
+---------------+
! dig ita 1 I I n t e r 0 f f ice M e m 0 ran dum
+---------------+

To: List Date:
From:
Dept:

21 September 1987
Chip Nylander
Technical Languages

SUbj: Thoughts on MICA and ULTRIX Software Architecture

The starting point for discussion of the relationship between MICA and
ULTRIX software architecture and products is the question

What are we trying to accomplish?

The answers are (at least)

1. Provide high quality MICA and ULTRIX software systems.

2. Provide an ULTRIX program development and execution
environment that will attract significant business to PRISM
ULTRIX (meet the expectations of the ULTRIX market).

3. Get as much mileage as possible out of
in software technology by applying
appropriate to the ULTRIX system.

Digital's
as much

investment
of it as

4. Avoid pointlessly redundant software development efforts.

5. Lay the groundwork for applications that are portable and
interoperable across multiple Digital systems.

__ ~6. Don't establish a software development bottleneck; in
particular, don't impact the MICA software program.

7. Don't introduce unmanageable complexity.

8. Do something realistic.

This memo contains some of my thoughts on the matter.

I must hasten to emphasize that these are my opinions. This has not
been widely reviewed in SDT, and cannot be taken as an "official" SDT
position or as any sort of commitment by the SOT organization. (Wide
review was not possible in the short amount of time I had available).

In addition, the commitment and level of available resources in SDT
for development of PRISM ULTRIX layered products HAS NOT BEEN DEFINED.
Until this is defined, we can only discuss these issues in terms of

Page 2

"what would be a good idea".

The following sections describe the components of software
architecture that are relevant to layered products and our thoughts
regarding those components, and my thoughts on run-time libraries,
languages, and tools.

1 GOALS AND POSSIBLE SCENARIOS

We prefer the term "coordinated software architecture" to "common
software architecture". While we believe (see below) that most of the
software architecture between MICA and ULTRIX could be common and
compatible, it is by no means proven that there can be 100%
compatibility at all levels. There are some problem areas where we
don't have all the answers yet. We prefer to recognize this fact by
use of the term "coordinated".

Given potential goals for coordinated software architecture and common
layered products across MICA and ULTRIX, the cross-product of all
possibilities gives four possible scenarios:

1. An uncoordinated software architecture
layered products.

with non-common

What this really means is "two completely seperate software
development efforts for MICA and ULTRIX".

Such a scenario might result in two sets of successful
products, and is technically feasible.

It is likely to result in poor compatibility, portability,
and interoperablity between MICA and ULTRIX, and is likely to
cost a great deal more (especially over time).

2. An uncoordinated software architecture with common layered
products.

This is the situation we have with VAX FORTRAN now.

This is not a viable long-term scenario for a quality system.
The result is a poor fit between some common layered product
and one or both systems as the layered products base their
design on the conventions of one system. The existence of
two linkers on VAX ULTRIX, the JBL jacket-builder, inability
to profile VAX FORTRAN programs on ULTRIX, etc. illustrate
this scenario.

Because it puts the layered products for both systems on one
critical path, the schedule for one system might be at risk.

3. A coordinated software architecture with non-common layered
products

Page 3

What this really means is having just one architectural
design and control group, but having parallel development of
some layered products when required to meet the functional or
schedule requirements of both systems.

For some layered products this might make sense. It would
require coordination between layered product groups to insure
compatibility, but might simply be required as an engineering
tactic to get everything where it needs to be when it needs
to be there.

This should only be done if really required for schedule
reasons, or to avoid problems like introducing too much
complexity or establishing a software development bottleneck.

4. A coordinated software architecture with common layered
products

This is the best of all possible worlds if we can pull it off
and accomplish the list of goals on page 1.

It would require careful architecture and product design.

Because it puts the layered products for both systems on one
critical path, the schedule for one system might be at risk.

There is an additional consideration: the MICA software architecture
has been carefully designed for portability to an eventual 64-bit
environment. Some additional uncoordinated software architecture may
not have this property, and therefore have great problems getting to
64 bits in the future.

From these factors it is clear that the best approach is a coordinated
software architecture. Common layered products represent an
opportunity where that can be done without putting the schedule
requirements of one or both systems at risk, degrading quality, or
establishing a software development bottleneck. Non-common layered
products may be required otherwise.

(Note that, since the commitment and level of available resources in
sdt for development of PRISM ULTRIX layered products has not been
defined, we can only talk about common layered products in terms of
"what would be a good idea").

2 COMPONENTS OF SOFTWARE ARCHITECTURE

The components of the software architecture that are relevant to
layered products include

1. Calling Standard -- entry descriptors, calling and return
sequences, argument passing, call frame stack structurep
stack usage, register usage, etc.

Page 4

2. Condition Handling -- finding condition handlers, unwinding,
capabilities of condition handlers, etc.

3. status codes

4. Messages

5. Name space and naming conventions

6. Object language, object modules, and image files

7. Compiler -> Debugger interface (Debug Symbol Table)

8. Compiler -> Performance Collector Interface (Profiling Table)

9. Command Language interface

10. Services for managment of multithread execution

11. Remote Procedure Calls

12. Common Run Time Interfaces -- language, math, utility

13. IPSE

14. I/O and record management

15. Base System Services

There is some overlap here.

2.1 Calling Standard

There should be a common calling standard between PRISM MICA and
ULTRIX.

There is no technical reason to do otherwise. The payoff is high for
keeping the rest of the software architecture (and certain products
sensitive to the calling standard) as common as possible.

Many of our RISC competitors use system-specific calling standards.

With the exception of C, programs written in high level languages do
not depend on the calling standard, and such uses of C (e.g. VARARGS)
can be caught by the compiler and handled.

2.2 Condition Handling

It seems inevitable that every
primitive condition handling;

system will provide system-specific
vectored handlers on MICA, signals on

Page 5

ULTRIX, etc.

Layered on this primitive handling should be a system-independent
condition handling architecture that is oriented to the needs of
languages and layered products. It should be stack-based, and should
co-exist in some well- defined fashion with the primitive facilities
provided by the system.

Capabilities should include

1. Static establishment of stack-based condition handlers

2. Raising continuable and non-continuable conditions, with
arguments.

3. Access to condition codes and condition-specific arguments

4. Ability for a handler to pass on a condition with no action

5. Termination of a condition and resumption
execution

6. Modification of a condition or its arguments

of program

7. Addition of a subordinate or superordinate condition with
arguments.

2.3 Status Codes

Status codes are somewhat problematical. Many VMS programs currently
depend on the numerical encoding of status codes, as do many ULTRIX
programs, particularly such system-specific properties of status codes
as "low bit means success" (VMS) and "zero means success" (ULTRIX).

It may not be possible to have consistent status codes across MICA and
ULTRIX without giving up VMS and/or UNIX compatibility.

2.4 Messages

The content of messages emitted by layered products should be common
across MICA and ULTRIX. There is no reason to do otherwise. Perhaps
the form of messages should be system-specific, and provide the "look
and feel" appropriate for the host system.

Common message definition, formatting, and reporting interfaces should
therefore be architected for both systems. The system-specific
implementation of these interfaces should provide the "look and feel"
required on the host system.

Page 6

2.5 Name Space And Naming Conventions

Name space issues are somewhat problematical. VMS programs depend on
case-insensitivity, and ULTRIX programs may depend on
case-sensitivity.

In addition, many ULTRIX languages establish their own name space by
adding language-specific patterns of underscores to all external names
generated by the compiler. ULTRIX C, for example, prefixes all
external names with an underscore; ULTRIX F77 both prefixes and
postfixes all external names with an underscore.

This was done for reasons that should not exist in PRISM, namely to
avoid collisions in the assembler between C internal compiler symbols
and C user symbols, to avoid collisions in the linker between FORTRAN
external symbols and C RTL symbols, etc.

However, there are ULTRIX C programs that have underscores explicitly
appended by the programmer because the programmer knows that a FORTRAN
symbol is being referenced.

We would have to deal with issues such as case sensitivity and
explicit underscores in a coordinated software architecture.

2.6 Object Language, Object Modules, And Image Files +

Here "object language" means the literals and linker commands that
define the contents of the text and code segments; "object module"
means the outermost envelope that encloses the object language and
defines the structure of the module; "image file" refers to an
executable entity.

There should be a common object language between PRISM MICA and
ULTRIX.

There is no technical reason to do otherwise. Few, if any, ULTRIX
programs depend on the internal details of the object language.

In addition, there is agreement in TL&E that the ULTRIX object
language does not meet the need of modern languages such as ADA, so it
would have to be extended anyway.

Some ULTRIX utilities depend on the structure of the object module.
The cost of modifying these ULTRIX utilities is far less than the cost
of introducing an incompatible object module format. (We also have to
consider whether user programs depend on the ULTRIX object module
structure; we don't know one way or the other).

The two systems may require
file; however, there is
should not be common.

system-specific features in the image
no known reason why the overall structure

Page 7

2.7 Compiler -> Debugger Interface (Debug Symbol Table)

There should be a common Debug Symbol Table definition between MICA
and ULTRIX. There is no technical reason to do otherwise.

2.8 Compiler -> Performance Collector Interface (profiling Table)

There should be a common Profiling Table definition between MICA and
ULTRIX. There is no technical reason to do otherwise.

2.9 Command Language Interface

While command language interfaces are NOT one of the more pervasive
elements of the software architecture, the layered products would
benefit from the architecting of a common command line parsing
interface between MICA and ULTRIX, similar to the CLI$ interfaces but
with extensions as necessary to support ULTRIX command lines and
DECwindows.

2.10 Remote Procedure Calls

The Digital RPC Architecture, when defined, should be compatibly
implemented on MICA and ULTRIX.

2.11 Services For Managment Of Multithread Execution

The Common Multithread Architecture being defined by SDT should be the
basis for management of multithread execution on both MICA and ULTRIX.
These interfaces should be implemented on both systems.

2.12 Common Run Time Interfaces -- Language, Math, utility

1. Language RTLs

There should be common language RTL interfaces between MICA
and ULTRIX. There is no technical reason to do otherwise.
The feasibility of this has been demonstrated by prior
language migration from VMS to ULTRIX.

There may be system-specific entry points in each language
RTL, but these should be provided only to support language
features that are specific to that system common
functionality should be provided by common RTL interfaces.

2. Math RTL

The comments about language RTLs apply equally to
RTL. (Note that ULTRIX-compatible interfaces
functions could be layered on the common math
interfaces if required).

3. utility RTL

Page 8

the math
to math
function

There should be common utility RTL interfaces between MICA
and ULTRIX.

In the fullness
component would
Architecture.

of
be

time
part

and corporate strategy, this
of the Application Integration

Its contents may include common condition handling, command
language parsing interfaces, remote procedure calls
interfaces, parallel thread management interfaces, file
system interfaces, memory and resource management, date/time
services, string handling and translation,
internationalization aids, data ~onversions, multiprecision
arithmetic, execution statistics gathering, system
information interfaces, and screen management.

2.13 IPSE

One of the goals of the IPSE project is to architect a set of callable
and database interfaces that can be used by compilers and tools for
coordinated, integrated support of the entire program development and
maintenence cycle.

It is a specific goal for these interfaces to be implementable on a
variety of hardware and software systems, to be usable by third-party
tool developers to enhance the value of the Digital programming
environment, and to be usable by enhanced existing tools.

The software architecture of MICA and ULTRIX should eventually include
the IPSE interfaces (although these interfaces are still in a very
early stage of design).

2.14 I/O And Record Management

As noted above, the language RTLs should provide a common I/O
interface to the languages.

In addition, the utility RTL should architect a basic common interface
to the host file system. This would include services to create,
delete, and rename files, and to create, manipulate, and delete
directories.

Page 9

We believe that there should also be a common (AIA-conformant?) record
management interface across MICA and ULTRIX (and VMS). However, this
is not part of the RTL! We believe that architecture and
implementation of a common record management interface is the
responsibility of the operating system group(s). RTL-level I/O
functions should be layered on this common interface.

2.15 Base System Services

It is inevitable that some layered products, to a greater or lesser
degree, must utilize base system services that are specific to the
host system.

It should be a goal of common languages, RTLs, and tools to use such
services only when they are not available in the coordinated software
architecture, and to consolidate such usage in as few places as
possible.

3 LAYERED SOFTWARE PRODUCTS

3.1 Run Time Libraries

3.1.1 Language RTLs -

o Definition of Interfaces and Capabilities

The interfaces and capabilities provided by the language RTLs
are private and established by agreement between the RTLs and
the compilers.

Where the same language support is being provided on multiple
systems, the interfaces should be compatible.

o Dependence on Software Architecture

The language RTLs are most affected by condition handling,
status codes, messages, services for management of
multithread execution, I/O, and record management.

o Dependence on Base System Services

The language RTLs depend heavily on base system services
their role is to provide a compatible implementation of
language support on multiple systems.

With sufficient investment, these dependencies could be
isolated, but this would be a first-time investment which
would likely be very significant.

Page 10

o Reasonable approaches to FRS

Unknown at this time. We have not established that such a
language RTL could be delivered in time for PRISM ULTRIX FRS.

o Long-term strategy

Unknown. We have not established that the language RTLs can
be realistically targeted to all potential target systems
without introducing unmangagable complexity, degrading
quality, or establishing a software development bottleneck.

To some degree, this depends on the compatibility of the
system under the language RTL, which is currently unknown.

3.1.2 Math RTL -

o Dependence on Software Architecture

Small dependence. There is some dependence on calling
standard, condition handling, and status codes.

o Dependence on Base System Services

There is only small dependence on the base system services.

o Reasonable approaches to FRS

Unknown at this time. While a common math RTL appears the be
the right long-term approach, we have not established that
this can be delivered in time for PRISM ULTRIX.

o Long-term strategy

A common math RTL seems a realistic long-term strategy, but
only if this can be accomplished without establishing a
software development bottleneck.

3.1.3 Utility RTL -

o Definition of Interfaces and Capabilities

A portable utility RTL should be based on a new set of
interface definitions, oriented towards the requriements of
the Application Integration Architecture.

o Dependence on Software Architecture

Page 11

The utility RTL depends most heavily on condition handling,
status codes, messages, services for management of
multithread execution, remote procedure calls (to provide
functions for distribution of applications), I/O, and record
management.

o Dependence on Base System Services

There is heavy dependence on base system services in the
current VAX/VMS utility RTL. A new AlA utility RTL would be
designed to isolate such dependencies.

o Reasonable approaches to FRS

Unknown. We have not established that this RTL could be
delivered in time for PRISM ULTRIX FRS.

o Long-term strategy

A common AlA utility RTL seems to be the right long-term
approach, subject to the usual caveats about what can be
realistically targeted to all potential target systems
without introducing unmangagable complexity, degrading
quality, or establishing a software development bottleneck.

3.2 Compilers

3.2.1 C-

o Definition of Interfaces and Capabilities

In order to have a common implementation of C, it will be
necessary to agree on a language definition.

The usual language definition specified by UEG is "pcc plus
system programming extensions for ULTRIX".

The usual language definition specified by others is "ANSI C
plus portable system programming extensions".

There might also have to be system-specific application
programm1ng extensions, such as dictionary support for some
system(s), source language extensions to integrate with the
ported ULTRIX tools, etc.

In any case, compatibility of external data representation
(especially record structures) is important to allow data
interchange between MICA and ULTRIX.

o Dependence on Software Architecture

Page 12

Calling standard, messages, name space and naming
conventions, object language, debug symbol table, profiling
table (and generation of profiling code where required), and
command language interface would most affect a C compiler.

We would expect the C run time library to be the standard
ULTRIX library.

o Dependence on Base System Services

Compilers are not much dependent on base system services, and
such dependencies can be localized.

o Approaches to FRS

It seems realistic to develop a common C compiler for MICA
and ULTRIX; it is also clearly the best approach to getting
consistently high quality compilers on both MICA and ULTRIX,
to get more mileage out of our optimization technology, and
to insure the right level of C language compatibility across
MICA and ULTRIX.

We really should not write two C compilers for PRISM if
there'S any way we can avoid it.

Unfortunately, this puts one C compiler group on the critical
path for both systems. PRISM ULTRIX is scheduled to ship
first, and supporting field test and release processes is NOT
free in fact, it gets harder all the time. There is a
risk that getting involved with PRISM ULTRIX will put the
MICA schedule at risk.

o Long-term strategy

Do once and keep it common.

3.2.2 FORTRAN-

o Definition of Interfaces and Capabilities

The FORTRAN language definition should be VAX FORTRAN with
appropriate system-specific extensions, including intersystem
compatibility-flagging on each system. Compatibility of
external data representation (especially record structures)
is important to allow data interchange between MICA and
ULTRIX.

o Dependence on Software Architecture

Calling standard,
conventions, object
table (and generation

messages, name space and naming
language, debug symbol table, profiling
of profiling code where required),

Page 13

command language interface, multithread services
(eventually), and common run time interfaces would most
affect a FORTRAN compiler.

o Dependence on Base System Services

Compilers are not much dependent on base system services, and
such dependencies can be localized.

o Approaches to FRS

It is realistic to develop a common FORTRAN compiler for MICA
and ULTRIX; it is also clearly the best approach to getting
consistently high quality compilers on both MICA and ULTRIX,
to get more mileage out of our optimization technology, and
to insure the right level of FORTRAN language compatibility
across MICA and ULTRIX.

There should be a common FORTRAN compiler.

Unfortunately, this puts one FORTRAN compiler group on the
critical path for both systems. PRISM ULTRIX is scheduled to
ship first, and supporting field test and product release
will not come for free. There is a risk that getting
involved with PRISM ULTRIX will put the MICA schedule at risk
or (more likely) may result in a less agressive FORTRAN
product for MICA FRS.

o Long-term strategy

Do once and keep it common.

3.2.3 Other Languages -

o Definition of Interfaces and Capabilities

There should be a common language definition across all DEC
systems -- VAX/VMS, VAX/ULTRIX, PRISM/MICA, and PRISM/ULTRIX
-- except where system-specific extensions are appropriate.
The' language definition will normally be based on the
relevant standard. We should plan to support
compatibility-flagging in all compilers to prevent
applications from accidentally depending on system-specific
extensions.

o Dependence on Software Architecture

Same as FORTRAN -- most compilers will depend mostly on
calling standard, messages, name space and naming
conventions, object language, debug symbol table, profiling
table (and generation of profiling code where required),
command language interface, multithread services

Page 14

(eventually), and common run time interfaces.

o Dependence on Base System Services

Compilers are not much dependent on base system services, and
such dependencies can be localized.

o Approaches to FRS

We don't anticipate any other languages for PRISM ULTRIX FRS.

o Long-term strategy

Do once and keep it common, subject to the usual caveats
about introducing unmangagable complexity, degrading quality,
or establishing a software development bottleneck.

3.3 Tools

3.3.1 Debugger-

o Definition of Interfaces and Capabilities

The traditional ULTRIX debugger uses the "stab" interface
between compilers and the debugger.

We know of no technical reason why the new Debug Symbol Table
is not an adequate interface for FORTRAN and C, and we
believe that it is the only right interface for future
debugging requirements such as vectorization, multitasking,
and ADA.

The emphasis on future debugger human interfaces should be on
DECwindows, with as compatible of an interface across systems
as possible. The command interface should be de-emphasised.

However, where there is a command interface, the right one
seems to be a dbx-like interface.

o Dependence on Software Architecture

The debugger depends on most of the software architecture:
calling standard, condition handling, status codes, messages,
name space and naming conventions, image files, debug symbol
table, command language interface, multithread services,
remote procedure calls, run time interfaces, IPSE, I/O and
record management.

o Dependence on Base System Services

Page 15

The debug kernel is highly dependent on the base system
services and the hardware architecture.

o Approaches to FRS

We have no realistic plan to get any portion of the debugger
being built for PRISM MICA ready for PRISM ULTRIX FRS.

The only approach we know that might produce a debugger on
the required schedule is to port dbx to PRISM ULTRIX,
converting it to use the new debug symbol table.

o Long-term strategy

Unknown.

Common debug technology is attractive it
investment in new debug technology such as
vectors, parallel processing, debugging optimized
complex languages such as ADA.

consolidates
support for

code, and

However, we have not established that the debugger can be
realistically targeted to all potential target systems
without introducing unmangagable complexity, degrading
quality, or establishing a software development bottleneck.

3.3.2 IPSE-

o Definition of Interfaces and Capabilities

One of the goals of the IPSE project is to architect a set of
callable and database interfaces that can be used by
compilers and tools for coordinated, integrated support of
the entire program development and maintenence cycle.

IPSE will control its program and database interfaces, but
they will be designed for portability to multiple system and
for support of a wide spectrum of tools.

Tools providing human and compiler interfaces will be built
on top of this IPSE platform. We expect this to include
existing VAXset tools, third party ISV-supplied tools (IPSE
will be an open architecture), and possibly existing ULTRIX
tools.

o Dependence on Software Architecture

IPSE will be designed to be as independent of software
architecture as possible. The component of the software
architecture that will most affect IPSE will be messages and
status codes, utility RTL interfaces, record management, and
possibly remote procedure calls (for distributed functions).

Page 16

o Dependence on Base System Services

IPSE will be designed and implemented to cope with different
base system services.

o Approaches to FRS

IPSE cannot be there for PRISM ULTRIX FRS. The first FRS of
IPSE will be on VAX/VMS. The strategy beyond that point is
not yet defined.

o Long-term strategy

Provide IPSE compatibly on all appropriate systems.

3.3.3 Other Tools -

o Definition of Interfaces and Capabilities

This is the $64 question. There is no clean statement of
requirements for tools on ULTRIX. Providing VAXset on ULTRIX
is frequently mentioned as a wish-list item, but there is no
consistent definition of the meaning of this.

Are such tools required for programmer portability
between VMS and ULTRIX, or to compete with third party
tool products, or because the tools available on ULTRIX
are inadequate?

Is the human interface style of existing tools (such as
the DCL-style command syntax of LSE) acceptable, or does
the LSE command interface, for example, have to be
ultrixized?

Do tools ported from VMS (such as CMS) have to integrate
with the native ULTRIX tools (such as SCCS)?

etc.

We don't know the answers to these questions. Until someone
makes some believable and consistent statements about tools
requirements for ULTRIX, we won't know the answers.

We CAN state that future user interfaces should be
DECwindows, and that command-line interfaces
de-emphasized.

o Dependence on Software Architecture

based
should

on
be

Page 17

The software architecture that affects this class of tools is
messages, name space and naming conventions, command language
interfaces, the utility RTL, IPSE, and record management.

o Dependence on Base System Services

Most of the existing VAXset tools are closely tied to VMS.
It would be a major ripup to bring them to ULTRIX.

o Approaches to FRS

Unknown -- we need to understand the requirements first.

An additional possibility is to provide VMS-based tool
servers for functions such as CMS, providing only human
interfaces on the PRISM ULTRIX system.

o Long-term strategy

The long-term strategy should be to get IPSE on ULTRIX and
orchestrate the right tools functionality (whatever that is)
across native ULTRIX tools, ported VAXset tools, and third
party ISV-suppli~d tools, all built integrated on the IPSE
platform.

Whether there can or should be common tools is not yet
established. Without understanding the requirements, and
without the right underlying common base of software
architecture, IPSE, DECwindows, etc. this cannot be asserted
with any confidence.

4 SUMMARY

We believe we understand what the key components of a coordinated
software architecture are. We know of no technical reason why there
should not be a coordinated software architecture between PRISM MICA
and PRISM ULTRIX.

Among the benefits of such a coordinated architecture would be
opportunities for common layered products.

Whether any common layered products could be developed in time for
PRISM ULTRIX FRS is not a subject of this memo. Those requirements
and commitments have not been defined. We are, however, concerned
about the impact of having many layered products on the critical path
for both PRISM ULTRIX and PRISM MICA (which both have aggressive
schedule goals).

Compilers, IPSE, an AlA utility RTL, and the math RTL appear to be
reasonable risks for a long-term common product strategy if there is a
coordinated software architecture in the areas that they depend on.

Page 18

We have not established that language RTLs and tools (including
debuggers) are reasonable risks for a long-term common product
strategy. There is danger of missing important quality and schedule
goals if we try to do too much here.

INTEROFFICE MEMORANDUM

TO: Distribution DATE:
FROM:

DEPT:
LOC:
ENET:

SUBJECT: Mica Working Design Document Overviews

The Mica WOO

March 24, 1988
Tom Miller
Steve Jenness
Mark Ozur
Jim Jackson
DECwest Engineering
ZSO
DECWET::

The DECwest Mica Software Development and Technical Writing teams are proud to dis
tribute the Mica Working Design Document Chapter Overviews. These Overviews are a by
product of the design process for Mica, as described later in this memo.

Mica is the proprietary operating system for PRISM architecture machines, and a new member
of the DIGITALNMS computing environment. It is the base system software for the Cheyenne
database server and Glacier compute server.

Mica is a symmetrical multiprocessing (SMP), multithreaded operating system with a number
of features to promote modular growth. These features include an executive object architec
ture, layered I/O system, protected subsystems support, and remote procedure call (RPC). In
addition, a powerful set of clienUserver mechanisms have been designed to support the initial
server-based FRS products.

This document contains the collected chapter overviews of the Mica Working Design Document
(WDD). The WDD is both a functional specification and a design specification. You should
read this document to gain a basic understanding of Mica and its various components at an
overview level, since Mica will be the basis of many PRISM-based products in the future.

Three actual chapters have been included in the Mica Working Design Document Chapter
Overviews because they provide useful overviews of Mica and the initial FRS products. These
chapters should be of particular interest to all readers. They are Introduction to Mica (Chapter
1), Cheyenne Overview (Chapter 48), and Glacier Overview (Chapter 50).

The distribution list for this document was formed, in part, from the distribution list of the
first draft of the PRISM Software Working Design Document, with the addition of other senior
consultant and key management personnel.

The remainder of this cover letter contains a description of the design process used to develop
the Mica WDD, including the overview process, the chapter process, and the current status
of the project. This description is not required for an understanding of the Overviews Docu
ment, but is presented here for your information, to show how the production of the chapter
overviews fits into the larger Mica design process.

Page 2

The Design Process

The sheer size of the Mica project, in terms of both the magnitude of required functionality
and the number of people involved, demands a rigorous design process. All aspects of the
system have to be carefully designed and specified, including functional requirements, parti
tioning into components, component interfaces, and the internal design of each component.
The specifications are organized into 58 chapters, with each chapter assigned to one of 38 en
gineers. Each engineer is assigned to one of 12 technical writers for assistance in producing
the chapter.

The design review process is coordinated by three software architects. It is divided into two
major steps: the production of a preliminary chapter overview, and the production of a design
chapter. The design chapter generally begins with a final version of the chapter overview.
Most of the preliminary chapter overviews range in size from three to six pages.

The Overviews

There are a number of good reasons to start with an overview of the chapter:

1. Most importantly, it forces the engineer to take a high-level look at the requirements,
identify his fundamental approach, and then capture these things in a short paper before
getting lost in low-level details.

2. The overview then serves to force discussion at an early stage before the responsible
engineer feels committed to a detailed design. At this point in time, it is still possible to
make significant changes in the design or, in an extreme case, start over again.

3. The overview serves as an early communication mechanism within DECwest for other
engineers, product managers, technical writers, and CSSE to gain a basic understanding
of the various system components. It serves the same purpose for other groups outside
of DECwest with Glacier or Cheyenne FRS deliverables. Collected in this Mica Working
Design Document Chapter Overviews document, the overviews are now a communication
mechanism for use within the entire corporation.

4. Finally, completion of the overviews allows the detailed design chapters to be written
in parallel, in the same manner that the completion of the detailed design subsequently
allows the implementation to proceed in parallel.

The Overview Process

For the review of each overview and subsequent chapter, the responsible engineer chooses
a primary review group from among the other engineers in his group, his project leader,
supervisor, and potentially anyone else who has to interface with the component or has other
concerns about the design. The last category frequently includes representatives from groups
outside of DECwest.

The steps in the preliminary overview process proceed as follows:

1. The preliminary overview is written by the engineer, with assistance from his technical
writer.

2. The overview is then reviewed by the primary review group and revised by the engineer.

3. Next, the overview is reviewed by the software architects and revised by the engineer. In
addition to having normal review comments, the architects are responsible for consistency
and completeness of the design across the whole system.

4. The overview is then posted in a notefile for general review and discussion.

Page 3

5. After allowing time for the more critical design issues to be raised and resolved via replies
in the notefile, the overview discussion period is officially closed. This closure is necessary
to make people aware that they only have a finite time period during which they can raise
substantive issues.

The Chapter Process

After completing the overview, the engineer proceeds to write the detailed design chapter,
with the assistance of a technical writer during and/or after the first draft. Generally, the
production of the chapters has proceeded quite efficiently, due greatly to the fact that much of
the indecision and controversy has been dealt with already in the overview process. Chapter
sizes are ranging from a dozen pages to over 100 pages.

Chapter review proceeds much like overview review, as follows:

1. Once written, the chapter is reviewed by a primary review group.

2. The chapter is then reviewed by the software architect responsible for that part of the
project.

3. The chapter is posted in the notefile. Once the chapter is posted, it goes under ECO
control.

4. Some time after posting of the chapter, a presentation is given on the chapter, possibly
in conjunction with other chapters.

Status of the Overviews

Although the previously described process is helping us to design Mica in an orderly fashion,
, it is still important to point out that some changes are inevitable. The overviews are only
guaranteed to capture a snapshot of the design. We are confident, however, that the overviews
do present a good overall picture of Mica, which will not change in any fundamental way.

The Mica Working Design Document Chapter Overviews contains a mixture of preliminary
chapter overviews and final versions of the chapter overviews that have been revised during
development of the chapter. Clearly, with the presentation of major parts of the system being
limited to a few pages each, the level of detail is also limited. Much of the detail is naturally
left to the final design chapters.

It is also important to point out that neither the overviews nor the chapters themselves are
intended to portray which features will actually be present in either of the FRS products.
This is the purpose of the Phase 1 documentation.

Status of the Mica Project

Design chapter work is nearly complete. Early implementation work is now in progress
and on schedule. The current baselevel contains a special development environment, the
kernel, and a preliminary executive with threads, context switching, condition handling, basic
synchronization objects, and a minimal lIO system (no device support yet). Coding is now
proceeding in most areas of the system.

From: TLE::MITCHELL "Charlie, TLE::MITCHELL 25-Mar-1987 1251" 25-MAR-1987 12:
To:
Subj:

DECWET::CUTLER,DECWET::MILLER,CLT::GREENWOOD,NYLANDER,CONTI,SMURPHY,MITC
Ada, threads, and priorities

We've reviewed Steve Greenwood's trip report on the discussions at
DECWEST last week and felt that it was important to provide you with
some feedback with regard to Ada's future implementation on MICA.

1. The Ada project is definitely planning on a one-to-one correspondence
between Ada tasks and MICA threads. There will be ONE task per
MICA thread.

2. As best we understand the proposed major/minor priority scheme,
we feel that it is workable. We have not been able to come up
with any better alternative. However, we hope that the implementation
does not penalize Ada processes relative to non-Ada processes.

Priorities in Ada are used to indicate the relative urgency of
various tasks. Many applications depend on multiple priority
levels and won't work as intended without them. We currently
support 16 priority levels under both VMS and VAXELN. Although
validation is possible with fewer than four Ada priority levels,
we believe that we need at least four levels to meet customer
expectations and to have a successful product.

From:
To:

TLE::MITCHELL "Charlie, TLE::MITCHELL 21-Apr-1987 1714" 2
NYLANDER,CLT::GREENWOOD,GROVE,CONTI,SMURPHY,MITCHELL

SUbj: Ada priorities and PRISM

I interchanged several mail messages with Dave Cutler
Ada priority issue and sent the one below on 6 April. I
from him since that time and thus assume that the issue ha
If you hear anything to the contrary, please let me know.

Charlie

This note summarizes my position on the Ada priority issue.

l!J

From my understanding of the current design of the scheduler, it
appears that Ada multi-thread programs written for time-sharing use on
PRISM will perform much better if users avoid specifying priorities.
(This assumes that Ada recognizes this case and only sets the bit that
inhibits priority boosts when absolutely necessary.)

Noneth~less, I believe that Ada needs the following to have
successful product on PRISM:

1. At least four minor priority levels

2. The bit that inhibits priority increments (unles
of the threats in a process remain the same relative
other)

i! ; i

Four priority levels seems adequate for most applications designed for
time sharing use. If we supported fewer than four priority levels,
the perception in the Ada community would be that "PRISM Ada doesn't
support priorities." Even with a highly trained sales force (which we
don't have), it would be very difficult to overcome such a perceived
deficiency. Program portability and machine independence are very
important issues in the Ada community. It's one thing to recommend
that people avoid using priorities; it's another to force people to
avoid them. Even with four priority levels, we can antici
resistance from some users who expect 16. However, the d
between 16 and 4 priority levels is less significant than
difference between 4 and 2.

Assuming, then, that minor priority levels are supported,
the bit to inhibit priority boosts to satisfy the seman
language.

I hope that we can now close this issue. Thank you again
clarifications.

Charlie

J

From: TLE::DECWET::MILLER "Tom Miller, DECwest Engineering, (206) 865-8770 02
TLE::NYLANDER,MILLER To:

Subj: CRYSTAL/JEWEL/MICA Update

+-+-+-+-+-+-+-+
IDIIIGIIITIAILI I n t e r 0 f f ice M e m 0 ran dum
+-+-+-+-+-+-+-+

To: Chip Nylander From:
Dept. :
Mailstop:
Telephone:
Network:

Date:

Chip,

Tom Miller
PRISM Software
ZSO
206-865-8770
DECWET::MILLER

Mar. 2, 1987

What the hell is MICA, you ask? Well, Dave threatened unspeakable
retribution if we didn't come up with a different name for P.TBD, so
I called a "name that system" meeting in our Mica (heh, heh) conference
room. The progress of that meeting was about as pismal as the efforts
to name the software have been to date; generally no one was real happy.

So I said, why don't we just name it MICA. We can say it stands for
"Multiple-Interface, Concurrent Architecture", which are indeed the
two major themes that all of us, including Dave, wanted to work into
the name. This suggestion gained the support of the naming meeting,
and we decided that for a code name, it would do. Reid is doing the
legal checks for name conflicts, just the same.

Any way, I thought I would give you some scheduling updates. We are
moving our Phase 1 two months, which will make it some time in August.
As estimating and perting and WDD work goes on, we realize we really
need that time, and the hardware group is not complaining about the
change either.

More significantly, Rob has found it necessary to slip the FRS date for
Jewel to August, 1989. We will now define the software functionality
to meet this date. Naturally we are hoping that those components that
SDT is delivering that we rely on will still be available as scheduled;
which would ultimately give us all more time to beat on the system.

This change will allow us to put even more emphasis on testing with
Emerald prototypes, which will be available in April 88 according to
current schedules. We should be able to do a really good internal field
test on Emerald now. In fact, from a software standpoint we should not
preclude the possibility of a minimal functionality release on Emerald
ahead of Jewel, if the development plan for Jewel makes that reasonable.

As MICA approaches Phase 1, we should exchange more detailed scheduling
information as we have it. We will be using a pert chart tool called
VUE. Since our project plan goes to the printer at the end of May, we
should be able to give you some detailed scheduling information well
before that.

PRISM Technical Interest distribution Page 1

Mike Anderson
Brian Axtell
Susan Azibert
Bertril Beander
Hal Berenson
Bill Bernson
David Blickstein
Mark Bramhall
Ron Brender
Walter Carrell
Keith Comeford
Scott Davis
Neil Faiman
Jim Flatten
Dan Frantz
Liz Freburger
Peter Gilbert
Steve Greenwood
Rich Grove
Kevin Harris
Steve Hobbs
Ken Hobday
Jim Kapadia
Jim Kellerman
steve Klein
Brian Koblenz
Matt Lapine
Tom Lavigne
Glenn Lupton
Charlie Mitchell
Dave Moore
Chris Nolan
Bill

Jim Ravan
John Reagan
Tom Scarpelli
Neil Schutzman
Laura Schwartz
Thomas Siebold
Al Simons
Joyce Spencer
Barry Tannenbaum
Sue Thorstensen
Rich Title
Jim Totton
Stan Whitlock
Jeff Wiener
Tom Wimberg
Paul Winalski
Linda Zaharee

ZK02-3/N30
ZK02-3/R56
ZK02-3/Q08
ZK02-3/N30
ZK02-2/N59
ZK01-l/M26
ZK02-3/N30
ZK02-3/R56
ZK02-3/N30
ZK02-3/N30
ZK02-3/R56
ZK02-3/Q08
ZK02-3/N30
ZK02-3/R56
ZK02-3/R56
ZK02-3/Q08
ZK02-3/K06
ZK02-3/K06
ZK02-3/N30
ZK02-3/N30
ZK02-3/N30
ZK02-3/K06
ZK02-3/Q08
ZK02-3/M31
ZK02-2/N59
ZK02-3/N30
ZK02-3/K06
ZK02-3/K06
ZK02-3/N30
ZK02-3/N30
ZK02-3/N30
ZK02-3/N30

o

ZK02-2/N59
ZK02-3/N30
ZK02-3/K06
ZK02-2/N59
ZK02-3/N30
ZK02-1/N71
ZK02-3/K06
ZK02-3/N30
ZK02-3/R56
ZK02-3/004
ZK02-3/N30
ZK02-3/K06
ZK02-3/N30
ZK02-3/K06
ZK02-2/M37
ZK02-3/N30
ZK02-3/R56

APPENDIX A

CURRENT WDD CHAPTER ASSIGNMENTS

The following is a list, broken down by functional grouping, of the
current chapter assignments. This list may not be complete and very
likely will change over time.

Where an author's name appears in brackets, it is to serve as a
place-holder until the chapter is assigned.

GENERAL

Architecture Overview and Introduction
Naming and Coding Standards
Status Codes & Messages
Type, record, etc. name appendix

EXECUTIVE

Object Architecture
Process Structure
Kernel
Memory Management
I/O Architecture
Condition & Exit Handling
System Service Architecture
Security & privileges
Booting
System Services
SDA and Kernel Mode Debugger
Auto System Crash Recovery

I/O AND FILE SYSTEM

Disk Function Processors
Diagnostics
Error Logging
Protected Subsystems & RPC
Message Function Processor
Directory Structured Function Processors
ODS Function Processor
Caching
ANSII Magtape

Miller
Schreiber
Ballenger
(Perazzoli)

Perazzoli
Lucovsky
Cutler
Perazzoli
Oliv~er
Bismuth
Walker
walker
Walker
(Perazzoli)
(Bismuth)
(Fries)

East
Brown
Brown
Ozur
Fries
Tyson
Tyson
Brundrett
(Bismuth)

CURRENT WDD CHAPTER ASSIGNMENTS

RMS
File Management Util. (Backup, init, etc.)
Console Support

IMAGE RELATED

Object Module & Image File Format
Image Activator
RPC Stub Compiler

SYSTEM MANAGEMENT AND ADMINISTRATION

Layered Products & System Disk
System Management
Software installation and Update
Operator Communications

TESTING AND QUALIFICATION

Performance
Failure Modes & Effects Analysis
Testing
UETP

NETWORKS

Network Architecture
Network Components (n chapters)
DECnet

DATABASE SERVER

Common Logging
Host DBM Communications
DBM Inter-box Communication
CRDK IPC
Any other Database Specific Chapters

WORKGROUPS

Workgroups (n chapters)

COMPUTE SERVER

AlA (n chapters)
RPC Callback Libraries
Host Side of Compute Server

Chatterjee
Brundrett
Walp

Peterson
Perazzoli
Lenzmeier

Walp

page A-2

Girdler, Ditto
Ditto
Girdler

Sestrap
Schreiber
Schreiber
Looi

Fries
(Fries)
Kelly

Miller
(East)
Wickham
Dunlap
(East)

(Saether)

Connors
Ozur
Doherty

APPENDIX B

RESPONSIBILITIES LIST

The following list identifies individuals as responsible for specific
parts of the system. The list is not yet complete and will evolve
over time.

An asterisk after a name indicates the individual is a project leader.

Project Function or
Element

I/O
Testing
Performance
Networks
RPC Transport
File System
Workgroup Transport
RMS
Executive
Object Architecture
Process
I/O Architecture
Development Environment
Linker/Library
AIA/DECwindows
RPC
RPC stub Compiler
C-RTL
Diagnostics
Workgroups
Booting
Client-Server Interface
Fault Tolerance
Security
System Services
Caching
Backup/disk utilities
IPC

Responsible
Person

Jeff East *
Benn Schreiber *
Kathy Sestrap
Jim Kelly *
Kevin Dunlap
Joan Tyson *
Steve Jenness *
Sumanta Chatterjee *
Lou Perazzoli *
Jim walker
Mark Lucovsky
Charles Olivier *
Dave Walp *
Kim Peterson
Myles Connors *
Mark Ozur *
Chuck Lenzmeier
David Ballenger *
Richard Brown *
Chris Saether *
Jim Walker
Dave Ballenger *
(Perazzoli)
Jim Walker
(Perazzoli)
Peter Brundrett
Peter Brundrett
Kevin Dunlap

Digital Equipment Corporation • Confidential and Proprietary

The Application Integration Architecture (AlA)
and Mica Compute Server:
The AlA "Strawman"

Revision 1.0

14-September-1987

Author:

Myles F. Connors Jr.

Major Contributors:

AI Simons

Jeffrey C. Wiener

Digital Equipment Corporatlon-DECWest Engineering
Confidential and Proprietary

Revision History
Date Revision Number

14-September-1987 1.0

II

Summary of Changes

Initial version

1 Overview

Digital Equipment Corporatlon-DECwest Engineering
Confidential and Proprietary

This document is designed to serve as a point of departure for further discussions on the role of
AIA in the development of Mica-CS, the PRISM complJte server software product being developed at
DECwest.

This document is not meant to be a definitive statement of what is or is not contained in the FRS
Mica-CS product. Rather, this is a first pass at describing the required capabilities of various AlA
architectures in order to share my understanding about the relative complexity of the work involved
in using AIA as the basis for the application program interface to Mica-CS. That understanding of
the magnitude of the tasks required is for input to the Mica-CS project scheduling process.

This document also describes a personal vision of an eventual fuIIy realized model of AlA on Mica.
Some thoughts on how this vision might be achieved using a phased implementation are presented.

FinaIIy, this document is designed to be the starting place for DECwest putting a "stake in the ground"
about the role of AlA in future DEC software systems.

2 Some Common Misconceptions About AlA

Because AlA is not fully defined and understood, there are some common assumptions made about
AlA that need to be examined.

2.1 AlA Routine Implementations Must Be Portable

With the list of AlA target operating system environments as large as it is (VAXNMS, MICA, ULTRIX.,
MS-DOS), and the wide disparity of capabilities provided by those operating systems, it is hard to
believe that a common portable solution for every AlA-level problem can be found.

The goal of AlA is that the interface to AlA routines be portable. The underlying code may not be
"implementable" on every target operating system. It must be possible, however, to provide these
interfaces on each of the target operating systems. The actual implementation of those routines are
distributed via RPC or other distribution mechanism.

\These statements are easier to defend when talking about the "large granularity" AlA capabilities
such as the Print System Model. It will be a challenge to provide AIA capabilities in facilities with
interfaces that are of much finer granularity, e.g. process creation. These fine grain solutions wiII not
be useful if the cost of distributing the interface grossly exceeds the inherent cost of the algorithm
used to implement the capability.\

Having said the above, it is still highly desirable to be able to port the implementations of AIA
routines from operating system to operating system, where reasonable. This should be a goal of any
AlA software we develop at DECwest, if only to help guarantee that the capabilities that we need to
be seamless with our client systems (presently VAXNMS and VAXlULTRIX) are indeed present on
those systems at FRS.

\ This seems to imply that we either port PILLAR to VAXlULTRIX or we use C as the common
implementation language for any new code developed specifically for AlA on Mica-CS.\

2.2 AlA Is All Things To All People

AIA is not a panacea. The original target for AlA is the ISV's that we can induce to port their
applications software to our products, thereby leveraging our hardware sales.

This means that we need to target our earliest offerings at the low level "nuts-and-bolts" capabili
ties that will make AIA attractive to ISV's. The most obvious such capability is RPC; RPC is the
cornerstone of AlA.

Later AIA offerings can be used to fill in the gaps that would appeal to customers writing code for
limited audiences.

1

Digital Equipment Corporation-DECwest Engineering
Confidential and Proprietary

\It is for this reason that I recommend that the Corporation proceed cautiously before rushing to
establish the various AlA architectures as external standards. Our energy would be better spent
in delivering the capabilities in the short term to ISV's than in reducing the whole thing to pablum
suitable for every possible end user. \

3 Compute Server Customers and Their Applications

I believe that the compute server as specified today will sell mainly into the traditional DEC markets
of scientific and technical customers. The customer who heretofore was unable to afford the compute
server resource helshe really wanted (for example, a Cray), will now be able to afford a Glacier system.
Existing Digital customers will appreciate that this is a single-vendor solution to their problems.

Crayand other high-end suppliers will always be able to provide the highest absolute performance
based on their willingness to use the most exotic and risky technology available to them. They are
also less sensitive to producing systems on a piecemeal basis. Digital and other large manufacturers
will invariably be held at bay based on the traditional requirements of having all implementations
be based on more stable technology.

The introduction of Glacier will not change this.

To be able to compete successfully in this space and expand our markets we will need to draw upon
our unique strengths in providing integrated, supported solutions to our customer's computing needs.

For Glacier, AIA can provide a path for Digital to distinguish Glacier from its competitors based on
the portability of applications that AIA can make possible.

3.1 The Picture at FRS

Figure 1 shows my estimate of the derivation of all of the code running on the compute server at
FRS (roughly 1990) and approximately three years later. This includes both Digital-supplied and
customer-supplied code.

An assumption made here is that AIA has achieved a foothold across VAXNMS and VAXlULTRIX in
the three year timeframe after the compute server FRS. That is the result of an aggressive program of
inducing ISV's to port or create applications based on AIA. Those applications are starting to appear
in common use.

At FRS, most of the code running on the compute server is envisioned to be FORTRAN, C, or Pas
cal programs that implement some technical/scientific algorithm that is compute-intensive. More
specifically, these are "high-headway" compute-intensive programs.

I use the word "program" instead of the word "application" purposely. These programs are typically
handcrafted solutions to specific problems that have been begrudgingly ported by non-programmers
to successive machines over the years.

2

Digital Equipment Corporatlon-DECwest Engineering
Confidential and Proprietary

Figure 1: Derivation of Code Running on the Compute Server

FRS

[3 CODE WRITTEN FOR AlA ENVIRONMENT

o "DUSTY DECK" FORTRAN / C / PASCAL

[J CODE PARTIALLY CONVERTED FOR COMPUTE SERVER AND / OR AlA

FRS + 3 YEARS

These programs typically invoke only those capabilities of the underlying operating system made
visible through a language RTL. For that reason, these programs are largely portable already. An
swers to the questions related to porting these types of programs are addressed in the compiler and
language RTL documentation provided with the associated compiler products.

The presence of AlA on Mica-CS is largely uninteresting to this class of users. Seamlessly developing
programs on the compute server client and recompiling/relinking them to run on the compute server
will be attractive to these users. The applicable dimension of "seamless" here is that there are
implementations of the language RTLs on both the client and server systems.

Those customers who can recognize the long-term advantages of AlA and who are willing to modify
their code to take advantage of these capabilities are represented by the 10 percent slice of the pie
chart on the left in Figure 1.

The message from the EIP trip reports seems to be a universal one of "don't make us change anything
unless you can show us immediate, large benefits." Even if Digital embarked on a crash course in
establishing AIA today, it is hard to imagine that there would be more than a limited presence of
AlA in the FRS timeframe. More importantly, as our DECnet experience has shown, the lag time of
customer acknowledgement of the benefits of AlA will push the perception of an effective AlA presence
out further in time, despite the products we may ship today.

The remaining 5 percent slice of the pie chart on the left of Figure 1 represents code shipped by Digi
tal or produced by selective ISV's through inducements by DEC. The greatest challenge for DECwest
software marketing will be to guarantee that this percentage will be higher at FRS through an ag
gressive program of selecting and supporting ISV's with high-visibility and high-volume applications.

3

Digital Equipment Corporatlon-DECwest Engineering
Confidential and Proprietary

\My personal opinion is that having high-visibility applications present at FRS is as important
as having high-volume applications. Until we have a program of compute servers that spans the
"procedure to batch-job" spectrum, I assume that Digital-supplied compute servers will not achieve
the volume of our traditional processor products; they will remain somewhat specialized solutions.
Having high-visibility applications present early lends credibility to AlA and reduces the "time to
customer appreciation" curve. \

This is a long range problem and requires a long-term commitment from the Corporation to ensure
success. We have to be prepared to promote our approach in a consistent and understandable fashion
from the start or risk the fate of DECnet: Digital's long-term commitment to DECnet is just recently
being reflected in the customer loyalty and the general perception of the completeness of the solution.

3.2 The Picture at FRS + 3 Years

The right hand pie chart in Figure 1 shows a modest growth in the amount of code modified to run
on the compute server and/or AIA. The portion of the code written expressly for AIA has increased,
but is still matched by the volume of "dusty deck" code.

\ The desire to not change anything ever is a strong one in certain circles.\

4

Digital Equipment Corporation-DECwest Engineering
Confidential and Proprietary

4 What AlA Could Eventually Become on Mica

Before constraining the problem based on annoying realities like schedules and cost, it is useful to
describe what the model of AIA on Mica could look like in its final form}

Figure 2 shows a high-level overview of the organization of the full-blown model. Two sample appli
cations are also shown. Please note that this box shows the logical layering of these components, not
necessarily the actual implementations.

Figure 2: The Full-Blown AlA/Mica Model

I
I
I
I
I
I
I
I
I

+

DEC / ISV-SUPPLIED
APPLICATION

1,.
"

USER
APPLICATION

~
LANGUAGE
RTL.s

~ r-----------------------,
I APPUCAnONS RUN-nME ENVIRONMENT SERVICES (ARES)

I
I
I
I
I
I
I
I
I
I
I
I
I

DEC
WINDOWS • • • • •

OTHER AlA
CONSTITUENT
ARCHITECTURES

APPLICATION RUN-TIME UTILITY SERVICES
(ARUS)

L _______________________ ~

MICA INTERNAL SYSTEM SERVICES

The top right of the figure shows a typical user application. It makes calls to standard language
RTLs as required and it invokes certain visible portions of AlA. The language RTL also implements
most, if not all, of its code by invoking core AIA capabilities. There will always be some RTL-specific
"magic" that doesn't invoke an AIA component, but in this idealized vision those calls are almost
nonexistent.

5

Digital Equipment Corporation-DECwest Engineering
Confidential and Proprietary

The top left of the figure shows a typical DEC- or ISV-supplied application. It may also invoke
language-specific RTLs, but this figure does not show that. The dotted arrow from the application to
the Mica Internal System Services shows that there is a higher probability that DEC- or ISV-supplied

'code will invoke operating-system-specific features for performance or functionality reasons. There
is typically a small perfonnance penalty for using AIA-Ievel routines in most implementations due to
the required layering on top of existing facilities. \Mica-CS avoids this in many places by providing
the capability directly. \

Providing the foundation at the base of the model are the underlying operating system capabilities,
in this case the Mica Internal System Services.

At the core of the model are the individual AlA architectures as described in Roger Heinen's original
AIA memo. Many of these architectures are already in development and will be applicable to Mica-CS.

Some AIA architectures such as RPC, Workgroups, DECwindows, and the Compound Document
Architecture (CDA) are required for the compute server at FRS. Other AlA architectures such as All
In-I, the Data-Store Management System (DSMS), the Document Database (DDb), and File Cabinet
Architecture (FCA) are not required for the compute server at FRS, but will be required when Mica
matures to a full-featured operating system.

In either case, this vision description assumes that the current set of AlA architectures will be
developed and are eventually applicable to Mica. The focus of this section of this document is on
those capabilities that are not currently present in AlA that I believe are important for Mica-CS.

Some of these additional required capabilities are:

• A comprehensive set of portable utility procedures to reduce code dependency on any underlying
operating system.

• An AlA-level Calling Standard and other "glue" needed to ensure interoperability of the compo
nents when distributed across different operating systems.

• A DECwindows equivalent (or suitable extensions) to support character cell terminals in a dis
tributed manner.

• A portable enhanced file and record access interface.

• The AlA Programmers Reference Manual.

The AlA Programmers Reference Manual is mentioned here to emphasize the fact that not all of the
important deliverables for AIA are software products. This document describes how a programmer
can use the various architectures of AlA in order to construct a solution that will be portable across
the supported operating systems. It has an overview of the capabilities available and pointers to the
detailed operating-system-independentJdependent documentation for each architecture.

Some proposed capabilities are described in the sections below that address the other requirements
in the list above. When reading these descriptions, please remember that the following descriptions
are a vision unencumbered by real world constraints.

4.1 Applications Run-Time Utility Services (ARUS) t
The logical ancestor of the ARUS is the VAXNMS Common RTL.

The VAX/VM:S RTL is now ten years old. We have been learning about building common environments
along the way. We did many things right, but we made a few mistakes that now present us with
a library that is tightly bound to the VAX architecture and the VMS operating system. These are
mistakes in hindsight: one of the original goals of the VAX software program was to make maximum
use of the VAX hardware with little thought of portability.

t None of the names or logical groupings of these services are fixed by any means.

6

Digital Equipment Corporation-DECwest Engineering
Confidential and Proprietary

Even without the existence of AlA, pressures have been building for the creation of a portable set of
utility capabilities of similar power to the VAXlVMS RTLs:

• We need to provide a set of run time libraries with the power of the VAXlVMS RTL -pn the Mica
operating system and PRISM hardware. Doing this involves a major rewrite of the existing
VAXlVMS RTLs; it is not a simple software port.

For instance, the current VMS RTL lets operating system entities such as channels and PIDs
show through the interface, and it also lets the concept of "pages" show through. Things like this
make it very difficult to port the user interface without changing the semantics (thereby risking
program breakage).

• There is a new corporate direction emerging that Digital is to become a premier provider of
ULTRIX software and services. Part of the effort to become such a provider win necessarily
involve moving an increasing amount of our VAXlVMS-based software development environment
to ULTRIX. This, in tum, requires RTLs.

• A new environment is about to be unleashed on DIGITAL software, through the courtesy of
DECWindows and RPCs. In this environment, we need to be smarter about whether a specific
operation must be performed in client software or server software. This will involve a change in
the interface of some of our routines, particularly those that gather information.

We can best meet these new requirements for portable libraries through the creation of a set of
routines that are AIA-conformant and

• provide more general capabilities,

• embody a much higher level of data abstraction in the user interface, and

• provide extended capabilities

over the existing VAXlVMS RTLs. ARUS is this solution. The rest of Section 4.1 describes capabilities
present and not present in the full-blown incarnation of ARUS.

In Figure 2 all of the AlA architectures are implemented using the capabilities of ARUS as a base. Not
shown in the example, are the possible direct invocation of ARUS capabilities by the two applications
and the language RTLs.

4.1.1 Desirable ARUS Capabilities

To create this outline we started with the current VAXlVMS image LIBRTL.EXE, to determine the
categories of capabilities it provides. We then added capabilities that are currently missing, but
which would make development of AlA-conformant applications and libraries easier.

This document assumes that the reader is familiar with the existing VAXlVMS RTLs. It makes many
comparisons between the desired capabilities of ARUS and the existing capabilities of the VAXlVMS
RTLs.

4.1.1.1 Virtual Memory Management Routines

One of the most fundamental needs of programs running in a modern system is easy efficient man
agement of heap storage. The LIB$VM family of routines performs this function on VAX/VMS. An
AIA memory manager would have the same general capabilities as the current routines, however,
there would be no memory management at the page level. Indeed, there would be no mention of
memory pages at the user interface level at all: pages are no longer a well defined term. Instead,
memory to be allocated would be sized entirely in bytes, and there would be a means to request
alignment on an arbitrary power-of-two address boundary.

We believe that such an interface can be portable, simpler, and just as flexible/powerful as the existing
set of interfaces.

7

Digital Equipment Corporation-DECwest Engineering
Confidential and Proprietary

4.1.1.2 Condition Handling Routines

Allow code to handle a condition in an architecture- and operating-system-independent fashion. These
routines ~o not allow the operating-system-specific manner in which a condition is reported (signal
Imechanism vector, etc.) to show through. They should be stack based like the VMS model, not like
the ULTRIX model; however, they need to be able to be implemented on VLTRIX.

Required capabilities include:

• Determine the condition and access all condition-specific arguments if any.

• "Pass" on a particular condition, allowing earlier handlers a chance at it.

• Terminate condition handling, resuming normal program execution.

• Modify a condition or one of its arguments.

• Replace a condition and all its arguments.

• Add a sub-ordinate or super-ordinate condition with arguments.

Note that there is no provision for dynamically establishing a condition handler, or removing one
from the list. In a cross-OS and cross-architecture environment, this will probably need help from
the compilers.

4.1.1.3 Condition Signaling Routines

Provide a way to initiate a condition, similar to LIB$SIGNAL and LIB$STOP. These routines would
take an AIA-Ievel condition name, and some condition-specific number of arguments.

4.1.1.4 Process and Thread Manipulation Routines

An architecture- and OS-independent layer for manipulating processes and threads, and otherwise
assisting the writers of portable multi-thread applications has been under development in ZK for the
better part of a year. It is known as the Common Multi-Thread Architecture (CMA).

This group of routines would also include the capabilities ofLIB$SPAWN and LIB$ATTACH, although
they are not formally part of the CMA. Exactly how they interact with CMA routines is not defined
yet.

\Please see me for a copy of the draft CMA functional specification. \

4.1.1.5 Date and Time Manipulation Routines

Similar to the VAXlVMS V5.0 date/time features, these routines:

• Obtain the current date and time.

• Flexibly format a date or time.

• Convert a textual date/time into the system's internal format.

• Convert a textual date/time into the Universal Time format.

• Perform arithmetic operations on internal format times.

• Perform conversions on internal format times.

• Support international application requirements.

8

Digital Equipment Corporation-DECwest Engineering
Confidential and Proprietary

4.1.1.6 String Mapping Routines

The capability of mapping strings similar to that provided by the VAXNMS logical name services
is needed. It should be a hierarchical system providing some level of security if a secure mapping
is requested. For low-end systems, it seems that this could be implemented via an RPC server
maintaining the name space.

4.1.1.7 String Translation Routines

This category of routines allows the character-by-character translation of strings, rather than the
entire string mapping performed by the routines in the previous section. This category of routine
would include character set mappings, such as ASCII to EBCDIC.

4.1.1.8 Internationalization Aid Routines

There are currently several aids to assist the writer of international applications, such as:

• LIB$CURRENCY

• LIB$RADIX

• LIB$DIGIT_SEP

• LIB$LP _LINES

• STR$COMPARE_MULTI

• The date/time formatting and parsing routines in VMS V5.0.

• The NCS$ routines for string comparison/sorting.

The same capabilities need to be provided and extended. Possible areas for expansion are:

• Text retrieval - so that applications do not need to embed text in their code. This is currently
done by overloading the message mechanism on VAXNMS.

• Keyboard mapping - Some utilities hard bind functions to a certain keyboard scan code. On non
English keyboards, this scan code may not exist, or may require a compose sequence to generate.
\ This may actually be a function more appropriate to ARTS described in Section 4.3\

• [More TBS]

4.1.1.9 Data Conversion Routines

We need several broad categories of routines here:

• Atomic-numeric to atomic-numeric

• Numeric-string toIfrom atomic-numeric and other numeric-string

• Numeric toIfrom text

These are currently scattered across LIB$, OTS$, MTH$, COB$, and FOR$ (at least). They need to
be centralized, standardized, and well documented.

The CDA conversion and access routines (DDIFfDDFF/etc.) are also part of this set.

9

Digital Equipment Corporation-DECwest Engineering
Confidential and Proprietary

4.1.1.10 Text String Manipulation

These are routines to manipulate strings, find characters within strings, determine information about
'\ strings, etc. The existing STR$ package is a good starting point for this part of the new library, as it

is already very portable and well isolated from the operating system and hardware architecture.

These routines should include support for generalized strings required for international support, such
as TEXT-lB.

4.1.1.11 Common Math Routines

Support for F-FLOAT and G-FLOAT data is standard. Extensions allow for the support of additional
floating point types, but these are not supported everywhere.

The equivalents of the majority of the VAXlVMS MTH$ RTL functions are provided for each floating
datatype supported. \ The voluminous list of candidate functions provided by Jeff Wiener is available
upon request. \

4.1.1.12 Command Line Interface Routines

Similar to the CLI$ routines, with extensions as necessary to support ULTRIX-style command lines
and integrated with DECwindows by a mechanism TBD. \On VMS, this mechanism is the DECwin
dows Dialogue Manager. On Ultrix, this mechanism is TBD. \

While the CLI$ routines are not themselves currently part of the utility RTL, there are several utility
routines which interface to the CLI such as LIB$GET_FOREIGN.

4.1.1.13 File System Interface Routines

ARUS should provide a basic interface to the underlying file system. The following capabilities should
be provided:

• Delete a file.

• Rename a file.

• Create a directory.

• Translate from ARFS-format internal file/record representation into local operating-system
specific forms.

In the full-blown ARUS model, the underlying file and record access system is ARFS as described in
Section 4.4.

4.1.1.14 Generic Equivalents of Useful VAX Instructions

There are currently many RTL routines whose purpose is to let high-level language programmers
access the full array of VAX machine instructions. As such, they are not portable or suitable for
an AIA environment. Many of these routines provide useful features that should be supplied in a
manner not tightly coupled to VAX. For instance, extended arithmetic, CRC calculation, contiguous
memory moves, queue manipulation, etc. should be provided.

4.1.1.15 Multlprecislon Arithmetic Routines

Routines to perform multi-unit integer arithmetic. Similar to LIB$ADDX and friends.

10

Digital Equipment Corporation-DECWest Engineering
Confidential and Proprietary

4.1.1.16 Tree Manipulation Routines

These should be similar to the LIB$ binary tree routines wjth some extensions, most notably
LIB$REMOVE_FROM_TREE. \

4.1.1.17 Graph Manipulation Routines

Tools for manipulating arbitrary graphs (DAGs). Possibly evolved from the GRAPHER package, or
from the net-manager work planned to be done in SDT as part of the DECWindows layers.

There are currently no graph manipulation routines in the Utility RTL.

4.1.1.18 Cross-Reference Routines

The current CRF$ routines are essentially unused, and every compiler writes its own cross reference
routines. There is obviously something wrong wjth the current package, and obviously a need for a
centralized, supported package that fills the requirements of the various compilers and other utilities.
More research is needed.

4.1.1.19 Table-Driven Parsing Routines

Tools such as LIB$TPARSE to write simple parsers.

4.1.1.20 Run Statistics Routines

This group is frequently referred to as "Performance Measurement", but that is a bit overstating the
capabilities of the current routines. These routines return items such as the virtual memory get/free
statistics, or elapsed CPU time since the last call.

\How useful these routines are, and what is possible in the cross-os and cross-architecture environ
ment are open questions. \

4.1.1.21 ProcesslThread Information Routines

These routines return information to the program about its environment and its past execution. Some
of the types of information returned include:

• CPU time consumed

• AST level (or some equivalent- as "AST" may not be a portable concept)

• [More TBS]

4.1.1.22 Resource Management/Synchronization Routines

There is a need for some form of resource management routines, such as the UB$xxx_EF routines.
The CMA specifies capabilities to declare, initialize, and use semaphores and other types of synchro
nization objects. That may be the extent of support, since most other resource managers can be built
from them.

4.1.1.23 Image Management Routines

Routines in this group provide a way to activate new images, either merging wjth or replacing the
currently executing image.

11

Digital Equipment Corporation-DECwest Engineering
Confidential and Proprietary

4.1.1.24 Operator Communication Routines

Some simple, portable capabilities are required here to standardize the program interface with any
operating-syste~-specific operator communications facility.

Required capabilities include:

• Sending a message to the operator.

• Sending a message to the operator and waiting for a response.

• Canceling a previously sent request.

4.1.2 Capabilities Excluded from ARUS

There are several categories of routines that exist in the current VAXNMS RTLs that should NOT
be made a part of ARUS.

4.1.2.1 Obsolete Routines

There are several routines still shipped and supported that are, for one reason or another, obsolete
or undocumented. Clearly these routines should not be provided; they should be allowed to die.

4.1.2.2 JSB Entry Points

Many routines have a JSB entry point as well as a CALLx entry point. This is a non-transportable
optimization that is counterproductive in a library whose main goal is to be portable.

4.1.2.3 Other Routines With Multiple Entry Points

Other routines have many entry point names for identical or highly similar capabilities. The cases of
identical capabilities have typically evolved frorn moving language-specific routines into the language
independent libraries. The cases of highly sim~lar routines have typically evolved due to the fact that
the LIB$, STR$ and OTS$ facilities have differing condition reporting semantics.

It is a goal that the new library have exactly one routine to accomplish a particular action.

12

Digital Equipment Corporation-OECwest Engineering
Confidential and Proprietary

4.2 Applications Run-Time Environment Services (ARES)

In Figure 2 a certain level of detail is hldden inside the dotted line box that represents the Applications
Run-Time Environment Services (ARES). In Figure 3 more of the underlying interconnections are
shown to help explain what ARES is.

Figure 3: AlA Without ARES

DEC / ISV-SUPPLIED
APPLICATION

DEC
WINDOWS

I

• • • • • •

T

USER
APPLICATION

"

LANGUAGE
RTLs

OTHER AlA
CONSTITUENT
ARCHITECTURES

APPLICATION RUN-TIME UTILITY
SERVICES (ARUS)

MICA INTERNAL SYSTEM SERVICES

Notice that Figure 3 shows the same basic components as presented in Figure 2. The basic relation
shlps of the applications, language RTLs, AlA core architectures, and underlying operating system
support are the same as well.

13

Digital Equipment Corporatlon-DECwest Engineering
Confidential and Proprietary

ARES is the "glue" that gives the full-blown model shown in Figure 2 its seamless nature. ARES
is as much a statement of the completeness and maturity of ARUS and AlA capabilities as it is the
presence of any software product. As such, it is hard to point at a particular piece of software and
say "that is ARES." ,

Figure 3 can be considered to be simply a picture of the typical interactions of the components in a
less-developed model of AIA and ARUS. That is why the box representing ARUS in the Figure 3 is
smaller than in Figure 2; it is less capable.

The many solid arrows emanating from the two example applications are meant to show that the
interfaces to various AIA components appear to be dissimilar to the applications programmer. The
additional dashed arrows in the picture are meant to represent the reality of more software that
directly invokes the capabilities of the underlying operating system. For example, the dashed arrow
running from the language RTLs to the Mica Internal System Services box might represent the fact
that the RTLs actually use Mica's process and thread manipulation capabilities due to a limitation
in ARUS.

At the level of the core AIA components, this lack of seamlessness means that two equivalent AIA
level components don't have the same style of interface. For example, because of its UNIXt and
C heritage, DECwindows reports exceptional events back to its caller in a different manner than
other AlA components do. Eventually, all AIA components will use a common mechanism to report
exceptional events to their callers.

In the future, ARES gives a definition of what approaches a portable operating system~ in order to
make all of the interfaces to AIA consistent. \ This is clearly a long-term goal, when AlA is very
mature. \

Logically, ARES contains the following:

• An AlA-level Calling Standard.

• AlA-level abstractions of process and thread.

• An AlA-level condition handling mechanism.

• An AIA-Ievel capability for application flow control.

The point of this discussion and Figure 3 is that until that maturity is reached, there will be a level
of clutter to AIA.

Some of the items in the requirements list above are not well understood today and do not have to
be present at the compute server FRS. Because of that, my thoughts on this are definitely sketchy.

4.2.1 An AlA-level Calling Standard

Initially this may be nothing more than the VAX Calling Standard coupled with constraints appro
priate to early RPC implementations. That will get us a long way.

As ARES matures, however, some basic issues related to the interoperability of procedure interfaces
across many diverse architectures need to be addressed. Capabilities in the AlA Calling Standard to
address these issues might include definitions of:

• Common supported data types.

• Simple architected argument coercions allowed for compatibility.

For example, an AIA-Ievel procedure definition defined with the AIA Calling Standard might
specify that an integer input argument to the procedure is expressed as a common "natural"
integer size. Transparent coercion of such arguments to the natural size of integer appropriate
to the implementation of the procedure body would be covered by the calling standard.

t UNIX is a trademark of AT&T
+ There, I said it.

14

Digital Equipment Corporatlon-DECwest Engineering
Confidential and Proprietary

•
•

The AlA-level condition handling briefly described in ARUS is fleshed out an implemented .

Much more TBD .

Although not as much a technical concern, the calling standard should also specify the "look and feel"
of AIA-conformant interfaces. This is to promote the consistency of interface that contributes to the
perception of AIA as a single (if incredibly large) facility.

4.2.2 AlA-level Application Flow Control

With the existence of new user interfaces such as DECwindows, what capabilities are needed to
control the scripted execution of several distinct programs? Command files and shell scripts aren't
sufficient.

Is providing for callable entry points for all DEC-supplied utilities sufficient for allowing for flow
control via program generation? I think not. There will always be the need for a conceptually
simpler mechanism that doesn't require programming skills.

4.3 Application Run-Time Terminal Services (ARTS)

Character cell terminals, including hardcopy terminals, are not going to disappear from the scene in
our lifetime.

ARTS contains capabilities designed to allow for the portable support of character cell terminals,
incl uding foreign terminals, in a distributed fashion.

Note that ARTS is not envisioned to be a forms package; it is possible that ARTS could be used as
a basis for support of a forms package, but absolute forms performance requirements have typically
prevented this type of logical layering in the past.

4.3.1 Basic ARTS Capabilities

In its simplest form ARTS allows for input and output operations that are suitable for use on hardcopy
terminals or softcopy terminals with one "window" that is the entire screen. That is, it is possible to
perform a read or write operation without creating a supporting virtual display/pasteboard/etc. for
this simple case.

Note that ARTS does not provide for support of hardcopy terminals in other than this simple se
quential, implied position model. There is no support for transparent emulation of softcopy terminal
fallback presentations.

ARTS does add value to this simple model by providing a mechanism to invoke hardware-specific
marking capabilities in a portable fashion, that is, without requiring an application to embed device
specific control sequences in output strings.

Input key mapping and function key definition support is also included.

4.3.2 Enhanced ARTS Capabilities

These capabilities include the ability to create multiple logical "windows," decorate those windows
with output marking instructions, manage the input focus of a keyboard associated with those win
dows, and manage the terminal real-estate while presenting the logical "windows" on the physical
display screen. The capabilities correspond roughly to the SMG$ routines provided by VAXJVMS
today.

It would be desirable to tie the ARTS capabilities to utilize the DECwindows distribution capabilities.
It may be possible to specify ARTS as a unique implementation of a limited set of DECwindows calls
plus extensions to DECwindows using the DECwindows extension architecture. Much more research
is needed.

15

Digital Equipment Corporatlon-DECwest Engineering
Confidential and Proprietary

4.4 Applications Run-Time File Services (ARFS)

ARFS is designed to provide a portable distributed file and record access program interlace with
enhanced capabilities. ARFS raises the base file and record access support provided in the AIA
target operating systems to a level of capability roughly equivalent to RMS today.

Unlike RMS, however, ARFS has an AlA-conformant interface and has additional capabilities to
provide an end-user interface that includes the Data-Store Management System (DSMS) capabilities
in a consistent interface.

These DSMS capabilities allow for the definition of simple hierarchical file organization schemes
with user-extensible file attributes. This level of support obviates the requirement for programs with
simple databases, such as MAIL or NOTES, to re-implement these extensions to extend the base
underlying file and record access support. DSMS capabilities are also eventually required to support
the File Cabinet Architecture (FCA) which in turn supports the eventual execution of All-In-l on an
interactive Mica system.

ARFS provides the glue between DECwindows, ARTS, and the file system interface for simple
terminal- or window-related I/O. That is, ARFS can direct simple sequential terminal output and
input toIfrom DECwindows and ARTS-interfaced terminals.

ARFS also defines a mechanism for directing output to the default input output, and error streams
in an operating-system-independent way.

\How is this different from the Distributed File Service (DFS) component of workgroups? Is this just
an AIA-conformant interface to DFS?\

16

Digital Equipment Corporatlon-DECwest Engineering
Confidential and Proprietary

5 Proposed Steps in the Implementation of AlA on Mica

Based on the assumptions listed above about the customer requirements at FRS, the following three
phase implementatiOI\ plan is suggested.

Three arbitrary release of Mica-CS are considered:

• Mica-CS VI (nNuts-and-Bolts capabilities for FRS.")

• Mica-CS V2-V? Functional Releases ("Filling in the gaps.")

• Mica-CS Vinteractive ("Full-featured interactive Mica system. ")

For the first release, estimates of the relative complexity of the work and how the work could be
accomplished are provided.

It is important to note that new AlA capabilities designed for Mica-CS will need to be reviewed by
representatives of the other target operating systems; this will add time to the design review process.

It is also important to note that in order for the Mica-CS implementation to be perceived as seamless,
these capabilities need to be provided on ULTRIX and VMS at the same time. This document should
not be construed to imply the existence of formal or informal commitments on the part of any other
Digital development group to provide any such capabilities.

5.1 Mlca-CS V1 Release

I assume that the following components discussed in other Mica-CS plans will be present at FRS:

• RPC

• Workgroup distributed security capability

• Workgroup distributed naming capability

• Workgroup distributed file service capability

• Language-specific RTLs for FRS languages

Table 1 lists the AlA components and sub-components that should be provided for Mica-CS VI. This
list is presented in general descending order of importance by component and subcomponent.

The column labelled "Complexity" shows two estimates of the work involved. The first value provided
is the level of complexity of the definition/design work expressed on a scale of "High-Medium-Low".
The second value provided is the amount of work involved to create/port the software; a scale of
"Large-Medium-Small" is used.

17

Digital Equipment Corporatlon-DECwest Engineering
Confidential and Proprietary

Table 1: AlA Candidates For Mica-CS V1
Component

ARUS

Subcomponent

ProcesalThread Ma
nipulation and Infor

mation Routines, Re
source Management

/Synchronization Rou
tines, Condtion Han
dling and Signaling Rou
tines

Virtual Memory Man
agement Routines

Common Math Rou
tines

File System Interface

Routines

Text String Manipula
tion

Data Conversion Rou
tines

String Mapping Rou

tines

String Translation Rou
tines

Date and 11me Ma
nipulation Routines

Command Unelmer
face Routines

Work Required

Architect and Implement using CMA and
previous Mica work. as a starting point.
Define process and thread level abstrac
tions.

Architect and Implement.

Much more basic work albout the possi
bility of a portable math library needs to
be done. Architect portable math environ
ment and implement.

Make decision about ARFS versus OFS.

Architect and implement.

Architect and implement.

Architect and implement.

Architect and implement.

Architect and implement.

Architect and Implement

Design and implement using CLiS routines
and previous Mica work as a starting point.

Complexity

High/Medlum

MediumlSmall

HighlLarge

Medium! l,Medium?

LowlMedium

Low/SmaJl

MediumlSmall

LowlSmaJl

MediumlSmall

MedlumlMedlum

DECwindows XLIS

Xtoolklt
Research complexlty of porting. Design Low/Big

OECwindows (ULTRIX)

ARTS

CDA

Print System Model

ARES

ARFS

OECtoolklt

Ensure basic Interop
erabiDty with ULTRIX

Ensure interoperabll

Ity with ULTRIX U.er
Execullve

DDIF Convereion RTL
routines

Submitter Subroutine
Interlace

CalRng Standard

5.2 Mica-CS V2·V? Releases

and Implement new DECnet-MICA trans-
port code. Port 400-500 C functions.

Research TCP-IP \ransport interface. De- Lowll,Small?
sign and implement U.LTRIX "pseudo-server.'

ULTRIX User Executive specification un

avallabie. RevI_ it when It becomes

avallabie.

Research te.sibHity of using OECwindows
as buis tor ARTS. Define ARTS using
SMGS as • starting j)Oint. Implement ba

sic ARTS capabilities.

Research port complexity.

Interface Is currently undefined. Partic
ipate In definition. Provide RPC stubs
tor exec:ution of Submitter Subroutines on

client

Research and begin development of Call
ing Standard

Determine exact nature of relationship of
ARFS with OFS and RMS. Is there a real

need for ARFS?

Lowll,Small?

High/Medlum

LowlLow

Low/SmaJl

Medium!l,Large?

Highll,Large?

Resources

OECwest, SOT. AlA Design Reviewers

OECwest, SOT. AlA Design Reviewers

SOT, OECwest, AlA Design Reviewers

OECwest, AlA Design Reviewers

SOT, OECwest, AlA Design Reviewers

SOT. DECwest, AlA Design Reviewers

SOT, OECwest, AlA Design Reviewers

SOT, DECwest, AlA Design Reviewers

SOT, DECwest, AlA Design Reviewers

DEC_st, SOT. AlA Design Reviewers

OECwest

o ECwest

OECwest, SOT, AlA Design Reviewers

OEC_st, BOSE

PSM Task Group, OECwest

OECwest, SOT. AlA Design Reviewers

The following AlA components and sub-components should be provided in these releases, to enhance
the AlA environment or provide the framework for Vinteractive:

18

Digital Equipment Corporation-DECwest Engineering
Confidential and Proprietary

• Complete ARUS definition and implementation of the following classes of routines:

Cross-Reference Routines

Generic Equivalents of Useful VAX Instructions

Graph Manipulation Routines

Image Management Routines

Internationalization Aid Routines

Multiprecision Arithmetic Routines

Operator Communication Routines

Run Statistics Routines

Table-Driven Parsing Routines

Tree Manipulation Routines

• Implement mechanism for DECwindows architected extensions.

• Implement GKS and PHIGS DECwindows extensions.

• Complete implementation of ARTS capabilities not present in VI.

• Implement DSMS in preparation for Vinteractive.

5.3 Mlca-CS V Interactive Release

The following AIA components and sub-components should be provided at this release:

• DECwindows XSERVER, User Executive, and assorted interactive utilities and as-yet-undefined
extensions. For example, provide the desktop tools.

• Compound Document Architecture: Assorted interactive EPIC utilities. For example, provide
the Compound Document Editor.

• Assorted Print System Model components. For example, host the execution of the Print Symbiont.

• Assorted Integrated Programming Support Environment (IPSE) components.

• All-In-I and supporting File Cabinet Architecture and Document Database components.

• Continuing implementation and retrofit of ARUS improvements related to ARES maturity. For
example, retrofit DECwindows with a true AIA-conformant interface.

• Provide ARES flow control capabilities.

Most of these components have not been provided before this release because they apply only to inter
active capabilities. Some have not been provided because they are in very early stages of definition
at the present time and only solidified after the Mica-CS VI timeframe.

19

Digital Equipment Corporation-DECwest Engineering
Confidential and Proprietary

6 Some Closing Observations

• \ All of ARES doesn't have to be in place at the FRS of the compute server.

We will choose to place emphasis on providing certain components such as DECwindows and
portions of ARUS at FRS. Other components can be added later.

• Even though all of ARES won't be in place for several years, we can anticipate it and build the
foundations for its eventual maturation.

We don't have to solve every problem before we start, however. One purpose for my writing
this document has been to share the fact that a lot of definition work has to be performed on
these new capabilities (AR*S). I believe that we will be missing a large opportunity if we allow
concerns about the volume of that work to deter us from an aggressive program of involvement
in AlA.

• There will always be a need for supporting certain Mica- or PRISM-specific capabilities in user
visible (maybe ISV only-) interfaces that will not be part of AIA.

Capabilities that are not present in ARUS at FRS will have to be provided on a temporary (no
such word) basis by Mica.

It is a goal for Mica-CS to minimize these cases, however. It is unreasonable to expect that we
will be able to avoid some level of documentation regarding these capabilities.

• No matter how fast we deliver AIA components, there will be a potentially large lead time before
customers acknowledge that AlA is valuable.

That lead time should be anticipated and used to flesh out the AIA offerings across all of the
supported operating systems. This time will also give us a chance to retrofit certain pre-existing
architectures to match the fully developed model of AIA that we'd like to ultimately achieve.

• Reducing that lead time and enhancing the acceptance of AlA is as important as delivering the
AIA components themselves.

The message about Digital's commitment to AlA has to be clear and supported by actions demon
strating that commitment. ISV's particularly need to be qualified and encouraged to participate
in seed programs, technical exchanges, etc. Good documentation targeted to the needs of ISV's
is a must.

• AIA capabilities cannot afford to be "least-common-denominator" capabilities.

7 Acknowledgements

This document was the result of a collaboration between the following individuals, based on a minimal
amount of direction from the author:

• Al Simons - ARUS capability descriptions

• Jeff Wiener - Math RTL input

• Laurie Dawson and Craig Kosak. - Artwork

This document does not reflect their views on all issues.

My thanks to all who helped or listened to the nth recitation of the oral version of these thoughts.

20

The Modula-2+ synchronisation primities are described in SRC report
Nr 20, available online in Circus::SRC$notes:t6.ps, and also in the 11th sasp
proceedings

A condensed version of the CMA spec is available in the
CLT::Threads notes file, note 31.5, or in HOBART::CONDESNSED.SPEC (sic).
From: DECWET::COCKCROFT "Claire Cockcroft, DECwest Engineering 03-Feb-198809
To: BECALM::NYLANDER,COCKCROFT
SUbj: Environment Information Requirements for Glacier

DIGITAL INTEROFFICE MEMORANDUM

TO: distribution DATE:
FROM:

DEPT:

EXT:
LOC:
ENET:

cc: Mark Ozur
Benn Schreiber

February 3, 1988
Claire Cockcroft,
Dennis Doherty
DECwest Engineer
ing
206-865-8916
ZSO
DECWET::COCKCROFT

Digital Equipment Corporation-~Confidential and Proprietary

SUBJECT: Environment Information Requirements for Glacier

The Glacier product is a compute server that provides ac-
cess to Mica system resources through an integrated client
/server interface. The client/server mechanism for execut-
ing applications in the compute server environment is di
vided into a client portion of support software (the client
context server) and a Mica portion (the job controller server).
The client context server and the job controller server com
municate via remote procedure calls. It is the responsi
bility of the client context server and the job controller
server to set up the environment in which a user's appli
cation will execute.

Page 2

The following questions arise about the execution environ
ment:

o Exactly what items of information from the client sys
tem should be included in the execution environment?

o Where should items of environment information be located
for access by the user's application?

We have already identified some environment requirements.
For instance, Mica RMS requires the user's default volume
and default directory. In the current design, the client
context server calls the job controller server to create
a Mica job. Before creating the job and thus causing the
user's image to begin execution, the job controller server
requests Mica RMS information from the client context server,
and stores the RMS information as Mica logical names in a
process container for use by Mica RMS. Likewise,the sta
tus/message/text-formatting facility requires the user's
default natural language and default status message for-
mat. These two items will be stored as Mica logical names
using the same mechanism as Mica RMS items.

It is not clear exactly what environment information is re
quired by the language runtime libraries. C, for instance,
expects access to command line arguments and environment
variables. There are several ways in which this informa
tion could be supplied; the following describes three pos
sible mechanisms:

1. The client context server may pass the information to
the job controller server when it requests a job cre
ation. The job controller server may then store the in
formation in the Mica process data block parameter when
it calls exec$create job. The-compute server support soft
ware does not attempt to differentiate one language from
another, and thus stores the same information for all
user programs.

Page 3

2. Following the mechanism outlined above for Mica RMS in
formation, the client context server may fetch infor
mation upon request from the job controller server, which
stores the information as logical names. Again, the com
pute server support software stores the same informa
tion for all user programs.

3. Runtime libraries, specific to the programming language,
may request environment information through remote pro
cedure calls to the client context server during ini
tialization routines (prior to user code execution). The
client context server would have to provide support for
these language specific procedures.

In order to decide which, if any, of the above solutions
is the best design for Glacier, it is important that we iden
tify the specific environment information requirements of
the language runtime libraries. And to do this, we need your
input.

Please review your language runtime library requirements
for the Glacier compute server model. In your considera
tion include requirements for both FRS and later releases,
keeping in mind such parts of the execution environment as
logical names and context services. If you have specific
expectations, presumptions, or requirements, please send
them to me no later than February 15th, for inclusion in
our design.

Dennis Doherty and I are available to answer questions about
the current design of compute server support software. If
you know of anyone who may have additional requirements,
please forward this memo to the appropriate party.

DISTRIBUTION:

Dave Ballenger
Chip Nylander
Darryl Havens

Page 4

From:
To:
Subj:

From:
To:
Subj:

TLE::VNX::KEATING 29-JAN-198814:28
CHIP
This should be embedded in Prism Files at Fes. Will you sponsor? ill

PIXEL: : TRAVIS "Bob Travis, ZK02-1/N20, 381-2762 29-Jan-1988 1104" 9··JA
@CDPAC-MEM,@CDPAC-INT
first-level info on VMS plans to support DDIF

To: CDP-AC members
cc: interest

Here is early information on planned level of VMS support (in 5.2) for
DDIF files via RMS extensions. If you have any questions, please send
them to stu.

Thanks,
Bob

From:
To:
CC:
SUbj:

STAR: : DAVIDSON "stu Davidson" 29-J.AN-1988 08: 51
@TAG.DIS
DAVIDSON
Minutes -- VMS support for DDIF files

+---+---+---+---+---+---+---+
I dig ita 1 I
+---+---+---+---+---+---+---+

TO: distribution

I N T E R 0 F FIe E M E M 0

MEMO: VMS support for DDIF files
DATE: 29-aAN-1988
FROM: stu Davidson

Trevor Kempsell
DEPT: Vl'1S
LOC: ZKO -4/Y02
NODE: STAB:: DAVIDSON, STAR:: KE.f'1PSELL

Distribution:
REM: : ARANDA
DSSDEV: : BUTLER
DSSDEV: : CHASEN
STAR: : DAVIDSON
STAR: : GEORGE
DSSDEV::HALLGRIMSSON
DSSDEV: : JACK
STAR::KEMPSELL
STAR: : KENAH
STAR: : NIGEL
STAR::PENNINGTON
STAR: : SCHAEFER
STAR: : STEEVES
PIXEL: : TRAVIS

SUBJ: Meeting between VMS and
Compound Document Program interest group

13-Jan-1988

Support in VMS

VMS support for DECwindows, including any support for DDIF encoded files,
will not be included in VMS v5.0.

Any changes in base VMS components, required for DECwindows vl.O, will
be shipped as part of the DECwindows Vl.0 kit, which will not be a VMS
release.

Base VMS components which ship with DECwindows VI.O will be merged into
VMS with the v5.2 release. Base system support for DECwindows in 5.2
will be at least equal to the support provided in DECwindows Vl.0.

Tagging

In keeping with the current VMS policy of not depending on file naming
conventions, it was agreed that some method of absolute identification
of a file as DDIF (from the file header, not data inspection) is required.

The scheme for 'tagging' files recommended by the Compound Document
Architecture board is use of the ASN.l object identifier. A typical length
of an object identifier is on the order of 12 bytes.

It was further agreed that, within VMS, all DDIF files are to be tagged, and
applications will not treat untagged files as being encoded in DDIF.
A DDIF file which is not tagged will be considered corrupt, and require
some type of repair.

SIGNIFICANCE OF DDIF

(I stole this section from Ron Schaefer. Even though these words may not
have been said at the meeting, I think this captures the underlying
level of concern.)

The only significant question is: "How important will DDIF be?" or more
precisely: "How popular will DDIF files be?".

Unfort.unat.ely no one r~~Jly 1<nn,,'75, bllr T rhinl' r::nmp cnnsidpration nf +-hp
consequences is worth discussing:

Suppose DDIF never becomes very papula '
a small, fringe set of window programs

An implementation that is based on ,.
off-to-the-side support is cnmmen r:~111
An implementation that prorr- 1 1 ',' il'!

overkill work but still useful.

,.,; 11S as a file formal fc)[

,,·1 r,l{ esc.:ape and
, I I, I~he need.

'1'1. F into Vl'lS l; RNS is

If, on the other hand, DDIF becomes a mainstream file format and occurs
frequently then:

An implementation that is based on some kind of escape and
off-to-the-side support will be a disaster with respect to making

VMS & DDIF look coherent.
An implementation that properly integrates DDIF into VMS & RMS is
necessary in order to have a decent product.

There is no problem with having the initial implementation (due to
time-pressure) supporting less than the full design and no real pr ern witil
using some escapes, etc. PROVIDED the basic integrated design is sound and
fully thought thru.

It was agreed that, given the significance of DDIF direct access to DDIF
files by existing applications must be supported.

Existing applications

Since no applications which use DDIF format files have yet been shipped,
it was agreed that existing applications (VMS components, layered produ t f

third party, or customer written), which could reasonably deal with data
in DDIF files fall into one of two categories:

1. Applications which expect to read a sequence of ASCII records. DDIF
files can contain data of this sort, and this is the file type which
will be produced by the normal editor elected to be used in the DECwindows
environment. DDIF files, however, are encoded quite differently from
traditional sequential text files within VMS. For existing applications
to process text records directly from DDIF files, some filter, or tran lator,
must be employed.

2. Applications which deal with any file type, si as a sequence of bytes.
These are generally file utilities, such as copy, compression, or encryption
utilities.

Any applications capable of dealing with DDIF files in native mode fall into
the category of 'new applications' .

The central issue in VMS support for DDIF files is: what should happen when
an existing application opens a DDIF file? Type 1 applications will fail
in unpredictable ways, unless a transparent 'fil r' is available. The
alternative is that the user must be conscious of file formats.

If a filter is applied for type 2 applications, they may fail to behave
as expected.

It is clear that no solution will be correct a It seems reasonahle to
t an approach which wi 11 frequent.ly ',\,,7ork', .j ;:; predi t bl , and prcnliciE=?s

some work-around for problems.

New Applications

Here, new rules can apply. New app.1; / ':11 ;, I

understand the new rules.
, ' ; () I) a Ll 1 Y IJ e !.' p e C' t c (! \- C.1

A new application which may wish to deal with new file formats in other than
'default' mode, must specify that intent when opening files.

Agreed approach

1. Files will be tagged, through the RMS interface. Normal VMS utilities
will preserve the entire contents and tag for DDIF files.

2. Existing applications opening tagged files:

in record mode:
will get variable length ASCII records, through (an extended) RMS.

in block mode:
will get unfiltered disk block images.

This should allow most existing applications to work predictably.
Tagged files cannot be read in record mode unless an appropriate
extension is available (i.e., the $OPEN will fail).

3. New applications opening tagged files:

"New" applications will be identified on $OPEN, when they request the fil
tag. These applications, at $CONNECT, may specify the semantics desired
for reading the file. When the stored file semantics and the desired
semantics match, unprocessed records from the file will be passed to
the application (no RMS extension used). If the stored and desired semantics
differ, RMS will attempt to locate a translator (extension). If no translator
is found, the $CONNECT will fail.

4. Printing

It was agreed that printing is not a major issue.

Existing print symbionts will read ASCII records through RMS and existing
'type l' applications. The Printing System Model will provide a 'new'
style application, which will recognize and deal with tagged files.
OECwindows will also provide a ODIF to POSTSCRIPT translator.

5. Network file copy

It was agreed that OAP must be extended to allow the exchange of file tc:1gS.
VMS RMS/FAL will support the new DAP messages. The strategy requires
MS-DOS and ULTRIX FAL's to also cooperate.

Rem Aranda accepted responsibili ty for el11 :'(11" 11 . '1 () 1:' e t 0 L i (1 II .

Further details on the VMS implement(~tion 1 i I" I" L thc(Jmi IVj .

This will include:

o A list of utilities which will include suppo for DDIF in
the DECwindows Vl.D release, to complement the support which

will be shipped in RMS with the Vl.O release.

o VMS will also define its behavior with systems in a network
which do not support file tagging.

o Changes to VMSMAIL for DDIF support.

From: TLE::WHITLOCK "stan whitlock DTN: 381-2011" 1S-FEB-1988 12:54
To:
Subj:

CHIP,RICH,JB,DAVEM,CLT::SIMONS,CLT::GREENWOOD,MATT,CLT::WIENER,WOOLY,WAL
minutes of our meeting on Environment Information Requirements for Glaci

On 10-Feb-88, the following people met to discuss Environment Information
Requirements for Glacier:

John Bishop
Walt Carrell
Dave Moore
Gerald Sacks

Al Simons
Jeff Wiener
stan Whitlock

This meeting was prompted by a memo from Claire Cockcroft and Dennis Doherty
of DECwest, requesting our input on environment information needed in the
client/server model.

We made the following points:

o In general, the program running on the server may want environment
information (eg, a logical name translation) from the client at any
time during its execution so there must be facilities to both query
and set the client environment from the server at any time during
execution.

It may be possible to pass some environment information from the client
to the server when the server process is started (as a performance
enhancement) but this "improvement" should be transparent to the server
process' ability to query/set the client environment.

o We are assuming that the message file resides on the server and that
formatted text strings (not status codes) are passed from the server to
the client.

It wwas pointed out that the user will want to be able to get enough
status information about a failure to understand where the failure
occurred, ie, failure on the server or on the client. This runs
opposite to the "seamless" environment which does not require the user
to know where his job is running.

o The categories of environment information that we felt must be available
included:

RMS file name translation
RMS settable parameters
command line info
logical names
message state: format, natural language
security profile: ACLs and rights identifiers
appropriate quotas - we're not sure which ones
process information - GETJPI

Claire was in ZK last week and met with me after this group met. She shed some
light on the questions of quotas and JPI info between the server and the client.
The current thinking is that a very smart system manager (human being) on
Glacier will create the proxy account that the client will run under so that the
proxy has all of the correct rights and quotas. These may be and probably will
be different from the quotas and rights on the client. The coordination of
these proxy accounts will be manual and therefore, potentially error-prone.

Claire didn't hear anything radiaclly new and bizarre from our deliberations -

her group had thought of most of this stuff. Al will be out at DECwest this
week for the program review and will (no doubt) have a chance to 'elaborate on
this topic.

/stan

