
DRAFT

Program structure

and

Computation8l Complexity

Dennis M. Ritchie

.~.

SYNOPSIS

The major purpose of this thesis is to show that when the

language in which computations are described is restricted suitably,

there can be an effective relationship beti-reen the complexity of a

program and that of the cOffiputation it describes. We give two

examples.

The first example is that of Loop programs. A Loop program is

a finite sequence of instructions for manipulating non-negative, un

bounded integers stored in registers; the instructions allow incre

menting registers by unity, setting registers to zero, and moving

the contents of registers. The only control instructions consist of

Loops; there is a kind of Loop for each number n > 1. A Loop with

n = 1 causes the execution of a portion of the program to be repeated

a predetermined number of times equal to the current contents of a

register. Loops may be nested, one inside another, to any fixed depth;

but Loops with n > 1 are defined so as to make a Loop of type n+ 1

equivalent to a variable depth of nesting of Loops of type n.

Each Loop program is assigned an ordinal 0, where 0 < 0 < wm
J

which is intended to be the measure of complexity of the progra."'D..

The ordinal assigned to a program depends effectively on the program,

and meagures the depth of nes tir,g of the various kinds of Loops.

The idea of Loop programs linose only Loops have n = 1, althcugh

original vri th the author, is not unique to him; for example ;,Iinsky

[17, pp. 212-215J dis2usses briefly the sar.'.e idea. Some resul:'.3 of

51

the theory of such Loop programs have been announced by the author

[22] and published by Meyer and the author [15,16]. The generaliz-

ation with Loop instructions for each n > 1 is believed to be entirely

new.

For each ordinal a, 0 ~ a < mm, we define a function fa' The

function is recursive, strictly increasing, and if a >~, fa majorizes

f~. The definition of fa for finite ordinals a is the same as the fn

of [15,16] and in general is a modification of the function W used
a

by Robbin [25] for much the same purposes. The major results on Loop

programs can be stated as follows: for each Loop program ~assigned

ordinal a there is a number ~p effectively derived from ~ such that

! with inputs xl"",xn requires no more than f~P)(max(xl""'Xn})
steps to halt (Theorem (3.6)). The notation ~p) meaLS fa composed

with itself p times. There are some programs ~ assigned ordinal a

which do in fact require f~P)(x) steps to halt when given input x

(Theorem (4.7)). A precise definition or the number of steps used

by a program is a by-product of a formalization of Loop programs pre-

sented in§2.

Further results on Loop programs, and much of the rest of the

thesis, use heavily the notion of computation-time closure. A set

of functions is computation-time closed "Then both of the follo"ring

are true: if a function f is in the set, a function b is in the set

where b bounds the time required to compute f on a Turing machine;

if b is in the set and b bounds the time required to CODpute f on a

Turing machine, f is in the set.

5..2

If ~cx is the class of functions computable by progr~~s assigned

an 'ordinal less than or equal to cx, each ~ for cx > 2 is computation-cx -
time closed. This allows us to show the following: each class ~ for

a

cx? 2 is closed under limited recursion (Theorem (6.8)); each class

~ for cx ? 2 can be characterized in arithmetic terms, without refer-

ence to Turing machines or Loop programs (Theor~ (6.3)); if a pro-

gram ~ assigned ordinal a requires only f~P) steps as a function of

its inputs where.13 < cx, then P can be rewritten effectively to yield

a program ~I which is equivalent to I but is assigned ordinal~. How

ever, it is in general undecidable whether these hypotheses hold for

~ (Theorem (12.6)).

The second example of a restricted program language is that

describing the multiple recursive fur1ctions [19,21]. Each multiple

recursive function can be defined by a formal system of equations which

can effectively be assigned an ordinal CX < wW. If ~cx is the class of

functions defined by systems of equations assigned ordinal CX, then

U n R is the cla·ss of n-recursive functions; Peter shows [21] that
a<w CX

the l-recursive functions are the same as the primitive recursive

functions. Much the same theore.~s are proved for ~cx as for f.cx ' In

particular, ~cx is computation-time closed for cx? 2 (Theorem (9.3));

if f E ~ , f(x
l

, ... ,x) can be computed by a Turing machine in
CX n

fl(P)(m~x(xl""'x }) steps for some p which is effectively found from +ex n

the recursion equations defining f (Theorem (9.1)); fl+ex E ~cx (Theorem

(8.3)). These facts alone show: for cx? 2, ~l-ta = ~cx (Theorem (10.1)).

S3

The same kind of techniques are applied to the hierarchies of

Axt [2], Grzegorczyk [9] and Robbin [25]. All of these hierarchies

are shown to be identical to a portion of the fa and ~a hierarchies,

and thus to each other. Specifically, if~a' a < w, are the Axt

classes, ~a = ~a for a ~ 4 (Theorem (10.4)); if e~, a < w, are the

Grzegorczyk classes, ~a = e~+l for 2 ~ a < W (Theorem (10.9)); if

W ea, a < W , are a trivial modification of the Robbin classes, ~a = ea
for a ~ 2 (Theorem (10.6)). All of these results are straightforward

using compu~ation-time closure. Not all are new, however. According

to a personal communication, Axt showed <r a = e~+l for a ~ ao ' ao R:

but used a different method. Meyer showed the sa~e thing independently

[14], using a method like ours. Robbin [25] showed that U n e is the
a<w ex

same as the class of n-recursi ve functions; ho"rever, he did not sub-

divide the latter class after the manner of 0ur ~. It should be a
mentioned as well that Robbin established the identity of the n-recursive

functions &"1d those functions defined by ordinal recursion over certain
n

tI standard" -,iell-orderings of type cJl:l , and also the classes of functions

occurring in a restricted version of the Kleene subrecursive hierarchy [13].

It seems lE:ely that by closer study equality of these classes could

be establis'ced at each ordinal.

~ Chapte~s II) III, and IV stud~ Loop progra~s and multiple re-

curs i ve fun.:: ':ions; Chapte.:: V contains three applica tio:;.Sof the tools

developed i::c. the earlier .::hapters. The ::lost imp:)rtant :)f these, as we

have indica",::~d, is the idea of cO::lp'c:tation-time c1:)su2'e. An early

appearance of this idea, without an explicit name, was in R. W. Ritchie

[23J, who used it to characterizing classes which form a hierarchy of

elementary functions. Cobham [6J pointed out how each Grzegorczyk [9J

class could be characterized in terms of the property, after the manner

of our Theoram (6.2), which states ~a is precisely the class of functions

computable by a Turing machine in a time bounded by f~P) for some p.

As we mentioned, Meyer [14J and also Robbin [25J used the idea as well.

Chapter V, §13, discusses unnested and bounded n-recursion [20,

21J and their relation to the ~a classes) thus strengthening some theoremj

of Peter [20,21J. §14 exa~mines the properties of computation-time closed

classes of functions in general; its major results are that each ~a in

cludes a sequence of classes, all computation-time closed and closed under

limited recursion and substitution;which is densely ordered under. set

inclusion (Theorem (14.14)); also, ~a includes an infinite sequence of

classes with the same closure properties but pairwise incomparable under

set inclusion (Theorem (14.15)). These two-results were obtained in

collaboration with Albert R. Meyer. §15 applies L~~ (14.13) to ob-

tain a strengthened version of the Super Speed-up theora~ of Blum [4J.

Among the consequences of our Theoren (15.3) is that there are functions

lying very 10,,7 in the '\':'a hierarchy '/Those computation C8...11. be sped up,

in Blum's sense, very considerably.

I. INTRODUCTION

§o. Pred.~ct~ng how long a d:'gital computer with a given program

will requi.re ~" pr:JCess i:,s inpllts is sometL--nes impossibly difficult.

This d~ff~C:1l1t~" can be p3.Ytially explai::J.ed as a manifestation of

the thecre:-:-. that th~r'" is no effective method for bounding tr.e COr:l.-

pucation +:::"::",0: 8: a ':'urir:g maCrl2.ne by inspection of the machine, or

for bOlL'1di:-'lg t.;l:e runni.nG time of a program written in al"lY language

capable of descrLbir:;;s all recursive functions.

In other woris, a!1Y fOI7.1.ali sm which can describe all ter:ninat-

ing computati::lI'.s n:uso.; desc.ribe some ncmterminating computations,. and

tt.ere is r;~~ ge:l':=rall,/ effective way of distinguishing the descrip~icm
,~. .

of a tern:~L3..~ ~:1~ fr0::1 a :1-::n~.:JterElinat.ir,l.g computation. In cor .. sequence, I~
'.'-.. /

"

gram i:1 a s'JfCcier,t,ly p:O'derful language to the complexity of the

operations i 1; c:arr::'es o:::.t. This fact is borne out most strongly by

the existence of a ~rrliversa: r~ring machine: a fixed program, actually

quite smal:, '..rhose behavior is as difficult to predict as that of

-r_ "-..-
(",: .,J;".

~~a"'-"; ..
~. ,'-""" ;roblems, bas in~eresting speclal

essen t::'3..1l:r i:1volves a refusal ~o ::C:.:1-

J-I

of this method are the linear bounded automata of r.1yhill [18], the

T(n) countable sequences of Hartmal'1is and Stearns [10], and the pre-

dictably compw,able funcLons of R. ~-l. Ritchie [23]. Each of these

theories co:-,siders c8mputati.:);.s by a Turing machine where there is

a bound on t:-,e t:.n~ (or -:he storage space) allowed for computation.

The bound is :i.mp:)sed fro", 8UtS ide simply by restricting attention

to those C8:r;p~lta":.:8ns which satisfy the b01.U1d.

By contrast, the approach of this thesis is to restrict the

la.."1guag~ irl 'dh1ch programs for computations are expressed so that

infinite compu~ations are no longer possible. The first result of

this restriction is that there are indeed effectively calculable

bounds on ~,:-;e describable c omputa.t ions J but the important fact is

that~ th~ ex~stf";nce of these bounds becG!l1es a theorem not a postulat~
about ~~te c·:)[:1pULat:on~. It also beCOI~,es possible to do for these

special ki"J.S of programs , hat is impossible for programs in general,

namely to relate the complexity of a proaram to the complexity of

the calcula: ion it desr:ribes; both kinds of complexity, of course,

have to be taker; i:, the proper sense.

The ma.:or par'~ of ~.!';is thesis is the study of two examples of

the techniq;", :)f res tr icting the la..'1guage in which computations are

described; ":::.
~~'1? tJ) .. ;\c£),./['-jV)

:·c~::".air:der CDtL,>ists of several appreeiatiom. of the

'~;:-:,.pu.t-8.t:i:)n descriced by it?

",

It is not e::l.Jl~gh to say merely that there is an effective means

of going from a. progra.'il and its input to a number b01.l..'1ding the time

required to ru.'1 ~;he progra.rn with that input. For if we know the pro-

grarl eventually doe;:; halt) the: effective method is simply the follow-

ing: rW1 the prograr:l 0:1 the given input and measure the' time required.

This method is :"ot only foolish in a practical sense but (far worse,

from our poiLt of vle~,;). uninteresting mathematically. A better way

is to give the a:lswer in terms of a known :function. Thus if we had

a progra.rn wi th a single input parameter, we might be satisfied to

know that for ':':-:pui:. x, the program would halt wi thin x'2.seconds. This &
is the kind of result given for the progr81l'. considered in this thesis.

On the oi:'r:er ha..'1d, even this' kind of answer has many practical

defects. Tl't- trouble is that ma.'1Y simple programs can run for a long

tirne. Cons i~er the fC'llowing pseudo-FORTRAN program.

READ N

J = 1

DO l' I = 1., rr + 1

\ :::

The third fuid fcur-::1 lir .. es meCL.···l tl:at 2,J is to replace J, N + 1 tiIr.es.

We assume that t:1~; :: ':;2:ra€e registers a.ssociated with the variables

of the progn.:;, tr~"0 Cit' '.lnlimi ted size. This progra'TI is an extremely

Ie;)

",

,
f
I .
; .

I - LJ
.-{ ,- ..

insufficient to contain the volume of paper required to write down J.

Thus the fu.t1ction of iI which predicts the running time of the program

:r:n1st be ver:" 1'11',:::;';:. In fae t, it is proportional to

2
2

This example iniicates tnat we must accept one of two things: either

that we agr~e to treat programs whose running times are so incredibly

long as to preclude ~~y practical application of the results developed,

or that we ~~~st throw out ne~~s of expression, like those in the pro-

gram above, '..;::lch pr8gr~':lIner3 could hardly do without. In either 'case

the fa·et I-:1t~;.;'~ be f'l'::ed. that there can be no direct practical applic-

ations of ':he t~eGry. In 0he latter there is another difficulty. ~fuen

prograTos ar~ restr~cted severely enough to make eve~J program halt in

a rather :3~:Sl''''~ t,~me, the exact means of expression allowed to begin to

have a ma,i-:::::' .::::'fec:-:':. an the time required: it matters a great deal, for

ex'lrnple, '''::>''h",l' :-::'12. ~;,pli ;'lti:::m is allowed as an elementary operati8n

or must bei:.~!·e i:1 steps by means of repeated addition. In the case

c;f real C~;:;l~: ,,',;::'3. Jf '::O'lI:'Se, t~l~S is an important consideration. But

'ile have a1r-:' '11:,' ,::l ',',;:" 'lP real applications by treating only progr3.rns

1'r3.ct ~·~3.1 ,,' ,~::i f' C'1.r'::~: fo!' our ,{srk rr:erel:; because Clf this feature.

On tho:! 81::her !:.9.!':d, the nathematical significance of the theory

can :::nly been hane ed vrh 2,1 it is D8t model-dependent; tha tis when the

deta.i is of :~le bas ie de:'ini t ions have little effect on the theorems.

would make l~ttJ . .'? d:.ffe~2nee if addition or multiplication were added

as eleme:,i-,ar:/ eo.pera'"io::s. ".;.:: study two major examples of ways of

defining C;)r:lp·i~at;.~:Jnt, ::'n such a manner that from a program one can

go effect..:. vely T~C:: a function which bounds the length of the computa-

tion. The t.we exa~ples are ~ programs and definition of functions

by multiple recursic)l1 e'1.uations; both involve computations far beyond

the capatili ties ~J'f re:l.l comp'.lters, but in return give rise to inter-

esting ma-:::e::la:'ical str"--lj~tures.fI

Locp pr'J,;r8."1:'; ·;:{e:~,:;;lif'~" the approach to the theory ef comput.ab:ility

that a Loop program may be regarded as

a set ofL~,strlictio::s t::: be ~xecuted by a sort of digital computer.

The Turing approach is typified by the use of simplified models of

real c8mp'.~~ers; it :.s pr8bably the one most frequently found.

A distinct al~~ow~~~: equivale:lt version of the theory of computa-

bili y L.") ':'-.'? 'X'.': caSo:!l CI,n sj-stems of Herbrand-~::odel-Kleene recursion

equatiops, as :;;r:::..;':::tei Coy Kleene in [11] a.T)d [12, §54]. Our sec8ni

exa>nple, -::--_a C rf i-::~'lni-:~::m 8f furlctiens by multiple recurs iClD , bears

exa:::tly 7:;-.-.:0 :~?,:," l:":, _.3.L.C:::;Sfl':'p te defi.r-,::;. tion by CLTJ.restricted recursion

equat':'cn.: 'j.":; i:: ~,(" ~,p pr::-sra'll3 t'J programs in ge:1eral: in each case the

.". ~f ~ r' r" .::j _ ~::';...; _ .~'..l-

",

A Loop program is a sequence of instructions for manipulating

non-negative integers stored in registers; each register is capable

of storing an arbitrarily large number, and the number of registers

to which a program refers is fixed but unlimited. There are instruc-

tions for moving the contents of registers, for incrementing by unity,

and for setting registers to zero. The flow of c~ntrol in a Loop

program normally passes from one instruction to the next in sequence,

and the only way of affecting the normal flow is through the use of

Loops. A Loop is introduced by a LOOP instruction and terminated by

an END instruction. Together these indicate that the section of the

program between the two instructions is to be executed repeatedly

some number of times. There is a variety of LOOP instruction7 one

for each number n ~ 1; these are written LOOP(l), LOOP(2), etc.

Each kind of LOOP instruction names a register whose contents

control the looping. In the case of the instruction "LOOP(l) X",

for example, X may be any register name. This instruction causes the

portion of the program between itself and its matching END to be re-

peated a number of times equal to the contents of X at the time the

LOOP is encountered; subsequent changes to X do not affect the number

of times the repetition occurs. Thus a Loop introduced by LOOP(l)

is entirely comparable to the DO loop of FORTRAN and to the most usual

cases of the for of Algol and the THROUGH of MAD. The similarity is --
not accidental, for part of the motivation for the study of Loop pro-

grams is to study the power of this construction.

Loops may contain other Loops; that is, Loops may be nested to

any fixed depth. This is the motivation for the existence of LOOP(n)

instructions for n > 1: the effect of LOOP(n + 1) is defined so as to

make such a Loop equivalent to a variable depth of nesting of LOOP(n)

Loops. In particular, the program

LOOP(n + 1) X

~
END

where n ~ 1, X is a register name, and ~ is a program, equivalent to

the program

LOOP(n) X }x
LOOP(n) X

~

}x END

END

where x is the number in X initially; that is, we have a nest of

LOOP(n) Loops of depth x. There are no constructions in real pro-

gramming languages comparable to LOOP(n) where n > 1.

ill
To each Loop program an ordinal a is assigned, where a < ill •

The ordinal is derived directly from the depth of nesting of the

various kinds of Loops: for a progra..'1l "<'Ii th::mt Loops, a: = 0; if a

program is t~e concatenation of two programs with ordinals P, "

the ordinal assigned is a = max(p; ,); if program 2 is assigned

ordinal ~, the~ prQgr~~ ~ =

;[7

LOOP(n+l) X

g
END

for n ~ ° and X a register name, is assigned a = ~+illn. Then,for

example, ~ program which uses only LOOP(l) instructions is as-

signed a finite ordinal equal to the greatest dep~h of nesting of

Loops in the program. The ordinal assigned to a program is the

measure of complexity of the program.

The notion of computation by Loop program can be formalized;

a by-product of the formalization is a precise definition of the

running time of a given program as a flli~ction of its inputs. The

running time measures the nlli~ber of individual instruction executions

required to complete a program and in a sense the justification for

introducing the somewhat opaque formalism is to make reasonable the

claim that the complexity of a calculation is measured accurately

by its running time.

The basic resu+t on Loop programs is the Bounding Theorem (3.6).

We introduce for each ordinal a, a < illill, a function fa as follows:

if a = 0,

if x < 1

if x > 1

If a is a successor ordina~) a = ~ + 1)

where the notation f(X)(y) means f(f(... f(Y) ...)); there are x com-

positions of f. That is, f~l is defined from f~ by iteration.

ex is a limit ordinal, let ~ be the leas t ordinal so a = ~ + (j)n+ 1 ,

where n > O. Then

f (x) = fQ ~ (x) a f-'-lill ·X

If

Thus at limit ordinals, fa is defined by diagonalization over a

certain sequence (f~i} of functions where ~O < ~l < ... and sUP(~i}

= a. The first few fa are easy to describe~fl(x) = min(l, 2~);

f
2

(x) = 2x;

2

x

The details of the definition of f are unimportant. For finite a

ordinals, a = n, f is the same as the f ,used in [15] and [16];
a n

at limit ordinals, the definition is the same as that used by Robbin

[25] for his functions Wa' which play the same role as our fa' What

is important is that the fa are easily defined ~~d have pleasant

properties: each fa is a strictly increasing function, and if a > ~,

fa majorizes (bounds almcst eve~FNhere) the function f~.

Given ~he function f , the Bounding Theorerr. is: if P is a proex

gram. assigiced ordinal a, -:here is a fixed number p , effectively

found from~, such that the r 1.mning tir.-ie of P wi ~h inputs xl"'" xn

is bounded oy f;P)(rr.ax{xl ,·· .,xn }).

BY fixing upon one or more registers for input and a register

for output) we associate with a Loop program a function computed by

that program; the class of functions computable by Loop programs

assigned ordinals less than or equal to a is called ~a' It is an

immediate consequence of the Bounding Theorem that every function

f E ~~ has a p so f(xl) ...)x) < f(P)(max{x
l

). ")x }). Also) for
u. n-a ;l

each a < wm
there is a function f E ~ so f (x) > f (x); it is im-. a a a - a

mediate that the classes ~a form a hierarchy) for it is easily shown

that if a > ~) fa(x) > f~c)(X) for each c and almost all x. Already

several of the goals looked for in the study of Loop programs have

been achieved) for it follows first that every program assigned or

dinal a consumes no more than f(P)(max{x
l

) .. ')X }) steps when given a n

input xl)"')xn) and second that there are some programs assigned

ordinal a which actually do require this many steps to halt. TnliS

the ordinal assigned a program is a reasonable measure of the (po-

tential) complexity of the computation described by the program.

The further study of Loop programs) and in fact much of the re-

mained of the thesis) is heavily concerned with the property of com-

putation-time closure of a set of functions defined as follows: first)

when a functio~ is in the set) it can be computed by a Turing machine

in a number of steps which is bounded) as a function of the inputs) by

another function in the set; and second) if a bo~~d on the computation

time of a function is in the set, the flJllction itself is i~ the set.

Each class ~ for a > 2 is computation-time closed. The first require-a. -

ment is met by combining the B01.mding 'i':.f1eorem ,,-i th a demonstration that

a Turing machine c~~ simulate an arbitrary Loop program while con-

suming a number of steps which is an ~2 function of the running

time of the Loop program; the second by finding a Loop program

which simulates a Turing machine calculation carried out for a

given number of steps, and then substituting the known bOlli1d on

the length of the computation into the simulation program.
t4iJ~

The computation-timeAof ~a leads immediately to several

theorems; for example, if it is known that a program assigned or

dinal a actually has a running time bounded by f~c) where 2 ~ ~ < 0,

the program can be effectively rewritten so it is assi~ed ordinal ~.

It is also shown that each class ~a' a ~ 2, "is closed under the oper

ation of limited recursion (see Grzegorczyk [9J); that each class ~o'

0: ~ 2, can be characterized in purely arithmetic terms, without re-'

ference either to Turing machines or Loop programs; and that every

primitive recursive function is in ~a for some finite ordinal a.

Our second example is that of the multiple recursive functions.

These are, for our purposes, precisely those functions definable by

certain fo~"al systems of equations. We imagine a language contain-

ing symbols for constants, variables, function letters, and appropriate

punctuation, combined in such a way as to represent definitions of

effectively computable functions. This lang'\.i.age is simply a formal

version of the informal definition of functions by means of various

kinds of recursion, including, for ex~~le, primitive recursion.

Unlike Kleene [11, 12 J however, \'le place certain restrictions on the

form of the systems of equations. In partic~llar, an equation defining

][//

a function in terms of already-defined functions must be an instance

of one of several schemata, n~~ely those of substitution and n-

recursion for some fixed integer n ~ 1. Substitution simply means

obtaining a new function by means of explicit transforwAtion or

composition of other functions. The schema of n-recursion allows

defining a fQ~ction f(xl , ... ,xn) in terms of knovm functions and

values of f itself at ar~~ents zl' ... ,zn such that the n-tuple

Zl,···,zn is lexicographically less th~~ Xl'· .. ,xn . The very form

of the schema of n-recursion is such as to ensure that the set of

equations constituting an instance of n-recursion actually does de-

fine a function effectively.

w
An ordinal a < ill can be effectively attached to each formal

system of equations satisfying certain purely syntactic require~ents.

Letting Ra be the class of functions definable by systems of equations

with ordinals less than or equal to a, another hierarchy results which

is equivalent to the following: RO consists of the closure under sub

stitution of the constant and identity functions; Ra for every a > 0

consists of the closure under substitution of all functions f for which

there exist i3 and n so a = i3 +wn and f is definable by (n +l)-recursio~

from functions in R
i3

•

For each n > 1 the f1..:c.'1.ctions in U R are called n-recursi ve;
n a a<w

functions which are :1-rec~rsi ve for some n constitute the multiple re-

cursive functions. The nc-:ion of multiple recursive function is a ge-

neralization of that of prim:" ti ve rec:ursi ve function, ~'Thich ,,,as intro-

functions are identical to the primitive recursive functions. Ackerman~

[1] first introduced a 2-recursive (also called double recursive)

function and used it to show that there are effectively computable

functions which are not primitive recursive. Peter [19 J 20 J 21]

studied the whole class of multiple recursive functions.

Our ex~~ination of the multiple recursive functions uses much

the s&~e methods as those applied to Loop programs. A Bounding Theorem

for ~a establishes that each function in Ra is bounded by f~~l for
\~

some p Which can be found effectively from the formal system of

equations defining the function; on the other hand J fl+a ~ ~a for

a > 1. Likewise J each class ~a for a ~ 2 is computation-time closed;

this is established by considering the number of steps a Turing

machine would require to carry out the evaluation of a function from

its defining equations. Then the theorem ~l = ~ for a > 2 is im-+a a -

mediate. For if f € ~l+aJ f(xlJ···Jxn) can be computed on a Turing

machine in no more than fi~(max(xIJ ... Jxn}) steps; but the latter

function is in RaJ and so by the computation-time closure of ~aJ

f ~ R. The converse argument is identical. a
It is. here that the concept of computation-time closure is most

important. For to show directly that ~l+a = Ra is quite difficult.

In particular, if a; < ill then to construct an equivalent Loop program

wi th ordinal 1 + a; directly from the equations defining an OT.a function

is quite hard. But given that the OT.a; fQ~ction can be computed by a

Turing machine in fi~ steps, one need only ~ITite a program which

computes any function at least as large as fi~ and insert it into

a program to simulate the Turing machine.

The same kind of methods are also applicable to three other

hierarchies, those of Grzegorczyk [9J, Axt [2], and Robbin [25].

The first two classify the primitive recursive functions and the

third all the multiple recursive functions. The point of interest

is that each of these hierarchies is identical to a corresponding

portion of the ta and ~a hierarchies; the classes of functions

eventually become the same.

The idea of computation-time closure, which plays a major role

in our work, was used by R. W. Ritchie [23J without an explicit name;

its value in characterizing the Grzegorczyk hierarchy • .;as pointed out

by Cobha~ [6J. Some of the results of Robbin [25J ma~e implicit use

of the idea.

The usefulness of the notion is that the particular functions

in a computation-time closed set of functions depend cerely on the

approximate size of the functions in the set; that is a function is ,
in the set if and only if a sufficiently large functio~ is in the set.

For exa~ple) suppose t- and 'D are two computation-time closed sets of

functions, and that 'D contains both a flLl1ction ,vhich grows at least

exponentially and a function vrhich majorizes ever-yfl.W:::tion of e
Then it can be shown not only 'D contains t properly, but that D

contains a flLl1ction universal for t: a function U € S so that for each

f €L" f(x) = U(e,x) for some e.

The secondary goal of this thesis is to study the application

of computation-time closure and other tools developed in the pursuit

of the primary goal. The most important application, of course, is

the study of the classes ~ and ~ , which arise from Loop programs a a
and multiple recursive functions. There are three others: the ef-

. fects of various restrictions on the schema of n-recursion; the ex-

tent to which computation ... time closure characterizes a set of functions

(which leads to an impressive refinement of the ~a hierarchy); and the

existence of functions whose computation can be sped up very greatly.

For the most part this thesis is self-contained. The only re-

quirement is a knowledge of the elementary theory of Turing machines:

what they are, and a few of the tricks that they c~~ perform in order

to carry out intuitively simple kinds of operations. Familiarity yQth

the first few chapters of Davis [7] is more than enough background.

The mathematical notation in the thesis is generally standard.

We use a bar over a letter to indicate a sequence of elements: "X " n

In each case the first subscript in the

sequence is 1 and the last is the s~ne as that on the barred letter.

Variables and constants/usually indicated by small letters ~ ~

alphabet, all range over N, which is the class of non-negative integers;

func-e'ions, often small letters f, g, h, are always functions from if

into N for some n; sets of such flL~ctions are usually denoted by capital

script letters. Small Greek letters from the beginning of the alphabet

are used for ordinal numbers. Functional co~position is often denoted

by juxtaposition, especially with one-place functions: fg(x) is the

same as f(g(x)). Finally "e" means strict set theoretic containment.

II. LOOP PROGRAMS

§1. ' A Loop' program is'a finite sequence of instructions for manip-

ulating non-negative integers stored in registers. There is no limit

to the size of an integer stored in a register, nor to the number of

registers to which a program may refer; but a given program refers

only to a fixed set of registers. We will use upper case English

letters, sometimes with subscripts, as register names, and abbreviate

a sequence Xl"",Xn of register names by Xn . Boldface capitals (iden

tified by a wiggly underscore) stand for Loop programs, and if P is a

program Reg (f) is the set of register names used by!.

The instructions of a Loop program are of five types:

(1) X = 0

(2) X = X+l

(3) X = Y

(4) LOOP(n) X where n is a fixed integer, n > 1

(5) END

Here "X" and "y" -may be replaced by any names for registers, and the

"0" of nX = 0" is to be read "zero".

(1.1) Definition. The class L of Loop programs is U La' where a

ill ranges over ordinals < ill, and where La is the smallest class

satisfying

(i) If a = 0, La is the class of finite sequences of type (1),

(2), and (3) instructions,

(ii) If f E L~ and ~ < a, then P E La'

l

(iii) If £, ~ E La and P is £. concatenated wi th ~,

then £ E la,
(iv)

n
If £ E Lt) and a = t) + co for some n, 0 < n < co,

then f E La' where! is

LOOP(n + 1) X

£
END

and X is any register name.

B,y (l.l.iv), type (4) and (5) instructions occur in pairs, like

parentheses in a well-formed formula, so that the LOOP-END pairs in

a program are unambiguously determined.

The first three types of instruction have the interpretation

suggested by their appearance. "X = 0" means that the contents of

register X are to be replaced by zero; "X ::: X + 1" means that the

contents of register X are to be incremented by one; fiX = y" means

that the contents of register Y are to be copied into register X,

destroying the old contents of X but leaving Y unchanged. These are

the only instructions which affect the registers.

Instructions of types (1), (2), and (3) are executed sequentially

in the order in which they appear in the program. Type (4) and (5)

instructions affect the normal order by indicating that the execution

of the block of instructions between the LOOP and its matching END

is to be repeated zero or more times.

The effect of a LOOP(n) instruction is defined by induction on

n. Specifically suppose that! is a Loop program, and that x is

stored in register X initially. Then the program

LOOP(l) X

P

END

means that ! is to be repeated x times in succession before the

next instruction (if any) after the END is executed. Changes in

the contents of X by ! do not affect the number of times P is exe

cuted; and if x is zero initially! is not executed at all.

(1.2) Example. The L1 program

LOOP(l) X

X = X+ 1

END

doubles the contents of register X.

(1.3) Example. If the initial contents of X and Yare x and y,

the L2 program

LOOP(l) Y

END

A == 0

LOOP(1) X

X = A

A == A +1

END

leaves x::'y in X, where x:'y (pronounced fiX monus y")

equals x- y if x ~ y, 0 otherwise.

Suppose now that the interpretation of the effect of a

LOOP(n) - END pair has been given for some n > 1, and P is a Loop - ,....,

program. Say that the initial contents of register X are x > 1.

Then we interpret the program

LOOP(n + 1) X

P

END

as being identical to

LOOP(n) X

LOOP(n) X

LOOP(n) X

P ,....,
END

END

END

x

x

where the LOOP(n) - END pairs are nested to depth x. If x is zero

initially, the effect is the same as

LOOP(l) X

P

END

That is, P is not executed at all.

\ q .. 4) Example. Suppose we have the L program
(1)

LOOP(2) X

X = X+ 1

END

and X contains 2. Then the program is equivalent to

LOOP(l) X

LOOP(l) X

X = X+l

END

END

and execution of the program would leave 8 in register

X. Notice that the depth of nesting is not affected by

changes to X.

(1.5) Example. If the initial contents of register X are 2,

the L 2 program
CD

LOOP(3) X

X = X+ 1

END

is equivalent to the program

LOOP(2) X

LOOP(2) X

X = X +1

END

END

which is in turn equivalent to

LOOP(l) X

LOOP(l) X

{

LOOP(2) X

£. X=X+l

END

END

END

Now when the program Q indicated above is executed, the
'"

contents of X will change to 8, by Example (1.4). But

then the next time Q is executed, Q will be equivalent to
t"""-' • • t"""-'

LOOP(l) X

} depth 8
LOOP(l) X

X = X+ 1

END
} depth 8

END

Thus the expansion of a LOOP(n+ 1) - END pair in terms of

LOOP(n) - END depends on the contents of the associated

register at the time the LOOP is encountered.

Finding the number left in register X by the program of (1.5) is

left as an exercise for the persistent reader.

I
§~. Although it would be possible to characterize formally the

notion of computation by Loop program directly in terms of the in-

formal discussion above J the examples J especially (1.5)J should have

convinced the reader that such a characterization would tend to be

quite complicated; more seriouslYJ the individual steps in a com-

putation by a Loop program would in themselves involve considerable

computation. This is undesirable because we will be attempting to

measure the computational complexity of a function by the number of

steps required to compute it. If the individual steps turn out to

be nearly as complicated as the function itselfJ this measure can

hardly be claimed to have much significance.

We will circumvent this kind of objection by giving a definition

of computation by Loop program whose individual steps are quite ele-

mentary. The price that must be paid for this characterization is

that it is no longer clear from the definition that Loop programs be-

have as outlined in §l; thus J a theorem must be proved which states

in effect that Loop programs operate as desired. The proof J unfor-

tunatelYJ is rather tedious; but given the theoremJ we can select

whichever version of computation is more appropriate to the case at

hand.

To begin this alternate characterization J associate with each

program R not only the registers Reg (R)J but also a switch and a

pushdown store; the latter are used by LOOP and END instructions.

7

(2.1) Definition. A pushdown store is either the single

object (0) or the pair (tJP) where t is an n-tuple

of integers and p is a pushdown store. If a push-

down store is (0) it is empty. The depth of (0) is

(O)J and if p is a pushdown store whose depth is mJ

the depth of (tJP) is m+ 1.

For the remainder of this section J let! be a Loop program

with Reg (!) = (Xr) and let! consist of the sequence IIJI2J ... JIe

of instructions where e >.0. There is of course no loss of general-

ity in restricting Reg (!) in this way.

(2.2) Definition. A state of P is an (r+ 3)-tuple (x JiJ£ Jp)
~ r

where x. > 0 for 1 < j < r J where 1 < i < e+ IJ where
J- - - - -

o < £ < IJ and where p is a pushdown store. A state is

initial if i = 1 and is final if i = e + 1.

(2.3) Definition: If s and s' are states of P with

s = (xrJiJ£JP) and s' = (X~Ji' J£' JP')J then s' is the

next state of s uuder P if i f e + IJ x' = x except as
r r

provided in (i)J (ii)J (iii) belowJ and one of the fol-

lowing holds for some kJ ~:

(i) If I. is "X = Ot! then x.' = 0 . , 1 k K J 1 =i+1J£=£'=OJ

and p' = p;

(ii) If Ii is "Xk = Xk+l" then ~ = ~+lJ i' = i+1J

£ = £' = OJ and p' = Pi

(iii) If Ii is "Xk = Xj " then ~ =

£ = £' = 0, and p' = p;

X., i' =
J

i + 1,

(iv) If Ii is "LOOP(n) ~" and the matching END is 1m'

then i' = m, £ = £' = 0, and p' = (t,p) where

(v)

(vi)

t = (al,""",an;l) and for all j with 1 ~ j < n,

a j = ~~l, an = ~;

For the remaining five cases let I. be "END",
1.

p = «al,""",an;a), q), and let the matching

LOOP instruction be 1m = "LOOP(n) ~"" If a = 0, n

a = 1, £ = 0, then i' = i + 1, £' = 0, p' = q; or

If a = 0, a = 0, £ = ° then i' = i, £1 = 0, n

p' = q;

(vii) If for all j with 1 ~ j < n, a. = 0, but a ~ °
J n

and £ = ° then i' = m + 1, £' = 0, p' =

«al,""",a l,a -l;a), q); n- n

(viii) If for some u with 1 _< u < n, a 1 0, and a 1 0, u n

(ix)

£ = 0, then i' = i, £' = 1, p'= «al,""",a l,a -lja),q); n- n

If for some u with 1 < u < n, a 1 0, and for all
u

j with u < j < n, a. = 0, and £ = 1, then i' = i,
J

£' = 0, p' = «al,"":,a~;o), p) where for 1:::: j < u,

and a
n

= X, K"

i
(~.4) Definition. Let P = 11 , I 2 , ... ,Ie be a Loop program.

A sequence sl, ... ,sm of states of P is an execution

of P whenever

(i) sl is initial, and

(ii) s is final, and m

(iii) The pushdown stor.es of sl and sm are the same, and

(iv) For each i, 1< i < m, s. 1 is the next state of
~+

s. under P.
~

If the pushdown store of sl is empty, the execution is proper.

(2.5) Definition. If there is a unique execution of ! of length

m beginning with (x ,1,0,p) and ending with (x' ,e+ 1,0,p)
r r

then for 1 ~ i ~ r, xi is the integer left in Xi by ! when

Reg (p) initially contain x. Also m - 1 is the running
,-..; r

time.

(2.6) Definition. If for each x there is a unique proper exe
r

cution of ! beginning with (xr,l,O,{O», then let Tp(~) be

the running time of the execution beginning with (x ,1,0,(0».
r

Definition (2.2) may seem complicated, but its complexity lies

in the multitude of clauses rather than in the clauses themselves.

A more comprehensible description of the execution of a Loop program

can be given as follows.

(i)-(iii) If the current instruction is an instruction of type

(1), (2) or (3), carry out the instruction in the obvious way and go

on to the next instruction.

(iv) If the current instruction is "LOOP(n) ~" put the

(n+l)-tuple (~.!l, ... ,~.!l,~;l) on the pushdown store. (If n = 1,

put (~;l) on the pushdovm store.) Then go to the matching END

instruction.

(v) If the current instruction is "END", and if the top of

the pushdown store is (al ,· .. ,an;i) with an = 0, and £ = 0, pop up

the pushdown store and go on to the next instruction.

(vi) If the current instruction is "END", and if the top of

the pushdown store is (al, ... ,an;O) with an = 0, and £ = 0, pop up

the pushdown store and do this instruction again.

(vii) If the current instruction is "END", and if the top of

the pushdown store is (al, ... ,an;a) with ai = ° for all i < n but

a f 0, and £ = 0, subtract 1 from a and go to the instruction fol-n n

lowing the matching LOOP.

(viii) If the current instruction is "END", and if the top of

the pushdown store is (al,· .. ,a ; a) with a f ° and a f ° for some n . n u

u < n, and £ = 0, subtract 1 from a and set £ = 1; then do this in
n

struction again.

(ix) If the current instruction is "END", and if the top of

the pushdown store is (al, ... ,a ,0, ... ,0,a ;a) with 1 < u < n and u n

au f 0, and £ = 1, and if the matching LOOP instruction is "LOOP(n) Xk",

then set £ = ° and put the (n+l)-tuple (al, ... ,au_l,au~l,~~l, ... ,xk~l,~;O)

on the pushdown store; then do the END instruction again. This ex-

hausts the cases which can possibly arise.

Examination of the various cases of (2.3) should convince the

reader that the next state of a given state is unique if it exists

at all, and thus that there is at most one execution with a given

initial state. The possibilities do arise that a state has no next

state yet is not final, or that there is never a final state;

but the theorem.about to be proved has among its consequences that

from any initial state there is exactly one execution, and thus that

the running time Tp and the integer left in Xi are well-defined
,...,

functions from Nr into N.

'" (2.7) Definition. Two programs P and Pare equivalent if given

'" any initial state of £ and £ there are unique executions

of P and P whose final states are the same except perhaps in

the third from last ("instruction counter") component.

(2.8) Theorem. Let £ be a Loop program using r registers.

(i) If s = (xr,I,O,p) is an initial state of !, there

is a unique execution of £ beginning with s; furthermore,

the running time and the integers left in Reg (p) are

independent of p, the initial pushdown store.

(ii) If Pis of the form

LOOP(I) X

.s
END

where Q is a Loop program and X is a register ,...., .

name) let X contain x initially; then P is

" equivalent to P =

x

Q ,....

(iii) If P is of the form

LOOP(n + 1) X

Q ,....
END

for Q a Loop program) n ~ 1) and X a register ,....

name) let X contain x initially. Then if x > 0

" P is equivalent to P = ,....

LOOP(n). X

LOOP(n) X x

LOOP(n) X

,S
END

x
END

END

A

and if x= 0, P is equivalent to P =

LOOP(l) X

Q ,.....

END

Proof. The proof is by transfinite induction on Definition (1.1)

.of Lee

If P E ~ by (l.l.i),. so that a = ° and! contains no LOOP in

structions, (i) of the theorem is obvious and (ii) and (iii) are

vacuous. If! E ~ by (1.1.ii), so that! E L~ with ~ < a, the theorem

is immediate by the induction hypothesis. If! E ~ by (1.1.iii) so

that P is Q concatenated with R, any final state of Q corresponds in
,-.- ,-.- ,-.- ,-.-

an obvious way with an initial state of R; the details are omitted. ,.....

Now assume that P E La by (l.l.iv) with n = 0; that is, P is

LOOP(l) X

Q ,.....

END

for some ~ E L~ where a = ~+ 1 and X is some register name. Let

there be e instructions in ! and. say x is the initial contents of

X; as an induction hypothesis assume that ~ satisfies (2.8.i). Con

sider the initial state (x ,1,0,p). By (2.3.iv) the unique next
r

state is (x ,e,O,((x;l),p»; the next state after this, by (2.3.vii),
r

is (x ,2,0,((x -l;l),p» if x > 0. But this is essentially an initial
r·

\
\

state in an execution of ~; by the induction hypothesis the next

several states consist of an execution of Q which ends with ,....

(x' ,e,O~((x -1;1) ,p» for some x'. Then the next state is r r

(x' ,2,0,«x- 2;1),p» if x > 1; repeating the argument leads,
r

after x executions of~, to the state (x;,e,O,«O;l),p». By

(2.3. v) the next state is (x" ,e+ 1,0,p) which is final. Counting
r

the number of states not involved in the executions of Q yields ,....

(2.8.ii) and thus (2.8.i).

The remaining possibility is that P E La by (l.l.iv) with

n> 0, so that P is

II: LOOP(n + 1) X

~
I : END e

Let the final END i~struction be the e-th instruction of P, as in-,....

" dicated above. We have to show first that the program £ =

1
1

: LOOP(n) X

12 : LOOP(n) X x

I LOOP(n) X x

~
I,,: END e

x
I" . e+x-2' END

I" ' e+x-l' END

where x > 0 is the initial contents of X, is equivalent to !, and

As indicated, we let IA be the first END
e

instruction of ! after~. The method is to consider an execution
A

of P and show that each state of this execution corresponds in an

appropriate sense to a state in the execution of !; the correspondence

includes the requirements that the registers be the same, and that
A

the pushdown stores be "similar". Since P E"L 1 ' and
ro.J t3+oJl- x

n-l A a > ~+w x, the induction hypothesis for P will yield the result

desired.

In the definition and lemma that follow, we use a consistent

notation: letters without hats refer to the program!, and those
A A

with hats refer to !; for example, sand s are states of P and P

respectively. Also, a primed letter refers to the next state of

A A A

a given state; so if, for example,s is a state of !, s' is the next

A A

state of sunder P. Finally, x is the initial contents of register

X. We assume that x > O.

(2.9) Definition. For a pushdown store p let rr.p be the object
J

at the j-th level.of p; that is, if p= (ql,(q2, ... (qk'(0)) ...)),

then rr.p = q. for 1 ~ j ~ k; if j > k, rr.p = O. Two push-
J J J

A

down stores p and p occur~ing in states of P and Pare

similar if for each j one of the following holds:

(i) rr.p
J

(ii) rr.p
J

A

= rr.p, or
J

= (y,al, ... ,a ;0) and rr.p = (al, ... ,a;O) and
n J n

(iii) rrj P = (y,al,··.,aniO) and rriP = (al, .. ·,anil)

and rrj +1P = (y+ 1, b l , ... , bn ib) where for l,:::k <n,

bk = 0, and 0 ,::: y < xi or

(iv) rrj P = (x-l,al, .. ·,anil) and rrjP= (al,~ .. ,an;l).

'" (2.10) Lemma. Let sl""'~ be an execution of P. Then there

is an execution sl, ... ,sm of ~ such that sl '" = 8
1

and for

each pair s. = (x ,i,.£,p) and S. = (f ,1,£,p) we have
J r J r

x. = x. for 1 < j _< r, p is similar to p, and one of the
J J -

following holds:

(i)

(ii)

(iii)

(iv)

" 1 < i < e and l = i + x - 1 i or

" '" i = l = 1, and .£ = .£ = 0; or

rrlP = (y,O, ... ,O,a ;a) with ° < Y n
'" " .e = 1, .£ = 0, l = X - Y + li or

i e +1, " '" = l = e+x

'" o :s y < x, and.£ = .£.

< x, i = e,

Proof of Lemma. Let s = 8 = (x ,1,0,p) be an initial state of P and
r

'" P. Then s and 8 satisfy (2.10.ii), and p = P so P is similar to p by

(2.9.i). Now assume that s = (x ,i,.£,p) and 8 = (x ,1,£,p) are states
r r

of P and f satisfying (2.10); we prove that s' and 8' also satisfy

(2.10). The proof consists in considering the cases that arise.

'" Case 1. sand 8 satisfy (2.10.i). Then P and P are executing

the same instruction of g, and the result follows from an induction

hypothesis on g.

Case 2. s and 5 satisfy (2.10.ii), so i

Then (2.3.iv) applies to both s and 5: 5'=

(x ,e+x-l,O,((x':'l, ... ,x': l,xjl),p)) and s' =
r

~ '" = ~. = 1 , 1, = 1, = O.

(x ,e,O,((x':'l,x~l, ... ,x':'l,x;l),p)). Then s' and 5' satisfy
r

(2.10.v) and p' and p' remain similar by (2.9.iv).

Case 3. s and 5 satisfy (2.10.iii), so i = e, f = x- y+l,

1, = I, i = 0. Then (2.3.iv) applies to 5, so if ~ is the current

contents of register X, 5= (xr,e+y-l,O,((~':'l, ... ,~':'l,~;l),P)).

Also, (2.3.ix) applies to s, so s' = (xr,e,O,((Y-l,~':'l, ... ,~':'l,~;O),p)).

Now p' and p'remain similar by (2.9.iii); s' and s' satisfy (2.10.v).

Case 4. s and 5 satisfy (2.10.iv), so i = e+l, f = e+x.

'" The s and s are both final and neither has a next state.

Case 5. sand 5 satisfy (2.10.v), so i = e, f= e+y where

A A

o ~ Y < x, 1, = t, ITIp::: (y,al,.·.,an;a), and by similarity, ITIp:::

(~, ... ,an;a). There are several subcases corresponding to various

possibilities for S.

Subcase 5.1. (2.3.v) applies to s: '" a ::: I, a
n

'" = 0, £ = o.

Then by (2.3.v) S' ::: (xr,e+ y+l,O,q). First say ITIp and ITIP satis

fy (2.9.iii);then ITIp::: (y,al, ... ,an;o) and since an = 0, (2.3.vi)

applies to s, so s' = (xr,e,O,q). But by (2.9.iii), IT
2
p :::

(y+l,bl, ... ,bn;b) so s' and s' satisfy (2.10.v). On the other

hand, if ITIp and ITIP satisfy (2.9.iv), then by (2.3.v), s' =

(x ,e+l,O,q). Also by (2.3.v), S' ::: (x ,e+x,O,q) and so sand
r r

S' satisfy (2.10.iv).

Subcase 5.2. (2.3.vi) applies to ;: " " a = 0, a = 0, p, = 0,
n

and so ;, = (x ,e + y,O,q). (2.3.vi) must also apply to s, so s' =
r

(xr,e,O,q) and s' and s' satisfY (2.10.v).

Subcase 5.3. (2.3.vii) applies to s: " £ = ° and a. = ° for
J

1 ~ j < n but a I 0. Then;' = (x ,x-y+l,O, ((al,···,a l,a ':'l;a) ,q)) n r n- n

by (2.3.vii). If y = 0, (2.3.vii) also applies to sand s' =

(x ,2,0,((0,al , .. ·,a l,a ~l;a),q)) so s' and ;, satisfY (2.10.i).
r n- n

If y > 0, then (2.3.viii) applies to s; s' =

(x ,e,l,((y,al, ... ,a l,a ;l;a),q)). Then s' and ;, satisfy (2.10.iii).
r n- n

Subcase 5.4. (2.3.viii)"applies to ;: i = 0, a I 0, and for n

some u with 1 < u < n, a I 0. Then ;'=(x ,e+y,l,((al,····,a l,a ~l;a),q)).
- u r n- n

By similarity, (2.3.viii) also applies to s, so s' =

(x ,e,l,((y,al, ... ,a l,a .:.l;a),q)) and s' and;' satisfY (2.10.v). r n- n

Subcase 5.5. (2 .3.ix) applies to ;: " p, = 1, for some u with

1 < u < n, a I 0, and for all j with u < j < n, a. = 0. Then if L
- . U J K

is the current contents of X, s'=
(xr ' e + y, ° , ((al ' ... , au -1 ' au ':'1, ~ ~ 1, ... , ~ ~ 1, ~ ; °) , p)) . By simi lari ty

(2.3.ix) applies also to s, and so s' =

(xr,e,O,((y,al, ... ,au_l,au;l,xk;l, ... ,xk;l,~;O),p)). Then p' and p'
remain similar by (2.9.ii), and s' and ;, satisfy (2.10.v). This con-

eludes the proof of Lemma (2.10).

" We have thus shown that given an execution of ~, there is an identi-

cal-length execution of P with the same initial state and such that

in each corresponding state the registers are identical. Also, by the

similarity of the pushdown stores, the execution of P ends with the

pushdown store the same as it was initially; P and P are then equivalent.
'"

The sole remaining case is that x, the initial contents of X, is

zero. But then the following is an execution of £:

sl = (x ,1,O,p) r

s2 = (x ,e,O,((O,O, ... ,O;l),p)) by (2.3.iv) r

s3 = (x ,e+ 1,O,p) by (2.3.v) r

This proves (2.8.iii); (2.8.i) is immediate by the induction hypo-
....

thesis for P and Theorem (2.8) is proved.

In view of (2.8.i) the distinction between executions and proper

executions (in which the pushdown store is initially empty) is un-

necessary, since the initial contents of the pushdown store do not

affect the quantities of interest, the final contents of the registers

and the running time.

§3. The previous section showed that the running time function Tp

for any program P is totally defined. It should also be intuitively --
clear that Tp is effectively computable. Thus the claim that the

running time of a Loop program is bounded ~ priori is trivially true}

provided that the claim simply means that given a program with its

initial state} there is an effective method of finding a number that

bounds the number of steps required for the program to halt. For

since any Loop program with any input eventually does halt} an "ef_

fective method" simply consists of running the program and counting

the steps.

Of course} bounding the running time of ! by Tp is not very

informative} for it amounts to "predicting" that p will run as long --
as it runs. One would at least hope for bounding functions which

are in some sense sufficiently comprehensible that they provide more

information than the previous tautology. An inevitable difficulty

is that the bounding functions must grow at such extraordinary rates

that their sizes can hardly be called comprehensible. Nevertheless}

the functions fa defined below have such simple definitions and use

fUl properties that our Theorem (3.6) below has intuitive appeal as

well as technical usefulness.

(3.1) Definition. If g: N ~N is a function} the function h:

N
2 ~N is called the iterate of g (or) h is defined by

itera~ion from g) whenever h satisfies

h(O}z) = z

h(y+l}z) = g(h(y}z))

?-'

O~ten, we will write the iterate h(y,z) as g(y)(z). Thus,

- g y) (z) = g(g(• .. g(z) ...)), the composition being taken y times.

(3.2) Definition. w For a < W an ordinal, the ~ction fa is

defined as follows:

(i) if a = 0, fa(x) = x+l if x < 1; fa(x) = x+2 if x > 1;

(ii) if a = ~+l, fa(x) = fbx)(l);

(iii) if a is a limit ordinal and ~ is the least ordinal

t · T'.r· a A n+ 1 f > 0 th sa 1s)'lng = 1-'+ W or some n " en

Thus if a is a successor, fa is defined by iteration from its

predecessor; i~ a is a limit, ~a is defined by diagonalization over

a certain sequence {fA.) of functions where sup {~.) = a.
1-'1 1

In the proo~s below we will use implicitly a number of elemen-

tary ~acts about the arithmetic of ordinals, and also the Normal

Form Theorem for ordinals less than WW: any ordinal a < wn+l for

some n, ° ~ n < ill, may be written

n n-l 0 a= w·a +w ·a + .,. + W·a
n n-l 0

where ° < a. < wand the a. are unique. See, for example, Suppes' book [5].
1 1

(3.3) De~inition. n 0 For a == w . a + ... + w . a an ordinal, write
n 0

t (a)
m

m-l
= 2:. 0 a.

1= 1

~or each m < n+ 1; if m > n+l, t == t l(a). Also, m n+

t (a) == t 1 (a) if a < wn + 1
..

W n+

?J-.

Notice that t (a) = ° for all a. The next lemma collects most o

of the information we require about the functions fa'

(3.4) Lemma.

(i)

(ii)

(iii)

(iv)

(J.)
For all x, pEN, a, 13 < (J.) :

fl (x) = 2x+ (l.:.x)

f(p+l)(x) = 2P .f (x) > 2P+l.x
1 1 -

f
2

(x) = 2
x

fa(O) = 1

(v) fa(x) ~ x + 1

(Vl.') f(P)(x)" " a 1S lncreaslng ln p, x

(vii) if a = 13+ of, then fa(x) ~ f
13

(x) for x ~ t n (13)

(viii) if a > 13, then fa(x) ~ f
13

(x) for x ~ t ro(13)

(ix) 2.f~P)(x)::: f~P+l)(x) fora ~ 1, x+p? 1

(x) (f~P)(x))2 :::f~P+2)(x) fora~2, x+p~2.

Proof. (i) If x = 0, fl(O) = f~O)(l) = 1 = 2·0+ (1~0).

fl(l) = f~l)(l) ~ 2 = 2·1+ (1':'1). If for x ~ 1 flex) = 2x,

:f'l(X+l) = fOfl(x) = 2x+2 = 2(x+l) + (l~(x+l)).

(ii) Immediate for P = o. fip+l)(x) = flfip)(x)

= 2.f(P)(x) = 2P'f (x) > 2P+l ·x.
1 -

(iii) f
2

(O) = fiO)(l) = 1. f
2

(x +1) = fix+l)(l) = 2x .f
l

(1)

= 2x+l by (ii).

(iv)-(vii) These will all be proved simultaneously by induction

on a and x. All are immediate for a = 0 by definition.

If a = ~+l, then fa(O) = f~O)(l) = 1 proving (iv). Also,

fa(O) ~ 0, yielding (v). Now fa(x+ 1) = f~fa(X) > fa(x), using (v)

for f~. Then f~P+l)(x) = faf~P)(X) > f~P)(x), proving (vi). Also,

fa(x + 1) = f~fa(x) > (x+ 1) + 1, proving (v).

Now in (vii), n must be 0 since a is a successor. Since

fa(x) ~ x + 1, f~fa(X) ~ f~(x + 1), using (vi) for f~. But f~fa(x) =

fa(x+l) so fa(x+l) ~ f~(x +1) for all x ~ 0 = to(~)' proving (vii).

The next possibility is that a is a limit ordinal: let a =

n+l
~ +rn where n ~ 0 and ~ is the least such ordinal. Then fa(x) =

f~+aPx(X). Now fa(O) = f~(O) = 1, proving (iv). Also,

fa(x+l) = f n (x+l)
~+W (x+l)

> f (x) by (vi)
~-taP(x+l)

> f n (x)
- ~+W x

= fa(x)

by (vii) since t (~+ rnnx) = 0
n

Then f~P+l)(x) = faf~P)(X) > f~P)(x), proving (vi). Also,

fa(O) = 1 ~ 0+1 and fa(x+l) > fa(x) > x+l proving (v). Finally,

n+l
write ~ = ~'+Y where t l(~') = 0 and Y < rn . n+

Then a = ~+ rnn+l

= ~' + rn
n

+l , and by choice of ~', fa(x) = f n (x). Since Y < uP+l
,

~'+w x
if x > t l(Y) then wnx > y. So, using (vii) for ~'+ wnx and ~'+ Y,

- n+ -

fa(x) == f n (x) > f (x) == fA(X)
~'+w x - ~'+Y ~

if x ~ tn(Y). But x ~ tn+l(Y) ~ tn(Y), proving (vii). This com

. pletes the proof of (i v) - (vii) .

(viii) I~ a > ~ there is a y > 0 so a = ~+ y. Write

n non n
Y=(J.)+(J.)·g + ... +(J.).g =(J.)+yl,soa=~+(J.)+y'. Byre-

n 0

peated applications of (vii) we have

since t (~+ (J.)n) = o. Also by (vii),
n

fa(x) ~ f~+aP(X) for all x,

f~+a?(X) ~ f~(x) if

x ~ t(J.)(~) ~ tn(~)· So fa(x) ~ f~(x) for x ~ t(J.)(~).

(ix) 2.f(P)(x) = f f(P)(x) < f(p+l)(x) if a> 1 and x+p _> 1
a la - a -

by (i) and (viii) since f~P)(x) ~ 1 if x+P~ 1.

(x) Trivially, z2 < 22
z

= f~2)(z) for all z. Then

if x+ p ~ 2 by (viii), since x+p ~ 2. implies f~P)(x) > 2. This

completes the proof of (3.4)

(3.5) Definition. A function g: ~ ~N is bounded by f:

N ~ N whenever for all x , we have g(x) < f(maxG: }), where m m - m

max{x }
m

is the largest member of x .
m

(3.6) Bounding Theorem. Let P be a program in La. Then

there is a number p, which can be found effectively

from £, such that f~P) bounds Tp ' the running time

of P.

Proof. The proof is by induction on a and Definition (1.1). Say

~ E La' let £ use k registers, and let ~ be an abbreviation for

~(~} where ~ are the numbers initially in Reg (£). There

are four main cases corresponding to the clauses of (1.1).

Case 1. a = o. Then! has no loops and so Tp is identically

equal to the length of !; if p > 0 is this length, then

by {3.4.v), (3.4.vi).

Case 2. ! E La by (1.1.ii), so that! E Lt3 with t3 < a. By

the induction hypothesis we have have q'so Tp(~) ~ fbq)(~). But

by (3.4.viii), if we let p = t w(t3) and if x ~ p, then fa(x) ~ f
t3

(x).

By (3.4.v), f~P) (~) ~ ~+ p, so f~P+q) (x) = f~P)f~q) (x) ~ Tp(~).

Case 3. P E La by (l.l.iii), so that P is ~ concatenated with

! and~, ! E La. By the induction hypothesis, let f~q) and f~r)

boun~ TQ and TR respectively. After execution of ~, let the registers
,..., ,...,

of !contain ik· Then Tp(Xk) = TQ(~)+TR(ik); we have
,..., ,..., ,...,

But after execution of ~, the largest integer in any register is at

most ~ + f~q)(~), since each instruction execution can increase the

largest register by 1 at most. But by (3.4.v) and (3.4.ix),

m + f~q)C~) ~ f~q+l)(~) 'since a ~ 1, q ~ 1. Thus

by (3.4.vi)

by (3.4.ix)

Case 4. .!: E Ia by (l.l.iv), so that P is

LOOP(n+ 1) X

~
END

n
for some ~ E L(3 where ex :::: (3 + CD , n > O. We use the following

(3.7) Lemma. If ~ E L(3 and T~ is bounded by f~q), then

the program .!: =

LOOP(n+ 1) X

,S,

END

h T b d d b f(q+b+4) where b = t ((3). as P oun e y (3-taP ' n

Proof of Lemma. The proof is by induction on n.

for all (3. Then the lemma reduces to: if Q E L ,.... (3

then P =

LOOP(l) X

~
END

For n = 0, t ((3) = 0:
n

and T (X.) < f(q) (m) ,
,S,K-(3 -

There are two possibilities; first take

(3 = O. Then T~ is identically equal to the length of ,S" and the

running time of .!: is exactly qx + x + 2, where x is the initial con-

tents of X, by (2.8.ii). But since by definition x ~~,

Tp(xr) = (q +l)x +2 .::: (q +1)~+2

< 2
q

'm +2

< f'(q+2)(m)
- 1 -

< f(q+4) (m)
- 1 -

by (3.4.ii) and (3.4.v)

by (3 A.vi)

Now if' 0 < ~ < crfD, assume that T£ is bounded by f'~q). If x is the

number initially in X, P is equivalent to

x

By the same argument as f'or Case 3 of the theorem, the first exe

cution of £ requires at most f~q)(~) steps, the second f'~2q+2)(~)
. (3q+4)(steps, the th1rd f~ ~) steps, ... , and by the obvious induction,

the x-th requires at most f'~x(q+2)-2) (~) steps. Thus, if' m > 0

T C) < zf. f(i(q+2.)-2)(m) +2
p ~ - 1=1 t3 -

< x'f(~(q+2·)-2) (m) +2
- ~ -
< m' f'(~(q+2) -2) f(~) (1) + 2 - - ~ ~

< m.f'(~(q+3»)(1)
- - ~

=. ~'fex(~ .(q+3))

< m.f f (q+l)(m)
- - ex 1 -

< m.t:(q+2)(m)
- - ex _

by (3.4.vi)

by (3.4.v)

by (3.4.v)

by (3.2) since ex = ~ + 1

by (3.4.ii)

by (3 . 4. vii)

by (3.4.x)

But 'f 0 T (-) 2 T (-) < fiq+4)(!!!) for all i,. even l !!! = , P ~ = ,so P ~ ~ K
, .

This concludes the proof for n = O.

Now we assume the lemma for some n ~ 0, and prove it for n+l.

P is then

which is

LOOP(n + 2) X

Q ,....,

END

equivalent to

LOOP(n + 1) X

LOOP(n +1) X

Q ,....,

END

END

} x

} x

where x ? 1 is the number initially in X. If x = 1, Tp is bounded

bv f(q+b+4). if'x = 2 T is bounded by f(q+b+8) since"""t (~+aP)=O·
J ~-f-()jl' , P ~+aP2 n ' ,....,

and by the obvious induction, for each x ~ 1,

T (-) < f(q+bT4x)(m)
!: ~ - ~+afx -

< f (q + b + 5m + 1)
- ~+aPx+l -

by (3.4.vi) and (3.2)

< f n (q + b +5m + 1)
- ~+a:5 (x+l) -

by (3.4.vii)

< f (q + b + Sm + 1)
- ~+<J..it1(q+b+S!!!+ 1) -

by (3.4.vii)

Nowifl3=(O~ + ... +(J.)n+~ . +(J.)~ + ... + (J.)°-b ,let 13' =
m n+l n 0

(O~ +. .• + (On+ ~ l' Then 13 + (J.)n (q + b + 5~ + 1) =.
ro n+

13' + (On (q + b + b + 5ro + 1) and furthermore 13' is the least ordinal
n -

with this property. Thus by (3.2),

by definition of 13'

by (3.4.v)

by (3.4.ii)

(q+b+bn+4)
=s f 13-t<J1+1 (~) by (3.4. vii)

_ (q+b+bn+4)
But even if ~ = 0, Tp(~) = 2 ~ fl3+aP+l (~) by (3.4.v). Since

t 1(13) = t (13)+ b = b+b , the lemma is proved, concluding Case 4. n+ n n n

Since in each of the four cases the p such that f(P)boundS T a p

was found effectively, Theorem (3.7) is proved. We also have imroe-

-diately

(3.8) Corollary. Let! E La be a Loop program, and let ~

be the largest number initially in Reg (!). Then

there is a number p so that f~P)(~) bounds all the

numbers left in the registers of ~ by execution of P.

Proof. Since each instruction execution can increase the largest

register by 1 at most, the numbers left in Reg (~) are all bounded

(- (p)((p)
by ~+Tp xk) ~ ~ +fa ~). If a::: 1, by (3.4.ix) ~+fa (~)

=s f~P+l\~). The proof for a = 0· is obvious.

§4. If a set of registers is designated for input and output, a

Loop program defines a "function.

(4.1) Definition. Let X be distinct register names, and let P be
m

a register name which need not be distinct from Xm. If P is

a Loop program, the (m+ 2)-tuple (p, X , P) is called a program ,.., m

with input and output, Xm being the input registers and P

the output register. The function f: ~ ~N is computed by

(p, X , p) providing f(x) equals the contents of P after
,.., m -m

execution of P when X initially contain x , and all other ,.., m m

members of Reg (p) initially contain zero. ,..,

For example, if P is the program of Example (1.3), then (P .. X, Y ,X) ,...,

computes x~y; (£,X,Y,X) computes the projection P22(x,y) = y.

(4.2) Definition. ~ for 0 < a < mm is the set of functions
a -

computable by programs in La with input and output

Obviously, if a > ~ then ~ ~ ~R by (l.l.ii) of the definition a - I-'

of L. It is the task of this section to prove that if a > ~ the a

containment ~a ;. ~~ is proper.

(4.3) Definition. Let!O be the program

X = X+ 1

X = X+ 1

and if ~ is the least ordinal so a = ~+ uP, let

F be the program
--a

LOOP(n+ 1) X

L~
END

It is immediate that F E L by Definition (1.1).
~ a

(4.4) Lemma. Let?a be the function computed by (~X,X). Then

if x > 0, f (x) > f (x). Also, f E t .
ex - a a a

" Proof. fO(x) = x+ 2 ~ fO(x) for all x by definition. Say that

ex = ~ + 1; then ~ is

LOOP(l) X

~
END

which is equivalent, when x > 0 is in X initially, to

x

~

So fa(x) = f~x)(x) ~ f~f~x-l)(x) >

> fix)(l) = f (x) if x > O.
- f-' a

n+l Now if ~ is the least ordinal for which a = ~+ m and if

x > 0 is in X, then F is equivalent to
"0

I.

LOOP(n+ 1) X } x

LOOP(n+ 1) X

~

} x

END

END

But this is exactly the program ~-taPx' So if x > 0, fex(x) =

f~ ... n (x) > f n ... n (x) =
p-tW x - p-tW x

f (x); this concludes the proof of (4.4).
ex

(4.5) Theorem. For ex _> 1, f € t .
0; 0;

Proof. f 1 (x) = 2x + (l.!x) is in ;" via the program E =

LOOP(l) X

G = G +1

G = G+ 1

END

F = F +1

LOOP(l) X

F = G

END

where (~X,F) computes fl' For 0; ~ 2, we defer the proof until

Chapter IV. The only facts we will need for the remainder of this

chapter are given by Lemma (4.4;. It is possible to construct a

program for fo; in Lo;' but a surprising amount of labor is involved.

(~.6) Lemma. If a > ~, then for any constant c, fa(x» f~c)(x)

for almost all x.

Proof. If a > ~, then a > ~ +1. First we establish the result

for f~+l and f~.

f~l(x) = f~x)(l); for x ~ c, f~+l(x) = f~c)f~x-c)(l).

But for large x, f~x-c)(l) = f~+l(x - c) > x by (3.4.ii) and (3.4.viii).

Thus f~+l(x) > f~c)(X) for large x.

But now if a ~ ~+ 1, for large x fa(x) ~ f~+l (x) by (3.4.viii);

this yields the lemma.

(4.7) Hierarchy Theorem. If a > ~, ! :::>!A .
a", f-'

Proof. As remarked above, if a > ~,! ~!A by definition. a - f-'
A

If

!a = !~, the function fa of Lemma (4.4) would be a member of !~;

but for all c, ~ (x) > f (x) >f~c)(x) for almost all x by (4.6) and
a - a f-'

'" (4.4). Then by (3.7), fa f !~. This proves (4.7).

The Bounding Theorem (3.6) and the Hierarchy Theorem (4.7)

together provide the rigorous justification for the claim that the

simple measure of the complexity of syntactic structure of a Loop

program by Definition (1.1) is also an adequate measure of the power

of the program; for the Bounding Theorem implies a maximal complexity

on the functions of! by bounding the number of steps the computation a
of each such function can possibly consume. The Hierarchy Theorem

yields a minimal complexity for! by exhibiting! functions which a a
cannot be computed in fewer steps than the number implied by the

structure of their programs.

It is convenient to introduce at this point a property of

the classes-t which follows almost immediately from its definition. o

(4.8) Definition. The operations of substitution consist

of the .following methods of obtaining a function f

from given functions g, h:

(i) Substituting ~ constant: obtaining f from g

where f(xn) = g(xn,c) for some number c;

(ii) Permuting and identifying variables: obtain-

ing f from g where f(x) = g(~l""'~) and n m

each ~., 1 < i _< m, is one of the x.;
]. -].

(iii) Composition: obtaining f from g, h where

f(x) = g(x , hex)). n n n

Also, if t is a class of functions, e!is closed

under substitution whenever any function f obtained

from functions in ~ by sUbstitution is also a member

of C.

(4.9) Theorem.

stitution.

(J.)
For all 0 < (J.) ,t is closed under subo

Proof. Say (G,X ,H,G) computes-g, (H,X ,H) computes h, and f(x) =
"" n "" n n

g(x , hex)). We assume that Reg (G) n Reg (H)= (X ,H} and that
n n "" "" n

neither G nor ~ uses registers Zn' These conditions can of course

be brought about by changes in names of the registers used by G

and~, Let E be the program

x = Z n n
G

Then (F,X ,G) computes f. This proves that ~a is closed under com-..... n

position; proofs for the other possibilities, substitution of a

constant and permutation and identification ,of variables, are

entirely analogous and are omitted.

,
i
\

§S. The preceding section showed that t contains some very large , 0
,

functions -- in fact, functions larger than any in t~ if ~ < 0 --

but it is not yet at all clear that Loop programs can do anything

mu~h but run for a long time and eventually halt with rather large

numbers in the registers. This section will demonstrate that even

L2 programs can perform quite complicated operations, and will lay

the groundwork for showing among other things that each to contains

very small functions more complicated than any functions in t~ if

13 < o.

In particular, (5.1) shows how to construct L2 programs which

simulate Turing machines; (5.2) shows how to construct Turing ma-

chines which simulate Loop programs. Theorem (5.1) is useful in

relating Loop programs to other formalisms for computation, as is

done in Chapter IV. Combining (5.1) with (5.2) yields Loop programs

which simulate other Loop programs; §6 leans heavily on this possi-

bility.

We assume that the reader is familiar with the elementary ca-

pabilities of Turing machines as discussed, for example, in Kleene

[K] or Davis [D]. Our theorems would be true using any of the various

formalisms for Turing machines; for definiteness, we give an infor-
.

mal definition of computation by Turing machine much like that of

[K] .

A Turing machine ~ is determined by a finite set Q of quin
~

tuples ((qi,Sj,Sk,d,q,e)}, where d is either JlLJI or JlRJI , and such

that no two quintuples of ~ have the same first two components.

The' first and last components of the quintuples of ~ comprise the

states of ~; the second and third components comprise the symbols

of gn,. One of the states, qo' is distinguished as the initial state,

and one of the symbols, sO' is called "blank" and is also written

"B". Associated with the Turing machine is a tape, which consists

of a two-way infinite sequence of squares; each square has printed

on it one of the symbols of gn. If the symbol printed on a square

is sO' the square is blank, and at any time almost all of the squares

on a tape are blank.

One square on the tape is scanned by gn. A situation consists

of a particular printing of the squares of the tape, a particular

square on the tape (the scanned square) and a particular state; the

machine is in that state.

Given a situation, gnmay perform a step as follows: if the ma-

chine is in state q. and the symbol on the scanned square is s., and
1 J

if (~,Sj,Sk,d,q£) € Qm(then the symbol on the scanned square is

replaced by sk' the scanned square moves one square to the left or

right according as d is ilL" or "R", and the machine goes into state

If no quintuple of Q begins with q., s. then no act is per-gn 1 J

formed and the machine has halted; in this case the situation is

terminal.

The Turing machine is used by choosing some situation in which

to start it; the machine then successively performs steps until it

halts; and the contents of the tape in the terminal situation determine

the output. Specifically, let sl be the symbol "1". Represent the

natural numbers 0, 1, 2, ... by "1", "11", "111", ... , so that in the

representation of x there are x + 1 occurrences of "1". Also, re-

present an n-tuple xl, ... ,xn by juxtaposing the representations
- - -

of the x. separated by "B" so that the representation of (0,2,1,3),
1.

for example, is "lBIIIBIIBllll".

A Turing machine computes the (partial) function f: N
n ~N if

-when the Turing machine is started in state qo with the representa

tion of x on its tape, which is blank otherwise, and with the square
n

-just to the right of the representation of x the scanned square, then
n

the TUring machine eventually halts with a total of f(x) "l"s to
n

the left· of the scanned square in the terminal situation, providing

f(x) is defined. If f(x) is not defined, the Turing machine does
n n

not halt.

For example, if a Turing machine computes x + y, when started

in the situation-

BIIIBIIIIB ...
t

~

it may halt in the situation

BIBIIIBIBBIIIB
t

qi

where no quintuple starts with q., B. The notation for situations
1.

should be obvious.

(5.1) Theorem. Let ~ be a Turing machine which computes

the function f: Nn ~N. Then there is a Loop pro-

gram with input and output (~,Xn' S, p) where ~ E L2

which computes a function TM : Nn+l ~ N with the
~

following property: if s exceeds the number of steps

required to compute f(x) using ~, then f(x) = TM (x ,s). n n ~ n

Proof. For simplicity, the theorem will be proved only for the case

n = 1, and for ~ a 2-symbol machine with symbols (B,l). Exactly the

same methods apply when n and the number of symbols of~ are unre-

stricted.

The heart of the construction is an Ll program ~ which in

effect carries out a single step in the Turing machine computation.

~ uses several main registers Q, TL, TS' TR which contain re

spectively the number of the current state, and representations of

the tape to the left of, on, and to the right of the scanned square.

Suppose the non-blank portion of the tape is

B S S 1 ... S 1 So Sl ... S 1 S B -u -u+ - v- v

where each Si is "B" or "1" and So is the scanned square. Then TL

contains

t .2u- l +t .2u-2 -I- ••• + t .20
-u -u-l-l -1

where each t. is 0 or 1 according as S. is "B" or "1". Likewise TS
1 1

contains to and TR contains

That iS 7 TL, TS7 TR contain numbers whose binary representations

are images of the corresponding portions of the tape.

Also suppose register Q contains a number q, where 0 ~ q ~ rn

and IDl has rn + 1 states {~, ... ,~}. Consider the program ~~

C .
00 = 0

COl = 0

CIO = 0

Cll = 0

CmO = 0

Cm! = 0

Coo = COO +1
LOOP(l) Q

C = C mO rn-l,O
C = C m-l,O rn-2,O

CIO = COO
END

LOOP(l) TS

COl = Coo

Coo = 0

Cll = CIO
CIO = 0

C rnl = C rnO
C = 0 rnO

END·

It is easy to see that if Q contains i and TS' contains j, then

C .. = 1, but C,.n = 0 for i f. k or j f. P, • lJ A.h

Now let the quintuples of rot be {~, ... ,mr} . Let ~i..£ts ... rot be

the program

Decode ,..",........" .. ""..,...".gn

L = 0

R = 0

Here if mi is the quintuple (qi,Sj,Sk,d,qp,) and d is "Lt! then

M. is the program
'""'1.

LOOP(l) C •.
lJ

If d is "R", M. is the program
..... l

LOOP(l) C .•
lJ

TS = s
k

R = 1

Q = P,

END

Here we use the obvious abbreviation "TS =

if sk = "B", and

S II

k
for

"

if sk = "l". Likewise, "Q. = £" is an abbreviation for

Q.= 0

Q. = Q.+l

Q.=Q.+1

Thus if the number of a state is in register Q. and the contents

of the scanned square are 'in register TS ' ~ causes the next

state to appear in Q. and the new symbol for the scanned square to be

placed in TS" ~ sets registers L and R so that L = 0 and

R = l if a rightward move is to be made, while L = 1 and R = 0 if a

leftward move is to be made. If the situation is terminal, Q. and TS

remain unchanged and L = R = O.

Given the interpretation above for the numbers in T
L

, TS ' T
R

,

the effect of a rightward move of ~can be reflected by replacing

TL by 2'TL +TS' replacing TS by rm(TR,2) and replacing TR by TR/2.

Here we use "TL"' for e~ample, to refer both to the register and its

contents. Also, rm(x,y) is the remainder upon division of x by y,

and x/y is the integral quotient of x and y: the greatest integer z

so z'y ~ x. Arbitrarily, we set x/o = O.

These functions can be carried out in Ll . Consider the follow

ing program RM ("rightward move"). ,......,

TLR = 0

LOOP(l) TL

TLR = T
LR

+ 1 T ~2·T
LR L

T = LR
T

LR
+ 1

END

LOOP(l) TS

TLR = T
LR

+ 1

END

T' = 0
SR

Tim = TSR + 1

TSR = 0

LOOP(l) TR ()
TSR ~ rm TR,2

T = TSR

TSR = TSR

T' = T SR
END

TRR = 0

Tim = 0

LOOP(l) TR
TRR = TRR + 1

T=~

TRR = Tim.

T' = T RR
END

but does not change T1> TS' TR· . Of course there is a corresponding

program ~ which puts 2 .T
R

+ TS in T
RL

, rm(T
L

,2) in TSL and TL/2 in

TLL without changing T
L

, TS' TR and which thus simulates a leftward

move.

Now let ~ be

~~9R
1M

RM
"""
LOOP(l) L

TL = TLL

TS = TSL

TR = TRL
END

LOOP(l) R

TL = TLR

TS = TSR

TR = TRR
END

~ is an Ll program; given the number of a state in Q and a

tape configuration in TL, TS ' TR, executio~ of ~ leaves the

. next state in Q and the next tape configuration in TL; TS ' TRo But

then if an initial situation is inQ, TL, TS ' TR, the L2 program

Result =
~

LOOP(l) s

~
END

leaves in TL, TS ' TR a representation of. the tape configuration after

s steps of M, where s is the number in S; if s exceeds the number of

steps required for M to halt, the final tape is left in TL, TS ' TRo

Thus the only remaining tasks are to find a program which, when given

i an input number, produces the corresponding initial situation, and
!

to find a program which, given a tape situation, yields an output

number from the final tape representation.

According to the formalism agreed upon above, if the input

number is x, the tape representation is a string of x+ 1 "l"s just

to the left of the scanned square; in other words, we want TL to

contain 2x+l_ 1 and T
S

' TR to contain zero. The job is done by the

Next, the

curring in the

Q = 0

TL = 0

TS = 0

TR = 0

X = X+ 1

LOOP(l) X

LOOP(l) TL

TL = TL + 1

END

T = L TL + 1

END

output number is

binary expansion

P=O

LOOP(l) TL

T +-rm(T
L

,2)

TL +-TL/2

LOOP(l) T

P = P+l

END

END

to

of

T +- 2x+l_ 1
L

be the total number of "l"s oc-

TL· The L2 program ~ =

. ,

leaves in P the correct number. We have used, for example,

~T ~ rm(T
L

,2)" as an abbreviation for a program which puts rm(TL,2)

into T without destroying the constants of TL. The necessary pro

grams appear as part of the program RM above. ,...,...

Finally, let .~ be the L2 program

~
Result
~

£p ,!;llli.t

Then (~X,S,p) computes TM~ with the properties required, and

Theorem (5.1) is proved.

(5.2) Theorem. For each n > 0 there is a Turing machine ~p~

which computes a function LP : ~+l -. N with the follow-n

ing property: if (p,X ,p) is a Loop program with input
"" n

and output which computes f: n N -. N, then there is a

number e so that LP (e,x) = f(x). Furthermore, if Tp . n n n

is the running time function of g, then there is a con-

stant c so that the total number of tape squares ever

scanned in the computation of LP (e,x) is no more than
n n

c.(e+max(x }+Tp(X))3.
n n

Proof. We will not actually construct ~Pn' but we will give enough

details so that it should be clear to anyone with some familiarity

wi th computation by Turing machines that ~p n exists. Actually, the

first part of the theorem is immediate from the intuitive computa-

bility of functions defined by Loop programs .

For each (p,X ,p) there must be an e so if (p,X ,p) computes
"" n "" n

f,'then LP (e,x) = f(x). Thus e should somehow encode (p,X ,p).
n n n "" n

When this is the case, it is usual to say that e is a Godel number

of (p,X ,p).
...... n

The encoding can be done in a variety of ways; the one suggested

here is particularly simple. First, we may as well assume that

Reg (p) = (X J, that the input registers are X , and that the output
...... r n

register is Xl' since clearly for any Loop program with n input

registers and an output register, there is another program in the

desired form. (The new program is obtained merely by making the

proper changes in the names of the registers and possibly adding an

instruction "Xl = ~" to put the answer into Xl.) So we need only

consider programs like (p,X ,Xl) where Reg (p) = (X J. Now, using n r

an eight-symbol alphabet:

L E = X 1 / + 0

rewrite ~ by placing "/" between the instructions,by changing

"LOOP(n)" to "Ll lfl, that is, to "L" followed by n "l"s, by

chariging "X " to "Xl 1", that is, to fiX" followed by k "l"s, and
k

by changing "END" to "Ef!. Thus the program P =

X
2

= 0

LOOP(l) Xl

X
2

= X
2

+ 1

END

X = X2

would become

Xll = O/LlXl/Xll = Xll+ liE/Xl = Xll

Since 8 different symbols can appear in this representation, the

representation of any program P can be interpreted as a base 9

number; take "L" to have digit value 1, "E" to have value 2, ... ,

"0" to have value 8. We will let the blank "B" have digit value O.

Thus given any program P there is a unique number e associated
"""

with it, and if e is written in a base 9 notation P is recoverable

immediately. On the other hand, not every number e has a corres-

ponding program; for example, all those numbers which contain signi-

ficant zeroes in their base 9 expansion.

Now we proceed to describe the operation of fPn Recall that

r,Pn is given an (n +l)-tuple (e,x) consisting of e + 1 occurrences
n

of "1", followed by "B", followed by Xl + 1· occurrences of "1", ... ,

followed by "B", followed by x + 1 "1"5. We write this initial tape as
n

• .. B e B Xl B •.• B x B
- - -n

where the underlined letters ~ represent a string of x+ 1 "l"s.

r,Pn performs as follows: first go to the representation of e and

rewrite e as its base 9 representation (which, as explained above,

is an image of !:). Call this sequence of symbols~. Of course, the

length of ~ is no longer than the length of ~; in fact the replace-

ment can be done using no more tape than is consumed by ~ itself.

-The tape thus becomes

"

~ B xl B ... B x B ...
- -n

Then !Pn checks ~ to make sure it represents a permissible Loop

program; the checking consists of examining each instruction to

make sure it is a legal instruction, and verifying' that LOO~s and

ENDs are nested properly. If ~ does not represent a syntactically

correct Loop program, fPn erases its whole tape and stops. Thus,

in effect, every number e will be associated with some function;

those numbers e which cannot be associated with a syntactically

correct Loop program will all represent the function which is iden-

tically zero.

If on the other hand ~ represents a syntactically correct Loop

program, !Pn examines ~ to determine the registers X it uses, and
r

then changes the tape to

. .. B ~ B !l B ... B !n BOB BOB

which represents ~ followed by the r-tuple (i ,0, ... ,0); that is,
n

the initial contents of X since X l""'X are zero. Continuing, r n+ r

!Pn produces the tape

BOB1BOBB

1 2 3 4 5

which, for convenient reference, we have divided into five regions.

Region 1 contains ~, which represents the program £ being simulated;

regions 2-5 together represent the initial state (i ,1,0,(0)) of P. r ,...,

\

~~n is then ready to begin simulating P. In general, just before
j

,
beginning a step in the simulation, tPn will have on its tape the

following sequence of symbols, if the current state is (x ,i,t,p).
r

... B~ B~lB ... B~r Bi B! BB~11B~21B ... B~llBB ... BB~ljB~jB ... B~jjBB ...
1 2 3 4 5

The representation of the state used in region 2-4 is obvious. The

contents of region 5, which represents the pushdown store, are inter-

preted as follows. The object at the top of the pushdown store is

(all' ~l,···,akll)· More ~e~erally, the object at the m-th level

of the pushdown store is (alm, a2m""'~)' Tuples on the push

down store are separated by double blanks, and members of a tuple

are separated by single blanks.

What is the length of this representation of a state? The length

of region 1 is no more than e + 1. Suppose the simulation has run for

s steps, and let m be an abbreviation for max{x), that is, the largest
- n

number initially in the registers. Then each of the x. in region 2
1

is no more than m + s. So the length of region 2 is no more than

r" (E+ s + 2). But according to the encoding we have chosen, r is cer-

tainly less than e. So region 2 has a length of less than e· (!!!: + s + 2).

Again, the number i represented-in region 3 corresponds to the in-

struction about to be executed, which is a number certainly less

than e, so region 3 has a length less than e+ 2 squares. The t of

region 4 is either 0 or 1, and so the length of region 4 is 3 at most.

L
Whenver a tuple is placed on the pushdown store, all its members

A
are bounded by the largest number in any register. Since nothing on

the pushdown store ever becomes greater than the largest register,

any single number anywhere in the pushdown store is bounded by ~+ s.

The largest tuple on the pushdown store has at most e components,

since the number of components is a function only of £; the depth

(number of tuples) of the pushdown store cannot exceed s, the number

of instruction executions taken so far. Therefore region 5 has a

length bounded by s· (1 + e· (~ + s + 2)) .

Each of regions 1-5 has its length bounded by a polynomial of

degree at most 3 in s, e, and m. Therefore, the sum of the lengths

of regions 1-5 is bounded by c'(e+~ +s)3 for some constant c.

The discussion so far has been fairly rigorous, except for the

claim that the string of "l"s representing e could be turned into

" the string e. The main portion of the construction whose details

we will omit is that of showing that t.Pn can transform the representa-

tion of a state as specified above into the representation of the next

state, without using any tape squares other than those already used.

We leave to the reader the task of convinCing himself that this is

possible, with the reminder that r,Pn may use a large number of extra

symbols to mark tape squares in which it has a special interest at

some moment. We may also remark that all the theorems in the sequel

which use this theorem would be unaffected if the polynomial bound

3 c· (e + !!! + s) were replaced by any exponential in e, !!! and s; and

.finally that the encoding we have chosen is actually rather inefficient

",

and that by using a binary encoding of the numbers making up a

state, the present theorem would remain true with a bound on tape

consumption of d.lo~(l+ e +~+ s) for some constant d.

Granting that tPn is able to replace the representation of L/

a state by the representation of the next state without using more

tape than is consumed by the states themselves, the theorem fol-

lows immediately. simply keeps simulating P until a final ,..,

state is reached, then erases all of the tape but the portion con-

taining xl and halts on the rightmost square of the representation

of xl. Thus tPn has computed (P,Xn,Xl); and since the program runs

~or Tp(Xn) steps by definition, the total tape consumption is bounded

by c.(e+m+Tp(X))3 = c.(e+maxG } +Tp(X))3. This concludes the . - n n n

proof of (5.2).

(5.3) Theorem. For each n > 0 there is an t2 function Mh:
Nn+2 ~N so that for any Loop program (p,X ,p) which

'" n

computes f: Nn ~N, there is an e such that M (e,x ,s) =
n n

f(x) provided s > Tp(X). n - n
'"

Proof. By (5.2) there is a Godel number e for (p,X ,p) so that ,.., n

LPn(e,xn) = f(Xn), and LPn is computable by a Turing machine t Pn

whose total consumption of tape is no more than c.(e+max{x }+Tp(x))3
n n

squares. For brevity let this number of squares be t. Now say tf]h

has q states and uses k symbols. Then the total number of distinct

t tapes appearing in the computation is no more than k , since each

./
1/ •

t~pe square can have printed on it one of the k symbols. At each

situation occurring in the computation the Turing machine is scan-

ning one of the at most t squares, and is in one of the q states;

therefore at most q.t.kt different situations can arise in the com-

putation. If one of these situations is ever repeated, the whole

computation must be caught in an endless loop; but this does not

t happen, so the Turing machine must halt within q·t·k steps, that

is, within a number of steps

3 c-(e+max{x J+Tp(X))3
q-c.(e+max(x J+TpCX.)) .k n..; n n n

= B(e,x ,Tp(X)) n n

Remembering that q, c, and k are fixed numbers, it is easy enough

to show that B is actually a member of t
2

. Alternatively, it is

easy to show

there is a constant b so

B(e,xn,Tp(Xn)) ~ 1~2)(e +xl + + x + Tp(X) + b) n n

= B'(e,x ,Tp(X)) n n

But B' is a member of t2 since it is obtained by substitution from

members of t
2

• The function x+y, for example, is in tl via the

program A ==
'"

LOOP(l) x
y = y+ 1

ENP

where (~,X,y,y) computes x+y.

Recall that the Turing machine tpn of (5.2) is a particular,

fixed machine. Apply (5.1) to this machine to get an t2 function

TMtp so that if z exceeds the number of steps required for tpn
n

to halt,

TMrsp (e,x ;z-) = LP (e,x)
.u n n n n

Then take M (e,x ,s) = TMrwp (e,x ,B' (e,x ,s)). By the fact that B'
n n .l."n n n

is increasing, the proof of (5.3) is complete.

§6. All the investment in labor of §§2-5 now begins to payoff.

We have several easy theorems which characterize the classes t a
for a > 2 in three ways, and which show each class t for a > 2 - a -
has two important closure properties. Finally, t 1 has a universal

a+

function for t , and t 1 has a very small function not in t .
a a+ a

(6.1) Theorem. For a? 2, a function f: Nn ~N is in ta

if and only if there is

putes f such that Tp is

ber p.

a program (p,X ,p) which ,..... n

bounded by f(P) for some
a

com-

num-

Proof. The "only if" part is simply the Bounding Theorem (3.6).

Conversely, if Tp(xn) ~ f~P)(max(XnJ), then Tp(Xn)~~~P)(Xl+ ... + xn+l).

This latter function is in t. Then by (5.3) there is an e so a

f(xn) = Mn(e'Xn,f~P)(Xl + ... + xn + 1)). Since Mn E t
2

, by substitu-

tion f E t for a > 2. a -
This theorem is interesting because it shows that if we have

any program P which computes f, no matter how deeply the loops of ,.....

! are nested, so long as the running time of P is bounded by f~P)

then P can be rewritten as an La program.

(6.2) Theorem. For a > 2, t is the class of functions which - a

are computable by a Turing machine where either the

running time of the Turing machine or its consump

tion of tape is bounded by f(P) for some number p.
a

Proof. Immediate by (5.1), (5.3), and the argument of (6.1).

Theorems (6.1) and (6.2) provide further evidence for our

basic claim that the complexity of a function can be measured by

the ordinal assigned to its Loop program. In particular, (6.2)

assures us that the hierarchy of sets to does not arise because

of some peculiarity in the definition of Loop program, but that

in fact if some function f is in to but "not in t~ (where 0 > ~)

~hen f is more difficult to compute than any function in t~ even

if the computation is done by the familiar Turing machine.

(6.3) Theorem. The n-argument functions of to are pre

cisely the functions expressible in the form

"f(x) = M (e,x ,f(P)(max[x }))
n n nOn

for some numbers e, p, and where Mn is a particular

function in t
2

•

Proof. That each f is expressible in the required way is an imme-

diate consequence of (6.1) and the Bounding Theorem (3.6). The

converse follows from Theorem (4.5) and the closure of to under

substitution.

Theorem (6.3) characterizes t in a purely arithmetic manner, o
without reference to Loop programs or Turing machines. Notice,

however, that we have not yet proved Theorem (4.5) which shows

that fa E to; thus to avoid circularity we will refrain from using

(6.3) until (4.5) is proved. Theorems (6.1) and (6.2) do not de-

pend on (4. 5) .

(6.4) Definition.
/<7

A class v of functions is computation-

/0 time closed if whenever f € v, there is a function

Sf € ~ such that Sf pointwise bounds the number of

steps required to compute f on a Turing machine,

and if conversely whenever there is an Sf € ~

which bounds the number of steps required to com

pute some function f, then f € L"

(6.5) Theorem For a ~ 2, Za is computation-time closed.

Proof. Immediate, using (6.2) and the fact that f € Z and f (x) a a a
> f (x) for x > 0. - a

.It can be proved that every class of functions which is closed

under substitution, computation-time closed, and containing a suf-

ficiently large function is also closed under the operation of lfmited

recursion defined below; we will use another, more direct method

to show each Z is closed under limited recursion. The proof a

yields a corollary which indicates the power of the classes Za

for a < (0.

(6.6) Definition. If f obeys the conditions

f(x ,0) = g(x)
n n

f(x ,y+l) = h(x ,y,f(x ,y» n n n

then f is said to be defined by primitive recursion from

.g and h. We allow the case n = 0, so that g may be a

function of ° variables, that is, a constant.

(6.7) Definition. If f: N
n
+l ~N is defined by primitive

recursion from functions g and h, and if in addition

we have f(x ,y) < b(x ,y) for some function b and all
n - n

x , y, then f is said to be defined by limited
n

recursion from g, h, and b.

(6.8) Theorem. For a? 2, ~a is closed under limited

recursion. That is, if f is defined from g, h, b € ~a

by limited recursion, then f € ~ • a

Proof. We have

f(x ,0) = g(x)
n n

f(x ,y + 1) = hex ,y,f(x ,y)) n n n
f(x ,y) < b(x ,y)

n - n

where g,h,b € ~. Let (G,X ,G) be a program for g where GEL a ,...., n . ,...., ex

and G does not destroy registers X and Y. Let (H,X ,Z,F,H) be ,...., n,...., n

a program for h where again H ELand H does not destroy the ,...., a ,....,

contents of X , Z, F. We also assume that the registers of G n ,....,

and H do not overlap except for X. Such programs are easily .,...., n

found given any programs for g and h. Then let F be the program

G

F = G

Z = °
LOOP(l) Y

H

F = H
Z = Z + 1

END

Then (F,X ,Y,F) computes f. For say y= 0; then the instructions ,..., n

within the Loop are not executed, and after execution F contains

g(x) = f(x ,0). If y> 0, after the first execution of the in-
n n

structions in the Loop the contents of F are h(x ,O,g(x)) = f(x,l); n n

by induction, after the y executions of the instructions within

the Loop, the contents of F are h(x ,y- l,f(x ,y -1))= f(x ,y). n n n

By counting the steps required to execute F, ,...,

TF(X ,y) = TG(x) + i!-1
0[2+ TH(X ,z,f(x ,z))] + y + 4 n n z= n n ,..., . ,...,

By the Bounding Theorem (3.6), if we let m = max(x J,
- n

TF(Xn,y) ~ f~P)(~) + ~:~ [2+ f~q)(max{~'Z,f(Xn'Z)))] +y+ 4
,...,

By (3.8) since b E ~ ,
ex

TF(xn,y) ~ f~P)(~) +~::~[2+ f~q)(max{~'Z;f~r)(max~,zJ)J)] +y+4

< f(p) (m) + (yo! 1) . [2 + f (q) (max (m, y , f(r) (max (m, y J)J)] + y + 4
-ex - ex - a -

Then by using Lemma (3.4) repeatedly, exactly as in (3.7), there

is a number s so that TF(X ,y) < f(S)(max{m,y}). But then by (6.1),
n - a -

f € ~. This concludes (6.8). ex
The method yields two corollaries.

(6.9) Corollary. If f is defined by primitive recursion

from g E ~ l' h E ~ , then f E ~ l' a+ a a+

Proof. If f is defined from g and h exactly as in the theorem,

except that the requirement f(x ,y) < b(x ,y) is dropped and we
n - n

now allow g E t a +l , then the program for f given in the proof of

(6.8) still works; by Definition (1.1) of L~l' E E $a+l·

(6.10) Definition. p, the class of primitive recursive

functions, is the smallest class of functions con-

taining the successor function s(x) = x + 1, the iden-

tity function i(x) = x, and closed under substitution

and primitive recursion.

(6.11) Theorem. The class U ta contains the primitive
a<c..o

--recursi ve functions.

Proof. to contains s(x) and i(x). By (4.9) and (6.9), each primitive

recursive function is in ta for some a < w.

(6.12) Theorem. For each a ? 2, ~a+l contains a universal

function for ta; that is, a function Ua :
2

N ~ N so

that if f: N ~N is a fUnction in t a , there is an e

so Ua(e,x) = f(x), and conversely for each fixed e,

Ua(e,x) is an ta function:

Proof. Given a function g, its iterate g(y)(x) is defined by a

special case of primitive recursion (see Definition (3.1)). Thus

in particular the function f~Y)(X+ 1) is in t a +l . Take

For each fixed e, Ua E ~a' Also, each function in ~a must have an

infinite number of Godel numbers; for example, an arbitrarily large

number of (useless) "X = X" instructions may be prefixed to any pro-

gram. Thus by (6.1), for every f E ~a' there is an e so f(x) = Ua(e,x).

Notice that although we used (6.9) in this proof, the theorem

follows essentially from the computation-time closure of ~ and the

fact that ~l contains a function which bounds every function of~.

(6.13) Corollary. For each a? 2, ~l' contains a charac

teristic function (that is, a function Whose range

is {O,l}) which is not in ~.

Proof. It is immediate that the function l.:.x is in 11. and hence in

~l' Take g(x) = l':'Ua(x,x). Tben by Cantor's diagonal method, if

g € .fa, g must have a Godel number e: g(x) = Ua (e ,x). But then

which is absurd.

"

III. MULTIPLE RECURSIVE FUNCTIONS

§7. This chapter studies the theory of the multiple recursive

functions. Many of the results in this theory have exact counter

parts in the theory of Loop programs developed in Chapter II; it

also turns out that the methods of proof of the corresponding

theorems are often quite analogous. In large measure the similar

ity in the development of the two theories occurs simply because

the theories are) in fact) very similar; it is also due to a con

scious attempt to draw the appropriate parallels. This a"ttempt is

made in the belief that both the author and the reader benefit from

the technical economy achieved by using a fev! tools rather than a

large coliection. Finally) we believe the methods used here and

in Chapter II are of great utility in the characterization of sets

of computable functions; support for such a claim can only come

from successful use of these methods.

The theory of Loop programs may be regarded a;s an attempt to

examine the result of restricting the notion of program in such a

way that the structure of a program controls the complexity of the

operations the program performs. The theory of Loop progra.ms is

thus in the tradition of the Turing-computable fu.'1ctions: those

functions computable by Turing machines. Here we take "Turing

machine" in the broad sense of referring to all the various theo

retical machines which serve as models for digital computers. But

it is well-known that several quite different ways of defining

"effect~vely computable" all lead to exactly the .same class of

functions. Chief among these alternative approaches is the defini-

tion of functions by Herbrand-Godel-K.leene recursion equations.
I~

He s1.Lrnmarize this approach, follo\ring Kleene lX, §54].

Imagine a formal language built up from· several basic symbols:

= (equals), , (successor), ° (zero), (,) (left and right paren-

theses), f, §' E, !l' §l' El"'" (function letters), ~, l, !:., ~l'

ll' !:.l'···' (variables for natural numbers), and, (comma). From

these symbols are constructed several kinds of formal expressions.

The pumerals are 0, 0', 0", ... ; these stand for the natural numbers

0,1,2, The formal expression Hhich is a numeral for a number

x we write v(x). Terms are 0, any variable letter, expressions of

the form t' where t is a term, and f(tl, ... ,tn) where f is a function

letter and tl, ... ,tn are terms.

Next we have equations of the form t = s Hhere t and s are

terms. Systems of ~uations are finite sequences el , ... ,en of

equations. The systems of equations are the basic objects of study.

A system of equations may have a principal function letter:

the first (left-most) function letter of the last equation of the

system. From a system of equations formal deductions may be made.

The deductions are precisely analogous to deductions in formal

logic from a set of postulates. There are two rules of inference:

(Rl) From an equation containing a variable letter,

we may pass to the equation obtained by substituting

a particular numeral for every occurrence of

the variable letter.

(R2) From an equation of the form f(V(x
l

), ... ,v(x))
, n

~ v(x) and another equation r = s, we may pass

to the equation which results by substituting

V(x) for one or more occurrences of f(V(xl), ... ,v(x
n

))

in the equation r = s.

Then a deduction of ~~ equation e from a system of equations E is a

sequence of equations, each of which is either one of the equations

of E or ,obtained from one (or two) of the earlier equations of the

deduction by an application of Rl (or R2).

A system of equations E defines the function ~ recursively when-

ever the following holds: f is the principal function letter of E,

and for all xl'" .,xn the equation f(V(xl),·· .,v(xn)) ~ v(x) is

deducible from E if and only if~(xl, ... ,xn) = x. If a (total)

function has a system of equations which defines it recursively,

the fU .. "'lction is called general recursive. Kleene sho'l'rs that the

class of general recursive functions is precisely the same class as

the functions computable by a Turing machine.

The class of multiple ~ecursive functions maybe defined in an

analogous way; we will instead use a slightly different approach,

and then discuss its relationship with the Kleene formulation.

(7.1) Definition. For some n 2: 1 and m 2: 0, suppose

the function f:Nn+m ~ N satisfies the 2n equations:

f(O, ... ,O~ym) = Fl

f(O, ... ,O,x +1, y) = F2 n m

f(O, ... ,O,x ' 1+ 1,0,y) = F3 n- m

. .
f(xl+l, ... ,x +l,y) = F n

n m 2

where F
l

, ... ,F2n are formulas built up from constants,

variables x , y , and functions gl" .. ,g by sub-n m r

stitution. Suppose also that Fl contains no occurrences

of f, and in. each other equation

f(~l""'~ ,y) = F. n m J

where each ~. is either "X. + 1" or "0", each occurrence
l l

of f in F.has a k, 1 ~ k ~ n, so f appears in the context
.I

f(~l'''·'~k_l,xk,Tk+l,· .. ,Tn,Sm) where ~k is "~+l", and
-

Tk 1,···,T,8 are terms (i.e. formulas) built up from + n m

variables y and those x. for which ~. = "X. + 1" by ap-m l l l

plication of gl, ... ,gr and f. Then f is saiQ to be

defined by n-recursion from gl" ··,gr·

(7.2) Example. f is defined by 2-recursion from gl, ... ,gr

if f satisfies

f(O,O,y) = gl(y,3)

f (° , x2 + 1 , y) = f (° , x2 ' g2 (Y))

f(xl + 1,0,y) '= f(xl,g3(f(xl'~1'y + 1)) ,g4(y))

f(xl +1,x2 +l,y) = g5(f(xl ,f(xl +'l,x2 ,y),y))

ro -u

(7.3) Definition. For each ordinal a < WW, ~ is.the least

class of functions satisfying

(i) If a 0, ~a contains the successor function

s(x) x + 1 and the identity function i(x) ::: x

(ii) If ~ < a, ~~ £:;. ~a

(iii) ~a is closed under substitution

(iv) If a ::: ~ +W for some n ~ OJ and f is de-

fined by (n+l)-recursion from glJ ... ,gr € ~~,

then f € %:.
We will call ~::: U W ~a the multiple recursive functions.

a<w
Also, for each n > lJ U ~a is the class of n-recursive

a<w
functions.

It will be seen that if a function f is defined by n-recursion

from well-defined, total functions gy···,gn' then f is in fact a

well-defined, total function. The proof is by induction on the

well-ordering of n-tuples of integers under the lexicographical

ordering.

(7.4) Definition. The n-tuple xn is lexicographically le~

than the n-tuple y (:in symbols, (x) < (Y)) whenever
n . n n

there is a u such that x < y and for all i < u, x. = y ..
u U l l

Notice that this relation is a "Tell-ordering of order type

aP by the mapping

() .n-l 0 xn f---7 W ·x
l

+ ... + W ·x
n

DT-5

(7.5) Theorem. If f is defined from total functions

gl'" ·,gr by n-recursion, f is a total, well-

defined function.

Proof. He have the equation f(0, ... ,0 ,Ym) == Fl' By the definition,

Fl cannot contain any Qccurrences of' f; so f(O, ... ,O,Ym) is uniquely

defined for all y. Now suppose f(z ,y) is uniquely defined for
m . n m

all y and all z wIth (z) < (x). Then f(x ,y) == F., where F.
m n n n n m J J

is a formllla built up from (some of) gl"" ,gr and occurrences of

f of the form f(T ,8) where Tl, ... ,T ,81 , ... ,8 are terms and, by
n m n. m

definition, (T)«x).
n n

Thus f(x ,y) is uniquely defined.
. n m

Now by Definition (7.3) each function f E ~a is defined by a

sequence of equations, each of which defines a new function used in

the definition of f. The initial equations in the sequence define

functions from the initial functions s(x) and i(x); and each equation

in the sequence is either an instance of substitution which defines

a new function from functions defined earlier, or part of an instance

of the schema of n-recursion from functions defined earlier. These

equations can of course be translated into the formal equations of

Kleene; this is really nothing more than a one-for-one replacement
. b~

of the informal symbols of the defining equations ~ the formal

symbols of the recursion equations. Conversely, it should be ob-

vious that each system of formal equations which obeys a few purely

syntactic rules defines a multiple recursive function. The rules

are: each equation e is either of the form f(xl, ... ,xn) == T, where

T is a term containing no function letters, or is of the form

f(x
l

, ... ,xn) = T, where T is a term containing function letters de

fined by earlier equations (formal substitution), or is part of the

(formal) scheme of n-recursion corresponding to the (informal) De-

finition (7.1). We also require that each system of equations be

consistent: that it not define the same function letter twice, nor

use the same function letter with varying numbers of arguments.

Again, this restriction is purely·syntactic. We may also attach

an ordinal 0 to each function letter used in such a restricted '

system of equations: if a function letter f is defined by (formal)

substitution from function letters f l , ... ,fr , attach to f the

ordinal 0 = max(al, ... ,ar } where 0l, ... ,ar are the ordinals attached

to fl, ... ,fr ; or if-r = 0, so f is defined by substitution from the

empty set of functions, a = 0. Also, if'f is defined by (formal)

{n +- l)-recursion from gl"" ,gr' assign f the ordinal a =

max(al, ... ,ar}+u.P. Then assign to a system of equati8ns the or

dinal of its principal function letter, and let Ra be the set of

those systems of equations with ordinal less than or equal to a.

The point is that the systems of equations in Ra have a purely

syntactical definition; furthermore, given a sequence of formal

symbols, we can effectively test whether the sequence is in Rex'

Finally, each member of Ra is a system of equations in the Kleene

sense, so deductions may be made from such a system in exactly the

same way as they are from the more general systems of equations.

It should be clear that a function f is jn ~ if and only if there

jJl--7

is a system of equations in Ra which defines f recursively.

other. writers use definitions of n-recursion somewhat differ
. ill 1-'

ent from ours. Peter [.Pf, nJ, for example, uses a slightly less

general scheme in "rhich f obeys

f(x ,y) = g(Ym) n m if Xl

f(x
1

+l, ... ,x +l,y) = F n m otherwise

where each occurrence of f in F has the form

·x
n °

f(x1 + 1, ... ,x. + l,x. 1,T. 2,···,T ,y).
l l+ l+ n m O~r development could just

.g...5
as easily have been carried out in this way. Robbin [~ uses a more

general scheme.

f(x ,y)
n m

f(x ,y)
n m

F
o

F

if (x) -- (0, ... ,0)
n

if (x) f (0, ... ,0)
n

where F is a formula not containing f, and every occurrence of f
o

in F is of the form f(T1, .. ·,·Tn,Sl"",Sm) where Tl, ... ,Tn,Sl"",Sm

are formulas and for all (x) f (0, ... ,0), (T) < (x). The only n n n

problem with this scheme for our purposes is that given a pair of

equations in the above form, it is not clear from their syntactic

structure that f is properly defined, because the condition (T) < (x)
n n

is not a syntactical property, but depends on the values of the functions

involved. In fact, given a pair of equations like the above, it is

effecti vely undecidable to determine in general "rhether the condition

(T)< (x) is met. All of these approaches have the common property
n n

that a function is defined by induction on the lexicographical well

ordering of n-tuples. As we will discover) all the variations are

equivalent in that they lead to the same classes of functions.

§8. This section corresponds to §§3-4 of Chapter II in that it

establishes the rate of growth of the largest functions of each

class ~a' There is a Bounding Theorem for ~a' much like Theorem

(3.6), showing that each function in ~a is bounded by fi~ for

some p; and a Hierarchy Theorem for ~a' which proves the inequality

~a ~ ~~ for a > ~ by demonstrating that fl+a E ~a for a ~ 1. Thus

the Bounding Theorem for ~a is different from that for ~a' in that

the former limits the size of the functions of ~a' whereas the latter

bounds the computation time of functions of ~a' The bound on the

functions of ~ came as a corollary to the bound on computation time; . . a
ye "Ire v 5 e.

the -Tese!V'e will be true of ~a'

(8.1) Bounding Theorem for ~a' If f:~ ~N is a function

in ~~, there is a p such that f(x) < fl(P) (max(x });
I.,A, n - +a n

p depends effective on the recursion equations defin-

ing f.

Proof. Like that of the Bounding Theorem for Loop programs, this

proof is by induction on Definition (7.3) of ~a' There are four

cases corresponding to the four clauses of (7.3) which exhaust the

ways by which a function f'may be a member of ~a'

Case 1. f(x) = x + 1 or f(x) = x. We have immediately that

f(x) < f(l)(x) < f(l)(x).
- 0 - 1

Case 2. f E ~~ and ~ < a. Then we have a p so that f(x) <
n -

f(P)(max(x }) by the induction hypothesis for ~A and (3.4.viii).
l+a n I-'

Case 3. f is defined by substitution from functions gl)"') gr E 6ta:'

The theorem is irmnediate by Lemma (3.4).

Case 4. f is defined by (n + 1) -recursion from functions

n
gl) ...)gr in 6t~) "lhere a: = ~+(J). This case is proved 'by induction

on n. Suppose F is a formula built up by substitution. We define

the depth of F by induction on its structure as follows: the depth

of a variable or a constant is zero; the depth of g(Fl) ...)Fm) where

F
l

)· ..)F
m

are formulas is max{depth(F
j

)}+ 1.

Now consider the base of the induction) n = O. Then a: = ~+ 1

and f is defined by l-recursion from gl)·. ~)gr E 6t~. We have

f(O)Y
m

) .;::: Fl

f(x + l)Y
m

) = F2

Let a be the greater of the depths of Fl and F2) and let b be suf-

(b)
ficiently large so fl+~ bounds each of gl)·. ·)gr) and ·also all the

constants occurring in Fl and F
2

. Then

f(O)y) < rl(b!) (max(y })
m - +1-' m

Suppose for each z < x where x > 0 we have

By definition) f(x +l)y
m

) = F2 . But since each occurrence of f in

F2 is of the form f(x)Tm)) by the increasing property of fl+~ and

the hypotheses on F2 and f)

111 -1/

x+2
f{x + l,y) < fl(b!) (max(x + l,y))

m - +1-' m

Thus, if we ,Trite ill for max (x,y),
- m

x+l
f(x,y) <" f(ba)(m)

m - 1+13 -

< f(ba~+l) f(~)(l)
1+13 1+13

(m+l)
:: fl+o ba- +.B!

< f f(ba+l)()
1+0 2 ~

< f(ba+2) (m)
- 1+0 -

We have thus proved the following for n = 0:

(8.2) Lemma. If f is defined by (n + 1) -recursion from

gl, ... ,gr' and if the greatest depth of the formulas

Fl ,.··,F2n+l defining f is a, and fi~b bounds all of

gl'··· ,gr as well as all the constants of Fl ,··· ,F2n+l ,

th f · b d d b f(ba+t+2) h ex A + liP and en lS oun e y 1+0: ' w ere = I-' ~

t :: t (13).
n

Proof. The basis n = 0 has already been done, so we will assume

the lemma for some n ~ 0 and prove it for n+ 1. .ThllS, a function

f(x,xO' ... 'X ,y) is being defined by (n+ 2)-recursion. For each n m

fixed x, let f{x)(xO'.··'xn,Ym) = f(x,xO' ... 'xn,Ym). On examining

the 2n+2 equations defining f, it is found that the first 2n+l of

them constitute a definition of f{O) by {n +l)-recursion, for these

lD -(u

equations specify the value of f(x,xO""'x ,y) when x = O. Thus
n m ; .

. '. '-) . (ba+t+2) (
by the induction hypothesis, f(0) (xO' . : .,x ,y. < f m) ,

n m -. 1 +13+w -

where m is max (x
O

, ... ,x ,y) end t =: t (13). Suppose for some x
- n m .n

that

_((ba+t+2)X+l)
f() (xO' ••• , x , y) < f . (m)

x n m - l+l3+wn (x+l) . -

Again, by the definition (7.1) of n-recursion, f(x+l) is defined by

(n+l)-recursion from gl, ... ,gr and f(x)' The depth of the defining

formulas is still a, and by (3.4.viii) and the induction hypothesis

for gl, ... ,gr' the function

(X+l)
f (ba+t+2)

l+I3+uJl(x+l)

bounds all of gl'" ·,gr' f(x)' Thus, now letting ~ be

max (x +l,xO""'x ,y }, n m

_ ((ba+t+2)x+l. a+t +2)
f(l)(~""'x,y) < f (m)

x+ . n m - 1+I3+w(x+2) -

((ba+t+2)X+2)
< f \' (m)
- 1+I3+w(x+2) -

Thus, we have shown where m is max (x,x
O

' ... ,x ,y }., n m

. _. ((ba+t+2)X+l)
f(x,xO) ... ,x ,y) < f ... n() (m)

n m - 1+13~- x+l -

I (ba+t+2)~ + m)
< f\ - (1)

1+13+aP(~+1) .

< f ((ba +t + 2)~+2 J
l+l3+w(~+l)+l

< f n (A)
l+13+w ·A

()
m+2 where A = be. +t + 2 -

Novl if 13 == WS'b + ... + Wn+l'b +
s . n+l

o
+ w .bO' let 13' ==

s n+l
w·b + '" + w ·b s n+l Thus 13' is the least ordinal so a == 13' + wn+l ,

n)m+2 n m+2 and l+l3+w .(ba+t+2 - == 1+13' +w .((ba+t+2)- +b).
n

== fl ((ba + t + 2)~+2 + b)
+a n

Then

But since t 1(13) == t+b by definition of t, this proves Lemma (8.2) n+ n

and thus Theorem (8.1).

Unfortunately, the somewhat more attractive conjecture that f(P)
a

bounds the functions of ~ fails. This matter will be discussed
a

after (8.3).

(8.3) Theorem. For each a ~ 1, fl E R .
+a a

Proof. Consider the function h' : Nn+2~N defined by (n+2)
l3,n

recursion from fl3:

hA (;0' ... ,; ,0) == 1 I-',n n

hA (0, ... ,0, x + 1) == fA (x + 1)
I-',n • I-'

hA (;0""'; l'x +l,x+l) == hA (;0""'; l'x ,hA (;0""'; l'x +l,x)) I-',n n- n I-',n n- n I-',n n- n

hA (;0'" .,; 2 x l+l,O,x+l) == hA (;0""'; 2'x l,x+l,x+l) I-',n n- , n- I-',n n- n-

Each equation containing a ~ is schematic in that it represents all

the equations obtained by replacing ~. by "x. + 1" or "0". We show
l l

n
that when ~ is of the form ~ = ~'+ w for some ~', then

n ° h~,n(xo"" ,xn,x) = f~+'Y(X) where 'Y = w .xO + ... + W .xn The in-

duction is on 'Y' If 'Y = 0, so Xo = ••. = xn = 0, then h~,n(O, .. . ,O,x)

= f~(X) by the first and second equations. If 'Y is a successor, so

n ° 'Y = 5 + 1 where 5 = W .xO + ... + cP 'Xn, the third equation applies:

hp' (~O,···, ~ l'x +l,x+l) = hp' (~O,···, ~ l'x ,hp' (~O,···; ~ l'x +l,x))
~,n n- n ~,n n- n ~,n n- n

By the induction hypothesis for 5 and the first equation, we have

hp' (xo ' ... , xl' x . + 1 , 0) = 1
~,n n- n

h~,n(xo'" "xn_~,xn+l,x+l) = f~+5(h~,n(xo" .. ,xn_l,xn+l,x))

But for fixed xO, ... ,xn ' these are the same equations defining f
~+5+1

() n-m = f~+'Y' by Definition 3.2. Finally, if 'Y is a limit, so1'= 5+w

. n n-m+l n-m where m < nand 5 = W .xO + ... + W 'xm_l +W 'x
m

' we have

hp' (xO""'x l'x +1,0, ... ,0,0) = 1
~,n - m- m

hp' (xO""'x l'x +l,O, ... ,O,x+l)=hp' (xO""'x l'x ,x+l,O, ... ,O,x+l)
~,n m- m ~,n m- m

Combining the equations and using the induction hypo!hesis for 5,

hp' (xO""'x l'x +1,0, ... ,O,x) = f n-m--l (x)
~,n m- m ~+5+w.x

by Definition (3.2).

Now consider the equations

f(O,y) = 'y+ 1

f(x+l,y) = f(x,f(x,y))

which are an instance of l-recursion. We show that f(x,y) x
= y+ 2 .

This is clearly true for x = OJ if it is true for x,

f(x + l,y) = f(x, f(x,y))

= f(x,y)+2x

= y + 2x+ 2x

= y+ 2x+l

CD Now let 0; be an ordinal, 1 < 0; < CD , and assume that f
l

+
13

E Qt.13

for 1 < 13 < 0;. If 0; is a successor, 0; = 13 +1, then fl~ is obtained

from f
l

+
13

by iteration (Definition (3.1)), which is a special case

of l-recursion, so f l +13 E Qt.o;.

n+l

If 0; is a limit ordinal, let 13 be the

least ordinal so 0; = 13 + CD • By definition, hl R is obtained by +f-',n

(n +2)-recursion from f
l

+
13

, and so by the induction hypothesis,

h R E Qt. l' But hl R (x,O, ... ,O,x)
l+f-',n l+~+aP+ +f-',n = f R .,n (x) = fl ,rv(x),

l+f-'+w ·X T'N

so by closure under substitution, ,fl~ E Qt.o;' This concludes (8.3).

The rather unpleasant need to use fl~to bound Qt.o;' rather than

fo;' stems from the difference between l-recursion and primitive re-

cursion. The equations above,

f(O,y) = y+ 1

f(x+l,y) = f(x, f(x,y))

which make f(x,y) = y+ 2x , are not an instance of primitive recursion,

because in the latter scheme the parameters must remain fixed, not

variable, in the defining formulas. In other words·, the schema of

primitive recursion may be written

f(O,ym) = Fl

f(x+ l'Ym) = F2

where Fl does not contain f, and where every instance of f in F2 is

of the form f(x,y); here l-recursion wo~ld have f(x,T) where T m m m

are formulas. The difference is between "nested" and "unnested"

formulas. This matter 1'lill be discussed more fully in Chapter V.

Notice, incidentally, that if 0: ~ CD, 1 +0: = ex.

The above results give

(8.4) Hierarchy Theorem for Ro:. If 0: > ~, Ro: ~ R~~

Proof. Immediate by (8.1), (8.3), and (4.6).

§9. The task of this section is to establish the computation-time

closure of 6ta: for each a: > 2. The path we take is essentially the

same as that follovred for ra:: show that the computation time of

each function in 6ta: is bounded by another fmlction in 6ta:' and then

find a function in 6t
2

vrhich mimics the actions of an arbitrary
..

Turing machine for a given number of steps. We base the proof

for the first half of the result on the use of deductions from the

formal recursion equation defining a function in 6ta:' This method

is by no means the only way to carry out the proof, but it seems

to offer the fewest technical difficulties and will be applicable

as.well to later work.

(9.1) Theorem. For each ex < illill, if f E 6ta: then f can be

computed by a Turing machine in such a way that the

number of steps required to compute f(x) is bounded
n

Proof. We will show that for each f E 6ta: there is.a set of equations

E defining f recursively and a number q so that fi~(max(Xn}) bounds

the number of equations in a certain deduction of the equation

f(V(x
l

), ... ,v(x)) = v(x) from E. Then we will arrange for a
. n

TUring machine to perform the deduction and conclude the theorem.

If fER, then f(x) = x. + c or f(x)= c for some constant
o n l n

c. Thus f is definable by one of the equations

f(x)=x!"'"
n l

or

f(x) == 0 1 1 ••• 1

n

A deduction of the equation f(V(x
l

))· ..)v(xn)) == v(x) simply con

sists of the n + 1 equations Ti'lhich start with the original defining

equation and have the variables xl)"')x successively replaced by
. n

V(Xl)) ...)V(Xn). Thus the number of equations is bounded by a con

stant) n+ 1) and a fortiori by fin+l) (max {x
n

J) .

Now suppose f E ~ where a > 1. a - If f E ~a because f E ~~

with ~ < a) the claim is trivial by Lemma (3.4.viii). If f is de-

fined by substitution from functions in ~a) the proof follows from

arguments similar to) but simpler than) those used for the next

case. We omit the details.

There remains the case in which f is defined by n-recursion

. n-l
from functions in ~~) where a == ~ + (1) for some n > 1. We have

the 2n equations

where each equation is obtained by allowing each s. to be either
1

"X. + 1" or "0".
1

The fTh~ctions gl) ...)gr appearing in the formulas

F j are all bounded by fi~b for

each i) 1 ~ i ~ r) a function

some q by Theorem (8.1). Define for

D..i
.tg.:N ~ N such that .tg . (xl)'")xn .)
111

bounds the number of equations in the deduction of the equation

g. (V(Xl))'")v(xn .)) == v(x).
11'

How do we deduce the equation f(v(x), v(y)) = v(x)? (We have
.·n· m

writtenv(x) for v(xl), ... ,v(x).) First select the applicable
n· n

equation on the basis of which x. are. zero:
l

-
and then substitute the desired numerals for the ~ to get

n

where v(F.) is F. with a numeral substituted for each corresponding
J J

variable in F.. This requires n + m+ 1 equations. Then replace one
J

of the innermost function letters by the numeral which is its value.

This will require a subsidiary deduction of the proper equation.

Then, similarly, replace one of the remaining innermost function

letters by making a second subsidiary deduction, continue until

all the function letters are removed from v(F.); we then have
J

f(VGC::}, v(y)) = v(x) n m

for v(x) a numeral. Thus the total number of equations is no

more than

n+m+l+L:[~ (Tl, ... ,Ts)+1]
k k

equations, where the sum ranges over all literal appearances in F.
J

of a function letter hk in the form hk(Tl ,··· ,Tsk) and where Tl'0 .. ,Tsk

are formulas. Notice that we include f itself in this census of

function letters, so terms· of the form tf(Tl , ... , T) will appear n+m

in the expression above; this function letter represents the number

of equations required to deduce f.

Thus le arrive at the 2
n

equations

tf(~ ,Y) == L:. n m J

These define the function t f by n-recursion from g , ... ,g ,
1 r

t , ... ,t , f, and addition. Each L:. is a formula n+ m +1 +
gl gr J

L:[th (Tl, ... ,Ts)+ IJ like the one derived above. Now consider the"
k k

following modified equations:

latter function bounds the former;

placed
(p.)

by its bound fl+~ (Tl +

by replacing each occurrence of

TSi)' where qi is chosen so the

likewise, tgi(Tl , ... ,TSi) is re

+ Ts.)' That such bounds exist
l

is guaranteed by Theorem (8.1) and the induction hypothesis for

t gl ,··· ,tgr · Finally, replace each occurrence of. f(T l ,··· , Tn+m) in

L:. by t*f(T
l

, ... ,T). By the way in which the formulas L:~ were
J n+m J

defined, t; is thus obtained by n-recursion from the functions x+ y

and fl~~; so by Lemma (8.2), t; is bounded by f~~~~n-l for some q.

But we also have t*f(X ,y)'> tf(x ,y) and t*f(X ,y) > f(x ,y), for
nm- nm nm- nm

t* is defined from increasing functions which bound those defining
f

-t
f

and f, and the formulas defining t; are of equal or greater depths.

Thus the deduction of f(V(x), VTY:T) == v(x) contains no more than n m

f(q) n_l(max(x ,y }) equations.
l+~~ n m

Next, it should be clear that there is a c so the t-th equation

t+max{~'Ym}
in the deduction "'rill contain no more than c characters.

For substituting a numeral v(x) in an equation can increase its

length by at most d'v(x) for some fixed d; and each numeral which

is substituted is either one of the xn ' Ym or already appears as

part of an earlier equation. Since f 2(x) = 2
x

, there is an s so

the total number of characters in a deduction, namely

(q)({- -} (- -})
() fl max x ,y)+max x ,y

f q ({- -}) +0: n m n m
H-(X max xn'Ym . c

is bounded by fi:;.

Now a Turing machine can certainly carry out the deduction

we have outlined. Given input x , y , it simply forms the equation
n m

f(x ,y) = F., and proceeds to derive the succeeding lines of the
n m J

deduction exactly as suggested above. Even if none of the deduction

is erased from the tape, the total number of tape squares used

need be no more than

Then by exactly the same argument as that given in ~5.3), the total

number of steps required is no more than f(P)(max{x y}) for some l+ex n' n

p, so long as a > 1. Even if a = 0, the theorem remains true; for

suppose f(x) = x. + c. Then f can be computed as follows: move to
n l

the left over the representation of Xl'" .,xn ' erasing the tape,

until Xi is reached; pass over Xi' and. then add c -1 "l"s to its

left. .Continue to the left, erasing x i ._1 '. :. ,xl·' Then move right

again until X.+ c has been passed, and stop. The total number of
l

steps is no more than fi
p) (max (Xn})' for suitable p. This con-

cludes the pr?of of Theorem (9.1).

A fuller discussion of the use of Turing machines to carry
, ' ~

out deductions from recursion' equations is given by Kleene iJ(, §69];

readers who mistrust our sketch of such mechanized deductions should

consult this work.

Theorem (9.1) constitutes half of the proof that ~ , a > 2, a -
is computation time closed; the other half follows from the next

theorem.

(9.2) Theorem. Let ~ be a Turing machine which computes

the function f:Nn ~ N. Then there is an ~2 function

TM~:Nn+l ~ N with the follo'tling property: if s exceeds

the number of steps required to compute f(x) using ~,
n

then f(x) = TM (x ,s).
n iJR n

Proof. This proof can be made by giving a direct construction of

TM , but a simpler method is to show that ~ ~ ~ for a < ill, and
~ a- a

then use Theorem (5.1) to conclude (9.2').

As we have remarked, ~ = ~ , for each function in both classes
o 0

of the forms f(x) = x. + c or f(x),= c
-D J t n ,l n
"-", - tf..d-.

for can be written in one

some constant c. Now suppose ~a 3 ~ for some a, 0 < a < ill, - a -
and

let PEL be a Loop program with Reg(P) = [Xl, ... ,X }. a ~ n

n
For each i, 1 ~ i ~ n, let fi:N -> N be the function computed

by (p, X , X.).. By definition, each fl' E ro:.. Now consider the
r~ n l

function

*(-) f. x ,0 = x.
l n l

f~ (x , z + 1) = f~ (fl (x), ... , f (x), z) l n l n n n

which is defined by l-recursion from f l , ... ,f ; by the hypothesis . n

on f l ,· .. ,fn , f: E ~O:+l' Let p* be the program

LOOP(l) Z

P

END

Now we assert that f~(x ,z) is the function computed by (P*,X ,Z,X.) .
. In "" n l

This is certainly the case when z = 0; for then ~* is equivalent to

the empty program. If the assertion is true for initial contents of

Z = z, let the initial contents of Z be z+l, and the initial contents

of X be x. P* is thus equivaient to
n n

P ,.....z

P

P

P

z

The program P leaves fl(x), ... ,f (x) in registers Xl' ... ,X ; and
. "" n nn n

by hypothesis, if the contents of Xn are Yn at the beginning of the

execution of the program P above, then P leaves f~(Yl'" .,y ,z)
,.....z ,.....z l n

ip register Xi' Thus "rhen the initial contents of Z are z + 1, !:*

leaves f~(fl(x), ... ,f (x),z) =
l n n n

(~, X ,Z,X.) computes f~(x ,z). .- n l .). n

f~(x z + 1) in register X.; so
l n' l

If register Z is one of the X.,
l

say Z is register X., then (P*,X ,X.,X.) computes f~(x ;x.).
J ,...., n J l ~ n l

The i'oregoing establishes our claim that f- c R for ex < CD
. ex - ex

for the functions of f-ex computed by programs of the form

LOOP(l) X

£
END

When we have a program of the form

P

£

the claim follows from the closure of R under substitution.
ex '

Thus for ex < CD, f- c R ; in particular by Theorem (5.1), the ex - ex

desired function TM E R2 and Theorem (9.2) is proved.
. IJR

Theorems (9.1), (9.2), (8.1) and (8.3) give immediately

(9.3) Theorem.

closed.

For each ex > 2, R is computation-time
ex

IV. IDENTICAL HIERARCHIES

§10. The following very important result is now straightforward.

(10.1) Theorem. If 2 ~ a < mm, ~a = ~l~'

Proof. If f E ~a' the time required to compute f using a Turing

(p) ~(p)
machine is bounded by fl-ta for some p. B;y (4.4), fl-ta(xl + ... + xn +1)

> r(p) (max(x)) and f(P)(x+ + xn + 1) E ~l'~' Then by the com-- l-ta n' l+a 1 "1"'-"

putation-time closure of ~l-ta' f E ~l-ta' Conversely, if f E ~l-ta'

the computation time of f is bounded by fi~ for some q; but

fl(~l(xl + ... + xn) C ~a' "1"'-" ~ U~ so by the computation-time closure of ~a'

Notice that this gives

Proof of Theorem (4.5) concluded. We shovred fl E ~l directly;

f2 E ~2 follows by (6.9); (8.3) and (10.1) give fa E ~a for a > 3,

yielding the theorem.

Theorem (10.1) follows from just two important characteristics

of each ~l-ta and ~a: First, each class (for a ~ 2) is substitution

and computation-time closed; second, the two classes contain functions·

of the same size, in that a~y function in the one class is bounded

by some function in the other. Thus it appears that any class of

functions which has these two closure properties is essentially

characterized by the size of the functions it contains.

This same approach using computation-time closure is applied

below to three exrunples of other hierarchies mentioned in the

literature; we show that each of these hierarchies is identical

to a portion of the f,a hierarchy. Not all the theorems are proved

solely on the basis of computation-time closure -- sometimes ad hoc

methods are easier -- but mostly 'ire make use of this powerful closure

property.

A hierarchy similar to the ~a hierarchy where a < W was de
;L

fined by Axt [Ad, ~J. We have

(10.2) Definition (Axt). For. each a, 0 ~ a < w, let Pa

be the smallest class of functions satisfying

(i) The successor function s(x) ::: x+ 1 and the

identity function i(x) ::: x are in P a ,

(ii) If a > ~, P a =: P ~ ,

(iii) P a is closed under substitution,

(iv) If f is defined by primitive recursion from

functions g,h E P~, then f E Pa where a = ~ + 1.

It is obvious that P, the class of primitive recursive functions,

is precisely

See Definition (6.10). The difference between the ~a hierarchy for

a < W and the P a hierarchy is that where ~a is defined using 1-

recursion, Pcx is defined using the less general s.chema of primitive

recursion.

It should be clear intui ti vely that the function TM vlhich sm
mimics Turing machines js primitive recursive. In fact, this re-

sult follows from proofs of the Kleene Normal Form Theorem; see,
IJ.- ?

for example, Kleene [K', §58] or Davis [If, p. 63]. This fact alone

would put TM in Pcx for each CX > CX , where CX is a fixed ordinal
1)Jl. 0 0

less than CD. The next lemma, therefore, is of interest only be-

cause it shows CX to be no greater than 4.
o

(10.3) Lemma. The function TM of Theorems (5.1) and sm

(9.2) is in ~4' Also, each function used in the

definition of TMsm is bounded by f~P) for some p.

Proof. The proof of the lemma consists merely of an enumeration

of the definitions of various functions, concluding with that for

TM . this together with a verification that the function so enumersm'

ated have the properties ascribed to them. The verification is left

mostly to the reader. Instead of giving the details here we segre-

gate them in §ll, since, as remarked above, the real content of the

lemma is already obvious: that TM E pcx· for some CX < 0), and theresm
fore that TMsm can be defined using functions bounded by f~P) for

some CX and p.

(10.4) Theorem. For 4 ~ CX < CD, ~cx = Pcx'

Proof. By Corollary (6.9) and the closure of .Eo: under substitution,

.Eo: :?f>o: for all 0: > W. On the other hand, sitlce fl E PI and fC41

is defined from fo: by a special case of primitive recursion,

fo: E Po: for each 0: > 1; thus by (6.3) and (10.3) , Po: ::: .Eo: for

4<o:<w.

We remark that the first half of this proof, that .Eo: :?Po:'

could have been shown as follows: prove that each function in rPl is

bounded by f(P) for some p. Then by Lemma (8.2), each function in
1

Po: is bounded by f~P) for some p. Finally, Theorem (9.1) applies,

~ fortiori, to rP 0: as well as ~o:' since primi ti ve recursion is a

special case of I-recursion; thus each function inrPo: can be com

puted in fewer than f~P) steps. Then by the computation time closure

Other hierarchies may be obtained by starting with a fixed set

of functions and closing under substitution and limited recursion.
J-5

The next example is essentially.the one studied by Robbin [~J; his

initial function was 2
x

rather than fO' but otherwise he used functions

(10.5) Definition (Robbin). W
For each ordinal ex, 0: < W ,

let e be the smallest class of functions satisfying
0:

(i) eo: contains the successor function, the function

max(x,y), and f ,
0:

(ii) e is closed under substitution,
0:

(iii) eo: is closed under limited recursion.

(10.6) Theorem. For 2 _< ex < u.fO, e = £, • ex ex

Proof. Say ex ~ 2. Then £, contains all the starting functions of ex
eex' and by (6.8) and (4.9), £'ex is closed under limited recursion

and sUbstitution. Thus £, ~ e. Conversely, if f E £,., by Theorem ex- ex ex
(6.3) f may be written

- - (p)
.f(x) = M (e,x ,f (max(xl ,· .. ,max(x l'x) ...)))

n n n ex . n- n

for some e and p. Since M is obtained by substitution from TM.
n ~

for some ~, by closure under substitution and Lemma (10.3), TM~ E e
2

;

for all the recursions defining TM in (10.3) are bounded by f
2
(P).

iJl1

Then by (6.3), fEe. ex

'f
Grzegorczyk [Z] studied a similarly defined hierarchy

G {eex: ex< ill}. His starting functions, however, are somewhat different.

(10.7) Definition. For each ex, 0 ~ ex< ill, let gex be the

function defined as follows:

go(x,y) = y+l

gl(x,y) = x+ y

g2(x,y) = (x+l).(y+l)

For ex ~ 2,

g l(O,y) = g (y+l,y+l) ex+ ex

gex+ 1 (x + 1, y) = gex+ 1 (x, gex+ 1 (x, y))

We remark that these functions were somewhat simplified by R. W.
;)...5

Ri tchie [~J.

(10.8) Definition (Grzegorczyk). For each a, 0 ~ a < CD,

G
let eO, be the smallest class satisfying

(l') "G t" d va con alns go an go,'

(ii) e~ is closed under substitution,

(.iii) e~ is closed under limited recursion.

(10.9) Theorem.

Proof. By definition,

. 2
g3 (0 ,y) = (y + 2)

g3 (x + 1, y) = g3 (x, g3 (x, y))

Abbreviate (y+ 2)2 by k(y). Then we assert that

The equation holds when x = 0; if x ~ 0,

Now k(Y)

g3(x+ l,y) = g3(x,g3(x,y))

= k (2x) (k (2x) (y))

(2x+l)
= k (y)

Therefore,

if" Y ~ 2

Then f(7)(x+y) > k(x)(y) for all x, y. Thus k(x)(y) E .L
2

, for it
2 -

is definable by limited recursion (in fact limited iteration) from

functions in .L2 · Then g3 E .L2 by closure under substitution.

Nm'i' for 3 < 0: < w, g 1 is obtained from g by l-recursion. - 0:+ . 0:

By Theorem (10.1) and the definition of 6t, g E .L This 0:' 0:+1 0:+1·

immediately proves.L ~ eo:G l' since.L contains the starting 0: - + 0:

functions of e~+l and has the same closure properties.

Now we show g ~(x,y) > f(x)(y) for 1 < 0: < W. For
o:+c - 0: -

g3 (0 , y) :: (y + 2) 2 ~ f i 0) (y) :: y

g3(x+ l,y) :: g3(x,g3(x,y))

(x) (
~ f 1 (g3 x, y))

> f(2x)(y)
- 1

> f(x+l)() if x > 1
- 1 Y

Even if x = 1, g3(1,y)
2 2 (1)

((y + 2) + 2) ? f 1 (y). For 1 :s a < w,

gO:+3(0,y) = gO:+2(Y+l,y+l)? f~y+l)(Y+l) ~ f~~i(Y)
g (1 y) :: g- ·(0 (j (0 y)-) > f(y+l)(y) > f(l)(y)
0:+3' 0:+3 '°0:+3' - 0: - 0:+1

gO:+3(x + l,y) = go:+3(x,gO:+3(x,y))

>f(x) f(X)(y)
- 0:+1 0:+1

> f(X+l)()
- 0:+1 Y if x > 1

1\1-7

So in particular, g l(x,l) > f (x). Since clearly g l(x,y) >
~ - ex ~-

max(x,y), there are functions in eG
1

which bound f (max(x,y)).
+ex ex

G But since by Lemma (10.3), TMgn E e
3

, by using Theorem (6.3) we have

~ 1 ~ ~ for 2 ~ ex <ill; this concludes (10.9).
\...<+ - ex

§ll. The major purpose of this section is mere}y to prove Lemma

(10.3), which proof is, apparently of necessity, somewhat long-

winded. A minor purpose is to demonstrate that a few other functions

are in various classes ~ , so that these functions may be used in
0:

the sequel without further proof of their claimed properties.

Proof of Lemma (10.3). The construction is conceptually identical

to that of (5.1), except that there a Loop program was written, and

here a primitive recursive function is defined. The approach here

constructs TM directly, in contrast to that of Theorem (9.2), which
IJR

showedthatl-recursions could perform the functions of LOOP(l) in-

structions, and concluded the theorem indirectly via (5.1). We

remark that this latter method may, in fact, be used successfully

to prove (10.3), but that without some complexities it succeeds only

in showing that ™m E ~5'

The following functions are all in ~l'

x+ 0 = x

x + (y + 1) = (x +y).+ 1

For each fixed n, n·x = x + '" + x

0':1 = 0

(x+ 1)=-1 = x

p(x,O) = x

p(x,y+ 1) = 0

l':x = p(l,x)

We also write sg(x) = l~x and sg(x) :::: sg(sg(x)).

Now if gl'·· ·,gr' hl ,·· .,hr +l are given functions such that at

most one of gl, ... ,gr is zero for any argument, the function f de-

fined as follows is 8btained from the given functions and x+ y.

sg, and p by substitution:

hl(Xn) .if gl ~Xn) :::: 0

.
f(x) :::: h (x) if gr(xn) :::: 0

n r n

hr+l(xn) otherwise

Here f is said to be defined.by cases. We have

f(x) ='p(hl(x),gl(x)) + ... +p(h (x),g (x)) + n n n r n r n

p (h +1 (x), s g (gl (x)) + . . . + s g (g (x))) r n n r n

Thus Ii-> for ex > 1 is closed under definition by cases. The following
ex

functions are all defined by a single recursion and substitution from

functions already defined, and thus are in P2:

x·O = 0

x·(y+l) = x·y+x

x.!O :::: X

-r(x,y)
2

:::: (x +y) + x

For each fixed n ~ 0,

x+l
n = n

The following functions are all defined, by a single recursion from

functions already defined, and thus are in P3;

rm(O, y) = 0

rm(x + l,y)

O/y = 0

rO if Irm(x,y) +1- yl = 0
= lrm(x,y)+ 1 otherwise

(x+l)/y = {
x/y +1 , if I (x/y + 1) 'y - x - 11

x/y

{

.fx + 1

.fx

~l(x) = x ~ (~)2

~2(x) = ~ ~ ~l(x)

otherwise

o

otherwise

The functions T, ~l' ~2 are pairing functions with the proper-

using substitutions from already-given functions,

(X)Q = 7TI (x)

(x)L = 7T1 7T2 (X)

(x)s = 7T
1

7T
2

7T
2

(X)

(x)R = 7T27T27T2 (X)

E(xI)x2)xy x4) = T(XI)T(X2)T(X3')x4)))

These last five functions provide the basis for the function

about to be defined which mimics a Turing machine. If xQ) xL) xs)

~ respectively represent the state of the Turing machine and its

tape to the left of) on) and to the right of the scanned square) then

E(xQ)XL)XS)XR) will represent the whole current situation. Conversely)

if Z represents a situation) (z)Q repres~nts the state in that situ

ation;' similarly for (z)L) (z)S) (z)R' Let the Turing machine IJR have

u symbols sO)··.)su_l and v states qO)"')~-l; as before) the tape

will be represented by a number which) in a base u notation) is an

image of the corresponding portion of the tape.

Now let Q (z) be that function) defined by caBes) which is j
IJR

whenever the quintuple (q(Z)Q) S(z)S) sk) d) qj) is a quintuple of IJR;

~(z) = (z)Q if such a quintuple does not appear. Likewise let.S~(z)

be the function which yields the next symbol to be placed on the

scanned square) and let D (s) be 0 if IJRhas halted) and 1 or 2 re
IJR

spectively if IJRmoves left or right. It should be clear that for

each machine IJR) QSJJi SSJJi and DIJR are defined by cases) and hence by

substitution) from functions already given. Now define

if D (z) == 0
IJR

steplJR(z) == E(Qm,(z),(z)Ju,rm((z)L'u),u (z)R S>.m(z))

if D (z) == 1
IJR

(Q (z), u . (z) L + S (z), rm ((z) R' u L (z) R/ u)
l:ln IJR

if D (z) == 2
IJR

~hus StePIJR
E P3 and if z is the representation of a situation,

Step (z) is the representation of the next situation. Now say
IJR

• Result (z, 0) == z
IJR

Result (z,s+ 1) == Step (Result (z,s))
IJR IJR IJR

Then Result (z,s) E P4; it is the situat~on resulting after s steps IJR .

have been performed by IJRwhen started with z. Define for a parti-

cular 1.1

Ones(b,O) == u·b+ 1

Opes(b,x +1) == u·O (b,x) + 1

Ones E P2' and when Ones(b,x) is written in base u notation, it con

sists of the digits of b followed by x + 1 "1" s. Now let

Input (x) == Ones(u·Ones(... u·Ones(O,xl)j ... x l)'x) n n . n- n

so that, for example, Input2(xl ,x2) consists, in base u notation, of

Xl + 1 "1" s, followed by 0, followed by x2 + 1 "1" s . Then say

Initial (x) == E(O, Input (x), 0, 0) n n n n

Initial (x) is the encoding of the initial situation of 'JJ1 with in-
. n n

put x
n

Then define

Output*(z,O) = 0

. {l + Output*(z ,x)
Output-*(z,x+ 1) =

OuJ:;put*(z,x)

Output(z) = Output*(z,z)

otherwise

Output E P3' and Output (z) is the number of "l"s occurring in the

base u representation of z. Finally, define

TM (x s.) = Output((Result (In1tial(x),s))L) m n' 9R n

TM is the desired function. It should be obvious that all the
m

functions used in the definition of TM9R are bounded by f~P) for some

p except perhaps Result. Even this is bounded, however; for Result
9R 9R

is in each case an encoding of four numbers. The encoding is a poly-

nomial in the numbers. encoded, and the numbers themselves represent

tapes. But by the representation of a tape we have used, the size of

the encoding of a tape is exponentia.l in the length of the tape; and

this length is linear in the number of steps takert. Thus Result
9R

grows exponentially at 'ltlorst; this ma.kes it straightforward to show

Result
9R

is bounded by f~P) for some p, since f 2 (x) = 2x. Finally

TM E P 4, so (10.3) is proved. m

§12. Sununarizing Theorems (10.1), (10.1-1-), (10.6), and (10.8), we

immediately

(12.1) Theorem. G
For 3 < ex < ill, ~ 1 == 6t == P == e == e - ex+ ex ex+l ex+l ex+2

ill
For 2 < ex < ill , ~ 1 = 6t = e . - ex+ ex ex+l

Therefore each of the theorems of §6 discussing ~ex applies, mutatis

mutandis, to the other classes as well. The following characteriza-

tion is also interest.

(12.2) Theorem. For ex > 2, ~ is the closure under substitution
- ex

Proof. T, 1Tl ,1T2 are the pairing functions defined in §ll with the

shows these functions are in e
2

and thus in ~ex for ex > 2. Also, Ml

and f are in ~ by Theorems (5.2) and (4.5). Therefore, the closure
ex ex

of these functions is included in ~ex' Now if f:N
n ~ N is in ~a' . there

is an f*:N ~ N so f* E ~ and f(x)= f*(T(Xl ,T(X
2

, ... ,T(X ,0) ...)));
ex n n

*() (() () (n-l)() simply take f x == f 1Tl x ,1T
1

1T
2

x , ... ,1Tl1T2 x). Then by Theorem

(6.3),

f (x) = Ml (e , T(xl' . . . , T(x , 0) . . .) , f (p) (T(xl' . . . , T(x , 0) . . .)) n _ n. ex n

for some e and p, since T(X,y) ~ max(x,y}. This concludes (12.2).

Theorem (12.2) answers in the affirmative the question posed by

Grzegorczyk cd, p. 41J whether his classes eG were definable by sub
ex

stitution from a finite set of functions.

(;l2.3) Definition (C s illag-KaJIaar) . The class e of

elementary flmctions is the least class such that

(i) e contains x+y, x:'y,

(ii) e is closed under substitution,

(iii) e is closed under the operations of limited

sum and limited product: the operations .rhich

take g:Nn+l ~ N into s : Nn+l ~ N, where

- y-
s(x ,y) = ~. 0 g(x ,i) n l= n

and into p:Nn+l ~N where

p(x ,y) = fi g(x ,i)
n i=O n

Grzegorczyk was able to show that his class e~ is identical to the

elementary functions [G, Theorem 4.4J. Thus, immediately,

(12.4) Theorem. ~2 = e.

Although the foregoing theorems show that all the hierarchies we

have defined eventually become identical, we have not discussed much

the relationships of the various classes at the bases of the hier-

archies. Figure (12.5) depicts the known set-theoretic inclusions

among these classes. The figure is to be read as follows. A vertical

double line between two sets indicates that the set higher on the page

is known to include properly the lower set, and that the proof of the

inclusion is either given explicitly or follows immediately from ex-

plicit proofs. A double line one of whose members is dotted means

that there is a proper inclusion bet"ween the two sets but that we
. ."

wi thholdthe proof. The only such situations ·which require much

thought are to show P2 :::J 1',1 and 1',2 :::J ~, especially the latter. A

single solid line means an inclusion shown to exist but not known

to be proper.

The horizontal dashed lines separate the sets into strata ac-

cording to the functions whose rate of growth characterizes the sets

in a stratum. Since each set in the stratum of f includes f, and

each function in such a set has a p so f(P) bounds that function,

it is impossible that a set in a lower stratum should include, prcper-

ly or not, a set in a higher stratum. However, the inclusion relation-

ships not explicitly indicated among the sets of a given stratum are

uncertain. I conjecture that all the sets shown in the figure as

incomparable are in fact incomparable, except that it seems likely

that 6t1 c 62'
Granting that sets in different strata cannot be equal, why are

all the sets in a given stratum not identical? The answer, of course,

lies in their failure to be computation-time closed. This failure

comes about in two ways, corresponding to the two parts of Definition

(6.4.). First, a function may fail to be in a class although the class

contains a function bounding its computation time. This occurs be-

cause the particular functions TM are not in the class; such is the
m

case with, for example, PO' Pl , P2 and (perhaps) P3 . Second, there

may be a function in the class whose computation time is not bounded

in the class; this occurs !'lith eO and el ·

Conversely) given that above a certain point all the classes

become computation-time closed) why should the hierarchies eventual-

ly become identical? After all) l-recursion) for example) seems a

considerably more powerful operation than primi ti ve recursion: as vIe

showed) with a single l-recursion the function 2x can be defined)

while any function defined by a single l-recursion is bounded by a

linear function. This fact might lead us to suspect that one

l-recursion was worth two primitive recursions)and thus to the con-

jecture that P.2 = ~ for a > aO' The reason this does not occur
'a a -

is that while l-recursion is more powerful than primitive recursion

in terms of the size of functions definable) the functions definable

by l-recursion are larger by a fixed amount -- in fact) only exponential-

ly larger. Once the class ~ is reached) functions of exponential

growth are available and the advantage that l-recursion has can be

overcome by using substitution.

As we remarked in §7) there-are variant definitions of the schema
~ .

of n-recursion. Robbin [JK] would allow a function f to be defined by

f(x)y) = FO n m
if (x) = (0) ...)0)

n

f(x)y) = F
n m if (x

n
) f. (0) ...)0)

so long as each occurrence of f in F has the form f(T)S)) where n m

T) S are formulas and (x) > (T). We rejected this scheme be-n m n n

cause it is in general impossible to determine by examination whether

(x) > (T) holds. On the other hand) perusal of Theorem (8.1) indi-
n n

cates that the only fact actually used about the occurrences of

the function being defined is that demanded by Robbin's defini hon:

nanely that the n-tuple of values occurring as the arguments of the

definiendum on the right-hand side should be lexicographically less

than its argwnents on the left. Thus Theorem (8.1) holds as well

if the definition of R is modified so that Robbin·' s, rather than a
our, use of the term n-recursion is used. Theorem (9.1) likewise

does not depend on the particular form of our definition, but goes

through as well with the more general one. (Actually, (9.1) needs

to be supplemented with a little more argument, but we omit the de-

tails.) It follows that the modified Ra is identical to the actual

Ra, at least for a> 2. (In order to make recursion possible at all,

the initial function x~l, at least, has to be added. Otherwise it

would be impossible to get off the ground, since there is no function

r E RO such that x> r(x).)

On the other hand, neither do more restricted definitions of

n-recursion affect the results. For example, we have allowed what Peter

calls "replacement of parameters". In other words, in the schema

of n-recursion f(x ,y) may be defined in t~rms of f(T ,3); the n m n m

para...'lleters y need not remain constant. It would make no difference
m

if we required the occurrences of f on the right to-be of the form

f(T ,y); for in Theorem (10.3), TM , ~l' ~2,T were defined without al-n m m

lowing replacement of parameters, and by Theorem (8.3), fa may be

defined I-rithout using parameters at all. Then by (12.2), the class

Ra where n-recursion takes place vri thout replacement of parameters is

identical to the original Rcx. We could also require that on the right

hand side of the schema of n-recursion, the function letter being
..

defined should not be nested wi thin its'~if below the second level

that is, that the defined letter, say f, may appear as part of an

argument of f, but that these inner occurrences of f should not

themselves contain f. Since in the proof of neither (8.3) nor

(10.3) did we need to violate this condition, once again the classes

R would not be changed if the condition were imposed. However, we a

will show that the situation is different if no nesting whatever is

allowed.

By Theorem (6.2), ~ for a> 2 is precisely the class of a -

functions computable by a Turing machine in a number of steps

bounded by f(P) for some p. Consider any device or formalism whata
ever for computing functions, so long as this device has a notion of

"step" which can be related to the steps of a Turing machine: in

particular, that there are functions kl(x,s) and k2 (x,s) so that

if this device is given input x and halts within s steps, a Turing

machine can produce the same output in kl(x,s) steps; and conversely,

if some function is computed by a Turing machine, and if the function

is computable at all by such a device, then when the Turing machine

takes s steps for input x, the function can be computed by our de-

vice in no more than k2 (x,s) steps.

It should be clear from the foregoing arguments that

the class of functions computable by such a device lvi thin

if fJ is a
f(P) of its
a

steps, we will have the theorem fJa = ~a for a > aO so long as kl and

k2 are bounded by some multiple recurs i ve function. It seems unli~<ely

that any formalism for computation could be put forward seriously

to which these considerations would not apply.

This reasoning above provides some justification for not giv~

ing in full detail the proofs of Theorems (5.2) and (9.1). The

former theorem showed how to construct Turing machines to simulate

the Loop programs, and the latter how to make Turing machines carry

out deductions in the Herbrand-Godel-Kleene formalism; in both cases,

an unproved, though not unsupported, assertion was made that the

simulation could be performed within a certain time. The essential

content of each theorem is simply the fact that there is only a

fixed time loss involved in transferring from the one formalism to

the other, not what this loss factor actually is; thus verification

that it is at most exponential is merely an interesting detail.

The original problem which motivated this thesis was that of

relating the complexity of a program to the complexity of the function

it computes. A final theorem will complete the investigation of the

main question.

(12.6) Theorem. Say a ~ 2. Given a program in L , or a a
pet of recursion equations in R , it is effectively a
impossible to decide whether there is a ~ < a so that

the program (or the equations) could be rewritten so as

to give the same result, and yet be in L~ (or R~).

Proof. A trivial modification of the constructions of §ll or Theorem

(5.1) yields a funct:ion C (x,s) which is one if Turing machine smwith
sm

input x halts in fewer than s steps, and is zero if it does not.

Consider the deri vat-ions (in Ra) of the functions u
Yo

_for each Yo'

where

Let sm be a Turing machine such that the set H = (YO:smhalts with in-

put yO} is non-recursive. If yo E H, ~O is fl+a almost everywhere;

thus liyo f R~ for ~ < a. If Yo f H, liy (x) = 0 for all x, so ~ E ~O·
-0 0

Then if we could decide whether the function Uyo was in ~O' we could

decide whether sm halts with input yO' and so H would be recursive,

contrary to hypothesis. Clearly the saine methods ,,[ork also for

programs in La'

We have thus established the following statement.s about Loop

progra..'1ls.

(1) Loop programs can compute a broad and interesting class

of functions, namely the multiple recursive functions.

(2) Given a program, we can effectively find the least a for

which the program is in La'

(3) For every program in La' we can

that with inputs xn ' the prograrn halts in

steps.

effectively find a p so

fewer than f~P)(max(Xn})

(4) There are some programs in La which actually do run f~P)

steps.

(5) If we know a program requires fewer than f~P) steps, we

can effectively rewrite it so it is in La'

(6) Ho"w"ever, it is in general impossible to determine whether

an La program does in fact require at least f~P) steps.

Exactly corresponding statements can be made for functions

defined by multiple recursion equations. Statement (1) means that

we have not proved impressive-looking theorems about an uninterest-

ing class of objects. Statements (2)-(4) establish that the goal of

relating the complexity of a program--as measured by the least a for

which the program is in La -- to the time required to execute the

program, is an aim successfully achieved. Moreover, (5) and (6)

indicate, in an admittedly weak but nevertheless reasonable sense,

that our measure of complexity is the best possible.

Finally, a word about practical applications. The fairest word,

probably, is "none". It is true that if we restrict, say, FORTRAN

by eliminating GO TO and IF statements the computation time could

be predicted by examining the depth of nesting of DO loops. How-

ever, the prediction is likely to be impossibly pessimistic; for

the rate of growth of ~venf2 is quite large. To be told, say, that

given input x, one's program will halt within

seconds, is not very useful if one wishes to use input 100 or even

2. Of course, by use of ~d hoc methods the estimate could be improved,

but this is not very satisfying, since the whole point of the kind

of analysis "VIe have been doing is to aVoid ad hoc methods and use

a general method instead.

There is one further problem. Suppose examination of a progrrun

has revealed that the program with input x "Vnll halt within f
5

(x)

(say) steps or seconds or whatever. We are interested in input 17

and therefore insist on inquiring as to the value of f 5 (17). To

put it in recognizable form, we must compute f
5

(17) but to do this

in fact even to vrrite dOilll the answer -- requires a time which is

essentially f
5

(17) again~ We would have been better off running the

program itself; at least it had a chance of halting immediately.

V. RELATED TOPICS

§13. At the end of the last section several variant possibilities

for a definition of n-recursion were mentioned and it was argued

that all were essentially identical, in the sense that all would

yield the same classes ~a' This section studies two operations

based on n-recursion which are strictly weaker than n-recursion:

unnested n-recursion and limited n-recursion. We will be able to

,
strengthen results of Peter on the two operations and to answer a

question of Grzegorczyk on the latter one.

(13.1) Definition. The schema of unnested n-recursion is

the same as the schema of n-recursion with the fol-

lowing additional restriction: if the function f is

being defined, no occurrence of f on the right-hand

side of the defining equations has another appearance

of f in the formulas constituting its arguments.

;)..\

P~ter was able to show [~, p.74] that the operation of unnested

recursion does not lead out of the primitive recursive functions;

that is, that the classC? is closed under this operation. Our ana-

lysis will confirm the result by showing in what class a function
~ .. " ,
.~ ..

d~fined by unnested n-recursion'from gl'" ·,gr must lie if

gl, ... ,g E f, .
r a

(13.2) Definition. Call a 1-1 function E :Nn+l ~N
n

satisfactory "for a, c if E is monotone increas
n

i~in each variable, and if for each i, 1 < i < n,

and all x , y the following inequality holds:
n

E (xl'···'x. l,x.+l,x. I'·· .,x ,y) n l- l l+ n

> E (xl'.··' x . l' x. , b, ... , b , y) n l- l - -

where b = f(c)(max{x ,y)).
a n

Such an encoding E provides to a certain extent an order
n

preserving map from Nn into N for each value of the parameter y.

Of course, E for n > 1 cannot be perfectly order-preserving, be
n

n
cause the order type w for n > 1 is strictly greater than the order

type w. A perfectly order-reserving map would have b arbitrarily

large in Definition (13.2).

(13.3) Lenma. For each n,c ~ 1 and a ~ 2, there is an

En E ta+n+l so En is satisfactory for a,c.

Proof. Induction on n. If n = I, take El(xl,y) = 2x.3Y, and the

lemma is immediate. When n 2: I, let E be satisfactory for a, c+ 2
n

and assume E (x ,y) > max{x ,y}; this is certainly the case when n n - n

n = 1. Since E E t I' E (x."y.) < f(q) l(max{x ,y)) for some
n a+n- n:~:" - a+n- n

number q, by Theorem (8.1).

xl + x, ... ,xn + x, and define

-Take d = q + C + 3, write x + x for
n

,'vir ,¥

E l(x,x ,y) n+ n

E (x +x+y) fl dx)l(E (x +x+y))
2x '3Y'5 n n 1\'7 u.+n- n n 1\

Clearly E l(x,x ,y) > max(x,x ,y}, E 1 is monotone increasing,
n+ n - n n+

and E 1 is 1-1; also E 1 E r, since f(dx)l is obtained from
n+ n+ ex+n ex+n-

(c)((- } f 1 by iteration. Let b = f max x,x ,y). For 1 < i < n,
ex+n- ex n

the inequali ty

E l(x,x. l,x.+l,x. 1'" .,x ,y) > E l(x,x. l,x.,b, ... ,b,y) n+ l- l l+ n n+ l- l - -

holds. For let x be fixed. Then by hypothesis,

E (x. l+x+y,x.+x+y+l,x. l+x+y, ... ,x +x+y,y)
n l- l l+ n

> E (x. l+x+y,x.+x+y,b*, ... ·,b*,y)
n l- l - -

where b* = f(C+2)(max(X +x+y}) >f(c)(max(x,x ,y}) +x+y. By de-
ex . n - ex n

finition of b and the monotonicity of E ,
- n

E (x. l+x+y,x.+x+y+l,x. l+x+y, ... ,x +x+y,y)
n l- l l+· n

> E (x. l+x+y,x.+x+y,b+x+y, ... ,b+x+y,y)
n l- l - -

Then by the monotone dependence of E 1 on E , (*) holds for 1. < i < n.
n+ n

It remains to be shown that

(**) E l(x+l,x ,y) > E l(x,b, ... ,b,y) n+ n n+ - -

holds as well.
.if,.~ .'

By definition, ..

E l(x+l,x ,y) n+ n

Now for all zn' x, y

E (z +x+y,y) < f(q) l(max{z +x+y})
n n - CHn- n

< f(q+2) (max{x z y})
a+n-l ' n'

(c) ({- } Therefore, if b = fa +n- l max x,xn'y), putting E for zl"",zn' we

have

< f(q+C
l
+3) (max{x,x ,y})

- a+n- n

using (3.4.iii). But since by definition d = q + c + 3, and max{x,x ,y}
n

< E (x +x+y+l) ,
- n n

) ,~
2·E (b+x+y, ... ,b+x+y) < f(d) l(E (x +x+y+l))

n - - f\ a+n- n n (I

So by the above,

E l(x+l,x ,y) n+ n

j~)~
E (x +x+~) f(dX)(2'E (b+x+y, ... ,b+x+y))

> 2x. 3Y' 5 n n 1\. 5 a n - - 1\

)'} ,}
E,t{.b-tx+y, ... , b+x+y) f(dx) (E (b+x+y, ... , b+x+y))

> 2x. 3Y .5 n ~ . - A. 7 ex n - - 1\

j'i
= E l(x,b, ... ,b)

n+ - 1'\

which is the inequality (**). Therefore E 1 satisfies Definition n+

(13.2) and (13.3) is complete.

(13.4) Lemma.

(13.3) .

Let E be the encoding function of Lemma
n

Then for each i) 1 < i ~ n) the function

n
7[,) where

l

~~(E (x)y)) = X.
l n n l

q
Proof. Grzegorczyk~) p.13] showed that the function (x) is e1e

y

mentary) where (x) is the exponent of the y-th prime in the prime
y

power decomposition of x. The O-th prime is taken to be 2) so) for

example) (2
x

'3Y)O = x)

1
(x)y E ~2' Now ~l(z)

(2
x '3Y) = y. Then by Theorem (12.4))

1
n n

If ~1)" .)~n

are all in ~2)

n+l n
for 2 < i < n + 1) 'IT. (Z) ((()).

- "l = ~i-l z 2 -

(13.5) Theorem. Say a ~ 2. If f is defined by unnested

n-recursion from functions in ~) then f E ~ . a a+n

Proof. The function f satisfies the 2n equations

f(~)y) = F.
n m J .". "

¥."

where for 1 ~ j ~ 2n) F. is a formula. Each occurrence of f in one
J

of the formulas F. is of the form f(S)T)) where S) T are formulas
J n m n m

L

r

not containing f. Thus these formulas represent functions in t .
CY,

Let c be great enough so f(c) bounds all S appearing in any for-
a n

mula F. in the context f(S ,T). Then by Lemma (13.3) choose an
J n m

n n
encoding En satisfactory for a, c, and let Vl ' ... ,vn be the decod-

ing functions for E. Now consider the function f satisfying
n

A

f(O,y) == 0 m
'" n n
Fl if Vl(x+l) == == vl (x+l) == 0

'" n
v

n
1 (x+ 1) == 0,

n
F2 if Vl(x+l) == v (x+l) > 0 n- n

'" -f(x+l,y) ==
m

F if V~(X+l) > 0 , ... , ~(X+l) > 0
2n

'" Here for each j , 1 < j < 2n , F. is the formula which results from F. - J

by replac i:1g each occurrence of xi' 1 < i -
replacing each occurrence of f(S ,T) by n m

f(min(E (S ,maxG })+l,x),rr)
n n m m

J

< n, by v~(x + 1) .:. 1, and
l

Here, of course, min(a,b) is the smaller of a and b. We assert that

'" these equations define a unique function f, and that

f(x ,y) == f(E (x ,max (;y) + 1, Y) n m n n m m

. The first half of the assertion .• ·is. immediate by the form of the equa
:v:'

tions. For r(o,y) is defined out~ight, and r(x+ l,y) is defined
m m

in terms of known functions and values of r of the form r(z,T) where
m

'" z < x + 1, since on the right-hand side the first argument of f is

always min(E,x) for some formula E, and min(E,x) < x.

ikLJ{:l-I

The other half of the assertion~ the fact that E is satis
n

factory for a, c. We have

A A

f(E (0, ... ,0,maxLy }) +l,y) == Fl n m m

A A A

Since Fl contains no occurrences of f nor of xi for any i, Fl == Fl

as a function of y , so the assertion is true for (x) == (0, ... ,0). m n
-

Say for some Sn the assertion is true for all (z) < (~) where each
n n

s. is either "x.+l" or "0". Then
l l

f(E a ,max(y }) + l,y) n n m m
A

= F.
J

where 1 ~ j ~ 2n.

Now for all those S. for which s. == "x. + 1", 7r~(E (~ ,maxCY: }))':'1= x.;
l l l l n. n m l

A

so F. is the same formula as F., except that
J J

f(min(E (8 ,maxCY: }) +l,E (~ ,maxCY: })~rT) n n m n n m ty'm

is substituted for f(Sn,Tm)· But since each Si' as a function of xn ' Ym'

is bounded by f~c), and since by definition of n-recursion 3n < Sn'

and finally since E is satisfactory for a, c, we have
n

E (3.max(y }) < E n ,maxcY }) nrir - m nn m

A

Thus those instances of f on the right might as well be of the form

r(E (3 ,maxCY: }) + 1,T) n n m m

but since (8) < (g), by the induction hypothesis the occurrences of
n n

A

f have the same value as

f(S , T) n m

Thus r(E (~ ,max(y }) +l,y) = f(x ,y) which complete the trans-n n m m n m

finite induction proving our assertion.

'" The schema of which the definition of f is an example is called

course-of-values recursion with replacement of parameters. In the no-

parameter case course-of-values recursion differs from primitive re-

cursion by defining f(x + 1) not merely from the immediately preceding

value f(x), but also using several earlier values f(rl(x)), .. . ,f(rk(x))

where rl(x), ... ,rk(x) S x. The term "replacement of parameters" is

used because r(x+l,y) is defined using not only f(r.(x),y) where m 1 m

r.(x) < x, but values of the form f(r.(x), gl(x,y), ... ,g (x,y)), so
1 - 1 m ill m

the parameters y do not stay fixed.
m

.?-I
Peter ~, §3, §5] shows how such kinds of recursions can be re-

duced to primitive recursion. The essential idea for course-of-values

recursion can be demonstrated by an example. Let Py be the y-th prime,

where the O-th prime is 2; as mentioned in the proof of (13.4), (x) y

is the exponent of the y-th prime in the prime-power factorization of

x. Say

g(0) = a

g(x + 1) = h(x, g(r(x)))

,~. ,
'';':

where r(x) < x. Define a new function g* as follows.:

g*(x+ 1)
h (x, (g* (x)) ())

= g*(x).p r x
x+l

Thus g* is defined by primitive recursion. It should be clear that

g*(x) g(x)
•••.• Px

and thus that

g(x) = (g*(x)) x

Therefore if a ~ 2, and g is defined by course-of-values recursion

from functions in ~a' g E ~a+l'

A similar argument can be applied when replacement of param-

A

eters takes place. Thus the function f defined above is in ~ , a+n

since it is defined by course-of-values recursion with replacement

of parameters from functions in ~ l' This completes the proof
a+n-

of Theorem (13.5).

(13.6) Definition. If f is defined by n-recursion from

gl'" ·,gr and if in addition there is a function

g 1 so f(x ,y) < g l(X'Y)' then f is said to r+ n m - r+ n m

be defined by limited n-recursion from gl" ··,gr'

P~ter showed that limited n-recursion, like unnested n-recursion,

8---1 J....o
does not lead out of the primitive recursive functions [.P1:, p.113; .m-].

{t., .

(13.7) Theorem. Say a ~ 2. If f is defined by limited

n-recursion from functions in ~ , then f E ~ . a a+n

Proof. In the proof of Theorem (9.1), which showed that each function

f in R could be computed by a Turing machine within time fl(P), we a "~

arrived at the following intermediate result: if f is defined by n-

recursion from gl" .. ,g , the number of equations tf(x ,y) required r n m

to deduce the equation f(V(x), v(y)) = v(x) is given by another n-n m

recursion as follows

tf(~ ,y) = 2:.
n m J

where each 2:. is a sum of the form
J

n+m+l + 2:[~ (Tl, ... ,Ts) +1]
k k

and the sum ranges over literal appearances of function letters hk

in F .. -, ...

are bounded by fi~ for some c, so each function hk(T
l

, ... ,Ts) oc-
. k

curring in each 2:. may be replaced by f(c)(T
l

+ ... + Ts). Here
J a k

hk ranges over gl'" ·,gr' t g . , ... ,tg , f; the function f can be in-
l r

cluded because of the bounding condition. But now observe that the

function t; which results bounds t f , and t; is defined by an unnested

n-recursion from functions in! if a > 2. Then t*f is bounded by a -
"f(d) for some d, by Theorems (13.5) and (8.1); the rest of Theorem

a+n

(9.1) goes through unchanged, and if a ~ 1, f can be computed by a
.," .

Turing machine in time f(e) fo';'some e, so f E! , and Theorem
a+n a+n

(13.7) is proved.

It might be thought that Theorems (13.5) and (13.7) are pessi-

mistic; although we have shown that if f is defined by limited or

unnested n-recursion from functions in ~a' then f E ~ ,perhaps a+n

in fact we always have f E ~. This is not the case.
a

(13.8) Theorem. Say a ~ 2. Then for each n > 1 there is

a function T E ~ - ~ 1 such that T is definable a+n a+n-

by a single instance of limited, unnested n-recursion

from functions in ~a.

Proof. Recall from Theorem (5.2) that Ml(e,y,z) is the function

computed by the Loop program with Godel number e, when the input is

y and the program halts in fewer than z steps. ~ E ~2 by Theorem

(5.2). Now define by unnested n-recursion from sg, Ml , fa:

T(O, ... ,O,e,y,z) = sg(Ml(e,y,z))

T(i l'x +l,e,y,z) = Ta l'x ,e,y,f (z)) n- n n- a

T(~n_2,xn_l + 1,0,e,y,z) = T(~n_2,xn_l,z,e,y,1)

T(~ 3'x 2+ 1,0,0,e,y,z) = Ta 3'x 2,z,0,e,y,1) n- n- n- n-

T (xl + 1, 0, . . . ,0 , e ,y , z) = T (xl' z , 0, . . . ,0 , e ,Y , 1)

-
As usual, the eQuations containing a s are schematic: ~ represents

r

all the r-tuples obtained by letting each s. be either IIX. + 111 or 110".
~ ~

Then it is easy to verify that

(x)
f n (z)))
a

We omit the details. Now, recalling that sg(O) = 0, sg(x+ 1) = 1,

we have T(x ,e,y,z) < 1; so this is an instance of' limited n-recursion.
n -

Now let

U(e,y) = T(e,O, ... ,O,e,y,l)

= Sg(Ml(e,y,f(e) l(y)))
cx+n-

Then, by the argument of (6.12), U is universal for the character-

istic functions of t 1; so U and hence T cannot be members of
. CX+n-

t cx+n- l . But T E tcx+n by Theorem (13.5) or by Theorem (.317). This

completes (13.8).
q

Grzegorczyk [~ p.41J posed the question: does the operation of

limited 2-recursion lead outside the class eG l?
cx+

Theorem (13.8) answers the question affirmatively.

Theorems (13.5), (13.7) and (13.8) have to be modified slightly

when n-recursion takes place without replacement of parameters, and
,

since this restriction is imposed by Peter and probably is implied

by Grzegorczyk, the situation is worth some discussion. However, de-

tailed proof will not be given.
'LL

In the case of limited n-recursion, the constr1ctions may be

modified as follows.

(13.9) Theorem. Say cx ~ 2. If f is defined by limited

n-recursion without replacement of parameters from

functions in t cx ' f E tm::f;.'-i; and for n > 1, there

is an f so defined such that f E t - t . cx+n-l cx+n-2

" Proof. The first ha.lf follo\,IS by observing that the function f oc-

curring in the proof of Theorem (13.5) is defined, in this case, by

a limited course of values recursion without replacement of param-

eters from functions in t l' This can be converted to a limited
a+n-

recursion from functions in t l' and we know already by Theorem a+n-

(6.8) that t 1 is closed under this operation. It follows that a+n-

f E t .
a+n-l

On the other hand, in the proof of Theorem (13.8) only the

parameter z (the last argument of T) is subject to replacement.

Thus the definition of T can be regarded as an (n+ l)-recursion

wi thout replacement o·f parameters, simply by considering z a re-

cursion variable rather than a parameter. Thus for n > 1 the function

T can be defined by limited n-recursion, and T E t 1- t 2' This a+n- a+n-

completes (13.9).

The same method can be adapted to show

(13.10) Theorem. If for a > 2 and n > 1 f is defined from

functions gl'" ·,gr E ta by unnested n-recursion

without replacement of parameters, then f E t l'
a+n-

and there is an f so defined such that f E t -t .
a+n-l a+n-2

The proof is omitted. The req~rement n > 1 must be included since

unnested l-recursion without replacement of parameters is essentially

primitive recursion, which is known to be capable of defining functions

in t 1- t from functions in t . a+ a a

§14. 'the study of t"he several hierarchi os carried out in Chapters

II-IV depended heavily on the properties of computation-time closure,

closure under substitution, and in some cases closure under limited

recursion. Since the same classes arose again and again in spite of

the various ways in which the hierarchies were defined, it is natural

"to wonder to what extent the closure properties alone characterize a

set of functions. Might it be, for example, that every class of

multiple recursive functions with the above closure properties and

containing (say) ~2 must be either one of the ~a or the whole class

of multiple recursive functions? This possibility seems, if anything,

enhanced by the existence of two ways of refining the ~a hierarchy

studied by R. W. Ritchie and by Cleave.
J-t

Ritchie [~] defines a hierarchy (F.:i E NJ whose union he calls
l

the predictably computable functions, and which turns out to be pre-

cisely the set of elementary functions; that is ~2' FO may be taken

to be the linear functions; then F. 1 is defined as the smallest
l+

Con.
class of functions computable on a Turing machine whose a-Etsumption

of tape is bounded by a function in F.. The input and output of the
l

Turing machine are by Ritchie's convention in a binary encoding; it

x 2x
can be shown that 2 E Fl-F

O
' 2 E F2-Fl , etc. The term "predicta-

bly computable ll arises from the fact that if a function is in F., it
l

can be computed using an amoun~""or tape bounded -- that is, predictable

by a function in F. l' which in turn is predictable by a function in
l-

F. 2' and so forth.
l-

In characterizing his classes F., Ritchie shovTed that each
l

class had the property of computation-time closure. Each class F.
l

is closed also under "explicit transformations" -- equivalent to

Definition (4.8), parts (i) and (ii) -- but, as the example above

indicates, F. fails to be closed under composition. However, F.
l l

is closed under a certain limited form of composition which is suf-

ficient to prove the desired results. The F. individually fail also
l

to be closed under limited recursion, although of course their union

is closed.
s

An analogous hierarchy (E :a < w2
) was considered by Cleave [~J. a

He considerls a kind of simple computer, the "unlimited register ma
~b

chine" of Shepherdson and Sturgis [-ssJ. The classes E arise by re
a

stricting the number of "transfer" or IIjump" instructions carried out

in a given computation. Thus EO is the class of functions computable

in such a way that the number of transfer instructions executed is

bounded by a constant; given Ea , Ea+l is the class of functions com-

putable in such a way that the number of transfers is bounded by a

function in Ea. The analogy here with the predictably computable

functions is evident. At limit ordinals, the functions obtained so

far are collected:

U
SEN

E w·r+s
h·' • ,....

Thus at limit ordinals, the effect is that of defining a new machine

whose elementary operations consist of those functions definable in

a class with a smaller ordinal.

Cleave is able to show that if the basic arithm.etic operations

of his machine allow addition, multiplication, and testing for zero,

then E(l).s = ~+2 for each sEN, s ?: 1; that is, Eill. S
= f,s+l' Thus,

part of the f,ex hierarchy appears again; but once more the classes Eex

fail in general to be closed under limited recursion and substitution.

For a fixed s, the classes E are analogous in several ways to ill·s+r .

the Ritchie classes F , but apparently it is not true that R = E . r r r

The work of Ritchie and of Cleave tends to reinforce the natural-

ness of the f,ex in two ways. First, certain of the f, classes reappear
ex

in each of these contexts; and second, both methods of refining the

hierarchy result in classes which fail to have the attractive closure

properties of the f, .
ex

Nevertheless, the hierarchy f,ex can be refined in such a way that

the closure properties of f,ex are retained. In fact, we will demonstrate

the existence of an a]~ost embarrassing richness of classes which are

closed under limited recursion, substitution, and have the property of

computation-time closure. There are several preliminary definitions

and theorems.

We recall some useful notation common in the literature.

(14.1) Definition. If m is a Turing machine, let e be the

Godel number of WI. TheYl;'cp~:Nn"-7 N is the (partial)

function computed by m with input x , and ~ :N
n

"-7N
n e

is the~artial) function giving the exact number of

steps required for m to halt with input x
n

Also,

say that e is the index of f when f is the function

cp.
e

This definition assumes an arithmetization of Turing machines

which has not been carried out. However, the task has often been

performed in the literature; see the remarks following Theorem (14.3).

(14.2) Definition. If P is a predicate, we will say that P is

a member of a class of functions if a representing

function for P is in the class; that is, a function

so f(x) = 1 if p(x) is true, f(x) = 0 if p(x) is
n n n n

false. If P is a predicate [p(x)] will denote the n

representing function of P.

Then, for example, x = y is a predicate in t
2

, because

[x = yJ = sglx-yl = 1:. Ix-y!.

(14.3) Theorem. The predicate given by [¢ (x) = yJ
e n

is in t2 as a function of e, xn ' and y; there is

an t2 function U so if z > ¢ (x), U (e,x ,z) = n - e n n n

cp (x).
e n

f

Proof. As we have mentioned, to consider statements of this type

requires an arithmetization of Turing machines. It is well known,
~~ .
~ ... "

however, that there exists a Godel numbering of Turing machines such

that for each n, T E t
2

, where T (e,x ,y) = 1 if the Turing machine n n n

with Godel number e, given input xn ' halts in precisely y steps, and

T (e,x ,y) = 0 otherwise.
n n

Then, of course, [¢ (x) = yJ= T (e,x ,y). e n n n

Likewise Un E ~2; here Un is precisely analogous to the function
'7

of Theorem (5.2). See, for example, Davis DO, pp.56-62J. Davis

LP
n

notes only that his construction yields primitive recursive functions,

but since it is readily shown that all the recursions are bounded by

f~P) for some p, it is immediate that Tn and Un are in ~2' Kleene
id--

[X, §§56-57J carries out a similar ari thmetization for recursion

equations.

A property of certain functions which is very important in the

sequel is

(14.4) Definition. A recursive function f is honest

whenever the number of steps required to compute

f is bounded by an ~2 function composed with f;

that is, if f(x) = U (e,x ,r(x ,f(x))) for some n n n n n

number e and some r E ~2'

The term "honest" is used because if f is honest, the value of

f(x) accurately reflects the difficulty of computing f(x). No dis-
n n

approval of functions vrhich are not honest is implied. In fact highly

dishonest functions, for example complicated characteristic functions,

are rather more interesting than honest functions; much of the time
,J" •

required to compute an honest t~nction is spent merE;ly in writing

down the result.

We note that a somewhat broader definition of honest was used
d-5

by Robbin t-cmJ.

A useful alternate characterization of honesty is the following.

(14.5) Theorem. A recursive function f is honest if

Proof. First aSSUITle [f(xn) := yJ is in t2' Hence we have a Turing

machine which computes [f(x) := yJ within f 2(c)(max{x ,y}) steps for
n n

some constant c. Consider the following procedure to compute f:

given input x , write x ,0 on the tape and use the given machine
n n

to compute [f(x) := oJ; if this is 0, add 1 to the 0 at the end of

the

ing

n

x and compute [f(x) := IJ; if this too is zero, continue test-
n n

[f(x) := 2J, etc. until a true predicate is found.
n

This requires

on the order of

f(x)
2:i:=O f~ c) (max(xn , i})

~ (l+f(X))'f~c)(max(xn' f(x)})
n

steps. But the latter function is in t2 as a function of xn and

f(xn), so f is honest.

Conversely, if f is honest, there exist e E N and r E t2 so

that

r(xn,y)
[f(x)=yJ =[U (e,x ,r(x ,y)):=yJ. 2: [cIl (x):= iJ

n n n n i=O e n
.~.. .
~

where the right-hand side is in t2 because e = t2 (e.is the class

of elementary functions) and by definition, e is closed under limited

sum.

Although we have called computation-time closure a closure

property, it differs from other such properties, for example,

closure under limited recursion, in an important sense. When we

speak of the least class of functions containing given functions

and closed under limited recursion, we refer to a well defined

entity, namely the intersection of all classes of functions which

contain the given functions and which are closed under limited re-

cursion. That this intersection is indeed closed under limited
~

recursion follows from the fact that given three functions ~ is

at most one function defined from them by limited recursion.

On the other hand, it is not clear that there must be any

smallest class containing given functions and having the property

of computation-time closure. For if a function is in such a class,

the class is required to contain also some bound on the computation

time of the function. But there are many such bounds, corresponding

to many ways to compute the function, and there is no guide to se-

lecting which bound should be included in the class The problem

is quite real; indeed, one of the results in the sequel implies

that there are sets of functions such that there is no smallest

computation-time closed set containing the given set.

The next theorem relates the notions of computation-time
,~.

~ ...
closure and closure under limited recursion; thus it. allows us to

generate computation-time closed classes having desired properties

"dthout encountering the problem just discussed. The theorem also

provides an alternative proof of the closure of the classes 5'., under a
limited recursion.

(14.6) Definition. If a class of functions is such that

every member of the class is bounded by an increas-

ing function in the class, the class is called

monotone. Also, for brevity, a class which is

closed under substitution and is computation-time

closed is called fully closed.

(14.7) Theorem. Let C be a class of functions containing

5'.,2' Then C is monotone and fully closed if and only

if C is the closure under limited recursion and sub-

stitution of a set of honest functions.

Proof. First assume C is monotone and fully closed, and say

f(x ,0) = g(x)
n n

f(x ,y+l) == h(x ,y,f(x ,y)) n n n

f(x ,y) < b(x ,y)
n - n

where g,h,b E C. Define

p(t,x ,0) == min(t,U (e ,x ,t))
n $. ~ n

p-(t,x ,y+l) == min(t,U 2(eh ,x ,y,f*(t,x ,y),t)) n n+ n n

f* (t, x ,y) < t
n -

where e and eh are indices for g and h, and <De and <!le are bounded
g g h

by functions in C. Notice that f~· E f,2' Now by the hypotheses on c.,

let b'(x ,y) > b(x ,y), and say b' is in C and increasing. Likewise,
n - n

let tEe be an increasing function with t(x ,y) > <!le. (x),
n - g n

t(x ,y) > <!le (x ,y,b' (x ,y)), and t(x ,y) > b(x ,y). Then it is easy
n - hn n n - n

to show that f(x ,y) = f*(t(x ,y),x ,y), so f E C. That is, C is n n . n

closed under limited recursion; in fact, C is the closure under sub-

stitution and limited recursion of its honest functions.

Conversely, let C be the closure under limited recursion and

substi tution of any set of honest functions. If f E C, f E C where

f(x ,In_(x ,y)) < f(x ,y+l) n 1" n - n

otherwise

This function has the property that f(x '~f(x ,y)) is not less than
n n

any of f(x ,O), ... ,f(x ,y); so f(x ,m....(x ,y))+y is in C', is strictly
n n n 1" n

increasing in y, and bounds f. By applying ~ the same technique to

the other variables of f, one finds a function in C which bounds f

and is strictly increasing in each variable; thus C is monotone.

Now since C contains f,2' a~ the honest functions of C have

computation times bounded by functions in C. It is easy to show

that if f is defined by substitution from functions whose computation

times are bounded in C then the computation time of f is likewise

bounded in C. There remains the case in which f is defined by

limited recursion from g, h, b as above.

-Given x , y, there is an obvious method for using a Turing
n

machine to compute f: first compute g(x) == f(x ,0); use this re-
n n

sult to compute h(x , 0, f(x ,0)) == f(x ,1); continue until f(x ,y)
n n n . n

has been computed. If eg and eh are indices for g and h, the num

ber of steps is bounded by

¢ (x) +i: 1 ¢ (x ,i -l,f(x ,i -1)) + f
2
(a) (max {X ,y})

e
g

n l== e
h

n n n

where the last term is added to cover the cost of bookkeeping.

Since C contains .f,2' and ¢e ' ¢e , and f are bounded by monotone
g h

functions in C, this number of steps is less than some function of C.

By the containment of .f,2 in C, C has the function TM for each ~;
m

thusC is computation-time closed. (A more detailed discussion of

the use of Turing machines to compute functions defined by limited .'1,
recursion is presented by Ritchie [-RWffi:-].)

(14.8) Theorem. If f is honest and increasing, the

iterate f(y)(x) is also honest.

Proof. Define

y z
k(y,z) == II p.

i==O l .,..
~,;..- .

That is,

k(y,z) z z z
== p .p p ° 1 Y

Then let

(w) .]
l

Then

() k(y,z)
[f Y (x) == z] == sg L: ([(w)O == x]· [(v,r)y == z}It(y,w)}

w==O

which shows [f(y)(x) == z] is in f- and f(y)(x) is thus honest.
30...

(14.9) Theorem. Let f be a recursive function. Then

there is an honest increasing function h so

h(x) ~ f(x); and if a ~ 2 and f E f-a , h can be

chosen so h E fa.

Proof. With our conventions for input and output, if cp is any re
e

cursive function,

cp (x) <<P (x)+x+l
e - e

Let e be an index of f; then use the construction of Theorem (14.7)

to find an f-2 function m so <pe(m(x)) is not less than any of

<P (0), <P (l), ... ,<p (x). Take h(x) == <P (m(x)) +x+l; h is increasing, e e e e

and

[h(x) == yJ == [y > xl.' l.: ([z == m(x)]' [<p (z) :.:: (y':x)':lJ}
"'2." < x e

so h is honest. Moreover, if f Eta' e can be chosen so <Pe E f-a ·

(14.10) Definition. If f is any strictly increasing

function, f:N ~N, then the inverse of f,

written f- l , is the function defined by: f-l(x)

is the largest y such that f(y) < x if such a

y exists; f-l(x) is 0 if Y does not exist.

(.14.n) Theorem. If f:N ~ N is a strictly increasing

function, f- l has the following properties:

(i) f- l is nondecreasing, f-lf(x) = x, and if

-1 x > f(O), ff (x) ~ x;

(ii) If f is recursive, f- l is recursive;

(iii) If f is honest, f-
l

€ ~2'

Proof. If x> f(O), there exists a y so f(y) < x, by taking y O.

Since f is increasing, there are at most finitely many y so f(y) ~ x,

so f- l is wen-defined. Now f-lf(x) = x, since f-lf(x) is the largest

y so f(y) ~ f(x); by the increasing property of f, x = y. Also

ff-l(x) < x if x> f(O). For in this case there is a y so f(y) < x;

ff-l(x) < x is immediate by definition. Also, f- l is nondecreasing;

for by def::.nition, f(f-l(x +1) + 1) > x +1. But if f-l(x+ 1) + 1 ~ f-l(x),

since f-l(x) < x we have a contrad[tion. This completes (14.11.i).
II

If f is honest, [f(y) = xJ;.is in ~2' Say

-1
f (0) = 0

-1 { -1 f (x+l) = f (x)+l -.
f(x)

if [f(f-l(x) + 1) := x + lJ

otherwise

-l(f x) < x

1)-5

-1
Since f -- is defined by limited recursion from functions in 1'",2'

-1 -1
f E t

2
. We omit the proof that f so defined in the inverse of

f. Even if f is only recursive, [f(y) = xJ is recursive and the

above limited recursion defines f-
l

effectively, so f-1 is recursive.

This completes (14.11.ii) and (14.11.iii).

(14.12) Definition. Let r be an increasing, recursive

function, and let f, g be functions. If for all

y and x, x ~ r(y) implies f(Y) (x) < g(x), "Trite

f -<r g. If there exists an r so f -<r g, we will

also say f -< g.

It should be obvious that -< is a partial ordering on functions.

It is easily shown that fa: -<r fa:+l where r(y) = 2 .y+ 1. If f and g

are recursive, it is an interesting question whether the proposition,

"for all y, g majorizes f(y)II, implies the existence of a recursive

r so f -<r g.

The next lemma shows -< provides a dense ordering on the multiple

recursive functions; it is basic for the major results of both this

section and §15.

(14.13) Lemma. Suppose f and h are increasing, honest

functions and f -< h. 'I:~en there exists an in-......
creasing, honest g so f -< g -< h.

Proof. Say f -<r h. By Theorem (14.9), take s honest, increasing,

and such that s(x) ~ hr(x2). Let t = s-l and observe that t(x) <

.J(r-1h-1 (;)). Nmv define g:

{\e~J : J
ret"! r'5IV(., "

Since t is nondecreasing and f is increasing, g is increasing; g is

honest since t € t2 by Theorem (14.11.iii) and [f(Y)(x) = zJ € t2

by (14.8).

Next, f <r g via r l = s. For if x ~ s(y), t(x) +1> Y so
1

f(Y) (x) < g(x).

For typographical convenience, write F(y,x) for f(Y) (x). We

assert that

g(Y+l) (x) ~ F((y -I- 1)' (tg(Y) (x) + 1) ,x)

If Y = 0, the assertion is immediate by definition of g. If Y ~ 0,

assume the assertion for Y; then

g(y+2)(X) = gg(y+l)(x)

= F(tg(Y+l) (x) + l,g(y+l) (x))

~ F(tg (y+l) (x) + 1, F((y + 1) . (tg (y) (x) + 1) ,x))

~ F(tg(Y+l) (x) + 1,F((y+l)' (tg(Y+l) (x) + 1) ,x))

= F(tg(Y+l)(x) +l+(y+l).(tg(y+l)(x)+ l),x)

= F((y+2).(tg(y+l)(x)+ l),x)

and the assertion is proved. Take r
2

(y) = r((y+l)2); now f(O)(x) =

x = g(O)(x) < h(x) if x ~ r(O). Since r
2

(0) > r(O), g(O)(x) < h(x)
.,. .

if x ~ r 2 (0).
.....

If g(Y)(x) < h(x) whenever Y ~ r
2

(y), by substitution in the

inequality asserted above

g(y+l) (x) < F((y + 1)· (th(x) + 1), x)

~ F((y+ 1)· (J(r-l(x)) + 1) ,x)

~ F(r-l(x),x)

= f(r-l(x)) (x)

The third line follows since it is easily shown that (y+ 1)· (J(r-l(x))+1)

< r-l(x) when x ~ (y +2)2; but slnce r is increasing, r 2(y+ 1) =

r((Y+2)2) ~ (y+ 2)2. Then since rr-l(x) ~ x if x ~ r(O), and since

for all y r
2

(y) ~ r(O), f(r-l(x))(x) < h(x) by the assumption on r.

Therefore g(y)(x) < h(x) for x ~ r 2(y); that is, g <r
2

h. Lemma

(14.13) is proved.

(14.14) Theorem. Say 2 ~ ~ < a < WW. Then there is a

family D of classes of functions such that

(i) If D € D, t~ cDc ta;

(ii) D has a dense, linear ordering under set

inclusion;

(iii) If D € D, D is fully closed and closed

under limited recursion;

universal function for Dl .

Proof. By Theorem (14.9), choose an honest, increasing function

Let ~a(~) = t~x)(x); then ta is increas-

ing, ta € t a , and, by Theorem (14.8), ta is honest. Finally,

t~ <r ta via r(y) = y+ 1.

Proof. The construction of Theorem (1[+.14) yields an infinite set

T of functions all of which are honest and increasing, and such

-that T is linearly ordered by <; also, T c fa and each member of

T increases faster than any member of f~.

For each t E T, let dt be the function

J t(x) if x E range t
dt(x) =

lo otherwise

Each dt is honest, for

= yJ = {[t(X) = yJ
[dt(x)

[y = OJ

x
if ~i=O[t(i) = xJ I 0

otherwise

Then for each t E T, let the set c7t be in I, where c7t is the closure

under limited recursion and substitution of edt' f~, max, s}. As

before, s is the successor function. (lL~.15.i) and (11+.15.iii) are

immediate.

Now consider a set c7t E I.

has constants af and b f so that

We assert that each function f E c7t
(bf) -1

nf(y) :s f~ t (y), where nf(y) is

the function giving the number of n-tuples (x) with max(x } < y and
n n -

(af)
such that f(xn) > f~ (y). That is, nf(y) is the cardinality of the

set

Such constants certainly exist for f~, max, and s; and the cardinality

of

is no more
-1 -1

than t (y) +- 1 ~ f t3 t (y) . If f is defined by limited

recursion from functions for which the assertion above holds, the

assertion holds for f immediately by the bounding condition. If

.f is defined by substitution, f may be written

f(x) = h(gl(x), ... ,g (x » n n Jill n

and where we may assume there are suitable constants ~,bh,al,bl, ... ,am'

bm so that the assertion holds for h, gl'·· .,gm- By taking some of

gl'- .. ,~ to be constant or identity functions, any instance of sub

stitution may be written in this form.

Let a = max(al ,· .. ,a), b = max(b
l

, ... ,b }; and say a = a -a . g m g m n g

If max(x } < y, f(x) > fia)(y) only if all of gl(x), ... ,g (x) are
n- n f-' n Jilln

(a) _ _ (a)
bounded by ft3 g (y) but h(gl(xn),·· .,~(xn» > ft3 (y), or one or

_ _ (a
g

)
more of gl (xn),··· ,~(xn) exceeds ft3 (y). In other 'Vlords, the

number of n-tuples (x) with max(x } _< y and such that f(x) > f(a)(y)
n n n t3

is no more than nf(y), where

(bh) -1 (a) m (b.) 1
nf(y) = ft3 t ft3 g (y) + ~i=l f l t~ (y)

Now by examination of the construction of the function t E T in

Lemma (lLI-.13), for each such t:;~here is a non-decreasing function

r so t(x) = fbr(x»(x). Then for any c,

fbc)t(x) = fbc+r(x»(x)

(c+rfic)(x»
< f f-' (x)

= tf(c)(x)
t3 -

-1 By applying t to both sides of this inequality,

t -l(y') Putting for x,

for y ~ t(O)

By choosing b sufficiently large, then

But then
(bh+b) -1 (b) (b)

() < f t () f g t-l(y) ~ fR f t-l(y) n f y _ ~ y + m· ~ I-'

for suitable bf ; this concludes the proof of our assertion. The

next step in (14.15) is to show that if t, u E T and t < u, there

(b) -1
are no numbers a, b so nd

t
is bounded by f~ u ; we conclude that

d
t

t ~u· Because f~ < t, for each number a there is a constant c

so the cardinality of

-1
is greater than t (y) ~ c. Given any b, choose y so' u(y) > t(2)(y)

o 0 - 0

+ c and t(y) > fib)(y); this is possible because
o - I-' 0

nd (u(y)) > t -l(u(f")) ~ c
t 0 - 0

> t(y) + c :. C
- 0

>f(b)(y)
- ~ 0

(b) -1
= f~ u (u(Yo))

f~ < t < u. Then

Therefore, for no a, p is

On the other hand, every

some c; but if t ~ u, d
u

(b) -1
nd

t
bounded by f u ; hence dt

function in d
t

is bounded by t(c)

is not bounded by t(c) for any c.

for

Thus

d ~ d
t

; and so d
U

and dt are setwise incomparable, proving (14.15.ii).
-u T

(14.15.iv) will follow immediately from the next theorem, which is

interesting in its own right.

(14.16) Theorem. Let e and D be fully closed classes

containing f,2 with C - D I ¢. Then there is

a characteristic function in C - D.

Proof. Pick an arbitrary constant a and let f*(x,b) be the smallest

number k so k is uneq~al to all of Ul(O'X,f~a)(max(x,b))), .

Ul(l'X,f~a)(max(x,b))), ... ,Ul(x'X,f~a)(max(x,b))). It should be clear

tha t f* E f,2 and f-)(- (x , b) S. x + 2 .

Now take any function gEe - D, and let h E C be a bound on

the computation time of g. Then put f(x) = f*(x,h(x)); fEe by

closure under substitution. We assert that if el is any index for

f, ~el(x) > f~a)(max(x,h(X))) for almost all x. For if this is

false, there is an x ~ el so ~e (x) S. f~a)(max(x,h(X))); then
I

f(x) I Ul(e"x,f~a)(max(x,h(X)))) by definition of f, but f(x) =

Ul(e,x,f~a)(max(x,h(X)))) by the properties of Ul . This is a contra-

diction.

Now let c(x,y) = [f(x) = yJ; C E C is immediate. Consider the

following procedure for computing f, given c: successively compute

[f(x):=: oJ, [f(x):::: lJ, ... ,[f(x):=: x+2J; one of these must yield

1 as a result. Let f(x) be the y for which [f(x) :::: yJ :::: 1. If e
2

is an index for c, the number of steps required is bounded by

(d)
f2 (max(x, L: ille (x,y)})

y~ x -r 2 2

for some fixed d. Then if ill e2 (x,y) < h(x) for infinitely many x,

the number of steps required to compute f is less than

f~ d) (max(x, (x+3) . h(x)}) for infinitely many x. But vle shovred above

that any machine for f must require at least f~a)(max(x,h(X)}) steps

for almost all x, where a was arbitrary; we conclude by this reductio
It-

that every index e
2

for c has ill e2 (x,y) >~(x) for almost all x. Then

if c E D, a function bounding h would also be in D by the full closure

property of D, and hence g would be in D; but g € C- D, so c 1 D.

Then also c* E C- D where c*(x) :::: c(IT1 (x),IT2 (x)), for c(x,y) C*(T(X,y)),

which proves (14.16).

Theorems (14.14) and (14.15) may reasonably be interpreted as

casting doubt on the naturalness of the classes ~a' For if, as im

plied by Theorem (14.14), there is a dense, linearly ordered hierarchy

of classes of functions whose union is the multiple recursive functions

'such that all the classes have the same strong closure properties as

the ~ , the ~ themselves no lon.ger seem so significant. For example, a a .,.
given the dense hierarchy, we c~n find a subordering of any denumera-

ble order type vTe please. Theorem (14.14) even implies the existence

of uncountably many fully closed classes of multiple recursive functions

with a linear set theoretic ordering. Likewise, Theorem (14.15) can

be extended to yield uncountably many incomparable classes which

are fully closed.

One development is possible which would restore the importance

of the classes ~. Suppose C is any fully closed class of multiple a

recursive functions. Say CEO] = Cj given C[a] for a < mm, let

C[a+ af] for n ~ 0 be the closure under substitution of C[a] and

all functions obtainable by (n+ l)-recursion from functions in C[a].

m Then it seems possible that for any such C, there are a, ~ < m such

that C[a] = ~~; that is, by applying multiple recursion several times

to any "in-between" class C, eventually one of the ~a classes is

reached. This possibility has not been seriously investigated except

by trying the fevl examples which suggested it.

§15. Blum has recently published some remarkable results on the

complexity of recursive functions ~J. One of his theorems is the

follovring.

(15.1) Speed-up Theorem (Blum). Let r be a total recursive

Y' 2
function, Y:N ~N. Then there is a total recursive

characteristic function f with the property that to

every index i for f there corresponds another index

j for f such that for almost all x, ¢.(x) > r(x, ¢.(x)).
l J

Blum's theory is machine independent. For example, he does not

demand of the step-counting function ¢.(x) that it actually give the
J

steps used by the j-th machine vlith input x, but merely that for each

j and x that ¢.(x) converge if and only if ~.(x) converges, and that
J J

the predicate [¢.(x) = zJ be recursive. As we have seen, if ¢.
J J

measures the actual number of steps taken by a Turing machine,

[¢j(x) = zJ is in t
2

, that is, an elementary predicate.

The Speed-up Theorem implies, for example, that there is a re-

cursive function f so if ~. computes f, there is another index j for
l

¢i (x)
f so that ¢.(x) < 2 for almost all x; that is, given any machine

J

for f there is another machine which computes f and halts in only

about the logarithm of the number of steps required by the first ma-
\-\.o~U'\'.A.. :!.',

chine. ~, as Blum shovlS, the faster machines, cannot in general

be discovered effectively.

Blum also proved a more pOvlerful version of' the Speed-up Theorem

which shows that the r of Theorem (15.1) can be as large as <D. itself.
l

(15.2) Super Speed-up Theorem (Blum). Let g be a total

recursive function. Then there exists a recursive

characteristic function f such that

(i) If i is an index for f, cD.(x) > g(x) for
l

abnost all x;

(ii) To any index i for f, there corresponds an

index j for f such that cD. (x) > cD.cD .(x) k\ GJ[vuP t cJJ ?C
l J J r

This theorem has the Speed-up Theorem as an immediate conse-

quence.

It might be thought that the function f whose computation can

be sped up must be enDrmously more complex than the r of Theorem

(15.1) or the g of Theorem (15.2). By agreeing that cD.(x) has its
J

-a
natural interpretation, the methods of Lemma (14.13) may be ad~ted

to prove a stronger version of the Super Speed-up Theorem in which

f is, in a reasonable .. ray, only slightly more complex than g, and

that there are functions lying very low in the ~a hierarchy whose

computation can be sped up quite considerably.

(15.3) Theorem. Let g be an honest, increasing function

with g(x) ~ 2
x

, and r be an unbolli1ded, nondecreas-

ing recursive function. Then there is a recursive
~

characteristic function f such that:

(i) If i is any index for f, cD.(x) > g(x) for
J.

abnost all x;

(ii) There is an index j for f such that

~.(x) < g(r(x))(x) for almost all x;
J -

(iii) For each index i for f, there is another

index j for f such that for all c,

~.(x) > ~~c)(x) for almost all x.
l J

Proof. The proof consists of a main Lemma (15.4), which is a strength

~
ening of Blum's lemma for the Super Speed-up Theorem [Z, p. 330], then

the construction of f, and finally several lemmas on the properties of

f. Two of these latter are slightly modified versions of Lemmas 1 and

'+
2 used by Blum [E, p.327J.

(15.4) Lemma. Let g and r satisfy the hypotheses .of Theorem

(15.3) . Then there is a function q (x) such that
s

(i) For each s and all x, q (x + 1» q (x);
s s

(ii) For each s and all x, q l(x) < q (x); s+ - s

(iii) For all s and c and almost all x,

q (c) (x) < qs (x) ;
s+l

(iv) For all s and almost all x, g(r(x))(x)

(v)

> q (x) > g(x); - s

As a function of s and x, q (x) is honest.
s

,-
Proof of Lemma. By (14.9), chdbse an honest increasing function b

such that b-l(x) < r(x) for almost all x. Then let t (x) = b(2s+2)(x).
s

As a function of s and x, t (x) is honest by Theorem (14.11). Then
s

-1 t - l (). . X lS In f.2 , where by ts (x) we mean the greatest y so t (y) < x
s s

if y exists; t-1(x) == ° if it does not.
s

Then say

Parts (i),

x>t(y),
- s

q (x)
s

(ii), (iv), and (v) of the Lemma are immediate. Now if
() () ~ -< t4 ~ A-

g Y (x) < g y+l (x) ~ qs(x); thus g ~ ts qs' Since

2
t l(x) == bbt (x) == bt b(x) > q t (x), s+ s s - s s by the argument of Lemma

(14.13),

2 where r (y) == t ((y+ 1)). This proves part (iii) and thus Lemma
s s

(15.4) .

The proof of (15.3) now continues with the construction of f.

First we define a function f and an associated set K each of uv uv

which depend on the input x. Given x, compute f (x) and K (x) uv uv

as follows.

Set K (-1) == "" uv Y"

If x ~ 0, find the smallest k, k ~ x,

so that all of the following are true:

(a)

(b)

(c)

x < v, or 1: ~ v and k ~ u;

~k(x) ~ qk(x); t

k lfK (x-l). r uv

If such a k exists, set K (x) == K (x-l) U {k}, uv uv

and put f (x) == l':'CPk(x); if no such k exists, uv

putK (x)==K (x-l),f (x)=O. uv uv uv

Then the functi8n f 8f The8rem (15.3) is f
DO

c We can als8 construct

f more formally, so that it is clearer that it has the properties
uv

we ascribe to it. To simplify the presentation, we will use certain

.notations not yet introduced. If p(x ,y) is a predicate, the pre
n

dicates (3 y)< p(x ,y) and (Vy)< p(x ,y) are obtained from P x n x n

by limited quantification; the meaning of the former, for example,

is (3 y) (y < x & p(xn'y))· The predicates of t2 are closed under

limited quantification; this follows immediate from the closure of

t2 under limited sum and limited product. The predicates of t2 are

also closed under the Boo-/sLON\ operations &, 'II and~. Finally, t2

is closed under limited minimization: obtaining Illr p(x ,k) from a
1-""'< x n

predicate P, ,,[here the notation means the least k such that k < x and

P(xn,k) is true; or zero if there is no such k. The closure of t2

under this operation follows directly from the closure of t2 under

limited recursi8n. Grzegorczyk discusses all these operati8DS more

fully [G J .

Construct functions c, K*, f* as follows.

c(u,v,b,K,x) = ~< x+l {((x < v) \I (x ~ v & k ~ u))

& (3 y)<b([qk(x) = yJ & (3 w).:s y[<Pk(x)= wJ)

& (Vi)< x [(K)i I k+1J

; -J [k = x + lJ}

K*(u, v, b,O) ~ C if c(u,v,b,l,O) = 1

otherwise

{

(U'V'b'X) if c(u,v,b,K(u,v,b,x),x+l) = x+ 2

K*(u,v,b,x+l)=
K*(u vb x).pl+c(u,v,b,K*(u,v,b,x),x+l) otherwise

, " I x+ 1

"):+1

K*(u,v,b,x) < 1\ f ~
~f.""

= {o if (K*(u,v,b,x))x = °
f*(u,v,b,x)

l.!. Ul((K*(u,v,b,x))x':' l,x,b)

If, in the informal algorithm, K (x) - K (x - 1) = (k}, we will say CPk uv uv

is spoiled for x in Kuv Notice that if CPk is spoiled for x in Kuv'

then fuv(x) = 1':' CPk(x) f CPk(x). (Blum uses the term "cancelled".)

It is clear that f* defined above is elementary. It is not so

clear that fuv(x)-:'f*(u,v,~(v) +q)x),x); nevertheless, we will omit

the detailed proof. The representation of K used by K* is as foluv

lows: if CPk has been spoiled for some y < x in K ,then the prime-- uv

povler decomposition of K*(u,v,qO(v) + ~(x) ,x) contains a
k+l factor p
y

and no other prime in the factorization has an exponent k+ 1. If CPk

has not been spoiled for any y < x in K ,the prime~power factoriz-- uv

ation of K*(u,v,qO(v) 1- ~(x) ,x) contains no prime with an exponent of

" k+ 1. The crucial fact vThich assUf'tes that f* has the correct proper-

ties is that in the calculation of f for u < v, we are called upon uv

to know the values of ~(x), ~+l(x), ... ,qx(x) if x > v, and

qO(x), ql(x), .. ·,qx(x) if x ~ v. In view of (15.4.i) and (15.4.ii),

all of these are bounded by qo(v) +~(x) := b. Then since k ~ x, the

truth value of (3y)< b([qk(x) := yJ & (~w)~ y[¢k(x) := wJ)is the

as that of ¢k(x) ~ qk(x).

(15.5) Lemma (Blum). For each u there exists a v such

that fuv:= fOO := f.

same

Proof. For each u there are only finitely many k with k < u, and in

particular there are only finitely many ~k with k < u ever spoiled for

any x in KOO' Choose v > u so v bounds all x such that k < u and ~k

is spoiled for x in KOO'

Now KOO(-1) == Kuv(-1) ==~; assurrie x ~ 0 is the least number so

KOO(X) I Kuv(x). Then clauses (b) in the definitions of KOO(X) and

K (x) have identical truth values for each k; likewise for clauses
uv

(c). But then if Kuv(X) I KOO(X)' it must be that x > v and there

is a k < u so ¢k(x) ~ qk(x) and k f Kuv(x -1) == KOO(X -1). But then

~k is spoiled for x in KOO(X)' and by choice of v, if k < u and ~k is

spoiled for x in KOO then v > x. Since we proved above that x ~ v, we

have a contradiction. Therefore, we have shown Kuv(x) == KOO(X) for

all x, and thus fuv == fOO'

(15.6) Lemma (Blum). If~. := f, then ¢.(x) > q.(x)
l l l

for almost all X.

Proof. Suppose for contradiction that there are infinitely many

x = xo ' xl"" such that ~.(x.) < q.(x.). Since i is a fixed number
l J - l J

there are only finitely many k~with k ~ i; therefore, there

must be a number x which bounds all those y for which there exists a

k < i such that CPk is spoiled for y in KOO' If x is the least of n

xo ' xl'" . which exceeds this x, the conjunction of clauses (a) , (b)

and (c) in the definition of fOO = f is true for x = x n' k = i and

for no smaller k. Thus4i is spoiled for x. But then cp.(x) 1 f(x), n l n n

a contradiction.

(15.7) Lemma. There is an increasing ~2 function h so for each

u, there is an index j for f such that

ho (x) > ~. (x)
"'U J.

for almost all x.

Proof. Recall that fuv(x) = f*(u,v,qO(v)+ qu(x),x) and f* E t
2

•

By the honesty of qo and ~, there are t2 functions to and t. so

the computation times of qo and ~ are bounded by to(v,qO(v)) and

t .. (u,x,~(x)) respectively; also, the computation time of f*(u,v,z,x)

is bounded by tf(u,v,z,x) and t f is in t 2. Thus there is an t2

function t so t is increasing apd t(u,v,qO(v)+ ~(x),x) bounds the
"'.

computation time of f*(u,v,qO(v)+ ~(x),x). Let h(z) = t(z,z,2.z,z).

Given u, use Lemma (15.5) to find a v so fuv = fOO = f, and let j

be the index of f Then uv

for all x. But for large x, qu(x) exceeds all of x, u, v, and qO(v);

therefore for large x,

h(~(x)) = t(~(x),~(x),2.~(x),~(x))

? t(u,v,qO(x)+ ~(x),x)

> q, .(x)
J

which completes Lemma (15.7).

Proof of Theorem (15.L~) (concluded). By Lemma (15.6), if i is an

index for f then for almost all x,

fll. (x) > q. (x)
l l

By Lemma (15.4.iii), for every d and almost all x,

(d)
fll. (x) > q. l(x) l l+

Since by hypothesis qi+l> 2
x

, if h is any ~2 function, d can be made

large enough so

q~d)(x) > q h q h q. lh(x) l+l i+l i+l '" l+

In particular, if h is the function of Lemma (15.5), use the lemma

to find an index j for f such that h(q. l(x)) > fll.(x) for almost all
l+ J

x; then

for each c and almost all x. This completes (15.3.iii). (15.3.i)

follows from Lemmas (15.6) and (15.4.iv); (15.3.ii) follows from

Lemmas (15.7) and (15.4.iv). Thus (15.3) is complete ..

Theorem (15.3) is stronger than Blum's Super Speed-up Theorem

in two ways: first, as mentioned, we have shown that functions capa-
.,.

ble of being sped up lie low in"the ~(j.. hierarchy; for example in ~3'

by taking g(x) = 2
x

in (15.3). Second, given an index i for f, we

have an index j for f so fll. (x) > fll\c)(x) for every c and almost all
l J

X; Blum's theorem had" a jl so <Pi(x) > <P3~)(x)) a j2 so <Pi > <P3~)(x)) •••
Thus) as an example) let g(x) "= 2

x
in Theorem (15.3). Then

there exists an f so if i is any index for f) there exists another

index j for f such that all of the inequalities

<P.(x) <fog. <P.(x)
J 1

<P.(x) <Qog.P~<P.(x)
J 1

<P . (x) < Qog.Qag.Wrj <P. (x)
J • 1 .

•
hold for almost all x. Also) f E t

3
) and) in fact) if r is a non-

decreasing) recursive) unbounded function) no matter how slowly in

creasing) then f can be computed in approximately f~r(x))(x) steps.

Then by Lemma (14.13), there is a set T of honest, increasing

functions, all of which bound t~, all of which are in f.o:' and which

>('

has a dense, linear odering under -<. For each function t E T with
1\

t I to: and t I t~, put Dt in D, where Dt is the closure under sub-

stitution and limited recursion of (t, s, max); here s is the suc-

cessor function, s (x) = x + 1. Each D
t

E D is fully closed by Theorem

(14.7). Clearly every function in D
t

is bounded by t(c) for some

fixed c, so by definition of -<, if tl -< t2 then Dtl C Dt2; thus D is

densely ordered. Finally, if D E D, f.~ cDc f.o: and for each t E T,

t~ -< t.

Finally, if Dtl , Dt2 E D and Dtl c Dt2 , tl -< t 2 ; thus

U
l
(e,x,t2(x)+ e) is universal for the one-place functions of Dt

l
, by

exactly the same arguments as Theorem (6.12). This proves (14.14.iv).

(14.15) Theorem. w
Say 2 ~ ~ < 0: < w. Then there is an

infinite fmnily I of classes of functions such

that

(i) If iI E I, f.~ c iI c f.o:;

(ii) The members of I are pairwise incomparable

under set inclusion;

(iii) If iI E I, iI is fully closed and closed under

l:i.mi ted recursion:'; ,

(iv) If ill' il2 E I and ill I il
2

, there is a charac-

teristic function in ill - il
2

•

REFERENCES

[1] Ackermann, W., "Z1.LTTl Hilbertschen Aufbau der reelen Zahlen"
Math. Annalen 99 (1928), pp. llS-133.

[2] Axt, P., "Iteration of primitive :::ecursion" Notices Amer.
Math. Soc. 10, 1 (1963), Abst~·s.ct 597-182.

[3] , "Enumeration ~'1d the Gr:::egorczyk hierarchy"
Zei t. f. math. LogD: u. Grundls.gen d. Math. 9 (1963),
pp. 53-65.

[4] Blum, M., "A machine-ir:.depender:.t -:heory of the complexity of
recursive functions" J. Assoc. Compo Mach. 14, 2 (1967),
pp. 322-.336.

[5] Cleave, J. P., "A hierarchy of pr:..mitive recursive functions"
Zeit. f. math. Logik u. Grundls.gen d. Math. 9 (1963),
pp. 331-345.

[6] Cobham, A., "The intrinsic computational complexity of functions"
Proc. 1964 Congo for Logic, Me-:hodology, and Philosophy of
Science, North-Hol1~~d, .~ste~~am (1964).

[7] Davis, M., "Computabili ~y a..'1.d Uns:Jlvabili ty" McGra.r-Hill, New
York (1958).

[8] Godel, K., "Uber die u:lentscheid"bs.re Satze der Principia

[9]

[10]

[11]

[12J

[13J

Mathematica und verw3...'1.dter Syste::n.e In Monatshefte f. ItIath.
u. Physik 37 (1931), pp. 349-~30.

GrzegorGzyk, A., "Some classes of recursive functions"
Rozprawy Matematycz~e ~ (1953), pp. 1-45.

Hartmanis,J. and Stearrrs, R.E., "In the cOIT~utational com
p lexi ty of algori tr:.:::s" ':Lrms. .':"'''TI.er . Math. Soc. 117, 5
(1965), pp. 285-306.

Kleene, S. C., "General recc:rsi ve :~'mctions of natural n'Jmbers"
Math. Annalen 112 (:936) pp. -Z7-742 .

.tv--t A.OC~
______ , "In!!isruo5ion -:0 li:e-::~athern.aticstl Va...'1 Nostrand,

Princeton, (1950).

, "Extensi::::1 0: a:1 s=:.:::cti vely generate:i class 0:
---::----:---

functions by e:11.L'1lers.-:io:1" C::::'::":q,ui"'cilll rilath. §. (1953), pp. 67-78.

[14J I';:eyer, A. R., tt:Ce~;)"~~h c::~ Yl23 -:::'::5 s:_:: tr .. e 'J.rz2gorczy:C :iie:c-a!'chy"
Notices Arner. ~·:3.th. Soc. 12, :: (1965), Abstr3.ct 622-56.

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26 J

I,feyer, A. R., and Ritchie, D.M., "Computational complexity
and program structure" IBM Research Report RC-1817 (1967).

: and , "The complexity of Loop -------;; progra..'lls" Proc. 22nd Nat. ConI'. Assoc. for Camp. Mach.,
Thompson, Washington (1967), pp. 465-470.

1.1'.insky, M.L., "Computation: finite and infinite state machines"
Prentice-Hall, Engle"ood Cliffs, N.J. (1967).

t4yhill, J., "Linear bounded automata" "\>TADD Technical Note
60-165, Wright-Patterson AFB, Ohio (1960).

Peter, R., "'Uber die mehrfache RekUjrsion" Math. Annalen
113 (1963), pp. 489-527. 1

, "Die beschrankt-rekursiven Funktionen und die
-~--:---Ackermannsche ~..a.jorisierungsmethode" Publicationes

Mathematicae Debreczen i (1956), pp. 367-375.

, "Recursive functions" Academic Press, New York and ---..,---
London (1967). (Translation by Istvan Foldes of "Rekursive
Funktionen", Q~v'~ -J4f.1l.~) D",-~-r (('15 I) .

Ritchie, D.H., "Complexity classification of prLrnitive recursive
functions by their machine programs" Notices A.'ner. Math. Soc.
12, 3 (1965), Abstr~ct 622-59.

Ri tchie, R. vT., "Classes of predictably computable functions"
Trans. Amer. Math. Soc. 106 (1963), pu. 139-173. -- -

, "Classes of primi ti ve recursive fu'1.ctions based --------on Ackerman's function ll
, Pacific J. Math. 12, 3 (1965)

pp. 1027-1044.

Robbin, J. H., "Subrecursi ,(= hierarchies II Doctoral Dissertation,
Princeton (1965).

Sheprle:r'ds8rl, J.C., and St-urgis, R.E., "(jomplltability af recu.Tsive
functions ll J. Assoc. Compo f,Iach. 10 (1963), pp. 217-255.

[27] Suppes, P. "Az:iomatic set theory" Van Nostrand, Princeton (1960).

[2;::J TuriLg .. A.~,1., HOn cO::lputable nU.moers, -;·rith an application to
the Entscheidungsproblerr,t' Proc. London Hath. Soc., series 2,
42 (1936) pp. 230-265.

