
Digital Equipment Corporation· Confidential and Proprietary 

For Internal Use Only 

Mica Working Design Document 
Image Activation 

Revision 1.2 

8-February-1988 

Issued by: 

Lou Perazzoli 



TABLE OF CONTENTS 

CHAPTER 1 IMAGE ACTIVATION ................................. 1-1 

1.1 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1 
1.1.1 GoalslRequirements _. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1 
1.1.2 Functional Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1 

1.1.2.1 Image Initialization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1 
1.1.2.2 Image Exit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2 
1.1.2.3 Autoload Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-2 
1.1.2.4 Installation of Images .................................... 1-2 
1.1.2.5 Images Within Shareable Image Space .......... . . . . . . . . . . . . . . . 1-3 

1.1.3 Issues to be Resolved. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3 

1.2 Image Activation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3 
1.2.1 Th.read Startup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3 
1.2.2 Segment Does Not Exist for Image File. . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-4 

1.2.2.1 Image Header. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-4 
1.2.2.1.1 Image Section Descriptors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-4 

1.2.3 Mapping the Image into Virtual Address Space. . . . . . . . . . . . . . . . . . . . . . . 1-5 
1.2.3.2 Image Fixup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-5 
1.2.3.3 Th.read Local Storage Fixups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-5 
1.2.3.3 Activate Immediately Shareable Images ........................ 1-5 
1.2.3.4 Debugger. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-6 

1.2.4 Loading of Shareable Images. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-6 
1.2.5 Autoloading of Shareable Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-7 

1.2.5.1 Linkage Pair .......................................... 1-7 
1.2.5.2 Autoload Vector. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-7 
1.2.5.3 'II-ansfer code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1--8 

1.2.6 Image Descriptor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1--8 
1.2.6.1 Autoloader. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-10 

1.2.7 Autoloading System Services. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-11 
1.2.8 Image Startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-11 
1.2.9 Merged Image Activation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-12 
1.2.10 Installation of Images. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-12 

1.2.10.1 Images Within Shareable Image Space .......... _.............. 1-12 
1.2.11 Image Mapping into System Space. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-12 

EXAMPLES 
1-1 Prototype PTE Protection Attributes 1-4 

iii 



FIGURES 
1-1 Structures Before Autoload Has Occurred. . . . . . . . . . . . . . . . . . . . . . . . . . 1-9 
1-2 Structures Mer Autoload Has Occurred. . . . . . . . . . . . . . . . . . . . . . . . . .. 1-10 

Iv 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

Revision History 
Date 

30-May-1986 

9-Sep-1986 

2S-Sep-1986 

04-Nov-1987 

2S-Nov-1987 

01-Feb-1988 

Iv 

Revision Number 

0.0 

0.1 

0.2 

1.0 

1.1 

1.2 

Summary of Changes 

Initial entry. (Lou Perazzo Ii) 

Changed to reflect new improved map_file directive. 
(Lou Perazzoli) 

Incorporated review comments and changed name to 
image mapper. (Lou Perazzoli) 

Eliminated moldy P.TBD concepts such as environments, 
map_file directive, etc. and changed to reflect current 
linker and memory management designs. Add sections 
on autoloader and synchronizations. Added section on 
shareable image loading and initializations. (Lou Per
azzoli) 

Minor edits to conform with object language and linker 
chapters. (Lou Perazzoli) 

Add section on thread local storage and modify au
toloader design. (Lou Perazzoli) 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

CHAPTER 1 

IMAGE ACTIVATION 

1.1 Overview 

The linker produces an executable image as the end product of program development. During process 
creation, the thread creating the process specifies the image to be executed by the new process. Mter 
the creation of the process and the initial process thread, the image file is mapped into the newly 
created address space. This mapping occurs in the context of the initial process thread. 

Image mapping involves several steps that prepare the image for execution. The image activator 
opens the image file, thereby establishing a channel to obtain the necessary information to map the 
file. If the image does not already have an associated segment object, the image activator creates 
a segment object for the image, building prototype PTEs for the image file. The image activator 
maps the image into the user's address space, resolves certain address references, and establishes 
the debugger and traceback handlers. 

1.1.1 Goals/Requirements 

The Mica image activator has the following goals: 

• All images are automatically and transparently shared among all users. 

• Optimal performance is achieved by issuing a minimal number of disk reads to initially map the 
image and delaying most fixups by delaying the loading of shareable images. 

1.1.2 Functional DeSCription 

1.1.2.1 Image Initialization 

No special code exists in Mica to read images into memory for initial execution. Instead, the paging 
mechanism is used to "pagett an image into memory. The image activator configures the process page 
tables to reflect all pages in the image file. 

Mica performs the following steps to support image activation: 

1. Opens the image file 

The image activator issues a read-only share open service on the image file. This service returns 
a channel ID to the file. 

2. Creates a section 

The image activator calls the exec$create_section system service. The caller specifies the channel 
ID from the previous system service call, and a mapping type of e$k_image_map. This service 
returns a section_id. 

3. Maps the section 

The image activator calls the exec$map_section system service, specifying the section_id returned 
from the exec$create_section system service. This service returns the starting and ending ad
dresses that delimit the mapped image in the virtual address space. 

Image Activation 1-1 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

4. Performs fixups 

The starting address identifies where the image's image header begins. The image activator 
examines the image header, and performs the necessary image fixup operations on the image. 

5. Handles message sections 

If any message sections are present in the image, as indicated by the image header, the image 
activator calls the routine to add these message sections to the process. The nature and functions 
of this routine are described in Chapter 3, Status Codes and Messages. 

6. Maps shareable images marked "activate immediately" 

The image activator examines the image header, and maps any shareable images which are 
marked "activate immediately". The image activator performs the external fixups for those 
shareable images once they are mapped. Note that this is a recursive call to the image activator. 

7. Calls initialization procedures 

Once the image activator maps and fixes up the "activate immediately" images, it examines 
the image header, and calls any initialization procedures at their specified entry points. These 
initialization procedures provide the functionality of the LIB$INITIALIZE routine in VMS. The 
image activator does not guarantee the order between images of initialization procedure calls, 
but it does guarantee each procedure is called only once before the user executes any code within 
that shareable image. 

8. Invokes image 

Mter the image activator has invoked all initialization procedures, it calls the image at its 
transfer address. 

1.1.2.2 Image exit 

When an image returns to the image activator, the exec$thread_exit system service is issued, which 
begins thread termination. The exec$thread_exit system service simply calls each exit handler that 
has been declared by the thread, and then invokes the exec$delete_thread system service. If the 
process has other threads executing, those threads continue to execute normally. Image exit occurs 
when the last thread in the process exits and the mapping objects and section objects for the image 
are deleted during object container rundown. 

1.1.2.3 Autoload Procedure 

The autoload procedure operates similarly to the "activate immediately" method described above. The 
autoload procedure loads shareable images and resolves the external references when the reference 
is encountered, rather than at initial image activation time. This reduces the overhead of initial 
image activation, and maps shareable images only when they are actually required. 

1.1.2.4 Installation of Images 

The Install Utility serves two purposes. It provides for the installation of a shareable image: 

• Within the shareable image space 

• With the WRITE attribute 

The Install Utility creates a section object for the image, which causes a segment object to be built. 
The segment object has a "system channel" to the image which implies that the image is effectively 
installed "opened". 

1-2 Image Activation 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

1.1.2.5 Images Within Shareable Image Space 

When a shareable image is installed in the shareable image space by use of the !BASE qualifier, the 
Install Utility opens the image file, and creates a segment causing prototype PTEs to be built. The 
segment object for the shareable image contains the base address for the image within the shareable 
address space. When the shareable image is loaded, it is mapped at the specified address. If the 
image cannot be mapped at the specified address due to addressing conflicts, an error is returned, 
and the shareable image is not mapped. 

When the shareable image is installed no fixups, internal or external, are performed. Note, however, 
that since no external fixups are performed, any referenced shareable images are treated just like 
referenced external images. This allows later versions of shareable images to be installed at different 
base addresses while the system is running, and the latest image is properly loaded. 

Images installed in shareable image space may reference other images though use of the autoload 
capability or the activate immediately capability. These referenced images do not need to reside in 
shareable image space. 

1.1.3 Issues to be Resolved 

• Exact detail of message section addition. This is dependent on the design of message sections 
and the definition of the routines. 

1.2 Image Activation 

1.2.1 Thread Startup 

Once the process and the initial thread have been created with a minimal address context (user stack, 
process control region, thread control region, last chance condition handler), the initial thread startup 
routine is invoked in user mode. The initial thread startup routine exists in the system portion of 
the address space. Its sole purpose is to map the shareable image, mica$fm_share, that performs the 
actual user-mode thread startup. 

A section exists for the mica$fm_share shareable image in a known system container. To map the 
image an object name translation is performed on the image name in the system container. The 
resulting section ID is mapped and its base address in shareable image space. 

The mica$fm_share shareable image contains the image activator, the image fixup, the global au
toloader, and the support routines to start the initial image. 

After mapping the mica$fm_share shareable image, the initial thread mapping procedure examines 
the image header to locate the transfer vector offset for the imact$initialize procedure. The image 
activator then calls the imact$initialize procedure, passing the base of the system service vector page 
as an argument. The base of the system service vector page is required to allow various system 
services to be called before the system service shareable image has been loaded. 

The imact$initialize procedure maps the section for the system services, and opens the specified 
image file as execute only. 

If the open service on the image file succeeds, the exec$create_section service is called to create the 
structures necessary to share the file among multiple address spaces. 

The exec$create_section service performs an object name lookup to determine if the specified image file 
currently has an associated segment object. Note that all segment objects exist in the same system 
container. If the segment indicates that the file is mapped as a data file rather than an image file, 
the exec$create_section service returns an error indicating that the file is mapped in an incompatible 
state. If the segment object specifying image mapping currently exists for the image file, a section 
object is created which refers to the segment object. If the segment object exists, the image activator 
continues the process of image activation by mapping the section (See Section 1.2.3). Otherwise, 
memory management software must create the segment (See Section 1.2.2). 

Imago Actlvp,tlon 1-3 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

1.2.2 Segment Does Not Exist for Image File 

If a segment object does not currently exist for the image, the exec$create_section system service 
creates and initializes a segment object for the image. A system channel is created to the specified 
file, and the pointer to the channel object is stored in the segment object. 

The segment object header contains, among other items, the system channel pointer of the file, the 
number of pages in the segment, the required size of the user stack, and the mapping type (in this 
case, mm$c_image_map). 

1.2.2.1 Image Header 

The first sixteen virtual blocks of the image are read into memory and examined. If the image is less 
than 16 blocks, an error status is returned in the IOSB, but the read still completes, delivering all the 
blocks in the image. The image header (which is at least one block) contains an item describing the 
number of 64-Kbyte pages required to map this image. The number of 64-Kbyte pages determines 
the allocation required for the segment object. 

1.2.2.1.1 Image Section Descriptors 

The analysis of the image header continues by examining the image section descriptors (ISD). The 
image section descriptors describe the layout for creating the prototype PTEs for the image. Each 
image section is aligned by the linker on a virtual disk block number (VBN). An image section 
descriptor starts on a 64-Kbyte virtual boundary. The image section is either demand zero, or it 
contains the number of VBNs in the section, and the starting VBN number of the section. The ISD 
also contains the page protection for the section. See Chapter 29, Linker for more details. 

The image activator determines the format and the protection attributes of the prototype PTE from 
the information in the ISD. Example 1-1 describes how the protection is set. 

Example 1-1: Prototype PTE Protection Attributes 

Flags in ISD Settings in Prototype PTE 
READ WRITE EXECUTE READ WRITE FOR FOW FOE COM 

0 0 0 0 0 0 1 0 1 
0 0 1 1 0 1 1 0 1 
0 1 0 Invalid in PRISM 
0 1 1 Invalid in PRISM 
1 0 0 1 0 0 1 1 1 
1 0 1 1 0 0 1 0 1 
1 1 0 1 1 0 1 1 * 
1 1 1 Invalid in an image file 

* Set if MODIMG$IMAGE SECTION DESCRIPTOR. COPY ON MODIFY is true. -
The copy_on_modify flag is set on all nonwritable pages. This allows the protection on a nonwritable 
page to be changed to writable, causing the materialization of a private page before the actual write. 
Also, fault on write is enabled on all pages even if those pages are not writable. This allows the 
protection to be changed to writable without having to also enable fault on write. For ISDs which 
are read/write and not copy on modify, fault on write is enabled to maintain the modified state of the 
page. 

"When a writable image section descriptor is encountered without copy _on_modify set, the file system 
is queried to see if the user has opened the file for write access. If the file has not been opened for 
write access, the exec$create_section service fails indicating the file was not opened for write access 
in the status value. If the file was opened for write access, the exec$create_section proceeds. Only a 
shareable image may have image sections without copy_on_modify set. 

Once the stack descriptor has been found, the size of the stack is recorded in the segment object. 

1-4 Image Activation 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

Once the segment object has been initialized, the section object is created in the process-private 
container that refers to the segment object. 

At this time, the section object and segment object for the file have been created. All local image 
sections have been processed and the prototype PTEs have been created for the segment. It is 
interesting to notice that at this time all prototype PTEs either point to a subsection, are no access, 
or are demand zero. 

1.2.3 Mapping the Image Into Virtual Address Space 

The exec$map_section service is issued to map the section into the user's address space. This causes 
the creation of a mapping object in the process-private object container. The mapping object contains 
a reference pointer to the section object and the virtual address limits where the section was mapped. 

The image activator attempts to map images at their based address to eliminate internal fixups. 

If the initial user stack is less than the stack size specified in the segment object, the exec$expand_ 
stack service is called to produce a stack of the proper size. 

1.2.3.2 Image Flxup 

An image section contains the fixup information necessary to resolve any internal image addresses. 
Once the exec$map_section code completes, the image fixup is done in user mode by examining the 
furup information, and adding the difference between the real and the base address of the image to 
each fixup location. 

If necessary, the protection of the page is changed to writable in order to allow fixup information to 
be written to the page. By examining the fixup information, an argument list for the Set Protection 
service is created which sets the protection of all necessary pages, that is, pages which reside in 
nonwritable program sections, to write enable. The fixups are then calculated and written to the 
appropriate locations. The protection on the pages is changed back to write disable. 

1.2.3.3 Thread Local Storage Flxups 

The shareable image mica$fm_share contains the current sum of all thread local storage regions in 
each loaded image. When an image is loaded via the activate immediate mechanism or the autoloader, 
the image being loaded is given the current sum, and the sum is updated by adding the number of 
thread local storage regions found in the image being loaded to the current sum. 

The accessing and modification of the sum is performed under synchronization to prevent multiple 
threads from storing or updating the sum simultaneously. 

1.2.3.3 Activate Immediately Shareable Images 

After completing internal fixups, the image activator examines the image header to locate any "acti
vate immediately" shareable images. If found, the image activator issues a call to an object service 
to determine if a mapping object exists with the name of the image desired. If the image has been 
mapped previously, the virtual addresses of where it is mapped may be obtained from the mapping 
object. The virtual address of the shareable image is used to perform the external fixups. Note that 
the linker determines whether a shareable image is autoloaded or "activate immediately". 

If an "activate immediately" image is not currently mapped, the shareable image synchronization 
primitives described in a later section are used to ensure that only one copy of the shareable image 
is mapped, fixed up, and initialized. 

As each shareable image is mapped and fixups performed as necessary, any initialization procedures 
for that shareable image are invoked. As "activate immediately" image operations are performed, 
external fixups are performed in the invoking image. 

Image Activation 1-5 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

1.2.3.4 Debugger 

The debugger is invoked as an activate immediately shareable image which has an initialization 
procedure. The debugger's initialization procedure checks to see if the debugger should be invoked 
and if so does whatever operations are necessary to create a debugging environment. 

1.2.4 Loading of Shareable Images 

The following pseudo-code describes the steps to ensure that two threads do not attempt to load the' 
same shareable image at the same time. 

! General shareable image synchronization. 
disable ASTs 
status = exec$create event (name = shareable image_name) 
IF status == collisi~n THEN -

status = exec$wait_any (collided event_id) 

! Shareable image is loaded and initialized when wait 
! completes. Note wait could return an invalid ID error. 

END IF 

status = exec$translate object name ( 
object_id = returned_m~pping_id, 
object type mapping object, 
object=name = shareable_image_name 
) 

IF status == name does not exist THEN 

! Image has not been loaded. Load it. 

open file (shareable image) 
create section (shar;able_image_channel) 
map section (shareable image section id) 
fixup shareable image - - -
activate immediates 
call initialization procedures 

ELSEIF status == success THEN 

! Shareable image is loaded and initialized. 

exec$get mapping info ( 
obje~t_id = ~eturned_mapping_id, 
item base address 

ELSE 
restore AST state 
! Unexpected error - raise condition. 

END IF 

store the base address 
status = exec$;et event (event id) 
status = exec$del;te_object_id-(event_id) 
restore AST state 

1-6 Image Activation 

!ignore any errors 
!ignore any errors 



1.2.5 Autoloading of Shareable Images 

Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

Automatic loading of shareable images is the act of loading a shareable image only when a procedure 
within that shareable image is invoked. This allows the overhead of loading the shareable image 
and performing fixups and initialization routines to be deferred until the shareable image is actually 
required. 

When the first call to a procedure within a shareable image is made, that image is automatically 
loaded. All other calls to procedures within that shareable image from the image making the call are 
fixed to directly call the loaded shareable image. Note that this involves changing the protection of 
read-only memory to read-write, and then changing it back again. 

1.2.5.1 Linkage Pair 

A linkage pair consists of two longwords. The first contains a pointer to the invocation descriptor 
for the procedure and the second contains the address of the code for the procedure. The following 
instructions are generated to call the procedure: 

LDQ routine(Rx),R10 ;load R10 with invoc. desc and rll with code address 
JSR Rll, (Rll) ; call the procedure 

Note that routines which access the linkage pair must always be accessed with a LDQ instruction. 
This prevent synchronization problems when the linkage pair is being modified. 

For procedures which reside in automatically loaded shareable images the first longword of the 
linkage pair contains the address of the autoload vector and the second longword contains the address 
of the transfer code. The linkage pair and autoload vector reside in the linkage section, which is read
only. 

1.2.5.2 Autoload Vector 

The autoload vector is the data structure that maintains the information about the automatic link
age to a routine in another shareable image. The autoload vector consists of 5 longwords, and is 
quad word aligned. The first longword is the address of the transfer code, the second longword is 
the address of the entry descriptor for the transfer code, the third longword contains the address of 
the autoload vector, the fourth longword contains the address of the autoloader code, and the fifth 
longword contains the address of the image descriptor for this shareable image. The third and fourth 
longwords are changed after the image is loaded to contain the address of the routine's real invocation 
descriptor and entry point. This allows subsequent calls to the routine using the autoload vector to 
work (which might happen in an optimizing compiler). 

For each procedure called within a autoloaded shareable image a autoload vector exists. The autoload 
vector is created by the linker in the image's header, which is read-only memory. When the desired 
image has been loaded and all fixups and initializations performed, the autoload vector is modified. 
The address of the autoload vector field and the pointer to the local autoload code are changed to be 
the real routines linkage pair using a STQ instruction. 

Image Activation 1-7 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

1.2.5.3 Transfer code 

The transfer code consists of the following 3 instructions: 

LDQ 
OR 
JSR 

8(R10),R4 
R4,RO,R10 
RO, (R5) 

iload address of autoloader code 
iload R10 with address of autoload vector 
ijump to the local autoloader 

Since the autoload vector itself is fixed up during automatic image loading, the transfer code on 
subsequent calls transfers the caller directly to the called routine. The transfer code is generated by 
the linker in a special psect that allows execution. 

1.2.6 Image Descriptor 

The image descriptor consists of the image name, the self-relative base address for the current image, 
and an array oflongwords consisting relative pointers to each linkage pair which references procedure 
in the shareable image described by this image descriptor. Note that the image descriptor is created 
by the linker in the image header in read-only memory. 

1-8 Image Activation 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

Figure 1-1: Structures Before Autoload Has Occurred 

Unkage Pair 

Address of autoload vector 

Address of transfer code 

Autoload Vector 

Address of transfer code 

Entry descriptor for tranfer code 

Address of autoload vector 

Pointer to local autoload code 

Transfer Code 
Address of image descriptor 

LDO 8(R10),R4 ;Autoload vector to R4, code to R10 

OR R4,RO,R10 ;Autoload vector to R10 

JSR RO,(RS) ;Jump to code address in R5 

Image Descriptor 

Image name 

Image base address 

Global autoloader invocation descriptor 

Address of linkage pairs 

Image Activation 1-9 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

Figure 1-2: Structures After Autoload Has Occurred 

Lilkage Par 

Address of invocation descriptor 

Address of rou1ine code 

Transfer Code 

LDQ 8(R10),R4 ;Autoload vector to r4, code to r5 

OR R4,RO, R1 0 ;Autoload vector to r1 0 

JSR RO,(R5) ;Jump to code address in r5 

Image Desaiptor 

Image name 

Image base address 

AutoIoadVed.or 

Address of transfer code 

Entry c:IesalXor for 1ransfer code 

Address of invocation desaiptor 

Address of rou1ine code 

Address of image desaiptor 

Global autoloader invocation deSCriptor 

Address of linkage pairs 

1.2.6.1 Autoloader 

* ... updated 

The autoloader consists of two parts, a local portion generated by the linker and a global portion 
which resides in the shareable image mica$fm_share. 

The local portion does the following: 

• Checks to ensure that RlO contains the address of the autoload vector. This is accomplished by 
comparing RlO to 8(RlO). If they are unequal, then the image is already loaded and may be 
called by executing the transfer code instructions. 

• Saves all scratch registers except R4 and R5. 

1-10 Image Activation 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

• Loads RIO with invocation descriptor, and loads RII with the code address of the global autoload 
routine. 

• Calls the global autoload routine. 

• Upon return, restores the saved registers and executes the transfer code sequence to call the 
newly loaded routine. 

The global autoloader does the following: 

• Disables ASTs. 

• Performs synchronization to ensure that multiple threads are not attempting to load the same 
shareable image simultaneously. See Section 1.2.4 for details. 

• Checks to ensure that the autoload has not already occurred. This is done by comparing RIO 
with 8(RIO). If they are not equal, 8(RIO) contains the invocation descriptor address and 12(RIO) 
contains the code address. 

• Maps in the shareable image if it is not already mapped. 

• Performs fixups on the shareable image. 

• Invokes the shareable image's initialization procedures. 

• Performs synchronization to ensure that multiple threads are not attempting to update the 
shareable image's linkage pair area simultaneously. 

• Sets the protection of the linkage pair areas to read/write and updating all elements represented 
in the image descriptor's array of longword pairs. As linkage pairs are updated, the autoload 
vector which the invocation descriptor refers to is also updated. 

• Restores AST state. 

• Returns to the local autoload procedure. 

After the autoloader has executed, the linkage pair contains the actual address of the invocation de
scriptor and the code, and the autoload vector contains the actual address of the invocation descriptor 
in the third longword and the actual address of the code in the fourth longword. 

\This section will track any changes in the Prism calling standard.\ 

1.2.7 Autoloading System Services 

At system initialization some pages of system space are allocated as kernel entry pages (user read, 
fault on execute, kernel entry point fields are set). The starting address of these pages is stored in 
the global variable e$system_services_base. 

Also, at system initialization, the exec$create_section service is called to create a section for the system 
services shareable image. This image is mapped into shareable image space, thus creating a segment 
for the subsequent references. In order to fixup the vectors, the address found in e$system_services_ 
base is added to each offset. Thus, when a JSR is issued to a system service, the destination address 
of the JSR is within the system service vector page. 

1.2.8 Image Startup 

Once the fixup operation has completed and all "activate immediately" shareable images have been 
loaded and initialized, the thread startup procedure, still running in user mode, locates the transfer 
address to be called. 

The transfer address is called with the standard argument list. This transfer address is the entry 
point of the user image. 

\ Exact details of the argument list are TBD. \ 

Image Activation 1-11 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

1.2.9 Merged Image Activation 

The image activator supports merged image activation to allow the emulation of the lib$find_image_ 
symbol routine. Note that VMS compatible routines for $imgact or imgfix is not provided since they 
are not documented in the VMS system services manual. 

1.2.10 Installation of Images 

The Install Utility serves two purposes. It allows: 

• Installation of a shareable image within the shareable image space 

• INSTALL !WRITE functionality 

All images which are installed have a segment object. Since the segment object contains a channel 
to the specified image file, the image is effectively installed "opened". 

1.2.10.1 Images Within Shareable Image Space 

"Wben a shareable image is installed in the shareable image space by use of the !BASE qualifier, 
the image file is opened and prototype PTEs are built. The segment object for the shareable image 
contains the base address for the image within the shareable address space. "Wben the shareable 
image is mapped, it is mapped at the BASE address specified. If the image cannot be mapped at the 
specified address space, due to addressing conflicts, an error is returned and the shareable image is 
not mapped. 

"Wben the shareable image is installed no fixups are performed. Internal fixups are not performed 
because of the complex nature in forcing the fixups back to the prototype PTEs. However, by linking 
the shareable image as based and installing the shareable image at its linked based address, no 
internal fixups are required. 

External fixups are not performed to allow later versions of referenced shareable images to be installed 
(at different base addresses) while the system is running, and the latest image is autoloaded. 

It is not possible for the same address space to have two different versions of the same shareable 
image loaded. This problem is avoided because the synchronization rules followed when shareable 
images are loaded. 

1.2.11 Image Mapping Into System Space 

During system initialization and normal system operations shareable images need to be loaded into 
system space. Such shareable images could be function processors, object service routines or user 
loadable system services, or in the case of system initialization, components of the executive. 

The image activator is subsetted to create a system image loader which provides this functionality. 
The system image loader loads and binds shareable images with the executive. 

\There also needs to be a executive service to allow system management to invoke the system loader.\ 

1-12 Image Activation 



Digital Equipment Corporation - Confidential and Proprietary 

For Internal Use Only 

Mica Working Design Document 
Naming Standards and 
Pillar Coding Conventions 

Revision 0.6 

13-January-1988 

Issued by: 

Kris K. Barker 



TABLE OF CONTENTS 

CHAPTER 1 NAMING STANDARDS AND PILLAR CODING CONVENTIONS 

1.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... 

1.2 Naming Standards .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
1.2.1 Goals ................................................. . 
1.2.2 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
1.2.3 General Naming Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

1.2.3.1 Case Sensitivity .......... . . . . . . . . . . . . . . . . . . . . . . ........ . 

1.2.3.2 What is a Facility? .' .................................... . 
1.2.4 Facility Names ..... " ..................................... . 
1.2.5 Module Names ........................................... . 

1.2.5.1 Definition Modules ..................................... . 
1.2.5.2 Implementation Modules ................................. . 
1.2.5.3 Combination Modules .................................... . 

1.2.6 File Names and File Types ................................... . 
1.2.7 Procedures .............................................. . 

1.2.7.4 System Routines ....................................... . 
1.2.7.5 System Services and Executive Routines ....................... . 
1.2.7.6 Kernel Routines ....................................... . 
1.2.7.7 Procedure Arguments .................................... . 

1.2.8 Types ................................................. . 
1.2.8.8 Enumerated Type Element Names ........................... . 
1.2.8.9 Data Structure Types .................................... . 

1.2.9 Global Variables .......................................... . 
1.2.10 Constants .............................................. . 
1.2.11 Messages .............................................. . 
1.2.12 Logical Names .......................................... . 

1.2.13 Objects and Object Containers ................................ . 
1.2.14 Compile-time Facility Macros and Procedures ...................... . 

1.3 Pillar Coding Conventions ...................................... . 
1.3.1 Goals ................................................. . 
1.3.2 Indentation ............................................. . 
1.3.3 Capitalization ............................................ . 
1.3.4 Line Length ............................................. . 
1.3.5 Multistatement Lines and Multiline Statements ..................... . 
1.3.6 Comments .............................................. . 

1.3.6.1 Module Level Comments .................................. . 
1.3.6.2 Procedure Level Comments ................................ . 
1.3.6.3 Block Comments ....................................... . 
1.3.6.4 Line Comments ........................................ . 

1.3.7 "Whitespace" ............................................ . 

1-1 

1-1 

1-1 
1-1 

1-1 
1-2 
1-3 
1-3 
1-3 
1-4 
1-4 
1-4 
1-4 
1-5 
1-5 
1-5 
1-6 
1-6 
1-6 
1-6 
1-6 
1-6 
1-7 
1-7 
1-7 
1-8 

1-8 
1-8 

1-9 
1-9 
1-9 
1-9 
1-9 

1-10 
1-10 
1-10 
1-11 
1-11 
1-12 
1-12 

iii 



1.3.8 Module Format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-13 
1.3.9 Copyright Formats ......................................... 1-14 
1.3.10 Procedure Format ........................................ , 1-14 
1.3.11 Condition Handler Format ................................... 1-15 
1.3.12 Order of Declarations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-15 
1.3.13 Statement Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-15 

1.3.13.1 IFtrHENIELSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-15 
1.3.13.2 LOOP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-15 
1.3.13.3 CASE .............................................. 1-16 
1.3.13.4 Blocks (WITH Statement) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-16 
1.3.13.5 VALUE, TYPE, VARIABLE, BIND Declarations .................. 1-16 

1.3.13.5.1 RECORD Types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-17 
1.3.13.5.2 Enumerated Types .................................. , 1-17 

1.3.13.6 Procedure Declarations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-18 
1.3.13.7 Procedure Invocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-19 

1.3.14 Message and Condition Declarations. . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-19 
1.3.15 Miscellaneous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-19 

1.4 OPEN ISSUES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-21 

INDEX 

iv 



Digital Equipment Corporation-Confidential and Proprietary 
For Internal Use Only 

Revision History 
Revision 

Date Number 

4-DEC-1986 0.1 

16-JAN-1987 0.2 

1-MAR-1987 0.3 

18-SEP-1987 0.4 

21-0CT-1987 0.5 

12-NOV-1987 0.6 

iv 

Author 

Benn Schreiber 

Benn Schreiber 

Benn Schreiber 

Kris Barker 

Kris Barker 

Kris Barker 

Summary of Changes 

Original. 

Incorporate review comments. 

Comments from public review. 

Reorganize chapter and add coding conventions. 

Incorporate changes from architect review. 

Incorporate changes following further review and notes file 
comments. 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

CHAPTER 1 

NAMING STANDARDS AND PILLAR CODING CONVENTIONS 

1.1 Introduction 

This chapter defines standards for the naming of data types, logical names, module names, and so on 
throughout the Mica operating system. It also provides preferred conventions for all Mica programs 
written in Pillar. 

1.2 Naming Standards 

Naming standards are used for all names accessible from user-mode programs throughout Mica. Such 
names are commonly referred to as public names. 

1.2.1 Goals 

Naming standards are important for several reasons: 

• To present a consistent, easy-to-remember name space to users and developers 

• To ensure that system software uses consistent naming to aid future developers in maintaining 
and extending the software 

• To ensure that customer-written software is not invalidated by future releases of DIGITAL prod
ucts that add new symbols 

• To facilitate straightforward usage within Pillar; the names are similarly usable in all other 
DIGITAL-supported languages 

1.2.2 Scope 

This section covers the public naming standards for: 

Facility names 
The software facility name based on the product or component name. 

Module names 
The names assigned to program source modules. 

Procedure names 
The names of system services, system routines, kernel routines, and run-time library routines, and 
the names of the arguments to those procedures. 

Files and directories 
The format for naming files that constitute the system software. 

Naming Standards and Pillar Coding Conventions 1-1 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

Program data and type names 
Including: 

• Types-Pillar named types including records and record fields 

• Global variables-global symbols known to the linker 

• Constants-compile-time named constants including: 

Item codes 

Function codes 

I/O parameter record codes 

Other named constants 

• Message names-symbols that define unique message values 

Logical names 
System or group logical names used to alter, define, or control a facility. 

Compile-time facility macros and procedures 
Macros and command procedures used during the compilation process. 

These are discussed in the following sections. The standards in this section cover all public software 
interfaces for layered products, as well as bundled Mica software. 

1.2.3 General Naming Standards 

Names should not be short acronyms. Use full English wordCs) whenever possible. For instance, a 
parameter representing the desired access mode should be named access_mode rather than acmode. 

If the name consists of more than one word, the words must be separated with the underscore ("_") 
character. 

\ Throughout this document multiword names in naming examples are hyphenated. This is done to 
improve readability and to point out exactly where underscores are required. For example, 

facili ty$C _ name~.of-constant 

is an example of a constant name; "name-of-constant" might be something such as user _buffer. \ 

The exception to this standard occurs when a name is too long, that is, longer than the maximum 
allowed symbol length. In this case, the engineer must use good judgment and derive an acceptable 
name that is easily remembered. While the maximum symbol length on Mica is TBD, this standard 
recommends limiting symbols to 31 characters, especially for code that may be ported to VAXJVMS. 

All DIGITAL-supplied public symbols that can be referenced by users and where the scope of the 
symbols overlaps with the user name space, are prefixed with "facility$" where: 

• "facility"-the facility to which this symbol belongs 

• "$"-indicates a DIGITAL reserved name 

Users must not use the currency sign in their definitions. This ensures separation of name spaces 
and prevents naming collisions in future releases. See Section 1.2.5.1 for more information. 

When something is named in several different places throughout the system, it must have the same 
name. For instance, all services that accept an event object ID as an argument should name the 
argument evenCid. 

1-2 Naming Standards and Pillar Coding Conventions 



1.2.3.1 Case Sensitivity 

Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

Unlike the vAXiVMS object language, the Mica object language is case sensitive. To accommodate 
common coding practices in case-sensitive languages such as C, case-insensitive compilers output 
symbols completely in lowercase. This eliminates the need for generating both lower and uppercase 
versions of global symbols. The names given to system services, RTL routines, item codes, objects 
and object containers, message names, and so forth should, therefore, be completely in lowercase. 

\ The sample names presented in this chapter do not always follow this lowercase guideline exactly. 
This is for readability only. The rules for presenting sample names in this chapter are: 

• Generic portions (that is, portions of the name that are determined by the engineer based on 
where and how the name is used) are in lowercase. 

• Specific portions (that is, portions of the name that must be exactly as specified in the example) 
are in uppercase. In actual code, these portions would be written in lowercase. 

For example, when an engineer creates a constant name that has been presented in this chapter as: 

facility$C_name-of-constant 

• The generic "facility" is replaced by the facility name (in lowercase). 

• The specific n$c_n is written as "$c_". 

• The generic "name-of-constant" is replaced by a descriptive name for the constant (in lowercase). 

The actual name would be something such as linker$c_maximum_symbols.\ 

1.2.3.2 What is a Facility? 

A facility is a collection of code and data which operate together to perform a function or set of 
functions. For the purposes of the Mica naming scheme, each utility or layered product is typically 
considered to be a facility. 

For Mica, most of the executive is considered a single facility. However, separate facilities are defined 
for code that appears to provide executive functionality, but in reality resides elsewhere (remote 
procedure call support, for example). Exceptions to this include support that is viewed as part of the 
executive on VAXlVMS. 

1.2.4 Facility Names 

Good judgment must be used when defining facility names. In general, facility names should be the 
full name of the facility. For instance, the Pillar compiler should use the facility name pillar, the 
linker should use linker. Use of the facility name itself is preferred over use of the verb describing 
the function performed by the facility (for example, linker rather than link). 

Facility names must be carefully chosen so that messages issued from the various facilities can be 
easily identified without requiring extensive prior knowledge of the software or a need to feed facility 
names through an alphabet-soup-to-English translation program. 

There are facilities to be ported from VAXlVMS that have three-letter acronyms, such as the various 
components of the Run-Time Library. It is preferred that these facilities maintain their acronyms to 
maximize compatibility and to minimize confusion for both developers and users who migrate from 
VAXlVMS to Mica. 

If the facility name is eight characters or less, the facility name must be used as is. If the facility 
name exceeds eight characters, an acronym must be chosen that is sensible and easy to remember. 
(For example, perform might be used as the facility name for the PERFORMANCE facility.) 

The facility name has no direct relation to the method of software distribution used (bundled versus 
layered). Facilities that are bundled with the Mica operating system have their own facility names. 
For instance, debugger is the facility name for the debugger. 

Naming Standards and Pillar Coding Conventions 1-3 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

Facility names and facility codes must be registered. A list of registered facility names and facility 
codes is presented in the Type, Record, and Name Appendix of this document. 

\For the remainder of this chapter, the term "facility prefix" is used to indicate the facility name 
followed by a currency ("$") sign. \ 

1.2.5 Module Names 

The name given to a particular source module depends on its type. There are three types of source 
modules in Pillar: definition modules, implementation modules, and combination modules. Rules for 
naming these modules are presented in the following sections. 

1.2.5.1 Definition Modules 

Definition modules contain only value, type, variable, and procedure definitions. Two types of defini
tion modules are: 

• "Internal" or "Private" definition modules 

These are modules containing definitions used internally within Mica. Since these are not seen 
by customers, granularity of declarations within a facility or the executive is that deemed most 
appropriate to Mica development. 

Private definition module names are of the form: 

facility$module-name_DEF 

• "External" or "Public" definition modules 

These are modules containing definitions visible to customers. Typically, the public definition 
module for a particular facility is a collection of selected portions of private definitions modules 
used by that facility. Only one such public definition module is allowed per facility. Most facilities 
will not even have a public definition module. 

Public definition module names are of the form: 

facility$DEFINITION 

All exported procedures, types, variables, and constants (defined in both private and public definition 
modules) must have names beginning with "facility$". Furthermore, all non-exported procedures, 
types, variables, and constants (defined in implementation modules) may not have names beginning 
with "facility$". 

1.2.5.2 Implementation Modules 

Implementation modules contain only code. Implementation module names are of the form: 

facility$module-name 

1.2.5.3 Combination Modules 

Combination modules are modules that contain both data definition and implementation components. 
They are named as specified in Section 1.2.5.2. Note, however, that use of combination modules is 
discouraged. Developers should use separate definition and implementation modules instead. 

1-4 Naming Standards and Pillar Coding Conventions 



1.2.6 File Names and File Types 

Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

"All file names are prefixed with "facility$" to identify the facility to which a file belongs. Typically, 
source file names are taken directly from the name of the module which is implemented within the 
file. 

The names of all files supplied with the Mica operating system that are facility-independent are 
prefixed with micaS. This includes the operating system images, system support images, and utilities 
typically identified with the operating system rather than as their own facility. Facilities such as 
TPU, the debugger, and the Run-Time Library, although supplied with the operating system, are 
typically identified as their own facility, and therefore use tpu$, deb ugger$ , and so on, as the facility 
prefix. 

\ The micaS prefix is what was specified in the previous version of this chapter. If we believe that 
the name Mica will disappear in the actual product, this prefix should probably be changed. \ 

Long file names use underscores C"_I!) to separate words within the file name. \The hyphen as a 
separator was rejected because it would cause an inconsistency between file names and procedure 
names.\ 

File types must be registered: The method for registering file types is TBD (see Section 1.4). A list 
of registered file types is included in an appendix of this document. 

The three-character file type limit that was once imposed on VAXNMS file type naming does not 
exist on Mica or VAXNMS V4.0 and following. When defining new file types, there is no reason to 
be limited to three characters. 

1.2.7 Procedures 

Public procedures provided by DIGITAL for Mica are of the form: 

facility$entry-name 

In general, non-public procedures are not visible. This is because the bulk of the system is imple
mented in Pillar which allows the use of module-qualified symbols for intermodule communication. 
However, there are some facilities coded in BLISS or other languages that do not support the con
cept of module-qualified symbols. In such languages, non-public procedures that must be declared as 
global for intermodule communication have names of the form: 

facility$$entry-name 

\SIL does not support module-qualified symbols. However, a mechanism has been added to SIL to 
permit prefixing all exported names with a specified string. This is accomplished with the LINKAGE 
OPTIONS LOCAL PREFIX statement. When SIL programs are converted to Pillar, this statement 
will be removed, and the symbols and references to these symbols will be through module-qualified 
symbols. \ 

1.2.7.4 System Routines 

System routines are those routines that are: 

• Provided by DIGITAL 

• Run in user mode 

• Required to have a documented, supported public interface 

• Not officially part of the Mica RTL provided by SDT 

• Viewed by users as having "system" functionality 

Examples of system routines are Get Active Thread Count, Formatted ASCII Output, and Get Cycle 
Count. 

The facility prefix for system routine names is execS. 

Naming Standards and Pillar Coding Conventions 1-5 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

1.2.7.5 System Services and Executive Routines 

System services run in kernel mode in the Mica executive. The facility prefix for user-visible Mica 
system service names is exec$. 

Executive routines also run in kernel mode but do not have user-visible interfaces. General purpose 
executive routines have the facility prefix e$. Other executive routines which provide non-general
purpose functionality have facility names which reflect that particular area of the executive. Such 
routines are generally callable only if certain conditions have been met, such as acquisition of one or 
more mutexes, or executing in a particular module such as a device driver. The actual facility names 
for these executive routines are presented elsewhere in this document. 

1.2.7.6 Kernel Routines 

Kernel routines may only be called by the Mica operating system. Kernel routines are not visible to 
user programs. The facility prefix for kernel routine names is k$. 

1.2.7.7 Procedure Arguments 

Procedure arguments must have names that describe the argument's purpose. Do not indicate any
thing about data type or passing mechanism in an argument name. 

1.2.8 Types 

The basic format for type names is: 

facility$name-of-type 

• "facility"-the facility to which this type belongs 

• "$"-indicates a DIGITAL reserved name 

• "name-of-type"-descriptive name of type 

1.2.8.8 Enumerated Type Element Names 

Enumerated type names are as described in Section 1.2.8. The names of the elements of an enumer
ated type are as described in Section 1.2.10 for naming constants. 

In cases where naming conflicts require further qualification of enumerated type element names, the 
"name-of-element" portion may include a portion of the enumerated type name itself. 

1.2.8.9 Data Structure Types 

Data structure names consist of two parts: the name of the structure and the name of the field within 
the structure. Data structure names follow the standard described in Section 1.2.8. Data structure 
field names are not required to follow any specific naming standards. They should be as descriptive as 
is reasonable. Field names should not include any indication of size or alignment within the record; 
size and alignment information is specified in the structure definition itself. 

\Previous versions of this chapter called for field names which included the facility name. It was felt 
that this was necessary for software written in C. This understanding has since changed; current 
C language products require fully qualified structure references requiring field names to be unique 
only within a given structure. \ 

1-6 Naming Standards and Pillar Coding Conventions 



1.2.9 Global Variables 

Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

Global variables are those data locations known to the linker as global symbols. In general, global 
variables are typically not provided in public program interfaces. However, in those cases where 
public global variables must be defined, the names are specified as: 

facility$name-of-variable 

• "facility"-the facility to which this type belongs 

• "$"-indicates a DIGITAL reserved name 

• "name-of-variable"-descriptive name of global variable 

1.2.10 Constants 

Named constants have names of the following form: 

facility$C_name 

• "facility"-the facility to which this type belongs 

• "$"-indicates a DIGITAL reserved name 

• "C_"-Mica-specific portion indicating the use of the constant. All constants including item code 
names, function codes, I/O parameter record codes, and so on have the "C_" to indicate that they 
are constants. 

Note that this creates a problem for system services that accept an item list as input. Normally, 
such services would use exec as the facility portion of the name. A collision will occur if two 
different parts of the executive choose the same name for different valued item codes. For these 
system routines and services, the facility name may be specified as the service name or an 
acronym of the service name. 

• "name"-descriptive name of constant 

Due to internationalization requirements, string constants used for display purposes (either on a 
terminal or in a listing) must not exist within programs. String constants must be implemented via 
the message facility. 

\The previous paragraph deals with the content of string constants rather than their names. It is 
felt, however, that this rule is important and should be stated here. \ 

1.2.11 Messages 

Message names are of the form: 

facility$_status-name 

The "status-name" string is derived by using the first two or three words of the English message text. 

Engineers must use good judgment when selecting message names, as these names are used con
stantly by application programmers. Choose names that are reasonable and easily remembered. 

Status codes returned by the Mica executive are of the form: 

EXEC$_status-name 

Naming Standards and Pillar Coding Conventions 1-7 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

1.2.12 Logical Names 

Logical names are of the form: 

facility$name 

The "name" string should consIst of one or more English (this does not present an internationalization 
problem) underscore-separated words describing the purpose of the logical name. 

Although the Mica executive facility prefix is execS, logical names defined by the operating system 
use the facility prefix sys$. This is done for compatibility and familiarity with VAX/VM:S. 

1.2.13 Objects and Object Containers 

There is no standard for naming objects (the optional ASCII string associated with an object). In 
most cases, objects will not be named. 

System object container names are of the form: 

facility$name_OBJECT_CONTAINER 

• "facility"-the facility which creates and uses this container 

• "$"-indicates a DIGITAL reserved name 

• "name_"-describes the use of the container (for example, process_ could be used to indicate that 
the object container contains process IDs) 

• "OBJECT_CONTAINER"-indicates that this is an object container 

The facility prefix for object containers created by the operating system is execS. 

1.2.14 Compile-time Facility Macros and Procedures 

TBD. 

1-i3 Naming Standards and Pillar Coding Conventions 



1.3 Pillar Coding Conventions 

Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

All Mica programs written in Pillar follow certain coding conventions. In the following sections, all 
guidelines apply to both the Pillar and SIL languages. 

1.3.1 Goals 

Writing code which follows these conventions has the following benefits: 

• More readable code--Standardized coding makes code much easier to read and understand. 

• More easily maintained code--Standardized coding makes code easier to modify and maintain. 

• More consistent code to writers for inclusion in documentation-It is highly desirable to eliminate 
the need to alter code for inclusion in documentation. 

Making decisions about "religious" issues such as coding style is never easy. The following conventions 
were developed based on the response to a questionnaire and discussions with people in both the Pillar 
compiler and Mica OS groups. 

1.3.2 Indentation 

Each level of indentation is 4 spaces. For multiple levels, spaces are preferable to tabs as spaces 
make level adjustments easier. Statement format (that is, what the actual indentation is for each 
type of statement) is described in Section 1.3.13. 

1.3.3 Capitalization 

All Pillar language keywords are in uppercase. Built-in types and procedures should not be in 
uppercase. A list of keywords may be found in Chapter 2 of the current "Obsolete SIL Reference 
Manual". . 

All identifiers must be lowercase. Uppercasing any identifiers defeats the purpose of uppercasing 
keywords. 

\Pillar is an example of a case-iriseJ;lsitive language. Therefore, as described in Section 1.2.3, Pillar 
exports symbols in lowercase as required by the naming standard. \ 

1.3.4 Line Length 

The maximum source line length is 112 characters. 

\112 characters was chosen as the maximum source line length for the following reasons: 

• The naming standards described in Section 1.2.3 require the use of descriptive names for data 
types, global variable names, procedures, and so on. Traditional 80 column source forces many 
statements to be broken up over several lines. A line length of 112 columns allows long names 
to be used in a single line. 

• A source line length of 112 columns allows listing files to fit within 132 columns. 

• 112-character source lines allow source displays using a default full-sized font on workstations. 
A 132-column font, which is less readable, is not required).\ 

Naming Standards and Pillar Coding Conventions 1-9 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

1.3.5 Multistatement Lines and Multiline Statements 

Each source line should contain one statement or part of a statement. No lines should contain 
multiple statements. There are no exceptions to this rule. 

1.3.6 Comments 

These conventions describe formats for four different uses of comments. 

1.3.6.1 Module Level Comments 

Module level comments document the purpose of the module, contain the DIGITAL copyright notice, 
document the module's author, revision history, and so on. Module comments are in the following 
form: 

MODULE module_name; 

!********************************************************* 
!* 
!* 
!* 

DIGITAL Copyright 
* 
* 
* 

!********************************************************* 

!++ 

Facility: 

Name of facility 

Abstract: 

A paragraph that describes the basic functionality provided by 
the module. 

Author: 

Author's name 

Date: 

Original date 

Revision History: 

Vx.x-yy Date EDIT# Modifier's Name 
Description of modification 

!--

• Module copyright format is describe in Section 1.3.9. 

• Vx.x-yy is the software revision level 

• EDIT# is the modifier's edit number (for example KKB047) 

• Dates are expressed as DD-MMM-YYYY 

To avoid excessively long revision histories in the module level comment block format shown above, 
revisions are removed on each major software release. For example, when version 2.0 is released, all 
revision comments pertaining to all1.n versions will be removed. This process is especially important 
at release 1.0. At that time, the entire pre-release revision history will be removed. 

\The numeric portion of the edit number is a running count of edits made by the engineer over the 
life of the project or work at DIGITAL. \ 

1-10 Naming Standards and Pillar Coding Conventions 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

\The file COMPILER$:[WORK.COPYRIGHT]MODULE.HEADER contains the module level com
ment format described above.\ 

1.3.6.2 Procedure Level Comments 

Procedure level comments describe the function performed by the procedure, and list and describe 
procedure inputs and outputs. Procedure comments are formatted as follows: 

PROCEDURE procedure_name 

RETURNS return_type; 

!++ 

Routine description: 

Description of function of procedure. 

Arguments: 

argl - This argument supplies some value. 
argument2 - This argument supplies another value. 
arg3 - This argument returns some value. 
argument4 - This argument supplies some value and returns 

another value. 

Return value: 

The procedure returns some value. 

!--

Notice that the argument descriptions are listed in the order of the procedure declaration and that 
the words "supplies" and "returns" are used to indicate which are inputs, outputs, or both. This 
alternative was chosen over the previous "Inputs" and "Outputs" grouping because: 

• It is easier to read and maintain since grouping by inputs and outputs frequently is in a different 
order than the parameters are ordered in the declaration. 

• There is no problem with determining where to describe an argument that is both an input and 
an output. 

Also, the hyphens ("-") separating the argument names and their descriptions are not aligned (see 
Section 1.3.7). 

1.3.6.3 Block Comments 

Block comments are used to describe the function performed by a section of code. They appear prior 
to the code section and are indented to the same level as the code which is being documented. Block 
comments are in the following form: 

pillar statement; 

Naming Standards and Pillar Coding Conventions 1-11 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

This is a block comment describing a section of 
Pillar code which follows it. Notice that the 
actual text portion of the comment is proceeded 
and followed by a blank line and an empty comment 
line. Block comments should always be expressed in 
complete sentences. 

pillar statement; 

1.3.6.4 Line Comments 

Line comments describe a single line of code. Line comments are only allowed in the declaration 
sections of modules and procedures; they are not allowed in procedure code. Comments in procedure 
code should be in the block form described in Section 1.3.6.3. Line comments should be aligned 
vertically within a given section of code. For example, the line comments used to describe the fields 
in records should all line up within the TYPE declaration section as in: 

TYPE 

sample RECORD 
code : integer; 
data : array [1 .. max_length] of real; 
next_record: sample-pointer; 

END RECORD; 

sample-pointer : POINTER sample; 

\ This example is a non-exported type declaration. \ 

1.3.7 "Whitespace" 

Sample record type 
Record code 
Data portion 
Pointer to next 

Pointer to sample record 

"Whitespace" (in this context) is a term used to describe spacing between Pillar tokens. In general, 
whitespace is good. For example: 

a = b + c; 

is preferable to 

a=b+c; 

and: 

IF xyz <>abc THEN 

is preferable to 

IF xyz<>abc THEN 

For declarations, initializers, and procedure parameters, the guideline for whitespace around the 
colon (":") and equal sign C"=") characters is that both characters have a space on either side. 

For example: 

VALUE 

value name some_value; 

VARIABLE 

variable_name : variable_type 

PROCEDURE foo ( 
IN arg 
) ; 

variable_initializer; 

1-12 Naming Standards and Pillar Coding Conventions 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

Other than appropriate indentation, do not align colons or equal signs in declarations and statements 
or hyphens in procedure argument definitions. This makes code more difficult to maintain. For 
example: 

VALUE 

a_name = 10; 
another name = 20; 
yet_another_name = 30; 
a final name = 40; 

is preferred to: 

VALUE 

a name 
another name 

10; 
20; 

yet_another_name 30; 
a final name 40; 

Procedure invocations and multiline assignment statements are places where it makes sense to at
tempt to line up code to improve readability. For example: 

or 

proc_result 

one term with a very long name + 
another_term_;ith_a_~ery_long_name; 

proc_name( 
argument 1 = first_argument, 
arg2 second_argument 
} ; 

1.3.8 Module Format 

The general format for a Pillar module is: 

MODULE module_name; 

! Module-level comments 

Interface section 

Implementation section 

Module linkage options 

END module_name; 

• Module-level comments are described in Section 1.3.6.1. 

• Interface section: 
IMPORT 

import_module COMPONENTS component1, component2; 
another_import_module COMPONENTS other1, other2; 

VALUE, TYPE, VARIABLE, BIND, PROCEDURE -- exported declarations 

• Implementation section: 

IMPLEMENT 
implement name COMPONENTS comp1, comp2; 
other_impl_name COMPONENTS all*; 

IMPORT (as above - these imports are not available to the interface section) 

VALUE, TYPE, VARIABLE, BIND, procedure bodies -- non-exported declarations 

Naming Standards and Pillar Coding Conventions 1-13 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

1.3.9 Copyright Formats 

For internal sources, the copyright format is: 

!**************************************************************************** 
!* 
!* (C) DIGITAL EQUIPMENT CORPORATION 19xx 
!* 
!* 
!* 
!* 
!* 
!* 
!* 
!* 
!* 

This is an unpublished work which was created in the indicated 
year, which contains confidential and secret information, and 
which is protected under the copyright laws. The existence of 
the copyright notice is not to be construed as an admission or 
presumption that publication has occurred. Reverse engineering 
and unauthorized copying is strictly prohibited. All rights 
reserved. 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

!**************************************************************************** 

\ The above copyright statement is available in: 

COMPILER$: [WORK.COPYRIGHT]UNPUBLISHED. COPYRIGHT\ 

For distributable sources, the copyright format is TBD. 

\Current policy is to use the internal format for all sources until sources are ready to ship. At that 
time (or before if the format is defined), all distributable sources will their have copyrights updated.\ 

1.3.10 Procedure Format 

The general format for a Pillar procedure is: 

PROCEDURE procedure_name ... 

!++ 
! Procedure-level comments 
!--

VALUE, TYPE, VARIABLE, BIND Declarations 

BEGIN 
statement-sequence 

SUBPROCEDURES 

PROCEDURE sub~rocedure_name ... 

!++ 
Procedure-level comments 

Notice that subprocedures are indented one level. If a sub
procedure itself contains a SUBPROCEDURES section, those 
subprocedures are indented one more level and so on. 

!--

VALUE, TYPE, VARIABLE, BIND Declarations 

BEGIN 
statement-sequence 

END sub_procedure_name; 

END procedure_name; 

Procedure-level comments are described in Section 1.3.6.2. 

1-14 Naming Standards and Pillar Coding Conventions 



1.3.11 Condition Handler Format 

Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

\Coding conventions for condition handlers will be added pending complete definition of Pillar's 
condition handling syntax. \ 

1.3.12 Order of Declarations 

Declarations are normally grouped together by the type of declaration (such as VALUE, TYPE, and 
so on). In large modules and procedures, however, declarations may be grouped by function. Within 
each functional grouping, declarations are grouped together by type. Declarations should appear in 
the following order: 

• VALUE 

• TYPE 

• VARIABLE 

• BIND 

1.3.13 Statement Format 

The following sections describe preferred formats for several Pillar statements. 

1.3.13.1 IF/THEN/ELSE 

IFITHENIELSE statements are formatted as follows: 

IF condition THEN 
statement-sequence 

ELSEIF condition THEN 
statement-sequence 

ELSE 
statement-sequence 

END IF; 

1.3.13.2 LOOP 

The various forms of the LOOP statement are formatted as follows: 

LOOP 
statement-sequence 

END LOOP; 

FOR name ... LOOP 
statement-sequence 

END LOOP name; 

WHILE clause LOOP 
statement-sequence 

END LOOP; 

For more complicated loops, use one of these formats: 

or: 

FOR name '" BY ... DOWN TO ... WHILE ... LOOP 
statement-sequence 

END LOOP name; 

FOR name .. . 
BY .. . 
DOWN TO .. . 
WHILE ... LOOP 
statement-sequence 

END LOOP name; 

Naming Standards and Pillar Coding Conventions 1-15 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

if all of the loop control does not fit on one line. 

1.3.13.3 CASE 

CASE statements are formatted as follows: 

CASE expression 
WHEN set-oi-values THEN 

statement-sequence ... 
WHEN set-oi-values THEN 

statement-sequence ... 

WHEN OTHERS THEN 
statement-sequence 

END CASE; 

1.3.13.4 Blocks (WITH Statement) 

Code blocks (defined by the WITH statement) are formatted as follows: 

WITH 

VALUE, TYPE, VARIABLE, BIND declarations 

BEGIN 
statement-sequence 

END; 

1.3.13.5 VALUE, TYPE, VARIABLE, BIND Declarations 

VALUE, TYPE (except record and enumerated types), VARIABLE, and BIND declarations are for
matted as follows: 

VALUE 

TYPE 

first_value = some_value; 
second value = some_value; 

some_type : a_type_declaration; 
another_type: ARRAY [l .. first_value] OF integer; 

VARIABLE 

BIND 

variable1 : integer = 10; 
variable two : POINTER another_type; 
third variable : boolean; 

name = variable_name; 

Notice that a blank line preceeds and succeeds the declaration keyword and the declarations are 
indented one level from the declaration keyword. 

1-16 Naming Standards and Pillar Coding Conventions 



1.3.13.5.1 RECORD Types 

Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

RECORD type declarations are examples of declarations which typically span multiple lines. They 
are formatted as follows: 

TYPE 

name : RECORD 
CAPTURE .. , 
field-list 
LAYOUT 

layout-list 
END LAYOUT; 

END RECORD; 

The field list is: 

first field : field_type; 
second_field : field_type; 
third field field_type; 

Within records, unions and variants are formatted as follows: 

UNION CASE ... 
WHEN set-of-values THEN 

field-list 
WHEN set-of-values THEN 

field-list 
END UNION; 

VARIANTS CASE ... 
WHEN set-of-values THEN 

field-list 
WHEN set-of-values THEN 

field-list 
END VARIANTS; 

1.3.13.5.2 Enumerated Types 

Another type declaration which can span multiple lines is that of an enumerated type. Short enu
merated type declarations may be written on a single line. For longer declarations where multiple 
lines are required, the following format is used: 

TYPE 

enumerated_type_name : 
enumerated_name_l, 
enumerated_name_2, 

enumerated name n 
) ; 

Naming Standards and Pillar Coding Conventions 1-17 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

1.3.13.6 Procedure Declarations 

Procedure declarations are fonnatted as follows: 

• External declarations: 

or 

PROCEDURE 

procedure_namel ( 
IN firstyaram some_type; 

RETURNS return_type; 
EXTERNAL; 

procedure_name2 

RETURNS return_type; 
EXTERNAL; 

PROCEDURE procedure_namel ( 
IN firstyaram some_type; 

RETURNS return_type; 
EXTERNAL; 

PROCEDURE procedure_name2 

RETURNS return_type; 
EXTERNAL; 

\The second fonn is required to use the Pillar procedure expansion support provided as an 
extension to TPU. \ 

• Nonnal declarations: 

PROCEDURE procedure name ( 
IN firstyarameter some_type; 
OUT secondyarameter : another_type; 
BIND thirdyarameter : another type; 
IN OUT fourthyarameter another_type; 
) RETURNS return-type; 

Section 1.3.10 describes the complete procedure fonnat. 

Note: 

• Placing parentheses ("(" and ")") on lines which do not contain parameters makes parameter 
reordering easier. 

• The semicolon (";") following the last parameter is optional in Pillar; it should be included to 
make parameter reordering easier. 

• For procedure declarations, the keyword PROCEDURE is just like other declaration keywords 
(for example TYPE, VALUE, and so on) in that multiple procedure declarations may be made 
following it. \However, as noted above, this fonnat should be avoided if the TPU Pillar procedure 
expansion support package is being used. \ 

1-18 Naming Standards and Pillar Coding Conventions 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

• For procedure implementations, the procedure arguments are indented to the closest tab stop 
following the procedure name (under the 3rd character of the procedure name). 

1.3.13.7 Procedure Invocation 

The following format is used to invoke a procedure: 

• Keyworded parameters: 

procedure_name ( 
first-parameter = parameterl, 
second-parameter = parameter2, 
third-parameter = parameter3 
) ; 

• Posi tional parameters: 

procedure_name (argl, arg2, arg3); 

The use of keywords to specify the arguments in a procedure call is preferred, but not required. Use of 
keywords when invoking externally declarated procedures is strongly recommended. Code examples 
used in documentation must not use positional arguments in function calls. 

\Additional information regarding use of the KEYWORD parameter option TBS. \ 

1.3.14 Message and Condition Declarations 

\Coding conventions declaring messages and conditions will be added pending complete definition of 
Pillar's message and condition declaration syntax and use.\ 

1.3.15 Miscellaneous 

The following is a list of several other conventions which do not fall under any of the previous 
groupings. 

• Use of pointer dereference character ("AfI) in record field references-Pillar does not require that 
pointers to records be explicitly dereferenced when the fields of those records are being accessed. 
It is felt, however, that use of the dereference character provides more information about the 
record, especially when multiple levels of dereferencing are required. The prefered convention 
is to explicitly dereference all pointers. The following code fragments illustrates use of explicit 
pointer dereferencing. 

TYPE 

sample_record : RECORD 
data : integer; 
flag : boolean; 
record-pointer : sample_record-pointer; 

END RECORD; 
sample_record-pointer : POINTER sample_record; 

VARIABLE 

first_record, second record 

BEGIN 

Allocate the records. 

ALLOCATE first_record LOCAL; 
ALLOCATE second record LOCAL; 

Naming Standards and Pillar Coding Conventions 1-19 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

Set the data and flag values in th~ first record. Pointer 
dereferencing here is not required but is preferred. 

first recordA.data 
first_recordA. flag 

1; 
false; 

Set the second record equal to the first record. Since the 
entire record is being accessed, pointer dereferencing is 
required. 

second recordA first_recordA; 

Set the records to point to each other. Pointer dereferencing 
is not required to access the "recordyointer" field but is 
preferred; the entire record is not dereferenced as it is needed 
as a pointer. 

first_record"'.recordyointer = second_record; 
second_record"'.record_pointer = first_record; 

\ The ALLOCATE statement used above is not available in SIL. \ 

• Others TED. 

1-20 Naming Standards and Pillar Coding Conventions 



1.4 OPEN ISSUES 

Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

The following issues are yet to be resolved. 

• Compile-time facility procedure and macro names. 

• Use of "MI CA$" as the file name prefix for system files. 

• Condition handler format. 

• Message and condition declarations. 

Naming Standards and Pillar Coding Conventions 1-21 



Digital Equipment Corporation - Confidential and Proprietary 

For Internal Use Only 

Mica Working Design Document 
Process Structure 

Revision 0.6 

29-0CT -1987 

Issued by: 

Mark Lucovsky 



TABLE OF CONTENTS 

CHAPTER 1 PROCESS STRUCTURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1 

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1 

1.2 GoalslRequirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1 

1.3 U JPT Hierarchy ............................................. 1-1 
1.3.1 The User Object. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1 

1.3.1.1 Object Structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1 
1.3.1.1.1 Security Profile. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2 

1.3.1.1.2 Resource Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2 
1.3.1.1.2.1 Deductable Resource Limits. . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3 
1.3.1.1.2.2 Non-Deductable Resource Limits ....................... 1-4 

1.3.1.1.3 Access Restrictions ................................... 1-4 
1.3.1.2 Functional Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1---4 

1.3.1.2.1 User Creation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-4 
1.3.1.2.2 Get/Set User Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-6 
1.3.1.2.3 User Deletion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-7 

1.3.2 The Job Object. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-8 
1.3.2.1 Object Structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-8 

1.3.2.1.1 Resource Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-9 
1.3.2.2 Functional Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-9 

1.3.2.2.1 Job Creation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-9 
1.3.2.2.2 Job Deletion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-11 
1.3.2.2.3 Get/Set Job Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-11 

1.3.3 The Process Object. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-13 
1.3.3.1 Object Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-13 

1.3.3.1.1 Resource Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-14 
1.3.3.1.2 Process Accounting ........... . . . . . . . . . . . . . . . . . . . . . . .. 1-14 

1.3.3.2 Functional Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-15 
1.3.3.2.1 Process Creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-15 
1.3.3.2.2 Process Deletion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-17 
1.3.3.2.3 Get/Set Process Information ............................. 1-17 
1.3.3.2.4 Process Control Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-19 

1.3.3.2.4.1 Process Signaling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-19 

1.3.3.2.4.2 Process HibernatefWake . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-20 
1.3.3.2.4.3 Process SuspendJResume. . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-21 

1.3.4 The Thread Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-22 
1.3.4.1 Object Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-22 
1.3.4.2 Functional Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-24 

1.3.4.2.1 Thread Creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-24 
1.3.4.2.2 Thread Deletion ..................................... 1-25 
1.3.4.2.3 Get/Set Thread Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-26 

iii 



iv 

1.3.4.2.4 Thread Control Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-27 
1.3.4.2.4.1 Thread Signaling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-28 
1.3.4.2.4.2 Thread HibernatelWake .......... . . . . . . . . . . . . . . . . . .. 1-28 
1.3.4.2.4.3 Thread SuspendlResume . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-29 
1.3.4.2.4.4 Hibernate and Suspend Comparison . . . . . . . . . . . . . . . . . . . .. 1-30 

1.4 UJPT Object Linkages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-30 
1.4.1 Linkage Structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-31 

1.4.2 Hierarchy Creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-31 
1.4.3 Hierarchy CollapselDeletion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-32 

1.4.3.1 Force-Exit Routines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-33 
1.4.3.1.1 User-Object Force-Exit Routine . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-33 
1.4.3.1.2 Job-Object Force-Exit Routine . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-33 
1.4.3.1.3 Process-Object Force-Exit Routine ......................... 1-33 
1.4.3.1.4 Thread Object Force Exit Routine. . . . . . . . . . . . . . . . . . . . . . . . .. 1-33 

1.4.3.1.4.1 Thread Context Entry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-33 
1.4.3.1.4.2 Thread Exit ................................... " 1-34 

1.4.3.2 Object Remove Routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-34 
1.4.3.2.1 User-Object Remove Routine . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-35 
1.4.3.2.2 Job Object Remove Routine . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-35 
1.4.3.2.3 Process Object Remove Routine . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-35 
1.4.3.2.4 Thread Object Remove Routine ........................... 1-35 

1.4.3.3 Object Delete Routines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-35 
1.4.3.3.1 User-Object Delete Routine . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-36 
1.4.3.3.2 Job-Object Delete Routine. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-36 
1.4.3.3.3 Process-Object Delete Routine . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-36 
1.4.3.3.4 Thread-Object Delete Routine ........ . . . . . . . . . . . . . . . . . . .. 1-36 

1.5 Address Space and Execution Threads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-36 
1.5.1 Creation .......... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-36 

1.5.1.1 Initial Thread Creation ................................... 1-37 
1.5.1.1.1 Address Space Creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-37 
1.5.1.1.2 Execution Thread Creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-38 

1.5.1.1.2.1 Address Space Initialization .......................... 1-38 
1.5.1.1.2.2 Control Region Initialization . . . . . . . . . . . . . . . . . . . . . . . . .. 1-39 
1.5.1.1.2.3 Progranl Image Mapping. . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-39 

1.5.1.2 Subsequent Thread Creation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-39 
1.5.1.2.1 Thread Stack Creation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-39 
1.5.1.2.2 Control Region Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-39 
1.5.1.2.3 Transition to new Thread . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-40 

1.5.2 Deletion ................................................ 1-40 
1.5.2.1 Execution Thread Deletion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-40 

1.5.2.1.1 In-Context Thread Deletion. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-40 
1.5.2.1.2 Out of Context Thread Deletion . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-40 

1.5.2.2 Address Space Deletion ................................... 1-41 

1.6 Exit Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-41 
1.6.1 Object Structure .......................................... 1-41 



1.6.2 Functional Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-41 
1.6.2.1 Exit Status Object Creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-42 
1.6.2.2 Get Exit Status Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-42 

1.6.3 Usage ................................................. 1-42 
1.6.3.1 Thread Exit Status Object Usage ............................ 1-43 
1.6.3.2 Process Exit Status Object Usage ....... . 1-43 

1.7 Processtrhread StartuplRundown Summary. . . . . .. ................... 1-43 
1.7.1 Startup Summary ......................................... 1-43 

1.7.1.1 Additional Thread Startup Summary. . . . . . . . . . . . . . . . . . . . . . . . .. 1-45 
1.7.2 Rundown Summary ............. . 1-45 

1.8 System Threads . . . . . . . . . . . . . . . . . . .. ......................... 1-48 
1.8.1 System Thread Creation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-48 
1.8.2 System Thread Restrictions ................................... 1-48 

INDEX 

EXAMPLES 
1-1 
1-2 
1-3 
1-4 
1-5 
1-6 
1-7 
1-8 
1-9 
1-10 
1-11 
1-12 
1-13 
1-14 
1-15 
1-16 
1-17 
1-18 
1-19 
1-20 
1-21 
1-22 
1-23 
1-24 
1-25 
1-26 
1-27 
1-28 
1-29 

User Object Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 
Resource Control Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Access Restriction Data Structures ............................. . 
User Object Creation System Interface . . . . . . . . . . . ................ . 
User Record Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Get/Set User Information System Interface ........................ . 
User Object Deletion System Interface . . . . . . . . . . . . . . . . . . . . . . ..... . 
Job Object Structure ....................................... . 
Job Object Creation System Interface ............................ . 
Job Record Structure ....................................... . 
Job Object Deletion System Interface ............................ . 
Get/Set Job Information System Interface ......................... . 
Process Object Structure . . . . . . . . . . . . . . . . . . . . . . . . . ........... . 
Process Accounting Structure ................................. . 
Process Object Creation System Interface ......................... . 
Process Record Structure .................................... . 
Process Object Deletion System Interface ......................... . 
Get/Set Process Information System Interface . . . . . . . . . . . . .......... . 
Signal Process System Interface ............ . . . . . . . . . . . . . . . . . . . . 
Hibernate!Wake Process System Interface ......................... . 
SuspendlResume Process System Interface ........................ . 
Thread Object Structure ................................... .. 
Thread Object Creation System Interface ......................... . 
Thread Record Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Thread Object Deletion System Interfaces ......................... . 
Get/Set Thread Information System Interface ...................... . 
Signal Thread System Interface ............................... . 
Hibernate!Wake Thread System Interface ......................... . 
SuspendlResume Thread System Interface ................... ..... . 

1-2 
1-3 
1-4 
1-5 
1-6 
1-6 
1-8 
1-8 

1-10 
1-11 
1-11 
1-12 
1-13 
1-15 
1-16 
1-17 
1-17 
1-18 
1-20 
1-20 
1-21 
1-23 
1-24 
1-25 
1-26 
1-27 
1-28 
1-29 
1-30 

v 



1-30 
1-31 
1-32 
1-33 
1-34 
1-35 
1-36 

FIGURES 
1-1 

TABLES 
1-1 
1-2 
1-3 
1-4 

vi 

Address Space Creation ..................................... . 
Initial Thread Entry Point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Address Space Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .... . 
Exit Status Object Structure .................................. . 
Exit Status Object Creation System Interface ...................... . 
Get Exit Status Information System Interface ...................... . 
System Thread Creation Executive Interface . . . . . . . . . . . . . . . . . . . .... . 

Complex UJPT Hierarchy ............. . 

GetJSet User Information Item Codes ............................ . 
GetJSet Job Information Item Codes ............................. . 
GetJSet Process Information Item Codes 
GetJSet Thread Information Item Codes .......................... . 

1-37 
1-38 
1-38 
1-41 
1-42 
1-42 
1-48 

1-31 

1-7 
1-12 
1-19 
1-27 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

Revision History 
Revision 

Date Number Author 

1O-Jun-86 0.0 Tom Miller 

29-Jun-86 0.1 Tom Miller 

27-Aug-86 0.2 Tom Miller 

06-Apr-87 0.3 Tom Miller 

27-AUG-1987 x.1 Mark Lucovsky 

04-SEP-1987 x.2 Mark Lucovsky 

0S-OCT-1987 x.3 Mark Lucovsky 

09-0CT-1987 0.4 Mark Lucovsky 

16-0CT-1987 0.5 Mark Lucovsky 

29-0CT-1987 0.6 Mark Lucovsky 

iv 

Summary of Changes 

Initial entry 

Incorporating review comments 

Multiple environment support 

Rewrite for second WDD 

First Draft for third WDD 

Incorporate comments from first draft. Most notable 
change was the addition of 10 accounting, pro-
cess and thread exit status, and section on thread 
/process startup/rundown summary 

Incorporate comments from Second draft. Most no-
table change was the section on system threads, 
and the thread parameter passing scheme 

Added exec$create_user() and description of thread_ 
record 

Proofreading corections, moved security profile from 
process object to the thread object, added cancel 
io by thread support to the thread object. 

Added access restrictions to user object, revised 
hierarchy collapse description 



1.1 Introduction 

Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

CHAPTER 1 

PROCESS STRUCTURE 

This chapter describes the external interfaces and data structures of the Mica process structure, the 
architecture of which is based on the User, Job, Process, Thread (UJPT) hierarchy. This chapter also 
describes the UJPT implementation in terms of its algorithms and dependencies on other portions of 
the Mica system (e.g. the kernel and object architecture). 

1.2 Goals/Requirements 

The goal of the UJPT architecture is to provide a vehicle for controlling multiple threads of execution 
in a single address space. The architecture provides facilities for resource usage control, security 
profile management, address space and image management, and object container directory services. 

1.3 UJPT Hierarchy 

The UJPT architecture consists of a hierarchy of objects. The objects provide a logical grouping of 
functionality and control. 

1.3.1 The User Object 

The User object appears at the highest level of the UJPT hierarchy. Its primary function is to provide 
a focal point for acquiring security profiles and resource quotas/limits for its underlying objects. 

The User object is implemented as a system level object in the "USER$OBJECT_CONTAINER" object 
container. 

1.3.1.1 Object Structure 

Each user of the Mica system is assigned a unique username, a security profile, and a set of resource 
limits or quotas. The Mica system keeps track of this information in a system-wide authorization 
file. If the user has at least one active job, the information is also kept in his user object. As we shall 
see later in this chapter, information from the user object is propagated down the UJPT hierarchy 
on an as-needed basis. 

NOTE 

The intent of the Mica executive is to remain independent of the system-wide au
thorization file. Therefore, all Mica user attributes are stored in the user object. 
In addition, the Mica executive places no restrictions on the source of information 
stored in the user object. It does, however, place a Digital-reserved identifier in the 
ACL for the user object OTD which limits who can create user objects. 

Process Structure 1-1 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

The user object is split into a user object body and a user control block. The user object body contains 
the information necessary to support the UJPT hierarchy. The user control block contains the vital 
information of the user object. Example 1-1 illustrates the data structures used to represent the 
user object. 

Example 1-1: User Object Structure 
e$t_user_object_body: RECORD 

u_obj_id: e$t_object_id; 
u user flags: eSt user flags; 
u -job queue mutex-;- k$dispatcher object (mute:;.;:) 
u-job-count-;- integer; -
u=job=queue_hd: e$t_linked_list; 
u_ucb: e$t_user_control_block; 

END RECORD; 

e$t_user_control_block: RECORD 
ucb username: string (e,$c max user name); 
ucb=security_profile: e$t_security_profile; 
ucb_quotas: eSt_quotas; 
ucb_thread_priority: k$combined_priority; 
ucb access restrictions: eSt access restrictions; 
ucb=user_allocation_list: eSt alloc-;;;-tion_list; 

END RECORD; 

1.3.1.1.1 Security Profile 

Object ID of the user object 
User object flags 
Mutex for job management 
Number of Jobs owned by the user 
List head of job objects 
User Control Block 

User Name 
User Security Profile 
Resource usage control information 
Default thread priority 
Access Restrictions 
objects allocated to the user object 

The security profile maintained in the user object contains the list of identifiers assigned to the Mica 
user. The identifier list gives access rights to the user object as described in Chapter 11, Security 
and Privileges. 

1.3.1.1.2 Resource Control 

The goals of the Mica system resource control and quota architecture are: 

• Prevent a single user from abusing the system by over running system resources. 

• Be simple, predictable and easy to understand. 

• Provide repeatable consistent behavior. 

The Mica system achieves these goals through data structures maintained in the user object and 
through policies implemented in the object architecture, memory management sysL:::m, and the kernel. 
Example 1-2 illustrates the resource-control data structures maintained in the user object. 

1-2 Process Structure 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

Example 1-2: Resource Control Structures 

User Object Resource Control 

eSt_quotas: RECORD 
'1 usage and limits: eSt quota usage and limits; 
q=per_j~b_limits: e$t_q-;:;ota_limi ts; - -
q_per_process_limits: e$t_quota_limits; 

END RECORD; 

! Quota Limits 

e$t_quota_limits: RECORD 

Currently Used Quotas and Quota Limits 
Per Job Limits 
Per Process Limits 

'11 deductable limits: eSt quota deductable limits; 
ql=non:ieductable_limi ts: -;;;$t_ qu~ta_nondedu-;;-table _limits; 

END RECORD; 

Deductable Resource Limits 
Non-Deductable Resource Limits 

! Quota Usage and Limits 

e$t_quota_usage_and_limits: RECORD 
qual_mutex: k$dispatcher_object(mutex); 
qual Ilmlts: e$t_quota_llmits; 
qual_usage: e$t_quota_usage; 

END RECORD; 

! Deductable Limits 

eSt quota deductable limits: RECOP~ 
-qdl p;ging file limit: eSt resource counter; 

qdl=paged_pool_limit: e$t_;esource_-;;-ounter; 
qdl non paged pool limit: eSt resource counter; 
qdl=cpu=time_limit-;- e$t_time_-;alue; -

END RECORD; 

! Non Deductable Limits 

eSt quota nondeductable limits: RECORD 
- qnl \.;;rking set limit: eSt resource counter; 

qnl = worlcing= set = extent: eSt _ resourc-;;; _counter; 
END RECORD; 

! Quota Usage 

e$t_quota_usage: RECORD 
qu_paging_file_in_use: e$t_resource_counter; 
qu_paged_pool_in_use: eSt _r'2sourc8_counter; 
qu non paged pool in use: eSt resource counter; 
qU-'working set in-us-;;;: eSt re~ource co-;:;nter; 
qu=cpu_tim-;;;_us-;;;d:-e$t_time=value; -

END RECORD; 

Used for block quota allocations 
Resource limits for this object 
Resources used by this object 

Max blocks of paging file usable by object 
Max number bytes paged pool usable by object 
Max nunilier bytes non paged pool usable by object 
Max cpu time used by object 

Max pages in working set 
Largest possible Working Set 

Number blocks of paging file in use by object 
Number bytes paged pool in use by object 
Number bytes non paged pool in use by object 
Pages in working set for this Object 
Cpu time used by object 

During user-object creation, the ucb_quotas field of the user control block is initialized. The values 
are obtained from the user _record parameter to the exec$create_user() system service. 

Once established, the ucb_quotas field of the user control block becomes the focal point for resource 
allocation limitation. The Mica system organizes resource limits as deductable and non-deductable 
resources. All operations on e$Cquota_limits are performed in terms of the attributes of deductable 
and non-deductable resource limits. 

1.3.1.1.2.1 Oeductable Resource Limits 

Deductable resource limits are charged to the next highest object in the UJPT hierarchy at object 
creation time. An example of this property can be seen in the creation of a process object. Assume a 
job object had 100 units of paged pool available in qdl-paged-pool_limit, and the user object specified 
that the per process limit for qdl-paged-pool_limit was 50 units. After the process object was created, 
the job object would be charged with 50 units of paged pool in qu-paged-pooCin_use. The process 
object would have 50 units of paged pool available in qdl-paged-pool_limit, and would be charged 
with 0 units of paged pool in qu-paged-pool_in_use. 

Process Structure 1-3 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

1.3.1.1.2.2 Non-Deductable Resource Limits 

Non-deductable resource limits are limits enforced by policies of the Mica system, but are not charged 
for against the higher level objects pool of available resources. For example, assume that in the 
creation of a process the user object specified a working set limit of 50 units. As a consequence, all 
job objects and process objects would contain the 50 units of resource in their qnl_working_set_limit 
fields. 

1.3.1.1.3 Access Restrictions 

The user object maintains the current system access restrictions for the Mica user that it represents. 
The access restrictions are not enforced by the UJPT architecture. External processes may inspect the 
access restrictions in the current set of user objects and determine what type of enforcement actions 
are necessary. Example 1-3 illustrates the data structures used to maintain the access restrictions 
placed in the user object. 

Example 1-3: Access Restriction Data Structures 

! Access Restrictions 

eSt access restrictions: RECORD 
-ar_restriction_vector: AP,P~Y[e$t_job_classl OF e$t_class_access_restrictions; 

ar_expiration_date: eSt_date; ! The last day that user can access the system 
END RECORD; 

! Per Job Class Access Restrictions 

e$t_class_access_restrictions: RECORD 
car prime days: eSt day set; 
car=non_p~ime_days:-e$t=day_set; 
car_prime_hours: e$t_hour_set; 
car_non_prime_hours: e$t_hour_set; 

END RECORD; 

1.3.1.2 Functional Interface 

The prime days user can access system 
The non-prime days user can access system 
The hours on prime days user can access system 
The hours on non prime days user can access system 

The Mica executive provides entry points capable of creating and deleting user objects, and setting 
and extracting various attributes of a User object. 

1.3.1.2.1 User Creation 

Creating a user object also causes a UJPT hierarchy to be created. The system service exec$create_ 
user{} creates a user object, job object, process object, and thread object. If there is a name colli
sion between the new user object and an existing user object for the same user, then the new user 
object is discarded, and the job, process, and thread objects are attached to the existing user object. 
Example 1-4 illustrates the interface to exec$create_user{}. 

1-4 Process Structure 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

Example 1-4: User Object Creation System Interface 
PROCEDURE exec$create_user 

!++ 

OUT object id: exec$t object id; 
IN contai~er: exec$t-object-id = DEFAULT; 
IN name: exec$t_obje"Ct_name-= DEFAULT; 
IN acl: exec$t_acl = DEFJI_ULT; 

IN user record: exec$t user record; 
IN user=allocation_list: ex~c$t_allocation_list DEFAULT; 

IN job record: exec$t job record = DEFAULT; 
IN job-initial contai~er:-exec$t object id = DEFAULT; 
IN job=allocatlon_list: exec$t_allocati;n_list = DEFAULT; 

IN process record: exec$t process record; 
IN process-public contain~r: exec$t object id = DEFAULT; 
IN process-privat~ container: exec$t object id = DEFAULT; 
IN process=allocatlon_list: exec$t_allocati;n_list = DEFAULT; 

IN thread_record: exec$t_thread_record = DEFAULT; 
IN thread_allocation_list: exec$t_allocation_list = DEFAULT; 
IN thread data block: quadword data(*) CONFORM OPTIONJI..L; 
IN thread - inunediate parameter17 exec$t thread parameter 
IN thread=immediate=parameter2: exec$t=thread=parameter 
IN thread_status: exec$t_object_id = DEFJI_ULT; 
) P£TUPNS status; 
EXTERNAL; 

DEF.r;.ULT; 
DEFliULT; 

Routine description: 

Create a user, job, process, and thread object as specified by the parameters. 
If the user object collides with an existing user object, then use the existing 
user object 

Arguments: 

object_id 
container 
name 
acl 
user record 
user-allocation list - -

job_initial container 

jOb_allocation_list 

process record 
process=public_container 

thread record 
thread allocation list - -

thread data block 

thread in~ediate parameterl 
thread=immediate_parameter2 
thread status 

Return value: 

TBS 

!--

Object ID of the resulting user object 
Object container for user object (ignored) 
Name of user object 
ACL to place on user object 
Attributes of new user (from authorization file ?) 
Objects to be allocated to the user object. If not present then 
no objects are allocated to the user 
Attributes of the job being created. If not present, then 
values are obtained from current user object 
Job level object container to be transfered into the job 
level container directory for this job. If not present then 
container directory comes up empty 
Objects to be allocated to the job object. If not present then 
no objects are allocated to the job 
Attributes of the process being created 
Process level public container to be transfered into the process 
level container directory for the process. If not present then 
container comes up empty. 
Process level private container to be transfered into the process 
level container directory for the process. If not present then 
container comes up empty. 
Objects to be allocated to the process object. If not present then 
no objects are allocated to the process 
Attributes of the thread being created 
Objects to be allocated to the thread object. If not present then 
no objects are allocated to the thread 
Arbitrary data block passed to initial thread. Pointer in TCR, if 
pointer is NIL, then no data block was passed 
Immediate parameter passed to thread through TCR 
IMnediate parameter passed to thread through TCR 
Exit status object to be bound to the initial thread. If not present 
then the thread is created without an exit status object 

Process Structu re 1-5 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

From the interface to exec$create_user(), it is clear that the user _record can have an impact on the 
structure of the user being created. Example 1-5 illustrates the layout of the user_record. 

Example 1-5: User Record Structure 

! The User Record 

User Fields 

The User fields are only used to initialize a user object if no user 
object exists. The intent is for the contents of these fields come from 
the system wide authorization file 

user username: string(e$c max user name); 
user-security profile: eSt se-;urity profile; 
user-per user-limits: eSt quota limits; 
user::::per::::job_limits: e$t_quota_limits; 
user per process limits: eSt quota limits; 
user-thr~ad prio~ity: k$corooined p~iority; 
user::::access-restrictions: e$t_ac-;ess_restrictions 

END RECORD; 

1.3.1.2.2 Get/Set User Information 

User Name 
User Security Profile from Authorization File 
Per User Resource Limits 
Per Job Resource Limits 
Per Process Resource Limits 
Default thread priority 
Users Access Restrictions 

The exec$geCuser _information and exec$seCuser _information system services provide a mechanism 
to obtain and to modify attributes of the specified user object. Example 1-6 illustrates the interfaces 
to the user object get/set system services. 

Example 1-6: Get/Set User Information System Interface 

PROCEDURE exec$get user information ( 

!++ 

IN use~_obj~ct_id: exec$t_object_id = DEFAULT; 
IN user_get_items: exec$t_item_list; 
) BETUP~S status; 
EXTERNAL; 

Routine description: 

Return information about the user object to the caller. The 
information returned is item list driven 

Arguments: 

user_object_id 

user_get_items 

Return value: 

TBS 

!--

if present, the object ID of user object that is to be inspected 
otherwise, the user object of the calling thread is assumed 
item list identifying user object information to be extracted 

Example 1-6 Cont'd. on next page 

1-6 Process Structure 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

Example 1-6 (Cont.): Get/Set User Information System Interface 

PROCEDURE exec$set_user_information ( 

!++ 

IN user object id: exec$t object id = DEFAULT; 
IN user=get_it~ms: exec$t=item_list; 
) RETUP~S status; 
EXTEPJJAL; 

Routine description: 

Modify information in the user object. The 
information to be modified is item list driven 

Arguments: 

user_get_items 

if present, the object ID of user object that is to be modified 
otherwise, the user object of the calling thread is assumed 
item list identifying user object information to be modified 

Return value: 

TBS 

!--

Only certain pieces of the user object may be inspected or modified. Table 1-1 illustrates the possible 
item codes and the information read or written when using the item code. 

Table 1-1: Get/Set User Information Item Codes 
Item Code 

e$ijob_count 

e$ijob_ids 

e$i_username 

e$i_ security_profile 

e$i_quotas 

e$i_user_limits 

e$ijob_limits 

e$i_process Jim its 

e$i_thread_priority 

e$i_ access_restrictions 

e$i_allocationJist 

1.3.1.2.3 User Deletion 

Set Action 

error 

error 

error 

replace ucb_securityyrofile 

error 

replace quaLlimits 

replace qyerjobJimits 

replace qyer_process_limits 

replace ucb_thread_priority 

replace ucb_access_restrictions 

error 

Get Action 

return ujob_count 

return object 10's of jobs owned by 
user 

return username of user 

return ucb_securityyrofile 

return ucb_quotas 

return quaUimits 

return qyerjobJimits 

return qyer_processJimits 

return ucb_thread_priority 

return ucb_access_restrictions 

return ucb_user_allocationJist 

The exec$force_exit_user() system service provides a mechanism for removing an active Mica user 
frOln the system. The service effectively causes an entire UJPT hierarchy to be removed, including 
all jobs, processes, and threads that are directly beneath the user object. Example 1-7 illustrates 
the interface used to remove a user object from the Mica system. 

Process Structure 1-7 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

Example 1-7: User Object Deletion System Interface 
PROCEDURE exec$force_exit_user ( 

!++ 

IN user object id: exec$t obiect id = DEFAULT; 
IN exit=st~tus7 exec$exit=st~tus; 
) RETURNS status; 
EXTEPJ"AL; 

Routine description: 

Causes the UJPT hierarchy whose user object head is user_object_id to 
be removed from the Mica system 

Arguments: 

exit status 

Return value: 

TBS 

!--

the user object to be removed. If not specified, 
then the current user is assumed 
the reason that the user is force-exiting 

1.3.2 The Job Object 

The job object appears at the second level of the UJPT hierarchy. Its sole function is to provide a 
set of resource limits for a collection of processes running as a job. The job object also provides a job 
level container directory. 

The job object is implemented as a system level object in the 
container. 

1.3.2.1 Object Structure 

object 

Each job in the Mica system represents a set of active processes and is responsible for controlling the 
resources used by those processes. 

The job object is split into a job object body and a job control block. The job object body contains the 
information necessary to maintain its position in a UJPT hierarchy. The job control block contains 
the inforrnation necessary to provide resource management for the job's processes. Example 1-.-8 
illustrates the job object. 

Example 1-8: Job Object Structure 

! Job Object Body 
! 
e$t_job_object_body: RECORD 

j obj id: eSt object id; 
j=user_pointer: POINTER e,$t_user_object_body; 
J_job_flags; eSt_Job_flags; 
J job queue: eSt linked list; 
j=pro~ess_queue_-;;;utex: k$dispatcher_object(mutex); 
j_process_count: integer; 
j process queue hd: eSt linked list; 
j=jcb: e$t_job_~ontrolj;lock; -

END RECORD; 

Example 1-8 Cont'd. on next page 

1-8 Process Structure 

Object ID of The job object 
Referenced Pointer to owning User 
Job Flags 
List of users jobs 
Mutex for process management 
Number Of processes of the job 
List head of jobs processes 
Job Control Block 



Digital Equipment Corporation * Confidential and Proprietary 
For Internal Use Only 

Example 1-8 (Cont.): Job Object Structure 

! Job Control Block 

e$t_job_control_block: RECORD 
jcb job class: eSt job class; 
jcb-usage and limits: ~$t quota usage and limits; 
jcb=job_condi~_mutex: k$d"ispatcher_object(mutex); 
jcb_job_condir_id: e$t_object_id; 

jcb job condir pointer: POINTER eSt object header; 
jcb=job=allocation_list: eSt allocation_li~t; 

END RECORD; 

1.3.2.1.1 Resource Control 

The jobs class 
Current resources used/resource limits 
Job Level Condir mutex 
Job Level Container directory ID 

visible in jobs context 
Job Level Container directory ID 

visible in an arbitrary context 
Pointer to Job Level Condir 
Objects allocated to the job objects 

The job object maintains resource usage information for itself, in addition to providing a pool of 
resources to its processes on an as-needed basis. During job-object creation, the jcb_usage_and_ 
limits.quaClimits field of the job control-block is set to the value of qyer .Job_limits from the user 
control block. Thejcb_usage_and_limits.qual_usage field of the job control-block is then set to zero(), 
and the q_usage_and_limits.quaCusage field of the user control block is incremented by qyer .Job_ 
limits to reflect the resources allocated to the job. Once this resource shuffling operation has com
pleted, the value of jcb_usage_and_limits.qual_limits represents the amount of system resources 
available to the job object and to all its process. 

While the above resource allocation scheme is the normal case, during job creation a parameter 
specifying the per-job limits for the job can be specified, altering the algorithm. This value simply 
overrides the value from qyer .Job_limits in the above example and applies to the newly created job. 

1.3.2.2 Functional Interface 

The Mica executive provides entry points capable of creating and deleting job objects, and setting 
and extracting various attributes of a job object. 

As part of job object creation, all of the necessary support data structures are created, including a 
job level container directory and associated kernel mutex dispatcher object. 

1.3.2.2.1 Job Creation 

The system service exec$create.JobO causes the creation of ajob object, a process object, and a thread 
object. These objects appear beneath the user object of the calling thread. Example 1-9 illustrates 
the interface to exec$createJob(). 

Process Structure 1-9 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

Example 1-9: Job Object Creation System Interface 
PROCEDURE exec$create_job ( 

!++ 

OUT object id: exec$t_object id; 
IN container: exec.$t_object_id = DEFAULT; 
IN name: exec$t_object_name = DEFAULT; 
IN acl: exec$t acl = DEFAULT; 

IN job record: exec$t job record = DEFAULT; 
IN job-initial contai~er:-exec$t object id = DEFAULT; 
IN job=allocatlon_list: exec$t_allocati~n_list = DEFAULT; 

IN process record: exec$t process record; 
IN processyublic_contain~r: execSt_object_id = DEFAULT; 
IN process private container: exec$t object id = DEFAULT; 
IN process-allocatlon_list: exec$t_allocati~n_list = DEFAULT; 

IN thread_record: exec$t_thread_record = DEFAULT; 
IN thread_allocation_list: exec$t_allocation_list = DEFAULT; 
IN thread_data_block: quadword_data(*) CONFORM OPTIONAL; 
IN thread immediate parameterl: exec$t thread parameter DEFAULT; 
IN thread=immediate=parameter2: exec$t=thread=parameter DEFAULT; 
IN thread_status: exec.$t_object_id = DEFAULT; 

) RETUP~S status; 
EXTERNAL; 

Routine description: 

Create a job, process, and thread object as specified by the parameters. 
If no user object exists, then also create a user object. 

Arguments: 

object_id 
container 
name 

job_initial_container 

process record 
process=public_container 

process allocation_list 

thread record 
thread allocation list 

- -

thread data block 

thread immediate parameterl 
thread= immedi ate =paramet.er2 
thread status 

Return value: 

TBS 

!--

1-10 Process Structure 

Object ID of the resulting job object 
Object container for job object (ignored) 
Name of job object 
ACL to place on job object 
Attributes of the job being created. If not present, then 
values are obtained from current user object 
Job level object container to be transfered into the job 
level container directory for this job. If not present then 
container directory comes up 
Objects to be allocated to the object. If not present then 
no objects are allocated to the job 
Attributes of the process being created 
Process level public container to be transfered into the process 
level container directory for the process. If not present then 
container comes up empty. 
Process level private container to be transfered into the process 
level container directory for the process. If not present then 
container comes up empty. 
Objects to be allocated to the process object. If not present then 
no objects are allocated to the process 
J\.ttributes of the thread being created 
Obj~cts to be allocated to the thread object. If not present then 
no objects are allocated to the thread 
Arbitrary data block passed to initial thread. Pointer in TCR, if 
pointer is NIL, then no data block was passed 
Immediate parameter passed to thread through TCR 
IIDlnediate parameter passed to thread through TCR 
Exit status object to be bound to the initial thread. If not present 
then the thread is created 'without an exit status object 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

From the interface to exec$create-.Job(), it is clear that the job_record can have an impact on the 
structure of the job being created. Example 1-10 illustrates the layout of the job_record. 

Example 1-10: Job Record Structure 

! The Job Record 

! Job Fields 

! The class of the job being created (i.e. network,batch ... ) 

Per Job Resource limits. This value is used as the 
qual_limits value for the job object, and is deducted 
from the qual usage field of the owning user obiect. 
A value of ze~o() in anyone of fields means to-use the 
corresponding value of the q_per_job_limit from the 
user structure 

job_per_job_limits: e$t_quota_limits; 
END RECORD; 

1.3.2.2.2 Job Deletion 

The exec$force_exit-.Job() system service provides a mechanism for removing job objects from the 
system. The removal of a job has the following system-wide effects: 

• All processes beneath the job are removed from the system. 

• The amount of resources available to the job (qual_limits-quaCusage) is returned to the job's 
user object by decrementing qual_usage in the user object. 

• If the job object is the last job owned by its user object, then the user object is removed from the 
system. 

Example 1-11 illustrates the interface to exec$force_exit-.JobO. 

Example 1-11: Job Object Deletion System Interface 
PROCEDURE exec$force exit job ( 

!++ 

IN job object-id: exec$t object id = DEFAULT; 
IN exit_statu;: exec$t_exit_status; 
) PETURNS status; 
EXTERNAL; 

Routine description: 

Causes the job object specified by job_object id to 
be removed from the Hica system 

Arguments: 

exit status 

Return value: 

TBS 

the job object to be removed. If not specified, 
then the current job is assumed 
the reason that the job is force-exiting 

1.3.2.2.3 Get/Set Job Information 

The exec$get-.Job_informationO and exec$set-.Job_information() system services provide a mechanism 
to obtain and to modify attributes of the specified job object. Example 1-12 illustrates the interfaces 
to the job object getJset system services. 

Process Structure 1-11 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

Example 1-12: Get/Set Job Information System Interface 

PROCEDURE exec$get job information ( 
IN job-object id: exec$t_object_id = DEFAULT; 
IN job=get_items: exec$t_item_list; 
) RETURNS status; 
EXTERNAL; 

!++ 

Routine description: 

Return information about the job object to the caller. The 
information returned is item list driven 

Arguments: 

if present, the object ID of job object that is to be inspected 
otherwise, the job object of the calling thread is assumed 

job_get_items item list identifying job object information to be extracted 

Return value: 

TBS 

!--

PROCEDURE exec$set_job_information ( 

!++ 

IN job object id: exec$t_object_id = DEFAULT; 
IN job=get_items: exec$t_item_list; 
) RETURN'S status; 
EXTERNAL; 

Routine description: 

Modify information in the job object. The 
information to be modified is item list driven 

Arguments: 

if present, the object ID of job object that is to be modified 
otherwise, the job object of the calling thread is assumed 
item list identifying job object information to be modified 

Return value: 

TBS 

!--

Only certain pieces of the job object may be inspected or modified. Table 1-2 illustrates the possible 
item codes and the information read or written when using the item code. 

Table 1-2: Get/Set Job Information Item Codes 
Item Code 

e$Luser_id 

e$i_process_count 

e$i_process jds 

e$i_usage_andJimits 

e$ijob_limits 

e$ijob _ condir _id 

e$i_allocation_list 

e$ijob_class 

1-12 Process Structure 

Set Action 

error 

error 

error 

error 

replace quaUimits 

error 

error 

error 

Get Action 

return object ID of jobs user object 

return Lprocess_count 

return object ID's of processes owned 
by job 

return jcb_usage_and_limits 

return quaUimits 

return jcbjob_condir_id 

return jcbjob_allocationJist 

return jcbjob_class 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

1.3.3 The Process Object 

The Process object appears at the third level of the UJPT hierarchy. Its primary function is to provide 
address space support and program image support for a set of execution threads, and to manage the 
set of process-level objects. The process object is the target of all accounting information. The process 
object can also act as a focal point for control operations. 

There can be multiple processes in a job. Processes created as a result of job creation are top level 
processes. Once established, a process may cause the creation of other processes. These new processes 
are sub-processes, or child processes. Their creating processes are referred to as parent processes. 

The Process object is implemented as a system level object in the "PROCESS$OBJECT_CONTAINER" 
object container. 

1.3.3.1 Object Structure 

Each process in the Mica system represents a set of execution threads and in some cases a set of 
sub-processes. The process object is responsible for managing the address spaces of its execution 
threads and for controlling the resource allocation limits of its execution threads. 

The process object is split into a process object body and a process control block. The process object 
body contains the information necessary to maintain its position in the UJPT hierarchy, a task which 
includes coordinating its sub-pro'cess objects. The process control block contains the information nec
essary to manage the address space, to control the resource usage, and to pool accounting information 
of all of its execution threads. Example 1-13 illustrates the process object. 

Example 1-13: Process Object Structure 

Process Object Body 

eSt process oblect bodv: PECORD 
-p_obLid: ~$t_;bje;t_id; 

p_job_pointer: POINTEP eSt_job; 
p_parent_process: POINTER eSt_process; 
p process flags: eSt process flags; 
p=process=queue: e$t=linked~ist; 
p_sub_process_queue: e$t_linked_list; 
p_thread_queue_mutex: k$dispatcher_object(mutex); 
p_thread_count: integer; 
p thread queue hd: eSt linked list; 
p -sub pr;cess queue mutex: k$dispatcher object (mut.ex); 
p=sub=process=count-;- integer; - -
p_sub_process_queue_hd: eSt_linKed_list; 
p_pcb: eSt_process control_block; 

END RECORD; 

! Process Control Block 

e$t_process_control_block: RECOPD 
pcb usage and limits: eSt quota usage and limits; 
pcbyroce-';s_c;ndir_id: e$t_obje-;:;t_id;- -

pcb_accounting: e$t_accounting_summary; 
pcb pcr base: POINTEP eSt process control region; 
pcb=pro-;:;ess_control_pte: ;:;-un$pte; - -
pcb_ptbr: PODJTER k.$page_table; 
pcb kernel process block: k$process; 
pcb-exit status id-;- e.$t object id; 
pcb=exit=status=ptr: POINTER e$t_exit_status_body; 
pCb_process_allocation_list: e$t_allocation_list; 

! Object Architecture Defined Container Directory Vector 

Obje9ct ID of process object 
Peferenced poin~er to owning job 
Referenced pointer to owning process, or NIL 
Process Flags 
List of jobs processes 
List of parents sub-processes 
Hutex for thread management 
Number of threads of the process 
List head of processes threads 
Hutex for sub-process management 
Number of sub-processes of the process 
List head of processes sub-processes 
Process Control Block 

Current resources used/resource limits 
Process Level Container directory ID 

visible in an processes context 
Process Level Container directory ID 

visible in an arbitrary context 
Process accounting summary 
User Peadable Process Control Region 
Prototype PTE for seg 1 page table page 
Pointer to page table 
Kernel Process Block 
Exit Status Object ID for process 
Exit Status for Process 
objects allocated to the process object 

pCb_condir_mutex: ARPAY [e$t_level_type] OF POINTEP k$dispatcher_object(mutex); 
pcb_condir_address: ARPAY leSt level_type] OF POINTEP e$t_object_header; 

END PECOPD; 

Example 1-13 Cont'd. on next page 

Process Structure 1-13 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

Example 1-13 (Cant.): Process Object Structure 

Process control Region 

The process control region appears in the processes address space as user read only/ system 
read write. 

e$t_process_control_region: RECORD 
pcr image name: string (e$c max image name); 
pcr=numbe-;_running_threads~ e$t_resource_counter; 
pcr_object_id: e$t_object_id; 
pcr exit handlers: eSt exit handlers; 
pcr=exec=dispatch_tabl~: e$t_dispatch_table; 

END RECORD; 

1.3.3.1.1 Resource Control 

process image name 
number of running threads for this process 
process object id - duplicate of p_obj_id 
Process exit Handlers 
Executive routines dispatch table 

The process object maintains resource usage information for all of its threads. Unlike the job object, 
the process object's qual_usage values represent resources actively in use by its threads. Each time 
one of the process objects threads consume paged pool, the qu-paged-pool_in_use field is incremented 
by the amount of pool actually used. This action is called pooling the resource usage from the thread 
level to the process level. 

During process object creation, the pcb_usage_and_limits.qual_limits field of the process control 
block is set to the value of q-per -process_limits from the user control block. The pcb_usage_and_ 
limits.quaCusage field of the process control block is then set to zero(), and the q_usage_and_ 
limits.quaCusage field of the job control block is incremented by q-per -process_limits to reflect the 
resources allocated to the process. Once this resource shuffling operation has completed, the value of 
pcb_usage_and_limits.qual_limits represents the amount of system resources available to the prOCC3Lo 

object which can be consumed by all its thread objects. 

While the above resource allocation scheme is the normal case, during process creation a parameter 
specifying the per-process limits for the process can be specified, altering the algorithm. This value 
simply overrides the value from q-per -process_limits in the above example and applies to the newly 
created process. 

1.3.3.1.2 Process Accounting 

The process object maintains accounting information for all of its threads. Process accounting infor
mation is pooled from the thread level to the process level. Example 1-14 illustrates the types of 
information accounted for at the process level in the Mica system. 

NOTE 

Process accounting information is recorded with interlocked instructions, such that 
the information is always maintained in an up-to-date state. 

1-14 Process Structure 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

Example 1-14: Process Accounting Structure 

Process Accounting Summary 

The final accounting record contains this information in TLV format 
in addition to fields identifying the process, image name, user ... 

e$t_accounting_summary: RECORD 
acct_cpu_cycles: eSt_counter; 
acct_total_page_faults: eSt_counter; 
acct_hard_page_faults: eSt_counter; 
acct_soft_page_faults: eSt_counter; 
acct dzro page faults: eSt counter; 
acct::::com_page_faults: e$t_-;;ounter; 
acct_peak_virtual_memory: eSt_counter; 
acct peak working set size: eSt counter; 
acct::::start_time: ~$t_time_value; 
acct_end_time: e$t_time_value; 
acct_page_file_usage: eSt_counter; 
acct_paged_pool_usage: eSt_counter; 
acct_non_paged_pool_usage: eSt_counter; 

10 Accounting 
Request IO's are counted once. 

Number of cycles used by the process 
Total number of page faults 
Number of page faults for non resident pages 
Nunilier of page faults fixed from reclaim list 
Number of demand zero page faults 
Number of copy on modify page faults 
Peak virtual memory size 
Peak working set size 
Start time of process 
End time of process 
Peak page file usage 
Peak paged pool usage 
Peak non paged pool usage 

Each FPU that passes on an IRP (execute io's) must also record the transfer 
by incrementing the counter for its class of FPU 

acct_request_io_count: eSt_counter; 
acct_execute_io_count: AR~~Y[e$fpu_classl 

OF eSt_counter; 
END RECORD; 

1.3.3.2 Functional Interface 

Number of request io's 
Number of execute io's per fpu class 

The Mica executive provides entry points capable of creating and deleting process objects, setting and 
extracting various attributes of a Process object, and performing control operations on all threads 
of a process. Control operations are Suspend/Resume Process, HibernatelWake Process, and Signal 
Process. 

As part of process-object creation, all of the necessary support data structures are created, including 
a read only process control region (PCR), and a process-level object-container directory. The PCR is 
part of the process's user-mode read-only address space. The Mica executive places information in 
the PCR so that the process can read it without entering the system. 

1.3.3.2.1 Process Creation 

The exec$createyrocess() system service extends an existing UJPT hierarchy by causing the creation 
of a process object and a thread object. The newly created process object becomes a sub-process of the 
process above the calling thread. Example 1-15 illustrates the interface to exec$createyrocess(). 

Process Structure 1-15 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

Example 1-15: Process Object Creation System Interface 
PROCEDURE exec$create_process ( 

!++ 

OUT object_id: exec$t_object_id; 
IN container: exec$t_object_id = DEFAULT; 
IN name: exec$t obJect_name = DEFAULT; 
IN acl: exec$t_acl = DEFAULT; 

IN process_record: exec$t_process_record; 
IN process public container: exec$t object id = DEFAULT; 
IN process-privat~ container: exec$t object id = DEFAULT; 
IN process=allocation_list: exec$t allocation_list = DEFAULT; 

IN thread_record: exec$t_thread_record = DEFAULT; 
IN thread_allocation_list: ezec$t_allocation_list = DEFAULT; 
IN thread_data_block: quadword_data(*) CONFORM OPTIONAL; 
IN thread_immediate_parameterl: exec$t_thread_parameter DEFAULT; 
IN thread_immediate_parameter2: exec$t_thread_parameter DEFAULT; 
IN thread_status: exec$t_object_id = DEFAULT; 

) RETUP~S status; 
EXTERNAL; 

Routine description: 

Create a Process and thread object as specified by the parameters. 

Arguments: 

object_id 
container 
name 
acl 
process record 
process=public_container 

thread record 
thread allocation list 

- -

thread data block 

Object ID of the resulting process object 
Object container for process object (ignored) 
Name of process object 
}l,.CL to place on process object 
Attributes of the process being created 
Process level public container to be transfered into the process 
level container directory for the process. If not present then 
container comes up empty. 
Process level private container to be transfered into the process 
level container directory for the process. If not present then 
container comes up empty. 
Objects to be allocated to the process object. If not present then 
no objects are allocated to the process 
Attributes of the thread being created 
Objects to be allocated to the thread object. If not present then 
no objects are allocated to the thread 
Arbitrary data block passed to initial thread. Pointer in TCR, if 
pointer is NIL, then no data block was passed 

thread_irrunediate_parameterl InmLediate parameter passed to thread through TCR 
th:r:ead_immediate_parameter2 Irrm-Lediate paramet_er passed too thread thr ugh TCR 
thread status Exit status Object to be bound to the in tial thread. If not present 

then the thread is created I-iithout an ex t status object 
process status TBS 

Return value: 

TBS 

!--

1-16 Process Structure 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

From the interface to exec$createJlrocess(), it is clear that the process_record has an impact on the 
structure of the process being created. Example 1-16 illustrates the layout of the process_record. 

Example 1-16: Process Record Structure 

!The Process Record 

exec$t process record: RECOP~ 
prO"cess_st-;;tus_object: e,$t_object_id; ! Object ID of processes status object 
process_image_name: string(e$c_max_image_name); ! Image name for process being created 
! 

Per Process Resource limits. This value is used as the 
qual_limits value for the process object, and is deducted 
from the qual_usage field of the owning job object. 
A value of zero() in anyone of fields means to use the 
corresponding value of the q_peryrocess_limit from the 
user structure 

process_per_process_limits: e$t_quota_limits; Resource limits for this process 
END RECORD; 

1.3.3.2.2 Process Deletion 

The exec$force_exitJlrocess() system service provides a mechanism for removing process objects from 
the system. The removal of a process has the following system-wide effects: 

• All threads of the process are removed from the system. 

• The amount of resources available to the process (quaClimits-quaCusage) is returned to the 
processes job object by decrementing qual_usage in the job object. 

• If the process object is the last process owned by its job object, then the job object is removed 
from the system. 

Example 1-17 illustrates the interface to exec$force_exitJlrocessO. 

Example 1-17: Process Object Deletion System Interface 
PROCEDURE exec$force exit process ( 

!++ 

IN proce;s object id: exec$t object id = DEFAULT; 
IN exit_st-;;tus: exec$t_exit_;tatus;-
) RETU~~S status; 
EXTERNAL; 

Routine description: 

Causes the Process object specified by process_object_id to 
be removed from the Mica system 

]\~rguments : 

process_object_id the process object to be removed. If not specified, 
then the current process is assumed 

exit status the reason that the process is force-exiting 

Return value: 

TES 

!--

1.3.3.2.3 Get/Set Process Information 

The exec$getJlrocess_informationO and exec$setJlrocess_information() system services provide a 
mechanism to obtain and modify attributes of the specified process object. Example 1-18 illustrates 
the interfaces to the process object getJset system services. 

Process Structure 1-17 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

Example 1-18: Get/Set Process Information System Interface 
PROCEDURE exec$get_process_information ( 

!++ 

IN process_object_id: exec$t object id = DEFAULT; 
IN process_get_items: exec$t_item_list; 
) RETURNS status; 
EXTERNAL; 

Routine description: 

Return information about the process object to the caller. The 
information returned is item list driven 

Arguments: 

Return value: 

TBS 

!--

if present, the object ID of process object that is to be inspected 
otherwise, the process object of the calling thread is assumed 
item list identifying process object information to be extracted 

PROCEDURE exec$set_process information ( 

!++ 

IN process_object_id: exec$t object id = DEFAULT; 
IN process_get_items: exec$t-item_llst; 
) RETURNS status; 
EXTERNl<..L; 

Routine description: 

... ; process object. The 
information ~o be modified is item list driven 

Arguments: 

process_object_id 

process_get_iterns 

Return value: 

TBS 

if present, the object ID of process object that is to be modified 
otherwise, the process object of the calling thread is assumed 
item list identifying process object information to be modified 

1-18 Process Structure 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

Only certain pieces of the process object may be inspected or modified. Table 1-3 illustrates the 
possible item codes and the information read or written by using the item code. 

Table 1-3: Get/Set Process Information Item Codes 
Item Code 

e$i_sub_process_count 

e$i_ su b _process jds 

e$i_thread_count 

e$Lthreadjds 

e$Lusage_andJimits 

e$i_processJimits 

e$i_process_condir_id 

e$L accou nting 

e$i_pcr_base 

e$Lallocation_list 

Set Action 

error 

error 

error 

error 

error 

error 

error 

replace quaUimits 

error 

error 

error 

error 

1.3.3.2.4 Process Control Operations 

Get Action 

return object 10 of processes job ob
ject 

return object 10 of processes parent 
process object 

return p_subyrocess_count 

return object 10's of subyrocesses 
owned by process 

return p_thread_count 

return object 10's of threads owned by 
process 

return pcb_usage_andJimits 

return quaUimits 

retu rn pcb _process _ condir jd 

return pcb_accounting 

retu rn pcb _pcr _base 

retu rn pcb_process _ aliocationJist 

Two process control operations exist in the Mica system to coordinate the execution of all threads of 
a process. The first provides a primitive which can alter the execution flow of another process by 
causing a condition to be raised in the target process. The second provides primitives to block and 
unblock the execution of the target process. In this latter technique, there are two classes of control 
operations. One class allows user-mode activity within the process to continue via user-mode AST 
routines, while the other class disables user-nlOde activity. 

1.3.3.2.4.1 Process 

The exec$signalyrocess() system service provides a mechanism to alter the execution flow of all 
threads of the process by causing a condition to be raised in the threads context. 

NOTE 

Process signalling is implemented through user-mode ASTs; therefore, if ASTs are 
disabled then so are signals. 

Example 1-19 illustrates the interface to exec$signalyrocess(). 

Process Structure 1-19 





Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

Example 1-19: Signal Process System Interface 
PROCEDURE e}:ec$signal_process ( 

!++ 

IN object id: exec$t object id; 
IN condition_value: ~xec$t_~ondition_value; 
IN argument: longi-,1Ord CONFORM = DEFAULT; 
) RETUP~S status; 
EXTERNAL; 

Routine description: 

Cause a condition of type condition_value to be raised in all threads owned by the process 
specified by object_id. The condition handler is passed argument. 

Arguments: 

object_id 
condition value 

argument 

the object_id of the process to be signaled 
A descriptor for the condition to be raised in all threads 
of the target process 
If present, the value that is passed to the condition handler 

Return value: 

TBS 

1.3.3.2.4.2 Process Hibernate/Wake 

The exec$hibernateyrocess() and exec$wakeyrocess() provide a mechanism to block and unblock the 
execution flow of aU threads within the target process. The block is implemented by causing all 
threads within the target process to issue a wait on the auto-clearing hibernate-event object within 
the thread control block. During the block, the only user-mode activity that is allowed is execution 
within user-mode AST routines; kernel-mode ASTs remain enabled. The unblock of the process is 
implemented by setting the auto-clearing hibernate event object within the thread control block of 
all threads of the target process. Example 1-20 illustrates the interfaces to exec$hibernateJJrocess() 
and exec$wake yrocess(). 

Example 1-20: Hibernate/Wake Process System Interface 

! Hibernate Process 

PROCEDURE exec$hibernate_process ( 

!++ 

IN object_id: exec$t_object_id; 
) P£TURNS status; 
EXTERNAL; 

Routine description: 

Cause all threads owned by the process specified by object_id to issue a wait on the 
auto-clearing hibernate event object in their TCB. User mode AST's remain enabled 

Arguments: 

object ID of target process 

Return value: 

TBS 

!--

i"Jake Process 

PROCEDURE exec$wake process ( 
IN object_id: exec$t_object_id; 
) RETUP~S status; 
EXTERl\JAL; 

Example 1-20 Cont'd. on next page 

1-20 Process Structure 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

Example 1-20 (Cont.): Hibernate/Wake Process System Interface 

!++ 

Routine description: 

Cause all threads owned by the process specified by object id to have their waits on the 
auto-clearing hibernate event object in their TCB to be satisfied by setting the event. 

Arguments: 

object ID of target process 

Return value: 

TBS 

!--

1.3.3.2.4.3 Process Suspend/Resume 

The exec$suspendyrocess() and exec$resumeyrocess() provide a mechanism to block and unblock 
the execution flow of all threads within the target process. The block is implemented by causing all 
threads within the target process to issue a wait on the auto-clearing suspend event object within the 
thread control block. During the block, no user-mode activity is possible; only kernel-mode norn1al 
and special AST routines may be executed. The unblock of the process is implemented by setting the 
auto-clearing suspend event object within the thread control block of all threads of the target process. 
Example 1-21 illustrates the interfaces to exec$suspendyrocess() and exec$resumeyrocess(). 

Process System Interlace 

Suspend Process 

PROCEDURE exec$suspend_process 
IN object_id: exec$t object_id; 
) PETU~~S status; 
EXTEPJ~AL; 

!++ 

Routine description: 

Cause all threads owned by the process specified by object id to issue a wait on the 
auto-clearing suspend .:.vent object in their TCB. User mode-AST's are disabled. 

Arguments: 

object ID of target process 

Return value: 

TBS 

!--

! Resume Process 

PROCEDURE exec$resume_process ( 
IN object_id: execSt_object_id; 
) PETURNS status; 
EXTEPNAL; 

Example 1-21 Cont'd. on next page 

Process Structure 1-21 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

Example 1-21 (Cont.): Suspend/Resume Process System Interface 

!++ 

Routine description: 

Cause all threads owned by the process specified by object id to have their waits on the 
auto-clearing suspend event object in their TCB to be sati;fied by setting the event. 

Arguments: 

object 10 of target process 

Return value: 

TBS 

!--

1.3.4 The Thread Object 

The thread object appears at the lowest level of the UJPT hierarchy. Its primary function is to provide 
a thread of execution. 

In addition, the thread object has the following functions: 

• It is the schedulable entity in the Mica system. 

• It maintains the processor state as it executes the program steps of an image. 

r'~~sources. .All and resource limitation data structures reside in 
to the process level. 

• It can act as a focal point for synchronization. 

The thread object is implemented as a system level object in the "THREAD$OBJECT_CONTAINER" 
object container. 

1.3.4.1 Object Structure 

The thread object maintains the state of the processor as it moves through the progralIl steps of the 
program image mapped into its processes address space. 

The thread object is split into a thread object body and a thread control block. The thread object 
body contains information necessary to maintain the thread's position within the UJPT hierarchy. 
The thread control block contains the information necessary to move the execution thread through 
the steps of the program image. Example 1-22 illustrates the thread object. 

1-22 Process Structure 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

Example 1-22: Thread Object Structure 

Thread Object Body 

eSt_thread: REcopn 
t obj id: eSt object id; 
t=pro~ess_poi~ter: POINTER eSt_process; 
t thread flags: eSt thread flags; 
t=thread=queue: e$t=linked=list; 
t_tcb: e$t_thread_control_block; 

END RECORD; 

Thread Control Block 

e$t_thread_control_block: RECORD 
tcb_previous_mode: e$t_processor_status; 
tCb_thread_context: e$t_thread_context; 
tcb kernel thread block: k$dispatcher object (thread) ; 
tcb=hibern;te_eve~t: k$dispatcher_obj-ect(event); 
tcb_suspend_event: k$dispatcher_object(event); 
tcb pcb pointer: POINTER eSt process control block; 
tcb-tcr-base: POINTER eSt th~ead control region; 
tcb=exit_status_id: e$t_object_id; -
tCb_exit_status_ptr: POINTER e$t_exit_status_body; 
tcb_exit status_value: e$t_exit_status; 
tcb_security_profile: e$t_security_profile; 
tcb_thread_allocation_list: eSt allocation_list; 

! Memory Management Events 

tcb_initial_page_event: k$dispatcher_object(event); 
tcb_secondary_page_event: k$dispatcher_object(event); 
tCb_current_page_event: integer; 

! I/O 

tcb_io_synchronization_event: k$dispatcher_object(event); 
tcb_irp_list_head: e$t_linked_list; 
tcb_cancel_io: boolean; 
tCb_cancel_event: k$dispatcher_object(event); 

END RECORD; 

Thread Context 

e$t_thread_context: P£CORD 

Object ID of thread object 
Referenced pointer to owning process 
Thread Flags 
List of processes threads 
Thread Control Block 

saved processor status 
Processor State of Thread 
Kernel Thread Block 
auto-clearing hibernate event 
auto-clearing suspend event 
Pointer to PCB 
Pointer to TCR 
Exit Status Object ID for Thread 
Exit Status for Thread 
Exit Status 
The threads security profile 
Objects allocated to the thread object 

Memory Management 
Memory Management 
Memory Hanagement 

I/O synchronization event 
I/O Request Packet List Head 
Cancel io by thread in progress 
Cancel io synchronization 

tc priviledged context block: k$hwpcb; Hardware Privileged Context Block 
tc=general_purpose_registers: POINTER e$t_general_purpose_registers;! Scalar Register Set 
tc_vector_registers: POINTER e$t_vector_registers; Vector Register Set 

END RECORD; 

Thread Control Region 

The thread control region appears in the processes address space as user read only/ system 
read write 

e$t_thread_control_region: P£CORD 
tcr_object_id: e$t_object_id; 
tcr per pointer: POINTER eSt process control_region; 
tcr=sta~t_address: e$t_thread_entry_point; 
tcr initial sp: eSt scalar register; 
tcr-stack limit: eSt scala~ register; 
tcr-stack-base: eSt scalar ~egister; 
tcr-condition initi;l sp: -eSt scalar register; 
tcr=condltion=stack_limit: eSt scala~_register; 
tcr condition stack base: eSt scalar register; 
tcr=exit_handlers: -eSt_exit_h;ndlers; 
tcr_vectored_handlers: e$t_vectored_handlers; 

Initial Thread Parameters 

tcr_block_data: POINTER anytype; 
tcr_block_data_length: integer; 
tcr_parameterl: eSt_thread_parameter; 

Example 1-22 Cont'd. on next page 

Object ID of this thread 
Pointer to process control region 
initial start address of thread 
Initial Value of Stack Pointer 
Primary Stack Limit 
Primary Stack Base 
Initial Value of Condition Stack Ptr 
Condition Stack Limit 
Condition Stack Base 
Thread exit handlers 
Entry descriptors for vectored 
condition handlers 

Initial thread data block or NIL 
Byte length of data block rounded to quadword 
In~ediate parameter / or zero() 

Process Structu re 1-23 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

Example 1-22 (Cont.): Thread Object Structure 
tcr_parameter2: e$t_thread_parameter; 

END RECORD; 

! Immediate Parameter 

Thread Entry Point 

Immediate parameter / or zero() 

Same size as a machine register 

1.3.4.2 Functional Interface 

The Mica executive provides entry points capable of creating, deleting, and controlling thread objects, 
in addition to setting and extracting various attributes of a thread object. 

Thread object control services are SuspendlResume thread, HibernatefWake thread, and Signal 
thread. 

As part of Thread object creation, all of the necessary support data structures are created including 
the read-only thread control region (TCR), the read/write thread environment block (TEB), and user 
and kernel stacks. The TCR is part of the process's user-mode read-only address space. The Mica 
executive places information in the TCR so that the thread can read it without entering the system. 
The TEB is part of the user-mode thread architecture. The MICA executive initializes the TEB to 
point to the TCR. 

1.3.4.2.1 Thread Creation 

The exec$create_thread() system service extends an existing UJPT hierarchy by causing the creation 
of a thread object. The newly created thread object begins execution within the address space of its 
process at a start address passed to the system interface. Example 1-23 illustrates the interface to 
exec$create_thread() . 

Example 1-23: Thread Object Creation System Interface 
PROCEDURE exec$create_thread ( 

!++ 

OUT object_id: exec$t_object_id; 
IN container: exec$t_object_id = DEFAULT; 
IN nawe: exec$t_object_name = DEFAULT; 
IN acl: exec$t_acl = DEFAULT; 

IN thread_procedure: exec$t_thread_entry_point; 
IN thread_record: exec$t_thread_record = DEFAULT; 
IN thread allocation list: exec$t allocation list = DEFAULT; 
IN thread-data block~ quadword data(*) CONFORM OPTIONAL; 
IN thread-immediate parameterl~ exec$t thread parameter DEFAULT; 
IN thread~)mmediate=:parameter2: exec$t=:thread=:parameter DEFAULT; 
IN thread_status: exec$t_object_id = DEFJi.ULT; 
) RETURNS status; 
EXTERNAL; 

Routine description: 

Create a thread object as specified by the parameters. 

Arguments: 

object_id 
container 
name 
acl 
thread record 
thread_allocation_list 

Object ID of the resulting process object 
Object container for thread object (ignored) 
Name of thread object 
ACL to place on thread object 
Attributes of the thread being created 
Objects to be allocated to the thread object. If not present then 
no Objects are allocated to the thread 
Arbitrary data block passed to initial thread. Pointer in TCR, if 
pointer is NIL, then no data block was passed 

Example 1-23 Cont'd. on next page 

1-24 Process Structure 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

Example 1-23 (Cont.): Thread Object Creation System Interface 
! thread_immediate_parameterl Immediate parameter passed to thread through TCR 

thread_irnrnediate_parameter2 Immediate parameter passed to thread through TCR 
thread_procedure pointer to thread entry point entry descriptor 
thread_status Exit status object to be bound to the thread. If not present 

then the thread is created without an exit status object 

Return value: 

TBS 

!--

From the interface to exec$create_threadO, it is clear that the thread_record can have an impact on 
the structure of the thread being created. Example 1-24 illustrates the layout of the threadJecord. 

Example 1-24: Thread Record Structure 

! The thread record 

e$type_thread_record: RECORD 
thread stack size: integer; 
thread=priority: k$cornbined_priority; 
thread_affinity: k$affinity; 

END RECORD; 

1.3.4.2.2 Thread Deletion 

If 0 then system wide default 
initial thread priority if all 0 then default 
processor affinity If all 0 then all processors 

Thread deletion is the action which causes the removal of a thread object. The Mica system provides 
tv,\) mechanisms for deleting thread objects. The first mechanism, simple exit, will in some cases 
not cause the thread object to be removed; however, it is the normal path for thread mat when a 
thread wants to exit. The second mechanism, forced exit, will cause the thread object to be removed 
unconditionally. The forced exit path occurs when any thread wants the specified thread to exit. 

The deletion of a thread object causes the thread's exit handlers to execute. In the simple exit case, 
exit handlers may run indefinitely, possibly never completing; thus, thread object may not occur. 
In the forced exit case, the thread's exit handlers are executed with a CPU time limit. If a time 
limit is exceeded, the next handler is executed. This technique guarantees that all exit handlers will 
be invoked and that afterwards thread object deletion will proceed. The exec$exit_threadO system 
interface provides the simple exit functionality. The exec$force_exiCthreadO system service provides 
the forced-exit functionality. 

When the last thread of a process is deleted, the process object is removed from the system. 

Example 1-25 illustrates the interfaces to exec$exiCthreadO, and exec$force_exit_threadO. 

Process Structu re 1-25 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

Example 1-25: Thread Object Deletion System Interfaces 

! Thread Exit System Service 

PROCEDURE exec$exit_thread ( 
IN exit status: exec$t_exit_status; 
) ; 

!++ 

Routine description: 

Cause the deletion of the calling thread object. Place 
thread status in the threads tcb at tcb exit status value - - -

Arguments: 

thread status the exit status of the thread 

Return value: 

none 

!--

Thread Force Exit System Service 

PROCEDURE exec$force exit thread ( 

!++ 

IN object_id:-exec$t_object_id = DEFAULT; 
IN exit_status: exec$t_exit_status; 
) RETURNS status; 

Routine description: 

Cause the deletion of the thread object specified by object_id 

Arguments: 

exit status 

Return value: 

TBS 

!--

the object ID of the thread object being deleted. If not specified, 
then the calling thread is assumed 
the reason that the thread is force-exiting 

1.3.4.2.3 Get/Set Thread Information 

The exec$get_thread_information() and exec$seCthread_informationO system services provide a 
mechanism to obtain and modify attributes of the specified thread object. Example 1-26 illustrates 
the interfaces to the thread object getJset system services. 

1-26 Process Structure 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

Example 1-26: Get/Set Thread Information System Interface 
PROCEDURE exec$get thread information ( 

!++ 

IN thr~ad obj~ct id: exec$t object id = DEFAULT; 
IN thread:=get_it~ms: exec$t:=item_list; 
) RETURNS status; 
EXTERNAL; 

Routine description: 

Return information about the thread object to the caller. The 
information returned is item list driven 

Arguments: 

thread_object id if present, the object id of thread object that is to be inspected 
otherwise, the calling thread is assumed 

thread_get_items item list identifying thread object information to be extracted 

Return value: 

TBS 

!--

PROCEDURE exec$set_thread_information ( 

!++ 

IN thread_object_id: exec$t_object_id = DEFAULT; 
IN thread_get_items: exec$t_item_list; 
) PETU81JS status; 
EXTERNAL; 

Routine description: 

Modify information in the thread object. The 
information to be modified is item list driven 

Arguments: 

thread_object id if present, the object ID of thread object that is to be modified 
otherwise, the calling thread is assumed 

thread_get_items item list identifying thread object information to be modified 

F<"turn value: 

TBS 

!--

Only certain pieces of the thread object may be inspected or modified. Table 1-4 illustrates the 
possible item codes and the information read or written by using the item code. 

Table 1-4: Get/Set Thread Information Item Codes 
Item Code 

e$i_tcr_base 

e$i _ tcr _start_address 

e$i_ allocation_list 

Set Action 

error 

error 

set tcr_start_address 

error 

1.3.4.2.4 Thread Control Operations 

Get Action 

return object ID of threads process ob
ject 

return tcb_tcr_base 

error 

return tcb_thread_allocationJist 

Two thread control operations exist in the Mica system to coordinate the execution of threads. The 
first provides a primitive which can alter the execution flow of another thread by causing a condition 
to be raised in the target thread. The second provides primitives to block and unblock the execution 
of the target thread. In this latter technique, there are two classes of control operations. One class 
allows user-mode activity within the thread to continue via user-mode AST routines, while the other 
class disables user-mode activity. 

Process Structu re 1-27 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

1.3.4.2.4.1 Thread Signaling 

The exec$signal_thread() system service provides a mechanism to alter the execution flow of a thread 
by causing a condition to be raised in the context of the target thread. 

NOTE 

The thread signalling mechanism is implemented through user-mode ASTs; there
fore, if ASTs are disabled, then so are signals. 

Example 1-27 illustrates the interface to exec$signal_threadO. 

Example 1-27: Signal Thread System Interface 
PROCEDURE exec$signal_thread ( 

!++ 

IN object_id: execSt_object_id; 
IN condition_value: exec$t_condition_value; 
IN argument: longword CONFORM = DEFAULT; 
) P£TURNS status; 
EXTERNAL; 

Routine description: 

Cause a condition of type condition_value to be raised in the thread 
specified by object_id. The condition handler is passed argument. 

Arguments: 

object_id 
condition value 
argument 

P,-eturn va'::"ue: 

TBS 

!--

the object_id of the thread to be signaled 
A descriptor for the condition to be raised in the target thread 
If present, the value that is passed to the condition handler 

1.3.4.2.4.2 Thread Hibernate/Wake 

The exec$hibernate_threadO and exec$wake_threadO provide a mechanism to block and unblock the 
execution flow of a thread. The block is implemented by causing the thread to issue a wait on the 
auto-clearing hibernate event object within the thread control block. During the block, the only user
mode activity that is allowed is execution within user-mode AST routines. The unblock of the thread 
is implemented by setting the auto-clearing hibernate event object within the thread control block. 
Example 1-28 illustrates the interfaces to exec$hibernate_threadO and exec$wake_threadO. 

1-28 Process Structure 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

Example 1-28: Hibernate/Wake Thread System Interface 

! Hibernate Thread 

PROCEDURE exec$hibernate thread ( 

!++ 

IN object_id7 exec$t_object_id; 
) RETUP~S status; 
EXTERNAL; 

Routine description: 

Cause the thread specified by object_id to issue a wait on the 
auto-clearing hibernate event object in the TCB. User mode AST's remain enabled 

Arguments: 

object ID of target thread 

Return value: 

TBS 

!--

! Wake Thread 

PROCEDURE exec$wake_thread ( 
IN object_id: exec$t_object_id; 
) RETUP~S status; 
EXTERNAL; 

Routine descrip~ion: 

Cause the thread specified by object_id to have the wait on the 
auto-clearing hibernate event object in the TCB to be satisfied by setting the event. 

Arguments: 

object id object ID of target thread 

Return value: 

TBS 

!--

1.3.4.2.4.3 Thread Suspend/Resume 

The exec$suspend_thread() and exec$resume_thread() provide a mechanism to block and unblock the 
execution flow of the target thread. The block is implemented by causing the thread to issue a 
wait on the auto-clearing suspend-event object within the thread control block. During the block, 
no user-mode activity is possible. Only kernel-mode normal and special AST routines may be exe
cuted. The unblock of the thread is implemented by setting the auto-clearing suspend-event object 
within the thread control block. Example 1-29 illustrates the interfaces to exec$suspend_thread() 
and exec$resume_thread(). 

Process Structure 1-29 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

Example 1-29: Suspend/Resume Thread System Interface 

! Suspend Thread 
! 
PROCEDURE exec$suspend_thread 

!++ 

IN object_id: exec$t_object_id; 
) RETURNS status; 
EXTERNJI..L; 

Routine description: 

Cause the thread specified by object_id to issue a wait on the 
auto-clearing suspend event object in the TCB. User mode AST's are disabled. 

Arguments: 

object ID of target thread 

Return value: 

TBS 

!--

! Resume Thread 

PROCEDURE exec$resume_thread 

!++ 

IN object_id: exec$t_object_id; 
) RETURNS status; 
EXTERNAL; 

Routine description: 

Cause the thread specified by object_id to have the wait on the 
auto-clearing suspend event object in the TCB to be satisfied by setting the event. 

Arguments: 

object ID of target thread 

Return value: 

TBS 

!--

1.3.4.2.4.4 Hibernate and Suspend Comparison 

Both the exec$hibernate_thread() system service, and the exec$suspend_thread() system service block 
the execution of the specified thread. The difference between these two types of blocked states is the 
ability of the blocked thread to receive and execute in the context of user-mode ASTs. Threads that 
are blocked due to the exec$hibernate_thread() system service are able to receive and execute in the 
context of user-mode ASTs; threads that are blocked due to the exec$sll.9pend_thread() system service 
are not. 

1.4 UJPT Object Linkages 

The UJPT hierarchy is bound together through the existence of object IDs and referenced pointers. 
The following section describes the implementation of the object linkages, the steps of hierarchy 
creation, and the actions which lead to the collapse of a UJPT hierarchy. This section does not 
describe process or thread creation in terms of address space creation or the intricate details of 
kernel, memory management, or object architecture interactions. 

1-30 Process Structure 



1.4.1 Linkage Structure 

Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

The UJPT object linkage structure requires that objects in lower levels of the hierarchy point to 
the object immediately above them using a referenced pointer. The reference pointer guarantees 
the existence of the higher-level object for the life of the lower-level object. Figure 1-1 illustrates a 
complex UJPT hierarchy consisting of a user object, a job object, and a process object consisting of 
two immediate threads and a sub-process object with a single thread. 

Figure 1-1: Complex UJPT Hierarchy 

System Container Directory 

100 
1.-_-----1 

101 

1.-_ ..... 
102 
105 

Job Container Directory 1--_____ 103 

104 
106 

Process Container Directory 

X,Y = Pointer Count, Object ID Count 

~ • Referenced Pointe, 

1.4.2 Hierarchy Creation 

USER$OBJECT_CONTAINER 

JOB$OBJECT _CONTAINER 

PROCESS$OBJECT_CONTAINER 

THREAD$OBJECT _CONTAINER 

ZS-24347 -87 

The creation of a UJPT hierarchy is triggered by the exec$create_user() system service. At this time, 
a hierarchy is either created or extended, depending on the existence of a user object representing 
the Mica user specified in the user _record. user _username field of the user _record parameter. 

Process Structure 1-31 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

The following steps occur during the creation of a UJPT hierarchy. 

1. Determine if a user object exists for user _record. user _username. If the object exists, then obtain 
a referenced pointer to the user object. Otherwise, create the user object in the system container 
directory, initialize the user object with the information from the user _record and then obtain a 
referenced pointer to the user object. 

2. Create the job object in the system container directory and obtain a referenced pointer to the job 
object. Initialize the job object according to the following tasks. 

• Set j_obj_id equal to the object ID of the job being created. 

• Setj_user -pointer to the referenced pointer of the proper user object. 

• Link the job object to the user object's u-1ob_queue_hd, and initialize the j-process ... fields 
of the job object. 

• Create the job-level container directory, and populate it with the job_initial_container pa
rameter. 

3. Create the process object in the system container directory and obtain a referenced pointer to 
the process object. Initialize the process object according to the following tasks. 

• Set p_obj_id equal to the object ID of the process being created. 

• Set p-1ob-pointer to the referenced pointer of the proper job object. 

• Link the process object to the job object's j-process_queue_hd. 

• Initialize the p_thread ... fields and p_sub-process ... fields of the job object. 

• Create the process level container directory, and populate it with the process-public_ 
container parameter and the process-private_container parameter. 

4. Create the thread object in the system container directory. 

5. Obtain a referenced pointer to the thread object. 

6. Initialize the thread object such that t_obj_id contains the object ID of the thread, and (-process_ 
pointer contains the referenced pointer to the proper process object. 

7. Link the thread object to the process object's p_Jhread_queue_hd. 

1.4.3 Hierarchy Collapse/Deletion 

The collapse of a UJPT hierarchy can be triggered by force-exiting any component of a hierarchy. The 
ultimate collapse is always the result of a thread's exit, whether it be a forced exit or a voluntary 
exit. 

The forced exit of a component in the UJPT hierarchy eventually causes all threads beneath that 
object to exit. The following actions occur during a thread exit. 

• If the exiting thread is the last thread in its process, then cause the process to exit by removing 
its object ID. 

• If the exiting process has any sub-processes, then cause its sub-processes to exit by force-exiting 
them. 

• If the exiting process is the last process in its job, then cause the job to exit by removing its 
object ID. 

• If the exiting job is the last job in its user, then cause the user to exit by removing its object ID. 

1-32 Process Structure 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

1.4.3.1 Force-Exit Routines 

Each component of the hierarchy provides a force-exit interface as part of its primitive object service 
routines. The basic action performed in these routines is the forced exit of the object's sub-objects. 

1.4.3.1.1 User-Object Force-Exit Routine 

The user-object force-exit routine is responsible for causing the forced exit of all of its job objects. 
This is implemented by setting its force-exit in-progress flag, and looping over the linked list of its 
job objects headed by u.Job_queue_hd and a force-exit of that job via e$force_exit.JobO. 

1.4.3.1.2 Job-Object Force-Exit Routine 

The job object force-exit routine is responsible for causing the forced exit of all of its process objects. 
This is implemented by setting its force-exit in progress flag, looping over the linked list of its process 
objects headed by Jyrocess_queue_hd, and causing a forced exit of that process via e$force_exiC 
processO. 

1.4.3.1.3 Process-Object Force-Exit Routine 

The process object force-exit routine is responsible for causing the removal of all of its thread objects 
and sub-processes represented as process objects. This is implemented by setting its force-exit in 
progress flag, and looping over the linked list of its thread objects headed by p_thread_queue_hd and 
causing a force-exit of that thread via e$force_exit_threadO. Then the routine loops over the linked 
list of sub-processes headed by p_subyrocess_queue_hd and causes a forced exit of that process via 
e$force_exityrocessO. 

1.4.3.1.4 Thread Object Force Exit Routine 

The routine occurs in two phases. The first phase is to cleanly enter the exiting thread's context to 
begin the thread exit. The second phase is to complete the exit of the thread by calling exec$exiC 
threadO, an action which starts the second phase of hierarchy collapse and finally brings the "exiting" 
thread out of the system. Before starting the forced-exit processing, the force-exit in-progress flag is 
set in the thread object. 

During a thread forced-exit, there is a moment when control is returned to the original caller of 
exec$exit_threadO even though the thread to be exited is still part of the system. The exit is considered 
complete with respect to the caller after the system has delivered an AST to the exiting thread that 
will cause the thread itself to exit. The exit is complete with respect to the exiting thread once the 
thread has issued its call to k$terminate_thread(); 

1.4.3.1.4.1 Thread Context Entry 

To force-exit a thread, that thread's context must be entered in a controlled manner in a "trusted" user
mode routine. This is achieved by delivering a user-mode AST to the thread. The target procedure 
of the AST is a routine that is part of the Mica executive but is executed in user mode. The AST 
target procedure is the function e$in_contextJorce_exitO. The purpose of this function is to bring the 
thread into a "clean" state so that it can complete its exit. The following steps occur in e$in_context_ 
force_exit( ): 

• The thread issues an e$unwind() specifying an exit unwind. 

• Once the unwind has completed, the thread issues a call to exec$exit_threadO. 

Process Structure 1-33 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

1.4.3.1.4.2 Thread Exit 

The second phase of thread exit processing begins at the entry point exec$exit_thread(). The purpose 
of this function is to execute all of the exit handlers for the thread and, when completed, to bring the 
thread object out of the system. The following steps occur in exec$exiCthread(): 

• Dequeue the first exit handler from the thread control region. 

• If the thread is in the force-exit in progress state, then establish a CPU time quota for the thread. 

NOTE 

The thread-exit CPU time quota is on accumulated user-mode CPU time. It is 
not an elapsed time limit. 

• If the CPU time quota expires, then deliver a user-mode AST to the thread. The target procedure 
of the AST is executive code that runs in "trusted" user-mode at the e$exiChandler _quota_ 
expire(). This entry point causes the termination of the current exit handler and begins the next 
by calling exec $ex i Cth rea d() . 

• Vector to the exit handler in user-mode. 

• If no more exit handlers for the thread exist, then remove the object ID of the thread by calling 
e$remove_objecCid(), passing it the object ID of the thread stored in t_obj_id in the thread object 
body. This action begins the second phase of hierarchy collapse by causing the execution of the 
affected object's remove routines. If there are more exit handlers, then repeat the above steps. 

• After completion of e$remove_object_id(), the thread removes itself from the system by calling 
k$terminate_thread(). This action begins the third phase of hierarchy collapse by causing the 
execution of the affected object's delete routines. 

1.4.3.2 Object Remove Routines 

The object remove routines are called when the objhdr$object_id_count within the object header 
decrements to zero. This occurs during the second phase of hierarchy collapse as a result of a call 
to e$remove_object_id() for the "exiting" object. Object remove routines are always executed in the 
context of the object being removed. 

NOTE 

In order to ensure the above context restrictions, objects within the UJPT hierar
chy may not have alias object IDs, and their ACLs are such that only the function 
exec$exit_thread() is capable of removing their object IDs. 

Assuming the UJPT hierarchy from Figure 1-1, the following legal contexts exist to execute the 
remove routines for the hierarchy. 

• Thread.O will execute its remove routine in the context of thread.O. 

• Thread.l will execute its remove routine in the context of thread. I. 

• Thread.2 will execute its remove routine in the context of thread.2. 

• Process.O could execute its remove routine in either the context of thread.O, or thread.I. The 
context would be determined by the context of the last thread to begin the second phase of exit. 

• Process.l will execute its remove routine in the context of thread.2. 

• Job.O will execute its remove routine in the context that was used to execute process.O's remove 
routine. 

• User.O will execute its remove routine in the context that was used to execute job.O's remove 
routine. 

1-34 Process Structure 



1.4.3.2.1 User-Object Remove Routine 

Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

The user-object remove routine performs no actions related to hierarchy collapse. 

1.4.3.2.2 Job Object Remove Routine 

The job-object remove routine is responsible for breaking the link between itself and its user object. 
If the job object is the last object of its user object then it must guarantee the removal of the user 
object. This occurs as follows: 

• The job object is de-linked from the u-lob_queue_hd in the user object pointed to by j_user_ 
pointer. 

• If the uJob_count field is decremented to zero by this action, then the user object is removed by 
calling e$remove_object_id() specifying the object ID of the user object (u_obj_id) stored in the 
user object body. 

1.4.3.2.3 Process Object Remove Routine 

The process object remove routine is responsible for breaking the link between itself and its job object, 
and if the process is a sub-process, it must break the link between itself and its parent process i.e. the 
process above it. Two different paths are followed during the process remove routine. The following 
occurs in the remove routine for a process without a parent. 

• The process object is de-linked from thejyrocess_queue_hd in the job object pointed to by p-l0b_ 
pointer. 

• If the jyrocess_count field is decremented to zero by this action, then the job object is relnoved 
by calling e$remove_objecCid() specifying the object ID of the job object (j_obj_id) stored in the 
job object body. 

The remove routine for a sub-process i.e. a process with a parent simply de-links itself from the 
p_subyrocess_queue_hd in the process object pointed to by pyarentyointer. 

1.4.3.2.4 Thread Object Remove Routine 

The thread object remove routine is responsible for breaking the link between itself, and its process 
object. If the thread object is the last object of its process object then it must guarantee the removal 
of the process object. This occurs as follows: 

• The thread object is de-linked from the p_thread_queue_hd in the process object pointed to by 
tyrocessyointer. 

• If the p _thread_count field is decremented to zero by this action, then the process object is 
removed by calling e$remove_objecCidO specifying the object ID of the process object (p_obj_id) 
stored in the process object body. 

1.4.3.3 Object Delete Routines 

The object delete routines are called as a result of the objhdr$pointer _count field decrementing to 
zero. This occurs during the third phase of hierarchy collapse as a result of the call to k$terminate_ 
thread() in exec$exiCthread(). 

The function of k$terminate_threadO is to remove the thread from the system. This is accomplished 
by queuing a pointer to the thread object to a queue served by a system thread running e$terminate_ 
thread(). This thread is responsible for dereferencing the thread object which begins the third phase 
of hierarchy collapse. 

Process Structure 1-35 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

Object delete routines always execute in the context of the system thread running e$terminnte_ 
thread(). 

NOTE 

At the time that k$terminnte_thread() is called, the thread object's objhdr$pointer _count 
is 1, and the objhdr$object_id_count is O. 

1.4.3.3.1 User-Object Delete Routine 

The user-object delete routine performs no actions related to hierarchy collapse. 

1.4.3.3.2 Job-Object Delete Routine 

The job-object delete routine simply dereferences its user object by calling e$dereference_object() 
passing it the referenced pointer to the user object stored inj_user -pointer. 

1.4.3.3.3 Process-Object Delete Routine 

The process-object delete routine performs the following actions: 

• If the process has a parent process, its parent process object is dereferenced by calling e$dereference_ 
object(), passing it the referenced pointer to the parent process object stored inp-parent-pointer. 

• The job object is dereferenced by calling e$dereference_object(), passing it the referenced pointer 
to the job object stored in pJob-pointer. 

1.4.3.3.4 Thread-Object Delete Routine 

The thread-object delete routine simply dereferences its process object by calling e$dereference_ 
object(), passing it the referenced pointer to the process object stored in t-process-pointer. 

1.5 Address Space and Execution Threads 

Execution threads exist within a context which includes an address space and processor state. The 
creation and deletion of execution threads involves heavy interactions with the Mica kernel and 
memory management subsystems. This section describes execution thread creation and deletion in 
terms of its interactions with the Mica kernel, executive, and memory management subsystems. 
Interactions with the object architecture are not discussed. 

1.5.1 Creation 

The creation of an execution thread has two distinct paths. 

The first path occurs when an execution thread is being created, an action which requires the cre
ation of both an address space and a processor state. This path is a result of an exec$create_user(), 
an exec$createJob(), or exec$create-process() system service. This path is known as initial thread 
creation. 

The second path occurs when an execution thread is being created within an existing address space. 
The only context that needs to be established is the processor state. This path occurs as a result of 
an exec$create_thread() system service and is known as subsequent thread creation. 

1-36 Process Structure 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

1.5.1.1 Initial Thread Creation 

During initial thread creation, the following actions occur. 

• An address space must be created and initialized. 

• A transition to the new thread's partial context must occur. 

• Both thread- and process-control region address space must be created and initialized. 

• The program image for the new process must be mapped into the process address space. 

• The thread must begin execution at the program image starting address 

1.5.1.1.1 Address Space Creation 

The creation of a Mica address space occurs as a result of a call to e$createyrocess_address_space(). 
Example 1-30 illustrates the interface to this function. 

Example 1-30: Address Space Creation 
PROCEDURE e$create_process_address_space ( 

IN process_control_pte : POINTER mm$pte; 
OUT ptbr : integer; !page table base register 

!++ 

OUT kernel stack_pointer : POINTER anytype; 
) ; 

EXTERNAL; 

Routine description: 

This routine creates the foundation of a process address space. 
Pages are allocated for the segment 1 page table, the segment 2 
page table for the control region, the kernel stack and the 
working set list. 

NO ADDRESSES WITHIN THE ADDRESS SPACE ARE VALID, THIS INCLUDES THE 
KERNEL STACK POINTER WHICH IS RETUrNED. 

Once an address space foundation has been created, k$initialize_thread 
and k$ready_thread are invoked to create the initial thread running 
within this new address space. 

1I.rguments: 

IN process_control_pte - pointer to the process_control_pte in the process 
control block. Upon return the prototype PTE 
referred to by process_control_pte will contain 
the prototype PTE for the segment 1 page table 
page. The PFN database PTP element will contain 
this address (process_control_pte) so it must 
be in non paged system space. 

OUT ptbr - the value to be used for the page table base register 

OUT kernel_stack_pointer - the value to be used for the kernel stack pointer 

Return value: 

none. 

!--

The created address space is only valid in the context of the new thread. The next phase of address 
space creation occurs in the context of the new thread. 

Process Structure 1-37 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

1.5.1.1.2 Execution Thread Creation 

Once the address space for the initial thread is created, the thread must be started in its context. 
This occurs by calls to the the kernel interfaces k$initialize_thread(), and k$ready_threadO. Mter 
the completion of k$ready_thread(), the new thread is eligible to run in its own context, and the 
calling thread considers the thread creation complete. 

The new thread begins execution at e$initiaCthread_startup(). Example 1-31 illustrates the entry 
point for all initial threads. 

Example 1-31: Initial Thread Entry Point 
PROCEDURE e$initial_thread_startup (); 

EXTERNAL; 
!++ 

Routine description: 

The entry point for all initial threads. This routine is responsible for completing an 
execution thread which involves 

o Initializing the threads address space 
o creating and initializing the control region memory pool 
o initializing the pcr and tcr 
o mapping the program image into the new address space 
o starting the thread at the image entry point 

Arguments: 

none 

Return value: 

none 

1.5.1.1.2.1 Address Space Initialization 

The first action performed by e$initiaCthread_startup() is the initialization of the process address 
space. This action makes it possible for the thread to begin taking page faults within its address space. 
Address space initialization is accomplished by calling e$initiaZize_address_spaceO. Example 1-32 
illustrates the interface to e$initialize_address_space( J. 

Example 1-32: Address Space Initialization 
PROCEDURE e$initialize_address_space ( 

!++ 

IN working_set_extent: e$t_resource_counter; 
IN working_set_quota: e$t_resource_counter; 
) ; 

EXTERNAL; 

Routine description: 

This routine initializes an address space which was previously 
created by e$create_process_address_space. 

It must now be running in the non paged portion of the exec 
with the newly created address space mapped. No page faults 
may be taken until this routine has been invoked. 

This routine will create the working set list, mark the control 
region, kernel stack, and working set list as locked in the 
working set. 

The arguments are derived from the process control block 
qnl working set limit and qnl working set extent fields of 
pcb=usage_a~d_limits structur~. --

Arguments: 

IN working_set_extent - maximum size of the working set. 
IN "\'Iorking_set_quota - current size of the working set. 

Example 1-32 Cont'd. on next page 

1-38 Process Structure 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

Example 1-32 (Cont.): Address Space Initialization 
! 

Return value: 

none - it had better work. 

!--

1.5.1.1.2.2 Control Region Initialization 

Once the process address space has been initialized, the control region memory pool must be ini
tialized. The control region is at a fixed virtual address within the process's address space and is 
user read-only, kernel read/write. The standard Mica pool header for pool type e$kyooCcontrol is 
initialized and fed by calling e$initialize_control_regionO. 

Once the control region pool has been created, a process control region and thread control region are 
allocated from the control region pool. The control regions are then initialized by copying dummy 
control regions allocated from non-paged pool to the real control regions. Finally, the thread control 
region is linked to its thread control block, and the process control region is linked to the process 
control block and the thread control region. 

1.5.1.1.2.3 Program Image Mapping 

The program image to be executed must be mapped into the newly created process address space. 
This occurs by transitioning into user-mode at the entry point e$program_image_startupO. 

The function of e$program_image_startup() is to map the program image and cause it to begin execu
tion at the image start address. To map the image, the function exec$map_image() is caned passing 
it the image name stored in its process control region. Once mapped, the thread startup address 
stored in the thread control region is set using exec$set_thread_information(). The image is then 
called. The initial thread parameters may be found in the thread control region. 

1.5.1.2 Subsequent Thread Creation 

During subsequent thread creation the following must occur. 

• Creation of a kernel mode and user mode stack for the thread. 

• Creation and initialization of the thread control region. 

• Transition to the new thread's context at the proper start address. 

1.5.1.2.1 Thread Stack Creation 

The creation of a kernel and user mode stack for the new thread occurs as a result of calling e$create_ 
thread_stacks 0 . 

1.5.1.2.2 Control Region Initialization 

A thread control region is allocated for the new thread from the control region pool of the calling 
thread's process. The thread control region is then initialized with the values obtained from the 
exec$create_thread() parameters. The thread control region is then linked to the thread control block 
and is set to point to the proper process control region. 

Process Structure 1-39 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

1.5.1.2.3 Transition to new Thread 

The final steps in subsequent thread creation require that the thread be started in its context. This 
is achieved by making calls to k$initiaZize_thread(), and k$ready_thread(). Mter the completion of 
the call to k$ready_thread(), the new thread is eligible to be run in its own context, and the calling 
thread assumes that the thread creation has completed. 

The new thread begins execution at e$subsequenCthread_startup(). This entry point simply forces a 
transition to user-mode at the address specified by the thread control blocks tcr _start_addressJield. 

1.5.2 Deletion 

Address space and execution thread deletion happen as part of the process object and thread object 
delete routines. 

1.5.2.1 Execution Thread Deletion 

Execution thread deletion happens in two phases. The first phase is executed within the context 
of the terminating thread and is responsible for thread resource cleanup. The second phase occurs 
outside the context of the calling thread and is responsible for the deletion of the kernel stack of the 
terminating thread. 

NOTE 

The context restrictions are enforced by the lack of alias object IDs on components 
of the UJPT hierarchy, and through restrictions on the removal of objects within 
the hierarchy. 

1.5.2.1.1 In-Context Thread Deletion 

In-context thread deletion involves returning to the system all resources owned by the thread. This 
may include AST control blocks, IO request packets, and other outstanding system resources. All 
mutexes owned by the thread must be dealt with, and the thread control region must be returned 
to the control region pool of its process. These actions occur as part of the thread object's remove 
routine. 

The second phase of execution thread deletion is then started by calling the kernel primitive 
k$terminate _thread( ) . 

1.5.2.1.2 Out of Context Thread Deletion 

The call to k$terminate_thread() is responsible for queuing a terminate-thread descriptor on a queue 
served by the system thread responsible for out-of-context thread deletion. The server causes the 
thread object's delete routine to be executed by dereferencing the pointer to the thread object. 

The thread object delete routine deletes the kernel stack of the terminating thread by calling e$delete_ 
thread_stack(). 

At the end of out-of-context thread deletion, all data structures that represent the thread are returned 
to the system. This includes the entire thread object and thread control block. 

NOTE 

The thread control region is deallocated during in context thread deletion because 
it must refer to the thread's process address space. 

1-40 Process Structure 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

1.5.2.2 Address Space Deletion 

If the terminating execution thread is the last thread of its process, then the address space of the 
process must also be deleted. This occurs in the process delete routine. 

NOTE 

Address space, as used above, means address-space management data structures 
such as page tables, working set lists, and the last thread's kernel stack. 

The user-mode address space is deleted mostly as a result of removing the process 
level container directory, since user-mode address space is represented as section 
objects. 

The process delete routine calls e$deleteyrocess_address_space(), specifying the page table base reg
ister value from process object body. 

1.6 Exit Status 

The exit status mechanism in the Mica system supports the ability to obtain the exit status from a 
process and, in some cases, from an individual thread within a process. 

The exit status mechanism is coordinated through the exit status object. 

1.6.1 Object Structure 

The exit status object contains information describing the termination state of the object it is bound 
to. Example 1-33 illustrates the layout of the exit status object. 

Example 1-33: Exit Status Object Structure 

! Exit Status Object Body 

e$t_exit_status_body: RECORD 
es exit status summary: eSt exit status summary; 
es=exit=status=event: k$dispatcher_obje~t(event); 

END RECORD; 

! Exit Status Surrmary 

e$t_exit_status_summary: RECORD 
status_valid: boolean; 
status_bound_object_type: e$t_status_object_types; 
status_bound_object_id: e$t_Ob]eCL id; 
status value: eSt_exit status; 

END RECORD; 

1.6.2 Functional Interface 

Exit Status Summary 
! Signaled on status summary valid 

! True if status summary valid 
Process or Thread 
Object ID of object reporting status 
Exit Status 

The Mica executive provides interfaces to create and obtain information from exit status objects. 

Process Structure 1-41 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

1.6.2.1 Exit Status Object Creation 

Exit status objects are created by the exec$create_exiLstatusO system service. Exit status objects are 
created in a "invalid" state and are not bound to either a process or a thread object. The object binding 
occurs during thread and process object creation. The "validation" of exit status objects occurs during 
process and thread deletion. Example 1-34 illustrates the interface to exec$create_exiLstatusO. 

Example 1-34: Exit Status Object Creation System Interface 
PROCEDURE exec$create_exit_status ( 

!++ 

OUT object_id: exec$t_object_id; 
IN container: exec$t_object_id = DEF1WLT; 
IN name: exec$t_object_name = DEFAULT; 
IN acl: exec$t_acl = DEFAULT; 
) PBTUBRS status; 
EXTERNAL; 

Routine description: 

Create an invalid exit status object 

Arguments: 

object id 
container 
name 
acl 

The object ID of the created exit status object 
Object cOntainer for exit status object 
Name of exit status object 
ACL to place on exit status object 

Return value: 

TBS 

1.6.2.2 Get Exit Status Information 

The exec$get_exit_status_information( J system service provides a mechanism for obtaining the infor
mation stored in an exit status object. Example 1-35 illustrates the interface to exec$geLexit_status_ 
information( J. 

Example 1-35: Get Exit Status Information System Interface 
PROCEDURE exec$get exit status information ( 

IN obj~ct_id: exec$t_object_id; 

!++ 

OUT status_summary: e$t_status_summary; 
) PBTURNS status; 
EXTERN.iili ; 

Routine description: 

Return the es_exit_status_sununary field from the exit status object 
specified by object_id 

Arguments: 

object_id object ID of exit status object 
status_summary es_exit_status_summary field from specified exit status object 

Return value: 

TBS 

!--

1.6.3 Usage 

Exit status objects are used to report the exit status of exiting processes and exiting threads. 

Each thread in the Mica system may optionally be bound to an exit status object. The binding occurs 
during the creation of the thread. 

1-42 Process Structure 



Digital Equipment Corporation - Con.fidential and Proprietary 
For Internal Use Only 

Each process in the Mica system is bound to an exit status object. The binding occurs during the 
creation of the process. 

Exit status objects are "invalid" at object creation time and remain invalid until the object that they 
are bound to is removed from the system. 

1.6.3.1 Thread Exit Status Object Usage 

If the thread_status parameter is specified during the direct or indirect creation of a thread, then the 
thread is bound to the specified exit status object. The exit status object is made valid during the 
object remove routine for an exiting thread. This occurs as follows: 

• Set the tcb_exiCstatus_value field to the value stored in the thread control block tcb_exiCstatus_ 
value field. 

• Set to true the status_valid field in the existing status object bound to the exiting thread. 

• Set the status_value field to the value stored in the thread control block tcb_exiCstatus_value 
field. 

• Set to true the status_valid field in the exit status object bound to the exiting threads process. 

• Signal the es_exiCstatus_event in the exit status object bound to the exiting thread. 

If the exiting thread is not bound to an exit status object, then the following occurs. 

• Set the status_value field to the value stored in the thread control block tcb_exiCstatus_value 
field. 

• Set to true the status_valid field in the exit status object bound to the exiting threads process. 

1.6.3.2 Process Exit Status Object Usage 

Each process in the Mica system is bound to an exit status object. During the object remove routine 
for a process object, the process exit status object is signaled by setting the es_exit_status_event in 
the exit status object bound to the exiting process. The status_valid and status_value fields were 
previously set during the individual thread exits for all of the processes threads. 

1.7 ProcessfThread Startup/Rundown Summary 

This section is an attempt to summarize the steps that occur during the creation, execution, and 
termination of a thread in the Mica system. A very simple hierarchy will be studied in this description. 
The hierarchy consists of user.O, job.O, process.O, and thread.O from Figure 1-1. 

1.7.1 Startup Summary 

The sample hierarchy is created as a result of the job controller calling exec$create_user(). The 
following steps occur as a result of this call. 

1. A user object named user.O is created. The user control block is initialized from the user_record 
parameter. The user object body is initialized to contain an empty job list and a job count of 
zero. 

2. A job object named job.O is created. The job control block is initialized by allocating q-per .Job_ 
limits quota from user.O, and assigning it tojcb_usage_and_limits. Ajob level container directory 
is created and optionally populated based on the existence ofthejob_initiaCcontainer parameter. 
The job object body is initialized to contain an empty process list and a process count of zero. 
The j_user -pointer is set to be a referenced pointer to user.O, and job.O is linked to user.O's job 
list. User.O's job count is incremented to 1. 

Process Structure 1-43 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

3. A process object named process.O is created. The process control block is initialized by allocating 
q-per -process_limits quota from user.O and assigning it to pcb_usage_and_limits. A security pro
file for the process is obtained from user.O. The accounting structure in the process control block 
is initialized to zero(). A process level container directory is created and optionally populated 
based on the existence of the process-public_container and processyrivate_container parameters. 
The pcb_condir _address and pcb_condir _mutex vectors are initialized. The process object body 
is initialized to contain an empty thread and sub-process list. The thread count and sub-process 
count is set to zero. The pJob-pointer is set to be a referenced pointer to job.O, and process.O is 
linked to job.O's process list. Job.O's process count is incremented to 1. 

4. A thread object named thread.O is created. The thread control block is initialized by clearing all 
events and setting the tcb_irp_list_head to empty. The tcbycbyointer field is initialized to point 
to process.O's process control block. If specified in the thread_status parameter, the exit status 
object for the thread is referenced and stored in tcb_exiCstatusytr. The tcb_exiCstatus_value is 
cleared. The thread object body is initialized by setting the t-process-pointer to be a referenced 
pointer to process.O, and thread.O is linked to process.O's thread list. Process.O's thread count is 
incremented to 1. 

5. An address space is created for process.O by calling e$create-process_address_space(). This call 
initializes portions of the tcb_thread_context, and the pcbytbr. 

6. The kernel context for the thread is initialized by calling k$initialize_thread(). 

7. The thread is made eligible to run in kernel mode at the e$initiaCthread_startup( J entry point 
by calling k$ready_thread(). At this point, the original caller of exec$create_user() is returned to 
with a "successful" user creation. Failures in thread startup after this point occur in the context 
of the created thread and are treated as an abnormal termination status of the thread. 

8. The first action performed by the thread at e$initiaCthread_startup() is a call to c$initialize_ 
address_space(). 

9. Once the address space has been initialized, the thread initializes the control region by calling 
e$initialize_controCregion(). The control region appears as a user-mode read-only, kernel-mode 
read/write portion of process.O's address space. A buddy system memory pool is created and 
initialized in the control region as a result of calling e$initialize_controCregion( J. 

10. The process control region is allocated by calling e$pooCallocate() specifying a pool type of e$k_ 
pool._controCregion. The pcbycr _base field of process.O's process control block is set to point to 
the allocated per, and the pcr is initialized by portions of the initial_thread-parameters param
eter, and the object ID of process.O. 

11. The thread control region is allocated by calling e$pooCallocate() specifying a pool type of e$k_ 
pool_control_region. The tcb_tcr _base field of thread.O's thread control block is set to point to the 
allocated tcr, and the tcr is initialized by portions of the initiaCthreadyarameters parameter, 
the object ID of thread.O, the address of process.O's pcr, and various attributes of the thread 
specific address space. 

12. The program image specified by the process_record field of the initiaCthread-parameters param
eter is mapped into process.O's address space by transitioning into user-mode at e$program_ 
image_startup( ). 

13. Once at e$program_image_startup(), the thread issues a call to exec$map_image() and then sets 
the thread start address in the thread control region to the value returned by exec$map_imageO 
by calling exec$seCthread_informationO. 

14. The thread entry point stored in tcr _starCaddress is "called" and is passed the thread parameters 
stored in itp_threadyarameter _list. 

1-44 Process Structure 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

1.7.1.1 Additional Thread Startup Summary 

This section describes the startup procedures for subsequent threads of a process. Assuming the 
hierarchy of the previous section, the following occurs when thread.O makes a call to exec$create_ 
thread() creating thread.l. 

1. A thread object named thread. 1 is created. The thread control block is initialized by clearing all 
events and setting the tcb_irp_list_head to empty. The tcbycbyointer field is initialized to point 
to process.O's process control block. If specified in the thread_status parameter, the exit status 
object for the thread is referenced and stored in tcb_exit_statusytr. The tcb_exiCstatus_value is 
cleared. The thread object body is initialized by setting the tyrocessyointer to be a referenced 
pointer to process.O, and thread.l is linked to process.O's thread list. Process.O's thread count is 
incremented to 2. 

2. A partial address space is created for thread.l calling e$create_thread_stacks(). This call initial
izes portions of the tcb_thread_context. 

3. The thread control region is allocated by calling e$pooCallocate() specifying a pool type of e$k_ 
pool_controCregion. The tcb_tcr _base field of thread.l's thread control block is set to point to the 
allocated tcr, and the TCR is initialized by portions of the initiaCthreadyarameters parameter, 
the object ID of thread.l, the address of process.O's pcr, and various attributes of the thread 
specific address space. 

4. The thread start address in thread.l's TCR is initialized to the value specified in the thread_ 
procedure parameter. 

S. The kernel context for the thread is initialized by calling k$initialize_thread(). 

6. The thread is made eligible to run in kernel mode at the e$subsequent_thread_startup() entry 
point by calling k$ready_threadO. At this point, the caller of exec$create_thread() is returned 
to with an "successful" thread creation. Failures in thread startup after this point occur in the 
context of the created thread and are treated as an abnormal termination status of the thread. 

7. Once at e$subsequenCthread_startup(), the thread entry point stored in tcr _start_address is 
"called" and is passed the thread parameters stored in thread.Jlarameter _list. 

1.7.2 Rundown Summary 

At some point in the threads lifetime it will either voluntarily exit by calling exec$exit_thread() or 
be forcibly exited by calling exec$force_exit_thread() on itself or having some other thread issue an 
exec$force_exiCthread() specifying that thread. 

For the following rundown example, it is assumed that thread.99 issues an exec$force_exiCthread() 
specifying the object ID of thread.O. The hierarchy consists of user.O, job.O, process.O, and thread.O. 

1. The Mica executive is entered at e$force_exit_threadO. The force-exit in progress flag is set in 
the thread object body of thread.O. The purpose of this flag is to prevent the creation of new exit 
handlers for the thread and to prohibit the thread from creating new threads, processes, and 
jobs. 

2. The next step is to cause thread.O to begin execution in "trusted" user-mode at the e$in_contexC 
force_exit() executive entry point. At this point the force-exit of thread. 0 is complete with respect 
to thread.99. The following steps are then taken to force thread.O into taking an active role in 
its exit. This occurs as follows: 

• An elapsed timer is set to expire in a TBD period. If the timer expires, all of these steps 
are repeated, in addition to enabling user mode ASTs, setting the ast queue flush flag in the 
thread object body, and a call to k${lush_ast_queue() is issued. 

• A user-mode AST is queued to thread.O. The target procedure of the AST is e$in_contexC 
force_exit() . 

3. Once at e$in_contextJorce_exit(), thread.O unwinds its stack by calling e$unwind(). 

Process Structure 1-45 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

4. Once the stack has been unwound and all unwind handlers have been executed, thread.O executes 
a call to exec$exit_thread( J. 

5. The code at exec$exiCthread() assigns the parameter exit_status to the tcb _exiCstatus_value 
field of thread.O's thread control block. If thread.O was created with an exit status object, the 
exit_status is also assigned to tcb_exiCstatus-ptr/\.es_exiCstatus_sumary.status_value. The value 
exit_status is then assigned to pcb_exiCstatus-ptr/\.es_exiCstatus_sumary.status_value in pro
cess.O's exit status object. The force-exit in-progress flag for thread.O is examined. Since the flag 
was set, the elapsed timer set up in e$force_exiCthread() is dismissed. 

NOTE 

If the timer in the example above had expired., that would indicate that the user
mode AST was not delivered, or that there was an exceptional delay in making 
progress through the stack unwind. In any case, timer expiration causes a retry 
w'hich will eventually be successful. 

6. Thread.O is then allowed to execute each one of its exit handlers. Since the thread is being 
force-exited, its exit handlers are assigned a small CPU time quota. When the quota expires, a 
user-mode AST is delivered to the thread that causes it to execute an exec$exiCthread(). The 
method for delivering the user-mode AST is similar to the technique used to cause the thread 
to execute at e$in_contextJorce_exit(), only the AST procedure target is e$exiChandler _expire(). 
The function of e$exit_handler _expire() is to simply call exec$exiCthread(). 

7. Thread.O issues a call to e$remove_object_id( J specifying its object id Ct_obj_id. This action causes 
thread.O's object remove routine to be called. 

8. Thread.O's object remove routine is entered. It performs the following steps. 

• All outstanding resources that require cleanup by the thread are processed. This includes 
the dismissal of all outstanding 1/0 by callin e$cancel_io_by_thread(J, the dismissal of out
standing ASTs, and ... (TBS). 

• The thread control region is returned to the control region pool of process.O by calling e$pooC 
deallocate() . 

• The thread object is de-linked from the p_thread_queue_hd of process.O. 

• Since the above step causes the p_thread_count field to decrement to zero, the process.O 
object is removed by calling e$remove_object_id() specifying the object ID of process.O. 

• If thread.O was created with an exit status object, then the es_exit_status_event in the object 
is "set". The exit status object is then dereferenced by calling e$dereference_object(). 

9. The object remove routine for process.O is entered as a result of thread.O's object remove routine 
being entered. The following occurs during process.O's object remove routine. 

• 
• 

• 

1-46 

The job level container directory whose address is stored inpcb_condir _array is dereferenced. 

The process level container directory is removed from the system by calling e$remove_objecC 
id() , and specifying pcb-process_condir _id 

The process control region is returned to its control region pool by calling e$pooCdeallocate(). 

The process object is de-linked from the j-process_queue_hd of job.O. 

Since the above step causes the j-process_count field to decrement to zero, the job.O object 
is removed by calling e$remove_object_id() specifying the object ID of job.O. 

The es_exiCstatus_event in process.O's exit status object is "set". The exit status object is 
then dereferenced by calling e$dereference_object(). 

Process Structure 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

10. The object remove routine for job.O is entered as a result of process.O's object remove routine 
being entered. Th=e following occurs during job.O's object remove routine. 

• The job level container directory is removed from the system by calling e$remove_object_id(), 
and specifying jcbJob_condir _id. 

• The job object is de-linked from the uJob_queue_hd of user.O. 

• Since the above step causes the uJob_count field to decrement to zero, the user9.0 object is 
removed by calling e$remove_object_id() specifying the object ID of user.O. 

11. The object remove routine for user.O is entered as a result of job.O's object remove routine being 
entered. The routine performs no significant actions 

12. The original call in exec$exiCthread() which removed the object ID of thread.O returns. The 
next step is a call to k$terminate_thread(). The purpose of k$terminate_thread() is to remove 
the specified thread (thread.O) from execution within the Mica system. Once all of the kernel 
related activities are complete, a pointer to thread.O is queued to a special system thread known 
as the thread eater. The thread eater executes the loop at e$terminate_thread(). 

13. The function of e$terminate_thread() is to dequeue the thread's arriving on its queue, and to 
dereference the thread objects. When the thread eater processes thread.O, it calls e$dereference_ 
object() specifying thread.O. The delete routine for thread.O is entered. It is important to note 
that the delete routine for thread.O is entered in the context of the thread eater. 

14. The delete routine for thread.O is entered. It performs the following actions. 

• Thread level accounting information is rolled up to the thread's process. 

• The thread specific address space (user-mode, and kernel-mode stacks) of thread.O are 
returned to the address space of process.O by calling e$delete_thread_stacks(). 

• The referenced pointer to process.O is dereferenced. This causes the delete routine for pro
cess.O to be executed. 

15. The delete routine for process.O is entered. It performs the following actions. 

• An accounting record is written to the TBD message function processor. The information 
for the accounting record is obtained from the pcb_accounting field from process.O's process 
control block. 

• All resources accounted for in process.O's pcb_usage_and_limits are returned to job.O's jcb_ 
usage_and_limits using the rules of deductable and non-deductable resource arithmetic. 

• The address space of process.O is returned to the system by calling e$deleteyrocess_address_ 
space(). 

• The referenced pointer to job.O is dereferenced. This causes the delete routine for job.O to 
be executed. 

16. The delete routine for job.O is entered. It performs the following actions. 

• All resources accounted for in job.O's jcb_usage_and_limits are returned to user.O's ucb_ 
quotas.q_usage_and_limits using the rules of deductable and non-deductable resource arith
metic. 

• The referenced pointer to user.O is dereferenced. This causes the delete routine for user.O to 
be executed. 

17. The delete routine for user.O is entered. It performs no significant actions. 

18. Once the call frame has returned from the original call to e$dereference_object() issued by the 
thread eater on thread.O, the UJPT hierarchy consisting of user.O, job, process.O, and thread.O is 
removed from the system, and the thread eater goes back to its queue of threads to be processed. 

Process Structure 1-47 



Digital Equipment Corporation M Confidential and Proprietary 
For Internal Use Only 

1.8 System Th reads 

This section describes the interface for creating system threads. It also describes the differences 
between system threads and normal threads, and the special restrictions placed on system threads. 

1.8.1 System Thread Creation 

The e$create_system_thread() executive interface creates a system thread. The system thread exe
cutes within the UJPT hierarchy of the system. The address space of the system thread is that of 
the initial system process. Example 1-36 illustrates the interface to e$create_system_threadO. 

Example 1-36: System Thread Creation Executive Interface 
PROCEDURE exec$create system thread ( 

OUT object id: eSt obiect id; 

!++ 

IN contai;:;-er: e$t:=objec<)d = DEFAULT; 
IN name: e$t_object_name = DEFAULT; 
IN acl: e$t_acl = DEFAULT; 

IN thread_procedure: e$t_thread_entry_point; 
IN thread_record: e$t_thread_record = DEFAULT; 
IN thread_allocation_list: e$t_allocation_list = DEFAULT; 
IN thread_ imllledia te _parameterl: eSt _thread_par ameter DEF}WLT; 
IN thread_immediate_parameter2: e$t_thread_parameter = DEFAULT; 
IN thread_status: e$t_object_id = DEFAULT; 
) P£TURNS status; 
EXTERN_~; 

Routine description: 

Create a System thread object as specified by the parameters. 

Arguments: 

object id 
container 
name 
acl 
thread record 
thread allocation list - -

thread immediate parameterl 
threact:=immediate:=parameter2 
thread_procedure 
thread status 

Return value: 

TBS 

!--

Object ID of the resulting process object 
Object container for thread object (ignored) 
Name of thread object 
ACL to place on thread object 
Attributes of the thread being created 
Objects to be allocated to the thread object. If not present then 
no objects are allocated to the thread 
Immediate parameter passed to thread through TCR 
Immediate parameter passed to thread through TCR 
pointer to thread entry point entry descriptor 
Exit status object to be bound to the thread. If not present 
then the thread is created without an exit status object 

1.8.2 System Thread Restrictions 

The important differences between system threads and normal threads are as follows: 

• System threads may not execute in user-mode. 

• System threads are incapable of processing or executing in the context of user-mode ASTs. Algo
rithms such as the one in exec$signal_thread() that employ user-mode ASTs either understand 
system threads and modify their algorithms or don't support the functions on system threads. 

• The thread control region for system threads exists in paged pool. 

• There is no thread environment block for system threads. 

• System threads execute within the address space of the system. 

• There are no provisions for passing block data to a system thread through the tcr _block_data 
field in a system thread's TCR. 

1-48 Process Structure 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

• The exec$force_exiCthread() system service is not supported for system threads. 

Process Structure 1-49 



Digital Equipment Corporation - Confidential and Proprietary 

For Internal Use Only 

Mica Working. Design Document 
Record Management Services 

Revision 0.3 

7-January-1988 

Issued by: 

Su manta Chatterjee 



TABLE OF CONTENTS 

CHAPTER 1 RECORD MANAGEMENT SERVICES . . . . . . . . . . . . . . . . . . . . 1-1 

1.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1 
1.1.1 Design Philosophy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1 
1.1.2 Goals ..... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2 
1.1.3 RMS Functionality ......................................... 1-2 

1.1.4 Functions Not Available . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3 
1.1.5 Interface to Mica File Sytem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-4 

1.2 Devices Supported. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-6 
1.2.1 Disk Devices ............................................. 1-6 

1.2.1.1 File Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-6 
1.2.1.2 Filename Creation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-7 
1.2.1.3 File Allocation ......................................... 1-7 
1.2.1.4 File Sharing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-7 
1.2.1.5 Reliability Options. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-8 
1.2.1.6 Runtime File Disposition Options. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-8 
1.2.1.7 Record Retrieval Options .................................. 1-8 
1.2.1.8 Record Insertion Options .................................. 1-8 

1.2.2 Magnetic Tape Devices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-8 
1.2.3 Terminal Devices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-9 
1.2.4 Mailboxes ............................................... 1-9 

1.3 RMS Programming Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-10 
1.3.1 Create Service ........................................... , 1-11 

1.3.1.1 File Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-12 
1.3.1.2 Record Definition ....................................... 1-13 

1.3.1.2.1 File Organization .................................... 1-13 
1.3.1.2.2 Record Format ..................................... , 1-13 
1.3.1.2.3 Record Attributes .................................... 1-14 
1.3.1.2.4 Maximum Record Size ................................ , 1-14 
1.3.1.2.5 VFC Control Head Size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-14 
1.3.1.2.6 Longest Record Length. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-14 

1.3.1.3 Access Request ........................................ , 1-14 
1.3.1.4 Create Input Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-15 

1.3.1.4.1 Allocation Options ................................... , 1-15 
1.3.1.4.2 File Protection Options. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-17 
1.3.1.4.3 Filename Creation Options ............................. , 1-18 
1.3.1.4.4 Run-time Access Options ............................... , 1-19 
1.3.1.4.5 File Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-19 
1.3.1.4.6 Set Expiration Date and Time ........................... , 1-19 

1.3.1.5 File Information ....................................... , 1-19 
1.3.1.6 Output File Specification .................................. 1-20 
1.3.1.7 Output Quick File Reference ............................... , 1-20 

iii 



iv 

1.3.1.8 File Handle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-20 
1.3.2 Open Service ............................................ , 1-21 

1.3.2.1 File Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-21 
1.3.2.2 Access Request ........................................ , 1-21 
1.3.2.3 Open Input Options. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-21 
1.3.2.4 File Information ....................................... , 1-22 
1.3.2.5 Resultant File. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-22 

1.3.2.6 Output Quick File Reference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-22 
1.3.2.7 File Handle .......................................... , 1-22 

1.3.3 Close Service ............................................ , 1-22 
1.3.3.1 File Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-22 
1.3.3.2 Input Options. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-22 

1.3.3.2.1 Close Disposition Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-23 
1.3.3.2.2 Close Protection Options ............................... , 1-23 

1.3.4 Data Retrieval and Output Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-23 
1.3.5 Get Sequential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-24 

1.3.5.1 File Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-25 
1.3.5.2 Record Position ........................................ , 1-25 
1.3.5.3 User Input Buffer ...................................... , 1-25 
1.3.5.4 Move Mode ........................................... , 1-25 
1.3.5.5 Input Options ......................................... , 1-25 

1.3.5.5.1 Find Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-25 
1.3.5.5.2 Record Header Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-25 
1.3.5.5.3 Basic Terminal Options. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-26 
1.3.5.5.4 Key Reference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-26 
1.3.5.5.5 Record Locking Options ............................... , 1-26 
1.3.5.5.6 Indexed File Options ................................. , 1-26 

1.3.5.6 Current Record Pointer ................................... 1-26 
1.3.5.7 Next Record Position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-27 
1.3.5.8 Read Data Buffer ....................................... 1-27 

1.3.6 Get Random by RFA ....................................... , 1-28 
1.3.7 Get Random by Key ........................................ , 1-28 
1.3.8 Put Services. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-30 
1.3.9 Put Sequential ........................................... , 1-30 

1.3.9.1 File Identification ...................................... , 1-30 
1.3.9.2 User Output Buffer ..................................... , 1-30 
1.3.9.3 Record Position. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-30 
1.3.9.4 Input Options. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-31 

1.3.9.4.1 Put Disposition Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-31 
1.3.9.4.2 Record Header Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-31 
1.3.9.4.3 Basic Terminal Options. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-31 

1.3.9.5 Current Record Pointer ................................... 1-32 
1.3.9.6 Next Record Position .................................... , 1-32 



1.3.10 Put Key. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-32 
1.3.10.1 Relative Record Number. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-32 
1.3.10.2 Input Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-32 

1.3.10.3 Current Record Pointer .................................. , 1-32 
1.3.10.4 Next Record Position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-32 

1.3.11 Parse Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-33 
1.3.11.1 File Specification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-33 
1.3.11.2 Parse Options ........................................ , 1-34 
1.3.11.3 Device Characteristics ................................... 1-34 
1.3.11.4 Wild Card Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-34 
1.3.11.5 Expanded File Specification ............................... , 1-34 
1.3.11.6 Quick File Reference .................................... 1-34 

1.3.11.7 File Name Status " . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-34 
1.3.12 Search Service ........................................... 1-35 

1.3.12.1 Wildcard Context. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-35 
1.3.12.2 File Name Status. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-35 
1.3.12.3 Matched Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-35 

1.3.13 Display Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-36 
1.3.13.1 File Identification ...................................... 1-36 
1.3.13.2 Output Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-36 

1.3.13.2.1 Allocation Options .................................. , 1-36 

1.3.13.2.2 Protection Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-36 
1.3.13.2.3 Date and Time Options. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-37 
1.3.13.2.4 File Header Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-39 

1.3.13.3 Quick File Reference .................................... 1-40 
1.3.14 Erase Service ........................................... , 1-40 

1.3.14.1 File Specification ...................................... , 1-40 
1.3.14.2 Erased File Specification ................................. , 1-40 

1.3.15 Flush Service ........................................... , 1-40 

1.3.15.1 File Identification ...................................... 1-40 
1.3.16 Free and Release Services. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-41 
1.3.17 Rewind Service .......................................... , 1-41 

1.3.17.1 File Identification ...................................... 1-41 
1.3.17.2 Key Reference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-41 
1.3.17.3 Next Record Position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-41 

1.3.18 Truncate Service ......................................... , 1-41 
1.3.18.1 File Identifier ........................................ , 1-41 

1.3.19 Update Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-42 
1.3.19.1 File Identification ...................................... 1-42 
1.3.19.2 Record Position ....................................... , 1-42 
1.3.19.3 User Output Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-42 
1.3.19.4 Input Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-42 

1.3.19.4.1 Record Header Buffer ................................ , 1-42 
1.3.19.4.2 Record Locking Options. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-42 

1.3.19.5 Next Record Position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-42 

1.4 Algorithms for File Management. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-43 

v 



1.4.1 Sample 1/0 Request Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-43 
1.4.2 Create Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-44 
1.4.3 Open Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-45 
1.4.4 Close Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-46 
1.4.5 Parse Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-47 

1.4.5.1 Miscellaneous Notes on File Name Parsing ...................... 1-49 
1.4.6 Search Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-49 
1.4.7 Data Retriveal Services .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-50 
1.4.8 Data Output Services. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-52 

1.4.8.1 Sequential Record Output. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-52 
1.4.9 110s Through Client Context Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-53 

APPENDIX A PRELIMINARY TEST PLANS. . . . . . . . . . . . . . . . . . . . . . . . .. A-I 

APPENDIX 8 OUTSTANDING ISSUES. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. B-1 

vi 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

Revision History 

Date 

i0-Dec-198? 

04-Jan-1988 

06-Jan-1988 

iv 

Revision 
Number 

.1 

.2 

.3 

Author 

S. Chatterjee 

S. Chatterjee 

S. Chatterjee 

Summary of Changes 

Initial Draft 

1. Major restructure of interface parameters 

2. Incorporated comments from the primary re
viewers 

1. Minor editing changes 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

CHAPTER 1 

RECORD MANAGEMENT SERVICES 

1.1 Introduction 

Mica RMS is a set of generalized library routines that assist user programs in processing and man
aging files and their contents. The interfaces provided by Mica RMS routines are used uniformly to 
access files within the defined client-server environment. This document describes the framework for 
Mica RMS implementation in the following sections: 

• This introduction briefly discusses the design philosophy, lists the goals of the project, states 
the functions provided, and lists the VMS RMS functions omitted from Mica RMS. The section 
concludes with a short discussion on Mica file service support that is used by RMS. 

• The second section defines the functions that are available on each supported device. 

• The third section describes the Mica RMS programming interfaces. 

• The fourth section outlines the overall request flow. Algorithms used in implementing a few 
select Mica RMS functions are also included in this section. 

• Appendix A outlines a preliminary plan for testing RMS software. 

1.1.1 Design Philosophy 

Mica RMS, together with the applications interface architecture (AIA), provides the highest level user 
interface in the Mica system. The purpose of Mica RMS is to provide a convenient interface to process 
and manage files and their contents. Much of the RMS file processing capabilities are inherited 
from the unlerlying infrastructure of the Mica 1/0 subsystem. However, record-level management is 
provided only through RMS. VMS RMS replicates nlany of the functions that are available through 
the 1/0 subsystem primarily as a user convenience. In Mica, the I/O architecture provides a straight
forward interface to user-mode processes, thereby eliminating the requirement of replicating many 
of the functions at the RMS level. However, user convenience is not forgotton. Thus, for example, 
RMS provides ways for users to create or delete files. 

Mica RMS services operate in user mode. Many of the design decisions reflect this. A few results of 
operating in user mode are listed below: 

• RMS is not notified if the user program exits abnormally. As a consequence, the user buffers 
allocated by RMS are flushed by exit handlers. 

• RMS procedures are directly callable from the user program, without requiring a context switch. 

• The data structures maintained by RMS for its users can be corrupted by an erring user program. 

• RMS runs in the user's process context, within the user's address space. RMS allocates buffers 
for the user by calling a system function. Thus, much of the information maintained by VMS 
RMS in the process 1/0 (PIO) segment are no longer required. 

Record Management Services 1-1 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

Software is a piece of text that specifies computations. A piece of software that provides nontrivial 
functions is best constructed in component pieces that interact with each other by way of well defined 
interfaces. The philosophy is to have as general an interface as possible. This guiding principle is 
used in designing not only the external interfaces, but also in interactions between various internal 
procedures and modules. 

1.1.2 Goals 

Mica RMS is designed to meet several goals: 

• Ease of use--This goal is reflected by the user interface design. Mica RMS services are accessed 
through procedure calls. Each service procedure has a few (less than a dozen) parameters, 
many of which are optional and default to often-used values. The parameters appearing in the 
interface are the commonly-used file attributes, the required buffer pointers, and the outputs 
from the service. For infrequently used input options, the services provide an input parameter, 
which is an item list. One advantage of using an item list is that the options can be enhanced 
without affecting the user interface. 

• Fast response time--The data retrieval services are designed to minimize run-time decision 
making. 

• Device independence--Mica RMS, like VMS RMS, offers device-independent file handling. 

• Modularity-The RMS implementation supports easy addition of enhancements. easily added. 
For example, supporting a new device type or file organization can be done in a fairly straight
forward manner. Implementation avoids exception code as much as possible. 

1.1.3 RMS Functionality 

Mica RMS provides user programs with the capability to do the following: 

• Parse and wildcard file names. 

• Specify multiple file organizations (sequential, indexed or relative); at FRS, only sequential files 
are supported. 

• Specify multiple record formats (fixed, variable, VFC, stream, streamCR, streamLF, and unde
fined). 

• Specify multiple ways to access records (delete, get, put, update, and truncate). 

• Specify multiple ways to share files and enforce access control to files (shared delete, get, put, 
update, nil and user-provided interlocking). At FRS, the available support allows multiple pro
cesses to read share a single disk file. Also, a file may be shared between a single writer and 
mutiple readers. See Section 1.2.1. 

• Specify multiple device types for record access. At FRS, RMS supports IIOs to disk devices only. 
Paths are also provided for conducting I/O to terminal devices connected to the client systems. 
See Section 1.2.3. 

• Specify ways to lock and unlock records. At FRS, there is no support available for record locking. 

1-2 Record Management Services 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

1.1.4 Functions Not Available 

This section lists VAXNMS RMS functions that are either not available at FRS, or have been perma
nently excluded from Mica RMS. A few of the VAXNMS RMS functions are excluded permanently as 
these functions are easily available through the Mica File system. A few other functions are excluded 
permanently as they are available as system services. 

The following lists the functions that are not available at FRS, but are planned for future releases: 

• File organization-Indexed and relative files 

• File access-Shared write access to disk files 

• Record locking-Ways to lock and unlock records 

• Transaction logs-J oumal file 1/0 operations 

The rest of this section lists the VAXNMS RMS functions that are not planned to be included as 
Mica RMS functions. 

The following VAXNMS RMS functions are excluded permanently from Mica RMS: 

• Asynchronous 1/0 operations (Mica RMS supports synchronous IIOs only) 

• Direct record access to mailboxes or message devices 

• Remote file access and task-to-task communication by way of DECnet 

• Implicit file spooling 

• DECK and EOD checking 

• Multiple record streams 

• File disposition option submit command file on execution of RMS$CLOSE 

• Set date and time for file creation, expiration, revision or backup 

The 1/0 subsystem functions not replicated in Mica RMS are: 

• $ENTER 

• $EXTEND 

• $NXTVOL 

• $REMOVE 

• $RENAME 

• $SPACE 

ODS2-3 defines the following six date ,:.nd time values which are maintained as file attributes: 

1. Creation date and time 

2. Expiration date and time 

3. Backup date and time 

4. Revision date and time 

5. Read date and time 

6. Header write date and time 

Record Management Services 1-3 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

VMS RMS allows its users to set any of the first four date and time values at file creation time. The 
Mica file system automatically sets the creation date and time, and the Mica RMS interface does not 
provide an explicit way to set any of these times except the expiration date and time. The user may 
examine the date and time values through the Display service. 

By default, Mica file system sets and maintains all the date and time values, except the expiration 
date and time. However, a user may call exec$request_io with the function code io$c_dfile_write_ 
attributes to set the date and time values. 

A user may influence how items 4 and 5, revision date and time, and read date and time are main
tained. By default, these items are updated in memory and written out at file close time. The user 
can choose to force a disk update, at substaintial performance penalty, on every read or write. 

The following system services are not available through Mica RMS: 

• SYS$RMSRUNDOWN 

• SYS$SETDDIR 

• SYS$SETDFPROT 

• $WAIT 

The undocumented VAXlVMS RMS function $MODFY is not available in Mica RMS. 

1.1.5 Interface to Mica File Sytem 

The Mica I/O architecture provides a set of services through which user-mode processes access func
tions provided by the I/O subsystem. The Mica I/O architecture defines function processors through 
which specific I/O requests are satisfied. RMS accesses disk resident files through function proces
sors belonging to the disk file function processor (DFFP) class. The specific function processor used 
depends upon the volume on which the file resides. For example, FILES-II function processor pro
vides access to local Mica volumes, and the distributed file service (DFS) function processor provides 
access to nonlocal volumes. However, every function processor of the DFFP interface class provides 
the same user interface. RMS accesses the DFFP class function processors uniformly. 

A fully specified file name is of the form: 

volume_name: [directory_specification]file_name.typeiversion 

To separate the type and the version fields, either ";" or "." may be used. A function processor accepts 
I/O requests to one of its volumes through a function processor unit (FPU) that represents the volume. 
RMS accesses the I/O subsystem by using the following steps: 

1. In order to access the I/O subsystem services, the FPU object ID is required. RMS obtains 
the FPU object ID by calling exec$translate_object_name, with the volume name as an input 
parameter. 

2. RMS calls exec$create_channel to establish an 1/0 channel to the FPU. A channel is deleted by 
calling exec$delete_object_id and specifying the channel's object ID as the input parameter to the 
call. 

3. RMS calls exec$getJpu_information to determine that the channel is assigned to an FPU that 
belongs to the supported interface class. This call also prmrides volume-specific information (for 
example device characteristics). . 

4. Functions provided by DFFP are obtained by calling exec$request_io. A caller specifies a DFFP 
function code while calling exec$request_io to access a DFFP function. The following DFFP 
functions are used: 

• Create a file (io$c_dfile_create) 

• Specify and read file attributes Cio$c_dfile_write_attributes, io$c_dfile_read_attributes) 

1-4 Record Management Services 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

• Allocate storage and deallocate storage Cio$c_dfile_allocate_storage) io$c_dfile_deallocate_ 
storage) 

• Access and deaccess files Cio$c_dfile_access) io$c_dfile_deaccess) 

• Transfer data Cio$c_dfileJead) io$c_dfile_write) 

• Search for a file Cio$c_dfile_search_dir) 

• Read one or all the entries from a given directory Cio$c_dfile_read_dir _entries) 

• Enter or remove a directory entry (io$c_dfile_modify _dir _entries) 

• Delete a file by the file ID Cio$c_dfile_delete_byJid) 

Record Management Services 1-5 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

1.2 Devices Supported 

Mica RMS provides device independent file access. Device type is not a file attribute. The mounted 
device (the volume) on which the file resides or on which the file is to be created, is derived explicitly 
(user specifies it) or implicitly from the user's environment. The I/O subsystem provides accesses to 
the devices by way of function processors. Ideally, higher layer software like RMS is not required 
to possess knowledge of device characteristics. However, to prevent certain operations, for example, 
creating an indexed file on a magnetic tape device, some know ledge of major device characteristics is 
required. Other than that, if the function processors provide uniform interface, many of the device 
characteritics are transparent to RMS. 

Although RMS is designed to support a variety of devices, its functions are geared towards mass 
storage devices, especially random access devices. The following paragraphs describe the range of 
RMS functions available on the supported device type. 

1.2.1 Disk Devices 

The functions that are available on disk devices are discussed in this section. The functions are 
classified as: 

• File creation time options that define file characteristics 

• File creation time options to specify file names 

• File creation time options that specify file allocation and position control 

• File access and file sharing criteria 

• Reliability options in I/O operations 

• Run-time options to specify file disposition 

• Run-time record retrieval options 

• Run-time record insertion options 

Each of these items is discussed in the following sections. 

1.2.1.1 File Characteristics 

Files created on disk devices can have the following characteristics: 

• File organization-Disk file organization can be sequential, indexed or relative. At FRS, only 
sequential files can be created. 

• Record format-The record format can be fixed length, variable length, variable length with fixed 
length control, stream or undefined. The default is variable length. 

• Record attributes-All the record options specified by rms$record_attributes are applicable (see 
the description of rms$create for record structure definition, Section 1.3.1.2.3). For example, 
the user specifies that the records may span block boundaries by setting the rms$blk bit in 
rn"s$record_attribute. The user may set rms$record_options.max_rec_size to specify the maxi
mum record size. 

• Date information-This is defined in rms$display. Date information provides date and time 
values for file backup, file creation, file expiration, last accessed, last header write and the file 
revision. Date and time values are set and maintained by the Mica file system. See Chapter 
20, Disk File System Function Processors, for the rules used to set and maintain date and time 
values. Through RMS, the user can set the expiration date and time of the file at file creation 
time. 

• File protection-Mica files are protected by way of access control lists. The mechanism and the 
interface are TBS. 

1-6 Record Management Services 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

• Index file characteristics-These are TBS. 

1.2.1.2 Filename Creation 

At disk file creation time, the following options may be used. 

• Create if nonexistent-Creates the file if the file of the same name does not exit in the specified 
directory. If the file exists, then the file is opened. 

• Maximize version-Creates a disk file with a specified version number or a version number one 
greater than a file of the same name in the specified directory. 

• Supersede version-Supersedes the file of the same file name, file type, and version number. 

• Temporary marked for delete-The file is created, without any directory entry. The file is auto
matically deleted when the file is closed. 

• Temporary-The file is created without any directory entry. The file is retained after being closed. 
However, the file can only be reopened if the file ID is supplied. 

1.2.1.3 File Allocation 

At the time a disk file is created, the file space allocation amount, default extension amount and 
placement control can be specified by the record rms$create_in_alloc_options. See Section 1.3.1.4.1. 
If the allocation option is not used, RMS sets the default extension area to be equivalent to the track 
size of the device. Thus, initially the user creates a file with zero allocated size. At the time of the 
first output, an area equivalent to the default extension is allocated automatically for the user. 

1.2.1.4 File Sharing 

The user specifies the way disk file is to be accessed and the way the file is to be shared with other 
users at file open or file creation time. The file access and share rules are set on calls to rms$create 
or rms$open, through the input parameter access_request. For more information, see Section 1.3.1.3. 
In the initial version, Mica RMS does not accomodate multiple writers to the same file. However, a 
single writer may share the file with multiple readers. If a file is accessed for write, then by default, 
the file is opened for exclusive use, which prohibits sharing. If, however, the writer wants to allow 
readers, then the rms$c_shrget and rms$c_upi need to be set. 

If a file is accessed for read only, the default sharing is rms$c_shrget. If the reader wants to allow a 
writer, then the rms$c_shrput bit and the rms$c_upi bit need to be set. 

A request for access to a file is policed by the file system and not directly by Mica RMS. Whether an 
access to a file is allowed or not, is determined by the most current sharing value. For example, a 
file currently has 3 readers (A, B, and C) and one writer (X). At this point if another writer (Y) tries 
to open the file for write access, the open fails. If, however, X closes the file and then Y tries the open 
again, the open succeeds. 

A file shared between a writer and multiple readers requires that the buffers written by the writer 
are periodically flushed out. It is proposed that Mica RMS forces a flush operation after 'n' (say 100) 
buffers are written. This ensures that the file attribute end-of-file VBN is updated for the reader's 
benefit. Independently, the user may call the Flush service to force an update. 

At FRS, Mica RMS does not provide record locking facilities. 

Record Management Services 1-7 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

1.2.1.5 Reliability Options 

Reliability options are set at disk file creation or open time. Through the input option item rms$file_ 
characteristics, the user specifies rms$c_read_check and rms$c_write_check options to ensure that the 
data transfers from or to the disk volumes are to be checked by a read-compare operation. Reliability 
checks effectively double the amount of disk IIOs performed. 

The user may set rms$cJorce_write_thru_dates to force update the last read date and time, and the 
last write date and time on the file header, on every 1/0. 

1.2.1.6 Runtime File Disposition Options 

Mica RMS provides read-ahead and write-behind buffer management for all sequential files. Mica 
RMS provides only synchronous I/O operations to its users. Through the input option item rms$run_ 
time_access, the user can specify the following file disposition options at the time the is file is created 
or the file is opened. 

• Truncate end-of-file--Indicates that the unused space is to be deallocated at the time the file is 
closed. 

• Delete on close-Indicates that the file is to be created and a directory entry is made. The file is 
deleted automatically when closed. 

1.2.1.7 Record Retrieval Options 

Records on sequential disk files are accessed sequentially or randomly (by record's file address). 
Records on sequential files with fixed record fonnats can be accessed randomly by the relative record 
position. 

By default, locate mode is used for data retrieval operations. The' user may optionally set move mode 
for record retrieval. See Section 1.3.5. 

If the record format is variable length with fixed control (VFe), the user can specify the length of the 
fixed control portion. 

1.2.1.8 Record Insertion Options 

For sequential files records are usually inserted at the end of the file. The records to be inserted 
cannot be larger than the maximum record size (max_record_size) as defined in the record rms$record_ 
definition. See Section 1.3.1.2. A record can also be inserted randomly by key in a sequential file with 
fixed length records. To insert randomly, the record access mode rms$c_update must be selected. 

The truncate_onyut option allows new records to be inserted in a sequential file, in locations other 
than at the end of the file. Mter the record is inserted, the file is truncated immediately after the 
inserted record. The end-of-file marker is updated to the new location. To perform this operation, 
the user needs to select rms$c_truncate record access mode. 

1.2.2 Magnetic Tape Devices 

At FRS, IIOs to magnetic tape devices through RMS are not available. 

1-8 Record Management Services 



1.2.3 Terminal Devices 

Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

At FRS, terminal devices are not directly connected to the Glacier (compute server) or the Cheyenne 
(data base server) systems. The terminals are connected to client systems and are considered to be 
part of the client environment. At FRS, Mica RMS accesses terminals through client context server 
(see Chapter 55, VMS Compute Server Support). 

To read from a terminal device, the user must specify move_mode and an input buffer to receive the 
data. Data read from the client site is copied into the user input buffer. Read ahead and write behind 
are automatically turned off for I/Os to terminals. 

At FRS, Mica RMS supports a minimal set of terminal options. None of the read verify functions of 
terminal drivers are available at FRS. If a file is used for terminal I/O, the file and record attributes 
that may be specified are: 

• File organization is sequential only. 

• Record access mode is sequential only. 

• Terminal options in Get and Put services are listed below. The terminal options are not inter
preted by Mica RMS, and they are forwarded to the client site. Enforcement of the options are 
carried out by the client site terminal driver. 

• Cancel CTRL/O-Guarantees that terminal output is not discarded if the operator presses 
CTRUO. 

• U ppercase--Changes characters to uppercase on a read from a terminal. 

• Prompt option-The contents of the prompt buffer are to be used as a prompt for reading 
data from a terminal. 

• Purge type ahead-Eliminates any information that may be in the type-ahead buffer on a 
read from a terminal. 

• Read no echo--Input data is not echoed on the terminal. 

• Read no filter-Indicates CTRLIU, CTRLIR and DELETE are not to be considered as control 
commands on terminal input. 

• Timeout-Specifies the maximum number of seconds to wait between characters being 
typed. 

1.2.4 Mailboxes 

Mailboxes are not supported at FRS. 

Record Management Services 1-9 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

1.3 RMS Programming Interface 

The following sections define various Mica RMS services. The services are presented in the following 
order: 

• File creation and other basic services: 

rms$create 

rms$open 

rms$close 

rms$get* 

rms$put* 

• Filename parse and search services: 

rms$parse 

rms$search 

• Other services: 

rms$dispZay 

rms$erase 

rms${lush 

rms$free (not available at FRS) 

rms$release (not available at FRS) 

rms$rewind 

rms$truncate 

rms$update 

Mica RMS services are provided by a set of user-mode run-time library procedures. The procedures 
are designed with the two goals of ease of use and flexibility. The RMS user specifies various file 
attributes to suit the requirements of a particular application. There are two categories of file at
tributes: the ones that are used for file level functions (such as Create and Open) and the ones that 
are used for record level functions (such as Get and Put). The attibutes are specified to the Mica 
RMS services by parameters. The attributes appear either as explict parameters, or as options in 
item lists. 

Typically, the file attributes that appear explicitly are: 

• The required information for the service 

• The frequently specified attributes to the service (Usually, these parameters, also have associated 
defaults. Thus, if an attribute default has a suitable value, the user need not explicitly specify 
the parmneter.) 

• The values that are always returned by the service on successful completion 

One set of file attributes is used to statisfy very specific user requirements (placement control of files, 
for example). These attributes are expressed as items of item lists. Item lists, as input options and 
output options, appear explicitly as parameters. For each service, if necessary, there is a valid list 
of input items and output items. Input items are those attributes that the user specfies to RMS, so 
that the file or record management is done appropriately. If an attribute appears both as an explicit 
parameter, and as an item, RMS uses the value specified in the item. Generally, the design avoids 
multiple ways to specify the same file attributes. Output items are those attributes that RMS returns 

1-10 Record Managemt::nt Services 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

to the user. The user has complete flexibility in using the input items and the output items from the 
set of available options. Items and item lists are defined below: 

!+ 
!RMS wide definition of an item and item list 
!-

positive_integer: INTEGER[O .. ]; 

rms$item: RECORD 
code: LONGWORD; 
buffer_length: positive_integer; 
buffer-ptr : POINTER anytype; 
return_length-ptr: POINTER positive_integer; 
LAYOUT 

END 

code; 
buffer_length; 
buffer-ptr; 
return_length-ptr ; 

END LAYOUT; 
RECORD; 

rms$item_list(n:positive_integer): RECORD 
CJI.P T URE n; 
rms$items: ARRAY [l .. n] OF rms$item; 
LAYOUT 

n; 
fill_l:filler(longword,*); 
rms$items; 

END LAYOUT; 
END RECORD; 

Mica RMS does not provide support for multistreaming. However, RMS returns the next record 
pointer after every successful data retrieval operation (rms$get*). The user maintains multiple record 
positions with multiple next record pointers. As explicit multiple streams are not provided, the VMS 
RMS Connect service is no longer necessary. 

Mica RMS provides buffer management for its users. The user is not required to specify the number 
of blocks or the number of buffers. Read-ahead and write-behind functions are provided. 

For each RMS service, the error conditions and the status values are required to be specified. Error 
conditions and status values for Mica RMS are not yet specified. 

1.3.1 Create Service 

The Create service (rms$create) creates files according to the attributes specified in the parame
ters. If a parameter is not specified, its default value is used. This service implicitly calls the Open 
(rms$open) service. The rms$create service does not replicate the Display (rms$display) service func
tions. However, for user convenience, the service returns, if completed successfully, some information 
abou t the opened file. 

The rms$create service returns the file identity, as maintained by the file system. The file_id field is 
a part of the quickJile_ref_out parameter. The rms$create service also returns a file handle, which 
is the file reference maintained by RMS. 

The caller checks for successful completion condition returned by the implicit rms$open service by 
examining the value returned in the status. 

Record Management Services 1-11 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

PROCEDURE rms$create( 
IN file_name : string(*) OPTIONAL; 
IN default_file_string : string(*) OPTIONAL; 
IN quick_file_ref_in: rms$file_ref_identifier OPTIONAL; 
IN record_definition : rms$record_definition OPTIONAL; 
IN access request : rms$file access share OPTIONAL; 
IN create=input_options : POINTER r~s$item_list = NIL; 
OUT file information : rms$standard file i_nfo OPTIONAL; 
OUT outp~t_file_specification : rms$file=reference OPTIONAL; 
OUT quick file ref out: rms$file ref identifier OPTIONAL: 
OUT file_handl; : ~ms$file_handle;- -
) RETURNS status; 
EXTERNAL; 

1.3.1.1 File Identification 

The caller specifies the file to be created and/or opened by either the file_name parameter or by the 
quickJile_ref_in parameter. The file name string cannot contain wildcard characters or a node name. 

The parameter file_name is an instance of a valid file name. A file name is a string of characters 
from which the primary file specification is derived. The caller provides the default file specifications 
through the defaultJile_string parameter. Mica RMS uses the information contained in the file_name 
parameter and, if necessary, the defaultJile_string parameter to construct a full file specification. 

The optional input parameter quickJile_ref_in is a record that contains the file ID and the volume 
object ID, the two necessary and sufficient information to identify and locate the file, without requir
ing any further file-name pJ)cessing. This information is returned as output (quickJile_ref_out) by 
several RMS services. If this information is available, (for example, from an earlier call to the Parse 
and Search services), the caller returns the quickJile_ref_out to rms$create through the input param
eter quickJile_ref_in. The quickJile_ref_out is an output of the rms$parse, rms$search, rms$open as 
well as rms$create service. 

If quickJile_ref_in is present, and the caller has requested to create the file only if the file is nonex
istant, then rms$create first tries to access the file by the file ID. RMS uses the volume object ID to 
open a channel to the FPU. 

The quickJile_ref parameter is a pointer to a record with the following structure: 

TYPE 
rms$file_ref_identifier: RECORD 

volume object id : exec$object_id; 
file rms$f11_file_id; 

END RECORD; 

!+ 
! file$f11_file_id is defined by the Mica file system. 
! It is reproduced below for easy reference. 
!-
rms$fl1_file_id : file$f11_file_id; 

file$f1l file id : RECORD 
fl1 fid num 
fl1_fid_seq 
fll fid rvn 
fll fid nmx 
LAYOUT 

integer [0 .. 65535] SIZE(word); file number 16 low bits 
integer [0 .. 65535] SIZE(word); sequence number 
integer [0 .. 255] SIZE(byte); relative volume number 
integer [0 .. 255] SIZE (byte) ; ! file number 8 high bits 

f1l fidyum, 
fll fid seq, 
fl1=fid=rvn, 
f11 fid nmXi 

END LAYOUT; 
END RECORD; 

1-12 Record Management Services 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

1.3.1.2 Record Definition 

This record structure is used to specify the following: 

• File organization 

• Record format 

• Record attributes 

• Maxim um record size 

• Longest record length 

The record structure for record defintion is shown below: 

TYPE 
rms$record_definition: RECORD 

file organization : rms$file organization; 
reco~d format : rms$file rec;rd format; 
record=attribute : rms$r;cord_attribute; 
max record size: integer[O .. 32767J; 
vfc=control_head_size : integer[0 .. 255J; 
longest_record_length : integer[O .. 32767]; 
version_number: integer [1 .. 65535J SIZE(word); 

END RECORD; 

Each field of rms$record_definition is discussed in the following sections. 

1.3.1.2.1 File Organization 

The default file organization is sequential. The initial version of Mica RMS supports sequential 
organization only. 

!+ 
!The following values are used to define file organizations 

VALUE 

TYPE 

rms$c_sequential = 0; 
rms$c relative 1; 
rms$c=indexed = 2; 

rms$file_organization 

1.3.1.2.2 Record Format 

integer[O .. 2J SIZE(BYTE); 

The default record format is variable length records. 

!+ 
!The following values define the file record format 

VALUE 

TYPE 

rms$c undefined 0; 
rms$c fixed 1; 
rms$c=variable 2; 
rms$c_vfc = 3; 
rms$c_stream = 4; 
rms$c_stream_lf 5; 
rms$c_stream_cr 6; 

undefined 
fixed length 
variable length 
variable fixed control 
stream 
lfstream (seq files ONLY) 
cr stream (seq files ONLY) 

rms$file_record format: integer [0 .. 6J SIZE (byte); 

If the VFe format is chosen, the user specifies the fixed control area size by the field vfc_control_ 
head_size. 

Record Management Services 1-13 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

1.3.1.2.3 Record Attributes 

The valid input record attrubtes to rms$create are: 

• BLK-records a.re not permitted to cross block boundaries 

• CR -preced each record with a LF, and follow with CR 

• FTN-FORTRAN carriage control character 

• PRN-print file format 

TYPE 

!+ 
!A record attribute type is defined below: 
!+ 

rms$record_attribute names : ( 
rms$c_ftnr 
rms$c cr r 

rms$cyrn r 
rms$c_blk 
) ; 

FORTRAN carriage control 
preced each rec with CR r follow with LF 
print file format 
records do not cross block boundaries 

rms$record_attribute : SET rms$record_attribute_names[ .. ] SIZE (BYTE); 

Only rms$c_blk option can be paired with another option. The options rms$cJtn, rms$c_cr, rms$c_ 
prn cannot be used in any combination. The default value of this field is rms$c_cr. 

1.3.1.2.4 Maximum Record Size 

This integer value represents, in bytes, the size of all records in a file with fixed length records, 
the maximum size of variable length records, the maximum size of the data area for variable with 
fixed-control records. 

1.3.1.2.5 VFC Control Head Size 

This field is used to specify the length of the fixed-control area of a file with VFC record format. The 
default value is 2 bytes. 

1.3.1.2.6 Longest Record Length 

RMS returns through this field the numeric value of the longest record in the file. The field is used 
only if the record format is not fixed length. 

1.3.1.3 Access Request 

This record specifies the desired way the caller wishes to access the file and the way the caller wishes 
to share the file with other users. This is an optional input parameter to the rms$create. At file 
creation time, the default value of file accessing is put a.ccess, and the default value for file sharing is 
allowing shared read. Block I/O operations are considered as data retrieval operations, rather than 
access modes. Hence, block I/O options are removed from the set of file access options. The access 
request record structure is defined below: 

TYPE 

rms$file_access control : RECORD 
access : rms$file_access; 
share : rms$file_share; 

END RECORD; 

1-14 Record Management Services 



rms$file_access_names 
rms$c delete, 
rms$c:=get, 
rms$cyut, 
rms$c _update, 
rms$c_truncate 
) ; 

: ( 

Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

request delete access 
request read access 
request write access 
request update access 
request truncate access 

rms$file_access : SET rms$file_access_names[ .. ] SIZE (BYTE); 

rms$file_share_names : ( 
rms$c shrdel, allow delete access 
rms$c:=shrget, allow get access 
rms$c shrput, allow put access 
rms$c:=shrupd, allow update access 
rms$c shrnil, prohibit sharing 
rms$c:=upi user provided interlocking (allows 
); a single writer and multiple readers to seq files) 

rms$file_share SET rms$file_share_names[ .. ] SIZE (BYTE); 

1.3.1.4 Create Input Options 

Input options to the rms$create service are passed as items in an item list. The item codes are defined 
in rms$create_in_options_item_code. The valid input options to the rms$create are shown below: 

!+ 
!This enumerated type is used to define the input options item codes 
!for Create service. 
!-

rms$create in options item code : ( 
rms$cr~at~ allocation ;ptions, 
rms$create~rotection=options, 
rms$create filename creation, 
rms$ create=runtime_;ccess , 
rms$create file characteristics, 
rms$create=set_~xpiration_date, ! set expiration date and time 
) ; 

Each option that can be specified at file creation time is discussed in the following sections. 

1.3.1.4.1 Allocation Options 

Through the allocation options the RMS user can exercise additional control over file or area space 
allocation on disk devices, to optimize performance. In the following description, the terms file and 
area are synonymous for sequential and relative files, as these file organizations are limited to a 
single area. 

If the allocation options are not used, the user file is created as a zero length file. However, at the 
time the first Put operation is performed, the file is automatically extended. The default extension 
size is equal to the track size of the device, on which the file resides. 

The allocation options are defined by the following record: 

!+ 
!The following record describes the valid allocation options 
!for input to the Create service. 
!-
rms$create_in_file_alloc (number_of_areas: INTEGER[0 .. 254]): RECORD 

CAPTURE number_of_areas; 
default_extention : INTEGER[O .. 65535]; 
block count: ARRAY [O .. number_of_areas] OF integer [1 .. 1073741824]; 
areayosition : ARRAY [O .. number_of_areas] OF file$file_alloc; 

END RECORD; 

Record Management Services 1-15 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

!+ 
!The type file$file alloc are defined by the 
!Mica File system. -It is copied below for easy reference. 
!-

!+ 
!These enumerated types and record are used to control the allocation of 
!disk blocks. 
!-

file$alloc~lace: 

file$c~lace_cylinder, 

file$c~lace_lblock, 

file$c~lace_vbn, 

file$c~lace_rfi 

) ; 

file$alloc_align: 

!+ 

file$c align cylinder, 
file$c=align=onsector 
) ; 

!Allocate 
!Allocate 
!Allocate 
!Allocate 

!Align 
!Align 

! Provide data for alignment options. 
!-

on 
on 
on 
to 

to 
to 

specific cylinder. 
specific logical block. 
specific virtual block. 
related file. 

cylinder. 
sector. 

file$place_data (placement: file$alloc~lace): RECORD 
CAPTURE placement; 
VARIANTS CASE placement 

WHEN file$c~lace_cylinder THEN 
crvn: [0 .. 255J SIZE (byte); 
cylinder: integer [0 .. ] SIZE (longword) ; 

WHEN file$c~lace_lblock THEN 
lrvn: [0 .. 255] SIZE(byte); 
lblock_num: integer [0 .. ] SIZE(longword); 

WHEN file$c~lace_vbn THEN 
vblock_num: integer [O .. J SIZE(longword); 

WHEN file$c~lace_rfi THEN 
rfi_vbn: integer [0 .. ] SIZE(longword); 
rfi file id: file$fll_file_id; 

END VARIANT S; 
END RECORD; 

!+ 

!Data for align to cylinder. 
!Relative Volume Number. 
!Cylinder number. 

!Data for align to logical block. 
!Relative Volume Number. 
!Logical Block Number. 

!Data for align to virtual block. 
!Virtual Block Number. 

!Data for align to related file. 
!VBN of related file to align with. 
!Related file FID. 

This record holds all of the allocation information, and is 
! the type passes as the allocation argument to the allocate 
! and the create function 

file$file_alloc: RECORD 
hard : boolean; 
contiguous : boolean; 
contiguous_best_try : boolean; 
placement : file$alloc~lace; 

alignment : file$alloc align; 
location : POINTER fil;$place data; 

END RECORD: 

error if can't alloc. as specified 
contiguous 
contiguous best try 
placement 
alignment 
alignment data 

Use of some of the fields of the record rms$create_inJile_alloc are described below: 

• Default extension-This represents the quantity, in number of blocks, to be added to the file, 
when automatic extension is required. 

• Block count-This indicates the number of blocks to be allocated for each area. For sequential 
files only one area is applicable. 

1-16 Record Management Services 



Digital Equipment Corporation. - Confidential and Proprietary 
For Internal Use Only 

• Area Position--Specifies placement control for each allocated area. The position control fields 
are described below: 

The field file$file_alloc.hard indicates that if the requested alignment cannot be done, then 
an error is returned. By default, the allocation is performed as near as possible to the 
requested alignment. 

The field file$file_alloc.contiguous indicates that the initial allocation extension must use 
contiguous blocks only. The allocation fails if the requested number of contiguous blocks is 
not available. 

The file$file_alloc.contiguous_best_try indicates that allocation or extension should use con
tiguous blocks, on a "best effort" basis. 

The file$file_alloc.placement indicates one of the following: 

file$cJllace_cylinder-Indicates that allocation is to begin on the specified cylinder. 

file$cJllace_lblock-Indicates that allocation is to begin on the specified logical block. 

file$cJllace_ubn-Applies to area extension only. This indicates that the area extension 
should b~gin as close to the virtual block number as specified in file$place_data. ublock_ 
num. 

file$cJllace_rfi-Applies to area extension only. This indicates that the area exten
sion is to start as close as possible to the file identified in the field file$place_data.rfi_ 
file_id. The extent begins with the virtual block number specified in file$extent_ 
descriptor.starting_ubn. 

The file$file_alloc.alignment indicates one of the following: 

file$c_align_cylinder-Align on cylinder boundary 

file$c_align_onsector-Align on sector (track) boundary 

• The file$place_data provides alignment options. 

The field crun represents the relative volume number upon which the file is to be allocated. 
This field corresponds to the VMS RMS field XAB$W _ VOL. The field cylinder represents the 
cylinder number on the volume, at which the allocation is to start. This field corresponds 
to the VMS RMS field XAB$L_LOC, when in the XAB$B_ALN field, XAB$C_CYL option is 
specified.' 

The field lrun represents the relative volume number upon which the file is to be allocated. 
This field corresponds to the VMS RMS field XAB$W _VOL. The field lblock_num represents 
the logical block number on the volume, at which the allocation is to start. This field 
corresponds to the VMS RMS field XAB$L_LOC, when in the XAB$B_ALN field, XAB$C_ 
LBN option is specified. 

1.3.1.4.2 File Protection Options 

File protection options are used to specify ownership, accessibility and protection of a file. Presently, 
file protection options are not defined, as th Mica file system file protection mechanism is not yet 
specified. 

Record Management Services 1-17 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

1.3.1.4.3 Filename Creation Options 

The following file-name options may be set while creating a file. A programmer can choose any or all 
of the options. 

• Create If Nonexistent -Opens an already existing file. 

• Maximize Version Number-Indicates that the version number of the file should be the maximum 
of the explicit version number given in the file specification, or one more than the highest version 
number for an existing file in the same directory with the same file name and file type. This 
option enables the user to create a file with a specific version number. 

• Supersede--Allows an existing file to be superseded on creation. Existing files can be superseded 
by a new file of the same name, type and version. The create_if and max_version options take 
precedence over supersede. 

• Temporary-Indicates that a temporary file is to be created and retained but no directory entry 
is made. Mter the file is closed, the only way to refer to the file is by way of the file ID (provided 
through the output record quickJile_ref_out. 

• Temporary marked for delete--Indicates that a temporary file is to be created. The file is auto
matically deleted when it is closed. 

By default, none of the above options is set. The consequences are: 

• If the file is specified without explicit version number then the file is created, even if a file with 
the same name were present in the directory. In this case, the newly created file gets a higher 
version number. For example, if a file A.TXT;l exists, and the user tries to create A.TXT, and 
the create if nonexistant flag is not set, the file A.TXT;2 is created. 

• The version number of the created file is not maximized. For example, if a file A.TXT;2 exists, 
and the user tries to create a file A.TXT;2 the file creation attempt fails. On the other hand, if 
the option maximize version number were set, the same file creation atternpt succeeds, and the 
file A.TXT;3 is created for the user. 

• The files are not superseded. If a file with the same name, type and version exists, the file 
creation attempt fails. 

• By default pennanent files are created. A directory entry is made for the file, and the file is not 
deleted when it is closed. 

The filename creation options are specifed below: 

!+ 
!This enumerated type is used to define the options for 
!the create options 

rms$filename_creation_options: ( 
rms$c_create_if, 
rms$c max version, 
rms$ c=sup;rsede , 
rms$c temporary, 
rms$c=temp_marked_del 
) ; 

create if non-existent 
maximize version number 
supersede 
temporary file 
temporary marked for delete 

rms$filename creation SET rms$filename_creation_options[ .. ] SIZE(BYTE); 

1-18 Record Management Services 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

1.3.1.4.4 Run-time Access Options 

The run-time access options are used to specify file desposition at the time the file is closed. The 
runtime access options are defined below: 

• Truncate end-of-file-Indicates that the unused space allocated to a file is to be deallocated, when 
the file is closed. 

• Delete on close-Indicates that the file will be deleted when closed. 

rms$run time access options : ( 
rms$c_tr~ncate_;of, 
rms$c_delete_on close, 
) ; 

rms$run_time_access : SET rms$run_time access options[ .. J SIZE (byte) ; 

By default, none of the above options is set. Run-time access options are to be exercised explicitly. 

1.3.1.4.5 File Characteristics 

At file creation time, the following reliability oriented file characteristics can be specified: 

• Read check-Specifies that transfers from disk volumes are to be checked by read-compare op
erations. By default, read check is not performed. 

• Write check-Specifies that transfers to disk volumes are to be checked by read-compare opera
tions. By default, write check is not performed. 

• Force write through dates-Specifies that the read date and time field, and revision date and 
time field are updated on disk, every time the a record is read from or written to the file. By 
default, the fields are updated in memory by the Mica file system and written out only at file 
close time. Forced write through of date and time causes a severe performance penalty. 

rms$file_characteristics_options : ( 
rms$c r~ad check, 
rms$ c=writ;_check , 
rms$c_force_write_thru_dates 
) ; 

rms$file_characteristics : SET rms$file_characteristics_options[ .. J SIZE (byte) ; 

1.3.1.4.6 Set Expiration Date and Time 

At file creation time, the expiration date and time field can be set. This date and time field is used 
only by the file owner. The Display service outputs expiration date and time. 

rms$expiration_date_time : RECORD 
expiration_date longword; 
expiration_time : integer; 

END RECORD; 

1.3.1.5 File Information 

This is an optional output parameter. If the file is opened due to the filename creation option rms$c_ 
create_if, then RMS returns through this record structure some file related information. The record 
is defined below: 

rms$standard file info : RECORD 
device_characteristics : rms$device_characteristics; 
record structure rms$file_record_definition; 

END RECORD; 

Record Management Services 1-19 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

The type rms$file_record_definition is specifed earlier in section Section 1.3.1.2. The device charac
teristics are defined below: 

!+ 
!This enumerated type define the device characteristics as 
!returned by Create and Open 
!-
rms$device char names : - -

directory structured, 
file_oriented, 
foreign, 
dev read check_enabled, 
dev_write_check_enabled, 
random_access, !disk 
se~block_oriented, !magnetic tape 
terminal, !terminal 
unknown !devices handled indirectly 
) ; 

rms$device_characteristics: SET rms$device_char_names[ .. ] SIZE (WORD); 

1.3.1.6 Output File SpeCification 

This optional output parameter returns to the user the resultant file specification. If RMS encounters 
an error while creating the file, the expanded file specification that was used by the Create service 
is returned via this record. The record is specified below. The record is structured to facilitate users 
to extract individual fields from the file specification string. 

rms$file reference : RECORD 
device_name_offset : integer [O .. rms$c max_length] SIZE(word)i 
device name length: integer [0 .. rms$c max length] SIZE(word); 
nUmber=of_dir_Ievels : integer [0 .. 32]-SIZE(word); 
dir name offset: integer [O .. rms$c max length] SIZE(word)i 
dir=name=length : integer [O .. rms$c=max=length] SIZE(word); 
file name offset integer [0 .. rms$c max length] SIZE(word) i 

file_name_length integer [O .. rms$c=max=length] SIZE(word); 
extension offset integer [0 .. rms$c max length] SIZE (word) ; 
extension_length integer [O .. rms$c=max=length] SIZE(word)i 
version number: integer [0 .. rms$c m2X length] SIZE(word); 
file_sp;cification varying_string(rm;$c_max_Iength); 

END RECORD; 

1.3.1.7 Output Quick File Reference 

This optional output parameter provides both the file ID and the volume object ID. The record can 
be saved and used later to access the file through the file's file ID. See Section 1.3.1.1. 

1.3.1.8 File Handle 

Mica RMS returns a file_handle after a successful rms$create operation. The user is required to 
use file_handle as an input argument for all future file and record operations. The file_handle is a 
pointer to a data structure that is maintained and used only by RMS. The file context datastructure 
is a hidden type, and it is not visible to the user. 

!+ 
! This is a declaration for Rlv1S file handle, which points to a 
!data-structure that maintains the file context. 
!-

rms$file handle : POINTER rms$file context; 

1-20 Record Management Services 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

1.3.2 Open Service 

The Open (rms$open) service allows an existing file to become available for processing. The procedure 
is defined below: 

PROCEDURE rms$open( 
IN file_name: string(*) = "" ; 
IN default file string: string(*) = ""; 
IN quick_flle_r;f_in : rms$file_ref_identifier OPTIONAL; 
IN access control : rms$file access control; 
IN open_i~put_options : POINTER rms$item_Iist = NIL; 
OUT file information : rms$standard file info OPTIONAL; 
OUT resultant_file : rms$file_refer;nce OPTIONAL; 
OUT quick file ref out: rms$file ref identifier OPTIONAL; 
OUT file handle : ~ms$file_handle;- -
) RETURNS status; 

1.3.2.1 File Identification 

The description in Section 1.3.1.1 is' also applicable in this context. A file that is to be opened may 
be identified by anyone of the following ways: 

• File name string only 

• File name string augmented by a default file name string 

• File ID and volume object ID 

If the file to be opened is identified by the file-name only, then the caller uses the file_name parameter. 
In this case, the caller can optionally specify the default file specification string. A file name string 
cannot have any embedded wildcard characters or a node name. The file name processing is done by 
RMS. 

Alternatively, the caller uses the quickJile_ref_in parameter to specify the file ID and the volume 
object ID. In this case, no further file name processing is required. 

1.3.2.2 Access Request 

This record specifies the desired way the caller wishes to access the file and the way the caller wishes 
to share the file with other users. This is an optional input parameter to the rms$open. At file open 
time, the default value of file accessing is put access, and the default value for file sharing is allowing 
shared read. See Section 1.3.1.3. 

1.3.2.3 Open Input Options 

Input options to the rms$open service are passed as items of an item list. The item codes are defined 
in rms$open_in_options_item_code. The valid input options to the rms$open are shown below: 

!+ 
!This enumerated type is used to define the input item codes 
!for Open service. 
!AII items are prefixed "open" 
!-
rms$open in options item code : 

rms$~pe~_file_characteristicsf 
rms$open_runtime_access, 
) ; 

At file open time, the file characteristics options that can be specified are described in Section 1.3.1.4.5. 
The defaults values at file open time are the same as the defaults values at file create time. 

At file open time, the run-time access options that can be set are described in Section 1.3.1.4.4. The 
defaults values at file open time are the same as the defaults values at file create time. 

Record Management Services 1-21 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

1.3.2.4 File Information 

Some file-related information is returned through this optional output parameter. See Section 1.3.1.5. 

1.3.2.5 Resultant File 

This optional output parameter is used to return the resultant file specification of the opened file. 
See Section 1.3.1.6. 

1.3.2.6 Output Quick File Reference 

The file ID and volume object ID are returned through this optional output parameter. See Sec
tion 1.3.1.7. 

1.3.2.7 File Handle 

After a successful open operation, rms$open provides a file handle. 

1.3.3 Close Service 

The Close (rms$close) service terminates file processing and closes the file. If the file was created 
or opened with the option to delete on close, or the option is set in the rms$close service, the file is 
deleted as well. If the file is not deleted on close, then buffers that were not yet written are written 
out. All the buffers allocated for the file are deallocated. The caller can modify the file protection, 
and ownership of the file by specifying the appropriate options fields. 

PROCEDURE rms$close( 
IN OUT file_handle : rms$file_handle; 
IN in_options : POINTER rms$item_list NIL; 
) RETURNS status; 

1.3.3.1 File Identification 

The input parameter file_handle is the file handle that was provided by rms$open service. After 
closing the file, RMS clears the file handle. 

1.3.3.2 Input Options 

The following input options are valid. 

!+ 
! The following items are input to Close. 
!-

rms$close in options item code : ( 
rms$clos; disposltion=options, 
rms$close-protection_options 
) ; 

!+ 
!the datastructures used by the items for Close service 
!-

rms$close desposition : SET rms$run time access options[ .. ] SIZE(byte); 
rms$close~rotection : rms$file~rotecti~n_opti~ns; 

1-22 Record Management Services 



1.3.3.2.1 Close Disposition Options 

Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

The following file disposition option can be used at file close time: 

• Truncate end of file-See Section 1.3.1.4.4 

• Delete on close-See Section 1.3.1.4.4. 

1.3.3.2.2 Close Protection Options 

Please see Section 1.3.1.4.2. The file protection option that can be set at file close time is TBS. 

1.3.4 Data Retrieval and Output Services 

Mica RMS data retrieval and output operations are designed to minimize the number of decision 
points at run time. There are several retrieval decisions that are based upon static file charateristics. 
For example, the file organization does not change. The static class of file attributes are available 
to RMS once the caller opens a file. This technique effectively uses available information, while 
eliminating further query. 

There is another class offile attributes that are generally unpredictable, and occur at the time of data 
retrieval. For example, record access mode may be changed (from RFA to sequential), or the retrieval 
operation is switched to a data output operation (switch from Get to Put). The implementation 
strategy is to consider all the variations and opt for a path of least decision making. 

In Mica RMS, data retrieval services are classified according to the type of record access operation. 
Thus, there are three different access routines based upon sequential, RFA or key access. Further, 
there can be three different kinds of operations, (Get, Put or Find). As for each of the 1/0 operations 
any of the three access modes is permissible, nine possible options are available. Note, Mica RMS 
offers only synchronous 110 operations. 

The nine data retrieval options apply to all three types of file organization (sequential, relative or 
indexed) and also to the three types of devices (disk, magnetic tape or terminal). Hence, the options 
rise to eighty-one. Then there are options on record formats (Fixed, VFe, STM, STMCR, STMLF, 
UDF or Variable). This raises the op.tions to five hundred and sixty seven. However, not all of the 
options are legal. For example, it does not make sense to do an indexed file operation on a terminal 
device. 

In addition to the record access options described in the preceding paragraphs, a user may wish to use 
blocks of data or just characters for conducting I/O operations. Support for block level and character 
level I/O is TBD for Mica RMS. 

Much of the above described complexity is transparent to RMS users. For instance, RMS could offer 
different procedures to its users, based upon the operation and access methods. The addresses of the 
appropriate procedures are contained in the vector rms$retrievaCserv_vec. RMS builds the vector of 
RMS data retrieval service routines at file open time, based upon the static file attributes. Thus, the 
user can enter a rms$get_sequential access routine, knowing that the device is a disk, and the file 
is sequentially organized. Within this rms$get_sequential access routine there are no tests done to 
check for the device type, file organization, record format or any other statically known option. Thus, 
there are many rms$get_sequential routines; the one being used depends upon the combination of 
the file static attributes. The vector of data retrieval and output services may be organized as: 

• Get sequential 

• Put sequential 

• Find sequential 

• Get RFA 

• Find RFA 

Record Management ~~ervices 1-23 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

• Get key 

• Put key 

• Find key 

The basic difference between the Get and Find services is that the Get service retrieves data, indicates 
the length of the record, the record itself and the record file address. On the other hand, the Find 
service locates the specified record and returns the record's file address. Because the Find service is 
a subset of Get, the interfaces are merged. In the Get service, a Find option is set to indicate the 
Find service. Thus, the number of vector entries is reduced to five entries. 

In Mica RMS, data retrieval defaults to locate mode. That is, users need to explicitly specify move 
mode. The Get services also returns the next record pointer to the user after every successful Get 
operation. This facilitates the user to keep multiple record contexts without requiring multiple 
connects. Further, Mica RMS is not required to keep the user's record contexts. 

The address of each data retrieval service applicable to the file is placed in a specific vector slot. Each 
of the services may thereafter be accessed by referencing the appropriate vector slot. 

The procedure types of the data retrieval routines are individually described below. Each of the 
procedure types has a ptype prefix. 

1.3.5 Get Sequential 

The Get Sequential (rms$ptype.get_sequential) interface is used to access records sequentially. All 
types of file organizations and devices can use this data retrieval mode. 

TYPE 
rms$ptype_get_sequential: PROCEDURE ( 

IN file handle : rms$file handle; 
IN reco~d~osition : POINTER anytype OPTIONAL; 
IN user_in_buffer-pointer : POINTER anytype CONFORM; 
IN user_in~uffer_length : integer; 
IN move mode : boolean = FALSE; 
IN in_options : POINTER rms$item_list = NIL; 
OUT current_record-pointer : rms$record_file_address OPTIONAL; 
OUT next_record-position : POINTER anytype OPTIONAL; 
OUT read_data_buffer-pointer : POINTER anytype; 
OUT read_data_length : integer; 
) RETURNS status; 

rms$record_file~address: RECORD 
UNION CASE * 

WHEN 1 THEN 
record_descriptor: word_data(3); 

WHEN 2 Then 
record_vbn : longword; 
record offset: integer [0 .. 65535]; 

END UNION; 
LAYOUT 

UNION 
OVERLAY 

record_descriptor ALIGNMENT (WORD); 
OVERLAY 

record_vbn ALIGNMENT (WORD); 
record offset ALIGNMENT (WORD); 

END UNION; 
END LAYOUT; 

END RECORD; 

The parameters of the procedure rms$get_sequential are described in the following sections. 

1-24 Record Management Services 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

1.3.5.1 File Identification 

The caller supplies the file_handle which was provided earlier by rms$open service. 

1.3.5.2 Record Position 

This optional input parameter is used to identify the record that needs to be retrieved. The user 
returns in this field the record that was provided by RMS through the output parameter nexCrecord_ 
position. If record-position is not provided, then Mica RMS retrieves records in the following steps: 

• If the file organization is sequential, then the record stored in the next sequential order, relative 
to the last record accessed is returned. 

• RMS action for indexed and relative files are TBS. 

1.3.5.3 User Input Buffer 

The user input buffer is specified by two required input parameters: user _in_buffer -pointer and 
user _in_buffer _length. RMS moves the record into this user specified buffer if either the user has 
specified move_mode or the record being retrieved, crosses block boundaries (and records crossing 
block boundaries is permitted). 

1.3.5.4 Move Mode 

The user can force records to be moved to a user specified input buffer by setting this input parameter 
to TRUE. By default, Mica RMS uses locate mode. 

1.3.5.5 Input Options 

Following are valid input options for the Get operation: 

!+ 
!This enumerated type is used to define the input options item codes 
!for Get service. 
!AII items are prefixed "get" 
!-

rms$get_in_options_item_code : ( 
rms$get find operation, 
rms$get-record header definition, 
rms$get-basic terminal options, 
rms$get=record_locking=options, 
rms$get key ref definition, 
rms$get=ind;x_file_options 
) ; 

1.3.5.5.1 Find Operation 

just find the record 
for VFC format 
for terminals at client site 
not used presently 
not used presently 
not used presently 

If this option is chosen, then a find operation is done. This option does not require any buffer space 
to qualify the option. 

1.3.5.5.2 Record Header Definition 

This field is used to specify the fixed-control area of a file with VFC record format. The fixed-control 
area allows the user to include within the record additional data that may have no direct relationship 
to other contents of the record. For example, the fixed-control area may contain line-sequence number 
for every record in the file. 

Record Management Services 1-25 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

1.3.5.5.3 Basic Terminal Options 

The basic terminal options for reading data from a client site are: 

• Uppercase-Changes characters to uppercase on a read from a terminal 

• Prompt option-The contents of the prompt buffer are to be used as a prompt for reading data 
from a terminal 

• Purge type ahead-Eliminates any information that may be in the type-ahead buffer on a read 
from a terminal 

• Read no echo-Input data is not echoed on the terminal 

• Read no filter-Indicates CTRLfU, CTRUR and DELETE are not to be considered as control 
commands on terminal input 

• Timeout-Specifies the number of seconds to wait between characters being typed 

The basic terminal options for rms$get_sequential and rms$put_sequential are set by the following 
record. Note, if prompt option is· set, then rms$basic_terminal_options.prompCbuf{er contains the 
prompt character string. The prompt character string is output to the terminal before the rms$get_ 
sequential is performed. If the timeout option is set, then rms$basic_terminal_options. timeou(period 
contains the delay time in seconds. 

!+ 
!The basic terminal options are set through this record structure 
!-
rms$basic_terminal_options : RECORD 

prompt buffer: longword data(l); 
timeout-period : integer[O .. 255J SIZE(byte}; 
term_control : rms$set_terminal_control; 

END RECORD; 

rms$set_terminal_control names : ( 
cancel_control_o, 
upcase_input, 
read_with-prompt, 
purge_type_ahead, 
read_no_echo, 
read_no_filter, 
read with timeout 
) ; 

rms$set_terminal_control SET rms$set_terminal_control_names[ .. J SIZE(byte); 

1.3.5.5.4 Key Reference 

The key reference contains a key value for an indexed file. The use and structure is TBS. 

1.3.5.5.5 Record Locking Options 

Record locking options are not defined presently, and are not available at FRS. 

1.3.5.5.6 Indexed File Options 

Indexd file options are not defined presently, and are not available at FRS. 

1.3.5.6 Current Record Pointer 

Upon a successful get_sequential operation, RMS returns the current record's virtual block number 
and the offset. This is an optional output parameter. 

1-26 Record Management Services 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

1.3.5.7 Next Record Position 

RMS returns through this optional output parameter information to facilitate retrieval of the next 
record (next, relative to the current record). The format for this record is not yet specified. 

1.3.5.8 Read Data Buffer 

In the default locate mode, RMS sets the output parameter read_data_buffer -pointer to point to the 
beginning of the data, retrieved in the call. The output parameter read_data_length specifies the 
length of the retrieved data. If move mode is set, then these fields have the same values as user _in_ 
buffer -pointer and user _in_buffer _length respectively. 

/****** An implementation note **********/ 

The above is an example of geCsequential procedure type. All the sequential read procedures are 
based upon this procedure type. The convention is to name the procedures based upon the static 
file attributes. The attributes are delimited by an underscore character. Thus, the procedures are 
named as: OP _ACC$ORG_DEV_FMT. Where OP is the operation (Get or Put); ACC is the record 
access mode (sequential, RFA or key); ORG is the file organization (sequential, relative or indexed); 

-DEV is the device type (disk, mag tape or terminal); FMT is the record format (fixed length, STM, 
STMCR, STMLF, UDF, variable length or VFC). Thus, there are procedures that appear as: 

PROCEDURE get_seq$seq_dsk_vfe( 
file_handle, 
reeordyosition, 
user_in_bufferyointer, 
user_in_buffer_length, 
move_mode, 
in_options, 
eurrent_reeordyointer, 
next_reeordyosition, 
read_data_bufferyointer, 
read data length 
) OF- TYPE rms$ptype_get_sequentiali 
EXTERNAL; 

The vector that contains the procedure variables is defined as: 

rms$retrieval serv vee: 
get_seque;;-tial
put_sequential 
get_rfa 
get_key 
put_key 

END RECORD; 

RECORD 
rms$ptype_get sequential; 
rms$ptypeyut_sequential; 
rms$ptype_get_rfa; 
rms$ptype get key; 
rms$ptype~ut=key; 

Once a file is opened, the data retrieval service vector can be initialized. For example: 

/****** End implementation note **********/ 

Record Management Services 1-27 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

1.3.6 Get Random by RFA 

Get random by RFA (rms$ptype~et_rfa) access mode is used to retrieve records by directly specifying 
the record's address within the file. The service returns the next_recordyosition, which may be used 
in a subsequent sequential access mode. 

TYPE 
rms$ptype_get_rfa : PROCEDURE ( 

IN file_handle : rms$file_handle; 
IN current_record-pointer : rms$record_file_address; 
IN user_in_buffer-pointer : POINTER anytype CONFORM; 
IN user_in_buffer_length : integer; 
IN move mode : boolean = FALSE; 
IN in_options : POINTER rms$item_list; 
OUT next_record-position : POINTER anytype OPTIONAL; 
OUT read_data_buffer-pointer : POINTER anytype; 
OUT read_data_length : integer; 
) RETURNS status; 

The interface for rms$ptype~et_rfa is similar to rms$ptype~et_sequentiaZ. The major difference 
being the use of the parameter current_recordyointer. In this case, currenCrecordyointer is the 
required input parameter, which is used to retrieve the record. Locate mode is the default mode of 
access. Based upon the file's organization, RMS returns a next_recordyosition, which can be used 
as input for subsequent sequential accesses. 

The Input Options, in_options, specified for rms$ptypeJJet_sequentiaZ are vaild for rms$ptype-lJet_rfa, 
except for: 

• Key reference field and index file options are not applicable 

• Terminal options are not applicable in this mode of access 

1.3.7 Get Random by Key 

Records may be accessed by specifying a "key" value. For sequential files with fixed records, and 
relative files, a relative record number is specified. This mode of data retrieval is most meaningful 
for indexed files. For indexed files, the record structure isam_key specifies the key definitions to the 
data retrieval service. However, indexed file operations are not specified for Mica RMS presently. 
Data retrieval operations on indexed files are not available at FRS. 

TYPE 
rms$ptype_get_key: PROCEDURE ( 

IN file_handle : rms$file_handle; 
IN relative_record_number : integer OPTIONAL; 
IN isam key : POINTER rms$key_definition OPTIONAL; 
IN user_in_buffer-pointer : POINTER anytype CONFORM; 
IN user_in_buffer_length : integer; 
IN move_mode : boolean = FALSE; 
IN in options : POINTER rms$item list = NIL; 
OUT c~rrent_record-pointer : rms$record_file_address OPTIONAL; 
OUT next_record-position : POINTER anytype OPTIONAL; 
OUT read_data_buffer-pointer : POINTER anytype; 
OUT read_data_length : integer; 
) RETURNS status; 

Most of the parameters of Get Key (rms$ptype~eCkey) are the same as the parameters and options 
defined in the rms$ptypeJjet_sequentiaZ, and are not repeated here. The differences are noted below: 

1-28 Record Management Services 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

The interface for rms$ptype.geCkey provides explicit parameter for defining the relative record num
ber (relative_record_number) for sequential or relative files. The optional input parameter relative_ 
record_number is used for the random access of sequential or relative files. Sequentially organized 
files having fixed length records can be retrieved by the relative_record_number value, which in this 
case represents the record number (records are numbered in ascending order, starting with number 
1). 

For indexed sequential file keys are defined by the record pointed by the isam_key. The record 
structure rms$key _definition has not yet been specified. The optional input parameter isam_key is 
valid only for indexed files. 

In this mode of access, terminal options are not valid. 

Record Management Services 1-29 



1.3.9.4 Input Options 

Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

Following are valid input options for rms$puCsequential: 

• Disposition options-For sequential access, only truncate_onyut option can be set. 

• Record header definition-This is defined below. 

• Basic terminal options-The options are for the terminals connected to the client. 

The Put service (both sequential and keyed) input options item list is defined below: 

!+ 
!This enumerated type is used to define the input options item codes 
!for Put service. 
!All items are prefixed "put" 
!-

rms$put_seq_item code : ( 
rms$put disposition, 
rms$put=record_header, 
rms$put basic terminal, 
rms$put=record_lock 
) ; 

1.3.9.4.1 Put Disposition Options 

for VFe format 
for terminals at client site 
not used presently 

Through this input item, the user may specify the following data output time file despositions: 

• Truncate on put-This option specifies that in the sequential record output mode, data may be 
palced anywhere in the file. The file is truncated at the point immediately after the output 
record. The end-of-file mark is reset to the new position. This option is used only in rms$ptype_ 
put_sequential type procedures. 

• Update if-This option allows the user to overwrite a record in a sequential file that is being 
accessed randomly by the relative record number. This option is only used in rms$ptypeyuCkey 
type procedures. 

1.3.9.4.2 Record Header Definition 

This field is used to specify the fixed-control area of a file with VFC record format. The fixed-control 
area allows the user to include within the record additional data that may have no direct relationship 
to other contents of the record. RMS writes the contents of the specified buffer to the file as the fixed
control area portion of the record. 

1.3.9.4.3 Basic Terminal Options 

The basic options for writing data to a terminal connected to a client system are: 

• Cancel contro]JO-Guarantees that terminal output is not discarded if the operator presses 
CTRL/O 

• Timeout -Specifies the number of seconds to wait between characters being typed 

The above options are selected on the record described in Section 1.3.5.5.3. Note, if the timeout option 
is selected, the field rms$basic_terminaCoptions.timeoutyeriod is set to indicate the allowed dealy 
in number of seconds. 

Record Management Services 1-31 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

1.3.8 Put Services 

The Put (rms$put) service adds a record to the file. The user provides a buffer and the length 
indicating the record that is to be added. The records are placed at the end of sequential files. Put 
operations on relative and indexed files are not defined presently. 

1.3.9 Put Sequential 

The rms$puCsequential record access mode service may be used to insert records for sequential, 
relative or indexed files. 

For sequential files, the rms$pucsequential service inserts records at the end of the file. However, 
records can be inserted in locations other than the end-of-file, truncate_on-put is set. When the record 
is inserted, the file is automatically truncated to a new end-of-file. The new end-of-file is the position 
immediately after the inserted record. If both, the file disposition option truncate_on-put and the file 
access mode rms$c_truncate are not set, then records cannot be inserted at locations other than at 
the end of the file. 

The Put service initializes the internally maintained next record position at the end-of-file. If the 
position where the record istb be inserted is not specified, RMS inserts the record as defined in the 
next record position. If the next record position is not the end-of-file (for example, in between the two 
Put operations, the user has done a random Get, which altered the next record position), then record 
output operation fails unless truncate_on-put and the file access mode rms$c_truncate are set. 

Record insertion operations on indexed and relative files are not available at FRS. 

This generic interface is used to write records. The file organization, the record format, the device 
type have· been resolved prior to the Put operation. The interface to the service is described below. 

TYPE 
rms$ptype-put_sequential: PROCEDURE ( 

IN file_handle : rms$file_handle; 
IN data_out_buffer-pointer : POINTER anytype; 
IN data out buffer length : integer; 
IN reco;d-p;sition-: POINTER anytype OPTIONAL; 
IN in options : POINTER rms$item list; 
OUT c;rrent_record_pointer : rms$record_file_address OPTIONAL; 
OUT next record-position : POINTER anytype OPTIONAL; 
) RETURNS status; 

The parameters ?f the procedure rms$puCsequential are described below. 

1.3.9.1 File Identification 

The caller supplies the file_handle which was provided earlier by rms$open. 

1.3.9.2 User Output Buffer 

User specifies the data output buffer through the input parameters data_ouCbuffer -pointer and data_ 
ouCbuffer _length. 

1.3.9.3 Record Position 

This optional parameter is used to specify a location where the record is to be inserted. If this field 
is specified, and the record position is not the same as the end-of-file position, then both, the file 
disposition option truncate_on-put, and the file access mode rms$c_truncate must be set. If these are 
not set, the record ouput operation fails. 

1-30 Record Management Services 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

1.3.9.5 Current Record Pointer 

RMS returns the current record's file address through this optional output parameter. 

1.3.9.6 Next Record Position 

This optional output parameter provides a position context for the next record. 

1.3.10 Put Key 

The Put Key (rms$ptype-put_key) service is used to insert records randomly by relative record number 
into sequential files. Operations on indexed and relative files are TBS. 

For sequential files records are usually inserted at the end of the file. However, records may be 
inserted randomly by relative record number on a disk resident sequential file with fixed length 
record format, if the file disposition option update_ifis set and the file access mode rms$c_update is 
set. 

TYPE 
rms$ptype~ut_key: PROCEDURE ( 

IN file_handle : rms$file_handle; 
IN data_out_buffer_pointer : POINTER anytype; 
IN data_out_buffer_length : integer; 
IN relative record number : integer OPTIONAL; 
IN in_optio~s : POINTER rms$item_lists; 
OUT current record pointer : rms$record file address OPTIONAL; 
OUT next_re~ord~o;ition : POINTER anytype OPTIONAL; 
) RETURNS status; 

The input parameters file_handle, data_out_buffer -pointer and data_ouCbuffer _length are previously 
described in rms$put_sequential. Please see Section 1.3.9. 

1.3.10.1 Relative Record Number 

This optional input parameter is used if the file organization is sequential or relative. See Sec
tion 1.3.7 for details. 

1.3.10.2 Input Options 

The input options are defined in in rms$puCsequential. See Section 1.3.9.4. The following input 
options are vaild for rms$ptype-put_key: 

• Disposition options--For random access, only update_if option can be set. 

• Record header definition 

1.3.10.3 Current Record Pointer 

RMS returns the current record's file address through this optional output parameter. 

1.3.10.4 Next Record Position 

This optional output parameter provides a position context for the next record. 

1-32 Record Management Services 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

1.3.11 Parse Service 

The Parse (rms$parse) service analyzes a file specification and returns an expanded file specification 
through the output parameter expandedJile. It processes wildcard characters and stores the context 
for subsequent searches. By default, rms$parse also assigns a channel and performs a directory 
lookup. The Parse service can be used in one of the following modes: 

• Syntax check only-This indicates that the file specification is checked for syntax validity without 
requiring any I/O processing to ensure that the device, directory and the file actually exists. 

• Device check-This indicates that after doing the work for syntax check, rms$parse checks that 
the device exists. RMS also returns the device characteristics, and the volume object ID. 

• File check-This indicates that after completing device check, RMS checks that the directory 
and the file exists. RMS returns the device characteristics, and the volume object ID. If there 
were no wildcards, then the file ID is also returned. 

The procedure is defined below: 

PROCEDURE rms$parse( 
IN file_name: string(*); 
IN default_file_string : string(*) OPTIONAL; 
IN related files : POINTER rms$related file list = NIL; 
IN parse_option : rms$parse_option = r;s$c_file_check; 
OUT device characteristics : rms$device characteristics OPTIONAL: 
OUT wild_c~rd_ctx : POINTER anytype OPTIONAL; 
OUT expanded file : POINTER rms$file reference; 
OUT quick file ref out : POINTER rms$file ref identifier OPTIONAL; 
OUT file_~ame_;ts - rms$file_name_status;- -
) RETURNS status; 

1.3.11.1 File Specification 

The file name that is to be parsed is specified by the file_name parameter. This is a required input 
parameter, and is the primary file specification. 

If the primary file specification does not contain all the components of a file specification, then defaults 
are applied to fill the lllissing components. The default file specification string is specified by the input 
parameter defaultJile_string. This is not a required input parameter. 

If after applying the default file specification, a full file specification is not achieved, then the related 
file specification string is applied tofill in the missing directory, file name and file type fields. The 
related file specification is specified'by the input parameter relatedJiles. The relatedJiles is a link 
list of related file specifications. This is not a required input parameter. 

TYPE 
rms$related_file list : RECORD 

related_file_specifications varying string(255); 
related file list flink : POINTER rms$related_file_list; 

END RECORD; 

Record Management Services 1-33 



---------------------------------- - --------------------------------------------

Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

1.3.11.2 Parse Options 

One of the following parse options may be set: 

• Syn tax check only 

• Device check 

• File check 

The default is to check for the file specification. 

TYPE 
rms$parse_option : ( 

rms$c syntax check, 
rms$c=device_check, 
rms$c_file_check 
) ; 

1.3.11.3 Device Characteristics 

This optional output parameter contains the device characteristics. See Section 1.3.1.5 for the de
scription of the type rms$device_characteristics. RMS returns the device characteristics, if the parse 
option rms$c_syntax_check is not set. 

1.3.11.4 Wild Card Context 

The wild_card_ctx parameter points to a storage area which contains wildcard processing information 
for a subsequent rms$search operation. 

1.3.11.5 Expanded File Specification 

The output of the rms$parse service is primarily the expandedJile parameter. The record is specified 
in Section 1.3.1.6. 

1.3.11.6 Quick File Reference 

This optional output parameter is returned, if the parse option rms$cJile_check is set. If there 
were no wildcards in the file specification, then this record contains the file ID, as well as the volume 
object ID. This record can be used as an input to rms$open to open the file, without requiring filename 
processing. 

1.3.11.7 File Name Status 

This output parameter file_name_sts indicates status information about the file, as determined by the 
rms$parse service. This parameter is used as input to the rms$search service. The record structure 
that specifies the type rms$file_name_status, is not yet specified. 

1-34 Record Management Services 



1.3.12 Search Service 

Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

The Search (rms$search) service scans a directory file specified within the wildcard_context area. 
The wildcard_context area has been set up by an earlier rms$parse service call. It is assumed that 
rms$parse saves the expanded file name within the wildcard context area. The rms$search service 
looks for entries that matches the file name, type and version number specified in the wildcard_ 
context. Matched file entries are returned through the matchedJiles parameter. The rms$search 
service may be used to find a series of file specifications, whose names match a given file specification 
with wildcard characters. If there are no wildcard characters, then the file specified is matched. 

PROCEDURE rms$search( 
IN OUT wildcard conte::-:t : POINTER anytype; 
OUT file_name_status : rms$file_name_status; 
OUT matched files : POINTER rms$match_entries; 
) RETURNS status; 

1.3.12.1 Wildcard Context 

This is a pointer to a context block which was built by rms$parse. The contents of the wildcard 
context block is not yet specified. Among other information, the wildcard context block contains the 
expanded file string, as well as context information for further search. 

The context information for further search specifies the starting point within the specified directory 
from which to continue returning matched entries. This context is built by rms$search, if it were 
unable to return all the matched entries due to buffer overflow. A buffer overflow implies that the the 
buffer allocated to receive the matched entries was not adequate. The caller determines that a buffer 
overflow has occured by examining the output parameter file_name_status. In the case, where there 
is a buffer overflow, the caller simply reinvokes the rms$search service with the wildcard_context, to 
receive the balance matched entries. If so desired by the caller, this mechanism can be used to mimic 
the VMS RMS Search service behavior of returning one matched entry per invocation. 

1.3.12.2 File Name Status 

This output parameter contains. status information about the file that is being matched by the 
rms$search service. The information returned by this output parameter has not yet been specified. 

1.3.12.3 Matched Files 

The output may contain zero, one or many matches. The entries that match the input file specification 
are returned in the array pointed by matchedJiles. If the buffer pointed by matchedJiles is allocated 
by the caller. If the buffer area overflows or no matches are found, rms$search service returns a 
suitable indication. The definition of the buffer that contains the matched files is shown below: 

rms$match_entries (number_of_entries : INTEGER[l .. 65535]) : RECORD 
CAPTURE number of entries; 
files: ARRAY [l.~number_of_entries] OF rms$file; 

END RECORD; 

Record Management Services 1-35 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

1.3.13 Display Service 

The Display (rms$display) service returns various file and record attributes. A file must be open for 
access by rms$create or rms$open before rms$display can be invoked. The file and record attributes, 
for which information is desired may be specified by the various options listed in the outputs item' 
list. RMS returns the file ID and the volume object ID, via the quickJile_ref_out parameter. 

PROCEDURE rms$display( 
IN file_handle : rms$file_handle; 
IN outputs : POINTER rms$item list; 
OUT quick_file_ref_out : POINTER rms$file_ref identifier OPTIONAL 
) RETURNS status; 

1.3.13.1 File Identification 

The file is referenced by the file_handle parameter. 

1.3.13.2 Output Options 

The valid output options are described below. The fields have been defined individually in rms$create. 

!+ 
! The output items for the Display service is shown below. 
!-

rms$display out options item code : ( 
rms$display=allocation_options, 
rms$display-protection_options, 
rms$display_date_time_options, 
rms$display file header definitions, 
rms$display-magt~pe options, 
rms$display=key_definitions 
) ; 

1.3.13.2.1 Allocation Options 

The values of the following fields are returned: 

• Allocation quantity 

.. Default extension quantity 

!not defined presently 
!not defined presently 

The record structure for displaying the allocation quantities is shown below: 

rms$display_allocation : RECORD 
allocation_quantity: integer[O .. ] SIZE(longword); 
default extention : integer[O .. 65535J; 

END RECORD; 

1.3.13.2.2 Protection Options 

Please see Section 1.3.1.4.2. The information that is returned by the Display service is TBS. 

1-36 Record Management Services 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

1.3.13.2.3 Date and Time Options 

The following date and time values are returned. The data structure for date and time options is 
defined below. 

• Backup date and time 

• Creation date and time 

• Expiration date and time 

• Revision date and time 

• Read date and time 

• Header write date and time 

!+ 
!This record defines the date and time options. 
!This record structure is used as output option item of Display. 
!-

rms$date_time_options: RECORD 
revision_number: INTEGER [0 .. 65535J SIZE(WORD); 
filler_l : INTEGER [0 .. 65535J SIZE (WORD) ; 
UNION CASE * 

I"lHEN 1 THEN 
revision date time: large_integer; 

WHEN 2 THEN 
revision date 
revision time 

END UNION; 

UNION CASE * 
WHEN 1 THEN 

longword; 
integer; 

creation_date_time: large_integer; 
WHEN 2 THEN 

creation date 
creation time· 

END UNION; 

UNION CASE * 
WHEN 1 THEN 

longword; 
integer; 

expiration_date time : large integer; 
WHEN 2 THEN 

expiration date 
expiration=time 

END UNION; 

longword; 
integer; 

UNION CASE * 
WHEN 1 THEN 

backup date_time : large_integer; 
WHEN 2 THEN 

backup_date 
backup_time 

END UNION; 

UNION CASE * 
WHEN 1 THEN 

longword; 
integer; 

read date_time : large_integer; 
WHEN 2 THEN 

read date 
read time 

END UNION; 

longword; 
integer; 

Record Management Services 1-37 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

UNION CASE * 
WHEN 1 THEN 

header_write_date_time : large_integer; 
WHEN 2 THEN 

header write date 
header write time 

END UNION; 

LAYOUT 
revision number; 
filler_l; 
UNION 

OVERLAY 

longword; 
integer; 

revision date time ALIGNMENT (LONGWORD); 
OVERLAY 

revision_date; 
revision_time; 

END UNION; 

UNION 
OVERLAY 

creation date time ALIGNMENT (LONGWORD); 
OVERLAY 

creation_date; 
creation_time; 

END UNION; 
UNION 

OVERLAY 
expiration_date time ALIGNMENT (LONGWORD); 

OVERLAY 
expiration_date; 
expiration_time; 

END UNION; 

UNION 
OVERLAY 

backup_date time ALIGNMENT (LONGWORD); 
OVERLAY 

backup_date; 
backup_time; 

END UNION; 

UNION 
OVERLAY 

read date time ALIGNMENT (LONGWORD); 
OVERLAY 

read_date; 
read_time; 

END UNION; 

UNION 
OVERLAY 

header write date time ALIGNMENT (LONGWORD); 
OVERLAY 

header write date; 
header_write_time; 

END UNION; 

END LAYOUT; 
END RECORD; 

1-38 Record Management Services 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

1.3.13.2.4 File Header Characteristics 

The file header characteristics are returned by the following record structure. 

This record defines the file header characteristics 

rms$file_head_characteristics : RECORD 
UNION CASE * 

WHEN 1 THEN 
file_org_n_rec_format byte; 
raw_record_attributes byte_data(l); 
longest_record_length word; 
raw highest virtual block: byte data(4); 
raw=end_of file_blo~k : byte_dat~(4); 
first_free_byte : word; 
fhc_fill_1 : byte_data(l); 
vfc header size : byte; 
max_record_size : word; 
default_extention_qty : word; 
fhc_fill_2 : word_data(l); 
fhc_fill_3 : byte_data(8); 
version_limit : word; 
start_lbn_if_ctg : longword; 

WHEN 2 THEN 
record attribute ftn : bit; 
record_attribute_cr : bit; 
record_attribute-prn : bit; 
record_attribute_blk : bit; 
highest_virtual_block_O : word; 
highest_virtual_block_2 : word; 
end of file block 0 word; 
end of file block 2 : word; 

END UNION; 
LAYOUT 

UNION 
OVERLAY 

file_org_n_rec_format ALIGNMENT (BYTE) POSITION (bit, 0) ; 
raw record attributes ALIGNMENT (BYTE) POSITION(bit,8}; 
longest record length ALIGNMENT (BYTE) POSITION(bit,16); 
raw_highest_vi~tual_block ALIGNMENT (BYTE) POSITION(bit,32); 
raw_end_of_file_block ALIGNMENT (BYTE) POSITION(bit,64); 
first_free_byte ALIGNMENT(BYTE} POSITION(bit,96}; 
fhc_fill_1 ALIGNMENT (BYTE) POSITION(bit,112}; 
vfc_header_size ALIGNMENT(BYTE) POSITION(bit,120); 
max_record_size ALIGNMENT(BYTE) POSITION(bit,128); 
default_extention_qty ALIGNMENT (BYTE) POSITION(bit,144); 
fhc_fill_2 ALIGNMENT (BYTE) POSITION(bit,160); 
fhc_fill_3 ALIGNMENT(BYTE) POSITION(bit,176); 
version_limit ALIGN~ffiNT(BYTE) POSITION(bit,240); 
start_lbn_if_ctg ALIGNMENT (BYTE) POSITION(bit,256); 

OVERLAY 
fhc_record_filler_1 : FILLER(bit,*); 
record_attribute_ftn POSITION(bit,8); 
record_attribute_cr POSITION(bit,9); 
record_attribute-prn POSITION (bit, 10) ; 
record_attribute_blk POSITION (bit, 11) ; 
fhc_record_filler_2 : FILLER(bit,*); 
highest virtual block 0 POSITION(bit,32); 
highest=virtual~lock=2 POSITION(bit,48); 
end of file block ° POSITION(bit,64); 
end of file block 2 POSITION(bit,80); 

Record Management Services 1-39 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

END UNION; 
END LAYOUT; 

END RECORD; 

1.3.13.3 Quick File Reference 

This output parameter contains the file ID of the file, and the volume object ID, on which the file 
resides. 

1.3.14 Erase Service 

The Erase (rms$erase) service deletes a disk file and removes the file's directory entry as specified in 
the path to the file. The file must be closed before it can be deleted. The rms$close service can also 
delete a file if the delete on close option was set. The rms$erase service returns the erased file's fully 
qualified file name through erasedJile parameter. 

PROCEDURE rms$erase( 
IN file name: STRING(*) OPTION~~; 

IN default_file_string : string(*) OPTIONAL; 
IN quick file ref in: rms$file ref identifier OPTIONAL; 
OUT eras;d file :-POINTER rms$file_r;ference OPTIONAL; 
) RETURNS status; 

1.3.14.1 File Specification 

The file that is to be erased maybe specified by the file_name parameter, if the file ID is unknown to 
the user. If the file_name does not contain all the components of a file specification, then defaults are 
applied to fill the missing components. The default file specification string is specified by the input 
parameter defaultJile_string. This is not a required input parameter. 

Alternatively, if the file ID is known, the quickJileJef_in parameter may be used. The use of this 
input parameter elimates the need for filename processing in the rms$erase service. 

1.3.14.2 Erased File Specification 

The erased file's specification is returned by the optional output parameter erasedJile. See Sec
tion 1.3.1.6 for defintion of the record structure. 

1.3.15 Flush Service 

The Flush (rms$flush) service writes out all modified I/O buffers and file attributes associated with 
the file. 

PROCEDURE rms$flush( 
IN file handle rms$file_handle; 
) RETURNS status; 

1.3.15.1 File Identification 

The user provides the file_handle, which was provided earlier by rms$open service. 

1-40 Record Management Services 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

1.3.16 Free and Release Services 

The Free (rms$free) service unlocks all records that were previously locked. The Release (rms$release) 
service unlocks the record specified by the contents of the record's file address. The locking and 
unlocking functions are not presently supported, both rms$free and rms$release are unavailable at 
FRS. 

1.3.17 Rewind Service 

The Rewind (rms$rewind) service sets the context of a record stream to the first record in the file. 
For sequential and relative files, rms$rewind service establishes the next-record position as the first 
record or the record cell in the file, regardless of the access mode. For indexed files, the next-record 
position is established at the first record of the current key of reference. The rms$rewind service 
performs an implicit Flush service. This operation cannot be performed on terminal devices as well 
as those devices that are accessed by way of the client context server. 

PROCEDURE rms$rewind( 
IN file_handle : rms$file_handle; 
IN key_ref : rms$key_of_reference OPTIONAL; 
OUT next_record~osition : POINTER anytype OPTIONAL; 
) RETURNS status; 

1.3.17.1 File Identification 

The user specifies the file by the filejLandle parameter. 

1.3.17.2 Key Reference 

This optional parameter is required for indexed files. The parameter contains a key value. 

1.3.17.3 Next Record Position 
\ 

The reference to the next record position is returned to the caller. 

1.3.18 Truncate Service 

The Truncate (rms$truncate) service applies to sequential files on disks or magnetic tapes only. The 
service deletes the record indicated as the current record, and all following records. The end-of-file 
indicator is set at the current record pointer. The rms$truncate service may immediately follow a 
successful rms$get, or rms$update. The file being truncated must not be accessed for block I/O. 

PROCEDURE rms$truncate( 
IN file handle : rms$file_handle; 
) RETURNS status; 

1.3.18.1 File Identifier 

The user specifies the file by the file_handle parameter. 

Record Management Services 1-41 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

1.3.19 Update Service 

The Update (rms$update) service modifies an existing record in a file. The record to be updated is 
to be retrieved by calling rms$get (with or without the find flag set). The current_recordyointer, as 
provided by the rms$get service, may be returned as the recordyosition. If the recordyosition is 
not supplied, RMS uses the internally maintained record position to update the record. As with the 
rms$put service, the user is required to provide a buffer descriptor holding the record that is to be 
updated. The user program is required to establish the current-record position before calling this 
service. 
For sequential files, the record length of the update record cannot be different from the record being 
updated. 

PROCEDURE rms$update ( 
IN file handle : rms$file handle; 
IN reco~d-position : POINTER anytype OPTIONAL; 
IN data_out_buffer-pointer : POINTER anytype; 
IN data_out_buffer_length : integer; 
IN in options : POINTER rms$item list; 
OUT n;xt_record-position : POINTER anytype OPTIONAL; 
) RETURNS status; 

1.3.19.1 File Identification 

The user specifies the file_handle parameter to identify the file. 

1.3.19.2 Record Position 

The record-position represents the record that is to be updated. 

1.3.19.3 User Output Buffer 

User specifies the data output buffer through the input parameters data_ouCbuffer -pointer and data_ 
ouCbuffer _length. 

1.3.19.4 Input Options 

Please see Section 1.3.9.4. The following sections describe the valid input options to the rms$update 
service. 

1.3.19.4.1 Record Header Buffer 

This buffer contains the descriptor of the record (VFe format only) header buffer. 

1.3.19.4.2 Record Locking Options 

Record locking options are not available at FRS. 

1.3.19.5 Next Record Position 

RMS returns through this optional output parameter information to facilitate retrieval of the next 
record (next, relative to the current record). The format for this record is not yet specified. 

1-42 Record Management Services 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

1.4 Algorithms for File Management 

This section outlines a sample VO request through Mica RMS. The section also includes the major 
steps followed by a few of the services specified in the previous section. 

1.4.1 Sample I/O Request Flow 

1. An application calls rms$create to create a file MYFILE.TXT. 

2. The rms$create service processes the file name and determines that: 

• The volume name is MYVOL 

• The directory in which the file is to be created is BETA. Directory ID of BETA is 4798,11,0 

• The file name is MYFILE.TXT 

3. The rms$create service calls exec$translate_object_name with the volume name string MYVOL 
as input parameter, to obtain the FPU object ID. 

4. The rms$create service calls exec$create_channel with the FPU object ID as input, to obtain the 
channel object ID. 

5. The rms$create service calls exec$requesCio with input parameters channel ID, IOSB, function 
code io$c_dfile_create, the file name with the complete directory path and the file attribute list, 
to obtain the file ID of the file created. At this point, the file has no storage allocated to it. 

6. The caller has specified storage allocation, therefore, the rms$create service calls exec$requesCio 
with the function code io$c_dfile_allocate_storage to allocate space for MYFlLE.TXT. 

7. The rms$create service calls exec$requesCio with the function code io$c_dfile_access to open the 
file 

8. The rms$create service builds a client context, and returns a file handle to the user. A data 
retrieval vector has also been set up for all 1/0 operations. The vector entries are (for example): 

get_seq$seq_dsk_var 
put_seq$seq_dsk_var 
get_rfa$se~dsk_var 
get key$seq dsk var 
put=key$se~dsk=var 

9. At this point, 1/0 operations can be done on the file. The user wants to write a record to the file, 
and calls rms$put_sequential procedure. Within the RMS procedure, the call is made to put_ 
seq$seq_dsk_var. The user data is moved into a buffer area. Mter several user write operations, 
the buffer fills up, and is written out. 

10. The puCseq$seq_dsk_var calls the 1/0 subsystem procedure exec$requesCio with the function 
code io$c_dfile_write with the input parameters specifying the 1/0 channel object ID, lOSE, the 
VBN at which to start writing the data, the pointer to the data buffer in memory and the length 
of the buffer. The status is checked to see that the operation is successful. 

11. The user closes the file by invoking rms$close service. The rms$close checks that there are 
no VOs outstanding on the file, writes out the dirty buffers, and calls exec$requesCio with the 
function code io$c_dfile_deaccess to close the file. The rms$close deletes the 1/0 channel by calling 
exec$delete_objecCid. The file context area is deallocated, and the pointer to the file context area 
is initialized to nul. 

Record Management Services 1-43 



----------------- _ .. _--_. __ ..... _._----------------

Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

1.4.2 Create Service 

The Create service performs the following significant operations: 

1. Allocates space for maintaining the file context. 

2. Tests if the file organization is sequential. If not sequential, RMS cannot satisfy the request at 
FRS, so exits with an appropriate indication. 

3. Processes the file name: 

a. If the argument quickJile_ref_in is present, then it performs the following steps: 

1. Checks to see if the volume's object ID has been provided (if not, then error exit) 

2. Checks to see that a file ID has been provided (if not, then error exit) 

3. Sets an appropriate status 

b. If the quickJile_ref_in argument is not present, the Create service uses the string passed 
as file_name. It calls an internal procedure to processes the file name by applying all name 
processing rules. Note, node names or wildcards are not allowed. This returns the file name 
in a record structure which can be used directly as an input parameter to the 1/0 subsystem. 
The file-name processing procedure also provides a status. The status may indicate that the 
file is to be opened by way of client call back support routines. That is, if after file name 
translation, it is determined through a status value that the access is to be made by way of 
client context server routines (clientcs). In this case, rms$create calls clientcs$rms_open in 
step 14. The procedure that processes file names also indicates if search lists are present. 

4. If a search list is present, and if the user has set the create if nonexistent option, then the Create 
service performs the following steps: 

a. Tries to access the file. If successful, the Create service then sets an indicator that this 
Create call is now going to complete like an Open call. What this means is that the file 
already exists and RMS treats the call as though the user has called rms$open. 

b. Repeats the above steps until there are no more items in the search list (If the file is not 
found, no problem, just continue with Create). 

5. Performs organization-specific checks. Only sequential files are handled at FRS. The basic checks 
for a sequential file are: 

a. For magnetic tape device (not supported at FRS) the Create service: 

1. Checks to ensure that records cannot cross block boundaries flag is set 

2. Sets the block size 

b. Sets EOF VBN = 1 and first free byte (FFB) = 0 

c. If the record format is fixed, ensures that the records are not longer than one block size 

6. In order to request the underlying file system or DFS to create a file, the Create service supplies 
the following: 

a. A channel ID. To obtain a channel ID, the Create service calls the executive service Create 
Channel (specifying the volume ID). The volume ID is obtained from the the system service 
that translated volume name to volume ID. If the volume is not mounted, it causes an error 
and exits the procedure. 

b. Address of a IOSB block. 

c. Target directory entry (which is in the form of file_entry). 

d. A Write Attribute list. Form this list using the user supplied file attributes. If required, it 
uses defaults. 

1-44 Record Management Services 



e. An access control structure. 

f. A directory entry control structure. 

Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

g. A conditional create flag. The Create service sets this flag if the user has specified create_if 
(see Section 1.3.1.4.3). 

7. Calls exec$requesCio (function code = io$c_dfile_create). If this is successful, then it continues. 

8. Performs allocation and placement controls from user specification. If the user has not specified 
area allocation quantity, the Create service uses the track size of the device as the intial allocation 
quantity. The file area is allocated by calling exec$request_io (function code = io$c_dfile_allocate_ 
storage). If the call is successful, the file has been created. 

9. Returns information back to the user as per user request. Returns the file_handle. 

10. If the device type is magnetic tape (not supported at FRS), and if rewind on close is requested, 
rewinds the tape. 

11. Saves the options that the user has requested to be performed when the file closes. 

12. Sets the suitable data retrieval and output procedures for the file. That is, arm the data retrieval 
and output vector with the appropriate procedure variables. 

13. If clientcs$open is called, checks the status return. If successful, returns to the user an appro
priate status and the file_handle. In this case, arms the data retrieval and output vector with 
the appropriate get_sequential and put_sequential procedures. 

14. The Create service sets RMS status. 

1.4.3 Open Service 

The Open service performs the following significant operations: 

1. Allocates space for maintaining the file context. 

2. Processes the file name: 

a. If the argument quickJile_ref_in is present, then it performs the following steps: 

1. Checks to see if the volume's object ID has been provided (if not, then error exit) 

2. Checks to see that a file ID has been provided (if not, then error exit) 

3. Sets an appropriate status 

b. If the quickJile_ref_in argument is not present, the Open service uses the string passed as 
file_name. It calls an internal procedure to processes the file name by applying all name 
processing rules. Note, node names or wildcards are not allowed. The procedure returns 
the file name in a record structure which can be used directly as an input parameter to 
the VO subsystem. The file name processing procedure also provides a status. The status 
may indicate that the file is to be opened by way of client context server routines. That 
is, if after file name translation, it is determined through a status value that the access is 
to be made by way of client context server routines (clientcs). In this case, rms$open calls 
clientcs$rms_open. 

3. Opens a channel to the volume. 

4. Tries to access the file by calling the exec$requesCio (function code = io$dfile_access). The Open 
service specifies the access and share constraints as specified by the user. If the 1/0 call is 
successful, then continues. Otherwise, the Open service checks to see if there is a search list. 

Record Management Services 1-45 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

5. If a search list is present, the Open service gets the next list item and tries to access the file. 
The Open service repeats the process until a file is found, or the search list is exhausted. If the 
file is not found, the Open service exits unsuccessfully, as the file is not found. 

6. If the file is found, then the file attributes are known. 

7. The Open service performs organization specific chores. Only sequential files are handled at 
FRS. For other types of file organizations, the Open service exits with appropriate indication. 
For sequential files, the Open service takes the following steps: 

a. Sets the end of file at VBN = 1, FFB = 0 

b. Saves the options for Close service in the file context area. 

c. If the device is a magnetic tape (not available at FRS), performs the magnetic tape specific 
checks and set eof postion. 

8. Sets data retrieval and output vector. 

9. Returns the output parameters, as requested by the user. 

10. 

11. The Open service sets RMS status. 

1.4.4 Close Service 

The Close service performs the following significant operations: 

1. Checks to see if the file has any outstanding 110s in progress (if so, this Close operation fails) 

2. Checks if the operation is to be handled by calling clientcs$close routine (if required, calls 
clientcs$close) 

3. Checks the file desposition on close options 

4. If delete-on-close is set, then calls exec$requesCio (function_code = io$c_dfile_delete) 

5. Otherwise, the Close service writes out all the dirty buffers 

6. Deaccesses the file by calling exec$request_io (function_code = io$c_dfile_deaccess) 

7. Deassigns the I/O channel 

8. Deallocates the file context area 

9. Sets a nul value to the file_handle 

10. The Close service sets RMS status. 

1-46 Record Management Services 



1.4.5 Parse Service 

Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

The objective of rms$parse is to form a fully-qualified file specification, which is returned to the caller 
by the expandedJile record. The string provided in the file_name field is the primary file specification. 
The secondary file specifications are supplied by the defaultJile_string and relatedJiles. 

1. The input file specification is parsed to its constituent elements. 

2. If the file specification contains only a name (without a terminating colon or period). This can 
be either a logical name or a file name. If it is a logical name then the following must be true: 

a. There must be no other file name elements 

b. The name must translate 

3. Assuming the name to be a logical name, the Parse service attempts to translate the logical 
name, to obtain an equivalence string. 

4. If the process has an associated client context (it is a bound process), then translation is first at
tempted at the client site. This is done through the client context server procedure clientcs$rms_ 
translate_logical_name. If the name translates successfully at the client site, no further attempts 
are made to translate the name at the server site. If, however, the name is not translated at the 
client site, the name is then translated at the server site. The results of translations obtained 
from the client site is not used with the results from the server site. If the translation at the 
client site is successful, the equivalence string is reapplied for translation at the client site, until 
there are no more translations. 

5. If the process is a free running process, then translation is attempted only at the server site. If 
the translation is successful, the equivalence string is reapplied for translation. 

6. If the name cannot be translated then the name is assumed to be a file name. The Parse 
service processes the file name further by applying defaults and, if necessary, the related file 
specifications to form a fully specified file. 

7. If translation from the client site returns an indication that the file is to be processed by way 
of the client context server procedures, then the file name parsing is completed. The file is a 
special file that needs to be handled by client context server procedures. 

8. If the file specification has other consitituent parts, then it sequentially checks the following: 

a. If a device name is seen then it is set aside for processing after completing parsing of other 
consitituent parts. Once remaining elements are parsed, an attempt is made to translate 
the device name as a logical name. If the translation succeeds, the equivalence string is 
then parsed, and its elements are merged in or discarded into the original file name string 
to form a new string. With the new string, the parsing operation is repeated. If the device 
name did not translate successfully, then it is truely a device name. 

b. If a directory name is seen (a left square or angle bracket is found) then RMS takes the 
following actions: 

1. Determines the directory format. The format can be anyone of the following formats: 
[group,member] format or the following normal formats: [directory_name] format or 
[directory_name1.directory_name2 ... ] format or [.directory_name ... ] format. The Parse 
service identifies the format. 

2. If the format is a normal format directory name, checks for [], [.directory _name] or 
[-.directory _name]. Presence of any of these implies explicit use of default directory. 

3. If there are leading rninus signs, repeatedly applies default directory for each minus. 
Each minus sign represents one level of directory. 

4. If the directory name is null, applies default directory. 

Record Manager lent Services 1-47 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

5. If there is a root directory specification, processes the file name using the rules for 
rooted directory. For example, there cannot be a minus sign, as it is illegal to reference 
a directory above the rooted directory. 

c. If there is a name, checks the name for validity in syntax and length (The Parse service 
checks for type as well as version). 

9. If after parsing the file name string, there are missing elements of a full file specification, defaults 
are applied until either there are no missing elements or no more defaults to be added. The 
defaults are applied in the following order: 

a. Program defaults-First, the default file name string (if any) is applied, and then, the related 
file name strings (if any) are used. The default file name string can apply to any of the 
elements of a full file specification. The parsing and copying is handled in the same manner 
as for primary file specification with the exception that duplicate fields do not cause error. 
Duplicates are simply discarded. If a logical name is provided by the default file name 
string, it is not discarded simply because there is already a device name. The logical name 
is translated fully and applied for defaults. However, in this case, the translation must not 
yield duplicate fields. If either the file name or file type remains blank, and a related file is 
specified, then the related file specification is parsed and the file name and/or the file type 
is copied in to form a full file specification. 

b. System defaults-First, the default device name is applied, which is followed by the default 
directory name. If the device component of the expanded name is missing, an attempt is 
made to obtain the default device name by calling exec$translate_object_name with the name 
sys$default_device. The equivalence string obtained from this translation is merged into the 
expanded name string just as done for default file name string. This step must yield a 
device name. If the directory component of the expanded name is missing, then the default 
directory name is copied in. The default directory name is obtained from the process public 
display container by translating sys$defaulCdirectory. 

c. If after applying the system defaults there is no device name, it is an error, and the Parse 
service exits with appropriate status. 

10. At this point the Parse service has an expanded the file name. 

11. Using the device name, obtains the device object ID. 

12. A channel is assigned and the device characteristics are obtained. If the channel assignment 
fails, the Parse service exits with error. 

13. For each directory encountered, finds its directory ID. In finding the next directory, the following 
steps are taken: 

a. First of all, the base directory is setup. Subsequent subdirectories are appended, in order, 
to the base directory. To set the base directory: 

1. Copies all the leading nonwild tokens. If all tokens were nonwild, the Parse service 
simply finds the directory ID and returns. 

2. If the very first pattern token is wild, the base dierectory is the Master File Directory 
(MFD). 

3. Alternatively, the base directory is the last nonwild name(if any). The Parse service 
gets the directory ID of the base directory. 

b. Sets the minimum number of directory levels that needs to be traversed. 

c. Checks if there are any more wildcards left in the pattern string. If not, wildcard processing 
is done. 

d. Gets the directory IDs of all the leading nonwild tokens. 

14. Performs the various outputs requested by the user. Sets RMS status. 

1-48 Record Management Services 



15. Deassigns the channel and returns. 

16. The Parse service sets RMS status. 

------------------- -- --------~--- --- --------------------

Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

1.4.5.1 Miscellaneous Notes on File Name ParSing 

• A file name string may not contain any node name or node name delimiter. The file name string 
may not contain any imbedded blanks or lower-case alphabetic characters. Quoted strings are 
not permitted. 

• There may be only one logical/device-name field in a string. The name must be terminated by a 
'.' 

• At most ten logical name translations are done. 

• The default directory string is maintained in the process public display container. The default 
directory is obtained by translating the name sys$defaulCdirectory. 

• The default device string is maintained in the process public display container. The Parse service 
tries to assign a channel to the device. If the device is not mounted, an appropriate error code 
is generated. The default device is obtained by translating sys$defaulCdevice. 

• The default name string should not contain devicellogical name. 

1.4.6 Search Service 

The basic service provided by rms$search is that within a given a directory, it looks for entries 
that match the file name, type and version number, specified in the wildcard_context. If there is 
a wildcard character embedded in the file specification string, then there is a possiblility of finding 
multiple matches. As the Search service returns all the entries that match, applications are no 
longer required to call the Search service repeatedly. The matched outputs are placed in a buffer. 
If all matched items cannot be placed in the buffer, the Search service returns an indication. The 
application may then make another call to the Search service, to obtain the rest of the items. The 
Search service performs the following significant steps: 

1. Checks if a previous context exists (for example if the Parse service was invoked earlier). If a 
context is available it proceeds to the next step, otherwise the Search service exits. 

2. Checks to see if in the previous context "no more file" condition was encountered. If so, there is 
nothing more to do. 

3. Checks to see if there a wildcard within the input file string. If no wildcards are seen, the Search 
service gets the file from the input specification. It issues a call to the I/O subsystem with the 
function code io$c_dfile_search_dir _tree to locate the file. This search path is now complete. 

4. If there is a wildcard, then the Search service issues a call to the I/O subsystem with function 
code io$c_dfile_read_dir _entries with the match criteria "all". If a previous context has to be 
passed to the I/O subsystem, the Search service passes it via the input parameter first_entry (for 
details see Chapter 20, Disk File Systeln Function Processors). 

5. Using the input file specification, the Search service matches all the entries that were returned 
by the I/O subsystem. The matched entries are returned via the output parameter matchedJiles. 

6. The wildcard_context is updated to indicate the state of the search operation. For example, if 
the buffer for return entries overflows, the next file context is saved in the wildcard_context. 

7. The Search service sets RMS status. 

Record Management Services 1-49 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

1.4.7 Data Retriveal Services 

The user accesses records from a sequential file, by calling the following generic services: 

• rms$geCsequentiaZ 

• rms$geCrfa 

• rms$get_key 

At the time a file is opened, along with others, the following file attributes are known: 

• The file organization (at FRS, only sequential files are supported.) 

• The record format 

• The device type (at FRS only disk files are supported. Terminal devices are supported by way of 
callback services.) 

Using the above file attributes, Mica RMS sets up an internal data retrieval vector. The vector is 
defined by the record rms$retrievaLserv_vec. See the implementation note in Section 1.3.5. The indi
vidual items of the data retrieval vector are armed with specific procedure variables. The procedure 
variable used depends upon the file attributes listed above. For example, if a file MYFILE has the 
file attributes: 

file name = myfile.txt 
file organization = sequential 
record format = variable 
device on which the file resides = disk 

Then, Mica RMS loads rms$retrievaLserv_vec with the following procedure variables. 

rms$retrieval_serv_vec.get_sequential get_seq$se~dsk var; 
rms$retrieval_serv_vec.put_sequential = put_seq$se~dsk var; 
rms$retrieval_serv_vec.get_rfa get_rfa$se~dsk_var; 

rms$retrieval_serv_vec.get_key = get_key$se~dsk_var; 
rms$retrieval_serv_vec.put_key = put_key$se~dsk_var; 

The user invokes the RMS interface service rms$get_sequentiaZ, which is a jacket routine. In rms$geC 
sequential the following call is made: 

result = rms$retrieval_serv_vec.get_sequential( 
file_handle, 
recordyosition, 
user_in_bufferyointer, 
user_in_buffer_length, 
move_mode, 
in_options, 
current_recordyointer, 
next_recordyosition, 
read_data_bufferyointer, 
read_data_length 
) ; 

Note, the call is being made to geCseq$seq_dsk_var procedure, on user's behalf. If, for example, the 
record format of the file were fixed, the procedure called from the jacket routine would have been to 
get_seq$seq_dskJixed. 

For data retrieval operations on sequentially organized disk files, the following procedures are defined: 

• For sequential access: 

geCseq$seq_dsk_var 

geCseq$seq_dsk_vfc 

geCseq$seq_dsk_stm 

1-50 Record Management Services 



geCseq$seq_dsk_stmcr 

geCseq$seq_dsk_stmlf 

geCseq $seq _dskJixed 

geCseq$seq_dsk_udf 

• For access via the record's file access: 

geCrfa$seq_dsk_var 

geCrfa$seq_dsk_vfc 

gecrfa$seq_dsk_stm 

geCrfa$seq_dsk_stmcr 

geCrfa$seq_dsk_stmlf 

geCrfa$seq ...,.dskJixed 

geCrfa$seq_dsk_udf 

Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

• For random access by relative record number: 

- geCkey$seq_dskJixed 

For all data retrieval procedures, the first order of business is to determine if the requested record 
can be retrieved from the existing buffers. The steps are: 

1. For keyed access, the procedure converts the relative record number to record's file address. All 
RFA procedures check if the offset value is within a block. To locate the record within a block of 
a buffer, the following steps are taken: 

2. Checks if the VBN of the record is greater than or equal to the end of file block. If this is not 
true (the VBN is within bounds), then: 

3. Gets the current buffer descriptor pointer. If the buffer descriptor is not available, then gets 
the next block. If the buffer descriptor is available, checks if the next record position (NRP) 
information is available. If the NRP is not available, then skips to next step. If the NRP is 
available, checks if the end of the buffer address is less than the NRP. If this is true, then the 
procedure skips to next step. Otherwise, the record is available immediately. 

4. To get the next block, the data retrieval procedures takes the following steps: 

a. Gets the buffer descriptor address. If buffer descriptor is not available, does a read-ahead. 
If the buffer descriptor is available, it continues below. 

b. Computes relative VBN. 

c. Checks to see if the requested block is available within the buffer. If available, then maps 
the block, otherwise releases the current buffer and read ahead. 

d. Once the record offset within the block is determined, it performs checks according to the 
record format. 

S. The above steps are common for sequential disk files, for all record formats. All data retrieval 
procedures listed above execute the comnlon steps. Having found the record, each specific data 
retrieval procedure carries out specific checks depending upon the record format. For example, 
prior to returning the pointer to the data, to the user, get_seq$seq_dsk_stm performs the following 
checks: 

a. Ignores leading NUL characters. 

b. Tries to find a terminator. If a terminator is found, that is the end of the record. If a 
terminator is not seen before the end of the buffer, sets an indication. 

Record Management Services 1-S1 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

c. If the last byte of the old buffer was a CR, and the first byte of the new buffer is a LF, then 
the procedure considers that a terminator for the record has been found. 

6. Once the record is found, RMS sets the record pointer and the next record position information. 
RMS returns other user requested information. 

7. The data retrieval service sets RMS status. 

1.4.8 Data Output Services 

Data outputs onto sequential disk files are described by the following procedures: 

• If record access mode is sequential: 

• geCseq$seq_dsk_var 

• geCseq$seq_dsk_vfc 

• get_seq$seq_dsk_stm (for stream, stmcr, stmlf) 

• geCseq$seq_dskfoed 

• For record access by relative record number: 

• put_key$seq_dskJixed 

1.4.8.1 Sequential Record Output 

The common steps for all data output procedures on sequentially organized disk files are listed below: 

1. The record position must be at the end of the file. If at EOF, then output continues. Otherwise, 
checks if truncate on put option is set. If the option is set, checks if truncate access is also set. 
If anyof th;:: two option checks fail, the output cannot be done. 

2. The record has to be copied from the user's buffer to RMS buffer. Using the current record length 
RMS computes the number of bytes left in the RMS buffer, and checks to see if the record can 
be accomodated within a block. If the option records cannot cross block boundaries were set, 
and the computation showed that adding the current record would cause overflow onto the next 
block, it causes an exit with error. 

3. If everything is correct, then the procedure copies the record, and updates the end of file data. 

A few of the typical checks done in the specific procedures are described below. 

If the record format is variable or variable with fixed control, the procedure: 

• Ensures that the records are word aligned 

• Determines the overhead size, and adds it to the record size 

• For VFC format only, processes the header for control operations 

If the record format is stream, stream related operations are performed. For example, the procedure 
sets the default terminators. 

On a sequential file, data is usually inserted at the end of the file. However, for a sequential file 
with fixed record format, a random record can be modified. Records in such files are numbered in 
ascending order, starting with number 1. The user can refer to any relative record number, as long 
as it is within the current boundaries of the file (relative record number is less than or equal to the 
highest record number in the file). Basically, RMS converts the relative record number to the record's 
file address, and if all other checks (for example, the access permissible) are satisfactory, updates the 
record. 

1-52 Record Management Services 



1.4.9 II0s Through Client Context Server 

Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

If after translating the file name through the clientcs$rms_translate_logical_name an indication is 
received that the file is to be processed by way of the client context server routines, then the following 
significant steps are taken to establish, conduct and terminate such I/O sessions: 

1. The file needs to be opened at the client site. Mica RMS procedure rms$open calls the client 
context server clientcs$open to initiate a remote procedure call (RPC) call in the client site 
procedure clientcs$rms_open, which in turn, calls VMS RMS $OPEN. 

2. If the file is opened successfully, a VMS RMS $CONNECT is done. As Mica RMS user interface 
does not have a corresponding procedure, the VMS RMS $CONNECT call is made automatically, 
on the user's behalf, at the client site. 

3. The clientcs$rms_open returns the file_handle and the specified output items. Typically, de
vice characteristics are requested as output. Note, this file_handle is meaningful only to the 
clientcs$rms_open. The outputs are returned back to rms$open. The (rms$open) service saves 
the information received from the client site, and returns to its caller a file_handle. This file_ 
handle points to the local file context area. If requested, the device characteristics, as defined in 
rms$create, is also returned to the user. A device is identified as a remote terminal if both, the 
terminal and unknown bits are set in rms$device_characteristics. 

4. The ReadlWrite operations are performed by the following Mica RMS procedures: 

• To read from the client site, get_seq$seq_unknown 

• To write to the client site, pucseq$seq_unknown 

5. The above procedures call clientcs$get and clientcs$put respectively. The clientcs$get calls 
clientcs$rms.geCseq at the client site. Similarly, clientcs$put calls clientcs$rmsyuCseq at the 
client site. 

6. Upon receiving a close request, Mica RMS Close service calls clientcs$close to close the file at 
the client site. The clientcs$close calls clientcs$rms_close, to make the VMS RMS $CLOSE call 
on the file. 

7. If the file is closed at the client site, Mica RMS Close service deallocates the local file context 
and sets a nul value to the file_handle. 

Record Management Services 1-53 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

APPENDIX A 

PRELIMINARY TEST PLANS 

Testing of Mica RMS services is accomplished by the following: 

1. Functional Tests-These tests exercise the various functions of a the RMS services. The tests 
validate the functionality of each Mica RMS service. These tests will be developed together with 
the RMS modules. 

2. Fault Insertion Tests-These tests exercise the software's robustness. Ability to handle faulty 
inputs is established. Once a module passes the functional tests, fault insertion tests are done 
to determine how soundly the software handles such cases. 

3. Regression Tests-These tests are developed as bugs are discovered and fixed in RMS software. 
These tests establish that the bug has been removed. 

4. Performance Tests-These tests will be done to show RMS performance. Performance of simple 
sequential get and put operations will be initially tested. 

Preliminary Test Plans A-1 



Digital Equipment Corporation - Confidential and Proprietary 
For Internal Use Only 

APPENDIX B 

OUTSTANDING ISSUES 

The following list identifies the issues that are yet to be resolved: 

• Item list definition-Mica system-wide definition of an item and item_list are not finalized. 

• Protection options-The structure through which protection options are specified is not yet de
fined. 

Outstanding Issues 8-1 


