boundary.

In object files, a code section is found through the PSECT definitions in the global symbol table. A
code section typically starts at a block boundary, but a code section can be located anywhere in the
object module.

The compiler cannot make assumptions about the relative virtual address assignments of different
PSECTs. References to addresses in other PSECTs must be made using the data relocation table.
PSECTs are different if the name is different. It is an error if the same PSECT has different at
tributes. Furthermore, it is an error if the same PSECT has different alignments within a module.

1-16 Object Module and Image File Format

1.3.2 Data Section

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

Like code sections, data sections can appear in the object file as memory-ready, except that certain
fixups may need to be performed before it can be accessed at run time. Data sections may also appear
in the object file in compressed format, which requires expansion before it can be accessed at run
time. The compilers cannot make assumptions about the relative virtual address assignments of
other PSECTs. PSECTs are different if the name is different. It is an error if the same PSECT has
different attributes. Furthermore, it is an error if the same PSECT has different alignments within
a module.

Data sections are not listed in the module item list. In image files, data sections are found through
the image section descriptors, and data sections are aligned on a virtual block number (512-byte unit)
boundary.

In object files, data sections are found through the PSECT definitions in the global symbol table and
a data section can be located anywhere in the object module.

1.3.3 Global Symbol Table

The global symbol table is built by the compiler (in object modules) and the linker (in images) and
identifies all symbols defined or referenced in the module. The items in the global symbol table are
associated with the names in the module name table. Entries in the global symbol table contain an
index to the symbol's name.

In addition, each symbol and PSECT is assigned an index by its position in the global symbol table.
The global symbol table can be viewed as having multiple index counters, one for global symbols and
one for PSECTs, which allows named entities to be identified by their index number.

Global symbols are assigned their indexes by assigning one to the first global symbol reference or
definition. The index is increased by one for each subsequent global symbol reference or definition.
Duplicate indexes for the same global symbol should not occur, but if they do (for example a reference
and a definition within the same module) they have distinct indexes.

PSECTs are assigned their indexes by assigning "1" to the first uninitialized, standard, or compressed
PSECT entry. The index is increased by one for each subsequent uninitialized, standard, or com
pressed entry. Duplicate indexes for the same PSECT are not an error, but all entries for the same
PSECT must have the same attributes and alignment. \ This restriction saves a lot of rules about
figuring offsets in PSECTs that have multiple allocations with separate alignments. \

A PSECT definition can be repeated within the module to permit multiple allocations to the PSECT
to be built in a straightforward way. Both concatenated and overlaid PSECTs are built in this way,
because PSECTs are only overlaid with PSECTs from other modules. However, all references to a
PSECT should index the first entry of the PSECT. Multiple PSECT entries build a PSECT, but only
the first PSECT entry references it.

The first field of each entry in the global symbol table defines the entry's type. The second field of
each entry in the global symbol table defines the entry's sub-type, and is used in an entry specific
way. The third field of each entry in the global symbol table contains the size in bytes of the entry,
including the entry's type, sub-type, and size, but not including any padding at the end of the entry.
The entries within the global symbol table are longword aligned. Global symbol table entry types
are shown in the next table, and their declarations follow. The following sections discuss each type
of entry.

Object Module and Image File Format 1-17

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

Entry Type Name (prefixed MODOBJ$C ~ Value

Not named 0

Symbol_module

SymboLdefinition 2

Symbol_reference 3

Symbol_PSECT _reference 4

PSECT _definition 5

PSECT _symbol_definition 6

Not named 7-127

Not named 128-255

! \BLISS uses prefix MODOBJ$GSE \
modobj$global symbol entry(-

entry_typ; : module$entry_type;
entry subtype : module$entry type;
entry=size : module$entry_size[..] SIZE (word)
) : RECORD

Interpretation

Reserved to DIGITAL

Module definition

Global symbol definition

Intolerant global symbol reference

Tolerant global symbol or PSECT reference

Strong PSECT definition

Weak PSECT definition

Reserved to DIG ITAL

Reserved to Customers/CSS

CAPTURE entry_type, entry_subtype, entry_size;
name_index : longwordi
VARIANTS CASE entry type

WHEN modobj$c symbol module,
modobj$c=symbol~sect_reference,
modobj$c_symbol_reference THEN

NOTHING;
WHEN modobj$c_symbol_definition THEN

symbol_definition :
modobj$symbol_definition(

entry_subtype,
entry size-8);

WHEN modobj$c-Fse~t_symbol_definition,
modobj$c-Fsect_definition THEN

psect_definition : rnodobj$psect_definition(
entry_subtype,
entry_size-8);

WHEN OTHERS THEN
symbol_unknown: longword_data«entry_size-l)/4)i

END VARIANTS;
END RECORD;

1.3.3.1 Module

This entry represents the module name in the module's name table. Module entries have the following
format:

Figure 1-7: GST Module Entry

Figure 1-7 Cont'd. on next page

1-18 Object Module and Image File Format

Figure 1-7 (Cont.): GST Module Entry

3
1

\ 1 1

6 5

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

8 7 o
+-------------------------------+---------------+---------------+
I ENTRY SIZE I ENTRY_SUBTYPE I ENTRY_TYPE I
I I I I
+-------------------------------+---------------+---------------+
I NAME INDEX I
I I
+---+
These fields are defined as follows:

• ENTRY_TYPE is the value MODOBJ$C_SYMBOL_MODDLE.

• ENTRY_SUBTYPE should be zero.

• ENTRY_SIZE is eight.

• NAME_INDEX is the index of the symbol's name in the module name table. The index can not
be zero.

1.3.3.2 PSECT Definition Entry

A PSECT definition is also known as a strong PSECT definition, because it always defines a program
section. PSECT (program section) definitions are used by the compilers to describe the contents of
the various parts of memory to the linker. The linker gathers PSECTs into image sections based on
PSECT attributes. There are three kinds of PSECT entries in the global symbol table: uninitialized,
standard, and compressed; their descriptions follow:

• Dninitialized PSECTs have the value MODOBJ$C_PSECT_ DNINITIALIZED. These definitions
merely describe an allocation of memory. If the psect is not for thread local storage, the memory
is initialized to zero by the linker if no other initialization is specified. If the psect is for thread
local storage, the memory is initialized according to the thread local storage design.

• Standard PSECTs have the value MODOBJ$C_PSECT_STANDARD. These definitions describe
an allocation of memory and its initial value. The entry contains the offset to where the initial
value of the PSECT is stored.

• Compressed PSECTs have the value MODOBJ$C_PSECT_COMPRESSED. These definitions de
scribe data that exists in the module in a compressed format. The entry contains the offset and
size to the compressed data in the module. If the psect is not for thread local storage, the data is
restored to the image by the linker. If the psect is for thread local storage, the data is restored
according to the thread local storage design. (See the PRISM calling standard for a complete
description of TLS regions.)

\ The representation of the compressed data in the object module may be included when the TLS
design is finalized. \

Note that PSECT definitions are referenced by symbol definitions through the PSECT's ID, which
is the relative position of the PSECT definition in the module's name table and global symbol table.
The declaration, values, and layouts of the PSECT part of a PSECT definition entry follows, with the
values of module$data_size defined in Section 1.3.4.

Object Module and Image File Format 1-19

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

modobj$psect_attribute : (
modobj$c-psect_overlaid,
modobj$c-psect_relocatable,
modobj$c-psect_shareable,
modobj$c-psect_readable,
modobj$c-psect_writable,
modobj$c-psect_executable,
modobj$c-psect_message,
modobj$c-psect_global,
modobj$c-psect_tls
) ;

\BLISS uses prefix MODOBJ$PD \
modobj$psect_definition(-

subtype : module$entry type;
subsize : module$entry=size[..] SIZE (byte)
) : RECORD
attributes: SET modobj$psect attribute[..] SIZE(WORD);
align: module$data_size[..] SIZE(byte);
allocate : quadword;
VARIANTS CASE subtype

WHEN modobj$c-psect_uninitialized THEN
NOTHING;

WHEN modobj$c-psect_standard THEN
standard offset : quadword;

WHEN modobj$~_psect_compressed THEN
compressed_offset : quadword;
compressed_size : quadword;

END VARIANTS;
END RECORD;

Figure 1-8: GST PSECT Definition Entry

Figure 1-8 Cont'd. on next page

1-20 Object Module and Image File Format

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

Figure 1-8 (Cont.): GST PSECT Definition Entry

3
1

2 2
4 3

1 1
6 5 987 654 3 2 1 0

+---------------+---------------+---------------+-+-+-+-+-+-+-+-+
I ENTRY SIZE I ENTRY SUBTYPE I ENTRY TYPE I
I - I - I - I

+---------------+---------------+---------------+-+-+-+-+-+-+-+-+
I NAME_INDEX I
I I
+---+-+-+-+-+-+-+-+-+-+
I SBZ I ALIGN I SBZ ITIGIMIEIWIR/S/RIOI
/ I I /L/LISIXIR/DIH/LIL/
+---------------+---------------+-------------+-+-+-+-+-+-+-+-+-+
/ ALLOCATE /
I /
+
/

I

+
/

/

+---+
I STANDARD_OFFSET, COMPRESSED_OFFSET /
I /
+
I
/

+
/

I
+---+
/ COMPRESSED CONTRIBUTION I
/ I
+
I
I

+
/

I
+---+
PSECT entries are described by the following fields:

• ENTRY_TYPE is the value MODOBJ$C_PSECT_DEFINITION.

• ENTRY_SUBTYPE is the value MODOBJ$C_PSECT_UNINITIALIZED, MODOBJ$C_PSECT_
STANDARD, or MODOBJ$C_PSECT_COMPRESSED.

• ENTRY_SIZE is 20 for uninitialized PSECTs, 28 for standard PSECTs, and 36 for compressed
PSECTs.

• NAME_INDEX is the index of the PSECT's name in the module name table. The index can not
be zero.

• ATTRIBUTES specifies the attributes of the PSECT. All contributions to the same PSECT must
have the same attributes.

MODOBJ$C_PSECT_OVERLAID (OL) is set if the PSECT is overlaid, and clear if it is
concatenated.

MODOBJ$C_PSECT_RELOCATABLE (RL) is set if the PSECT is relocatable, and clear if
it is absolute. Absolute PSECTs do not have any memory allocation; they are used only for
defining absolute symbols.

MODOBJ$C_PSECT_SHAREABLE (SH) is set if the PSECT is accessible from outside a
shareable image. It is clear if the PSECT is private to a shareable image. The linker can
allow a shareable PSECT to be shared between two or more active processes through a
qualifier specified in Chapter 30, Linker.

MODOBJ$C_PSECT_READABLE (RD) is set if the PSECT is readable.

MODOBJ$C_PSECT_ WRITABLE (WR) is set if the PSECT is writable.

MODOBJ$C_PSECT_EXECUTABLE (EX) is set if the PSECT contains executable code.

Object Module and Image File Format 1-21

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

MODOBJ$C_PSECT_MESSAGE (MS) is set if the PSECTcontains message section descrip
tors.

MODOBJ$C_PSECT_GLOBAL (GL) is set if the PSECTis global across clusters of program
sections. Only global, shareable, overlaid PSECTs resolve to the same global, shareable,
overlaid PSECT in another image.

MODOBJ$C_PSECT_TLS (TL) is set if the PSECT represents a template for thread local
storage. A thread local storage template provides initialization for memory that is private
for each thread.

• ALIGN specifies the PSECT alignment (see Section 1.3.4 for the values).

\In order to guarantee the memory layout for PSECT allocations of the same name within the
same module, all PSECT allocations for a like-named PSECT in the same module must use the
same alignment.\

• ALLOCATION specifies in bytes the amount of memory required to represent the PSECT. For
uninitialized PSECTs, this represents the amount of memory contributed by this definition. For
standard PSECTs, this represents both the amount of memory and the amount of PSECT data
or code in the module. For compressed PSECTs, this represents the amount of memory that the
compressed PSECT data will initialize.

• STANDARD_OFFSET and COMPRESSED_OFFSET specify the byte offset from the beginning
of the module to the start of the PSECT data or code.

• COMPRESSED_SIZE specifies the size of the compressed data in the module.

1.3.3.3 FORTRAN Common Definition

Process-wide FORTRAN common is defined as a PSECT with only the following attributes.

• MODOBJ$C_PSECT_OVERLAID

• MODOBJ$C_PSECT_RELOCATABLE

• MODOBJ$C_PSECT_SHAREABLE

• MODOBJ$C_PSECT_READABLE

• MODOBJ$C_PSECT_ WRITABLE

• MODOBJ$C_PSECT_GLOBAL

Thread local FORTRAN common is defined as a PSECT with only the following attributes.

• MODOBJ$C_PSECT_OVERLAID

• MODOBJ$C_PSECT_RELOCATABLE

• MODOBJ$C_PSECT_READABLE

• MODOBJ$C_PSECT_ WRITABLE

• MODOBJ$C_PSECT_GLOBAL

• MODOBJ$C_PSECT_TLS

1-22 Object Module and Image File Format

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

1.3.3.4 PSECT Definition and Symbol Reference Entry

A PSECT definition and symbol reference is also known as a weak PSECT definition, because it can
resolve to a symbol without defining a program section. This entry is used by the C compiler to
describe the an external reference that may be resolved to either a global symbol or a FORTRAN
common. The semantics of this reference require that the FORTRAN common be created if it doesn't
already exist.

\The definition of this entry is bounded by the requirements of C, and many of the features of a
standard PSECT definition are not used because C does not require them. \

Note that this is a special form of a PSECT definition, and is referenced in the global symbol table
through a PSECT index, and not a symbol index. The declaration is the same for a standard PSECT
(see Section 1.3.3.2).

The linker implements PSECT definition/symbol reference in the following way. During pass 1 of the
linker, the linker treats these entries as symbol references, and searches for symbol definitions. At
the completion of pass 1, the linker searches for a PSECT definition of the same name.

• If a symbol definition is found, and no matching PSECT definition is found, the linker resolves
the reference(s) to the symbol definition

• If a PSECT definition is found, and no matching symbol definition is found, the linker resolves
the reference(s) to the PSECT definition if the attributes match.

• If no symbol or PSECT definition is found, the linker defines the PSECT using the information
in the entry. Note that it only defines a PSECT and does not define a symbol.

• If both symbol and PSECT definitions are found, the linker resolves the reference to the PSECT
definition and issues a warning.

When no symbol or PSECT definition is found, the linker not only defines the PSECT using the
information in the entry, but it also describes it in the image's global symbol table with the PSECT
definition/symbol reference entry. This allows the linker to issue a warning in the second of the
following cases.

1. Module A has a global symbol definition of "foo" and module B has a global common symbol
definition of "foo," and object module A links with object module B.

2. Module A has a global symbol definition of "foo" and module B has a global common symbol
definition of "foo," and object module A links with shareable image B.

A layout of the PSECT part of a PSECT definition entry follow:

Object Module and Image File Format 1-23

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

Figure 1-9: GST PSECT Definition/Symbol Reference Entry

3
1

2 2
4 3

1 1
6 5 987 654 3 2 1 0

+---------------+---------------+---------------+-+-+-+-+-+-+-+-+
I ENTRY SIZE I ENTRY_SUBTYPE I ENTRY_TYPE I
I I I I
+---------------+---------------+---------------+-+-+-+-+-+-+-+-+
I NAME_INDEX I
I I
+---+-+-+-+-+-+-+-+-+-+
I SBZ I ALIGN I SBZ ITIGIMIEIWIRISIRIOI
I I I ILILISIXIRIDIHILILI
+---------------+---------------+-------------+-+-+-+-+-+-+-+-+-+
I ALLOCATE I
I I
+
I
I

+
I
I

+---+
I STANDARD OFFSET I
I I
+
I
I

+
I
I

+---+
PSECT entries are described by the following fields:

• ENTRY_TYPE is the value MODOBJ$C_PSECT_SY1.\1BOL_DEFINITION.

• ENTRY_SUBTYPE is the value MODOBJ$C_PSECT_UNINITIALIZED in object modules (be
cause C does not allow this types of reference to be initialized), and MODOBJ$C_PSECT_
STANDARD in image files.

• ENTRY_SIZE is 20 for uninitialized PSECTs, 28 for standard PSECTs.

• NAME_INDEX is the index of the PSECT's name in the module name table. The index can not
be zero.

• ATTRIBUTES specifies the attributes of the PSECT.

1-24 Object Module and Image File Format

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

\ The attributes match FORTRAN common because C only uses this type of reference to match
FORTRAN common.\

MODOBJ$C_PSECT_OVERLAID (OL) is set.

MODOBJ$C_PSECT_RELOCATABLE (RL) is set.

MODOBJ$C_PSECT_SHAREABLE (SH) is set, but might be cleared by the linker.

MODOBJ$C_PSECT_READABLE (RD) is set.

MODOBJ$C_PSECT_ WRITABLE (WR) is set.

MODOBJ$C_PSECT_EXECUTABLE (EX) is clear.

MODOBJ$C_PSECT_MESSAGE (MS) is clear.

MODOBJ$C_PSECT_GLOBAL (GL) is set.

MODOBJ$C_PSECT_TLS (TL) is clear.

• ALIGN specifies the PSECT alignment.

• ALLOCATION specifies in bytes the amount of memory required to represent the PSECT. The
linker will maximize this with other module's allocations because this is an overlaid PSECT.

1.3.3.5 Global Symbol Reference Entry

A global symbol reference is also known as an intolerant symbol reference because it can not reference
a PSECT definition. Global symbol reference entries specify references to global symbols. There are
two types of global symbol references:

• Standard references, which have the value MODOBJ$C_SYMBOL_STANDARD. If these refer
ences are unresolved, the linker reports an error.

• Weak references, which have the value MODOBJ$C_SYMBOL_WEAK. If these references are
unresolved, the linker treats them as zero value. These references do not cause the linker to
search new modules in a library to resolve them.

Global symbol reference entries have the following format:

Figure 1-10: GST Global Symbol Reference Entry

3
1

1 1
6 5 8 7 o

+-------------------------------+---------------+---------------+
I ENTRY SIZE I ENTRY SUBTYPE I ENTRY TYPE I
I I - I - I
+-------------------------------+---------------+---------------+
I NAME INDEX I
I I
+---+
These fields are defined as follows:

• ENTRY_TYPE is the value MODOBJ$C_SYMBOL_REFERENCE.

• ENTRY_SUBTYPE is MODOBJ$C_SYMBOL_STANDARD or MODOBJ$C_SYMBOL_ WEAK.

• ENTRY_SIZE is eight.

Object Module and Image File Format 1-25

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

• NAME_INDEX is the index of the symbol's name in the module name table. If the index can not
be zero.

Note that global symbol reference entries do not contain the PSECT index or symbol value fields.

1.3.3.6 Global Symbol Or PSECT Reference Entry

A global symbol or PSECT reference is also known as a tolerant symbol reference because it can
reference a PSECT definition if there is no matching symbol definition. Global symbol or PSECT
reference entries specify references to global symbols or PSECTs. The linker implements symbol or
PSECT references in the following way. During pass 1 of the linker, the linker treats these entries as
symbol references, and searches for symbol definitions. At the completion of pass 1, if no matching
symbol definition was found, the linker searches for a PSECT definition of the same name. Note that
the reference resolves to the matching symbol definition without an error if both a symbol definition
and a PSECT definition match.

There are two types of these references.

• Standard references, which have the value MODOBJ$C_SYMBOL_STANDARD. If these refer
ences are unresolved, the linker reports an error.

• Weak references, which have the value MODOBJ$C_SYMBOL_ WEAK. If these references are
unresolved, the linker treats them as zero value. These references do not cause the linker to
search new modules in a library to resolve them.

Global symbolJPSECT reference entries have the following format:

Figure 1-11: GST Global Symbol/PSECT Reference Entry

3
1

1 1
6 5 8 7 o

+-------------------------------+---------------+---------------+
I ENTRY SIZE I ENTRY_SUBTYPE I ENTRY_TYPE I
I I I I
+-------------------------------+---------------+---------------+
I NAME INDEX I
I I
+---+
These fields are defined as follows:

• ENTRY_TYPE is the value MODOBJ$C_SYMBOL_PSECT_REFERENCE.

• ENTRY_SUBTYPE is MODOBJ$C_SYMBOL_STANDARD or MODOBJ$C_SYMBOL_ WEAK.

• ENTRY_SIZE is eight.

• NAME_INDEX is the index of the symbol's name in the module name table. The index can not
be zero.

Note that symbolJPSECT reference entries do not contain the PSECT index or symbol value fields.

1-26 Object Module and Image File Format

1.3.3.7 Global Symbol Definition

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

This entry defines a symbol that can be referenced from any other module. The symbol can be
absolute, relocatable, procedural, or common. The types of local and internal symbols are a subset
of global symbols. The declaration, values, and layouts of the symbol definition portion of a global
symbol definition entry follow:

modobj$procedure_argument(
modobj$c argument unknown,
modobj$c-argument-value,
modobj$c-argument-reference,
modobj$c=argument=descriptor
) ;

modobj$procedure_descriptor(argument_Iist_count module$entry_size) :
ARRAY [l .. argument list count] OF

modobj$procedu~e_argument[..] SIZE(byte);

\BLISS uses prefix MODOBJ$SD \
modobj$symbol_definition(-

subtype : module$entry type;
subsize : module$entry=size[.. J SIZE (word)
) : RECORD
VARIANTS CASE subtype

WHEN modobj$c_symbol_absolute_long THEN
absolute I value : integer;

WHEN modobj$~_;ymbol_absolute_quad THEN
absolute_~value : large_integer;

WHEN modobj$c_symbol_relocate_long THEN
relocate_l-psect : longword;
relocate I offset : longword;

WHEN modobj$;_;ymbol_relocate_quad THEN
relocate_q-psect : longword;
relocate q offset : quadword;

WHEN modobj$~_;ymbol-procedure_long THEN
procedure_l-psect : longword;
procedure_I_offset : longword;
procedure_l_code-psect : longword;
procedure I code offset : longword;
procedure-I-argu;ents : modobj$procedure descriptor(subsize-16);

WHEN modobj$c=symbol-procedure_quad THEN -
procedure_~sect : longword;
procedure_~offset : quadword;
procedure_~code_psect : longword;
procedure_~code_offset : quadword;
procedure_~arguments : modobj$procedure_descriptor(subsize-24);

WHEN modobj$c_symbol_transfer THEN
transfer_index : longword;
transfer_arguments modobj$procedure_descriptor(subsize-4)i

END VARIANTS;
END RECORD;

Note that the semantics of a VMS weak global definition are equivalent to defining a global symbol
in the global symbol table while its name in the module name table has no name index.

Object Module and Image File Format 1-27

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

1.3.3.7.1 Absolute Global Symbol Definition with Longword Value

Global absolute symbol definition entries having a longword symbol value have the following format:

Figure 1-12: GST Absolute Global Symbol Definition Entry with Longword Value

3
1

1 1
6 5 8 7 o

+-------------------------------+---------------+---------------+
I ENTRY_SIZE I ENTRY_SUBTYPE I ENTRY_TYPE I
I I I I
+-------------------------------+---------------+---------------+
I NAME INDEX I
I I
+---+
I ABSOLUTE L VALUE I
I I
+---+
These fields are defined as follows:

• ENTRY_TYPE is the value MODOBJ$C_SYMBOL_DEFINITION.

• ENTRY_SUBTYPE is the value MODOBJ$C_SYMBOL_ABSOLUTE_LONG ..

• ENTRY_SIZE is 12.

• NAME_INDEX is the index of the symbol's name in the module name table. If the index is zero,
the symbol is unnamed.

• ABSOLUTE_L_ VALUE is the value of the symbol.

1.3.3.7.2 Absolute Global Symbol Definition with Quadword Value

Global absolute symbol definition entries having a quadword symbol value have the following format:

Figure 1-13: GST Absolute Global Symbol Definition Entry with Quadword Value

Figure 1-13 Cont'd. on next page

1-28 Object Module and Image File Format

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

Figure 1-13 (Cont.): GST Absolute Global Symbol Definition Entry with Quadword Value

3
1

1 1
6 5 8 7 o

+-------------------------------+---------------+---------------+
I ENTRY SIZE I ENTRY SUBTYPE I ENTRY TYPE I
I I - I - I
+-------------------------------+---------------+---------------+
I NAME INDEX I
I I
+---+
I ABSOLUTE_Q_VALUE I
I I
+
I
I

+
I
I

+---+
These fields are defined as follows:

• ENTRY_TYPE is the value MODOBJ$C_SYMBOL_DEFINITION.

• ENTRY_SUBTYPE is the value MODOBJ$C_SYMBOL_ABSOLUTE_QUAD.

• ENTRY_SIZE is 16.

• NAME_INDEX is the index of the symbol's name in the module name table. If the index is zero,
the symbol is unnamed.

• ABSOLUTE_~ VALUE is the value of the symbol.

1.3.3.7.3 Relocatable Symbol Definition with Longword Value

Global symbol definition entries having a longword symbol value have the following format:

Figure 1-14: GST Global Symbol Definition Entry with Longword Value

3
1

1 1
6 5 8 7 o

+-------------------------------+---------------+---------------+
I ENTRY SIZE I ENTRY_SUBTYPE I ENTRY_TYPE I
I I I I
+-------------------------------+---------------+---------------+
I NAME INDEX I
I I
+---+
I RELOCATE L PSECT I
I I
+---+
I RELOCATE L OFFSET I
I I
+---+
Figure 1-14 Cont'd. on next page

Object Module and Image File Format 1-29

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

Figure 1-14 (Cont.): GST Global Symbol Definition Entry with Longword Value

These fields are defined as follows:

• ENTRY_TYPE is the value MODOBJ$C_SYMBOL_DEFINITION.

• ENTRY_SUBTYPE is the value MODOBJ$C_SYMBOL_RELOCATE_LONG.

• ENTRY_SIZE is 16.

• NAME_INDEX is the index of the symbol's name in the module name table. If the index is zero,
the symbol is unnamed.

• RELOCATE_L_PSECT contains the PSECT index in which the symbol is defined.

• RELOCATE_L_ OFFSET is the value of the symbol, which is the offset into the specified PSECT.

1.3.3.7.4 Relocatable Symbol Definition with Quadword Value

Global symbol definition entries having a quadword symbol value have the following format:

Figure 1-15: GST Global Symbol Definition Entry with Quadword Value

3
1

1 1
6 5 8 7 o

+-------------------------------+---------------+---------------+
I ENTRY_SIZE I ENTRY_SUBTYPE I ENTRY_TYPE I
I I I I
+-------------------------------+---------------+---------------+
I NAME_INDEX I
I I
+---+
I RELOCATE_Q_PSECT I
I I
+---+
I RELOCATE_Q_OFFSET I
I I
+
I
I

+
I
I

+---+
These fields are defined as follows:

• ENTRY_TYPE is the value MODOBJ$C_SYMBOL_DEFINITION.

• ENTRY_SUBTYPE is the value MODOBJ$C_SYMBOL_RELOCATE_QUAD.

• ENTRY_SIZE is 20.

1-30 Object Module and Image File Format

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

• NAME_INDEX is the index of the symbol's name in the module name table. If the index is zero,
the symbol is unnamed.

• RELOCATE_ Q...PSECT contains the PSECT index in which the symbol is defined.

• RELOCATE_Q...OFFSET is the value of the symbol, which is the offset into the specified PSECT.

1.3.3.7.5 Global Procedure Definition Entry with Longword Value

The global procedure definition entry fulfills three functions: it defines the invocation descriptor of
a procedure, it defines the entry point (code address) of a procedure, and it describes arguments
for FORTRAN string argument coercion. Note that the formal argument description is needed only
by the linker for FORTRAN to coerce string arguments at link time, and other languages need not
generate any formal argument description. Global procedure definition entries with longword value
have the following format:

Figure 1-16: GST Global Procedure Definition Entry

3
1

1 1
6 5 8 7 o

+-------------------------------+---------------+---------------+
I ENTRY SIZE I ENTRY_SUBTYPE I ENTRY_TYPE I
I I I I
+-------------------------------+---------------+---------------+
I NAME INDEX I
I I
+---+
I PROCEDURE L PSECT I
I I
+---+
I PROCEDURE L OFFSET I
I I
+---+
I PROCEDURE L CODE PSECT I
I I
+---+
I PROCEDURE L CODE OFFSET I
I I
+---+
I PROCEDURE L ARGUMENTS I
I - - I

Figure 1-16 Cont'd. on next page

Object Module and Image File Format 1-31

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

Figure 1-16 (Cont.): GST Global Procedure Definition Entry

These formal arguments are defined as follows:

• ENTRY_TYPE is the value MODOBJ$C_SYMBOL_DEFINITION.

• ENTRY_SUBTYPE is the value MODOBJ$C_SYMBOL_PROCEDURE_LONG.

• ENTRY_SIZE is 24 plus the size of the argument descriptors.

• NAME_INDEX is the index of the symbol's name in the module name table. If the index is zero,
the symbol is unnamed.

• PROCEDURE_L_PSECT contains the PSECT index in which the procedure's invocation descrip
tor is defined.

• PROCEDURE_L_OFFSET contains the offset into the specified PSECT of the procedure's invo
cation descriptor.

• PROCEDURE_L_CODE_PSECT contains the PSECT index in which the procedure's entry point
is defined.

• PROCEDURE_L_CODE_OFFSET contains the offset into the specified PSECT of the procedure's
entry point.

• PROCEDURE_L_ARGUMENTS describes the specified number of arguments in a byte-stream
oriented format. Each formal argument in PROCEDURE_L_ARGUMENTS is represented by a
byte that contains one of the following values:

MODOBJ$C_ARGUMENT_UNKNOWN

MODOBJ$C_ARGUMENT_ VALUE

MODOBJ$C_ARGUMENT_REFERENCE

MODOBJ$C_ARGUMENT_DESCRIPTOR

1.3.3.7.6 Global Procedure Definition Entry with Quadword Value

The global procedure definition entry fulfills three functions: it defines the invocation descriptor of
a procedure, it defines the entry point (code address) of a procedure, and it describes arguments
for FORTRAN string argument coercion. Note that the formal argument description is needed only
by the linker for FORTRAN to coerce string arguments at link time, and other languages need not
generate any formal argument description. Global procedure definition entries with quadword value
have the following format:

1-32 Object Module and Image File Format

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

Figure 1-17: GST Global Procedure Definition Entry, Quadword Value

3
1

1 1
6 5 8 7 o

+-------------------------------+---------------+---------------+
I ENTRY SIZE I ENTRY_SUBTYPE I ENTRY_TYPE I
I I I I
+-------------------------------+---------------+---------------+
I NAME INDEX I
I I
+---+
I PROCEDURE_Q_PSECT I
I I
+---+
I PROCEDURE_Q_OFFSET I
I I
+
I
I

+
I
I

+---+
I PROCEDURE_Q_CODE_PSECT I
I I
+---+
I PROCEDURE_Q_CODE_OFFSET I
I I
+
I
I

+
I
I

+---+
I PROCEDURE_Q_ARGUMENTS I
I I

These formal arguments are defined as follows:

• ENTRY_TYPE is the value MODOBJ$C_SYMBOL_DEFINITION.

• ENTRY_SUBTYPE is the value MODOBJ$C_SYMBOL_PROCEDURE_QUAD.

• ENTRY_SIZE is 32 plus the size of the argument descriptors.

Object Module and Image File Format 1-33

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

• NAME_INDEX is the index of the symbol's name in the module name table. If the index is zero,
the symbol is unnamed.

• PROCEDURE_<LPSECT contains the PSECT index in which the procedure's invocation descrip
tor is defined.

• PROCEDURE_<LOFFSET contains the offset into the specified PSECT of the procedure's invo
cation descriptor.

• PROCEDURE_<LCODE_PSECT contains the PSECT index in which the procedure's entry point
is defined.

• PROCEDURE_<LCODE_OFFSET contains the offset into the specified PSECT of the procedure's
entry point.

• PROCEDURE_ <LARGUMENTS describes the specified number of arguments in a byte-stream
oriented format. Each formal argument in PROCEDURE_<LARGUMENTS is represented by a
byte that contains one of the following values:

MODOBJ$C_ARGUMENT_UNKNOWN

MODOBJ$C_ARGUMENT_ VALUE

MODOBJ$C_ARGUMENT_REFERENCE

MODOBJ$C_ARGUMENT_DESCRIPTOR

1.3.3.7.7 Global Transfer Definition Entry

A global transfer definition entry only occurs in shareable images' global symbol tables and it identifies
the transfer vector of a routine in a shareable image. This entry is created by the linker when it
makes a universal procedure name in a shareable image. Unlike VMS, it is impossible to have a
universal procedure without a transfer vector. (See Section 1.6 for details on symbol resolution in
shareable images.)

The layout of the global transfer definition entry is similar to the global procedure definition entries.
As with global procedure definition entries, there is a description of the formal arguments defined by
the procedure. Global transfer definition entries have the following format:

Figure 1-18: GST Global Transfer Definition Entry

Figure 1-18 Cont'd. on next page

1-34 Object Module and Image File Format

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

Figure 1-18 (Cont.): GST Global Transfer Definition Entry

3
1

1 1
6 5 8 7 o

+-------------------------------+---------------+---------------+
I ENTRY SIZE I ENTRY_SUBTYPE I ENTRY_TYPE I
I I I I
+-------------------------------+---------------+---------------+
I NAME INDEX I
I I
+---+
I TRANSFER INDEX I
I I
+---+
I TRANSFER_ARGUMENTS I
I I

These formal arguments are defined as follows:

• ENTRY_TYPE is the value MODOBJ$C_SYMBOL_DEFINITION.

• ENTRY_SUBTYPE is the value MODOBJ$C_SYMBOL_TRANSFER.

• ENTRY_SIZE is 12 plus the size of the argument descriptors.

• NAME_INDEX is the index of the symbol's name in the module name table. If the index is zero,
the symbol is unnamed.

• TRANSFER_INDEX is the value of the symbol, which is its index into the shareable image's
transfer vector table.

• TRANSFER_ARGUMENTS describes the specified number of arguments in a byte-stream ori
ented format. Each formal argument in TRANSFER_ARGUMENTS is represented by a byte
that contains one of the following values:

MODOBJ$C_ARGUMENT_UNKNOWN

MODOBJ$C_ARGUMENT_ VALUE

MODOBJ$C_ARGUMENT_REFERENCE

MODOBJ$C_ARGUMENT_DESCRIPTOR

1.3.4 Target Record

The target record contains the target's CPU type, its subset of the PRISM architecture, its page size,
and its register size. The values and declarations of the fields in the match record follow:

module$data size : (
moduleS; byte,
module$c-word,
module$c=longword,
module$c quadword,
module$c-octaword,
module$c-32byte,
module$c-64byte,
module$c-128byte,
module$c=256byte,
module$c 512byte,
module$c-lkbyte,
module$c-2kbyte,
module$c-4kbyte,
module$c-8kbyte,
module$c-16kbyte,
module$c=32kbyte,
mOdule$c_64kbyte,

Object Module and Image File Format 1-35

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

module$cyage
) ;

module$target_type : (
module$c target stone,
module$c-target-shrike,
module$c=target=osprey
) ;

module$target subset : (
module$c target integer,
module$c-target-floating,
module$c-target-vector,
module$c=target=coprocessor
) ;

\BLISS uses prefix MODOBJ$TR \
module$target record : RECORD -

cpu type 7 module$target type;
pri;m_subset : SET module$target_subset[..] SIZE(byte);
register size: module$data size[..] SIZE(byte);
page_size: module$data_size[..] SIZE(byte»;

END RECORD;

\MODULE$C_PAGE denotes whatever the existing page size is. \

Figure 1-19: Target Record

3
1

2 2
4 3

1 1
6 5 8 7 o

+---+
I CPU TYPE I
I I
+---------------+---------------+---------------+---------------+

I REGISTER_SIZE I PRISM_SUBSET
I I

+---------------+---------------+---------------+---------------+

1.3.5 Match Record

The match record contains the segment match control along with the major and minor identifier
specified by the user when the module was created. The values and declarations of the fields in the
match record follow:

module$match_identity: integer[O .. 65535];

module$match_control : (
module$c match always,
module$c-match-less equal,
module$c=match=equal
) ;

1-36 Object Module and Image File Format

! \BLISS uses prefix MODULE$MR_\
module$match record : RECORD

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

match_co;trol : module$match_control[.. JSIZE(byte);
minor identifier module$match identity[.. J SIZE(word);
major_identifier module$match=identity[.. J SIZE(word);

END RECORD;

Figure 1-20: Match Record

3
1

1 1
6 5 8 7 o

+-------------------------------+---------------+---------------+
I SBZ I MATCH_CONTROL I SBZ I
I I I I
+-------------------------------+---------------+---------------+
I MAJOR_IDENTIFIER I MINOR_IDENTIFIER I
I I I
+-------------------------------+-------------------------------+
The match record describes a module's compatibility with previous and subsequent versions of itself.
As an example, this record is used by the linker and the image activator to check the compatibility
of different versions of shareable images. The linker stores in the executable image the shareable
image's match record values, along with the shareable image's specification. The image activator
compares the major and minor identifier values stored in the executable image with the values of the
current version of the shareable image. The image activator then uses the match control value stored
in the executable image to determine the compatibility of the shareable image. For more information
on the linker's use of this record, see Chapter 30, Linker.

If the match control value is MODULE$C_MATCH_EQUAL, the major IDs of the two versions must
match exactly, and the minor IDs must also match exactly. If the match control value is MODULE$C_
MATCH_LESS_EQUAL, the major IDs that are compared must match exactly, but the minor iden
tifier of the previous version must be less than or equal to the current version. If the match control
value is MODULE $ C_MATCH_ALWAYS , neither the major IDs nor the minor IDs are required to
match. The absence of this item is the same as specifying MODULE$C_MATCH_ALWAYS.

1.3.6 Entity Consistency Check Table

The entity consistency check table provides a means of ensuring that the exact version of a file used
by a compiler is being used by the linker. During pass 1, the linker reads the entity consistency check
table. It then searches an internal table for a matching entity name. If a matching entity name is
found, the identifications are compared, and an error message is issued if they differ. If not found,
the linker simply adds the entity to its internal table.

After pass 1, the linker checks each entry's identification with the object's identification. The object's
identification is found by searching the linker's internal table for an entry whose entity name matches
the object name of the original entry. The match control of the original entry is used to compare the
original entry's identification with the object's identification. An entity can have multiple entries,
but all of an entity's entries should have the same consistency check type. An entry can have a
zero-length object name, which allows an entity to be defined without a check.

The table consists of a byte-stream of entries, and each entry is word aligned. The values and
declaration of the entity consistency check entries follows:

• MODULE$C_ENTITY_BINARY-Entity check with binary identification

Object Module and Image File Format 1-37

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

• MODULE$C_ENTITY_ASCII-Entity check with ASCII identification

module$entity consistency type
module$c ~ntity binary,
module$c=entity=ascii
) ;

\BLISS uses prefix MODULE$ECE_\
module$entity_consistency_entry(

entry_type : module$entity_consistency_type
[..] SIZE (byte);

identifier_size : unsigned_word;
entity size unsigned word;
object=size unsigned=word
) : RECORD
CAPTURE

entry type,identifier size,entity size,object size;
match_control : module$match_control[~.] SIZE(byt~);
VARIANTS CASE entry type

WHEN module$c_e;tity_binary THEN
binary_identifier : integer;
binary_entity: string(entity_size);
binary_object: string(object_size);

WHEN module$c_entity_ascii THEN
ascii_identifier: string(identifier_size)i
ascii_entity string(entity_size);
ascii_object string (object_size) ;

END VARIANTS;
END RECORD;

1.3.6.8 Entity Check with Binary Identification

Figure 1-21: Entity Check with Binary Identification

Figure 1-21 Cont'd. on next page

1-38 Object Module and Image File Format

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

Figure 1-21 (Cont.): Entity Check with Binary Identification

1
5 8 7 o

+---------------+---------------+
I MATCH_CONTROL I ENTRY_TYPE I
I I I
+---------------+---------------+
I IDENTIFIER_SIZE I
I I
+-------------------------------+
I ENTITY_SIZE I
I I
+-------------------------------+
I OBJECT_SIZE I
I I
+-------------------------------+
I BINARY_IDENTIFIER I
I I
+
I
I

+
I
I

+-------------------------------+
I BINARY_ENTITY I
I BINARY_OBJECT I

These fields are defined as follows:

• ENTRY_TYPE is MODULE$C_ENTITY_BINARY.

• MATCH_CONTROL specifies the match control on the binary identification. Values are MOD-
ULE$C_LESS_EQUAL and MODULE$C_EQUAL.

• IDENTIFIER_SIZE should be zero.

• ENTITY_SIZE is the length of the entity's name.

• OBJECT_SIZE is the length of the object's name, or zero if there is no object.

• BINARY_IDENTIFIER specifies the binary identification.

• BINARY_ENTITY is the entity's name.

• BINARY_OBJECT is the object's name.

Object Module and Image File Format 1-39

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

1.3.6.9 Entity Check with ASCII Identification

Figure 1-22: Entity Check with ASCII Identification

1
5 8 7 o

+---------------+---------------+
I MATCH_CONTROL I ENTRY_TYPE I
I I I
+---------------+---------------+
I IDENTIFIER_SIZE I
I I
+-------------------------------+
I ENTITY_SIZE I
I I
+-------------------------------+
I OBJECT_SIZE I
I I
+-------------------------------+
I ASCII IDENTIFIER I
I ASCII_ENTITY I
I ASCII_OBJECT I

These fields are defined as follows:

• ENTRY_TYPE is MODULE$C_ENTITY_ASCII.

• MATCH_CONTROL is MODULE$C_EQUAL.

• IDENTIFIER_SIZE is the length of the identifier's name.

• ENTITY_SIZE is the length of the entity's name.

• OBJECT_SIZE is the length of the object's name or zero if there is no object.

• ASCII_IDENTIFIER is the identifier's name.

• ASCII_ENTITY is the entity's name.

• ASCII_OBJECT is the object's name.

1-40 Object Module and Image File Format

1.3.7 Debug Symbol Table

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

The debug symbol table allows the debugger to interpret user commands and display memory contents
in "the current programming language." The debug symbol table is created by the compiler and
interpreted by the debugger in conjunction with the debug module table. The linker does not fix up
the debug symbol table.

\ The debug symbol table is being designed by SDT. The specification of the debug symbol table in
the object module may be included when its design is finalized. \

1.4 Data Structures Specific to Object Modules

Object modules contain data structures that are not shared with image files or other types of modules.
These data structures contain information that is useful to compilers and the linker, but is not needed
for image activation.

1.4.1 Linker Directive Table

The linker directive table provides a means for the compiler to "program" the linker with initialization
routines, additional libraries to search, and additional files to include in the link. This table consists
of simple counted ASCII strings-word aligned-each string being a linker command. The following
are valid linker commands (see Chapter 30, Linker for more details):

• IMAGE_FILE specifies the inclusion of a shareable image in the link.

• IN1TIAL_ROUTINE specifies the initialization routines that are called when the image is acti-
vated. Routines are specified with the name of their global symbol.

• LIBRARY_FILE specifies the inclusion of a library in the link.

• MODULE specifies the inclusion of modules in a library file in the link.

• OBJECT_FILE specifies the inclusion of an object module file in the link.

\ The syntax for these commands is not yet determined, but it will be common to all systems. \

1.4.2 Data Relocation Table

The data relocation table is generated by the compiler, and contains sufficient information to direct
the linker to fix up a data section. This table is a collection of command-oriented structures. The
first byte of the command structure is the type, indicating the relocation to be performed. Following
the type is the variable-length additional information required for the command.

The data relocation table consists of a series of variable-length entries, and each entry is longword
aligned. The declarations of the data relocation values and entries follow:

modobj$relocate type : (
modobj$c relocate data,
modobj$c=relocate~rocedure,
modobj$c relocate argument,
modobj$c=relocate~sect_size,
modobj$c_relocate_tls_offset
) ;

Object Module and Image File Format 1-41

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

! \BLISS uses prefix MODOBJ$RE_\
modobj$relocate entry (

entry type ~ modobj$relocate type[.. J SIZE(byte);
entry=size : module$entry_si;e[.. J SIZE(word);
entry_quadword : bit
) : RECORD
CAPTURE entry_type, entry_size, entry_quadword;
symbol_fixup : bit;
self_relative : bit;
argument number : unsigned byte;
store_le~gth : module$data=size[.. J SIZE(byte);
relocate_index : longword;
psect_index : longword;
VARIANTS CASE entry_quadword

WHEN false THEN
psect_l_offset : longword;
VARIANTS CASE entry_type

WHEN modobj$c relocate argument THEN
descripto~_l_index-: longword;
descriptor 1 offset : longword;
string_l_i;d;x : longword;
string_I_offset : longword;

WHEN OTHERS THEN
NOTHING;

END VARIANTS;
WHEN true THEN

psect_q_offset : quadword;
VARIANTS CASE entry type

WHEN modobj$c_r;locate_argument THEN
descriptor_q_index : longword;
descriptor_~offset : quadword;
string_~index : longword;
string_~offset : quadword;

WHEN OTHERS THEN
NOTHING;

END VARIANTS;
END VARIANT S;

END RECORD;

The contents of the data relocation section are described in the following subsections.

1.4.2.1 Global Symbol and PSECT Relocations

Global symbol and PSECT relocations direct the linker to add the value of an external symbol or
base address of a PSECT to either the contents of a memory location within the data section, or the
contents of a memory location minus the location's address. The contents of these relocation items
are shown in Figure 1-23.

1-42 Object Module and Image File Format

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

Figure 1-23: ORT Global Symbol and PSECT Entry

3
1

2 2
4 3

1 1
6 5 8 7 3 2 1 0

+---------------+---------------+---------------+---------------+
I ENTRY_SIZE I Unused, SBZ I ENTRY_TYPE I
I I I I
+---------------+---------------+---------------+---------+-+-+-+
I STORE_LENGTH I ARGUMENT_NUMBER I Reserved, SBZ ISISIEI
I I SBZ I IRIFIQI
+---------------+---------------+-------------------------+-+-+-+
I RELOCATE_INDEX I
I I
+---+
I PSECT_INDEX I
I I
+---+
I PSECT_L_OFFSET or PSECT_Q_OFFSET I
I I
+---+
I PSECT_Q_OFFSET I
I I
+---+
• ENTRY_TYPE is MODOBJ$C_RELOCATE_DATA. The relocation item is either a global symbol

relocation or a PSECT relocation, specified by SYMBOL_FIXUP.

• ENTRY_SIZE is 20 if the entry _quadword is clear, or 24 if it is set.

• ENTRY_QUADWORD (EQ) is set if the entry contains the quadword field PSECT_~OFFSET.
ENTRY_QUADWORD is clear if the entry contains the longword field PSECT_L_OFFSET.

• SYMBOL_FIXUP (SF) is set if the entry describes a global symbol fixup. SYMBOL_FIXUP is
clear if the fixup is to a PSECT.

• SELF_RELATIVE (SR) is set if the fixup is self-relative to the location being fixed. SELF _
RELATIVE is clear if the fixup is absolute. If SELF_RELATIVE is set, STORE_LENGTH must
be either MODULE$C_LONGWORD (32-bit architecture) or MODULE$C_QUADWORD (64-bit
archi teet ure).

• STORE_LENGTH specifies the size of the value to be stored (see Section 1.3.4).

• RELOCATE_INDEX is the relative symbol number (ifSYMBOL_FIXUP is set) or PSECT number
to use in the fixup.

• PSECT_INDEX is the PSECT number containing the location to be fixed up.

Object Module and Image File Format 1-43

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

• PSECT_L_OFFSET or PSECT_CLOFFSETis the relative byte offset within the PSECTidentified
by PSECT_INDEX for the current module to fix up.

\ When several object modules are combined into one module, these fixups will be modified to refer
to the new, improved relative symbol and PSECT numbers. \

\Note that the compiler can do external link-time fixups using this mechanism. To add two (or
more) external literals together and store the result in a location, the compiler initializes the location
to zero, and generates the appropriate RELOCATE_DATA fixups. The linker always picks up the
previous value from the location for the fixup. If the referenced symbols are not known at link time
(for example, the symbol is resolved to a shareable image), an error occurs. \

1.4.2.2 Procedure Relocations

Procedure relocations direct the linker to fixup a linkage pair of a procedure, which consists of the
addresses of the procedure's invocation descriptor and entry point. Procedure relocations direct the
linker to add the location of the procedure's invocation descriptor to either the contents of the specified
longword or quadword or the contents minus the longword's or quadword's location. It further directs
the linker to add the location of the procedure's entry point to either the contents of the next longword
or quadword, or the contents minus the next longword's or quadword's location. This fixup allows a
caller of a procedure to load the address of both the invocation descriptor and the entry point at once.
The format of this relocation item is shown in Figure 1-24.

Figure 1-24: ORT Procedure Entry

3
1

2 2
4 3

1 1
6 5 8 7 3 2 1 0

+---------------+---------------+---------------+---------------+
I ENTRY_SIZE I Unused, SBZ I ENTRY_TYPE I
I I I I
+---------------+---------------+---------------+---------+-+-+-+
I STORE_LENGTH I ARGUMENT_NUMBER I Reserved, SBZ ISIIIEI
I I SBZ I I R I I Q I
+---------------+---------------+-------------------------+-+-+-+
I RELOCATE INDEX I
I I
+---+
I PSECT INDEX I
I I
+---+
I PSECT L OFFSET or PSECT_Q_OFFSET I
I I

Figure 1-24 Cont'd. on next page

1-44 Object Module and Image File Format

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

Figure 1-24 (Cont.): DRT Procedure Entry
+---+
I PSECT_Q_OFFSET I
I I
+---+
These fields are defined as follows:

• ENTRY_TYPE is MODOBJ$C_RELOCATE_PROCEDURE.

• ENTRY_SIZE is 20 if the entry_quadword is clear, or 24 if it is set.

• ENTRY_QUADWORD (EQ) is set if the entry contains the quadword field PSECT_CLOFFSET.
ENTRY_QUADWORD is clear if the entry contains the longword field PSECT_L_OFFSET.

• SELF_RELATIVE (SR) is set if both the invocation descriptor fixup and the entry point fixup
are self-relative to their own locations.

• STORE_LENGTH is either MODULE$C_LONGWORD (32-bit architecture) or MODULE$C_
QUADWORD (64-bit architecture) (see Section 1.3.4).

• RELOCATE_INDEX is the relative symbol number to use in the fixup.

• PSECT_INDEX is the PSECT number containing the location to be fixed up.

• PSECT_L_OFFSET or PSECT_CLOFFSET is the relative byte offset within the PSECT identified
by PSECT_INDEX for the current module to fix up.

1.4.2.3 FORTRAN String Argument Coercion

In FORTRAN, strings can be passed by descriptor or reference. The mechanism used for the argu
ments in a procedure is specified in the formal argument descriptors in the called procedure definition
(found in the global symbol table of the called procedure module). The calling routine must include
the proper data structures to pass the string either way, and the linker will make the proper choice.

\ This mechanism is required because FORTRAN programs can accept string arguments by descriptor
(declared as a string) or by reference (declared as a linear array of bytes). The FORTRAN compiler is
unable to determine the correct passing mechanism when compiling references to such procedures. \

FORTRAN string relocation descriptors have the following format:

Object Module and Image File Format 1-45

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

Figure 1-25: ORT FORTRAN String Entry

3
1

2 2
4 3

1 1
6 5 8 7 43210

+---------------+---------------+---------------+---------------+
I ENTRY_SIZE I Unused - SBZ I ENTRY_TYPE I
I I I I
+---------------+---------------+---------------+-------+-+-+-+-+
I STORE_LENGTH I ARGUMENT_NUMBER I Reserved - SBZ IOISIOIEI
I SBZ I I I I R I I Q I
+---------------+---------------+---------------+-------+-+-+-+-+
I RELOCATE INDEX I
I I
+---+
I PSECT INDEX I
I I
+---+
I PSECT_L_OFFSET or PSECT_Q_OFFSET I
I I
+---+
I DESCRIPTOR_L_INDEX or PSECT_Q_OFFSET I
I I
+---+
I DESCRIPTOR_L_OFFSET or DESCRIPTOR_Q_INDEXI
I I
+---+
I STRING L INDEX or DESCRIPTOR_Q_OFFSET I
I I

Figure 1-25 Cont'd. on next page

1-46 Object Module and Image File Format

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

Figure 1-25 (Cont.): ORT FORTRAN String Entry
+---+
I STRING_L_OFFSET or DESCRIPTOR_Q_OFFSET I
I I
+---+
I STRING_Q_INDEX I
I I
+---+
I STRING_Q_OFFSET I
I I
+
I
I

+
I
I

+---+
These fields are defined as follows:

• ENTRY_TYPE is MODOBJ$C_RELOCATE_ARGUMENT. The relocation item describes alter
nate methods of passing strings to FORTRAN.

• ENTRY_SIZE is 36 if the entry _quadword is clear, or 48 if it is set.

• ENTRY_QUADWORD (EQ) is set if the entry contains the fields with _~ in their names. EN
TRY_ QUADWORD is clear if the entry contains the fields with _L_ in their names.

• SELF_RELATIVE (SR) is set if the fixup is self-relative to the location being fixed. SELF_
RELATIVE is clear if the fixup is absolute. For FORTRAN string coercion, this flag applies only
to the value stored in the location described by PSECT_OFFSET and PSECT_INDEX.

• ARGUMENT_NUMBER is the positional value in the argument list of the string being passed.
Arguments are numbered beginning with one.

• RELOCATE_INDEX is the relative symbol number of the procedure symbol reference in the
calling module.

• PSECT_INDEX is the PSECT number containing the location to be fixed up.

• PSECT_L_OFFSET or PSECT_~OFFSET is the relative byte offset within the PSECT identified
by PSECT_INDEX for the current module to fix up.

• DESCRIPTOR_L_INDEX or DESCRIPTOR_~INDEX is the PSECT number containing the full
string descriptor for the string.

• DESCRIPTOR_L_OFFSET or DESCRIPTOR_~OFFSET is the relative byte offset within the
PSECT identified by DESCRIPTOR_INDEX for the full string descriptor.

• STRING_L_INDEX or STRING_~INDEX is the PSECT number containing the string itself.

• STRING_L_OFFSET or STRING_~OFFSET is the relative byte offset within the PSECT iden
tified by STRING_INDEX for the body of the string.

FORTRAN string relocation works as described in the following steps:

1. The compiler must set up data storage as follows:

S:"THIS IS THE STRING"

+--------+ +--------+
X: I 0 I D: I N I

+--------+ +--------+
I 0 I
+--------+

Object Module and Image File Format 1-47

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

2. The compiler generates a MODOBJ$C_RELOCATE_ARGUMENT data relocation describing lo
cation X in PSECT_INDEX and PSECT_OFFSET, location D (the string descriptor) in DESCRIP
TOR_INDEX and DESCRIPTOR_OFFSET, and location S in STRING_INDEX and STRING_
OFFSET.

3. The linker initializes the address pointer in D to point to the string, using the information in
STRING_INDEX and STRING_OFFSET.

4. The linker examines the formal argument descriptor for the argument specified by ARGUMENT_
NUMBER in the procedure described by RELOCATE_INDEX. If the formal argument specifies
"pass by descriptor," the linker will initialize X to contain the address ofD. If the formal argument
specifies "pass by reference," the linker will initialize X to contain the address of the string
constant S.

5. The calling routine then simply picks up the address contained in X, which contains the address
of the full string descriptor or the address of the string constant S. Note that, in this case, the
compiler must not generate a MODOBJ$C_RELOCATE_DATA fixup for X.

1.4.2.4 Store PSECT Size

The Store PSECT Size relocation directs the linker to add the size of the specified PSECT to the
contents of a memory location within a data section. Store PSECT Size relocation descriptors have
the following format:

Figure 1-26: ORT PSECT Size Entry

3
1

2 2
4 3

1 1
6 5 8 7 43210

+---------------+---------------+---------------+---------------+
I ENTRY_SIZE I Unused - SBZ I ENTRY_TYPE I
I I I I
+---------------+---------------+---------------+---------+-+-+-+
I STORE_LENGTH I ARGUMENT_NUMBER I Reserved - SBZ IOIOIEI
I I SBZ I I I IQI
+---------------+---------------+-------------------------+-+-+-+
I RELOCATE INDEX I
I I
+---+
I PSECT INDEX I
I I
+---+
I PSECT L OFFSET or PSECT_Q_OFFSET I
I I

Figure 1-26 Cont'd. on next page

1-48 Object Module and Image File Format

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

Figure 1-26 (Cont.): OAT PSECT Size Entry
+---+
I PSECT_Q_OFFSET I
I I
+---+
These fields are defined as follows:

• ENTRY_TYPE is MODOBJ$C_RELOCATE_PSECT_SIZE. The relocation item is the size of a
PSECT.

• ENTRY_SIZE is 20 ifENTRY_QUADWORD is clear, or 24 if it is set.

• ENTRY_QUADWORD (EQ) is set if the entry contains the quadword field PSECT_~OFFSET.
ENTRY_QUADWORD is clear if the entry contains the longword field PSECT_L_OFFSET.

• STORE_LENGTH specifies the size of the value to be stored (see Section 1.3.4).

• RELOCATE_INDEX is the PSECT number whose size is to be stored.

• PSECT_INDEX is the PSECT number containing the size of the PSECT identified by INDEX.

• PSECT_L_OFFSET or PSECT_~OFFSET is the relative byte offset within the PSECT identified
by PSECT_INDEX for the current module to fix up.

\Note that self-relative fixups are not allowed for this type of fixup. \

1.4.2.5 Store TLS Offset

The Store TLS (thread local storage) Offset relocation directs the linker to add the offset of the
module's contribution to a thread local storage region to the contents of a memory location within
a data section. This allows access to the module's portion of a concatenated TLS region. Store TLS
Offset relocation descriptors have the following format:

Figure 1-27: OAT TLS Index Entry

Figure 1-27 Cont'd. on next page

Object Module and Image File Format 1-49

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

Figure 1-27 (Cont.): ORT TLS Index Entry

3
1

2 2
4 3

1 1
6 5 8 7 3 2 1 0

+--------~------+---------------+---------------+---------------+
I ENTRY SIZE I Unused, SBZ I ENTRY TYPE I
I - I I - I

+---------------+---------------+---------------+---------+-+-+-+
I STORE_LENGTH I ARGUMENT_NUMBER I Reserved, SBZ IOIOIEI
I I SBZ I I I I QI
+---------------+---------------+-------------------------+-+-+-+
I RELOCATE INDEX I
I I
+---+
I PSECT INDEX I
I I
+---+
I PSECT_L_OFFSET or PSECT_Q_OFFSET I
I I
+---+
I PSECT_Q_OFFSET I
I I
+---+
These fields are defined as follows:

• ENTRY_TYPE is MODOBJ$C_RELOCATE_TLS_OFFSET.

• ENTRY_SIZE is 20 if the entry _quadword is clear, or 24 if it is set.

• ENTRY_QUADWORD (EQ) is set if the entry contains the quadword field PSECT_Q.OFFSET.
ENTRY_QUADWORD is clear if the entry contains the longword field PSECT_L_OFFSET.

• STORE_LENGTH specifies the size of the value to be stored (see Section 1.3.4).

• RELOCATE_INDEX is the PSECT number of the TLS PSECT whose TLS offset is to be stored.

• PSECT_INDEX is the PSECT number of the location to be fixed up by the offset of the TLS
PSECT identified by INDEX.

• PSECT_L_OFFSET or PSECT_Q.OFFSET is the relative byte offset within the PSECT identified
by PSECT_INDEX to be fixed up.

\Note that self-relative fixups are not allowed for this type of fixup. \

1.5 Data Structures Specific to Image Files

Image files contain data structures that are not shared with object modules or other types of modules.
These data structures provide information optimally formatted for the image activator, autoloader,
and debugger. The image activator data structures are designed for the 32-bit PRISM architecture
because programs that run on the 32-bit PRISM architecture cannot run on the 64-bit PRISM archi
tecture without recompiling and relinking.

\The 64-bit image activator data structures will be specified later.\

1-50 Object Module and Image File Format

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

1.5.1 Image Section Descriptor Table

Image section descriptors are used by Mica to load the various sections of code and data into memory.
Image section descriptors are only present in image files and are aligned on longword boundaries.
Because page protection is done on 64K-byte boundaries, the sections defined by image section de
scriptors must start on 64K-byte boundaries. The linker ensures 64K-byte boundary alignment.

\Demand zero compression will be adversely affected when a page is sparsely initialized because all
memory up to the last initialized location must be present on disk. \

\A linker option will provide 8K-byte boundary alignment for linking the executive. \

The stack image section descriptor should be the last of the local image section descriptors to allow
the image activator to allocate the stack's virtual address last. The linker will generate a default
stack section of 128 pages, which can be changed by the user at link time.

The ISD (image section descriptor) table consists of an array of fixed-length entries, and each entry
is quadword aligned. The declaration of the ISD entry and its format follows:

modimg$image section attribute :
modimg$c-isd dem;nd zero,
modimg$c-isd-copy o~ modify,
modimg$c-isd-writ;, -
modimg$c-isd-stack,
modimg$c-isd-message section,
modimg$c-isd-bit5, -
modimg$c-isd-bit6,
modimg$c-isd-bit7,
modimg$c-isd-bit8,
modimg$c-isd-bit9,
modimg$c-isd-bitlO,
modimg$c-isd-bitll,
modimg$c-isd-bit12,
modimg$c=isd~rot_read,
modimg$c isd prot write,
modimg$c=isd~rot=execute
) ;

\BLISS uses prefix MODIMG$ISD \
mOdimg$image_section_descriptor(

entry_type : module$entry_type
) : RECORD
CAPTURE entry_type;
page fault cluster : unsigned byte;
attributes-: SET modimg$image-section attribute

[•• J SIZE(WORD); - -
section_size : longword;
virtual-page_number : longword;
virtual block number : longword;

END RECORD;

Object Module and Image File Format 1-51

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

Figure 1-28: Image Section Descriptor

332
109

2 1 1 111
098 7 6 5 8 7 o

+-+-+-+---------------+-+-+-+-+-+---------------+---------------+
IPIPIPI Reserved, SBZ IMISIWICIDI PAGE_FAULT I ENTRY_TYPE I
IEIRIWI ISITIRIMIZI CLUSTER I I
+-+-+-+---------------+-+-+-+-+-+---------------+---------------+
I SECTION SIZE I
I I
+---+
I VIRTUAL PAGE NUMBER I
I I
+---+
I VIRTUAL_BLOCK NUMBER I
I I
+---+
These fields are defined as follows:

• ENTRY_TYPE contains zero.

• PAGE_FAULT_CLUSTER specifies the number of pages to be read for this image section when
a page fault occurs.

• ATTRIBUTES specifies the attributes of the image section.

MODIMG$C_ISD_DE:MAND_ZERO is set if this section is demand zero. No pages are
allocated in the module. VIRTUAL_BLOCK_NUMBER must be zero.

MODIMG$C_ISD_COPY_ON_MODIFY is set if this section is copy on modify. All sections
will have MODIMG$C_ISD_COPY_ON_MODIFY set, except for those sections containing
PSECTs that are WRITABLE and SHAREABLE.

MODIl\1G$C_ISD_ WRITE is set if this section is writable. This is set if this section needs
to be fixed up during image activation.

MODIMG$C_ISD_STACK describes the stack. MODIMG$C_ISD_DEMAND_ZERO must
also be set.

MODIMG$C_ISD_MESSAGE_SECTION contains message section descriptors.

MODIMG$C_ISD_PROT_ WRITE is set if the owner has write access. A section with
MODIMG$C_ISD_PROT_ WRITE set and MODIMG$C_ISD_COPY_ON_MODIFY clear is a
writable shareable section (created from PSECTs that are WRITABLE and SHAREABLE).

MODIMG$C_ISD_PROT_READ is set if the owner has read access.

MODIMG$C_ISD_PROT_EXECUTE is set if the owner has execute access.

• SECTION_SIZE specifies the number of 512-byte units in the section.

1-52 Object Module and Image File Format

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

• VIRTUAL_PAGE_NUMBER specifies the starting relative virtual page number (in 8K-byte
pages) for the section. The VPNs are specified relative to a zero-based image. The image activator
must relocate these VPNs based on where the image is actually laid out in memory.

\8K-byte is used because it is the smallest page size allowed in the PRISM architecture. The
linker will ensure that each section's starting relative virtual page number is on a 64K-byte
boundary for user mode images. The 64K-byte alignment may cause unexpectedly large image
files because the linker cannot compress to demand zero uninitialized pages that are between
initialized pages within a single section; for example, a 64 Kbyte array that has only the last
byte initialized will require 64 Kbytes (128 blocks) of image file. On the other hand, a 128 Kbyte
array with only the byte at offset 64K + 1 initialized will require only 512 bytes (1 block) of
image file, because the first 64 Kbytes and the last 64 Kbytes can be compressed to demand zero
sections. \

• VIRTUAL_BLOCK_NUMBER specifies the starting virtual block number (in 512-byte units) in
the image file for the section.

1.5.2 Thread Local Storage Relocation Table

The TLS relocation table defines TLS index fixups (that is, a location that references a TLS region).
The TLS-region-count fixup directs the image activator to add the count of TLS regions contributed
by previously activated images to the specified locations. TLS regions are identified by their index
into an array of addresses that are pointed to by a field in the TEB. This fixup allows TLS regions
created in separately activated shareable images to have unique indexes.

The TLS relocation table is an array of longwords describing the memory locations to be fixed up.
Each longword is a relative address from the beginning of the image to the target location. The
image activator adds the number of TLS regions contributed by the previously activated images to
the longword value at the memory location. The following is the declaration of the table:

modimg$relocate_tls_table(
table size: integer[O ..]):

ARRAY [1.~table_size/4] OF longword;

1.5.3 Local Relocation Table

The local relocation table defines image-internal fixups (that is, a location that references another
location within the same image). The local fixup directs the image activator to add the difference
between the base address and expected base address to the specified locations. This fixup allows
shareable images to be activated at any virtual address.

The local relocation table is an array of longwords that describe the memory locations to be fixed
up. Each longword is a relative address from the beginning of the image to the target location. The
image activator adds a correction value to the longword value at the memory location. The correction
value is the actual base address of the image minus the expected base address of the image. If the
actual base address is the same as the expected one, then local fixups are not done. The following is
the declaration of the table:

modimg$relocate local table(table size: integer[O ..]) :
ARRAY [1 .. table_size/4] OF longword;

Object Module and Image File Format 1-53

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

1.5.4 External Relocation Table

The external relocation table defines image-external fixups (that is, locations that reference a location
within a different image). The external fixup directs the image activator to add to the specified
locations the difference between the base address of the specified image and its expected base address.
This fixup allows shareable images to share data with other shareable images, and any shareable
image specified in this table must be specified in the immediate activation table. This fixup is not
needed to call a procedure in another shareable image because that fixup is done dynamically by the
autoloader (see Section 1.6).

The external relocation table is an array of longword pairs that describes the external image and
the memory locations to be fixed up. The first longword in the pair is the byte offset of the external
image's entry in the immediate activation table. Unlike other offsets, it is not from the beginning
of the module, but from the beginning of the immediate activation table. The second longword is a
relative address from the beginning of the image to the target location. The image activator adds
a correction value to the longword value at the memory location. The correction value is the actual
base address of the specified image minus its expected base address. The external relocation table
is sorted by the image containing the target of the reference. The following is the declaration of the
table:

! \BLISS uses prefix MODIMG$REE \
mOdimg$relocate_external_entry ~ RECORD

image_offset : longword;
location offset : longword;
LAYOUT

image_offset;
location_offset;

END LAYOUT;
END RECORD;

modimg$relocate external table(table_size: integer[O ..]) :
ARRAY [1 .. t;ble_size78] OF modimg$relocate_external_entry;

1.5.5 Deferred Activation Table

The deferred activation table contains a list of images that can be activated on demand during the
course of the image execution. These entries are the image descriptors referenced by the image
autoload vectors. The following is the declaration and layout of an entry, which is quadword aligned:

modimg$activate linkage(
linkage_cou~t : integer[O ..]
) : ARRAY [I .. linkage count] OF RECORD
linkage_pair_offset :-longword;
transfer_vector_index : longword;
END RECORD;

\BLISS uses prefix MODIMG$AE \
modimg$activate_entry(-

linkage table count: integer[O ..];
image_n~me_size : module$string_size
) : RECORD
CAPTURE linkage_table_count, image_name_size;
base address : longword;
imag;_match : module$match_record;
expected_address : longword;
image_name: string(image_name_size);
linkage_table: modimg$activate_linkage(linkage_table_count);
END RECORD;

1-54 Object Module and Image File Format

Figure 1-29: Activation Table Entry

3
1

1 1
6 5

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

o
+---+
I BASE ADDRESS I
I I
+---+
I EXPECTED ADDRESS I
I I
+---+
I IMAGE MATCH I
I I
+
I
I

+
I
I

+---+
I LINKAGE TABLE COUNT I
I I

Figure 1-29 Cont'd. on next page

Object Module and Image File Format 1-55

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

Figure 1-29 (Cont.): Activation Table Entry
+-------------------------------+-------------------------------+
I IMAGE NAME I IMAGE NAME SIZE I
I I I
+-------------------------------+-------------------------------+
I IMAGE NAME I
/ /
/ /
I I
+---+
I LINKAGE_PAIR_OFFSET[lJ I
I I
+---+
I TRANSFER_VECTOR_INDEX(lJ I
I I
+---+
/ /
/ /
+---+
I LINKAGE_PAIR_OFFSET[LINKAGE_TABLE_COUNTJ I
I I
+---+
I TRANSFER_VECTOR_INDEX[LINKAGE_TABLE_COUNTJ I
I I
+---+

• BASE_ADDRESS is the base address of the image that contains this entry. This address is
required for autoloading and is fixed up by the image activator, if necessary.

• EXPECTED_ADDRESS is the optimal load address for the described image (which is the base
address the linker has used in preassigning virtual addresses).

• IMAGE_MATCH is the value at link time of the described image's match control record.

• LINKAGE_TABLE_COUNT is the number of entries in the linkage table.

• IMAGE_NAME_SIZE is the size of the image name.

• IMAGE_NAME is the name of the image (LBRSHR, LIBRTL, and so on).

• LINKAGE_TABLE contains the information needed to fixup all linkage pairs that refer to rou-
tines in the described image.

LINKAGE_PAIR_OFFSET is the offset (in bytes) from the base address of the image that
contains this entry to a linkage pair that references a routine in the described image.

TRANSFER_ VECTOR_INDEX is the index of the routine in the described image's transfer
vector table (see Section 1.5.7).

1.5.6 Immediate Activation Table

The immediate activation table contains a list of images that are to be automatically activated when
the containing image is activated. It has the same format as the deferred activation table (see
Section 1.5.5.)

1-56 Object Module and Image File Format

1.5.7 Transfer Vector Table

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

The transfer vector table provides a level of indirection between the caller's shareable image and the
called shareable image. The transfer vector table is an array oflongwords containing the offsets from
the beginning of the mapped file to the invocation descriptor for the routine it represents. Transfer
vector zero will contain a count of the number of transfer vectors in the image, and therefore an
image offset of zero is illegal.

The transfer vector table is read by the autoloader when it fixes up a shareable image dynamically.
The transfer vector table is placed in the image header because the image header is always mapped
anyway and because the table needs to be found before any symbol fixups can be done. The linker
places the transfer vector table at the constant offset MODIMG$C_TRANSFER_ VECTOR_OFFSET
from the beginning of the image file to optimize the dynamic fixup of procedures. The declaration
and layout of the transfer vector table follows:

! \BLISS uses prefix MODIMG$TVT \
modimg$transfer_vector_table(-

transfer_count: integer[O .. J
) : RECORD
CAPTURE transfer_count;
transfer vector: ARRAY [l .. transfer_countJ

OF longword;
END RECORD;

Figure 1-30: Transfer Vector Table

3
1 o

+---+
I TRANSFER COUNT I
I I
+---+
I TRAN SFER _ VECTOR [1 J I
I I
+---+
/ /
/ /
+---+
I TRANSFER_VECTOR [TRANSFER_COUNTJ I
I I
+---+
Figure 1-30 Cont'd. on next page

Object Module and Image File Format 1-57

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

Figure 1-30 (Cont.): Transfer Vector Table

• TRANSFER_ VECTOR_COUNT is the number of transfer vectors in the transfer vector table. It
is equal to the number of procedures within the shareable image that are accessible from other
images.

• TRANSFER_VECTOR is the offset in bytes from the beginning of the image to a routine's invo
cation descriptor.

1.5.8 Initialization Routine Table

The initialization routines of an image are called at image activation. Initialization routines within
an image are called in order with no parameters. (See Chapter 30, Linker for details on the ordering.)
There is no ordering between initialization routines of separate images. The initial routine table is
an array of longwords that contains the offset from the beginning of the image to the invocation
descriptor's of the initialization routines. The declaration of the table is:

modimg$initial routine table(table size: integer[O ..]) :
ARRAY [1 .. table_si~e/4] OF long;ord;

1.5.9 Debug Module Table

The debug module table is built by the linker and is used by DEBUG. This table contains a list of
modules in the image and, for each module, the PSECTs and their base addresses.

The declaration and layout for a debug module table entry is:

! \BLISS uses prefix MODIMG$DME \
modimg$debug_module_entry(psect_number

CAPTURE psect_number;
module_index : longword;
dst offset : quadwordi
dst_size : quadwordi
entry_item: ARRAY [1 .. psect_numberJ
END RECORD;

Figure 1-31: Debug Module Table Entry

Figure 1-31 Cont'd. on next page

1-58 Object Module and Image File Format

: integer [O ..] RECORD

OF rnodimg$debug_module_iterni

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

Figure 1-31 (Cont.): Debug Module Table Entry

3
1 o

+---+
I MODULE INDEX I
I I
+---+
I PSECT NUMBER I
I I
+---+
I DST OFFSET I
I I
+
I
I

+
I
I

+---+
I DST CONTRIBUTION I
I I
+
I
I

+
I
I

+---+
Following the header for a module is a triplet of quadwords for each PSECT within the module. This
triplet contains the PSECT index, and address range for the PSECT in the following format:

! \BLISS uses prefix MODIMG$DMI \
modimg$debug_module_item : RECORD

psect_index : longword;
psect low address : quadword;
psect=high_address : quadword;
END RECORD;

Figure 1-32: Debug Module Table Entry Item

Figure 1-32 Cont'd. on next page

Object Module and Image File Format 1-59

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

Figure 1-32 (Cont.): Debug Module Table Entry Item

3
1 o

+---+
I SBZ I
I I
+---+
I PSECT INDEX I
I I
+---+
I PSECT LOW ADDRESS I
I I
+
I
I

+
I
I

+---+
I PSECT HIGH ADDRESS I
I I
+
I
I

+
I
I

+---+
The length of the DMT for each module is determined by the count of triplets in PSECT_NUMBER
field.

1.6 Linker

The following sections discuss how the linker operates on the contents of object modules and shareable
images in order to produce PRISM image files. This information is provided in this chapter to aid
the reader in understanding the object and image formats; it is not intended to provide complete
information on the linker's operation. See Chapter 30, Linker for a complete description.

1.6.1 Symbol References

Symbol references are generated when a source module refers to a symbol that is not found in the
current module. The symbol can be either absolute or relocatable, and either data or procedure. In
the following sections, only relocatable symbols are treated. The linker handles symbol references
differently, depending on whether the symbol is a procedure or data, and depending on whether an
object module or a shareable image defines the symbol.

1.6.1.1 Building an Executable Image with Object Modules

When the linker is building an executable image, it assigns a base address to the image. Hence, the
virtual addresses of all global symbols found in object modules are known at link time. The linker
can simply fill in the longword with the correct virtual address.

1.6.1.2 Building a Shareable Image with Object Modules

When the linker is building a shareable image, it does not know where the shareable image will be
placed in virtual memory at run time. To resolve these symbol references, the linker substitutes its
best guess for the symbol's value, and then generates an entry in the local relocation table for the
image under construction. This entry directs the image activator in fixing up the correct location in
a data section at image activation.

1-60 Object Module and Image File Format

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

1.6.1.3 ResQlving Procedure Symbols from Shareable Images

If a procedure symbol is found in a shareable image, the linker performs the following actions:

1. The linker enters the shareable image into the deferred activation table if it is not already in an
activation table.

2. The linker generates an image autoload vector in the image header. This autoload vector is
quad word aligned and has the following declaration and format:

! \BLISS uses prefix MODIMG$AV \
modimg$autoload_vector : RECORD

transfer_code : POINTER anytype;
transfer_invocation : POINTER anytype;
target_invocation : POINTER anytype;
target_code : POINTER anytype;
image_descriptor : POINTER modimg$activate_entry;
END RECORD;

Figure 1-33: Image Autoload Vector

3
1 ° +---+

I TRANSFER CODE I
I I
+---+
I TRANSFER INVOCATION I
I I
+---+
I TARGET INVOCATION I
I I
+---+
I TARGET CODE I
I I
+---+
I IMAGE DESCRIPTOR I
I I
+---+

These fields are defined as follows:

• TRANSFER_CODE contains the virtual address of the transfer code. The transfer code is
code generated by the linker to transfer the routine to either the autoloader or the target
routine:

LDQ
OR
JSR

8 (R10), R4
R4, RO, R10
RO, (R5)

;Load addresses for autoloader
;Move autoload vector address
;Jump to autoloader/routine

Object Module and Image File Format 1-61

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

\ The PRISM calling standard specifies registers R4 and R5 as registers that can be over
written between the calling procedure and the called procedure. \

Note that if the image being generated is a shareable image, this location may need to be
fixed up at image activation.

• TRANSFER_INVOCATION contains the address of the transfer routine's invocation descrip
tor. The invocation descriptor is needed only for the requirements of the calling standard.
It is not actually referenced by the transfer code. Note that if the image being generated is
a shareabl~ image, this location may need to be fixed up at image activation.

• TARGET_INVOCATION initially contains the address of its own autoload vector. Eventu
ally, it will contain the address of the invocation descriptor for the called routine. Note that
if the image being generated is a shareable image, this location may need to be fixed up at
image activation.

• TARGET_CODE initially contains the address of the autoloader code. Eventually, it will
contain the address of the entry point for the called routine. Note that if the image being
generated is a shareable image, this location may need to be fixed up at image activation.

• IMAGE_DESCRIPTOR is a self-relative pointer that points to the entry in the current im
age's immediate or deferred activation table of the called routine's shareable image.

3. The linker uses the location of the autoload vector and the location of the transfer code to fix up all
references to a routine in the autoloaded image. (All references to the routines in the autoloaded
image are listed in the linkage table in its image descriptor table entry [see Section 1.5.5]).

4. The program begins execution. The first call to the routine in the shareable image results in a
call to the transfer code. The autoload routine finds the image descriptor for the image. If the
image has not been loaded, it loads the image into memory and fixes up all references to the
image. Additionally, TARGET_INVOCATION and TARGET_CODE are modified to contain the
addresses of the routine's invocation descriptor and entry point. This allows subsequent calls to
routines in the image to work even if they use stale invocation descriptors and entry points.

1.6.1.4 Resolving Data Symbols from Shareable Images

If a data symbol is found in a shareable image, the linker performs the following actions:

1. The linker enters that shareable image in the immediate activation table if not already entered
(and removes it from the deferred activation table if it was entered there)

2. The linker calculates the expected value of the symbol, using the image's optimal load address
and stores it at the required location.

3. The linker generates an entry in the external relocation table for the image under construction.
This entry directs the image activator in fixing up the correct location in a data section at image
activation.

1.6.2 Overlaid PSECT References

In general, PSECT references are only generated by compilers when referencing PSECTs that are
overlaid (for example, FORTRAN COMMON-like PSECTs). The treatment of overlaid PSECTs de
pends upon whether a shareable image is built and whether a shareable image defines the overlaid
PSECT.

1.6.2.1 Building an Executable Image with Object Modules

When the linker is building an executable image, it assigns a base address to the image. Hence, the
virtual addresses of all PSECTs in the image are known at link time. The linker can simply fill in
the longword with the correct virtual address.

1-62 Object Module and Image File Format

Digital Equipment Corporation ~ Confidential and Proprietary
For Internal Use Only

1.6.2.2 Building a Shareable Image with Object Modules

When the linker is building a shareable image, it does not know where the shareable image will be
placed in virtual memory at run time. To resolve these PSECT references, the linker generates an
entry in the local relocation table for the image under construction. This entry directs the image
activator in fixing up the correct location in a data section at image activation.

1.6.2.3 Referencing an Overlaid PSECT in a Shareable Image

If the PSECT is found in a shareable image, the linker generates an entry in the external relocation
table, directing the image activator to make the correct fixup at image activation. The shareable
image that contains the overlaid PSECT is activated at the same time as the image that references
it. References to a PSECT with a greater allocation than the size of the overlaid PSECT in the
shareable image are errors.

1.6.3 Virtual Address Preassignment for Shareable Images

In order to reduce the number of fixups that must actually be done at image activation, the linker
will "prefixup" the locations, using a best guess as to where the image will be laid out at run time.

\For images installed and permanently activated, this will turn out to be a big win, especially if the
mechanism for installing them also allows specification of the address at which the image is to be
installed. It is more difficult to predict the benefit of miscellaneous user shareable images. Clearly,
the image activator can try to put images where the linker thought they would be (in virtual address
space).\

1.6.4 Image Header Mapping

The linker will always create an image section descriptor that maps the image header as read only in
the user's virtual address space. The header is mapped to allow the image activator, autoloader, and
possibly the debugger to access the image file's data structures in a uniform manner. It also avoids
the overhead of another channel to the image file when the header is read, since the pager already
has the file open.

1.7 Open Issues

Some open issues:

• The debug symbol table must be more fully specified by SDT.

• The design of TLS regions is under review.

• The syntax for linker directives is dependent upon the Mica command line parser.

• The design of the entity consistency check table is subject to further requirements from:

PILLAR

PASCAL

IPSE

• Image and object files are not sparse. Demand zero sections are described by demand zero image
section descriptors; this complicates image activation somewhat, because the image activator
must create demand zero prototype page tables entries for demand zero section descriptors.
The lack of sparse files also causes much larger files to be created for sparsely initialized data.
However, this eliminates the dependency for sparse file support in both VMS and in Mica.

Object Module and Image File Format 1-63

GLOSSARY

activated image: An image file that has been laid out in the address space of a process. All relocations
and fixups have been performed, and control can be transferred to defined entry points within
the image.

atomic name: A name in the module name table that is not qualified by another name.

autoloader: A routine supplied with the MICA system that performs the dynamic activation of share
able images at run time.

autoload routine: See autoloader.

autoload vector: An autoload vector contains the information needed by the transfer routine to dis
patch to either the autoloader or the target routine. It also contains a self-relative pointer to
the information needed by the autoloader to fixup the target routine's image.

calling standard: See PRISM calling standard.

code section: A section containing all the executable code for a module. It is directly generated by
the compiler and is not modified by the linker, except to combine like-named PSECT (program
section) contributions into image sections.

composite object module: A module created as the result of merging multiple object modules into a
single object module; when this is done, all intermodule relationships are resolved, PSECTs are
concatenated, and a new symbol table is generated.

compound name: A name in the module name table that is qualified by other names. Compound
names provide a means for languages to implement multiple name spaces in a way supported
by both the linker and librarian.

data relocation table: A table describing all fixups that must be performed by the linker to the data
and linkage sections of the module, based on program section addresses.

data section: A section containing all the data defined in the module. Some of this data is read only
and some is read/write. This section also contains the linkage ($LINK) section and all entry
descriptors for routines defined in the module.

debug symbol table: A symbol table built by a compiler containing sufficient information for the
debugger to interpret user commands and display memory contents in "the current programming
language."

dynamic activation: Delaying the activation of an image (into memory) until it is actually referenced.

executable image: An image produced by the linker, with a base address assigned to the image (value
TBD). Executable images must have a transfer address or the linker generates a warning at
link time.

Glossary-1

fix-up: An action taken by the linker to alter an image so that it becomes memory-ready.

global symbol: A symbol (value or location) defined in one object module, whose value is made
available by the linker to other object modules.

global symbol table: A table describing symbols defined or referenced in a module. The global symbol
table parallels the module name table. That is, programs must walk both tables at the same
time to obtain all the attributes of an element in the global symbol table.

image: A file resulting from linking several object modules together. PSECTs are gathered into image
sections, and there are no unresolved external references.

image activator: The part of the system responsible for loading image files into memory and preparing
them for execution.

image autoload vector: See autoload vector.

image fix-up: See fix-up.

image relocation tables: A relocation table within an image describing how memory locations within
the data section are fixed up once the image has been activated. The linker generates relocation
tables for symbols defined within the image, symbols defined in other images, and TLS region
counts.

image section: A collection of PSECTs with like protection attributes, found only in images.

invocation descriptor: A quadword-aligned data structure that provides basic information about a
routine. This structure is used in calls between separately compiled routines, and in interpreting
the call stack that exists at any point in the execution of an image. Entry descriptors are defined
by the PRISM calling standard.

linkage pair: A linkage pair consists of the addresses of a procedure's invocation descriptor and entry
point.

linkage ($LlNK) section: The portion of the module data section that contains pointers to data. The
linkage section is generated by the compiler, and address relocations to this section are per
formed by the linker, using information in the address relocation table. The linkage section
must not be shareable, as it contains process-private addresses.

loader: The part of the system responsible for loading object modules into memory, resolving external
references, and preparing object modules for execution. The loader may be implemented as part
of the image activator.

memory-ready: Ready to be loaded into memory. A memory-ready image is one requiring no fix ups.

module: A file, containing names and related information, that conforms to the described module
format.

module header: The first record in a module. All information in a module can be located directly or
indirectly through information in the module header.

module name table: A table containing the names of all symbols and PSECTs defined or referenced in
the module. It contains both atomic and compound names. Entries in the module name table
correspond one-to-one with entries in the global symbol table.

object module: The output of a compiler, a single module generated from the source language.

PRISM calling standard: The standard sequence used to call a routine. The PRISM calling standard
is defined in the PRISM Calling Standard.

Glossary-2

From: BECALM::TLE::GROVE 7-MAR-198816:03
To:
Subj:

DECWET::PETERSON,DECWET::SCHREIBER,DECWET::KIMURA
PSECT data proposal - 26-Feb better than 3-March

References:
1. Proposed PSECT change
2. New idea from Darryl, Gary, ...

Kim -

from Gary 26-Feb
from Kim 3-March

I favor the approach to Psect data outlined in Gary's 26-Feb note,
but I am STRONGLY OPPOSED to the new format described in your 3-March
memo. The aspect that I don't like is separating the data from the PSD
table entry. My objections are based on the following:

1. It seems to me that we are getting carried away with levels of
indirection here. The object format is already awkward to produce.
Let's not add more levels of indirection and chicken wire!

2. It's not apparent to me that there is much gain in Linker processing.
Since all of the data is separated in the PDT, there is no need for
the linker to scan it at all during Pass 1. All the information that
the Linker needs to allocate virtual memory is contained in the Psect
definition in the GST.

3. The 26-Feb version of the PDT makes the structure of the PDT and
the DRT more similar.

4. In your 3-March proposal, it seems to me that the actual data
is "naked" in the object module. My understanding of the original object
module design is that there is a sort of tree-structured hierarchy,
consisting of the module header, tables pointed to from the header, and
item lists. All of the "leaves" are described by one of these structures.
This is important, because the object module format is supposed to be
extensible, and becuase it allows language processors to include
items that are not really understood by the linker. So all the leaf data
should be encapsulated in a wrapper (e.g. item list or table) whose structure
(starting point and length at least) are understood.

So, it seems to me you need yet another wrapper around the data.
Let's just use the 26-Feb version.

5. In the 3 March version, I think you would need a flag in the PSD
entry to indicate whether the format is "image" or "compressed".
Depending on "compressed" to be smaller doesn't seem reliable.

In summary, I liked the PDT of 26-Feb, and I am strongly opposed
to the 3-March version.

please let me know what you think.
Thanks
Rich Grove

From:
To:
SUbj:

TLE::DECWET::PETERSON "Kim Peterson, DECwest Engineering 03-Mar-198813
@[.WORK]CALLING STANDARD
New idea from Darryl, Gary, and myself

Darryl, Gary, and myself believe we have come up with a better counter proposal
for treating PSECTs in a PRISM Module. We still will move denoting the
data a PSECT out of the GST. But instead of having the new PSECT Data Table
contain variable sized records, each with a header followed by data, we will
follow the Image Section Descriptor (ISD) table paradigm.

Again we would like to have GEM's opinion on this proposed change.

This new method is sufficient to completely replace the old form of PSECT
definitions, unlike the previous proposal.

In this new proposal the GST contains only one PSECT definition record per
PSECT. The old GST PSECT definition entry will still be eliminated. This new
record defines the PSECT's name (via a name index), its type (UNINITIALIZED or
INITIALIZED), its attributes, alignment, and overall size. It will not be used
to denote the data within the PSECT. The STANDARD OFFSET, COMPRESSED OFFSET,
and COMPRESSED SIZE fields are eliminated. A PSECT definition recora would
then look like:

3 3 2 2 2 2 2 2 2 2 221 1 1 1 1 1 111 1
1 0 9 8 7 6 5 4 321 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 321 0

+-------------------------------+---------------+---------------+
I 20 I Entry Subtype I Entry Type I

+-------------------------------+---------------+---------------+
I Name Index I
+---------------+---------------+-------------+-+-+-+-+-+-+-+-+-+

I SBZ I Alignment I SBZ I Attributes I

+---------------+---------------+-------------+-+-+-+-+-+-+-+-+-+
I Total PSECT size (in bytes) I
+ +
I I
+---+

The data within a PSECT will be specified within a new item called a Program
Section Descriptor (PSD) table. The PSD table will contain a list of fixed
sized records, each record will identify a PSECT, an offset within the PSECT,
the size of the data contribution, and a pointer to the data along with its
stored size. The record will also indicate whether the data is in standard
or compressed form. A PSD record would then look like:

3 3 2 2 222 2 2 2 2 2 1 1 1 1 1 111 1 1
1 098 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 321 0

+---+---------------+
I I Entry Type I

+---+---------------+
I PSECT Index I
+---+
I PSECT Offset (offset for contribution within PSECT) I
+ +
I I
+---+
I Allocation (size of PSECT region to be initialized) I
+ +
I I
+---+
I Offset for data location in PRISM Module I

+ +
I I
+---+
I Size of data in PRISM Module I
+ this will equal allocation field unless the data is compressed+
I I
+---+

We will still identify PSECTs similar to the current PRISM Module format.
Each PSECT, as it is defined in the GST, will be assigned a PSECT index.
This index will be used in PSD entries to identify a specific PSECT.

An example of how this will work is, assume a compiler is trying to write an
object module. In the GST it will insert three PSECT definition records for
the data, code, and linkage sections. Each will be assigned a PSECT index.
To assign data to a PSECT the compiler would construct a PSD table and add a
PSD records for each "large" chunk of data. A sample PRISM module might look
like:

+-----------------------------+
Module-header: I I

+-----------------------------+
item-list: I I

+-----------------------------+
I GST-item (in offset format) I
+-----------------------------+
I PSD-table (in offset format) I
+-----------------------------+
I I
+-----------------------------+

GST-item: I I
+-----------------------------+
I Definition of data PSECT I
+-----------------------------+
I Definition of code PSECT I
+-----------------------------+
I Definition of linkage PSECT I
+-----------------------------+
I I
+-----------------------------+

PSD-table: I data PSECT location 0 I
I add n1 bytes of data I
+-----------------------------+
I code PSECT location 0 I
I add n2 bytes of data I
+-----------------------------+
I linkage PSECT location 0 I
I add n3 bytes of data I
+-----------------------------+
I I
+-----------------------------+
I I
I data for 1st PSD entry I
I I
+-----------------------------+
I I
I data for 2nd PSD entry I
I I
+-----------------------------+
I I

I data for 3rd PSD entry
I
+-----------------------------+

In this figure I've left off the Module name table and some of the other items.
Note that this figure is different from the previous proposal's figure in that
the data for each PSECT is moved out of the PSECT table.

Here are the advantages we see with this newer scheme.

1. It unifies the treatment of PSECT data with Image data.

2. The PRISM Module I/O Package will be able to easily handle PSD and ISD
tables. We can do this by simply extending the data types used by the
PRISM Module I/O package to include ISDs and PSDs. which implies that
everyone using the shell to read or write an PRISM Module can probably
benefit from using this package.

3. It can completely replace the GST old PSECT definition records.

4. It does not slow down the linker. In the previous proposal the linker
was going to scan the entire PSECT data table twice, once to collect
the header information for each contribution (this involves skipping
over the data) and a second time to read the data. This new proposal
eliminates having to reread the PSECT's data twice.

5. It still provides a simple eloquent model of a PRISM Module. We believe
that technically this is a cleaner better design.

Cost of any change (good or bad) cannot be ignored. We believe that the
costs of doing this change are:

1. It will add time to the linker schedule and all projects dependent upon
the linker. The additional time is a couple of days.

2. It will eliminate time from the compiler schedule because one package
will be available and tested for reading and writing PRISM modules that
can be used by everyone using the compiler shell.

If GEM agrees with the technical merits of this proposal we believe the cost
is worth the benefits and it should be adopted.

From: BECALM::TLE::DECWET::PETERSON "Kim Peterson, DECwest Engineering 11-Mar
@[.WORK]CALLING STANDARD To:

Subj: If we are agreed, I'll put this in the chapter.

I I I I I I I I
Idlilgliltlalll I N T E R 0 F F ICE M E M 0 RAN DUM
I I I I I I I I

TO: @Calling Standard

CC: DECwest Distribution
John Bishop
Gerald Sacks

DATE:
FROM:
DEPT:
EXT:
LOC:
ENET:

24-Feb-1988
Kim Peterson
DECwest Engineering
206-865-8704
ZSO
DECWET::PETERSON

Digital Equipment Corporation -- Confidential and Proprietary

SUBJECT:.ECO to the Object Module/Image File Format Chapter

REFERENCES:
1. Proposed PSECT change mail message from Gary Kimura, 26-Feb-1988

The following is the proposed changes to the Object Module and Image
File Format caused by adding the PSECT Data Table proposed in Gary's
note. These changes fall under two categories: the definition of the
PSECT data table and changes to the global symbol table.

Digital Equipment Corporation -- Confidential and Proprietary Page 2

1 PSECT DATA TABLE

The data within a PSECT will be specified within a new item called a
PSECT Data Table (PDT). The PDT will contain a list of entries, and
each entry contains an index to a PSECT, an offset with in the PSECT,
and data contribution to the PSECT in either uninterpreted or
compressed form. If the PDT entry contains compressed data, the entry
also contains the size the data should expand to.

The Global Symbol Table (GST) still contains PSECT definition records
which defines the PSECT's name (via a name index), its attributes,
alignment, and overall size. It will not be used to denote the data
within the PSECT. Each PSECT should only have one PSECT definition in
the GST, but there can be multiple PDT entries for a PSECT.

As before, an index is associated with each PSECT definition in the
GST. This index is used in the PDT to identify PSECTs. (This index
continues to be used in the GST and data relocation table to identify
PSECTs as well.)

The PDT has an item code of MODOBJ$C PSECT DATA. Each entry in the
PDT is quadword aligned, and has the-following declarations:

modobj$psect data entry(! BLISS prefix modobj$pde
entry type: modobj$psect data type[..] SIZE(byte);
entry-quadword : bit; - -
data size: integer[O ..]): RECORD
CAPTURE entry type, entry quadword, data size;
psect index :-longword; -
VARIANTS CASE entry quadword

WHEN false THEN-
psect 1 offset : longword;
expanaea I size : longword;
data 1 :-byte data(data size);

WHEN true THEN - -
psect q offset : quadword;
expanaea q size : quadword;
data q :-byte data(data size);

END VARIANTS; -
END RECORD;

modobj$psect data type : (
modobj$c-data-expanded
modobj$c-data-compressed,
); --

Digital Equipment Corporation -- Confidential and proprietary

entry quadword (Q) is clear
3 -
1 987

Page 3

o
+---+-+---------------+
I Should Be Zero IQI ENTRY_TYPE I
+---+-+---------------+
I PSECT INDEX I
+---+
I DATA SIZE I
+---+
I Should Be Zero I
+---+
I PSECT L OFFSET I
+---+
I EXPANDED L SIZE I
+---+
I DATA L I

entry quadword (Q) is set
3 -
1 987 o

+---+-+---------------+
I Should Be Zero IQI ENTRY_TYPE I
+---+-+---------------+
I PSECT INDEX I
+---+
I DATA SIZE I
+---+
I Should Be Zero I
+---+
I PSECT_Q_OFFSET I
+ +
I I
+---+
I EXPANDED_Q_SIZE I
+ +
I I
+---+
I DATA_Q I

Note that the data field is always quadword aligned. Note that
data size is the size of the data field, and that the size of the
entry is either ((data_size+24+7)/8)*8 or ((data_size+32+7)/8)*8.

Digital Equipment Corporation -- Confidential and Proprietary Page 4

2 GLOBAL SYMBOL TABLE CHANGES

The MODOBJ$C PSECT COMPRESSED variant of the MODOBJ$PSECT DEFINITION
record is elIminated.

The MODOBJ$C PSECT STANDARD variant of the MODOBJ$PSECT DEFINITION
record is renamea to MODOBJ$C PSECT IMAGE and is restricted to image
files.

The MODOBJ$C PSECT UNINITIALIZED variant of the
MODOBJ$PSECT DEFINITION- record is renamed to MODOBJ$C PSECT STANDARD,
but is otherwise unchanged. Note that all parts of a- non-TLS PSECT
not initialized through the PDT are zeroed by the linker.

From:
To:
SUbj:

TLE::DECWET::KIMURA "Gary D. Kimura - DECwest Engineering 26-Feb-19881
@CALLSTD,KIMURA
Proposed PSECT change within PRISM Modules

We believe (i.e., Don, Darryl, and myself) that the treatment of PSECTs in the
current and purposed PRISM Module format can be simplified and improved. This
improvement involves treating PSECTs similar in fashion to how the Data
Relocation Table is currently treated.

We would like a quick opinion from the GEM project on this proposed change.

In this new scenario the GST contains only one PSECT definition record per
PSECT. The old GST PSECT definition entry will be eliminated. This new record
defines the PSECT's name (via a name index), its attributes, alignment, and
overall size. It will not be used to denote the data within the PSECT.

The data within a PSECT will be specified within a new item called a PSECT
Data Table (PDT). The PDT will contain a list of records, each record will
identify a PSECT, an offset with in the PSECT, and its data contribution
to the PSECT in either uninterpreted or compressed form.

We will still identify PSECTs similar to the current PRISM Module format.
Each PSECT, as it is defined in the GST, will be assigned a PSECT index.
This index will be used in PDT entries to identify a specific PSECT.

An example of how this will work is, assume a compiler is trying to write an
object module. In the GST it will insert three PSECT definition records for
the data, code, and linkage sections. Each will be assigned a PSECT index.
To assign data to a PSECT the compiler would construct a PDT and add new
records for each "large" chunk of data. A sample PRISM module might look
like:

+-----------------------------+
Module-header: I I

+-----------------------------+
item-list: I I

+-----------------------------+
I GST-item (in offset format) I
+-----------------------------+
I PDT-item (in offset format) I
+-----------------------------+
I I
+-----------------------------+

GST-item: I I
+-----------------------------+
I Definition of data PSECT I
+-----------------------------+
I Definition of code PSECT I
+-----------------------------+
I Definition of linkage PSECT I
+-----------------------------+
I I
+-----------------------------+

PDT-item: I data PSECT location 0 I
I add nl bytes of data I
I I
I nl bytes of data I
I I
+-----------------------------+
I code PSECT location 0 I

add n2 bytes of data I
I

n2 bytes of data I
I I
+-----------------------------+
I linkage PSECT location 0 I
I add n3 bytes of data I
I I
I n3 bytes of data I
I I
+-----------------------------+

In this figure I've left off the Module name table and some of the other items.

The advantages that we see with this approach are:

1. It provides for a more consistent and logical treatment of items (now
including PSECTs) in a PRISM Module.

2. Because it's a more consistent and logical layout the PRISM Module
I/O Package provided by the Compiler Shell will be simpler, more
efficient, and easier to use.

3. The DECwest compiler will not be using the old PSECT definition method.
Instead we will emit only one GST entry for each PSECT. This should then
fix the size of the GST before we need to emit the PSECT data, so if
need be the GST can be moved ahead of the PSECT data in the PRISM Module.

From: TLE: : GROVE 26-FEB-1988 13:27
To: NYLANDER
SUbj: my 2 cents to Gary

From: TLE: : GROVE 26-FEB-1988 13:19
To: GROVE
CC:
SUbj: cc of comments to Gary

After a quick read thru your note, I like it.
I will circulate it around here to the GEM and BLISS folks
and see what their reaction is.

I would expect that GEM too would only have one contribution per module
for most psects. Although we have been planning to put out code on
a routine-by-routine basis in multiple contributions.

More comments early next week.

Rich

program section: See PSECT.

PSECT: Program section. PSECTs describe a contiguous piece of memory. With concatenated
PSECTs, all contributions for a particular PSECT are gathered contiguously in memory. If
the PSECT is overlaid, all contributions for a particular PSECT begin at the same virtual ad
dress, and the module that has the largest contribution to a PSECT defines the length of the
PSECT.

shareable image: A special form of executable image that contains a global symbol table and can be
input to the linker in subsequent linking operations.

transfer address: The address of an invocation descriptor in an executable image that is called when
the image is run.

transfer code: The code generated by the linker that transfers a call to a routine in another image to
the autoloader.

transfer vector: The offset from the beginning of a mapped shareable image to the invocation descrip
tor of the routine it represents.

thread-local storage: See TLS.

TLS: Thread-local storage. TLS is per-thread storage with FORTRAN COMMON semantics, and
storage allocated at run time.

VBN: Virtual block number. VBNs are 512-byte entities on the disk. If the size of the virtual blocks of
the on-disk structure changes, software must convert 512-byte VBN numbers to the new values,
which should be a multiple of 512 bytes.

virtual block number: See VBN.

Glossary-3

INDEX

A
Absolute global symbol, 1-28
Activation information, 1-14
ADD command, 1-16
Autoload vector, 1-15

c
Code section, 1-16
Consistency check table, 1-14
Copy on modify, 1-52
CPU target, 1-14
CPU type, 1-35
Creation status, 1-14
Creation time, 1-14
Creator name, 1-14

D
Data section, 1-17
Debug module table, 1-15, 1-58
Debug symbol table, 1-15, 1-41
Deferred activation table, 1-15, 1-54
Demand zero, 1-52

E
Entity check

ASCII identification, 1-40
binary identification, 1-38

Entity consistency check table, 1-37
Executable image

building, 1-62
Execute protection, 1-52

F
Files

block-oriented, 1-4
VMS format, 1-6

FORTRAN common, 1-22
FORTRAN string argument coercion, 1-45
FORTRAN string relocation descriptor, 1-47

G
Global symbol

name, 1-8
relocations, 1-42, 1-44

Global symbol definition
absolute, 1-28
longword value, 1-29
name, 1-27
procedure, 1-31, 1-32
quadword value, 1-30
transfer, 1-34

Global symbol reference, 1-25, 1-26
Global symbol table, 1-15, 1-17 to 1-35

Image building
executable, 1-60
shareable, 1-60

Image-external fixups, 1-54
Image flags, 1-14
Image header

mapping, 1-63
Image-internal fixups, 1-53
Image relocation tables, 1-53, 1-54
Image section, 1-16, 1-17

demand zero, 1-15
Image section descriptor, 1-14, 1-15,

1-51 to 1-53
demand-zero, 1-52, 1-63
flags, 1-52
protection, 1-52

Immediate activation table, 1-15, 1-56
Initialization procedures, 1-15, 1-41, 1-58
Initialization routines, 1-15
lSD, 1-14, 1-15, 1-51 to 1-53, 1-63
Item code, 1-13
Item list, 1-4, 1-11

format, 1-13
Item list code, 1-14 to 1-16
Item list entry, 1-12 to 1"":14

L
Link debug, 1-14

Index-1

Linker directive table, 1-15, 1-41
Linker operations, 1-60
LINK VPN, 1-15
Local image section descriptor, 1-51
Local relocation table, 1-15

M
Major identifier, 1-4, 1-14, 1-36
Match control, 1-14, 1-36

entity consistency check, 1-39, 1-40
Message section, 1-52
Minor identifier, 1-4, 1-14, 1-36
Module

entry, 1-18
name, 1-8

Module format, 1-4
Module header, 1-4 to 1-6

identification, 1-6

N

size, 1-7
type, 1-7

Name index, 1-9, 1-11
Name size, 1-9, 1-11
Name table, 1-4, 1-7 to 1-8
Name table entry, 1-8 to 1-11
Name type, 1-9, 1-11

o
Overlaid references

PSECT, 1-23, 1-62

p
Page fault cluster, 1-52
PRISM subset, 1-35
Program name, 1-14
Program section

See PSECT
Program version, 1-14
PSECT, 1-15, 1-16, 1-17, 1-19 to 1-22,

R

1-26, 1-58
identifier, 1-17
name, 1-8
overlaid references, 1-23, 1-62
relocations, 1-42
store size, 1-48
store TLS offset, 1-49

Read protection, 1-52
Register size, 1-35
Relocation descriptor

FORTRAN string, 1-47
Relocation table

data, 1-14, 1-41

Index-2

Relocation table (cont'd.)
external, 1-15
image, 1-53, 1-54

s
Shareable image

building, 1-63
reference to a symbol in, 1-61, 1-62

Shareable images
preassignment of virtual addresses, 1-63

Stack, 1-52
STACK command, 1-16
Stack image section descriptor, 1-51
STORE command, 1-16
Store PSECT size, 1-48
Store TLS offset, 1-49
Symbol identifier, 1-17
Symbol references, 1-60

in another object module, 1-60

T
Thread local storage

See TLS
TLS

store offset, 1-49
TLS index count, 1-15
TLS-region-count fixups, 1-53
TLS relocation table, 1-15
Transfer vector table, 1-16

u
Universal symbol, 1-34

v
Virtual block number, 1-53
VPN, 1-52

w
Write, 1-52
Write protection, 1-52

From:
To:
SUbj:

WILBUR::DON "Don MacLaren -- DECwest" 8-FEB-198615:30
TLE::GROVE,TLE::NYLANDER,TLE::DON,@SOFTWARE
Object Language and Symbol Tables

PjVMS object modules will be quite different from those in VMS. It's
too early to define the object language in detail, but some context is
needed in order to begin the DST design, DSTs being a part of the
object language. This note is my current guess as to some
characteristics of the object language. As a design sketch, it
reflects my interest in

o Unifying various structures into a coherent whole and

o Promoting sharing of things like symbol tables

1 OBJECT MODULES ._- GENERAL

A "simple object module" is the normal output of a compilation. A
simple module is obtained by compiling one Pillar source module, or
its equivalent in another language. A "compqs:ite object module" is a
set of simple modules bound together by a compiler or linker.

Simple- and composite- modules have the same structure. Either can be
an input to the linker for further binding; either can be loaded and
executed, provided the necessary environment is in place. The
linking/binding that takes place during loading is similar to what
happens now during image activation.

An object module may contain quite a variety of components:

1. Code Psects.

2. Data Psects.

3. A relocation table a giving relocation information for some
longwords in the data psects.

4. A global symbol table declaring global symbols defined or
referenced in this module.

5. An exported symbol table containing information about
exported names. This may be used in compilation of other
modules or by the debugger, etc. This is needed for Pillar
and may well be used by other languages.

6. A build table containing information about the source files
and modules used in compiling this module. This information
can be used by a program management system. The signature
information used for module consistency checking in Pillar
probably goes here.

Page 2

7. A cross reference table.

8. A profile table containing information needed to interpret an
execution profile to be obtained by executing this module.

9. Universal optimization table. Information provided for or by
the universal optimizer.

10. Debug Symbol Table.

At this stage in the design, we should consider "containment in an
object module" as a logical notion. It's not required that the
components all be in the same file. On the other hand, it's nice if
commands such as COpy and LIB operate on the entire thing.

Note: if all relevant components are in an object module, a complete
listing could be generated from it -- more complete than anything we
generate now. The listing could serve either as the .LIS output of a
compiler or the .MAP output of a linker.

2 CODE PSECTS.

A PRISM code Psect is pure code that can be placed at any properly
aligned memory location.ANAL/OBJ can detect any violations.

A code Psect in a composite module may be the concatenation of Psects
from simple modules. The structure of this can be determined by
examining the module's symbol table. Psect origins are symbols.

3 DATA PSECTS.

A PRISM data Psect can be placed at any memory address. It has memory
management attributes such as read-write, copy on modify, etc. An
unusually interesting question is

does the Psect have relocation information?

Psects containing linkage sections and their overflows do have
relocation information. It's best if others do not.

Note that a linkage section contains entry-description information,
and the form of this is specified by the calling standard. However
the layout of an entire linkage section is arbitrary; it can be
distributed over various Psects. The entry descriptors can be found
by consulting the object module's symbol tables.

4 RELOCATION TABLE

This table defines how some of the longwords in the module's data

Page 3

Psects are to be "relocated" during loading in accordance with symbol
values not known when the module was bound (i.e., when it was compiled
or linked). Most relocation is simply the addition of a symbol's
address value to the longword's contents. Rather general values can
be specified using symbol expressions (explained below), which replace
the stack machine language of the VMS object language. However this
will be rare in PjVMS; "keep it simple" is the motto.

Speed of name binding and relocation during loading is a PjVMS
priority item, and there are many interesting possibilities for
acheiving it. We may want a fancy data structure here for any
production module. For the moment, I am assuming that the compilers d

will put out a good but straightforward structure. If appropriate
the linker can generate something fancier; and, as a consequence, i
may be reasonable to link a single object module against nothing.

5 PROFILE TABLE

Compiling a module with /PROFILE generates code in such a way that
counts will be accumulated for basic blocks or some other stuctured
unit of code. The counts are elements of a static array. The profile
table relates that array to

1. the source code as seen by the user, e.g. to the THEN block
in an IF statement

2. the IL code used for optimization and code generation in the
compiler

I suppose that either or both relationships might be in the table
depending on the exact /PROFILE option used.

6 THE DEBUG SYMBOL TABLE

This has at least three components

1. PC Correlation Table.

2. Code Explanation.

3. DST Table.

This relates code locations to the source module structure, i.e. to
source lines, block structure, etc.

A code location in this table is relative to a Psect origin. The
binding that occurs during linking or loading does not require any
modification to this table.

Page 4

It might be nice, and also efficient, if the table were designed
around of the typical nested structure in languages, in effect using
something like END to terminate the range of an inline expansion,
include file, or whatever.

It should be able to identify things like the prolouge of a routine.

(I've lost track of the structure used on VMS).

6.1 Code Explanation

Highly optimized PRISM code will not be easy to read and there is
probably no hope of describing all of a symbol's life span in the DST
table. The code explanation helps by revealing some simple facts

1. The source text location that generated an instruction.

2. The hard to see flow graph information, helpful for trying to
find the source of an imprecise exception, the source of a
value, etc.

3. The symbol, if any, associated with a register operand.

4. The symbol, if any, that's the
load/store.

source/target

A nice display of object code can be based on this.

for

Linking or loading does not require any modification to this table.

6.2 DST Table

a

The DST table for a simple module contains type-, location-, and
value- information about symbols declared in the source module -- no
doubt other information also.

Linking or loading does not require any modification to this table.
The DST table is a tree whose leaves are the DST tables for simple
modules.

A DST table is more complicated than the other symbol tables in an
object module, and there is a great deal of variation across
langauges. Nevertheless, unification is possible along the following
lines.

1. The symbol tables are nested.

o The exported symbol table can reference the global symbol
table. It may elaborate on the definition of a global
symbol, but it doesn't repeat anything.

Page 5

o The DST table can reference the global table or the
exported table, and may elaborate on definitions in them.

2. A common language is used in all tables for definitions and
references to values and locations. The global- and
exported- tables use only a subset of this language, and
there will be escapes, but almost everything is handled in a
uniform fashion.

3. A common data type language is used as far as possible. We
catalog most of the data types in use. A symbol's data type
is then given as a cataloged type with the possible but
unlikely addition of language specific information.

7 OBJECT SYMBOL LANGUAGE

This is the common language used to define and
the object-module symbol tables. It has
things can be managed without having to
language.

reference symbols in
escapes so that strange
extend the "standard"

I'm using the term."symbol" in a general sort of way to mean something
that needs to be defined one place and referenced in other places. A
symbol may have a name: global name, exported name, name within a
block, or it can be strictly internal such as a compiler temporary
generated to hold the location of a dynamically allocated variable.

Examples of symbols:

o A global data item with storage

o A global constant value. (In VAX MACRO "X
as a global value equal to 27).

o One of the standard register symbols.

o The origin of a Psect.

o An entry-descriptor symbol.

o A variable declared in a block.

7.1 Symbol Properties

27" defines X

The properties of symbols need to be classified in some way so that
definitions can be broken down into pieces. A symbol need not have
all of these properties, and the properties it does have need not be
given in single definition.

Page 6

1. Symbol name.

2. Symbol scope -- how it fits, if at all, into the standard
name-lookup structure.

3. Symbol value. Note: definition of the space of values and
it's type structure has to be part of the symbol language,
but it can be relatively simple because type information in
user terms is separate.

4. Symbol location.

5. Symbol type -- data type.

6. Symbol class -- what sort of symbol is it.

o Value. The symbol directly
somehow in the total symbol
symbol cannot have a location.

denotes a value
table structure.

defined
Such a

o Data item. The symbol denotes a data item existing at
run time. Such a symbol has (usually) a location and a
value. The value may only be obtainable at runtime.

o Others such as Psect, entry descriptor and label.
always hard to figure out this list.

7. Misc.

7.2 Symbol Expressions

It's

A symbol expression denotes a value or location. (Actually we may
want to take a more general view, but values and locations are the
main thing.) Symbol expressions are in reverse Polish. A terminal
operand is a literal, a symbol value, or a symbol location. (The two
have to be distinguished for sanity). Literals are normally integers,
maybe that's the only possibility.

Whatever escapes are in the language, the form is such that an
expression can be scanned without understanding the escape.

The typical uses of a symbol expression are to define the location or
value of a symbol or to define an extent value in a data type. In
these contexts it is easy to have short forms for some common
expressions, e.g. a literal, or a symbol's value or location.

7.3 Parametric Symbols

A symbol may be parametric. When a reference to such a symbol is

Page 7

interpreted, its binding is determined by the "current environment".
Here the environment is something that's constantly maintained by any
program that's trying to interpret a symbol table. While coding you
hardly notice this -- once you get used to it. Examples:

1. The length of a string or decimal data type is a parametric
symbol.

2. The origin of a Psect is a parametric symbol.

3. A register symbol is parametric. It's binding depending on
the call frame stack.

Parametric symbol expressions can be evaluated in an environment that
binds only some of the symbols. The result is another parametric
symbol expression.

7.4 On-Disk Vs. In-Memory structure, Sharing

As in VMS the symbol language, and the object language in general,
describes the structure of an object module in the file system. When
a symbol table is "loaded", the structure in memory depends on whose
doing the loading. For example, the compiler will load an exported
symbol table one way, the debugger another.

The loading process can add detail and bind things, e.g. it can
replace symbol indices by pointers. This is advantageous, but I think
the debugger should load symbol tables in such a way that they are
sharable in different address spaces: use relative pointers within a
single table (or component of a table) and keep the parametric
structure for global references.

From:
To:
SUbj:

Benn,

TLE: : NYLANDER "Chip 29-Apr·--1986 2159" 29-APR-1986 22:00
PUDDLE::SCHREIBER,NYLANDER
RE: Preliminary object language spec

Comments on the "P.VMS Object and Image File Format" follow. Thanks for
the opportunity to preview it.

To Ultrix or not to ultrix?

The document seems a little muddled about whether it is describing the ultrix
object and image file formats or not.

1. If the document describes fil formats that are intended for Ultrix
as well as P.VMS, you can globally ace most instances of "P.VMS"
in the document with "PRISM" and have a document that more
accurately reflects that intent.

Last I heard, everyone (Don, Ray, E~tC.) felt that PRISM/VMS and
PRISMjULTRIX should and would have compatible object formats,
calling standard, etc.

2. The module format (pages 3 -.- 4) and the IHD$L CODE xxx, IHD$L DATA xxx
and IHD$L UDATA xxx fields in the module header are- straight out -
UNIX.

The concept of image sections, PSECTS, and demand-zero sections
that can be scattered in the object module are straight out of VMS.

They don't always mix very well.

The does not make lear whether, for example, PSECT
definitions with VBN 0 re allowed in the section of the
object file described 13'y IHD$L DATA xxx (which would make the
"unini tialized data section" non-contiguous if IHD$L ___ UDATA_BYTES
was non-zero).

My bias is to get rid of the UNIX-like properties of the object
and image file formats, unless Ray has technical requirements from
the Ultrix debugger, profiler, etc. for such UNIX-like properties.

3. Are executable images re-linkable? Don originally had a concept
of "simple" object modules (e.g. compiler output) and "composite"
object modules (e.g. linker output). "Composite" object modules
could be used as input to another link operation.

Note that UNIX works this way - an executable image can be input
to a subsequent link, as long as the relocation information has
not been stripped out.

Tool-related information

We might want to discuss the inclusion of such information as the Build Table,

Cross Reference Table, Profile Table, and Universal Optimization Table
in the object file.

Reason is, for good or for bad, SOT is defining a "Tools Integration
Architecture" to get all the programming and development tools to play
together. The idea is to port it to PRISM someday.

The model that holds it all together is that everything produced at various
stages of development and programming i an "element"; source files,
object code, executable images, profiling results, cross-reference tables,
etc. are all elements. Performing processing on an element to produce a
new element (compiling a module, tracing a program's execution, doing a
cref, etc.) is a transformation of one element into another.
There is supposed to be a master "element database" that keeps track of
each element and the path of transformations that produced it.

Now, if one believes all this, then it is necessry to keep elements where
neither their substance nor their addressability by the element database
will get lost when a transformation occurs.

So there might be a problem keeping certain tool-related info in the object
file, if it can't be addressed by the element database if or the
addressability is lost when a transformation (like a link) occurs.

I'm not sure this is a significant issue, but I thought it would be worth
mentioning in case you want to address issues like that at this stage in
the game.

NITS

3: The PRISM call standard will be ned seperately from the PILLAR
reference manual. It'll be a seperate document, maintained
seperately, possibly part of a "software architecture notebook".

(At least, that's the last word I heard from Don).

Page 6: The purpose of the IHD$V PSMULT field is not clear. perhaps you
could elaborate.

8: The intent of the ISD$V WRITE comment about FORTRAN COMMON isn't clear.
FORTRAN COMMON is (on VMS) implemented with global overlayed
writable PSECTs (GBL+OVR+WRT). Is the intent of the comment that
it should apply to overlaid writable PSECTs in general?

Likewise, the ISD$V IMMEDIATE ACTIVATE comment about FORTRAN BLOCK
DATA is not clear. - -

Perhaps you could also explain in terms of PSECT and symbol
attributes instead of language constructs?

The NOTE on page 9 also.

Page 9: Since the page size is processor-implementation-dependant, and
page protection boundries should always be on 64Kb boundries,
why not always interpret ISD$L VPN as 64Kb pages (VPN 0, 1, 2, etc.)?

Page 15: You could unify the format of global symbol definition subrecords
with that of global symbol reference subrecords at the cost of
16 reserved bits in each subrecord occurance.

21: The auto-load of a sha e only works in this scheme if the
reference to the symbol defined n the shareable image is a procedure
call. Data references will not work correctly by this mechanism.

Is the ISD$V IMMEDIATE AcrIVATE image section attribute intended
to make auto=loading ~f sharable images with global non-procedure
symbols unnecessry?

Page 22: I'm concerned about the performance of procedure calls to
auto-loaded shareable images. If I read the text right, it will
take several extra instructions each time a procedure in an
auto-loaded shareable image is called. (Fetch IAV$L ROUTINE from
the dummy entry descriptor, examine it, jump to the-target
routine) .

The software architecture is goi to some trouble to get rid of
even unnecessary single instructions on procedure calls. (PILLAR,
for example, will not load the argument-count register unless the
interface is explicitly declared as a public interface for which
the argument count must be loaded. Last I heard, we were reserving
a register for the RTL base address to make RTL calls faster).

Several extra instructions for each procedure call seems excessive.
Am I missing something?

Another PSECT Attribute?

The PSECT attributes look about right.

However, we defined another PSECT attribute for the "VMSjULTRIX" (if you'll
excuse the term) object language when we ported VAX FORTRAN and the VMS
LINKER to Ultrix.

The UNMOD attribute tells the linker that a data PSECT, which is not
necessarily demand-zero, has no non-zero static data in it, and can
therefore be placed in the BSS ("uninitialized data") image section.
This allows the linker to produce smaller image files on Ultrix.

(We believe that it would be a win for this attribute to be supported on
VMS as well, since it would allow the linker to reduce the number of
image sections and speed up image activation, but that's another story.)

I commend it for your consideration. Paul Winalski's write-up of it
follows:

From:
rro:
Subj:

BABEL::WINALSKI 8-AUG-198515:50
NYLANDER
New PSECT Attribute Bit in GSD PSC Object Records for Ultrix

To: VFU Developers From: Paul S. Winalski

Dept:
DTN:
MS:
NET:

Technical Languages and Environments
381-2022
ZK02-3/N30
EI FFEL: :WINALSKI

Subject: New FLAGS Bit in GSD PSECT Definitions

This document describes a change to the VAX Object Language Global Symbol
Definition records processed by the VAX Ultrix Linker (LK). This change
does not affect the VAXjVMS Linker at this time. The VMS Linker ignores the
new bit flag definition.

On VMS, the VMS Linker to reduce final size by creating demand
zero (DZERO) image sections. The Ultrix object language has a similar feature
called the BSS section (also known as the uninitialized data segment). The
difference is that, while VMS DZERO image sections may occur anywhere in an
image, components of the BSS section must occur in a contiguous block at the
end of the image. The Ultrix object language has a way for compilers to direct
the linker to define a specified amount of space in the BSS section.
Unfortunately, the VMS Object Language has no similar feature. The Linker does
not know that a PSECT is uninitialized until after it runs the TIR stack
machine in pass 2. By then, it is too late to move the uninitialized PSECTs
to the end of the image so that they can be in the BSS section.

The upshot of all this is that when programs compiled by our ported compilers
are linked using LK, there is a risk that the image will be substantially
larger than the same program either linked on VMS or compiled using the
native Ultrix compilers. To get around the problem, it is proposed that there
be a new PSECT attribute to allow compilers to inform the Linker that a PSECT
is never initialized, and therefore can be in the BSS section.

The new PSECT attribute bit occurs in the Program Definition Subrecord
(type GSD$C PSC) of the Object Language GSD Record (see section 6.3.1 of the
VAX/VMS Li r Reference Manual, AA-Z420A~TE). In field GPS$W FLAGS, bit
10 (formerly reserved) is now GPS$V UNMOD. If GPS$V UNMOD is ~ero, the PSECT
may be stored into and therefore cannot be allocated"-in BSS. IF GPS$V UNMOD
is one, the PSECT is never stored into and therefore can be allocated In BSS.
Having the sense of the bit defined this way allows LK to process existing
VI-1S obj ects cor rectly.

No'rE

The VMS Group, who own the VAXjVMS Linker, have neither
reviewed nor approved this change. The VMS Linker
currently ignores GPS$V UNMOD. Nonetheless, only Ultrix
compilers should set thIs bit until the VMS Group
sanction its use in VMS compilers.

When LK encounters a PSC subrecord, it records the settings of all of the
PSECT attribute bits in its internal PSECT tables. If other PSECTs of the
same name are overlayed on or concatenated to this PSECT, the values of
GPS$V UNMOD from all contributions will be ANDed to obtain the final value.
Thus,-if any contribution to the PSECT is stored into, GPS$V UNMOD will be
zero and LK will allocate the entire PSECT in the DATA segment instead of in
BSS.

Compilers for Ultrix are urged to take advantage of setting GPS$V UNMOD to
allocate data in BSS wherever this is possible, to minimize the fInal image
size.

[End of Document]

From: TLE: :DECWET: :DON "Don MacLaren -- DECwest 06-0ct-1987 1434" 6-0CT-1987
20:39

To: PETERSON,KIMURA,PALMER,@CALLSTD
SUbj: Case Sensistivity In Object Language

I agree with the attached proposal by Steve Hobbs. I think we should
also consider the possible value of a bit to say that a reference or
definition comes from a case-insensitive language.

- Don

From: TLE: : HOBBS 5-0CT-1987 13:58
To:
CC:

DECWET: : PETERSON
GROVE,WINALSKI,LAGASSE,HOBBS

SUbj: RE: Please scan these changes for anything adverse Thanks

SUbj: Case Insensitive Names in Object Files

+---------------+
! dig ita 1 ! I n t e r 0 f f ice M e m 0 ran dum
+---------------+

To: Kim Peterson Date:
From:
Dept:
Ext. :

2 October 1987
Steven Hobbs
Technical Languages
381-2066 Loc.: ZK02-3/N30

CC: Rich Grove, Chip Nylander, Paul Winalski

Your recent mail on Object/Image file
case insensitive names must be
compatibility between case sensitive
would be improved if the convention
must be down cased.

format for Prism mentioned that
capitalized. I believe that

and case insensitive software
were that case insensitive names

The usual way to write case sensitive names in C programs and in
Ultrix is to use exclusively lower case. In particular, all of the
important Ultrix system services and library routines have all lower
case names. If the case insensitive languages (such as FORTRAN,
Pascal and Ada) were to use lower case external symbols then these
languages could access these Ultrix entry point without needing
special name escape conventions. Special name escape conventions
would only be necessary to access a C or Ultrix name containing an
upper case letter (and upper case is a very rare occurrence in either
C or Ultrix). The only other case sensitive language we have is
Modula-2 but Modula-2 is not frequently used on Digital machines so
compatibility with C and Ultrix is more important.

Since it is desirable to write one set of compatible compilers and
language utilities to run on both Prism/Mica and Prism/Ultrix, the use
of lower case by case insensitive languages seems very desirable.
Upper case names were used on VMS because upper case is considered
aesthetically more pleasing in symbol table listings. If there are
nonaesthetic reasons for preferring upper case over lower case then
you should let me know.

From:
To:
SUbj:

TLE::DECWET::DON "Don MacLaren -- DECwest 13-0ct-1987 1414" 13-0CT-1987
PETERSON,@DIS$COMPILER TEAM,@REVTEAM,@CALLSTD
Pillar Modules, Names,-and the PRISM Object Language

It turns out that the VAX object language is not helpful in the
implementation of Pillar modules. There are two problem areas; both have
simple solutions in the PRISM object language because names can be long
(up to 255 characters 1). I propose we do the simple thing on PRISM.

For VAX Pillar, the treatment of system dependent things, such as external
names, descriptors, message files, and linkage options, will be specified
later -- during the development of the VAX Pillar compiler. The treatments may
not be as elegant as in PRISM, but I don't anticipate any significant loss
of function.

PROBLEM 1. MODULE QUALIFIED NAMES.

A pillar module can export the names of EXTERNAL declarations. These names
do not have global scope. The normal form for referencing an exported item is
a module-qualified name

module name. item name

In general, the EXTERNAL items exported from a module APLHA are implemented
in one or more modules whose names are not known when ALPHA is compiled.
For all practical purposes this requires that the name of the name of
the global symbol representing the item be qualified by the name (ALPHA)
of the module exporting its declaration.

On PRISM, Pillar will simply use the full module-qualified name
(ALPHA. item_name) as the global symbol name.

PROBLEM 2. HIDDEN SYMBOLS.

Pillar permits a module to export the names of HIDDEN declarations. Again,
a reference to such an exported item is via a module qualified name.
The difference from the EXTERNAL case is that, when compiling a module
that uses a HIDDEN declaration exported from ALPHA, the compiler will
get information from the (compiled) Pillar definition module, BETA, that
implements the hidden declaration. It finds BETA using the item's
module-qualified name (ALPHA. item name) as a key for library search.
This is just what the linker does~ but a different library index is
searched. (In the PRISM object langauge, the indicies into which a name
is entered are specified by the "name_level" field in a name table entry.)

So far, so good. However the implementation (in BETA) of a HIDDEN declaration
may involve references to symbols that are internal to BETA, i.e. they
have no global-symbol name in the normal course of things. The most
interesting case is that of a HIDDEN inline procedure, which can reference
all sorts of things visible only within BETA. The VAX object language
provides a relevant construction: "environments" and "module local symbols",
but such a symbol can't become a universal symbol in a shared image. This
would be a severe restriction in the use of Pillar inline procedures.

On PRISM, for an internal item used in this way, Pillar will use a global
symbol with the name of the form

BETA.1$.item_name

SUMMARY.

Because global names can be long on PRISM, Pillar only needs global
names, and their relationship to the name used by the programmer will
be obvious.

From: TLE::DECWET::PETERSON "Kim Peterson, DECwest Engineering 04-Jan-1988 09
@TEMP To:

Subj: Originally sent out last week. These are my proposals. Unresolved issu

I I I I I I I I
Idlilgliltlalll I N T E R 0 F F ICE M E M 0 RAN DUM
I I I I I I I I

TO: @Calling Standard DATE: 23-Dec-1987
FROM:
DEPT:
EXT:
LaC:
ENET:

Kim Peterson
DECwest Engineering
206-865-8704
zso
DECWET::PETERSON

CC: Mica O.S. Group

Digital Equipment Corporation -- Confidential and proprietary

SUBJECT: Additional Changes to the Mica Module Format

1

The following changes in the module's global symbol table are prompted
by the changes to the module name table that allow qualified names to
be specified in the name table. (These changes are described in my
previous memo dated 8-Dec-1987.)

o Environment entries, local symbol entries, and internal
entries will be removed from the global symbol table because
they are superceded by the use of qualified names in the
module name table.

o A null entry will be added as a place holder because an entry
in the module name table may not represent a symbol. (For
example, a module name table entry may be an atomic name that
only represents a symbol when it is qualified with ~nnthpr
atomic name.) This null entry will be a longword in size.

An alternative to using null entries in the symbol table is to indpx
all entries in the global symbol table with their name' i in tl,
module name table. This alternative would cost an extra longword on
each entry, and would be more costly as long as the number of symbol
names was greater than half of the total number of names.

In the case of languages that have no qualification, using the null
entry will result in the greater space savings. In the case of
languages that have one level of qualification (such as PILLAR), the
two alternatives are require approximately equal space since the

number of compound names (which are meaningful) approximately equals
the number of atomic names (which are meaningless). In the case where

Digital Equipment Corporation -- Confidential and Proprietary Page 2

there are more levels of qualification, using the null entry will
result in greater space wastage.

The use of null entries in the symbol table is proposed because
requires less space than the alternative for many DEC languages, and
it never requires more space.

2

The following changes in the module's data relocation table are
prompted by both the changes to the module name table and the
in the calling sequence.

o Local symbol relocation entries will be removed from the
relocation table because they are superceded by the use of
qualified names in the module name table.

o A cleared data fixup bit in a symbol relocation entry will
mean that a -procedure's entry point as well as invocation
descriptor will be fixed up. A set data fixup bit in a
symbol relocation entry will mean that only a procedure's
invocation descriptor will be fixed up.

The calling sequence was changed to allow a caller to maintain the
address of the called routine's entry point as well as its invocation
descriptor. The caller can do this using the symbol relocation entry
to fixup both the invocation descriptor and its entry point at once.
This fixup requires that the location of the entry point fixup
immediately follows the location of the invocation descriptor fixup.

The linker handles the case of relocating the invocation descriptor of
a procedure with the same method as it does now. If the procedure is
defined in an object module, the linker adds the location of the
procedure's invocation descriptor to the contents of the specified
location and stores the sum at the specified location. If the
procedure is defined in a shareable image, the linker adds the
location of the autoload vector to the contents of the specified
location and stores the sum at the specified location. (The linker
creates the autoload vector and stores in it the index of the
procedure's transfer vector.)

The linker handles the case of relocating both the jnvocaLion
descriptor and the entry point by first relocating the invocation
descriptor as described above. Then if the procedure is defined in
shareable image, the linker adds the location of the autoload
routine's entry point to the contents at the succeeding i
location. (The succeeding fixup location is determined by
original fixup location and the size of the fixup (which is cified
in the store length field of the relocation)). Otherwise, if
procedure is defined in an object module, the linker puts the location
of the invocation descriptor, the location of the fixup, and the size
of the fixup on an internal relocation list. When all of the other

Digital Equipment Corporation -- Confidential and proprietary page 3

data relocations are done, the linker goes through the list and for
each fixup location, it adds the value at the invocation descriptor's
location to the value at the succeeding fixup location.

The entry point fixups are done this way:

3

1. To ensure that the entry point location stored with the
invocation descriptor location matches the value in the
invocation descriptor

2. To ensure that the entry point is never separated from its
invocation descriptor

3. To avoid special symbols for procedure entry points

4. To minimize entries in the data relocation table

The following miscellaneous changes are prompted by the ongoing
implementation of the linker.

o The module header type field will be enlarged from a byte to
a word and placed in the second longword of the module. The
first longword will have a value for the system id in its
first longword that distinguishes it from VMS and Ultrix
object modules and images.

o The use of procedure symbols will be better described. All
languages must use procedure symbols to define procedures in
order to allow the linker to check data relocations.
Languages other than Fortran would not specify any argument
descriptors.

o The use of PSECT entries in the data relocation table will be
better described. A reference to an offset in a PSECT can be
fixed up by placing the offset at the fixup location,
then using the PSECT data relocation entry to add the
location of the PSECT to the offset at the fixup location.

From: TLE::DECWET::PETERSON "Kim Peterson, DECwest Engineer.ing 1
To: @CALLING STANDARD
Subj: Comments? (on the proposed change to allow qualified namps in

I I I I I I I I
Idlilgliltlalll
I I I I I I I I

TO: @Calling Standard

CC:

I N T E R 0 F F ICE M E M 0 RAN DUM

DATE:
FROM:
DEPT:
EXT:
LOC:
ENET:

15-Dec-·~1987
Kim Peterson
DECwest Engineering
206--·8 8704
ZSO
DEC~"lE1': :

Digital Equipment Corporation -- Confidential and Prop

SUBJECT: Incorporation of Qualified Name Proposal in Mi woo

In a memo dated 8-Dec-1987, I proposed modifying the modul name tahJe
in PRISM modules to allow qualified names. The consensus of opinion
in SDT and DECwest seems to be to adopt this proposal. This proposal
will be incorporated into the Object Module and Imaqe File Format
chapter of the Mica WDD, unless I hear otherwise by 21-Dec-1987. It
is important to move quickly on this proposal because if it is adopted
the linker must incorporate it by the middle of January, 1988.

The following is the substance of the proposal, which is [eppated from
my 8-Dec-1987 memo.

9

Digital Equipment Corporation -- Confidential and Proprietary

The proposed change would allow names to be qualified by other names
in the module name table. The module name table would contain two
types of names, atomic and compound. Atomic names are equivalent to
the names in the current design of the module name table -- they are a
string of characters. Compound names have no equivalent in the
current design and are an ordered tuple of atomic names. The link r
and librarian would handle compound names as they handle atomic namp .
For example, the librarian would use a compound name key t!)

module just as it would use an atomic name as ~

The format of the module name table entri s would
following ways:

1. A type field a byte in size would be added tl) i ti
atomic names from compound names

n

2. The name length field in the entry would reduced from a word
to a byte

3. The alignment of each entry is reduced from word boundaries
to byte boundaries

4. Compound names would be denoted by a pair of indexes into th
module name table -- each index can denote either an atomic
name or another compound name

5. There are three types of entries to denote comrlolJnrl n,lmRS:

an entry with both indexes byte values

an entry with both indexes word values

an entry with both indexes longword value

\The type field would be used for future extensions to the name table
for such things as multiple byte character sets. To make such
extensions as easy as possible, the meaning of the value in the length
field is based upon its entry's type.\

In addition, the following rules would be adopted for names contained
within the module name table:

a The null character (byte value 0) cannot OCC1Jr in an atlJ!lli
name. The first reason for this restriction is that
that contain nulls are not expressible in C, I~h
reason is to maintain a character that can 11
separator of atomic names.

a The maximum length of atomic names is 255 ch c:t r

o The maximum number of atomic names in a compound name 1

The reason for this restriction is to allow 1 n th of n
expanded compound name to fit in a word.

Digital Equipment Corporation -- Confidential and Proprietary Page 3

o The first name in a module name table has
The index is incremented by one for each

o The indexes used in a compound name entry must hp
the compound name's entry's index. In oth
compound name entry can not make a forward re
reason for this restriction is to make life ea
reader of the module name table.

f on

[

o The name index field continues to specify in which libra
index the name is used as a key. Module names are enter

n

into index one, and defining instances of global s re
entered into key index two.

\Note that both atomic names and compound names can be global
symbols.\

From: TLE::DECWET::PETERSON "Kim Peterson, DECwest Engineering 08-Dec-1987 14
@CALLING STANDARD To:

SUbj: proposed-change to module name table to support qualified names

I I I I I I I I
Idlilgliltlalll
I I I I I I I I

TO: @Calling Standard

CC: Dave Walp

I N T E R 0 F F ICE M E M 0 RAN DUM

DATE:
FROM:
DEPT:
EXT:
LOC:
ENET:

8-Dec-1987
Kim Peterson
DECwest Engineering
206-865-8704
ZSO
DECWET::PETERSON

Digital Equipment Corporation -- Confidential and Proprietary

SUBJECT: Implementation of Qualified Names in PRISM Modules

The current design of naming in PRISM object modules is not adequate
for the needs of modern programming languages. I propose that the
current naming design by replaced by the following design, which was
suggested by Don McLaren.

The proposed change would allow names to be qualified by other names
in the module name table. The module name table would contain two
types of names, atomic and compound. Atomic names are equivalent to
the names in the current design of the module name table -- they are a
string of characters. Compound names have no equivalent in the
current design and are an ordered tuple of atomic names. The linker
and librarian would handle compound names as they handle atomic names.
For example, the librarian would use a compound name as a key to a
module just as it would use an atomic name as a key.

The format of the module name table entries would change in the
following ways:

1. A type field a byte in size would be added to distinguish
atomic names from compound names

2. The name length field in the entry would reduced from a word
to a byte

3. The alignment of each entry is reduced from word boundaries
to byte boundaries

4. Compound names would be denoted by a pair of indexes into the
module name table -- each index can denote either an atomic
name or another compound name

5. There are three types of entries to denote compound names:

Digital Equipment Corporation -- Confidential and proprietary Page 2

an entry with both indexes byte values

an entry with both indexes word values

an entry with both indexes longword values

\The type field would be used for future extensions to the name table
for such things as multiple byte character sets. To make such
extensions as easy as possible, the meaning of the value in the length
field is based upon its entry's type.\

In addition, the following rules would be adopted for names contained
within the module name table:

o The null character (byte value 0) cannot occur in an atomic
name. The first reason for this restriction is that strings
that contain nulls are not expressible in C, and the second
reason is to maintain a character that can be used as a
separator of atomic names.

o The maximum length of atomic names is 255 characters.

o The maximum number of atomic names in a compound name is 255.
The reason for this restriction is to allow the length of an
expanded compound name to fit in a word.

o The first name in a module name table has an index of one.
The index is incremented by one for each subsequent name.

o The indexes used in a compound name entry must be less than
the compound name's entry's index. In other words, a
compound name entry can not make a forward reference. The
reason for this restriction is to make life easier for the
reader of the module name table.

o The name index field continues to specify in which library
index the name is used as a key. Module names are entered
into index one, and defining instances of global symbols are
entered into key index two.

\Note that both atomic names and compound names can be global
symbols.\

The following are the proposed declaration and layout of module n~mo
table entries.

Digital Equipment Corporation -- Confidential and proprietary

module$name table entry(
name size : unsigned byte;
name-type: module$name table type[•.] SIZE(byte)): RECORD
CAPTURE name size, name-type;-
name index :-SET integer[1 .. 8] SIZE(byte)i
VARIANTS

CASE name type
WHEN module$c mnt atomic THEN

name string :-string(name size);
WHEN module$c mnt compound byte THEN

byte index! :-unsigned-byte;
byte-index2 : unsigned-byte;

WHEN module$c mnt compound-word THEN
word index! :-unsigned-word;
word-index2 : unsigned-word;

WHEN module$c mnt compound-longword THEN
longword Index! : longword;
longword-index2 : longword;

END VARIANTS; -
END RECORD;

module$name table type : (
module$c mnt atomic,
module$c-mnt-compound byte,
module$c-mnt-compound-word,
module$c=mnt=compound=longword);

Page 3

Digital Equipment Corporation -- Confidential and proprietary

Atomic Name Entry Layout
7 6 5 4 321 0

+---~-----------+

I 0 I
+-+-+-+-+-+-+-+-+
I , I I I I I I ,
+-+-+-~-+-+-+-+-+

I atom name sizel
+---------------+
I atomic name I

entry type

entry indexes

size of atomic name

atomic name string

Compound Name Entries Layouts
7 6 5 4 3 2 1 0 7 6 5 4 321 0

+---------------+
I 1 I
+-+-+-+-+-+-+-+-+
I I I I I I I I I
+-+-+-+-+-+-+-+-+
, should be zerol
+---------------+
I 1st index I
+---------------+
, 2nd index I
+---------------+

+---------------+
I 2 I
+-+-+-+-+-+-+-+-+
I , , , I I I I I
+-+-+-+-+-+-+-+-+
I should be zero'
+---------------+
I 1st index I
+ +
I I
+---------------+
, 2nd index ,
+ +
I I
+---------------+

7 6 5 4 321 0
+---------------+
, 3 ,
+-+-+-+-+-+-+-+-+
, , , I , I , I I
+-+-+-+-+-+-+-+-+
, should be zero'
+---------------+
I 1st index I
+ +
I ,
+ +
, I
+ +
I ,
+---------------+
, 2nd index I
+ +
, ,
+ + , I
+ +
I I
+---------------+

Page 4

From: TLE::GROVE 22-FEB-198811:13
To: SACKS,JBISHOP,@GEM$DIS
SUbj: News about the PRISM object language

This note is a quick summary of changes in the PRISM object langauge that
we discussed last week in Seattle, with Kim Peterson et ale

It is a DECwest goal to put the object language chapter under ECO control
by the end of March. Kim expects to have an updated version of the object
language chapter in our hands by 29 Feb. We should do a thorough review
and quickly send any comments or other changes to they can be considered
before the end of March.

The following items were discussed and changes accepted:

1. Structure of the MNT. It was agreed to change from having parallel MNT and
GST tables, to going to a scheme were names in the MNT are referred to
from the GST by index values. There will be a single index numbering of
the MNT; first name in MNT has index value 1, etc. The index value 0
can be used in a GST entry to indicate that the GST item has no name.

This means that the "null" GST item can be eliminated, because there
is no need for a filler since the MNT and GST are no longer parallel.

2. It was agreed that the syntax of compound names would be normalized to
the form <compound name>.<simple name>.

3. All names in the MNT must be unique.

4. Data initialization. It was agreed to provide a data initialization
mechanism similar to the DRT table. This may actually be part of the
DRT table, or it may be a separate table. (Details from Kim)
You can initialize a piece of storage by specifying the psect, offset,
item length, and value. There will be some abiltity to specify a
repeat count.

5. Transfer address will be specified (as in the current spec) as a symbol
rather than as Psect+Offset on VAX. It will be possible to have a GST
entry with no name, so to specify a transfer address to a local symbol
or unnamed location, you create a GST entry with no name.

6. The BLISS group request the ability to do global arithmetic and store
values smaller than a longword (with overflow checking). We discussed
this and concluded that elaborate global arithmetic facilities are
not generally needed on PRISM and not appropriate. We recommend that
PRISM BLISS restrict global arithmetic to that subset supported
by the PRISM object language and linker. We do not expect that this
will affect many BLISS programs.

7. Following is note from Kim describing new name matching rules that
are intended to support FORTRAN, C, etc and to allow them to work
harmoniously in a mixed language environment.

If you have questions about any of these items, please ask me or check
the forthcoming object language chapter.

Rich Grove

! From: DECWET::PETERSON "Kim Peterson, DECwest Engineering 21-Feb-19882259"

To: @CALLING STANDARD
Subj: Changes In global symbol table for better access to FORTRAN common

The following implements the new semantics of symbol and psect
references agreed to during the recent calling standard meeting.

The value modobj$c_symbol reference is replaced by the values:

o modobj$c symbol reference satisfied
definition; error if unsatisfied

only by symbol

o modobj$c symbol psect reference satisfied by symbol or
psect derinition; error if unsatisfied

The meaning for
unchanged.

the value modobj$c symbol definition

The value modobj$c_symbol_psect is replaced by the values:

remains

o modobj$c psect definition defines a PSECT just as
modobj$c-symboT psect did; in the terminology of the meeting,
it is a strong common definition when the overlaid attribute
is set

o modobj$c psect symbol definition - defines an overlaid PSECT
just as- modobj$c psect definition does, but only if no
overlaid PSECT or global-symbol of the same name is found; in
the terminology of the meeting, it is a weak common
definition.

The value modobj$c_symbol_null is eliminated.

From: TLE::DECWET::PETERSON "Kim Peterson, DECwest Engineering 24-Feb-1988 18
TLE::JBISHOP,TLE::SACKS,@CALLING STANDARD To:

Subj: Proposed changes to object module format from Calling standard meeting

I I I I I I I I
Idlilgliltlalll I N T E R 0 F F ICE M E M 0 RAN DUM
I I I I I I I I

TO: @Calling Standard DATE: 24-Feb-1988
FROM:
DEPT:
EXT:

Kim Peterson
DECwest Engineering
206-865-8704

CC: DECwest Distribution
John Bishop
Gerald Sacks

LOC:
ENET:

ZSO
DECWET::PETERSON

Digital Equipment Corporation -- Confidential and Proprietary

SUBJECT: ECO to the Object Module/Image File Format Chapter

The following represent changes to the Mica Object Module and
File Format agreed to at the February calling standard meeting.
changes fall under four broad categories: name table, global
table, psect definition, and miscellaneous minor modifications.

Image
These

symbol

Digital Equipment Corporation -- Confidential and proprietary Page 2

1 NAME TABLE

1.1 Restriction Of Qualified Name Ordering

The current design allows both indexes in a qualified name entry to
specify either an atomic name or another qualified name. This allows
qualified names to be built in any order. The proposed change is to
restrict the last index to specify an atomic name only. This only
allows qualified names to be built sequentially starting with the
first two atomic names and ending with the last. This restriction
allows easier and more efficient implementation of qualified name
support.

1.2 Change Alignment Of Name Table Entries

The current design has each entry byte-aligned. The proposed change
is to word-align each entry. This change allows for more efficient
access to the qualified name entries. Qualified name entries with
word index fields were thought to be the most common name table entry
after atomic names, and efficient access to them was required.

The change in alignment allowed the size field to be expanded from a
byte to a word. The following is the resulting declaration:
module$name table entry(

entry type: module$name table type[..] SIZE(byte);
entry-size: unsigned word): RECORD
CAPTURE entry size, entry type;
name index: SET integer[O .. 7] SIZE(byte);
VARIANTS

CASE name type
WHEN module$c mnt atomic THEN

name string: string(entry size-4);
WHEN module$c mnt compound byte THEN

byte index1 :-unsigned-byte;
byte-index2 : unsigned-byte;

WHEN module$c mnt compound-word THEN
word index1 :-unsigned-word;
word-index2 : unsigned-word;

WHEN module$c mnt compound-longword THEN
longword Tndex1 longword;
longword-index2 : longword;

END VARIANTS; -
END RECORD;

1.3 Change NAME SIZE Field To ENTRY SIZE

The current design requires the name size field to be dependent upon
the type of name entry. The proposed change is to make this field the
size of the entire entry. This change allows for easier addition of
new entry types to the name table, and standardizes the structure of
the module name table with other tables in the chapter.

Digital Equipment Corporation -- Confidential and proprietary

1.4 Restrict Duplicate Names

The current design allows duplicate names to be entered in the
name table. The proposed change is to disallow duplicate names.
change allows an easier and more efficient implementation of
table support.

Page 3

module
This
name

Digital Equipment Corporation -- Confidential and Proprietary Page 4

2 GLOBAL SYMBOL TABLE

2.1 Name Index

The current design requires that the global symbol table be written
and read in lock step with the name table. The proposed change is to
add a name index field to global symbol table entries. The index
field would contain an index to an entry in the name table. A value
of zero in this field signifies an unnamed symbol, which can only be
used within a module, and does not show up in a map of the image.
This change allows an easier implementation for creating both name
tables and global symbol tables. This change also allows unnamed
symbols, which are necessary in specifying transfer addresses in
BLISS.

2.2 Null Entry Removed

The current design requires a null entry to maintain coherency between
the name table and the global symbol table. With explicit name table
indexing in the global symbol table, this entry is useless.

2.3 New Symbol Referencing Semantics

The current design allows symbol references to be resolved only with
other symbols. This means that languages cannot access FORTRAN common
without explicit language features that direct the compiler to resolve
to a psect instead of a symbol. The proposed change is to keep the
current semantics and add another symbol reference type
(MODOBJ$C SYMBOL PSECT REFERENCE) that could resolve to a FORTRAN
common if-a FORTRAN common definition was present and a symbol
definition was not. It remains an error if no symbol or common
definition is present.

To resolve each symbol/psect reference, the linker would first search
each module for a symbol definition that matched the symbol/psect
reference. If no symbol definition is found in any of the modules
used in the link, the linker would then search the psect table(s) for
an overlaid psect definition that matched.

If a symbol definition is found, the linker would still search
the psect table(s) for a possible match. If a match was found,
linker would report a warning that the reference is ambiguous.

2.4 Rename PSECT Definition Entry

The current design uses MODOBJ$C SYMBOL PSECT to name a psect
definition entry. The code is renamed to MODOBJ$C_PSECT DEFINITION to
more appropriately name it.

Digital Equipment Corporation -- Confidential and Proprietary Page 5

2.5 Modify Global Common Definition

The current design specifies that the symbol definition subtypes
MODOBJ$C SYMBOL COMMON LONG and MODOBJ$C SYMBOL COMMON QUAD defines a
global common symbol tnat matches an overIaid psect of the same name.
The current design also specifies that the symbol cannot resolve to a
standard global symbol. The proposed change is to not define a global
symbol for it, but to allow it to resolve to a global symbol if a
global symbol exists. In addition, since global common definitions
are no longer a symbol definition, but a mixed symbol reference and
psect definition, a new entry type (MODOBJ$C PSECT SYMBOL DEFINITION)
will speicify it. This change is required to support C semantics in
ULTRIX.

Digital Equipment Corporation -- Confidential and Proprietary Page 6

3 PSECT DEFINITION

3.1 FORTRAN Common PSECT Definition

The current design does not specify how FORTRAN common is defined.
The proposed change is to specify that FORTRAN common is defined as a
PSECT with overlaid, relocatable, global, readable, and writable
attributes. This is required because the linker and multiple
languages need to implement FORTRAN common compatibly.

The use of SHARE is covered by the next item.

3.2 SHARE Attribute

The current design specifies that SHARE signifies inter-process
sharing of read/write data. The proposed change is to specify that
SHARE signifies inter-image sharing. The use of a PSECT attribute to
specify inter-process sharing is replaced by the linker qualifier
INSTALL. This change is required to allow access to FORTRAN common
exported from shareable images using process private memory. Sharing
of FORTRAN common between processes is still available through the use
of the linker qualifier INSTALL. The INSTALL qualifier causes the
linker to set SHARE attribute in the image sections resulting from
shareable PSECTs. It also guarantees that images so linked must be
installed /write before they can be activated. In the absence of the
SHARE qualifier, the linker leaves the image sections copy-on-modify.

This represents several changes from VAX/VMS behavior.

o VAX/VMS does not allow FORTRAN common to be shared between
shareable images using process-private memory

o VAX/VMS FORTRAN common has by default the SHARE attribute,
which seems to be incorrect

The share attribute would be set by the linker on psects that are
specified by the linker qualifier EXPORT PSECT. The export psect
qualifier is analogous to the UNIVERSAL qualitier in that it controls
access to PSECTs within the shareable image.

3.3 TLS Template PSECTs

The current design specifies that TLS template psects have their own
subtype. The proposed change is to specify TLS template psect through
a new PSECT attribute (MODOBJ$C PSECT TLS). The linker would create
TLS template regions using PSECT definitions with this attribute set.

Digital Equipment Corporation -- Confidential and Proprietary Page 7

3.4 PSECT Initialization

The current design allows inadequate means of initializing data
psects. The proposed change specifies a compressed method of
representing data that the linker instantiates in the image. The data
compression is the same as used in TLS templates, and is specified in
the TLS design. The change involves adopting the PSECT entry format
currently used for subtype MODOBJ$C PSECT TLS to the new subtype
MODOBJ$C PSECT COMPRESSED. In other words, tne current psect entry
subtype MODOBJ$C_PSECT_TLS is renamed to MODOBJ$C_PSECT_COMPRESSED.

For non-TLS psects, the linker instantiates the compressed date into
the image, and for TLS template psects, the linker creates a template
region in the image.

Digital Equipment Corporation -- Confidential and proprietary page 8

4 MISCELLANEOUS

4.1 Object Module Organization

Rules for laying out object modules are not specified in the current
design. The following rules will be added so that compiler writers
have guidance on how an object module should be structured for the
linker to optimally process.

o The module's item list should immediately follow the module's
header.

o The module's name table and the global symbol table should be
grouped together in that order.

o The module should not duplicate item list entries.

4.2 Field Prefixing For BLISS

Prefixes will be specified that allow record fields to be unique in
languages like BLISS that have a flat name space.

4.3 Entity Consistency Check Table

The current design specifies that the match control field in the
entity consistency check table is ignored for ASCII identification.
The proposed change is to require that the field be MODULE$C_EQUAL.

Additionally, the following may have additional requirements for
entity consistency checking:

o PILLAR (signature checking)

o PASCAL (environment checking)

o IPSE

This is an open issue that is added to the open issues section.

4.4 Autoloading

The current description of autoloading is not completely up to date.
The proposed change is to bring it up to date with the image
activation chapter.

Digital Equipment Corporation -- Confidential and proprietary Page 9

4.5 File Format

The current design specifies a file format for an item list entry_
The design is not used and won't be implemented for FRS. The proposed
change is to make the field SBZ, and put the description of file
format into backslash comments.

