DRAFT

Program Structure
and

Computaticnal Complexity

Dennis M, Ritchie

‘a‘*- .

SYNOPSIS

The major purpose of this thesis is to show that when the
language in which computations are described is restricted suitably,
there can be an effective relationship between the complexity of a

program and that of the computation it describes. We give two

examples.

The first example is that of Loop programs. A Loop program is
a finite sequence of instructions for manipulating non-negative, un-
bounded integers stored in registers; the instructions allow incre-
menting registers by unity, setting registers to zero, and moving

the contents of

ks

egisters. The only control instructions consist of

Loops; there is a kind of Loop for each number n > 1. A Loop with

)

n = 1 causes the execution of a portion of the program to be repeated
a.predetermined number of times equal to the current contents of a
register. Loops may be nested, one insid? another, to any fixed depth;
but Loops with n > 1 are defined so és to make a Loop of type n+ 1
‘equivalent to a variable depth of nesting of Loops of type n.

b}
Each Loop program is assigned an ordinal @, where 0 < a < u93

which is intended to be the measure of complexity of the progran.

The ordinal assigned %o a program depends effectively on the program,

and measures the depth of nesting of the various kinds of Loops.

The idea of Loop programs whose only Loops have n = 1, although

} original with the author, is not unique to him; for example ilinsky

a)

Hy

[17, pp. 212-215] discuss2s briefly the sams idea. Some resulis o©

o

S/

the theory of such Loop programs have been announced by the author
[22] and published by Meyer and the author [15,16]. The generaliz-
ation with Loop instructions for each n > 1 is believed to be entirely
new.

For each ordinal &, 0 € a < aeﬂ we define a function fa. The
function is recursive, strictly increasing, and if a > B, fa majorizes
f,. The definition of ﬁ& for finite ordinals & is the same as the fn

B
of [15,16] and in general is a modification of the function Wa used

~ by Robbin [25] for much the same purposes. The major results on Loop

programs can be stated as follows: for each Loop program P assigned
ordinal o there is a number‘gf’p effectively derived from P such that

s X requires no more than g;p)

17
steps to halt (Theorem (3.6)). The notation féP) means fa composed

P with inputs x (max{xl,...,xn})
with itself p times. There are some programslg assigned ordinal o
which do in fact require féP)(x) steps to halt when given input x
(Theorem (4.7)). A precise definition of the number of steps used
by a program is a by-product of a formalization of Loop programs pre-
sented in §2.

Further results on Loop programs, and much of the rest of the
thesis, use heavily the notion of computation-time closure. A set
of functions is computation-time closed when both of the following
are true: 1f a function f is in the set, a function b is in the set

where b bounds the time required to compute f on a Turing machine;

0q

L

if b is in the set and b bounds the time reguired to compute f on 2

Turing machine, f is in the set.

52

Y
)
H

E

If qa is the class of functions computable by programs assigned
an ordinal less than or equal to Q, eaéh Ea for o > 2 is computation-
time closed. This allows us to show the following: each class %a for
a > 2 is closed under limited recursion (Theorem (6.8)); each class

£ for a > 2 can be characterized in arithmétic terms, without refer-

ence to Turing machines or Loop programs (Theorem (6.3)); if a pro-

#(p)

o steps as a function of

gram P assigned ordinal & requires only
its inputs where B < @, then'g can be rewritten effectively to yield

a program'g‘-which is equivalent to F but is assigned ordinal . How-
ever, 1t 1s in general undecidable whether these hypotheses hold for
zv(Theorem (12.8))-

The second example of a restricted program language is that
describing the multiple recursive functions [19,21]. Each multiple
recursive function can be defined by a formal system of equations which
can effectively be assigned an ordinal & <&, If ﬁa is the class of
functions defined by systems of equations assigned ordinal &, then
a!ﬂb Ra is the class of n-recursive functions; Péter shows [21] that
the l-recursive functions are the same as the primitive recursive
functions. Much the same theorems are proved for Ra as for Ed' In

particular, ﬁd is computation-time closed for a > 2 (Theorem (2.3));

if £ e ﬁu, f(xl,...,xn) can be computed by a Turing machine in

f&f&(m&x[xl,...,xn}) steps for some p which is effectively found from
the recursion equations defining £ (Theorem (9.1)); f.q € ﬁa (Theorem
(8.3)). These facts alone show: for a > 2, E1+a = @a (Theorem (10.1)).

53

The same kind of techniques are applied to the hierarchies of
Axt [2], Grzegorczyk [9] and Robbin [25]. All of +these hierarchies
are shown to be ldentical to a portion of the fa and ﬁd hierarchies,

and thus to each other. Specifically, if @a, o < w, are the Axt
G

classes, Ea = @a for a > 4 (Theorem (10.4)); if Sa, a < w, are the
Grzegorczyk classes, Ea = §§+l for 2 < o < @ (Theorem (10.9)); if
€, a< wP, are a trivial modification of the Robbin classes, £ = g

(04 x x

for a > 2 (Theorem (10.6)). All of these results are straightforward
using computation-time closure. Not all are new, however. According
to a personal communication, Axt’showed@a = Sg+l for a > ao, aé ~
but used a different method. Meyer showed the same thing independently
[14], using a method like ours. - Robbin [25] showed that U n Sd is the
, a<w :
same as the class of n-recursive functions; however, he did not sub--
divide the latter class after the manner of our @1. It should be
mentioned as well that Robbin established the identity of the h~recﬁrSive
functions and those functions defined by ordinal recursion over certain
"standard" well-crderings of type wmn; and also the classes of functions
occurring in a restricted version of the Kleene subfecuisive hierarchy [13].
It seems lixzely that by closer study equality of these‘classes could
be establiskzd at each ordinal.

-———_—
1

Chapters II, III, an

ol

Iv studﬁéé Loop programs and multiple re-
cursive functions; Chapter V contains three applicationscf the tools
develcoped in the earlier chapters. The most important of these; as we

have indicatsd, 1s the 1d=sa of computation-time closure. An early

st

i

S

appearance of this idea, without an explicit name, was in R. W. Ritchie
[23], who used it to characterizing classes which form a hierarchy of
elementary functions. Cobham [6] pointed out how each Grzegorczyk [9]
class could be characterized in terms of the property, after the manner
of our Theorem (6.2), which states %a is precisely the class of functions

)

computable by a Turing machine in a time bounded by ﬁép for some p.
As we mentioned, Meyer [14] and also Robbin [25] used the idea as well.
Chapter V, §13, discusses unnested and bounded n-recursion [20,
21] and their relation to the %a classesjthus strengthening some theoremj
of Péter [20,21]. §14 examines the properties of computation-time closed
classes of functions in general; its major results are that each Ed in-"
cludes a seéuence of classes, all computation-time closed and closed under
limited recursisn and substitutioquhich is densely ordered under'setv
inclusion (Theorem (14.14)); also, Ed includes an infinite sequence of
classeé with the same closure properties but pairwise incomparable under
set inclusion (Thedfem (14.15)). These two:results wers obtained in
collaboration with Albert R. Meyer. §15 applies Lemma (14.13) to ob-
tain a strengthened vefsion of the Super Speed-up theorsm of Blum [4].
Among the consequences of cur Theorem (15.3) is that there are functions

lying very low in the ﬁa hierarchy whose computation can be sped up,

in Blum's sense, very considerably.

55

I. INTRCDUCTION

§o. Predicting how long a digital computer with a glven program
will requirs to process its inputs is sometimes impossibly difficult.
This difficulty can be partially explained as a manifestation of

the thecrer ithat thers i1s no effective method for bounding the com-

putation fime of a Turing machine by inspection of the machine, or

for bounding the running tims of a program written in any language

capable of describing all recursive functions.

g

In cther worids, any formalism which can describe all terminat-

5

ing computations must describe some nonterminating computations, and

there is no gen=rally effective way of distinguishing the description

from a nondeterminating computa+1u
g

=

o 3

~here can t= no satisfacrtory way of relating the complexity of a pro- -
gram in a sufficliently powerful languagze to the complexity of the
operations it carries out. This fact is borne out most strengly by

»

I xistence of a universal Turing machine: i c u
the existence of a universal Turing machine: a fixed program, actuall

guite small, whose behavicr is as difficult to predict as that of
any pessitle program.

a pregrarm T.r “he copputation is in general impossidtle, this problem,

in common wihn many oShtnor unsclvable problems, has interesting special

i

e

of this method are the linear bounded automata of Myhill [18], the
T{n) countable sequences of Hartmanis and Stearns [10], and the pre-
dictably computable functicns of R. W. Ritchie [23]. Each of these
theories considers computations by a Turing machine where there is
a bound on the time (or the storage space) allowed for computation.
The bound is imposed from outside simply by restricting attention
to those computations which satisfy the bound.

By contrast, the apprcach of this thesis is to restrict the
language in which programs for computations are expressed so that
infinite computations are no longer possible. The first result of

£

this restriction is that there are indeed effectivély calculable

-

bounds on the describable computations, but the important fact is

~Z

bounds becomes a theorem not 2 postulatej;

[y
(@]
=
t
oy
D
[/}
[l

that the exlisteance
about the compurat.ons. It also becomes possible to do forithese

special kinds of programs what 1s impossible for programs in general,

namely to relate the complexity of a program to the complexity of

the calculation it describes; both kinds of complexity, of .course,

have to be takan in the proper sense.

The major part of this thesis 1is the study of two examples of

the technigue of restricting the language in which computations are

el NG)
R . . ".»-"! f i _:A.q_ > .' (AP
described; the renmainder consists of several eppreciations cf the 3
<
tools develnpod In the Tirst part. Before going into the specifics

of Ses, we snouid discuss the possible forms of an
answer Lo - *lont now does the complexity of a program relate
=2 the complowiiy oF tns compubation described hy 17

A

A

namspr s

It is not enough to say merely that there is an effective means !

-

of going from a program and its input to a number bounding the time

3

t

required to run ithe program with that input. For if we know the pro- ;

14

gram eventually does halt, the effective method is simply the follow- ‘i

ing: run the program on the given input and measure the time required. P

£ Y - . . - - 1]
; This method is not only foolish in a practical sense but (far worse, .
from our point <f view) uninteresting mathematically. A better way g

is to give the answer in terms of a known function. Thus if we had
a program with a single input parameter, we might be satisfied to

, . R L
know that for input x, the program would halt within x seconds. This

is the kind of result

e}

iven for the program considered in this thesis.

the other hand, even this kind of answer has many practical

defects. The trouble is thaf many simple programs can run for a long

time. Consider the following pseudo-FORTRAN progran.

J=1 0 :

< fé{

g DO 1I=1, W+l ~ p

1 s-eme =

v - e A - = PR ‘
PRINT — -

e e

- 27 is to replace J, N+ 1 times.

We assume that ths chcrage registers associated with the variables

of the unlimited size. This program is an extremely

1T = &, sevaral pages of paper are required to

N aF 5] ni sa i +all-
Fing J; wnen M = £, tha known universe is totally

[=4 .

insufficient to contain the volume of paper required to write down J.

nr

Thus the function of N which predicts the running time of the program

[

must be very larze. In fact, it is proportional teo

-~
L)

. heigsnt W

(3}

i
V]

This example indicaftes that we must accept one of two things: either
that we agr=e ic treat programs whose running times are so incredibly
long as to preclude any practical application of the results developed,
or that we must throw ouf means of expression, like those in the pro-

gram above, which prograrmers could hardly do without. In either case

}
&

the fact must be faced that there can be no direct practical applic-
dgtions of the thecry. In the latter there is another difficulty. When
programs are restricted severely enough to make every program halt in

:ort time, the exact means of expression allowed to begin to

- have a majicr «Iffect on the time required: 1t matters a great deal, for

iltiplication is allowed as an elementary operaticn

or must be done in steps by means of repeated addition. In the case

¢f real ters, of course, this is an important consideration. But
we have already zivern up real applications by treating only programs

s¢ it would be iImproper to claim

X practical significance for our work merely because of this feature.

4

)

/=2

On the other hand, the mathematical significance of the theory
~an only be enhanced when it is not model-dependent; that is when the
details of *he basic definitions have little effect on the theorems.

Thus, in the prograns descrited below and studied in the sequel it

would make 1 e 1f addition or multiplication were added
as elementary cperations. Wwe study two major examples of ways of
defining computatlions in such a manner that from a program one can

go effectively to a funchilon which bounds the length of the computa-

tion. The %twc examples are Loop programs and definition of functions

by multiple recursion eguations; both involve computations far beyond

the capabtilities cf real computers, but in return give rise to inter-

esting mathematical struactures.

Locp programe wxempiify the apprcach to the theory cf computability

[23] in tha%t a Loop program may be regarded as

a set of instructions *to be executed by a sort of digital computer.
The Turing approach i1s iypified by the use of simplified models of
real compurters; it 1s probably the one most fregquently found.

ugn equivalent version of the theory of computa-
bility i3z the one bvased on systems of Herbrand-33del-Kleene recursion

ty Kleene in [11] and [12, §54]. Our second

example, -nz” of d=2finizizn of functicns by multiple recursion, bears

ot
]

definition by unrestricted recursion

ct
Q

programs in general: in each case the

(B

4 in such a way that infinite computa-

'\

A Loop program is a sequence of instructions for manipulating
non-negative integers stored in registers; each register is capable
of storing an arbitrarily large number, and the number of registers
to which a program refers is fixed but unlimited. There are instruc-
tions for moving the contents of registers, for incrementing by unity,
and for setting registers to zero. The flow of ceontrol in a Lbop
program normally passes from one instruction to the next in sequence,
and the only way of affecting the normal flow is through the use of

Loops. A Loop is introduced by a LOOP instruction and terminated by

- an END instruction. Together these indicate that the section of the

program between the two instructions is to be executed repeatedly
some number of times. There is a wvariety of LOOP instruction% one
for each number n > 1; these are written LOOP(1), LOOP(2), etc.

Each kind of LOOP instruction names a register whose contents
control the looping. In the case of the instruction "LOO?(l) x",
for example, X may be any register name. -This instruction causes the
portion of the program between itself and its matching END to be re-
peated a number of times equal to the contents of X at the time the
LOOP is encountered; subsequent changes to X do not affect the number
of times the repetition occurs. Thus a Loop introduced by LOOP(1)
is entirely comparable to the DO loop of FORTRAN and to the most usual -
cases of the £g£ of Algol and the THROUGH of MAD. The similarity is
not accidental, for part of the motivation for the study of Loop pro-

grams is to study the power of this construction.

.
7

Loops may contain other Loops; that is, Loops may be nested to
any fixed depth. This is the motivation for the existence of LOOP(n)
instructions for n > 1l: the effect of LOOP(n+1) is defined so as to
make such a Loop equivalent to a variable depth of nesting of LOOP(n)

Loops. In particular, the program

LOOP(n +1) X
Q

~

END

where n > 1, X is a register name, and Q@ 1s a program, equivalent to

the program

LOOP(n) X

N X
LOOP(n) X

{
END

: x
END

where x is the number in X initially; that is, we have a nest of
LOOP(n) Loops of depth x. There are no constructions in real pro-
gramming languages comparable to LOOP(n) where n > 1.

To each Loop program an ordinal & is assigned, where & < u?{
The ordinal is derived directly from the depth of nesting of the
various kinds of Loops: for a program without Loops, & = C; if a
program is the concatenation of two programs with ordinals B, 71,

the ordinal assigned is &

il

max(B, v); if program Q is assigned

O
H
ot
‘.4 .
o]
W
[
W
ct,
b)
b
)
3
e
O
[t1e]
=
2y,
1]

LiTal

~

LOOP(n+1) X

3
END

for n > 0 and X a register name, is assigned a= B+—wnr Then, for
example, {E%; program which uses only LCOP(1l) instructions is as-
signed a finite ordinal equal to the greatest depih of nesting of

Loops in the program. The ordinal assigned to a program is the

it

measure of complexity of the program.
The notion of computation by Loop program can be formalized;
a by-product of the formalization is a precise definition of the

running time of a given program as a function of. its inputs. The

running time measures the number of-iﬁdi?idual instruction executions
™ required to complete a program and in a sense the Justification for
introducing the somewhat opagque formalism is to make reasonable the
claim that the complexity of afgalculation is measured accurately
by its Mning time. | A
The basic result on Loop programs is the Bounding Theorem (3.8).
We introduce for each ordinal «, o < dm, a function fa as follows:

ifa= 0,

x+1 if x <1
£ (x) = ,
X+ 2 if x> 1

If ¢ is a successor ordinal, = B+ 1,

I¢

4
F

5 Fs
- 7

where the notation f(x)(y) means f{(f(...f(y)...)); there are x com-
positions of f. That is, fB+l is defined from fB by iteration. If
@ is a limit ordinal, let B be the least ordinal so g = Bf-wn+l,

where n > 0. Then

o

£,(%) = Tp, (%)

Thus at limit ordinals, ﬁu is defined by diagonalization over a

certaln sequence {fB_} of functions where BO < Bl < --- and sup{Bi]
1 :

= Q. The first few fa are easy to describe:fl(x) = min(1, 2¥))

fz(x) = Zx;

fs(x) = 2%

The details of the definition of fd arg unimportant. For finite
ordinals, a = n, fa is the same as the fn,used in [15] and [16];
at limit ordinals, the definition is the same as that usea by’Robbin
[25] for his’functions Wa, which play the same role as our fa. What

is important is that the I, are easily defined and have pleasant

properties: each f_ 1ig a strictly increasing function, and if o > B,

Qa
f majorizes (bounds almcst everywhere) the funciion f..
a B
Given the function fa, the Bounding Theorem is: if P is a pro-
~

gram assigned ordinal @, there is a fixed number p, efiectively

found from P, such that the running time of P with inputs Xypeer X
. } (v), . A
is bounded oy fa‘ \maxtx-,...,xn}).

By fixing upon oﬁe or more registers for input and a register
for output, we associate with a Loop program a function computed by
that program; the class of functions computable by Loop progfams
assigned ordinals less than or equal to & is called Ea. It is an
immediate consequence of the Bounding Theorem that every function
f e Ea has a p so f(xl,...,xn) < fép)(max{xl,...,%n}). Also, for

each @ < & there is a function %a € Ea SO ?a(x) > fa(x); it is im-

'

mediate that the classes Ea form a hierarchy, for it is easily shown
that if a > B, fa(x) > féc)(x) for each ¢ and almost all x. Already
several of the goals looked for in the study of Loop programs have

been achieved, for 1t follows first that every program assigned or-

dinal o consumes no more than f(p)(

o max{xl,...,xn}) steps when given

input x X and second that there are some programs assigned

17
ordinal « which actually do require this many steps to halt. Thus
the ordinal assigned a program is a reasonable measure of the (po-
teﬁtial) complexity of the computation degcribéd by the program.

The further study of Loop programs, and in fact much of the re-

mained of the thesis, is heavily concerned with the property of com-

putation-time closure of a set of functions defined as follows: first,

§ when a functicn is in the set, it can be computed by a Turing machine

in a number of steps which is bounded, as a function of the inputs, by
another function in the set; and second, if a bound on the computation

time of a functicon is in the set, the function itself is in the set.

I

}) Each class . for o > 2 is computation-time closed. The first require-

ment 1s met by combining the Bounding Theorem with a demonstration that

Tb

a Turing machine can simulate an arbitrary Loop program while coﬁ-
suming a number of steps which is an 52 function of the running
time of the Loop program; the second by finding a Loop program
which simulates a Turing machine calculation carried out for a
given number of steps, and then substituting the known bound on
the length of the computation into the simulation program.
(haowai

The computation-time of fa leads immediately to several
theorems; for example, if it is known that a program assigned or-
dinal ¢ actually has a running time bounded by féc) where 2 é B <qa,
the program can be =ffectively rewritten so it 1is assiﬁged ordinal B.
It is also shown that each class Ea, o 2-2,?15 closed under the oper-
ation of limited recursion (see Grzegorczyk [9]); that each class qx,
Q > 2, can be characterized in purely arithmetic terms, without re-"
ference either to Turing machines or Loop programs; and that every
primitive recursive function is in Ea for some finite ordinal o.

Our second example 1s that of the multiple recursive functions.

These are, for our purposes, precisely those functions definable by

certain formal systems of equations. We imagine a language contain-

ing symbols for constants, variables, function letters, and appropriate

punctuation, combined in such a way as to represent definitions of
effectively computable functions. This language is simply a formal
version of the informal definition of fumctions by means of various
kinds of recursion, including, for example, primitive recursion.

Unlike Xleenz [11, 12] however, we place certain restrictions on the

form of the systems of equations. In particular, an equation defining

YAl

5

a function in terms of already-defined functions must be an instance

of one of several schemata, namely those of substitution and n-

recursion for some fixed integer n > 1. Substitution simply means
obtaining a new function by means of explicit transformation or |
composition of other functions. The schema of n-recursion allows
defining a function f(xl,...,xn) in terms of known functions and
values of f itself at arguments Zyseeesly such that the n-tuple
Zyseees2Z) is lexicographically less tﬁan XysenerX - The very form
of the schema of n-recursion is such as to ensure that the set of
equations constituting an instance of n-recursion actually does de-
fine a function effectively.

An ordinal o < o° can be effectively attached to each formal
system of equations satisfying certain purely syntactic requirements.
Letting Ra be the class of functions definable by systems of equations
with ordinals less than or equal to @, another hierarchy results which
is equivalent to the following: ﬁo consists of the closure under sub-
stitution of the constant and identity functions;”ﬁd for every @ > 0
consists of the closufe under substitution of all functions f for which
there exist P and n so @ = P+a and f is definable by (n<+l)—recursioﬁ
from functions in &,.

P

For each n > 1 the functions in n ﬁd are callsed n-recursive;

U
o <w
functions which are n-recursive for some n constitute the multiple re-

cursive functions. The nction of rultiple recursive function is a ge-

neralization of that of primitive rescursive function, which was intro-
= J

—

L

functions are identical to the primitive recursive functions. Ackermanh

[1] first introduced a 2-recursive (also called double recursive)
function and used it to show that there are effectively computable
functions which are not primitive recursive. Péter [19,20,21]
studied the whole class of multiple recursive functions.

Qur examination of the multiple recursive functions uses much
the same methods as those applied to Loop programs. A Bounding Theorem

f(P3 for
(RN
some p which can be found effectively from the formal system of

for Qa establishes that each function in ﬁa is bounded by

equations defining the function; on the other hand, f € RO for

1+ o
a > 1. Likewise, each class Ra for a > 2 is computation-time closed;
this is established by considering the number of steps a Turing

machine would require to carry out the evaluation of a function from

its defining equations. Then the theorem El = Rd for ¢ > 2 is im-

+O
mediate. For if f ¢ £l+a’ f(xl,...,xn) can be computed on a Turing

machine in no more than f (max[xl,...,xn}) steps; but the latter

(p)
1+x
function is in @a, and so by the computation-time closure of @a;

f € @a. The converse argument is identical.

It is. here that the concept of computation~-time closure is most
important. For to show directly that 51*3 = ﬁd is quite difficult.
In particular, if o < w then to construct an equivalent Loop program
with ordinal 1+4+¢ directly from the equations defining an ﬁd function
is quite hard. But given that the ﬁa function can be computed by a

steps, one need only write a program which

Turing machine in fgfé

/3

(p

140 and insert it into

computes any function at least as large as f
a program to simulate the Turing machine.
The same kind of methods are also applicable to three-other

hierarchies, those of Grzegorczyk [9], Axt [2], and Robbin [25].
The first two classify the primitive recursive functions and the
third all the multiple recursive functions. The point of interest
is that each of these hierarchies is identical to a corresponding
portion of the qa and ﬁd hierarchies; the classes of functions
evehtually become the same.

T;The idea of computation-time closure, which plays a major role
in our work, was used by R. W. Ritchie [23] without an explicit name;
its value in characterizing the Grzegorczyk hierarchy was pointed out
by Cobham [6]. Some of the results of Robbin [25] make implicit use
of the idea.

The usefulness of the notion is that the particular functions

in a computation-time closed set of functions depend merely on the

.approximate size of the functions in the set; that ig a function is

in the set if and only if a sufficiently large functiocn is in the set.
For example, supposeCL and D are two ccmputation-time closed sets of
functions, and that D contains both a function which grows at least
exponentially and a function which majorizes every function of €
Then it can be shown not iny that O contains £ properly, but that 9

contains a function universal for €: a function U € £ so that for each

£ el, f(x) = Ule,x) for some =.

s

™)

L e o4

g

The secondary goal of this thesis is to study the application
of computation-time closure and other tools developed in the pursuit
of the primary goal. The most important application, of course, is
the study of the classes Ea and Rd, which arise from Loop programs

and multiple recursive functions. There are three others: the ef-

, fects of various restrictions on the schema of n-recursion; the ex-

tent to which computation-time cloéure characterizes a set of functions
(which leads to an impressive refinement of the Sa hierarchy); and the
existence of functions whose computation can be sped up very greatly.

For the ﬁbst part this thesis is self-contained. The only re-
quirement is a knowledge of the elementary theory of’Turing machines:
what they are, and a few of the tricks that they can perform in order
to carry out intuitively simple kinds of operations. Familiarity with
the first few chapters of Davis [7] is more than enough background.

The mathematical notation in the thesis is generally standard.

We use a bar over a letter to indicate a sequence of elements: "xn"

is the same as "xl,...,xn". In each case the first subscript in the
sequence is 1 and the last is the same as that on the barred letter.
Variables and constants,usually indicated by small letters ?j‘ﬁkﬁ
alphabet, all range over N, which is the class of non-negative integers;
functions, often small letters f, g, h, are always functions from i
into ¥ for some n; sets of such functions are usually denoted by capital

script letters. Small Greek letters from the beginning of the alphabet

are used for ordinal numbers. Functional composition is often denoted

N
Tl

by juxtaposition, especially with one-place functions: fg(x) is the

same as f(g(x)). Finally "c" means strict set theoretic containment.

it

yar

ITI. LOOP PROGRAMS

§1. ° A Loop program is 'a finite sequeﬁce of instrucﬁions for manip-
ulating non-negative integers stored in registers. There is no limit
to the size of an integer stored in a register, nor to the number of
registers to which a program may refer; bﬁt a given program refers
only to a fixed set of registers. We will use upper case English
letters, sometimes with subscripts, as register names, and abbreviate

a sequence X .,Xn of register names by in' Boldface capitals (iden-

170
tified by a wiggly underscpre) stand for Loop programs, and if P is a
program Reg QE) is the set of register names used by P.

The instructions of a Loop program are of five types:

(1) xX=0

. (2) X=X+1

J ’ (3) x=¢
(4) LooP(n) X where n is a fixed integer, n > 1
(5) END

Here "X" and "Y" may be replaced by any names for registers, and the

"o" of "X = O" is to be read “"zero".

“(1.1) Definition. The class L of Loop programs is U Lo where O

ranges over ordinals < aei and whefe %a is the smallest class

satisfying

(i) Ifa=o0, L, is the class of finite sequences of type (1),
(2), and (3) instructions,

(ii) If Pe LB and P < @, then P € L,

(iii) If @, R € L, and P is Q concatenated with R,
then‘g € Hx’
(iv) If qQ € LB and @ = B+ for some n, O <n < w

then‘g € ya, wheretg is

LoOP(n+1) X
Q

~

END
and X is any register name.

By (1.1.iv), type (4) and (5) instructions occur in pairs, like
parentheses in a well-formed formula, so that the LOOP-END pairs in
a program are unambiguously determined. |

The first three types of instruction have the interpfetation
suggested by their appearance. "X = O" means that the contents of
register X are to be replaced by zero; "X = X+ 1" means that the
 contents of register X are to be incremented by one; "X = Y" means
that the contents of register Y éré to be copied into register X,
destroying the old contents of X but leaving Y unchanged. These are
the only instructions which affect the registers.

Instructions of types (1), (2), and (3) are executed sequentially
in the order in which they appear in the program. Type (4) and (5)
instructions affect the normal order by indica?ing that the execution
of the block of instructions between the LOOP and its matching END

is to be repeated zero or more times.

The effect of a LOOP(n) instruction is defined by induction on

n. Specifically suppose that P is a Loop program, and that x is

stored in register X initially. Then the program

100P(1) X
P

~

END

means that P is to be repeated x times in succession before the
next instruction (if any) after the END is executed. Changes in
the contents of X by P do not affect the number of times P is exe-

'cuted; and if x is zero initially P is not executed at all.

(1.2) Example. The L, program

L00P(1) X
X=X+1
END

doubles the contents of register X.

(1.3) Example. If the initial contents of X and Y are x and Y,

the L2 program

LooP(1) Y

leaves x:y in X, where x:y (pronounced "x monus y")

equals x- y if x >y, O otherwise.

Suppose now that the interpretation of the effect of a
LOOP(n) - END pair has been given for some n > 1, and P is a Loop

program. Say that the initial contents of register X are x > 1.

Then we interpret the program

I00P(n+1) X
P

~

END
as being identical to

100P(n) X
Loo:?(n) X 5 x

LOOl;(n) X

.) x

J

where the LOOP(n) - END pairs are nested to depth x. If x is zero

initially, the effect is the same as

LOOP(1) X
P

~

END

ihat is, P is not executed at all.

%
(1.4) Example. Suppose we have the L ~program

i

(1.5)

LOOP(2) X
X=X+1
END

and X contains 2. Then the program is equivalent to

LOOP(1) X
LOOP(1) X
X=%X+1
END
END

and execution of the program would leave 8 in register

X. HNotice that the depth of nesting is not affected by

changes to X.

Example. If the initial contents of register X are 2,

the La? program

LOOP(3) X
X=X+1
END

is equivalent to the program

LOOP(2) X
LOOP(2) X
X=X+1
END
END

which is in turn equivalent to

% ;
5]
i

LooP(1) X
LOOP(1) X
LOOP(2) X
X=X+1
END
END
END

2]

Now when the program Q indicated above 1s executed, the
contents of X will change to 8, by Example (1.4). But

then the next time Q is executed, @ will be equivalent to

LOOP(1) X
. depth 8
1OOP(1) X
f; X=X+1
END
. depth 8
END

Thus the expansion of a LOOP(n+ 1) - END pair in terms of
LOOP(n) - END depends on the contents of the associated

register at the time the LOOP is encountered.

Finding the number left in register X by the program of (1.5) is

left as an exercise for the persistent reader.

§%. Although it would be possible to characterize formally the

. n;tion of computation by Loop program directly in terms of the in-
formal discussion above, the examples, especially (1.5), should have
convinced the reader that such a characterization would tend to be
quite complicated; more seriously, the individual steps in a com-
putation by a Loop program would in themselves involve considerable
computation. This is undesiyable because we will be attempting to
measure the computational complexity of a function by the number of
steps required to compute it. If the individual steps turn out to
be nearly as complicated as the function itself, this measure can
hardly be claimed to have much significance.

We will circumvent this kind of objection by giving a definition
of computation by Loop program whose individual steps are quite ele-
mentary. The price that must be paid for this characterization is
that it is no longer clear from the definition that Loop programs be-
have as outlined in §1; thus, a theorem must be proved which states
in effect that Loop programs operate as desired. Thé proof, unfor-
tunately, is rather tedious; but given the theorem, we can seiect
whichever version of computation is more appropriate to the case at
hand.

To begin this alternate characterization, associate with each
program P not only the registers Reg QR), but also a switch and a

pushdown store; the latter are used by LOOP and END instructions.

(2.1) Definition. A pushdown store is either the single

object (0) or the pair (t,p) where t is an n-tuple
of in£egers é.nd p is a pushdown store. If a push-
down store is (0) it is empty. The depth of (0) is
(0), and if p is a pushdown store whose depth is m,

the depth of (t,p) is m+ 1.

For the remainder of this section, -let P be a Loop program
With Reg (P) = (}'cr] and let P consist of the sequence I ,I,,...,I,
of instructions where e > 0. There is of course no loss of general-

ity in restricting Reg (P) in this way.

(2.2) Definition. A state of P is an (r+ 3)-tuple (;cr,i,ﬂ,p)

where XJEOfor 1< j<r, vhere 1 <1i<e+l, where

~
«’g

0< £ <1, and where p is a pushdown store. A state is

initial if i = 1 and is final if i = e+ 1.

(2.3) Definition. If s and s' are states of P with

s = (ir,i,ﬂ,p) and s' = (fc;‘,i',l,',p'), then s' is the

next state of s under P if i # e+1, ;(1" = ;(r except as

~

provided in (i), (ii), (iii) below, and one of the fol-
lowing holds for some k, n:

(1) If I, is "X = 0" then x! = 0, i' =i+1, £ =14"' =0,

and p' = p;
(ii) 1f I, is "Xk = Xk+l" then x} = x +1, it = i+1,

£=12'=0, adp = p;

(iii) 1f I, is "X

- Xj" then x = x_, i' = i+1,

J
L =1' =0, and p' = p;

(iv) 1If I, is "LOOP(n) Xk" and the matching END is I
then i' =m, £ = £' = 0, and p' = (t,p) where
t = (al,...,an;l) and for all j with 1 < j < n,
a5 = 5L 8, = %

(v) For the remaining five cases let I, be "END",

P = ((al,...,an;a), q), and let the matching

]
o
-

LOOP instruction be I_ = "LOOP(n) Xk". If a
m n

a=1, %4 =0, then i' =i+1, £' = 0, p' = q; or

(vi) If a = O, a=0,£ =0 then i* =1, £' = 0,
P =g
(vii) If for all j with 1 < j < n, ay = 0, but a_ £0
and £ = 0 then i' = m+1, £' = 0, p' =
((al,...,an_l,an-l;a), al);

(viii) If for some u with 1 < u < n, a, 4 0, and a £ 0,

£ =0, theni' =1, £' =1, p'=((a),--- 8 _;,8 -15a),q);

(ix) If for some u with 1 < u < n, a, # 0, and for all
jwith u< j <n, aj =0, and £ = 1, then i' = i,

2' =0, p'=((a

i _ l,..:,ah;o), p) where for 1 < j < u,

al = a., aﬁ = au-l, and for u < j <n, aé = xk=l,

i

|
(é.4) Definition. Let P = I,, I,,...,I be a Loop program.

§
i

2’

A sequence s FE of states of P is an execution

10
of P whenever
(1) s, is initial, and
(ii) s, is final, and

(iii) The pushdown stores of Sy and s, are the same, and

(iv) For each i, 1 < i < m, {41 is the next state of
s. under P.
i ~

If the pushdown store of Sy is empty, the execution is proper.

(2.5) Definition. If there is a unique execution of P of length

m beginning with (;“cr,l,o,p) and ending with (J—c;,e+ 1,0,p)

~then for 1 <i<r, xi is the integer left in Xi by P when

Reg QB) initially contain xr. Also m-1 is the running

time.

(2.6) Definition. If for each ir there is a unique proper exe-
cution of P beginning with (x,1,0,(0)), then let T (x;) be
the running time of the execution beginning witﬁ (;:,1;0,(0)).

Definition (2.2) may seem complicated, but its complexity lies
in the multitude of clauses rather than in the clauses themselves.

A more comprehensible descriptién of the execution of a Loop program

can be given as follows.

(i)-(iii) 1If the current instruction is an instruction of type

(1), (2) or (3), carry out the instruction in the obvious way and go

on to the next instruction.

}

(iv) ‘If the current instruction is "ILOOP(n) Xk" put the
(n+1)-tuple (xk=l,...,xk=l,xk;l) on the pushdown store. (If n = 1,
put (xk;l) on the puShdan store.) Then go to the matching END
instruction.

(v) If the current instruction is "END", and if the top of
the pushdown store is (al,...,an;l) with a =0, and £ = 0, pop up
the pushdown store and go on to the next instruction.

(vi) 1If the current instruction is "END", and if the top of

the pushdown store is (a ...,an;O) with a = 0, and £ = 0, pop up

1°
the pushdown store and do this instruction again.

(vii) If the current instruction is "END", and if the top ofi
the pushdown store is (al,...,an;a) with a; = 0 for al; i < n but
an~¥ 0, and £ = 0, subtract 1 from a, and go to the instruction fol-
lbwing the matching LOOP.

(viii) If the current instruction is "END", and if the top of
the pushdown store is (al,...,an;’a) with a, % 0 and a, % 0 for some
u < n, and L= 0, subtract 1 from a and set £ = 1; then do this in-
struction again. |

" (ix) 1If the current instruction is "END", and if the top of

the pushdown store is (al,...,au,o,...,o,an;a) with 1 <u <n and
a, # 0, and £ = 1, and if the mz;.tching LOOP instruction is "LOOP(n) Xk",
then set £ = 0 and put the (n +1)-tuple (al,...,au_l,auil,xkil,...,xkél,xk;o)

on the pushdown store; then do the END instruction again. This ex-

hausts the cases which can.possibly arise.

Examination of the various cases of (2.3) should convince the
réader that the next state of a given state is uniqﬁe if 1t exists
at all, and thus that there is at most one executionAwith a‘given
initial state. The possibilities do arise that a state has no next
state yet is not final, or that there is never a final state;
but the theorem about to be proved has among its consequences that
from any initial state thereis exactly one execution, and thus that
the running time TP

~

functions from Nr into N.

and the integer left in Xi are well-defined

(2.7) Definition. Two programs P and ? are equivalent if given
any initial state of P and P there are unique executions
Of,g and;g whose final states are the same except perhaps in

the third from last ("instruction counter”) component.

(2.8) Theorem. Let P be a Loop program using r registers.

(i) If s = (ir,l,o,p) is an initial state of P, there
is a unique execution of P beginning with s; furthermore,
the running time and the integers left in Reg (P) are

independent of p, the initial pushdown store.

(ii) If P is of the form

LOOP(1) X
Q

~

END

| &

where Q is a Loop program and X is a register

name, let X contain x initially; then‘E is

equivalent to P

o o

1)

and TP(ik) = Tis(ik) +xX + 2.

~ ~

(iii) If P is of the form

LOOP(n+1) X
Q

~~

for Q a Loop program, n > 1, and X a register

name, let X contain x initially. Then if x>0

P is equivalent to ﬁ =
1LooP(n). X
1ooP(n) X

. X
1LooP(n) X

Q
END

. X
END
END

1M
f

and if x=0, P is equivalent to

100P(1l) X
Q

~

END

| In both cases Tﬁ(xr) = TP(xr).

Proof. The proof is by transfinite induction on Definition (1.1)
pf ya.
If Pe I, by (1.1.i), so that @ = O and P contains no LOOP in-

structions, (i) of the theorem is obvious and (ii) and (iii) are

vacuous. If’g € Iu by (1.1.ii), so that’g € Lﬁ with B < &, the theorem

is immediate by the induction hypothesis. If P ¢ IU by (1.1.iii) so
that P is Q concatenated with Bﬁ any final state of Q corresponds in

an obvious way with an initial state of R; the details are omitted.

Now assume that P e L, by (1.1.iv) with n = 0; that is, P is

LooP(1l) X
Q

END
for some Q € LB where @ = B+ 1 and X is some register name. Let
there be e instructions in P and.say x is the initial contents of
- X; as an induction hypothesis assume that Q satisfies (2.8.i). Con-

sider the initial state (ir,l,o,p). By (2.3.iv) the unique next

state is (ir,e,o,((x;l),p)); the next state after this, by (2.3.vii),

is (xr

,2,0,((x-1;1),p)) if x > 0. But this is essentially an initial

sé:ate in an execution of Q; by the induction hypothesis the next
) s;veral states consist of an execution of Q which ends with
(ié,e,o,((x -1;1),p)) for some i;‘ Then the next state is
(52;_,2,0,((1(— 2;1),p)) if x > 1; repeating the argument leads,
af{:er x executions of Q, to the state (i;,e,o,((o;l),p)). By
(2.3.v) the next state is (i;,e+ 1,0,p) which is final. Counting
the number of states not involved in the executions of ,9, yields
(2.8.i1) and thus (2.8.1).

The remaining possibility is that ,13. € LCZ by (1.1.iv) with

n> 0, so that P 1is

il: LOOP(n+1) X
)

I: END

e

Let the final END instruction be the e-th instruction of P, as in-

dicated above. We have to show first that the program P=

I;: 100P(n) X
I: LOOP(n) X x
Ix: LOOP(n) X
Q
I~ END
e
‘ . X
I€+x—2: END
I€+x-1: END

\

a>pp+w

where x > 0 is the initial contents of X, is equivalent to P, and

that T_(%x). = Ta(x). As indicated, we let I~ be the first END
P'r P'r e

~ ~

instruction of P after Q. The method is to consider an execution

of ﬁ and show that each state of this execution corresponds in an

_appropriate sense to a state in the execution of P; the correspondence

includes the requirements that the registers be the same, and that
the pushdown stores be "similar". Sincewg E'Lﬁ+aP‘lx’ and

n-lx, the .induction hypothesis for’E will yield the result
desired.

In the definition and lemma that follow, we use a consistent
notation: letters without hats refer to the program P, and those
with hats refer to‘g; for example, s and § are states of‘g and‘§
respectively. Also, a primed letter refers to the next state of
a given state; so if, for example,§ is a state of‘g, S' is the next

state of § under P. Finally, x is the initial contents of register

X. We assume that x > O.

(2.9) Definition. For a pushdown store p let Osp be the object
at the j-th level.of p; that is, if p= (ql,(qz,...(qk,(O))...)),
then Oﬁp = q'j for 1 < j <kj if j >’k, ij = 0. Two push-
down stores p and ﬁ occurring in states Of,2 andlé are

similar if for each j one of the following holds:

It

(1) o,p

(i1) ij = (y,al,...,an;o) and Ojﬁ = (al,...,an;o) and

0.p, or
JPJ

05+lp = (y,bl,...,bn;b) for some y with 0<y<x; or

Lo

(iii) o‘jp = (y',al,...,an;O) and criﬁ = (ai,...,an;l)

and 0‘j+lp = (y+ 1,b ..,bn;b) where for 1<k <n,

1’
bk=0, and 0 <y < x; or

l,...,an;l) and O'J.ﬁ: (al”"’an;l)'

(iv) CTJ.p = (x-1,a

(2.10) Lemma. Let § ,...,§m be an execution of P. Then there

is an execution Syre-esSy of E such that Sy = 85y and for

each pair s = (J-cr,i,ﬁ,p) and §j = (J%r,f,f,ﬁ) we have

x5 = :’EJ. for 1< j<r, pis similar to p, and one of the

following holds:

(1) 1<i<e and f=i+x-1; or

(i) i ==1, and £ = £ = 0; or

(iii) 0P = (y,O,...,O,an;a) with 0<y<x, i=e,
ﬂ:—-l,f:O', f=x-y+1; or

- (iv) i =8+x

fl
4]
+
-
.

(v) 0P = (y,al,...,an;a) and i = e, £ = €+ y with

0<y<x, andl:é'\.'

Proof of Lemma. Let s = § = ().cr,l,O,p) be an initial state of P and

P. Then s and § satisfy (2.10.ii), and p = P so p is similar to p by

A AN

(2.9.i). Now assume that s = (ir,i,ﬂ,p) and § = (ir,i,z
of P and P satisfying (2.10); we prove that s' and s' also satisfy

'(2.10). The proof consists in considering the cases that arise.

,p) are states

Case 1. s and S satisfy (2.10.i). Then P and P are executing

the same instruction of Q, and the result follows from an induction

hypothesis on Q.

~

L
i

| Case 2. s and § satisfy (2.10.ii), soi=£=1,4 =14 = 0.

) Then (2.3.iv) applies to both s and §: §'=

(ii,é‘+x-l,0,((x=l,...,x—' 1,x;1),p)) and s' =
(ir,e,o,((xil,xll,...,x=l,x;l),§)). Then s' and §' satisfy
(2:10.v) and p' and p' remain similar by (2.9.iv).

Case 3. s and § satisfy (2.10.iii), so i =&e, § = x-y+1,
£ =1, 1 = 0. Then (2.3.iv) applies to §, so if x, is the current

contents of register X, §= (ir,€+y-l,o,((xkil, .. .,xkll,xk;l),p)).

Also, (2.3.ix) applies to s, so s'= (ir,e,o,((y—l,xk-'-l,...,xkil,xk;o),p)).

Now p' and p'remain similar by (2.9.iii); s' and §' satisfy (2.10.v).

Case 4. s and § satisfy (2.10.iv), so i = e+1, { = €+x.

The s and § are both final and neither has abnext stafe.

Case 5. s and § satisfy (2.10.v), so i = e, I = &+ y where
0<y<x,1%= Z, o.p = (y,al,...,an;a), and by similarity, Ulﬁ =
(al,...,an;é.\). There are several subcases corresponding to various
possibilities for §.

Subcase 5.1. (2.3.v) applies to §: a = 1, a - 0, 7 =o.
Then by (2.3.v) §' = (ir,€+ y+1,0,q). First say 0,p and Ulﬁ satis-
fy (2.9.iii); then 0P = (y,al,...,an;o) and since a_ = 0, (2.3.vi)
applies to s, so s' = (ir',e,o,q). But by (2.9.iii), O,p =

(y+1,b .;b3b) so s' and §' satisfy (2.10.v). On the other

17
hand, if o p and oiﬁ satisfy (2.9.iv), then by (2.3.v), s'

il

(;cr,e+l,0,q). Also by (2.3.v), &' = (ir,€+x,0,a) and so § and

§' satisfy (2.10.iv).

6

N

Subcase 5.2. (2.3.vi) applies to §: a = O,'an = 0, ‘= 0,

"and so §' = (ir,gi-y,o,a). (2.3.vi) must also apply to s, so s' =

(ir,e,o,q) and s' and §' satisfy (2.10.v).

Subcase 5.3. (2.3.vii)appliesto 8: £ = O and a = 0 for
1<Jj<nbut a £ 0. Then §'= (ir,x-y+l,0,((al,...,an_l,anél;g),a))
by (2.3.vii). If y = 0, (2.3.vii) also applies to s and s' =
(ir,Z,O,((O,al,...,an_l,ahll;a),q)) so s' and §' satisfy (2.10.i).

If y > 0, then (2.3.viii) applies to s; s'=
(ir,e,l,((y,al,...,an_l,an=1;a),q)). Then s' and §' satisfy (2.10.iii).

Subcase 5.4. (2.3.viii) applies to §: 4 = 0, a # 0, and for
some u with 1 <u<n, a # 0. Then §‘=(ir,é4y,l,((al,lu,an_l,anll;g),a)).
By similarity, (2.3.viii) also applies to s, so s' =
(ir,e,l,((y,al,...,an_l,an=l;a),q)) and s' and &' satisfy (2.10.v).

Subcase 5.5. (2.3.ix) appliesto §: = 1, for some u with
1<u<n, a, £ 0, and for all j with u < j < n, aj = 0. Then if Xk
is the current contents of X, §'=
(ir,gi-y,o,((al,...,au_l,auil,xkll,...,xkil,xk§0),§)). By similarity
(2.3.ix) applies also to s, and so s' =
(ir,e,o,((y,al,...,au_l,au=l,xk=l,...,xk=l,xk;0),p)). Then p' and p'
remain similar by (2.9.ii), and s' and §' satisfy (2.10.v). This con-

cludes the proof of Lemma (2.10).

We have thus shown that given an execution of P, there is an identi-
cal-length execution of P with the same initial state and such that

in each corresponding state the registers are identical. Also, by the

\ 4

)

similarity of the pushdown stores, the execution of P ends with the
pushdown store the same as it was initially; P and P are then equivalent.
The sole remaining case is that x, the initial contents of X, is

zero. But then the following is an execution of P:

Sl = <ir11:O:P)
8o = <3—(r1e:o:<<oio:'"JO;]—)JP)) by (2.3.iv)
S5 = (ir,e+ 1,0,p) by (2.3.v)

This proves (2.8.iii); (2.8.i) is immediate by the induction hypo-

thesis for’E and Theorem (2.8) is proved.

In view of (2.8.i) the distinction between executions and proper
executions (in which the pushdown store is initially empty) is un-
necessary, since the initial contents of the pushdown store do not
affect the quantities of interest, the final contents of the registers

and the running time.

§3. The previous section showed that the running time function TP
foy any program P is tétally defined. It should also be intuitivéz&
clear that TP is effectively computable. Thus the claim that the
running timeNBf a Loop program is bounded a priori is tfivially true,
provided that the claim simply means that given a ﬁrogram with its
initial state, there is an effective method of finding a number that
bounds the number of steps required for the program to halt. For
since any Loop program with any input eventually does halt, an "ef-
fective method" simply consists of running the program and counting
the steps.

Of course, bounding the running time of'g'by TP is not very
informative, for it émounts to "predicting" that 51;%11 run as long
as it runs. One would at least hope for bounding functions which
are in some sense sufficiently comprehensible that they provide more
information than the previous tautology. An inevitable difficulty
-is that the bounding functions must grow at such extraordinary rates
that their sizes can hardly be called comprehensible. Nevertheless,
the functions Qx defined below have such simple definitions and use-

ful properties that our Theorem (3.6) below has intuitive appeal as

well as technical usefulness.

(3.1) Definition. If g: N - N is a function, the function h:
N2 - N is called the iterate of g (or, h-is defined by

iteration from g) whenever h satisfies

h(O;z) =z
h(y+lJZ) = g(h(YJZ))

i
i
i
i

i
i
|

Often, we will write the iterate h(y,z) as g(Y)(z). Thus,

i

L

-g(y)(z) = g(g(... g(z) ...)), the composition being taken yvtimes.

(3.2) Definition. For @ < ae)an ordinal, the function fa is

defined as follows:

i

(i) if a =0, fa(x) = x+1 if x < 1; fa(x) = x+2 if x > 1;

(ii) if «

]

x
B, fo(x) = £ (1);
(1ii) if @ is a limit ordinal and B is the least ordinal
. . n+l
satisfying @ = B+ W for some n > 0, then

fa(x) = fB+an(X).

Thus if & is a successor, T

q 1s defined by iteration from its

predecessor; 1f & is a limit, fd is defined by diagonalization over

a certain sequence [fB-] of functions where sup [Bi} = Q.
i

W}

In the proofss below we will use implicitly a number of elemen-
tary facts about the arithmetic of ordinals, and also the Normal

' . w . n+l
Form Theorem for ordinals less than &: any ordinal & < w for

some n, 0 < n < W, may be written

where O < a; < w and the a, are unique. See, for example, Suppes' book [5].

(3.3) Definition. For & = a?-an + oo+ aP-ao an ordinal, write
m~-1
x) =

bn(®) =2 o8y

for each m < n+1; if m > n4—l,vtm = tn+l(a). Also,
n+l -

a) =) if o .

tw() tn+l() if A < w

Notice that to(a) = O'for all @. The next lemma collects most

of the information we require about the functions :f‘a.

(3.4) Lemma. For all x, p € N, @, B < af™

(i) <fl(x) = 2x+ (1:x) |
(ii) f§P+l)(x) = 2p-fl(x) 3—2P+l-x

(i11) £,(x) = 2

(iv) £ (0)

I}
=

(v) £ (x) >x+1

(vi) x) is increasing in p, x

(vii) if o= B+d, then fy(x) > £4(x) for x > t_(B)

p

(viii) if @ > B, then fa(x) Z-fB(x) for x > ta;s)
(1x) z-fép)(x) < fc(xp+l)(x) for >1, x+p>1

(x) (f(p)(x))z_Sféwz)(x) for @ > 2, x+p > 2.

(04
Proof. (i) If x = O, fl(O) féo)(1) = 1 = 2-0+ (1=0).
fl(l) = fél)(l) =2=2-1+(121). If forx>1 fl(x) = 2x,

fl(x+yl) = f,f (x) = 2x+2 = 2(x+1) + (1=(x+1)).

(ii) Immediate foz.‘ p = O. f§P+l)(x) = flfip)(x)
= 2-f(p)(x) = 2p-fl(x) > 2Pt 4

(111) £,00) = £901) = 1. £,x+1) = £ 1) - 2% ()
= 2 py (54 ‘

(iv)-(vii) These will all be proved simultaneously by induction

on @ and x. All are immediate for @ = 0 by definition.

If & =Pf+1, then fa(O) = féo)(l) 1 proving (iv). Also,

i

o pra

for fB' Then fép+l)(x) =f f(p)(x) > fép)(x), proving (vi). Also,

£ (0) > 0, yielding (v). Now f (x+1) = fof (x) > fa(x), using (v)

fa(x+l) = foa(x) > (x+1)+1, proving (v).

Now in (vii), n must be O since @ is a successor. Since

fa(x) > x+1, foa(x) > fB(x +1), using (vi) for fB' But foa(x) =

£ (x+1) so fa(x +1) > fB(X +1) for all x >0 =t

P (B), proving (vii).

0
The next possibility is that & is a limit ordinal: let @ =

B + @ where n >0 and B is the least such ordinal. Then fa(x) =

fB+wnx(x). Now fa(O) = fB(O) = 1, proving (iv). Also,
f‘a(x+1) = fB+wn(x+1)(x+ 1)
> fB+wn(x+1)(X) by (vi)
> fB+wnx(X) by (vii) since tn(B+ wx)=0
- £y(x)

Then f((xp-'-l)(x) = fép)(x) > f((xp)'(x), proving (vi). Also,

fa

fa(O) =1>0+1 and fa(x+1) > fa(x) > x+1 proving (v). Finally,
1 1

OandY<wn+ .

i

write B = B'4r where tn_l_l(B') Then & = B+ w "

1 1

, and by choice of B', f (x) = f n (x). Since r < ot s
V a Bt+w x
if x > tn_l_l(‘r) then ayx >7. So, using (vii) for B'+ «'x and B'+ 71, _

= '+t

fa(x) = f n (x) >

MRS NNCRENCS

if x > tn(‘r). But x > t (r) > tn(‘r), proving (vii). This com-

+1
_pletes the proof of (iv)-(vii).

(viii) If @ > P there is a1 >0 so & = B+ 1. Vrite
YT = d?+—dP-gn + .- + aP-go = dP+—T', so & = ﬁ-FdP-FT'. By re-
peated applications of (vii) we have ﬁa(x) >f (x) for all x,

B+af

since t_(B+ ') = 0. Also by (vii), £ ,(x) > ¢
n B =B

x Z'taéﬁ) > tn(B). So QJ(X)<2 fB(x) for x z-taéﬁ).

(x) if

(ix) 2-fc(tp)(x) = flf((zp)(x) < f(gp-l-l)(x) if @> 1 and x+p > 1

by (i) and (viii) since f((zp)(x) >1 if x+p > 1.

(x) Trivially, 2° < 22Z = féz)(z) for all z. Then

if x+p > 2 by (viii), since x+p > 2 implies ﬁgp)(x) > 2. This

completes the proof of (3.4)

(3.5) Definition. A function g: N' - N is bounded by f:
N - N whenever for all im, we have g(im) < f(max{im}), where

max{im}' is the largest member of im'

(3.6) Bounding Theorem. Let P be a program in Ly~ Then
there is a number p, which can be found effectively

from P, such that ﬁép) bounds T

P’ the running time

of P.

~

Proof. The proof is by induction on @ and Definition (1.1). Say
P e HJ’ let P use k registers, and let m be an abbreviation for
max{ik} where ik are the numbers initially in Reg (P). There

are four main cases corresponding to the clauses of (1.1).

Case 1. Q@ = 0. Then P has no loops and so T, is identically

P
equal to the length of P; if p > O is this length, then
' =y (p) (p)
Tp(x) = p < £57°(0) < £57 " (m)

by (3.4.v), (3.4.vi).
Case 2. P e L, by (1.1.ii), so that P ¢ LB with B < &. By

the induction hypothesis we have have q so TP(;CK) < féq)(m). But ~

~

by (3.4.viii), if we let p = tw(B) and if x > p, then fa(x) > fB(x).

(04 a

By (3.4.v), f(p)(g_l) >m+p, SO f(P+q)(x) = fép)féq)(x) > TP().CK).
3 concaten';ted with

Case 3. P e L, by (1.1.iii), so that P is
Rand Q, R € L,- By the induction hypothesis, let féﬂ) and fér)

bound TQ and TR respectively. After execution of Q, let the registers

~

of P contain i;{ Then TP

~

(}—Ck) =T (;CK)+TR(;C;{); we have

TP(SEK) < féq)(g) + f(r)(@_[i'])

~

But after execution of Q, the largest integer in any register is at
most m + féQ)(g), since each instruction execution can increase the
largest register by 1 at most. But by (3.4.v) and (3.4.ix),

k m+ féq)(g) < féq+l)(g) since @ > 1, g > 1. Thus

1) < 15 (m) + £ (m)

~

2-f‘éq+r+l)(g) by (3.4.v1i)

IN

< féq+r+2)(g) by (3.4.ix)

)
for all B. Then the lemma reduces to: if § € Ly and TQ(ik) < qu)(m),

Case 4. P €I, by (1.14v), so that P is

LOOP(n+ 1) X
Q

~

END

for some Q € LB where O = B+~a?, n > 0. We use the following

#la)

(3.7) Lemma. If Q € Ly and T, is ‘bounded by 5 s then

~ Q

~

the program P =

LOOP(n+1) X

)
END
has Tp bounded by féq+b+4), where b = tn(B).

Proof of Lemma. The proof is by induection on n. For n = 0, t

~

then P =

00rP(1) X

has Tp(ik) < féiz4)(g). There are two possibilities; first take

B = 0. Then TQ is identically equal to the length of Q, and the

~

running time of P is exactly gx+x+2, where x is the initial con-

tents of X, by (2.8.ii). But since by definition x <m,

% ¢
£y

(k) = (a+1)x+2 < (q+1)m+2

<2%m+2
< f§q+2)(g) by (3.4.ii) and (3.4.v)
< f(Q+4)(g) by (3.4.vi)

1

is bounded by f(q). If x is the

Now if 0 < B < a?i assume that TQ B

~

number initially in X, P is equivalent to

W e IO W0

By the same argument as for Case 3 of the theorem, the first exe-

cution of requires at most féq)(g) steps, the second fé2q+2)(g)
> steps, the third fé3q+4)(g) steps, ... , and by the obvious induction, .
‘the x-th requires at most féx(q+'z)_2)(£1) steps. Thus, if m > 0
r(e) < 3 5w v |
< x-féﬁg(qﬁ)’z)(g) +2 by (3.4.vi) |
< g-fé?i(q*z)‘z) fég)(1)+ 2 vy (3.4.v)
< _-fés-l(q+3))(l) by (3.4.v)
= gy (m-(q+3)) | by (5.2) since & = B+1
S m-fy fl(q+l)() by (3.4.1i)
< -féqJ’z)(m) by (3.4.vii)
< ’féq+4)(_rr_1) S by (3.4.x)

by £

But even if m = O, Tz(ik) =2, so TE(;CK) < féq+4)(

m) for all ik
This concludes the probf for n = 0.
Now we assume the lemma for some n > O, and prove it for n +1.

P is then

LOOP(n+2) X
Q

~

END
" which is equivalent to

IOOP(n+1) X

X
1I00P(n +1) X
END
. X
END

where x > 1 is the number initially in X. If x = 1, TP isAbounded

(qtb+d) . - _ . (q+b+8) . "~ Ny o,
5 ;- if x = 2, ’Tz is bounded by f6+df12 since tn(5+a) }=0;
and by the obvious induction, for each x > 1,
- +b+4x)
T (%) < £) ()
I3 = B+af'x -
< f (q+b +5m +1) by (3.4.vi) and (3.2)
T Bufx+1 T .
<t 4 (q+b+5m +1) by (3.4.vii)
B+w (x+1) :

<f (g+b +5m+1) by (3.4.vii)
= B+w(g+b+5m+1) -

i
i
i
i
{
i
{

)

) ow if B = U e @ -
A N?w if B = a)mbm + + W n+1+wnbn + + Wb _, let B =
Y SRR s S

m n+l

=N +a)n(q+b +bn+5_g}+l) and furthermore B' is the least ordinal

Then B+a)n(q+b+5§+1) =

with this property. Thus by (3.2),

Tz(xk) < fB'+wn+l(q +b +b_ +5m+1)

= f (g+b+b_+5m+1) by definition of B'
1 m
B+t n
(q+b+b +1)
< f‘3 +ln (5m) by (3.4.v)
(q+b+b, +1)
< qu +ln 'f§_3)(g) by (3.4.ii)
(q+b+b,+4)
< f‘3 o (m) by (3.4.vii)
- (q+b4b,+4)

But even if m = 0, T (x) =2<f
R A = “pafttl

tn+l(6) = ‘l:.n(B)+bn = b+b , the lemma is proved, concluding Case 4.

)

(m) by (3.4.v). Since

bounds TP

~

was found effectively, Theorem (3.7) is proved. We also have imme-

Since in each of the four cases the p such that fép

"diately

(3.8) Corollary. ILet 2 € La be a Loop program, and let m
be the largest number initially in Reg (P). Then
there is a number p so that f((xp)(g) bounds all the

numbers left in the registers of P by execution of P.

Proof. Since each instruction execution can increase the largest
register by 1 at most, the numbers left in Reg (P) are all bounded

) S o +f((1p)(g)' Ifa _>__ 1, by (3.4-.ix) m+ f((Ip)(m)

by r_r_1+Tp(x

~e

k
< f((xp+l (m). The proof for g = O is obvious.

)

contaimment £ -5 £

§4. If a set of registers is designated for input and Output, a

Loop program defines a function.

(4.1) Definition. ILet im be distinct register names, and let P be

a register name which need not be distinct from Xm' If P is

Nl

a Loop program, the (m+ 2)-tuple Qg, im’ P) is called a program

with input and output, im being the input registers and P

the output register. The function f: N - N is computed by

(p, im’ P) providing f(§m) equals the contents of P after
execution of P when X_ initially contain k , and all other

members of Reg Qg) initially contain zero.

For example, if P is the program of Example (1.3), then (P,X,Y,X)

computes x:y; QB,X,Y,X) computes the projection pzz(x,y) =Y.

(4.2) Definition. Ed for 0 < a < o® is the set of functions

computable by programs in Ib with input and output

£= U L.
, a<d® @

Obviously, if a > B then ﬂd o £, by (1.1.i1) of the definition

B
of Ib' It is the task.of this section to prove that if o > B the

is proper.

B,

(4.3) Definition. Let F, be the program

X+1
X+1

i

Fa -
1l

%\

and if B 1is the least ordinal so g = B+ a)n, let

F be th
¥, be the program

100P(n+ 1) X
F
~B
END
It is immediate that Ea € La by Definition (1.1).

(4.4) Lemma. Let ?a be the function computed by (F _,X,X). Then

i F) F oeg.
if x > 0, fa(x) > fa(x) Also, fa .[';a

"Proof. ’f\o(x) =x+2 3> fo(x) for all x by definition. Say that
o = B+ 1; then EOf is

LOOP(1) X

I

END

which is equivalent, when x > 0 is in X initially, to

¥}
F
® x
%o
Ay alx) A(x-1) s D)2 (x)
So fa(x) = fB (x) > foB (x) > | > fB fB(x) > fB (x)
> féx)(l) = £ (x) if x > 0.
Now if B is the least ordinal for which o = B+ a)n+l ~and if

x >0 is in X, then Ea is equivalent to

LOOP(n+ 1) X
. X

LOOP(n+ 1) X
F

%
END

END
. . . > > [-

But this is exactly the program EB+apx So if x > 0, ﬁa(x)
% x)>f°f X
B+<.an() 2 B+cunx()

(4.5) Theorem. For a > 1, fd € Ed.

]

ﬁa(x); this concludes the proof of (4.4).

Proof. fl(x) = 2x+ (1:x) is in Elvia the program F =

LOOP(1) X
G=G+1
G=0G+1

END

F=F+1

LOOP(1) X
F=0G

END

where (E)X,F) computes f For a > 2, we defer the proof until

1
Chapter IV. The only facts we will need for the remainder of this

chapter are given by Lemma (4.4). It is possible to construct a

program for fa in Id’ but a surprising amount of labor is involved.

Proof. As remarked asbove, if O > B, £, 28

}
!

(%.6) Lemma. If o > B, then for any constant c, fa(x)>-féc)(x)

for almost all x.

Proof. If a > B, then @ > B +1. First we establish the result

for fB+l and fB. i
fgu1(x) = féx)(l); for x > ¢, fg,(x) = féc)féx‘c)(l).

But for large X, féx“c)(l) = fB+l(x-c) > x by (3.4.ii) and (3.4.viii).

Thus fB+l(x) > féc)(x) for large x.

But now if o > B+1, for large x fd(x) >f x) by (3.4.viii);

B+l(
this yields the lemma.

(4.7) Hierarchy Theorem. If o > B, Ed %>£B.

by definition. If

B
fd = L the function %a of Lemma (4.4) would be a member of SB;
but for all c, Ea(x) E-fa(x) > féc)(x) for almost all x by (4.6) and

(4.4). Then by (3.7), %a f EB. This proves (4.7).

The Bounding Theorem (3.6) and the Hierarchy Théorem (4.7)
together provide the rigorous Jjustification for the claim that the
simple measure of the complexity of syntactic structure of a Loop
program by Definition (1.1) is also an adequate measure of the power
of the program; for the Bounding Theorem implies a maximal complexity
on the functions of Ed by bounding the number of steps the computation
of each such function can possibly consume. The Hierarchy Theorem
yields aminimal complexity for Ea by exhibiting fd functions which
cannot be computed in fewer steps than the number implied by the

structure of their programs.

S

It is convenient to introduce at this point a property of

the classes'%a which follows almost immediately from its definition.

(4.8) Definition. The operations of substitution consist

of the .following methods of obtaining a function f
from given functions g, h:

(i) Substituting a constant: obtaining f from g

where f(in) = g(in,c) for some number c;

(ii) Permuting and identifying variables: obtain-
ing f from g where f(xn) = g(El,...,Em) and
each Ei, 1<i<m, is one of the X5

(iii) Composition: obtaining f from g, h where
£(x) = g(x_, n(x).

“g Also, if e,is a class of functions, E;is closed

under substitution whenever any function f obtained

from functions intl by substitution is also a member

of Cw

(4.9) Theorem. For all a < a?i Ed is closed under sub-

stitution.

Proof. Say (Q,XH,H,G) computes . g, (E,in,H) computes h, and f(in) =
g(x_, h(x,)). We assume that Reg (G) N Reg (H)= [Xn,H] and that
neither G nor H uses registers Zn. These conditions can of course

be brought about by changes in names of the registers used by G

and H, Let F be the program

@g

17 %

Z =X
n n
1

X, = 2,

X =2
n n
g

Then (E,in,G) computes f. This proves that Ed is closed under com~
position; proofs for the other possibilities, substitution of a
constant and permutation and identification ,of variables, are

entirely analogous and are omitted.

26

7

- functions -- in fact, functions larger than any in £

bility.

§%. The preceding section showed that %1 contains some very large
‘ B:'Lfs’<oz--
but it iIs not yet at all clear that Loop programs can do anything
much but run for a long time and eventually halt with rather large
numbers in the registers. This section will demonstrate that even
L2 programs can perform quite complicated operations, and will lay
the groundwork for showing among other things that each %1 contains
very small functions more complicated than any functions in SB if
B <a.

In particulér, (5.1) shows how to construct L2 programs which

simulate Turing machines; (5.2) shows how to construct Turing ma-

chines Which simulate Loop programs. Theorem (5.1) is useful in
relating Loop programs to other formalisms for computation, as is
done in Chapter IV. Combining (5.1) with (5.2) yields Loop programs
which simulate other Loop programs; §6 leans heavily on this ?ossi—

We assume that the reader is familiar with the elementary ca-
pabilities of Turing machines as discussed, for example, in Kleene
[K] or Davis [D]. Our theorems would be true using any of the various
formalisms for Turing machines; for definiteness, we give an infor-
mal definition of computation b& Turing machine much like that of
[K]. |

A Turing machine R is determined by a finite set szof quin-

tuples {(qi’sj’sk’d’qﬂ)]’ where d is either "L" or "R", and such

)

- that no two gquintuples of QWthave the same first two components.

The first and last components of the éuintuples of szcomprise the
states of W; the second and third components comprise the symbols
of M. One of the states, 4y is distinguished as the initial state,
and one of the symbols, 547 is called "biank" and is also written
"B". Associated with the Turing machine is a tape, which consists

of a two-way infinite sequence of squares; each square has printed

on it one of the symbols of m. If the symbol printed on a square

is Sgs the square is blank, and at any time almost all of the squares
on a tape are blank.

One square on the tape is scanned by m. A situation consists
of a particular printing of the squares of the tape, a particular
squafe on the tape (the scanned square) and a particular state; the
machine is in that state.

Given a situation, mmay perform a step as follows: if the ma-
chine is in stat? q; and the symbol on the scanned square is Sj’ and
if (qi,sj,sk,d,qz) € Qi{ then the symbol on the scanned square is

replaced by s the scanned square moves‘one square to the left or

K’
right according as d is "L" or "R", and the machine goes into state
Q- If no gquintuple of szbegins with qi, sj then no act is per-
formed and the machine has halted; in this case the situation is
terminal.

The Turing machine is used by choosing some situation in which

to start it; the machine then successively performs steps until it

halts; and the contents of the tape in the terminal situation determine

L v

1
natural numbers 0, 1, 2,... by "1", "11", "111",..., so that in the

the output. Specifically, let s, be the symbol "1". Represent the
representation of x there are x+1 occurrences of "1". Also, re-

present an n-tuple x s Xy by juxtaposing the representations

17+
of £he X5 sepafatéd by "B" so that the representation of (0,2,1,3),
for example, is "1B111B11B1111".

A Turing machine computes the (partial) function f: N* - N if
-when the Turing machine is started in state 9 with the representa-
tion of‘in on its tape, which is blank otherwise, and with the sguare
just to the right of the representation of in the scanned square,‘then
the Turing machine eventually halts with a total of f(in) "1"s to

the left of the scanned square in the terminal situation, providing

f(in) is defined. If f(in) is not defined, the Turing machine does

not halt.
For example, if a Turing machine computes x+y, when started

in the situation-

+.. B111B1111B ...
t

a4

it may halt in the situation

. BIB111B1BB11l1B ..
t

9

where no quintuple starts with ;9 B. The notation for situations

should be obvious.

(5.1) Theorem. Let mbe a Turing machine which computes
the function f: N = N. Then there is a Loop pro-
gram with input and output (TM ,in,s,P) where TM €L,
which computes a function TM_: N LN with the
following property: if s exceeds the number of steps

required to compute f(in) using M, then f(in) = T (x

R n;S)-

Proof. For simplicity, the theorem will be proved only for the case
n =1, and for M a 2-symbol machine with symbols (B,1}. Exactly the
same methods apply when n and the number of symbols of M are unre-
stricted.

The heart of the construction is an Ll program Step which in
effect carries out a single step in the Turing machine computation.
Step uses several main registers Q, TL’ TS’ TR which contain re-
spectively the number of the current state, and representations of
the tape to the left of, on, and to the right of the scanned square.

Suppose the non-blank portion of the tape is

.- BS_ S0 ..o 88,8 -..8 S B..

where each S, is "B" or "1" and S. is the scanned square. Then T

0 L
contains

u~-1 u-2 0
. + . e .
t—u 2 t—u+l 2 F + t-l 2

where each ti is 0 or 1 according as Si is "B" or "1". Likewise TS

contains to and TR contains

L0

" That is, TL’ TS’ TR contain numbers whose binary fepresentations

are images of the corresponding portions of the tape.

Also suppose register Q contains a number q, where 0 < q <m

and Mhas m+1 states {qo,...,qm}. Consider the program Decode

Q Q Q @
O
’_J
]
o O O O

]
O

10 00

END

LOOP(1) TS
Co1 = o0
Coo = O
€11 = %0
Cio = O
ml CmO
mO =0

END

| It is easy to see that if Qcontainsi and T

, S-contains Jj, then

[Cjy =1, but Gy

Now let the quintuples of m be {ml,...,mr}. Let guintsmzbe

=0 forifkorj#is.

the program
‘ Decode
erwm

ol

‘ég.

Here if m, is the quintuple (qi,sj,sk,d,qﬂ) and 4 is "L" then
Mﬁ is the program

. LOOP(1) C, .
) : d

T, = sk
L =1
Q =1

If 4 is "R", M is the program

LOOP(l) C..
1]
= S
Tg = Sy
R =1
Q =4
END
Here we use the obvious abbreviation "TS = sk" for
TS = 0
if s, = "B", and

k

L2

TS =0

TS = Tsﬁ-l
if s, = "1". Likewise, "Q = £" is an abbreviation for
Q=0
Q=Q+1
. £
Q=Q+1

Thus 1f the number of a state is in register Q and the contents
of the scanned square are in register TS’ Quints causes the next
state to appear in Q and the new symbol for the scanned square to be
placed in TS.' guints sets registers L and R so that I = 0 and
R =-1 if a rightward move is to be made, while L = 1 and R = 0 if a
leftward move 1s to be made. If the situation is terminal, Q and TS
remain unchanged and L = R = O.

Given the interpretation above for the numbers in TL’ TS’ T,,
the effect of a rightward move of % can be reflected by replacing
TL by Z-TL-+TS,
Here we use "T_", for example, to refer both to the register and its
contents. Also, rm(x,y) is the remainder upon division of x by y,
and x/y is the integral quotient of x and y: the greatest integer =z
so’z-y < x. Arbitrarily, we seé x/O = 0.

These functions can be carried out in L. . Consider the follow-

1

ing program RM ("rightward move").

replacing TS by rm(TR,Z) and replacing TR by TR/Z.

LR
LOOP(1) TL
Tig = T+l TR “2.T;
Trg = Trptl
END
LOOP(1) Tq
Trp = Trptl TLRe—z-TL+TS
END
1 .
Teg = O
1 — 1]
Tag = Teg+1
Tegg = 0
LOOP(1) Tg $ T e rm(T.,2)
T oo SR R
- *SR
— 4
Tsg = Tgg
1 —
Tep = T /
END
Tpr = ©
1 —
Tpg = O
Lo0P(1) TR
T = Rpp = g
w— 1
Top = Thr
t —
Thn = T
END

RM places 2-TL+-T in T o) rm(TR,z) in Tgp, and TR/2 in TRR

S

but does not change Tﬁ, TS’ T,. Of course there is a corresponding

R

program LM which puts 2-TR+TS in TRL’ rm(TL,z) in T, and TL/2 in

SL

TLL without changing TL, TS’ TR and which thus simulates a leftward

move.

S

Now let SteR be

uintigR

M

RM

LOOP(1) L
Ty = T
Tg = Tgy,
Tg = gy,

END

LOOP(1) R
T = Tpp
Ts = Tgr
Tp = Tpg

END

Step 1is an Ll program; given the number of a state in Q and a

tape configuration in TL’ TS, TR’ executlon'of Step leaves the

.next state in Q and the next tape configuration in TL3 TS’ TR. But

then if an initial situation is in-q, TL, TS’ TR’ the L2 program

Result =
Wm
IOOP(1) 8
Step
END
leaves in TL, TS, TR a representation of the tape configuration after

s steps of M, where s is the number in 5; if s exceeds the number of

steps required for M to halt, the final tape is left in TL, TS, TR'

Thus the only remaining tasks are to find a program which, when given

i
i
i

aé input number, produces the cofresponding‘initial_situation, and
) té find a program which, given a tape.situation, yields an output
number from the final tape representation.

According to the formaiism agreed upon above, if the input
number is X, the tape representation is astringof x+1 "1"s just
to the left of the scanned square; in other words, we want T. to

L

contain 2x+1_ 1 and TS, TR to contain zero. The job is done by the

L, program Input:

2
Q=20
T, =0
TS =0
TR = Q 1
X =X+1
100P(1) X
- x+1_
L00P(1) T, & T, 2 1
TL =T + 1
END
T, = T + 1)

Next, the output number is to be the total number of "1"s oc-

curring in the binary expansion of T The L, program Qutput =

L
P=20O
LOOP(1) T,

T e-rm(TL,Z)

Ty, <—TL/2
LOOP(1) T

P=P+1 P «<P+T
END

END

LFQQ

i

leaves in P the correct number. We have used, for example,
“T»é-rm(T ,2)" as an abbreviation for é program which puts rm(TL,Z)
jnto T without destroying the constants of TL. The necessary pro-
grams appear as part of the program E% above.

' Finally, let TM_be the L, program

InEut
Result
Mevg’n

OutBut

Then (TM_,X,S,P) computes'TMWIWith the properties requifed, and

Theorem (5.1) is proved.

(5.2) Theorem. For each n > O there is a Turing machine EPﬁ
which computes a function LPn: Nn+l -+ N with the follow-
ing property: if (B,in,P) is a Loop program with input
and output which computes f: Nn - N, then there is a
number e so that LPn(e,in) = f(in). Furthermore, if T,
is the running time function of P, then there is a cogj
stant ¢ so that the total numbervof tape squares ever
scanned in the coﬁputation of LPn(e,in) is no more than

. :

c-(e+ max{in} + TP(;cn))

Proof. We will not actually construct L£8,, but we will give enough
details so that it should be clear to anyone with some familiarity
with computation by Turing machines that EPn_ exists. Actually, the
first'paré of the theorem is immediate from the intuitive computa-

bility of functions defined by Loop programs.

instruction "X, = X, " to put the answer into X

For each (P,in,P) there must be an e so if (P,in,P) computes
f, then LPn(e,in) = f(in). Thus e should somehow encode (P,in,P).

When this is the case, it i1s usual to say that e is a Godel number

of (E,in,P).

The encoding can be done in a variety of ways; the one suggested
here is particularly simple. First, we may as well assume that
Reg (2) =k[ir}, that the input registers are Xn’ and that the outbut
register is Xl’ since clearly for any Loop program with n input
registers and an output register, there is another program in the
desired form. (The new program is obtained merely by making the
proper changes in the names of the registers and possibly adding an
l.) So we need only
consider programs like (g,in,Xl) where Reg (P) = {ir}. Now, using

an eight-symbol alphabet:
LE=X1/+0

rewrite P by placing "/" between the instructions,by changing
"LOOP(n)" to "IL1 ... 1", that is, to "L" followed by n "1"s, by
changing "Xk" to "X1 ... 1", that is, to "X" followed by k "1"s, and

by changing "END" to "E". Thus the program P =

XZ =0

LOOP(1) Xl
X2 = Xzi-l

END

X = XZ

would become
X1l = 0/L1X1/X11 = X11+ 1/E/X1 = X11

Since 8 different symbols can appear in this repreéentation, the
representation of any program E can be interpreted as a base 9
number; take "L" to have digit value 1, "E" to have value 2,...,
"O" to have value 8. We will let the blank "B" have digit value O.
Thus given any program E there is a unique number e associated
with it, and if e is written in a base 9 notation P is recoverable
immediately. On the other hapd, not every number e has a corres-
-ponding program; for example, all those numbers which contain signi-
ficant zeroes in their base 9 expansion.

Now we proceed to describe the operation of £y Recall that
£Pp is given an (n +1)-tuple (e,in) consisting of e+ 1 occurrences

of "1", followed by "B", followed by x., + 1 occurrences of "1",...,

1
 followed by "B", followed by x +1 "1"s. We write this initial tape as

.BeBx B... Bx B...
- ~1 -n

where the underlined letters x represent a string of x+ 1 "1"s.

5F31 performs as follows: first go to the representation of e and
rewrite e as its ‘base 9 represenfation (which, as explained above,
is an image of P). Call this sequence of symbols €. Of course, the
length of € is no longer than the length of €; in fact the replace-
~-ment can be done using no more tape than is consumed by e itself.

‘The tape thus becomes

...8Bx., B...Bx B...
=1 -n

Thén P, checks € to make sure it repfesents a permissible Loop
program; the checking consists of examining each instruction to
make sure it is a legal instruction, and verifying that LOOPs and
ENDs are nested properly. If € does not represent a syntactically
correct Loop program, {P, erases its whole tape and stops. Thus,
in effect, every number e will be associated with some function;
those numbers e which cannot be associated with a syntactically
correct Loop program will all represent the function which is iden-
tically zero.

If on the other hand € represents a syntactically correct Loop
~program, L, examines € to determine the registers ir it uses, and

then changes the tape to

++-B&€Bx, B...Bx BOB...BOB ...

which represents € followed by the r-tuple (in,O,...,O); that is,

the initial contents of ir since Xn+ ...,Xr are zero. Continuing,

1}
£8P, produces the tape

.- B€B|x, B...Bx BOB... BOB|1B|OB|B ...

1 2 31 4 5

which, for convenient reference, we have divided into five regions.
. . N
Region 1 contains &, which represents the program P being simulated;

regions 2-5 together represent the initial state (ir,l,o,(O)) of P.

5o

...BE|Bx

s steps, and let m be an abbreviation for max{in}, that is, the largest

|
|
§

-

£§ﬂl is then ready to begin simulating P. In general, just before

. beginning a step in the simulation, £P, will have on its tape the

following sequence of symbols, if the current state is (ir,i,£,p).

1 2117821 157225
1 2 3|4 5

B...Bx |Bi|Bl|BBa, Ba B...B_e_xkllBB...BBg._ .Ba, B...Ba BB...

The representation of the state used in region 2-4 is obvious. The
contents of region 5, which represents the pushdown store, are inter-
preted as follows. The object at the top of the pushdown store is

(all’ aal,...,akll). More generally, the object at the m-th level

’of the pushdown store is (alm’ azm,...,a). Tuples on the push-

down store are separated by double blanks, and members of a tuple
are separated by single blanks.
What is the length of this representation of a state? The length

of region 1 is no more than e+ 1. Suppose the simulation has run for

number initially in the registers. Then each of the X in region 2

is no more than m+s. So the length of region 2 is no more than
r-(m+s+2). B&t according to the encoding we have chosen, r is cer-
tainly less than e. So region 2 has a length of less than e-(m+s +2).
Again, the number i represented in region 3 correspdnds to the in-
struction about to be executed, which is a number certainly less

than e, so region 3 has a length less than e+ 2 squares. The & of

region I is either O or 1, and so the length of region b is 3 at most.

Wheayer a tuple is placed on the pushdown store; all its members
are bounded by the largest number in any register. Since nothing on
the pushdown store ever becomes greater than the largest register,
any single number anywhere in the pushdown store is bounded by m+ s.
The largest tuple on the pushdown store has at mos£ e components,
since the number of components is a function only of E; the depth
(number of tuples) of the pushdown store cannot exceed s, the number
of instruction executions taken so far. Therefore region 5 has a
length bounded by s-(l+e-(m+s+2)).

Fach of regions 1-5 has its length bounded by a polynomial of
degree at most 3 in s, e, and m. Therefore, the sum of the lengths
of regions 1-5 is bounded by c-(e+m +s)3 for some constant c.

The discussion so far has been fairly rigorous, except for the
claim that the string of "1"s representing e could be turned into

the string €. The main portion of the construction whose details

~ we will omit is that of showing that £®p can transform the representa-

tion of a state as specified abbvé ihto the representation of the next
state, without using any tape squares other than those already used.
We leave to the>réader the tdsk of convincing himself that this is |
possible, with the feminder that EPn may use a large number of extra
symbols to mark tape squarés in which it has a special interest at
some ﬁoment. We may also remark that all the theorems in the sequel

which use this theorem would be unaffected if the polynomial bound

c-(e+m+s)3 were replaced by any exponential in e, m and s; and

—

-finally that the encoding we have chosen is actually rather inefficient

and that by using a binary encoding of}the numbers making up a
stafe, the present theérem would remain true with a bound on tape
consumption of d-log2(1+ e +g+s) for some constant 4.

Granting that £F, is able to replace the representation of v
a state by the representation of the next state without using‘more
tape than is consumed by the states themselves, the theorem fol-
lows immediately. For £F, simply keeps simulating E until a final
state is reached, then erases all of the tape but the portion con-

taining x. and halts on the rightmost square of the representation

1

of x,. Thus £¥, has computed (P,in,Xl); and since the program runs v

for TP(in) steps by definition, the total tape consumption is bounded
7 - \\3 - - \\3 ,
by ci(e-kgngP(xn)) = c-(e+—max{xn}-+TP(xn)) . This concludes the

~ ~

proof of (5.2).

(5.3) Theorem. For each n > O there is an Ez function Mh:
Nn+2 -+ N so that for any Loop program (P,XH,P) which
computes f: N >N, there is an e such that Mh(e,in,s) =

f(xn) provided s > T§§Xn)'

Proof. By (5.2) there is a Godel number e for (E,XH,P) so that
LPh(e,in) = f(in)J and LP_ is computable by a Turing machine 58
whose total consumption of tape'is no more than c-(e+mé.x{in}+TP(;cn))3
- squares. For brevity let this number of squares be t; Now sa; R
has g states and uses k symbols. Then the total number of distinet

~tapes appearing in the computation is no more than kt, since each

tépe square can have printed on it one of the k symbols. At each
—sifuation occurring in the computation the Turing.machine is scan-
ning one of the at most t squares, and is in one of the g states;
therefore at most q-t-kt different situations can arise in the com-
putation. If one of these situations is ever repeated, the whole
computation must be caught in an endless loop; but this does not
happen, so the Turing machine must halt within q-t-kt steps, that
is, within a number of steps

e (etmax(x_J+1,(x_))°

Q'C'(e+max[in]+TP(‘in))S-k =

~

- B(e,;cn,mp(in))

Remembering that q, c, and k are fixed numbers, it i1s easy enough
to show that B is actually a member of 32. Alternatively, it is

easy to show
i i 2(e+xl+---+xn+TP(§n))
B(e,xn,TP(xn)) <2 ~

for large enough arguments. Since fz(x) = 2% ana %z(xi-l) > fz(x),

there is a constant b so

e Ty(3,)) < ?éz)(efxl oo+ x +T(R) +D)

~

1

B (e’in’TPGcn))

But B' is a member of £2 since it is obtained by substitution from
members of EZ. The function x+ y, for example, is in El via the

program A =

LOOP(1) X
Y=Y+1
END

where (4,X,Y,Y) computes x+y.

Recall that the Turing machine £, of (5.2) is a particular,
fixed machine. Apply (5.1) to this machine to get an £, function
™
£
to halt,

so that if 2z exceeds the number of steps required for SJ;

TMﬁPn_(e’injz) = LPn(e,in)

> - - 1 v t
Then take Mh(e,xn,s) = TMﬁFL(e’xn’B (e,xn,s)). By the fact that B

is increasing, the proof of (5.3) is complete.

§6. All the investment in labor of §3§2-5 now begins to pay off.
We have several easy théorems which chéracterize the classes fb

for @ > 2 in three ways, and which show each class»ﬁa fora > 2

has two important closure properties. Fipally, £d+l has a universal

function for fd, and £d+l has a very small function not in %2.

(6.1) Theorem. For o > 2, a function f: N =N is in fb
if and only if there is a program (P,in,P) which com-

putes f such that TP is bounded by ﬁ;p) for some num-

~

ber p.

Proof. The "only if" part is simply the Bounding Theorem (3.8).

. - (p) - =y 2(p)
Conversely, lf»TP(Fn) < £, (magﬁgn}), then ?g(xn):Sfa (xl+ v & xni-l)'
This latter function is in Ea. Then by (5.3) there is an e so

=y _ = a(p) . .
f(xn) = Mh(e,xn,ﬁu (xl + e+ xn+-l)).S1nce M e 52’ by substitu-
tion f ¢ fd for o > 2.

This theorem is interesting because it shows that if we have

any program P which computes f, no matter how deeply the loops of

#(p)

P-are nested, so long as the running time of P is bounded by o

then P can be rewritten as an HJ program.

(6.2) Theorem. For o >z, %J is the class of functions which
are computable by a Turing machine where either the
running time of the Turing machine or its consump-

tion of tape is bounded by f(p)

o for some number p.

5

Proof. Immediate by (5.1), (5.3), and the argument of (6.1).

' Theorems (6.1) and-(6.2) provide further evidence for our
basic claim that the complexity of a function can be measured by
the ordinal assigned to its Loop program. In pafticular, (6.2)
assﬁres us thﬁt thé hierarchy of sets Ed does not arise becausé
of some peculiarity in the definition of Loop program, but that
in fact if some function f is in £d but not in EB (where o > B)

then f is more difficult to compute than any function in EB even

if the computation 1s done by the familiar Turing machine.

(6.3) Theorem. The n-argument functions of £d are pre-

cisely the functions expressible in the form
: - = #(p) -
f(x) = Mh(e,xn,fa (max[xn}))

for some numbers e, p, and where Mn is a particular

function in £2.

Proof. That each f is expressible in ﬁhe required way is an imme-
diate consequence of (6.1) and the Bounding Theorem (3.6). The
converse follows from Tﬁeorem (4.5) and the closure of Ed under
substitution.

Theorem (6.3) characterizeg Ed in a purely arithmetic manner,
without reference to Loop programs or Turing machines; Notice,
howéver, that we have not yet‘proved Theorem (4.5) which shows
that %1 € Ed; thus to avoid circularity we will refréin from using
(6.3)-unti1 (4.5) is proved. Theorems (6.1) and (6;2) do not de-

pend on (4.5).

(6.4) Definition. A class Crof functions is computation-

time closed if whenever f € @, there is a function

4
s € I

e €C pointwise bounds the number of

such that Se
steps required to compute f on a Turing machine,
and if conversely whenever there is an Se eﬁa

which bounds the number of steps required to com-

pute some function f, then f ¢ {i;
(6.5) Theorem For a > 2, Ed is computation-time closed.

Proof. Immediate, using (6.2) and the fact that %d € Ed and %a(x)
> fa(X) for x > 0.

It can be proved that every class of functions which is closed
under substitufion, computation-time closed, and containing a suf-
ficiently large function is also closed under the operation of limited
recursion defined below; we will use another, more direct method
to éhow each Ed is closed under limited recursion. The proof
yields a corollary which indicates the power of the c}asses Ea

for a < w.

(6.6) Definition. If f obeys the conditions

f(xnio) = g(in)

f(iniy”Fl) = h(iniyif(iniy))

then f is said to be defined by primitive recursion from

‘g and h. We allow the case n = 0, so that g may be a

function of O variables, that is, a constant.

! -+ N is defined by primitive

(6.7) Definition. If £: N°T
recursion from functions g and h, and if in addition
we have f(in,y) < b(;:n,y) for some function b and all
)-cn, y, then f is said to be defined by limitéd

recursion from g, h, and b.

(6.8) Theorem. For o > 2, .Ea is closed under limited
recursion. That is, if f is defined from g, h, be Sﬂa

by limited recursion, then f ¢ Ea-
Proof. We have

£(+,,0) = g(X)
f(in:y"'l) = h(;(n7Y7f(;5n7y))
£(x,y) < v(x,¥)

where g,h,b ¢ Sf,a. Let (g,in,G) be a prog;'axn for g where g € La
and G does not destroy fegisters Xn and Y. Let (E,in,Z,F,H) be
a program for h where again He L'a and H does -not destroy the
contents of)'cn, Z, F. We also assume that the registers of G

and H do not overlap except for in' Such programs are easily

found given any programs for g and h. Then let E be the program

g

F=0

Z =0

LOOP(1) Y
H
F=H
Z=72+1

END

41

G

Then (E,Xn,Y,F) computes f. For say y = O; then the instructions
witﬁin the Loop are not. executed, and after execution F contains
g(in) = f(}.cn,O). If y > 0, after the first execution of the in-
structions in the Loop the contents of F are h(;cn,o,g(;cn)) =f(x,1);
by inductién,‘ a.ftér the y executions of the instructions within
the Loop, the contents of F are h(;cn,y— 1,f(>-cn,y-1))= f(fcn,y) .
By counting the steps required to execute F, |

- - -1 - -
Tz(xn,y) = TG(xn) ~+ Z}z,=o[2+ TH(xn,z,f(xn,z))] +y + 4

~

By the Bounding Theorem (3.6), if we let m = ma.x{)-cn],

To(%,¥) < ﬁgp) (m) + Zy [2+-f (max{g,z,f(in,Z)})]4-y+ 4

~

By (3.8) since b ¢ £

T w) < 22 () 43 T2+ 1(D (maxlm, 2,157 (max(m,2)))] 4y 4

~

2P @ (1) L2 49 (max v, 207 (max (1) 1)1 + v+ 4

Then by using Lemma (3.4) repeatedly, exactly as in (3.7), there

is a number s so that TF(;cn,y) < fés)(max{y_l,y}). But then by (6.1),

~

T e .ﬁa. This concludes (6.8).

The method yields two corollaries.

(6.9) Corollary. If f is defined by primitive recursion

from g ¢ f’a+l’ h ¢ ﬁa, then f ¢ £a+l

Proof. If f is defined from g and h exactly as in the theorem,
excebt that the requirement f(in,y) < b(in,y) is dropped and we
now allow g € £a+l’ then the program for f given in the proof of

L
(6.8) still wgrks; by Definition (1.1) of Ly,1s E € £a+l'

(6.10) Definition. P, the class of primitive recursive’

functions, is the smallest class of functions con-
taining the successor function s(x) = x+1, the iden-
tity function i(x) = X, and closed under substitution
and primitive recursion.
(6.11) Theorem. The class U £

a<w o
~—recursive functions.

contains the primitive

Proof. EO contains s(x) and i(x). By (4.9) and (6.9), each primitive

recursive function is in ﬁa for some O < W.

(6.12) Theorem. For each O > 2, £y, contains a universal

function for £

o’ that is, a funetion Ud: NZ -+ N so

~ that if f: N - N is a function in Ea, there is an e
S0 Ua(e,x) = f(x), and conversely for each fixed e,

qd(e,x) is an £, function.

(y)(

Proof. Given a function g, its iterate g x) is defined by a

special case of primitive recursion (see Definition (3.1)). Thus

in particular the function %(y)

o (x+1) is in £oyyq+ Take

+1

For each fixed e, Uy € Ea- Also, each function in ﬁa must have an
infinite number of Gddel numbers; for example, an arbitrarily large

number of (useless) "X = X" instructions may be prefixed to any pro-

gram. Thus by (6.1), for every f € {,, there is an e so f(x) = Ud(e,x).

-Notice that although we used (6.9) in this proof, the theorem
follows essentially from the computation-time closure of £y and the

fact that £D%l contains a function which bounds every function of ﬂa.

(6.13) Corollary. For each &> 2, £O+l’ contains a charac-
teristic function (that is, a function whose range

is {0,1}) which is not in [V

Proof. It is immediate that the function 1:x is in fl and hence in
QZ+1' Take g(x) = liUd(x,x). Then by Cantor's diagonal method, if

g € &, g must have a Gddel number e: g(x) = Uy(e,x). But then

1=y (e,e) = gle) = Uyle,e)

’which is absurd.

|

N
J

IIT. MULTIPLE RECURSIVE FUNCTIONS

§7. This chapfer studies the theory of the multi?le recursive
functions. Many of the results in this theory have exact counter;
parts in the théory of Loop programs developed in Chapter IT; it
also turns out that the methods of proof of the corresponding
theorems are often quite analogous. In large measure the similar-
ity in the development of thé two theories occurs simply because
the theories are, in fact, very similar; it is also due to a con-
scious attempf to draw the appropriate parallels. This attempt is
made in the belief that both the author and the reader benefit from
the technical economy achieved by using d few tools rather than a
large coliection. Finally, we believe the methods used here and
in Chapter II are of great utility in the characterization of sets
of computable functions; support for such a claim can only come
from successful use of these methods.

The theory of Loop programs‘may be regarded as an attempt to
examine the result of restricting the notion of program in such =z
way that the structure of a program controls’the complexity of the.
operations the program performs. - The theory of Ioop programs 1s
thus in the tradition of the Turing-computable functions: those
functions computable by Turing machines. Here we take "Turing
machine"” in the broad sense of referring to all ﬁhe various theo-
reticél machines which serve as models for digital computers. But

it is well-known that several quite different ways of defining

=

b
e "}

"effect;vély computable" all lead to exactly the same class of
functions. Chief among these alternati&é approacﬁes is the defini-
tion of functions by Herbrand-Gddel-Kleene recursion“equations.

We summa?ize this approach, following Klgene dg; §54].
Iﬁagine a formal language built up from several basic symbols:
= (equals), ' (successor), O (zero), (,) (left and right paren-

theses), f, g, h, f15 815 Bysenes (function letters), x, y, z, X5

Yyo Zyreces (variables for natural numbers), and , (comma). From

these symbols are constructed several kinds of formal expressions.
The pumerals are O, 0', O",...; these stand for the natural numbers
0, 1, 2,... . The formal expression which is a numeral for a number
x we write v(x). Terms are O, any variable letter, expressions of

the form t' where t is a term, and f(t .,tn) where f is a function

170"

letter and t ,...,tn are terms.

1
Next we have equations of the form t = s where t and s are

e of

terms. Systems of equations are finite sequences SRR

equations. The systems of equations are the basic objects of study.

A system of equations may have a principal function letter:

the first (left-most) function.letter of the last equation of the

system. From a system of eQuatibps formal deductions may be made.

The deductions are precisely aﬁalogous to deductions in formal

logic from a set of postulates. There are two rules of inference:
(R1) From an equation containing a vafiable‘letter,

we may pass to the equation obtained by substituting

: j a particular numeral for every occurrence of

the variable letter.

(R2) From an equation of the form f(v(xl),... a

= v(x) and another equation r = s, we may pass

to the equation which results by substituting

v(x) for one or more occurrences of f(v(xl),...,v(xn))

in the équation r=s. |
Then a deduction of an egquation e from a system of equations E is a
sequence of eéuations, each of which is either one of the equations
of E or obtained from one (or two) of the earlier equations of the
deduction by an application of Rl (or R2).

A system of equations E defines the function ¢ recursively when-

/

ever the following holds: f is the principal function letter of E,

Yyoroyv(x)) = v(x) is

and for all x
1 n

12+ +»%, the equation f(v(x

deducible from E if and only if-@(xl,...,xn) = x. If a (total)

function has a system of equatidns which defines it recursively,

IS

the function is called general recursive. Kleene shows that the

class of general recursive functions is preéisely the same class as

the functions computable by a Turing machine. .
Thé class of multiple'recursive functions may be defined in an

analogous way; we will instead use a slightly different approach,

and then discuss its relationship with the Kleene formulation.

(7.1) Definition. For some n > 1 and m > O, suppose

(7.2)

defined by n-recursion from CARRRREI- A

the function f:Nn+m - N satisfies the 2" equations:

f(o,...,o;gfm) =T

2
+1,0,y,) = F

f(O,...,O,xn+1’, v,) =F

f(O,...,O,xﬁ

-1 3

f(xl + 1% ¥ 1,§rm) = an

where F .an are formulas built up from constants,

IERRRE
variables in’ ﬁm, and functions g,,...,g, by sub-
stitution. Suppose also that Fl contains no occurrences

of f, and in-each other equation
£ 7 =
*(glJ"‘JgnJym) FJ

where each §i is either "xi+-l" or "0", each occurrence

of £ in FShas ak, 1 <k<n, sof appears in the context

f(&l,.. ’gk-l’xk’Tk+l""’Tn’§m) where §k is "xk+-l", and
Ty "Tn’ém are terms (i.e. formulas) built up from
variables &m and those x. for which Ei’z "xi+-l" by ap-

plication of~g'l,...,gr and f. Then f is said. to be
r

Example. f i1s defined by Z-recursion from g1s+s8

if f satisfies

£(0,0,y) = g,(y,3)

£(0,x, +1,y) = £(0,x,,8,(y))

f(x +l 10,¥) = £ 8, (F(xy,%,y+1)),g,(¥))
f(x -Fl x2-+l,y) 5((xl,f(xl-+l xz,y),y))

EII o

E

(7.3) Dgfinition. For each ordinal & < agi ﬁu is;the least
class of functions satisfying o |

(i) 1r O; ﬁa contains the successor function

s(x)

(ii) If B <Q, ﬁBg_ﬂa

il

x +1 and the identity function i(x) = x

(iii) Ry is closed under substitution
(iv) If @ = B+ for some n >0, and f is de-

fined by (n +1)-recursion from 818, € ﬁB,

then f € Ry
We will call R = U , & the multiple recursive functions.
' a<w
Also, for each n > 1, U_ &, is the class of n-recursive
— n o o eaii ot
a<w :
functions.

It will be seen that if a function f is defined by n-recursion
frqm well-defined, total functions 8108, then £ is in fact a
well-defined, total function. The proof is by induction on the
well-ordering of n-tuples of integers under the lexicographical

ordering.

(7.4) Definition. The n-tuplevin is lexicographically less
. than the n-tuple iq (in symbols, (in) < (§n)) whenever

there 1s a u such that xu'< yu and for all i < u, X, = yi.

Notice that this relation is a well-ordering of order type
o by the mapping

(xn) —> (,Un'l.xl 4 oo 4+ 0x

' } (7.5) Theorem. If f is defined from total functions
OERERI-4 by n-recursion, f is a total, well-

defined function.

Proof. We have the equation f(O,...,O,&m) = Fl' By ﬁhe definition,
Fl cannot contain any oqccurrences of f; so f(O,...,O,&m) is uniquely
defined for all §m' Now suppose‘f(in,ﬁm) is uniquely defined for
all §rm and all En with (z) < (x). Then f(;’cn,{rm) = F_J., where‘Fj
is a formula built up from (some of) 81rs8, and occurrences of
f of the form f(Tn,ém) where Tl,...,Tn,Sl,...,Sn\are terms and, by
definition, (Tn) < (in). Thus f(in’§ﬁ) is uniquely defined.
Now by Definition (7.3) each function f € ﬁd is defined by a
sequence of equations, each of which defines a new function used in
V} the definition of f. The ipitial equationé in the sequence define
functions from the initial functions s(x) and i(x); and each equation
in the sequence is either an instancé of substitutionlwhich defines
a new function from functions defined earlier, or part of an instance
>of the schema of n-récursion from functions defined earlier. These
equations can of course be translated into the fofmal equations of
Kleene; this is really nothing more than a one-foripne replacement
of the informal symbols of the defining equationé ;Ei the formal
symbols of the recursion equations. Conversely, it should be ob-
vious that each system of formal equations which obeys a few purely
syntactic rules defines a multiple recursive function. The rules

are: each equation e is either of the form f(xl,...,xn) = T, where

T is a term containing no function letters, or is of the form

f(xl,...,xn) = T, where T is a term containing function letters de-
fined by earlier equations (formal substitution), or is part of the
(formal) scheme of n-recursion corresponding to the (informal) De-
finition (7.1). We aiso require that each system of equations be
consistent: that it not define the same function letter twice, nor
use the same function létter with varying numbers of arguments.
Again,.this restriction is purely 'syntactic. We may also attach
an ordinal & to each function letter used in such a restricted
system of équations: if a function letter f is defined by (formal)
1

substitution from function letters f ,...,fr, attach to f the

ordinal & = max{Q --,Gr} wheére O

10 I ERRRE

£ 5 or if'r = 0, so f is defined by substitution from the

to fl,..., r

empty set of functions, @ = 0. Also, if f is defined by (formal)
(n+1)-recursion from gs--+18,, assign f the ordinal @ =
max{al,...,ar}j-dP. Then assign to a .system of equations the or-
dinal of its principal function letter, and let R, be the set of
those systems of equations with ordinal less than or equal to Q.
The point is that the systems of equations in Ry have a purely
.syntactical definition; furthermore, given a éequence of formal
symbols,»we can effécﬁively test whether the seqﬁencé is in Ra.
Finally, each member of Ra is a system of equations in the Kleene
sense, so deductions may be made from such a system in exactly the
Same way as they are from the more general systems of equations.

It should be clear that a function f is in ﬁﬁ if and only if there

O are the ordinals attached

=)

is a system of equations in R, which defines f recursively.

Other writers use definitions of n-fécufsipn somewhat differ-
. i9 20 i
ent from ours. Péter [PL, PZ], for example, uses a slightly less

general scheme in which f obeys

£(x,v,) = ely) A X x =0

f(x +l,...,xn-+l,ym) =F oﬁherw1se

1

where each occurrence of f in F has the form

£(x 4—1,...,xi+-1,x. T ...,Tn,§m). Our development could Just

1 i+1’7i+2’

85
as easily have been carried out in this way. Robbin [JR) uses a more

general scheme.

|
v
e
H
P
»
i

f(in)§m) = (O;--';O)

il
v

£(x_5¥,) it (x)) # (0,...,0)

where Fo is a formula not containing f, and every occurrence of f

in F is of the form f(Ii,...,Eh,S ..,Sm) where T,,. 5

l)‘ l,... m
are formulas and for all (in) 4 (0,...,0), (Tn) < (in). The only

TS

problem with this scheme for our purposes is that given a pair of
equations in the above form, it i1s not clear from their syntactic

structure that f is properly defined, because the condition (Th) < (xn)
is not a syntactical property, but depends on the values of the functions
involved. In fact, given a pair of equations like the above, it is

effectively undecidable to determine in general whether the condition

(Tn)<:(in) is met. All of these approaches have the common property

that a function is defined by induction on the lexicographical well-
ordering of n-tuples. As we will discover, all the variations are

equivalent in that they lead to the same classes of functions.

§8. This section corresponds to §§3-4 of Chapter II in that it
establishes the rate of growth of the largest functions of each

class @a. There is a Bounding Theorem for @a, much like Theorem

(p)

130y for

(3.6), showing that each function in @a is bounded by f
some p; and a Hierarchy Theorem for ﬂd, which proves the inequality
for a > B by demonstrating that f

ﬁd o R® € Rd for ¢ > 1. Thus

B 14

the Bounding Theorem for ﬂd'is different from fhat for Qd’ in that
the former limits the size of the functions of @a, whereas the latter
bounds the computation time of functions of Qa. The bound on the
fgnctions of Ed came as a corollary to the bound on computation time;

yeN€vse
the reserve-will be true of ﬁd'

(8.1) Bounding Theorem for ﬁd' If £:N° - N is a function

< £(P)

in ﬁd, there is a p such that f(xn) <134

(max[in});
p depends effective on the recursion equations defin-

ing f.

Proof. Iike that of the Bounding Theorem for ILoop programs, this
proof is by induction on Definition (7.3) of ﬂa. There are four
cases corresponding to the four clauses of (7.3) which exhaust the

ways by which a function f 'may be a member of @1.'

Case 1. f(x) = x+1 or f(x) = x. We have immediately that

f(x) <ty < eMiyy.

0 1

Case 2. f € RB and B < @. Then we have a p so that f(in) <

fii&(max{in}) by the induction hypothesis for ﬂB and (3.4.viii).

B

Case 3. f is defined by substitution from functions gl,...,gré ﬁa.
The theorem is irmediate by Lemma (3.4).
Case 4. f is defined by (n+ 1)-recursion from functions
8118, in &5, where O = B+a . This case is proved by induction
on n. Suppose F is a formula built up by substituﬁion. We define
the EEEEH of F by induction on its structure as follows: the depth

of a variable or a constant is zero; the depth of g(F .,Fm) where

17

F -,F_are formulas is max{depth(F.)}+ 1.

R 3

-

Now consider the base of the induction, n = 0. Then & = B+ 1

and f is defined by l-recursion from gys-v:18, € ﬁﬁ' We have

f(x-+l,ym) = T,

Let a be the greater of the depths of F. and FZ’ and let b be suf-

1
ficiently large so fiﬁé bounds each of SERERPI-N and also all the
constants occurring in F. and F.,. Then

1 2

- (ba) -
£(0,3,) < 1y " (max(y, 1)
~ Suppose for each z < x where x > O we have

£(2,7,) < 1153

z+l)
(max(z,&m})

But since each occurrence of f in

By definition, f(x-+l,§m) = F,.

F2 is of the form f(xzfm), by the increasing property of fl+5 and

the hypotheses on F2 and T,

x+2
)

f(x4—l,§m) < f§E§ (max(x—kl,&m])

Thus, if we write m for max[x,im],

) X+1
£0o5,) < 1 oe) (m)

(vaZ1) (
<fiip)

m+1
= £, o(ba=""+m)

A
’_b/'\

We have thus proved the following for n = O:

(8.2) Lemma. If f is defined by (n+ 1)-recursion from
gl,...,gr, and 1f the greatest depth of the formulas

F ">F2n+l defining f is a, and f(b) bounds all of

17 1+
g8)s-s8, as well as all the constants of Fl,...,F2n+1;

(batt+2)

n
14 , where & = B+ w and

then f is bounded by f

t =1t (B). :

n

Proof. The basis n = O has already been doné, so we will assume
the lemma for some'nbz 0 and prove it for n+—l.'.Thus, a function
f(x,xo,...,xn,im) is being defined by (n+ 2)-recursion. For each

fixed x, let f(x)(.,xn,im) = f(X’XO’°"’Xn’§m)' On examining

Xy
1

the 2n+2 equations defining f, it is found that the first 2t of

them constitute a definition of f(O) by (n +1)-recursion, for these

equations specify the wvalue of f(x’xO"°"Xn’§m) when x = 0. Thus
|)

<‘f(ba+t+2 (m

)

by the induction hypothesis, f(o)(xo,.:l,x ¥

nUm T 14
where m is max(xo,«..,xn,ym] and t = pn(B). Suppose for some x
that
) Sy X+HL
((ba+t+2))
£ (m)

(X yeeyx ,y) < T
(x)™70 n7mt = T e P (xr1)

Again, by the definition (7.1) of n-recursion, f(is defined by

x+1)
(n+—l)—recursion from gl,...,gr and f(x)' The depth of the defining

formulas is still a, and by (3.4.viii) and the induction hypothesis

for 817180 the function

f((ba+t+2)x+l)

1+B+af (x+1)

R

bounds all of 81718 f(Thus, now letting m be

x)’

max(x +l,xo,...,xn,§m],

(<) ((ba+t+2)x+l-a+t+2)
- f ey X L,y) < °F ' m
(x+1) %07 %0/ 2 1+p+af (x+2) -
((ba+t+2)X+2)
f m)
1+p+af (x+2) —
Thus, we have shown where m is max(x,xo,...,xn,im},
((ba+t+2)X+1)
(m)

F(X,X e, X ,¥ <
(3% -+ 0% oy) < 1B+ (x+1) =

< f((ba+t+2)9‘+g)

(1)

148+ (m+1) -
m+2
= fJ'.+B+<1§1(£r_1+1)+1 ((ba tt+2)= J
£ - . E+2
< l+B+aP-A(A) where A = (ba +t+2)

E\;t}

L W

. _ 8. . n+l ' . 0 -
Now if B = w bS + + w bn+l + + W bo, let B' =
af-bs + .-+ dP+l'bn+l' Thus B' is the least ordinal SO (¢ = B'+—d§+l,
and 148+ (ba +t +2)5% = 148"+l ((va +t +2)5 4 +D). Then
f(X’XO""’Xn’ym) < fl+5'+ap‘(A+bn)(A-fbn)
= ((ba+t+2)%%4p)
1+ n
(ba+t+b_+2) v
f 0 (m) .
— 1.|.a —

But since tn+i(§) = t+b by definition of t, this proves Lemma (8.2)

and thus Theorem (8.1).
(p)

Unfortunately, the somewhat more atﬁractive conjecture that ﬁj
bounds the functions of @3 fails. This matter will be discussed
after (8.3).

. m. > € .
'(8 3) Theorem. For each a > 1, fl+a ﬁd

Proof. Consider the function hB.n: Nn+2-—9N defined bY (n+2)-
) .

recursion from f_:

=
~~
O
O
"
+
e
Nt
H
.
~~
"
+
'_J

161 %00 (go,...,gn_l,xn+1,x))

B,n
..,gn_z,xn_l,x+l,x+l)

(x.+1,0,...,0,x+1) = h @Wx+lﬁp.”mx+ﬂ

g,n

Each equation containing a ¢ is schematic in that it represents all
the equations obtained by replacing gi by "xi4—l" or "0". We show

that when B is of the form B = B'+—a? for some B', then

n 0 .
hB,n(XO""’Xn’X) = fB+Y(X) where v = w 'xy + -+ + 0 -x_ . The in-
X

duction is on y. If y =0, sox_ = --+=2x =0, then h (0,...,0,x)

B,n

= f_(x) by the first and second equations. If v is a successor, so

B

Y =0+ 1 where & = GF'XO + et gP-xn, the third equation applies:

. ;gn_l)Xn+1)X+l) = (EO; crey gn—l’xn’h{:‘i,n(EO)"')'gn_lyxn'*l)X))

hﬁ:n(EO,. hB;n

-

By the induction hypothesis for & and the first equation, we have

hﬁ,n(xo,...,xn_l,xn-+l,0) =1

ha,n(xo"'"Xn-l’xn+l’x+l) = fB+6(hB,n(XO""’Xn-l’xn+l’x))

But for fixed x X these are the same equations defining f

0’" B+o+1
= T , by Definition (3.2). Finally, if Y is a limit, so ¢ = 6-FuP_m

p+y .
. n n-m+l n-m
where m < n and d = u)-xo + e 4+ W -xm_l-+u) -xm, we have

hB,n(xo,...Jxm_l,xm-+l,0,...,0,0) =1

(XO’°"’Xm-1’Xm+l’O""’O’X+l):

hB,n(XO’""

hB:n xm_l,xm;x+l,0,...,0,x+l)

‘Combining the equations and using the induction hypothesis for &,

.,xm_l,xm+l,0,...,0,x) f

m=-1 (x)

h Xoyeo
B:n(o’ B+§+U)n— ‘X

Ty ()

by Definition (3.2).

)
J

Now consider the equations

f(O;Y) =y+1

f(x-+lJY) = f(xif(XJY))

which are an instance of l-recursion. We show that f(x,y) = y-kzx.

This is clearly true for x = 0; if it is true for X,

flx+1,y) = £(x, £(x,y))

f(x,y)+ 2%

v+ 2%+ 2%

"

y_}_211c+l

1

So f € ﬁl and f(x,0) = fz(x).
Now let @ be an ordinal, 1 < a < a?i and assume that fl+5 € RB

for 1 <P <Q. If @is a successor, @ = P +1, then flya is obtained

from fl+5 by iteration (Definition (3.1)), which is a special case

of l—recuréion, SO fl+B € ﬁa; If @ is a limit ordinal, let B be the

least ordinal so Q = B-+ap+l. By definition, is obtained by

h1+K3,n

(n +2)-recursion from fl+5’ and so by the induction hypothesis,

(XJOJ"'JOJX)

But hl+5,n

= f xX)=71T X
l+5+ap-x() l+a()
€ Ry. This concludes (8.3).

hl+l3,n € ﬁl+5+ap+l'
so by closure under substitution, S

The rather unpleasant need_to use T +a'to bound R, rather than

1

ﬂx, stems from the difference between l-recursion and primitive re-

cursion. The eqguations above,

s

£(0,y) = y+1

f(X+.l)y) = f(X: f(X:Y))

which make f£(x,y) = y4—2X, are not an instance of primitive recursion,
because in the latter scheme the parameters must remain fixed, not
variable, in the defining formulas. In other words, the schema ofv

primitive recursion may be written

£(0,y,) = Fy
f(x+1,y) = F,

where F. does not contain f, and where every instance of f in F_ is

2

of the form f(x,§m); here l-recursion wouyld have f(x,Tm) where 5m

1

are formulas. The difference is between "nested" and "unnested"
formulas. This matter will be discussed more fully in Chapter V.
Notice, incidentally, that if & > @, 1+a = .

The above results give

(8.4) Hiefarchy Theorem for &,. If a > B, @a - RS;

Proof. Immediate by (8.1), (8.3), and (4.6).

5 ‘ §9. The task of this section is to establish the computation-time
closure of Ra for each & > 2. The path we take is essentially the
same as that foilowed for Ea: show that the compuﬁation time of
each function in ﬁa is bounded by another function in ﬁu, and theﬁ
find a function in ﬁz which mimics the act;ons of an arbitrary
’Turing machine for a given number of steps. We base the proof
for the first half of the result on the use of deductions from the
formal recursion eqﬁation defining a funétion in @a. This method
is by no means the only way to carry out the proof, but 1t seems
to offer the féwest technical difficulties and will be applicable

as well to later work.

9.1) Theorem. For each & < a?i if £ € R, then f can be
L a N

computed'by a Turing machine in such a way that the

number of steps required to compute f(in) is bounded

(p) - :
by fl+a(max{xn}) fqr some p.

Proof. We will show that for each f € Ra'there is_a set of equations

(q)

E defining f recursively and a number g so that fl¥a

(max{in}) bounds
the number of equations in a certain deduction of the equation
f(v(xl)’f"’v(xn)) = v(x) from E. Then we wili arrange for a
Turing machine to perform tﬁe deduction and conclude the theorem.

If £ € R, then f(in) = X +c or f(in)'= c for some constant

c. Thus f is definable by one of the equations

s

R

or

A deduction of the equation f(v(xl),...,v(xn)) = v(x) simply con-

sists of the n+1 equations which start with the original defining

equation and have the variables x s Xy successively replaced by

1°°
v(xl),...,v(x). Thus the number of equations is bounded by a con-

n
(n+1)

stant, n+ 1, and a fortiori by fl

(max{in]).

B
with B < @, the claim is trivial by Lemma (3.4.viii). If f is de-

Now suppose f € ﬁa where & > 1. If f € ﬁd because £ € R
fined by substitution from functions in ﬁa,‘the proof follows from
arguments similar to, but simpler than, those used for the next
case. We omit the details.

There remains the case in which f is defined by n-recursion

from functions in RB, where & = B-faP—l for some n > 1. We have

the 2" equations
. n
£,y) =F., 1<j<z2

where each equation is obtained by allowing each §i to be either

"Xi+ 1" or "0". The functions g8, appearing in the formulas
Fj are all bounded by f£3é for some q by Theorem (8.1). Define for
n.
each i, 1 <1 <r, a function &5 :N 1 5 N such that {g_(x yoe s Xp.)
- 7 i il i

bounds the number of equations in the deduction of the equation

=

Haow do we deduce the equation f(v(xn),‘v(ym)) = v(x)? (We nhave

written,V(xn) for v(xl),...,v(xn).) First select the applicable

equation on the basis of which X, are.zero:

and then substitute the desired numerais for the En to get

£(W), V) = viEy)

where V(Fj) is Fj with a numeral substituted for each corresponding
variable in Fj' This requires n+m+ 1 equations. Then replace one
of the innermost function letters by the numeral which is its value.
This will require a subsidiary deduction of the proper equation.
Then, similarly, replace one of the remaining innermost function
letters by making a second subsidiary deduction, continue until

all the function letters are removed from V(Fj); we then have

S(W), W) = v(x)

for v(x) a numeral. Thus the total number of equations is no

more than

n+m+l+2[£,hk(Tl,.,..,'T Y+ 1]

Sy

equations, where the sum ranges over all literal appearances in Fj

of a function letter h, in the form hk(Tl,...,Tsk) and where T

. .,T

178k

are formulas. Notice that we include f itself in this census of

T) will appear

function letters, so terms of the form 4.(T,,...,
: 71 n-+m

e

in the expression above; this function letter represents the number
of equations required to deduce f.

Thus we arrive at the 2 equations

{f(gn)ym) = Zj

These define the function &f by n-recursion from gl,...,gr,

L ,...,4 , f, and addition. Fach &, is a formula n+m +1 +
g g, J
Z[{hk(Tl,...,Tsk)+ 1] like the one derived above. Now consider the-

following modified equations:

{ﬁ(gn’y) = Z?

Here Z; is the formula arrived at by repiacing each occurrence of

A (qi) .
N gi(Tl,...,Tsi) by fl+B (Tl+ cee 4 Tsi), where q, is chosen so the
J latter function bounds the former; likewise, £gi(Tl,...,TSi) is re-
. (p;) ’
placed by its bound f. = (T, + +++ + T,). That such bounds exist
148 1 55

is guaranteed by Theorem (8.1) and the induction hypothesis for

&gl,...,&gr. Finally, replace each occurrence of‘f(Tl,.. ’Tn+m) in
X . in whi] x
Zj by f(Tl’ ’Tn+m) By the way in which the formulas Zj were

defined, {; is thus obtained by n-recursion from the functions x+ ¥y

and T -1 for some gq.

. ’ * s (a)
148 so by Lemma (8.2), &f is bounded by fl+B

¥,= = e - - *,- = - -
But we also have &f(xn,ym) > &f(xn,ym) and &f(xn,ym) > f(xn,ym), for

+

'&; is defined from increasing functions which bound those defining

-&f and f, and the formulas defining &; are of equal or greater depths.

Thus the deduction of f(v(xn), v(ym

)) = v(x) contains no more than

(q) - - .
f _1 {(max{x }) equations.
148 n l(n)ym) q

jj -2

Foait?”

Next, it should be clear that there is a ¢ so the t-th equation

. t+max{§n,§m]
in the deduction will contain no more than c characters.

For substituting a numeral v(x) in an equation can increase its
length by at most d-@(x) for some fixed d; and each numeral which
is substituted is either one of the in’ &m or already appears as
part of an earlier equa£ion. Since fz(x) = 2%, there is an s so

the total number of characters in a deduction, namely

(q) .- .-
£3Y (max(x_,y })4max{x ,y })
fgmq)f(max{in:§m])-c I

(s)

1s bounded by fl+a'

Now a Turing machine can certainly carry out the deduction
we have outlined. Given input in’ §m’ it simply forms the equation

f(i y) = Fj’ and proceeds to derive the succeeding lines of the

n’‘m

deduction exactly as suggested above. Even if none of the deduction
is erased from the tape, the total number of tape squares used

need be no more than

(s)

Xy be X by ey m D5 (max(x), YY)

Then by exactly thé same argument as that given in {5.3), the total

number of steps required is no more than f&i;(max{in,§n}) for some

p, so-long as @ > 1. Even if o = 0, the theorem remains true; for
suppose f(in) = x,+c. Then f can be computed as follows: move to
the left over the repfesentation of Xqsee %k, erasing the tape,

until x, is reached; pass over X, and then add c-1 "1"s to its

m-e

left. Continue to the left, erasing x. .,...,X... Then move right
1 ;—»l .

1

again until Xi+ c hgs been passed, and.stop. The total number of
steps 1s no more than fgp)(max[in]), for suitable p. nThis con-
cludes the proof of Theorem (9.1).

A fuller discussion of the use.of Turing machines to carry
out deductions‘frbm recursion'equationé is given by Kleene Lgi §69];
readers who mistrust our sketch of such ﬁechanized deductions should
consult this work. |

Theorem (9.1) constitutes half of the proof that @a, a>e,

is computation time closed; the other half follows from the next

theorem.

(9.2) Theofem. Let M be a Turing machine which computes

the function f:Nn = N. Then there is an ﬁ2 function

TMm:Nn+l = N with the following property: if s exceeds

the number of steps required to compute f(in) using M,

then f(xn) = TM@5Xn’S)'

Proof. This proof can be made by giving a direct construction of
TMﬁg but a simpler method is £o show that ﬁd ;Zﬂd for a < W, and
theri use Theorem (5.1).to éonclude (9.2).

As we have remarked, ﬂo =.RO, for each function in both classes
can bg written in one of the forms f(in) = x;+cor f(in)= c for
some constant c. Now suppose~§gfé~éa for some o, 0 < a <, and

let P € L be a Loop program with Reg(P) = {X

P l,...,xn}.

]

213

X
3
4

I

For each 1, 1 <1 <n, let fi:Nn - N be the function computed
by (P, Xn’ Xi)._ By definition, each fi € fd.. Now consider the

function

X o - -
fi(xn,z4-1) = ;;(fl(xn),...,fn(xn),z)

which is defined by 1l-recursion from f .,fn; by the hypothesis

170

*
on fl""’fn’ fi € ﬁd+1'

Let P" be the program
LOOP(1) Z
P

~

END

Now we assert that fg(in,z) is the function computed by (P*,Xn,Z,Xi).

This is certainly the case when z = O; for then P* is equivalent to

the empty program. If the assertion is true for initial contents of

"Z = z, let the initial contents of Z be z+ 1, and the initial contents

of X be x . P*is thus equivalent to

"2"d Z’U

&*U

1)

-The program P leaves fl(xn),...,fn(xn)»ln registers X,,...,X ; and

by hyﬁothesis, if the contents of Xn are &n at the beginning of the

. : *
execution of the program E% above, then E% leaves fi(yl,...,yn,z)

)

S

in register Xi. Thus when the initial contents of Z are z+ 1, P¥
* > s =Y — ¥ . 2 .
leaves fi(fl(xn),...,fn(xn),é) = fi(xn,L-kl) in register X;; so
(p*, in,Z,Xi) computes f?(in,z). If register Z is one of the X,
Le = £ * 7 . * =)
say Z is register Xj’ then(gi,Xn,Xj,Xi) computes fi(xn’xi)'
The foregoing establishes our claim that Ed g;ﬁa for a < w

for the functions of Ea computed by programs of the form

LOOP(1) X
. 9

~

END

When we have a program of the form

w v

the claim follows from the closure of ﬂd under substitution.
Thus for a < W, Ea g;ﬂd; in particular by Theorem (5.1), the
desired function TMWIE ﬁz and Theorem (9.2) is proved.

Theorems (9.1), (9.2), (8.1) and (8.3) give immediately

(9.3) Theorem. For each a > 2, @a is computation-time

closed.

25

ey

., e £

IV. IDENTICAL HIERARCHIES
§10. The following very important result is now straightforward.

' w
(10.1) Theorem. If 2 <O< W, R, = £1+a'

Proof. If f € f,, the time required to compute f using a Turing

(04
machine is bounded by f(p) for some p. By (4.4) ?(p)(x +eee+x +1)
. 1+ RN BT AR n
2(p) - (p)
> flya(max{xn}), and fl+a(xl + -0+ xn+-l) € £1+a‘ Then by the com-

putation-time closure of { Conversely, if f € Elya’

(q)

1o T € &

the computation time of f is bounded by T for some g; but

1+&
f£3&(xl + e+ xn) € R, so by the computation-time closure of R,
e Ry

Notice that this gives

Proof of Theorem (4.5) concluded. We showed f. € El directly;

1

> , follows by (6.9); (8.3) and (10.1) give £, € £, for @ >3,

yielding the theorem.

Theorem (10.1) follows from Just two importan% characteristics
of each £1+a and Ra: First, each class (for & > 2) is substitution
and computation-time closed; second, the two classes contain fuﬁctions~
of the same sigze, in that ary functioﬁ in the one class 1s bounded
by some function in the other. Thus it appears that any class of

functions which has these two closure properties is essentially

characterized by the size of the functions it contains.

This same approach using computation-time closure is applied
below to three examples of other hierarchies mentioned in the
literature; we show that each of these hierarchies is identical

to a portion of the ﬁa hierarchy. Not all the theorems are proved

solely on the basis of computation-time closure -- sometimes ad hoc
methods are easier -- but mostly we make use of this powerful closure
property.

A hierarchy similar to the ﬁa hierarchy where @ <) was de-

1
fined by Axt [A—A2]. We have

(10.2) Definition (Axt). For each Q, C < @ < W, let P,
be the smallest class of functions satisfying
"~ (i) - The successor function s(x) = x+ 1 and the
| identity function i(x) = x are in P,
(11) 1f @> B, Py 2Py,
(iii) 55a is closed under substitution,
(iv) If £ is defined by primitive recursion from

functions g,h eﬁ’B, then f € £, where @ = B+1.

It is obvious that P, the class of primitive recursive functions,

is precisely

Uu &
a<wn?

See Definition (6.10). The difference between the ﬁa hierarchy for

@ < W and thed’a hierarchy is that where ﬁa is defined using 1-

}

recursion, Py is defined using the less general sghema of primitive
recursion.

It should be ciear intuitively that the function TMﬁzwhich
mimics Turing machines is primitive recursive. In fact, this re-
sult follows from proofs of the Kleene qumal Form Theorem; see,
for example, Kleene [;E §58] or DaViS.D%'IL 63]. This fact alone
would put TMﬁzin Pa for each & > ao’ where GO is a fixed ordinal
less than w. The next lemma, therefore, is of interest only be-

cause it shows & to be no greater than 4,

(10.3) Lemma. The function TMﬁzof Theorems (5.1) and
(9.2) is in.Puf Also, each function used in the

)

definition of TMﬁliS bounded by fép for some p.

Proof. The proof of the lemma consists merely of an enumeration

of the definitions of various functioné, concluding with that for
TMﬁé this together with a verification that the function so enumer-
ated have the properties ascribed to them. The verification is left
mostly to the reader. Instead of giving thg detalls here we segre-
gate them in §11, since, as remarked above, the regl content of the
lemma is already obvious: that TMﬁzeﬁjd for some @& < U, and there-

(p)
ﬂj for

fore that TM&lcan be defined using functions bounded by

some @ and p.

(10.4) Theorem. For 4 < < w, £o =Py

Proof. By Corollary (6.9) and the closure of Ea under substitution,

Lo 53P0¢for all @ > . On the other hand, sihce fl € Pl and fa+1

is defined from ﬂa by a special case of primitive recursion,
£, €Pa for each @ > 1; thus by (6.3) and (10.3), Py 2 & for
h<ac<w.

We remark that the first half of this proof, that Ea ;6ﬂ1,

could have been shown as follows: prove that each function in Pl

is

bounded by f(p) for some p. Then by Lemma (8.2), each function in

1

Pa is bounded by ﬁép) for some p. Finally, Theorem (9.1) applies

a fortiori, toﬁ’a as well as ﬁa, since primitive recursion is a

special ‘case of l-recursion; thus each function in6°a can be com-

(p)

puted in fewer than fa

of £; £y DP-

)

steps. Then by the computation time closure

Other hierarchies may be obtained by starting with a fixed set

of functions and clos1ng under substltutlon and limited recursion.

The next example is essentlally the one studled by Robbin [Jﬁj, his

initial function was 2 rather than fo,
like fa.
(10.5) Definition (Robbin). For each ordinal ¢, a < Gy%
let Ed be the smallest class of functions satisfying
(i) Ed contains the successor function, the function
max(x,y), and fa,

(ii) q} is closed under substitution,

(iii) qa is closed under limited recursion.

but otherwise he_used functions

(10.6) Theorem. For 2 < a < ugi Ed = Ed.

Proof. Say & > 2. Then ﬂd contains all the starting functions of
qa, and by (6.8) and (4.9), ﬁd is closed under limited recursion
and substitution. Thus Ed E)SG' Conversely, if f ¢ %j’ by Theorem

(6.3) £ may be written

£(x) = Mn(e,;cn,fc(xp)(max(xl.,...,ma.x(x

x)...)))

n-1’"n

for some e and p. Since Mn is obtained by substitution from TMW
for some T, by closure under substitution and Lemma (10.3), M, € 82;
for all the recursions defining Tszin (10.3) are bounded by fép).
Then by (6.3), f € qa.
T S
Grzegorczyk [&] studied a similarly defined hierarchy

{Eg: o < w}. His starting functions, however, are somewhat different.

(10.7) Definition. For each @, 0 < a < W, let g, be the

function defined as follows:

go(x,y) = y+1
g, (x,y) = x+y

g, (x,y) = (x+1)-(y+1)

i

For a > 2,

g -(0,y) = ga(y+l;y+l)

a+1

x+1,y) = g

& o

o (5580 (7))

We remark that these functions were somewhat simplified by R. W.

Y
Ritchie [ReR2].

(10.8) Definition (Grzegorczyk). For each &, 0 < a < W,

let Sg be the smallest class satisfying

. G .
(i) qa contains g. and &y

(ii) &8 is closed under substitution,

0
(iii) @i is closed under limited recursion.
) G
(10.9) Theorem. For 2 <o < W, Sd = q3+l'

Proof. By definition,

gZ)(Cv),y).= (v +2)°

gs(x'*'l:Y) = gs(x:gs(x::\r))

Abbreviate (y+2)2 by k(y). Then we assert that

gs(x,y) = k

The equation holds when x = 0; if x > O,

gz(x+1,¥) = g5(x,85(x,¥))

[
b

Now k(y) = (y+2)2 < yLL if y > 2. Therefore,

=

k(x)(y) < v

< fés)(x+-y) ifmy>2

7 ‘ .
Then f‘é)(x+y) > K.(X)(y) for all x, y. Thus k(x)(y) € £,, for it
is definable by limited recursion (in fact limited iteration) from
functions in Ez. Then gz € Ez by closure under substitution.
o . . _ on.
Now for 3 < a <, ga+l 1s obtained from 8y by l-recursion
By Theorem (10.1) and the definition of ﬁa, goz+l € EOL+1' ':F'hlS

. . G . . .
immediately proves EOL > 8OL+1’ since EOL contains the starting

functions of 8g+ and has the same closure properties.

1
~ (x)
Now we show ga+2(x,y) > f‘a (y) for 1 <a < W For

e.(0,y) = +2)f > 0y -y “
g5(x+1,y) = g.(x,85(x,¥))

> f(x)(gs(x,y))

1
> fgzx)(y)
> f‘:(LX+l)(y) ir x> 1
Even if x = 1, gs(l,y) = ((y+ 2)2+ 2)2 > f‘gl)(y) For l <a<w,
£s(07) = 8, (7 Ly +1) > £ (1) > 20y
83 (LY) = 85,5(0:8,,5(0,¥)) 2 féyﬂ)(y) > fc(lﬂ(y)
Boys(X+ 1Y) = g 2(xe (7))
> Tl T @)
> féﬁl)(y) if x>1

So in particular, ga+l(x’_l) > fa(x). Since clearly ga+l(x,y) >
max(x,y), there are functions in E’,iw which bound fa(ma.x(x,y)).
But since by Lemma (10.3), TM;m € E’,CS}, by using Theorem (6.3) we have

¥ @3 i 9.
52+1 o) S"a for 2 < o <®w; this concludes (10.9).

§11. . The major purpose of this section is merely to prove Lemma
(10.3), which proof is, apparently of heéessity,_éomewhat long-

winded. A minor purpose is to demonstrate that a few other functions
are in variogs classes\Pa, so that these functions may be used in

the sequel without further proof of their claimed properties.

Proof of Lemma (10.3). The construction is éonceptually identical
to that of (5.1), except that there a Loop program was written, and
here a primitive recursive function is defined. The approach here
constructs TMﬁzdirectly, in contrasf to that of Theorem (9.2), which
showedthatl?recufsions could perform the functions of LOOP(1l) in-
structions, and concluded the theorem indirectly via (5.1). We
remark that this latter method may, in fact, be used successfully
to prove (10.3), but that without some complexities it succeeds only
in showing that TM&IE PS.

The following functions are all inﬂjl.
X+0 = x

x+(y+1) = (x+y)+1

For each fixed n, n'x = x + *-- + X

We also write sg(x) = 1°x and sg(x) = sg(sz(x)).

Now if 8yrv 28 hl""’hr+l are given functions such that at
most one of 81r- 18, is zero for any argument, the function f de-
fined as follows is 5btained from the given functions and x+ ¥y.

EE, and p by substitution:

hl(xn) if glgxn) =0
f(xn) = hr(xn) if gr(xn) =0
hr+l(Xn) otherwise

Here f is said to be defined by cases. We have

£(%) = p(hy(X), (X)) +---+p(n (X), (X)) +

p(n_ (%),58(g) (x)) + - +5&(g (%))
Thusﬁja for ¢ > 1 is closed under definition by cases. The following
functions are all defined by a single recursion and substitution from

functions already defined, and thus are inﬁ°2:

x-0=0

x(y+1) = x*y+x

x20 = x)
x2(y+1) = (x2y):1

|x-y| = (x2y)+ (y*x)

x,y) = (x+y)°+ x

For each fixed n > 0,

o}
n =1
Py
X+1 Sno
n = n;‘x g;ﬁ
‘| //

The following functions are all defined by a single recursion from

functions already defined, and thus are iﬁ P3;

rm(0, y) = 0

fO if lrm(x,y)i—l— vl =0
m(x+1,y) =

rm(x,y)+ 1 otherwise
0fy = 0

x[y +1 if l(x/yi—l)-y'—x-l
(x+1)/y =

x/y otherwise

Jx+1 ir |(~/§<+1)2-x—1 =0

Nxr1 = |

’ J; otherwise
m(x) = x 2 ()2
Ty (x) = J = m (%)

' The functions T T, Wz are pairing functions with the proper-

ties (m (z), m,(2)) = z, m(x,y)) = x, m,(w(x,¥)) = y. Define,

using substitutions from already-given functions,

-

W
=
I
3
s

®

(x)g = Ty (%)
(x)R = Wéﬂéﬂé(x)

E(Xl)xzfxz))xu) = T(Xl’T(XE’T(X:S"X)-I-)))

These last five functions prévide the basis for the function
about to be defined which mimics a Turing machine. If XQ’ X;5 Xg,
XR respectively represent the state of the Turing machine and its
tape to the left of, on, and to the right of the scanned'square, then
E(XQ,XL;XS,XR) will represent the whole gurrent situation. Conversely,

if z represents a situation, (z)_ represents the state in that situ-

_ Q
ation; similarly for (z)L, (z)S, (z)R. Let the Turing machine W have

s . and v states dgr+ 29,15 @S before, the tape

u symbols Sgrtees -l

will be répresented by a number which, in a base u notation, is an
image of the corresponding portion of the tape.

Now let QW£Z> be that function, defined by cases, which is j
whenever the quintuple (q(Z)Q, S(Z)S, S0 4 qj) is a quintuple of M;
Qwéz) = (z)Q if such a quintuple does not appear. Likewise let.Swgz)
be the function which yields the next symbol to be placed on the
séanned square, and let Dwgs) be 0 if M has halted; and 1 or 2 re-
spectively if M moves left or right. It shbuld be clear that for

each machine M, wa Swf and Dwzare defined by cases, and hence by

substitution, from functions already given. Now define

L -1a.

z if D%z)=0
Step_(2) = {2(q_(2),(2) /u,em((2)) (2)y 5 (2)

if Dm(z) =1

B (#) u-(2)) +5_(2),mm((2)), (2), /0)

it D (z) =2

Thus Stepwze Ps and if z is the representation of a situation,

Stepwgz) is the representation of the next situation. Now say

- Resultm£z,0) =z

Resultgn(z,s+ 1) = Stepm(Resgltgn(z,s))

Then Result (z,s) € Pq; it is the situation resulting after s steps

N
have been performed by W when started with z. Define for a parti-

cular u

Ones(b,0) = u-b+1

Ones(b,x +1) = u-0 (b,x)+1

Ones € Pz, and when Cnes(b,x) is written in base u notation, it con-

sists of the digits of b followed by x+1 "1"s. Now let

Inputn(xn) = Ones(u'Oneg(...u'Ones(O,Xl);...xn_l),xn)

so that, for example, Inputz(xl,xg) consists, in base u notation, of
xl+l "1"s, followed by O, followed by X5t 1 "1"s. Then say

Initialn(xn) = E(0, Inputn(xn), 0, 0)

‘functions used in the definition of TMmzare bounded by f

Ipitialn(in) is the encoding of the initial situation of M with in-
put X -

Then define

Output*(z,0) = 0

1+ Output*(z,x) if Irm(z/ux,u)- ll

Output*(z,x+ 1) =
Output*(z,x) otherwise

Output(z) = Output*(z,z)

OQutput € PB’ and Output (z) is the number of "1"s occurring in the

base u representation of z. Finally, define

TMw§xn,s) = Output((Resultngnltlal(xn),s))L)

TMmz is the desired function. It should be obviocus that all the

(p)

o for some

p except perhaps Resultw{ Even this is bounded, however; for Result
is in each case an encoding of four numbers. The encoding is a poly-
nomial in the numbers. encoded, and the numbers themselves represent

tapes. But by the representation of a tape we have used, the size of

. the encoding of a tape is exponential in the length of the tape; and

-

this length is linear in the number of steps taken. Thus Resultmz
grows exponentially at worst; this makes it straightforward to show

fép) for some p, since fz(x) = 2%, Finally

Resulthis bounded by

TMWzGKDM’ so (10.3) is proved.

0]

§12. Summarizing Theorems (10.1), (10.4), (10.6), and (10.8), we

immediately
.. .
. . { C = =P = =
(12.1) Theorem. For 3 <a<®, £ . R, =P 1™ Conr™ Sz
For 2<a<d’, g =R =¢

o+l 0 o+l”

Therefore each of the theorems of §6 discussing Ed applies, mutatis

mutandis, to the other classes as well. The following characteriza-

tion i1s also interest.

(12.2) Theorem. For ¢ >z, Ea is the closure under substitution

of the (finite) set of functions {Ml, T, Tys Tps ﬂj}.

Proof'.. T,'Wl, W2 are the pairing functions defined in §11 with the

properties T(Wi(z),ﬂé(z)) = Z, Wl(T(X)Y)) = X, WE(T(X;Y)) =Y. §11

shows these functions are in 62 and thus -in Ea for o > 2. Also, Ml

and ﬂy are in Ed by Theorems (5.2) and (4.5). Therefore, the closure
of these functions is included in Ea. Now if £:N' - N is in Ed,'there
is an f%*:N - N so ¥ € Ea and f(in)= f*(T(Xl,T(Xz,...,T(Xn,O)...)));

simply take f¥*(x) = f(Wl(x),Wiwz(x),...,WlW(n-l)(x)).

> Then by Theorem

(6.3),

"'"T(Xn’o)”')’fc(xp)(T(X "T(Xn’o)"')‘) |

1’

for some e and p, since 1(x,y) > max{x,y}. This concludes (12.2).
Theorem (12.2) answers in the affirmative the question posed by

1
Grzegorczyk [&, p. 41] whether his classesEg were definable by sub-

~stitution from a finite set of functions.

. eriniction S1 ag-isalmar) . - e class O
12.3) Definition (Csillag-Xalmd The cl € of

elementary functions is the least class such that

(i) € contains x+y, xy,
(ii) € is closed under substitution,

(iii) € is closed under the operations of limited

sum and limited product: the operations which

1

take g:Nn+l -+ N into s:Nn+ -> N, where

- v - .
. s(x_»¥) =0 glx ,1)

and into p:Nn+l - N where

P(Xn)Y) =

g(xn,i)

=

i=0
Grzegorczyk was able to show that his class Eg is identical to the

elementary functions [G, Theorem 4.4]. Thus, immediately,

(12.4) Theoremn. Ly = €.

Although the foregoing theorems show that all the hierarchies we

have defined eventually become identical, we have not discussed much

the relationships of the various classes at the bases of the hier-

archies. Figure (12.5) depicts the known set-theoretic inclusions

among these classes. The figure is to be read as follows. A vertical

double line between two sets indicates that the set higher on the page

is known to include properly the lower set, and that the proof of the

inclusion is either given explicitly or follows immediately from ex-

plicit proofs. A double line one of whose members is dotted means

that thgre,is a proper inclusion between the t