
Revision 0.5 

24-March-1988 

Issued by: 

AI Simons 

Digital Equipment c;?orporation - Confidential and Proprietary 

For Internal Use Only 

ign 
me iI 



TABLE OF CONTENTS 

CHAPTER 1 APPLICATION RUN-TIME UTILITY SERVICES. . . . . . . . . . . . . 1-1 

1.1 Overview .................................................. . 

1.1.1 Goals and Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

1.1.2 ARUS Routines ........................................... . 
1.1.2.1 User Mode Virtual Memory AllocationlDeallocation Routines .......... . 

1.1.2.2 Condition Handling Routines ............................... . 

1.1.2.3 Date and Time Conversion Routines ...................... . 
1.1.2.4 Environment Attribute Routines ............................ . 

1.1.2.5 Internationalization Aids .......................... . 
1.1.2.6 Process Information Routines ....................... . 
1.1.2.7 Command Language Interpreter Interface Routines . . . . . . . . . . . . . . 

1.1.2.8 Data Conversion Routines ................................. . 
1.1.2.9 Text String and Message Formatting Routines ............... . 

1.1.2.10 String Routines ................................... . 
1.1.2.11 Table-Driven Parsing Routines ............................. . 

1.1.2.12 Math Routines ................. . ................... . 
1.1.3 Open Issues ............ . 

1.2 ARUS Routine Design Philosophy . 

1.3 11emory Allocation and Deallocation Routines . 

1.3.1 Memory Zone Characteristics ........ . 
1.3.1.1 Allocation and Deallocation Algorithms 
1.3.1.2 Alignment .................. . 

1.3.1.3 Allocation Sizes ...................... . 
1.3.2 Functional Interface and Description ... . 

1.3.2.1 Types Used ................ . 
1.3.2.2 Allocation ...... , .............. . 

1.3.2.2.1 The arus$get_memory Routine .... . 
1.3.2.2.2 The arus$reallocate_memory Routine 

1.3.2.3 Deallocation ................... . 
1.3.2.3.1 The arus$free_memory Routine ... . 

1-1 

1-1 
1-2 

1-2 

1-3 
1--4 
1-5 

1-5 
1-5 

1-6 

1-6 
1-6 

1-6 

1-6 
1-6 

1-7 

1-7 

1-7 
1-8 
1-8 
1-9 
1-9 
1-9 

1-9 
1-10 

1-10 
1-10 
1-11 

1-11 

1.3.2.4 Memory Zone Creation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-12 
1.3.2.4.1 The arus$create_memory~one Routine .................. 1-13 

1.3.2.4.2 The Default Memory Zone. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-15 

1.3.2.5 Memory Zone Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-16 
1.3.2.5.1 The arus$reset_memory_zone Routine . . . . . . . . . . . . . . . . . . . 1-16 

1.3.2.6 Memory Zone Deletion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-16 

1.3.2.6.1 The arus$delete_memory_zone Routine ...................... 1-16 
1.3.3 Debugging Aids ....... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-17 

1.3.4 VMS Compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-17 

1.4 International Date and Time Routines . . . . . . . . . . . . . . . . . . . . . . . .. 1-18 

1.4.1 Treatment of Time Zones ....... . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-18 

iii 



iv 

1.4.2 Functional Interface and De;~cription ........... . 
1.4.2.1 Types Used .................... . 
1.4.2.2 Obtaining the System Time ............ . 

1.4.2.2.1 The arus$get_system_time Routine .... . 
1.4.2.3 Arithmetic Operations on Time Stamps .... . 

1.4.2.3.1 The arus$subtract_absolute_times Routine 
1.4.2.3.2 The arus$subtracCrelative_times Routine. 

1.4.2.3.3 The arus$subtracCmixed_times Routine 
1.4.2.3.4 The arus$add_relative_times Routine '" 
1.4.2.3.5 The arus$add_mixed_times Routine .... 
1.4.2.3.6 The arus$multiply_relative_time Routine. 
1.4.2.3.7 The arus$multiplyf_relative_time Routine .. 

1.4.2.4 Conversion to and from Numeric Time Structures 
1.4.2.4.1 The arus$cvt_to_numeric_rel_time Routine .. 
1.4.2.4.2 The arus$cvCto_numeric_abs_time Routine .. 
1.4.2.4.3 The arus$cvtJrom_numeric_reCtime Routine. 
1.4.2.4.4 The arus$cvtJrom_numeric_abs_time Routine 

1.4.2.5 Time Comparison ....................... . 
1.4.2.5.1 The arus$compare_relative_times Routine . 
1.4.2.5.2 The arus$compare_absolute_times Routine .. 

1.4.2.6 Conversion to Arbitrary Units of Time ..... . 
1.4.2.6.1 The arus$cvt_to_binary_reCtime Routine .. . 
1.4.2.6.2 The arus$cvtf_to_binary_reCtime Routine .. 
1.4.2.6.3 The arus$cvtJrom_binary_rel_time Routine. 

1.4.2.6.4 The arus$cvtfJrom_binary_reCtime Routine. 
1.4.2.6.5 The arus$cvtJrom_binary_abs_time Routine 

1.4.2.7 Flexible Date and Time Formatting .... 
1.4.2.7.1 The arus$format_date_time Routine . 
1.4.2.7.2 The arus$convert_date_string Routine 

1.4.2.7.3 The arus$geCdateJormat Routine .. 
1.4.2.7.4 The arus$get_max_date_length Routine .. 
1.4.2.7.5 The arus$format_rel_time Routine ..... 
1.4.2.7.6 The arus$convert_reCtime_string Routine 

1.4.2.7.7 The arus$get_reCtimeJormat Routine ... 
1.4.2.7.8 The arus$get_max_rel_time_length Routine . 
1.4.2.7.9 The arus$free_date_time_context Routine . 
1.4.2.7.10 The arus$init_date_tim.e_context Routine 

1.4.3 VMS Compatibility ...... . 

1.5 General Internationalization Aids 
1.5.1 Functional Interface and Description .. 

1.5.1.1 Determining the User's Natural Language .. 
1.5.1.1.1 The arus$get_language Routine 

1.6 Condition Handling Routines ......... . 

1.6.1 The ARUS Condition Handling Model .. 
1.6.2 ARUS Condition Handlers ................... . 

1-18 
1-18 
1-21 
1-21 
1-22 
1-22 
1-22 

1-23 
1-24 
1-24 
1-25 
1-25 
1-26 
1-26 
1-27 
1-27 
1-28 
1-28 
1-29 
1-29 
1-30 
1-30 
1-31 
1-31 
1-32 
1-33 
1-33 
1-34 
1-35 
1-36 
1-37 
1-38 
1-39 

1-40 
1-41 
1-41 
1-42 
1-43 

1-43 
1-43 
1-43 
1-44 

1-44 

1-45 
1-45 



1.6.3 Functional Interface and Description .. . 
1.6.3.1 Types Used ................ . 
1.6.3.2 Condition Raising Routines ...... . 

1.6.3.2.1 The arus$raise_condition Routine ...... . 
1.6.3.2.2 The arus$raise_stop_condition Routine .. . 

1.6.3.3 Condition Modification Routines .......... . 
1.6.3.3.1 The arus$replace_condition Routine .... . 

1.6.3.3.2 The arus$addyrimary _condition Routine . 
1.6.3.3.3 The arus$add_secondary _condition Routine 

1.6.3.4 Condition Information Routines ........ . 
1.6.3.4.1 The arus$examine_condition Routine ... . 
1.6.3.4.2 The arus$examine_return_value Routine 

1-46 
1-46 
1-47 
1-47 
1-47 
1-48 
1-48 

1-48 
1-49 
1-50 
1-50 
1-51 

1.6.3.4.3 The arus$store_return_value Routine. 1-51 
1.6.3.5 Status Value Routines .. . . . . . . . . . . 1-52 

1.6.3.5.1 The arus$testJor _success Routine. . 1-52 
1.6.3.5.2 The arus$compare_status Routine. 1-53 

1.6.3.6 Unwind Routines .............. 1-53 
1.6.3.6.1 The arus$unwind Routine. . . . . . 1-53 
1.6.3.6.2 The arus$unwind_to_exit Routine. 1-54 

1.6.3.7 Condition Handler Management Routines . . . . 1-54 
1.6.3.7.1 The arus$addyrimary_handler Routine . . 1-55 
1.6.3.7.2 The arus$add_lasCchance_handler Routine 1-55 
1.6.3.7.3 The arus$deleteyrimary_handler Routine. 1-56 
1.6.3.7.4 The arus$delete_last_chance_handler Routine. 1-56 

1. 7 Data Conversion Routines ............ 1-56 
1.7.1 Functional Interface and Description .. 1-57 

1. 7 .1.1 Types Used ................ 1-57 
1.7.1.2 Convert an Integer to a Text String . 1-58 

1.7.1.2.1 The arus$cvClongword_to_text Routine 1-58 
1.7.1.2.2 The arus$cvCinteger _to_text Routine. . 1-59 

1.7.1.3 Convert a Text String to an Integer Value . 1-60 
1.7.1.3.1 The arus$cvt_texCto_longword Routine 1-60 
1.7.1.3.2 The arus$cvCtext_to_integer Routine. . . . 1-61 

1.7.1.4 Convert a Numeric Text String to an F _floating or G_floating Value 1-62 
1.7.1.4.1 The arus$cvCtexCto_real Routine. . . . . . . . . . . . . . . . . . . . . 1-63 
1.7.1.4.2 The arus$cvt_texCto_double Routine .......... " . . . . . . 1-64 

1.7.1.5 Convert an F _floating or G_floating Value to a Text String 
1.7.1.5.1 The arus$cvCreaCto_text Routine ............. . 

1-65 
1-66 

1.7.1.5.2 The arus$cvt_double_to_text Routine. . . . . . . . . . . . . . . . . . . . . . 1-67 
1.7.1.6 Convert a D_floating or G_floating Value to a G_floating or D_floating Value 1-68 

1.7.1.6.1 The arus$cvtJJ_to_d Routine. . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-68 
1.7.1.6.2 The arus$cvt_d_toJJ Routine . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-68 

1.7.1.7 Convert an F _floating or G_floating Value to ASCII Digits and Exponent 
Strings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-69 

1.7.1.7.1 The arus$cvt_real_to_scaled_text Routine.. ... . . . . . . . 1-69 
1.7.1.7.2 The arus$cvt_double_to_scaled_text Routine. . . . . . . . . . . . . . . . . .. 1-70 

v 



1. 7 .1.8 Convert an Integer and $cale Factor to a Text String ......... . 
1.7.1.8.1 The arus$cvt_integer _to_reaCtext Routine ........ . 

1.7.1.9 International Data Conversion and Formatting Routines .. 
1.7.1.9.1 The arus$cvt_integer _toJormaCtext Routine ... . 
1. 7 .1.9.2 The arus$cvtJormat_texcto_integer Routine .. . 
1.7.1.9.3 The arus$cvt_real_toJormaCtext Routine ... . 
1.7.1.9.4 The arus$cvCdouble_toJormaCtext Routine .. . 

1. 7.1.9.5 The arus$cvtJormat_texCto_real Routine ... . 
1.7.1.9.6 The arus$cvtJormat_texCto_double Routine .. . 

GLOSSARy ........ ........................... . 

INDEX 

TABLES 
1-1 
1-2 
1-3 
1-4 
1-5 
1-6 
1-7 
1-8 
1-9 
1-10 
1-11 
1-12 
1-13 
1-14 
1-15 
1-16 
1-17 
1-18 
1-19 
1-20 
1-21 
1-22 
1-23 
1-24 
1-25 
1-26 
1-27 
1-28 
1-29 
1-30 
1-31 
1-32 
1-33 

vi 

High-Level Math Routines . . . . . . . . . . . . . . . . . . . . . . .. . ...... . 
Allocation and Deallocation Algorithms ............... . 
Status Values Returned from Routine arus$get_memory . ... . 
Status Values Returned from Routine arus$reallocate_memory . 
Status Values Returned fron1 Routine arus$free_memory ....... . 
Status Values Returned from Routine arus$create_memory Jone .. . 
Characteristics of the Default Memory Zone ........... .... . 
Status Values Returned from Routine arus$reset_memory Jone ... . 
Status Values Returned froIn Routine arus$delete_memory Jone .. . 
Status Values Returned from Routine arus$subtract_absolute_times . 
Status Values Returned from Routine arus$subtract_relative_times 
Status Values Returned from Routine arus$subtracCmixed_times 
Status Values Returned from Routine arus$add_relative_times .. . 
Status Values Returned from Routine arus$add_mixed_times ... . 
Status Values Returned from Routine arus$multiply _relative_time . 
Status Values Returned from Routine arus$multiplyf_relative_time . 
Status Values Returned from Routine arus$cvt_to_numeric_reCtime . 
Status Values Returned from Routine arus$cvCto_numeric_abs_time . 
Status Values Returned from Routine arus$cvtJrom_numeric_rel_time . 
Status Values Returned from Routine arus$cvtJrom_numeric_abs_time 
Status Values Returned from Routine arus$compare_relative_times . 
Status Values Returned from Routine arus$compare_absolute_times 
Status Values Returned from Routine arus$cvCto_binary_reCtime .. 
Status Values Returned from Routine arus$cvtf_to_binary_rel_time . 
Status Values Returned from Routine arus$cvtJrom_binary _reCtime . 
Status Values Returned from Routine arus$cvtf Jrom_binary _rel_time 
Status Values Returned from Routine arus$cvtJrom_binary _abs_time 
Status Values Returned from Routine arus$formaCdate_time ... . 
Status Values Returned from Routine arus$converCdate_string . . . 
Status Values Returned from Routine arus$geCdateJormat .... . 
Status Values Returned from Routine arus$geCmax_date_length .. 
Status Values Returned from Routine arus$formaCrel_time ..... 
Status Values Returned from Routine arus$converCrel_time_string 

1-71 
1-71 
1-72 
1-73 
1-74 
1-75 
1-76 
1-78 
1-79 

Glossary-l 

1-7 
1-8 

1-10 
1-11 
1-12 
1-14 
1-15 
1-16 
1-17 
1-22 
1-23 
1-23 
1-24 
1-25 
1-25 
1-26 
1-26 
1-27 
1-28 
1-28 
1-29 
1-30 
1-30 
1-31 
1-32 
1-32 
1-33 
1-35 
1-36 
1-37 
1-38 
1-38 
1-39 



~t 1-34 
1-35 
1-36 
1-37 
1-38 
1-39 
1-40 
1-41 
1-42 
1-43 
1-44 
1-45 
1-46 
1-47 
1-48 
1-49 
1-50 
1-51 
1-52 
1-53 
1-54 
1-55 
1-56 
1-57 
1-58 
1-59 

1-60 
1-61 
1-62 
1-63 
1-64 
1-65 
1-66 
1-67 
1-68 

Status Values Returned from Routine arus$get_rel_timeJormat . . . . . . . . . .. 1-40 
Status Values Returned from Routine arus$get_max_rel_time_length . . . . . . .. 1--41 
Status Values Returned from Routine arus$free_date_time_context . ......... ' 1-42 
Status Values Returned from Routine arus$iniCdate_time_context . 1-42 
Status Values Returned from Routine arus$get_language . . . . . . . . . 1-44 
Status Values Returned from Routine arus$replace_condition . . . . . . 1-48 
Status Values Returned from Routine arus$add-primary _condition . . 1-49 
Status Values Returned from Routine arus$add_secondary _condition. 1-50 
Status Values Returned from Routine arus$examine_condition .. ....... 1-50 
Status Values Returned from Routine arus$examine_return_value 1-51 
Status Values Returned from Routine arus$store_return_value 1-52 
Status Values Returned from Routine arus$compare_status . . . . . . . . 1-53 
Status Values Returned from Routine arus$unwind . . . . . . . . . . . . . 1-54 
Status Values Returned from Routine arus$delete-primary_handler . . . 1-56 
Status Values Returned from Routine arus$delete_last_chance_handler 1-56 
Status Values Returned from Routine arus$cvClongword_to_text. . . . . . . . . .. 1-59 
Status Values Returned from Routine arus$cvCinteger _to_text ........ 1-60 
Status Values Returned from Routine arus$cvCtexCto_longword . . . 1-61 
Status Values Returned from Routine arus$cvCtext_to_integer .... 1-62 
Status Values Returned from Routine arus$cvCtext_to_real ... 1-64 
Status Values Returned from Routine arus$cvCtext_to_double . 1-65 
Status Values Returned from Routine arus$cvCreal_to_text . . . 1-66 
Status Values Returned from Routine arus$cvCdouble_to_text . 1-67 
Status Values Returned from Routine arus$cvt~_to_d. . . 1-68 
Status Values Returned from Routine arus$cvCd_to~. . . . . . . . 1-69 
Examples of Routines arus$cvCreaCto_scaled_text and 
arus$cvCdouble_to_scaled_text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-69 
Status Values Returned from Routine arus$cvCreal_to_scaled_text .. 1-70 
Status Values Returned from Routine arus$cvCdouble_to_scaled_text . 1-71 
Status Values Returned frOln Routine arus$cvCinteger _to_real_text . . 1-72 
Status Values Returned from Routine arus$cvCinteger _toJormaCtext 1-73 
Status Values Returned from Routine arus$cvtJormaCtexCto_integer 1-74 
Status Values Returned from Routine arus$cvCreal_toJormat_text . . 1-76 
Status Values Returned from Routine arus$cvCdouble_toJormaCtext 1-77 
Status Values Returned from Routine arus$cvtJormaCtexCto_real . . 1-79 
Status Values Returned from Routine arus$cvtJormaCtext_to_double 1-81 

vii 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

Revision History 
Revision 

Date Number 

19-November-1987 0.1 

27-December-1987 0.2 

8-February-1988 0.3 

4-March-1988 0.4 

14-March-1988 0.5 

iv 

Author 

All 

Connors 

Simons, Nogrady 

Simons 

Simons, j'ngrady 

Summary of Changes 

First draft 

Incorporated review comments. Split original chapter enti
tled "Applications Run-lime Library" into two chapters: "Ap
plication Run-lime Utility Services" and "Miscellaneous Run
Time Library Routines." 

Prepare sections on memory management and date/time 
manipulation for primary review. 

Incorporate primary review comments on the above sec
tions. 

Prepare sections on condition handling and conversions for 
primary review. 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

CHAPTER 1 

APPLICATION RUN-TIME UTILITY SERVICES 

1.1 Overview 

This chapter describes the interfaces to the Application Run-Time Utility Services (ARUS) library. 
This library will be implemented on Mica and on PRISM ULTRIX in time for each product's release. 
It will also be implemented on future releases of VAXNMS and VAX/ULTRIX. 

The ARUS library contains routines that provide the application program interface to Mica on Glacier, 
and provides that same interface on the other operating systems on which it is implemented, thereby 
easing portability of applications across DIGITAL operating systems. These routines are designed to 
adhere to the emerging Application Integration Architecture (&1\). The definition and development 
of ARUS on Mica is the result of a cooperative effort between DECwest and SDT. The major part of 
the implementation of ARUS is performed by SDT. 

There are several discrete groups of routines contained in ARUS. Each of these groups is discussed in 
turn starting with Section 1.1.2.1, which describes the ARUS routines used to allocate and deallocate 
virtual memory. 

The Mica applications run-time library also contains other application program interface routines 
that complement the capabilities provided by the routines described in this chapter. These additional 
routines are described in Chapter 57, Miscellaneous Run-Time Library Routines. 

1.1.1 Goals and Requirements 

ARUS shares lllany of the goals and requirements of the AlA program. Requirements include: 

.. ARUS routine interface implementations must be feasible on all Glacier client systenls. 

• ARUS routine definitions must allow for implementations with good performance. 

.. ARUS routine implementations nlust be compatible with other non-Mica implementations of the 
routines. 

Goals include: 

• To provide as complete a program interface as possible to contemporary DIGITAL-supplied op
erating systems such as Mica, VAXNMS, and ULTRIX without including nonportable concepts 
or constructs. 

• To provide a set of routines that are architected in such a fashion as to allow efficient library 
routine code implementations on all such contemporary DIGITAL operating systems. 

Nongoals include: 

• The code for ARUS routines must be inherently portable. (The AlA architecture requires that 
only the interfaces to AlA routines be portable.) 

• ARUS routines provide interfaces to every underlying operating system capability or architecture
specific hardware feature. 

Application Run-Time Utility Services 1-1 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

• The performance of ARUS routines must on average exceed that of similar, non-AlA operating
system or architecture-specific routines. \ There is a cost for portability. \ 

1.1.2 ARUS Routines 

Although the ultimate version of ARUS will include a wide range of routines, the FRS offering is 
necessarily limited in scope. The FRS version of ARUS comprises those routines needed to support the 
FRS layered products and bundled utilities. This section discusses only the utility RTL capabilities 
for those areas in which there are FRS requirements. 1 

ARUS is composed of two conceptually different types of routines: generic operating system services 
and general purpose utility routines. 

The generic operating system services provide, in an operating-system- and architecture-independent 
manner, those services normally associated with an operating system, such as virtual memory allo
cation. These routines are described starting at Section 1.1.2.1. 

The general purpose utility routines provide access to common capabilities generally identified with 
run-time libraries, such as various data conversion routines. These routines are described starting 
at Section 1.1.2.8. 

1.1.2.1 User Mode Virtual Memory Allocation/Deallocation Routines 

ARUS contains user-level memory allocation and deallocation routines similar to the VAX/VMS 
LIB$VM routines. Unlike the LIB$VM routines, the ARUS routine interfaces do not use hardware
specific allocation units, such as pages. All quantities are expressed in terms of bytes. 

\It is interesting to note that in a measurement made of the VMS RTL, the memory management 
routines were the most frequently used of any RTL routines by a factor of 10. The performance of 
these routines is critical, especially of arus$geCmemory.2 

User mode virtual memory allocationldeallocation routines include: 

• arus$geCmemory-mandatory for FRS 

• arus$free_memory-mandatory for FRS 

.. arus$create_memory _zone-mandatory for FRS 

.. arus$delete_mem.ory _zone-mandatory for FRS 

.. arus$resecmemory J,one 

1 The document "Overview of a New Utility RTL" by AI Simons (contained in the "AIA Strawman") contains descriptions of 
capabilities for the eventual ARUS library that are not represented in this chapter. All such omissions indicate that the 
capability described is not a realistic FRS deliverable. 

2 The spelling of all ARUS routine name prefixes, is TBD. The final routine names will have prefixes that serve to reinforce 
the logical grouping of the routines. 

1-2 Application Run-Time Utility Services 



1.1.2.2 Condition Handling Routines 

Digital Equip~ent Corporation - Confidential and Proprietary 
For Internal Use Only 

The ARUS condition handling routines provide an AlA-compatible interface to the Mica condition 
handling system. They allow the user to raise, modify, handle, and obtain information about condi
tions in an operating-system-independent manner. 

The condition handling routines implement a dynamic condition dispatching environment whose se
mantics are based on the order of procedure invocation. This style of condition handling is identical 
to that present on VAXNMS, Mica, and PRISM ULTRIX. The implementation of these routines uti
lizes the underlying operating-system-specific condition handling features. Note, however, that these 
routines do not operate with the traditional UNIXTM static signal handling capabilities;3 however, 
the two condition handling systems do coexist, and their use can be intermixed. 

The ARUS condition handling routines allow for access to the information in a condition record in an 
operating-system-independent manner. The routines do not provide access to the mechanism record 
except in a controlled way, for example, to replace the return value registers contained therein. 

Note that these routines do not provide the capability of VAXNMS routines LIB$ESTABLISH and 
LIB$REVERT. Those routines depend very heavily on peculiarities of the VAX architecture, and are 
not portable. Compilers are expected to catch references to those routines, and do "the right thing." 
What "the right thing" is depends on the operating system and hardware for which the code is being 
compiled. 

Condition handling routines include: 

• arus$raise_condition-mandatory for FRS (FORTRAN, Pascal) 

• arus$replace_condition 

• arus$addyrimary _condition 

• arus$add_secondary _condition 

• arus$examine_condition-mandatory for FRS (for applications not coded in Pillar) 

• arus$unwind-mandatory for FRS (FORTRAN, Pascal) 

• arus$unwind_to_exit-mandatory for FRS (FORTRAN, Pascal) 

• arus$store_return_value-mandatory for FRS (FORTRAN, Pascal) 

• arus$examine_return_value 

• arus$testJor _success 

• arus$compare_status 

.. arus$addyrimary_handler-not mandatory if DEBUG goes straight to the system as expected 

• arus$add_last_chance_handler-mandatory for FRS (FORTRAN, Pascal) 

• arus$deleteyrimary _handler 

• arus$delete_last_chance_handler 

\It has not been decided whether there will be routines to map conditions from the underlying 
system's condition facility into common AlA conditions, or whether there will be routines to provide 
the means to obtain the condition name in a system-independent manner. 

The question is: how does an application test for a condition such as end-of-file when the language 
does not provide that mapping? Will an ARUS routine map SS$_ENDOFFILE to the equivalent 
PRISM ULTRIX and Mica condition names or is that the responsibility of the application? 

™ UNIX is a trademark of AT&T 
3 That is, the condition handling routines available in UNIX whose actions are determined by the contents of a program's 

"signal vector." For more information about these incompatible condition handling routines, please see Chapter 2 of the 
UNIX documentation. 

Application Run-Time Utility Services 1-3 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

How thoroughly can we isolate the user from the underlying condition handling system?" 

We recognize that this is a desireable capability, but it is currently an unknown technical problem, 
and we are not sure if it can be understood and implemented in time. We believe that the PRISM 
systems are viable without this capability. \ 

1.1.2.3 Date and Time Conversion Routines 

The date and time conversion routines are used to convert internal format time into text, text into 
internal format time, and to obtain and manipulate internal format time values. They allow flexibility 
of natural language and format in both directions of conversion. These routines recognize and process 
the DIGITAL standard internal time format, as specified in standard EL-ENl12-00, "Representation 
of Time for Information Exchange." On ULTRIX, there are additional routines to convert between 
the UNIX standard time format and the DIGITAL standard format. 

Date and time conversion routines include: 

• arus$geCsystem_time-mandatory for FRS 

• arus$formaCdate~jime-mandatory for FRS 

• arus$formaCrel_time-mandatory for FRS 

• arus$converCdate_string-mandatory for FRS 

.. arus$converCreCtime_string-mandatory for FRS 

• arus$free_date_time_context-mandatory for FRS 

• arus$geCdateJormat-mandatory for FRS 

• arus$geCmax_date_length-mandatory for FRS 

• arus$cvCto_numeric_rel_time-mandatory for FRS 

.. arus$cvCto_numeric_abs_time-mandatory for FRS 

.. arus$cvtJrom_numeric_reCtime-mandatory for FRS 

• arus$cvtJrom_numeric_abs_time-mandatory for FRS 

., arus$cvCto_binary_rel_time-mandatory for FRS 

• arus$cvtf_to_binary _rel_ti7ne-mandatory for FRS 

• arus$cvtJrom_binary _reCtime-mandatory for FRS 

• arus$cvtf Jrom_binary _reCtime-mandatory for FRS 

.. arus$cvtJrom_binary_abs_time-mandatory for FRS 

• arus$init_date_time_context-mandatory for FRS 

• arus$add_mixed_times 

• arus$add_relative_times 

• arus$subtract_absolute_times 

• arus$subtract_relative_times 

• arus$subtract_mixed_ti7nes 

• arus$compare_relative_times 

• arus$compare_absolute_times 

1-4 Application Run-Time Utility Services 



1.1.2.4 Environment Attribute Routines 

Digital Equipment Corporation - Confidenti~1 and Proprietary 
For Internal Use Only 

The environment attribute routines provide the ability to look up an attribute defined in the user's 
environment, and return the string which is the value of that attribute. Since attributes are also 
strings, attribute lookup can be nested. The complete architecture for these routines provides for a 
capability similar to that available with VAXlVMSlogical names, including the ability to have secure 
attributes. 

The FRS offering of environment attribute routines is more modest. At a minimum level of capability 
for FRS, these routines provide a uniform access to the underlying operating system string mapping 
capability (logical names on VAXlVMS and Mica, environment variables on ULTRIX systems). This 
FRS support includes the ability to map a string to a single string, but without any protection from 
user modification of the mapping. 

Environment attribute routines include: 

• arus$create_environmenCattribute-mandatory for FRS 

• arus$geCattribute_value-mandatory for FRS 

• arus$delete_environment_attribute-mandatory for FRS 

• arus$create_attribute_table 

• arus$delete_attribute_table 

At first release, these routines will not interact with extended environments such as the DECnet name 
server. Whether or not they will in the future is not yet determined. In tightly bound processes such 
as Mica bound processes, these routines will recognize the client's environment. 

1.1.2.5 Internationalization Aids 

The ARUS library provides several routines to aid in the internationalization of applications. They 
include support for specifying different collating sequences, obtaining the user's natural language, 
formatting numeric values, and so on. Some of these routines are tightly integrated with routines 
discussed in other areas and are described with those routines. Routines that exist solely for inter
nationalization are described here. 

• arus$geClanguage-mandatory for FRS 

• arus$radixyoint 

.. arus$digit_separator 

.. arus$formaCcurrency 

• A string-collating package similar to the VAXlVMS NCS$ routines provided in VAXlVMS Version 
5.0 

co A string case conversion utility 

1.1.2.6 Process Information Routines 

Pascal has a requirement to obtain the am.ount of CPU time consumed by the process. That is the 
only currently known requirement for process information routines. 

Application Run-Time Utility Services 1-5 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

1.1.2.7 Command Language Interpreter Interface Routines .~ 

The command language interpreter (eLI) interface routines are used to provide a portable method 
for applications to receive and parse simple command lines. The format of the command lines is 
operating system specific and these routines only enforce the concepts of command verb, command 
parameter, command qualifier, and so on, without resorting to describing the lexical representation 
of these entities. The method for describing commands, parameters, and qualifiers is <TBS>. 

The CLI interface routines also provide for obtaining the unparsed command line. Additionally, a 
routine is provided to meet the requirement of the FORTRAN RTL to be able to pause program 
execution and return control to the CLI. 

1.1.2.8 Data Conversion Routines 

Virtually all of the capabilities present in the VAXNMS OTS$ data type conversion routines are 
required at FRS to support FORTRAN. Please see the documented OTS$ definitions. 

1.1.2.9 Text String and Message Formatting Routines 

The capability needed for text string and message formatting is similar to the $FAO system service 
on VAXNMS, and the printf statement in the C language. Like those facilities, the Mica text string 
and formatting routines are driven by a control string. Unlike those facilities, they include inherent 
support for internationalization. 

Text string and message formatting routines include: 

• arus$formaCstring-mandatory for FRS 

• arus$formaCmessage 

1.1.2.10 String Routines 

The string routines handle string allocation, copying, and deallocation. They closely resemble the 
current VAXNMS STR$ routines that provide these capabilities. Please refer to the VAXNMS doc
umentation. 

1.1.2.11 Table-Driven Parsing Routines 

FORTRAN NAMELIST 1/0 currently utilizes the VAXNMS routine named LIB$TPARSE to perfonn 
the parsing actions required. This general capability should be provided eventually in ARUS; if it is 
not available at FRS, the FORTRAN RTL will have to provide its own parsing routines. 

1.1.2.12 Math Routines 

Math support routines exist at two levels on Mica: 

• A set of low-level routines designed for use by language run-time libraries and other callers 
where absolute performance is paramount. The interfaces to these routines are compatible with 
the VAXNMS implementations of the routines. The low-level routines are described in Chapter 
57, Miscellaneous Run-Time Library Routines. 

• A set of high-level math routines with AIA-conformant interfaces. These routines are used where 
absolute perfonnance is secondary to portability. The high-level routines are described in this 
chapter. Table 1-1 lists the entry points for these routines. 

1-6 Application Run-Time Utility Services 



Table 1-1: High-Level Math Routines 

math$tbs 

1.1.3 Open Issues 

Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

• How to provide transportable condition handling is the area that is currently least understood. 
We believe that the routines described in Section 1.1.2.2 are necessary and feasible. Our current 
model may, however, change over the next several months as we learn more in this area. 

• The most pressing issue in the area of the math routines is the lack of a definition of AIA
conformant math routine interfaces. This is delayed by the lack of a precise definition of the 
phrase "AIA-conformant." 

• The concept of seamlessness between Glacier and its clients suggests that ARUS needs to be 
implemented at or near FRS on all possible Glacier client systems. This increases the overall 
effort and is potentially problematic under the current manpower constraints. 

1.2 ARUS Routine Design Philosophy 

The primary goal of the Application Integration Architecture is to provide interfaces to commonly 
used library routines which are operating system and hardware independent. This goal requires 
that the ARUS routines, which are AlA conformant, be written on a higher level of abstraction than 
regular system routines. For example, some type definitions may need to be defined differently in an 
ARUS routine than they would be in an ordinary PRISM or VAX. system service. 

In order to maintain hardware independence, it is occasionally necessary to duplicate the capabilities 
provided by a PRISM system service. That is, the ARUS routine may simply map the arguments it 
receives onto those of a PRISM service, then call that service directly. 

\A note on ARUS routine design documentation: In a similar fashion, this chapter serves multiple 
purposes. The first is to be a part of the design of the Mica operating system. The second is to serve 
as the definition of the first set of routine interfaces of the AlA RTL routines which "vill be provided 
on multiple operating systems. 

This merging of two sets of goals \vith two somewhat different audiences into one manuscript runs 
the risk of satisfying neither. I hope that I have succeeded in satisfying both.\ 

1.3 

The software described in this section provides a user-mode memory manager. By managing a pool 
(or heap) of memory in user mode \vith only infrequent allocation requests to the operating system, 
overall system performance is ilnproved. 

Throughout this section, the term allocation refers to allocating memory from the memory manager's 
pool for use by the application code. Occasionally, we discuss allocation from the operating system. 
These cases are clearly specified in the the accompanying text. Similarly, the term deallocation 
refers to returning memory to the memory manager when the application code is through with it. 
This section very rarely discusses deallocating memory from a process's address space through an 
operating system service. However, when such a deallocation is mentioned, it is clearly specified. 

Throughout this chapter, we will use the term octet to refer to a unit of memory containing exactly 
eight bits; an octet is the same as a VAX. architecture byte. The term "byte" is not used in this 
chapter, because it is not well defined; there are eight-bit bytes and nine-bit bytes. 

The routines providing user mode memory allocation and deallocation have the following design goals: 

• They must be fast. 

Application Run-Time Utility Services 1-7 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

• They must provide the user with the ability to allocate meij:lOry using different algorithms to fit 
several common cases. 

• They must not block. 

• They must work in a multithreaded and multiprocessing environment. 

The routines must support the following operations: 

• Allocate memory. 

• Deallocate memory. 

• Create a memory zone. (A memory zone is the way of defining the allocation and deallocation 
algorithms to be used, along with other desired characteristics of the allocated memory. See 
Section 1.3.1.) 

• Delete a memory zone, returning to the pool the memory allocated to the user from the zone, as 
well as the memory associated with the zone's control structures. 

• Reset a memory zone, returning to the pool the memory allocated to the user from the zone, but 
leaving the zone structure intact, ready for reuse. 

1.3.1 Memory Zone Characteristics 

Applications frequently need to allocate memory with certain characteristics, such as fixed size, 
1024 octet blocks of memory, or memory aligned on 8 octet boundaries. Also, application writers 
can frequently make performance improvements by selecting a particular allocation algorithm based 
on their knowledge of the application's memory use. The application programmer defines different 
mem.ory zones to allow the application to tailor its memory management. 

Conceptually, a memory zone is a region of memory available for allocation to the application program. 
A memory zone has associated with it an allocation and deallocation algorithm pair and some number 
of memory characteristics. The following sections describe the allocation algorithms and memory 
characteristics associated with memory zones. 

1.3.1.1 Allocation and Deallocation Algorithms 

Table 1-2 lists the allocation and deallocation algorithnls defined for memory zones. 

Table 1-2: Allocation and Deallocation Algorithms 
Algorithm 

First fit 

Quick fit 

Frequent sizes 

Fixed size blocks 

C compatibility 

Symbol 

arus$cJirstJit 

arus$c_quickJit 

arus$c JrequenCsizes 

arus$cJixed_size 
arus$c_c_compatibility 

Description 

Allocate memory from the first available block that is at 
least as large as the request. 

Allocate memory from a lookaside list of appropriate 
size. 

Allocate memory from a lookaside list of appropriate 
size. 

Allocate blocks of one fixed size only. 

Allocate memory in a way that is compatible with the C 
memory management routines calloc, malloc, realloc 
and free. 

Both the arus$c_quickJit and arus$cJrequenCsizes algorithms allocate memory from a lookaside 
list when possible. The difference is that for the arus$c_quickJit algorithm, the application writer 
is in control of the sizing of the lookaside lists, whereas for the arus$cJrequent_sizes algorithm, the 

1-8 Application Run-Time Utility Services 



Digital Equipment Corporation - Confidc;mtial and Proprietary 
For Internal Use Only 

memory manager determines the sizing of the lookaside lists based on the actu~l values of memory 
returned through calls to arus$free_memory. 

1.3.1.2 Alignment 

A memory zone also has an alignment attribute associated with it. This controls the alignment of 
the low address of every block of memory allocated from the zone. 

1.3.1.3 Allocation Sizes 

A memory zone has two allocation sizes associated with it. These sizes do not in any way affect the 
amount of memory that can be allocated in one call to routine arus$get_memory. One value is the 
initial size; this is the amount of memory that is initially allocated to the memory zone when the 
zone is created. The other is the extend size; this represents a minimum amount of memory that 
will be requested from the operating system when the free memory under the control of the memory 
manager is insufficient to satisfy an allocation request. It is maximized with the size of the actual 
request to determine the size of the request to the operating system. 

1.3.2 Functional Interface and Description 

The following sections describe the various routines associated with memory allocation and dealloca
tion, and with memory zone creation and management. 

1.3.2.1 Types Used 

The following types are used in the interface to the memory manager routines. 

\ WDD readers: remember that this chapter is both a part of the MICA WDD, and a general AlA 
interface spec, to be used on other operating systems. For this reason, all of the types used in these 
interfaces, including statuses and untyped pointers must be abstractly specified. \ 

TYPE 
arus$untyped_pointer : POINTER anytype; 

The following is a pointer to the control block for memory zones. 
That control structure's definition is never made public. 
The pointer is typecast to the appropriate type by the 
memory management routines. 

arus$memory_zone : POINTER anytype; 

arus$status : STATUS; 

arus$memory algorithm type 
arus$c~irst_fit,
arus$c quick fit, 
arus$c=frequ;nt_sizes, 

arus$c fixed size, 
arus$c=c_compatibility 

) ; 

arus$memory_algorithm : SET [ arus$memory_algorithm type ]; 

arus$memory_zone_options type 

arus$c zero_on_allocation, 

arus$c_boundary_tags 
) ; 

Application Run-Time Utility Services 1-9 



Digital Equipment Corporation - Confidential and Proprietaiiy 
For Internal Use Only 

1.3.2.2 Allocation 

There are two routines used to allocate memory, arus$get_memory and arus$reallocate_memory. 

1.3.2.2.1 The arus$geCmemory Routine 

The routine arus$get_memory is used to obtain memory. It is called with the number of octets 
desired and a designation of the zone to be used for allocation, and returns the starting address of 
the allocated memory via an om parameter. It also returns the status as the function result. 
The characteristics of the memory segment allocated are determined by the zone from which it was 
allocated. For more information, refer to Section 1.3.1. 

PROCEDURE arus$get_memory ( 

Parameters: 

number _of_octets 
starting_address 
memory _zone 

IN number of octets : integer; 
OUT starting:address : arus$untyped-pointer; 
IN memory_zone : arus$memory_zone OPTIONAL; 

RETURNS arus$status 
LINKAGE 

REFERENCE ( 
number_of_octets, 
starting_address, 

memory_zone 
) ; 

The number of octets of memory that are to be allocated to the program. 

The low address of the allocated memory segment. 

The zone from which the memory is to be allocated. 

Routine arus$geCmemory returns the unsuccessful status values listed in Table 1-3. 

Table 1-3: Status Values Returned from Routine arus$get memory 
Status Value Description 

arus$_memory _limit This indicates that the limit on memory size for the process was reached, and a 
complete allocation was not possible. Partial allocations are not made. 

arus$JJositive_size_required This indicates that the number _of_octets argument was either zero or a negative 
value. 

arus$_nonexistent~one This indicates that the zone specified either was never created, or existed at one 
time and has been deleted. 

Routine arus$geCmemory raises no conditions. 

1.3.2.2.2 The arus$reallocate_memory Routine 

The arus$reallocate_memory routine is used to conceptually extend or contract a segment of memory. 
It corresponds to the realloc library routine available on ULTRIX. When extending, if the memory 
passed to the routine can be extended contiguously to the desired size, then it is. If not, a new block 
of the desired size is allocated, the contents of the old block are copied to the new block, and then the 
old block is deallocated. When contracting, the memory after the end of the new size is deallocated. 

1-10 Application Run-Time Utility Services 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

trhis routine may only be used on zones whose allocation algorithm is arus$c_c_compatibility. 

PROCEDURE arus$reallocate_memory ( 

Parameters: 

number _of_octets 
starting_address 
memory _zone 

IN number of octets : integer; 
IN OUT starting_address : arus$untyped~ointer; 
IN memory zone : arus$memory zone OPTIONAL; 
) RETURNS-arus$status -

LINKAGE 
REFERENCE ( 

nUmber_of_octets, 
starting_address, 
memory_zone 
) ; 

The number of octets of memory that are to be allocated to the program. 

The low address of the allocated memory segment. 

The zone from which the memory is to be allocated. If omitted, this defaults to arus$c_ 
default_memory Jone. 

Routine arus$reallocate_memory returns the unsuccessful status values listed in Table 1-4. 

Table 1-4: Status Values Returned from Routine arus$real/ocate memory 
Status Value Description 

arus$_memory _limit This indicates that the limit on memory size for the process was reached, and a 
complete allocation was not possible. Partial allocations are not made. 

arus$yositive_size_required This indicates that the number _of_octets argument was either zero or a negative 
value. 

arus$_nonexistenty,one This indicates that the zone specified either was never creatod, or existed at one 
time and has been deleted. 

arus$_noCc_compatibility_ This indicates that arus$reallocate_memory was attempted on a zone whose algo-
zone rithm is not aru.s$c_c_compatibility. This is not allowed. 

Routine arus$reallocate_memory raises no conditions. 

1.3.2.3 Deallocation 

There is only one memory deallocation routine, arus$free_memory. 

1.3.2.3.1 The arus$free_memory Routine 

The routine arus$free_memory is used to deallocate memory, thus freeing it for reuse by the appli
cation through subsequent calls to arus$get_memory. The procedure is invoked with the starting 
address of the Inemory to be returned, the zone from which it was allocated and, optionally, the 
number of octets which are being returned. The number of octets is mandatory for most allocation 
algorithms and ignored for the arus$cJixed_sizes and arus$c_c_compatibility algorithms. 

Some allocation algorithms allow for the partial return of memory. For instance, if 1000 octets are 
allocated in one call to arus$geCmemory, SOIne allocation algorithms allow the return of fewer than 
1000 octets with arus$free_memory. Returning memory not obtained through arus$geCmemory is not 
allowed, nor is returning memory obtained through more than one call to arus$get_memory (merging 
memory blocks). 

Application Run-Time Utility Services 1-11 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal U~ Only 

Memory whi~h is deallocated by arus$free_memory is returned to the memory manager used by 
arus$get_memory and arus$free_memory. It is not necessarily removed from the process's address 
space. Therefore, incorrectly coded programs might be able to reference deallocated memory without 
incurring an access violation or similar fault. 

The behavior of an application is undefined if memory which has been freed by a call to arus$free_ 
memory is referenced. 

PROCEDURE arus$free_memory ( 

Parameters: 

starting_address 
number _of_octets 
memory_zone 

IN starting_address : arus$untyped~ointer; 
IN number of octets : integer OPTIONAL; 

IN memory_zone : arus$memory_zone OPTIONAL; 

RETURNS arus$status 
LINKAGE 

REFERENCE ( 
starting_address, 
number of_octets, 
memory_zone 
) ; 

The low address of the allocated memory segment. 

The number of octets of memory that are to be deallocated from the program. 

The zone from which the memory is to be allocated. If omitted, this defaults to arus$c_ 
defaulcmemory y,one. 

Routine arus$free_memory returns the unsuccessful status values listed in Table 1-5. 

Table 1-5: Status Values Returned from Routine arus$free memory 
Status Value Description 

arus$ -partial_block 

This indicates that the returned block of memory was not aligned on a boundary at 
least as great as that required by the zone. 

This indicates that a partial free was attempted in a zone whose allocation algorithm 
does not permit it. 

This indicates that the memory to be freed was not allocated by routine arus$geL 
memory. This condition is also returned in the event that a merged return is at-
tempted. 

arus$-positive_size_required This indicates that the number _of_octets argument was either zero or a negative 
value. 

arus$_nonexistenty,one This indicates that the zone specified either was never created, or existed at one 
time and has been deleted. 

Routine arus$free_memory raises no conditions. 

1.3.2.4 Memory Zone Creation 

There is only one routine involved with memory zone creation, arus$create_memory y,one. 

1-12 Application RunNTime Utility Services 



Digital Equipment Corporation 'i- Confidential and Proprietary 
For Internal Use Only 

1.3.2.4.1 The arus$create_memory_zone Routine 

Routine arus$create_memory_zone is used to create a memory zone with characteristics that differ 
from those of the default zone, which is described in Section 1.3.2.4.2. It does not, of itself, make any 
memory available to the application; however, it may allocate memory from the operating system. 
This routine must be called before arus$get_memory is called. 

PROCEDURE arus$create_memory_zone ( 

Parameters: 

OUT memory_zone : arus$memory_zone; 

IN algorithm : arus$memory_algorithm OPTIONAL; 
IN algorithm_argument : integer OPTIONAL; 
IN options : arus$memory_zone_options OPTIONAL; 
IN extend size : integer OPTIONAL; 
IN initial_size : integer OPTIONAL; 
IN block_size : integer OPTIONAL; 
IN alignment : integer OPTIONAL; 
IN first_quick_fit_list : integer OPTIONAL; 
IN allocation routine : arus$allocation_routine OPTIONAL; 
IN deallocation routine 

RETURNS arus$status 
LINKAGE 

REFERENCE ( 

arus$deallocation_routine OPTIONAL; 

memory_zone, 
algorithm, 
algorithm_argument, 
options, 
extend_size, 
initial_size, 
block_size, 
alignment, 
first_quick_fit_list, 
allocation_routine, 
deallocation routine 
) ; 

memory _zone The identifier of the created memory zone. It is this value that must be passed to any 
other routines requiring a memory zone. 

algorithm The algorithm to be used in allocating memory from this zone. Section 1.3.1 discusses 
the different algorithms. If omitted, this parameter defaults to arus$cJirstJit. 

algorithm_argument An algorithm-specific argument, as specified below. 

options 

Algorithm 

First fit, C compatibility 

Quick fit 

Frequent sizes 

Fixed size blocks 

Argument Interpretation 

Not used, argument ignored. 

The number of lookaside lists to be used. 

The number of lookaside lists to be used. 

The number of octets in each block to be allocated from 
this zone. 

Controls various optional behaviors of the zone, as specified below. 

Application Run-Time Utility Services 1-13 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

Option Value Effect on Allocation and Deallocation 

arus$c -.7ero _on_allocate Zero the memory block returned by arus$geLmemory, 
and the memory returned by arus$reallocate_memory 
that is past the end of the original block's size. 

Use boundary tags. Boundary tags are markers that 
are placed immediately before and immediately after the 
memory that is returned to the user. They allow memory 
to be freed faster and provide enhanced error checking. 
Boundary tags add a minimum of eight octets to each 
block allocated. 

If omitted, this parameter defaults to no options. 

extend_size The minimum number of octets to be added to the allocation area when a memory request 
is made via arus$geLmemory for more memory than is currently available. If omitted, this 
parameter defaults to the value arus$c_default_extend_memory. 

initiaCsize The number of octets initially in the allocation area when the memory zone is created. This 
may be specified as zero, in which case extend_size octets are added at the time of the 
first memory request. If omitted, this parameter defaults to the value arus$c_defaulC 
initial_memory . 

block_size For memory zones not using fixed size allocations, the minimum size block that can be 
allocated, and the basic unit of allocation for larger allocations. In other words, all allocation 
requests are rounded up to a multiple of this value. If omitted, this parameter defaults to 
the value arus$c_default_block_size. 

alignment The alignment of memory allocated from this zone. The alignment must be a power of 
two and greater than or equal to four. The maximum value is implementation defined to 
allow alignment on a protection boundary. Each implementation of this routine provides 
the symbolic constant arus$cyrotection_alignment for applications which need such 
alignment. If omitted, this parameter defaults to the value arus$c_defaulCmemory_ 
alignment. 

firs CquickJiClis t For memory zones utilizing the quick fit algorithm, this parameter indicates the block size 
to be stored on the first lookaside list, the list with the smallest blocks of memory. If omitted 
or if smaller then block_size, this value defaults to the value of parameter block_size. 

allocation_routine The routine to be used when memory must be allocated to the zone from the operating 
system. If not specified, an implementation-specific routine is used. 

deallocation_routine The routine to be used when memory must be deallocated from the zone back to the 
operating system. If not specified, an implementation-specific routine is used. 

The statuses returned by arus$create_memol)l_zone are described in Table 1-6. 

Table 1-6: Status Values Returned from Routine arus$create memory zone 
Status Value Description 

arus$ _insufficienCmemory 

arus$_invalid_algorithm 
arus$_invalid_algorithm_ 
argument 
arus$_invalid_options 
arus$_invalid_extend_size 

There was not sufficient remaining memory to allocate space for the zone control 
structures or the initial memory for the allocation area. 

The algorithm argument did not specify a legal algorithm. 

The algorithm_argument argument was not legal for the specified algorithm. 

The options argument was illegal. 

The extend_size argument specified a negative or zero size. 

1-14 Application Run-Time Utility Services 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

J~ Table 1-6 (Cont.): Status Values Returned from Routine arus$create memory zone 
Status Value 

arus$_invalid_initial_size 
arus$_invalid_block_size 
arus$_invalid_alignment 

Description 

The initiaCsize argument specified a negative or zero size. 

The block_size argument specified a negative or zero size. 

The alignment argument specified a size that was eithe~' not a power of two, or 
was less than four, or was greater than arus$cJlrotection_alignment. 

Routine arus$create_memory_zone does not raise any conditions. 

1.3.2.4.2 The Default Memory Zone 

There is a default memory zone which the user does not need to explicitly create in order to use. While 
the actual mechanism by which this zone is created is implementation specific, the semantics of the 
zone are that it is created during activation of the image containing routine arus$get_memory. In 
other words, it already exists at the time of the user's first call to arus$geCmemory. To use the default 
zone, the application references the symbol arus$c_defaulCmemory _zone in the call to arus$geC 
memory or arus$free_memory, or omits the parameter altogether. The default zone's characteristics 
are listed in Table 1-7. 

The default memory zone may not be deleted. 

Table 1-7: Characteristics of the Default Memory Zone 

Algorithm 

Algorithm argument 

Options 

Extend size 

Initial size 

Alignment 

Allocation routine 

Deallocation routine 

First fit 

Not applicable 

None 

Implementation defined, based on performance modelling and/or instrumentation 
during development. Each implementation provides the symbolic constant arus$c_ 
default_extend_memory, so that applications may take advantage of this mod
elling and/or instrumentation for explicitly created memory zones when appropriate. 

Implementation defined. Each implementation provides the symbolic constant 
arus$c_default_initial_memory . 
Implementation defined. The minimum value needed for the largest of the align
ments required for: 

Efficient referencing of cells containing addresses 

Efficient referencing of cells containing the largest numeric data type supported 
by the system 

Use of interlocked instructions provided by the hardware. 

Each implementation provides the symbolic constant arus$c_default_memory_ 
alignment which specifies this value. 

Implementation defined. An internal routine for allocating user mode memory. This 
is also the routine that is used if a call to arus$create_memory_zone does not 
specify a procedure in the allocation_routine parameter. 

Implementation defined. An internal routine for deallocating user mode memory. 
This is also the routine that is used if a call to arus$create_memory_zone does not 
specify a procedure in the deallocation_routine parameter. 

Application Run-Time Utility Services 1-15 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

1.3.2.5 Memory Zone Reset 

There is one routine used to reset a memory zone, arus$reset_memory_zone. 

1.3.2.5.1 The arus$reseCmemory_zone Routine 

Memory initially allocated to a memory zone and returned to the memory manager through calls to 
arus$free_memory is available for reuse only within the zone in which it was initially allocated. If 
an application is through with a memory zone and wishes to make the memory contained within it 
available for use in other zones, then the application must either reset the zone or delete the zone. 
Resetting a memory zone is discussed in this section. Deleting a zone is discussed in the next section. 

An application calls routine arus$reseCmemory -.7one to reset a zone. This frees all the memory 
contained in the zone for reuse, but retains the zone for future use. The effect of calling this routine 
with a memory zone argument is the same as calling arus$free_memory for all memory allocated 
from the zone with the exception that the memory is no longer reserved for use by this zone, but is 
available for use by any zone. 

PROCEDURE arus$reset memory zone ( 
IN mem~ry_zon~ : arus$memory_zone; 
) RETURNS arus$status 

LINKAGE 
REFERENCE ( 

memory_zone 
) ; 

Parameters: 

memory _zone The identifier of the memory zone to be reset. 

Routine arus$reset_memorY-.7one returns the unsuccessful status values listed in Table 1-8. 

Table 1-8: Status Values Returned from Routine arus$reset memory zone 
Status Value Description 

arus$ _nonexistent-.7one This indicates that the zone specified either was never created, or existed at one 
time and has been deleted. 

Routine arus$reseCmemorY-.7one raises no conditions. 

1.3.2.6 Memory Zone Deletion 

There is one routine used to delete a memory zone, arus$delete_memory_zone. 

1.3.2.6.1 The arus$delete_memory_zone Routine 

An application calls routine arus$delete_memory -.7 one to delete a zone. This frees all the memory 
contained in the zone for reuse and destroys the zone control structures. The effect of calling this 
routine with a memory zone argument is the same as calling arus$reset_memory _zone, with the 
exception that the zone is not available for future use by the application. 

PROCEDURE arus$delete_memory_zone ( 
IN OUT memory zone : arus$memory zone; 
) RETURNS aru;$status -

LINKl\GE 
REFERENCE ( 

memory_zone 
) ; 

1-16 Application Run-Time Utility Services 



Parameters: 

Digital Equipment Corporation - Confidenti$1 and Proprietary 
For Internal Use Only 

memory -.-7one The identifier of the memory zone to be deleted. As an aid to debugging common problems, this 
parameter is set to NIL on completion. 

Routine arus$delete_memory ~one returns the unsuccessful status values listed in Table 1-9. 

Table 1-9: Status Values Returned from Routine arus$delete memory, zone 
Status Value 

arus$_nonexistent_zone 

Description 

This indicates that the zone specified either was never created, or existed at one 
time and has been deleted. 

This indicates that the specified zone is the default zone, which may not be deleted. 

Routine arus$delete_memory_zone raises no conditions. 

1.3.3 Debugging Aids 

One of the most difficult debugging tasks is finding improper references to heap storage. The most 
common examples of improper references are not initializing newly allocated memory and referencing 
memory after it has been deallocated. To aid in debugging such problems, the memory allocation and 
deallocation routines incorporate a pool poisoner which can be enabled or disabled without recoding 
or relinking the application that is being debugged. 

Each implementation of routines arus$get_memory and arus$free_memory provides a way to detect 
at run time that poisoning is desired on allocation or deallocation or both, and what the desired 
patterns are. This preference is registered once per application invocation, and results in negligible 
overhead (one test and branch is the target) at the time of allocation or deallocation unless poisoning 
is requested. If requested, poisoning applies to all memory zones. If the arus$c_zero_on_allocate) 
option was requested for a zone, then that choice overrides poisoning on allocation. This is because 
poisoning on allocation is used to detect cells that were not initialized, and setting cells to zero 
provides that initialization. 

If poisoning is requested, then the specified pattern is written to the memory being allocated or 
deallocated, repeating the pattern to fill the entire block. 

One possible implementation of this feature on a VAXJVMS or Mica system is through the use of 
logical names. For example, 

$ DEFINE arus$allocate fill n%X5A5A5A5A" 
$ DEFINE arus$deallocate_fill n%XA5A5A5A5" 

1.3.4 VMS Compatibility 

To aid in the porting of VMS applications to new systems, but especially to VAXlULTRIX, PRISM 
ULTRIX and Mica, the following routines will be provided as jackets or aliases to routines described 
above: 

L18$CREATE_ VM_ZONE 

L18$GET_VM 

L18$RESET _ VM_ZONE 

Ll8$FREE_ VM 

These entry points are provided only to increase the number of applications that will run without 
modification. It is undetermined whether these routines will be undocumented, or whether they will 
be documented as compatibility routines which are not to be used for new program development. 

Application Run-Time Utility Services 1-17 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

1.4 International Date and Time Routines 

The software described in this section provides the capability to obtain, format, and manipulate 
absolute and relative times. 

The routines use the corporate standard binary format for times, which is in turn based on ISO 
standards. For further information about this time format, refer to DIGITAL standard EL-ENl12-
00, "Representation of Time for Information Exchange." 

The routines that allow formatting of dates and times into text, and conversion of text into internal 
time stamps have inherent support for internationalization. Th~y allow each user to declare his or 
her desired text format for dates and times, and if there are alphabetic parts in that format (for 
instance, the name of the month), those parts are output in the user's native language. 

1.4.1 Treatment of Time Zones 

The binary format used for absolute times contains the time value in Universal Coordinated Time 
(UTC), along with a separate field containing the time zone of the node, expressed as an offset from 
UTe in minutes of time. 

All routines that convert to or from the internal absolute time format allow the application writer to 
choose the interpretation of time zone information. The possible interpretations follow: 

• Ignore the time zone information altogether, expressing the time in UTC. 

• Use the time zone information contained in the binary time stamp, expressing the time in the 
time zone of the node. 

• Substitute time zone information representing the user's time zone which mayor may not be 
the same as that of the node. 

It must be noted (and must be documented in user manuals) that when an application writer uses 
the user's time zone information, the security of the time information is lost; because a nonprivileged 
user can set the definition of his time zone, he or she can also (intentionally or accidentally) set it 
incorrectly. 

The means by which the node's time zone information is set and obtained is implementation spe
cific. However, every implementation of these routines must ensure that a nonprivileged user cannot 
tamper with the node's time zone information. 

1.4.2 Functional Interface and Description 

This section describes the user-visible interface to the date/time-manipulation routines. 

1.4.2.1 Types Used 

The following types are used in the interface to the date/time routines. 

TYPE 

The following types and structures are defined by the corporate 
time representation standard. 

arus$timevalue : large_integer SIZE (QUADWORD); 

arus$inaccuracy : large integer[O .. 2**48-1J SIZE (BYTE,6); 

arus$time_diff_factor : integer[-720 .. 780] SIZE (BIT,12); 

arus$version : integer SIZE (BIT,4); 

1-18 Application Run-Time Utility Services 



Digltal Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

arus$binary_ absolute_time : '~ 

RECORD 
time 
inacc 
tdf 

arus$timevalue; 
arus$inaccuracy; 
arus$time_diff_factor; 
arus$version = 1; vers 

LAYOUT 
time; 
inacc; 
tdf; 
versE 

END LAYOUT 
END RECORD; 

must be 1 

arus$binary_relative_time : 
RECORD 

time 
inacc 
reserved 
vers 
LAYOUT 

arus$timevalue; 
arus$inaccuracy; 
arus$time_diff_factor 
arus$version = 1; 

time; 
inacc; 
reserved; 
verSE 

must be 0 
must be 1 

END LAYOUT 
END RECORD; 

0; 

End of types and structures defined by the corporate time 
representation standard. 

arus$status : STATUS; 

The following type is the public view of the context block 
used by the date and time formatting routines. It is typecast 
to the appropriate type pointer by the routines. The actual 
format of the context block is never made public. 

arus$dt_context : POINTER anytype; 

arus$numeric_absolute_time 
RECORD 

year, 
month, 
day, 
hour, 
minute, 
tdf 
seconds, 
inacc 

integer; 

real; 

timezone : integer; 

LAYOUT 
year; 
month; 
day; 
hour; 
minute; 
seconds; 
inacc; 
tdf; 

timezone; 

Application Run-Time Utility Services 1-19 



Digital Equipment Corpor~tion - Confidential and Proprietary 
For Internal Use Only 

END LAYOUT 
END RECORb; 

arus$numeric_relative_time 
RECORD 

day, 
hour, 
minute 
seconds, 
inacc 
LAYOUT 

integer; 

real; 

day; 
hour; 
minute; 
seconds; 
inacc; 

END LAYOUT 
END RECORD; 

arus$dt_format_type 
arus$c date fields, 
arus$c=time=fields 

) ; 

arus$dt_format 

arus$timezone options 
arus$dt utc, -
arus$dt-nodes timezone, 
arus$dt=users=timezone 
) ; 

arus$dt_component : 

) ; 

arus$c month name, 
arus$c=month=name_abb, 
arus$c iormat mI1emonics, 
arus$c=weekday_name, 
arus$c weekday name abb, 
arus$c=relativ~_day=name, 
arus$c meridiem indicator, 
arus$c=output_f~rmat, 
arus$c_input_format 

arus$dt_default field type 
arus$c_year, 

) ; 

arus$c month, 
arus$c=day, 
arus$c hour, 
arus$c=minute, 
arus$c_second, 
arus$c_inacc, 
arus$c_tdf 

SET [arus$dt default_field typeJ; 

arus$dt_truncation 

arus$c_truncate_hour, 
arus$c truncate minute, 
arus$c=truncate=second, 
arus$c_truncate_frac_second 

) ; 

1-20 Application Run-Time Utility Services 



;3.rus$dt compare type 
'- a;us$c le;s, 

arus$c=equal, 
arus$c_greater 

) ; 

arus$dt_relative_operation 
arus$c_relative_weeks, 
arus$c relative days, 
arus$c=relative=hours, 
arus$c relative minutes, 
arus$c=relative=seconds 

) ; 

arus$dt_absolute_operation : 
arus$c month of year, 
arus$c=day_of_y;ar, 
arus$c_hour_of-year, 
arus$c_minute_of-year, 
arus$c_second_of-year , 
arus$c_day_of_month, 
arus$c hour of month, 
arus$c-minute ;f month, 
arus$c-second-of-month, 
arus$c=day_of=we;k, 
arus$c hour of week, 
arus$ c=minute_;f_week, 
arus$c second of week, 
arus$c=hour_of_d~y, 
arus$c minute of day, 
arus$c=second=of=day, 
arus$c minute of hour, 
arus$c-second=of~our, 
arus$c second of minute, 
arus$c_julian=date 

) ; 

1.4.2.2 Obtaining the System Time 

Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

There is one routine used to obtain the current system time, arus$get_system_time. 

1.4.2.2.1 The arus$geCsystem_time Routine 

The arus$get_system_time routine is used to obtain the current date and time in binary format. 

PROCEDURE arus$get_system_time ( 
OUT system time : arus$binary absolute time; 
) RETURNS ~rus$status - -

LINKAGE 
REFERENCE ( 

system_time 
) ; 

Parameters: 

Receives the current system date and time. 

Routine arus$geCsystem_time returns no unsuccessful status values. 

Routine arus$geCsystem_time raises no conditions. 

Application Run-Time Utility Services 1-21 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

.1, 1.4.2.3 Arithmetic Operations on Time Stamps 

The binary representation of a date/time has several fields that must be manipulated when performing 
arithmetic on it. 

There are seven routines that perform arithmetic operations on time stamps. They are arus$subtract_ 
absolute_times, arus$subtract_relative_times, arus$subtract_mixed_times, arus$add_relativejimes, 
arus$add_mixed_times, arus$multiply _relative_time and arus$multiplyf_relative_time. 

1.4.2.3.1 The arus$subtracLabsolute_times Routine 

Routine arus$subtract_absolute_times allows the application to compute the interval between two 
absolute times. 

PROCEDURE arus$subtract absolute times ( 

Parameters: 

timel 
time2 
resultanCtime 

IN timel : ;rus$binary_absolute_time; 
IN time2 : arus$binary absolute time; 
OUT resultant_time : arus$binary_relative_time; 
) RETURNS arus$status 

LINKAGE 
REFERENCE ( 

timel, 
time2, 
resultant time 
) ; 

Absolute time, from which the second time is subtracted. 

Absolute time, which is subtracted from the first time. 

The result, a relative time, of subtracting time2 from timel. 

Routine arus$subtract_absolute_times returns the unsuccessful status values listed in Table 1-10. 

Table 1-10: Status Values Returned from Routine arus$subtract absolute times 
Status Value Description 

arus$_invalid_time_computed 
arus$_invalid_time_argument 

Invalid time computed. 

Invalid time passed to the routine. 

Routine arus$subtract_absolute_times raises no conditions. 

1.4.2.3.2 The arus$subtracLreJative_times Routine 

Routine arus$subtracCrelative_times allows the application to compute the difference of two time 
intervals. 

PROCEDURE arus$subtract_relative_times ( 
IN timel : arus$binary relative time; 
IN time2 : arus$binary=relative=time; 
OUT resultant time : arus$binary relative_time; 
) RETURNS aru;$status -

LINKAGE 
REFERENCE ( 

timel, 
time2, 
resultant time 
) ; 

1-22 Application Run-Time Utility Services 



.~ Parameters: 

timel 
time2 
resultanCtime 

Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

Relative time, from which the second time is subtracted. 

Relative time, which is subtracted from the first time. 

The result, a relative time, of subtracting time2 from timel. 

Routine arus$subtracCrelative_times returns the unsuccessful status values listed in Table 1-11. 

Table 1-11: Status Values Returned from Routine arus$subtract relative times 
Status Value Description 

arus$_invalid_time_computed 
arus$_invalid_time_argument 

Invalid time computed. 

Invalid time passed to the routine. 

Routine arus$subtract_relativejimes raises no conditions. 

1.4.2.3.3 The arus$subtracCmixed_times Routine 

Routine arus$subtracCmixed_times allows an application to compute the absolute time that is sep
arated from another absolute time by a given interval. The interval is subtracted from the given 
absolute time to compute the new absolute time. For instance, this routine might be used to compute 
the time 30 minutes before midnight. 

\It is tempting to say that the computed time is "before" the given time, but that is not accurate, 
because the binary format used allows negative relative times. Therefore, the computed time may 
end up being after the starting time.\ 

PROCEDURE arus$subtract mixed times ( 

Parameters: 

timel 
time2 
resultanCtime 

IN timel : ~rus$binary absolute time; 
IN time2 : arus$binarv-relative-time; 
OUT resultant_time : ~~us$binary_absolute_time; 
) RETURNS arus$status 

LINKAGE 
REFERENCE ( 

timel, 
time2, 
resultant time 
) ; 

Absolute time, from which the second time is subtracted. 

Relative time, which is subtracted from the first time. 

The result, an absolute time, of subtracting time2 from timel. 

Routine arus$subtract_mixed_times returns the unsuccessful status values listed in Table 1-12. 

Status Value 

arus$_invalid_time_computed 
arus$_invalid_time_argument 

Description 

Invalid time computed. 

Invalid time passed to the routine. 

Routine arus$subtract_mixed_times raises no conditions. 

Application Run-Time Utility Services 1-23 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

1.4.2.3.4 The arus$add_relatb;~_times Routine 

Routine arus$add_relative_times allows the application to add two time intervals together. 

PROCEDURE arus$add_relative_times ( 

Parameters: 

timel 
time2 
resultant_time 

IN timel : arus$binary relative time; 
IN time2 : arus$binary-relative-time; 
OUT resultant time : a~us$binary relative time; 
) RETURNS aru;$status - -

LINKAGE 
REFERENCE ( 

timel, 
time2, 
resultant time 
) ; 

The first, relative, time which is added to the second time. 

The second, relative, time which is added to the first time. 

The result, a relative time, of adding timel to time2. 

Routine arus$add_relative_times returns the unsuccessful status values listed in Table 1-13. 

Table 1-13: Status Values Returned from Routine arus$add relative times 
Status Value Description 

arus$_invalid_time_computed 
arus$_invalid_time_argument 

Invalid time computed. 

Invalid time passed to the routine. 

Routine arus$add_relative_times raises no conditions. 

1.4.2.3.5 The arus$add_mixed_times Routine 

Routine arus$add_mixed_times allows the application to compute an absolute time that is separated 
from another absolute time by a given interval. The interval is added to the given absolute time to 
compute the resultant absolute time. 

\It is tempting to say that the computed time is "after" the given time, but that is not accurate, 
because the binary format used allows negative relative times. Therefore, the computed time may 
end up being before the starting time. \ 

PROCEDURE arus$add mixed times ( 

Parameters: 

timel 
time2 
resultant_time 

IN tim;l : a~us$binary_absolute_time; 
IN time2 : arus$binary relative time; 
OUT resultant_time : a~us$binary_absolute_time; 
) RETURNS arus$status 

LINKAGE 
REFERENCE ( 

timel, 
time2, 
resultant time 
) i 

The first, absolute, time which is added to the second time. 

The second, relative, time which is added to the first time. 

The result, an absolute time, of adding timel to time2. 

1-24 Application Run-Time Utility Services 



Digital Equipment Corporation - Confidenti~1 and Proprietary 
For Internal Use Only 

Routine arus$add_mixed_times returns the unsuccessful status values listed in Ta~ie 1-14. 

Table 1-14: Status Values Returned from Routine arus$add mixed times 
Status Value Description 

arus$_invalid_time_computed 
arus$_invalid_time_argument 

Invalid time computed. 

Invalid time passed to the routine. 

Routine arus$add_mixed_times raises no conditions. 

1.4.2.3.6 The arus$mu/tip/y_re/ative_time Routine 

Routine arus$multiply_relative_time allows the application to multiply a time interval by an integer 
value. 

PROCEDURE arus$multiply_relative_time ( 

Parameters: 

time 
multiplier 
resultant_time 

IN time : arus$binary relative time; 
IN multiplier : integ~r; -
OUT resultant_time : arus$binary_relative_time; 
) RETURNS arus$status 

LINKAGE 
REFERENCE ( 

time, 
multiplier, 
resultant time 
) ; 

The relative time which is to be multiplied. 

The mUltiplier by which the time is to be multiplied. 

The result, a relative time, of multiplying time by multiplier. 

Routine arus$multiply_relative_time returns the unsuccessful status values listed in Table 1~15. 

Table 1-15: Status Values Returned from Routine arus$mu/tiply' relative time 
Status Value Description 

Invalid time computed. arus$_invalid_time_computed 
arus$_invalid_time_argument Invalid time passed to the routine. 

Routine arus$multiply _relative_time raises no conditions. 

1.4.2.3.7 The arus$multipJyf_reJative_time Routine 

Routine arus$multiplyf_relative_time allows the application to multiply a time interval by a floating 
point value. It is otherwise identical to routine arus$multiply _relative_time. 

PROCEDURE arus$multiplyf_relative_time ( 
IN time : arus$binary_relative_time; 
IN multiplier : integer; 
OUT resultant_time : arus$binary_relative_time; 
) RETURNS arus$status 

LINKAGE 
REFERENCE ( 

time, 
multiplier, 
resultant time 
) ; 

Application RunuTime Utility Services 1-25 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

Parameters: 

time 
multiplier 
resultant_time 

The relative time which is to be multiplied. 

The mUltiplier by which the time is to be multiplied. 

The result, a relative time, of multiplying time by multiplier. 

'.t 

Routine arus$multiplyf_relative_time returns the unsuccessful status values listed in Table 1-16. 

Table 1-16: Status Values Returned from Routine arus$multiplyf, relative time 
Status Value Description 

arus$_invalid_time_computed 
arus$_invalid_time_argument 

Invalid time computed. 

Invalid time passed to the routine. 

Routine arus$multiplyf-relative_time raises no conditions. 

1.4.2.4 Conversion to and from Numeric Time Structures 

In general, the binary representations for relative and absolute times are clumsy to work with. 
For instance, the basis for an absolute time is the number of tens of microseconds since an ar
bitrary base time. The next four routines, arus$cvCto_numeric_reCtime, arus$cvCto_numeric_abs_ 
time, arus$cvtJrom_numeric_reCtime and arus$cvtJrom_numeric_absjime, convert between binary 
times and structures containing the separated numeric values that make up the time. 

These routines are similar in intent to the VAXNMS system service SYS$NUMTIM and ULTRIX 
routines local time and gmtime. 

1.4.2.4.1 The arus$cvCto_numeric_reLtime Routine 

Routine arus$cvCto_numeric_rel_time takes a binary relative time and unpacks it into the numeric 
fields day, hour, minute, and so on. 

PROCEDURE arus$cvt_to_numeric_rel_time ( 

Parameters: 

time 
numeric_time 

IN time : arus$binary relative time; 
OUT numeric_time : ar~s$numeri;_relative_time; 

RETURNS arus$status 
LINKAGE 

REFERENCE ( 
time, 
numeric time 
) ; 

The relative time to be converted. 

The numeric time structure into which the converted relative time is written. 

Routine arus$cvt_to_numeric_reCtime returns the unsuccessful status values listed in Table 1-17. 

Table 1-17: Status Values Returned from Routine arus$cvt to numeric reI time 
Status Value Description 

anls$_invalid_time_argument Invalid time passed to the routine. 

Routine arus$cvCto_numeric_reCtime raises no conditions. 

1-26 Application Run-Time Utility Services 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

1.4.2.4.2 The Brus$cvLto_numeric_abs_time Routine 

Routine arus$cvt_to_numeric_abs_time takes a binary absolute time and unpacks it into the numeric 
fields year, month, day, hour, minute, and so on. 

PROCEDURE arus$cvt to numeric abs time ( 

Parameters: 

time 
numeric_time 
timezone_options 

IN tim; :-arus$bi~ary=absolute_time OPTIONAL; 
OUT numeric_time : arus$numeric_absolute_time; 

IN timezone_options : arus$timezone_options OPTIONAL; 

RETURNS arus$status 
LINKAGE 

REFERENCE ( 
time, 

numeric_time, 
timezone_options 
) ; 

The absolute time to be converted. If not specified, the current system time is used. 

The numeric time structure into which the converted absolute time is written. 

Selects whether UTe, the node's time zone, or the user's time zone is desired. If omitted, 
defaults to the node's time zone. 

Routine arus$cvt_to_numeric_abs_time returns the unsuccessful status values listed in Table 1-18. 

Table 1-18: Status Values Returned from Routine arus$cvt to numeric abs time 
Status Value Description 

Invalid time passed to the routine. 

Routine arus$cvCto_numeric_abs_time raises no conditions. 

1.4.2.4.3 The arus$cvt_from_numeric_reLtime Routine 

Routine arus$cvtJrom_numeric_rel_time converts a separated relative time into a binary relative 
time. 

PROCEDURE arus$cvt_from_numeric_rel_time ( 

Parameters: 

numeric_time 
resultant_time 

IN numeric_time : arus$numeric_relative_time; 
OUT resultant_time : arus$binary_relative_time; 
) RETURNS arus$status 

LINKAGE 
REFERENCE ( 

numeric_time, 
resultant time 
) ; 

The numeric time which is to be converted. 

The resulting, relative, time. 

Application Run~Time Utility Services 1-27 



Digital Equipment Corporation - Conficlentialiand Proprietary 
For Internal Use Only 

Routine arus$cutJrom_numeric_reCtime keturns the unsuccessful status values listed in Table 1-19. 

Table 1-19: Status Values Returned from Routine arus$cvt from numeric rei time 
Status Value Description 

Invalid time passed to the routine. 

Routine arus$cutJrom_numeric_reCtime raises no conditions. 

1.4.2.4.4 The arus$cvt_from_numeric_abs_time Routine 

Routine arus$cutfiom_numeric_abs_time converts a separated absolute time into a binary absolute 
time. 

PROCEDURE arus$cvt_from_numeric_abs_time ( 

Parameters: 

numeric_time 
resultanCtime 
timezone_options 

IN numeric time : arus$numeric absolute time; 
OUT result~nt_time : arus$bina~y_absolute_time; 

IN timezone_options : arus$timezone_options OPTIONAL; 

RETURNS arus$status 
LINKAGE 

REFERENCE ( 
numeric_time, 

resultant_time, 
timezone_options 
) ; 

The numeric time which is to be converted. 

The resulting, absolute, time. 

Selects whether UTe, the node's time zone, or the user's time zone is desired. If omitted, 
defaults to the node's time zone. 

Routine arus$cutfiom_numeric_abs_time returns the unsuccessful status values listed in Table 1-20. 

Table 1-20: Status Values Returned from Routine arus$cvt from numeric abs time 
Status Value Description 

arus$_inualid_time_computed 
arus$_inualid_time_argument 

Invalid time computed. 

Invalid time passed to the routine. 

Routine arus$cutfiom_numeric_abs_time raises no conditions. 

1.4.2.5 Time Comparison 

Comparison of binary times is not simple for at least two reasons: a binary time is a structure 
consisting of several fields, and there is an inaccuracy associated with each time. Therefore, we 
provide routines for comparing binary times. 

If the two times being compared have a smaller difference than the sum of their inaccuracies, it 
becomes impossible to tell their relative ordering. In this case, these routines return the value that 
indicates equality. 

1-28 Application Run-Time Utility Services 



Digital Equipment Corporation - Confidential and Pfoprietary 
For Internal Use Only 

1.4.2.5.1 The arus$compare_relative_fimes Routine 

Routine arus$compareJelative_times compares two relative times. 

PROCEDURE arus$compare_relative_times ( 

Parameters: 

timel 
time2 
relation 

IN timel arus$binary relative time; 
IN time2 : arus$binary=relative-time; 
OUT relation : arus$dt compare type; 
) RETURNS arus$status - -

LINKAGE 
REFERENCE ( 

timel, 
time2, 
relation 
) ; 

Relative time which is comparod to time2. 
Relative time which is compared to timel. 
Receives the relation of timel to time2 in the comparison timel <RELATION> time2, 
where <RELATION> is equal to, less than, or greater than. 

Routine arus$compare_relative_times returns the unsuccessful status values listed in Table 1-21. 

Table 1-21: Status Values Returned from Routine arus$compare relative times 
Status Value Description 

Invalid time passed to the routine. 

Routine arus$compare_relative_times raises no conditions. 

1.4.2.5.2 The arus$compare_absolute_times Routine 

Routine arus$compare_absolute_times compares two absolute times. 

PROCEDURE arus$compare_absolute_times ( 

Parameters: 

timel 
time2 
relation 

IN timel : arus$binary absolute time; 
IN time2 : arus$binary=absolute=time; 
OUT relation: arus$dt compare type; 
) RETURNS arus$status 

LINKAGE 
REFERENCE ( 

timel, 
time2, 
relation 
) ; 

Absolute time which is compared to time2. 
Absolute time which is compared to timel. 
Receives the relation of timel to time2 in the comparison timel <RELATION> time2, 
where <RELATION> is equal to, less than, or greater than. 

Application Run-Time Utility Services 1-29 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

Routine arus$compare_absolute_times returns the unsuccessful status values listed in Table 1-22. '~ 

Table 1-22: Status Values Returned from Routine arus$compare absolute times 
Status Value Description 

arus$_invalid_time_argument Invalid time passed to the routine. 

Routine arus$compare_absolute_times raises no conditions. 

1.4.2.6 Conversion to Arbitrary Units of Time 

People think of time intervals in terms of weeks, days, hours, and so on. Binary format times are ex
pressed in units of tenths of microseconds. The routines discussed in this section, arus$cvcto_binary_ 
rel_time, arus$cvtf_to_binary _reCtime, arus$cvtJrom_binary _reCtime, arus$cvtf Jrom_binary _reC 
time and arus$cvtJrom_binary _abs_time, allow users to convert between binary formats and a vari
ety of more easily understood expressions of the time value. 

1.4.2.6.1 The arus$cvCto_binary_reLtime Routine 

Routine arus$cvCto_binary_rel_time allows the easy conversion of such concepts to binary format 
relative times. The procedure takes an encoding of the unit used, the number of those units in the 
interval, and performs the conversion returning the binary relative time; for instance, it can convert 
the time expression "three weeks" to a binary format relative time. 

PROCEDURE arus$cvt to binary reI time ( 
IN ope~atlon : a~us$dt_relative_operation; 
IN input_time : integer; 

Parameters: 

operation 
inpuCtime 
resultant_time 

OUT resultant_time : arus$binary_relative_timei 
) RETURNS arus$status 

LINKAGE 
REFERENCE ( 

operation, 
input_time, 
resultant time 
) i 

The conversion to be performed. 

Time interval to be converted. 

Receives the relative time that results from the conversion. 

Routine arus$cvt_to_binary_reCtime returns the unsuccessful status values listed in Table 1-23. 

Table 1-'23: Status Values Returned from Routine arus$cvt to binarr. reI time 
Status Value Description 

arus$_invalid_time_computed 
arus$_invalid_time_argument 
arus$_invalid_operation 

Invalid time computed. 

Invalid time passed to the routine. 

Invalid operation specified. 

Routine arus$cvt_to_binary _reCtime raises no conditions. 

1-30 Application Run-Time Utility Services 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

1.4.2.6.2 The arus$~vtCto_binary_reLtime Routine 

The arus$cvtf_to_binary_reCtime routine is similar to the arus$cvCto_binary_reCtime routine, except 
that it takes a real value instead of an integer value. 

PROCEDURE arus$cvtf to binary reI time ( 
IN oper~ti;n : ar~s$dt_relative_operation; 
IN input time : real; 
OUT resultant_time : arus$binary_relative_time; 
) RETURNS arus$status 

LINKAGE 
REFERENCE ( 

operation, 
input_time, 
resultant time 
) ; 

The conversion to be performed. 

Time interval to be converted. 

Parameters: 

operation 
input_time 
resultant _time Receives the relative time that results from the conversion. 

Routine arus$cvtf_to_binary_reCtime returns the unsuccessful status values listed in Table 1-24. 

Table 1-24: Status Values Returned from Routine arus$cvtf to binary reI time 
Status Value Description 

arus$_invalid_time_computed 
arus $ _invalid_time _argument 
arus$_invalid_operation 

Invalid time computed. 

Invalid time passed to the routine. 

Invalid operation specified. 

Routine arus$cvtf_to_binary_reCtime ::raises no conditions. 

1.4.2.6.3 The arus$cvCfrom_binary_re.Ltime Routine 

Routine arus$cutfiom_binary _rel_time answers the question, "How many things are in this time 
interval?", where the "things" are either weeks, days, hours, minutes, or seconds. 

PROCEDURE arus$cvt from binary reI time ( 

Parameters: 

operation 
input_time 
resultant_time 

IN ope~atio~ : aru;$dt=relative_operation; 
IN input_time : arus$binary_relative_time; 
OUT resultant_time : integer; 
) RETURNS arus$status 

LINKAGE 
REFERENCE ( 

operation, 
input_time, 
resultant time 
) ; 

The conversion to be performed. 

The relative time to be converted. 

Receives the time interval that results from the conversion. 

Run-Time Utility Services 1-31 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

Routine arus$cvtJrom_binary_reCtime returns the unsuccessful status values listed in Table 1-25.1, 

Table 1-25: Status Values Returned from Routine arus$cvt from binarr. reI time 
Status Value Description 

arus$_invalid_time_computed 
arus$_invalid_time_argument 
arus$_invalid_operation 

Invalid time computed. 

Invalid time passed to the routine. 

Invalid operation specified. 

Routine arus$cvtJrom_binary_reCtime raises no conditions. 

1.4.2.6.4 The arus$cvtLfrom_binary_reLtime Routine 

Routine arus$cvtfJrom_binary_reCtime is similar to routine arus$cvtJrom_binary_reCtime, except 
that it returns a real value instead of an integer value. 

PROCEDURE arus$cvtf_from~inary_rel_time ( 

Parameters: 

operation 
input_time 
resultant_time 

IN operation : arus$dt relative operation; 
IN input_time : arus$binary_rel~tive_time; 
OUT resultant_time : real; 
) RETURNS arus$status 

LINKAGE 
REFERENCE ( 

operation, 
input_time, 
resultant time 
) ; 

The conversion to be performed. 

The relative time to be converted. 

Receives the f-float time interval that results from the conversion. 

Routine arus$cvtfJrom_binary_reCtime returns the unsuccessful status values listed in Table 1-26. 

Table 1-26: Status Values Returned from Routine arus$cvtf from binarr.. reI time 
Status Value Description 

arus$ _invalid _time _computed 
arus$_invalid_time_argument 
arus$_invalid_operation 

Invalid time computed. 

Invalid time passed to the routine. 

Invalid operation specified. 

Routine arus$cvtfJrom_binary_reCtime raises no conditions. 

1-32 Application Run-Time Utility Services 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

1.4.2.6.5 The arus$cvCfrom_binary_abs_time Routine 

Routine arus$cvtJrom_binary_abs_time answers the question "Which x of the y is this?". For in
stance, it can determine which day of the year is represented by the input time, or day of the week, 
or hour of the year, and so on. (See the declaration of type arus$dCabsolute_operation for a complete 
enumeration of the legal operations.) 

This routine is also capable of calculating the Julian date associated with a particular date. 

PROCEDURE arus$cvt_from_binary_abs_time ( 

Parameters: 

operation 
resultant_time 
input_time 
timezone_options 

IN operation : arus$dt absolute operation; 
OUT resultant_time : i~teger; -
IN input_time : arus$binary_absolute_time OPTIONAL; 

IN timezone_options : arus$timezone_options OPTIONAL; 

RETURNS arus$status 
LINKAGE 

REFERENCE ( 
operation, 
resultant_time, 

input time, 
timezone_options 
) ; 

The conversion to be performed. 

Receives the time interval that results from the conversion. 

The absolute time to be converted. If not specified, the current system time is used. 

Selects whether UTe, the node's time zone, or the user's time zone is desired. If omitted, 
defaults to the node's time zone. 

Routine arus$cvtJrom_binary _abs_time returns the unsuccessful status values listed in Table 1-27. 

Table 1-27: Status Values Returned from Routine arus$cvt from binary abs time 
Status Value Description 

arus$_invalid_time_computed 
arus$_invalid_time_argument 
arus$_invalid_operation 

Invalid time computed. 

Invalid time passed to the routine. 

Invalid operation specified. 

Routine arus$cvtJrom_binary_abs_time raises no conditions. 

1.4.2.7 Flexible Date and Time Formatting 

This section describes a suite of routines with the ability to convert binary times to text in the user's 
natural language and desired format, and to convert such text into binary times. There are rou
tines to support both absolute and relative times; they are arus$format_date_time, arus$convert_ 
date_string, arus$format_reCtime, arus$convert_rel_time_string, arus$get_dateJormat, arus$get_ 
rel_timeJormat, arus$gecmax_date_length, arus$get_max_rcl_time_length, arus$free_date_time_context 
and arus$iniCdate_time_context. 

Application Run-Time Utility Services 1-33 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

1.4.2.7.1 The arus$formaLdate_time Routine 

Routine arus$formaCdate_time formats an absolute time into a date/time text ·string in the user's 
desired format. If there are any alphabetic portions to the string, those portions are spelled in the 
user's natural language. 

While the user can normally indicate whether he or she wants just the date fields, just the time 
fields, or both to be included in the string, the routine has a means to override the user's choice in 
this area. For instance, an application designer might know that in a certain context the time fields 
would be meaningless. Therefore, the application designer is allowed to either suppress a field, or 
force one to be included even if the user did not express an interest in it. 

Similarly, the amount of accuracy included in the text is normally at the discretion of the user, but 
there is a way for the application designer to force truncation of some of the lower-order time fields. 

PROCEDURE arus$format_date_time ( 

Parameters: 

context 

date_string 

des ired _truncatio n 
timezone_options 

IN OUT context : arus$dt context; 
OUT date_string: string-(*); 
IN date time : arus$binary absolute time OPTIONAL; 
IN field_option : arus$dt_format OPTIONAL; 
IN desired truncation : arus$dt_truncation OPTIONAL; 

IN timezone_options : arus$timezone_options OPTIONAL; 

OUT date_length : integer OPTIONAL; 
) RETURNS arus$status 

LINKAGE 
REFERENCE ( 

context, 
date_time, 
field_option, 
desired_truncation, 

timezone_options, 

date_length 
) 

DESCRIPTOR ( 
date_string 
) ; 

Context variable that retains the translation context over mUltiple calls to the date/time for
matting routines. This variable is initialized to NIL by the caller before the first call to any 
date/time routine. After that, it is maintained by the routines. Any date/time routine that uses 
context allocates a new context area if it receives a context parameter that is NIL. 

Receives the requested date, time, or both, that has been formatted for output according to 
the currently selected format and language. 

The absolute time to be formatted for output. If omitted, the current system date and time 
is used. 

Allows the application designer to specify whether the date, time, or both are to be formatted 
for output. If omitted, it formats the fields requested by the user. 

Allows the application designer to truncate the output string at a selected field. 

Selects whether UTC, the node's time zone, or the user's time zone is desired. If omitted, 
defaults to the node's time zone. 

Number of octets of text written to the date_string argument. 

1-34 Application Run-Time Utility Services 



Digital Equipment Corporation - Confidential and Propri~tary 
For Internal Use Only 

Routine arus$formaCdate_time returns the unsuccessful status values listed in Table 1-28. .~ 

Table 1-28: Status Values Returned from Routine arus$formaf date time 
Status Value Description 

arus$_defaultJormacused 
arus$_string_truncated 

Default format used; unable to determine desired format. 

The output string designated by date_string was too short to contain the 
entire formatted date/time. The string was truncated to fit. 

arus$_invalid_string_desc 
arus $ _reentrancy 

Invalid string descriptor. 

Reentrancy detected within a thread. In this case it returns with an error, 
because waiting would result in a deadlock. 

arus$ _english_used English used by default; unable to determine user's choice of language. 

arus$_unrecognizedJormat_code Unrecognized format code. This normally indicates a corrupt format. 

arus$_invalid_time_argument Invalid time passed to the routine. 

Routine arus$formaCdate_time raises no conditions. 

1.4.2.7.2 The arus$converL date_string Routine 

Routine arus$converCdate_string can be viewed as the inverse operation of arus$formaCdate_time. 
This routine takes a text string in the user's natural language and format, and attempts to convert 
it into a binary absolute tirne. 

The application designer is able to indicate which fields are legal for the user to omit, and what 
default values are to be used if the fields are omitted. The application is informed which fields were 
actually omitted. 

PROCEDURE arus$convert_date_string ( 

Parameters: 

IN date string string (*); 
OUT date time arus$binary absolute time; 
IN OUT context arus$dt_context; 
IN defaultable arus$dt field OPTIONAL; 
IN defaults arus$numeric_absolute_time OPTIONAL; 

IN timezone_options : arus$timezone_options OPTIONAL; 

OUT defaulted fields : arus$dt_field OPTIONAL; 
) RETURNS arus$status 

LINKAGE 
REFERENCE ( 

date_time, 
context, 
defaultable, 
defaults, 

timezone_options, 
defaulted fields 
) 

DESCRIPTOR ( 
date_string 
) ; 

Application Run-Time Utility Services 1-35 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

date_string 
date_time 
context 

defaultable 

defaults 
timezone_options 

defaultedJields 

Date string that specifies the absolute tim~ to be converted to a binary absolute time. 

Receives the converted time. 

Context variable that retains the translation context over multiple calls to the date/time for
matting routines. 

Specifies which date or time fields of the date_string argument might be omitted so that 
default values apply. 

Supplies the defaults to be used for omitted fields. 

Selects whether UTC, the node's time zone, or the user's time zone is desired. If omitted, 
defaults to the node's time zone. 

Indicates which date or time fields have been defaulted. 

Routine arus$converCdate_string returns the unsuccessful status values listed in Table 1-29. 

Table 1-29: Status Values Returned from Routine arus$convert date string 
Status Value Description 

arus$_defaultJormat_used 
arus$_invalid_string_desc 
arus$ Jeentrancy 

arus$_english_used 
arus$_unrecognizedJormat_code 
arus$_invalid_time_argument 
arus$_ambiguous_dattim 
arus$ _incomplete _dattim 
arus$_illegalJormat 
arus$_invalid_argument 

Default format used; unable to determine desired format. 

Invalid string descriptor. 

Reentrancy detected within a thread. In this case it returns with an error, 
because waiting would result in a deadlock. 

English used by default; unable to determine user's language. 

Unrecognized format code. 

Invalid time passed to the routine. 

Ambiguous date/time. 

Incomplete date/time; missing fields with no defaults. 

Illegal format string; too many or not enough fields. 

Invalid argument; a required argument was not specified. 

Routine arus$convert_date_string raises no conditions. 

1.4.2.7.3 The arus$geCdate_format Routine 

An application using the date/time routines can select any number of input formats for the parsing 
of date/time strings. Therefore, when a user enters a time string that cannot be parsed by the 
date/time routines, it is frequently because the user did not use the format that he or she had 
previously specified. Due to the many variations of input formats, the application cannot output 
a fixed informational message to assist the user. The application must use routine arus$get_date_ 
format to obtain a string representation of the user-supplied format to output to the user as a prompt 
or reminder. 

PROCEDURE arus$get_date_format ( 
OUT format_string: string (*)i 
IN OUT context : arus$dt_contexti 
) RETURNS arus$status 

LINKAGE 
REFERENCE ( 

context 

DESCRIPTOR ( 
format_string 
) i 

1-36 Application Run-Time Utility Services 



Param'eters: 

format_string 
context 

Digital Equipment Corporation - Confid~ntial and Proprietary 
For Internal Use Only 

Receives a text string indicating the user's preferred format for date and time input. 

Context variable that retains the translation context over multiple calls to the date/time for
matting routines. 

Routine arus$geCdateJormat returns the unsuccessful status values listed in Table 1-30. 

Table 1-30: Status Values Returned from Routine arus$get date format 
Status Value Description 

arus$_defaultJormat_used 
arus $ _s tring _truncated 
arus$_invalid_string_desc 
arus $ _ree ntrancy 

Default format used; unable to determine desired format. 

String truncated. 

Invalid string descriptor. 

Reentrancy detected within a thread. In this case it returns with an error, 
because waiting would result in a deadlock. 

arus$_engl~h_used 

arus$_invalid_argument 
arus$_illegaIJormat 

English used by default; unable to determine user's language. 

Invalid argument; a required argument was not specified. 

Illegal format string. 

arus$_unrecognizedJormat_code Unrecognized format code. 

Routine arus$geCdateJormat raises no conditions. 

1.4.2.7.4 The arus$geLmax_date_length Routine 

This procedure is used by applications that must know the length of the longest possible date string 
that could be returned by arus$formaCdate_time, for instance, when the dates are displayed in a 
column in a table. 

PROCEDURE arus$get_max_date_length ( 
OUT date_length integer; 

Parameters: 

IN OUT context : arus$dt context; 
IN field_option : arus$dt=format OPTIONAL; 
IN desired truncation arus$dt truncation OPTIONAL; 

RETURNS ~rus$status -
LINKAGE 

REFERENCE ( 
date_length, 
context, 
field_option, 
desired truncation 
) ; 

date_length Receives the maximum possible length of the date_string argument returned to arus$formaL 
date_time. 

context Context variable that retains the translation context over multiple calls to the date/time for
matting routines. 

field_option Mask that allows the user to specify whether the date, time, or both are to be included in 
the calculation of the maximum date length. 

desired_truncation Allows the application designer to truncate the output string at a selected field. 

Application Run-Time Utility Services 1-37 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

Routine arus$geCmax_date_length returns the unsuccessful status values listed in Table 1-31. .~ 

Table 1-31: Status Values Returned from Routine arus$get max date length 
Status Value Description 

arus$_english_used 
arus$_defaultJormat_used 

English used by default; unable to determine user's language. 

Default format used; unable to determine desired format. 

arus$_unrecognizedJormat_code Unrecognized format code. 

arus$_string_truncated String truncated. 

arus$_reentrancy Reentrancy detected within a thread. In this case it returns with an error, 
because waiting would result in a deadlock. 

Routine arus$geCmax_date_length raises no conditions. 

1.4.2.7.5 The arus$formaCre,-time Routine 

Routine arus$format_reCtime is a close parallel of routine arus$format_date_time, except that it is 
used for relative times. 

PROCEDURE arus$£ormat_rel_time ( 

Parameters: 

time 
time_string 

context 

des ired _truncatio n 
time_length 

IN time : arus$binary_relative time; 
OUT time_string: string (*); 
IN OUT context : arus$dt_context; 
IN desired_truncation : arus$dt_truncation OPTIONAL; 
OUT time length : integer OPTIONAL; 
) RETURNS arus$status 

LINKAGE 
REFERENCE ( 

time, 
context, 
desired_truncation, 
time_length 
) 

DESCRIPTOR ( 
time string 
) ; 

The relative time to be formatted for output. 

Receives the requested relative time that has been formatted for output according to the 
currently selected format and language. 

Context variable that retains the translation context over multiple calls to the date/time for
matting routines. 

Allows the application writer to truncate the output string at a selected field. 

Number of octets of text written to the time_string argument. 

Routine arus$formaCreCtime returns the unsuccessful status values listed in Table 1-32. 

Table 1-32: Status Values Returned from Routine arus$format reI time 
Status Value Description 

arus$_defaultJormat_used 
arus$_string_truncated 
arus$_invalid_string_desc 

Default format used; unable to determine desired format. 

String truncated. 

Invalid string descriptor. 

1-38 Application Run-Time Utility Services 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

Table 1-32 (Cont.): Status Values Returned from Routine arus$format rei time 
Status Value 

arus$ _reentrancy 

Description 

Reentrancy detected within a thread. In this case it returns with an error, 
because waiting would result in a deadlock. 

arus$_unrecognizedJormat_code Unrecognized format code. 

arus$_invalid_time_argument Invalid time passed to the routine. 

Routine arus$formaCreCtime raises no conditions. 

1.4.2.7.6 The arus$converCreltime_string Routine 

The arus$convercrel_time_string routine is a close parallel of routine arus$converCdate_string, ex
cept that it is used for relative times. 

PROCEDURE arus$convert rel time string ( 
IN time_st;ing-: st;ing (*); 

Parameters: 

time_string 
time 
context 

OUT time : arus$binary relative time; 
IN OUT context :arus$dt_context; 
) RETURNS arus$status 

LINKAGE 
REFERENCE ( 

time, 
context 

DESCRIPTOR ( 
time_string 
) ; 

Date string that specifies the relative time to be converted. 

Receives the converted time. 

Context variable that retains the translation context over multiple calls to the dateltime for
matting routines. 

Routine arus$convert_rel_time_string returns the unsuccessful status values listed in Table 1-33. 

Table 1-33: Status Values Returned from Routine arus$converl reI time string 
Status Value Description 

arus$_defaultJormat_used 
arus$_invalid_string_desc 
arus $ _ree ntrancy 

arus$_unrecognizedJormat_code 
arus$_invalid_time_argument 
arus $ _ambiguous _dattim 
arus$ _illegal Jormat 
arus$_invalid_argument 

Default format used; unable to determine desired format. 

Invalid string descriptor. 

Reentrancy detected within a thread. In this case it returns with an error, 
because waiting would result in a deadlock. 

Unrecognized format code. 

Invalid time passed to the routine. 

Ambiguous date/time. 

Illegal format string; too many or not enough fields. 

Invalid argument; a required argument was not specified. 

Routine arus$converCrel_time_string raises no conditions. 

Application Run-Time Utility Services 1-39 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

1.4.2.7.7 The arus$geCreLtime_format Routine 

An application using the date/time routines can select any number of input formats for the parsing 
of relative time strings. Therefore, when a user enters a time string that cannot be parsed by routine 
arus$converCrel_time_string, it is frequently because the user did not use the format that he or she 
had previously specified. Due to the many variations of input formats, the application cannot output 
a fixed informational message to assist the user. The application must use routine arus$get_rel_time_ 
format to obtain a string representation of the user-supplied format to output to the user as a prompt 
or reminder. 

This routine is very similar to arus$geCdateJormat, except that it is used to obtain the user's relative 
time input format, rather than the user's (absolute) date and time format. 

PROCEDURE arus$get_rel_time_format ( 

Parameters: 

format_string 
context 

OUT format_string: string (*); 
IN OUT context : arus$dt context; 
) RETURNS arus$status 

LINKAGE 
REFERENCE ( 

context 

DESCRIPTOR ( 
format_string 
) ; 

Receives a text string indicating the user's preferred format for inputting dates and times. 

Context variable that retains the translation context over multiple calls to the date/time for
matting routines. 

Routine arus$geCreCtimeJormat returns the unsuccessful status values listed in Table 1-34. 

Table 1-34: Status Values Returned from Routine arus$get rei time format 
Status Value Description 

arus$_defaultJormat_used 
arus $ _string_truncated 
arus$_invalid_string_desc 
arus $ _reentrancy 

arus$_engl~h_used 

arus$_invalid_argument 
arus$_illegalJormat 

Default format used; unable to determine desired format. 

String truncated. 

Invalid string descriptor. 

Reentrancy detected within a thread. In this case it returns with an error, 
because waiting would result in a deadlock. 

English used by default; unable to determine user's language. 

Invalid argument; a required argument was not specified. 

Illegal format string. 

arus$_unrecognizedJormat_code Unrecognized format code. 

Routine arus$get_rel_timeJormat raises no conditions. 

1-40 Application Run-Time Utility Services 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

1.4.2.7.8 The arus$geLmax_reLtime_length Routine 

This procedure is used by applications that must know the length of the longest possible relative time 
string that could be returned by arus$format_rel_time, for instance, when the times are displayed in 
a column in a table. 

This routine is very similar to arus$get_max_date_length, except that it is used when formatting 
relative time output, rather than absolute dates and times. 

PROCEDURE arus$get_max_rel_time_length ( 
OUT date_length integer; 

Parameters: 

IN OUT context : arus$dt_context; 
IN field_option : arus$dt_format OPTIONAL; 
IN desired truncation arus$dt_truncation OPTIONAL; 

RETURNS arus$status 
LINKAGE 

REFERENCE ( 
date length, 
context, 
field_option, 
desired truncation 
) ; 

date_length Receives the maximum possible length of the date_string argument returned to arus$formaL 
date_time. 

context Context variable that retains the translation context over multiple calls to the date/time for
matting routines. 

field_option Mask that allows the user to specify whether the date, time, or both are to be included in 
the calculation of the maximum date length. 

desired_truncation Allows the application designer to truncate the output string at a selected field. 

Routine arus$get_max_rel_time_length returns the unsuccessful status values listed in Table 1-35. 

Table 1-35: Status Values Returned from Routine arus$get max reI time length 
Status Value Description 

arus$_english_used 
arus$_defaultJormat_used 

English used by default; unable to determine user's language. 

Default format used; unable to determine desired format. 

arus$_unrccognizedJormaccode Unrecognized format code. 

arus$_string_truncated String truncated. 

arus$_reentrancy Reentrancy detected within a thread. In this case it returns with an error, 
because waiting would result in a deadlock. 

Routine arus$geCmax_reCtime_length raises no conditions. 

1.4.2.7.9 The arus$free_date_time_context Routine 

All of the routines associated with the formatting of dates and times use a context area to speed 
execution. If an application desires, it can free the memory associated with this context after it is 
through formatting dates and times. It uses routine arus$free_date_time_context to do so. 

PROCEDURE arus$free_date_time_context ( 
IN OUT context : arus$dt_context; 
) RETURNS arus$status 

LINKAGE 
REFERENCE ( 

context 
) ; 

Application Run-Time Utility Services 1-41 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

Parameters: 

context Context variable that retained the translation context over multiple calls to the date/time 
formatting routines. 

Routine arus$free_date_time_context returns the unsuccessful status values listed in Table 1-36. 

Table 1-36: Status Values Returned from Routine arus$free date time context 
Status Value Description 

arus$_reentrancy Reentrancy detected within a thread. In this case it returns with an error, 
because waiting would result in a deadlock. 

Routine arus$free_date_time_context raises no conditions. 

1.4.2.7.10 The arus$iniLdate_time_context Routine 

The normal use of the date/time formatting routines described above is to format dates and times 
for eventual presentation to people. However, the routines are a very powerful set of generalized 
formatting routines, and can be equally well-used for formatting dates and times for input to other 
computer applications where a binary time is not appropriate for some reason. In this case, the 
application designer needs to hard code the desired formats, rather than let the user select them at 
run time. 

Routine arus$init_date_time_context allows the application designer to preinitialize the context area, 
thus causing the formats to be taken from the code, and not from the user. 

PROCEDURE arus$init_date time_context ( 

Parameters: 

component 
iniCstring 
context 

IN component : arus$dt_component; 
IN init_string : string (*); 
IN OUT context : arus$dt context; 
) RETURNS arus$status -

LINKAGE 
REFERENCE ( 

component, 
context 

DESCRIPTOR ( 
init_string 
) ; 

The component of the context that is being initialized. 

The characters which are to be used in formatting dates and times for input or output. 

Context variable that retains the translation context over mUltiple calls to the date/time for
matting routines. 

Routine arus$init_date_time_context returns the unsuccessful status values listed in Table 1-37. 

Status Value 

arus $ _numelements 
arus$_illegal_init_string 

Description 

Incorrect number of elements for the component. 

Illegally formed iniCstring. 
arus$_unrecognizedJormat_code Unrecognized format code. 

1-42 Application Run-Time Utility Services 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

:', Table 1-37 (Cont.): Status Values Returned from Routine arus$init date time context 
Status Value Description 

Illegal value for the component. 

Invalid string descriptor. 

arus$_illegal_component 
arus$_invalid_string_desc 
arus $ _reentrancy Reentrancy detected within a thread. In this case it returns with an error, 

because waiting would result in a deadlock. 

Routine arus$init_date_time_context raises no conditions. 

1.4.3 VMS Compatibility 

To aid in the porting of VMS applications to new systems, but especially to VAXlULTRIX, PRISM 
ULTRIX and to Mica, the following routines are provided as jackets or aliases to routines described 
above: 

LlB$ADD_ TIMES LlB$CONVERT _DATE_STRING 

LlB$CVTF _FROM_INTERNAL_ TIME LlB$CVT _ TO_INTERNAL_ TIME 

LlB$DATE_ TIME LlB$DAY 

LlB$GET _MAXIMUM_DATE_LENGTH LlB$GET _USERS_LANGUAGE 

LlB$SUB_ TIMES 

LlB$CVT _FROM_INTERNAL_ TIME 

LlB$CVT _ VECTIM 

LlB$DAY _OF_WEEK 

LlB$GET _DATE_FORMAT 

LlB$INIT _DATE_ TIME_CONTEXT 

These entry points are provided only to increase the number of applications that will run without 
modification. It is undetermined whether these routines will be undocumented, or will be documented 
as compatibility routines which are not to be used for new program development. 

1.5 General Internationalization Aids 

The software described in this section allows an application to more easily be international, or at 
least, internationalizable. This section includes those routines that do not fit tidily into another 
major section. For instance, the date and time formatting routines are not described here, but rather 
with the other date and time routines in Section 1.4. 

1.5.1 Functional Interface and Description 

The following sections describe the individual internationalization routines and their programming 
interfaces. 

1.5.1.1 Determining the User's Natural Language 

In the entire run-time system, there is exactly one routine which other routines should use to deter
mine the user's natural language, arus$geClanguage. 

Application Run-Time Utility Services 1-43 



Digital Equipment Corporation - Confidential and Propr,ietary 
For Internal Use Only 

1.5.1.1.1 The arus$geC/anguage Routine .t. 

Routine arus$get_language is the routine that allows language-sensitive routines to determine the 
user's choice of natural language. This routine returns a text string that is the English spelling of 
the user's natural language. 

The reasons for returning a string, rather than an enumeration or other encoded value, is not readily 
apparent. There are two reasons: 

• This strategy most easily allows extensions in the field without having to worry about conflicts. 
Any other system requires a registry; although possible, this is always hard to coordinate once 
outside our doors. 

• Much of the rest of the system support for multiple natural languages requires strings anyway. 
The most obvious example of this is in constructing file names and directory specifications. 

PROCEDURE arus$get_language ( 

Parameters: 

language 

OUT language: string (*); 
) RETURNS arus$status 

LINKAGE 
DESCRIPTOR ( 

language 
) ; 

Receives the name of the user's language. 

Routine arus$geClanguage returns the unsuccessful status values listed in Table 1-38. 

Table 1-38: Status Values Returned from Routine arus$get language 
Status Value Description 

English used by default; unable to determine user's language. 

Routine arus$geClanguage raises no conditions. 

1.6 Condition Handling Routines 

Whenever possible, portable applications should use only those condition handling capabilities in
herent in the implementation language being used. There are languages, however, that do not have 
condition handling capabilities, or have capabilities that are too limited for the problem at hand. 

Condition handling is, by its nature, very system specific; there is, however, a common subset of 
capabilities that are found in all DIGITAL operating systems. 

The routines described in this section of the chapter allow portable applications which use AlA 
interfaces to initiate a condition and perform basic condition handling. 

1-44 Application Run-Time Utility Services 



Digital Equipment Corporation - Confiden~ial and Proprietary 
For Internal Use Only 

1.6.1 The ARUS Condition Handling Model 

The ARUS model of condition handling is based on routine invocations. Every routine that is ac
tivated can establish a condition handler, which can handle any conditions caused by that routine 
or its descendants. In addition to these routine-invocation-based condition handlers, the ARUS rou
tines also support primary condition handlers and last-chance condition handlers. Primary condition 
handlers are handlers to be invoked before the routine-invocation hierarchy of handlers is searched. 
Last-chance condition handlers are handlers to be invoked after all other handlers established in the 
routine-invocation hierarchy have been invoked. 

In summary, the ARUS condition handlers are invoked in the following order: 

1. Primary condition handlers are invoked in order from the first-established condition handler to 
the last-established condition handler. 

2. Mter the primary condition handlers are invoked, the routine-invocation-based condition han
dlers are invoked in order from the most-recently-established condition handler to the least
recen tly-established condition handler. 

3. Finally, the last-chance condition handlers are invoked, beginning with the most-recently
established condition handler. 

This mode of condition handling works alongside normal ULTRIX signal handling on ULTRIX imple
mentations. In such an implementation, ULTRIX signal handlers are invoked after the last-chance 
condition handlers. 

Finally, an assumed part of the ARUS condition handling model is that for systems that support 
multithreading, condition handling occurs on a per-thread basis. However, since the ARUS routines 
are under the control of the operating system condition dispatching routines, there is nothing that 
the ARUS routines can do to enforce this assumption. 

1.6.2 ARUS Condition Handlers 

Condition handlers supported by the ARUS routines arus$addJJrimary _handler, arus$deleteyrimary_ 
handler, arus$add_last_chance_handler and arus$delete_lasCchance_handler are not the same as 
condition handlers supported by the base system on which the ARUS routines are implemented, 
because those condition handlers are system specific. ARUS condition handlers are procedures of 
type arus$condition_handler; they take one parameter, the primary condition name of the condition 
currently being handled. 

ARUS condition handlers return with a value of type arus$continue_code. If they return arus$c_ 
continue and the condition is a continuable condition, then the condition is dismissed and program 
execution is continued at the point immediately following that at which the condition was raised. 
If the condition is not continuable and the condition handler returns arus$c_continue, a new, non
continuable condition is raised indicating the fact that an attempt was made to continue from a 
noncontinuable condition. 

If the condition handler returns arus$c_reraise, the next condition handler is invoked. 

REVIEWERS 

\I am currently defining an ARUS condition handling routine which has a single 
parameter: the primary condition name (type arus$status) of the condition it is han
dling. This seems fairly limiting, but portable. 

By defining a handler with zero parameters, we would unify handlers maintained 
by the ARUS primary and last-chance handler managers, and those established by 
the language RTLs. Both types would assume that they had no parameters, and 
use routine arus$examine_condition to get the information about what condition it 
was handling. 

Application Run-Time Utility Services 1-45 



Digital Equipment Corporation - Confidential ~nd Proprietary 
For Internal Use Only 

The other possibility I see is simply stating that the procedure type of a condition 
handler is implementation defined; condition handlers are not transportable. I am 
against this model, but am open to other ideas and suggestions. It seems illogical to 
provide a portable way of referencing nonportable code. Comments are invited.\ 

1.6.3 Functional Interface and Description 

The following sections describe the interface to the ARUS condition routines. 

1.6.3.1 Types Used 

There are only a few structures used by the condition handling routines, but they bear more than a 
cursory explanation. In general, since the underlying operating system condition raising and handling 
code is fundamentally incompatible, the user interface structures must contain the union of all the 
information the different systems require for dealing with conditions. To simplify the structure, we 
also leave out all those fields that are not set by the user. 

The structure arus$condition_record fully describes a condition, or series of related conditions. It is 
similar in function to a signal vector on VAXlVMS. 

NOTE 

The logical contents of each of these structures are required to be the same for an 
implementations of these routines. However, the actual physical materialization of 
each of the structures listed below are for the Mica implementation, and designed 
to give a feel for the structures. 

\The condition record described below is the main interface structure for these routines, and is 
going to give some languages and unsophisticated users grief. For the class of users that are likely 
to be using condition handling outside the scope of their language, will that be a problem? Will 
unsophisticated users be using these routines? How much pain is acceptable? 

An alternate interface would not give the user the capability of raising multiple conditions simultane
ously; they would be limited to one. The interface would involve an atomic condition name, and three 
lists of parameters, one for the pointer to each argument, one for the length of each argument, and 
one for the datatype of each argument. Not as nicely encapsulated, but perhaps easier for average 
users. Comments?\ 

TYPE 
arus$status : status; 

The possible values for field argument_datatype are to be 
determined later, in conjunction with the PRISM calling standard. 

arus$condition_argument : RECORD 
argument_datatype : arus$condition_arg type; 
argument_extent : longword; 
argument : POINTER anytype; 

END RECORD; 

arus$condition_record (number_of_arguments integer [0 .. ]) RECORD 
CAPTURE number of arguments; 
condition_valu; :-arus$status; 
condition list : POINTER arus$condition record; 
condition_arguments: ARRAY [1 .. argument_number] arus$condition_argument; 
LAYOUT 

condition_value; 
condition list; 
number arguments; 
condition_arguments; 

END LAYOUT; 
END RECORD; 

1-46 Application Run-Time Utility Services 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

arus$continue_code : 
arus$c continue, 
arus$c=reraise); 

arus$condition_handler : PROCEDURE ( 
IN condition_name : arus$status; 
) RETURNS arus$continue_code 

LINKAGE 
REFERENCE ( 

condition name 
) ; 

arus$handler_id : longword; 

1.6.3.2 Condition Raising Routines 

When software detects an erroneous situation, it may choose to invoke code designed to correct the 
situation, report the situation, or both. It does so by raising a condition. There are two routines used 
to raise conditions, arus$raise_condition and arus$raise_stop_condition. 

1.6.3.2.1 The arus$raise_ condition Routine 

The arus$raise_condition procedure is used to initiate a condition. 

PROCEDURE arus$raise_condition ( 
IN condition record : arus$condition record; 
) RETURNS ar~s$status; -

LINKAGE 
REFERENCE ( 

condition_record) ; 

Parameters: 

condition_record The condition record completely describing the condition to be raised. 

If the condition handling routines invoked due to this condition cause execution to continue, routine 
arus$raise_condition returns the value that is left in the system-defined return register by the con
dition handling routines invoked. This value may be set by arus$store_return_value, described in 
Section 1.6.3.4.3. Otherwise, the call to routine arus$raise_condition never returns. 

Routine arus$raise_condition raises no conditions other than the one(s) specified by parameter con
dition_record. 

1.6.3.2.2 The arus$raise_stop_condition Routine 

The arus$raise_stop_condition procedure is used to initiate a condition that is noncontinuable. With 
that one exception, it is identical to arus$raise_condition. 

PROCEDURE arus$raise_stop_condition ( 
IN condition_record : arus$condition_record; 
) LINKAGE 

REFERENCE (condition_record); 

Parameters: 

condition_record The condition record completely describing the condition to be raised. 

Routine arus$raise_stop_condition never returns; therefore, it cannot return a value. 

Routine arus$raise_stop_condition raises no conditions other than the one(s) specified by parameter 
condition_record. 

Application Run-Time Utility Services 1-47 



Digital Equipment Corporation -fConfidential and Proprietary 
For Internal Use Only 

1.6.3.3 Condition Modificatl~n Routines 

The condition modification routines are designed to be called from condition handler routines. They 
allow the handler routines to update the information contained in the original condition with addi
tional or more accurate information. 

An implementation of these routines may raise a new condition with the updated information; there
fore, the original faulting address and processor state are not guaranteed to be preserved if these 
routines are used. 

It is an error to call any of the routines in this section when not in the process of handling a condition. 

1.6.3.3.1 The arus$replace_condition Routine 

Routine arus$replace_condition is used to completely replace one condition with another. Because 
information is undoubtedly lost by doing this, the use of this routine should be carefully considered. 
Other routines in this section may be more appropriate. 

PROCEDURE arus$replace_condition : ( 
IN condition record : arus$condition record; 

RETURNS ar~s$status -
LINKAGE 

REFERENCE ( 
condition record 
) ; 

Parameters: 

condition_record The condition record completely describing the condition to be raised. 

If routine arus$replace_condition executes successfully, and the condition handling routines invoked 
due to this condition cause execution to continue, routine arus$replace_condition returns the value 
that is left in the system-defined return register by the condition handling routines invoked. This 
value may be set by arus$store_return_value, described in Section 1.6.3.4.3. If the condition handling 
routines do not cause execution to continue, the call to routine arus$replace_condition never returns. 

In addition to the return values just described, it is also possible for the routine to not execute 
successfully. In that case, routine arus$replace_condition returns the unsuccessful status values 
listed in Table 1-39. 

Table 1-39: Status Values Returned from Routine arus$replace condition 
Status Value Description 

arus$_no_condition_active The routine was called while not in the process of handling a condition. 

Routine arus$replace_condition raises no conditions other than the one(s) specified by parameter 
condition_record. 

1.6.3.3.2 The arus$addyrimary_condition Routine 

Routine arus$addyrimary _condition is used to "add" a primary condition to an existing condition or 
conditions. The effect of this addition is that the condition that was formerly the primary condition 
becomes a secondary condition. 

While principally intended to add a single primary condition, if the condition_record argument is 
actually a list of condition records, then the old condition list is appended to the new list, effectively 
adding a new primary and one or more superior secondary conditions. 

If the former primary condition was flagged as not continuable, then the new primary condition is 
similarly flagged. 

1-48 Application Run-Time Utility Services 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

t" Routine arus$addyrimary _condition provides outer layers of code the ability to express the condition 
in terms suitable to that layer, without losing any detailed information supplied by inner layers. For 
instance, if a Pascal readln call failed, the system could return an error stating that the file was not 
accessed, RMS could add on a condition stating that the file was not open and give the file name, 
and the Pascal run-time library code could add a condition stating the source line of the readln call. 

PROCEDURE arus$add_primary_condition : ( 
IN condition record : arus$condition record; 

RETURNS ar~s$status -
LINKAGE 

REFERENCE ( 
condition record 
) ; 

Parameters: 

condition_record The condition record completely describing the condition(s) to be added. 

If routine arus$addyrimary_condition executes successfully, and the condition handling routines 
invoked due to this condition cause execution to continue, routine arus$addyrimary _condition re
turns the value that is left in the system-defined return register by the condition handling routines 
invoked. This value may be set by arus$store_return_value, described in Section 1.6.3.4.3. If the con
dition handling routines do not cause execution to continue, the call to routine arus$addyrimary_ 
condition never returns. 

In addition to the return values just described, it is also possible for the routine to not execute suc
cessfully. In that case, routine arus$addyrimary _condition returns the unsuccessful status values 
listed in Table 1-40. 

Table 1-40: Status Values Returned from Routine arus$add primary condition 
Status Value Description 

arus$_no_condition_active The routine was called while not in the process of handling a condition. 

Routine arus$addyrimary_condition raises no conditions other than the one(s) specified by the new 
combined condition record. 

1.6.3.3.3 The arus$add_secondary_condition Routine 

Routine arus$add_secondary _condition is similar to arus$addyrimary _condition, except that the 
newly added condition is placed at the end of the list of conditions, rather than at the head of the 
list. It is also used by outer layers that wish to add information to the reported condition. 

While principally intended to add a single secondary condition, if the condition_record argument is 
actually a list of condition records, then the entire new list is appended to the old condition list; 
effectively adding two or more inferior secondary conditions. 

PROCEDURE arus$add_secondary_condition : ( 
IN condition record : arus$condition record; 

RETURNS ar~s$status -
LINKAGE 

REFERENCE ( 
condition record 
) ; 

Parameters: 

condition_record The condition record completely describing the condition(s) to be added. 

Application Run-Time Utility ServL.;es 1-49 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

If routine arus$add_secondary_condition executes successfully, and the condition handling routines 
invoked due to this condition cause execution to continue, routine arus$add_secondary _condition re
turns the value that is left in the system-defined return register by the condition handling routines 
invoked. This value may be set by arus$store_return_value, described in Section 1.6.3.4.3. If the con
dition handling routines do not cause execution to continue, the call to routine arus$add_secondary_ 
condition never returns. 

In addition to the return values just described, it is also possible for the routine to not execute 
successfully. In that case, routine arus$add_secondary _condition returns the unsuccessful status 
values listed in Table 1-41. 

Table 1-41: Status Values Returned from Routine arus$add secondary condition 
Status Value Description 

arus$_no_condition_active The routine was called while not in the process of handling a condition. 

Routine arus$add_secondary _condition raises no conditions other than the one(s) specified by the 
new combined condition record. 

1.6.3.4 Condition Information Routines 

Since the structures used to represent conditions vary from system to system, we provide a way to 
obtain and modify selected information contained within those structures. The routines used for this 
purpose are arus$examine_condition, arus$examine_return_value and arus$store_return_value. 

As with the condition manipulation routines, it is an error to call these routines while not in the 
process of handling a condition. 

1.6.3.4.1 The arus$examine_condition Routine 

The arus$examine_condition routine is used to extract the condition "name" from the current primary 
condition record. This value, once removed from the context of a condition record, is the same as a 
status value. 

PROCEDURE arus$examine_condition : ( 
OUT condition name : arus$status; 

RETURNS aru~$status 
LINKAGE 

REFERENCE ( 
condition name 
) ; 

Parameters: 

condition_name The variable into which the current condition name is written. 

Routine arus$'examine_condition returns the unsuccessful status values listed in Table 1-42. 

Table 1-42: Status Values Returned from Routine arus$examine condition 
Status Value Description 

arus$_no_condition_active The routine was called while not in the process of handling a condition. 

This routine does not raise any conditions. 

1-50 Run-Time Utility Services 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

1.6.3.4.2 The arus$examine_return_ value Routine 

In addition to the condition record, there is a secondary channel of information available to users of 
the condition handling routines. This second channel is the return value. In the event of a condition 
caused by the arus$raise_condition routine, the return value is used as the completion status of the 
call to arus$raise_condition if execution is continued. If a condition causes an unwind to occur, the 
return value is used as the completion status of the final routine being unwound. By means of this 
secondary channel, it is possible for a handler to notify the raising routine of whether or not the 
condition was handled. 

When a condition is initially raised, the return value is set to the condition name contained in the 
condition record. Therefore a routine can detect through normal language mechanisms if the return 
value has been modified when it receives control back from routine arus$raise_condition. 

This routine, however, is used to examine the return value while still in the process of handling 
conditions. 

REVIEWERS 

\ The VAXNMS and PRISM calling standards both define 64 bits of return value for 
routine calls, and pro'vide 64 bits of return value in the mechanism records. I do 
not know if there is a system-wide default amount of return value on VAXlULTRIX. 
Is there? For portability now and in the future, I am limiting the return value 
accessible by these routines to 32 bits, the size of return value most frequently 
used on VAXNMS. Is this an acceptable restriction?\ 

PROCEDURE arus$examine_return_value : ( 
OUT return_value : LONGWORD; 
) RETURNS arus$status 

LINKAGE 
REFERENCE ( 

return value 
) ; 

Parameters: 

return_value The variable into which the return value is written. 

Routine arus$examine_return_value returns the unsuccessful status values listed in Table 1-43. 

Table 1-43: Status Values Returned from Routine arus$examine return value 
Status Value Description 

arus$_no_condition_active The routine was called while not in the process of handling a condition. 

1.6.3.4.3 The arus$store_return_ value Routine 

The arus$store_return_value routine is the means by which a condition handler can modifY the return 
value described in Section 1.6.3.4.2. 

PROCEDURE arus$store_return_value : ( 
IN return_value : LONGWORD; 
) RETURNS arus$status 

LINKAGE 
REFERENCE ( 

Parameters: 

return_value 

condition name 
) ; 

The new return value. 

Application Run-Time Utility Services 1-51 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

Routine arus$store_return_value returns the unsuccessful status values listed in Table 1-44. 

Table 1-44: Status Values Returned from Routine arus$store return value 
Status Value Description 

arus$_no_condition_active The routine was called while not in the process of handling a condition. 

1.6.3.5 Status Value Routines 

Status values are opaque, with formats that vary across implementations of these interfaces. There
fore, there must be routines to compare for equality, and to test for success. We provide two routines, 
arus$testJor _success and arus$compare_status. 

1.6.3.5.1 The arus$tesLfor_success Routine 

Routine arus$testJor _success allows an application to determine in a portable way whether or not a 
status value returned by a routine was successful or not. 

REVIEWERS 

\How committed are we to "low bit set equals success"? This is not the case on 
ULTRIX. I am trying to balance two differing goals, and would like input on where 
to strike the balance. It would be nice to have AIA fit in nicely with the underly
ing base system. Conditions could have differing severity field definitions on the 
different systems: low bit set on Mica and VAXNMS, low bit clear for success on 
ULTRIX. This routine would be able to interpret the different schemes. However, 
the other side of the coin is that there is a lot of code that we will attempt to port 
that simply does an in-line low bit test. That code would need to be rewritten. 

I am leaning toward having low bit set be success for all routines written at or 
above the AIA level. If that happens, this routine is probably not needed. 

Comments?\ 

PROCEDURE arus$test_for_success ( 
IN status_value : arus$status; 

RETURNS boolean 
LINKAGE 

REFERENCE ( 
status value 
) ; 

Pararneters: 

status _val ue The status value that is to be tested for success. 

Routine arus$testJor _success returns no unsuccessful status values. 

Routine arus$testJor _success raises no conditions. 

1-52 AOfDlIIC8lIlcm Run-Time Services 



Digital Equipment Corporation - Confidential and PrQprietary 
For Internal Use Only 

1.6.3.5.2 The arus$compare_status Routine 

Routine arus$compare_status is used to compare a condition for equality against an array of known 
conditions. If a match is found, the index into the array of the matching condition is returned in the 
OUT parameter match_index. If no match is found, a zero is returned in the OUT parameter, and 
the routine returns an unsuccessful status. 

PROCEDURE arus$compare_status ( 
IN status_to_match : arus$status; 
IN status_array: ARRAY [l .. J arus$status; 
IN number_of_statuses : integer; 
OUT match index : integer; 
) RETURNS arus$status 

LINKAGE 

Parameters: 

REFERENCE ( 
status_to_match, 
status_array, 
number_of_statuses, 
match index 
) ; 

status _to _match 
status_array 
number _of_statuses 
match_index 

The unknown status, which is to be compared to the known statuses in the array. 

The array of known statuses. 

The count of known statuses contained in status_array. 
If one of the known statuses in status_array matched the unknown status in status_to_ 
match, then this contains the index of the matching status. If no match was found, this 
contains the value zero. 

Routine arus$compare_status returns the unsuccessful status values listed in Table 1-45. 

Table 1-45: Status Values Returned from Routine arus$compare status 
Status Value Description 

No match was found for the unknown status. 

Routine arus$compare_status raises no conditions. 

1.6.3.6 Unwind Routines 

During the course of handling a condition, it is sometimes necessary to abort the current action, and 
return to a previous known state in the thread or to abort the thread. The means to do this are two 
unwind routines, arus$unwind and arus$unwind_to_exit. 

1.6.3.6.1 The arus$unwind Routine 

The arus$unwind routine is used to abort the processing that was in progress when the condition 
was raised, and return to a known point in the program. That known point is the instruction after 
the call to the routine that established the handler currently handling the condition. This, in effect, 
makes it appear as if that routine call had just completed. 

During the process of unwinding, each routine with an associated condition handler is unwound only 
after its condition handler is invoked. This allows any necessary cleanup activities to occur. 

The return value available after completion of the unwind can be set by the call to arus$unwind, and 
by any handler invoked during the course of the unwind operation through use of the arus$store_ 
return_value routine. 

Application Run-Time Utility Services 1-53 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

It is an error to call routine arus$unwind while not in the process of handling a condQ.tion. 

PROCEDURE arus$unwind ( 
IN condition record : arus$condition_record OPTIONAL; 

RETURNS ar;s$status 
LINKAGE 

REFERENCE ( 

Parameters: 

condition_record 

condition record 
) ; 

The condition record completely describing the condition to be passed to each handler. If 
omitted, the current condition is used. 

If it is called while processing a condition, routine arus$unwind never returns. Otherwise, it returns 
the unsuccessful status values listed in Table 1-46. 

Table 1-46: Status Values Returned from Routine arus$unwind 
Status Value Description 

arus$_no_condition_active The routine was called while not in the process of handling a condition. 

1.6.3.6.2 The arus$unwind_to_exit Routine 

The other unwind operation supported by ARUS routines is a total unwind, resulting in a modular 
thread termination. It is termed modular because each routine gets a chance to perform any cleanup 
activities necessary, from most-recently-invoked routine to least-recently-invoked routine. 

PROCEDURE arus$unwind_to_exit ( 
IN condition_record : arus$condition_record OPTIONAL; 

RETURNS arus$status 
LINKAGE 

REFERENCE ( 

Parameters: 

condition_record 

condition record 
) ; 

The condition record completely describing the condition to be passed to the handlers. 
If omitted, and arus$unwind_to_exit was called by a routine that is handling a condition, 
the current condition is used. Otherwise, a condition record containing the status value 
arus$_unwinding is used. 

Routine arus$unwind_to_exit never returns. 

1.6.3.7 Condition Handler Management Routines 

As discussed in Section 1.6.1, there are three different types of handlers supported by the ARUS 
condition handling model. The ARUS routines do not support the establishment of stack-based han
dlers; there are no ARUS equivalents of the VAXNMS routines LIB$ESTABLISH and LIB$REVERT, 
because on some architectures that operation requires the assistance of the compilers. The ARUS 
routines do support the establishment and removal of primary and last-chance condition handlers 
through routines arus$addyrimary _handler, arus$add_lasCchance_handler, arus$deleteyrimary_ 
handler and arus$delete _last _chance _handler. 

Primary and last-chance handlers are inherently nonmodular; their uses should be few and far 
between. Almost all problems are better solved by an appropriately placed, routine-invocation-based 
handler. 

1-54 Application Run-Time Utility Services 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

Systems that directly support primary and last-chance handler routines may interfere with the rou
tines provided by ARUS if the system's capability is exploited directly. For instance, if the VAX/VMS 
system service that is used to establish a primary condition handler is used after ARUS routine 
arus$addyrimary _handler is used, the routines declared by arus$addyrimary _handler may no 
longer be known to the underlying system. 

NOTE 

Use these routines with care, and only when they are really required. 

1.6.3.7.1 The arus$addyrimary_handler Routine 

Routine arus$addyrimary_handler is used to add a primary handler to the end of the primary han
dler list. In other words, primary handlers are executed in the order in which they were established. 

PROCEDURE arus$add_primary_handler : ( 
IN condition handler : arus$condition handler; 
OUT handler id : arus$handler_id OPTIONAL; 
) RETURNS arus$status 

LINKAGE 
REFERENCE ( 

Parameters: 

condition handler, 
handler id 
) i 

condition_handler 
handler _id 

The address of the condition handling routine. 

An identifier which can be passed to routine arus$deleteyrimary_handler, to remove this 
handler from the list of handlers. 

Routine arus$addyrimary_handler returns no unsuccessful status values. 

Routine arus$addyrimary_handler raises no conditions. 

1.6.3.7.2 The arus$add_lasLchance_handler Routine 

Routine arus$add_last_chance_handler is used to add a last-chance handler to the beginning of the 
last-chance handler list. In other words, last-chance handlers are executed in the reverse of the order 
in which they were established. 

PROCEDURE arus$add last chance handler : ( 
IN condition_h~ndle~ : aru;$condition_handleri 
OUT handler_id : arus$handler_id OPTIONAL; 
) RETURNS arus$status 

LINKAGE 

Parameters: 

REFERENCE ( 
condition_handler, 
handler id 
) ; 

condition_handler 
handleLid 

The address of the condition handling routine. 

An identifier which can be passed to routine arus$delete_lasLchance_handler, to remove 
this handler from the list of handlers. 

Routine arus$add_IasCchance_handler returns no unsuccessful status values. 

Routine arus$add_last_chance_handler raises no conditions. 

Application Run-Time Utility Services 1-55 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

J~ 1.6.3.7.3 The arus$deleteJJrimary_handler Routine 

Routine arus$deleteyrimary _handler is used to remove a declared primary handler from the primary 
handler list. 

PROCEDURE arus$delete-primary handler 
IN handler id : arus$handler id; 
) RETURNS ~rus$status -

LINKAGE 
REFERENCE ( 

handler id 
) ; 

Parameters: 

The handler id value returned by routine arus$addyrimary_handlerwhen this handler was 
added to the primary handler list. 

Routine arus$deleteyrimary _handler returns the unsuccessful status values listed in Table 1-47. 

Table 1-47: Status Values Returned from Routine arus$delete primary handler 
Status Value Description 

The handler_id does not represent a handler currently on the primary handler list. 

1.6.3.7.4 The arus$delete_lasLchance_handler Routine 

Routine arus$delete_last_chance_handler is used to remove a declared primary handler from the 
primary handler list. 

PROCEDURE arus$delete last chance handler 
IN handler_id : a~us$handler_Id; 
) RETURNS arus$status 

LINKAGE 
REFERENCE ( 

handler id 
) i 

Parameters: 

The handler id value returned by routine arus$add_IasLchance_handlerwhen this handler 
was added to the last-chance handler list. 

Routine arus$delete_last_chance_handler returns the unsuccessful status values listed in Table 1-48. 

Table 1-48: Status Values Returned from Routine arus$delete last chance handler 
Status Value Description 

1.7 

The handlerjd does not represent a handler currently on the last-chance handler 
list. 

ARUS provides several routines to convert between textual and binary forms of numeric data. In 
addition, there are a few routines that convert data between different binary formats. These routines 
attempt to solve the needs of two different classes of calling routines: those that require flexibility 
and performance, such as language support library routines, and those that require an easy-to-use 
interface, such as end-user, or high-level calling routines. 

1-56 Application Run-Time Utility Services 



1.7.1 

Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

Functional Interface and Description 

The following sections describe the various routines associated with data conversion. 

1.7.1.1 Types Used 

The following types are used in the interface to the data conversion routines. 

TYPE 

arus$status : status; 

arus$radix : 
arus$c_binary, 
arus$c_octal, 
arus$c_decimal, 
arus$c_hexidecimal 
) ; 

arus$int_text_flags : 
arus$c_force~lus 

) ; 

arus$text_int_flags : 
arus$c skip blanks, 
arus$c-skip=tabs 
) ; 

arus$text_float_flags 
arus$c skip blanks, 
arus$c=skip=tabs, 
arus$c only e, 
arus$c=err_~nderflow, 
arus$c exp letter required, 
arus$c=tru~cate, -
arus$c_force_scale 

) ; 

arus$float text flags 
arus$c=forc;_exponential, 
arus$c_force~lus, 

arus$c_force~lus_exponent, 

arus$c_suppress_trailing_zeroes 
) ; 

arus$int real text flags : 
arus$c_force_e~ponential 
arus$c_force~lus 

arus$c_suppress_trailing_zeroes 
) ; 

arus$format_int text_flags 
arus$c_force~lus 

) ; 

arus$format text int flags 
arus$c ;kip blanks, 
arus$c=skip=tabs 
) ; 

arus$format_float_text_flags : 
arus$c force exponential, 
arus$c=force:plus, 
arus$c_force~lus_exponentf 

arus$c suppress trailing zeroes, 
arus$c=use_digit_separat~r 
) ; 

Application Run-Time Utility Services 1-57 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

.• ~ arus$format_text float flags 
arus$c skip blanks, 
arus$c=skip=tabs, 
arus$c_only_e, 
arus$c_err_underflow, 
arus$c exp letter required, 
arus$c=tru~cate, -
arus$c_force_scale 
) ; 

arus$text_int_options SET [arus$text int flags]; 

arus$int_text_options SET [arus$int_text_flags]; 

arus$float_text_options SET [arus$float_text_flags]; 

arus$text_float_options SET [arus$text_float_flags]; 

arus$int_real_text_options SET [arus$int_real_text flags]; 

arus$ intl_text_int_opt ions SET [arus$intl text int flags]; 

arus$intl_int_text_options SET [arus$intl_int text flags]; 

arus$intl_float_text_options SET [arus$intl_float_text flags]; 

arus$intl_text float_options SET [arus$intl_text float_flags]; 

arus$context : POINTER anytype; 

REVIEWERS 

Do we want to implement Base 36 conversions? 

1.7.1.2 Convert an Integer to a Text String 

The integer-to-text routines convert either a signed integer to a decimal ASCII text string or an 
unsigned longword to an ASCII text string of a specified radix value. The valid radix values for 
unsigned integer to text conversions are binary, octal, decimal, and hexadecimal. 

The syntax of the resultant string for the integer-to-text routines is n, where n expands as follows: 

Symbol Expansion 

n [+ ] decimal_digit [decimal_digit. .. ] 

The sign ([ + I J) is only applicable in the conversion of a signed integer value to a text string. 

1.7.1.2.1 The arus$cvt)ongword_to_text Routine 

The routine arus$cvt_longword_to_text is used to convert an unsigned integer to a text representa
tion, using the specified radix. This routine supports FORTRAN Ow, Ow.m, Zw, and Zm.w output 
conversion. 

1-58 Application Run-Time Utility Services 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

PROCEDURE arus$cvt_longword_to_text (, 
IN input_value: integer [0.:]; 
IN radix: arus$radix; 

Parameters: 

input_value 
radix 
resultant_string 
number _of_digits 

OUT resultant_string: string (*); 
IN number_of_digits : integer OPTIONAL; 
) RETURNS arus$status 
LINKAGE 

REFERENCE ( 
input_value, 
radix, 
number_of_digits 
) 

DESCRIPTOR ( 
resultant_string 
) ; 

The input value to be converted to text. 

The base used when converting the input value to a text representation. 

The resulting text string. 

Minimum number of digits to be produced. If the actual number of significant digits is smaller, 
leading zeroes are produced. If number _of_digits is less than one, a blank field may result 
when the inpuCvalue equals zero. The default is 1. 

Routine arus$cvt_longword_to_text returns the unsuccessful status values listed in Table 1-49. 

Table 1-49: Status Values Returned from Routine arus$cvt longword to text 
Status Value Description 

Invalid radix value passed. arus$_invalid_radix 
arus$_output_conversion_ 
error 

Output conversion error. The result would have exceeded the size of the resultant 
string; resultanLstring is filled with asterisks. 

Routine arus$cvt_longword_to_text raises no conditions. 

1.7.1.2.2 The arus$cvLinteger_to_text Routine 

The routine arus$cvCinteger _to_text is used to convert a signed integer to a decimal text string. This 
routine supports FORTRAN Iw and Iw.m output conversion. 

PROCEDURE arus$cvt_integer_to_text ( 
IN input_value : integer; 
OUT resultant_string: string (*); 
IN number_of_digits : integer OPTIONAL; 
IN options : arus$int_text options OPTIONAL; 
) RETURNS arus$status 
LINKAGE 

REFERENCE 
input_value, 
number_of_digits, 
options 
) 

DESCRIPTOR ( 
resultant_string 
) ; 

Application Run-Time Utility Services 1-59 



Digita~ Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

Para~eters: 

input_value 
res ultanCs tring 
number _of_digits 

options 

The input value to be converted to text. 

The resulting decimal ASCII text string. 

Minimum number of digits to be produced. If the actual number of significant digits is smaller, 
leading zeroes are produced. If number _of_digits is less than one, a blank field may result 
when the inpuCvalue equals zero. The default is 1. 

The following caller-supplied option is supported: 

Option Value Description 

arus$c_forceylus If set, a plus sign is forced for positive values. 

Routine arus$cvCinteger _to_text returns the unsuccessful status values listed in Table 1-50. 

Table 1-50: Status Values Returned from Routine arus$cvt integer to text 
Status Value 

arus$_outpuCconversion_ 
error 

Description 

Output conversion error. The result would have exceeded the size of the resultant 
string; resultanLstring is filled with asterisks. 

Routine arus$cvt_integer _to_text raises no conditions. 

1.7.1.3 Convert a Text String to an Integer Value 

The text-to-integer routines convert either a signed decimal text string, or an unsigned text string 
of a specified base, to an integer value. The unsigned text representation may be in binary, octal, 
decimal, or hexadecimal bases. The radix point is assumed at the right of the input string. 

The syntax of an input string for the text-to-integer routines is n where n expands as follows: 

Symbol Expansion 

n [+ I - J decimal_digit [decimal_digit...J 

The sign ([ + I - J) is only applicable in the conversion of a text string to a signed integer value. 
Blanks and tabs may appear at the beginning of the input string or they may be embedded in the 
string. 

1.7.1.3.1 The arus$cvt_text_to_longword Routine 

The routine arus$cvCtexCto_longword is used to convert an ASCII text string representation of an 
unsigned value to an unsigned integer value. 

1-60 Run-Time Utility Services 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

PROCEDURE arus$cvt_text_to_longword ( 

Parameters: 

input_string 
radix 
res ultant _val ue 
options 

IN input string: string (*); 
IN radix: arus$radix; 
OUT resultant_value: integer [O .. J; 
IN options : arus$text_int_options OPTIONAL; 
) RETURNS arus$status 
LINKAGE 

REFERENCE 
radix, 
resultant_value, 
options 
) 

DESCRIPTOR ( 
input_string 
) ; 

The input string to be converted. 

The base in which the text string is represented. 

The resulting unsigned integer value. On error, this value is set to O. 

The following caller-supplied options are supported: 

Option Value 

arus$c _ skip_blanks 

arus$c_skip_tabs 

Description 

If set, blanks are ignored. Otherwise, blanks are equiva
lent to zero. 

If set, tabs are ignored. Otherwise, tab characters are 
illegal. 

Routine arus$cvCtext_to_longword returns the unsuccessful status values listed in Table 1-51. 

Table 1-51: Status Values Returned from Routine arus$cvt text to Jongword 
Status Value Description 

Invalid radix value passed. arus $ _in valid_radix 
arus$'_in val id _character 
arus$'_overflow 

Invalid character in the input string. 

Overflow detected; unable to do conversion. 

Routine arus$cvt_text_to_longword raises no conditions. 

1.7.1.3.2 The arus$cvt_texLto_integer Routine 

The routine arus$cvt_text_to_integer is used to convert an ASCII text string representation of a 
decimal nunlber to a signed integer value. 

Application Run-Time Utility Services 1-61 



Digital Equipment Cor;-poration - Confidential and Proprietary 
For Internal Use Only 

PROCEDURE aru~~cvt text to integer ( 
'·IN input=st~ing : string (*); 

OUT resultant_value : integer; 

Parameters: 

inpuCstring 
resultant_value 
options 

IN options : arus$text int options OPTIONAL; 
) RETURNS arus$status - -
LINKAGE 

REFERENCE 
resultant_value, 
options 
) 

DESCRIPTOR ( 
input_string 
) ; 

The input string to be converted. 

The resulting signed integer value. On error, this value is set to O. 

The following caller-supplied options are supported: 

Option Value 

arus$c _ skip_blanks 

Description 

If set, blanks are ignored. Otherwise, blanks are equiva
lent to zero. 

If set, tabs are ignored. Otherwise, tab characters are 
illegal. 

Routine arus$cvt_texCto_integer returns the unsuccessful status values listed in Table 1-52. 

Table 1-52: Status Values Returned from Routine arus$cvt text to integer 
Status Value Description 

arus$_invalid_character 
arus$_o v erflow 

Invalid character in the input string. 

Overilow detected; unable to do conversion. 

Routine arus$cvt_text_to_integer raises no conditions. 

1.7.1.4 Convert a Numeric Text String to an F _floating or G_floating Value 

The text-to-floating-point routines convert a text string representation of a numeric value to an F_ 
floating or G_floating value. 

The text-to-floating-point routines convert a string representing the mathematical formula n 10m 

into a binary floating point value. The syntax for the string is [ n ][ m ], where nand m expand as 
follows: 

Symbol 

n 

letter 

Expansion 

[blank ... ] [ + I -] [decimaLdigit...] [.] [decimaLdigit...] 

[letter [blank ... ] [ + I -]] I [[ + I -] [decimal_digit...]] 

[EleIDldIQlq] 

There is no difference in semantics among any of the six valid exponent letters. 

1-62 Application Run-Time Utility Services 



Digital Equipment COfPoration - Confidential and Proprietary 
For Internal Use Only 

1.7.1.4.1 The arus$cvLtexLto_real Routine 

The routine arus$cvCtexcto_real converts a text string containing a representation of numeric value 
to an F _floating representation of that value. The routine supports FORTRAN F, E, D, and G input 
type conversion as well as similar types for other languages. 

PROCEDURE arus$cvt text to real ( 

Parameters: 

inpuCstring 
resultant_value 
digits_inJraction 

scaleJactor 

options 

extension_bits 

IN Input-st~ing : string (*); 
OUT resultant_value : real; 
IN digits_in_fraction: integer OPTIONAL; 
IN scale factor : integer OPTIONAL; 
IN optio~s : arus$text_float_options OPTIONAL; 
OUT extension bits : integer; OPTION~~; 
) RETURNS aru;$status 
LINKAGE 

REFERENCE 
resultant_value, 
digits_in_fraction, 
scale_factor, 
options, 
extension bits 

DESCRIPTOR ( 
input_string 
) ; 

The input string to be converted. 

The resulting F _floating value. 

If no decimal point is present in the input string, this specifies how many digits are to be 
treated as being to the right of the decimal point. If omitted, 0 is the default. 

Signed scale factor. If present, and exponent absent, the resulting value is divided by 
10**scaleJactor. If the arus$c_force_scale option is set, the scale factor is always applied. 

The following caller-supplied options are supported: 

Option Value 

arus$c_only_e 

arus$c_err_underflow 

arus$c_truncate 

arus$c _ exp _letter_required 

arus$c _ force_scale 

Description 

If set, blanks are ignored. Otherwise, blanks are equiva
lent to zero. 

If set, tabs are ignored. Otherwise, tab characters are 
illegal. 

If set, only E or e exponents are allowed. 

If set, underflow is an error. Otherwise, return zero. 

If set, truncate the value. 

If set, the exponent must begin with a valid exponent let
ter. If clear, the exponent letter may be omitted. 

If set, the scale factor is always applied. If ciear, it is only 
applied if there is no exponent present in the string. 

If present, the resultanCvalue is not rounded, regardless of the value of the arus$c_ 
truncate option, and the first 8 bits after truncation are returned in this argument. 

Application Run-Time Utility Services 1-63 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

Routine arus$cvCtext_to_real returns the unsuccessful status values listed in Table 1-53. 

Table 1-53: Status Values Returned from Routine arus$cvt text to real 
Status Value Description 

arus$_invalid_character 
arus $ _overflow 
arus$_underflow 

Invalid character encountered; unable to do conversion. 

Overflow detected; unable to do conversion. 

Underflow detected; unable to do conversion. 

Routine arus$cvCtext_to_real raises no conditions. 

1.7.1.4.2 The arus$cvt_texLto_double Routine 

The routine arus$cvt_texCto_double converts a text string containing a representation of a numeric 
value to a G_floating representation of that value. The routine supports FORTRAN F, E, D, and G 
input type conversion as well as similar types for other languages. 

PROCEDURE arus$cvt_text_to_double ( 

Parameters: 

input_string 
resultant_value 
digits_inJraction 

scaleJactor 

options 

1-64 

IN input_string: string (*); 
OUT resultant_value : double; 
IN digits_in_fraction : integer OPTIONAL; 
IN scale_factor: integer OPTIONAL; 
IN options : arus$text float_options OPTIONAL; 
OUT extension bits : integer; OPTIONAL; 
) RETURNS aru;$status 
LINKAGE 

REFERENCE 
resultant_v2lue, 
digits_in_fraction, 
scale_factor, 

+-' op .... J..ons, 
eztension bits 

DESCRIPTOR ( 
input string 
) ; 

The input string to be converted. 

The resulting G_floating value. 

If no decimal point is present in the input string, this specifies how many digits are to be 
treated as being to the right of the decimal point. If omitted, 0 is the default. 

Signed scale factor. If present, and exponent absent, the resulting value is divided by 
10**scaleJactor. If the arus$c_force_scale option is set, the scale factor is always applied. 

The following caller-supplied options are supported: 

Run-Time Utility Services 



Option Value 

arus$c _ sid p _ blanks 

arus$c _ skip_tabs 

arus$c_only_e 

arus$c_err_underflow 

arus$c_truncate 

Digital Equipment Corporation - Confidentjal and Proprietary 
For Internal Use Only 

"". 

Description 

If set, blanks are ignored. Otherwise, blanks are equiva
lent to zero. 

If set, tabs are ignored. Otherwise, tab characters are 
illegal. 

If set, only E or e exponents are allowed. 

If set, underflow is an error. Otherwise, return zero. 

If set, truncate the value. 

arus$c _ exp _Iette,-required If set, the exponent must begin with a valid exponent let
ter. If clear, the exponent letter may be omitted. 

arus$c _ force_scale If set, the scale factor is always applied. If ciear, it is only 
applied if there is no exponent present in the string. 

extension_bits If present, the resultanCvalue is not rounded regardless of the value of the arus$c_ 
truncate option, and the first 11 bits after truncation are returned in this argument. 

Routine arus$cvt_text_to_double returns the unsuccessful status values listed in Table 1-54. 

Table 1-54: Status Values Returned from Routine arus$cvt text to double 
Status Value Description 

arus $ _in val id_character 
arus$_overflow 
arus$_underflow 

Invalid character encountered; unable to do conversion. 

Overflow detected; unable to do conversion. 

Underflow detected; unable to do conversion. 

Routine arus$cvt_text_to_double raises no conditions. 

1.7.1.5 Convert an F _floating or G_floating Value to a Text String 

The floating-point-to-text routines convert an F _floating or G_floating value to a character string. The 
output string can take one of two forms; the form is deterrnined by the value of parameter options. 
One form is a fractional value, the other is a exponential (scientific notation). 

The syntax of the exponential resultant string is nm, where nand m expand as follows: 

Symbol Expansion 

n [+ I -] [decimal_digit...] [.J [decimaLdigit...] 

m E [ + I ] [decimaLdigit. .. ] 

The syntax of the fractional resultant string is n, where n expands as follows: 

Symbol Expansion 

n [+ I -] [decimal_digit...] [.J [decimal_digit...J 

Application Run-Time Utility Services 1-65 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

1.7.1.5.1 The arus$cvLreaLto_text Routine 

The routine arus$cvt_real_to_text converts an F _floating value to a numeric text representation. 

PROCEDURE arus$cvt_real_to_text ( 

Parameters: 

input_value 
resultanCstring 
scaleJactor 
digits_in_integer 
digits _inJraction 
digits_in_exponent 
options 

IN input_value : REAL; 
OUT resultant_string: STRING (*); 
IN scale_factor: integer OPTIONAL; 
IN digits_in_integer: integer OPTIONAL; 
IN digits in fraction : integer OPTIONAL; 
IN digits=in=exponent : integer OPTION~~; 
IN options : arus$float text options OPTIONAL; 
) RETURNS arus$status -
LINKAGE 

REFERENCE 
input_value, 
scale_factor, 
digits in_integer, 
digits_in_fraction, 
digits_in_exponent, 
options 
) 

DESCRIPTOR ( 
resultant string 
) ; 

The F _floating value to be converted. 

The resulting ASCII text string. 

The scale factor. 

The number of digits in the integer part of an exponentially formatted value. 

Maximum number of digits in the fraction portion. 

Minimum number of digits in the exponent field. 

The following caller-supplied options are supported: 

Option Value 

arus$c _force_exponential 

arus$c_forceylus_exponent 

Description 

If set, the text string is returned in exponential format. If 
clear, the text string is returned as a fraction. 

If set, a plus sign is forced for positive values. 

If set, a plus sign is forced for positive exponents when 
exponential form is being used. This flag is ignored if 
fractional format is being used. 

arus$c_suppress_trailing_zeroes If set, trailing zeroes are suppressed. 

Routine arus$cvt_reaCto_text returns the unsuccessful status values listed in Table 1-55. 

Table 1-55: Status Values Returned from Routine arus$cvt real to text 
Status Value Description 

arus$_outpucconversion_ 
error 
arus$_reserved_operand 

Output conversion error. The result would have exceeded the size of the resultant 
string; resultanLstring is filled with asterisks. 

Reserved operand fault. 

Routine arus$cvtJ'eal_to_text raises no conditions. 

1-66 Application RunbTime Utility Services 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

1.7.1.5.2 The arus$cvLdouble_to_text Routine 

The routine arus$cvCdouble_to_text converts a G_fioating value to a numeric text representation. 

PROCEDURE arus$cvt_double_to_text ( 

Parameters: 

input_value 
res ultanCs tring 
scaleJactor 
digits_in_integer 
digits _in-4fraction 
digits_in_exp0T'J:!nt 
options 

IN input_value : double; 
OUT resultant_string: string (*); 
IN scale factor : integer OPTIONAL; 
IN digit~_in_integer: integer OPTIONAL; 
IN digits_in_fraction: integer OPTIONAL; 
IN digits_in_exponent : integer OPTIONAL; 
IN options : arus$float text options OPTIONAL; 
) RETURNS arus$status - -
LINKAGE 

REFERENCE 
input_value, 
scale_factor, 
digits in_integer, 
digits in_fraction, 
digits in_exponent, 
options 
) 

DESCRIPTOR ( 
resultant_string 
) ; 

The G_floating value to be converted. 

The resulting ASCII text string. 

The scale factor. 

The number of digits in the integer part of an exponentially formatted value. 

Maximum number of digits in the fraction portion. 

Minimum number of digits in the exponent field. 

The following caller-supplied options are supported: 

Option Value 

arus$c_force_exponentiaf 

arus$c_forceyfus 

arus$c _force ylus _ exponent 

Description 

If set, the text string is returned in exponential format. If 
clear, the text string is returned as a fraction. 

If set, a plus sign is forced for positive values. 

If set, a plus sign is forced for positive exponents when 
exponential form is being used. This flag is ignored if 
fractional format is being used. 

arus$c_suppress_traifing_zeroes If set, trailing zeroes are suppressed. 

Routine arus$cvt_double_to_text returns the unsuccessful status values listed in Table 1-56. 

Status Value 

arus$_output_conversion_ 
error 
arus$_reserved_operand 

Description 

Output conversion error. The result would have exceeded the size of the resultant 
string; resultanLstring is filled with asterisks. 

Reserved operand fault. 

Routine arus$cvt_double_to_text raises no conditions. 

• ...... 'u ... ' .. Run-Time Utility Services 1-67 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

1.7.1.6 Convert a D_floating or G_floating Value to a G_floating or D_flq"ating Value 

The routines in this section are equivalent to the current VAX Math Run-Time Library routines 
MTH$CVT_D_G and MTH$CVT_G_D. See the VAXNMS documentation for more information. 

1.7.1.6.1 The arus$cvLg_fo_d Routine 

The routine arus$cvtJJ_to_d is used to convert a G_floating value to a D_floating value. 

PROCEDURE arus$cvt_g_to_d ( 

Parameters: 

input_value 
resultant_value 

IN input_value : double; 
OUT resultant value : quadword data; 
) RETURNS aru;$status -
LINKAGE 

REFERENCE 
input_value, 
resultant value 
) ; 

The G_floating value to be converted. 

The converted value in D_floating format. 

Routine arus$cvtJJ_to_d returns the unsuccessful status values listed in Table 1-57. 

Table 1-57: Status Values Returned from Routine arus$cvt g to d 
Status Value Description 

arus$_overflow 
arus $ _underflow 
arus$Jeserved_operand 

Floating-point overflow. 

Floating-point underflow. 

Reserved operand fault. 

Routine arus$cvt.g_to_d raises no conditions. 

1.7.1.6.2 The arus$cvLd_to_g Routine 

The routine arus$cvt_d_to.g is used to convert a D_floating value to a G_floating value. The resulting 
value is rounded. 

PROCEDURE arus$cvt_d_to_g ( 

Parameters: 

input_value 
resultant_val ue 

IN input_value : quadword data; 
OUT resultant value : double; 
) RETURNS arus$status 
LINKAGE 

REFERENCE 
input_value, 
resultant value 
) ; 

The D_floating value to be converted. 

The converted value in G_floating format. 

1-68 Application Run-Time Utility Services 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

Routine arus$cvCd_to.g returns the unsuccessful status values listed in Table 1-58. 

Table 1-58: Status Values Returned from Routine arus$cvt d to 9 
Status Value Description 

arus$_reserved_operand Reserved operand fault. 

Routine arus$cvt_d_to.g raises no conditions. 

1.7.1.7 Convert an F _floating or G_floating Value to ASCII Digits and Exponent Strings 

The floating-point-to-scaled-string conversion routines convert an F _floating or G_floating value to 
a pair of character strings. They are intended to be used as core routines for formats not directly 
provided by other ARUS data conversion and formatting routines. 

One output string (the digits string) contains the significant digits of the value, with no decimal point 
at all. The other string (the exponent string) contains the exponent associated with the value if the 
digits string is interpreted as a number between zero and one. There is also a third output from the 
routine, the scale factor to be applied to the digits string to obtain the real value. This is always the 
binary equivalent of the exponent string. See Table 1-59 for some examples. 

Table 1-59: Examples of Routines arus$cvLreaLto_scaled_fexfand arus$cvt_doubh~_to_scaled_ 
text 

Input Value 

2.34 

0.00067891 

-320000 

digits_string 

"234" 

"67891" 

"-32" 

exponenL string 

"1 " 

"_3" -3 

6 

1.7.1.7.1 The arus$cvt_reaLto_scaled_text Routine 

The routine arus$cvt_reaCto_scaled_text is used to convert an F _floating value to a string of ASCII 
digits, an exponent string, and a scale factor. 

PROCEDURE arus$cvt_real_to_scale~text ( 
IN input_value : real; 

Parameters: 

OUT digits string: string (*); 
OUT expone;t_string : string (*); 
OUT scale factor : integer; 
IN optio;s : arus$float_scaled_text_options OPTIONAL; 
) RETURNS arus$status 
LINKAGE 

REFERENCE 
input_value, 
scale_factor, 
options 
) 

DESCRIPTOR ( 
digits_string, 
e:--:ponent_string 
) ; 

Application Run·Time Utility Services 1-69 



Digital Equipment Corpora~ion - Confidential and Proprietary 
For Internal Use Only 

input_value 
digits _string 
exponenCstring 
scaleJactor 
options 

The'·.F _floating value to be converted. 

Text string containing the converted significant digits. 

Text string containing the converted exponent value. 

The scale factor. 

The following caller-supplied options are supported: 

Option Value Description 

arus$c _force ylus If set, a plus sign is forced for positive values. 

arus$c _ force_plus_exponent If set, a plus sign is forced for positive exponents. 

Routine arus$cvt_real_to_scaled_text returns the unsuccessful status values listed in Table 1-60. 

Table 1-60: Status Values Returned from Routine arus$cvt real to scaled text 
Status Value Description 

arus$_outpuCconversion_ 
error 

Output conversion error. The result would have exceeded the size of the resultant 
string; resultanLstring is filled with asterisks. 

arus$_reserved_operand Reserved operand fault. 

Routine arus$cvt_reaCto_scaled_text raises no conditions. 

1.7.1.7.2 The arus$cvLdouble_to_scaled_text Routine 

The routine arus$cvCdouble_to_scaled_text is used to convert a G_floating value to a string of ASCII 
digits, an exponent string, and a scale factor. 

PROCEDURE arus$cvt_double_to_scaled_text 
IN input_value : double; 

Parameters: 

OUT digits_string: string (*); 
OUT exponent_string : string (*); 
OUT scale factor : integer; 
IN optio~s : arus$float_scaled_text_options OPTIONAL; 
) RETURNS arus$status 
LINKAGE 

REFERENCE 
input_value, 
scale_factor, 
options 
) 

DESCRIPTOR ( 
digits_string, 
exponent_string 
) ; 

1-70 Application Run-Time Utility Services 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

inpuCvalue 
digits _string 
exponenCstring 
scaleJactor 
options 

" The G_floating value to be converted. 

Text string containing the converted significant digits. 

Text string containing the converted exponent value. 

The scale factor. 

The following caller-supplied options are supported: 

Option Value Description 

arus$c _force_plus If set, a plus sign is forced for positive values. 

arus$c _force ylus _ exponent If set, a plus sign is forced for positive exponents. 

Routine arus$cvt_double_to_scaled_text returns the unsuccessful status values listed in Table 1-61. 

Table 1-61: Status Values Returned from Routine arus$cvt double to scaled text 
Status Va.lue Description 

arus$_outpuCconversion_ 
error 

Output conversion error. The result would have exceeded the size of the resultant 
string; resultanLstring is filled with asterisks. 

arus$_reserved_operand Reserved operand fault. 

Routine arus$cvCdouble_to_scaled_text raises no conditions. 

1.7.1.8 Convert an Integer and Scale Factor to a Text String 

The integer-and-scale-factor-to-text conversion routines convert an integer value and scale factor to 
a character string. The output string can take one of two forms; the form is determined by the value 
of parameter options. One fonn is a fractional value, the other is a exponential (scientific notation). 

The syntax of the exponential resultant string is nm, where nand m expand as follows: 

Symbol 

n 

m 

Expansion 

[+ I -] [decimal_digit...] [.J [decimaLdigit...] 

E [ + I - J [decimal_digit...] 

The syntax of the fractional resultant string is n, where n expands as follows: 

Symbol Expansion 

n [ + I ] [decimal_digit...] [.J [decimal_digit...J 

1.7.1.8.1 The arus$cvt_integer_to_reattext Routine 

The arus$cvt_integer _to_real_text routine converts a scaled integer value to a character representation 
of a real val ue. 

Application Run-Time Utility Services 1-71 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

PROCEDURE arus$cvt _ integer_to _ real_text (l". 

Parameters: 

integer _value 
scaleJactor 
resultanCstring 
options 

IN integer_value : integer; 
IN scale_factor: integer; 
OUT resultant string: string (*); 
IN options :-arus$int_real text_options OPTIONAL; 
) RETURNS arus$status 
LINKAGE 

REFERENCE 
integer_value, 
scale factor 

DESCRIPTOR ( 
resultant_string 
) ; 

/\n integer value. 

The scale factor. 

The resulting text string. 

The following caller-supplied options are supported: 

Option Value 

arus$c _ force_exponential 

arus$c _force -plus 

Description 

If set, the text string is returned in exponential format. If 
clear, the text string is returned as a fraction. 

If set, a plus sign is forced for positive values. 

arus$c_suppress_trailing_zeroes If set, trailing zeroes are suppressed. 

Routine arus$cvt_integer _to_real_text returns the unsuccessful status values listed in Table 1-60. 

Table 1-62: Status Values Returned from Routine arus$cvt integer to real text 
Status Value Description 

arus$_outpuCconversion_ 
error 

Output conversion error. The result would have exceeded the size of the resultant 
string; resultanLstring is filled with asterisks. 

Routine arus$cvt_integer _to_real_text raises no conditions. 

1.7.1.9 International Data Conversion and Formatting Routines 

The following set of routines supports digit separators and radix point symbols other than the default, 
United States, symbols. 

A context variable is used to store the information to avoid the overhead of translating the symbols 
every time. If the context variable is omitted or is NIL, the routjne attempts to translate the symbols. 
The input and output, as well as the accepted values for the options arguments are unique for each 
international routine. 

1-72 Run-Time Utility Services 



Digital Equipment Corporation - Confid~ntial and Proprietary 
For Internal Use Only 

1.7.1.9.1 The arus$cvLinteger_to_formaLtext Routine 

The arus$cvt_integer _toJormat_text routine converts a signed integer to a decimal ASCII text string 
with optional, user-defined, digit-separator support. The default digit-separator syrnbol is a comma 
(, ). 

The syntax of the resultant string is n, where n expands as follows: 

Symbol Expansion 

n [+ I -] [decimal_digit...J [digit_separator] [decimal_digit...J 

The declaration of routine arus$cvt_integer _toJornwt_text is as follows: 

PROCEDURE arus$cvt_integer_to_format_text ( 
IN input_value : integer; 

Parameters: 

input_value 
resultant_string 
number _of_digits 

options 

context 

OUT resultant_string: string (*); 
IN number of digits : integer OPTIONAL; 
IN option; ~ arus$int_format_text_options OPTIONAL; 
IN OUT context : arus$context OPTIONAL 
) RETURNS arus$status 
LINKAGE 

REFERENCE 
input value, 
number of digits, 
options, 
context 

DESCRIPTOR ( 
resultant_string 
) ; 

The input value to be converted to text. 

The resulting decimal ASCII text string. 

Minimum number of digits to be produced. If the actual number of significant digits is smaller, 
leading zeroes are produced. If number _of_digits is zero, a blank field results. The default 
is 1. 

The following caller-supplied option is supported: 

Option Value Description 

If set, a plus sign is forced for positive values. 

Context variable that retains the translation context over multiple calls to the conversion 
routines with international digit separator and radix support. This variable is initialized to NIL 
by the caller before the first call to the international conversion routines. 

Routine arus$cvCinteger _toJormaCtext returns the unsuccessful status values listed in Table 1-50. 

Table 1-63: Status Values Returned from Routine arus$cvt integer to format text 
Status Value Description 

arus$_outpuCconversion_ 
error 

Output conversion error. The result would have exceeded the size of the resultant 
string; resultanLstring is filled with asterisks. 

Routine arus$cvt_integer _toJormat_text raises no conditions. 

Application RunNTime Utility Services 1-73 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

1.7.1.9.2 The arus$cvCformaCtexCto_integer Routine 

The routine arus$cvtJormat_text_to_integer is used to convert an ASCII text string representation 
of a decimal number to a signed integer value. The text string representation may contain digit 
separators; they are ignored. The user can select the character used for the digit separator; the 
default digit separator is a comma (,). 

The syntax of a valid input string is n, where n expands as follows: 

Symbol Expansion 

n [+ I -] [decimal_digit...J [digit_separator] [decimal_digit...] 

The declaration of routine arus$cvtJormaCtexCto_integer is as follows: 

PROCEDURE arus$cvt format text to integer ( 
IN input_string-: string (*); 
OUT resultant_value : integer; 

Parameters: 

resultant_value 
options 

context 

IN options : arus$format_text_int options OPTIONAL; 
IN OUT context : arus$context OPTIONAL; 
) RETURNS arus$status 
LINKAGE 

REFERENCE 
resultant_value, 
options, 
context 

DESCRIPTOR ( 
input_string 
) ; 

The input string containing the string representation of a signed decimal value to be con
verted. 

The resulting signed integer value. 

The following caller-supplied options are supported: 

Option Value 

arus$c _ skip_blanks 

arus$c_skip_tabs 

Description 

If set, blanks are ignored. Otherwise, blanks are equiva
lent to zero. 

If set, tab characters are ignored. Otherwise, tab charac
ters are illegal. 

Context variable that retains the translation context over multiple calls to the conversion 
routines with international digit separator and radix support. This variable is initialized to NIL 
by the caller before the first call to the international conversion routines. 

Routine arus$cvtJormat_text_to_integer returns the unsuccessful status values listed in Table 1-64. 

Table 1-64: Status Values Returned from Routine arus$cvt format text to integer 
Status Value Description 

arus$_invalid_character 
arus$_overflow 

Invalid character encountered; unable to do conversion. 

Overflow detected; unable to do conversion. 

Routine arus$cvtJormat_text_to_integer raises no conditions. 

1-74 Application Run-Time Utility Services 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

1.7.1.9.3 The arus$cvt real to format i,text Routine - - -:- -' .. 

The arus$cvCreal_toJormaCtext' routine converts an F _floating value to a character string, and 
allows the user to specify a radix point other than the default United States radix point, the period 
(.). The output string can take one of two forms; the form is determined by the value of parameter 
options. One form is a fractional value, the other is a exponential (scientific notation). 

The syntax of the exponential resultant string is nm, where nand m expand as follows: 

Symbol 

n 

rn 

Expansion 

[+ I -] [decimal_digit...] [.] [decimal_digit...] 

E [ + I -] [decimal_digit. .. ] 

The syntax of the fractional resultant string is n, where n expands as follows: 

Symbol Expansion 

n [+ I -] [decimal_digit...] [.] [decimal_digit...] 

The declaration of routine arus$cvt_reaCtoJormaCtext is as follows: 

PROCEDURE arus$cvt_real_to_format_text ( 
IN input_value : real; 

Parameters: 

OUT resultant_string: string (*); 
IN scale_factor: integer OPTIONAL; 
IN digits in fraction : integer OPTIONAL; 
IN option; :-arus$real format text options OPTIONAL; 
IN OUT context : arus$c~ntext OPTIONAL; 
) RETURNS arus$status 
LINKAGE 

REFERENCE 
input_value, 
scale_factor, 
digits_in fraction, 
options, 
context 

DESCRIPTOR ( 
resultant string 
) ; 

Application Run-Time Utility Services 1-75 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

inpuCualue 
resultant_string 
scaleJactor 
digits_inJraction 
options 

context 

The F _floating value to be converted. 

The resulting ASCII text string. 

The scale factor. 

Minimum number of digits in the fraction portion. 

The following caller-supplied options are supported: 

Option Value 

arus$c _force_exponential 

arus$c_forceylus 

arus$c _force ylus _ exponent 

Description 

If set, the text string is returned in exponential format. If 
clear, the text string is returned as a fraction. 

If set, a plus sign is forced tor positive values. 

If set, a plus sign is forced for positive exponents. 

arus$c_suppress_trailing_zeroes If set, trailing zeroes are suppressed. 

Context variable that retains the translation context over multiple calls to the conversion 
routines with international digit separator and radix support. This variable is initialized to NIL 
by the caller before the first call to the international conversion routines. 

Routine arus$cuCreaCtoJormaCtext returns the unsuccessful status values listed in Table 1-65. 

Table 1-65: Status Values Returned from Routine arus$cvt real to format text 
Status Value Description 

arus$_outpuCconuersion_ 
error 

Output conversion error. The result would have exceeded the size of the resultant 
string; resultanLstring is filled with asterisks. 

arus$_reserued_operand Reserved operand fault. 

Routine arus$cut_reaCtoJormaCtext raises no conditions. 

1.7.1.9.4 The arus$cvt_double_to_formaLtext Routine 

The arus$cuCdouble_toJormat_text routine converts a G_fioating value to a character string, and 
allows the user to specify a radix point other than the default United States radix point, the period 
(.). The output string can take one of two forms; the form is determined by the value of parameter 
options. One form is a fractional value, the other is a exponential (scientific notation). 

The syntax of the exponential resultant string is nm, where nand m expand as follows: 

Symbol Expansion 

n [+ I ] [decimaLdigit...] [.] [decimal_digit. .. ] 

m E [ + I -] [decimal_digit...] 

The syntax of the fractional resultant string is n, where n expands as follows: 

Symbol Expansion 

n [+ I -] [decimal_digit ... ) [.] [decimal_digit...] 

The declaration of routine arus$cut_double_toJormat_text is as follows: 

1-76 Run-Time Utility Services 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

PROCEDURE arus$cv( double to format text ( 
IN'input_v~lu; : double; 

Parameters: 

input_value 
resultant_string 
scaleJactor 
digits_inJraction 
options 

context 

OUT resultant_string: string (*); 
IN scale_factor: integer OPTIONAL; 
IN digits_in_fraction : integer OPTIONAL; 
IN options : arus$real format text options OPTIONAL; 
IN OUT context : arus$c;ntext OPTIONAL; 
) RETURNS arus$status 
LINKAGE 

REFERENCE 
input_value, 
scale_factor, 
digits_in fraction, 
options, 
context 

DESCRIPTOR ( 
resultant string 
) ; 

The G_floating value to be converted. 

The reSUlting ASCII text string. 

The scale factor. 

Minimum number of digits in the fraction portion. 

The following caller-supplied options are supported: 

Option Value 

arus$c_force_exponential 

arus$c _ force ylus 

arus$c_forceylus_exponent 

Description 

If set, the text string is returned in exponential format. If 
clear, the text string is returned as a fraction. 

If set, a plus sign is forced for positive values. 

If set, a plus sign is forced for positive exponents. 

arus$c_suppress_trailing_zeroes If set, trailing zeroes are suppressed. 

Context variable that retains the translation context over mUltiple calls to the conversion 
routines with international digit separator and radix support. This variable is initialized to NIL 
by the caller before the first call to the international conversion routines. 

Routine arus$cvt_double_toJormaCtext returns the unsuccessful status values listed in Table 1-66. 

Table 1-66: Status Values Returned from Routine arus$cvt double to format text 
Status Value Description 

arus$ _outpuCconversion_ 
error 
arus$_reserved_operand 

Output conversion error. The result would have exceeded the size of the resultant 
string; resultanlstring is filled with asterisks. 

Reserved operand fault. 

Routine arus$cuCdouble_toJormaCtext raises no conditions. 

Application Run-Time Utility Services 1-77 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

1.7.1.9.5 The arus$cvCformaCtexCfo_real Routine 

The arus$cvtJormaCtext_to_real routine converts an ASCII text string representation of a numeric 
value to an F _floating value, and allows the user to specify a radix point other than the default 
United States radix point, the period ( . ). 

This routine and the related routine, arus$cvtJormaCtext_to_double, convert a string representing 
the mathematical formula nlOm into a binary floating-point value. The syntax for the string is 
[ n ][ m ], where nand m expand as follows: 

Symbol Expansion 

n [blank ... ] [ + I - J [decimal_digit...] [radix_point] [decimal_digit. .. ] 

m [letter [blank ... ] [ + I -]] I [[ + I ] [decimaLdigit...]] 

letter [EleIDldIQlq] 

There is no difference in semantics among any of the six valid exponent letters. 

The declaration of routine arus$cvtJormaCtext_to_real is as follows: 

PROCEDURE arus$cvt_forrnat_text_to_real ( 

Parameters: 

IN input_string: string (*); 
OUT resultant value : real; 
IN digits in=fraction : integer OPTIONAL; 
IN scale_factor: integer OPTIONAL; 
IN options : arus$forrnat_text_real_options OPTIONAL; 
OUT extension bits : integer; OPTIONAL; 
IN OUT context : arus$context OPTIONAL; 
) RETURNS arus$status 
LINKAGE 

REFERENCE 
resultant_value, 
digits in fraction, 
scale_factor, 
options, 
extension_bits, 
context 

DESCRIPTOR ( 
input_string 
) ; 

1-78 Application Run-Time Utility Services 



input_string 
resultant_value 
digits _inJraction 
scaleJactor 
options 

extension_bits 

context 

Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

The input string containing the string representation of a numeric value to be converted. 

The resulting F _floating value. 

Number of digits in the fraction if no decimal point is included in the input string. 

The scale factor. 

The following caller-supplied options are supported: 

Option Value 

arus$c_skjp_tabs 

arus$c_only_e 

arus$c_err_underflow 

arus$c_truncate 

arus$c _ exp _letter_required 

arus$c_transla te_sym boIs 

Description 

If set, blanks are ignored. Otherwise, blanks are equiva
lent to zero. 

If set, tabs are ignored. Otherwise, tab characters are 
illegal. 

If set, only E or e exponents are allowed. 

If set, underflow is an error. 

If set, do not round value. 

If set, the exponent must begin with a valid exponent let
ter. If clear, the exponent letter may be omitted. 

If set, the scale factor is always applied. If clear, it is only 
applied if there is no exponent present in the string. 

If set, the routine does a translation of the digit separator 
and radix point regardless of the context value. 

If present, the resultanCvalue is not rounded regardless of the value of the arus$c_ 
truncate option, and the first 8 bits after truncation are returned in this argument. 

Context variable that retains the translation context over mUltiple calls to the conversion 
routines with international digit separator and radix support. This variable is initialized to NIL 
by the caller before the first call to the international conversion routines. 

Routine arus$cvtJormat_text_to_real returns the unsuccessful status values listed in Table 1-67. 

Status Value 

arus$_invalid_character 
arus$_overflow 
arus$_underflow 

Description 

Invalid character encountered; unable to do conversion. 

Overflow detected; unable to do conversion. 

Underflow detected; unable to do conversion. 

Routine arus$cvtJormat_text_to_real raises no conditions. 

1.7.1.9.6 The arus$cvLformaLtexCto_doubJe Routine 

The arus$cvtJormatjext_to_real routine converts an ASCII text string representation of a numeric 
value to a G_floating value, and allows the user to specify a radix point other than the default United 
States radix point, the period ( . ). 

This routine converts a string representing the mathematical formula nlOm into a binary floating
point value. The syntax for the string is [ n J[ m ], where nand m expand as follows: 

Application Run-Time Utility Services 1-79 



Digita! Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

Symbol Expansion 

n 

m 

letter 

[blank ... ] [ + I -] [decimaLdigit...] [radix_point] [decimal_digit. .. ] 

[letter [blank ... ] [ + I -]] I [[ + , -] [decimal_digit...]] 

[EleIDldIQlq] 

There is no difference in semantics among any of the six valid exponent letters. 

The declaration of routine arus$cvtJormaCtext_to_real is as follows: 

PROCEDURE arus$cvt_format_text_to_double ( 
IN input_string: string (*); 
OUT resultant_value : double; 

Parameters: 

inpuCstring 
resultant_value 
digits_inJraction 

scaleJactor 
options 

1-80 

IN digits_in_fraction: integer OPTIONAL; 
IN scale factor : integer OPTIONAL; 
IN optio~s : arus$format_text_real_options OPTIONAL; 
OUT extension_bits : integer; OPTIONP~; 
IN OUT context : arus$context OPTIONP.L; 
) RETURNS arus$status 
LINKAGE 

REFERENCE 
resultant_value, 
digits_in_fraction, 
scale_factor, 
options, 
extension_bits, 
context 

DESCRIPTOR ( 
input_string 
) ; 

The input string containing the string representation of a numeric value to be converted. 

The resulting G_floating value. 

Number of digits in the fraction if no decimal point is included in the input string. 

The scale factor. 

The following caller-supplied options are supported: 

Run-Time Utility Services 



context 

Option Value 

arus$c_sfdp_tabs 

arus$c_only_e 

arus$c _ err_underflow 

arus$c_truncate 

Digital Equipment Corporation - Confidentiali and Proprietary 
For Internal Use Only 

Description 

If set, blanks are ignored. Otherwise, blanks are equiva
lent to zero. 

If set, tabs are ignored. Otherwise, tab characters are 
illegal. 

If set, only E or e exponents are allowed. 

If set, underflow is an error. 

If set, do not round value. 

arus$c _ exp_letter_required If set, the exponent must begin with a valid exponent let
ter. If clear, the exponent letter may be omitted. 

arus$c _force_scale 

arus$c_translate_symbols 

If set, the scale factor is always applied. If clear, it is only 
applied if there is no exponent present in the string. 

If set, the routine does a translation of the digit separator 
and radix point regardless of the context value. 

If present, the resultanCualue is not rounded regardless of the value of the arus$c_ 
truncate option, and the first 11 bits after truncation are returned in this argument. 

Context variable that retains the translation context over mUltiple calls to the conversion 
routines with international digit iJarator and radix support. This variable is initialized to NIL 
by the caller before the first cali to the international conversion routines. 

Routine arus$cutJormat_texCto_double returns the unsuccessful status values listed in Table 1-68. 

Table 1-68: Status Values Returned from Routine arus$cvt format text to double 
Status Value Description 

arus$_inualid_character 
arus$_ouerflow 

Invalid character encountered; unable to do conversion. 

Overflow detected; unable to do conversion. 

Routine arus$cutJormat_text_to_double raises no conditions. 

Application Run-Time Utility Services 1-81 



GLOSSARY 

AlA: Application Integration Architecture 

ARUS: Application Run-Time Utility Services 

CMA: Common Multithread Architecture 

PSM: Print System Model 

Glossary-1 



Overview, 1-1 to 1-7 

Index-1 



Digital Equipment Corporation - Confidential and Proprietary 

For Internal Use Only 

Mica Working Design Document 
Application Run-Time Utility Services 

Revision 0.6 \ 
5-Apri 1-1988 

Issued by: 

AI Simons 

Idl i 191 i Itlalll ™ 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

1.9 Environment Attribute Routines 

An environment attribute is a named entity with one or more string values associated with it. It 
serves the same purpose that a logical name does on VAX!VMS, and that an environment variable 
does on an ULTRIX system. 

Environment attributes have a number of associated characteristics. Those characteristics are as 
follows: 

• Environment attributes may be shared or private. 

• Environment attributes may be secure or insecure. A user must have special privileges to read 
secure environment attributes, whereas an insecure environment attribute can be read by any 
user. 

An example of an insecure environment attribute on VAX!VMS is the logical name SYS$SYSTEM; 
anyone on the system can determine the string value associated with that environment attribute. 

• Environment attributes may be trustworthy or untrustworthy. A user must have special priv
ileges to modify a trustworthy environment attribute, whereas an untrustworthy environment 
attribute can be modified by any number of users. 

The EXEC mode translation ofVAX!VMS logical SYS$SYSTEM, though insecure, is trustworthy; 
a user needs the SYSNAM privilege to modify it. 

• Environment attributes may be temporary or permanent. They are permanent, by default. 

Temporary attributes may be created only in a private domain. (See the discussion of domains 
in Section 1.9.1.) Temporary attributes are automatically destroyed at the termination of the 
program. It is legal to create a temporary environment attribute in the same domain as a 
permanent environment attribute of the same name. In this case, the permanent attribute is 
hidden for the duration of the program, but it is not destroyed or modified in any way. It becomes 
accessible again when the temporary attribute is destroyed. 

The ARUS routines described in this section provide a means to examine and manipulate environment 
attributes. The intent of these routines is to build on underlying system services when the operating 
system provides adequate support, such as that provided by VAX!VMS logical names. When neces
sary, however, the ARUS routines will be more extensive, providing the entire environment attribute 
facility when the underlying system's support is nonexistent or inadequate. 

\ We will eventually provide this entire interface on ULTRIX systems. However, because ULTRIX 
falls into the second category (inadequate underlying support), and because the time until FLINT 
FRS is so short, it is unlikely that full support will be available by FLINT FRS. The minimum we 
will provide is a direct mapping onto environment attributes. This, of course, provides no sharing of 
attributes or trustworthiness characteristics. \ 

\Future enhancements to these routines may allow for network-wide "environments," through use 
of the DECnet Name Server or other name services. For now, however, the scope of these routines 
is the system, for shared attributes, and the process, for private attributes. In a client and server 
environment, the environment will be the distributed environment of the client and server pair. \ 

\ The concept of secure attributes poses several problems. We would like to have a single method for 
specifying the security characteristics, but that involves posing a single security model across several 
systems with differing underlying security mechanisms. I think that it is a needed feature, but I 
am not sure if it is even possible. I would appreciate any comments, but especially any dealing with 
these issues: 

• Are secure attributes necessary at the ARUS level for FRS? Ever? 

• Is attempting to build a secure package that has a uniform interface/model across several systems 
the proper venue of an RTL? 

1-2 Application Run-Time Utility Services 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

• Is it possible? 

\ 

1.9.1 Environment Attribute Domains 

Environment attributes are defined within an environment attribute domain. This allows a par
titioning of the name space to avoid attribute name collisions; it also allows control of attribute 
characteristics, particularly sharing, security and trustworthiness. A domain is either private to the 
process (in the VAXlVMS sense) or it is shared. Shared domains can be accessed by other processes 
on the system, subject to the protection of the domain. 

The model for environment attribute domains is logical name tables on VAXlVMS. We believe that 
they are very powerful and flexible, and suitable as the model to be used on other systems. 

\ We depart from this model a bit in the interests of simplicity and portability. In the VMS logical 
name table model, a logical name table specification can itself be a multiply-valued logical name, and 
each table is searched in turn. In these routines, we require the domain specification to really be a 
domain. Note that the application writer can still trivially do the multidomain lookup with repeated 
calls. 

Is this a reasonable simplification, or should that capability be built into the AR US routines on all 
systems?\ 

1.9.2 Functional Interface and Description 

The following sections describe the various routines associated with environment attributes. 

1.9.2.1 Types Used 

TYPE 
arus$env_att num chars : ( 

arus$c_number_of_values, 
arus$c_is_trustworthy 
) ; 

arus$env att string chars : ( 
arus$c_c~ntaini~g_domain 
) ; 

arus$env_att_re~chars_type 

arus$c_only_trustworthy 
) ; 

arus$env att required chars 
SET [aru;$env_att=req_chars_type]; 

arus$env att create opt type : ( 
arus$c t~ustworthy,
arus$c=temporary 
) ; 

arus$env_att_create_options 
SET [arus$env_att_create_opt_type]; 

arus$cre_env_att_dom_opt_type : ( 
arus$c trustworthy dom, 
arus$c~rivate_dom-
) ; 

arus$cre env att dom options 
SET [aru;$cr;_en;_att_dom_opt_type]; 

Application Run-Time Utility Services 1-3 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

1.9.2.2 Obtaining Environment Attribute Values 

The most common operation performed on environment attributes is determining the value of an 
attribute. On VAXlVMS, this is similar to translating a logical name; indeed, the routines in this 
section might be implemented on VAXlVMS by translating logical names. 

Because environment attributes are multiply valued, there are several routines. Routine arus$get_ 
env _attribute_num_char obtains various numeric characteristics of the specified attribute, among 
them the number of values associated with it; routine arus$get_env_attribute_str _char obtains string
valued characteristics, notably the domain in which the attribute is defined; routine arus$get_env_ 
attribute_value returns one of the values associated with the environment attribute. 

1.9.2.2.1 The arus$geCenv_attribute_num_char Routine 

This routine is used to inquire about one of the numeric characteristics of the specified environment 
attribute. 

PROCEDURE arus$get env attribute num char : ( 
IN attribute :-string (*); - -
IN desired characteristic : arus$env att num chars; 
OUT characteristic_value : integer; - - -
IN attribute domain : string (*) OPTIONAL; 
) RETURNS ar~s$status 
LINKAGE 

Parameters: 

REFERENCE ( 
desired_characteristic, 
characteristic value 

DESCRIPTOR ( 
attribute, 
attribute domain 
) ; 

attribute The name of the attribute whose characteristics are to be examined. 

desired_characteristic The characteristic whose value is to be returned. This parameter may take the following 
values: 

characteristic _value 

attribute_domain 

Characteristic Value Description 

arus$c_number _of_values Specifies that the number of values associated with the en
vironment attribute is to be returned. 

arus$c_is_trustworthy Specifies that the routine should return a value indicating 
whether or not the environment attribute is trustworthy. 

The value of the characteristic specified in parameter desired_characteristic. This value 
is interpreted based on desired_characteristic as follows: 

Characteristic Value Description 

arus$c_number _of_values The number of values associated with the environment at
tribute. 

arus$c_trustworthy The value -1 if the environment attribute is trustworthy, the 
value 0 if it is not. 

The name of the attribute domain to be searched for the specified attribute. If omitted, this 
parameter defaults to an implementation-specific default domain. 

1-4 Application Run-Time Utility Services 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

Routine arus$geCenv_attribute_num_char returns the unsuccessful status values listed in Table 1-1. 

Table 1-1: Status Values Returned from Routine arus$get env attribute num char 
Status Value Description 

The attribute domain specified for the environment attribute lookup does not exist, 
or the domain is secure and the user does not have the right to look in the domain. 
Note that in such a case, the routine does not disclose the existence of the domain. 

The attribute specified for the lookup does not exist, or the attribute is secure and 
the user does not have the right to look at it. Note that in such a case, the routine 
does not disclose the existence of the attribute. 

1.9.2.2.2 The arus$geCenv_attribute_str_char Routine 

This routine is used to inquire about one of the string-valued characteristics of the specified environ
ment attribute. 

PROCEDURE arus$get_env_attribute_str_char : ( 
IN attribute: string (*); 
IN desired_characteristic : arus$env_att_string_chars; 
OUT characteristic_value: string (*); 
IN attribute domain : string (*) OPTIONAL; 
) RETURNS ar;s$status 
LINKAGE 

REFERENCE ( 
desired_characteristic, 

DESCRIPTOR ( 
attribute, 
characteristic_value, 
attribute domain 
) ; 

Parameters: 

attribute 
des ired_characteristic 

characteristic _value 

attribute_domain 

The name of the attribute whose characteristics are to be examined. 

The characteristic whose value is to be returned. This parameter may take the 
following values: 

Characteristic Value Description 

arus$c_containing_domairSpecifies that the name of the domain in which the 
environment attribute is found is to be returned. 

The value of the characteristic specified in parameter desired_characteristic. 
This value is interpreted based on desired_characteristic as follows: 

Characteristic Value Description 

arus$c_containing_domainThe name of the domain in which the environment 
attribute is found. 

The name of the attribute domain to be searched for the specified attribute. If 
omitted, this parameter defaults to an implementation-specific default domain. 

Application Run-Time Utility Services 1-5 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

Routine arus$get_env_attribute_str _char returns the unsuccessful status values listed in Table 1-2. 

Table 1-2: Status Values Returned from Routine arus$get env attribute str char 
Status Value Description 

The attribute domain specified for the environment attribute lookup does not exist, 
or the domain is secure and the user does not have the right to look in the domain. 
Note that in such a case, the routine does not disclose the existence of the domain. 

The attribute specified for the lookup does not exist, or the attribute is secure and 
the user does not have the right to look at it. Note that in such a case, the routine 
does not disclose the existence of the attribute. 

1.9.2.2.3 The arus$geCenv_attribute_ value routine 

Routine arus$geCenv_attribute_value is used to actually retrieve one of the possibly numerous values 
associated with an environment attribute. 

PROCEDURE arus$get_env_attribute_value : ( 
IN attribute : string (*); 
IN index : integer; 
OUT value : string (*); 
IN attribute_domain : string (*) OPTIONAL; 
IN required characteristics : arus$env_att_required_chars OPTIONAL; 
) RETURNS arus$status 
LINKAGE 

REFERENCE ( 
index, 
required_characteristics 
) 

DESCRIPTOR ( 
attribute, 
value, 
attribute domain 
) ; 

Parameters: 

attribute 
index 

value 

attribute_domain 

The attribute whose value is to be returned. 

Selects which of potentially several values is to be returned. Environment attribute values 
are one based, that is, an index argument on 1 causes the first value in the list to be 
returned, 2 causes the second to be returned, and so on. 

The actual value returned. If the routine completed unsuccessfully, the null string is re-
turned. 

The name of the attribute domain to be searched for the specified attribute. If omitted, this 
parameter defaults to an implementation-specific default domain. 

required_characteristicsThe characteristics that must be associated with an environment attribute for the lookup 
to be successful. The possible characteristics are: 

Characteristic Value Description 

arus$c_only _trustworthy The environment attribute must be trustworthy. 

If this argument is omitted, the lookup is made without regard to characteristics. 

1-6 Application Run-Time Utility Services 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

Routine arus$geCenv_attribute_value returns the unsuccessful status values listed in Table 1-3. 

Table 1-3: Status Values Returned from Routine arus$get env attribute value 
Status Value Description 

The attribute domain specified for the environment attribute lookup does not exist, 
or the domain is secure and the user does not have the right to look in the domain. 
Note that in such a case, the routine does not disclose the existence of the domain. 

The attribute specified for the lookup does not exist, or it does not have the required 
characteristics, or the attribute is secure and the user does not have the right to 
look at it. Note that in such a case, the routine does not disclose the existence of 
the attribute. 

The index argument is larger than the number of values associated with the at
tribute. 

1.9.2.3 Creation of Environment Attributes 

In order to get environment attribute values, one has to first create them. The routines arus$create_ 
env_attribute and arus$create_env_attribute_dom provide the necessary capabilities. 

1.9.2.3.1 The arus$create_env_attribute Routine 

Routine arus$create_env_attribute allows a user to create an environment attribute. The attribute 
may be temporary or permanent, it may be trustworthy or untrustworthy, and it may have many 
values. 

PROCEDURE arus$create_env_attribute : ( 
IN attribute: string (*); 
IN value: LIST string (*); 
IN characteristics : arus$env att create options OPTIONAL; 
IN attribute domain : string (*) OPTIONAL; 
) RETURNS ar~s$status 
LINKAGE 

REFERENCE ( 
characteristics 

DESCRIPTOR ( 
attribute, 
value, 
attribute domain 
) ; 

Parameters: 

attribute 
value 

characteris tics 

The name of the attribute that is to be created. 

A list of the values to be associated with the new attribute. The first value in the list is 
assigned index 1, the second index 2, and so on. 

The characteristics that are to be associated with the environment attribute. The possible 
characteristics are: 

Application Run-Time Utility Services 1-7 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

Characteristic Value 

arus$c_trustworthy 

arus$c_ter,nporary 

Description 

The environment attribute is trustworthy. The use of this 
characteristic requires an implementation-defined privilege. 

The environment exists only for the duration of the program 
that creates it. 

If this argument is omitted, the attribute is created without special characteristics. 

The name of the attribute domain to contain the new attribute. If omitted, this parameter 
defaults to an implementation-specific default domain. 

Routine arus$create_env_attribute returns the unsuccessful status values listed in Table 1-4. 

Table 1-4: Status Values Returned from Routine arus$create env attribute 
Status Value Description 

arus$_insuf/icientyrivilege The program attempted to create a trustworthy environment attribute without the 
necessary implementation-defined privilege. 

The attribute domain specified for the environment attribute lookup does not exist, 
or the domain is secure and the user does not have the right to look in the domain. 
Note that in such a case, the routine does not disclose the existence of the domain. 

1.9.2.3.2 The arus$create_env_attribute_dom Routine 

Routine arus$create_env_attribute_dom gives the user the ability to create a new domain. At the 
time of creation, the domain is declared to be either private or shared, and if shared, its protection 
is specified. 

\ The method of specifying the protection is TBS. \ 

With the proper privilege, a shared domain can also be declared to be trustworthy. Only trustworthy 
environment attributes may be created within a trustworthy domain. 

It is an error to attempt to create a domain that already exists. 

PROCEDURE arus$create env attribute dom ( 
IN attribute_dom;in 7 string (*); 
IN characteristics : arus$cre env att dom options OPTIONAL; 
) RETURNS arus$status - - - -
LINKAGE 

Parameters: 

REFERENCE ( 
characteristics 

DESCRIPTOR ( 
attribute domain 
) ; 

1-8 Application Run-Time Utility Services 



attribute_domain 
characteris tics 

Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

The name of the domain that is to be created. 

The characteristics that are to be associated with the newly created domain. This param
eter may take the following values: 

Characteristic Value Description 

arus$c_trustworthy _dom The environment attribute domain, and all attributes it con
tains are trustworthy. The use of this characteristic requires 
an implementation-defined privilege. 

arus$c-private_dom The domain is private to this process. 

If this argument is omitted, the domain is created without special characteristics. 

\ The parameters associated with security of the domain will be specified later, when the questions 
around the whole security issue are resolved. \ 

Routine arus$create_env_attribute_dom returns the unsuccessful status values listed in Table 1-5. 

Table 1-5: Status Values Returned from Routine arus$create env attribute dom 
Status Value Description 

arus$_insufficientyrivilege The program attempted to create a trustworthy environment attribute domain without 
the necessary implementation-defined privilege. 

arus$_domain_exists Another environment attribute domain with the specified name already exists. A 
new domain was not created. 

1.9.2.4 Destruction of Unneeded Environment Attributes 

Temporary environment attributes are destroyed when the program terminates. However, perma
nent environment attributes survive until explicitly destroyed or until the system fails. Therefore, 
environment attribute destruction routines are needed to perform housekeeping. 

1.9.2.4.1 The arus$destroy _ env _ attribute Routine 

Routine arus $des troy _env _attribute destroys the specified environment attribute. The privileges 
needed to create the attribute are also required to destroy it. Specifically, the process attempting 
the destruction must have access to the domain, and if the domain or the attribute is trustworthy, 
the process must have the appropriate implementation-defined privilege. 

PROCEDURE arus$destroy env attribute 
IN attribute : strIng (*) ; 
IN attribute domain : string (*) OPTIONAL; 
) RETURNS ar~s$status 
LINKAGE 

Parameters: 

DESCRIPTOR ( 
attribute, 
attribute domain 
) ; 

attribute 
attribute_domain 

The name of the attribute that is to be destroyed. 

The name of the attribute domain to be searched for the specified attribute. If omitted, this 
parameter defaults to an implementation-specific default domain. 

Application Run-Time Utility Services 1-9 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

Routine arus$destroy_env_attribute returns the unsuccessful status values listed in Table 1-6. 

Table 1-6: Status Values Returned from Routine arus$destroy, env attribute 
Status Value Description 

arus$_insufficientJlrivilege The program attempted to destory a trustworthy environment attribute without 
the necessary implementation-defined privilege. 

arus$_no_such_domain The attribute domain specified for the environment attribute lookup does not 
exist, or the domain is secure and the user does not have the right to look 
in the domain. Note that in such a case, the routine does not disclose the 
existence of the domain. 

arus$_no_such_attribute The attribute specified for destruction does not exist, or the attribute is secure 
and the user does not have the right to look at it. Note that in such a case, 
the routine does not disclose the existence of the attribute. 

arus$-perm_attribute_revealed The attribute that was destroyed was a temporary attribute that had been 
masking a permanent attribute with the same name. The permanent attribute 
is now revealed. 

1.9.2.4.2 The arus$destroy_env_attribute_dom Routine 

Routine arus$destroy _env _attribute_dom destroys the specified environment attribute domain. The 
privileges needed to create the domain are necessary to destroy it. Specifically, the process attempting 
the destruction must have access to the domain, and if the domain is trustworthy, the process must 
have the appropriate implementation-defined privilege. 

All attributes contained within the domain are destroyed with the domain. 

PROCEDURE arus$destroy_env_attribute_dom 
IN attribute domain: string (*); 
) RETURNS ar~s$status 
LINKAGE 

DESCRIPTOR ( 
attribute domain 
) ; 

Parameters: 

attribute_domain The name of the attribute domain to be destroyed. 

Routine arus$destroy_env_attribute_dom returns the unsuccessful status values listed in Table 1-7. 

Table 1-7: Status Values Returned from Routine arus$destroy' env attribute dom 
Status Value Description 

arus$_insufficientJlrivilege The program attempted to destroy a trustworthy environment attribute domain with
out the necessary implementation-defined privilege. 

arus$_no_such_attribute The domain specified for destruction does not exist, or the domain is secure and 
the user does not have the right to look at it. Note that in such a case, the routine 
does not disclose the existence of the domain. 

1.10 String Manipulation Routines 

The string routines described in this section facilitate frequently performed operations on traditional 
8-bitJcharacter strings. These routines do not operate on any 16-bit (T2) or 32-bit (T4) strings. 

1-10 Application Run-Time Utility Services 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

While we strive to use the term octet consistently to describe eight bit units of storage, when speaking 
about strings it is frequently much more natural to speak of characters. The term character shall 
always refer to exactly one octet. 

\ The run-time libraries group has also been asked to provide routines that act on DDIS-encoded 
"general strings"; we are currently looking at the possible schedule and level of such support. When 
it is determined, those routines will also be documented in this section.\ 

1.10.1 Functional Interface and Description 

The following sections describe the various routines associated with string manipulation. 

1.10.1.1 Types Used 

The following types are used in the interface to the string routines. 

TYPE 

string$status : status; 

string$match result : 
string$c match, 
string$c=no_match 
) ; 

string$comparison_result 
string$c first source less, 
string$c=equal=with-pad, 
string$c equal, 
string$c=first_source_greater 
) ; 

string$comparison_flags_type 
string$c_case_blind 
) ; 

string$comparison_flags : SET [string$comparison_flags_type]; 

string$address : POINTER string; 

1.10.1.2 String Comparison Routine 

The routine string$compare compares the contents of two strings and returns the result of the com
parison in the comparison_result argument. 

The routine string$compare is intended to be equivalent to the current VAXJVMS Run-time Library 
routines STR$COMPARE, STR$CASE_BLIND_COMPARE, and STR$COMPARE_EQL. 

1.10.1.2.1 The string$compare Routine 

The routine string$compare compares two strings for the same contents. 

Unless otherwise specified by the flags argument, string$compare distinguishes between uppercase 
and lowercase alphabetic characters, uses the DEC Multinational Character Set, and, if the strings 
are unequal in length, considers the shorter string as blank filled to the length of the longer string. 

Application Run-Time Utility Services 1-11 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

PROCEDURE string$compare 

Parameters: 

firsCstring 
second_string 
comparison_result 

flags 

IN first_string: string (*); 
IN second_string: string (*)i 
OUT comparison result : string$comparison result; 
IN flags : st~ing$comparison_flags OPTIONAL; 
) RETURNS string$status 
LINKAGE 

REFERENCE 
comparison_result 
flags, 
) 

DESCRIPTOR 
first_string, 
second_string 
) ; 

First source string. 

Second source string. 

The value representing the result of the string comparison. Possible values are as 
follows: 

Return Value 

string$cJirscsource_less 

Description 

The first source string is less than the second source 
string. 

string$cJirsCsource~reater The first source string is greater than the second 
source string. 

string$c_equal The source strings are exactly the same, both in 
length and in contents. 

string$c_equal_withJ1addingThe source strings are equal, but only if the shorter 
string is padded (blank filled). 

The flags used by string$compare. Possible values are as follows: 

Value 

string $c _case _blind 

Description 

Specifies that case distinctions should be ignored. 
The default is to distinguish between uppercase and 
lowercase letters. 

Routine string$compare returns the unsuccessful status values listed in Table 1-8. 

Table 1-8: Status Values Returned from Routine string$compare 
Status Value Description 

string$_invalid_descriptor Invalid string descriptor. 

Routine string$compare raises no conditions. 

1-12 Application Run-Time Utility Services 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

1.10.1.3 Copy Routine 

The routine string$copy allows you to copy a string passed by descriptor to another string. 

1.10.1.3.1 The string$copy Routine 

The routine string$copy copies a source string to a destination string, where both are passed by 
descriptor. 

Depending on the characteristics of the destination string, the following actions occur: 

String Characteristic 

Fixed length 

Varying length 

Dynamic length 

Action 

Copy source string to destination string. If the source string is shorter than the 
space available in the destination string, the destination string is blank filled. If the 
source string is longer than the destination string, it is truncated on the right. 

Copy source string to destination string up to the maximum destination string length 
with no padding. If the source is longer than the maximum length of the destination 
string, it is truncated on the right. The current length field is set to the actual number 
of octets copied. 

If the area specified by the destination descriptor is large enough to contain the 
source string, copy the source string and set the new length in the destination 
descriptor. If the area specified is not large enough, return the previous space 
allocation (if any) and then dynamically allocate the amount of space needed. Copy 
the source string and set the new length and address in the destination descriptor. 

PROCEDURE string$copy ( 

Parameters: 

source_string 

IN source_string: string (*); 
OUT destination_string: string (*); 
OUT resultant string length : integer OPTIONAL; 
) RETURNS string$status 
LINKAGE 

REFERENCE ( 
resultant_string_length 
) 

DESCRIPTOR ( 
source_string, 
destination_string 
) ; 

des tinatio n _string 
resultant_string_length 

Source string that string$copy copies into the destination string. 

Destination string into which string$copy writes the source string. 

Number of octets written into the output string, not counting padding in the case of a 
fixed-length string. If the input string is truncated to fit the output string, resultant_ 
string_length is set to the size of the output string. Therefore, resultanCstring_ 
length can always be used by the calling program to access a valid substring of 
the output string. 

Routine string$copy returns the unsuccessful status values listed in Table 1-9. 

Application Run-Time Utility Services 1-13 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

Table 1-9: Status Values Returned from Routine string$copy 
Status Value Description 

string $ _invalid_descriptor 
string $insufficient _memory 
string $ _truncation 

Invalid string descriptor. 

The routine needed to allocate memory, but was unable to do so. 

String truncation warning. The fixed-length or varying destination string could not 
contain all the characters. 

Routine string$copy raises no conditions. 

1.10.1.4 Allocate and Deallocate Routines 

Routines string$allocate and string$deallocate allocate and deallocate a dynamic string. These rou
tines are the only allowed method for allocating and deallocating a dynamic string. Simply filling 
in the length and pointer fields of a dynamic string descriptor can cause serious and unexpected 
problems with string management. 

1.10.1.4.1 The string$allocate Routine 

The routine string$allocate allocates a specified number of octets of dynamic virtual memory to a 
specified string descriptor. The descriptor must be dynamic. 

If the string descriptor already has dynamic memory allocated to it, but the amount is less than 
length_to_allocate, string$allocate deallocates that space and allocates new space. 

PROCEDURE string$allocate ( 

Parameters: 

length _to _allocate 
character _string 

IN length to allocate : integer; 
IN OUT ch;racter_string: string (*); 
) RETURNS string$status 
LINKAGE 

REFERENCE ( 
length_to_allocate 
) 

DESCRIPTOR ( 
character_string 
) ; 

Number of octets that string$allocate allocates. 

Dynamic string to which string$allocate allocates the area. The descriptor is checked to 
verify it is dynamic. 

Routine string$allocate returns the unsuccessful status values listed in Table 1-10. 

Table 1-10: Status Values Returned from Routine string$a/Jocate 
Status Value Description 

string$_invalid_descriptor Invalid string descriptor. 

string$insufficient_memory The routine needed to allocate memory, but was unable to do so. 

Routine string$allocate raises no conditions. 

1-14 Application Run-Time Utility Services 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

1.10.1.4.2 The string$deal/ocate Routine 

The routine string$allocate deallocates the described string space and flags the descriptor as describ
ing no string at all (pointer and length are set to zero). 

PROCEDURE string$deallocate ( 

Parameters: 

character _string 

IN OUT character_string: string (*); 
) RETURNS string$status 
LINKAGE 

DESCRIPTOR ( 
character_string 
) ; 

Dynamic string that string$deal/ocate deallocates. The descriptor is checked to verify it is 
dynamic. 

Routine string$deallocate returns the unsuccessful status values listed in Table 1-11. 

Table 1-11: Status Values Returned from Routine string$dea/Jocate 
Status Value Description 

string$_invalid_descriptor Invalid string descriptor. 

Routine string$deallocate raises no conditions. 

1.10.1.5 Concatenate Strings Routine 

The routine string$concatenate allows you to concatenate two strings. 

The routine string$concatenate is intended to be equivalent to the current VAXlVMS Run-time Library 
routines STR$APPEND, STR$PREFIX and STR$CONCAT. 

1.10.1.5.1 The string$concatenate Routine 

The routine string$concatenate concatenates two source strings into a single destination string. Any 
valid string descriptor may be used. 

Two source strings are required as input; if only one string is desired then use string$copy. The 
concatenation procedure copies the first source string then the second source string to the destination 
string. The maximum length of the concatenated string is implementation specific. 

A warning status is returned if one or more input characters were not copied to the destination string. 

PROCEDURE string$concatenate ( 
IN first source string: string (*); 
IN second_sourc~_string: string (*); 
OUT destination string: string (*): 
OUT resultant_st~ing_length : integer OPTIONAL; 
) RETURNS string$status 
LINKAGE 

REFERENCE ( 
resultant_string_length 

DESCRIPTOR ( 
first source string, 
second_sourc;_string, 
destination_string 
) : 

Application Run-Time Utility Services 1-15 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

Parameters: 

firsCsource_string 
second_source_string 
destination_string 

First source string. 

Second source string. 

Destination string into which string$concatenate concatenates specified source 
strings. 

res ultancs tring_length Number of octets written into the output string, not counting padding in the case of a 
fixed-length string. If the input string is truncated to fit the output string, resultanC 
string_length is set to the size of the output string. Therefore, resultanCstring_ 
length can always be used by the calling program to access a valid substring of 
the output string. 

Routine string$concatenate returns the unsuccessful status values listed in Table 1-12. 

Table 1-12: Status Values Returned from Routine string$concatenate 
Status Value Description 

string$_invalid_descriptor 
string $insufficient _memory 
string$_truncation 

Invalid string descriptor. 

The routine needed to allocate memory, but was unable to do so. 

String truncation warning. The fixed-length destination string could not contain all 
the characters. 

One or more source strings or the destination string exceeds the maximum allow
able string length; the null string is returned. 

Routine string$concatenate raises no conditions. 

1.10.1.6 Search Routines 

Routines string$findJirst_in_set, string$findJirst_not_in_set, and string$find_substring are routines 
that search a string. 

1.10.1.6.1 The string$find_firsCin_set Routine 

The routine string$findJirst_in_set compares each character in a string to every character in the 
specified set of characters. As soon as the first match is found, string$findJirsCin_set returns the 
position in the string where the matching character was found in stringyosition. The first character 
of the source_string has position number one. If no match is found or if either source_string or set_ 
of_chars is of zero length, a zero is returned in stringyosition. 

PROCEDURE string$find_first_in_set ( 
IN source_string: string (*); 
IN set of chars: string (*); 
OUT string~osition : integer; 
) RETURNS string$status 
LINKAGE 

REFERENCE ( 
stringyosition 
) 

DESCRIPTOR ( 
source _string, 
set of chars 
) ; 

1-16 Application Run-Time Utility Services 



Parameters: 

string -position 

Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

String that string$find_firsLin_set compares to the set of characters, looking for the first 
match. 

String that is interpreted as a set of characters that string$find_firsLin_set is searching for 
in the source string. 

Position in the source_string where the first match is found; zero if no match is found. 

Routine string$findJirst_in_set returns the unsuccessful status values listed in Table 1-13. 

Table 1-13: Status Values Returned from Routine string$find first in set 
Status Value Description 

string$_invalid_descriptor Invalid string descriptor. 

Routine string$findJirst_in_set raises no conditions. 

1.10.1.6.2 The string$find_firsLnotjn_set Routine 

The routine string$findJirst_not_in_set searches a string, comparing each character to the charac
ters in a specified set of characters. The string is searched character by character, from left to right. 
When string$findJirst_noCin_set finds a character in source_string that is not in seCof_chars, it 
stops searching and returns the position of the nonmatching character in string-position. The first 
character of source_string has position number one. If all characters in the string match some char
acter in the set of characters, a zero is returned in string-position. If source_string is of zero length, 
the value returned in string-position is one, because none of the elements in the set of characters will 
be found in the string. If there are no characters in the set of characters, zero is returned because 
"nothing" can always be found. 

PROCEDURE string$find_first_not_in_set ( 

Parameters: 

source_string 
set_of_chars 

string -position 

IN source_string: string (*)i 
IN set_of_chars : string (*); 
OUT string-position : integer; 
) RETURNS string$status 
LINKAGE 

REFERENCE ( 
string-position 
) 

DESCRIPTOR ( 
source_string, 
set of chars 
) ; 

String that string$find_firsLnoLin_set searches. 

String that is interpreted as a set of characters that string$find_firsLnoLin_set is searching 
for in source_string. 
Position in source_string where the first nonmatch is found. 

Routine string$findJirst_noCin_set returns the unsuccessful status values listed in Table 1-14. 

Table 1-14: Status Values Returned from Routine string$find first not in set 
Status Value Description 

string$_invalid_descriptor Invalid string descriptor. 

Routine string$findJirst_noCin_set raises no conditions. 

Application Run-Time Utility Services 1-17 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

1.10.1.6.3 The string$find _ substring Routine 

The routine string$find_substring returns the relative position of the first occurrence of a substring 
in the source string. The value is returned in string-position. The relative character positions are 
numbered one, two, three, and so on. If startyosition is omitted, the relative starting position used 
is one, the first character in the source string. Zero indicates that the substring was not found. 

If the substring has a length of zero, string$find_substring returns the minimum of two values: starC 
position and the length of source_string plus one. 

If the source string is shorter than the substring or the relative starting position is greater than the 
source string length, zero is returned, indicating that the substring was not found. If startyosition 
is less than one, one is used and a warning is returned to the caller. 

PROCEDURE string$find_substring ( 

Parameters: 

source_string 
substring 
string -position 

start-position 

IN source_string: string (*); 
IN substring: string (*); 
OUT string-position : integer; 
IN start-position: integer OPTIONAL; 
) RETURNS string$status 
LINKAGE 

REFERENCE ( 
string_position, 
startyosition 
) 

DESCRIPTOR ( 
source _ str ing, 
substring 
) ; 

String that string$find_substring searches. 

Specified substring for which string$find_substring searches in source_string. 
Relative position of the first character of the substring. Zero is the value returned if 
string$find_substring did not find the substring. 

Relative position in the source string at which string$find_substring begins the search; the 
value of one is used by default. 

Routine string$find_substring returns the unsuccessful status values listed in Table 1-15. 

Table 1-15: Status Values Returned from Routine string$find substring 
Status Value Description 

string$_invalid_descriptor Invalid string descriptor. 

string$_illegaCstart-position The routine completed successfully, except that start-position contained a value 
less than one; the default value of one was used. 

Routine string$find_substring raises no conditions. 

1.10.1.7 Extract and Replace Routines 

Routines string$extract_element, string$extract_substring, string$extracCsubstring_length, and string$replace_ 
substring are routines that extract a substring from a string or replace a substring with another sub-
string. 

1-18 Application Run-Time Utility Services 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

1.10.1.7.1 The string$extracLeiement Routine 

The routine string$extracCelernent extracts an element from a string in which the elements are 
separated by a specified delimiter. 

For example, if source_string has the value "ABC I DEF I GHI I JKL", delimiter _string is a vertical 
bar ( I ), and elemenCnumber is 2, then string$extract_element returns the string "GHI". 

Once the specified element is located, all the characters in that delimited element are returned. That 
is, all characters between the element_number and element_number plus one delimiters are written 
to destination_string. At least elemenCnumber delimiters must be found. If exactly elemenCnumber 
delimiters are found, then all values from the element_number delimiter to the end of the string 
are returned. If elemenCnumber equals zero and no delimiters are found, the entire input string 
is returned. If element_number is greater than the number of delimiters found, or if the delimiter 
string is not exactly one character long, a null string is returned. 

The routine string$extracCelement duplicates the functions of the VAX DCL lexical function F$ELEMENT. 

PROCEDURE string$extract element ( 

Parameters: 

delimiter _string 

element_number 

destination_string 

IN source=string: string (*); 
IN delimiter_string: string (1); 
IN element_number : integer; 
OUT destination_string: string (*); 
OUT resultant_string_length : integer OPTIONAL; 
) RETURNS string$status 
LINKAGE 

REFERENCE ( 
element_number, 
resultant_string_length 
) 

DESCRIPTOR ( 
source_string, 
delimiter string, 
destinati~n_string 
) ; 

Source string from which string$extracLelement extracts the requested delimited 
substring. 

Delimiter string used to separate element substrings; this must be exactly one 
character long. 

Element number of the delimited element substring to be returned. Zero is used to 
represent the first delimited element substring, one is used to represent the second, 
and so forth. 

res ultant_s tring_length 
Destination string into which string$extracLelement copies the selected substring. 

Number of octets written into the output string, not counting padding in the case of a 
fixed-length string. If the input string is truncated to fit the output string, resultant_ 
string_length is set to the size of the output string. Therefore, resultanCstring_ 
length can always be used by the calling program to access a valid substring of 
the output string. 

Routine string$extracCelernent returns the unsuccessful status values listed in Table 1-16. 

Application Run-Time Utility Services 1-19 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

Table 1-16: Status Values Returned from Routine string$extract element 
Status Value Description 

string$_invalid_descriptor 
string $ _invalid_delimiter 
string$_element_number _ 
outrange 

Invalid string descriptor. 

The delimiter string is not exactly one character long; a null string is returned. 

Not enough delimiter characters found to satisfy requested element number; a null 
string is returned. 

stringS_truncation String truncation warning. The fixed-length destination string could not contain all 
the characters. 

string $insufficient _memory The routine needed to allocate memory, but was unable to do so. 

Routine string$extract_element raises no conditions. 

1.10.1.7.2 The string$extracLsubstring Routine 

The routine string$extracCsubstring extracts a substring from a source string and copies that sub
string into a destination string. It defines the substring by specifying the relative starting and ending 
positions of the substring in the source string. The source string is unchanged unless it is also the 
destination string. 

If the starting position is less than one, the relative starting position used is one, the first character 
in the source string. If the starting position is greater than the length of the source string, the null 
string is returned. If the ending position is greater than the length of the source string, the length 
of the source string is used. 

PROCEDURE string$extract_substring ( 

Parameters: 

starting-position 

ending-position 

IN source_string: string (*); 
IN starting-position : integer; 
IN ending-position : integer; 
OUT destination_string: string (*); 
OUT resultant_string_length : integer OPTIONAL; 
) RETURNS string$status 
LINKAGE 

REFERENCE ( 
starting-position, 
ending-position, 
resultant_string_length 
) 

DESCRIPTOR ( 
source_string, 
destination_string 
) ; 

Source string from which string$extracLsubstring extracts the substring that it 
copies into the destination string. 

Relative position in the source string at which string$extracLsubstring begins copy
ing the source string. 

Relative position in the source string at which string$extracL substring stops copying 
the substring. 

destination_string 
resul tant _string_length 

Destination string into which string$extracLsubstring copies the selected substring. 

Number of octets written into the output string, not counting padding in the case of a 
fixed-length string. If the input string is truncated to fit the output string, resultanC 
string_length is set to the size of the output string. Therefore, resultanCstring_ 
length can always be used by the calling program to access a valid substring of 
the output string. 

1-20 Application Run-Time Utility Services 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

Routine string$extracCsubstring returns the unsuccessful status values listed in Table 1-17. 

Table 1-17: Status Values Returned from Routine string$extract substring 
Status Value Description 

string$_invalid_descriptor 
string $ _truncatio n 

Invalid string descriptor. 

String truncation warning. The fixed-length destination string could not contain all 
the characters. 

string $insufficient _memory The routine needed to allocate memory, but was unable to do so. 

Routine string$extracCsubstring raises no conditions. 

1.10.1.7.3 The string$repiace _ substring Routine 

The routine string$replace_substring copies a source string to a destination string, replacing part of 
the source string with another string. The substring to be replaced is specified by its starting and 
ending positions. 

If the starting position is less than one, one is used. If the ending position is greater than the length 
of the source string, the length of the source string is used. If the starting position is greater than 
the ending position, an error is returned and the replacement operation is not performed. 

PROCEDURE string$replace_substring ( 

Parameters: 

source_string 
replacen1,ent _string 
startingyosition 

ending yositio n 

destination_string 

IN source_string: string (*)i 
IN replacement_string: string (*)i 
IN starting-position: integer; 
IN ending-position : integer; 
OUT destination_string: string (*); 
OUT resultant string length : integer OPTIONAL; 
) RETURNS strlng$status 
LINKAGE 

REFERENCE ( 
starting-position, 
ending-position, 
resultant_string_length 
) 

DESCRIPTOR ( 
source_string, 
replacement string, 
destination=string 
) ; 

Source string to be copied. 

Replacement string with which string$rep/ace_substring replaces the substring. 

Position in the source string at which substring replacement begins. The position 
is relative to the start of the source string. 

Position in the source string at which substring replacement ends. The position is 
relative to the start of the source string. 

Destination string into which string$rep/ace_substring writes the new string created 
when it replaces the substring. 

resultant _string_length Number of octets written into the output string, not counting padding in the case of a 
fixed-length string. If the input string is truncated to fit the output string, resultant_ 
string_length is set to the size of the output string. Therefore, resultanCstring_ 
length can always be used by the calling program to access a valid substring of 
the output string. 

Application Run-Time Utility Services 1-21 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

Routine string$replace_substring returns the unsuccessful status values listed in Table 1-18. 

Table 1-18: Status Values Returned from Routine string$repJace substring 
Status Value Description 

Invalid argument. The starting position is greater than (comes after) the ending 
position. 

string$_invalid_descriptor 
string $ _truncation 

Invalid string descriptor. 

String truncation warning. The fixed-length destination string could not contain all 
the characters. 

string $insufficient _memory The routine needed to allocate memory, but was unable to do so. 

Routine string$replace_substring raises no conditions. 

1.10.1.8 Miscellaneous Routines 

Routines string$analyze_descriptor, string$match_wildcard, string$translate, string$trim, and string$upcase 
perform the follovving operations: 

• Analyze string descriptors 

• Match vvildcard specifications 

• Translate matched characters 

• Trim trailing spaces and tabs 

• Convert strings to uppercase characters 

1.10.1.8.1 The string$analyze _ descriptor Routine 

The routine string$analyze_descriptor takes as input a string passed by descriptor and extracts the 
length of the string and the address at which the string is stored for all string categories. 

PROCEDURE string$analyze descriptor ( 

Parameters: 

string_length 
string_address 

IN input_~tring: string (*); 
OUT string length : integer; 
OUT string=address : string$address; 
) RETURNS string$status 
LINKAGE 

REFERENCE ( 
string_length, 
string_address 
) 

DESCRIPTOR ( 
input_string 
) ; 

Input string from whose descriptor s tring$analyze_descrip tor extracts the length of the string 
and the address at which the string starts. 

Length of the string. 

Address of the string. 

1-22 Application Run-Time Utility Services 



Digital Equipment Corporation - Confidential and Proprietary 
. For Internal Use Only 

Routine string$analyze_descriptor returns the unsuccessful status values listed in Table 1-19. 

Table 1-19: Status Values Returned from Routine string$analyze descriptor 
Status Value Description 

string$_invalid_descriptor Invalid string descriptor. 

Routine string$analyze_descriptor raises no conditions. 

1.10.1.8.2 The string$match _ wildcard Routine 

The routine string$match_wildcard translates wildcard characters and searches the candidate string 
to determine if it matches the pattern string. The pattern string may contain either one or both of 
the two wildcard characters; the default characters are the asterisk (*), and the percent sign (%). 
The asterisk character maps to zero or more characters. The percent character maps to exactly one 
character. 

The arguments matches_one and matches_any allow the caller to specify the wildcard characters to be 
used instead of the default values, the percent sign and the asterisk, respectively. The two wildcard 
characters may be used only as wildcards. If the candidate string contains an asterisk or percent 
sign (or a user-specified match character), the candidate string will not match a wildcard pattern, 
because the wildcard characters are never translated literally. 

PROCEDURE string$match_wildcard ( 

Parameters: 

IN candidate_string: string (*); 
IN pattern string: string (*); 
OUT match r;sult : string$match result; 
IN match;s_one : string (1) OPTIONAL; 
IN matches any : string (1) OPTIONAL; 
) RETURNS string$status 
LINKAGE 

REFERENCE ( 
match result 

DESCRIPTOR ( 
candidate_string, 
pattern_string, 
matches_one, 
matches_any 
) ; 

Application Run-Time Utility Services 1-23 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

candidate_string 
pattern_string 

match_result 

String that is compared to the pattern string. 

String containing wildcard characters. The wildcards in the pattern string are translated 
when string$match_wildcard searches the candidate string to determine if it matches the 
pattern string. 

The result of the match attempt. Possible values are as follows: 

Value 

string$c_match 

string$c_no _match 

Description 

Indicates that the candidate string matched the pattern 
string. 

Indicates that the candidate string did not match the pat
tern string. 

The user-specified wildcard character that is mapped to exactly one character; the percent 
character is the default. 

The user-specified wildcard character that is mapped to zero or more characters; the asterisk 
character is the default. 

Routine string$match_wildcard returns the unsuccessful status values listed in Table 1-20. 

Table 1-20: Status Values Returned from Routine string$match wildcard 
Status Value Description 

string$_invalid_wildcard_ 
char 
string$_invalid_descriptor 

The wildcard character supplied is invalid. The wildcard character is not exactly 
one character long or the wildcard character is an illegal character. 

Invalid string descriptor. 

Routine string$match_wildcard raises no conditions. 

1.10.1.8.3 The string$translate Routine 

The routine string$translate successively compares each character in a source string to all charac
ters in a match string. If a source character matches any of the characters in the match string, 
string$translate moves a character from the translate string to the destination string. Otherwise, 
string$translate moves the character from the source string to the destination string. 

The character taken from the translate string has the same relative position as the matching char
acter had in the match string. When a character appears more than once in the match string, the 
position of the leftmost occurrence of the multiply defined character is used to select the translate 
string character. If the translate string is shorter than the match string and the matched character 
position is greater than the translate string length, the destination character is a space. 

1-24 Application Run-Time Utility Services 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

PROCEDURE string$translate ( 
IN source_string: string (*); 
IN translation_string: string (*); 
IN match_string : string (*); 
OUT destination_string: string (*); 
OUT resultant string length : integer OPTIONAL; 
) RETURNS string$status 
LINKAGE 

REFERENCE ( 
resultant_string_length 
) 

DESCRIPTOR ( 

Parameters: 

source_string 
translation_string 
match_string 
destination_string 
resultant _string_length 

source_string, 
translation_string, 
match_string, 
destination_string 
) ; 

Source string. 

Translation string. 

Match string. 

Destination string. 

Number of octets written into the output string, not counting padding in the case of a 
fixed-length string. If the input string is truncated to fit the output string, resultanC 
string_length is set to the size of the output string. Therefore, resultanCstring_ 
length can always be used by the calling program to access a valid substring of 
the output string. 

Routine string$translate returns the unsuccessful status values listed in Table 1-21. 

Table 1-21: Status Values Returned from Routine string$trans/ate 
Status Value Description 

string $ _invalid_argument 
string$_invalid_descriptor 
string $ _truncation 

string $insufficient _memory 

Invalid argument. 

Invalid string descriptor. 

String truncation warning. The fixed-length destination string could not contain all 
the characters. 

The routine needed to allocate memory, but was unable to do so. 

Routine string$translate raises no conditions. 

1.10.1.8.4 The string$trim Routine 

The routine string$trim copies a source string to a destination string and deletes the trailing space 
and tab characters. 

Application Run-Time Utility Services 1-25 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

PROCEDURE string$trim 

Parameters: 

IN source_string: string (*); 
OUT destination_string: string (*); 
OUT resultant string length : integer OPTIONAL; 
) RETURNS string$status 
LINKAGE 

REFERENCE ( 
resultant_string_length 

DESCRIPTOR ( 
source_string, 
destination_string 
) ; 

source_string 
destination_string 
resultant_string_length 

Source string which string$trim trims and then copies into the destination string. 

Destination string into which string$trim copies the trimmed string. 

Number of octets written into the output string, not counting padding in the case of a 
fixed-length string. If the input string is truncated to fit the output string, resultant_ 
string_length is set to the size of the output string. Therefore, resultanCstring_ 
length can always be used by the calling program to access a valid substring of 
the output string. 

Routine string$trim returns the unsuccessful status values listed in Table 1-22. 

Table 1-22: Status Values Returned from Routine string$trim 
Status Value Description 

string$ _invalid_argument 
string $ _invalid_descriptor 
string$_truncation 

string $insufficient _memory 

Invalid argument. 

Invalid string descriptor. 

String truncation warning. The fixed-length destination string could not contain all 
the characters. 

The routine needed to allocate memory, but was unable to do so. 

Routine string$trim raises no conditions. 

1.10.1.8.5 The sfring$upcase Routine 

The routine string$upcase converts characters in a source string to uppercase and writes the con
verted characters into the destination string. The routine converts all characters in the multinational 
character set. 

PROCEDURE string$upcase ( 
IN source_string: string (*); 
OUT destination_string: string (*); 
OUT resultant string length : integer OPTIONAL; 
) RETURNS string$status 
LINKAGE 

REFERENCE ( 
resultant_string_length 

DESCRIPTOR ( 
source_string, 
destination_string 
) ; 

1-26 Application Run-Time Utility Services 



Parameters: 

source_string 
destination_string 

res ultant_s tring_length 

Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

Source string that string$upcase converts to uppercase. 

Destination string into which string$upcase writes the string it has converted to 
uppercase. 

Number of octets written into the output string, not counting padding in the case of a 
fixed-length string. If the input string is truncated to fit the output string, resultanC 
string_length is set to the size of the output string. Therefore, resultanCstring_ 
length can always be used by the calling program to access a valid substring of 
the output string. 

Routine string$upcase returns the unsuccessful status values listed in Table 1-23. 

Table 1-23: Status Values Returned from Routine string$upcase 
Status Value Description 

string $ _invalid_descriptor 
string$_truncation 

string $insufficient _memory 

Invalid string descriptor. 

String truncation warning. The fixed-length destination string could not contain all 
the characters. 

The routine needed to allocate memory, but was unable to do so. 

Routine string$upcase raises no conditions. 

Application Run-Time Utility Services 1-27 



GLOSSARY 

AlA: Application Integration Architecture 

ARUS: Application Run-Time Utility Services 

CMA: Common Multithread Architecture 

PSM: Print System Model 

Glossary-1 



Owner UIC: 
Account: 

Priority: 
Submit queue: 
Submitted: 
Printer queue: 
Printer node: 
Started: 
Finished: 

Qualifiers: 
Sheets printed: 

ELUDOM::NYLANDER 

ARUS SECT 3 ONLY 

[VAXPLI,NYLANDER] 
PL/I 

100 
LPS_POSTSCRIPT 
5-APR-198815:39 
LPS40$PS2 
PS2 
5-APR-1988 15:43 
5-APR-1988 15:46 

IFORM=LPS$$FORM IFLAG !TRAILER IRESET =LPS$$EOJ 
37 

Digital Equipment Corporation 

VAX/VMS Version TS.0-3QS PrintServer 40 



Digital Equipment Corporation - Confidential and Proprietary 

For Internal Use Only 

Mica Working Design Document 
Application Run-Time Utility Services 

Revision 0.7 

14-Apri 1-1988 

Authors: 

AI Simons 
John Nogrady 

Issued by: 

AI Simons 



TABLE OF CONTENTS 

CHAPTER 1 APPLICATION RUN-TIME UTILITY SERVICES. . . . . . . . . . . . . 1-1 

1.1 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1 

1.2 ARUS Routine Design Philosophy ................ . . . . . . . . . . . . . . . . . . 1-1 

1.3 Error Conditions and Status Returns . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . 1-1 

1.4 Memory Allocation and Deallocation Routines .......................... 1-1 

1.5 International Date and Time Routines 

1.6 General Internationalization Routines 

1-1 

1-1 

1.7 Condition Handling Routines ..................................... 1-1 

1.8 Data Conversion Routines ....................................... 1-1 

1.9 Environment Attribute Routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1 

1.10 String Manipulation Routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1 

1.11 Process Information Routines .................................... 1-2 
1.11.1 Functional Interlace and Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2 

1.11.1.1 Types Used. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-2 
1.11.1.2 Process Information Initialize and Free Routines. . . . . . . . . . . . . . . . . . 1-3 

1.11.1.2.1 The arus$init-process_information Routine. . . . . . . . . . . . . . . . . . . 1-3 
1.11.1.2.2 The arus$free-process_information Routine. . . . . . . . . . . . . . . . . . . 1-4 

1.11.1.3 Calculation of Elapsed CPU Time. . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-4 
1.11.1.3.1 The arus$geCcpu_time Routine. . . . . . . . . . . . . . . . . . . . . . . . . . . 1-4 
1.11.1.3.2 The arus$geCcpu_time_relative Routine. . . . . . . . . . . . . . . . . . . . . 1-5 

1.12 Text Formatting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-5 
1.12.1 Formatting Directives. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-6 

1.12.1.1 Formatting Directive and Data Type Compatibility .... . . . . . . . . . . .. 1-10 
1.12.2 Functional Interface and Description. . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-11 

1.12.2.1 Types Used. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-11 
1.12.2.2 Text Formatting Routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-11 

1.12.2.2.1 The arus$format_single_string Routine ..................... 1-11 
1.12.2.2.2 The arus$format_multiple_strings Routine. . . . . . . . . . . . . . . . . .. 1-12 

1.13 Command Language Interpreter Interface Routines. . . . . . . . . . . . . . . . . . . . .. 1-12 

1.14 Table-Driven Parsing Routines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-12 

1.15 High-Level Math Routines ...................................... 1-12 

GLOSSARY .. .......................................... . Glossary-l 

INDEX 

iii 



TABLES 
1-1 Status Values Returned from Routine arus$inityrocess_information . . . . . 1-3 
1-2 Status Values Returned from Routine arus$freeyrocess_information . . . . . 1-4 
1-3 Status Values Returned from Routine arus$get_cpu_time . . . . . . . . . . . . . 1-5 
1-4 Status Values Returned from Routine arus$geCcpu_time_reZative . . 1-5 
1-5 Formatting Directives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-7 
1-6 Data Type Rules for Formatting Directives . . . . . . . . . . . . . . . . . . . . . . . .. 1-10 

iv 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

Revision History 
Revision 

Date Number Author Summary of Changes 

19-November-1987 0.1 All First draft 

27-December-1987 0.2 Connors Incorporated review comments. Split original chapter enti-
tled "Applications Run-Time Library" into two chapters: "Ap-
plication Run-Time Utility Services" and "Miscellaneous Run-
Time Library Routines." 

8-February-1988 0.3 Simons, Nogrady Prepare sections on memory management and date/time 
manipulation for primary review. 

4-March-1988 0.4 Simons Incorporate primary review comments on the above sec-
tions. 

14-March-1988 0.5 Simons, Nogrady Prepare sections on condition handling and conversions for 
primary review. 

29-March-1988 0.6 Simons, Nogrady Prepare sections on environment attributes and strings. 

08-April-1 988 0.7 Simons, Nogrady, Prepare sections on process information and text formatting. 
Barker 

iv 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

CHAPTER 1 

APPLICATION RUN-TIME UTILITY SERVICES 

1.1 Overview 

This section has been intentionally removed from this review copy. 

1.2 ARUS Routine Design Philosophy 

This section has been intentionally removed from this review copy. 

1.3 Error Conditions and Status Returns 

This section has been intentionally removed from this review copy. 

1.4 Memory Allocation and Deallocation Routines 

This section has been intentionally removed from this review copy. 

1.5 International Date and Time Routines 

This section has been intentionally removed from this review copy. 

1.6 General Internationalization Routines 

This section has been intentionally removed from this review copy. 

1.7 Condition Handling Routines 

This section has been intentionally removed from this review copy. 

1.8 Data Conversion Routines 

This section has been intentionally removed from this review copy. 

1.9 Environment Attribute Routines 

This section has been intentionally removed from this review copy. 

1.10 String Manipulation Routines 

This section has been intentionally removed from this review copy. 

Application Run-Time Utility Services 1-1 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

1.11 Process Information Routines 

This section describes the ARUS routines used to obtain process infonnation. The only process 
infonnation included in this first pass of the ARUS interface definition is CPU time consumed by the 
process or thread. 

1.11.1 Functional Interface and Description 

The following sections describe the routines associated with thread and process infonnation. 

1.11.1.1 Types Used 

The following types are used in the interface to the process infonnation routines. 

TYPE 

arus$status : status; 

arus$context : POINTER anytype; 

arus$cpu mode : ( 
arus$c-process_mode, 
arus$c_thread_mode 

/* hidden */ 

) ; 

The following types and structures are defined by the corporate 
time representation standard. 

arus$timevalue : large_integer SIZE (QUADWORD); 

arus$inaccuracy : large_integer[O .. 2**48-1] SIZE (BYTE,6); 

arus$time_diff_factor : integer[-720 .. 780] SIZE (BIT,12); 

arus$version : integer SIZE (BIT,4); 

arus$binary_relative_time : 
RECORD 

time 
inacc 
reserved 
vers 
LAYOUT 

arus$timevalue; 
arus$inaccuracy; 
arus$time_diff_factor 
arus$version = 1; 

time; 
inacc; 
reserved; must be 0 

must be 1 vers; 
END LAYOUT 

END RECORD; 

0; 

End of types and structures defined by the corporate time 
representation standard. 

1-2 Application Run-Time Utility Services 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

1.11.1.2 Process Information Initialize and Free Routines 

The routines arus$init-process_information and arus$free-process_information are used to allocate 
or deallocate a dynamic block of storage which is used to store the CPU time for the current thread 
or process. 

The flags argument indicates the mode, either thread or process, for which the CPU time is stored. 
If the target system does not support threads, the flags argument will be ignored and the default, 
process mode, will be used. 

If the stored CPU time is for a thread, the calls to arus$get_cpu_time and arus$get_cpu_time_relative 
must be executed from the same thread. 

1.11.1.2.1 The arus$iniLprocess_information Routine 

The routine arus$init-process_information creates a dynamic control block for the specified mode in 
the flags argument, and returns the pointer to the block in context. 

PROCEDURE arus$init-process_information ( 

Parameters: 

context 

flags 

IN OUT context : arus$context; 
IN flags : arus$cpu mode OPTIONAL; 
) RETURNS arus$stat~s 
LINKAGE 

REFERENCE ( 
context 
flags 
) ; 

Context variable required by all process information routines to refer to the control block. 
The control block is allocated in one of two ways: 

If context is zero, a control block is allocated in dynamic heap storage and the pointer 
to the block is returned in context. 

If context is nonzero, it is considered to be the pointer to a control block previously 
allocated by a call to arus$inityrocess_information. If so, the control block is reused. 

Indicates the mode of the CPU time which is to be stored; it is either a CPU time for the 
current thread or CPU time for the current process. The default is CPU time for the current 
process. 

Routine arus$init-process_information returns the unsuccessful status values listed in Table 1-1. 

Table 1-1: Status Values Returned from Routine arus$init process information 
Status Value Description 

arus$_invalid_context 

arus$insufficient_memory 

Invalid argument; context is nonzero and the block to which it refers was not 
initialized on a previous call to arus$inityrocess_information. 

The routine needed to allocate memory, but was unable to do so. 

Routine arus$init-process_information raises no conditions. 

Application Run-Time Utility Services 1-3 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

1.11.1.2.2 The arus$free_process_information Routine 

The routine arus$freeyrocess_information frees a block of storage previously allocated by arus$init_ 
process_information. If the block of storage was not allocated by arus$inityrocess_information, 
arus$freeyrocess_information returns with an error. If the routine completes successfully, arus$init_ 
process_information sets context to zero. 

PROCEDURE arus$free-process_information ( 

Parameters: 

context 

IN OUT context : arus$contexti 
) RETURNS arus$status 
LINKAGE 

REFERENCE ( 
context 
) ; 

Context variable. Pointer to a block of storage containing the value returned by a previous 
call to arus$inityrocess_information; this is the storage that arus$freeyrocess_information 
deallocates. 

Routine arus$freeyrocess_information returns the unsuccessful status values listed in Table 1-2. 

Table 1-2: Status Values Returned from Routine arus$free process information 
Status Value Description 

Invalid argument; context did not point to a valid timer block. 

Routine arus$freeyrocess_information raises no conditions. 

1.11.1.3 Calculation of Elapsed CPU Time 

The routines arus$get_cpu_time and arus$get_cpu_time_relative calculate and return the elapsed 
CPU time since the last call to arus$inityrocess_information, for the current thread or process. If 
context refers to a control block for a thread, the call to the routines arus$get_cpu_time and arus$get_ 
cpu_time_relative must be from the same thread. 

The routines arus$get_cpu_time and arus$get_cpu_time_reZative returns the elapsed CPU time as a 
longword (lO-millisecond increments) and a binary relative time format, respectively. 

1.11.1.3.1 The arus$geLcpu_time Routine 

The routine arus$geCcpu_time calculates the elapsed CPU time since the last call to arus$iniC 
process_information. The calculated value is returned as an integer in IO-millisecond increments. 

PROCEDURE arus$get_cpu_time ( 

Parameters: 

context 
cpu_time 

IN context : arus$contexti 
OUT cpu_time : integer; 
) RETURNS arus$status 
LINKAGE 

REFERENCE ( 
context, 
cpu_time 
) ; 

Context variable initialized by arus$inityrocess_information. 

The elapsed CPU time returned in 10 millisecond increments. 

1-4 Application Run-Time Utility Services 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

Routine arus$geCcpu_time returns the unsuccessful status values listed in Table 1-3. 

Table 1-3: Status Values Returned from Routine arus$get cpu time 
Status Value Description 

arus$ _invalid_context 
arus$ _illegal_thread 

Invalid argument; context did not point to a valid control block. 

The context argument referred to a control block for a thread other than the current 
thread of execution. 

Routine arus$geCcpu_time raises no conditions. 

1.11.1.3.2 The arus$geCcpu_time_relative Routine 

The routine arus$geCcpu_time_reZative calculates the elapsed CPU time since the last call to 
arus$inityrocess_information. The calculated value is returned as a binary relative time. 

PROCEDURE arus$get_cpu_time_relative ( 

Parameters: 

context 
cpu_time 

IN context : arus$context; 
OUT cpu time : arus$binary relative time 
) RETURNS arus$status - -
LINKAGE 

REFERENCE ( 
context 
cpu_time 
) ; 

Context variable initialized by arus$inityrocess_information. 

The elapsed CPU time returned as a binary relative time. 

Routine arus$get_cpu_time_relative returns the unsuccessful status values listed in Table 1-4. 

Table 1-4: Status Values Returned from Routine arus$get cpu time relative 
Status Value Description 

arus$_invalid_context 
arus$_illegaCthread 

Invalid argument; context did not point to a valid control block. 

The context argument referred to a control block for a thread other than the current 
thread of execution. 

Routine arus$geCcpu_time_relative raises no conditions. 

1.12 Text Formatting 

The ARUS library provides routines for formatting text. These routines are similar to the VAXNMS 
system service SYS$FAO and the C library routine [print. The ARUS routines embody several 
improvements over their predecessors, however. Those improvements are as follows: 

• The new routines support pluralization much more elegantly, solving the $FAO "!S" problems 
when converting messages to other languages. 

• The new routines support very powerful IF and CASE directives, allowing much more flexible 
formatting. 

• The data type information for the text to be formatted is associated with the data, rather than 
with the formatting string. This allows modularized routines to capture data for later formatting, 
because the interim routines have all the necessary information about the data. 

Application Run-Time Utility Services 1-5 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

1.12.1 Formatting Directives 

A formatting directive is a string that specifies either how a parameter is to be formatted or what 
information is to be placed in the resultant string. Formatting directives are specified in the following 
form: 

%directive[,directive ... ]% 

In other words, a directive or comma-separated list of directives is enclosed within percent characters 
(%). 

Table 1-5 describes each formatting directive. In these examples, the following syntax notation is 
used: 

• "N" is used to represent a number that is the number of the parameter to be formatted using 
this directive. 

• "W" is used to represent a number that specifies the minimum width of the formatting field. If 
the formatted parameter requires more than "W" characters, a larger field is used. 

• "Z" indicates that a numeric conversion will be done with leading zeros to fill to the specified 
width (leading blanks are used to fill by default). 

• "N" may be specified in the format "N .. M" in which case it refers to parameters "N" through "M" 
inclusive. 

• If only certain bits of the specified parameter(s) are desired, the parameter number may be 
followed by: 

• [x:y J-This form indicates that "y" bits starting at bit "x" will be considered. 

• [x .. y J-This form indicates that bits "x" through "y" will be considered. 

• [ .. xJ-This form indicates that bits 0 through "x" will be considered. 

• [x .. J-This form indicates that bits "x" through the most significant bit of the parameter will 
be considered. 

These bit forms are only allowed with parameters of type arus$c_byte_data, arus$c_word_data, 
arus$c_longword_data, and arus$c_quadword data. See the PRISM Calling Standard for a de
scription of parameter data types. 

\ This is certainly a poor solution to the problem of extracting bits. Ideally, field names should 
be used, however, this method provides a usable way to do this, if necessary. \ 

• "V" is used to represent either a parameter number or a numeric or string constant. Parameter 
numbers are specified by a number only. Numeric constants are specified by preceeding the value 
with a "#" sign. String constants are enclosed in double quotation marks ("string"). The length 
directive returns a value that can be used wherever a numeric constant is allowed. 

To better facilitate use of repeated directives, the formatting routine maintains a special internal pa
rameter number which may be set, incremented, and decremented. This internal parameter number 
is accessed as if it were parameter number 0 (zero). Upon entry to either the arus$formaCsingle_ 
string or arus$multiple_strings routine, its value is set to 1. When the internal parameter number 
(0) is used in an inserting formatting directive, such as %left% or %bi nary % , its value is used to 
refer to a parameter number. For example, if the directive %left(O)% is specified and the value of the 
internal parameter is 5, the fifth parameter would be formatted as a left-justified string. When the 
internal parameter number is used in a comparison or controlling formatting directive, such as %if% 
or %repeat%, its value is used directly. 

1-6 Application Run-Time Utility Services 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

\Note that there are no plans to allow internationalization of the formatting directives themselves. \ 

Table 1-5: Formatting Directives 
Directive 1 Description 

dec imal(N[: W[Z]][, "RT'1) 

hex(N[: W[ZJ)) 

octal(N[: W[Z]JJ 

binary(N[: W[Z]JJ 

date([NJ[:F][,ALIGNJ) 

time([NJ[:F][,ALIGN)) 

date_time([N][:F:G][,ALIGNJJ 

The parameter is formatted in decimal. For floating-point parameters, the 
width may optionally be specified as "W.P" where "P" specifies the precision. 
The field is zero filled if "Z" is present. Normally, floating-point parameters 
are formatted with the user's preferred radix point and thousands separator 
character. This may be optionally overridden by specifying "RT" as part of 
the directive, where "R" is the radix point character and "T" is the thousands 
separator character. Example: 

%decimal(5:10.2,", .")% 

This specifies that the fifth parameter is to be formatted in decimal in a field of 
width 10 and a precision of 2. Additionally, the "," character is used to specify 
the radix point and the fl." character is used as the thousands separator. 

Decimal is the only supported directive for formatting floating-point values. For 
floating point parameters, the optional brackets used to select certain bits of 
a parameter are not allowed. 

The parameter is formatted in hexadecimal. The field is zero filled if "Z" is 
present. Note that no leading characters indicating hexadecimal formatting 
are inserted. Example: 

%hex(2)% 

This specifies that the second parameter is to be formatted in hexadecimal in 
a field just large enough to hold the entire value. 

The parameter is formatted in octal. The field is zero filled if "Z" is present. 
Note that no leading characters indicating octal formatting are inserted. 

The parameter is formatted in binary. The field is zero filled if "z" is present. 
Note that no leading characters indicating binary formatting are inserted. 

The specified parameter is formatted in date format. If no parameter is sup
plied, the current system date is formatted. 2Normally, the date is formatted 
using the user's preferred date format. If n:p' is specified, the date is format
ted using date format "P'. If "ALIGN" is specified, the formatting routine forces 
the date field width to be the maximum produced by the specified date format. 
This is useful when text is formatted in columns. 

The specified parameter is formatted in time format. If no parameter is sup
plied, the current system time is formatted. 2Normally, the time is formatted 
using the user's preferred time format. If ":F" is specified, the time is format
ted using time format "F". If "ALIGN" is specified, the formatting routine forces 
the time field width to be the maximum produced by the specified time format. 
This is useful when text is formatted in columns. 

The specified parameter is formatted in date/time format. If no parameter is 
supplied, the current system date and time are formatted. 2 Normally, the date 
and time are formatted using the user's preferred date and time formats. If 
":F:G" is specified, the date is formatted using date format "P' and the time is 
formatted using time format "G". If "ALIGN" is specified, the formatting routine 
forces the date/time field width to be the maximum produced by the specified 
date/time formats. This is useful when text is formatted in columns. 

ITable 1-6 presents the rules for which parameters and constants are allowed with which directives. 

2The arus$formaCsingle_string and arus$format_multiple_strings routines use the ARUS date/time formatting services to 
format the date and time. These services provide full internationalization capabilities as well as support for multiple date 
/time formats. 

Application Run-Time Utility Services 1-7 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

Table 1-5 (Cont.): Formatting Directives 
Directive 1 Description 

right(N[:W]) The string parameter is formatted in a right-justified field "W" characters wide. 
If the string parameter is longer than "W", it is not truncated. 

left(N[:W]) The string parameter is formatted in a left-justified field "W" characters wide. 
If the string parameter is longer than "W", it is not truncated. 

center(N[:W]) The string parameter is centered in a field "W" characters wide. If the string 
parameter is longer than "W", it is not truncated. 

le ngth ( directive) The specified directive is evaluated and the formatted string is returned as 
an integer constant. Note that this is the only directive that does not insert 
characters into the resultant string. This directive may be used wherever a 
numeric constant is allowed. 

plural(N[, "zero string"[' "singular This directive is used to control pluralization. The directive allows specification 
string"[, "2 string", ... , lin string"]]]) of different strings to be inserted into the resultant string for different values 

of the specified parameter. The first string corresponds to a value of zero, the 
second string to a value of one, the third to a value of two, and so on. The 
final string is used for values greater than or equal to "n". 

If only the parameter number is supplied, "" is used when the value of the 
parameter is one and "s" is used when the value of the parameter is zero or 
more than one. 

system (i tem[, item .. .]) Insert the specified system item(s) into the resultant string at this location. 

control(item[, item .. .]) 

character(V,c) 

set(V) 

increment([V]) 

dec rement ([V]) 

System items are typically specific to a particular operating system and should 
be avoided in cases where format strings are used across multiple systems. 
Supported system items on Mica are: 

object(N)-the parameter is the identifier of an object whose name is 
to be translated and inserted into the resultant string. If no name exists 
for the object, the identifier is output in hexadecimal. 

Insert the specified format control item(s) into the resultant string at this loca
tion. Supported format items are: 

tab--insert tab character 

newJine-new line indicator; for the arus$format_single_string rou-
tine, this inserts carriage_return and line_feed characters; for the arus$formaC 
multiple_strings routine, this advances to the next output string in the 
resultant string array 

fo rm _ feed-i nse rt form _feed character 

Insert the character "c" in the resultant string n times, where n is the value of 
the specified parameter or the specified constant. 

Set the internal parameter value to the value of the specified parameter or 
constant. This is normally used prior to the repeat directive. 

Increment the internal parameter value by the value of the specified param
eter or the specified constant. If "V" is not specified, the constant value 1 is 
assumed. 

Decrement the internal parameter value by the value of the specified param
eter or the specified constant. If "V" is not specified, the constant value 1 is 
assumed. 

ITable 1-6 presents the rules for which parameters and constants are allowed with which directives. 

1-8 Application Run-Time Utility Services 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

Table 1-5 (Cont.): Formatting Directives 
Directive 1 Description 

repeat(V, directive[,directive .. .]) 

text (V) 

if(V{op} V,directive[' directivej) 

case (V, {op}V:directive 
[, (op}V:directive7 •• .]) 

Repeat the specified list of directives. The number of times to repeat may 
be specified by the value of a parameter or by constant value. The repeat 
directive in conjunction with the internal parameter value provides a short way 
to specify output of a list of parameters. 

Output the specified text string. This is useful in conjunction with the repeat 
directive. 

Execute the first directive if the operation specified by {op} is TRUE; otherwise, 
execute the second directive, if specified. Operations compare the value of the 
first specified parameter or constant with the second parameter or constant. 
The following comparison operations are supported: 

Operation Description 

TRUE if the first parameter or constant is equal to the second 
parameter or constant 

<> TRUE if the first parameter or constant is not equal to the second 
parameter or constant 

< TRUE if the first parameter or constant is less than the second 
parameter or constant 

> TRUE if the first parameter or constant is greater than the second 
parameter or constant 

<= TRUE if the first parameter or constant is less than or equal to 
the second parameter or constant 

>= TRUE if the first parameter or constant is greater than or equal 
to the second parameter or constant 

Case on value. The value of the first parameter or constant is compared 
sequentially with every other parameter or constant according to the specified 
operator {op}. If the comparison is TRUE, the directive is executed and the 
comparisons stop. The table below lists the supported comparison operations: 

Operation Description 

TRUE if the first parameter or constant is equal to the specified 
parameter or constant 

<> TRUE if the first parameter or constant is not equal to the spec
ified parameter or constant 

< TRUE if the first parameter or constant is less than the specified 
parameter or constant 

> TRUE if the first parameter or constant is greater than the spec
ified parameter or constant 

<= TRUE if the first parameter or constant is less than or equal to 
the specified parameter or constant 

>= TRUE if the first parameter or constant is greater than or equal 
to the specified parameter or constant 

Two percent signs (%%) are used to insert a single percent sign at the current 
position in the resultant string. 

lTable 1-6 presents the rules for which parameters and constants are allowed with which directives. 

Application Run-Time Utility Services 1-9 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

\Are justification directives needed for entities other than strings (that is, numeric values, etc.)? If 
so, the direct formats could be enhanced to indicate such justification (use of "RI! or "L", for example). 
This would eliminate the need for the "right" and "left" directives in favor of a more general "string" 
directive. \ 

1.12.1.1 Formatting Directive and Data Type Compatibility 

\ The current version of the PRISM Calling Standard does not include a list of supported data types 
for parameters being formatted by arus$formaCsingle_string and arus$format_multiple_strings. Fol
lowing is a list of data types required for these routines: 

arus$data_types : ( 
arus$c_integer, 
arus$c_large_integer, 
arus$c real, 
arus$c:=double, 

Signed integer 
Signed 64-bit integer 
32-bit real 
64-bit real 

\ 

arus$c byte data, 
arus$c:=word:=data, 
arus$c longword data, 
arus$c:=quadword:=data, 
arus$c_string, 
arus$c_absolute_time, 
arus$c_relative_time 
) ; 

Byte array 
Word array 
Longword array 
Quadword array 
Fixed length string 
128-bit absolute time 
128-bit relative time 

The following is a list of which parameter and constant data types are allowed for each formatting 
directive: 

Table 1-6: Data Type Rules for Formatting Directives 
Directive Allowable Data Types for Parameters and Constants 

decimal arus$c_integer, arus$c_large_integer, arus$c_real, arus$c_double 
hex arus$c_integer, arus$c_large_integer, arus$c_byte_data, arus$c_word_data, 

arus$c_longword_data, arus$c_quadword_data, arus$c_string 
octal arus$c_integer, arus$c_large_integer, arus$c_byte_data, arus$c_word_data, 

arus$c_longword_data, arus$c_quadword_data 
binary arus$c_integer, arus$c_large_integer, arus$c_byte_data, arus$c_word_data, 

arus$c_longword_data, arus$c _quadword_data 
date arus$c_absolute_time 
time arus$c_absolute_time, arus$c_relative_time 
date_time arus$c_absolute_time, arus$c_relative_time 
left, right, center 

length 

plural 

system 

control 

character 

set, increment, decrement 

repeat 

text 

if, case 

string constant, arus$c_string 
N/A-argument must be decimal, hex, octal, binary, date, time, date_time, left, right, 
center, plural, system, control, character, text, if, or case formatting directive 

arus$c _integer 
System items are of type arus$c_byte_data, arus$c_word_data, arus$c_longword_ 
data, arus$c_quadword_data, or ?? 

N/A-arguments are keywords 

positive integer constant, arus$c_integer 
signed integer constant, arus$c_integer 
positive integer constant, arus$c_integer 
string constant, arus$c_string 
signed integer constant, real constant, string constant, arus$c_integer, arus$c_ 
large_integer, arus$c_real, arus$c_double, arus$c_string 

1-10 Application Run-Time Utility Services 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

1.12.2 Functional Interface and Description 

The following sections describe the various routines associated with text formatting. 

1.12.2.1 Types Used 

TYPE 
arus$status : status; 

The possible values for field argument datatype are to be 
determined later, in conjunction with the PRISM calling standard. 

arus$condition_argument : RECORD 
argument_datatype : arus$condition_arg_type; 
argument_extent : longword; 
argument : POINTER anytype; 

END RECORD; 

arus$condition_array (n): ARRAY [l .. n) OF arus$condition_argument; 

1.12.2.2 Text Formatting Routines 

Two routines are provided to support the text formatting directives presented previously, arus$format_ 
single_string for formatting a single string, and arus$format_multiple_strings for formatting multiple 
strings. These two routines are presented in the following subsections. 

1.12.2.2.1 The arus$formaLsingle_string Routine 

The arus$format_single_string routine provides text formatting support producing a single resultant 
string. The interface to this procedure is: 

PROCEDURE arus$format_single_string ( 

Parameters: 

Parameter 

source_string 

resu Itant_ string 

resultantJength 

parameters 

language 

IN source_string: string(*); 
OUT resultant_string: varying_string(*); 
OUT resultant length : integer; 
IN parameters-: arus$condition_array OPTIONAL; 
IN language : string(*) OPTIONAL; 
) RETURNS status; 

Description 

Supplies the source string containing text and formatting directives. 

Returns the resultant formatted string. 

Returns the number of characters used in the resultant string. 

Optionally supplies an array of parameters to be formatted into the resultant string. 

An optional string that supplies a language name to override the current default lan
guage. Language is used to determine language-dependent formats for parameters 
formatted into the message string. 

The arus$format_single_string routine copies text from the source string into the resultant string, 
formatting parameters as formatting directives are encountered. 

Application Run-Time Utility Services 1-11 



Digital Equipment Corporation .. Confidential and Proprietary 
For Internal Use Only 

1.12.2.2.2 The arus$formaLmultiple_strings Routine 

The arus$formacmultiple_strings routine provides text formatting support producing multiple resul
tant strings. The interface to this procedure is: 

PROCEDURE arus$format_multiple_strings ( 
IN source_string: string(*); 
IN array_size : integer; 

Parameters: 

Parameter 

source_string 

array_size 

string_size 

resultant_string 

stringJengths 

strings_used 

parameters 

language 

OUT resultant string: arus$string array(array size); 
OUT string le~gths : ARRAY [l .. arr;y size] of integer; 
OUT string~_used : integer; -
IN parameters : arus$condition_array OPTIONAL; 
IN language : string(*) OPTIONAL; 
) RETURNS status; 

Description 

Supplies the source string containing text and formatting directives. 

Supplies the number of strings in the resultant_string array. 

Supplies the length of each string in the resultanCstring array. 

Returns the resultant formatted strings. 

Returns the length of each of the resultant formatted strings. 

Returns the number of strings in the array that were actually used in the formatting. 

Optionally supplies an array of parameters to be formatted into the resultant string. 

An optional string that supplies a language name to override the current default lan
guage. Language is used to determine language-dependent formats for parameters 
formatted into the message string. 

The arus$format_multiple_strings routine copies text from the source string into the resultanCstring 
array, formatting parameters as formatting directives are encountered. Formatting begins by using 
the first string in the array. When a new_line control item is encountered, formatting continues with 
the next element in the array. 

1.13 Command Language Interpreter Interface Routines 

TBS 

1.14 Table-Driven Parsing Routines 

TBS 

1.15 High-Level Math Routines 

TBS 

1-12 Application Run-Time Utility Services 



GLOSSARY 

AlA: Application Integration Architecture 

ARUS: Application Run-Time Utility Services 

CMA: Common Multithread Architecture 

PSM: Print System Model 

Glossary-1 



Owner UIC: 
Account: 

Priority: 
Submit queue: 
Submitted: 
Printer queue: 
Printer node: 
Started: 
Finished: 

Qualifiers: 
Sheets printed: 

ELUDOM::NYLANDER 

ARUS SECT 4 ONLY 

[VAXPLI,NYLANDER] 
PL/I 

100 
LPS_POSTSCRIPT . 
14-APR-1988 13:45 
LPS40$PS2 
PS2 
14-APR-1988 13:45 
14-APR-1988 13:48 

IFORM=LPS$$FORM IFLAG !TRAILER IRESET =LPS$$EOJ 
20 

Dig ital Equipment Corporation 

VAX/VMS Version TS.0-3QS PrintServer 40 


