
SetlX — A Tutorial

Version 2.7.0

Karl Stroetmann

Duale Hochschule Baden-Württemberg Mannheim
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setlx@randoom.org

June 3, 2019

mailto:karl.stroetmann@dhbw-mannheim.de
mailto:setlx@randoom.org


Abstract

Galileo Galilei once said that mathematics is the alphabet used by God to describe the universe. In
the late sixties, Jack Schwartz, a renowned professor of mathematics at the Courant Institute for
Mathematical Sciences in New York, developed a programming language that uses this alphabet, the
language called Setl [Sch70, SDSD86]. The most distinguishing feature of this language is the support
it offers for sets and lists. As set theory is the language of mathematics, many mathematical algorithms
that are formulated in terms of set theory have a straightforward implementation in Setl.

Unfortunately, at the time of its invention, Setl did not get the attention that it deserved. One of
the main reasons was that Setl is an interpreted language and in the early days of computer science,
the run time overhead of an interpreter loop was not yet affordable. More than forty years after the first
conception of Setl, the efficiency of computers has changed dramatically and for many applications,
the run time efficiency of a languange is no longer as important as it once was. After all, modern
scripting languages like Python [vR95] or Ruby [FM08] are interpreted languages and noticeably slower
than compiled languages like C, but this fact hasn’t impeded their success.

While teaching at the Baden-Württemberg Corporate State University, the first author had used
Setl2

1 [Sny90] for several years in a number of introductory computer science courses. He had noticed
that the adoption of Setl had made the abstract concepts of set theory more accessible to the students.
Nevertheless, as Setl2 is more than 30 years old by now, it has a number of shortcomings. One issue
is the fact that the syntax of Setl2 is quite dated and has proven difficult to master for students that
are mainly acquainted with C and Java. Therefore, the original language Setl has been extended into
the new language SetlX. The main features that have been changed or added are as follows:

• SetlX supports terms in a way similar to the language Prolog [SS94]. For example, SetlX
supports matching. This makes SetlX well suited for symbolic computations.

• SetlX supports several ideas from functional programming. In particular, functions can be
used as a primitive data type. Furthermore, SetlX supports closures [Lan64] and memoization
[Mic68] of functions.

• SetlX has support for regular expressions.

• SetlX provides a limited way of backtracking . This feature was inspired by the language Prolog.

• SetlX supports object oriented programming concepts.

• Vectors and matrices are supported as basic data type. Various linear algebra functions have
been added on top of these data types. For example, there are functions to invert a matrix or to
compute the eigenvalues and eigenvectors of a matrix.

• SetlX provides a number of probability distributions and hence can be used for statistical
applications.

• SetlX provides a small set of graphical primitives that support the animation of algorithms.

• SetlX provides a modest plotting library that can be used to graph functions or to draw scatter
plots.

• While sets are represented via hash tables in Setl2, SetlX implements sets as binary search trees.
Therefore, in Setlx sets can be used to represent both functional relations and priority queues.

1 Setl2 is an object oriented extension of Setl. It was created by Kirk Snyder at the Courant Institute of Mathe-

matical Sciences at New York University.
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• Lastly, while Setl2 has a syntax that is reminiscent of Algol, SetlX has a syntax that is more
akin to languages like C or Java, thus making its syntax more modern.

The language SetlX has been implemented by Tom Herrmann as part of his student research project.
He continues to supervise the addition of new features. Markus Jagiella has created the package that
can be used to animate algorithms. Patrick Robinson added the package supporting linear algebra.
Arne Röcke and Fabian Wohriska have added the plotting functionalities to the SetlX interpreter.
Support for various statistical functions has been added by León Mutschke and Jonas Siefker.
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Chapter 1

Introduction

1.1 Motivation

Every year, dozens of new programming languages are proposed and each time this happens, the
inventors of the new language have to answer the same question: There are hundreds of programming
languages already, why do we need yet another one? Of course, the answer is always the same.
It consists of an economical argument, a theological argument and a practical argument. For the
convenience of the reader, let us brievely review these arguments as they read for SetlX.

1. Nothing less than the prosperity and welfare of the entire universe is at stake and SetlX provides
the means to save it.

2. Programming in SetlX is the only way to guarantee redemption from the eternal hell fire that
awaits those not programming in SetlX.

3. Programming in SetlX is fun!

The economical argument has already been discussed at length by Adams [Ada80], therefore we don’t
have to repeat it here. We deeply regret the fact that the philosophical background of the average
computer scientist does not permit them to follow advanced theological discussions. Therefore, we
have to refrain from giving a detailed proof of the second claim. Nevertheless, we hope the examples
given in this tutorial will convince the reader of the truth of the third claim. One of the reasons for
this is that SetlX programs are both very concise and readable. This often makes it possible to fit
the implementation of complex algorithms in SetlX on a single slide because the SetlX program is
no longer than the pseudocode that is usually used to present algorithms in lectures. The benefit of
this is that instead of pseudocode, students have a running program that they can test and modify.
This and the conciseness of SetlX programs was one of the reasons for the first author to adopt
SetlX as a programming language in his various lectures on computer science and mathematics: It
is often feasible to write a complete SetlX program in a few lines onto the blackboard, since SetlX

programs are nearly as compact as mathematical formulæ.
SetlX is well suited to implement complex algorithms. This is achieved because SetlX provides a

number of sophisticated builtin data types that enable the user to code at a very high abstraction level.
These data types are sets, lists, first-order terms, and functions. As sets are implemented as ordered
binary trees, sets of pairs can represent mappings as well as priority queues. This enables very neat
implementations of a number of graph theoretical algorithms. As SetlX is implemented in Java and
the Java virtual machine is quite fast, various tests have shown that SetlX beats Python in terms of
performance.

The purpose of this tutorial is to introduce the most important features of SetlX and to show, how
the use of the above mentioned data types leads to programs that are both shorter and clearer than the
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corresponding programs in other programming languages. This was the prime motivation of the first
author to develop SetlX: It turns out that SetlX is very convenient as a tool to present algorithms
at a high abstraction level in a class room. Furthermore, SetlX makes the abstract concepts of set
theory tangible for students of computer science.

1.2 Overview

The remainder of this tutorial is structured as follows:

1. In the second chapter, we discuss the data types available in SetlX.

2. The third chapter provides the control structures.

3. The fourth chapter deals with regular expressions.

4. The fifth chapter discusses functional programming and closures.

5. The sixth chapter discusses the try-catch and throw mechanism and demonstrates the use of
backtracking.

6. The seventh chapter discusses how vectors and matrices can be used and demonstrates the linear
algebra package that is provided by SetlX.

7. The eighth chapter discusses the statistical functions provided by SetlX.

8. The ninth chapter presents the functions that can be used for plotting.

9. Chapter number ten introduces classes and demonstrates that SetlX supports an object-oriented
programming style.

10. The final chapter lists and explains all predefined functions.

11. The appendix discusses the graphical primitives provided by SetlX. These primitives can be
used, for example, to animate algorithms.

This tutorial is not meant as an introduction to programming. It assumes that the reader has had
some preliminary exposure to programming and has already written a few programs in either C, Java,
or a similar language.

1.3 Downloading

The current distribution of SetlX can be downloaded from

http://randoom.org/Software/SetlX.

SetlX is written in Java and is therefore supported on a number of different operating systems.
Currently, SetlX is supported on Linux, OS X, Microsoft Windows, and Android . The websites given
above explains how to install the language on various platforms. The distribution contains the Java
code and a development guide that gives an overview of the implementation. For those interested in
peeking under the hood, the source code of SetlX is available at

https://github.com/herrmanntom/setlX.

Disclaimer

The development of SetlX is an ongoing project. Therefore some of the material presented in this
tutorial might be out of date, while certain aspects of the language won’t be covered. The current
version of this tutorial is not intended to be a reference manual. The idea is rather to provide the
reader with an introduction that is sufficient to get started.
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Encouragement

The authors would be grateful for any kind of feedback. They can be contacted via email as follows:

Karl Stroetmann: karl.stroetmann@dhbw-mannheim.de

Tom Herrmann: setlx@randoom.org
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Chapter 2

Whetting Your Appetite

This chapter contains a short overview of the data types supported by SetlX and tries to whet your
appetite for the language by showing off some of the features that are unique to SetlX. Before we
discuss the more elaborate data types, we introduce the basic data types for numbers and strings and
show how to invoke the interpreter.

2.1 Getting Started

SetlX is an interpreted language. To start the interpreter, the file setlX has to be both executable
and part of the search path. If these preconditions are satisfied, the command

setlX

launches the interpreter. The interpreter first prints the banner shown in Figure 2.1, followed by a
prompt“=>”. Commands are typed after the prompt. If the command is an assignment or an expression,
then it has to be terminated by a semicolon. However, complex commands like, for example, branch
statements, loops or class definitions are not terminated by a semicolon.

-====================================setlX=============================v2.7.0=-

Welcome to the setlX interpreter!

Open Source Software from http://setlX.randoom.org/

(c) 2011-2017 by Herrmann, Tom

You can display some helpful information by using ’--help’ as parameter when

launching this program.

Interactive-Mode:

The ’exit;’ statement terminates the interpreter.

-===============================Interactive=Mode==============================-

=>

Figure 2.1: The SetlX banner followed by a prompt.

The welcome banner of SetlX points out that we can call setlX with the parameter “--help”.
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Doing this yields the output shown in Figure 2.2 below.

-====================================setlX=============================v2.5.2=-

File paths supplied as parameters for this program will be parsed and executed.

The interactive mode will be started if called without any file parameters.

Interactive-Mode:

The ’exit;’ statement terminates the interpreter.

Additional parameters:

-l <path>, --libraryPath <path>

Override SETLX_LIBRARY_PATH environment variable.

-a, --noAssert

Disables all assert functions.

-n, --noExecution

Load and check code for syntax errors, but do not execute it.

-r, --predictableRandom

Always use the same sequence of random numbers (useful for debugging).

-p <argument> ..., --params <argument> ...

Pass all following arguments to executed program via ‘params’ variable.

-e <expression>, --eval <expression>

Evaluates next argument as expression and exits.

-x <statement>, --exec <statement>

Executes next argument as statement and exits.

-v, --verbose

Display the parsed program before executing it.

--doubleDefault

--doubleScientific

--doubleEngineering

--doublePlain

Sets how the exponent of a floating point number is printed.

-h, --harshWelcome

Interactive mode: Reduce welcome message to a bare minimum.

-m, --multiLineMode

Interactive mode: Input is only processed after an additional new line.

--version

Display interpreter version and terminate.

Figure 2.2: Calling setlx with the option “--help”.

The SetlX interpreter can be used as a simple calculator: Typing

1/3 + 2/5;

and then hitting the return key1 will result in the following response:

~< Result: 11/15 >~

1 In SetlX, statements can extend over many lines. If the user intends to use multi line statements, then she can

start the interpreter using the commandline switch “--multiLineMode”. In multi line mode, the return key needs to be

hit twice to signal the end of the input. Instead of using a commandline switch, the user can also issue the command

multiLineMode(true);

to activate multiline mode. To switch back to single line mode, use the command “multiLineMode(false);”.
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After printing the result, the interpreter provides a new prompt so the next command can be entered.
Incidently, the last example shows the first data type supported by SetlX: Rational numbers. These
will be discussed in more detail next.

2.1.1 Rational Numbers and Floating Point Numbers

SetlX supports both rational numbers and floating point numbers. A rational number consists of a
numerator and a denominator, both of which are integers. SetlX takes care to ensure that numerator
and denominator are always reduced to lowest terms. Furthermore, if the denominator happens to be
the value 1, only the numerator is printed. Therefore, after typing

1/3 + 2/3;

SetlX will respond:

~< Result: 1 >~

The precision of rational numbers is only limited by the available memory. For example, the command

50!;

computes the factorial of 50 and yields the result

~< Result: 30414093201713378043612608166064768844377641568960512000000000000 >~.

Therefore, as long as only rational numbers are used, there will be no rounding errors. Unfortunately, if
a rational number q is the result of a computation involving n arithmetic operations, in the worst case
the length of the nominator and denominator of the rational numbers q grows exponentially with n.
For this reason, most calculations in engineering are done using floating point numbers. Since SetlX

is based on Java, SetlX supports 64 bit floating point numbers according to the standard IEEE 754.
SetlX provides the following arithmetic operators. If not stated otherwise, these operators work

for both rational numbers as well as floating point numbers:

1. “+” performs addition.

2. “-” performs subtraction.

3. “*” performs multiplication.

4. “/” performs division.

5. “\” performs integer division. The result is always an integer.

6. “%” computes the remainder. This operator is only provided for rational numbers.

For rational number x and y the operators “*”, \” and “%” satisfy the equation

x = (x \ y) * y + x % y.

In order to use floating point numbers instead of rational numbers, the easiest way is to add 0.0 at
the end of an expression because if an arithmetic expression contains a floating point value, the result
is automatically converted to a floating point number. Therefore, the expression

1/3 + 2/5 + 0.0;

returns the result:

~< Result: 0.7333333333333333 >~

Of course, the same result can also be achieved via the expression

1.0/3 + 2/5;
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Since the precision of rational numbers in SetlX is not limited, we can do things like computing
√
2

to a hundred decimal places. Figure 2.3 on page 13 shows a program that uses the Babylonian method
to compute the square root of 2. The idea is to compute

√
2 as the limit of the sequence (bn)n∈N,

where the numbers bn are defined by induction on n as follows:

b1 := 2 and bn+1 :=
1

2
·
(

bn +
2

bn

)

.

In order to print a rational number in decimal notation with a fixed number of places, the function
nDecimalPlaces(x, n) has been used. The first argument x is the rational number to be printed,
while the second argument n gives the number of places to be printed. To run this program from the
command line, assume it is stored in a file with the name sqrt.stlx in the current directory. Then
the command

setlX sqrt.stlx

loads and executes this program. Alternatively, the command can be executed interactively in the
interpreter via the following command:

load("sqrt.stlx");

The output of the program is shown in Figure 2.4.

1 b := 2;

2 for (n in [1 .. 9]) {

3 b := 1/2 * (b + 2/b);

4 print(n + ": " + nDecimalPlaces(b, 100));

5 }

Figure 2.3: A program to calculate
√
2 to 100 places.

1: 1.5000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
2: 1.4166666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666

3: 1.4142156862745098039215686274509803921568627450980392156862745098039215686274509803921568627450980392
4: 1.4142135623746899106262955788901349101165596221157440445849050192000543718353892683589900431576443402
5: 1.4142135623730950488016896235025302436149819257761974284982894986231958242289236217849418367358303565

6: 1.4142135623730950488016887242096980785696718753772340015610131331132652556303399785317871612507104752
7: 1.4142135623730950488016887242096980785696718753769480731766797379907324784621070388503875343276416016

8: 1.4142135623730950488016887242096980785696718753769480731766797379907324784621070388503875343276415727
9: 1.4142135623730950488016887242096980785696718753769480731766797379907324784621070388503875343276415727

Figure 2.4: The output produced by the program in Figure 2.3.

The previous program also demonstrates that SetlX supports strings. In SetlX, any sequence of
characters enclosed in either double or single quote characters is a string. For example, the hello world
program in SetlX is just

"Hello world!";

It yields the output:

~< Result: "Hello world!" >~

However, this only works in interactive mode. If you want to be more verbose2 or if you are not working
interactively, you can instead write

2 If you want to be much more verbose, you should program in either Cobol or Java.
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print("Hello world!");

This will yield two lines of output:

Hello world!

~< Result: om >~

The first line shows the effect of the invocation of the function print, the second line gives the
return value computed by the call of the function print(). As the function print() does not return
a meaningful value, the return value is the undefined value that, following the tradition of Setl, is
denoted as Ω. In SetlX, this value is written as om.

In order to assign the value of an expression to a variable, SetlX provides the assignment operator
“:=”. Syntactically, this operator is the only major deviation from the syntax of the programming
language C. For example, the statement

x := 1/3;

binds the variable x to the fraction 1/3.

2.2 Boolean Values

The Boolean values true and false represent truth and falsity, respectively. Boolean expressions can
be constructed using the binary comparison operators “==”, “!=”, “<”, “>”, “<=”, and “>=”. Note
that these operators are identical to the comparison operators used in the programming languages C
and Java.

2.2.1 Boolean Operators

SetlX provides the following operators from propositional logic to combine Boolean expressions.

1. “&&” denotes the logical and (also known as conjunction), so the expression

a && b

is true if and only if both a and b are true.

2. “||” denotes the logical or, which is also known as disjunction. Therefore, the expression

a || b

is true if either a or b or both are true.

3. “!” denotes the logical not, (also known as negation). Therefore, the expression

!a

is true if and only if a is false.

The first three Boolean operators work exactly as they work in C or Java.

4. “=>” denotes logical entailment. Therefore, the expression

a => b

is true if a is false or b is true. Hence the expression

a => b

has the same truth value as the expression

!a || b.
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5. “<==>” denotes the logical equivalence, so the expression

a <==> b

is true if either a and b are both true or a and b are both false. Therefore, the expression

a <==> b

has the same value as the expression

(a && b) || (!a && !b).

As the equality operator “==” can also be used for logical values, the expression “a <==> b” is
equivalent to the expression “a == b”.

6. “<!=>” denotes the exclusive or operator, which is also known as logical antivalence, hence the
expression

a <!=> b

is true if the truth values of a and b are different. Therefore, the expression

a <!=> b

is equivalent to the expression

!(a <==> b).

The expression “a <!=> b” yields the same result as the expression “a != b”.

While the operators “==” and “!=” can be used instead of the operators “<==>” and “<!=>”, the
precedence of these operators differ. While the precedence of “<==>” and “<!=>” is lower than the
precedence of any other operator, the precedence of “==” and “!=” is lower than the precedence of
the arithmetical operators like “+” and “*”, but higher than the precedence of the logical operators
“&&” and “||”. Therefore, we recommend the use of “<==>” and “<!=>” when comparing Boolean
expressions.

2.2.2 Quantifiers

In addition to the propositional operators, SetlX supports both the universal quantifier “forall”
and the existential quantifier “exists”. For example, to test whether the formula

∀x ∈ {1, · · · , 10} : x2 ≤ 2x

is true, we can evaluate the following expression:

forall (x in {1..10} | x ** 2 <= 2 ** x);

This expression checks whether x2 is less than or equal to 2x for all x between 1 and 10. Syntactically,
a forall expression is described by the following grammar rule:

expr → “forall” “(” var “in” expr “|” cond “)”

Here, var denotes a variable and expr is an expression that evaluates to a set s (or a list or a string),
while cond is a Boolean expression. The forall expression evaluates to true if for all elements of s
the condition cond evaluates to true. There is a generalization of the grammar rule that allows to
check several variables simultaneously, so we can write an expression like the following:

forall (x in {1..10}, y in [20..30] | x < y).

If instead we want to know whether the formula

∃x ∈ {1, · · · , 10} : 2x < x2

is true, we have to write:

— 15 —

https://en.wikipedia.org/wiki/Exclusive_or
https://en.wikipedia.org/wiki/Universal_quantification
https://en.wikipedia.org/wiki/Existential_quantification


2.3. Sets Chapter 2. Whetting Your Appetite

exists (x in {1..10} | 2 ** x < x ** 2);

This expression checks whether there exists a natural number x ∈ {1, · · · , 10} such that 2x < x2.

Important: The quantifiers forall and exists expressions do not create their own local scope. For
example, the sequence of statements

exists ([x, y] in {[a,b] : a in {1..10}, b in {1..10}} | 3*x - 4*y == 5);

print("x = $x$, y = $y$");

will print

x = 3, y = 1

since for x = 3 and y = 1 the equation

3*x - 4*y == 5

is true. This example shows that the values of the variables x and y is available outside of the
existentially quantified expression. The execution of a forall or an exists expression stops as soon
as the truth value of the statement is known. This feature is quite useful if the actual value of the
variable in an exists statement is needed. It is also useful for a forall statement in case that the
forall statement fails. For example, the expression

forall (n in [1..10] | n**2 <= 2**n);

evaluates to false and, furthermore, it assigns the value 3 to the variable n, since 3 is the first integer
in the list [1..10] such that the expression n2 ≤ 2n is false. In the case that an expression of the
form

forall (x in s | f(x))

is true, the variable x will be set to the undefined value om. Similarly, if an expression of the form

exists (x in s | f(x))

is false, the variable x is set to the undefined value om.

2.3 Sets

The most interesting data type provided by SetlX is the set type. According to Georg Cantor, who
invented set theory, the definition of the notion of a set runs as follows:

A set is a gathering together into a whole of definite, distinct objects of our
perception or of our thought — which are called elements of the set [Can95].

This definition has two important implications:

1. Since the elements of a set are distinct, a set contains an object as most once. Hence, an object
cannot occur multiple times in a set.

2. A set is defined by its elements. Two sets are identical if and only if they have the same elements.

To create a set containing the numbers 1, 2, and 3, we list these numbers inside curly braces:

S := {1, 2, 3};
This creates a set containing the numbers 1, 2, and 3 as elements. In general, if we want to combine
the objects

o1, o2, o3, · · ·, on
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into a set, we have to surround these objects by the curly braces “{” and “}” as follows:

{o1, o2, o3, · · · , on}
As two sets are equal if they contain the same elements, the order in which the elements are listed
does not matter. For example, the comparison

{1,2,3} == {2,3,1}
yields the result

true.

This behaviour can lead to results that are sometimes surprising for the novice. For example, the
command

print({3,2,1});
yields the following output:

{1, 2, 3}
The reason is, that SetlX does not remember the order of the insertion of different elements into
a set, SetlX just remembers the elements and sorts them internally to maximize the efficiency of
looking them up.

To check whether a set contains a given entity as an element, SetlX provides the binary infix
operator “in”. For example, the command

2 in {1,2,3};
yields the result true, as 2 is indeed an element of the set {1, 2, 3}, while

4 in {1,2,3};
returns false.

The data type of a set would be quite inconvenient to use if we could only create sets by explicitly
listing all their elements. Fortunately, there are some more powerful expressions to define sets. The
operator that is most straightforward to use is the range operator that can create a set containing all
the integers in a given range. For example, to create the set containing the integers from 1 up to 16,
we can write

{1..16};
This expression returns the result

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16}.
In general, for integers a and b such that a ≤ b, the expression

{a..b}
will generate the set of all integers starting from a up to and including the number b. Mathematically,
the semantics of this operator is given by the formula

{a..b} = {a+ n | a ∈ Z ∧ a+ n ≤ b}.
Here Z denotes the set of all integers. If b is less than a, then the expression

{a..b}
denotes the empty set {}.

While successive elements of a set created by the expression “{a..b}” differ by 1, there is a variant
of the range operator that allows us to specify the size of the difference between successive elements.
For example, the expression
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{1,3..10};
yields the set

{1, 3, 5, 7, 9}.
In general, when a set definition of the form

{a,b..c}
is evaluated, there are two cases.

1. a < b. In this case, the step size s is defined as

s := b− a.

Then, we have

{a,b..c} := {a+ n · s | n ∈ N0 ∧ a+ n · s ≤ c}.
Here, N0 denotes the set of all natural numbers where we take the convention that 0 is a natural
number. The set of all positive integers will be denoted as N.

2. a > b. In this case, the step size s is defined as

s := a− b.

Then, we have

{a,b..c} := {a+ n · s | n ∈ N0 ∧ a+ n · s ≥ c}.
For example, we have

{10, 8..1} = {10, 8, 6, 4, 2}.

2.3.1 Operators on Sets

The following operators act on sets:

1. “+” is used to compute the union of two sets.

In mathematics, the union of two sets S1 and S2 is written as S1 ∪ S2. It is defined as

S1 ∪ S2 := {x | x ∈ S1 ∨ x ∈ S2}.

2. “*” computes the intersection of two sets.

In mathematics, the intersection of two sets S1 and S2 is written as S1 ∩ S2. It is defined as

S1 ∩ S2 := {x | x ∈ S1 ∧ x ∈ S2}.

3. “-” computes the difference of two sets. In set theory, the difference of two sets is also known
as the relative complement of these sets. In mathematics, the difference of two sets S1 and S2

is often written as S1\S2. It is defined as

S1\S2 := {x ∈ S1 | x /∈ S2}.

4. “><” computes the Cartesian product of two sets.

In mathematics, the Cartesian product of two sets S1 and S2 is written as S1 × S2. It is defined
as the set of all pairs [x1, x2] such that x1 is an element of S1 and x2 is an element of S2:

S1 × S2 := {[x1, x2] | x1 ∈ S1 ∧ x2 ∈ S2}.

5. “** 2” computes the Cartesian product of a set with itself, i.e. we have

S ∗∗ 2 := S × S.
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6. “2 ** ” computes the power set of a given set. For a given set S, the power set of S is defined
as the set of all subsets of S. In mathematics, the power set of a given set S is written as 2S

and the formal definition is

2S := {m | m ⊆ S}.
Here, the expression m ⊆ S is true iff m is a subset of S, i.e. if all elements of m are elements
of S. For example, the expression

2 ** {1,2,3}
yields the result

{{}, {1}, {1, 2}, {1, 2, 3}, {1, 3}, {2}, {2, 3}, {3}}.

7. “%” computes the symmetric difference of two sets.

In mathematics, the symmetric difference of two sets S1 and S2 is often written as S1△S2. It is
defined as

S1△S2 := (S1\S2) ∪ (S2\S1).

For example, the expression

{1,2,3} % {3,4,5}
yields the result

{1, 2, 4, 5}.

To give more examples, the commands

S1 := { 1, 2 }; S2 := { 2, 3 };
print("S1 + S2 = $S1 + S2$");

print("S1 - S2 = $S1 - S2$");

print("S1 * S2 = $S1 * S2$");

print("S1 ** 2 = $S1 ** 2 $");

print("2 ** S2 = $2 ** S2$");

print("S1 >< S2 = $S1 >< S2$");

print("S1 % S2 = $S1 % S2$");

will produce the follwing results:

S1 + S2 = {1, 2, 3}

S1 - S2 = {1}

S1 * S2 = {2}

S1 ** 2 = {[1, 1], [1, 2], [2, 1], [2, 2]}

2 ** S2 = {{}, {2}, {2, 3}, {3}}

S1 >< S2 = {[1, 2], [1, 3], [2, 2], [2, 3]}

S1 % S2 = {1, 3}

For sets, the exponentiation operator “**” is only defined if either the base of the exponentiation is a
set and the exponent is the number 2 or the base is the number 2 and the exponent is a set. Therefore,
if S is a set, expressions like

3 ** S and S ** 3

are undefined. Also note the use of string interpolation in the print statements given above: Inside
a string, any expression enclosed in $-symbols is evaluated and the result of this evaluation is inserted
into the string. String interpolation will be discussed in more detail later when we explain how strings
are supported in SetlX.
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For all of the binary operators discussed above there is a variant of the assignment operator that
incorporates the binary operator. For example, the command

S += {x};
adds the element x to the set S, while the command

S -= {x};
removes the element x from the set S. Of course, these modified assignment operators can also be
used when the arguments are numbers, i.e. the statement

x += 1;

increments the value of the variable x by 1.

In addition to the basic operators discussed above, SetlX provides a number of more elaborate
operators for sets. One of these operators is the cardinality operator “#”, which computes the number
of elements of a given set. The cardinality operator is used as a unary prefix operator, for example we
can write:

# {5,7,13};
Of course, in this example the result will be 3. We can sum the elements of a set using the prefix
operator “+/”. For example, in order to compute the sum

62
∑

i=1

i = 1 + 2 + · · ·+ 35 + 36,

we can create the set {1..6**2} containing all the numbers that have to be summed and then use
the command

+/ {1..6**2};
to calculate the actual sum. For arguments that are numbers, “**” is the exponentiation operator.
Therefore, the expression given above first computes the set of all numbers from 1 up to the number
36 and then returns the sum of all these numbers. There is also a binary version of the operator “+/”
that is used as an infix operator. For a number x and a set S, the expression

x +/ S

will insert x into the set S if the set S is empty. After that, it returns the sum of all elements in the
resulting set. This is useful as the expression “+/ {}” is undefined. It is undefined because SetlX is
not able to decide whether the empty set is to be interpreted as a set of numbers or as a set of sets.
So if we want to compute the sum of all numbers in S but we are not sure whether S might be empty,
we can use the expression

0 +/ S

since inserting 0 into the empty set guarantees that the result is 0 in case the set S is empty. If S is a
set whose elements are sets themselves, the expression

+/ S

computes the union of the sets that are elements of the set S. For example, the expression

+/ { {1,2,3}, {3,4,5}, {5,6,7} }
yields the result

{1, 2, 3, 4, 5, 6, 7}.
There is a similar operator for multiplying the elements of a set: It is the operator “*/”. For example,

— 20 —

https://en.wikipedia.org/wiki/Exponentiation


Chapter 2. Whetting Your Appetite 2.3. Sets

in order to compute the factorial3 n! = 1 · 2 · 3 · . . . · (n− 1) · n we can use the expression

*/ {1..n}.
Again, there is also a binary version of this operator. Since the number 1 is the neutral element for
multiplication, the first argument to this operator will most often be one. Therefore, the expression

1 */ S

multiplies all the numbers from a the set S and this expression will return 1 if the set S happens to be
empty.

If S is a set whose elements are sets themselves, the expression

*/ S

computes the intersection of the sets that are elements of the set S. For example, the expression

*/ { {1,2,3}, {2,3,4} }
yields the result

{2, 3}.

2.3.2 Set Comprehensions

We can use set comprehension to build sets. For example, the command

{ a * b: a in { 1..3 }, b in { 1..3 } };
computes the set of all products a∗ b where both a and b run from 1 to 3. The command will therefore
compute the set

{1, 2, 3, 4, 6, 9}.
In general, a set comprehension expression has the form

{ expr : x1 in S1, · · ·, xn in Sn | cond }.
Here, expr is some expression containing the variables x1, · · ·, xn, while S1, · · ·, Sn are either sets or
lists (to be discussed later) or strings, and cond is an expression returning a Boolean value. The set
comprehension expression given above evaluates expr for all possible combinations of values x1 ∈ S1,
· · ·, xn ∈ Sn such that cond is true and it will add the corresponding value of expr into the resulting
set. The expression cond is optional. If it is missing, it is implicitly taken to be always true.

We are now ready to demonstrate some of the power that comes with sets. The following two
statements compute the set of all prime numbers smaller than 100:

S := {2..100};
S - { p * q : p in S, q in S };

Since a prime number is any number bigger than 1 that is not a proper product, this expression computes
the set of prime numbers smaller than 100. Obviously, this is not an efficient way to calculate primes,
but efficiency is not the point of this example. It rather shows that SetlX is well suited to execute a
mathematical definition as it is.

Let us look at another example of set comprehension: The expression

{ p: p in {2..100} | { t: t in {2..p-1} | p % t == 0 } == {} }
yields the set of all prime numbers less than 100. The subexpression

{ t: t in {2..p-1} | p % t == 0 }
computes the set of all those natural numbers t less than p that divide p evenly. If this set is empty,
then, by the definition of a prime number, p is prime.
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The syntax for building set comprehensions is a little bit more general than discussed above. Pro-
vided S1, · · ·, Sn are sets of lists, where all of the lists in the set Si have the same length mi, a set
comprehension expression can take the form

{ expr : [x1, x2, · · · , xm1
] in S1, · · ·, [z1, z2, · · · , zmn

] in Sn | cond }.
This kind of set comprehension expressions will be discussed further when discussing lists.

2.3.3 Miscellaneous Set Functions

In addition to the operators provided for sets, SetlX has a number of functions targeted at sets. The
first of these functions is arb. For a set S, an expression of the form

arb(S)

yields some element of the set S. The element returned is not specified, so the expression

arb({1,2,3});
might yield either 1, 2, or 3. The function from has a similar effect, so

from(S)

also returns some element of the set S. In addition, the function from removes this element from the
set S. Therefore, if the set S is defined via

S := {1,2,3};
and we execute the statement

x := from(S);

then some4 of the element of S is assigned to x and this element is removed from the set S. For
example, after this assignment, we might possibly have

x == 3 and S == {1,2}.
Of course, we could just as well have

x == 1 and S == {2,3}
as a result of the assignment “x := from(S);”.

For a set S, the expression

first(S)

returns the first element of the set S, while

last(S)

yields the last element. Internally, sets are represented as ordered binary trees. As long as the sets
contain only numbers, the ordering of these elements is the usual ordering on numbers. Therefore, in
this case the first element is just the smallest number and the last element is the biggest number. If a
set S contains sets (or lists), these sets (or lists) are themselves compared lexicographically. Things get
a little bit more complicated if a set S is heterogeneous and contains both number and sets. Programs
should not rely on the ordering implemented in these cases.

For a given set S, the expression

rnd(S)

yields a random element of the set S. In contrast to the expression “arb(S)”, this expression will in
general return different results on different invocations. The function rnd also works for lists, so for a

4We do not know which of the elements of S is assigned to x.

— 22 —



Chapter 2. Whetting Your Appetite 2.4. Lists

list L the expression rnd(L) returns a random element of L. The function rnd() is also supported for
integer numbers, for example the expression

rnd(5)

computes a random non-negative integer less than or equal to 5. Essentially, the expression rnd(5) is
equivalent to the expression rnd({0..5}). While we are at it: The function random computes pseudo-
random real numbers in the interval [0, 1]. This function does not take an argument. Therefore, the
expression

random()

might output a value like 0.5171688974345957.

2.4 Lists

Besides sets, SetlX also supports lists. Syntactically, the main difference between sets and lists is
that the curly braces “{” and “}” are replaced by the square brackets “[” and “]”. Semantically, while
a set is an unordered collection of elements that can contain any element at most once, a list is an
ordered collection of elements that can contain an element multiple times. For example

[3,4,7,2,5,3]

is a typical list. Note that the element 3 occurs twice in this list. The easiest way to construct a list
is by listing the elements explicitly. For example, the assignment

L := [1,4,7,2,4,7]

defines the list [1,4,7,2,4,7] and assigns it to the variable L. Another way to construct lists is via
the range operator “..”: For example, the expression

[1..10]

returns the list

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10].

The prefix operators “+/” and “*/” work for lists in the same way that they work for sets: “+/ L”
computes the sum of all elements of the list L, while “*/ L” computes the product of the elements of
L. For example, the expression

+/ [1..100]

yields the result 5050.
List comprehension works similar to set comprehension: Given sets or lists S1, · · ·, Sn, the expression

[ expr : x1 in S1, · · ·, xn in Sn | cond ]

picks up all lists

[x1, · · · , xn] ∈ S1 × · · · × Sn

such that the ith element xi is a member of Si and that cond is true and then evaluates expr for the
corresponding values of the variables x1, · · ·, xn. Finally, the value of expr is inserted into the resulting
list. For example, the following expression computes all primes up to 100:

[ p : p in [2..100] | { x : x in {1..p} | p % x == 0 } == {1, p} ].

Here, the idea is that a number p is prime if the set of its divisors, which is the set of all numbers x
such that p % x = 0, only contains the number 1 and the number p.

The syntax for building lists via comprehensions is a little bit more general than discussed above.
Provided S1, · · ·, Sn are sets or lists such that all of the elements of Si are lists that have the same
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length mi, a list can be defined as

[ expr : [x1, x2, · · · , xm1
] in S1, · · ·, [z1, z2, · · · , zmn

] in Sn | cond ].

For example, assume that R1 and R2 are sets containing pairs of elements, where a pair is just a list of
length two. In this case, R1 and R2 could be viewed as binary relations. Then, the relational composition
of R1 and R2 is defined as

R1 ◦ R2 := {[x, z] | ∃y : [x, y] ∈ r1 ∧ [y, z] ∈ r2}.
In SetlX, this composition can be computed as

{ [x,z]: [x,y] in R1, [y,z] in R2 }.

2.4.1 Operators on Lists

Currently, there are four operators for lists. These are discussed below.

1. The operator “+” concatenates its arguments. For example

[1 .. 3] + [5 .. 10];

yields

[1, 2, 3, 5, 6, 7, 8, 9, 10].

2. The operator “*” takes a list as its first argument, while the second argument needs to be a
natural number. An expression of the form

l * n

concatenates n copies of the list l. Therefore, the expression

[1, 2, 3] * 3

yields the result

[1, 2, 3, 1, 2, 3, 1, 2, 3].

3. The cardinality operator “#” is a prefix operator that works for lists the same way it works for
sets, i.e. it returns the number of elements of the list given as argument. For example,

# [ 7, 4, 5 ];

yields the result 3.

4. The infix operator “><” takes two lists L1 and L2. The length of L1 has to be the same as the
length of L2. The operator zips the lists given as arguments to produce a list of pairs, where the
first component of each pair is from the list L1, while the second component is the corresponding
element from the list L2. For example, the expression

[1, 2, 3] >< ["a", "b", "c"];

returns the list

[[1, "a"], [2, "b"], [3, "c"]].

Formally, the behaviour of the operator “><” on lists L1 and L2 is specified as follows:

L1 >< L2 == [ [L1[i], L2[i]]: i in [1 .. #L1] ].

Here, L[i] denotes the i-th element of the list L and the lists L1 and L2 must have the same
length.
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2.4.2 Extracting Elements from a List

As the elements of a list are ordered, it is possible to extract an element from a list with respect to its
position. In general, for a list L and a positive natural number n, the expression

L[n]

selects the n-th element of L. Of course, counting starts with 1, so L[1] is the first element of the list
L. For example, after the assignment

L := [99, 88, 44];

the expression

L[2]

yields the result 88. The right hand side of an extraction expression can also be a slicing operator :
The expression

L[a..b]

extracts the sublist of L that starts at index a and ends at index b. For example, after defining L via
the assignment

L := ["a", "b", "c", "d", "e", "f", "g", "h", "i", "j" ];

the expression

L[5..8]

yields the sublist ["f", "g", "h"]. The expression

L[a..b]

returns the empty list if a > b and both a and b are positive.

There are two more variants of the slicing operator. The expression

L[a..]

returns the sublist of L that starts with the element at index a, and the expression

L[..b]

computes the sublist of L that starts at the first element and includes all the elements up to the
element at index b.

The index operator also works with negative indices. For a nonempty list l, the expression

L[-1]

selects the last element of L, while

L[-2]

would select the second to last element, provided the list has at least two elements. In general, for a
list L of length n and an index i ∈ {1, · · · , n}, the expression

L[-i]

selects the element with index n+ 1− i, i.e. for i ∈ {1, · · · , n} the expressions

L[-i] and L[n+ 1− i]

are equivalent. Negative indices also work with the slicing operator. For example, for a list L containing
at least two elements, the expression

L[2..-2]
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returns the list that results from L by chopping off both the first and the last element of L. The
variants

L[a..] and L[..b]

also work with negative values of a and b. For example, the expression

L[..-2]

returns a list containing all elements of L but the last.
After a list is created, we can add new elements to the list by assigning to the list as the following

example demonstrates. After defining L as

L := ["a", "b", "c"];

we can use the assignment

L[5] := "e";

to assign a fifth element to L. Here, you might wonder how it is possible to add a fifth element, as the
list L does not have a fourth element. However, after the assignment shown above, we have

L == ["a", "b", "c", om, "e"].

Hence, in this case the fourth element is simply the undefined value om.
When indexing a list, the number 0 is not allowed as an index. Therefore, the expression

L[0]

will yield the following error message:

Error in "l[0]":

Index ’0’ is invalid.

However, the index 0 is allowed as the second index in a range operator. For example, the expression
L[1..0] yields the empty list.

Lists of variables can be used on the left hand side of an assignment. This feature enables the
simultaneous assignment of several variables. The statement

[x,y] := [1,2];

sets the variable x to 1 and y to 2. A more interesting example is the following assignment:

[y,x] := [x,y];

This assignment swaps the values of the variables x and y.

2.5 Pairs, Relations, and Functions

In Setl, a pair of the form 〈x, y〉 is represented as the list [x, y]. A set of pairs can be regarded as
a binary relation and the notion of a relation is a generalization of the notion of a function. If R is
a binary relation, we define the domain and range of R as the set containing the first and second
component of the pairs, that is we have

domain(R) := { x : [x,y] in R } and range(R) := { y : [x,y] in R }.
Furthermore, if R is a binary relation such that

[x, y1] ∈ R ∧ [x, y2] ∈ R → y1 = y2

holds for all x, y1, and y2, then R is called a map and represents a function. Therefore, a map is a
set of [key, value] pairs such that the keys are unique, i.e. every key is associated with exactly one
value. If a binary relation R is a map, SetlX permits us to use the relation R as a function: If R is
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a map and x ∈ domain(R), then R[x] denotes the unique element y such that 〈x, y〉 ∈ R:

R[x] :=

{

y if the set {y | [x, y] ∈ R} contains exactly one element y;

Ω otherwise.

The program shown below in Figure 2.5 provides a trivial example demonstrating how maps can be
used as functions in SetlX.

1 R := { [n, n*n] : n in {1..5} };

2 print( "R[3] = $R[3]$" );

3 print( "domain(R) = $domain(R)$" );

4 print( "range(R) = $range(R)$" );

5 R[2] := 17;

6 print( "R = $R$" );

Figure 2.5: Binary relations as functions.

The program computes the map R that represents the function x 7→ x · x on the set

{n ∈ N | 1 ≤ n ∧ n ≤ 5}.
In line 2, the relation R is evaluated at x = 3. This is done using square brackets. Next, domain(R)
and range(R) are computed. Finally, the assignment in line 5 changes the relation for the argument 2
to yield the value 17 instead of 4. Hence, we get the following result:

R[3] = 9

domain(R) = {1, 2, 3, 4, 5}

range(R) = {1, 4, 9, 16, 25}

R = {[1, 1], [2, 17], [3, 9], [4, 16], [5, 25]}

It is a natural question to ask what happens if R is a binary relation and we try to evaluate the
expression R(x) but the set { y : [x, y] in R } is either empty or contains more than one element.
The program shown in Figure 2.6 on page 27 answers this question.

1 R := { [1, 1], [1, 4], [3, 3] };

2 print( "R[1] = ", R[1] );

3 print( "R[2] = ", R[2] );

4 print( "{ R[1], R[2] } = ", { R[1], R[2] } );

5 print( "R{1} = ", R{1} );

6 print( "R{2} = ", R{2} );

Figure 2.6: A binary relation that is not a map.

If the set { y :[x, y] in R } is either empty or has more than one element, then the expression
R[x] is undefined. In mathematics, an undefined value is sometimes denoted as Ω. In SetlX, the
undefined value is printed as “om”. If we try to add the undefined value to a set M , then M is not
changed. Therefore, line 4 of the program shown in Figure 2.6 prints the empty set, as both R[1] and
R[2] are undefined.

We can use the notation R{x} instead of R[x] to avoid undefined values. For a binary relation R
and an object x, the expression R{x} is defined as the set of those values y such that the pair 〈x, y〉
is an element of R:

R{x} := { y : [x, y] in R }.
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Hence, the program shown in Figure 2.6 yields the following results:

R[1] = om

R[2] = om

{ R[1], R[2] } = {}

R{1} = {1, 4}

R{2} = {}

Binary relations can also be used to represent functions accepting more than one argument. For
example, the statements

R := {};

R[1,2] := 3;

R[2,1] := 4;

define a function that maps the pair [1, 2] to the value 3, while the pair [2, 1] is mapped to the value
4. If we print R after these statements have been executed, then the set

{[[1, 2], 3], [[2, 1], 4]}
is stored in the variable R.

Remark: This section has shown that binary relations can be used to represent the data type of
a dictionary. Other programming languages, for example Perl [WS92], provide associative arrays to
represent dictionaries. In most of the scripting languages providing associative arrays, these associative
arrays are implemented as hash tables. In the programming language Setl, sets and relations were
also represented via hash tables. In contrast, the sets (and therefore the dictionaries) in SetlX are
implemented as red-black trees. Although implementing sets as red-black trees is slightly slower than
a hash table based implementation, the advantage of using red-black trees is that they support a
number of operations that are not available when using hash-tables. The efficient implementation of
the functions first and last would be impossible if sets had been represented as hash tables.

2.6 Procedures

Although functions can be represented as binary relations, this is not the preferred way to represent
functions. After all, using a relation to represent a function has a big memory footprint and also
requires to compute all possible function values regardless of their later use. Therefore, the preferred
way to code a function is to use a procedure. For example, Figure 2.7 defines a procedure to compute
all prime numbers up to a given natural number n. The idea is to take the set s of all numbers in the
range from 2 upto n and then to subtract the set of all non-trivial products from this set. This will
leave us with the set of all prime numbers less or equal to n as a natural number is prime if and only
if it is not a non-trivial product.

1 primes := procedure(n) {

2 s := { 2..n };

3 return s - { p*q : [p, q] in s >< s };

4 };

Figure 2.7: A procedure to compute the prime numbers.

In Figure 2.7, the block starting with “procedure(n) {” and ending with the closing brace “}”
defines a function. This function is then assigned to the variable primes. Therefore, a function is
just another kind of a value. Conceptually, the type of functions is not different from the type of
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sets or the type of strings: A function can be assigned to a variable, it can be used as an argument
to another function and it can also be returned from another function. To summarize, functions are
first class citizens in SetlX. The ramifications of this fact will be explained in Chapter 5 on functional
programming and closures.

Remark: A function defined using the keyword procedure is not able to read or write variables that
are defined outside of the function definition. If you need access to variables defined outside of the
function, you have to define a closure instead. This is done by substituting the keyword procedure

with the keyword closure. Closures are discussed in more detail in Chapter 5 later.

2.7 Strings

Any sequence of characters enclosed in either double quotes or single quotes is considered a string.
Strings can be concatenated using the infix operator “+”, so

"abc" + "xyz"

yields the string "abcxyz" as a result. In order to concatenate multiple instances of the same string,
we can use the infix operator “*”. For a string s and a natural number n, the expression

s * n

returns a string that consists of n copies of the string s. For example, the expression

"abc" * 3

yields the result

"abcabcabc".

This also works when the position of the string and the number are exchanged. Therefore,

3 * "abc"

also yields "abcabcabc".

In order to extract the i-th character of the string s, we can use the expression

s[i].

As for lists, this also works for negative values of the index i. For example, the expression s[-1] returns
the last character of s.

There is also a slicing operator. This operator works similar to lists, for example, if s has the value
"abcdef", then

s[2..5];

yields the result "bcde", while

s[2..];

yields "bcdef" and

s[..5];

gives "abcde". In the expressions

s[a..b], s[a..], and s[..b]

the indices a and b can be negative numbers. This works in the same way as it works for lists. For
example, if s is a string, then s[2..-2] is the string that results from s by removing the first and the
last character.

SetlX provides string interpolation: If a string contains a substring enclosed in “$”-symbols, then
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SetlX parses this substring as an expression, evaluates this expression, and then substitutes the result
back into the string. For example, if the variable n has the value 6, the command

print("$n$! = $n!$");

will print

6! = 720.

In order to insert a literal “$”-symbol into a string, the “$”-symbol has to be escaped with a backslash.
For example, the command

print("A single \$-symbol.");

prints the text:

A single $-symbol.

2.7.1 Literal Strings

Sometimes it is necessary to turn off any kind of preprocessing when using a string. This is achieved
by enclosing the content of the string in single quotes. These strings are known as literal strings. For
example, after the assignment

s := ’\n’;

the string s contains exactly two characters: The first character is the backslash “\”, while the second
character is the character “n”. If, instead, we write

s := "\n";

then the string s contains just one character, which is the newline character. SetlX supports the
same backslash escape sequences as the programming language C.

As we have just seen, there is no replacement of escape sequences in a literal string. There is no
string interpolation either. Therefore, the statement

print(’$1+2$’);

prints the string

$1+2$.

Later, literal strings will come in very handy when dealing with regular expressions.

Remark: It should be noted that SetlX does not have a special data type to support single characters.
Instead, in SetlX single characters are represented as strings of length one.

2.8 Terms

SetlX provides first order terms similar to the terms available in the programming language Prolog
[SS94]. Terms are built from functors and arguments. To distinguish functors from function symbols,
a functor is prefixed with the operator “@”. For example, the expression

@f(1,"x")

is a term with functor f and two arguments. The functor is just a name, it is not a function that can
be evaluated. To demonstrate the usefulness of terms, consider implementing ordered binary trees in
SetlX. There are two types of ordered binary tress:

1. The empty tree represents the empty set. We use the functor Nil to represent an empty binary
tree, so the term
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@Nil()

codes the empty tree.

2. A non-empty binary tree has three components:

(a) The root node,

(b) the left subtree, and

(c) the right subtree.

The root node stores one element k and all elements in the left subtree l have to be less than
k, while all elements in the right subtree are bigger than k. Therefore, a non-empty binary tree
can be represented as the term

@Node(k, l, r),

where k is the element stored at the root, l is the left subtree and r is the right subtree.

For example, the term

@Node(2, @Node(1,@Nil(),@Nil()), @Node(3,@Nil(), @Nil()))

is a typical binary tree. At the root, this tree stores the element 2, the left subtree stores the element
1 and the right subtree stores the element 3.

There are two functions to decompose a term and there is one function that constructs a term.

1. If t is a term, then the expression

fct(t)

returns the functor of the term t as a string. For example, the expression

fct(@Node(3,@Nil(),@Nil()))

yields the result "Node".

2. If t is a term, then the expression

args(t)

returns the list of arguments of the term t. For example, the expression

args(@Node(3,@Nil(),@Nil()))

yields the result

[3, @Nil(), @Nil()].

3. The function makeTerm(f, l) constructs a term t such that

fct(t) = f and args(t) = l

holds. For example,

makeTerm("Node", [ makeTerm("Nil",[]), makeTerm("Nil",[]) ])

constructs the term

@Node(3, @Nil(), @Nil()).

Note that we must not use the operator “@” when using the function makeTerm. Of course, the
term @Node(3, @Nil(), @Nil()) can also be given directly as an expression: The statement

a := @Node(3,@Nil(),@Nil());

assigns the term @Node(3,@Nil(),@Nil()) to the variable a.
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1 insert := procedure(m, k1) {

2 switch {

3 case fct(m) == "Nil" :

4 return @Node(k1, @Nil(), @Nil());

5 case fct(m) == "Node":

6 [ k2, l, r ] := args(m);

7 if (k1 == k2) {

8 return @Node(k1, l, r);

9 } else if (compare(k1, k2) < 0) {

10 return @Node(k2, insert(l, k1), r);

11 } else {

12 return @Node(k2, l, insert(r, k1));

13 }

14 }

15 };

Figure 2.8: Inserting an element into a binary tree.

Figure 2.8 shows how terms can be used to implement binary trees. In this example, we define a
function with the name insert. This function takes two arguments. The first argument m is supposed
to be a term representing an ordered binary tree. The second argument k1 denotes the element that
is to be inserted into the binary tree m. The implementation needs to distinguish two cases:

1. If the binary tree m is empty, then the function returns the tree

@Node(k1, @Nil(), @Nil()).

This is a binary tree containing the number k1 at its root, while both subtrees are empty. In
order to check whether m is indeed empty we use the functor of the term m. We test in line 3
whether this functor is "Nil".

2. If the binary tree m is nonempty, the functor of m is "Node". In this case, we need to extract
the arguments of this functor, which is done in line 6: The first argument k2 is the element
stored at the root, while the arguments l and r correspond to the left and the right subtree of
m respectively. The predefined function compare is used to compare the element k1 that is to
be inserted into the tree with the element k2, which is the element at the root of the tree.

The expression compare(k1, k2) returns −1 if k1 is less than k2, it returns +1 is k1 is greater
than k2, and it returns 0 if k1 and k2 are the same. The function compare is implemented for
all data types. However, it should be noted that the comparison operators “<”, “>”, “<=”, and
“>=” are only implemented for numbers and sets.

This example uses a number of features of SetlX that have not been introduced. The discussion of
the control structure switch will be given in the next chapter.

The present discussion of terms is far from being complete and will be continued in the next chapter
when we discuss matching.

2.9 Vectors and Matrices

SetlX has some support for both vectors and matrices. Suppose we have to solve the following system
of linear equations:
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1 · x+ 2 · y + 3 · z = 1,

2 · x+ 3 · y + 1 · z = 2,

3 · x+ 1 · y + 2 · z = 3.

In order to solve this system of equations we define the matrix

A :=





1 2 3
2 3 1
3 1 2



 and the vectors ~b :=





1
2
3



 and ~s :=





x
y
z



 .

Then, the solution ~s can be calculated via the formula

~s = A−1 ·~b,
where A−1 denotes the inverse of the matrix A. In order to carry out this calculation in SetlX, we
run the commands shown in Figure 2.9 on page 33. We discuss these statements line by line.

1 A := la_matrix([[1, 2, 3], [2, 3, 1], [3, 1, 2]]);

2 b := la_vector([1, 2, 3]);

3 s := A**-1 * b;

4 print(s);

Figure 2.9: Solving a system of linear equations using matrix inversion.

1. Line 1 defines the matrix A using the predefined function la matrix. Note that the matrix A is
defined as a list of its rows, where each row is represented as a list of numbers.

2. Line 2 defines the vector ~b using the predefined function la vector.

3. In line 3, the expression A**-1 computes the inverse of the matrix A. This inverse is then
multiplied with the vector ~b to yield the solution ~s.

4. In line 4, printing the variable s yields the following result:

< 0.9999999999999998 > < 1.1102230246251565E-16 > < 5.551115123125783E-17 >

This shows that the solution to the system of equations that was given initially is approximately

x ≈ 1, y ≈ 0, and z ≈ 0.

Instead of computing the inverse of the matrix a we could have solved the system of equations using
the command la solve as follows:

s := la solve(A, b);

In that case, SetlX computes the solution

< 1.0 > < 0.0 > < 0.0 >.

The solution computed by la solve is more precise than the solution computed using the inverse
matrix. Presumable the method solve from the Jama library that is working behind the scenes of the
function la solve is using a final iteration step to increase the precision of the result.

Chapter 7 discusses the data types of vectors and matrices in more detail.
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Statements

This section discusses the various possibilities to write statements and the features offered by SetlX to
steer the control flow in a program. Besides the assignment statement, SetlX supports the following
means to control the order of statement execution:

1. branching statements like if-then-else, switch, and match,

2. the looping statements for and while together with break and continue,

3. the try-catch statement to deal with exceptions,

4. the backtrack statement to support a limited form of backtracking.

3.1 Assignment Statements

The most basic command is the assignment statement. In contrast to the programming languages C
and Java, SetlX uses the operator “:=” to assign a value to a variable. For example, the statement

x := 2/3;

binds the variable x to the fraction 2
3 . SetlX supports simultaneous assignments to multiple variables

via lists. For example, the statement

[x, y, z] := [1, 2, 3];

simultaneously binds the variables x to 1, y to 2, and z to 3. This feature can be used to swap the
values of two variables. For example, the statement

[x, y] := [y, x];

swaps the values of x and y. If we do not need to assign all the values of a list, we can use the
underscore “ ” as a so called anonymous variable. For example, if the list l happens to have the value
[1,2,3], then the statement

[x, , z] := l;

assigns the number 1 to the variable x and the variable z is is set to 3.
The assignment operator can be combined with any of the operators “+”, “-”, “*”, “/”, “%”, and

“\”. For example, the statement

x += 1;

increments the value of the variable x by one, while the statement

x *= 2;
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doubles the value of x. Finally, assignment statements can be chained. For example, the statement

a := b := 3;

assigns the value 3 to both a and b.

3.2 Functions

The code shown in figure 3.1 on page 35 shows a simple program to compute prime numbers . It defines
two functions. The function factors takes a natural number p as its first argument and computes
the set of all factors of p. Here, a number f is a factor of p iff dividing p by f leaves no remainder,
that is the expression p % f is equal to 0. The second function primes takes a natural number n as
its sole argument and computes the set of all those numbers p less or equal to n that have only the
trivial factors 1 and p. These numbers are, by definition, prime numbers.

Note that, as SetlX is a functional language, the functions that are defined by the keyword
procedure are assigned to variables. As already mentioned in the previous chapter, these functions
can be used like any other values.

1 factors := procedure(p) {

2 return { f : f in { 1 .. p } | p % f == 0 };

3 };

4 primes := procedure(n) {

5 return { p : p in { 2 .. n } | factors(p) == { 1, p } };

6 };

7 print(primes(100));

Figure 3.1: A naive program to compute prime numbers.

A simplified grammar rule for the definition of a function can be given as follows:

fctDef → VAR “:=” “procedure” “(” paramList “)” “{” block “}” “;”

The meaning of the symbols used in this grammar rule are as follows:

1. VAR identifies a variable. This variable is bound to the definition of the function.

2. paramList is a list of the formal parameters of the function. In Ebnf-notation the grammar rule
for paramList is given as

paramList →
(

paramSpec (“,” paramSpec)∗ (“,” “*” VAR)?
)

?

| “*” VAR

Therefore, a paramList is a possibly empty list of parameter specifications that are separated
by a comma “,”. Optionally, as the last element, a parameter list can contain a variable that
is prefixed with the operator “*”. This is used when a function takes a variable number of
arguments and will be explained later. Furthermore, a parameter list can consist of a single
variable prefixed with the operator “*”.

A parameter specification is either just a variable, or it is a variable with the assignment of a
default value, or it is a variable preceded by the token “rw”:

paramSpec → VAR

| VAR “:=” expr

| “rw” VAR
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If the parameter is preceded by the keyword rw, then this parameter is a read-write parameter,
which means that the function can change the value of the variable given as argument and this
change will then be visible outside of the function. Therefore, parameters prefixed with the
keyword rw have a call by name semantics. Parameters not specified as read-write parameters
have a strict call by value semantics, and hence changes to those parameters will not be visible
outside the function.

3. block is a sequence of statements.

Note that the definition of a function has to be terminated by the symbol “;”. The reason is that the
function is part of an assignment and every assignment is terminated with a semicolon. Let us inspect
a few examples of function definitions. Figure 3.2 shows several functions definition.

1 f := procedure(a, b, c) {

2 return a + b + c;

3 };

4 print(f(1,2,3));

5

6 g := procedure(a, b := 2, c := 3) {

7 return a + b + c;

8 };

9 print(g);

10 print(g(1));

11 print(g(1, 3));

12 print(g(1, 3, 5));

13

14 h := procedure(a := 1, b := 2, c := 3, *rest) {

15 s := a + b + c;

16 for (x in rest) {

17 s += x;

18 }

19 return s;

20 };

21 print(h);

22 print(h(1));

23 print(h(2, 4));

24 print(h(2, 4, 6));

25 print(h(1, 2, 3, 4, 5, 6));

Figure 3.2: Functions with and without default arguments.

1. The function f takes three arguments. It adds these arguments and returns the resulting sum.
As none of the arguments has a default assigned, f can only be called with three arguments.

2. The function g also takes three arguments, but this time both the second and the third argument
have a default value. Therefore, g can be called with either one argument, two arguments, or
three arguments.

3. The function h takes four arguments. The first three arguments are regular arguments and each
of them has a default value. The remaining argument rest is prefixed with a “*”. Therefore,
this argument is a list that collects all arguments beyond the third argument. Hence, the function
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h can be called with any number of arguments. For example, if we call h as

h(1, 2, 3, 4, 5, 6)

then a is set to 1, b is set to 2, c is set to 3, and rest is set to the list [4, 5, 6]. Later, when
we discuss closures we will see that having an argument prefixed with the “*”-operator enables
us to build so called decorator functions. This is a very powerful idea that has been borrowed
from the programming language Python.

There is a variant syntax for defining a function which is appropriate if the definition of the function is
just a single expression. For example, the function mapping x to the square x ∗ x can be defined as

f := x |-> x * x;

A definition of this form is called a lambda definition. The example given above is equivalent to defining
f as follows:

f := procedure(x) { return x * x; };
We see that using a lambda definition is shorter as we do not have to use the keywords “procedure”
and “return”. If the function takes more than one arguments and we want to use a lambda definition,
the argument list has to be enclosed in square brackets. For example, the function hyp that computes
the length of the hypotenuse of a rectangular triangle can be defined as follows:

hyp := [x, y] |-> sqrt(x*x + y*y);

The syntax for a lambda definition is given by the follwing grammar rule:

fctDef → VAR “:=” lambdaParams “|->” expr “;”

Here, lambdaParams is either just a single parameter or a list of parameters, where the parameters are
enclosed in square brackets and are separated by commas, while expr denotes an expression.

Lambda definitions are handy if we don’t bother to give a name to a function. For example, the
code in figure 3.3 defines a function map. This function takes two arguments: The first argument l is
a list and the second argument f is a function that is to be applied to all arguments of this list. In line
4, the function map is called with a function that squares its argument. Therefore, the assignment in
line 4 computes the list of the first 10 square numbers. Note that we did not had to name the function
that did the squaring. Instead, we have used a lambda definition.

1 map := procedure(l, f) {

2 return [ f(x) : x in l ];

3 };

4 t := map([1 .. 10], x |-> x * x);

Figure 3.3: An example of a lambda definition in use.

Of course, it would be much easier to build the list of the first 10 squares using the following statement:

t := [x*x : x in [1..10]];

3.2.1 Calling a Procedure

There are two ways to call a procedure. If a procedure has n arguments, then one way to call f is to
write

f(a1, · · · , an)
where a1, · · ·, an are the arguments. However, there is another way to call a procedure: If l is a list
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of the form

l = [a1, · · · , an],
then the expression

f(∗ l)
is equivalent to the expression

f(a1, · · · , an).
Later, when we discuss functional programming in Chapter 5, we will see that this can be very conve-
nient. The reason is that this technique permits us to write second order functions that take procedures
as inputs and that then modify these procedures. Even though we will not know the number of pa-
rameters that the procedures given as input take, we will still be able to modify the procedure given
as argument.

3.2.2 Memoization

The function fib : N → N computing the Fibonacci numbers is defined recursively by the following set
of recurrence equations:

fib(0) = 0, fib(1) = 1, and fib(n+ 2) = fib(n+ 1) + fib(n).

These equations are readily implemented as shown in Figure 3.4. However, this implementation has a
performance problem which can be easily seen when tracing the computation of fib(4).

1 fibonacci := procedure(n) {

2 if (n in [0,1]) {

3 return n;

4 }

5 return fibonacci(n-1) + fibonacci(n-2);

6 };

Figure 3.4: A naive implementation of the Fibonacci function.

1 fibonacci := procedure(n) {

2 if (n in [0,1]) {

3 result := n;

4 } else {

5 result := fibonacci(n-1) + fibonacci(n-2);

6 }

7 print("fibonacci($n$) = $result$");

8 return result;

9 };

Figure 3.5: Tracing the computation of the Fibonacci function.

In order to trace the computation, we change the program as shown in Figure 3.5. If we evaluate
the expression fibonacci(4), we get the output shown in Figure 3.6. This output shows that the
expression fibonacci(2) is evaluated twice. The reason is that the value of fibonacci(2) is needed
in the equation
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fibonacci(4) := fibonacci(3) + fibonacci(2)

to compute fibonacci(4), but then in order to compute fibonacci(3), we have to compute
fibonacci(2) again. The trace also shows that the problem gets aggravated the longer the compu-
tation runs. For example, the value of fibonacci(1) has to be computed three times.

=> fibonacci(4);

fibonacci(1) = 1

fibonacci(0) = 0

fibonacci(2) = 1

fibonacci(1) = 1

fibonacci(3) = 2

fibonacci(1) = 1

fibonacci(0) = 0

fibonacci(2) = 1

fibonacci(4) = 3

~< Result: 3 >~

=>

Figure 3.6: Output of evaluating the expression fibonacci(4).

In order to have a more efficient computation, it is necessary to memorize the values of the function
fibonacci once they are computed. Fortunately, SetlX offers cached functions. If a function f is
declared as a cached function, then every time the function f is evaluated for an argument x, the
computed value f(x) is memorized and stored in a table. The next time the function f is used to
compute f(x), the interpreter first checks whether the value of f(x) has already been computed. In
this case, instead of computing f(x) again, the function returns the value stored in the table. This
technique is known as memoization. Memoization is directly supported in SetlX via cached functions.
Figure 3.7 shows an implementation of the Fibonacci function as a cached function. If we compare the
program in Figure 3.7 with our first attempt shown in Figure 3.4, then we see that the only difference
is that instead of the keyword “procedure” we have used the keyword “cachedProcedure” instead.

1 fibonacci := cachedProcedure(n) {

2 if (n in [0,1]) {

3 return n;

4 }

5 return fibonacci(n-1) + fibonacci(n-2);

6 };

Figure 3.7: A cached implementation of the Fibonacci function.

Warning: A function should only be declared as a cachedProcedure if it is guaranteed to always
produce the same result when called with the same argument. Therefore, a function should not be
declared as a cachedProcedure if it does one of the following things:

1. The function makes use of random numbers.

2. The function reads input either from a file or from the command line.
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To further support cached procedures, SetlX provides the function cacheStats, which is called
with a single argument that must be a cached function. For example, if we define the function
fibonacci as shown in Figure 3.7 and evaluate the expression fibonacci(100), then the expression
cacheStats(fib) gives the following result:

~< Result: ["cache hits", 98], ["cached items", 101] >~

This tells us that the cache contains 101 different argument/value pairs, as the cache now stores the
values

fibonacci(n) for all n ∈ {0, · · · , 100}.
Furthermore, we see that 98 of these 101 argument/value pairs have been used more than once in
order to compute the values of fibonacci for different arguments.

In order to prevent memory leaks, SetlX provides the function clearCache. This function is
invoked with one argument which must be a cached function. Writing

clearCache(f)

clears the cache for the function f , that is all argument/value pairs stored for f will be removed from
the cache.

3.3 Branching Statements

Like most modern languages, SetlX supports if-then-else statements and switch statements. A
generalization of switch statements, the so called match statements, are also supported. We begin
our discussion with if-then-else statements.

3.3.1 if-then-else Statements

In order to support branching, SetlX supports if-then-else statements. The syntax is similar to
the corresponding syntax in the programming language C. However, braces are required. For example,
figure 3.8 on page 40 shows a recursive function that computes the binary representation of a natural
number. Here, the function str is a predefined function that converts its argument into a string.

1 toBin := procedure(n) {

2 if (n < 2) {

3 return str(n);

4 }

5 [r, n] := [n % 2, n \ 2];

6 return toBin(n) + str(r);

7 };

Figure 3.8: A function to compute the binary representation of a natural number.

As in the programming languages C and Java, the else clause is optional.

3.3.2 switch Statements

Figure 3.9 shows a function that takes a list of length 3. The function sorts the resulting list. In effect,
the function sort3 implements a decision tree. This example shows how if-then-else statements
can be cascaded.
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1 sort3 := procedure(l) {

2 [ x, y, z ] := l;

3 if (x <= y) {

4 if (y <= z) {

5 return [ x, y, z ];

6 } else if (x <= z) {

7 return [ x, z, y ];

8 } else {

9 return [ z, x, y ];

10 }

11 } else if (z <= y) {

12 return [z, y, x];

13 } else if (x <= z) {

14 return [ y, x, z ];

15 } else {

16 return [ y, z, x ];

17 }

18 };

Figure 3.9: A function to sort a list of three elements.

Figure 3.10 on page 41 shows an equivalent program that uses a switch statement instead of an
if-then-else statement to sort a list of three elements. Note that this implementation is much easier
to understand than the program using if-then-else statements. 1

1 sort3 := procedure(l) {

2 [ x, y, z ] := l;

3 switch {

4 case x <= y && y <= z: return [ x, y, z ];

5 case x <= z && z <= y: return [ x, z, y ];

6 case y <= x && x <= z: return [ y, x, z ];

7 case y <= z && z <= x: return [ y, z, x ];

8 case z <= x && x <= y: return [ z, x, y ];

9 case z <= y && y <= x: return [ z, y, x ];

10 default: print("Impossible error occurred!");

11 }

12 };

Figure 3.10: Sorting a list of 3 elements using a switch statement.

The grammar rule describing the syntax of switch statements is as follows:

stmnt → “switch” “{” caseList “}”
where the syntactical variable caseList is defined via the rule:

caseList → (“case” boolExpr “:” block)∗(“default” “:” block)?

1 However, we should also mention that the version using switch is less efficient than the version using if-then-else.

The reason is that some of the tests are redundant. This is most obvious for the last case in line 9 since at the time

when control arrives in line 9 it is already known that z must be less or equal than y and that, furthermore, y must be

less or equal than x, since all other cases have already been covered.
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Here, boolExpr is a Boolean expression and block represents a sequence of statements.
In contrast to the programming languages C and Java, the switch statement in SetlX doesn’t

have a fall through. Therefore, we don’t need a break statement in the block of statements following
the Boolean expression. There are two other important distinction between the switch statement in
Java and the switch statement in SetlX:

1. In SetlX, the keyword switch is not followed by a value.

2. The expressions following the keyword case have to produce Boolean values when evaluated.

There is a another type of a branching statement that is much more powerful than the switch

statement. This branching statement is the matching statement and is discussed in the next section.

3.4 Matching

The most powerful branching construct is matching. Although the syntax for the matching statement
is always the same, there are really four different variants of matching. The reason is that there four
different data types that support matching. Matching has been implemented for strings, lists, sets,
and terms. We discuss string matching first.

3.4.1 String Matching

Many algorithms that deal with a given string s have to deal with two cases: Either the string s is
empty or it is nonempty and in that case has to be split into its first character c and the remaining
characters r, that is we have

s = c+ r where c = s[1] and r = s[2..].

In order to facilitate algorithms that perform this kind of case distinction, SetlX provides the match
statement. Consider the function2 reverse shown in Figure 3.11. This function reverses its input
argument, so the expression

reverse("abc")

yields the result "cba". In order to reverse a string s, the function has to deal with two cases:

1 reverse := procedure(s) {

2 match (s) {

3 case [] : return s;

4 case [c|r]: return reverse(r) + c;

5 default : abort("type error in reverse($s$)");

6 }

7 };

Figure 3.11: A function that reverses a string.

1. The string s is empty. In this case, we can just return the string s as it is. This case is dealt with
in line 3. There, we have used the pattern “[]” to match the empty string. Instead, we could
have used the empty string itself. Using the pattern “[]” will prove beneficial when dealing with
lists because it turns out that the function reverse as given in Figure 3.11 can also be used to
reverse a list.

2 There is also a predefined version of the function reverse which does exactly the same thing as the function in

Figure 3.11. However, once we define the function reverse as in Figure 3.11, the predefined function gets overwritten

and is no longer accessible.
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2. If the string s is not empty, then it can be split up into a first character c and the remaining
characters r. In this case, we reverse the string r and append the character c to the end of this
string. This case is dealt with in line 4.

The match statement in the function reverse has a default case in line 5 to deal with those cases
where s is neither a string nor a list. In those cases, the function is aborted with an error message.

The previous example shows that the syntax for the match statement is similar to the syntax for
the switch statement. The main difference is that the keyword is now “match” instead of “switch”
and that the cases no longer contain Boolean values but instead contain patterns that can be used

• to check whether a string has a given form and

• to extract certain components (like the first character or everything but the first character).

Basically, for strings the function reverse given above is interpreted as if it had been written in the
way shown in Figure 3.12 on page 43. This example shows that the use of the match statement can
make programs more compact while increasing their legibility.

1 reverse := procedure(s) {

2 if (s == "") {

3 return s;

4 } else if (isString(s)) {

5 c := s[1];

6 r := s[2..];

7 return reverse(r) + c;

8 } else {

9 abort("type error in reverse($s$)");

10 }

11 };

Figure 3.12: A function to reverse a string that does not use matching.

To explore string matching further, consider a function reversePairs that interchanges all pairs
of characters, so for example we have

reversePairs("abcd") = "badc" and reversePairs("abcde") = "badce".

This function can be implemented as shown in Figure 3.13 on page 44. Notice that we can match
the empty string with the pattern “[]” in line 3. The pattern “[c]” matches a string consisting of
a single character c. In line 5 the pattern [a,b|r] extracts the first two characters from the string s
and binds them to the variables a and b. The rest of the string is bound to r.

String Decomposition via Assignment

Assignment can be used to decompose a string into its constituent characters. For example, if s is
defined as

s := "abc";

then after the assignment

[u, v, w] := s;

the variables u, v, and w have the values

u = "a", v = "b", and w = "c".
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1 reversePairs := procedure(s) {

2 match (s) {

3 case [] : return s;

4 case [c] : return c;

5 case [a,b|r]: return b + a + reversePairs(r);

6

7 }

8 };

Figure 3.13: A function to exchange pairs of characters.

Therefore, for strings, list assignment can be seen as a lightweight alternative to matching. However,
string decomposition via assignment only works if the list on the left hand side has the same length as
the string.

3.4.2 List Matching

As strings can be regarded as lists of characters, the matching of lists is very similar to the matching
of strings. The function reverse shown in Figure 3.11 on page 42 can also be used to reverse a list.
If the argument s of reverse is a list instead of a string, we match the empty list with the pattern
“[]”, while the pattern “[c|r]” matches a non-empty list: The variable c matches the first element
of the list, while the variable r matches the remaining elements.

List assignment is another way to decompose a list that is akin to matching. If the list l is defined
via

l := [1..3];

then after the assignment

[x, y, z] := l;

the variables x, y, and y have the values x = 1, y = 2, and z = 3. Of course, this only works if the
number of variables on the left hand side of the assignment is equal to the length of the list on the
right hand side.

3.4.3 Set Matching

As sets are quite similar to lists, the matching of sets is closely related to the matching of lists. Figure
3.14 shows the function setSort that takes a set of numbers as its argument and returns a sorted list
containing the numbers appearing in the set. In the match statement, we match the empty set with
the pattern “{}”, while the pattern “{x|r}” matches a non-empty set: The variable x matches the
first element of the set, while the variable r matches the set of all the remaining elements.

1 setSort := procedure(s) {

2 match (s) {

3 case {} : return [];

4 case {x|r}: return [x] + setSort(r);

5 }

6 };

Figure 3.14: A function to sort a set of numbers.
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Of course, in SetlX sorting a set into a list is trivial, as a set is represented as an ordered binary
tree and therefore is already sorted. For this reason, we could also transform a set s into a sorted list
by using the expression

[] + s.

The reason is that in this case the set s is first transformed into a list and this list is then appended
to the empty list. In general, for a list l and a set s the expression l + s creates a new list containing
all elements of l. Then, the elements of s are appended to this list. Similarly, for a set s and a list l
the expression s + l creates a new set containing the elements of the set s and the list l.

3.4.4 Term Matching

The most elaborate form of matching is the matching of terms. This kind of matching is similar to
the kind of matching provided in the programming languages Prolog and Ml [MTH90]. Figure 3.15
shows an implementation of the function insert to insert a number into an ordered binary tree. This
implementation uses term matching instead of the functions “fct” and “args” that had been used
in the previous implementation shown in Figure 2.8 on page 32. In line 3 of Figure 3.15, the case

statement checks whether the term m is identical to the empty binary tree, which is represented by
the term @Nil(). This is more straightforward than testing that the functor of m is “Nil”, as it was
done in line 3 of Figure 2.8. However, the real benefit of matching shows in line 5 of Figure 3.15 since
the case statement in this line does not only check whether the functor of the term m is “Node” but
also assigns the subterms of m to the variables k2, l, and r, respectively. Compare this with line 5
and line 6 of Figure 2.8 where we had to use a separate statement in line 6 to extract the arguments
of the term m.

1 insert := procedure(m, k1) {

2 match (m) {

3 case @Nil() :

4 return @Node(k1, @Nil(), @Nil());

5 case @Node(k2, l, r) | k1 == k2:

6 return @Node(k1, l, r);

7 case @Node(k2, l, r) | compare(k1, k2) < 0:

8 return @Node(k2, insert(l, k1), r);

9 case @Node(k2, l, r):

10 return @Node(k2, l, insert(r, k1));

11 default: abort("Error in insert($m$, $k1$)");

12 }

13 };

Figure 3.15: Inserting an element into a binary tree using matching.

In general, a case statement that is part of a match statement has the form

case pattern | condition: stmnt

Here, pattern is a term, condition is a Boolean condition, and stmnt is a statement. When this case
statement is processed, the term t in the statement

match (t) { · · · }
is matched against pattern. This will be explained in more detail in the next paragraph. If thismatching
succeeds, the variables in pattern are bound to the corresponding subterms in t. Next, it is checked
whether condition is true. If it is, the match succeeds and the statement stmnt is executed. Otherwise,
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the statement is skipped and control proceeds to the next case.
Let us now explain the details how a term t is matched against a pattern p. The pattern p is either

a variable or it is a term. If p is a variable, the match succeeds and the term t is assigned to the
variable p, i.e. the statement

p := t;

is executed. If p is a term, then t and p can be written as

t = f(t1, · · · , tn) and p = g(p1, · · · , pm).

Then, matching t against p proceeds as follows:

1. If the function symbols f and g are different, the match fails.

2. If the numbers n and m are different, the match fails.

3. If the match hasn’t failed yet, the subterms t1, · · ·, tn are matched recursively against the
patterns p1, · · ·, pn. The match only succeeds if all of the recursive matches succeed. If it
does not succeed, then the assignments that have been made during the recursive matching are
undone.

The following more complex example will serve to elucidate matching further. The function diff

shown in Figure 3.16 on page 47 is supposed to be called with two arguments:

1. The first argument t is a term that is interpreted as an arithmetic expression.

2. The second argument x is a term that is interpreted as the name of a variable.

The function diff interprets the term t as a mathematical function and takes the derivative of this
function with respect to the variable x. For example, in order to compute the derivative of the function

x 7→ xx

we can invoke diff as follows:

diff(parseTerm("x ** x"), parseTerm("x"));

Here the function parseTerm transforms the string “x ** x” into a term. The form of this term will
be discussed in more detail later. This function is a part of the package termUtilities. Therefore,
to use this function we have to load the corresponding library first using the statement

loadLibrary("termUtilities");

For the moment, let us focus on the match statement in Figure 3.16. Consider line 5: If the term that
is to be differentiated has the form t1 + t2, then both t1 and t2 have to be differentiated separately
and the resulting terms have to be added. For a more interesting example, consider line 9. This line
implements the product rule:

d

dx

(

t1 · t2
)

=
d t1
dx

· t2 + t1 ·
d t2
dx

.

Note how the pattern

t1 * t2

in line 9 extracts the two factors t1 and t2 from a term that happens to be a product. Further, note
that in line 18, 19, 21, and 22 we had to prefix the function symbols “exp” and “ln” with the character
“@” in order to convert these function symbols into functors.

Note that the example makes extensive use of the fact that terms are viral when used with the
arithmetic operators “+”, “-”, “*”, “/”, “\”, and “%”: If one operand of these operators is a term,
the operator automatically yields a term. For example, if x is a term, then
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1 loadLibrary("termUtilities");

2

3 diff := procedure(t, x) {

4 match (t) {

5 case t1 + t2:

6 return diff(t1, x) + diff(t2, x);

7 case t1 - t2:

8 return diff(t1, x) - diff(t2, x);

9 case t1 * t2:

10 return diff(t1, x) * t2 + t1 * diff(t2, x);

11 case t1 / t2:

12 return ( diff(t1, x) * t2 - t1 * diff(t2, x) ) / (t2 * t2);

13 case f ** 0:

14 return 0;

15 case f ** n | isNumber(n):

16 return n * diff(f, x) * f ** (n-1);

17 case f ** g:

18 return diff(@exp(g * @ln(f)), x);

19 case @ln(a):

20 return diff(a, x) / a;

21 case @exp(a):

22 return diff(a, x) * @exp(a);

23 case var | var == x :

24 return 1;

25 case var | isVariable(var) :

26 return 0;

27 case t | isNumber(t):

28 return 0;

29 }

30 };

Figure 3.16: A function to perform symbolic differentiation.

x + 2

is also a term. Note also that terms are not viral inside function symbols like “exp”. Therefore, this
function symbol has to be prefixed by the operator “@” to turn it into a functor.

Line 27 shows how a condition can be attached to a pattern: The pattern

case t:

would match anything. However, we want to match only numbers here. Therefore, we have attached
the condition isNumber(t) via the condition operator “|” to this pattern and hence have written

case t | isNumber(t):

in order to ensure that t is indeed a number.

3.4.5 Term Decomposition via List Assignment

As a syntactical convenience, terms can be decomposed via list assignment. For example, after the
assignment
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[x,y,z] := @f(1, @g(2), {2,3});
the variables x, y, and z have the values

x = 1, y = @g(2), and z = {2, 3}.
Of course, the function args achieves a similar effect. We have that

args(@f(1, @g(2), {2,3})) = [1, @g(2), {2, 3}].

3.5 Loops

SetlX offers three different kinds of loops: for loops, while loops, and do-while loops. The while
loops are the most general loops. Therefore, we discuss them first.

3.5.1 while Loops

The syntax of while loops in SetlX is similar to the syntax of while loops in the programming
language C. The only difference is that in SetlX, the body of a while loop has to be enclosed in
curly braces even if it only consists of a single line. To demonstrate a while loop, let us implement a
function testing the Collatz conjecture: Define the function

f : N → N

recursively as follows:

1. f(n) := 1 if n = 1,

2. f(n) :=

{

f(n/2) if n % 2 = 0;

f(3 · n+ 1) otherwise.

The Collatz conjecture claims that f(n) = 1 for all n ∈ N. If we assume the Collatz conjecture is
true, then f is well-defined. Otherwise, if the Collatz conjecture is not true, for certain values of n the
function f(n) is undefined. Figure 3.17 shows an implementation of the function f in SetlX.

1 f := procedure(n) {

2 if (n == 1) {

3 return 1;

4 }

5 while (n != 1) {

6 if (n % 2 == 0) {

7 n /= 2;

8 } else {

9 n := 3 * n + 1;

10 }

11 }

12 return n;

13 };

Figure 3.17: A program to test the Collatz conjecture.

The function f is implemented via a while loop. This loop runs as long as n is different from the
number one. Therefore, if the Collatz conjecture is true, the while loop will eventually terminate for
all values of n.
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The syntax of a while loop is given by the following grammar rule:

statement → “while” “(” boolExpr “)” “{” block “}” .

Here, boolExpr is a Boolean expression returning either true or false. This condition is called the
guard of the while loop. The syntactical variable block denotes a sequence of statements. Note
that, in contrast to the programming languages C and Java, the block of statements always has to be
enclosed in curly braces, even if it consists only of a single statement. The semantics of a while loop
is the same as in C: The loop is executed as long as the guard is true. In order to abort an iteration
prematurely, SetlX provides the command continue. This command aborts the current iteration of
the loop and proceeds with the next iteration. In order to abort the loop itself, the command break can
be used. Figure 3.18 shows a function that uses both a break statement and a continue statement.
This function will print the number 1. Then, when n is incremented to 2, the continue statement in
line 6 is executed so that the number 2 is not printed. In the next iteration of the loop, the number n
is incremented to 3 and printed. In the final iteration of the loop, n is incremented to 4 and the break
statement in line 9 terminates the loop.

1 testBreakAndContinue := procedure() {

2 n := 0;

3 while (n < 10) {

4 n := n + 1;

5 if (n == 2) { continue; }

6 if (n == 4) { break; }

7 print(n);

8 }

9 };

Figure 3.18: This function demonstrates the semantics of break and continue.

3.5.2 do-while Loops

Similar to the language C, SetlX supports the do-while loop. The difference between a do-while

loop and an ordinary while loop is that sometimes the body of a loop needs to execute at least
once, regardless of the condition controlling the loop. For example, imagine you want to implement
the following guessing game: The computer generates a random natural number between 0 and 100
inclusive and the player has to guess it. Every time the player enters some number, the computer
informs the player whether the number was too big, too small, or whether the player has correctly
guessed the secret number. In this guessing game, the player always has to enter at least one number.
Therefore, the most natural way to implement this game is to use a do-while loop. Figure 3.19 shows
an implementation of the guessing game. The implementation works as follows:

1. In line 2, the secret number is generated using the function rnd which picks a random element
from the set given as argument. This number has to be guessed by the player.

2. The variable count is used to count the number of guessing attempts. This variable is initialized
in line 3.

3. Since the user has to enter at least one number, we use a do-while loop that loops as long as
the user has not yet guessed the secret number.

In line 6, the user is asked to guess the secret number. If this number is either too small or too
big, an appropriate message is printed. The loop terminates in line 14 if the number that has
been guessed is identical to the secret number.
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1 guessNumber := procedure() {

2 secret := rnd(100);

3 count := 0;

4 do {

5 count += 1;

6 x := read("input a number between 0 and 100 inclusively: ");

7 if (x < secret) {

8 print("sorry, too small");

9 } else if (x > secret) {

10 print("sorry, too big");

11 } else {

12 print("correct!");

13 }

14 } while (x != secret);

15 print("number of guesses: $count$");

16 };

Figure 3.19: Implementing the guessing game in SetlX.

The syntax of a do-while loop is given by the following grammar rule:

statement → “do” “{” block “}” “while” “(” boolExpr “)” “;” .

Here, boolExpr is a Boolean expression returning either true or false. This expression is called the
guard of the do-while loop. The syntactical variable block denotes a sequence of statements. Note
that, in contrast to the programming languages C and Java, the block of statements always has to
be enclosed in curly braces, even if it consists only of a single statement. Furthermore, note that a
do-while loop has to be terminated with a semicolon. This is a notable difference to while loops
and for loops, which are not terminated by a semicolon.

The semantics of a do-while loop is the same as in C: The body of the loop is executed once.
Then, if the guard is false, execution terminates. Otherwise, the body is executed again and again
as long as the guard is true. In order to abort an iteration of the loop prematurely, the commands
continue and break can be used. These commands work in the same way as in a while loop.

3.5.3 for Loops

In order to either perform a group of commands a predefined number of times, or to iterate over a set,
list or string, a for loop should be used. Figure 3.20 on page 51 shows some SetlX code that prints
a multiplication table. The output of this program is shown in Figure 3.21 on page 51.

In the program in Figure 3.20, the printing is done in the two nested for loops that start in line 8
and line 9, respectively. In line 8, the counting variable i iterates over all values from 1 to 10. Similarly,
the counting variable j in line 9 iterates over the same values. The product i * j is computed in line
10 and printed without a newline using the function nPrint. The function rightAdjust(n) turns the
number n into a string by padding the number with blanks from the left so that the resulting string
always has a length of 4 characters.

The general syntax of a for loop is given by the following Ebnf rule:

statement → “for” “(” iterator (“,” iterator)∗ (“|” condition)? “)” “{” block “}”.
Here an iterator is either a simple iterator or a tuple iterator. A simple iterator has the form

x “in” s

— 50 —



Chapter 3. Statements 3.5. Loops

1 rightAdjust := procedure(n) {

2 switch {

3 case n < 10 : return " " + n;

4 case n < 100: return " " + n;

5 default: return " " + n;

6 }

7 };

8 for (i in [1 .. 10]) {

9 for (j in [1 .. 10]) {

10 nPrint(rightAdjust(i * j));

11 }

12 print();

13 }

Figure 3.20: A simple program to generate a multiplication table.

1 2 3 4 5 6 7 8 9 10

2 4 6 8 10 12 14 16 18 20

3 6 9 12 15 18 21 24 27 30

4 8 12 16 20 24 28 32 36 40

5 10 15 20 25 30 35 40 45 50

6 12 18 24 30 36 42 48 54 60

7 14 21 28 35 42 49 56 63 70

8 16 24 32 40 48 56 64 72 80

9 18 27 36 45 54 63 72 81 90

10 20 30 40 50 60 70 80 90 100

Figure 3.21: Output of the program in Figure 3.20.

where s is either a set, a list, or a string and x is the name of a variable. This variable is bound to the
elements of s in turn. For example, the statement

for (x in [1..10]) { print(x); }
will print the numbers from 1 to 10. If s is a string, then the variable x iterates over the characters of
s. For example, the statement

for (c in "abc") { print(c); }
prints the characters "a", "b", and "c".

The iterator of a for loop can also be a tuple iterator. The simplest form of a tuple is

[x1, · · · , xn] “in” s.

Here, s must be either a set or a list whose elements are lists of length n. Figure 3.22 on page 52 shows
a procedure that computes the relational product of two binary relations r1 and r2. In set theory, the
relational product r1 ◦ r2 is defined as

r1 ◦ r2 := {〈x, z〉 | 〈x, y〉 ∈ r1 ∧ 〈y, z〉 ∈ r2}.
The for loop in line 3 iterates over the two relations r1 and r2. The condition “y1 == y2” selects
those pairs of numbers such that the second component of the first pair is identical to the first
component of the second pair.
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1 product := procedure(r1, r2) {

2 r := {};

3 for ([x, y1] in r1, [y2, z] in r2 | y1 == y2) {

4 r += { [x, z] };

5 }

6 return r;

7 };

Figure 3.22: A program to compute the relational product of two binary relations.

The for loop in line 3 can be simplified as shown in Figure 3.23 on page 52. Here, we have forced
the second component of the pair [x,y] to be equal to the first component of the pair [y,z] by using
the same variable name for both components.

1 product := procedure(r1, r2) {

2 r := {};

3 for ([x, y] in r1, [y, z] in r2) {

4 r += { [x, z] };

5 }

6 return r;

7 };

Figure 3.23: A program to compute the relational product of two binary relations.

Of course, in SetlX the relational product can be computed more easily via set comprehension.
Figure 3.24 on page 52 shows an implementation of the function product that is based on set compre-
hension. In general, most occurrences of for loops can be replaced by equivalent set comprehensions.
Our experience shows that the resulting code is often both shorter as well as easier to understand.

1 product := procedure(r1, r2) {

2 return { [x, z] : [x, y] in r1, [y, z] in r2 };

3 };

Figure 3.24: Computing the relational product via set comprehension.

Iterators can be even more complex, since the tuples can be nested, so a for loop of the form

for ([[x,y],z] in s) { · · · }
is possible. However, as this feature is rarely needed, we won’t discuss it in more detail.

A for loop creates a local scope for its iteration variables. This means that changes to an iteration
variable that occur in the for loop are not visible outside of the for loop. Therefore, the last line of
the program shown in Figure 3.25 prints the message

x = 1.
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1 x := 1;

2 for (x in "abc") {

3 print(x);

4 }

5 print("x = $x$");

Figure 3.25: A program illustrating the scope of a for loop.
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Regular Expressions

Regular expressions are a very powerful tool when processing strings. Therefore, most modern pro-
gramming languages support them. SetlX is no exception. As the SetlX interpreter is implemented
in Java, the syntax of the regular expressions supported by SetlX is the same as the syntax of regular
expressions in Java. For this reason, instead of discussing every detail of the syntax of regular expres-
sions, we refer the reader to the documentation of the Java class java.util.regex.Pattern, which
can be found at

http://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html.

This documentation contains a concise description of the syntax and semantics of regular expressions.
For a more general discussion of the use of regular expression, the book of Friedl [Fri06] is an excellent
choice. Here, we will confine ourselves to show how regular expressions can be used in SetlX pro-
grams. SetlX provides two control structures that make use of regular expressions. The first is the
match statement and the second is the scan statement.

4.1 Using Regular Expressions in a match Statement

Instead of the keyword “case”, a branch in a match statement can begin with the keyword “regex”.
Figure 4.1 shows the definition of a function named classify that takes a string as its argument and
tries to classify this string as either a word or a number.

1 classify := procedure(s) {

2 match (s) {

3 regex ’0|[1-9][0-9]*’: print("found an integer");

4 regex ’[a-zA-Z]+’ : print("found a word");

5 regex ’\s+’ : // skip white space

6 default : print("unkown: $s$");

7 }

8 };

Figure 4.1: A simple function to recognize numbers and words.

Note that we have specified the regular expressions using literal strings, i.e. strings enclosed in
single quote characters. This is necessary, since the regular expression in line 5

’\s+’

contains a backslash character. If we had used double quotes, it would have been necessary to escape
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the backslash character with another backslash and we would have had to write

"\\s+"

instead. Invoking the function classify as

classify("123");

prints the message “found an integer”, while invoking the function as

classify("Hugo");

prints the message ‘found a word”. Finally, calling

classify("0123");

prints the answer “unkown: 0123”. The reason is that the string “0123” does not comply with the
regular expression ’0|[1-9][0-9]*’ because this regular expression does not allow a number to start
with the character “0” followed by more digits.

4.1.1 Extracting Substrings

Often, strings are structured and the task is to extract substrings corresponding to certain parts of
a string. This can be done using regular expressions. For example, consider a phone number in the
format

+49-711-6673-4504.

Here, the substring “49” is the country code, the substring “711” is the area code, the substring
“6673” is the company code, and finally “4504” is the extension. The regular expression

\+([0-9]+)-([0-9]+)-([0-9]+)-([0-9]+)

specifies this format and the different blocks of parentheses correspond to the different codes. If a
phone number is given and the task is to extract, say, the country code and the area code, then this
can be achieved with the SetlX function shown in Figure 4.2.

1 extractCountryArea := procedure(phone) {

2 match (phone) {

3 regex ’\+([0-9]+)-([0-9]+)-([0-9]+)-([0-9]+)’ as [_, c, a, _, _]:

4 return [c, a];

5 default: abort("The string $phone$ is not a phone number!");

6 }

7 };

Figure 4.2: A function to extract the country and area code of a phone number.

Here, the regular expression to recognize phone numbers has several parts that are enclosed in paren-
theses. These parts are collected in a list of the form

[s, p1, · · · , pn].
The first element s of this list is the string that matched the regular expression. The remaining ele-
ments pi correspond to the different parts of the regular expression: p1 corresponds to the first group
of parentheses, p2 corresponds to the second group, and in general pi corresponds to the i-th group.
In line 3 this list is then matched against the pattern

[ , c, a, , ].
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Therefore, if the match is successful, the variable c will contain the country code and the variable a is
set to the area code. The groups of regular expressions that are not needed are matched against the
anonymous variable “ ” and are therefore effectively ignored.

If a regular expression contains nested groups of parentheses, then the order of the groups is
determined by the left parenthesis of the group. For example, the regular expression

’((a+)(b*)c?)d’

contains three groups:

1. the first group is ’((a+)(b*)c?)’,

2. the second group is ’(a+)’, and

3. the third group is ’(b*)’.

4.1.2 Testing Regular Expressions

In real life applications, regular expressions can get quite involved and difficult to comprehend. The
function testRegexp shown in Figure 4.3 can be used to test a given regular expression: The function
takes a regular expression re as its first argument, while the second argument is a string s. The
function tests whether the string s matches the regular expression re. If this is the case, the function
testRegexp returns a list that contains all the substrings corresponding to the different parenthesized
groups of the regular expression re. For example, invoking this function as

testRegexp(’(a*)(a+)b’, "aaab");

yields the result

["aaab", "aa", "a"].

Here, the first element of the list is the string that was matched by the regular expression, the second
element "aa" corresponds to the regular subexpression ’(a*)’, and the last element "a" corresponds
to the regular subexpression ’(a+)’.

1 testRegexp := procedure(re, s) {

2 match (s) {

3 regex re as l: return l;

4 default : print("No match!");

5 }

6 };

Figure 4.3: Testing regular expressions.

4.1.3 Extracting Comments from a File

In this section we present an example of the match statement in action. The function printComments

shown in Figure 4.4 attempts to extract all those C-style comments from a file that are contained in a
single line. The regular expression ’\s*(//.*)’ in line 5 matches comments starting with the string
“//” preceded by optional white space, while the regular expression

’\s*(/\*([^*]|\*+[^*/])*\*+/)\s*’

in line 6 matches comments that start with the string “/*”, preceded by optional white space and end
with the string “*/” followed by optional trailing white space. This regular expression is quite difficult
to read for three reasons:
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1. We have to precede the symbol “*” with a backslash in order to prevent it from being interpreted
as a regexp quantifier.

2. We have to ensure that the string between “/*” and “*/” does not contain the substring “*/”.
The regular expression

([^*]|\*+[^*/])*

specifies this substring: This substring can have an arbitrary number of parts that satisfy the
following specification:

(a) A part may consists of any character different from the character “*”. This is specified by
the regular expression ’[^*]’.

(b) A part may be a sequence of “*” characters that is neither followed by the character “/”
nor the character “*”. These parts are matched by the regular expression \*+[^*/].

Concatenating any number of these parts will never produce a string containing the substring
“*/”.

3. Lastly, we have to ensure that we can match a string of the form “***· · ·***/” that ends the
comment. The problem here is that we need not only be able to recognize the string “*/” but also
have to deal with the case that this string is preceded by an arbitrary number of “*”-characters,
since the regular expression ([^*]|\*+[^*/])* does not accept any trailing “*”-characters.

1 printComments := procedure(file) {

2 lines := readFile(file);

3 for (l in lines) {

4 match (l) {

5 regex ’\s*(//.*)’ as c: print(c[2]);

6 regex ’\s*(/\*([^*]|\*+[^*/])*\*+/)\s*’ as c: print(c[2]);

7 }

8 }

9 };

10

11 for (file in params) {

12 printComments(file);

13 }

Figure 4.4: Extracting comments from a given file.

If the code shown in Figure 4.4 is stored in the file find-comments.stlx, then we can invoke this
program as

setlx find-comments.stlx --params file.stlx

The option “--params” creates the global variable params that contains a list containing all the
remaining arguments given to the program. In this case, there is just one argument, which is the string
“file.stlx”. Therefore, params is a list of length one containing the file name as a string. Hence
the for loop in line 11 will call the function printComments with the given string. If we invoke the
program using the command

setlx find-comments.stlx --params *.stlx

instead, then the function printComments will be called for all files ending in “.stlx”.
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4.1.4 Conditions in match Statements

A clause of a match statement can contain an optional Boolean condition that is separated from the
regular expression by the condition operator “|”. Figure 4.5 shows a program to search for palindromes
in a given file.

1. Line 2 reads the file using the function readFile. This function returns a list of strings where
each string corresponds to a line of the file.

These lines are then concatenated by the function join into a single string. In this string, the
different lines are separated by the newline character “\n”.

Finally the resulting string is split into a list of words using the function split. The second
argument of this function is a regular expression that specifies that the string should be split at
every non-empty sequence of characters that are not letters.

2. The for-loop in line 4 iterates over all these words and the match-statement in line 5 tests every
word.

3. Line 6 shows how a condition can be attached to a regex clause. The regular expression

’[a-zA-Z]+’

matches any number of letters, hence it recognizes words. However, the string c[1] correspond-
ing to the match is only added to the set of palindromes if the predicate isPalindrome[c[1])
yields true. The function isPalindrome(s) checks whether s is a palindrome that has a length
of at least 3.

1 findPalindrome := procedure(file) {

2 all := split(join(readFile(file), "\n"), ’[^a-zA-Z]+’);

3 palindromes := {};

4 for (s in all) {

5 match (s) {

6 regex ’[a-zA-Z]+’ as c | isPalindrome(c[1]):

7 palindromes += { c[1] };

8 regex ’.|\n’:

9 // skip everything else

10 }

11 }

12 return palindromes;

13 };

14

15 isPalindrome := procedure(s) {

16 if (#s < 3) {

17 return false;

18 }

19 return reverse(s) == s;

20 };

Figure 4.5: A program to find palindromes in a file.
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1 printComments := procedure(file) {

2 s := join(readFile(file), "\n");

3 scan (s) {

4 regex ’//[^\n]*’ as c: print(c[1]);

5 regex ’/\*([^*]|\*+[^*/])*\*+/’ as c: print(c[1]);

6 regex ’.|\n’ : // skip every thing else

7 }

8 };

Figure 4.6: Extracting comments using the match statement.

4.2 The scan Statement

The program to extract comments that was presented in the previous subsection is quite unsatisfactory
as it will only recognize those strings that span a single line. Figure 4.6 on page 59 shows a function
that instead extracts all comments from a given file. The function printComments takes a string as
argument. This string is interpreted as the name of a file. In line 2, the function readFile reads this
file. This function produces a list of strings. Each string corresponds to a single line of the file without
the trailing line break. The function join joins all these lines into a single string. As the second
argument of join is the string “\n”, a newline is put in between the lines that are joined. The end
result is that the variable s contains the content of the file as one string. This string is then scanned
using the scan statement in line 3. The general form of a scan statement is as follows:

scan (s) {
regex r1 as l : b1
...
regex rn as l : bn

}
Here, s is a string to be analyzed, r1, · · ·, rn denote regular expressions, while b1, · · ·, bn are lists of
statements. The scan statement works as follows:

1. All the regular expressions r1, · · ·, rn are tried in parallel to match a prefix of the string s.

(a) If none of these regular expression matches, the scan statement is aborted with an error
message.

(b) If exactly one regular expression ri matches, then the corresponding statements bi is exe-
cuted and the prefix matched by ri is removed from the beginning of s.

(c) If more than one regular expression matches, then there is a conflict which is resolved in
two steps:

i. If the prefix matched by some regular expression rj is longer than any other prefix
matched by another regular expression ri, then the regular expression rj wins, the list
of statements bj is executed and the prefix matched by rj is removed from s.

ii. If there are two (or more) regular expressions ri and rj that both match a prefix of
maximal length, then the regular expression with the lowest index wins, i.e. if i < j,
then bi is executed.

Finally, the prefix of s that has been matched is removed from s.

2. Step 1 is repeated as long as the string s is not empty. Therefore, a scan statement can be
viewed as a while loop combined with a match statement.
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The clauses in a scan statement can also have Boolean conditions attached. This works the same way
as it works for a match statement.

The scan statement provides a functionality that is similar to the functionality provided by tools
like lex [Les75] or JFlex [Kle09]. In order to support this claim, we present an example program that
computes the marks of an exam. Assume the results of an exam are collected in a text file like the one
shown in Figure 4.7 on page 60. The first line of this file shows that this is an exam about algorithms.
The third line tells us that there are 6 exercises in the given exam and the remaining lines list the points
that have been achieved by individual students. A hyphen signals that the student did not work on the
corresponding exercise. In order to calculate marks, we first have to sum up all the points. From this
sum, the mark can then be calculated.

1 Exam: Algorithms

2

3 Exercises: 1. 2. 3. 4. 5. 6.

4 Magnus Peacemaker: 8 9 8 - 7 6

5 Dewy Dullamore: 4 4 2 0 - -

6 Alice Airy: 9 12 12 9 9 6

7 Jacob James: 9 12 12 - 9 6

Figure 4.7: Typical results from an exam.

Figure 4.8 shows a program that performs this calculation. We discuss this program line by line.

1. The function evalExam takes two arguments: The first is the name of a file containing the results
of the exam and the second argument is the number of points needed to get the top mark. This
number is a parameter that is needed to calculate the mark of a student.

2. Line 2 creates a string containing the content of the given file.

3. We will use two states in our scanner:

(a) The first state is identified by the string "normal". In line 3, the variable state is initialized
to this value.

(b) The second state is identified by the string "printBlanks". We enter this state when we
have read the name of a student. This state is needed to read the white space between the
name of a student and the first number following the student.

In state "normal", all white space is discarded, but in state "printBlanks" white space
is printed. This is necessary to format the output neatly.

Line 3 therefore initializes the variable state to "normal".

4. Line 4 shows the scan statement. Here, we have added the string “using map” after “scan(all)”.
This enables us to retrieve line and column information via the variable map. How this is done is
shown in line 24 and 25.

5. The regular expression in line 5 is needed to skip the header of the file. The two header lines
can be recognized by the fact that there is a single word followed by a colon “:”. In contrast,
the names of students always consist of two words separated by a single white space character.

6. The regular expression in line 5 matches the name of a student. Notice that we have used “\s”
to specify the blank between the first name and the family name. Furthermore, the family name
is allowed to contain the hyphen character “-”. The student’s name is printed and the number
of points for this student is set to 0. Furthermore, after the name of a student has been seen,
the state is changed to the state "printBlanks".
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1 evalExam := procedure(file, maxPoints) {

2 all := join(readFile(file), "\n");

3 state := "normal";

4 scan (all) using map {

5 regex ’[a-zA-Z]+:.*\n’: // skip header lines

6 regex ’[A-Za-z]+\s[A-Za-z\-]+:’ as [ name ]:

7 nPrint(name);

8 state := "printBlanks";

9 sumPoints := 0;

10 regex ’[ \t]+’ as [ whiteSpace ] | state == "printBlanks":

11 nPrint(whiteSpace);

12 state := "normal";

13 regex ’[ \t]+’ | state == "normal":

14 // skip white space between results

15 regex ’0|[1-9][0-9]*’ as [ number ]:

16 sumPoints += int(number); // add results

17 regex ’-’: // skip exercises that have not been done

18 regex ’\n’ | sumPoints != om: // calculate mark

19 print(mark(sumPoints, maxPoints));

20 sumPoints := om;

21 regex ’[ \t]*\n’ | sumPoints == om: // skip empty lines

22 regex ’.|\n’ as [ c ]: // error handling

23 print("unrecognized character: $c$");

24 print("line: ", map["line"]);

25 print("column: ", map["column"]);

26 }

27 };

28 mark := procedure(p, m) {

29 return 7.0 - 6.0 * p / m;

30 };

Figure 4.8: A program to compute marks for an exam.

7. The regular expression in line 10 matches the white space following the name of a student. Notice
that this regular expression has a condition attached to it: The condition is the formula

state == "printBlanks".

The white space matched by the regular expression is then printed and the state is switched back
to "normal".

In effect, this rule will guarantee that the output is formatted in the same way as the input, as
the white space following a student’s name is just copied verbatim to the output.

8. Line 13 skips over white space that is encountered in state "normal". This is the white space
separating different numbers in the list of numbers following a students name.

9. The clause in line 15 recognizes strings that can be interpreted as numbers. These strings are
converted into numbers with the help of the conversion function int and then this number is
added to the number of points achieved by this student.

10. Line 17 skips over hyphens as these correspond to those exercises that have not been attempted
by the particular student.
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11. Line 18 checks whether the end of a line listing the points of a particular student has been reached.
This is the case if we encounter a newline and the variable sumPoints is not undefined. In this
case, the mark for this student is computed and printed. Furthermore, the variable sumPoints

is set back to the undefined status.

12. Any empty lines are skipped in line 21.

13. Finally, if we encounter any remaining character, then there is a syntax error in our input file. In
this case, line 22 recognizes this character and produces an error message. This error message
specifies the line and column of the character. This is done with the help of the variable map that
has been declared in line 4 via the using directive. map is effectively a dictionary that supports
the keys char, line, and column.

(a) char counts the characters encountered, hence this variable is incremented for every char-
acter that is read. This variable has the value 1 for the first character.

(b) line counts the line numbers. The line number is incremented once a newline character is
read. This variable has the value 1 for the first line.

(c) column counts the characters after the last line break, i.e. this variable is incremented for
every character that is read and it resets to 1 after a newline character has been read.

4.3 Additional Functions Using Regular Expressions

There are four predefined functions that use regular expressions.

1. The function

matches(s, r)

takes a string s and a regular expression r as its arguments. It returns true if the string s is in
the language described by the regular expression r. For example, the expression

matches("42", ’0|[1-9][0-9]*’);

returns true as the string "42" can be interpreted as a number and the regular expression
’0|[1-9][0-9]*’ describes natural numbers in the decimal system.

There is a variant of matches that takes three arguments. It is called as

matches(s, r, true).

In this case, r should be a regular expression containing several groups, i.e. there should be
several subexpressions in r that are enclosed in parentheses. Then, if r matches s, the function
matches returns a list of substrings of s. The first element of this list is the string s, the re-
maining elements are the substrings corresponding to the different groups of r. For example, the
expression

matches("+49-711-6673-4504", ’\+([0-9]+)-([0-9]+)-([0-9]+)-([0-9]+)’, true)

returns the list

["+49-711-6673-4504", "49", "711", "6673", "4504"].

If matches is called with three arguments where the last argument is true, an unsuccessful
match returns the empty list.

2. The function

replace(s, r, t)

receives three arguments: the arguments s and t are strings, while r is a regular expression. The

— 62 —



Chapter 4. Regular Expressions 4.3. Additional Functions Using Regular Expressions

function looks for substrings in s that match r. These substrings are then replaced by t. For
example, the expression

replace("+49-711-6673-4504", ’[0-9]{4}’, "XXXX");

returns the string

"+49-711-XXXX-XXXX".

3. There is a variant to the function replace(s, r, t) that replaces only the first substring in s
that matches r. This variant is called replaceFirst and is called as

replaceFirst(s, r, t).

For example, the expression

replaceFirst("+49-711-6673-4504", ’[0-9]{4}’, "XXXX");

returns the string

"+49-711-XXXX-4504".

4. The function

split(s, r)

takes a string s and a regular expression r as its inputs. It returns a list of substrings of s. To
be more precise, s is split into substrings at those positions that match the regular expression r.
The parts of s that are matched by r are not returned. A common way to invoke the function
is given by the following example:

l := split("1; 2; 3", ’;\s*’);

Here, the string "1, 2, 3" is split at every position where there the character “;” is followed
by white space. As a result, we have

l = ["1", "2", "3"].

If the previous example is changed into

l := split("1; 2; 3;", ’;\s*’);

i.e. the string is terminated with a “;”, then the result changes to

l = ["1", "2", "3", ""].

Note that the function

join(l, s)

is an inverse of the function split. It takes a list of strings l and a string s and joins the items
of l into a single result string by separating them with the string s. For example,

join(["a", "b", "c"], ";")

yields the string “a;b;c”.
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Chapter 5

Functional Programming and
Closures

We have already mentioned that SetlX is a full-fledged functional language: Functions can be used
both as arguments to other functions and as return values. There is no fundamental difference between
the type of a function and, say, the type of a rational number, as both can be assigned to variables,
converted to strings, used as arguments of other functions, or returned from a function.

Additionally, SetlX supports closures in a way similar to languages like Scheme [SS75]. In order
to introduce closures, we will first present some simple examples. After that, we show a more complex
case study: We discuss a program that transforms a regular expression into a non-deterministic finite
state machine.

5.1 Introductory Examples

In this section we will first introduce the basic ideas of functional programming. After that, we discuss
the notion of a closure.

Using functions as arguments to other functions is something that is not often seen in conventional
programming languages. Figure 5.1 on page 65 shows the implementation of the function reduce,
that takes two arguments:

1. The first argument is a list l.

2. The second argument is a binary function f . This function is expected to take two arguments.

The function reduce combines successive arguments of the list l using the function f and thereby
reduces the list l into a single value. For example, if the function f is the function add that just adds
its arguments, then reduce(l, add) computes the sum of the elements of l. Therefore, in line 12 the
invocation of reduce(l, add) computes the sum of all elements of the list l. Since this list contains
the natural numbers from 1 up to 36, reduce effectively computes the sum

36
∑

i=1

i.

Note that the expression “+/ l” is another way to compute this sum. If instead the second arguments
of the function reduce is the function multiply that returns the product of its arguments, then
reduce(l, multiply) computes the product of all elements of the list l and hence is equivalent to the
expression “*/ l”. Finally, it should be noted that in the case that the list l is empty, reduce returns
the value om.

Notice that the function reduce is a so called higher order function because one of its arguments is
itself a function. While the example given above might seem artificial, there are common applications
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1 reduce := procedure(l, f) {

2 match (l) {

3 case [] : return;

4 case [x] : return x;

5 case [x,y|r]: return reduce([f(x,y) | r], f);

6 }

7 };

8 add := [x, y] |-> x + y;

9 multiply := [x, y] |-> x * y;

10

11 l := [1 .. 36];

12 x := reduce(l, add );

13 y := reduce(l, multiply);

Figure 5.1: Implementing a second order function.

1 sort := procedure(l, cmp) {

2 if (#l < 2) { return l; }

3 m := #l \ 2;

4 [l1, l2] := [l[.. m], l[m+1 ..]];

5 [s1, s2] := [sort(l1, cmp), sort(l2, cmp)];

6 return merge(s1, s2, cmp);

7 };

8 merge := procedure(l1, l2, cmp) {

9 match ([l1, l2]) {

10 case [[], _] : return l2;

11 case [_, []] : return l1;

12 case [[x1|r1], [x2|r2]] :

13 if (cmp(x1, x2)) {

14 return [x1 | merge(r1, l2, cmp)];

15 } else {

16 return [x2 | merge(l1, r2, cmp)];

17 }

18 }

19 };

20 less := procedure(x, y) { return x < y; };

21 greater := procedure(x, y) { return y < x; };

22 l := [1,3,5,4,2];

23 s1 := sort(l, less );

24 s2 := sort(l, greater);

Figure 5.2: A generic sort function.

of this scheme. One example is sorting. Figure 5.2 on page 65 shows a generic implementation of the
algorithm merge sort. Here, the function sort takes two arguments:

1. The first argument l is the list to be sorted.

2. The second argument cmp is a binary function that compares two elements and returns either
true or false. If we call the function sort with second argument less, where the function
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less is defined in line 20, then the resulting list will be sorted ascendingly. If instead we use
the function greater defined in line 21 as the second argument, then the list l will be sorted
descendingly.

The second argument cmp of the procedure sort enables us to sort a list that contains elements
that are not numbers. In order to do so, we just have to implement an appropriate version of
the function cmp.

5.1.1 Implementing Counters via Closures

The concept of a closure is non-trivial, therefore we introduce the idea using some simple examples.
Figure 5.3 shows the function createCounter. This function initializes the variable count to a given
value and then returns a procedure that increments this value. Note that this procedure is not defined
via the keyword procedure but rather via the keyword closure. The reason is that this function needs
access to the variable count that is defined outside of the closure counter. By defining the function
counter as a closure rather than as a procedure, the function counter has access to the variable
count: It can both read its value and even change the value. When the function counter is defined,
the variable count is safely tucked away together with the function counter. Therefore, although the
variable count goes out of scope once the function createCounter terminates, the function counter

still has access to a copy of this variable. Hence, when we call the function createCounter in line
9, the variable ctr0 is assigned a version of the function counter where the variable count initially
has the value 0. Later, when we call the function ctr0 in line 12, this counter is incremented 3 times.
Therefore, after line 12 is executed, the variables u, v, and w have the values 1, 2, and 3, respectively.

1 createCounter := procedure(i) {

2 count := i;

3 counter := closure() {

4 count += 1;

5 return count;

6 };

7 return counter;

8 };

9 ctr0 := createCounter(0);

10 ctr9 := createCounter(9);

11

12 u := ctr0(); v := ctr0(); w := ctr0();

13 x := ctr9(); y := ctr9(); z := ctr9();

Figure 5.3: Creating a counter as a closure.

You should notice that the function ctr9 created in line 10 gets its own copy of the variable count.
In the case of the function ctr9, this copy of count is initialized with the value 9. Therefore, after we
have called the function ctr9 in line 13, the variables x, y, and z will have the values 10, 11, and 12.

5.1.2 Lambda Definitions for Closures

There is a short-hand notation for the definition of a closure that can be used if the closure only
contains a single return statement. This short-hand notation relates to closures as lambda definitions
relate to procedures. This short-hand notation is called a lambda closure. Here is a simple example:
The following two lines define a function f that computes the cube of its argument.

c := 3;
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f := x |=> x ** c;

These two lines are equivalent to the following two lines:

c := 3;

f := closure(x) { return x ** c; };
In general, the expression

x |=> expr

is equivalent to the following expression:

closure(x) { return expr; }
If there is more than one argument to a closure, the arguments have to be enclosed in square brackets.
For example,

f := [x,y] |=> sqrt(x ** c + y ** c);

is equivalent to

f := closure(x,y) { return sqrt(x ** c + y ** c); };

5.1.3 Closures as Return Values

So far, the functions we have discussed did not return functions. The next example will change that.
In mathematics, given a function

f : N → N

mapping natural numbers into natural numbers, the discrete derivative of f is again a function mapping
natural numbers to natural numbers and is denoted as ∆f . For n ∈ N, the value (∆f)(n) is defined
as

(∆f)(n) := f(n+ 1)− f(n).

For example, given the function f : N → N defined as f(n) := 2n, we have

(∆f)(n) = 2n+1 − 2n = 2n = f(n).

To give another example, the discrete derivative of the identity function is the function that maps every
natural number to the number 1, since (n+ 1)− n = 1.

1 delta := procedure(f) {

2 return n |=> f(n+1) - f(n);

3 };

4 g := n |-> n;

5 h := n |-> 2 ** n;

6 deltaG := delta(g);

7 deltaH := delta(h);

8

9 print([ deltaG(n) : n in [1 .. 10]]);

10 print([ deltaH(n) : n in [1 .. 10]]);

Figure 5.4: Computing the discrete derivative of a given function.

Figure 5.4 shows the implementation of the function delta that takes a function f as input and then
returns the discrete derivative of f. In line 6 and 7, this function is applied to the identity function and
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to the function n 7→ 2n, respectively. The resulting functions deltaG and deltaH are then applied
to the sequence of natural numbers from 1 to 10. In the first case, the result is a list containing the
number one ten times, while in the second case the the result is a list of the first ten powers of two.

Note that we had to define the return value of the function delta as a closure. The reason is that
otherwise the value f referring to the function would not be in the local scope of the function that is
returned by delta and hence f would be undefined.

5.2 Closures in Action: Generating Finite State Machines from

Regular Expressions

In this section we demonstrate a non-trivial application of closures. We present a program that takes a
regular expression r as input and converts this regular expression into a non-deterministic finite state machine
using the Thompson construction [HMU06]. To this end, we first define a alphabet as a finite set of
characters. Then, for the purpose of this section, regular expressions over an alphabet Σ are defined
inductively as follows.

1. Every character c ∈ Σ is a regular expression matching exactly this character and nothing else.

2. If r1 and r2 are regular expressions, then r1 · r2 is a regular expression. If r1 matches the string
s1 and r2 matches the string s2, then r1 · r2 matches the string s1s2, where s1s2 is understood
as the concatenation of s1 and s2.

3. If r1 and r2 are regular expressions, then r1 | r2 is a regular expression. The regular expression
r1 | r2 matches any string that is matched by either r1 or r2.

4. If r is a regular expression, then r∗ is a regular expression. This regular expression matches the
empty string and, furthermore, matches any string s that can be decomposed as

s = t1t2 · · · tn
where each of the substrings ti is matched by the regular expression r.

For the purpose of the program we are going to develop, composite regular expressions will be repre-
sented by terms. In detail, we have the following representation of regular expressions.

1. A regular expression r of the form r = c where c ∈ Σ is represented the character c.

2. A regular expression r of the form r = r1 · r2 is represented by the term

@Cat(r1, r2)

where r1 is the representation of r1 and r2 is the representation of r2. The name Cat reminds
us of concatenation.

3. A regular expression r of the form r = r1 | r2 is represented by the term

@Or(r1, r2)

where r1 is the representation of r1 and r2 is the representation of r2.

4. A regular expression r of the form r = r∗0 is represented by the term

@Star(r0)

where r0 is the representation of r0.

The Thompson construction of a non-deterministic finite state machine from a given regular expression
r works by induction on the structure of r. Given a regular expression r, we define a non-deterministic
finite state machine A(r) by induction on r. For the purpose of this section, a finite state machine A
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is a 4-tuple

A = 〈Q, δ, q0, qf 〉
where Q is the set of states, δ is the transition function and maps a pair 〈q, c〉 where q is a state and c
is a character to a set of new states. If we denote the set of characters as Σ, then the function δ has
the signature

δ : Q× Σ → 2Q.

The understanding of δ(q, c) is that if the finite state machine A is in the state q and reads the character
c, then it can switch to any of the states in δ(q, c). Finally, q0 is the start state and qf is the accepting
state. In the following, we abbreviate the notion of a finite state machine as fsm.

1. For a letter c the fsm A(c) is defined as

A(c) = 〈{q0, q1}, {〈q0, c〉 7→ q1}, q0, q1〉.
The set of states is given as {q0, q1}, on reading the character c the transition function maps
the state q0 to q1, the start state is q0 and the accepting state is q1. This fsm is shown in Figure
5.5. The start state q0 is marked by an incoming arrow, while the accepting state q1 is marked
by a doubled boundary.

q0 q1
c

Figure 5.5: The finite state machine A(c).

1 genCharNFA := procedure(c, rw ctr) {

2 q0 := getNewState(ctr);

3 q1 := getNewState(ctr);

4 delta := closure(q, d) {

5 if (q == q0 && d == c) {

6 return { q1 };

7 } else {

8 return {};

9 }

10 };

11 return [ {q0, q1}, delta, q0, q1 ];

12 };

Figure 5.6: Generating the fsm to recognize the character c.

Figure 5.6 shows the function genCharNFA that takes a character c and generates the fsm A(c).
The code corresponds to the diagram shown in Figure 5.5.

(a) We generate two new states q0 and q1 using the function getNewState. The implementa-
tion of this function is shown in Figure 5.13 on page 73. Every time this function is called,
it creates a new unique string that is interpreted as a state.

(b) The transition function checks whether the state q given as input is equal to the start state
q0 and whether, furthermore, the character d that is read is identical to the character c. If
this is the case, the fsm switches into the state q1 and therefore the set of possible next
states is the singleton set {q1}. Since this is the only transition of the fsm, in all other
cases the set of next states is empty.
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2. In order to compute the fsm A(r1 · r2) we have to assume that the sets of states of the fsms
A(r1) and A(r2) are disjoint. This is true since the function getNewState does create a new
state every time it is called. Let us assume that the fsms A(r1) and A(r2) have the following
form:

(a) A(r1) = 〈Q1, δ1, q1, q2〉,
(b) A(r2) = 〈Q2, δ2, q3, q4〉, where

(c) Q1 ∩Q2 = {}.

Using A(r1) and A(r2) we construct the fsm A(r1 · r2) as
〈Q1 ∪Q2,Σ, {〈q2, ε〉 7→ q3} ∪ δ1 ∪ δ2, q0, q4〉

The notation {〈q2, ε〉 7→ q3} ∪ δ1 ∪ δ2 specifies that the transition function δ contains all the
transitions from the transition functions δ1 and δ2. Additionally, there is an ε-transition from q2
to q3. Formally, the transition function could also be specified as follows:

δ(q, c) :=















{q3} if q = q2 and c = ε,

δ1(q, c) if q ∈ Q1 and 〈q, c〉 6= 〈q2, ε〉,
δ2(q, c) if q ∈ Q2.

Figure 5.7 depicts the fsm A(r1 · r2).

A(r1) A(r2)

q1 q2 q3
ε

q4

Figure 5.7: The finite state machine A(r1 · r2).

Figure 5.8 on page 71 shows the implementation of the function catenate. This function takes
two finite state machines f1 and f2 and concatenates them in the way depicted in Figure 5.7.
This function can be used to compute A(r1 · r2), since we have

A(r1 · r2) = catenate
(

A(r1), A(r2)
)

.

3. In order to define the fsm A(r1 + r2) we assume that we have already computed the fsms A(r1)
and A(r2) and that their sets of states are disjoint. If A(r1) and A(r2) are given as

A(r1) = 〈Q1, δ1, q1, q3〉 and A(r2) = 〈Q2, δ2, q2, q4〉
then the fsm A(r1 + r2) can be defined as

〈{q0, q5} ∪Q1 ∪Q2, {〈q0, ε〉 7→ q1, 〈q0, ε〉 7→ q2, 〈q3, ε〉 7→ q5, 〈q4, ε〉 7→ q5} ∪ δ1 ∪ δ2, q0, q5〉.
This finite state machine is shown in Figure 5.9. In addition to the states of A(r1) and A(r2)
there are two additional states:

(a) q0 is the start state of the fsm A(r1 + r2),

(b) q5 is the accepting state of A(r1 + r2).

In addition to the transitions of the fsms A(r1) and A(r2) we have four ε-transitions.

(a) There are ε-transitions from q0 to the states q1 and q2.

(b) There are ε-transitions from q3 and q4 to q5.
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1 catenate := procedure(f1, f2) {

2 [m1, delta1, q1, q2] := f1;

3 [m2, delta2, q3, q4] := f2;

4 delta := closure(q, c) {

5 if (q == q2 && c == "") {

6 return { q3 };

7 } else if (q in m1) {

8 return delta1(q, c);

9 } else if (q in m2) {

10 return delta2(q, c);

11 } else {

12 return {};

13 }

14 };

15 return [ m1 + m2, delta, q1, q4 ];

16 };

Figure 5.8: The function to compute A(r1 · r2)

A(r1)

A(r2)
q0

q1
ε

q2

ε

q3

q4

q5

ε

ε

Figure 5.9: The finite state machine A(r1 + r2).

Figure 5.10 on page 72 shows the implementation of the function disjunction. This function
takes two finite state machines f1 and f2 and combines them in the way depicted in Figure 5.9.
This function can be used to compute A(r1 + r2), since we have

A(r1 + r2) = disjunction
(

A(r1), A(r2)
)

.

4. In order to define A(r∗) we assume A(r) is given as

A(r) = 〈Q, δ, q1, q2〉.
Then A(r∗) is defined as

〈{q0, q3} ∪Q, {〈q0, ε〉 7→ q1, 〈q2, ε〉 7→ q1, 〈q0, ε〉 7→ q3, 〈q2, ε〉 7→ q3} ∪ δ, q0, q3〉.

Figure 5.11 depicts the fsm A(r∗). In addition to the states of the fsm A(r) there are two new
states:

(a) q0 is the start state of A(r∗),

(b) q3 is the accepting state of A(r∗).

Furthermore, there are four additional ε-transitions.

(a) There are two ε-transitions form the start state q0 to q1 and q3.

(b) From q2 there is an ε-transition back to q1 and also an ε-transition to q3.
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1 disjunction := procedure(f1, f2, rw ctr) {

2 [m1, delta1, q1, q3] := f1;

3 [m2, delta2, q2, q4] := f2;

4 q0 := getNewState(ctr);

5 q5 := getNewState(ctr);

6 delta := closure(q, c) {

7 if (q == q0 && c == "") {

8 return { q1, q2 };

9 } else if (q in { q3, q4 } && c == "") {

10 return { q5 };

11 } else if (q in m1) {

12 return delta1(q, c);

13 } else if (q in m2) {

14 return delta2(q, c);

15 } else {

16 return {};

17 }

18 };

19 return [ { q0, q5 } + m1 + m2, delta, q0, q5 ];

20 };

Figure 5.10: The function to compute A(r1 + r2).

A(r1)

q0

q1ε
q3ε

q2
ε

ε

Figure 5.11: The finite state machine A(r∗).

Figure 5.12 on page 73 shows the implementation of the function kleene. This function takes
a finite state machine f and transforms it in the way depicted in Figure 5.11. This function can
be used to compute A(r∗), since we have

A(r∗) = kleene
(

A(r)
)

.

Figure 5.13 shows the procedure getNewState that is used to create new states. Since the pa-
rameter ctr of this procedure is preceded by the keyword rw, this parameter has a call-by-name
semantics and therefore the procedure getNewState is able to increment this variable. Hence, the
states generated by getNewState are unique.

Finally, Figure 5.14 shows how to generate a finite state machine from a given regular expression
r. The function regexp2NFA(r) is defined by recursion on r:

1. If r is a single character c, then the fsm A(c) is computed using the function genCharNFA(c).

2. If r = r1 · r2, the function regexp2NFA recursively computes finite state machines A(r1) and
A(r2). These fsms are then combined using the function catenate

(

A(r1), A(r2)
)

.

3. If r = r1 + r2, the function regexp2NFA recursively computes finite state machines A(r1) and
A(r2). These fsms are then combined using the function disjunction

(

A(r1), A(r2)
)

.

4. If r = r∗0 , the function regexp2NFA recursively computes the finite state machines A(r0). This
fsm is then transformed using the function kleene

(

A(r0)
)

.
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1 kleene := procedure(f, rw ctr) {

2 [m, delta0, q1, q2] := f;

3 q0 := getNewState(ctr);

4 q3 := getNewState(ctr);

5 delta := closure(q, c) {

6 if (q == q0 && c == "") {

7 return { q1, q3 };

8 } else if (q == q2 && c == "") {

9 return { q1, q3 };

10 } else if (q in m) {

11 return delta0(q, c);

12 } else {

13 return {};

14 }

15 };

16 return [ { q0, q3 } + m, delta, q0, q3 ];

17 };

Figure 5.12: The function to compute A(r∗).

1 getNewState := procedure(rw ctr) {

2 ctr += 1;

3 return "q" + ctr;

4 };

Figure 5.13: A function to generate unique states.

The reader should note that we have made heavy use of closures to implement the functions genCharNFA,
catenate, disjunction, and kleene.

1 regexp2NFA := procedure(r, rw ctr) {

2 match (r) {

3 case c | isString(c):

4 return genCharNFA(c, ctr);

5 case @Cat(r1, r2):

6 return catenate(regexp2NFA(r1, ctr), regexp2NFA(r2, ctr));

7 case @Or(r1, r2):

8 return disjunction(regexp2NFA(r1, ctr), regexp2NFA(r2, ctr), ctr);

9 case @Star(r0):

10 return kleene(regexp2NFA(r0, ctr), ctr);

11 }

12 };

Figure 5.14: Generating a non-deterministic fsm from a regular expression.

Let us take a step back and consider what we have achieved so far. We have implemented a
function for converting regular expressions to non-deterministic finite state machines. It is rather
straightforward to implement a function that scans a given string using a non-deterministic finite state
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machine. If we would implement this function, we would then have implemented our own support for
regular expressions.

5.3 Decorators

The programming language Python has a nice feature called decorators that makes it easy to modify
existing functions. For example, a trace decorator is a function that can modify a given function f so
that every invocation of the function f and every value returned by the function f are automatically
traced. SetlX supports similar techniques as Python and, therefore, it is easy to implement deco-
rators in SetlX, too. In this section, we show how a simple albeit powerful trace decorator can be
implemented in just a few lines of SetlX code.

1 gcd := procedure(n, m) {

2 if (m == 0) {

3 return n;

4 }

5 return gcd(m, n % m);

6 };

7 myTracer := tracer();

8 gcd := myTracer.trace(gcd, "gcd");

9 n := gcd(36, 27);

10 gcd := myTracer.untrace("gcd");

Figure 5.15: Using the trace decorator.

Figure 5.16 on page 75 shows the class tracer. While classes will be discussed in full detail in
a later chapter, it is convenient to use them for this example. This class tracer implements a trace
decorator. Before we discuss the details of its implementation, lets us show how this decorator is used.
Figure 5.15 shows the implementation of the function gcd computing the greatest common divisor of
two natural numbers using the Euclidean algorithm. Suppose we want to trace every invocation of the
function gcd. We do so by first creating an object of class tracer in line 7 of Figure 5.15. Then the
line

gcd := myTracer.trace(gcd, "gcd");

activates tracing for the function gcd. Note that the first argument of the method trace is the
function we want to trace, while the second argument is the name of the function. After executing this
assignment statement, the function gcd will be traced. For example, the call gcd(36, 27) produces
the following output:

calling gcd(36, 27)

calling gcd(27, 9)

calling gcd(9, 0)

gcd(9, 0) = 9

gcd(27, 9) = 9

gcd(36, 27) = 9

~< Result: 9 >~

This shows that every time the function gcd is called, a statement of the form

calling gcd(m, n)

is printed. This is true even for the recursive invocations of gcd. Furthermore, every time the function
gcd returns a result, this is also printed together with the arguments used to compute this result.
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To stop tracing the function gcd, we simply issue the statement:

gcd := myTracer.untrace("gcd");

After this assignment, the function gcd is restored to its original state and will not print anything when
called.

1 class tracer() {

2 mStoredProcedures := {};

3

4 trace := procedure(function, functionName) {

5 mStoredProcedures[functionName] := function;

6 tracedFunction := closure(*args) {

7 argsString := join(args, ", ");

8 print("calling $functionName$($argsString$)");

9 result := function(*args);

10 print("$functionName$($argsString$) = $result$");

11 return result;

12 };

13 return tracedFunction;

14 };

15 untrace := procedure(functionName) {

16 return mStoredProcedures[functionName];

17 };

18 }

Figure 5.16: A class providing a trace decorator.

Let us proceed to discuss how the class tracer is implemented in SetlX. Figure 5.16 shows the
implementation of this class. We discuss this implementation line by line.

1. Line 2 defines the member variable mStoredProcedures. This variable will store a map that is
represented as a binary relation. The keys of this maps are procedure names, while the values
entered into this map are the procedures themselves. Initially, this map is empty. Every time a
procedure is traced, the old value of the procedure is stored in this map. This is needed in order
to implement the method untrace that restores a given procedure to its original state.

2. The workhorse of the class tracer is the method trace defined in line 4. This method takes
two arguments: The first argument is a procedure, while the second argument is the name of
the procedure. The function will return a new procedure that behaves like the given procedure
but, furthermore, traces the invocation of the original procedure as discussed previously in the
example. The procedure trace works as follows:

(a) In line 5, the old value of the procedure to be traced is saved in the dictionary

mStoredProcedures.

This value is needed to restore the procedure to its original value when we do not want to
trace the procedure any more.

(b) Next, line 6 defines a closure called tracedFunction. This is a function called with a
variable number of arguments. The reason is that we do not know how many arguments
the procedure function that is given as argument to the method trace actually takes. In
the example discussed above, we had traced the function gcd that takes two arguments.
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We could just as well have traced a procedure taking only one argument as we could have
traced a procedure taking nine arguments.

(c) In line 7 and 8, the closure tracedFunction constructs a string containing the arguments
and the name of the function and then prints this string. This tracedFunction refers to
function and functionName. As these variables are only defined in the method trace,
the function tracedFunction needs to be defined as a closure so that it can access these
variables.

(d) Line 9 is the most important line of the whole implementation: It is here that the original
procedure is called with the given arguments. Note how prefixing the list of arguments
args with the operator “*” makes it possible to call this function without knowing how
many arguments the procedure actually takes.

(e) Line 10 prints the result that has been computed.

(f) This result is then returned in line 11.

(g) Finally, the method trace returns the newly created closure. By assigning this closure to
the name of the original procedure we can thus trace this procedure.

3. As a convenience, the class tracer also provides the method untrace in line 16. This procedure
looks up the original procedure stored under the given name in the dictionary mStoredProcedures
and returns it. Hence, assigning the value returned by this procedure to the name of a procedure
stops tracing this procedure.
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Chapter 6

Exceptions and Backtracking

In the first section of this chapter we will discuss exceptions as a means to deal with error situations. The
second section will introduce a mechanism that supports backtracking . This mechanism is quite similar
to the exception handling discussed in the first subsection. Indeed, we will see that the backtracking
mechanism provided in SetlX is really just a special case of exception handling.

6.1 Exceptions

If we issue the assignment

y := x + 1;

while the variable x is undefined, SetlX reports the following error:

Error in "y := x + 1":

Error in "x + 1":

’om + 1’ is undefined.

Here, evaluation of the expression x + 1 has raised an exception as it is not possible to add a number
to the undefined value om. This exception is then propagated to the enclosing assignment statement.
SetlX offers to handle exceptions like the one described above. The mechanism is similar to the way
exceptions are treated in Java and uses the keywords “try” and “catch”. If we have a sequence of
statements stmntList and we suspect that something might go wrong with these statements, then we
can put the list of statements into a try/catch-block as follows:

try {
stmntList

} catch (e) { errorCode }
If the execution of stmntList executes without errors, then the try/catch-block does nothing besides
the execution of stmntList. However, if one of the statements in stmntList raises an exception e, then
the execution of the statements in stmntList is aborted and instead the statements in errorCode are
executed. These statements can use the variable e that contains the exception that has been raised.

Typically, exception handling is necessary when processing user input. Consider the program shown
in Figure 6.1 on page 78. The function findZero implements the bisection method which can be used
to find a zero of a function that has a sign change in a given interval. The first argument of findZero
is a function f , while the arguments a and b are the left and right boundary of the interval where the
zero of f is sought. Therefore, a has to be less than b. Finally, for the bisection algorithm implemented
in the function findZero to work, the function f needs to have a sign change in the interval [a, b],
i.e. the sign of f(a) needs to be different from the sign of f(b).
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1 findZero := procedure() {

2 try {

3 s := read("Please enter a function: ");

4 f := eval("x |-> " + s);

5 a := read("Enter left boundary: ");

6 b := read("Enter right boundary: ");

7 z := findZero(f, a, b);

8 print("zero at z = $z$");

9 } catch (e) {

10 print(e);

11 print("Please try again.\n");

12 findZero();

13 }

14 };

15 bisection := procedure(f, a, b) {

16 if (a > b) {

17 throw("Left boundary a has to be less than right boundary b!");

18 }

19 [ fa, fb ] := [ f(a), f(b) ];

20 if (fa * fb > 0) {

21 throw("Function f has to have a sign change in [a, b]!");

22 }

23 while (b - a >= 10 ** -12) {

24 c := 1/2 * (a + b);

25 fc := f(c);

26 if ((fa < 0 && fc < 0.0) || (fa >= 0 && fc >= 0)) {

27 a := c; fa := fc;

28 } else {

29 b := c; fb := fc;

30 }

31 }

32 return 1/2 * (a + b);

33 };

Figure 6.1: The bisection method for finding a zero of a function.

The function findZero asks the user to input the function f together with the left and right
boundary of the interval [a, b]. The idea is that the user inputs a term describing the function value of
f for a given value of x. For example, in order to compute the zero of the function

x 7→ x ∗ x− 2

the user has to provide the string “x*x-2” as input when prompted by the function read in line 3.
The string s that is input by the user is then converted into the string

x |-> x*x-2

in line 4 and the resulting string is then evaluated. In this way, the variable f in line 4 will be assigned
the function mapping x to x*x-2 just as if the user had written

f := x |-> x*x-2;

in the command line.
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There are a couple of things that can go wrong with the function findZero. First, the string s

that is input by the user might not be a proper function and then we would presumably get a parse
error in line 4. In this case, the function parse invoked in line 4 will raise an exception. Next, if the
user enters a string of the form

x ** y

then, since the variable y is undefined, the evaluation of the function would raise an exception when
SetlX tries to evaluate an expression of the form

x ** om.

Furthermore, either of the two conditions

a < b or f(a) ∗ f(b) ≤ 0

might be violated. In this case, we raise an exception in line 17 or line 21 of the function bisection.
This is done using the function throw. Since we don’t want to abort the program on the occurrence
of an exception, the whole block of code from line 3 up to line 8 is enclosed in a try/catch-block. In
case there is an exception, the value of this exception, which is a string containing an error message, is
caught in the variable e in line 9. To continue our program, we print the error message in line 10 and
then invoke the function findZero recursively so that the user of the program gets another chance to
enter valid input.

6.1.1 Different Kinds of Exceptions

SetlX supports two different kinds of exceptions:

1. User generated exceptions are generated by the user via a throw statement. In general, the
statement

throw(e)

raises a user generated exception with the value e. Here, e can be any value. However, typically
e will be a string.

2. Language generated exceptions are the result of error conditions arising in the program.

While all kinds of exceptions can be caught with a catch clause, most of the time it is useful to
distinguish between the different kinds of exceptions. This is supported by offering two variants of
catch:

1. catchUsr only catches user generated exceptions. For example, the statement

try { throw(1); } catchUsr(e) { print(e); }
prints the number 1, but assuming that the variable y is undefined, the statement

try { x := y + 1; } catchUsr(e) { print("caught " + e); }
will not print anything but instead this command raises an exception.

2. catchLng only catches language generated exceptions. Therefore, the statement

try { x := y + 1; } catchLng(e) { print("caught " + e); }
prints the text

caught Error: ’om + 1’ is undefined.

On the other hand, the exception thrown in the statement

try { throw(1); } catchLng(e) { print(e); }
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is a user generated exception that is not caught by catchLng. Instead, the exception is propa-
gated outside of this statement. Hence, the net effect of this statement is to raise an exception.

Being able to distinguish between user generated and language generated exceptions is quite valuable
and we strongly advocate that user generated exceptions should only be catched using a catchUsr

clause. The reason is, that a simple catch clause which the user intends to catch a user generated
exceptions might, in fact, catch other exceptions and thus mask real errors. In general, the SetlX

interpreter implements a fail fast strategy: Once an error is discovered, the execution of the program is
aborted. The interpreter does a lot of effort to detect errors as early as possible. However, this strategy
is thwarted if unrestricted catch clauses are used, because then language generated exceptions are
effectively silenced. As a result, programming mistakes might go undetected and result in bugs that
are very difficult to locate.

6.2 Backtracking

One of the distinguishing features of the programming language Prolog is the fact that Prolog supports
backtracking . However, on closer inspection of the programs found in popular text books, e.g. “The
Art of Prolog” [SS86] and “Prolog Programming for Artificial Intelligence” [Bra90], it becomes obvious
that very few programs actually make use of backtracking in its most general form. The first author
of this tutorial has developed Prolog based software in an industrial environment for more than 10
years. His personal experience suggests that Prolog programs that use backtracking in an unrestricted
fashion tend to be very hard to maintain. Therefore, it is our believe that the use of backtracking
should follow the generate and test paradigm:

1. Assume our goal is to find some x such that x is the solution of a given problem.

2. In order to find possible values for x, we invoke a generating function that provides us with
solution candidates, i.e. the generating function produces values of x that might possibly be
solutions to the given problem. However, the set of values produced by the generating function
is only a superset of the set of solutions, i.e. some of those values do not actually solve the given
problem. Although it is perfectly acceptable that most of the values generated do not solve the
problem, it is required that the generating function will never miss a solution.

3. In order to check which of the generated values are indeed solutions, these values have to be
tested. If a test fails for a given value x, the program backtracks to step 2 where the next value
to be tested is generated.

In order to support the generate and test paradigm, SetlX implements backtracking only in a very
restricted form. Thus, we avoid the pitfalls that accompany an unrestricted use of backtracking.
Backtracking is implemented via the keywords “check” and “backtrack”. A block of the form

check {
stmntList

}
is more or less1 converted into a block of the following form:

try {
stmntList

} catch (e) {
if (e != "fail") { throw(e); }

}
1 Technically, instead of the string "fail", SetlX generates a unique exception, which is referred to as a fail-exception.

This exception can only be catched using check.
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Here, stmntList might contain the keyword “backtrack”. This keyword is translated into the command
throw("fail").

In the rest of this section we show how to solve two classical logical puzzles using backtracking.
As a first example, we solve the 8 queens puzzle. We will see that this puzzle can be solved using
a straightforward recursive approach. The second example is the zebra puzzle. In order to solve this
puzzle succinctly, we need to make use of higher-order programming, i.e. we solve the problem by
writing a function that, instead of solving the problem directly, will first generate some SetlX code.
This code is then executed and thereby the problem is solved. Hence, the zebra puzzle provides the
opportunity to show of the power of the eval function provided by SetlX.

6.2.1 The 8 Queens Puzzle

The program in Figure 6.2 on page 81 solves the 8 queens puzzle. This problem asks to position 8
queens on a chessboard such that no queen can attack another queen. In chess, a queen can attack
all those positions that are either on the same row, on the same column, or on the same diagonal as
the queen. The details of the program in Figure 6.2 are as follows.

1 solve := procedure(queens, n) {

2 if (#queens == n) {

3 return queens;

4 }

5 for (x in {1..n} - {i : i in queens}) {

6 check {

7 testNext(queens, x);

8 return solve(queens + [x], n);

9 }

10 }

11 backtrack;

12 };

13 testNext := procedure(queens, x) {

14 m := #queens;

15 if (exists (i in {1..m} | i-queens[i] == m+1-x || i+queens[i] == m+1+x)) {

16 backtrack;

17 }

18 };

Figure 6.2: Solving the 8 queens puzzle using check and backtrack.

1. The procedure solve has two parameters.

(a) The first parameter queens is a list of positions of queens that have already been placed on
the board. It can be assumed that the queens already positioned in queens do not attack
each other.

Technically, queens is a list of integers. If queens[i]= k, then the queen in row i is placed
in column k. For example,

queens = [4, 8, 1, 3, 6, 2, 7, 5]

is a solution of the 8 queens puzzle. This solution is depicted in Figure 6.3 on page 82.

(b) The second parameter n is the size of the board.
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Figure 6.3: A solution of the 8 queens puzzle.

In order to solve the 8 queens puzzle, the procedure solve can be called as

solve([], 8).

Taking the parameter queens to be the empty list assumes that initially no queen has been
placed on the chess board. Therefore, the assumption that the queens already positioned in the
list queens do not attack each other is trivially satisfied.

2. In line 2 it is checked, whether the list queens already specifies the positions of n queens, that is
we check whether queens is a list of length n. If this is the case, then because of the assumption
that the queens specified in queens do not attack each other, the problem is solved and therefore
the list queens is a solution that is returned.

3. Otherwise, we find a position x for the next queen in line 5. Of course, there is no point in trying
to position the next queen into a column that has already been taken by one of the queens in
the list queens. Therefore, the number of column positions available for the next queen is given
by the set

{1 .. n} - {i : i in queens}.
Note that we had to convert the list queens into the set {i : i in queens} in order to be able
to subtract the set of columns specified in queens from the set of all possible columns.

4. Once we have decided to position the next queen in column x, we have to test whether a queen
that is put into that position can be attacked by another queen which happens to be on the
same diagonal. This test is performed in line 7 with the help of the function testNext.

5. If this test succeeds, we add a queen in position x to the list queens and recursively try to solve
the resulting instance of the problem.

6. On the other hand, if the call to testNext in line 7 fails, we have to try the remaining values
for x. The function testNext does not return a Boolean value to indicate success or failure so
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at this point you might well ask how we know that the call to testNext has failed. The answer
is that the function testNext includes a call to backtrack if it is not possible to place the
next queen in column x. Technically, calling backtrack raises an exception that is caught by
the check statement in line 6. After that, the for loop in line 5 proceeds and picks the next
candidate for x.

7. During the recursive invocation of the procedure solve in line 8, we might discover that the
list queens + [x] can not be completed into a solution of the 8 queens puzzle. In this case, it
is the function solve that backtracks in line 11. This happens when the for loop in line 5 is
exhausted and we have not found a solution. Then control reaches line 11, where the backtrack
statement signals that the list l could not be completed into a solution to the n queens puzzle.

8. The function testNext in line 13 has two parameters: The first parameter is the list of already
positioned queens while the second parameter specifies the column of the next queen. The
function checks whether the queen specified by x is on the same diagonal as any of the queens
in queens.

In order to understand the calculation in line 15 we have to realize that the Cartesian coordinates
of the queens in column x are

〈#queens+ 1, x〉.
A diagonal is specified as the equation of a line with slope either +1 or −1. The i-th queen in
queens has the coordinates

〈i, queens[i]〉.
Therefore, it is on the same ascending diagonal as the queen specified by x if we have

i-queens[i] = #queens+1-x,

while it is one the same descending diagonal if we have.

i+queens[i] = #queens+1+x.

It is easy to change the program in Figure 6.2 such that all solutions are completed. Figure 6.4 on
page 84 shows how this is done.

1. We have added a function allSolutions. This function gets the parameter n, which is the size
of the board. The function returns the set of all solutions of the n queens puzzle. To do so, it
first initializes the variable all to the empty set. The solutions are then collected in this set.

2. The new version of the function solve gets all as an additional parameter. Note that this
parameter is specified in line 2 as an rw parameter, so the value of all can actually be changed
by the procedure solve.

3. The important change in the implementation of solve is that instead of returning a solution,
a newly found solution is added to the set all in line 10. After that, the function solve

backtracks to look for more solutions. Since the function solve is recursive, this backtracking
asks the for-loop in line 13 to look for another solution.

4. Note that we have to enclose the call to solve in line 4 in a check statement. The reason is
that the function solve will never return anything. Instead, it will continue to add solutions to
the set all. If this is no longer possible, the call to solve will backtrack in line 19. The check
statement in the procedure allSolutions is meant to catch the corresponding fail-exception.

5. The implementation of the function testNext has not changed from the previous program.
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1 allSolutions := procedure(n) {

2 all := {};

3 check {

4 solve([], n, all);

5 }

6 return all;

7 };

8 solve := procedure(queens, n, rw all) {

9 if (#queens == n) {

10 all += { queens };

11 backtrack;

12 }

13 for (x in {1 .. n} - {i : i in queens}) {

14 check {

15 testNext(queens, x);

16 solve(queens + [x], n, all);

17 }

18 }

19 backtrack;

20 };

Figure 6.4: Computing all solutions of the n queens puzzle.

This program finds all 92 solutions of the 8 queens puzzle.

The keyword check can be used with an additional optional branch. In this case the complete
check block has the form

check {
stmntList

} afterBacktrack { body }
Here, body is a list of statements that is executed if there is a call to backtrack in stmntList. For
example, the code

check {

print(1);

backtrack;

print(2);

} afterBacktrack {

print(3);

}

prints the number 1 and 3.

6.2.2 The Zebra Puzzle

There are many different versions of the zebra puzzle. The version below is taken from Wikipedia.
The puzzle is the following:

1. There are five houses.

2. The Englishman lives in the red house.
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3. The Spaniard owns the dog.

4. Coffee is drunk in the green house.

5. The Ukrainian drinks tea.

6. The green house is immediately to the right of the ivory house.

7. The Old Gold smoker owns snails.

8. Kools are smoked in the yellow house.

9. Milk is drunk in the middle house.

10. The Norwegian lives in the first house.

11. The man who smokes Chesterfields lives in the house next to the man with the fox.

12. Kools are smoked in the house next to the house where the horse is kept.

13. The Lucky Strike smoker drinks orange juice.

14. The Japanese smokes Parliaments.

15. The Norwegian lives next to the blue house.

16. Who drinks water?

17. Who owns the zebra?

In order to solve the puzzle, we also have to know the following facts:

1. Each of the five houses is painted in a different color.

2. The inhabitants of the five houses are of different nationalities,

3. they own different pets,

4. they drink different beverages, and

5. they smoke different brands of cigarettes.

In order to solve this problem we use a generic approach and first implement a general function that
can be used to solve constraint satisfaction problems. Figure 6.5 on page 86 shows the implementation
of the function generateAndTest that can be used to solve a constraint satisfaction problem via
backtracking. This function is called with three arguments.

1. The first argument constraints is a list of constraints. Each of the elements in this list are, in
turn, lists of either two or three items. These lists have the form

[var, assign, condition],

where the last item condition may be missing. These items have the following interpretation.

(a) var is a string that is interpreted as the name of a variable.

(b) assign is a string that can be interpreted as a SetlX statement. Typically, this will be an
assignment statement. Another common case will the statement “skip” that does nothing.

(c) condition is a string that can be parsed as a logical expression in SetlX. If the condition
is missing it is implicitly interpreted as the trivial condition true.
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For example, the constraint “The Englishman lives in the red house.” can be modeled by the
constraint

["english", "red := english", true].

This constraint introduces the two variables “english” and “red”. Due to the assignment

“red := english”,

these two variables are required to have the same value. Since there are no further constraints,
the condition has the value true. Hence, we could also have dropped this part of the constraint
and thereby shorten it to

["english", "red := english"].

2. values is a list of the possible values for those variables that are introduced via the first argument
constraints.

3. result is a string that, when evaluated as an expression, returns the solution of the constraint
satisfaction problem.

1 generateAndTest := procedure(constraints, values, result) {

2 stmnt := "procedure() {";

3 n := #constraints;

4 for (i in [1..n]) {

5 if (#constraints[i] == 3) {

6 [var, assign, condition] := constraints[i];

7 } else {

8 [var, assign] := constraints[i];

9 condition := true;

10 }

11 stmnt += "for ($var$ in $values$) {";

12 if (assign != "skip") {

13 stmnt += assign + ";";

14 }

15 stmnt += "check {";

16 if (condition != true) {

17 stmnt += "if (!($condition$)) { backtrack; }";

18 }

19 }

20 stmnt += "return $result$;";

21 stmnt += "}" * (2*n+1);

22 return eval(stmnt+"()");

23 };

Figure 6.5: The function generateAndTest.

It is easiest to understand how the arguments of generateAndTest are used by inspecting an
example. Suppose we are looking for natural numbers a, b, c ∈ {1, · · · , 5} such that both

b = a+ 1 and a2 + b2 = c2

holds. Then we can define the parameters of the function generateAndTest as follows:

1. constraints := [ ["a", "b := a + 1", "b <= 5"],

["c", "skip", "a**2 + b**2 == c**2"] ];
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2. values := {1..5};

3. result := "[a, b, c]";

Calling generateAndTest with these arguments will return the value [3,4,5]. It is easy to check
that the assignments a := 3, b := 4, and c := 5 solve the given problem.

In order to understand the mechanics of generateAndTest we have to know that this function
works in two steps.

1. In the first step, the function generates a string that can be parsed and evaluated as a SetlX

procedure. This string is called stmnt in Figure 6.5 on page 86. Figure 6.6 on page 87. shows
how this string looks for the example discussed above. From the example we can see that every
constraint is translated into a for loop. This for loop iterates over all elements of the argument
values. Inside this loop we first have the assignment assign, which is then followed by the
condition. Note, however, that this condition is encapsulated in a check statement. If the
condition is not satisfies, we have to backtrack so that the for loop can try the next value for
the given variable. We can also see that the second contsraint is nested in the first constraint.

2. In the second step, the generated procedure is evaluated. This happens through the call of the
function eval in line 22 of Figure 6.5.

The kind of programming that is exhibited here is often called higher-order programming .

1 procedure() {

2 for (a in [1, 2, 3, 4, 5]) {

3 b := a + 1;

4 check {

5 if (!(b <= 5)) { backtrack; }

6 for (c in [1, 2, 3, 4, 5]) {

7 check {

8 if (!(a**2 + b**2 == c**2)) { backtrack; }

9 return [a,b,c];

10 }

11 }

12 }

13 }

14 }

Figure 6.6: The statement generated by generateAndTest.

We proceed to discuss the details of the generation of the string stmnt that is later evaluated.

1. The string stmnt that is to contain the definition of the generated code is created in line 2.

2. In line 3 we define n to be the number of elements of the list constraints.

3. Therefore, the for loop in line 4 effectively iterates over all constraints in the list constraints.

4. Since there maybe constraints where the condition is missing, the if statement in line 5 checks
whether the ith constraint is a list of two or three elements. Then, the variables var, assign,
and condition are set to the first, second, and third element of the ith constraint. In case there
are only two elements, the variable condition is set to the trivial test true.

5. Next, we generate the for loop that tries the different elements of values for the variable var
of the ith constraint.
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6. If there is are real assignment, i.e. if assign is different from the string “skip”, this assignment
is the first statement in the for loop that is generated.

7. Finally, if the test condition is non-trivial, an if statement is added that checks if condition
is satisfies and that backtracks if the condition is violated.

8. Since the generated procedure takes no arguments, we can evaluate it by appending the string
“()” to the string stmnt and then calling the function eval on the resulting string.

Finally, we are ready to solve the zebra puzzle. Figure 6.7 on page 89 shows how to set the
parameters of the function generateAndTest to solve the zebra puzzle. The idea is to model the
colors of the houses, the nationalities of their inhabitants, the beverages, the cigarette brand, and the
pets by numbers from the set {1, 2, 3, 4, 5}. For example, if the variable “red´´ has the value 3, then
this is interpreted as the fact that the third house is red. Let us discuss the details of this program line
by line.

1. In line 1 we define the auxiliary function nextTo. This function checks whether the houses given
to it as arguments are next to each other. Now a is next to b if either a is immediately to the
left of b or if a is immediately to the right of b. In the first case we have that b = a+ 1, in the
second case we have a = b+ 1.

2. The function distinct, which is given in line 2 checks whether the five arguments given to it
are all distinct. This is the case if and only if the set {a, b, c, d, e} contains exactly five elements.

3. Since we model the houses by the number from 1 to 5, the set of possible values for all variables
occurring in the zebra puzzle is the set {1, 2, 3, 4, 5}. This explains line 3.

4. Next, the different statements of the zebra puzzle are translated into a list of constraints. For
example, the constraint that the Englishman lives in the red house is translated into the list

["english", "red := english"]

This constraint introduces the variable “english” and furthermore guarantees that the variable
“red” has the same value as the variable “english”.

As another example, let us explore how the statement

“Kools are smoked in the house next to the house where the horse is kept.”

is translated into a constraint in line 26. Since the variable “kools” has already been introduced
in line 18, we only need to introduce the variable “horse” to model this statement. The fact
that the horse is in the house next to the house where Kools are smoked is specified via the
condition

nextTo(horse, kools).

5. Some of the constraints have a condition that uses the function distinct. Let us explore the
use of this function for the nationalities. Line 33 introduces the variable “japanese”. Since
this is the last variable that introduces a nationality, we can now evaluate the condition that the
nationalities are all different via the use of the function distinct. Since the constraint in line
33 also introduces the variable “parliaments”, which is the last of the cigarette brands, we also
have attached the condition that all cigarette brands are different,

The general idea is to attach a condition as soon as all variables mentioned in this condition
have been introduced and hence are defined. As another example, line 40 introduces the variable
“water”. Since this is the last of the beverages, the condition

"distinct(water, tea, milk, orange, coffee)"

is attached to the constraint introducing the variable “water”.
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1 nextTo := procedure(a, b) { return b == a+1 || a == b+1; };

2 distinct := procedure(a, b, c, d, e) { return #{a, b, c, d, e} == 5; };

3 values := [1..5]; // 1. There are five houses

4 constr :=

5 [ // 2. The Englishman lives in the red house.

6 ["english", "red := english"],

7 // 3. The Spaniard owns the dog.

8 ["spaniard", "dog := spaniard"],

9 // 4. Coffee is drunk in the green house.

10 ["coffee", "green := coffee"],

11 // 5. The Ukrainian drinks tea.

12 ["ukrainian", "tea := ukrainian"],

13 // 6. The green house is immediately to the right of the ivory house.

14 ["ivory", "skip", "green == ivory + 1"],

15 // 7. The Old Gold smoker owns snails.

16 ["oldGold", "snails := oldGold"],

17 // 8. Kools are smoked in the yellow house.

18 ["kools", "yellow := kools"],

19 // 9. Milk is drunk in the middle house.

20 ["milk", "skip", "milk == 3"],

21 // 10. The Norwegian lives in the first house.

22 ["norwegian", "skip", "norwegian == 1"],

23 // 11. Chesterfields are smoked next to the fox.

24 ["chesterfields", "skip"],

25 ["fox", "skip", "nextTo(chesterfields, fox)"],

26 // 12. Kools are smoked in the house next to the horse.

27 ["horse", "skip", "nextTo(horse, kools)"],

28 ["zebra", "skip", "distinct(fox, horse, snails, dog, zebra)"],

29 // 13. The Lucky Strike smoker drinks orange juice.

30 ["luckies", "orange := luckies"],

31 ["water", "skip", "distinct(water, tea, milk, orange, coffee)"],

32 // 14. The Japanese smokes Parliaments.

33 ["japanese", "parliaments := japanese",

34 "distinct(norwegian, ukrainian, english, spaniard, japanese) &&

35 distinct(kools, chesterfields, oldGold, luckies, parliaments)"],

36 // 15. The Norwegian lives next to the blue house

37 ["blue", "skip",

38 "nextTo(norwegian, blue) && distinct(yellow, blue, red, ivory, green)"],

39 // 16. Who drinks water?

40 ["water", "skip", "distinct(water, tea, milk, orange, coffee)"],

41 // 17. Who owns the zebra?

42 ["zebra", "skip", "distinct(fox, horse, snails, dog, zebra)"]

43 ];

44 result := "[zebra, water]";

45 [zebra, water] := generateAndTest(constr, values, result);

Figure 6.7: Coding the zebra problem.

6. Since we are only interested in the house where the zebra lives and the house where the inhabitant
drinks water, the variable result is defined as the string
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"[zebra, water]"

in line 44.

7. Finally, line 45 calls the function generateAndTest to solve the puzzle.

When the program runs we find out that the zebra is in house number 5 while the inhabitant of the
first house drinks water.

— 90 —



Chapter 7

Vectors and Matrices

Certain applications, for example data mining and machine learning, require an efficient support of
both vectors and matrices. Although vectors and matrices could easily be implemented in SetlX,
this would not be very efficient because of the overhead of the interpreter loop. Therefore, SetlX
supports both vectors and matrices natively. This support is based on the Java library Jama. This library
is the result of a joint effort of Mathworks and the National Institute of Standards and Technology.
Jama has been integrated into SetlX by Patrick Robinson. This library provides the basic means for
computations involving matrices and vectors. In the following exposition we assume that the reader
has some familiarity with linear algebra.

7.1 Vectors

SetlX supports real valued vectors of arbitrary dimensions. Conceptually, a vector can be viewed
as a list of floating point numbers. A vector is constructed from a list of numbers via the function
la vector as follows:

v := la vector([1/2, 1/4, 1/5]);

When executed, this statement yields the result

<<0.5 0.25 0.2>>.

This result shows that the fractions in the argument list have been converted to floating point numbers.
Conceptually, the vector v is a column vector. Therefore, mathematically v would be written as





0.5
0.25
0.2



.

Instead of using the function la vector, we could also have used the command

v := <<1/2 1/4 1/5>>;

to define the vector v. This shows that the operators “<<” and “>>” can be used to define a vector.
Note that the components of a vector are not separated by the character “,” but rather are separated
by white space. Furthermore, at the moment the syntax that uses the operators “<<” and “>>” only
works with numbers, it does not work with arbitrary expressions!

SetlX support the basic arithmetic operations that are defined for vectors. If a and b are two
vectors, then

a + b

computes the sum of a and b, while
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a - b

computes their difference. Concretely, if we have

a = <<a1 · · · an>> and b = <<b1 · · · bn>>,

then “a+b” and “a-b” are defined componentwise:

a + b := <<(a1+b1) · · · (an+bn)>> and a - b := <<(a1-b1) · · · (an-bn)>>.

For example, if we define

a := <<1 2 3>>; b := <<4 5 6>>;

then the expressions “a + b” and “a - b” yield the results

<<5.0 7.0 9.0>> and <<-3.0 -3.0 -3.0>>,

respectively. Additionally, the shortcut assignment operators “+=” and “-=” are available for vectors.
They work as expected. Note that for the expressions “a + b” and “a - b” to be defined, a and b

have to have the same number of elements.

Vectors support scalar multiplication. If α is a real number and

v = <<v1 · · · an>>

is an n-dimensional number, then the scalar products α * v and v * α are both defined as the vector

<<(α * v1) · · · (α * vn)>>.

For example, if a is defined as above, then the expression

1/2 * a

yields the vector

<<0.5 1.0 1.5>>.

It does not matter whether we multiply the scalar from the left or from the right, so the expression

a * (1/2)

yields the same result. We could also have written the previous expression as

a / 2.

In general, if x is a vector and α is a real number, then the expression

x / α is equivalent to x * (1/α),

However, an expression of the form

α / x

is not defined if x is a vector.

If v is a vector and n is a number, then the assignment statement

v *= n;

is equivalent to the statement

v = v * n;

For two n-dimensional vectors

~x =







x1

...
xn






and ~y =







y1
...
yn






,
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the dot product, which is also known as the scalar product, is defined as

~x · ~y :=
n
∑

i=1

xi · yi.

Students often confuse scalar multiplication and the scalar product. Therefore, we have decided to use
the same operator for both products: If a and b are two vectors of the same dimension, the expression

a * b

yields their scalar product. For example, using the definition of a and b given above, the expression
“a * b” yields the result 32 since

1 · 4 + 2 · 5 + 3 · 6 = 32.

Finally, SetlX supports the cross product. For two three-dimensional vectors

~x =





x1

x2

x3



 and ~y =





y1
y2
y3



 ,

the cross product ~x× ~y is defined as

~x =





x1

x2

x3



×





y1
y2
y3



 =





x2 · y3 − x3 · y2
x3 · y1 − x1 · y3
x1 · y2 − x2 · y1



.

If a and b are both 3-dimensional vectors, then the expression

a >< b

computes the cross product of a and b. For example, if a and b are the vectors defined at the beginning
of this section, then the expression

a >< b

yields the result

<<-3.0 6.0 -3.0>>

since we have




1
2
3



×





4
5
6



 =





2 · 6− 3 · 5
3 · 4− 6 · 1
1 · 5− 2 · 4



 =





−3
6

−3



.

Note that the cross product of two vectors is only defined iff both a and b are three-dimensional.
There are generalisations of the cross product for n-dimensional vectors. However, in that case the
cross product is no longer a binary operator but rather takes n− 1 arguments. These generalisations
are not supported in SetlX.

Vectors provide the same access operations as list. Therefore, to extract the i-th component of a
vector v we can use the expression “v[i]”. Furthermore, the operator “#” returns the dimension of a
given vector. Therefore, given the vector a defined above, the expression #a returns the value 3.

7.2 Matrices

SetlX supports real valued matrices. The function la matrix can be used to construct a matrix
from a list of list of numbers. For example, the assignment

A := la matrix([[1,2],[3,4]]);

constructs a matrix that can be written as
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(

1 2
3 4

)

.

We can see that the inner lists used as an argument to the function la matrix correspond to the rows
of the resulting matrix. In SetlX, the matrix is printed as

<< <<1.0 2.0>> <<3.0 4.0>> >>.

Note that a matrix is written as a list of vectors where instead of the square brackets “[” and “]” the
tokens “<<” and “>>” are used as opening and closing delimiters. However, whereas the elements of a
list are separated by commas, the row vectors making up a matrix are separated by white space. Instead
of using the function la matrix we could have defined the matrix A using the following command:

A := << <<1.0 2.0>> <<3.0 4.0>> >>;

The function la matrix can also be called with a single vector as its argument. If v is an n-dimensional
vector, then

la matrix(v)

interprets this vector as a column vector and turns it into an n× 1 matrix. For example, the statement

A := la matrix(<<1 2 3>>);

yields the result

<< <<1.0>> <<2.0>> <<3.0>> >>.

This result shows that A is a matrix that consists of three rows that are themselves vectors of length 1.

Similar to vectors, matrices can be added and subtracted using the operators “+” and “-”. If we
define

A := << <<1 2>> <<3 4>> >>; and B := << <<5 6>> <<7 8>> >>;

then the expressions “A + B” and “A - B” work componentwise and yield the results

<< <<6.0 8.0>> <<10.0 12.0>> >> and << <<-4.0 -4.0>> <<-4.0 -4.0>> >>.

In addition to “+” and “-”, the assignment operators “+=” and “-=” are supported for matrices and
work as expected.

Furthermore, matrices support scalar multiplication in the same way as vectors. For example, if the
matrix A is defined as above, then the expressions “2 * A” and “A * 2” both yield the result

<< <<2.0 4.0>> <<6.0 8.0>> >>.

Next, SetlX supports matrix multiplication. If

A = (ai,j) 1≤i≤m

1≤j≤n

is an m× n matrix

and
B = (bj,l) 1≤j≤n

1≤l≤k

is an n× k matrix,

then the matrix product A * B is defined as the matrix
( n
∑

j=1

ai,j · bj,l
)

1≤i≤n

1≤l≤k

.

For example, given the definitions of A and B shown above, the expression “A * B” yields the result

<< <<19.0 22.0>> <<43.0 50.0>> >>.

Furthermore, if A is an m× n matrix and v is an n dimensional vector, then the expression

A * v

is computed as a matrix multiplication, where v is interpreted as an n × 1 matrix. In this case, the
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resultingm×1 matrix is then automatically converted back into an m dimensional vector. For example,
if we define the matrix A as

A := << <<1 2>> <<3 4>> >>;

and the vector x is defined as

x := <<5 6>>;

then evaluating the product A * x yields the result

<<17.0 39.0>>

since we have

1 · 5 + 2 · 6 = 17 and 3 · 5 + 4 · 6 = 39.

In addition to matrix multiplication, SetlX also support exponentiation of a square matrix by an
integer number. For example,

A ** 2;

returns the square of A, while

A ** -1

return the inverse of a matrix, provided the matrix is not singular. If the matrix A is singular, evaluation
of the expression A ** n raises an exception if the exponent n is negative.

Matrices can be transposed via the postfix operator “!”. For example, using the definition of the
matrix A shown above, the expression “A!” yields

<< <<1.0 3.0>> <<2.0 4.0>> >>.

If A is an m×n matrix, the expression “#A” yields the dimension m. In order to compute the dimension
n, we can use the expression

#A[1].

The reason is that A[1] returns the first row of the matrix A as a list and the length of this list is
the dimension n. In order to access the element in row i and column j of matrix A we can use the
expression

A[i][j].

7.3 Numerical Methods for Matrices and Vectors

In this section we will discuss the numerical methods that are provided. These methods are inherited
from Jama, which is a Java matrix package. The names of all methods inherited from Jama start with
“la ”. This is short for linear algebra.

7.3.1 Computing the Determinant

If A is a square matrix, the expression

la det(A)

computes the determinant of a. For example, if we define

A := << <<1 2>> <<3 4>> >>;

then the expression “la det(A)” yields the result −2. The determinant can be used to check whether
a matrix is invertible as a matrix is invertible if and only if the determinant is different from 0. However,
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note that due to rounding errors the result of the expression “la det(A)” might be a small non-zero
number even if the matrix A really is singular.

7.3.2 Solving a System of Linear Equations

A system of linear equations of the form

A · x = b

where A is a square matrix n × n matrix and b is an n-dimensional vector can be solved using the
expression

la solve(A, b).

For example, to solve the system of equations

1 · x+ 2 · y = 5

3 · x+ 4 · y = 6

we define

A := << <<1 2>> <<3 4>> >>; and b := <<5 6>>;

Then, the solution is computed via the expression

la solve(A, b).

Note that this expression throws an exception if the given system of equations is not solvable.

Note that it is also posible to solve a system of equations that is overdetermined . For example,
assume that the system of equations is given as

1 · x+ 2 · y = 1

2 · x+ 3 · y = 2

3 · x+ 4 · y = 3

In order to compute the solution ~x that minimizes the error ‖a · ~x−~b‖2 we can define A and b via

A := << <<1 2>> <<2 3>> <<3 4>> >>; and b := <<1 2 3>>;

and then call the function la solve as

la solve(A, b);

In this case, la solve computes the result

<<0.9999999999999982 1.4430967688835178E-15>>

which is pretty close to the exact result

(

1
0

)

.

When solving a system of linear equations, care has to be taken that the solution is well defined. To
this end, SetlX provides the function la cond that computes the condition number of a given matrix.
Let us describe the problem via an example borrowed from

http://nm.mathforcollege.com/mws/gen/04sle/mws gen sle spe adequacy.pdf.

Assume the matrix A and the vector ~b are defined as

A :=

(

1.000 2.000
2.000 3.999

)

and ~b :=

(

4.000
7.999

)

.

It can easily be verified that the solution ~x to the system of equations

~b = A · ~x
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is given as

~x =

(

2
1

)

.

However, let us assume that the vector ~b is distorted into the vector ~c that is given as

~c :=

(

4.001
7.998

)

.

If we solve the system

~c = A · ~x,
the solution for ~x becomes

~x =

(

−3.999
4.000

)

.

We see that a tiny change in the right hand side of the system of equations has caused a big change in
the solution ~x. The reason is that the matrix A is ill-conditioned. We can verify this using the function
la cond: The expression

la cond(<< <<1.000 2.000>> <<2.000 3.999>> >>);

yields the result

24992.000959995028.

This shows that small errors in the right hand side of a system of linear equations involving the matrix
A are multiplied by a factor of nearly 25 000. Our recommendation is that if you ever have to solve a
system of equations, you should first check whether the system is well-conditioned by computing the
condition number of the matrix associated with the system. This condition number tells us by how
much an error in the right hand side of the system of equations is magnified when we compute the
solution. In particular, if the condition number is so big that it will magnify known uncertainties in the
right hand side of the equations to an extend that the result is meaningless, then it is not possible to
solve the given system of equations in a meaningful way.

7.3.3 The Singular Value Decomposition and the Pseudo-Inverse

The function la svd can be used to compute the singular value decomposition of a given matrix A.
For a given m× n matrix A, the expression

la svd(A)

returns a list of the form

[U, S, V]

where U is an orthogonal m×m matrix, S is an m× n diagonal matrix, and V is an n× n orthogonal
matrix such that

A = U · S · V T,

where V T denotes the transpose of the matrix V . In practice, the singular value decomposition is often
used to compute the pseudo-inverse of a singular matrix. However, this can be done directly as for a
matrix A the call

la pseudoInverse(A);

computes the pseudo-inverse of A.

— 97 —

http://en.wikipedia.org/wiki/Singular_value_decomposition
http://en.wikipedia.org/wiki/Orthogonal_matrix
http://en.wikipedia.org/wiki/Diagonal_matrix
http://en.wikipedia.org/wiki/Moore-Penrose_pseudoinverse


7.3. Numerical Methods for Matrices and Vectors Chapter 7. Vectors and Matrices

7.3.4 Eigenvalues and Eigenvectors

In order to compute the eigenvalues and eigenvectors of a square matrix, SetlX provides the functions

la eigenValues and la eigenVectors.

Both of these function take a single argument A, where A must be a square matrix. The function
la eigenValues returns a list of the eigenvalues of A. The function call la eigenVectors(a) returns
a list of the eigenvectors of the matrix A. For example, in order to compute the eigenvalues and
eigenvectors of the matrix

A :=

(

1 2
2 3

)

we can execute the following commands:

1 A := << <<1 2>> <<2 3>> >>;

2 [l1, l2] := la_eigenValues(a);

3 [x1, x2] := la_eigenVectors(a);

Then, the eigenvalues will be computed as

l1 = -0.23606797749978958 and l2 = 4.23606797749979

In this case, the exact values of these eigenvalues are

l1 = 2−
√
5 and l2 = 2 +

√
5.

The eigenvectors are computed as

x1 = <<-0.8506508083520399 0.5257311121191336>> and
x2 = <<0.5257311121191336 0.8506508083520399>>.

The eigenvectors computed are normalized, that is the length of these vectors is 1. Furthermore, as
the matrix A happens to be symmetric, i.e. we have A = A!, the eigenvectors are orthogonal to each
other.

Observe that not every square n× n matrix is diagonalizable and hence has n different eigenvec-
tors. In case the matrix is not diagonalizable in the real numbers, the functions la eigenValues and
la eigenVectors both throw an exception. Note, however, that every symmetric matrix is diagonal-
izable. Therefore, if the matrix A is symmetric, neither of the two calls

la eigenValues(A) or la eigenVectors(A)

will throw an exception.
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Chapter 8

Statistical Distributions

In recent years, data mining has become ever more important. As data mining is closely related to
statistics, SetlX provides several statistical distributions. This chapter gives an overview over all
statistical distributions that are supported.

8.1 Beta Distribution

The beta distribution has two parameters α > 0 and β > 0 and is defined on the interval (0, 1). The
probability density function of the beta distribution is defined as

f(x) :=
xα−1 · (1− x)β−1

B(α, β)
.

Here, B denotes the beta function that is used to ensure that the total probability integrates to 1. The
beta function is defined as

B(α, β) :=
Γ(α) · Γ(β)
Γ(α+ β)

.

Here Γ denotes the gamma function. This function is defined as

Γ(x) :=

∞
∫

0

tx−1 · e−t dt.

The probability density function of the beta distribution can be computed in SetlX via the expression

stat beta(x, alpha, beta).

As a convenience, it can be plotted on a previously created canvas1 via the expression

stat beta plot(canvas, alpha, beta).

The cumulative distribution function of the beta distribution is given as

F (x) =
B(x, α, β)

B(α, β)
.

Here, B(x, α, β) is the incomplete beta function which is defined as

B(x, α, β) :=

x
∫

0

tα−1 · (1− t)β−1 dt,

1 A canvas is created via the command “canvas := plot createCanvas(name);”. Here name is a string that serves

as the name of the canvas. Plotting is discussed in more detail in the following chapter.
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while B(α, β) denotes the beta function defined above. The cumulative distribution function of the
beta distribution is computed via the expression

stat betaCDF(x, alpha, beta).

As a convenience, it can plotted on a given canvas via the command

stat betaCDF plot(canvas, alpha, beta).

8.2 Cauchy Distribution

The Cauchy distribution has a location parameter t and a scale parameter s where s > 0. The
probability density function of the Cauchy distribution is defined as

f(x) :=
1

π
· s

s2 + (x− t)2
for all x ∈ R.

The probability density function of the Cauchy distribution is computed in SetlX via the expression

stat cauchy(x, t, s)

As a convenience, it can be plotted on a given canvas via the command

stat cauchy plot(canvas, t, s).

The cumulative distribution function of the Cauchy distribution is defined as

F (x) :=
1

2
+

1

π
· arctan

(

x− t

s

)

.

The cumulative distribution function of the Cauchy distribution is computed via the expression

stat cauchyCDF(x, t, s).

As a convenience, it is plotted on a given canvas by the command

stat cauchyCDF plot(canvas, t, s).

8.3 Chi-Squared Distribution

The chi-squared distribution (also known as χ2-distribution) has only one parameter k, where k is a
positive natural number, i.e. k ∈ N and k ≥ 1. The probability density function of the chi-squared
distribution is defined as

f(x; k) :=
1

2k/2 · Γ(k/2) · x
k/2−1 · e−x/2 for all x > 0.

Here Γ denotes the gamma function that is defined as

Γ(x) :=

∞
∫

0

tx−1 · e−t dt.

The probability density function of the chi-squared distribution is computed via the expression

stat chiSquared(x, k).

As a convenience, it can be plotted on a given canvas with the command

stat chiSquared plot(canvas, k).

The cumulative distribution function of the chi-squared distribution is defined as
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F (x; k) :=
γ(k/2, x/2)

Γ(k/2)
,

where γ(k/2, x/2) is the lower incomplete gamma function, which is defined as

γ(s, x) :=

x
∫

0

ts−1 · e−tdt

The cumulative distribution function of the chi-squared distribution is computed in SetlX via the
expression

stat chiSquaredCDF(x, k).

As a convenience, it can be plotted on a given canvas with the command

stat chiSquaredCDF plot(canvas, k).

8.4 Exponential Distribution

The exponential distribution is given as

f(x;λ) := λ · e−λ·x for x ≥ 0.

Here, the parameter λ is a scale parameter that is bigger than zero, i.e. we have λ > 0. The probability
density function of the exponential distribution is computed via the expression

stat exponential(x, l).

As a convenience, it can be plotted on a given canvas with the command

stat exponential plot(canvas, l).

The cumulative distribution function is given as

F (x;λ) = 1− e−λ·x for x ≥ 0.

The cumulative distribution function of the exponential distribution is computed via the expression

stat exponentialCDF(x, l).

As a convenience, it can be plotted on a given canvas with the command

stat exponentialCDF plot(canvas, l).

8.5 Fisher-Snedecor Distribution

The Fisher-Snedecor distribution, or F-distribution, has the two parameters a and b which are positive
real numbers. If a and b are natural numbers, then they are also known as the degrees of freedom.
The probability density function is defined as

f(x) :=
1

B(a/2, b/2)
·
(a

b

)a/2

· xa/2−1 ·
(

1 +
a

b
· x
)−(a+b)/2

where B denotes the beta function. The beta function is defined as

B(α, β) :=
Γ(α) · Γ(β)
Γ(α+ β)

.

Here Γ denotes the gamma function, which is defined as
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Γ(x) :=

∞
∫

0

tx−1 · e−t dt.

The probability density function of the F-distribution is computed by the expression

stat fisher(x, a, b).

As a convenience, it can be plotted on a given canvas with the command

stat fisher plot(canvas, a, b).

The cumulative distribution function is defined as

F (x, a, b) :=
1

B
(

a
2 ,

b
2

) · B
(

a · x
a · x+ b

,
a

2
,
b

2

)

where B(x, a, b) denotes the incomplete beta function that is defined as

B(x, a, b) :=

x
∫

0

ta−1 · (1 − t)b−1 dt,

while B(a, b) denotes the beta function, which has been defined at the beginning of this subsection.
The cumulative distribution function of the F-distribution is computed by the expression

stat fisherCDF(x, a, b).

As a convenience, it can be plotted on a given canvas via the command

stat fisherCDF plot(canvas, a, b).

8.6 Gamma Distribution

The gamma distribution has the shape parameter α and the scale parameter λ. Both of these param-
eters are positive real numbers, i.e. we have

α ∈ R, λ ∈ R, α > 0, and λ > 0.

The probability density function is defined as

f(x;α, λ) :=
λ

Γ(α)
· (λ · x)α−1 · e−λ·x,

where Γ is the gamma function, which is defined as

Γ(x) :=

∞
∫

0

tx−1 · e−t dt.

The probability density function of the gamma distribution is computed via the expression

stat gamma(x, alpha, 1/lambda).

As a convenience, it can be plotted on a given canvas via the command

stat gamma plot(canvas, alpha, 1/lambda).

The cumulative distribution function is given as

F (x;α, λ) =
1

Γ(α)
· γ (α, λ · x)

where γ denotes the lower incomplete gamma function, which is defined as
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γ(α, x) :=

x
∫

0

tα−1 · e−tdt.

The cumulative distribution function of the gamma distribution is computed in SetlX via the expres-
sion

stat gammaCDF(x, alpha, 1/lambda).

As a convenience it can be plotted on a given canvas via the command

stat gammaCDF plot(canvas, alpha, 1/lambda).

8.7 Lévy Distribution

The Lévy distribution has two parameters:

(a) µ is a real number and is called the location parameter and

(b) c is a positive real number that serves as the scale parameter.

The distribution is defined for all x ∈ R such that x ≥ µ. The probability density function of the Lévy
distribution is defined as

f(x;µ, c) :=

√

c

2π
· 1

(x− µ)3/2
· exp

(

− c

2 · (x− µ)

)

.

The probability density function of the Lévy distribution is computed via the expression

stat levy(x, mu, c).

As a convenience, it can be plotted on a given canvas with the command

stat levy plot(canvas, mu, scale).

The cumulative distribution function of the Lévy distribution satisfies

F (x;µ, c) = erfc

(
√

c

2(x− µ)

)

.

Here, erfc is the complementary error function, which is defined as the integral

erfc(x) :=
2√
π
·

∞
∫

x

exp
(

−t2
)

dt.

The cumulative distribution function of the Lévy distribution is computed via the expression

stat levyCDF(x, mu, c).

As a convenience, it can be plotted on a given canvas with the command

stat levyCDF plot(canvas, mu, c).

8.8 Log-Normal Distribution

The log-normal distribution is characterized by two parameters:

(a) µ is the mean of the natural logarithm of the associated random variable.

(b) σ is the standard deviation of the natural logarithm of the associated random variable. Of course,
the standard variation has to be positive, i.e. σ > 0.
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The log-normal distribution is defined for all x ≥ 0. The probability density function of the log-normal
distribution is given as

fX(x) :=
1

x
· 1

σ ·
√
2π

· exp
(

−
(

ln(x)− µ
)2

2 · σ2

)

.

The probability density function of the log-normal distribution is computed via the expression

stat logNormal(x, mu, sigma).

As a convenience, it can be plotted on a given canvas with the command

stat logNormal plot(canvas, mu, sigma).

The cumulative distribution function of the log-normal distribution is given as

FX(x) =
1

2
· erfc

(

− ln(x) − µ

σ ·
√
2

)

.

Here erfc is the complementary error function, which is defined as the integral

erfc(x) :=
2√
π
·

∞
∫

x

exp
(

−t2
)

dt.

The cumulative distribution function of the log-normal distribution is computed via the expression

stat logNormalCDF(x, mu, sigma).

As a convenience, it can be plotted on a given canvas with the command

stat logNormalCDF plot(canvas, mu, sigma).

8.9 Normal Distribution

The normal distribution is characterized by two parameters:

(a) µ is the location parameter and is the same as the mean of the associated random variable.

(b) σ is the scale parameter and is identical to the standard deviation of the associated random variable.
Therefore we must have σ > 0.

The probability density function of the normal distribution is defined as

f(x) :=
1

σ ·
√
2 · π

· exp
(

− (x− µ)2

2 · σ2

)

.

The probability density function of the normal distribution is computed via the expression

stat normal(x, mu, sigma).

As a convenience, it can be plotted on a given canvas with the command

stat normal plot(canvas, mu, sigma).

The cumulative distribution function of the normal distribution is given as

F (x) =
1

2
· erfc

(

− x− µ

σ ·
√
2

)

.

Here erfc is the complementary error function, which is defined as the integral

erfc(x) :=
2√
π
·

∞
∫

x

exp
(

−t2
)

dt.
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The cumulative distribution function of the normal distribution is computed via the expression

stat normalCDF(x, mu, sigma).

As a convenience, it can be plotted on a given canvas with the command

stat normalCDF plot(canvas, mu, sigma).

8.10 Pareto Distribution

The Pareto distribution is characterized by two parameters:

(a) α is the shape parameter and has to be positive.

(b) xm is the scale parameter and also has to be positive.

The probability density function is defined for all x ≥ xm and is given as

f(x) :=
α · xα

m

xα+1
.

The probability density function of the Pareto distribution is computed via the expression

stat pareto(x, xm, alpha).

As a convenience, it can be plotted on a given canvas with the command

stat pareto plot(canvas, xm, alpha).

The cumulative distribution function of the Pareto distribution is given as

F (x) = 1−
(xm

x

)α

for x ≥ xm.

The cumulative distribution function of the Pareto distribution is computed via the expression

stat paretoCDF(x, xm, alpha).

As a convenience, it can be plotted on a given canvas with the command

stat paretoCDF plot(canvas, xm, alpha).

8.11 Student’s t-Distribution

The Student’s t-distribution is characterized by one parameter ν, which is called the degrees of freedom.
The degrees of freedom is a positive natural number, i.e. we must have ν ∈ N and ν ≥ 1. The
probability density function of the Student’s t-distribution is defined for all x ∈ R as

f(x) :=
Γ(ν+1

2 )√
ν · π · Γ(ν2 )

·
(

1 +
x2

ν

)−
ν+1

2

.

Here Γ denotes the gamma function, which is defined as

Γ(x) :=

∞
∫

0

tx−1 · e−t dt.

The probability density function of the Student’s t-distribution is computed via the expression

stat student(x, nu).

As a convenience, it can be plotted on a given canvas with the command

stat student plot(canvas, nu).
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The cumulative distribution function of the Student distribution has the form

F (x) = 1− 1

2 · B
(

ν
2 ,

1
2

) · B
(

ν

x2 + ν
,
ν

2
,
1

2

)

,

where B(x; a, b) denotes the incomplete beta function, which is defined as

B(x; a, b) :=

x
∫

0

ta−1 · (1− t)b−1 dt,

while B(a, b) denotes the beta function. The beta function is defined as

B(α, β) :=
Γ(α) · Γ(β)
Γ(α+ β)

.

The cumulative distribution function of the Student’s t-distribution is computed via the expression

stat studentCDF(x, nu).

As a convenience, it can be plotted on a given canvas with the command

stat studentCDF plot(canvas, nu).

8.12 Weibull Distribution

The Weibull distribution is characterized by two parameters:

(a) k is the shape parameter and is a positive real number.

(b) λ is the scale parameter and is a positive real number.

The Weibull distribution is defined for x ≥ 0. The probability density function of the Weibull distribution
is defined as

f(x) := λ · k · (λ · x)k−1 · exp
(

−(λ · x)k
)

.

The probability density function of the Weibull distribution is computed via the expression

stat weibull(x, k, 1/lambda)

As a convenience, it can be plotted on a given canvas with the command

stat weibull plot(canvas, k, 1/lambda).

The cumulative distribution function of the Weibull distribution is given as

F (x) = 1− exp
(

−(λ · x)k
)

The cumulative distribution function of the Weibull distribution is computed via the expression

stat weibullCDF(x, k, 1/lambda)

As a convenience, it can be plotted on a given canvas with the command

stat weibullCDF plot(canvas, k, 1/lambda).
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Plotting

SetlX provides a small plotting library which is based on JFreeChart. The SetlX-interface to
JFreeChart has been implemented by Arne Röcke and Fabian Wohriska. The plotting library in SetlX

supports three different kinds of plots:

1. The library can be used to plot curves. Essentially, when it comes to curves, there are two kinds
of curves:

(a) Curves that are given as the graph of a function. In this case, the y-coordinate is given as
an expression involving the x-coordinate. For example, the parabola satisfies the equation
y = x2.

(b) Curves that are given via a parametric equations. For example, a circle of radius 1 can be
specified via the parametric equations

x = cos(t) and y = sin(t), where t ∈ [0, 2 · π].
These equations specify a circle because x2 + y2 = cos2(x) + sin2(x) = 1.

Both of these types of curves can be plotted by SetlX.

2. The library can be used for scatter plots.

3. The library can be used to plot statistical charts such as bar charts or pie charts.

We will discuss the plotting of curves, scatter plots, and charts in different sections.

It should be noted that the figures presented in this tutorial had to be scaled down to fit the paper
size. This scaling has resulted in a considerable loss of their artistic quality.

9.1 Plotting Curves

In this section, we discuss the plotting of mathematical curves. The section is structured as follows.

1. First, we discuss curves that are given as the graph of a function. As an example, we show how
to plot the parabola.

2. Next, we discuss curves that are specified via parametric equations. As a simple example, we
show how to plot a circle. A second example discusses the plotting of a hypotrochoid .
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9.1.1 Plotting the Parabola

In order to start drawing, we first have to create a canvas on which we can draw something. This is
achieved with the command

c := plot createCanvas();

Note that all functions related to plotting start with the prefix “plot ”. The function

“plot createCanvas”

takes one optional argument, which is a string. This string adds a title to the canvas. For example,
the command

c := plot createCanvas("The Parabola");

creates a canvas with the title “The Parabola” and returns a reference to this canvas. However, as
long as nothing is painted on the canvas, the canvas remains invisible. Let us draw a parabola on the
canvas created previously. This is done using the command

plot addGraph(c, "x*x", "f(x) = x*x", [0, 0, 255]);

The resulting figure is shown in Figure 9.1 on page 109. The arguments provided to the function
plot addGraph are interpreted as follows:

1. c refers to the canvas on which the specified function is to be drawn.

2. "x*x" specifies the function. The string given as argument is evaluated for different values of
the variable x and the resulting function is then plotted.

3. "f(x) = x*x" is the string that is used as the legend of the plot. This string is printed verbatim
below the plot.

4. [0, 0, 255] specifies the color used to plot the specified function. This color is specified via
the RGB color model. Hence, in this case the parabola is plotted using the color blue.

This parameter is optional. If it is not specified, the curve will be plotted in black.

5. There is a final optional parameter to the function plot addGraph that is not used in this
example. This parameter needs to be a Boolean value. If this value is true, then the area under
the curve is filled with the specified color.

In Figure 9.1 the parabola is plotted for arguments ranging from x = −10 up to x = 10. Suppose
that we would prefer to draw the parabola in the region where x runs from −4 to +4. We can use the
function plot modscale to achieve this as follows:

plot modScale(c, [-4, 4], [-1,17]);

The parameters used by plot modScale are as follows:

1. c specifies the canvas whose scale is to be modified.

2. [-4, 4] specifies that the x-coordinate is to be varied between −4 and +4.

3. [-1, 17] specifies that the y-coordinate extends from −1 to +17.

The resulting parabola is shown in Figure 9.2 on page 110.
Let us assume we want both the x-axis and the y-axis to be visible. For this purpose, the function

plot addListGraph comes in handy. To plot the x-axis we use the command

plot addListGraph(c, [[-4,0], [4,0]], "x-axis", [0,0,0]);

Here, the parameters are as follows:
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Figure 9.1: A plot of the parabola x 7→ x2.

1. c specifies the canvas where we want to draw the line.

2. [[-4,0], [4,0]] is a list of points. Each point is specified as a pair of x- and y-coordinates.
These points are then connected by straight lines. In this case, as there is only one pair of points
there is only one line.

3. ”x-axis” specifies the legend that is used for this line.

4. [0,0,0] specifies the color of the line. This parameter is optional. If the color is not specified,
then black is the default.

Let us add the y-axis using the command

plot addListGraph(c, [[0,-1], [0,17]], "y-axis");

Furthermore, let us add a tangent to the parabola at the point 〈1, 1〉. Since the tangent line at this
point is given by the formula

x 7→ 2 · (x− 1) + 1,

the tangent line passes the points 〈−4,−9〉 and 〈4, 7〉, Therefore, we can plot the tangent using the
command

plot addListGraph(c, [[-4,-9], [4,7]], "x |-> 2*(x-1)+1");

Finally, let us mark the point 〈1, 1〉 with a tiny red box using the command

plot addBullets(c, [[1,1]], [255,0,0], 3.0);

This command accepts four parameters.

1. c specifies the canvas.
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Figure 9.2: A plot of the parabola x 7→ x2.

2. [[1,1]] is a list of points. Each point itself is specified as a pair of x- and y- coordinates. The
function plots a square at the location of each of the points.

3. [255,0,0] specifies the color.

4. The last parameter specifies the size of each box. This parameter is optional and defaults to 5.0.
Note that this parameter has to be specified as a floating point number.

The resulting graphics is shown in Figure 9.3 on page 111.
The program used to create this plot showing the parabola is shown in Figure 9.4 on page 111.

This program contains three lines the we have not yet discussed.

1. Line 9 exports the plot into a png-file named parabola.png. This file is saved into the current
directory.

2. Finally, we have to prevent the SetlX interpreter from exiting after it has finished displaying
the parabola. This is achieved via the invocation of get in line 10. The command get waits for
the user to enter any string. Therefore, as long as the user does not press 〈Enter〉, the window
showing the parabola remains visible.

9.1.2 Plotting Parametric Curves

Next, we show how to plot a parametric curve. As a first example, we show how to plot a circle of
radius 1. Figure 9.5 on page 112 shows a SetlX program that can be used to plot a circle. The
resulting circle is shown in Figure 9.6 on page 112.

We proceed to discuss the program shown in Figure 9.5 line by line.
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Figure 9.3: A plot of the parabola x 7→ x2 and a tangent touching it.

1 c := plot_createCanvas("The Parabola");

2

3 plot_addGraph(c, "x*x", "f(x) = x*x", [0, 0, 255]);

4 plot_modScale(c, [-4, 4], [-1,17]);

5 plot_addListGraph(c, [[-4, 0], [4, 0]], "x-axis", [0,0,0]);

6 plot_addListGraph(c, [[ 0,-1], [0,17]], "y-axis");

7 plot_addListGraph(c, [[-4,-9], [4, 7]], "x |-> 2*(x-1)+1", [0,255,0]);

8 plot_addBullets(c, [[1,1]], [255,0,0], 3.0);

9 plot_exportCanvas(c, "parabola");

10 get("Press Enter to continue");

Figure 9.4: SetlX commands to plot the parabola.

1. Line 1 creates the canvas and equips it with a title.

2. Line 2 waits for the canvas to be created.

3. According to the Pythagorean theorem the points 〈x, y〉 on a unit circle satisfy the equation

x2 + y2 = 12.

Since we have sin2(ϕ) + cos2(ϕ) = 1, the set of all points on the unit circle is given as
{

〈cos(ϕ), sin(ϕ)〉 : ϕ ∈ [0, 2 · π]
}

.

Therefore, we specify the variable interval as the pair [0, 2*mathConst("Pi")] since this
variable is used to specify the range over which the parameter has to vary.
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1 c := plot_createCanvas("The Unit Circle");

2

3 interval := [0, 2*mathConst("Pi")];

4 blue := [0, 0, 255];

5 plot_addParamGraph(c, "cos(x)", "sin(x)", "circle", interval, blue);

6 plot_addListGraph(c, [[-2, 0], [2, 0]], "x-axis", [0,0,0]);

7 plot_addListGraph(c, [[ 0,-2], [0, 2]], "y-axis");

8 plot_modScale(c, [-1.2, 1.2], [-1.2, 1.2]);

9 plot_modSize(c, [600, 600]);

10 plot_exportCanvas(c, "circle");

11 get("Press Enter to continue");

Figure 9.5: The unit circle.

Figure 9.6: A plot of the unit circle satisfying x2 + y2 = 1.

4. Line 4 specifies the color.

5. Line 5 calls the function addParamGraph to do the actual plotting. The parameters to this
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function are as follows:

(a) c is the canvas on which the curve is to be plotted.

(b) "cos(x)" specifies the function computing the x-coordinate.

(c) "sin(x)" specifies the function computing the y-coordinate.

(d) "circle" specifies the legend.

(e) interval specifies the range over which the variable x that is used in the expressions
"cos(x)" and "sin(x)" has to vary.

(f) blue specifies the color. This argument is optional.

6. Line 6 plots the x-axis.

7. Line 7 plots the y-axis.

8. Line 8 specifies that the region to be plotted ranges from x = −1.2 to x = 1.2 horizontally and
form y = −1.2 to y = 1.2 vertically.

9. Line 9 changes the size of the plot. By default, a canvas is 800 pixels wide and 600 pixels high.
Plotting a circle on a canvas with these dimensions would distort the circle and make it look
like an ellipse. In order to plot a proper circle we therefore have to ensure that the canvas is
quadratic. Hence we change the plotting area to be 600 pixels wide and 600 pixels high.

10. Line 10 saves the generated plot into a file.

11. Line 11 prevents the program from finishing prematurely.

As another example let us write a program for plotting hypotrochoids. These curves are described
by the equations

x = (R− r) · cos(ϕ)+ d · cos
(

ϕ · R− r

r

)

and y = (R− r) · sin(ϕ)− d · sin
(

ϕ · R − r

r

)

.

Here, ϕ has to run form 0 up to some number Φ such that Φ is a multiple of 2 · π and, furthermore,

Φ · R− r

r

has to be a multiple of 2 ·π, too. Figure 9.7 on page 114 shows a SetlX program that can be used to
plot a hypotrochoid. Figure 9.8 on page 115 shows the hypotrochoid where R = 5, r = 3 and d = 5.
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1 period := procedure(bigR, smallR) {

2 for (i in [1 ..10000]) {

3 if (isInteger(i * (bigR - smallR) / (smallR* 2))) {

4 return i;

5 }

6 }

7 return 1000;

8 };

9 hypotrochoid := procedure(bigR, smallR, d) {

10 c := plot_createCanvas("The Hypotrochroid R=$bigR$, r=$smallR$, d=$d$.");

11

12 interval := [0, 2.01*mathConst("Pi")*period(bigR, smallR)];

13 red := [255, 0, 0];

14 sum := (bigR - smallR + d) + 0.5;

15 xParam := "(bigR-smallR) * cos(x) + d * cos(x*(bigR-smallR)/smallR)";

16 yParam := "(bigR-smallR) * sin(x) - d * sin(x*(bigR-smallR)/smallR)";

17 plot_addParamGraph(c, xParam, yParam, "hypotrochoid", interval, red);

18 plot_addListGraph(c, [[-sum, 0], [sum, 0]], "x-axis", [0,0,0]);

19 plot_addListGraph(c, [[ 0,-sum], [ 0, sum]], "y-axis");

20 plot_modScale(c, [-sum, sum], [-sum, sum]);

21 plot_modSize(c, [600, 600]);

22 plot_exportCanvas(c, "hypotrochoid");

23 get("Press Enter to continue");

24 };

Figure 9.7: A program for plotting Hypotrochoids.
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Figure 9.8: A plot of the hypotrochoid satisfying R = 5, r = 3, d = 5.

9.2 Scatter Plots

In order to generate a scatter plot, we can use the function plot addBullets. Figure 9.9 on page
116 shows the implementation of the function fatherAndSons that reads a file containing the heights
of fathers and their sons and that converts these data into the scatter plot shown in Figure 9.10 on
page 117. We proceed to discuss the details of the implementation of the function fatherAndSons.

1. Line 2 reads the file “fathers-and-sons.txt” and converts this file into a list of strings that
is called data. Each string corresponds to one line in the file. The first line in the file has the
form

65.04851 59.77827

This line states that the first father-son pair in the data set consists of a father who is 65.04851
inches tall, while his son is only 59.77827 inches tall.1.

1 At this point you are probably wondering how it is possible that the height is measured with a precision of 5 digits.

Of course, when measuring body heights this is precision is not achievable. The data set I am using here is part of the

R project and can be found in the package

UsingR
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2. Line 3 splits every string in the list data into a list of two strings. These two strings are the strings
representing the height of the father and the height of his son. Therefore, the variable fsStr is a
list of pairs of strings. These pairs correspond to the lines in the file “fathers-and-sons.txt”.

3. Line 4 converts these strings into floating point values. This is done using the conversion function
double that takes a string and converts it into a floating point number.

4. Line 5 creates the canvas.

5. Line 6 takes the pairs of floating point numbers and plots them as boxes of size 2.0. Note that
the size has to be specified as a floating point number: Specifying the height as an integer will
result in an error message.

The function plot addBullets takes a list of pairs of the form [x, y] where x specifies the x-
coordinate and y specifies the y-coordinate of a data point. These data points are then plotted
one by one.

6. As the heights vary between 58 inches and 80 inches, line 7 modifies the scale accordingly.

7. Line 8 modifies the size of the canvas so that the width and the height are the same.

8. Line 9 changes the labeling of the x-axis and of the y-axis using the function plot labelAxis.
This function takes three arguments.

(a) The first argument is the canvas.

(b) The second argument is the label of the x-axis.

(c) The third argument is the label of the y-axis.

9. Line 10 saves the scatter plot into a file. The file is saved as a .png file.

1 fatherAndSons := procedure() {

2 data := readFile("fathers-and-sons.txt");

3 fsStr := [ split(line, " "): line in data ];

4 fs := [ [double(x), double(y)] : [x,y] in fsStr ];

5 c := plot_createCanvas("Heights of Fathers vs. Heights of Sons.");

6 plot_addBullets(c, fs, [0,0,255], 2.0);

7 plot_modScale(c, [58, 80], [58, 80]);

8 plot_modSize(c, [1000, 1000]);

9 plot_labelAxis(c, "heights of fathers in inches",

10 "heights of sons in inches" );

11 plot_exportCanvas(c, "fathers-and-sons");

12 };

Figure 9.9: How to generate a scatter plot from data stored in a file.

in the variable father.son. My best guess is that the data set has suffered from some kind of unit conversion.
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Figure 9.10: A scatter plot showing the heights of fathers and their sons.

9.3 Plotting Statistical Charts

SetlX is able to draw bar charts and pie charts. We will present each of these charts in a separate
subsection.

9.3.1 Bar Charts

Table 9.1 on page 118 shows the population of different regions of the world for various years. This data
is more easily comprehensible when presented as a bar char. Figure 9.11 presents a SetlX-program
that converts these data into a bar chart. We proceed to discuss this program line by line. The bar
chart produced by this program is shown in Figure 9.12 on page 119.

1. Line 1 to line 8 define the data that is to be displayed. The data is stored as a list of lists. The
first list specifies the years corresponding to the population counts. The remaining lists each
specify the population counts for a specific geographical region.
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Region
Year

1900 1950 1999 2008 2010

Northern America 82 172 307 337 345
Oceania 6 13 30 34 37
Latin America 74 167 511 577 590
Europe 408 547 729 732 738
Africa 133 221 767 973 1,022
Asia 947 1,402 3,634 4,054 4,164
World 1,650 2,521 5,978 6,707 6,896

Table 9.1: The world population in millions of people.

1 data := [ ["Year" , 1900, 1950, 1999, 2008, 2010],

2 ["Northern America", 82, 172, 307, 337, 345],

3 ["Oceania" , 6, 13, 30, 34, 37],

4 ["Latin America" , 74, 167, 511, 577, 590],

5 ["Europe" , 408, 547, 729, 732, 738],

6 ["Africa" , 133, 221, 767, 973, 1022],

7 ["Asia" , 947, 1402, 3634, 4054, 4164],

8 ["World" , 1650, 2521, 5978, 6707, 6896] ];

9 worldPopulation := procedure(data) {

10 c := plot_createCanvas();

11 years := data[1][2..];

12 regions := [line[1]: line in data[2..]];

13 for (i in [1..#years]) {

14 population := [region[i+1] : region in data[2..]];

15 plot_addBarChart(c, population, regions, "Population in $years[i]$");

16 }

17 };

18 worldPopulation(data);

Figure 9.11: Program to plot the world population as a bar chart.

2. The function worldPopulation has one parameter. This parameter is of the form of the data
specified in line 1 to line 8.

3. Line 10 creates the canvas.

4. Line 11 extracts the years.

5. Line 12 extract the regions from the first column of data.

6. Since our intention is to present the data of the different regions combined by the years, we select
these data in the list population in line 14. Here, region iterates over the different regions in
data, while region[i+1] selects the data for the ith year in the table.

7. The function plot addBarChart plots the bar chart. The arguments to this function are as
follows:

(a) c specifies the canvas.

(b) population is a list of numbers. For every number in this list, the function plot addBarChart

plots a line of the corresponding height into each of the groups. The groups are labeled by
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the list regions. The lines plotted by one invocation of plot addBarChart all have the
same unique color. This color is determined automatically.

(c) regions is a list of strings specifying a label for each group.

(d) The last argument specifies a legend for the data plotted by this instance of plot addBarChart.

In order to understand what is plotted where, it is easiest to compare the variable data defined in
Figure 9.11 to the plot in Figure 9.12

Figure 9.12: A Bar chart showing the world population in millions in different regions.

9.3.2 Pie Charts

Table 9.2 on Page 120 shows the distribution of different races in the Texan population and in the
population of Texan prisons. In order to further our understanding of the data, let us visualize it
via two pie charts. The visualization is achieved using the SetlX-program shown in Figure 9.13 on
page 120. The resulting pie charts are shown in Figure 9.14 on page 121. We proceed to discuss the
SetlX-program.

1. The data are defined in line 1 to 5 as a list of list. Each list in data corresponds to a different
race.

2. The procedure prisonPopulation takes this data as its sole input.

3. Line 7 and 8 create two different canvases for the two pie charts.

4. Line 9 extracts the different races stored in the table data.
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1 data := [ ["white", 10933313, 38396],

2 ["black", 2404566, 51649],

3 ["latino", 6669666, 35028],

4 ["other", 844275, 582]

5 ];

6 prisonPopulation := procedure(data) {

7 c1 := plot_createCanvas("Race disdribution in Texas.");

8 c2 := plot_createCanvas("Race disdribution in Texan prisons.");

9 races := [line[1]: line in data];

10 population := [line[2]: line in data];

11 inmates := [line[3]: line in data];

12 plot_addPieChart(c1, population, races);

13 plot_addPieChart(c2, inmates, races);

14 plot_exportCanvas(c1, "race-population");

15 plot_exportCanvas(c2, "race-incarceration");

16 };

Figure 9.13: A program to generate two pie charts.

5. Line 10 is defined as list containing the number of people of the various races living in Texas.

6. Line 11 is the corresponding list containing the number of prison inmates of each race.

7. Line 12 draws the pie chart showing the Texan race distribution via a call of the function
plot addPieChart.

(a) The first parameter specifies the canvas on which the pie chart is to be drawn.

(b) The second parameter is a list of numbers.

(c) The final parameter is a list of labels.

8. Line 13 draws the pie chart showing the race distribution of Texan inmates.

9. The last two lines save the generated charts as png files.

Race Population Prison Population

white 10933313 38396
black 2404566 51649
latino 6669666 35028
other 844275 582

Table 9.2: The race distribution in the Texan population vs. the Texan prison population.
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Figure 9.14: The race distribution in Texas and in Texan prisons.
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Chapter 10

Classes and Objects

These days, everything is object-oriented. After having spotted object-oriented toasters on the loose,
we have decided that SetlX should not be an exception. Therefore, SetlX supports some basic means
for object-oriented programming. Most importantly, SetlX supports classes. In SetlX a class is an
agglomeration of variables and functions. These variables are referred to as member variables, while the
functions are called methods. In this chapter we demonstrate how classes can be defined and used in
SetlX. However, this chapter is not intended to be an introduction into object-oriented programming.
Instead, we assume that the reader has had some previous exposure to object-oriented programming
via a programming language like Java, C++, or Python. In the first section of this chapter, we give
some simple examples of class definitions. The programs presented in that section are not intended to
compute anything useful. Their sole purpose is to demonstrate the basic features of object-oriented
programming available in SetlX. The second and third section will then discuss more interesting
examples: The second section shows how to implement weighted directed graphs via classes and the
final section discusses the implementation of complex numbers. That section will also discuss some of
the more advanced features of object-oriented programming available in SetlX. In particular, we will
discuss operator overloading.

10.1 Basic Examples

In this section, we introduce the basic means by which object-oriented programming is supported in
SetlX. In the first subsection, we introduce classes. The second subsection shows how to simulate
inheritance.

10.1.1 Introducing Classes

Our first example deals with the representation of points in a plane. One way to specify a point p is
to specify both its x and its y-coordinate. This leads to the class definition shown in Figure 10.1 on
page 123. We discuss the details of this definition next.

1. Line 1 defines the class point using the keyword class. Note that line 1 simultaneously defines
a constructor for this class. This constructor takes two arguments x and y. These two arguments
are interpreted as the x and y-coordinate of the point to construct.

The general form of a class definition is as follows:

class name(x1, · · · , xn) {
member-and-method-definitions

}
Here name is the name of the class that is defined, x1, · · · , xn are the formal parameters of the
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1 class point(x, y) {

2 mX := x;

3 mY := y;

4

5 getX := procedure() { return mX; };

6 getY := procedure() { return mY; };

7 setX := procedure(x) { this.mX := x; };

8 setY := procedure(y) { this.mY := y; };

9 toStr := procedure() { return "<$mX$, $mY$>"; };

10

11 distance := procedure(p) {

12 return sqrt((mX - p.getX()) ** 2 + (mY - p.getY()) ** 2);

13 };

14 }

Figure 10.1: The class point.

constructor of this class, and member-and-method-definitions is a list of the definitions of all
member variables and methods.

The definition of a class is not terminated with the character “;”. The reason is that, unlike
most procedure definitions, a class definition is not part of an assignment. Actually, a procedure
definition does not contain an assignment either. The reason that most procedure definitions are
followed by a semicolon is the fact that most procedure definitions are part of an assignment.
In that case the semicolon following the procedure definition is syntactically not part of the
procedure definition but rather terminates the assignment.

2. In line 2 and line 3 we define the member variables mX and mY. These two member variables store
the x and y-coordinates of the point that is constructed.

It is our convention to start member variables with a lower case letter “m”. This letter is intended
as an abbreviation of member. The letter following the letter “m” will always be capitalized.
However, this convention is only our recommendation for naming member variables and you are
free to choose any valid variable name to designate a member variable.

3. Line 5 to 8 define getter and setter methods to access and write the member variables mX and
mY. Note that, in order to change the value of a member variable, it is necessary to prefix this
member variable with the keyword “this.”. However, this prefixing is not necessary in order to
read a member variable, as can be seen in the implementation of the methods getX and getY.

4. Line 9 defines the method toStr that transforms a given object of class point into a string.

5. Finally, we define a method called distance that takes a point p as its argument. This method
computes the distance of the given point to the point p using the Pythagorean theorem.

So far, we have only shown how to define a class but we have not yet seen how to use a class. Therefore,
assume that the code shown in Figure 10.1 has been loaded into the interpreter. Then we can define
an object of class point by writing

origin := point(0, 0);

and the statement

print(origin.toStr());
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would result in the following output:

<0, 0>

It is instructive to print the object origin itself. The statement

print(origin);

yields the output that is shown in Figure 10.2 on page 125. Note that we have formatted this output
in order to render it more readable. Closer inspection of the output reveals that an object is just a
collection of all its members. As SetlX is a functional language, there is really no distinction between
a member variable and a method. For example, in line 5 the variable toStr is just a member variable
which happens to be bound to a procedure. Note that the object origin also has a method getClass.
The definition of this method is shown in line 12 – 23. This method is generated automatically for
every class that is defined. Technically, this method returns the class definition. Practically , this
method can used to check whether two objects have the same class. For example, after defining

p1 := point(1, 2);

p2 := point(2, 1);

p1 and p2 are different objects but the test

p1.getClass() == p2.getClass()

will return true. If we only are interested whether the object p1 is of class point we can write the
test as

p1.getClass() == point.

This works, since after defining the class point, the variable point is bound to the class object shown
in Figure 10.3 on page 125.

At first, the fact that all methods are stored as part of the object originmight seem quite wasteful.
However, this fact enables us to change these methods dynamically. For example, we can realize that
the x and y-coordinates of the particular object origin really are fixed. Therefore, the getter methods
can be simplified and the setter methods can even be eliminated. Assuming origin is defined as

origin := point(0, 0);

we could then write the code shown in Figure 10.4. This code would make it impossible to call the
setter methods for the object origin.

On the other hand, if we choose not to change methods on a per-object basis, we could just as
well declare these methods to be static. Then, the resulting code would look as shown in Figure 10.5
on page 126. The only difference to our first implementation of the class point shown in Figure 10.1
on page 123 is the static block that starts in line 5 and ends in line 15. If we now define origin as

origin := point(0, 0);

and print origin, then the resulting output would be as shown in Figure 10.6 on page 127. Note
that in this case only the member variables are stored in the object origin. This saves some space.
Fortunately, we can still overwrite the static methods on a per-object basis, i.e. the assignments

origin.getX := procedure() { return 0; };

origin.getY := procedure() { return 0; };

origin.setX := om;

origin.setY := om;

will create member variables getX, getY, setX, and setY that are attributes of the object origin.
The static variables of the same name are unchanged but an expression of the form

origin.getX()
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1 object<

2 { distance := procedure(p) {

3 return sqrt((mX - p.getX()) ** 2 + (mY - p.getY()) ** 2);

4 };

5 getX := procedure() { return mX; };

6 getY := procedure() { return mY; };

7 mX := 0;

8 mY := 0;

9 setX := procedure(x) { this.mX := x; };

10 setY := procedure(y) { this.mY := y; };

11 toStr := procedure() { return "<$mX$, $mY$>"; };

12 getClass := [] |-> class (x, y) {

13 mX := x;

14 mY := y;

15 distance := procedure(p) {

16 return sqrt((mX - p.getX()) ** 2 + (mY - p.getY()) ** 2);

17 };

18 getX := procedure() { return mX; };

19 getY := procedure() { return mY; };

20 setX := procedure(x) { this.mX := x; };

21 setY := procedure(y) { this.mY := y; };

22 toStr := procedure() { return "<$mX$, $mY$>"; };

23 }

24 }

25 >

Figure 10.2: The output of the command “print(origin);”.

1 class (x, y) {

2 mX := x;

3 mY := y;

4 distance := procedure(p) {

5 return sqrt((mX - p.getX()) ** 2 + (mY - p.getY()) ** 2);

6 };

7 getX := procedure() { return mX; };

8 getY := procedure() { return mY; };

9 setX := procedure(x) { this.mX := x; };

10 setY := procedure(y) { this.mY := y; };

11 toStr := procedure() { return "<$mX$, $mY$>"; };

12 }

Figure 10.3: The class object corresponding to the class point.

invokes the function bound to the member variable getX and does no longer invoke the function bound
to the static variable getX. Hence, the static member functions are effectively hidden.

Going back to the code in Figure 10.5, note that in order to invoke one of these static methods we
still need an object of class point. The reason is that otherwise the variables mX and mY, which are
used in these methods, would be undefined.

The last remark might confuse people accustomed to a programming language like Java. Let us
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1 origin.getX := procedure() { return 0; };

2 origin.getY := procedure() { return 0; };

3 origin.setX := om;

4 origin.setY := om;

Figure 10.4: Changing the methods attached to origin.

1 class point(x, y) {

2 mX := x;

3 mY := y;

4

5 static {

6 getX := procedure() { return mX; };

7 getY := procedure() { return mY; };

8 setX := procedure(x) { this.mX := x; };

9 setY := procedure(y) { this.mY := y; };

10 toStr := procedure() { return "<$mX$, $mY$>"; };

11

12 distance := procedure(p) {

13 return sqrt((mX - p.getX()) ** 2 + (mY - p.getY()) ** 2);

14 };

15 }

16 }

Figure 10.5: The class point implemented using static methods.

therefore elaborate: If we use the definition of the class point shown in Figure 10.5 on page 126 and
define the object origin as

origin := point(0,0);

then we can issue the command

print(point.getX);

and get the result

procedure() { return mX; }.
This shows that the method getX is indeed a property of the class point. However, we cannot invoke
this method on the class point because this method needs access to the member variable mX and this
member variable is only available in objects of class point, but it is not an attribute of the class point
itself, since only members defined as static are attributes of a class. Therefore, the command

point.getX();

yields the output

~< Result: om >~

indicating that mX is undefined.

Of course, classes can have static variables. These are then accessible by means of the class name.
This way, we can simulate global variables in SetlX. For example, we can define the class universal
as shown in Figure 10.7. Then, we can always access the universal constant using the expression
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1 object<

2 { mX := 0;

3 mY := 0;

4 getClass := [] |-> class (x, y) {

5 mX := x;

6 mY := y;

7 static {

8 distance := procedure(p) {

9 return sqrt((mX - p.getX()) ** 2 + (mY - p.getY()) ** 2);

10 };

11 getX := procedure() { return mX; };

12 getY := procedure() { return mY; };

13 setX := procedure(x) { this.mX := x; };

14 setY := procedure(y) { this.mY := y; };

15 toStr := procedure() { return "<$mX$, $mY$>"; };

16 }

17 }

18 }

19 >

Figure 10.6: Output of “print(origin);”.

universal.sAnswer

Note that we can both read and write to this variable. We have started the name of the variable
“sAnswer” with a lower case “s” since this is our naming convention for static variables.

1 class universal() {

2 static {

3 sAnswer := 42;

4 }

5 }

Figure 10.7: Defining global variables as static members of a class.

10.1.2 Simulating Inheritance

Continuing the example of the class point shown in Figure 10.1, let us assume that some points have
a color as an additional attribute. If we were programming in Java and wanted to support both points
with and without a color, we could create a class coloredPoint that extends the class point. The
mechanics are a little different in SetlX. Figure 10.8 on page 128 shows how to implement both
ordinary points and colored points in SetlX.

1. Line 1 defines the class point. The definition is the same as in Figure 10.1.

2. Line 14 defines the class color. This class stored the color by its rgb value: The member variable
mR specifies the luminosity of the red color component, mG gives the luminosity of the green color
component, and mB defines the blue color component.

Note that it is not necessary to implement getters and setters for these member variables since
in SetlX all member variables are accessible in the methods of the class.
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1 class point(x, y) {

2 mX := x;

3 mY := y;

4

5 getX := procedure() { return mX; };

6 getY := procedure() { return mY; };

7 setX := procedure(x) { this.mX := x; };

8 setY := procedure(y) { this.mY := y; };

9 toStr := procedure() { return "<$mX$, $mY$>"; };

10 distance := procedure(p) {

11 return sqrt((mX - p.getX()) ** 2 + (mY - p.getY()) ** 2);

12 };

13 }

14 class color(r, g, b) {

15 mR := r; mG := g; mB := b;

16 }

17 coloredPoint := procedure(x, y, c) {

18 p := point(x, y);

19 p.mColor := c;

20

21 p.toStr := procedure() {

22 return "<$mX$, $mY$>: $mColor.mR$, $mColor.mG$, $mColor.mB$";

23 };

24 return p;

25 };

Figure 10.8: Representing colored points.

3. Line 17 defines the procedure coloredPoint. This procedure takes three arguments:

(a) x and y specify the x and y-coordinate of the given point and

(b) c specifies the color of the point.

The procedure coloredPoint constructs a colored point. In order to do so, it takes the following
steps:

(a) Line 18 creates an ordinary point p that has the specified coordinates.

(b) Line 19 adds the member variable mColor to the point p.

Note that in SetlX it is possible to add member variables dynamically to a given object.

(c) Line 21 changes the method toStr for the object p. The new implementation return both
the coordinates and the color information.

(d) Finally, the object p is returned.

Note that the procedure coloredPoint is effectively a constructor for objects that have class
point but also have a color attribute. It could be called a factory method .

10.2 A Case Study: Dijkstra’s Algorithm

In this section we show how to represent a weighted directed graph G = 〈V,E, length〉 as a class.
Here, V is the set of nodes, E is the set of edges, where an edge is a pair of nodes, and
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length : E → N

is a function assigning a length to every edge. We will present Dijkstra’s algorithm for computing
distances in a weighted directed graph. Figure 10.9 on page 129 shows a weighted directed graph. The
set of nodes V of this graph is given as

V = {1, 2, 3, 4, 5},
the set of edges is

E = {〈1, 5〉, 〈1, 3〉, 〈5, 2〉, 〈3, 2〉, 〈2, 4〉, 〈3, 4〉},
and the function length is given as the relation

length =
{ 〈

〈1, 5〉, 3
〉

,
〈

〈1, 3〉, 5
〉

,
〈

〈5, 2〉, 1
〉

,
〈

〈3, 2〉, 2
〉

,
〈

〈2, 4〉, 4
〉

,
〈

〈3, 4〉, 7
〉}

.

For example, length(〈1, 5〉) = 3 and length(〈1, 3〉) = 5. In this graph, the shortest path from the
node 1 to the node 4 is given by the list [1, 5, 2, 4] and therefore the distance between these nodes is
3 + 1 + 4 = 8.

1

5

 3

3

  5

2

1

4

 4

 2

 7

Figure 10.9: A simple weighted directed graph.

In order to compute the distances from a given node to all other nodes we first have to decide how
to represent a weighted directed graph. In our implementation of Dijkstra’s algorithm we will assume
that the set of nodes V is given as a set of consecutive natural numbers of the form

V = {1, 2, · · · , n− 1, n}.
Therefore, there is no need to store the set V . All we have to store is the number of nodes n. The set
of edges E and the function length will be stored using (a variant of) an adjacency list representation.
To this end, we define a binary relation edges so that for every node x ∈ V the expression edges[x]
is a set of the form

edges[x] = {[y1, w1], · · · [yn, wn]},
so that there is an edge form x to yi for all i = 1, · · · , n and, furthermore, the length of this edge is
wi, i.e. we have

length([x, yi]) = wi for all i = 1, · · · , n.
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Stated differently, if x and y are nodes in V such that 〈x, y〉 is an edge in E of length w, then we have

[y, w] ∈ edges[x].

For example, the relation edges for the graph shown in Figure 10.9 can be defined in SetlX as follows:

edges := { [1, {[5,3]], [3,5]}],
[5, {[2,1]}],
[3, {[2,2], [4,7]}],
[2, {[4,4]}],
[4, {}]

};

1 class graph(numberNodes, edges) {

2 mNumberNodes := numberNodes;

3 mEdges := edges;

4

5 static {

6 shortestPath := procedure(source) {

7 oo := mathConst("Infinity");

8 dist := { [x, oo]: x in [1 .. mNumberNodes] };

9 dist[source] := 0;

10 fringe := { [0, source] };

11 visited := {};

12 while (fringe != {}) {

13 [d, u] := first(fringe);

14 fringe -= { [d, u] };

15 for ([v,l] in mEdges[u] | !(v in visited)) {

16 if (d + l < dist[v]) {

17 dvOld := dist[v];

18 dvNew := d + l;

19 dist[v] := dvNew;

20 fringe -= { [dvOld, v] };

21 }

22 fringe += { [dist[v], v] };

23 }

24 visited += { u };

25 }

26 return dist;

27 };

28 }

29 }

Figure 10.10: A class to represent graphs with an implementation of Dijkstra’s algorithm.

Now we are ready to present Dijkstra’s algorithm in SetlX. Figure 10.10 on page 130 shows the
implementation of the class graph that is used to represent a weighted directed graph. We discuss the
implementation line by line.

1. Line 1 starts to define the class graph and the constructor for this class. In SetlX, every class
has exactly one constructor and the definition of the class and the constructor are the same.

In this case, the constructor takes two arguments.
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(a) The first argument numberNodes specifies the number of nodes. Implicitly, this argument
also specifies the set of nodes of the graph since we have agreed that the set of nodes V
has the form

V = {1, 2, · · · , n− 1, n}.
Therefore, since numberNodes is the number of nodes, we must have n = numberNodes.

(b) The second argument edges specifies both the set of edges and the function length in the
way discussed above.

2. Line 2 and 3 define and assign the member variables mNumberNodes and mEdges. Every object
o of class graph will therefore have the two attributes mNumberNodes and mEdges. For a given
object o, these attributes can be accessed as o.mNumberNodes and o.mEdges respectively. These
variables store the number of nodes and the edges in the way discussed previously.

3. Line 5 declares the beginning of a static block which ends in line 28. In this case, the static block
contains only the definition of the variable shortestPath. Of course, if o is an object of class
graph then o.shortestPath will access the function stored in the static variable shortestPath.
We defer the discussion of the implementation of this function.

At this point, it should be noted that the function shortestPath accesses the variables mNumberNodes
and mEdges and these variables are not static. The reason the function shortestPath is defined
static is the fact that the implementation of this function is always the same, no matter what the
graph is. Therefore, there is no need to store this implementation on a per object basis. Hence, it
is sufficient to provide this function as a static variable of the class graph. Of course, calling this
function as

graph.shortestPath(s)

wouldn’t make any sense as then the variables mNumberNodes and mEdges would both be undefined.
In order to call this function, we need to have an object g of class graph. Then it is possible to write

g.shortestPath(s)

as in this case the function shortestPath has access to the member variables mNumberNodes and
mEdges that are stored in the object g.

Let us now briefly explain the implementation of the function shortestPath. This function gets a
single node source as its argument and it will compute the distance of all other nodes from the node
source. This distance will be represented as a binary relation that is stored in the variable dist. The
elements of this binary relation will be pairs of the form

[x, d]

where x is a node and d is the distance of this node. When given the graph g depicted in Figure 10.10,
the expression

g.shortestPath(1)

will yield the result

{[1, 0], [2, 4], [3, 5], [5, 3], [4, 8]}.
This elements of this binary relation are to be interpreted as follows:

1. The distance of the node 1 from the node 1 is obviously 0.

2. The distance of the node 2 from the node 1 is 4. The path [1, 5, 2] exhibits this length.

3.
...
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4. The distance of the node 4 from the node 1 is 8. The path [1, 5, 2, 4] is the shortest path
connecting the node 1 with the node 4 and has length 8.

The relation dist, which is computed and returned by the function shortestPath, is initialized in
line 8 to assign the distance ∞ for every node x of the graph. This distance can be seen as an upper
estimate of the minimum length of a path connecting the source to the node x. Since we do not yet
know whether the node x is reachable from the node source at all, we initialize the distance to ∞.
Initially, the only node that is definitely reachable from the node source is the node source itself.
Therefore, dist[source] is set to 0 in line 9.

The algorithm to compute all distances maintains two data structures.

1. fringe is the set of those nodes x that have already been encountered when traversing the
graph, but which have not been fully explored in the sense that there might exist nodes y such
that there is an edge 〈x, y〉 and the node y has not been visited.

However, instead of just storing these nodes, for every node y the set fringe stores a pair of
the form

[w, y],

where w is the best estimate of the distance of the node y from the node source. Initially,
we have only visited the node source and its distance from source is obviously 0. Therefore,
fringe is initialized as

{ [0, source] }
in line 13. Since a node u with distance d is stored as the pair [d, u], the set fringe can be
used as a priority queue. The reason is that in SetlX every set is stored as an ordered binary
tree. Therefore, the elements of a set are ordered and it is easy to pick the smallest element
of a set using the function first. Since, furthermore, lists (and pairs in particular) are ordered
lexicographically, the first element in the set fringe is the pair [d, u] with the smallest value of
d, i.e. the node u in the set fringe that is closest to the source.

2. visited is the set of nodes that have been visited in the following sense: A node x is said to
have been visited if all of the neighbours of x, i.e. all nodes y such that there is an edge 〈x, y〉
have been inspected and have been assigned a distance. It may be the case that the distance
assigned to y will improve later, but once a node x is added to the set visited, the distance of
x from source is known. Initially, the set visited is empty.

The workhorse of the function shortestPath is the while-loop in line 12. As long as there are nodes
u in the fringe we try to improve the estimate dist[v] for all nodes v such that there is an edge
〈u, v〉 from u to v. The idea is that if

dist[u] + l < dist[v], where l is the length of the edge 〈u, v〉
then we can improve our estimate of dist[v] by assigning

dist[v] := dist[u] + l;

After updating the distance of node v, we have to add this node to the fringe so that we can in turn
deal with those nodes that are reachable from node v. The thing that makes Dijkstra’s algorithm fast
is the fact that once a node is visited it can be shown that its distance can not be improved further.
A proof of this fact can be found in a paper of Dijkstra [Dij59].

Remark: At this point you might feel a little bit disappointed because the previous example has not
made much use of the object-oriented features of SetlX. However, that is exactly the point of this
example: Of course we could have implemented graph nodes as object of some class and do the same
for edges. However, the resulting program would then suffer from code bloat. We do not think that
object-oriented programming should be used for the sake of object-oriented programming but rather
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see it as a convenient method to encapsulate data, nothing more. In particular, an object-oriented
program is not, in general, better than a program that does not use object-oriented features. We
therefore advocate to use classes when this is either necessary or convenient but not for the sake of
object-oriented programming.

10.3 Representing Complex Numbers as Objects

Our next example deals with complex numbers . Remember that complex numbers have the form

z = x+ y · i, where x, y ∈ R and i · i = −1.

Assume that we have to perform a number of intricate calculations using complex numbers. One way
we could do this is by representing a complex number x+ y · i as a pair [x, y]. Then we would have to
implement functions to add, subtract, multiply, and divide complex numbers. For example, methods
to add and multiply two complex numbers would have the form shown in Figure 10.11 on page 133.

1 addComplex := procedure(z1, z2) {

2 [x1, y1] := z1;

3 [x2, y2] := z2;

4 return [x1 + x2, y1 + y2];

5 };

6 multiplyComplex := procedure(z1, z2) {

7 [x1, y1] := z1;

8 [x2, y2] := z2;

9 return [x1*x2 - y1*y2, x1*y2 + x2*y1];

10 };

Figure 10.11: Representing complex numbers as pairs.

While it is certainly possible to represent complex numbers in this way, this method is not very
convenient. One reason is that a even a moderately sized formula involving complex numbers would be
more or less unreadable when implemented using functions like addComplex and multiplyComplex.
Fortunately, there is a better way to represent complex numbers in SetlX. Figure 10.12 shows how
we can define the class complex that represents complex numbers. In fact, complex is both a class
and a constructor for this class. This constructor takes two arguments:

1. real is the real part of the complex number that is represented, while

2. imag is the imaginary part.

The class complex has two member variables. These member variables are called mReal and mImag.
These member variables are defined and initialized in lines 2 and 3. Therefore every object o of class
complex stores two numbers that can be accessed as

o.mReal and o.mImag.

In order to work with complex numbers we need methods to perform the basic arithmetic operations.
The class complex in Figure 10.12 provides the implementation of functions to add, subtract, multiply,
and divide complex numbers. As these functions are not properties of a specific complex number
but rather apply to all complex numbers, these functions are defined as static members of the class
complex. We refer to these functions as methods and discuss them next.

1. First, line 5 defines a method called sum. Despite the looks of it, this method takes two arguments.
The first argument is implicit and it is called this. This argument is a reference to an object of
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1 class complex(real, imag) {

2 mReal := real;

3 mImag := imag;

4 static {

5 sum :=

6 that |-> complex(mReal + that.mReal, mImag + that.mImag);

7 difference :=

8 that |-> complex(mReal - that.mReal, mImag - that.mImag);

9 product := procedure(that) {

10 return complex(mReal * that.mReal - mImag * that.mImag,

11 mReal * that.mImag + mImag * that.mReal);

12 };

13 quotient := procedure(that) {

14 denom := that.mReal * that.mReal + mImag * mImag;

15 real := (mReal * that.mReal + mImag * that.mImag) / denom;

16 imag := (mImag * that.mReal - mReal * that.mImag) / denom;

17 return complex(real, imag);

18 };

19 power := procedure(that) {

20 return exp(that * log(this));

21 };

22 f_exp := procedure() {

23 r := exp(mReal);

24 return complex(r * cos(mImag), r * sin(mImag));

25 };

26 f_log := procedure() {

27 logR := log(mReal * mReal + mImag * mImag) / 2;

28 return complex(logR, atan2(mImag, mReal));

29 };

30 f_str := [] |-> mReal + " + " + mImag + " * i";

31 equals := procedure(that) {

32 return mReal == that.mReal && mImag == that.mImag;

33 };

34 }

35 }

Figure 10.12: The class complex implementing complex numbers.

class complex. The second argument, which we have called that, also references an object of
class complex. Now in order to add the complex numbers this and that we could just return
a new complex number as follows:

complex(this.mReal + that.mReal, this.mImag + that.mImag);

However, as this is always implicit, the actual implementation of the method sum is even simpler
and we can instead write

complex(mReal + that.mReal, mImag + that.mImag);

to create a complex number that is the sum of the complex number this and that.

In order to invoke the method sum, let us first create two complex numbers z1 and z2 as follows:
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z1 := complex(1,2);

z2 := complex(3,1);

Now we have z1 = 1 + 2 · i and z2 = 3 + 1 · i. In order to add these numbers, we can execute
the assignment

z3 := z1.sum(z2);

This will set z3 to the complex number 4 + 3 · i. Fortunately, as SetlX supports operator
overloading, we can write

z3 := z1 + z2;

in order to compute the sum of z1 and z2.

Note: For operator overloading to work, we have to use the same method name that is used
when SetlX evaluates the corresponding operator. For the operator “+” performing addition, the
corresponding name is sum. Table 10.1 lists the names corresponding to the operators provided
by SetlX. Note that certain operators cannot be overloaded because they are implicitly reduced
to other operators. In particular

(a) a <==> b is reduced to a == b,

(b) a <!=> b is reduced to !(a == b),

(c) a != b is reduced to !(a == b),

(d) a <= b is reduced to a == b || a < b,

(e) a >= b is reduced to a == b || b < a, and

(f) a > b is reduced to b < a.

Furthermore, the operators “+/” and “*/” are reduced to applications of the operators “+” and
“*”. Therefore, it does not make sense to overload these operators on their own. They are
implicitly overloaded when the operators “+” and “*” are overloaded.

Operator Name Operator Name

+ sum && conjunction

- difference || disjunction

* product => implication

/ quotient == equals

% modulo ** power

\ integerDivision < lessThan

>< cartesianProduct

Table 10.1: Operator names.

In case you want to find the names of these operators by yourself and do not have access to this
manual, then there is a neat trick to figure out these names. Define the class empty as

class empty() {}
Then, after defining

a := empty();

the evaluation of the expression

a == a

will result in the error message
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Error in "a == a":

Member ’equals’ is undefined in ’object<{ class () {} }>’.
This message shows that the operator == has the name “equals”. Evaluating the expression

a <= a;

yields the error message

Error in "a <= a":

Error in substitute comparison "(a == a) || (a < a)":

Member ’equals’ is undefined in ’object< class () >’.

This error message shows that the expression “a <= b” is reduced to the expression
“(a == b) || (a < b)”.

Finally, note that Table 10.1 only lists the binary operators. There are three unary operators that
can be overloaded, too.

(a) The operator “-” has the name “minus” when used as a unary prefix operator.

It should be noted that SetlX does not support the operator “+” as a unary prefix operator.

(b) The operator “!” has the name “not” when used as a unary prefix operator. This same
operator has the name “factorial” when used as a unary postfix operator.

2. The implementation of the method difference in line 7 and 8 is similar to the implementation
of sum.

3. The method product in line 9 takes two objects of class complex and computes their product
according to the formula

(x1 + y1 · i) · (x2 + y2 · i) = x1 · x2 − y1 · y2 + (x1 · y2 + x2 · y1) · i.
Instead of the “|->”-notation used to define the methods sum and difference we have defined
these methods via the keyword “procedure”. Defining this method via “procedure” is more
convenient as the implementation of the method requires more than one line. As a rule of thumb,
we recommend using the “|->”-notation only in cases where the body of a function fits into a
single line.

4. The method quotient in line 13 implements the division of complex numbers according to the
formula

x1 + y1 · i
x2 + y2 · i =

x1 · x2 + y1 · y2
x2 · x2 + y2 · y1 +

y1 · x2 − x1 · y2
x2 · x2 + y2 · y1 · i.

5. The method power raises the complex number this to the power of the argument that. This
is done with the help of the function exp and log via the equation

zz21 = exp(z2 · log(z1)).
Of course, for this to work we need to implement the functions exp and log for complex numbers.

6. Line 22 defines the function “f exp”. Note that this function is not called “exp” but is rather
called “f exp”. In SetlX, if we want to redefine a predefined function like the function “exp”
we have to put the string “f ” in front of the function name. Later, when we invoke the function,
the prefix “f ” is dropped. For example, if we want to compute the exponential of the imaginary
unit i we can define

i := complex(0,1);

and can then invoke the exponential function as

exp(i);
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The exponential of a complex number z = x+ y · i is computed according to Euler’s formula as

exp(x+ y · i) = exp(x) ·
(

cos(y) + sin(y) · i
)

.

7. Line 22 defines a function to compute the natural logarithm of a complex number z. In order
to compute the natural logarithm of the complex number z = x + y · i we rewrite z in polar
coordinates so that z = r · eϕ·i. Here, r and ϕ are given as

r =
√

x2 + y2 and ϕ = atan2(y, x).

Then we have

log(z) = log
(

r · eϕ·i
)

= log r + ϕ · i.

8. Line 30 defines a function that converts a complex number into a string. If a class C provides a
method with the name “f str”, then every time that an object of class C needs to be converted
into a string this function is called implicitly.

9. Finally, we define the method equals in line 31. This method is automatically invoked when
two objects of class complex are compared using either the operator “==” or the operator “!=”.

10. Since it is not possible to define a linear order on the set of complex numbers that is compatible
with the arithmetic operations, it does not make sense to define the operator “<” for complex
numbers. Therefore, this operator has not been overloaded.
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Predefined Functions

This chapter lists the predefined functions. The chapter is divided into eight sections.

1. The first section lists all functions that are related to sets and lists.

2. The second section lists all functions that are related to strings.

3. The third sections lists all functions that are used to work with terms.

4. The following sections lists all mathematical functions, e.g. functions like sqrt or exp.

5. The next section list all functions that are used to test whether an object has a given type.

6. Section six lists the functions that support interactive debugging.

7. Section seven discusses the functions related to I/O.

8. Section eight discusses the plotting functions.

9. The last sections lists all those procedures that did not fit in any of the previous sections.

11.1 Functions and Operators on Sets and Lists

Most of the operators and functions that are supported on sets and lists have already been discussed.
For the convenience of the reader, this section describes all operators and functions, even those that
have already been discussed.

1. +: For sets, the binary operator “+” computes the union of its arguments. For lists, this operator
appends its arguments.

If the first argument of the binary operator “+” is a set and the second argument is a list, then
the elements of the list are added to the set. If, instead, the first argument is a list and the
second argument is a set, then the set is converted into a list and this list is appended to the
first list.

This makes it trivial to implement a sorting procedure as shown below:

mySort := l |-> [] + ({} + l);

When the function mySort is called with a list l, the following happens:

(a) The elements of the list l are inserted into a set.

(b) The elements of this set, which is ordered since all sets are ordered in SetlX, are inserted
into a list.
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2. *: If both arguments are sets, the operator “*” computes the intersection of its arguments.

If one argument is a list l and the other argument is a number n, then the list l is appended to
itself n times. Therefore, the expression

[1, 2, 3] * 3

yields the list

[1, 2, 3, 1, 2, 3, 1, 2, 3]

as a result. Instead of being a list, the argument l can also be a string. In this case, the string l
is replicated n times.

3. -: The operator “-” computes the set difference of its arguments. This operator is only defined
for sets.

4. %: The operator “%” computes the symmetric difference of its arguments. This operator is not
defined for lists.

Of course, all of the operators discussed so far are also defined on numbers and have the obvious
meaning when applied to numbers.

5. **: The operator “**” computes the power set of the set s if it is used in an expression of the
form

2 ** s.

If, instead, the operator is used in an expression of the form

s ** 2

where s is a set, then it returns the Cartesian product of s with itself.

The operator “**” is not defined for lists.

6. +/: The operator “+/” computes the sum of all the elements in its argument. These elements
need not be numbers. They can also be sets, lists, or strings. For example, if s is a set of sets,
then the expression

+/ s

computes the union of all sets in s. If s is a list of lists instead, the same expression builds a new
list by concatenating all lists in l.

7. */: The operator “*/” computes the product of all the elements in its argument. These elements
might be numbers or sets. In the latter case, the operator computes the intersection of all
elements.

8. ><: If the arguments of the operator “><” are sets, then this operator computes the Cartesian product
of its arguments. For example, the expression

{1,2,3} >< {8,9}
yields the set

{[1,8], [2,8], [3,8], [1,9], [2,9], [3,9]}
If, instead, both arguments of this operator are lists, then the expression

l1 >< l2

zips the lists l1 and l2 into a single list, i.e. the first element of l1 is paired with the first element
of l2, the second element of l1 is paired with the second element of l2, and, in general, the
i-th element of l1 is paired with the i-th element of l2. The resulting pairs are collected in a

— 139 —

https://en.wikipedia.org/wiki/Symmetric_difference
https://en.wikipedia.org/wiki/Power_set
https://en.wikipedia.org/wiki/Cartesian_product
https://en.wikipedia.org/wiki/Cartesian_product


11.1. Functions and Operators on Sets and Lists Chapter 11. Predefined Functions

list, which is the result. For example, the expression

[1,2] >< [3,4]

yields the result

[[1, 3], [2, 4]].

Formally, we can define the function zip as follows:

zip := [l1, l2] |-> [ [l1[i], l2[i]] : i in [1 .. #l1] ];

Then, if the lists l1 and l2 have the same length, we have that

zip(l1, l2) == l1 >< l2.

If, instead, the lists l1 and l2 do not have the same length, then the expression l1 >< l2 raises
an error.

9. arb: The function arb(s) picks an arbitrary element from the sequence s. The argument s can
either be a set, a list, or a string.

Note that an arbitrary element is not the same as a random element. Instead, the element
returned by arb(s) will be either the first or the last element of the set s. However, this fact is
considered an implementation secret and your programs should not rely on this behaviour.

10. collect: The function collect(l) takes a list l of arbitrary elements. The purpose of this
function is to count the number of occurrences of these elements and to compute a binary
relation l such that for every element x in the list l, the binary relation r contains a pair of the
form [x, c], where c is the number of occurrences of x in the list l. For example, the expression

r := collect(["a", "b", "c", "a", "b", "a"]);

sets the variable r to the value

{["a", 3], ["b", 2], ["c", 1]}.
Note that this value can be used as a binary relation.

11. first: The function first(s) picks the first element from the sequence s. The argument s can
either be a set, a list, or a string. For a set s, the first element is the element that is smallest
with respect to the function compare discussed in the last section of this chapter.

12. last: The function last(s) picks the last element from the sequence s. The argument s can
either be a set, a list, or a string. For a set s, the last element is the element that is greatest
with respect to the function compare discussed in the last section of this chapter.

13. from: The function from(s) picks an arbitrary element from the sequence s. The argument
s can either be a set, a list, or a string. This element is removed from s and returned. This
function returns the same element as the function arb discussed previously.

14. fromB: The function fromB(s) picks the first element from the sequence s. The argument s can
either be a set, a list, or a string. This element is removed from s and returned. This function
returns the same element as the function first discussed previously.

15. fromE: The function fromB(s) picks the last element from the sequence s. The argument s can
either be a set, a string, or a list. This element is removed from s and returned. This function
returns the same element as the function last discussed previously.

16. domain: If r is a binary relation, then the equality

domain(r) = { x :[x,y] in R }
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holds. For example, we have

domain({[1,2],[1,3],[5,7]}) = {1,5}.

17. max: If s is a set or a list containing only numbers, the expression max(s) computes the biggest
element of s. For example, the expression

max({1,2,3})
returns the number 3. If s contains elements that are not numbers, then evaluating the expression
max(s) raises an error.

18. min: If s is a set or a list containing only numbers, the expression min(s) computes the smallest
element of s. For example, the expression

min({1,2,3})
returns the number 1. If s contains elements that are not numbers, then evaluating the expression
min(s) raises an error.

19. pow: If s is a set, the expression pow(s) computes the power set of s. The power set of s is
defined as the set of all subsets of s. For example, the expression

pow({1,2,3})
returns the set

{{}, {1}, {1, 2}, {1, 2, 3}, {1, 3}, {2}, {2, 3}, {3}}.

20. range: If r is a binary relation, then the equality

range(r) = { y :[x,y] in R }
holds. For example, we have

range({[1,2],[1,3],[5,7]}) = {2,3,7}.

21. reverse: If l is a list or string, then reverse(l) returns a list or string that contains the elements
of l in reverse order. For example,

reverse([1,2,3])

returns the list

[3,2,1].

22. sort: If l is a list or string, then sort(l) sorts l into ascending order. For example,

sort([3,2,1])

returns the list

[1,2,3].

11.2 Functions for String Manipulation

SetlX provides the following functions that are related to strings.

1. +: The operator “+” concatenates strings.

2. *: the operator “*” repeats a string a given number of times. For example, both of the expressions

3 * "abc" and "abc" * 3
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yield the result

"abcabcabc".

3. char: For a natural number n ∈ {0, 1, 2, · · · , 127}, the expression

char(n)

computes the character with the Ascii code n. For example, char(65) yields the string "A".

Note that char(n) is undefined if either n < 0 or n > 127.

4. endsWith: The function endsWith is called as

endsWith(s, t).

Here, both s and t have to be strings. The function succeeds if the string t is a suffix of the
string s, i.e. if there is a string r such that the equation

s = r + t

holds.

5. eval: The function eval is called as

eval(s).

Here, s has to be a string that can be parsed as a SetlX expression. This expression is then
evaluated in the current variable context and the result of this evaluation is returned. Note that
s can describe a SetlX expression of arbitrary complexity. For example, the statement

f := eval("procedure(x) { return x * x; }");
has the same effect as the following statement:

f := procedure(x) { return x * x; };
Defining a function f via eval(s) is useful because the string s can be the result of an arbitrary
computation.

6. execute: The function execute is called as

execute(s).

Here, s has to be a string that can be parsed as a SetlX statement. This statement is then
executed in the current variable context and the result of this evaluation is returned. Note that
s can describe a SetlX expression of arbitrary complexity. For example, the statement

execute("f := procedure(x) { return x * x; };");
has the same effect as the following statement:

f := procedure(x) { return x * x; };

7. matches: The function matches is called as

matches(s, r).

It returns true if the regular expression r matches the string s. This function can be called with
an optional third argument, which must be a Boolean value. In this case, if the last argument is
true and the regular expression r contains capturing groups, i.e. if parts of the regular expression
are enclosed in parentheses, then the substrings of the string s corresponding to these groups are
captured and the function returns a list of strings: The first element of this list is the string s,
and the remaining elements are those substrings of s that correspond to the different capturing
groups. Chapter 4 contains examples demonstrating the use of this function.
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8. join: The function join is called as

join(s, t).

Here, s is either a set or a list. First, the elements of s are converted into strings. Then these
elements are concatenated using the string t as separator. For example, the expression

join([1,2,3], "*")

yields the string "1*2*3".

The function join comes in handy to generate comma separated values.

9. replace: The function replace is called as

replace(s, r, t).

Here, s is a string, r is a regular expression, and t is another string. Any substring u of the string
s that is matched by the regular expression r is replaced by the string t. The string resulting from
this replacement is returned. The string s itself is not changed. Chapter 4 contains examples
demonstrating the use of this function.

10. replaceFirst: The function replaceFirst is called as

replaceFirst(s, r, t).

Here, s is a string, r is a regular expression, and t is another string. The first substring u of
the string s that is matched by the regular expression r is replaced by the string t. The string
resulting from this replacement is returned. The string s itself is not changed. Chapter 4 contains
examples demonstrating the use of this function.

11. split: The function split is called as

split(s, t).

Here, s and t have to be strings. t can either be a single character or a regular expression. The
call split(s, t) splits the string s at all occurrences of t. The resulting parts of s are collected
into a list. If t is the empty string, the string s is split into all of its characters. For example, the
expression

split("abc", "");

returns the list ["a", "b", "c"]. As another example,

split("abc xy z", " +");

yields the list

["abc", "xy", "z"].

Note that we have used the regular expression “+” to specify one or more blank characters.

Certain magic characters, i.e. all those characters that serve as operator symbols in regular
expressions have to be escaped if they are intended as split characters. Escaping is done by
prefixing two backslash symbols to the respective character as in the following example:

split("abc|xyz", ’\|’);

The function split is very handy when processing comma separated values from CSV files.

12. str: The function str is called as

str(a)

where the argument a can be anything. This function computes the string representation of a.
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For example, after defining the function f as

f := procedure(n) { return n * n; };
the expression str(f) evaluates to the string

"procedure(n) { return n * n; }".

13. toLowerCase: Given a string s, the expression toLowerCase(s) converts all characters of s to
lower case.

14. toUpperCase: Given a string s, the expression toUpperCase(s) converts all characters of s to
upper case.

15. trim: Given a string s, the expression trim(s) returns a string that is the result of removing all
leading or trailing white space characters from the string s. For example, the expression

trim(" abc xyz\n")

returns the string "abc xyz".

11.3 Functions for Term Manipulation

The following functions support terms.

1. args: Given a term t that has the form

F (s1, · · · , sn),
the expression args(t) returns the list

[s1, · · · , sn].

2. evalTerm: This function is called as

evalTerm(t).

Here, t has to be a term that represents a SetlX expression. This expression is then evaluated
in the current variable context and the result of this evaluation is returned. For convenience, the
term t can be produced by the function parse. For example, the statement

f := evalTerm(parse("procedure(x) { return x * x; }"));
has the same effect as the following statement:

f := procedure(x) { return x * x; };
The function evalTerm is an advanced feature of SetlX that allows for self modifying programs.
This idea is that a function definition given as a string can be transformed into a term. This term
can then be manipulated using the facilities provided by the match statement and the modified
term can finally be evaluated using evalTerm.

3. fct: Given a term t that has the form

F (s1, · · · , sn),
the expression fct(t) returns the functor F .

4. getTerm: The function getTerm is called as

getTerm(v).

It returns a term representing the value v. For example, the expression
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canonical(getTerm(procedure(n) { return n * n; }))
produces the following output:

@@@procedure([@@@parameter("n", "nil")],

@@@block(

[@@@return(@@@product(@@@variable("n"), @@@variable("n")))]

)

)

The funny looking function symbols that are preceded by three occurrences of the character “@”
are the functors that are used by SetlX internally.

However, there is one twist when evaluating getTerm(v): If v is either a set or a list, then
getTerm(v) transforms the elements of v into terms and returns the resulting set or list.

5. makeTerm: Given a functor F and a list l = [s1, · · · , sn], the expression

makeTerm(F, [s1, · · · , sn])
returns the term

F (s1, · · · , sn).

6. canonical: Given a term t, the expression canonical(t) returns a string that is the canonical
representation of the term t. The point is, that all operators in t are replaced by functors that
denote these operators internally. For example, the expression

canonical(parse("x+2*y"));

yields the string

@@@sum(@@@variable("x"), @@@product(2, @@@variable("y")))

This shows that, internally, variables are represented using the functor “@@@variable” and that
the operator “+” is represented by the functor “@@@sum”.

7. parse: Given a string s that is a valid expression in SetlX, the expression

parse(s)

tries to parse the string s into a term. In order to visualize the structure of this term, the function
canonical discussed above can be used.

8. parseStatements: Given a string s, the expression

parseStatements(s)

tries to parse the string s as a sequence of SetlX statements. In order to visualize the structure
of this term, the function canonical discussed above can be used. For example, the expression

canonical(parseStatements("x := 1; y := 2; z := x + y;"));

yields the following term (which has been formatted for enhanced readability):

@@@block([@@@assignment(@@@variable("x"), 1),

@@@assignment(@@@variable("y"), 2),

@@@assignment(@@@variable("z"), @@@sum(@@@variable("x"), @@@variable("y")))

])
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11.3.1 Library Functions for Term Manipulation

Beside the predefined functions discussed above, the library “termUtilities” implements three func-
tions that process terms. This library is loaded via the command

loadLibrary("termUtilities");

After loading this library, the following functions will be available.

1. toTerm(t): This function takes a term t that has been produced by a call to the function parse.
This term is then simplified into a more natural structure. For example, if we issue the command

t := parse(exp(x));

and then inspect the term t using the command

canonical(t);

the result is

@@@call(@@@variable("exp"), [@@@variable("x")], "nil").

For many applications, the structure of this term is too complicated. We can simplify the term
t using the function toTerm. After the statement

s := toTerm(t);

we can check that the term s is indeed simpler using the command

canonical(s);

In this case, the result is

@exp(@@@variable("x")).

2. parseTerm(t): Usually, the function toTerm is used to simplify the result of the predefined
function parse. The function parseTerm combines these two functions. It is defined as follows:

parseTerm := s |-> toTerm(parse(s));

3. fromTerm(t): The function fromTerm takes a term t and translates it back into the internal
structure required by the function evalTerm. This function can be seen as an inverse of the
function toTerm, i.e. we have

fromTerm(toTerm(t)) = t

provided t is a term produced by the function parse.

11.4 Mathematical Functions

The function SetlX provides the following mathematical functions.

1. The operators “+”, “-”, “*”, “/”, and “%” compute the sum, the difference, the product, the
quotient, and the remainder of its operands. The remainder a % b is defined so that it satisfies

0 ≤ a % b and a % b < b.

2. The operator “\” computes integer division of its arguments. For two integers a and b, this is
defined such that

a = (a\b) * b+ a % b

holds.
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3. abs(x) calculates the absolute value of the number x.

4. ceil(x) calculates the ceiling function of x. Mathematically, ceil(x) is defined as the smallest
integer that is bigger than or equal to x:

ceil(x) := min{n ∈ Z | x ≤ n}.
For example, we have

ceil(2.1) = 3.

5. floor(x) calculates the floor function of x. Mathematically, floor(x) is defined as the largest
integer that is less than or equal to x:

floor(x) := max{n ∈ Z | n ≤ x}.
For example, we have

floor(2.9) = 2.

6. mathConst(name) can be used to compute mathematical constants. At the moment, and π,
Euler’s number e, and infinity are supported. Therefore, the expression

mathConst("pi")

yields the result 3.141592653589793, while

mathConst("e")

yields 2.718281828459045. To get a number of infinite size, we can write

mathConst("infinity").

SetlX supports a little bit of arithmetic using ∞. For example, the expression

mathConst("infinity") - 42

evaluates to infinity, while

1 / mathConst("infinity")

evaluates to 0. However, expressions like

mathConst("infinity") - mathConst("infinity");

do not have a meaningful interpretation and result in an error message.

7. nextProbablePrime(n) returns the next probable prime number that is greater than n. Here,
n needs to be a natural number. The probability that the result of nextProbablePrime(n) is
not a prime number is less than 2−100. For example, to find the smallest prime number greater
than 1000 we can use the expression

nextProbablePrime(1000).

8. int(s) converts the string s into a number. The function int can also be called if s is already a
number. In this case, if s is an integer number, it is returned unchanged. Otherwise, the floating
point part is truncated. Therefore, the expression

int(2.9)

returns the integer 2.

9. rational(s) converts the string s into a rational number. For example the expression

rational("2/7")
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will return the rational number 2/7. The function rational can also be invoked on floating
point numbers. For example, the expression

rational(mathConst("e"))

yields the result 6121026514868073/2251799813685248. The expression rational(q) returns q
if q is already a rational number.

10. double(s) converts the string s into a floating point number. For example the expression

double("0.5")

will return the floating point number 0.5. The function double can also be invoked on rational
numbers. For example, the expression

double(2/7)

yields 0.2857142857142857. The expression double(r) returns r if r is already a floating point
number.

The implementation of floating point numbers is based on the Java class Double. Therefore,
floating point numbers satisfy the specification given in the IEEE standard 754 for the arithmetic
of floating point numbers.

11. Furthermore, the trigonometric functions sin, cos, tan and the associated inverse trigonometrical functions
asin, acos, and atan are supported. For example, the expression

sin(mathConst("pi")/2);

yields 1.0.

12. The functions atan2(y, x) and hypot(x, y) are useful when converting a point 〈x, y〉 from
Cartesian coordinates into polar coordinates. If a point p has Cartesian coordinates 〈x, y〉 and
polar coordinates 〈r, ϕ〉, then

ϕ = atan2(y, x) and r = hypot(x, y).

Therefore, hypot(x, y) =
√

x2 + y2, while as long as both x > 0 and y > 0 we have

atan2(y, x) = atan
(

y
x

)

.

13. exp(x) computes the exponential function of x, i.e. exp(x) computes ex where e is Euler’s number.
Therefore, the expression

exp(1)

yields 2.718281828459046.

14. expm1(x) computes ex − 1. This function is useful when computing values of ex where the
absolute value of x is very small.

15. log(x) computes the natural logarithm of x. This function is the inverse function of the expo-
nential function exp. Therefore, we have the equation

log(exp(x)) = x.

This equation is valid as long as there is no overflow in the computation of exp(x).

16. log1p(x) computes log(x+ 1), where log denotes the natural logarithm. This function should
be used to compute log(y) for values of y such that y − 1 is small.

17. log10(x) computes the base 10 logarithm of x.
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18. sqrt(x) computes the square root of x, i.e. it computes
√
x. Therefore, as long as x is small

enough so that there is no overflow when computing x∗x, the equation

sqrt(x*x)= x

is valid.

19. cbrt(x) computes the cube root of x, i.e. we have cbrt(x) = 3
√
x. Therefore, as long as x is

not too large, the equation

cbrt(x*x*x) = x

is valid.

20. round(x) rounds the number x to the nearest integer.

21. nDecimalPlaces(q, n) takes a positive rational number q and a positive natural number n as
arguments. It converts the rational number q into a string that denotes the value of q in decimal
floating point notation. This string contains n digits after the decimal point. Note that these
digits are truncated, there is no rounding involved. For example, the expression

nDecimalPlaces(2/3,5)

yields the string “0.66666”, while

nDecimalPlaces(1234567/3,5) returns “411522.33333”.

22. ulp(x) returns the difference between the floating point number x and the smallest floating point
number bigger than x. For example, when working with 64 bits floating point numbers (which
is the default), we have

ulp(1.0) = 2.220446049250313E-16.

ulp is the abbreviation for unit in the last place.

23. signum(x) computes the sign function of x. If x is positive, the result is 1.0, if x is negative,
the result is −1.0. If x is zero, signum(x) is also zero.

24. sinh(x) computes the hyperbolic sine of x. Mathematically, the hyperbolic sine of x is defined
as

sinh(x) := 1
2 ·
(

ex − e−x
)

.

25. cosh(x) computes the hyperbolic cosine of x. Mathematically, the hyperbolic cosine of x is
defined as

cosh(x) := 1
2 ·
(

ex + e−x
)

.

26. tanh(x) computes the hyperbolic tangent of x. Mathematically, the hyperbolic tangent of x is
defined as

tanh(x) :=
sinh(x)

cosh(x)
.

27. isPrime(x) tests whether its argument is a prime number. Currently, this function has a naive
implementation and is therefore not efficient.

28. isProbablePrime(x) tests whether its argument is a prime number. The test used is probabilistic.
If x is indeed prime, the test isProbablePrime(x) will always succeed. If x is not prime, the
predicate isProbablePrime(x) might nevertheless return true. However, the probability that
this happens is less than 2−30.

It should be noticed that the implementation of isProbablePrime is based on random numbers.
Therefore, in rare cases different invocations of isProbablePrimemight return different results.
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11.5 Generating Random Numbers and Permutations

In order to generate random numbers, SetlX provides the functions rnd and random. The easiest to
use of these function is random. The expression

random()

generates a random number x such that

0 ≤ x and x ≤ 1

holds. This will be a floating point number with 64 bits. For debugging purposes it might be necessary
to start SetlX with the parameter

--predictableRandom.

In this case, the sequence of random numbers that is generated by the functions random and rnd

is always the same. This is useful when debugging a program working with random numbers. The
function

resetRandom()

provides another way to reset the random number generator to its initial state.
The function random can also be called with an argument. The expression

random(n)

is equivalent to the expression

n * random().

The function rnd has a number of different uses.

1. If l is either a list or a set, then the expression

rnd(l)

returns a random element of l.

2. If n is an natural number, then

rnd(n)

returns a natural number k such that we have

0 ≤ k and k ≤ n.

3. If n is a negative number, then

rnd(n)

returns a negative number k such that we have

n ≤ k and k ≤ 0.

4. In order to generate random rational numbers, the function rnd has to be called with two
arguments. The expression

rnd(a/b, n)

is internally translated into the expression

rnd(n− 1) * a / (b * (n− 1)).

Therefore, if a is positive, the number returned is a random number between 0 and the fraction
a/b and there will be n different possibilities, so the parameter n is used to control the granularity
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of the results. For example, the expression

rnd(1/2,6)

can return any of the following six fractions:

0, 1/10, 2/10, 3/10, 4/10, 5/10,

while the expression rnd(1/2,101) could return 101 different results, namely any fraction of the
form

a/200 such that a ∈ {0, 1, · · ·100}.
Of course, the user will never see a result of the form 100/200 as this is immediately reduced to
1/2.

The second parameter also works if the first argument is a natural number. For example, the
expression random(1,11) returns one of the following eleven fractions:

0, 1/10, 2/10, 3/10, 4/10, 5/10, 6/10, 7/10, 8/10, 9/10, 10/10.

11.5.1 shuffle

The function shuffle shuffles a list or string randomly. For example, the expression

shuffle("abcdef")

might yield the result "dfbaec", while

shuffle([1,2,3,4,5,6,7])

might yield the list [1, 7, 4, 6, 3, 5, 2].

11.5.2 nextPermutation

The function nextPermutation can be used to enumerate all possible permutations of a given list or
string. For example, the function printAllPermutations shown in Figure 11.1 prints all permutations
of a given list or string. Evaluation of the expression

printAllPermutations([1,2,3])

yields the following output:

[1, 2, 3]

[1, 3, 2]

[2, 1, 3]

[2, 3, 1]

[3, 1, 2]

[3, 2, 1]

1 printAllPermutations := procedure(l) {

2 while (l != om) {

3 print(l);

4 l := nextPermutation(l);

5 }

6 };

Figure 11.1: Printing all permutations of a given list or string.
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11.5.3 permutations

Given a set, list or string l, the expression

permutations(l)

returns a set of all permutations of l. For example, the expression

permutations("abc")

returns the set

{"abc", "acb", "bac", "bca", "cab", "cba"}.
Likewise, the expression

permutations({1, 2, 3})
yields the result

{[1, 2, 3], [1, 3, 2], [2, 1, 3], [2, 3, 1], [3, 1, 2], [3, 2, 1]}.

11.6 Type Checking Functions

SetlX provides the following functions to check the type of a given function.

1. isBoolean tests whether its argument is a Boolean value.

2. isDouble tests whether its argument is a floating point number.

3. isError tests whether its argument is an error object.

For example, consider the following code:

try { throw("foo"); } catch (e) { print(isError(e)); }

Here, the exception e that gets caught has been thrown by the user and therefore is not considered
an error object. Hence, this program fragment prints false. However, the program fragment

try { om+1; } catch (e) { print(isError(e)); }

will indeed print true, as the evaluation of om+1 raises an exception that signifies an error.

4. isInfinite tests whether its argument is a floating point number that represents either positive
or negative infinity.

5. isInteger tests whether its argument is an integer number.

6. isList tests whether its argument is a list.

7. isMap tests whether its argument is a binary relation that maps every element in its domain
uniquely into an element of its range. Therefore, a binary relation r is not a map if it contains
two pairs

[x,y1] and [x,y2]

such that y1 6= y2.

8. isNumber tests whether its argument is a number.

9. isProcedure tests whether its argument is a procedure.

10. isRational tests whether its argument is a rational number.
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11. isSet tests whether its argument is a set.

12. isString tests whether its argument is a string.

13. isTerm tests whether its argument is a term.

14. isObject tests whether its argument is an object.

11.7 Debugging

SetlX supports a few functions to help with debugging:

1. trace: This function is called as either

trace(true) or trace(false).

The expression trace(true) switches tracing on: Afterwards, all assignments are written to the
terminal window running SetlX. To switch tracing of, call trace(false).

2. stop: The function stop is called as

stop(id).

Here, the optional parameter id is a string that reminds you of the location in the program
where it was inserted. When executed, this function produces a prompt. Confirm with no input
to continue the execution, or enter comma separated variable names to display their current
value. Enter ‘All’ to display all variables in the current scope. This function always returns zero,
therefore it is often possible to call this function inside expressions.

3. assert: The function assert is called as

assert(condition,msg).

Here, condition is an expression that has to yield either true or false when evaluated. If
the condition is true, the function assert has no further effect. However, if the evaluation of
condition yields the value false, then the execution of the program is terminated and the error
message msg is printed.

SetlX has an option “--noAssert”. The short form of this option is “-a”. If this option is
activated, the function assert is not evaluated. Hence, in order to speed up the program, this
option can be used to switch off all assertions.

11.7.1 Library Functions for Debugging

The library debugUtilities offers more sophisticated procedures for tracing than the predefined
procedure trace which either traces everything or nothing. The library debugUtilities has to be
loaded using the command

loadLibrary(debugUtilities);

In order to trace a specific procedure, we first need to create a tracer using the command

myTracer := tracer();

Then, a procedure with the name f can be traced via the command

f := myTracer.trace(f, "f");

To deactivate tracing of the function f , the command

f := myTracer.untrace("f");
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can be used. This is explained in more detail in Section 5.3.
Besides tracing, the library debugUtilities also supports a very simple form of profiling , i.e. the

measurement of execution times of a procedure. To this end, the library ”debugUtilities” contains
the class profiler. This class offers the function profile. This function is called as follows:

p.profile(f, "f");

Here, p is an object of the class profiler and f is the name of a function. An example will clarify
the idea. Figure 11.2 on page 154 shows a naive computation of the Fibonacci numbers that makes
use of the method profile.

1 loadLibrary("debugUtilities");

2

3 fibonacci := procedure(n) {

4 if (n in [0,1]) {

5 return n;

6 }

7 return fibonacci(n-1) + fibonacci(n-2);

8 };

9

10 p := profiler();

11 fibonacci := p.profile(fibonacci, "fibonacci");

12

13 for (n in [10 .. 32]) {

14 start := p.mTimes["fibonacci"];

15 fibonacci(n);

16 stop := p.mTimes["fibonacci"];

17 print("$n$: $stop - start$");

18 }

Figure 11.2: Profiling the Fibonacci function.

1. First, we need to load the library debugUtilities in line 1.

2. Line 3 – 8 provide the implementation of the function fibonacci. This function is called with
an integer argument n and fibonacci(n) computes the n-th Fibonacci number. Since we want
to demonstrate profiling, the implementation given here is, on purpose, inefficient.

3. Line 10 creates a profiler p.

4. Line 11 initiates profiling of the function fibonacci.

5. In line 13 – 18 we compute the n-th Fibonacci number for n ∈ {20, · · · , 32}.

6. Every time the function fibonacci is called, the accumulated running time of all invocations
of the function fibonacci is stored in the dictionary p.mTimes under the key "fibonacci".
Hence the expression

p.mTimes["fibonacci"]

in line 14 yields the time spent so far to compute the Fibonacci numbers up to the n−1-th
Fibonacci number in milliseconds, while the same expression in line 16 yields the time spent to
compute all Fibonacci numbers up to the n-th Fibonacci number. Therefore, the difference

stop− start
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is the time to compute the n-th Fibonacci number.

7. The output of this program is shown in Figure 11.3. This output clearly shows that the time
needed to compute the n-th Fibonacci number increases exponentially with n.

1 20: 1005

2 21: 1952

3 22: 2802

4 23: 5604

5 24: 9547

6 25: 12699

7 26: 21346

8 27: 36260

9 28: 60400

10 29: 102612

11 30: 172454

12 31: 288334

13 32: 482399

Figure 11.3: Output of the program shown in Figure 11.2

Besides the procedure profile, the class profiler also implements the procedure unprofile

that stops profiling of its argument. It is called as

p.unprofile("f");

Here, p needs to be the same instance of the class profiler that has been used to initiate profiling
of the function f .

11.8 I/O Functions

This section lists all functions related to input and output.

11.8.1 appendFile

The function appendFile is called as

appendFile(fileName, l).

Here, fileName is a string denoting the name of a file, while l is a list of strings. If file a with the
specified name does not exist, it is created. Then the strings given in l are appended to the file. Each
string written to the specified file is automatically terminated by a newline character.

11.8.2 ask

The function ask is called as

ask(question, answerList).

Here, question is a string that is printed and answerList is a list of all possible answers that the user
can choose from. For example, imagine you are programming some support application for the US
judicial system and your program has to ask your customer a difficult question. The call

ask("How would you like to die?", ["electrocution", "intoxination"]);
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prints the following message to the screen:

How would you like to die?

1) electrocution

2) intoxination

Please enter a number between 1 and 2:

If the user would now presses the digit 1 and hits the enter key, then the function ask will return the
string "electrocution".

11.8.3 deleteFile

The function deleteFile is called as

deleteFile(fileName).

Here, fileName is a string denoting the name of a file. If a file with the specified name does exist, it
is deleted. In this case the function returns true. If a file with the specified name does not exist, the
function returns false instead.

11.8.4 get

The function get is called as

get(s).

Here, s is a string that is used for a prompt. This argument is optional. The function prints s and
then returns the string that the user has supplied. If no string is supplied, get uses the prompt ": ".

11.8.5 load

The function load is called as

load(file).

Here, file has to be a string that denotes a file name, including the extension of the file. Furthermore,
file is expected to contain valid SetlX commands. These commands are then executed. In general,
most of the commands will be definitions of functions. These function can then be used interactively.

11.8.6 loadLibrary

The function loadLibrary is called as

loadLibrary(file).

Here, file has to be a string that denotes a file name, excluding the extension of the file. This file is
assumed to be located in the directory that is specified by the environment variable

SETLX LIBRARY PATH.

There are three different ways to set this variable.

1. The variable can be set a in file like “.profile” or “.bashrc”, or something similar. Depending
on the type of shell you are using, these files are automatically executed when a new shell is
started.

2. The variable can be set manually in the shell.

3. The variable can be set using the option “--libraryPath”.

The specified file is expected to contain valid SetlX commands.
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11.8.7 multiLineMode

The function multiLineMode is called as

multiLineMode(flag).

Here, flag should be an expression that evaluates to a Boolean value. The function either activates
or deactivates multi line mode. If multi line mode is activated, then in a shell the next input expression
is only evaluated after the user hits the return key twice. Multi line mode makes it possible to
enter statements spanning several lines interactively. However, normally this mode is inconvenient,
as it requires the user to press the return key twice in order to evaluate an expression. Therefore,
by default multi line mode is not active. Multi line mode can also be activated using the option
“--multiLineMode” when starting SetlX.

11.8.8 nPrint

The function nPrint is called as

nPrint(a1, · · · , an).
It takes any number of arguments and prints these arguments onto the standard output stream. In
contrast to the function print, this function does not append a newline to the printed output.

11.8.9 nPrintErr

The function nPrintErr is called as

nPrintErr(a1, · · · , an).
It takes any number of arguments and prints these arguments onto the standard error stream. In
contrast to the function printErr, this function does not append a newline to the printed output.

11.8.10 print

The function print is called as

print(a1, · · · , an).
It takes any number of arguments and prints these arguments onto the standard output stream. After
all arguments are printed, this function appends a newline to the output.

11.8.11 printErr

The function printErr is called as

printErr(a1, · · · , an).
It takes any number of arguments and prints these arguments onto the standard error stream. After
all arguments are printed, this function appends a newline to the output.

11.8.12 read

The function read is called as

read(s).

Here, s is a string that is used for a prompt. This argument is optional. The function prints s and then
returns the string that the user has supplied. However, leading and trailing white space is removed
from the string that has been read. If the string can be interpreted as a number, this number is
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returned instead. Furthermore, this function keeps prompting the user for input until the user enters a
non-empty string.

11.8.13 readFile

The function readFile is called as

readFile(file, lines).

The second parameter lines is optional. It reads the specified file and returns a list of strings. Each
string corresponds to one line of the file. This second parameter lines specifies the list of line numbers
to read. For example, the statement

read("file.txt",[42] + [78..113])

will read line number 42 and the lines 78 up to and including line 113 of the given file. This feature
can be used to read a file in chunks of 1000 lines as in the following example:

n := 1;

while (true) {

content := readFile("file", [n .. n + 999]);

if (content != []) {

// process 1k lines

....

n += 1000;

} else {

break;

}

}

11.8.14 writeFile

The function writeFile is called as

writeFile(f, l).

Here, f is the name of the file and l is a list. The file f is created and the list l is written into the file
f . The different elements of l are separated by newlines.

11.9 Plotting Functions

This section lists all plotting functions, specifies their parameters and provide small examples that
demonstrate the use of these functions.

11.9.1 plot createCanvas

The function plot createCanvas returns a canvas object that can be used for plotting. All other
plotting functions need a canvas object as their first argument. In general, it is possible to plot multiple
graphs on a canvas object. However, it is not possible to plot both functions and charts onto a canvas.
Hence, a canvas can either hold function graphs and scatter plots or it can hold statistical charts.

The function plot createCanvas takes one parameter. This parameter is a string that adds a
title to the canvas. This parameter is optional. The function returns a canvas object.
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Example Code

c := plot_createCanvas();

c := plot_createCanvas("Canvas Name");

11.9.2 plot addBullets

This function adds points into a canvas. Currently, these points are represented as squares. The
function plot addBullets is called as follows:

plot addBullets(canvas, coordinates, color, size)

The parameters are interpreted as follows:

1. canvas is a canvas object that has been previously created using the function plot createCanvas.

2. coordinates is a list of pairs of floating point numbers. Hence, these pairs have the form [x, y].
Here x specifies the x-coordinate of the point to be plotted, while y specifies its y-coordinate.

3. color is a list of three integers of the form [r, g, b], where r, g, and b are elements of the set
{1, · · · , 255} that together specify the color of the points to be plotted in the RGB color model.

This parameter is optional and defaults to [0,0,0] which is the RGB code for the color black.

4. size is a floating point value that specifies the size of the bullet. This parameter is optional.

The function returns a reference to the points that have been created. This reference can be used to
remove the points from the canvas via the function plot removeGraph, which is discussed later.

Example Code

c := plot_createCanvas();

b1 := plot_addBullets(c, [[0,0]]); // one bullet

b2 := plot_addBullets(c, [[1,1], [2,2], [3,3]]); // three bullets

b3 := plot_addBullets(c, [[1,2]], [255, 0, 0]); // one red bullet

b4 := plot_addBullets(c, [[1,2]], [0, 255, 0], 10.0); // one bigger bullet

11.9.3 plot addGraph

The function plot addGraph plots the graph of a function. The function plot addGraph is called as
follows:

plot addGraph(canvas, function, label, color, fill)

The parameters are interpreted as follows:

1. canvas is a canvas object that has been previously created using the function plot createCanvas.

2. function is a string that specifies the function that is to be plotted. This string uses the letter
“x” to specify the independent variable. For example, in order to draw the function x 7→ x · x
we could use the string string “x*x”

3. label is a string that is used to label the function in the legend that is drawn at the bottom of
the generated figure.

4. color is a list of three integers of the form [r, g, b], where r, g, and b are elements of the set
{1, · · · , 255} that together specify the color of the points to be plotted in the RGB color model.

This parameter is optional and defaults to [0,0,0] which is the RGB code for the color black.
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5. fill is a boolean parameter that specifies whether the area under the graph should be colored as
well.

This parameter is optional and defaults to false. Hence, if this parameter is not used then only
the graph of the function is drawn.

The function returns a reference to the graph that has been created. This reference can be used to
remove the graph from the canvas.

Example Code

c := plot_createCanvas();

g1 := plot_addGraph(c, "x*x", "parabola");

g2 := plot_addGraph(c, "x**3", "cubic function in red", [255, 0, 0]);

g3 := plot_addGraph(c, "sin(x)", "area under the sine", [0, 0, 0], true);

11.9.4 plot addListGraph

The function plot addListGraph takes a list of points and connects these points via straight lines.
This function is called as follows:

plot addListGraph(canvas, coordinates, label, color, fill)

The parameters are interpreted as follows:

1. canvas is a canvas object that has been previously created using the function plot createCanvas.

2. coordinates is a list of pairs of floating point numbers. Hence, these pairs have the form [x, y].
Here x specifies the x-coordinate of a point, while y specifies its y-coordinate. The points
specified via coordinates are connected via straight lines.

3. label is a string that is used to label the graph in the legend that is drawn at the bottom of the
generated figure.

4. color is a list of three integers of the form [r, g, b], where r, g, and b are elements of the set
{1, · · · , 255} that together specify the color of the points to be plotted in the RGB color model.

This parameter is optional and defaults to [0,0,0] which is the RGB code for the color black.

5. fill is a boolean parameter that specifies whether the area under the lines should be colored as
well.

This parameter is optional and defaults to false. Hence, if this parameter is not used then only
the lines connecting the points are drawn.

Example Code

c := plot_createCanvas();

g1 := plot_addListGraph(c, [[10, 0],[-10,0]], "simple List graph");

g2 := plot_addListGraph(c, [[-10, -10], [-5, -5], [0, 1], [5,6]],

"listgraph with color", [255, 0, 0]);

g2 := plot_addListGraph(c, [[-10, 10], [-5, 5], [0, 0], [2.5,6], [5, -4]],

"listgraph with color and area", [255, 0, 255], true);
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11.9.5 plot addParamGraph

The function plot addParamGraph plots a parametric curve. The function is called as follows:

plot addParamGraph(canvas, x-fct, y-fct, label, limits, color, fill)

The parameters are interpreted as follows:

1. canvas is a canvas object that has been previously created using the function plot createCanvas.

2. x-fct is a string that specifies how the x-coordinate is to be computed. This string uses the letter
“x” to specify the parameter.

3. y-fct is a string that specifies how the y-coordinate is to be computed. Again, this string uses
the letter “x” to specify the parameter.

4. label is a string that is used to label the function in the legend that is drawn at the bottom of
the generated figure.

5. limits is a pair of two floating point numbers. This pair has the form

[ xMin, xMax].

Here, xMin is the smallest value of the parameter “x” that is used, while xMax specifies the
biggest value.

6. color is a list of three integers of the form [r, g, b], where r, g, and b are elements of the set
{1, · · · , 255} that together specify the color of the points to be plotted in the RGB color model.

This parameter is optional and defaults to [0,0,0] which is the RGB code for the color black.

7. fill is a boolean parameter that specifies whether the area between the graph and the x-axis
should be colored as well.

This parameter is optional and defaults to false. Hence, if this parameter is not used then only
the graph of the function is drawn.

The function returns a reference to the graph that has been created. This reference can be used to
remove the graph from the canvas.

Example Code

c := plot_createCanvas();

g1 := plot_addParamGraph(c, "3*cos(x)", "3*sin(x)",

"circle with radius 3",

[-3.15, 3.15]);

g2 := plot_addParamGraph(c, "2*cos(x)", "2*sin(x)",

"colored circle with radius 2",

[-3.15, 3.15], [0, 255, 0]);

g3 := plot_addParamGraph(c, "cos(x)", "sin(x)",

"filled green circle",

[-3.15, 3.15], [0, 255, 0], true);

11.9.6 plot addBarChart

The function plot addBarChart creates a bar chart where the bars are drawn vertically. This function
is called as follows:

plot addBarChart(canvas, values, labels, name)

The parameters are interpreted as follows:
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1. canvas is a canvas object that has been previously created using the function plot createCanvas.

2. values is a list of floating point numbers. These numbers specify the height of the bars.

3. labels is a list of strings. This list has to have the same length as the list values. The strings in
the list labels are uses as legends at the bottowm of the bar chart. For example, in Figure 9.12
on page 119 the list that is used as labels has the form

["Northern America", "Oceania", "Latin America", "Europe", "Africa",

"Asia", "World"]

4. name is a string that attaches a common name to all values given in the list value. This parameter
is used in the legend of the bar chart.

5. Note that there is no parameter to set the color of the individual bars. All bars resulting from
the same invocation of a call of the function plot addBarChart are filled with the same color,
while SetlX uses different colors for different invocation of plot addBarChart. For example,
in order to generate Figure 9.12 on page 119 the function plot addBarChart was called five
times: The first invocation created the red bars corresponding to the year 1900, the second
invocation created the blue bars showing the population in 1950 and so on.

The function returns a reference to the graph that has been created. This reference can be used to
remove the graph from the canvas.

Example Code

c := plot_createCanvas();

ch1 := plot_addBarChart(c, [1,2], ["a","b"], "data set number 1");

ch2 := plot_addBarChart(c, [2,1], ["a","b"], "data set number 2");

11.9.7 plot addPieChart

The function plot addPieChart creates a pie chart. This function is called as follows:

plot addPieChart(canvas, values, labels)

The parameters are interpreted as follows:

1. canvas is a canvas object that has been previously created using the function plot createCanvas.

2. values is a list of floating point numbers. These numbers specify the area of the pies associated
with them.

3. labels is a list of strings. This list has to have the same length as the list values. The strings in
the list labels are used as legends for the pie chart. For example, in the first pie chart shown in
Figure 9.14 on page 121 the list that is used as labels has the form

["white", "black", "latino", "other"].

4. Note that there is no parameter to set the color of the individual pies. These colors are chosen
automatically by SetlX.

The function returns a reference to the pie chart that has been created. This reference can be used to
remove this chart from the canvas.

Example Code

c := plot_createCanvas();

ch := plot_addPieChart(c, [1,2,3,4], ["a","b","c","d"]);
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11.9.8 plot addLabel

The function plot addLabel takes a canvas and adds a label at a specified position. This function is
called as

plot addLabel(canvas, coordinate, label)

The parameters are interpreted as follows:

1. canvas specifies the canvas where the label needs to be added.

2. coordinates is a pair of floating point numbers. Hence, this pair has the form [x, y]. Here x
specifies the x-coordinate of a point, while y specifies its y-coordinate. These coordinates specify
the location of the label. Specifically, the pair [x, y] specifies the position of the lower left corner
of the label.

3. label is a string that is printed on the canvas at the position specified via the parameter coordi-
nates.

The function plot addLabel returns a reference to the label that has been created. This reference
can be used to remove the label using the function plot removeGraph discussed below.

Example Code

c := plot_createCanvas();

g := plot_addGraph(c, "x*x", "parabola");

l := plot_addLabel(c, [0,0], "origin");

11.9.9 plot defineTitle

The function plot defineTitle takes a canvas and adds a title to the graph. Note that the title
is added below the title that is set with plot createCanvas. The function plot createCanvas is
called as follows:

plot createCanvas(canvas, title)

The parameters are interpreted as follows:

1. canvas specifies the canvas.

2. title is the string that is used as title.

This function does not return a value.

Example Code

c := plot_createCanvas();

plot_defineTitle(c, "Title of Canvas");

11.9.10 plot exportCanvas

The function plot exportCanvas stores a canvas on disk as a file in the PNG format. The function
is called as follows:

plot exportCanvas(canvas, fileName)

The parameters are interpreted as follows:

1. canvas is the canvas that is to be saved to disk.
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2. fileName is a string that specifies the name of the file that is used to store the image of the
canvas. Note that the file extension “.png” is automatically added to fileName when the file is
stored on disk.

The function does not return a value.

Example Code

c := plot_createCanvas();

plot_addGraph(c, "cos(x)", "the cosine function");

plot_exportCanvas(c, "cosine");

11.9.11 plot labelAxis

The function plot labelAxis changes the labels of both x-axis and y-axis. The function is called as
follows:

plot labelAxis(canvas, xLabel, yLabel)

The parameters are interpreted as follows:

1. canvas specifies the canvas whose axis are to be modified.

2. xLabel is a string that is used as the new label of the x-axis. If this string is the empty string,
then the label of the x-axis is removed.

3. yLabel is a string that is used as the new label of the y-axis. If this string is the empty string,
then the label of the y-axis is removed.

This function does not return a value.

Example Code

c := plot_createCanvas();

plot_addGraph(c, "x*x", "parabola");

plot_labelAxis(c, "x-axis", "y-axis");

11.9.12 plot legendVisible

The function plot legendVisible shows or hides the legend of a graph. The function is called as
follows:

plot legendVisible(canvas, flag)

The parameters are interpreted as follows:

1. canvas specifies the canvas whose legends are to be shown or hidden.

2. flag is a Boolean value. If flag is true, the legend is shown. If flag is false the legend is hidden
instead.

By default, the legend of a canvas is visible. In order to switch the legend off, the function plot legendVisible

has to be called with its second parameter set to false.

Example Code

c := plot_createCanvas();

plot_addGraph(c, "x*x-2", "parabola");

plot_legendVisible(c, false);
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11.9.13 plot modScale

The function plot modScale changes the scale of both the x-axis and the y-axis. Of course, this
function can only be called for those graphs that have an x-axis and a y-axis. Hence, this function
cannot be called for pie charts or bar charts. The function is called as follows:

plot modScale(canvas, xLimits, yLimits)

The parameters are interpreted as follows:

1. canvas specifies the canvas whose axis are to be changed.

2. xLimits is pair of floating point numbers, i.e. xLimits has the form

[xMin, xMax].

Here, xMin is the smallest value shown on the x-axis, while xMax is the largest value.

3. yLimits is pair of floating point numbers, i.e. yLimits has the form

[yMin, yMax].

Here, yMin is the smallest value shown on the y-axis, while yMax is the largest value.

This function does not return a value.

Example Code

c := plot_createCanvas();

plot_addGraph(c, "x**2-2*x", "parabola");

plot_modScale(c, [0, 5], [-2, 16]);

11.9.14 plot modScaleType

The function plot modScaleType changes the scaling type of an axis. An axis can either be scaled
linearly or logarithmically. If an axis is scaled linearly, then the distance between any two numbers on
the axis is proportionally to the difference of these numbers. On the other hand, if an axis is scaled
logarithmically, then the distance between any two numbers on the axis is proportionally to the quotient
of these numbers. The function plot modScaleType is called as follows:

plot modScaleType(canvas, xType, yType)

The parameters are interpreted as follows:

1. canvas specifies the canvas that is to be changed.

2. xType is a string that is a member of the set {”num”, ”log”}. If xType is equal to the string
"num", then the x-axis is scaled linearly. If xType is equal to the string "log", then the x-axis is
scaled logarithmically.

3. yType is a string that is a member of the set {”num”, ”log”}. If yType is equal to the string
"num", then the y-axis is scaled linearly. If yType is equal to the string "log", then the y-axis is
scaled logarithmically.

The function does not return a value.

Example Code

c := plot_createCanvas();

plot_addGraph(c, "x**2-2*x", "parabola");

plot_modScaleType(c, "num", "log");
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11.9.15 plot removeGraph

The function plot removeGraph removes a graph or a chart from a canvas. The function is called as
follows:

plot removeGraph(canvas, reference)

The parameters are interpreted as follows:

1. canvas specifies the canvas from which a graph or chart is to be removed.

2. reference is a reference to the graph or canvas that is to be removed. This reference is the return
value of any of the plot add* functions.

This function does not return a value.

Example Code

c := plot_createCanvas();

g1 := plot_addGraph(c, "sin(x)", "sine");

g2 := plot_addListGraph(c, [[-1, 1], [-2, 0], [1, 3], [2, 1]], "lines");

g3 := plot_addParamGraph(c, "cos(x)", "sin(x)", "circle", [-5,5]);

l1 := plot_addLabel(c, [1,1], "some text");

b1 := plot_addBullets(c, [[1, 2]]);

plot_removeGraph(c, g3);

plot_removeGraph(c, g2);

plot_removeGraph(c, g1);

plot_removeGraph(c, l1);

plot_removeGraph(c, b1);

11.9.16 plot modSize

The function plot modSize changes the size of the canvas. The function is called as follows:

plot modSize(canvas, size)

The parameters are interpreted as follows:

1. canvas specifies the canvas whose size is to be changed.

2. size is a pair of natural numbers. This pair has the form

[width, height ].

Here, width specifies the new width of the canvas area in pixles, while height specifies the height
of the window.

The function does not return a value.

Example Code

c := plot_createCanvas();

plot_modSize(c, [1024,768]);

plot_addParamGraph(c, "sin(x)", "cos(x)", "circle", [-3.15, 3.15]);

11.10 Miscellaneous Functions

This final section lists some functions that did not fit into any of the other sections.
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11.10.1 abort

This function aborts the execution of the current function. This is done by raising an exception. Usually,
the function abort is called with one argument. This argument is then thrown as an exception. For
example, the statement

try { abort(1); } catch (e) { print("e = $e$"); }
will print the result

e = Error: abort: 1.

Note that an exception raised via abort can not be catched with the keyword catchUsr. The keyword
catchUsr will only catch exceptions that are explicitly thrown by the user via invocation of throw.

11.10.2 cacheStats

The function cacheStats is called as

cacheStats(f).

Here, f is a cached procedure, i.e. a procedure that is declared using the keyword “cachedProcedure”.
Note that f has to be the procedure itself, not the name of the procedure! The returned result is a
set of the form

{["cache hits", 996], ["cached items", 1281]}.
This set can be interpreted as a map.

11.10.3 clearCache

The function clearCache is called as

clearCache(f).

Here, f is a cached procedure, i.e. a procedure that is declared using the keyword “cachedProcedure”.
Note that f has to be the procedure itself, not the name of the procedure! The invocation of
clearCache(f) frees the memory associated with the cache for the function f . It should be used
if the previously computed values of f are not likely to be needed for the next computation.

11.10.4 compare

The function compare is called as

compare(x, y).

Here, x and y are two arbitrary values. This function returns −1 if x is less than y, +1 if x is bigger
than y and 0 if x and y are equal. If x and y have a numerical type, then the result of compare(x, y)
coincides with the result produced by the operator “<”. If x and y are both lists, then the lists are
compared lexicographically. The same remark holds if x and y are both sets. If x and y have different
types, then the result of compare(x, y) is implementation defined. Therefore, the user should not rely
on the results returned in these cases.

The function compare is needed internally in order to compare the elements of a set. In SetlX

all sets are represented as ordered binary trees.

11.10.5 getOsID

The function getOsID returns an identifier for the operating system that setlX runs on.
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11.10.6 getScope

The function getScope is called as

getScope().

It returns a term representing the current scope. Here, the current scope captures the binding of all
variables. For example, suppose the user issues the following commands:

x := 1;

y := 2;

f := procedure(n) { return n * n; };

Then the current scope consists of the variables x, y, and f. Therefore, in this case the expression
getScope() returns the following term:

^scope({["f", procedure(n) { return n * n; }],

["getScope", ^preDefinedProcedure("getScope")], ["params", []],

["x", 1],

["y", 2]

})

11.10.7 logo

The function logo is called as

logo().

In order to find how this function works, try it yourself.

11.10.8 now

The function now returns the number of milliseconds that have elapsed since the beginning of the Unix
epoch.

11.10.9 run

The function run executes a shell command, i.e. a command that would otherwise be invoked via a
shell like bash or the windows command line. The function run(cmd) returns a pair of lists: The first
list contains the strings that make up the output produced when running the command cmd in the
command line. Every string in the list corresponds to one line of output produced by cmd . The second
list is empty as long as cmd does not produce any error messages. If there are error messages, these
are collected in the second list returned as the result of run(cmd). For example, the command

run(’ls *.tex’);

yields the output

[["backtracking.tex", "basics.tex", "closures.tex"], []]

in one of my directories containing TEXfiles. However, if this command is executed in a directory that
does not contain any file with the extension “.tex”, then the output is

[[], ["ls: *.tex: No such file or directory"]]

indicating that there are no files matching the pattern “*.tex”.
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11.10.10 sleep

The function sleep takes one argument that has to be a positive natural number. The expression

sleep(t)

pauses the execution of the process running SetlX for t milliseconds. When printing output, this can
be used for visual effects.
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Appendix A

Graphical Library Functions

The following appendix lists the name of the functions that support the animation of algorithms in
SetlX. The functions are listed in alphabetical order. It should be noted that the graphical library is
an experimental feature that might be subject to considerable changes in the future. It should also be
noted that this library has been derived by Markus Jagiella from the file StdDraw.java that is part of
the booksite accompanying the excellent book on algorithms written by Robert Sedgewick and Kevin
Wayne [SW11].

1. gfx addPlayPauseButton

gfx addPlayPauseButton()

gfx addPlayPauseButton(boolean add)

Sets the Play/Pause Button on the animation frame visible (no parameter or true) or invisible
(false). Default is invisible.

Parameters:

add – the flag to set the visibility

2. gfx addSpeedSlider

gfx addSpeedSlider()

gfx addSpeedSlider(boolean add)

Creates a speed slider on the animation frame if called with either no parameter or arguments
true. Set the slider to invisible if the argument is false.

Parameters:

add – the flag to set the visibility

3. gfx arc

gfx arc(double x, double y, double r, double phi1, double phi2)

Draws an arc of radius r, centered on the point 〈x, y〉, from angle phi1 to phi2. The angles are
given in degrees.

Parameters:

x – the x coordinate of the center of the circle

y – the y coordinate of the center of the circle

r – the radius of the circle

phi1 – the starting angle. 0 would mean an arc beginning at 3 o’clock.
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phi2 – the angle at the end of the arc.

For example, in order to get a 90 degree arc, phi2 should be phi1 + 90.

4. gfx circle

gfx circle(double x, double y, double r)

Draws a circle of radius r, centered on the point 〈x, y〉. The circle degenerates to a pixel if the
radius is too small.

Parameters:

x – the x-coordinate of the center of the circle

y – the y-coordinate of the center of the circle

r – the radius of the circle

5. gfx clear

gfx clear()

gfx clear(String color)

Clear the screen with the given color or the default color (white). Calls gfx show().

Parameters:

color – the color of the background

6. gfx ellipse

gfx ellipse(double x, double y, double semiMajorAxis, double semiMinorAxis)

Draws an ellipse with given semimajor and semiminor axis centered on 〈x, y〉.
Parameters:

x – the x-coordinate of the center of the ellipse

y – the y coordinate of the center of the ellipse

semiMajorAxis – the length of the semimajor axis of the ellipse

semiMinorAxis – the length of the semiminor axis of the ellipse

7. gfx filledCircle

gfx filledCircle(double x, double y, double r)

Draws a filled circle of radius r, centered on 〈x, y〉. The circle degenerates to a pixel if the radius
is too small.

Parameters:

x – the x-coordinate of the center of the circle

y – the y-coordinate of the center of the circle

r – the radius of the circle

8. gfx filledEllipse

gfx filledEllipse(double x, double y, double semiMajorAxis, double semiMinorAxis)

Draws an ellipse with given semimajor and semiminor axis centered on 〈x, y〉.
Parameters:

x – the x-coordinate of the center of the ellipse

y – the y-coordinate of the center of the ellipse

semiMajorAxis – the length of the semimajor axis of the ellipse

semiMinorAxis – the length of the semiminor axis of the ellipse
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9. gfx filledPolygon

gfx filledPolygon(double[] x, double[] y)

Draws a filled polygon with the given 〈x[i], y[i]〉 coordinates.
Parameters:

x – an array of all the x-coordinates of the polygon

y – an array of all the y-coordinates of the polygon

10. gfx filledSquare

gfx filledSquare(double x, double y, double r)

Draws a filled square of side length 2 · r, centered on 〈x, y〉. This square degenerates to a pixel
if r is too small.

Parameters:

x - the x-coordinate of the center of the square

y - the y coordinate of the center of the square

r - the radius r is half the length of any side of the square

11. gfx getFont

String gfx getFont()

Returns the name of the current font i.e. “Arial”.

12. gfx getPenColor

String gfx getPenColor()

Returns the current color of the pen i.e.: “BLACK”.

13. gfx getPenRadius

double gfx getPenRadius()

Returns the current pen radius.

14. gfx hasNextKeyTyped

boolean gfx hasNextKeyTyped()

Returns true if the user has typed a key, false otherwise.

15. gfx isKeyPressed

gfx isKeyPressed(int keyCode)

Returns true if the key with the given keycode is currently pressed and false otherwise.

Parameters:

keyCode – the physical key code of the Java programming language

16. gfx isPaused

boolean gfx isPaused()

Returns true if the animation is paused when this statement is executed and false otherwise.

17. gfx line

gfx line(double x0, double y0, double x1, double y1)

Draws a line from the point 〈x0, y0〉 to the point 〈x1, y1〉.
Parameters:
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x0 – the x-coordinate of the starting point

y0 – the y-coordinate of the starting point

x1 – the x-coordinate of the destination point

y1 – the y coordinate of the destination point

18. gfx mouseX

double gfx mouseX()

Returns the value of the x-coordinate of the mouse.

19. gfx mouseY

double gfx mouseY()

Returns the value of the y-coordinate of the mouse.

20. gfx nextKeyTyped

String gfx nextKeyTyped()

Returns the next unicode character that was typed by the user. This function cannot identify
action keys such as “F1” or arrow keys.

21. gfx picture

gfx picture(double x, double y, String s)

gfx picture(double x, double y, String s, double w, double h)

Draws a picture in gif, jpg, or png format centered on the point 〈x, y〉. If the parameters w
and h are given, the picture is rescaled to a width of w and a height of h. If w or h is too small,
the picture degenerates into a pixel. This function calls gfx show().

Parameters:

x – the x-coordinate of the center of the image

y – the y-coordinate of the center of the image

s – the name of the file containing the image, i.e. “flower.gif”

w – the width of the image

h – the height of the image

22. gfx point

gfx point(double x, double y)

Draws a point at the coordinates 〈x, y〉.
Parameters:

x - the x-coordinate of the point to be drawn

y - the y-coordinate of the point to be drawn

23. gfx polygon

gfx polygon(double[] x, double[] y)

Draws a polygon with the given 〈x[i], y[i]〉 coordinates.
Parameters:

x - an array of all the x-coordinates of the polygon

y - an array of all the y-coordinates of the polygon
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24. gfx rectangle

gfx rectangle(double x, double y, double halfWidth, double halfHeight)

Draws a rectangle of given half width and half height centered on 〈x, y〉.
Parameters:

x – the x-coordinate of the center of the rectangle

y – the y-coordinate of the center of the rectangle

halfWidth – the width of the rectangle is given as 2 · halfWidth
halfHeight – the height of the rectangle is given as 2 · halfHeight

25. gfx setCanvasSize gfx setCanvasSize(int w, int h)

Sets the window size to w×h pixels.

Parameters:

w – the width as a number of pixels

h – the height as a number of pixels

26. gfx setPaused

gfx setPaused(boolean paused)

Sets the start value of the Play/Pause button and determines whether the animation is started
in running or paused mode.

Parameters:

paused – if this is true the animation is paused

27. gfx setPenColor

gfx setPenColor()

gfx setPenColor(String color)

Sets the pen color to the given color or the default (BLACK) if no color is given. The available
pen colors are BLACK, BLUE, CYAN, DARKGRAY, GRAY, GREEN, LIGHT GRAY, MAGENTA, ORANGE,
PINK, RED, WHITE, and YELLOW.

Parameters:

color – the color of the pen

28. gfx setPenColorRGB

gfx setPenColorRGB(double r, double g, double b)

Sets the pen color to the color specified by the values of r, g, and b.

Parameters:

r – the luminosity of the red component of the color

g – the luminosity of the green component of the color

b – the luminosity of the blue component of the color

29. gfx setPenRadius

gfx setPenRadius()

gfx setPenRadius(double r)

Sets the pen size to the given size or the default if no parameters are passed.

Parameters:

r – the radius of the pen
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30. gfx setFont

gfx setFont(String fontName)

gfx setFont()

Changes the current font or restores the default font if no argument is passed.

Parameters:

fontName – the name of the font i.e. “Arial”

31. gfx setScale

gfx setScale(double min, double max)

Set the x and y scale to the given values or the default if no parameters are passed (a bor-
der is added to the values). Has the same effect as the calls setXscale(min,max) and
setYscale(min,max) combined.

Parameters:

min – the minimum value of the x and y scale

max – the maximum value of the X and Y scale

32. gfx setXscale

gfx setXscale()

gfx setXscale(double min, double max)

Set the x scale to the given values or the default if no parameters are passed (a border is added
to the values).

Parameters:

min – the minimum value of the x scale

max – the maximum value of the x scale

33. gfx setYscale

gfx setYscale()

gfx setYscale(double min, double max)

Set the y scale to the given values or the default if no parameters are passed (a border is added
to the values).

Parameters:

min – the minimum value of the y scale

max – the maximum value of the y scale

34. gfx show

gfx show()

Displays the animation on the screen. Calling this method means that the screen will be redrawn
after each invocation of line(), circle(), or square(). This is the default.

35. gfx show(int t)

Displays the animation on screen and pause for t milliseconds. Calling this method means that
the screen will not be redrawn after each invocation of line(), circle(), or square(). This
is useful when there are many invocation of these function necessary to draw a complete picture.

Parameters:

t – number of milliseconds to pause
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36. gfx square

gfx square(double x, double y, double r)

Draws a square of side length 2 · r, centered on 〈x, y〉. The square degenerates to a pixel if small
r is too small.

Parameters:

x – the x-coordinate of the center of the square

y – the y coordinate of the center of the square

r – the side length of the square is 2 · r

37. gfx text

gfx text(double x, double y, String s)

Write the given text string in the current font, centered on 〈x, y〉. Calls gfx show().

Parameters:

x – the x coordinate of the center of the text

y – the y coordinate of the center of the text

s – the string

38. gfx textLeft

gfx textLeft(double x, double y, String s)

Write the given text string in the current font, right aligned at 〈x, y〉. Calls gfx show().

Parameters:

x – the x coordinate of the end of the text

y – the y coordinate of the end of the text

s – the string

39. gfx textRight

gfx textRight(double x, double y, String s)

Write the given text string in the current font, left aligned at 〈x, y〉. Calls gfx show().

Parameters:

x – the x coordinate of the beginning of the text

y – the y coordinate of the beginning of the text

s – the string
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