"The Gray Sheet"

D.C.BELLOMY, ASSOC.ED. JULY 1, 1985 - VOL. 21 , NO. 4 P.J.MCGOVERN, PUBLISHER

VIEW FROM THE VALLEY: LARGE-SCALE SYSTEMS COMING OFF SLOWER GROWTH, FACING LOWER INCOME LEVELS IN 1985 DESPITE CONTINUING DEMAND

The shortest answer to the question about what has hit the computer industry is that there is no short answer. Issues differ in each segment of the market, with varying mixes of secular and cyclical trends, of accident and design. For large-scale systems, the dominant flavors in the bouillabaisse are cyclical and designed: a slowing tempo last year as the market for the 308 X line and its rivals matured, and drops in demand this year during the transition to Sierra.

IDC forecasts for 1985 indicate a repeat of the weak sales during the 308 X transition in 1981, when the majestic march of the mainframes was temporarily sidetracked with a 36.6% fall in large-system unit shipments and a 21.8% dip in revenue. However, financial officers will be smiling more starting next year:

- The $\$ 16.1$ billion in large-scale revenue rung up in 1984 represented an increase of 11.1% over 1983, after a gain of 30.1% in 1983 over 1982 and 80.9% in 1982 over 1981.
- Large-scale shipments in 1985 should dip to 2,850 units, down 24.2% from 1984, while sector revenue should slip 15.5% to $\$ 13.6$ billion.
- With mainframe shipments plummeting 45.7% from 2,533 units in 1984 to an estimated 1,375 in 1985, IBM large-scale revenues will be distinctly smaller-scaled at around $\$ 9.6$ billion.
- Next year's new IBM large-scale shipments will probably only reach some 1,800 units, but since over three-quarters will be expensive Sierra boxes, the bottom line will be much healthier.
- Reflecting this turnaround, overall large-scale revenue of U.S. vendors should reach $\$ 18.3$ billion next year, up 34.6% from 1985 and 13.7% from 1984.
- The installed base of large-scale systems should grow at a compound annual growth rate of 7.3% from 1984 through 1989.

All in all, during the decade of the Eighties (1980-89), there will have been approximately 33,270 large-scale shipments worth $\$ 151.3$ billion.

[^0]

With profit margins high on large-scale systems, any growth engorges a company's coffers. A lot of money was made in 1984 by the manufacturers servicing this sector -- IDC estimates over $\$ 16$ billion for 3,760 units plus peripherals split among eleven vendors. But different vendors got very different splits:

- IBM continued to lord it over other large-scale vendors, with 67.4% of mainframe computers sold and 76.1% of total value received. However, its large-scale sales growth did not quite match its rivals': revenue of $\$ 11.748$ billion meant an increase of 9.2% over 1983.
- The PCM proportion of large-scale revenue stayed put at around 13\%, with little movement in the rankings by either Amdahl or NAS.
- The Bunch registered impressive gains in mainframe revenue: up 31.4% over 1983. Noteworthy growth was registered by Burroughs (up 67.7% in large-scale sales) and Sperry (45.9\%), but Honeywe 11 and CDC trailed the industry average at 5.5% and 2.4% respectively.

Last year's figures represent the growing maturation of IBM's 308X family, just as some of Burroughs' and Sperry's spurt reflected delays in coming up with meaningful high-end competition. Announcement of IBM's 3090 generation of mainframes was probably timed to squeeze as much cash from its predecessor as possible. However, now that Sierra is official, squeezing much more money out looks like a blood and turnips proposition. For 1985 IBM should make fully half as much money on 308 X upgrades ($\$ 930$ million) as on new 308X systems.

As much as ever before, as IBM goes, so goes the large-scale computer industry. True, its 73.0% of large-scale system revenues (including peripherals) in 1984 seems a retreat of a few inches from 1983's 74.2%, but with that high a market share, its ups and downs will continue to define the health of the entire mainframe sector (compare the graph on the following page). Moreover, potential competition has yet to appear that could break IBM's full-nelson on mainframe money, particularly with the demise of Trilogy. But the other ten large-scale vendors still jockey for position to challenge Big Blue.

1984 MARKET SHARES, U.S. LARGE-SCALE VENDORS (MINUS PCM PERIPHERALS) (Copyright 1985 -- International Data Corporation)

3,758 Units

$\$ 15.4$ billion

For several years now, the most viable alternative has been Japan, Inc., which in the U.S. means the PCMs. The purest PCM right now seems to be NAS, which is still completely dedicated to translating Hitachi engineering expertise into slightly less pricey IBM-compatible products. Its share of the market in 1984 is not overwhelming (2.3% of large-scale revenues), but the record revenue generated by NAS has just kept National Semi from plummeting far below the net loss of $\$ 2.7$ million registered during the fiscal year just ended. NAS's prospects look fairly roseate right now, especially with the appearance of its AS/XL Sierra-class systems and double-density disks in 2Q 1986.

With 4.1% of large-scale revenue in 1984, Amdahl as usual did better than NAS. However, its activities so far in 1985 raise two questions about its future as a PCM. First there's the lack of activity in Sierra-class systems. The latest word, though, is that the Fujitsu-Amdahl combine will have a machine on the market in time to compete with NAS and IBM, but that its announcement will be delayed until shortly before delivery to avoid the delays and disappointed users that have harmed Amdahl's reputation in the past.

The second question is, plugcompatible with whom? Increasing1y Amdahl has been cuddling up to AT\&T and the Unix universe. On July 1 a multi-year agreement was announced whereby AT\&T's Large Business Systems division will use Amdahl data communications products and systems. Later in the month word of close ties in Unix development is expected. It hard$1 y$ matters whether AT\&T is looking to pick up any of the Amdahl stock that Fujitsu doesn't own (it probably isn't) -- a working relationship is developing between Amdahl and AT\&T, and hence between IBM plug-compatibility and Unix on the mainframe plane.

-3-
EDP INDUSTRY REPORT

July 1, 1985

Last year the Bunch looked like a dumbbell, with bulges at the growth and no-growth extremes and precious little in between. To the extent Bunch prospects look good, it's individually, not as a bunch.

Burroughs is in the midst of a turnaround such as few companies have been able to achieve in the highly volatile information processing field. In 1984 it surpassed Sperry-Univac in large-scale installed base, and in 1985 sought to add Sperry's to its own. Its lack of success casts some doubt on the business acumen of its leaders, but not on its assumptions about the relative status of the two companies. A1though Burroughs is still boxed in by the problem of IBM-compatability, its ability to come up with the only Sierra alternative engineered without Japanese knowhow augurs well for the future.

Sperry's expansion in large-scale revenues in 1984 was second proportionately only to Burroughs', but its 1983 base was particularly abysmal. Sperry mainframe revenue last year was still less than two thirds what it was in 1981. Nevertheless, Sperry feels that it has something to bring to a well-heeled partner. Rumors still race around Ford, although some would like more communications synergy.

Honeywell has been treading water, but may get back in the swim with a Japan, Inc. strategy. Its developing relationship with NEC could provide muchneeded support.

Control Data once seemed a brilliant strategist for backing up its prowess in number-crunching with peripherals and services. Maybe it would have been if large-system stagnation were not accompanied by Japanese peripherals competition and a services slowdown. On July 1 CDC announced the sale of its Brokerage Transaction Services unit to ADP and promised additional "fundamental changes -- including divestiture of certain assets - that will help us to solidify market positions." But it needs to do more than solidify - it needs to find ways to grow again like Burroughs, or seek help like Sperry and Honeywell.

These, then, are IBM's rivals. The PCMs might gain a little ground during the Sierra turmoil, but it remains to be seen how different things will be when the dust settles. In 1981 the 308 X transition boosted the market shares of IBM's competitors. Yet the next year IBM not only regained the market share it had lost, but immediately leapt to the $70+\%$ position it has held ever since. That kind of domination is very hard to shake: despite its large-scale travails in 1985, IBM should still get 70% of sales.

Long time readers of the Gray Sheet are reminded that new classifications have been in use since last year's Review and Forecast issues:

- Large-Scale systems. The very largest computers available from traditional mainframe and supercomputer vendors, large systems are expected to support over 128 users in many commercial environments and to bear average prices of more than $\$ 1$ Million.
- Medium-Scale systems. Generally supporting 17-128 users in normal commercial environments, these include the IBM 4300 line, mid-range systems from Bunch companies, and the high end from DEC, DG, Prime, etc. System prices typically range from $\$ 100,000$ to $\$ 1$ Million.
- Small-Scale Systems. Generally ranging from 2-16 users in typical commercial applications and from $\$ 10,000-100,000$ in price, these include the IBM S/36, DEC PDP-11 and Vax 730, and Altos-1ike systems.

VALUE OF WORLDWIIE SHIFMENTS OF LARGE-SCALE COMPUTERS (Copyrisht 1985 -- International Data Corporation)

	\bar{q}^{1984}		$\Phi_{M}^{19} \overline{8}$		$\overline{M^{-1}}{ }^{1982}$		$\overline{\$ M}^{198}-\frac{1}{2}$	
IBM	11,748	73.0	10,755	74.2	8,211	73.7	2,796	45.4
Amdahl	659	4.1	585	4.0	344	3.1	281	4.6
NAS	375	2.3	335	2.3	225	2.0	122	2.0
PCM Feriph.	686	4.3	701	4.8	816	7.3	700	11. 4
IBM Base	13,468	83.7	12,376	85.4	9,596	86.2	3,899	63.3
Burroushs	894	5.6	533	3.7	177	1.6	531	8.6
CDC	479	3.0	468	3.2	394	3.5	370	6.0
Cray	165	1.0	125	0.9	122	1.1	91	1.5
DEC	85	0.5	174	1.2	276	2.5	65	1.1
Denelcor	4	0.0	2	0.0	6	0.1	0	0.0
Honeywell	522	3.2	495	3.4	206	1.8	458	7.4
NCR	25	0.2	0	0.0	24	0.2	0	0.0
Sperry	458	$\underline{2} \cdot 8$	314	2.2	335	3.0	742	12.0
Non-IBM Base	2,632	16.3	2,111	14.6	1,540	13.8	2,257	36.7
TOTAL	16,100	100.0	14,487	100.0	11,136	100.0	6,156	100.0

WORLDWIIE

1980	2,380	14,170		
1981	1,510	14,430	6,890	60.3
1982	2,320	15,180	5,390	61.8
1983	3,360	16,550	11,060	68.3
			14,890	78.8
1984	3,760	18,150		
			16,090	91.1
1985	2,850	19,180		
1986	3,580	20,610	13,600	95.6
1987	4,570	22,330	18,300	104.1
1988	4,720	24,200	21,600	111.2
1989	2,220	22,100	120.0	
1990	5,000	27,700	19,600	130.6
			24,300	140.7

UNITED STATES

1980	1,320
1981	890
1982	1,500
1983	1,830
1984	2,250
1985	1,530
1986	2,180
1987	2,790
1988	2,810
1989	2,420
1990	2,900

7,880	3,810
8,290	3,130
8,790	6,720
9,460	8,340
10,570	9,010
11,100	7,300
11,800	10,900
12,800	13,100
13,900	13,000
14,800	10,900
15,900	13,900

34.2
36.3
41.1
46.3
54.3
57.1
61.6
65.3
69.9
76.2
82.1

INTERNATIONAL

1980	1,060
1981	620
1982	820
1983	1,530
1984	1,510
1985	1,320
1986	1,400
1987	1,780
1988	1,910
1989	1,800
1990	2,100

6,290	3,080
6,140	2,260
6,390	4,340
7,090	6,550
7,580	7,080
8,080	6,300
8,810	7,400
9,530	8,500
10,300	9,100
11,000	8,700
11,800	10,400

26.1
25.5
27.2
32.5
36.8
38.5
42.5
45.9
50.1
54.4
58.6

LARGE-SCALE COMPUTER CENSUS, AS OF JAN. 1, 1985

(Copyright 1985 -- International Data Corporation)

Large-Scale cosputer Systes. A large-scale systen is either a general-purpose computer or a high-speed scientific computer with an approximate systes price greater than $\$ 1$ alllion. These machines are usually located in a centralized computer room. Representative examples include IBK $303 x$, 30ex, Cray Computer products, and their competitors. Average purchase prices are based on systes price including peripherals, except in the case of plug-compatible vendors Andahl and National Advanced Systems, where only cpu value is counted.

MARE OF muNFACTURER	computer MODEL	IDC SI2E class	$\begin{aligned} & \text { PURCHASE PRICE } \\ & \frac{\text { IM POLLARS }}{\text { BRSIC AVERAGE }} \end{aligned}$	DATE OF F1RST installation	$\begin{aligned} & \text { MUNETR } \\ & \text { INSTALLED } \\ & \text { IN U.S. } \end{aligned}$	$\begin{aligned} & \text { MUBER } \\ & \text { IMSTALLED } \\ & \text { OUTSIDE U.S. } \end{aligned}$	TOTAL mumber IWSTALLED
Andaht	4709/5 11	1	2,350	09/77	18	10	28
	470y/6 II	V	3.475	06/75	105	40	145
	$470 \mathrm{~V} / 7, \mathrm{~A}, \mathrm{~B}$	V	2,542	$09 / 78$	80	60	140
	$470 \mathrm{~V} / 76$	1	1.172	02/81	35	20	55
	470y/8	V6	2,592	09/79	140	85	225
	580/5840,50,60,67.	. VL	3,500	08/82	250	150	400
	5868, 5880	Vi.	0	--/65	0	Q	0
	TOTAL.				628	365	993
Burroughs	65/6700 6800	1	3.317 1,824	$11 / 69$ $06 / 71$	880	70	150 320
	6900	t	2.373	11/80	118	62	180
	6925	1	1009	$-/ 82$	180	165	345
	7100	1	6,864	06/73	31	20	57
	7800	VL	5.396	11/78	$15 ?$	42	194
	B-7900 FIK	Vt.	6.732	06/83	178	67	205
	TOTAL				935	516	1.451
Control Data Corporation	1604	1	1,865	01/60	1	0	1
	3600	1	2,246	06/63	4	2	6
	3800	1	2,137	12/65	10	0	10
	6200	1	1.945	11/70	0	0	0
	6400	1	2.902	05/66	30	9	39
	6500	1	3,944	12/67	12	10	22
	5600	V	5.319	08/64	30	10	40
	6700	V	6.401	$07 / 70$	$?$	0	2
	7600	V	3,740	01/69	20	$?$	22
	CTBER 170-730	1	2,395	06/79	75	50	125
	CrBER 170-740	1	3.241	04/80	10	5	15
	CTEER 170-750	t	4,811	08/79	30	15	45
	CTBER 170-760	n .	6.147	04/79	40	8	48
	CTBER 170-855	1	4.040	11/82	20	15	35
	CTBER 170-865	VL	4.956	-/83	16	9	25
	CTBER 170-875	V	6.497	-/82	16	9	25
	Crber 170-875 dual	1. V1	9,209	-/83	3	0	3
	CTBER 172	t	2,138	07/75	12	30	42
	Craer 173	1	3.553	09/75	1	18	25
	CTBER 174	1	4.453	$09 / 75$	10	10	20
	Creer 175	V	6.571	08/75	30	20	50
	Creer 176	V	8,048	01/78	15	3	18
	crate 203	n	10,160	11/80	2	0	2
	crace 205	n	11,235	$01 / 81$	22	5	29
	craer 73	1	2,803	03/72	20	25	45
	cracr 74	VL	5,330	$03 / 72$	15	10	25
	crece 76	VL	8,426	03/72	5	6	11
	STAR 100	V	12,240	$12 / 74$	0	0	0
	990,990 Dual	1	0	-/85	0	0	0
	TOTAL				457	273	130
Cray	14,18 15	n	8,836 8.740	$04 / 76$ $11 / 80$	10 27	11	17 38
	\%	v	5,330	-/83	4	4	8
	$\underline{X-M P / 48}$	n	14,000	06/84	0	0	0
	InP/	n .	6,000	08/84	4	1	5
	20922, 24	V1.	10.659	-/83	12	6	18
	TOTAL				57	29	86
Denelcor	WEP	1	1,326	02/82	10	2	12
Digital Equipeent Corp.	1000/90	1	1.419	$06 / 75$	450	255	705

LARCE-SCALE COMPUTER CENSUS, AS OF JAN. 1, 1985
(Copyright 1985 - International Data Corporation)

NAME OF RUNUFACTUKER	$\begin{aligned} & \text { COMPUTER } \\ & \text { MODEL } \end{aligned}$	$\begin{aligned} & \text { IDC } \\ & \text { S12E } \\ & \text { CLASS } \end{aligned}$	$\begin{aligned} & \text { PURCHASE PRICE } \\ & \frac{15 \text { DOLLARS }}{\text { BASIC AVERAGE }} \end{aligned}$	DATE OF FIRST IMSTALLATIOM	$\begin{aligned} & \text { MUMEER } \\ & \text { INSTALLED } \\ & \text { IN } \mathrm{U} . \mathrm{S} \text {. } \end{aligned}$	$\begin{aligned} & \text { MPBER } \\ & \text { IMSTALLED } \\ & \text { OUTSIDE U.S. } \end{aligned}$	TOTAL mumeer INSTALLE
HIS	DPS 8/70	1	3,816	05/80	269	223	492
	DPS 88/41	1	1,050	--/85	0	0	0
	DPS 88/42	1	2,950	--/85	0	0	0
	DPS 88/42 Dual	1	3,700	--/85	0	0	0
	DPS 88/81	VIL	6.059	--/63	11	9	20
	DPS B8/82	v	8.609	--183	7	3	10
	DPS 38/82T	v.	9,600	-/85	0	0	0
	6-600	1	3,524	04/65	5	5	10
	6-6050/60	1	3,464	$07 / 11$	30	35	65
	6-6070/80	1	5,212	$07 / 71$	1	13	20
	6-6180	$n \mathrm{~L}$	5.144	02/74	2	0	2
	H-66 DPS, BC	1	3.759	$07 / 78$	150	209	359
	H-66/40/60	t	3,920	10/74	70	130	200
	H-66/80	VL.	6.125	10/74	10	30	40
	H-68/80	v	5.242	10/74	12	1	13
	H-68/DPS	Vi.	6,228	09/78	20	8	28
	H-8200	1	3.144	02/69	3	2	5
	TOTAL				596	668	1.264
18M	3031	t	2,601	03/78	510	665	1.175
	3032	t	4,402	03/78	145	295	440
	3033 UAH	V	7,170	03/78	800	430	1.230
	3033 N	VL	4.110	01/80	220	255	475
	30335	t	3.603	01/81	80	50	130
	30810,6,K	V	7.781	10/81	1,700	1.050	2.750
	3003 B, ¢, J	1	4,590	01/83	1.850	1,375	3,225
	3084	V1	11.500	01/84	210	110	320
	$\begin{aligned} & 360 / 65 \\ & 360 / 67,75,85,9 x \end{aligned}$	t	3.464	11/65	85	15	100
	370/195	n	7,140	01/66	10	3	13
	370/155	1	3.464	02/71	50	20	70
	370/158	t	5,356	05/73	600	430	1.030.
	$370 / 165$	VL	6,502	06/71	15	2	17
	310/168	VL	9,646	01/73	200	100	300
	7030	1	1.428	05/61	0	0	0
	7080	t	2,985	08/61	0	0	0
	7090/94	1	3,571	08/60	Q	0	0
	total				6,475	4,800	11,275
MAS	A5/5	1	1,620	$03 / 71$	60	50	
	A5/6	1	2,543	$12 / 78$	30	25	55
	AS/7000	1	1.751	04/80	50	42	92
	AS/7031	1	1.382	12/78	15	10	25
	AS/8023	t	699	04/84	4	1	5
	AS/8040	1	1.376	-/83	17	6	23
	AS/8050	t	1,793	-/83	10	5	15
	A5/8060	1	2,296	-183	6	3	9
	AS/8083	1	3,506	10/84	2	1	3
	A5/9000	VL	4,582	12/80	41	32	13
	AS/9040	VL.	2.132	10/82	20	17	37
	AS/9050	VL	2,739	10/82	25	5	30
	AS/9060	V	3. 284	08/82	56	19	75
	AS/9010	VL	4,423	12/82	8	$?$	10
	AS/9080	VL	5.596	12/62	14	3	11
	total				358	221	579
WCR	8650	t	1.020	11/81	3	15	18
	$\begin{aligned} & 8665,8675,8585 . \\ & 8695 \end{aligned}$	1	3,000	- /84	4	2	6
	6670	เ	1,326	05/82	0	1	8
	TOTAL				8	24	32
Sperry Univat	$1100 / 40$ $1100 / 80 / 81 / 82$	1	4.789 5.806	$07 / 75$ $03 / 77$	24 250	26 188	50 438
	1100/83	V1	9,307	$07 / 78$	22	- 21	49
	1100/84	n	10,200	1178	47	26	73
	1100/90/91	1	3.000	-184	30	38	68
	1106	1	2.047	12/69	30	50	80
	1107	1	2,691	10/62	0	0	0
	1108	VL	3,991	09/65	65	15	86
	1110	VL	6,662	06/72	5	10	15
	494	1	3.411	02/66	43	16	59
	SPECTRA 70/6	1	2,393	10m	5	0	5
	SPECTRA 70/7	1	2.281	$10 / 71$	3	1	4
	SPECTRA 70/60	1	2,393	09/70	3	0	3
	SPECTRA 70/61	1	2,718	$03 / 71$	0	0	0
	TOTAL				527	397	924
Xerox	STEM 9	1	2.558	$11 / 1$	65	25	90
Gikand TOTAL					10,566	7.575	18,141

REVIEW \& FORECAST Part I

"The Gray Sheet"

D.C.BELLOMY, ASSOC.ED.

JULY 1, 1985 • VOL. 21, NO. 4
P.J.MCGOVERN, PUBLISHER

VIEW FROM THE VALLEY: LARGE-SCALE SYSTEMS COMING OFF SLOWER GROWTH, FACING LOWER INCOME LEVELS IN 1985 DESPITE CONTINUING DEMAND

The shortest answer to the question about what has hit the computer industry is that there is no short answer. Issues differ in each segment of the market, with varying mixes of secular and cyclical trends, of accident and design. For large-scale systems, the dominant flavors in the bouillabaisse are cyclical and designed: a slowing tempo last year as the market for the 308 X line and its rivals matured, and drops in demand this year during the transition to Sierra.

IDC forecasts for 1985 indicate a repeat of the weak sales during the 308 X transition in 1981, when the majestic march of the mainframes was temporarily sidetracked with a 36.6% fall in large-system unit shipments and a 21.8% dip in revenue. However, financial officers will be smiling more starting next year:

- The $\$ 16.1$ billion in large-scale revenue rung up in 1984 represented an increase of 11.1% over 1983, after a gain of 30.1% in 1983 over .1982 and 80.9% in 1982 over 1981.
- Large-scale shipments in 1985 should dip to 2,850 units, down 24.2% from 1984, while sector revenue should slip 15.5% to $\$ 13.6$ billion.
- With mainframe shipments plummeting 45.7% from 2,533 units in 1984 to an estimated 1,375 in 1985, IBM large-scale revenues will be distinctly smaller-scaled at around $\$ 9.6$ billion.
- Next year's new IBM large-scale shipments will probably only reach some 1,800 units, but since over three-quarters will be expensive Sierra boxes, the bottom line will be much healthier.
- Reflecting this turnaround, overall large-scale revenue of U.S. vendors should reach $\$ 18.3$ billion next year, up 34.6% from 1985 and 13.7\% from 1984.
- The installed base of large-scale systems should grow at a compound annual growth rate of 7.3% from 1984 through 1989 .

All in all, during the decade of the Eighties (1980-89), there will have been approximately 33,270 large-scale shipments worth $\$ 151.3$ billion.

With profit margins high on large-scale systems, any growth engorges a company's coffers. A lot of money was made in 1984 by the manufacturers servicing this sector -- IDC estimates over $\$ 16$ billion for 3,760 units plus peripherals split among eleven vendors. But different vendors got very different splits:

- IBM continued to lord it over other large-scale vendors, with 67.4% of mainframe computers sold and 76.1% of total value received. However, its large-scale sales growth did not quite match its rivals': revenue of $\$ 11.748$ billion meant an increase of 9.2% over 1983.
- The PCM proportion of large-scale revenue stayed put at around 13%, with little movement in the rankings by either Amdahl or NAS.
- The Bunch registered impressive gains in mainframe revenue: up 31.4% over 1983. Noteworthy growth was registered by Burroughs (up 67.7% in large-scale sales) and Sperry (45.9\%), but Honeywell and CDC trailed the industry average at 5.5% and 2.4% respectively.

Last year's figures represent the growing maturation of IBM's 308 X family, just as some of Burroughs' and Sperry's spurt reflected delays in coming up with meaningful high-end competition. Announcement of IBM's 3090 generation of mainframes was probably timed to squeeze as much cash from its predecessor as possible. However, now that Sierra is official, squeezing much more money out looks like a blood and turnips proposition. For 1985 IBM should make fully half as much money on 308 X upgrades ($\$ 930$ million) as on new 308X systems.

As much as ever before, as IBM goes, so goes the large-scale computer industry. True, its 73.0% of large-scale system revenues (including peripherals) in 1984 seems a retreat of a few inches from 1983's 74.2\%, but with that high a market share, its ups and downs will continue to define the health of the entire mainframe sector (compare the graph on the following page). Moreover, potential competition has yet to appear that could break IBM's full-nelson on mainframe money, particularly with the demise of Trilogy. But the other ten large-scale vendors still jockey for position to challenge Big Blue.

For several years now, the most viable alternative has been Japan, Inc., which in the U.S. means the PCMs. The purest PCM right now seems to be NAS, which is still completely dedicated to translating Hitachi engineering expertise into slightly less pricey IBM-compatible products. Its share of the market in 1984 is not overwhelming (2.3% of large-scale revenues), but the record revenue generated by NAS has just kept National Semi from plummeting far below the net loss of $\$ 2.7$ million registered during the fiscal year just ended. NAS's prospects look fairly roseate right now, especially with the appearance of its AS/XL Sierra-class systems and double-density disks in $2 Q 1986$.

With 4.1% of large-scale revenue in 1984, Amdahl as usual did better than NAS. However, its activities so far in 1985 raise two questions about its future as a PCM. First there's the lack of activity in Sierra-class systems. The latest word, though, is that the Fujitsu-Amdahl combine will have a machine on the market in time to compete with NAS and IBM, but that its announcement will be delayed until shortly before delivery to avoid the delays and disappointed users that have harmed Amdahl's reputation in the past.

The second question is, plugcompatible with whom? Increasingly Amdahl has been cuddling up to AT\&T and the Unix universe. On July 1 a multi-year agreement was announced whereby AT\&T's Large Business Systems division will use Amdahl data communications products and systems. Later in the month word of close ties in Unix development is expected. It hard1 y matters whether AT\&T is looking to pick up any of the Amdahl stock that Fujitsu doesn't own (it probably isn't) - a working relationship is developing between Amdahl and AT\&T, and hence between IBM plug-compatibility and Unix on the mainframe plane.

-3-
EDP INDUSTRY REPORT

Reproduction forbidden. Copies of this information and other data available in the bound volume, Review \& Forecast Special Report for $\$ 425.00 \mathrm{Cail}$ (617) 872-8200

Last year the Bunch looked like a dumbbell, with bulges at the growth and no-growth extremes and precious little in between. To the extent Bunch prospects look good, it's individually, not as a bunch.

Burroughs is in the midst of a turnaround such as few companies have been able to achieve in the highly volatile information processing field. In 1984 it surpassed Sperry-Univac in large-scale installed base, and in 1985 sought to add Sperry's to its own. Its lack of success casts some doubt on the business acumen of its leaders, but not on its assumptions about the relative status of the two companies. Although Burroughs is still boxed in by the problem of IBM-compatability, its ability to come up with the only Sierra alternative engineered without Japanese knowhow augurs well for the future.

Sperry's expansion in large-scale revenues in 1984 was second proportionately only to Burroughs', but its 1983 base was particularly abysmal. Sperry mainframe revenue last year was still less than two thirds what it was in 1981. Nevertheless, Sperry feels that it has something to bring to a well-heeled partner. Rumors still race around Ford, although some would like more communications synergy.

Honeywell has been treading water, but may get back in the swim with a Japan, Inc. strategy. Its developing relationship with NEC could provide muchneeded support.

Control Data once seemed a brilliant strategist for backing up its prowess in number-crunching with peripherals and services. Maybe it would have been if large-system stagnation were not accompanied by Japanese peripherals competition and a services slowdown. On July 1 CDC announced the sale of its Brokerage Transaction Services unit to ADP and promised additional "fundamental changes - including divestiture of certain assets -- that will help us to solidify market positions." But it needs to do more than solidify - it needs to find ways to grow again like Burroughs, or seek help like Sperry and Honeywell.

These, then, are IBM's rivals. The PCMs might gain a little ground during the Sierra turmoil, but it remains to be seen how different things will be when the dust settles. In 1981 the 308 X transition boosted the market shares of IBM's competitors. Yet the next year IBM not only regained the market share it had lost, but immediately leapt to the $70+\%$ position it has held ever since. That kind of domination is very hard to shake: despite its large-scale travails in 1985, IBM should still get 70% of sales.

ABOUT THE NEW DEFINITIONS

Long time readers of the Gray Sheet are reminded that new classifications have been in use since last year's Review and Forecast issues:

- Large-Scale systems. The very largest computers available from traditional mainframe and supercomputer vendors, large systems are expected to support over 128 users in many commercial environments and to bear average prices of more than $\$ 1$ Million.
- Medium-Scale systems. Generally supporting 17-128 users in normal commercial environments, these include the IBM 4300 line, mid-range systems from Bunch companies, and the high end from DEC, DG, Prime, etc. System prices typically range from $\$ 100,000$ to $\$ 1$ Million.
- Small-Scale Systems. Generally ranging from 2-16 users in typical commercial applications and from $\$ 10,000-100,000$ in price, these include the IBM S/36, DEC PDP-11 and Vax 730, and Altos-1ike systems.

VALUE OF WORLDWIIIE SHIPMENTS OF LARGE-SCALE COMPUTERS (Copyrisht 1985 -- International Data Corporation)

IRM	11,748	73.0	10,755	74.2	8,211	73.7	2,796	45.4
Amdah 1	659	4.1	585	4.0	344	3.1	281	4.6
NAS	375	2.3	335	2.3	225	2.0	122	2.0
PCM Periph.	686	4.3	701	4.8	816	7.3	700	11.4
IBM Base	13,468	83.7	12,376	85.4	9,596	86.2	3,899	63.3
Burroushs	894	5.6	533	3.7	177	1.6	531	8.6
conc	479	3.0	468	3.2	394	3.5	370	6.0
Cray	165	1.0	125	0.9	122	1.1	91	1.5
DEC	85	0.5	174	1.2	276	2.5	65	1.1
Ileneicor	4	0.0	2	0.0	6	0.1	0	0.0
Honeywel!	522	3.2	495	3.4	206	1.8	458	7.4
NCR	25	0.2	0	0.0	24	0.2	0	0.0
Sperty	458	2.8	314	$\underline{2} .2$	335	3. 0	742	12.0
Non-IBM Base	2,632	16.3	2,111	14.6	1,540	13.8	2,257	36.7
TOTAL	16,100	100.0	14,487	100.0	11,136	100.0	6,156	100.0

Nuniber of tems Shipped $\begin{aligned} & \text { Cumber in Use }\end{aligned}$ WORLDWIDE

1980	2,380	14,170	6,890	60.3
1981	1,510	14,430	5,390	61.8
1982	2,320	15,180	11,060	68.3
1983	3,360	16,550	14,890	78.8
1984	3,760	18,150	16,090	91.1
1985	2,850	19,180	13,600	95,6
1986	3,580	20,610	18,300	104,1
1987	4,570	22,330	21,600	111.2
1988	4,720	25,200	12,100	130.0
1989	4,220	27,700	24,300	140.7

UNITEI STATES

1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990

1,320
890
1,500
1,830
2,250
1,530
2,180
2,790
2,810
2,420
2,900

7,880
8,290
8,790
9,460
10,570
11,100
11,800
12,800
13,900
14,800
15,900

INTERNATIONAL

1,060	6,290
620	6,140
820	6,390
1,530	7,090
1,510	7,580
1,320	8,080
1,400	8,810
1,780	9,530
1,910	10,300
1,800	11,000
2,100	11,800

3,810
3,130
34.2
36.3

6,720
41.1

8,340
46.3

9,010
54.3

7,300
57.1

10,900
61.6

13,100
65.3

13,000
69.9

10,900
76.2

13,900
82.1

1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990

1,060
620
820
1,530
1,510
1,320
1,400
1,780
1,910
2,100

6,290
6,140
6,390
7,090
7,580
8,080
9,530
10,300
11,800

3,080
2,260
4,340
6,550
7,080
6,300
$7.400 \quad 42.5$
8,500
9,100
8,700
10,400
38.5
45.9
50.1
26.1
25.5
27.2
32.5
36.8
54.4
58.6

MAST

M A RKE T AN AL Y S IS \& S TA TIS TIC S

IDC OFFERS TWENTY YEAR HISTORICAL CENSUS DATA
 FOR STRATEGIC ANALYSIS

International Data Corporation's (IDC) Processor Installation Census (PIC) file is a machine readable database offering model-by-model census data for the years 1964 through 1984 including historical installed base, shipment, and average system value data.

The File, designed for PC or mainframe use, includes data on more than 1,400 systems and over 300 vendors identified in IDC's Censuses from the past twenty years. The database places valuable information at your fingertips. With it you can:

- Assess market shares.
- Establish price bands.
- Analyze processor shipment rates
- Determine processor retirement rates.

U.S. LARGE-SCALE INSTALLED BASE 1966 - 1984

$5 \pi \operatorname{cosec} \cos .$	$4 \times N$ $I X$	123	16)	1N6	(16)	137	117	192	137]	167	1815	W	Im'	137	19\%	1291	14:1	156	(18)	1/80
* mapes																				
5] X69 59676	(11/51/69	1	1	1	4	16	3	45	4	4	(1)	129	15	154	14)	14	137	127	18	8
\% 2740	¢ 6/81/7	1	t	t	1	1	1	1	1	1	1	1	17	[s	14	26	114	38	278	2)
51.275690	b $11 / 81 / 80$	1	1	1	1	1	1	1	t	1	1	1	1	1	1	μ	d)	16	115	111
547465	L 5/30/6	1	1	t	1	1	1	1	1	1	1	1	1	1	1	1	1	12	16	154
St ars 710	(06/4i/73	1	1	1	1	1	1	2	3	5	14	23	3	3	49	4	45	3	17	11
\% 56 TSN	n 11/61/7t	1	1	1	1	1	1	1	t	1	1	1	1	$?$	4	3	104	120	154	18
59 ขn 1-730 r*	n 59/01/83	1	1	1	1	\bullet	1	1	*	1	1	1	1	1	1	1	1	1	π	130

The Processor Installation Census (PIC) File is the only IDC product that provides revised censuses of the installed base. The PIC File has been

-More-
thoroughly reevaluated and adjusted where necessary to reflect IDC's best current information and provides:

- A unified and consistent source for evaluating processor market trends and relative vendor performance.
- Ready to use data. NO data entry is required.

Since 1964, IDC has been regularly publishing its annual processor census. IDC has expanded the number of censuses it annually publishes as new processor markets have emerged. IDC censuses now provide system by system coverage of Large Scale, Medium Scale, Small Scale, and Personal Computer processor marketplaces. IDC is the only computer market research and consulting research firm that publishes this data on EVERY U.S. based computer manufacturer on a model-by-model basis.

The 1964-1984 PIC file with complete 1984 census data is available now. Annual updates will be available each year during the month of February. Having this timely and accurate data will provide a great benefit to both research and strategic planning work efforts. Each of the charts and tables on the front of this page were derived easily from the PIC file.

The media and recording formats include:

- ASCII files on IBM PC-Compatible diskettes.
- ASCII files on standard $1 / 2^{\prime \prime}, 1600$ BPI magnetic tape.
- EBCDIC files on standard $1 / 2^{\prime \prime}, 1600$ BPI magnetic tape.
- dBase III* files on IBM PC-Compatible diskettes.

For additional information on how the PIC file can assist you in your planning and research activities please call Lloyd Cohen at (617) 872-8200 or return the form below.

YES. I'd like more information about the PIC File.
Name \qquad Title \qquad

Company \qquad Phone \qquad

Address \qquad

Return to: Lloyd Cohen, Manager Market Analysis, International Data Corporation, 5 Speen Street,
Framingham, MA 01701

LARGE-SCALE COMPUTER CENSUS, AS OF JAN. 1, 1985 (Copyright 1985 -- International Data Corporation)

 cluding perlpherals, except in the case of plug-compatible vendors Andahl and Kational Advanced Systems, vhere only cpu value is counted.

sant of naminacturis	$\begin{aligned} & \text { computes } \\ & \text { mooti } \end{aligned}$		$\begin{aligned} & \text { PURCHASE PRICE } \\ & \frac{\text { IH DOLLARS }}{\text { BASIC AVERAGE }} \end{aligned}$		$\begin{aligned} & \text { Mokter } \\ & \text { INSTALLED } \\ & \text { IN U.S. } \end{aligned}$	$\begin{aligned} & \text { MWETR } \\ & \text { IMSTALLEO } \\ & \text { OUTSIDE U.S. } \end{aligned}$	TOTAL NUNBER INSTALLED
Amat 1	470y/5 11	1	2.350	09/77	18	10	28
	470v/6 II	V	3.475	$06 / 75$	105	40	145
	470V/7, A, 8	n	2,542	09/78	80	60	140
	470V/76	1	1,172	02/81	35	20	55
	470v/8	V	2,592	0977	140	85	225
	580/5840, 50, 60, 67,	, V1.	3.500	08/82	250	150	400
	70,68 5888,5880	VI	0	--/85	0	Q	0
	TOTAL				528	365	593
Berroughs	$65 / 6700$ 6800	i	3.317 1.824	$11 / 69$ $06 / 77$	80 230	70 90	150 320
	6900	i	2.373	11/80	118	62	180
	6925	1	1009	-/82	180	165	345
	1100	1	6,864	08/73	37	20	57
	7800	V	5,396	11/78	152	42	194
	8-7900 FiS	VI	6,732	08/83	128	67	205
	101AL				935	516	1.451
Contrel Data Corporation	1604	1	1.865	01/60	1	0	1
	3600	1	2,246	06/63	4	2	6
	3800	1	2,737	12/65	10	0	10
	5200	1	1.945	11/70	0	0	0
	6400	1	2,902	05/66	30	9	39
	6500	1	3,944	12/67	12	10	22
	5600	n .	5,319	08/64	30	10	40
	6700	VL	6,401	01/70	2	0	2
	7600	V	8.740	01/69	20	2	22
	CTBER 170-730	L	2.395	06/79	75	50	125
	CYBER 170-740	1	3.241	04/80	10	5	15
	CYBER 170-750	1	4.811	08/79	30	15	45
	Crber 170-760	V	6,147	04/79	40	8	48
	CYBER 170-855	1	4.040	11/82	20	15	35
	Crsce 170-865	VL	4,956	$-/ 83$	16	9	25
	Crber 170-875	VL	6,497	-/82	16	5	25
	CTBER 170-875 DUAL	1 VL	9,209	-/83	3	0	3
	Craes 172	t	2,138	$01 / 75$	12	30	42
	crber 173	1	3,553	09/75	$1{ }^{7}$	18	25
	CYBER 174	1	4,453	$09 / 75$	10	10	20
	craee 175	V	6.571	08/75	30	20	180
	CYBER 176	V1	8,048	01/78	15	3	18
	crace 203	VL	10,160	11/80	2	0	2
	craca 205	W1	11,735	01/81	22	1	28
	crber 73	t	2,803	03/7?	20	25	45
	CrBER 74	VL.	5,330	03/72	15	10	25
	crber 16	V1	8,426	$03 / 72$	5	6	11
	STAR 100 990.990 Des 1	Y	12,240	12/74	0 0	0	0
	990,990 Den 1	1	0	--/85	9	Q	0
	total				457	273	730
Cray	14,18 15	n	8,836 8,740	$04 / 76$ $11 / 80$	10 27	11	17 38
	${ }^{15}$	n	8,740 5.330	$11 / 80$ $-/ 83$	27 4	17	8
	$x-4 P / 48$	n	14,000	06/84	0	0	0
	10P斤	n	6,000	08/84	4	1	18
	3p22. 24	n	10,659	$-/ 83$	12	6	18
	TOTAL				57	29	86
Denelcor	MEP	1	1,326	02/82	10	2	12
Difital Equipeent Corp.	1080/90	1	1.419	06/75	450	255	705

LAACE-SCALL CORPUTER CENSUS, AS OF JAN, 1, 195s
(Copyright 1985 - International Data Corporation)

REVIEW \& FORECAST Part II

THE INTERNATIONAL DATA CORPORATION'S NEWSLETTER FOR EXECUTIVES CONCERNED WITH

"The Gray Sheet"

D.C.BELLOMY, ASSOC. ED. July 31, 1985 - VOL.21,No.5,6 P.J.MCGOVERN, PUBLISHER

ROLLERCOASTER REVENUE CLIMBS AND SLIDES UNSETTLE STOMACHS FOR MEDIUM-, SMALL-SCALE SYSTEM VENDORS

You can't always tell from watching cable television, but most Americans are still Puritans at heart who believe that whatever they suffer now is retribution for having enjoyed themselves too much in the past. No matter what the economists said during the Great Depression, a lot of people were sure they were getting what they deserved for making too much money and drinking too much illegal booze during the Roaring Twenties. These days some medium- and small-scale vendors, especially the former, are feeling that they're getting what they deserve for having had so much fun, and made so much money, in 1984.

- Medium-scale shipments were up 59% in units over 1983 , and 40% in dollar value.
- Small-scale shipments gained 22.7% in units, although declining prices kept the growth in dollar value of shipments to 13.3%.
- The installed base of medium-scale systems grew 30%, and of smallscale systems 20%.

But then the drought began. In case anybody hasn't noticed, 1985 looks vastly different from its immediate predecessor:

- The value of medium-scale shipments should climb a paltry 3.7\%, while unit shipments will likely be marginally down $.3 \%$ from 1984.
- Small-scale shipments should climb at a slower 8.7% rate this year, with the dollar value gliding up 10.8%.

IDC anticipates that the worst will be over by the end of the year, but that declining prices will put a cap on how much revenue can be garnered from the two sectors over the next half decade:

- Between 1984 and 1989, medium-scale shipments should grow at an annual rate of 12.9%, with the value of shipments increasing at 10.1%.
- Over the same five years, small-scale shipments should leap forward at 14.9% per annum, with revenue almost keeping pace at 13.7%.

[^1]
Medium-Scale Tedium

"However, demand for intermediate systems in the U.S. remains soft." Thus spake John Akers for IBM's second quarter, but he could have been speaking for virtually the entire industry. The 4% rise in demand for new shipments that IDC is projecting for 1985 (and even that requires more sales, soon) is being reflected in some noticeably weak performances by last year's high flyers:

- Wang suffered an 11.0% slide in revenue from the second quarter of 1984 and a loss of $\$ 109.0$ million, its first since it entered the computer market. Through 1984 Wang revenue was up 35.0%, while earnings grew 29.1\%.
- With revenue down 6% from a year ago, Data General posted an $\$ 8.3$ million loss for the quarter. During FY1984 DG was up 40\% in revenue and 260% in earnings.
- Tandem eeked out a 1.6% increase in revenue that translated into a 74.2% dip in earnings. In FY84 it jumped 27.3% in revenue and 39.3% in earnings.
- Prime revenue gained 16.0% over 1984 's second quarter, but earnings inched up only 2.3%. Last year revenue ballooned 24.4%, while earnings boomed 83.7%.

Nowhere in the industry is soul-searching over the origins of the current downturn more intense than in the medium-scale market. Unlike the situation in the large-scale segment, there are relatively few product cycle problems certainly none that could have an impact on other companies the way waiting for Sierra has. Unlike the case with the PC segment, there is little evidence of temporary saturation or miscalculation of key submarkets.

Groping for explanations, competitors in the field hope that the disease is not systemic. Vendors with a presence on the factory floor like DG tend to blame the economy, which is still weak-to-dismal for traditional manufacturing industries. Companies with a strong office-automation profile can take comfort from the probability that at least some of the slowness represents indecisiveness on the part of office managers about where to go next after last year's buying binge. Presumably they' 11 be buying again someday, maybe soon.

But what if the fault lies not in the vendors' stars but in themselves that they are underlings? What if a significant portion of the downturn stems from problems endemic to the medium-scale market that will not go away any time soon, if ever, like encroachment from networked PCs and supermicros? What if vendors were basking in the glow of 1984's long shimmering summer and failed to prepare adequately for changing markets and accelerating technology curves?

The encroachment question may not be answerable except in retrospect a couple of years from now, but answers to the last question will begin to become clearer over the next six months. It will not be easy for a company like Wang to recover a position anywhere close to what it has achieved in the past. An Wang may have to remake his company's image as dramatically as when he moved from calculators to word processing. As of July 25 Wang is also finally acknowledging the necessity to support the domination of the officeplace by the IBM PC, something that DG and Digital have also been forced to do.

1984 MARKET SHARES OF WORLDWIDE INSTALLED BASE, MEDIUM-SCALE SYSTEMS (Copyright 1985 -- International Data Corporation)

Basic Four 2.6\% Burroughs 3.1\% DG 4\%

Prime 4.2\%
Tandem 6.4\%

HP 6.7\%

HIS 13.4\%

138,359 SYSTEMS

1984 MARKET SHARES OF U.S. MEDIUM-SCALE SHIPMENTS
UNITS (Left) ; DOLLARS (Right)
(Copyright 1985 -- International Data Corporation)

IBM and DEC continue to dominate the mid-scale market, with DEC winning out on number of systems shipped and IBM cleaning up on revenue earned. Both increased in 1984 at rates faster than the industry average for revenue growth, with IBM more than doubling it (as well as better than doubling its shipment revenues for 1983). Moreover, by increasing the value of its shipments 114.5% compared to DEC's growth of 63.1%, IBM significantly added to its market share. In 1983 Digital registered revenue gains worth 85.8% of what IBM claimed in the medium-scale market, but in 1984 it got only 65.3% of what Big Blue accrued. However, IBM's shipments are always more cyclical than Digital's. DEC has been able to increase the number of $11 / 750$ and up systems it has shipped each year since 1980, with 1984 shipments up a healthy 61.7% over 1983.

New Multi-, Parallel Processing Options

Despite this year's slump, IDC feels that the next half-decade or so should be comparatively healthy for this segment of the market. The question, though, is not so much if, but when alternative approaches to processing data will begin to have an impact on traditional medium-scale sales.

Running a series of boxes in tandem can be cost-efficient and could leach away some supermini revenue. One drawback is that distributed processing is still more an ideal than a reality; one possible compensation is that mainframes could be hurt worse than minis and superminis. At least that's what DEC hopes its VAXCluster solution will lead to.

More serious threats will likely come from multiprocessing and parallel processing, which would distribute the processing among chips rather than different systems. The multiprocessing machines from Encore produced much of what little enthusiasm there was at this year's NCC. From 2 to 20 processors can execute multiple jobs simultaneously. Meanwhile other companies, including Sequent and Alliant, are coming out with systems that they call true parallel processing, which can speed up data manipulation exponentially by running the same program simultaneously on different processor chips.

There are long-term and short-term implications for both, with the longterm more significant. Parallel processing is getting a lot of publicity, so much that there is considerable confusion (some of it intentional) with multiprocessing. All those metaphors about everything in life working in parallel will probably raise capital and stock prices.

However, it appears for now that parallel processing is cost-efficient only in high-end scientific/engineering environments. Over the long run it will probably take over the most computation-intense segments of CAD and CAE from current medium-scale vendors, while at the same time less involved applications will be increasingly handled on PCs.

Nevertheless, scientific/engineering applications in toto account for only 28% of the medium-scale market, compared to 52% commercial. The more ominous development, then, could be multiprocessing, which competes more directly and inexpensively with traditional computers. However, it now seems unlikely that the new competitors could mount an effective campaign for several years yet. Moreover, revenue gains would be limited because they would have to dislodge existing boxes rather than enter virgin territory, the way that minis and PCs did in their glory days. And there's still time for traditional vendors to hop on the bandwagon if they choose.

July 31, 1985

Bigger Bangs for the Buck in the Small-Scale Market

The steady growth rate of the small-scale market can be deceptive, for there are few more turbulent segments of the information industry. Companies come and go, vendors crack the Top Ten and slide out with gutwrenching speed, if only because they are striving not only to dominate but to define a market.

There sometimes seem to be more varieties to the small-scale segment of the market than Heinz has soups, what with 16 -bit minis, small business systems from IBM et al., the new 16 - and 32 -bit supermicros, and entry-level 32 -bit superminis. To add to the confusion, there is conceptual overlap both with the PC and medium-scale markets. Like supermicros that are counted in the smal1scale market, the PC-AT can support several terminals, but is listed in IDC's census as a personal computer based on what is still its primary utilization. At the other end, the new MicroVAX II is virtually the equivalent of a 780 in power, but not in functionality, so can't be counted as a medium-scale machine.

The MicroVAX II, though, does point in an increasingly crucial direction for the small-scale market: stunning gains in price/performance due to falling prices for ever more powerful microprocessors. Supermicro vendors aim for open architectures on the latest, sexiest chips, while established companies pack miniaturized versions of their proprietary architectures. The advantage of the supermicro is its versatility; the advantage of the MicroVAX II is its access to the shelfloads of applications developed for medium-scale DEC machines (All-in-1 is now available). Whether new supermicro or established-vendor-on-a-chip, the microprocessor-based small-scale system offers a low cost/high performance combination that is ideally suited to specialized marketing by VARs.

IBM has maintained its position in the small-scale market almost solely on the basis of System/36 sales. In one year $\mathrm{S} / 36$ revenue jumped from 15% of the dollar value of IBM's small-scale shipments to over two-thirds. Much of this growth has been siphoned from lower-end S/38 sales, but IBM need not weep: in two years $S / 36$ raked in more money than small-scale $S / 38$ models brought in five (of course, S/38 products ranked as medium-scale systems are another story). Revenue from Series 1 machines has been flat since 1982, but for income not to have been falling on a product introduced in 1976 represents a gain for IBM.

TOP-TENNING THE SMALL-SCALE MARKET

Since last year EDP/IR has given only a Top Ten listing for the small-scale and PC markets, but rankings can vary depending on whether installed base or annual shipments, units or dollar value are chosen. If units in the worldwide installed base or 1984 shipments were the criterion, the rankings would read:

Worldwide Installed Base
Digital Equipment Corp.
IBM
Data General
Hewlett-Packard
Texas Instruments
Altos Computer
Wang
Computer Automation Inc.
Burroughs
NCR

Worldwide Annual Shipments IBM
Digital Equipment Corp.
Altos Computer
Fortune Systems
Televideo
Data General
Hewlett-Packard
OSM Computer
Texas Instruments
NCR

Burroughs and Sperry may not have been able to agree on merger terms, but they do think alike on some questions. They came up with very similar strategies at this year's NCC in Chicago, notably their decisions to emphasize Unix.

In the large-scale and PC market sectors, where software compatibility is a critical issue, vendors brag about their technical ties to IBM products. In the two mid-markets of medium- and small-scale systems, on the other hand, the trend is to talk about Unix. The comparative dearth of commercial programs written for the Unix operating system is not as detrimental in mid-market sectors, where programmers abound who find Unix relatively easy to write for. Also, since computer professionals tend to run small- and medium-scale systems, what many feel to be Unix's user unfriendliness need not be a major drawback. Meanwhile Unix's portability can be incorporated in users' networking plans.

Deciding to accentuate Unix, though, need not mean taking the same approach to it. There are essentially two attitudes towards Unix on the part of major vendors: support, more or less grudging, and endorsement, more or less enthusiastic. The chief reason for vendors' diffidence is their commitment to proprietary operating systems, which they often feel are superior to Unix in the markets in which they compete. In any event, sales have been made on the basis of alleged superiority to others' (typically IBM's) operating systems, and the established customer base must be supported technically and psychologically.

For all of the references to Unix in Burroughs ' NCC booth, it still seems to fall into the more-or-less-grudging-support category, especially if one starts to talk with the company's marketing personnel. Wang now has iN/ix, billed as the first in a series of Unix offerings bridging its PC and VS lines, but you would hardly know it from reading the company's press releases. The most reluctant support for Unix probably comes from IBM, which is loath to add asteriks to its announcements noting that Unix is a trademark of AT\&T. Nevertheless, Big Blue's new IX/370 offers Unix as a guest system for Unix users who want to use a System/370 machine, including any in the 43 XX medium-scale line, and don't mind not being able to exchange files with regular IBM systems.

Despite the importance of its large customer base, Sperry is gambling on the more-or-less-enthusiastic-endorsement approach to win new sales. The single message that Sperry wanted visitors to NCC to take away was the company's "Focus on Unix." Data General is touting its two Unix operating systems as the strongest Unix offering around. About 20% of VAX machines currently run on Unix, with some at DEC estimating that the MicroVAX could be $40-50 \%$ Unix.

Why all this motion and emotion? What is generating fervor from some, and at least reluctant recognition from the rest? One factor is the possiblity, however remote, of using IBM's own proprietary operating systems to rope it off from the new industry standard. In a related development, American vendors are eying the European market, where in February the seven leading indigenous minicomputer companies joined to standardize their software on Unix.

A second factor of even more immediate consequence is the federal government's interest in sponsoring, and maybe imposing, an industry standard. Although different agencies and projects still vary on whether they want mere Unix support or full endorsement, the trend is clear: Unix is now a standard RFP (Request for Proposal) requirement for government contracts.

MEDIUM-SCALE COMPUTER MARKET -- U.S.-BASED MANUFACTURERS (Copyrisht 1985 -- International Iata Corporation)

> Number of
> Systems Shipped

Cumulative

 Number in Use\$ Million Value Shipped
\$ Billion Value in Use

WORLDWIDE

1984
1985 1986́ 1987 1988 1989 1990
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990

1980
1981
1982
1983
1984
1985
1986
1987
1988 1989
1990

16,100
19,200
24,100
23,800
37,900
37,800
44,800
52,800
61,400
69,600
77,900

55,700	7,300	34.9
68,000	9,600	39.0
86,900	9,200	45.0
106,300	9,600	49.7
138,300	13,900	58.0
168,200	13,900	65.1
203,600	15,500	75.4
242,900	17,300	86.9
288,200	19,400	100.0
337,600	21,700	114.4
390,200	24,100	129.3

UNITED_STATES

30,200
39,000
50,500
62,900
82,800
100,500
122,400
146,700
175,100
206,000
239,000

4,500	17.2
5,800	21.1
5,600	24.5
5,900	28.2
8,300	33.3
8,400	37.0
9,200	43.5
10,300	50.7
11,500	58.9
12,800	67.8
14,200	77.1
2,800	17.7
3,800	17.9
3,600	20.5
3,700	21.5
5,100	24.7
5,500	31.9
6,300	41.2
7,000	46.6
7,900	52.2

WORLDWIDE

1980 1981
1982
1983
1984
1985
1986
1987
1988
1989 1990

1980 1981 1982 1983

1984
1985
1986
1987
1988
1989
1990

858,800
1,042,500
1,280,000
1,543,700
$1,853,700$
2,190,300
2,582,700
3,025,300
3,517,600
4,051,600
4,636,400

7,700	34.1
8,800	40.8
9,100	49.2
9,800	56.9
11,100	65.9
12,300	74.8
14,200	84.2
16,400	96.1
18,600	109.8
21,000	125.0
23,600	140.8

UNITEI_STATES

566,500	4,600	20.4
679,100	5,400	23.9
828,700	5,700	29.4
992,100	6,100	34.4
$1,201,800$		
	6,900	40.6
$1,431,100$	7,700	46.5
$1,705,200$	9,000	53.1
$2,014,600$	12,000	60.7
$2,357,100$	12,000	69.4
$2,731,400$	13,600	79.4
$3,145,800$	15,400	89.6

INTERNATIONAL

1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990

122,400
127,800
172,800
202,200
262,000
281,400
337,800
398,600
465,600
533,600
600,100
197,800 212,500 266,800 313,600

384,700
418,200 496,400 582,700 675,400 770,700 865,600 202.
.

75,400
84,700
94,000
111,400
122,700
136,800
158,600 184,100 209,800 237,100 265,500

292,300 363,400 451,300 551,600

651,900
759,200
877,500
$1,010,700$
1,160,500
$1,320,200$
$1,490,600$

3,100	13.7
3,400	16.9
3,400	19.8
3,700	22.5
4,200	25.3
4,600	28.3
5,200	31.1
5,900	35.4
6,600	40.4
7,400	51.2
8,200	

A gradual transformation of at least segments of the medium-scale market is therefore underway. IDC surveys indicate that the 10% of supermini sites cu-rently running Unix on at least one of their machines should rise to almost a zuarter of medium-scale sites by the end of 1986. To meet this rising demand, about half of all packaged software vendors plan to be offering Unix pregrams by the end of this year, about double the percentage at yearend 1984.

The changes may also lead to a rearrangement of the medium-scale hierarchy, al=hough the jury is still out on the question. Speculation centers on AT\&T, wh三ch has hitched its wagon to the Unix star far more singlemindedly than even Sperry. The communications giant garnered much publicity at the end of June when the National Security Agency chose its 3B systems as the centerpiece of a coctract that should net AT\&T almost $\$ 1$ billion for sales and services. Certainly the deal lends credibility to AT\&T, which with one stroke of the pen will increase its January 1, 1985 installed base by about 22%, and to Unix, which has garnered its gaudiest government seal of approval to date.

On the other hand, the increase to AT\&T's installed base just by adding up to 250 3B systems also emphasizes its failure so far to penetrate non-BOC comercial markets. The government's interest in Unix may represent AT\&T's best hope to establish itself as a major player in the computer industry. Even its NSA success, however, may not translate easily into other government contracts, since the secretive intelligence agency has unique priorities.

For the immediate future, last year's "Review and Forecast" assessment (EDP/IR, Vol. 20, No. 15, 16, December 12, 1984) remains valid: not mediumscale but "small-scale systems are likely to be the first major Unix success story." Vendors in this segment of the market tend to be smaller and younger, which means that they typically lack long-standing customer bases wedded to proprietary chips and/or operating systems.

As a full-fledged member of the Bunch, NCR looked for a time to be an exception. Besides its successful Tower line of Unix supermicros, which in an OEMed transfiguration serves as a linchpin of the Sperry Unix group, NCR was working on a Unix-based 32 -bit proprietary processor that could have extended the lifespan of its 9300 line. It has now given up the endeavor as too costly, however, and seems by default to have anointed the open-architecture Tower system, based on commercially available Motorola chips, as its royal family.

NCR's failure to develop a proprietary chip may be a blessing in disguise. The Unix small-scale success story is based in large part on cost/performance advantages, which in turn depend on the wide availability of Unix microprocessors. The Tower team knew what it was doing when it tapped Motorola.

In the meantime, small-scale Unix vendors are competing vigorously, with enough of them winning sales to raise the hopes and stoke the efforts of all the others. Last year's sweepstakes winner for start-ups in this sector was Altos, which ascended to the top-ten list of small-scale vendors based on the value of 1984 shipments, while Tower sales were a major contributor to NCR's rise from sixth place to fourth place.

This year there is no end to would-be successors to the crown. At NCC a giant inflated frog beside the Charles River Data Systems booth represented virtually the only aggressive marketing at a staid convention and punctuated its promise to become "the largest shipper of 68020 -based systems in 1985."

[^2]
MEDIUM-SCALE COMPUTER CENSUS (Copyright 1985 -- International Data Corporation)

Medium-Scale computer systems generally support 17 to 128 users in a normal commerical environment. Included are the IBM 4300 line, the mid-range systems from the Bunch, and the high end of lines from companies such as DEC, DG and Prime. System prices tend to fall in the $\$ 100,000$ to $\$ 1$ million range.

munt or menufacturea	COMPUTLR	ciass	PIVCHISE PRICE IS DOLLARS (000) BKSIC AVERAGE	$\begin{aligned} & \text { BAIT OF } \\ & \text { FIRST } \\ & \text { IMSTALLATION } \end{aligned}$	$\begin{aligned} & \text { Monet } \\ & \text { INSTALICD } \\ & \text { in U.5. } \end{aligned}$	nirath InStacte outsiot U.S.	
4751	3820 3820 Duplex $365 / 100, / 200, / 300$	$\begin{aligned} & n \\ & n \\ & n \end{aligned}$	$\begin{aligned} & 330 \\ & 600 \\ & 125 \end{aligned}$	$\begin{aligned} & \text { 40/83 } \\ & \text { 40/83 } \\ & 03 / 84 \\ & \text { TOTAL } \end{aligned}$	$\begin{array}{r} 200 \\ 670 \\ 1 . \frac{150}{} \end{array}$	$\begin{array}{r} 20 \\ 20 \\ 90 \\ 130 \end{array}$	$\begin{array}{r} 220 \\ 690 \\ 1,240 \\ 1,150 \end{array}$
Auragen Systees Corp.	4000	\cdots	135	$01 / 83$	10	15	25
Baste four Corporation	700 730 Whl 8000 Series (810)	$\begin{aligned} & n \\ & \stackrel{n}{n} \end{aligned}$	$\begin{aligned} & 130 \\ & 124 \\ & 150 \end{aligned}$	$08 / 77$ $06 / 78$ $0 / 82$ TOTAL	$\begin{array}{r} 100 \\ 525 \\ 1.109 \\ \hline 1.178 \end{array}$	$\begin{array}{r} 95 \\ 590 \\ 1.214 \\ \hline 1.899 \end{array}$	$\begin{aligned} & 195 \\ & 1,115 \\ & \frac{2,117}{3,627} \end{aligned}$
81	8000	/	175	05/81	51	10	61
Burroughs	2500	,	499	02/67	1	2	3
	2700	*	530	$08 / 72$	11	15	32
	2800	,	471	12776	160	100	260
	2900	\%	533 369	07/80	385 450	225	610 800
	3500	*	912	05/67	75	50	125
	3700	/	1,230	11/12	100	105	205
	3800	$\stackrel{ }{*}$	705	- $/ 77$	150	35	195
	3955	$\stackrel{ }{*}$	178	09/81	205	45	250
	45/4700	*	1,560	10/7	90	45	135
	4800	$\stackrel{ }{*}$	1,440	09/76	315	110	425
	4925	$\stackrel{n}{n}$	500	20/84	100	40	140
	4955	$\stackrel{N}{*}$	1,005 1,680	06/83 $03 / 63$	200	105	305
	5920	H	448	-//82	138	80	218
	5930	N	579	$01 / 81$	205	245	450
		$\stackrel{N}{*}$	270 250	10/84 $40 / 85$	20	10	30 0
	A9-8	,	0	-/85	0	0	0
	$\mathrm{Ag}-\mathrm{P}$	$\stackrel{N}{*}$	0	-/85	0	0	\bigcirc
	As-F	*	1.200	20/84 TOTAL	$\frac{85}{2.706}$	$\frac{85}{1,697}$	$\frac{170}{4.353}$
Canbex	1636-1	*	100	10/81	6	0	6
	1636-10	$\stackrel{N}{*}$	94	01/83	5	0	5
	164)	$\stackrel{5}{8}$	178	10/80	\%	15	24
	1651	$\stackrel{ }{8}$	213	-/82	1	1	14
	1651-11	*	256	$\overbrace{\text { Totat }}$	$\frac{4}{36}$	$\frac{1}{32}$	$\frac{5}{68}$
Contrel Data Corp	180-840	\cdots	760	03/85	0	0	0
	180-850	$\stackrel{1}{6}$	1,115	03/85	0	0	0
	180-860	*	1.575	03/85	0	0	
	180-990	N	0	06/85	0	0	0
	31/3150	*	419	12/64	10	5	15
	3170	*	970	12/70	5	2	1
	3200	*	625	05/64	6	5	11
	3300 3400	n	1,491	09/65	40	15	55
	3400	\%	1,019	11/64	0	0	0
	3500	N	1,341	01/69	20	10	30
	B30, 8300011 Cyper 170-120	\%	, 395	-7/84	2	${ }^{\circ}$	$13{ }^{2}$
	cyser 170-120 Cyber 170-810	$\stackrel{N}{\square}$	$\begin{array}{r}1.625 \\ \hline 250\end{array}$	$05 / 79$ $01 / 84$	\$0	${ }_{8}^{85}$	135 20
	Cyber 170-815	H	398	01/83	20	35	55
	Cyber 170-825	n	949	03/82	25	30	55
	Cyber 170-835	$\stackrel{ }{*}$	1,940	03/82	10	15	25
	Cyber 170-845	$\stackrel{ }{*}$	1,632	12/83	so	40	90
	cyber 171	$\stackrel{N}{*}$	1.184	$08 / 77$	3	32	35
	cyber ${ }^{11}$ Cyber 12	$\stackrel{*}{*}$	1,111 1,810	01/76	4	$\stackrel{8}{12}$	16
	6_{6-20}	$\stackrel{N}{ }$	830	04/61	1	0	1
	Corga $480-1$ Oarga 480-2	$\stackrel{N}{*}$	376	06/77	20	0	20
	$\begin{aligned} & \text { Onega } 480-2 \\ & \text { Cenega } 480-3 \end{aligned}$	$\stackrel{\sim}{*}$	448	08778 $01 / 80$	$\begin{array}{r}30 \\ 30 \\ \hline\end{array}$	2	33 33
				total	338	27	651
Convex Computer	6-1	\cdots	190	11/84	4	0	4
Data General	Eclipse C/300, 330	${ }^{6}$	150	02/75	733	175	898
	Eclipse C/350	\%	180 215	$11 / 78$ $05 / 78$	560 235	190	750 325
	Eclipse wi/10000	\%	520	-/83	460	130	590
	Eclipse w/4000	$\stackrel{N}{*}$	200	02/82	365	150	515
	Eelipse m//8000	${ }^{N}$	300 150	10/80	930 645	540 345	1.470
	W//10000 5 S	*	550	03/85	0	+	${ }^{2}$
				TOTAL	3.918	1,520	5.538

medium-Scale computer census as of jamuary 1, 1985
(Copyright 1985 - International Data Corp.)

MAME OF mavi acturicr	computer MODEL	$\begin{aligned} & \text { SIZE } \\ & \text { CLASS } \end{aligned}$	PURCHASE PRICE IM DOLLARS (000) BASIC AVERAGE	$\begin{aligned} & \text { DATE OF } \\ & \text { FIRST } \\ & \text { INSTALLATION } \end{aligned}$	$\begin{aligned} & \text { RURELE } \\ & \text { IMSTALLED } \\ & \text { IN U.S. } \end{aligned}$	$\begin{aligned} & \text { NURBER } \\ & \text { INSTALLED } \\ & \text { OUTSIDE U.S. } \end{aligned}$	$\begin{aligned} & \text { TUMAL } \\ & \text { MUBER } \\ & \text { IMSTALLED } \end{aligned}$
1BM	1410	\cdots	800	11/61	4	1	5
	1460	${ }^{*}$	460	10/63	5	1	6
	$360 / 30$	\cdots	528	06/65	180	60	240
	360/40	\ldots	895	06/65	200	65	265
	360/44	,	880	07/66	15	5	20
	360/50	\%	1.550	08/65	90	30	120
	370/125	H	652	06/78	90	240	330
	$370 / 135$	H	960	05/72	180	165	345
	370 /138	H	997	11/76	350	560	910
	370/145	H	1,871	07/71	150	155	305
	$370 / 148$	/	1,700	03/71	400	430	830
	4331-2/11	/	394	03/82	2,200	1,675	3,875
	4341-1/9/10	/	830	10/79	4.200	4,600	8,800
	4341-2/11/12	/	969	03/81	4,000	2,400	6,400
	4361-4,-5	H	465	--/84	1,200	1,100	2,300
	4381-2, 1	N	900	--/84	1,900	500	2,400
	1010	/	1,200	10/63	0	0	0
	1040/44	\cdots	1,439	06/63	0	0	0
	7070/74	/	1,299	03/68	0	0	0
	Systen 38-7	\cdots	405	06/82	1,000	980	1.980
	Systen 38-8	\cdots	408	07/83	$\frac{1.000}{17.764}$	860	1,860
				TOTAL	17.164	13,827	30,991
1PL	4436	\cdots	176	11/80	16	,	16
	4443	\%	223	03/80	35	0	35
	4445	\cdots	385	12/82	3	0	3
	4446	/	313	12/81	115	16	131
	4460	\cdots	400	-/83	$\frac{22}{191}$	$\frac{3}{19}$	$\frac{25}{210}$
				TOTAL	191	19	210
Computer Systees	9000	\cdots	150	-/81	510	90	600
	9100	H	175	01/85	0	0	0
	9208	\cdots	300	10/84	$\frac{50}{550}$	0	$\frac{50}{550}$
				TOTAL	560	90	650
mos Oantel	64 Series	M	225	04/83	230	45	275
Modular Computer Systems	Classic 32/85	$\stackrel{N}{ }$	306	-184			
	Classic 7870	μ	159	08/78	410	155	565
	Classic 11/75	${ }^{\prime \prime}$	156	05/82	233	122	355
	Modcomp IV	M	100	05/74	339	$\frac{130}{}$	469
				TOTAL	997	427	1.424
Motorola/Four Phase	5000 Series	N	200	02/84	50	30	80
	System 311	/	265	02/81	145	15	160
	System 312	M	320	12/81	52	8	60
	Two PI V/32	/	125	06/78	80	6	$\frac{86}{386}$
				total	327	59	386
NAS	7020/30	N	836	01/79	0	6	6
	A5/3	\cdots	624	11/78	20	25	45
	AS/3000	N	331	01/80	35	0	35
	AS/4	$\stackrel{H}{ }$	916	06/77	10	4	14
	AS/5000	/	608	02/80	70	50	120
	AS/6100	\ldots	474	10/82	3	5	8
	AS/6620	H	373	-/83	52	22	74
	AS/6630	H	496	-/83	21	70	91
	AS/6650	\underline{N}	618	-/83	53	38	91
	AS/6660	/	475	10/84	2	0	2
				TOTAL	266	220	486
NCR	315 RMC	/	500	09/65	0	0	0
	8560	n	145	11/77	35	23	58
	8565	$\stackrel{N}{ }$	585	04/79	90	145	235
	8565 II	N	469	04/82	75	94	169
	8570	$\stackrel{N}{1}$	953	05/76	80	75	155
	8575	N	729	04/79	95	70	165
	8575 II	*	548	05/82	59	68	127
	8580	\cdots	1.734	12/78	4	8	12
	8585	M	1.472	08/79	30	50	80
	8585 I1	N	585	05/82	34	33	67
	8595 I1	W	742	05/82	36	37	73
	8635,8645,8655	M	1,300	-/83	47	29	76
	Century 200	H	367	09/69	25	28	53
	Century 201	H	590	09/69	45	48	93
	Century 251	\%	1,005	11/73	5	8	13
	Century 300	H	1.426	$02 / 72$	26	32	58
				TOTAL	686	748	1,434

SMALL-SCALE COMPUTER CENSUS

(Copyright 1985 -. International Data Corporation)

Census of top ten small-scale computer vendors, by dollar value of 1984 worldwide shipments. Small-scale computer systems generally range from 2-16 users in typical commercial applications. Representative systems include the IBM S/36, DEC PDP-11 and Vax 730, and systems such as those from Altos. Average systems prices are normally in the $\$ 10,000$ to $\$ 100,000$ range.

Rextiver of	Saputer			Bete of 1st tatall.	naber tmitallet is.lls.	Tanter testallas Outales pus +4.	$\begin{aligned} & \text { Tota! } \\ & \text { seaber } \\ & \text { Instiles } \end{aligned}$
Is	118	1	18	62/4	34	15	18
	160		18	0/w	16	20	20
	${ }_{160}^{606}$ be	5	121	28/4		\%	-
	${ }^{168}$	5	2218	0/6\%	18	?	11
	30/20		13	12/65	196	16	26
	\%e/al)	15	6m	,	3	,
	40\%3	3	m	$15 / 26$	17	6	88
	310/7is	5	190	6/74	1000	10	3×0
	6320, 6331-1	5	18	02/62	4,000	3,006	1,000
	Statien !	$\frac{5}{5}$	111	m\%	4,000	18, 100	12,900
	Sn/m batesiter	\%	13	d1/t	23,700	8,000	3,700
	intre 3-18	5	13	0170	1,575	50	2,078
	Sntes 3-11	5	18	60/78	1, 200	180	1,036
	sintes 3-15	$\frac{3}{5}$	518	6/5	1,400	810	${ }^{2.410}$
	Prite 3-4	3	8	12/6	13	4	220
	Tritue 3-4	5	107	6,75	316	19	170
	2mien 3i-4	\%	140	-0/21	1,300	1,48	3,485
	2yctee 3n-3	5	98	$01 / 10$	4,580	3.550	0,150
	Snte 30-4	5	128	0/8	3, 3 , 000	3, 180	1,176 3,100
	Sptesy	5	$\begin{array}{ll} 62 \\ \text { is } \end{array}$	${ }^{60 / m}$	3,000	31.500	3,100
	\%erse/7	5	81	10\%3	$\frac{26000}{18.18}$		
Sigital feilument cans.							
	${ }^{2606}$	5	13	01/78	${ }^{30}$	15	40
	*icte mor mi/s	3	${ }_{5}$	6/6/8	2	:	2
	F\% 11/03, $n 3$ (31-4)	5	10	0×73	74,300	41,000	121.300
	Ms.-11/84, e5, 16.15.	5	11	02/7	28.46	18,100	30,450
	me-11/24	3	n	$10 / 81$	1,700	8,580	14,600
	70\%-11/36, 35, 40	5	0	$01 / 3$	31, 500	24,000	4, ses
	mpr-11/4s	5	0	$0 / 8$	11,200	10,m	21, ess
	mpr-11/40, 30, 38	$\frac{5}{5}$	11	*/7\%	3,000	1, ine	2, 270
	per-11/10	5	13	01/3	8,270	3,460	11,320
	Wer-11/8	5	20	25/3s	-	8	8
	\%\%-17		is	0/711	48.000	no.se ${ }^{\text {s }}$	42, 215
	m-m, i, \%		11	6/3s	500	300	000
		5	50	12/4	15	450	5
	-	1	6	* $/ 2$	3.90	2.78	1, 100
				Totse	27.30	138,300	30,04
melett-packer	$1000-\mathrm{N} / 06$ $1000-1 / 00$	5	30	02/28	1,876	4,480	12.850
	1000 -2/700	5	0	02/62	2,409	1, 175	2,400 3,360
	$1000-2(00-6)$	5	${ }^{11}$	$81 / 7$	15,303	13.39	30.700
	1000-1	5	5	9/7	3,54	4,48	10,30]
	1000-6, A	5	10	6/75	1,000	1,560	2,380
	1000-x (1004-2, 2)	5	8		8,54	8,481	13,283
	zues	8	3	ann	43	\%10	1,401
	714/72/74	\%	2	11/4	1,110	m00	1.315
	260-15	5	。	0/5s	。	\%	8
	250-24	$\frac{1}{3}$:	0/6s	8	8	8
	360	5	5	6/7	10	ne	40
	3000-36	5	12	10/7\%	1,061	48	1.4n
	$3000-13$ $3000-40$	5	${ }_{130}^{180}$	$11 / 81$	1.488	1,n4	2,060
	3000-47	5	13	1278	943	*	, 811
	3000-44	3	170	82/21	2,70	\%	3,580
		\%	${ }_{28}^{38}$	81/83	3,0e6	2.000	3,000
	3000-31	\%	3	12/4	${ }^{2} 119$	4,	110
	3000-31	5	50	01/73	करो	${ }^{46}$	$\frac{1045}{10.48}$
				Tots	\$.150	4. ${ }^{\text {a }}$	110,318
\% ${ }^{\text {a }}$	3130,40 , 30	5	14 n	0/w	928	1,500	4, ses
	200.30/31, 50/31	5	is	0, $0 / 5$	5,40000000	1,800	12,509
	270	5	n	$11 / 8$	*35	*60	1,875
	${ }^{818}$	5	${ }^{1061}$	${ }^{01778}$	20	?	2
	80	5	110	92/78	108	\%	20s
	898	5	29	0	15	ne	2s
	Sase	\$	20	11%	116	118	28
	sess	5	\cdots	$0 / 78$	18%	210	59
	ashs it	5	2304	0/182	$\frac{8}{n}$	10	18
	\$5s50	5	631	946	125	0	215
	E353	5	46	N/75	26	215	295
	3585	5	48	0×1	20	313	515
	5016	5	$\stackrel{18}{20}$	$0 / 21$, 130	8,600	2,500
	5040	5	12	05/11	315	1,400	1, Hes
	S0se	3	193	0/51	250	30	∞
	8300	1	0	$0^{4} 83$	3,000	2.000	5,000
	Costary ${ }^{\text {conter }} 100$	5	1818	61/4	15	${ }^{65}$	5
	contery c	5	214	$10 / 78$	168	10	310
	Century 30	5	161	(2)	3	0	${ }^{3}$
	contary 13	5	12	$01 / 74$	12	13	$\underline{7}$
	toper serisi	5	8	Wher	2,0e6	1,000	3,400
				vers	[18.111	20, 310	\%,600

 of transactions per second

New system manages hundreds of transactions per second

Parallel data paths, pipelining, large cache memory, and 32-bit hardware combine to increase transaction system performanc

by Robert Horst and Sandra Metz,
 indem Computers inc. Cupertino. Cailit

have a unique set of requirements that pose an enormous challenge to designers. These systems have to be faultolerant, expandable through the addition of modules, and able to process multiple transactions at a reasonable cost, while maintaining data integrity. The coming generation of transaction-processing systems must also address a fast-growing need for very high-volume applications that require the
ions per secon
Designed to
Designed to handle very high-volume transaction prothree times the speed of the NonStop II system it super cedes, while retaining complete software compatibility. Without reprogramming, a TXP sysem can grow from a single system containing from 2 to 16 processors, o a local cluster of up to 224 processors linked with fiber-optic cables, to worldwide network of up to 4,080 rocessors.
Many of the problems in designing
The TXP processor had already been the TXP processor had already been
solved in the NonStop II processor and system design. The NonStop II extended the instruction set of the NonStop $1+$ system to handle 32 -bit addressing but did not efficiently support that addressing in hardware. The existing 5 -megabyte input/output bus and 26 -megabyte Dynabus, Tandem's proprietary bus structure, had more than enough bandwidth to imes the performance. The existing packaging had an extra central-pro-cessing-unit card slot for future enhancements, and the existing power supplies could be reconfigured to

1. Parailel data paths. The NonStop TXP's architecture lets the main arithmetic and logic nit operate in paralie? with either a special ALU, one of 4,096 scratch-pad registers, a bus interface, or the input/output channel

2. Memory access. The simple but extensive organization of the TXP cache provides an average hit ratio of over 96%. With a cache hit, the equested is not in cache, a cache miss results and the 64 -bit-wide access to memory speeds the cache refill.
and it can execute load and branch instructions, which are frequently used, in only three clock cycles (250 ns). Each NonStop TXP processor has a $64-\mathrm{K}$-byte cache that holds both data and code. A 16 -processor NonStop TXP system has a full megabyte of cache memory. To determine the organization of the cache, a number of measurements were perrormed ona a monitor (see "Hard-ware-performance monitor helps optimize design," p. 149). The measurements showed that higher cache hit ratios resulted with a large, simple cache (directly mapped) than with a smaller, more complex cache (organized as two- or four-way associative). Typical hit ratios or transaction processing on the NonStop TXP system are in the range of 96% to 99%.

Cache miss

Cache misses are handled in a firmware subroutine ather than by the usual method of adding a special state machine and dedicated data paths for handling a miss. eache can reside on the same board as the primary data paths; keeping these functions proximal reduces wiring delays and contributes to the fast $83.3-\mathrm{ns}$ cycle time.
The cache is addressed by the 32 -bit virtual address rather than by the physical address, thus eliminating the extra virtual-to-physical translation step that would otherwise be required for every memory reference. The vir tual-to-physical translation, which is needed for refilling
the cache on misses and for storing through to memory, is handled by a separate page table cache that holds bytes each (Fig. 3).

A cache memory by itself does not necessarily boost processor's performance significantly. It is of little use for the cache to provide instructions and data at a higher rate than the rest of the CPU can process. In the TXP processor, the cache's performance was tuned to provide instructions and data at a rate consistent with the enhancements to instruction processing provided by increased pipelining and parallelism.

32 bits and more

The two concerns related to a system's word length are capability and performance. The NonStop TXP system has 32 -bit virtual addressing built into the hardware, In addition, the TXP processor can manipulate 32 bits of
In data at a time through its dual 16 -bit data paths. Thus the 32 -bit NonStop TXP system has the additional advantage of being able to run software that was originally written for the 16 -bit NonStop II system; both systems have been provided with instructions that can operate on 8 -, 16-, 32-, and 64 -bit data types.
In transaction processing, measurements of instruction frequencies show that data-movement instructions (loads,
stores, and moves) occur much more frequently than 32stores, and moves) occur much more frequently than $32-$
bit arithmetic instructions. For this reason, the NonStop TXP system is optimized to handle data movement by providing 64 -bit access to main memory and 32 -bit buses and address registers to make memory addressing as efficient as possible.
The NonStop TXP processor was implemented on four large pe boards using high-speed Fast logic, PALs, and high-speed static RAMs. The CPU's logical and physical partitioning was carefully controlled to ensure that the machine's basic cycle the four CPU boards are: so: contining the control store and sequen

- CC: containing the I/O channel and various special modules.
- MC: providing the and interprocessor bus interface.
Each CPU module also has from one to four memory boards. On the initial release, each memory board contains 2 megabytes of error-correcting memory implemented wit sym 128 top TXP system cabyes of physical memory
The NonStop TXP system wa

Thuacture and efficient to test. isters were implemented with shift registers configured into several serial-scan strings. The scan strings are of value in isolating failures in field-replaceable units. This serial access to registers also makes board testing much faster and more efficient because the tester can directly observe and control many control points. A single cusom tester was designed for all four CPU boards and for the memory-array board as well.
The NonStop TXP system is the first product to be

New system manages hundreds

 of transactions per secondParallel data paths, pipelining, large cache memory, and
32-bit hardware combine to increase transaction system performance
by Robert Horst and Sandra Metz, Tandem Compates ince, apperanc, cath

 formed in parallel with another operation done by one of
several special modules Among them ara second all
that performs both multiplications and divisions a harel
 timer, and an interrupt controler. other modiles pro-
vide interfaces anong the reru and the interpocessor bus
system, IOO channel, main memory, and a diagnostic vide inerraces among the cru and hre interprocessor bus
system, IO channel, main memory, and a diagnostic
procsor selection of operand for the main ALU and the
special modules is done in two stages. In the first, data is

 ed with cache data, al literal lonstant, the results of the
previous ado oparation and the resilt of the previous
special-module operation.
 cach special-module operand. Executing the ereiser se
lection in two stages, so that the registers can be two tather than four-poreted. greaty reduces the cost of multi
plexers and control storage, while the fexibility in choos

Hardware-performance monitor helps optimize design

but would require three if the extract operations could
not be done simultaneously The dual 1 l-bit datatausty. pats tend to require fewer cycles
than a single 32 -bit path when manipulating byte and 16 . bit quantities and slighty more cycles when manipuat-
ing 32 -bit quantities. A A32-bit add takes two yyces rather than one, but the other data path is free to use the two
cycles to perform either another 3 3-bit operation or two
1wh cycles to perform
10 -it operations.
The time disadvantage in performing a single 32-bir
operation is partially offset by the cycle-time advantage
 quires more
of time for carrys propapazation. Measurements
of ration-procesing applications have shown that

 worr is required. The ffective width of the control store
is over roor its. To redice the number of RMs sequird
the control store is divided between a vertical control

MIPS and transactions per second

Determining relative performance among computer systems has never been an easy task. The often-quoted millions-ot-instructions-per-second rate is intended as a way to compare basic central-processing-unit-hardware performance. Comparisons are also made on the basis of benchmarks. CPU-intensive benchmarks measure the performance of the CPU hardware and compiler; more extensive benchmarks measure the entire system perfor-mance-including the hardware, compiler, operating system, and data-base-management system. In general, the more extensive benchmarks give a more accurate
prediction of actual system performance.
Each of the various measurement techniques has pitfalls. The MIPS rate is perhaps the least accurate way to compare systems. One reason is that there is no easy way to relate the power of one instruction set to another. In addition, vendors vary in the way they measure MIPS: some use it for the speed of the fastest instructions, others measure the speed of the most frequently executed instructions, and still others measure the speed of a "typical" mix of instructions. According to these definitions, each NonStop TXP processor is 6,4 , or 2 MIPS, respectively.
developed using Tandem's proprietary computer-aideddesign system. The CAD system's capabilities for logic entry, logic simulation, and automated pc-board routing were instrumental in reducing the design time. While most high-performance CPUs require four to five years to develop, the NonStop TXP processor took just $21 / 2$ years-six months to complete a written specification, one year to construct a working prototype, and another year to reach volume production.

Performance measurement

Some simple benchmark programs have recently become popular in measuring performance (see "MIPS and transactions per second," p. above). One is the Puzzle benchmark, which is a CPU-intensive program to solve a three-dimensional puzzle. Execution times for Puzzle can vary widely for the same machine, depending on whether the program accesses arrays through subscripts or pointers and whether frequently used variables are assigned to registers. Versions of the Puzzle benchmark with pointers and registers were used to compare relative performance for a TXP processor.

Puzzle was written in Tal (transaction application language, the company's system-programming language); the execution time, using a single TXP processor, was measured at 1.67 s . This compares with 4 s on a VAX11/780 for Puzzle written in C. ${ }^{1}$ Because Puzzle does not measure such system features as support for virtual memory, I/O bandwith, and the ability to do fast context switching, a standard benchmark for comparing transac-tion-processing systems is still needed.
One transaction-processing benchmark has been developed by a third party, however. The U. S. Public Health

TABLE 3: TANDEM VERSUS IBM PERFORMANCE COMPARISONS		
	U.S. Public Health Sevice benchmark: results (transactions per second)	USPHS benchmark: extrapolated results* (transactions per second)
IBM 370/168-3	2	-
Tandem NonStop 15-processor system	4.5	-
IBM 4381-2	-	2.25
Tandem NonStop TXP 3-processor system	-	2.7

Service ran an extensive benchmark in 1981 to determine which system to select for a large on-line medical-information system. ${ }^{2}$ In that study, a 15 -processor Tandem NonStop system running a 1981 version of Tandem's Encompass DBM system performed the benchmark at a rate of 4.5 transactions $/ \mathrm{s}$. An International Business Machines Corp. System 370/168-3 running version 3 of the Adabas DBM system performed the same benchmark at 2 transactions/s.
This benchmark gives a data point for comparisons between Tandem and IBM systems. A 15 -processor NonStop system performs the Public Health Service benchmark 2.25 times as fast as an IBM 370/168-3. Though it would be desirable to compare the TXP system directly to one of IBM's newest systems, such as the IBM 4381-2, no competitive benchmarks have been published. However, comparisons of the MIPS rate of different processors within a single family are fairly accurate and can be used to extrapolate to newer systems.
According to market research performed by the Gartner Group, ${ }^{3}$ the IBM $4381-2$ is rated at 2.7 MIPS, compared with the older IBM $370 / 168-3$'s 2.4 MIPS rat-ing-a ratio of $1.125: 1$. Company tests have shown the NonStop TXP to have a MIPS rate approximately three times that of the NonStop processor. The extrapolation of the Public Health Service benchmark performance to the two newer systems is shown in Table 3.
Unlike many shared-memory multiprocessor systems, Tandem systems provide linear growth in transactionprocessing power as the system expands. A single system can include up to 16 processors, and clusters with as many as 224 NonStop TXP processors may be configured with Tandem's fiber-optic link. Clusters with up to 60 processors are currently in operation, and their users have verified the linear-performance growth within a cluster of this size.

The largest IBM mainframe today is the IBM 3084, which is rated at approximately 23 MIPS. Extrapolation from the benchmark data suggests that the performance of a cluster of 224 TXP processors is on the order of 10 times as powerful as IBM's top-of-the-line 3084 processor.

[^3]
TANDEM MAKES A GOOD TIINGBEIIER：

TOS 980n甘 bTOS6

VO ONILYヨdกว

 JN1 Sa3IndWOD WBCNV1 ONI SyヨIndWO WヨGNVI

TICKEL AWD DIWE GROWH ADDS UP ILP PC SOF W／AFIF／24 VEGTOR RROGESSIUC CIVES HYPEBCUBE CRAY SPEEDS／30

EDITOR-IN-CHIEF
 Robert W. Henkel

EXECUTIVE EDITORS

Samuel Weber (lechnical), Arthur Erikson (news)
ASSOCIATE MANAGING EDITORS
Howard Wolf, Benjamin A. Mason
ASSISTANT MANAGING EDITORS
Tom Manuel, Jeremy Young

ART DIRECTOR Fred Skienar

DEPARTMENT EDITORS
Business: Robert J. Kozma Communications: Robert Rosenberg Computers \& Peripherais: Tom Manuel Government \& Military: George Leopold Industrial a Consumer. Wesiey R. Iversen (Chicago)
New Products: Sleve Zollo, Ann Jacobs Packaging s Production: Jerry Lyman Semiconductors: Bernard C. Cole (Palo Alto)
Software \& Microsystems: Alexander Wolfe
Test \& Measurement Jonah Mcleod (Palo Alto)
NEWS EDITORS
John F. King. Jesse J. Leat
EDITORIAL PRODUCTION
Charies D. Caatio (Mgr), June Noto Kathy O'Neill

COPY EDITORS

Susan Levi Wallach (Chieft, Jay J. Iorio Bill Mclivaine, Jim Taibi

ART

Sachiko Soskin (Associale Director). Annamaria Paima

NEWS BUREAUS

Boston: Craig D Rose (Mgr.). Debra Michals Chicago: Wesiey R Iversen (Mgr.) Dallas: J. Robert Lineback (Mgr.)
Los Angeles: Larry Walier (Mgr.). Elie Aguilar New York: Tobias Naegele (Mgr.) Palo Alto: Clifford Barney (Mgr). Eve Bennen
Washingtor: George Leopold Frankfurt: John Gosch (Mgr.)

London: Sarah Milier
Paris: Rober T Galiagner (Mgr)
Tokyo: Charles L. Cohen (Mg^{\prime}), Man Matsushita,
Michae' Berger (World News Chief). Jonatnan Joseph
EDITORIAL ADMINISTRATION
Denise Giamo (Acministrative Assistant). Laura Aspery, Ina Gruber, Josephine Ortiz

PUBLISHER
Laurence Altman
DIRECTOR OF OPERATIONS
Thomas E. Vachon
CIRCULATION MANAGER Leon Irgang
PRODUCTION DIRECTOR Thomas Egan
RESEARCH MANAGER
Elda Vale
SALES ADMINISTRATOR
Eveiyn Schmidt
relevant, according to Jonah. The way Beirne explains it, even though McBride is technically in a higher position, "technology people are a resource shared by everybody in the company. It's just like at IBM, where the technology guys are out there helping the systems people solve the problems."

Editing material in New York gathered from around the world is a task that often requires the skill of a surgeon. But sometimes the scalpel slips, and you can be sure that the editors hear about it-often in the form of a deft jab that cuts neatly and quickly.
That's what happened JONAH McLEOD: Finds an im- last week when Charlie pressively rugged company. Cohen, in Tokyo, discovered an editing gaffe in dem's ruggedness is that it may be absorbed unintentionally from Tandem's archrival in the fault-tolerant computer business, IBM. For example, both lead designers on the VLX system worked for IBM before going to Tandem. Al McBride, technology director at Tandem, was responsible for the new system's macrocell arrays, and John Beirne, engineering manager, was in charge of the hardware work. Actually, the way things are set up at Tandem, McBride's title puts him one managerial level above Beirne.

But the corporate culture of the company tends to make such distinctions ir-
one of his stories before it was printed. Charlie's reminder about the subtleties of the language is a classic of the genre:
"Did you ever hear Harrison Salisbury's story of how he wrote a dispatch from Moscow [when he was the New York Times's correspondent] stating that he stood on the reviewing stand a stone's throw from Stalin? Evidently, the censor didn't understand the idiom and after receiving an explanation changed the text to read as follows:
"'I stood on the reviewing stand close to Stalin. I threw no stones.'
You might call the whole incident a bull'seye for Charlie.

[^4]

NEWS

Newsletters

Technology, 9

- Sony plays high-definition movies off video disks ... - ... and shows them on a $\$ 45,000$ monitor - Found: a way to cut CRT bulk without sacrificing screen size

Electronics, 13

- Aerospace firms told to do away with kickbacks . . . or else
- Will VAXmate cap DEC's current spate of product announcements?
- Now a second-source deal for bipolar arrays that's 'going to work'

Speech recognition, 16
IBM moves a step closer to voice-driven typewriter
Company strategies, 17
Texas Instruments to beat swords into plowshares
Personal computers, 18
Apple stirs up the Mexican market for personal computers

Displays, 18

- Army funding pays off in thin-film electroluminescent displays
-The Army wants a color
EL display, too
-Will IBM's Convertible laptop spark aftermarket in liquid-crystal displays?

Semiconductors, 20

Just what HEMTs need: a good driver

IC testing, 21

High-level simulator spots chip faults early
Instruments, 22
The instrument that measures almost everything
Business abroad, 22
Two giant chip makers weigh into Europe's ASIC market

INSIDE TECHNOLOGY

'Nickels and dimes' add up in PC software, 24
The days of the million-copy software best-seller may be over, but the market is still growing. Developers are creating products for specialized applications, integrating software for sharing programs on-line, and applying artificial intelligence
Vector processing boosts Hypercube speed, 30 By adding vector processors to its iPSC parallel computer, Intel Corp. has boosted the speed by two orders of magnitude. The company claims the new iPSC-VX offers supercomputer performance at one tenth the price of an equivalent Cray

PROBING THE NEWS

Is computer conferencing emerging as a tool? 41 With software on the way and networking companies showing interest, new capital gives the interactive technique a big boost Chip makers go all out to hike Japanese sales, 44 Trade negotiations haven't worked, say U. S. companies. So the Americans, led by Fairchild, AMD, and Intel, are increasing their presence in Japan to try to carve out a bigger share of the market

COVER

Tandem makes a good thing better, 34
Using an ECL gate array as a basic building block in its mainframe-class transaction processor, the NonStop VLX, Tandem Computers Inc. lopped 30% from the per-transaction cost of its supermini predecessor and tripled reliability
Tandem's old design pays off in new markets, 39 The maker of fault-tolerant computers is ready for the highgrowth markets of the 1980 s: distributed computing and networking
Cover illustration by art director Fred Sklenar

NEW PRODUCTS

Newsletter, 15

- Crystal will launch its Smart Analog chips in two months
- Apple to enhance

Macintosh but will not raise
the price

- Teledyne's MOS FET driver will deliver a peak current of 6 A

Logic arrays, 51

Fastest programmable logic yet, from Monolithic Memories, claims 10-ns propagation delay

Computers, 52

Wang says its minicomputer outruns DEC's MicroVAX in office applications
Integrated circuits, 52
SGS's triple-process motor driver chip is 98% efficient
Image processing, 54
Imaging Technology's processor beats real time

DEPARTMENTS

Letters, 4
Publisher's letter, 5

Companies, 46

A 'new' Applicon is trying hard to regain its prominence in CAD/CAM

Bottom lines, 47

Prime Computer now expects that its first-quarter earnings will drop

Electronics index, 48

Employment in the industry is still falling

People, 49

- Busy Portia Isaacson starts two new companies - Peter Chiasson finds a good fit at midsized Alsys - People on the move

Meetings, 60

Electronics week, 64

- Encore starts selling multiprocessor systems - NTT seeks approval for air phone

TANDE闑 MAKES A GOOD THING BETTER

ITS FIRST MAINFRAME RUNS TWICE AS FAST

\squaren the competitive world of computer technology, a compaay is only as good as its latest design. And on that benchmark, Tandem Computers Inc. gets high marks with its first mainframe-class machine, the NonStop VLX. The new model not only lops 30% off the per-transaction cost of the two-yearold NonStop TXP superminicomputer, but it also rests on a hardware base that is three times more reliable, the company says (see related story, p.39).
Designed for heavy-duty on-line transaction processing in such areas as airline reservations, banking, computer-integrated manufacturing, and telecommunications switching, the NonStop VLX executes 12 million to 48 million instructions per second The Cupertino, Calif., company says that's roughly twice the performance of the TXP for about the same price. It attributes the higher price/performance ratio and reliability primarily to the extensive use of the MCA2800ALS, an emit-ter-coupled-logic gate array that serves as a building block in critical parts of the central processing unit (see "Easy-design features make macrocell a hit," p.35). Other performance hikes come from streamlined instruction execution, reorganized cache memory, and a faster interprocessor bus.

Although speed was the paramount concern in designing the VLX, its developers also concentrated on fault tolerance and compatibility with the previous-generation system. The NonStop configuration of both the TXP and VLX provides dual paths to every element in the system. If one path fails, a second is available to make the connection. If one processor fails, another assumes its workload. Although this duplication slows throughput to a small extent, it guarantees that failures will not affect system operation.

When all units are functioning, they carry their full share of the processing load-there are no idle spares. This faulttolerant architecture, which remains unchanged on the new VLX system, can be described as a loosely coupled parallelprocessing system with distributed, nonshared memory.
One benefit of the distributed processing architecture is that it does not require one large central processor running at the highest possible clock speed. "Our design was at a point where we needed a faster central processor-but not the fastest possible," says Al McBride, Tandem's technology director. "We could get higher total system performance from the parallelism of the system architecture."
The parallel architecture allows Tandem to be more conservative in processor design than manufacturers of high-speed CPUs. For example, the company limited the number of circuits implemented on a gate array to 2,000 out of the 2,800 available gates. This meant that the macrocell arrays were easier to design and yielded a more reliable system.
The minimum VLX system consists of 1. ARRAYS ABOUND. The 31 gate arrays in the CPU's two boards (left) make high-density four CPUs, but the architecture can ac-logic circuitry. Two arrays and $256-\mathrm{K}$ chips populate the 8 -megabyte memory board (right).
commodate as many as 16 . Thanks to the macrocell technology it developed jointly with Motorola Inc.. Tandem was able to implement a two-board processor that executes 3 mips . By comparison, the TXP's 1.5 -mips CPU fit on four printed-circuit boards using medium-scale-integration TTL chips.
The denser macrocell array chips allowed each VLX processor board to contain about three times as many gates. Much of the VLX's speed improvement came from packing more logic onto fewer chips and boards, which reduces the number of interchip and interboard signals.

CIRCUITS TO SPARE

"We went from approximately 53,000 gates on four logic boards to approximately 85,000 on two," says John Beirne, engineering manager for VLX hardware development. "The macrocell arrays allow up to 2,800 circuits per array. But 2,000 to 2,300 is a more reasonable count for this circuit."
The mainframe's CPU holds 21 types of custom macrocell arrays (Fig. 1). In total, there are 33 different macrocell arrays in the Tandem two-board processor set. Of these, 31 are on the two logic boards that make up the CPU and two are on the accompanying memory boards. These include clever macrocell array designs that speed instruction execution from cache and branch operations.
Two critical elements of the new CPU that improve its overall speed in these areas are the instruction unit and execution unit (Fig. 2). The instruction unit consists of 10 macrocell arrays. One is a chip that makes a four-stage pipeline for simultaneously processing four instructions obtained from the

Electronics/Aprii 14, 198
$64-\kappa$ static-random-access-memory cache. The processor can fetch one instruction, decode a second, preprocess a third, and execute a fourth.
Two more macrocell arrays build a displacement adder that does address arithmetic for prefetching operands. This unit adds a displacement number to a virtual address to determine its physical address on a board. When the instruction unit prefetches instructions, address processing occurs in parallel with execution to anticipate the next instruction address.

In the older TXP, microcode-carried-out address calculation
In the older TXP, microcod
sed discrete logic chips. In both systems, the processor instruction set holds 220 ma chine instructions that handle such jobs as stack operations, integer and decimal arithmetic, and byte-riented functions. In addition, 43 other instructions perform scientific calculations.
The instruction set is im plemented by microinstructions in the control store, which users can use to implement new instructions or improve existing ones. Two of the 10 instruction-unit macrocells handle addressing of the control store.
Another macrocell array in the CPL is dedicated to branch control. It examines the conditions of all branch (or jump) instructions being executed. If the conditions indicate a jump, the array helps determine the next address to be accessed. This look-ahead capability tests the jump condition prior to execution of the jump instruction. By knowing that a jump is imminent, the contents of the cache can be flushed and reloaded with the contents of the new jump address and the subsequent addresses in this new sequence of instructions. Anticipating the jump can shave microseconds off an operation.

Four macrocell arrays in the address-translation unit cut the cache-fill time in half when the cache must be flushed and reloaded, as when a jump is executed. Tandem says this alone contributes several percentage points to the performance improvement of the new-generation system.
The cache itself got a speed boost. Cache cuts the time required to access data and instructions from slower main memory. During operation, several instructions following the one being executed have been prefetched into the cache. For example,

The best-seller in Motorola Semiconductor Products Inc.'s cell library is the MCA2800ALS. The emitter-coupled-log. ic macrocell array, the product of a joint development effort between the Phoenix, Ariz., Motorola Inc. subsidiary and Tandem Computers Inc., is a critical component in Tandem's fault-tolerant VLX NonStop computer.
Built with an advanced process called Mosaic II (Motorola oxide-isolated, selfaligned integrated circuits), the array outperforms discrete 100 K ECL chips. With a single 5 -V power supply, it runs at 125 MHz with a typical 600 -ps gate delay.
Mosaic II is a bipolar process that uses oxide isolation, which produces much smaller transistors than junction isolation. Some of the MCA2800ALS speed improvement results from compressing the 2,000 or so gates down to an area no larger than 100 mils ${ }^{2}$.
"One significant contribution Tandem made to the macrocell array is making it easier to design with," says John Carey, Motorola's merchandising manager. An especially attractive feature to logic designers is the TTL input/output capability Tandem added to the macrocell. TTL $1 / 0$ cells, not found on other any ECL macrocell arrays as yet, make it easy for designers who are adept at using TTL logic to incorporate the device into their designs. There are 120 signal pins on the chip, hence 120 TTL I/O cells. Each I/O cell is tied to a bonding wire coming off the chip and can be an input or output buffer.
With the array, a designer does not have to learn new design techniques to create his final design on the chip because the library of macro

EASY-DESIGN FEATURES MAKE MACROCELL A HIT

when there is a program in memory that the computer needs to execute, the processor fetches the program instructions from the high-speed cache instead of directly from main memory, thus reducing the amount of time to get an instruction. Besides being slower than cache memory, main memory is located off the processor board, which delays fetches from it even more.
New cache-hashing algorithms ensure a higher number of cache hits-that is, that needed instructions are in cache rather than in main memory. "Improving the performance of the
functions is very similar to existing discrete TTL circuits. Using a gate array with TTL I/O pins affords other benefits as well. For example, the designer does not have to use controlled-impedance boards, a must for ECL designs.

All 120 I/O cells can be used. "It is one of the more dense $1 / 0$ structures on the market," says Carey. "There are no restrictions concerning which pins can be an input, output, or bidirectional. Any one can be an input, output, or a tristate [high-impedance state] cell." Most arrays impose restrictions on which pins can be used.

BEST SELLER. The MCA2800ALS comes in a pin-grid array with a heat sink on the back.

The I/O cell is a significant addition to the Motorola library, but Tandem didn't stop there. The Cupertino, Calif., company changet the components making up the macrocell., which made it possible to implement a circuit element, such as a flip-flop, more efficiently. Tandem also improved the implementation of plain NOR and NAND gates inside the macrocell. These gates constitute about 20% to 25% of a chip's real estate. By implementing the NOR gates more effectively, for example, the designers achieved a 20% chip-density improvement.

For its NonStop mainframe, "we changed the distribution of the types of resistors and transistors in the macrocell," says Al McBride, Tandem's technology director. "We made changes to both the simple and complex functions to make sure we used a large percentage of the 2,800 circuits on each array."

Tandem also trimmed the power consumed by individual gates by changing the output resistor's rating. ECL internal structures have an emitter-output follower circuit. The output signal is dropped across the emitter resistor.

A variety of values are possible with this resistor. If the cell is used in a relatively low-speed data path, for example, a designer can reduce the power of the circuits in this path to reduce system power consumption.
"We changed the operating point of the current gates in the chip's internal ECL," says McBride. Very high-performance ECL products dissipate more than 8 W . Tandem needed to have no more than 5 W in worst case. "We changed the output-switch operating current. As current flow is lowered the performance, is necessarily decreased. The output-switch operating current is a value we traded off to reach our design goal," McBride explains. The tradeoff gave Tandem the necessary system performance without having to use liquid cooling.

Tandem and Motorola also created a threelevel ceramic pin-grid-array package that has heat sinks. This further improves reliability of the chip. Reducing the operating point by 10° to $15^{\circ} \mathrm{C}$ doubles the chip's life.

2. BASIC SET. A starter VLX system contains four identical CPUs, each with one or two memory boards, tied together by the Dynabus. A system can be expanded to 16 processors.
next microinstruction from bank B. One reason for this approach is that microinstructions are of variable length. Thus microinstruction A may be 1 cycle long and microinstruction B could be 3 cycles long. Having duplicate copies of the same microinstructions in each bank affords the most amount of overlap between microinstruction fetches, hence allowing a greater increase in speed over the conventional interleaving.
A fallout of the duplicated banks of microinstruction store is increased reliability, because a soft error in one bank can be repaired by loading the suspect bank with the known-good bank. In addition, if one of the two banks has a hard failure, the processor can continue operat-ing-but at slower speed-using only one bank.
The company had to use the same instruction set as in its previous-generation systems, but it had some flexibility and freedom in improving the microinstructions used to realize the macroinstructions, or common machine instructions. Tandem's NonStop system instructions can require from one to five microinstructions. Reducing the number of microinstructions needed for one instruction re-
cache-hashing algorithms [the way cache is organized for quick retrieval] is an important means of getting the hit rate up," says Beirne. "We took benchmarks on our early designs and tried various hashing algorithms. By running the benchmarks in a simulator to determine hit rates early in the design process, we knew what kind of performance we were going to get with the architecture."

Like the displacement adder, the address-translation unit converts virtual addresses to physical addresses. There are two identical arrays on the memory board for moving 64 -bit data words (8 bytes wide) to and from memory. Two macrocell arrays located between memory and cache provide error-correction codes.
The loadable control store, which contains the microinstructions that tell the instruction unit how to execute its instruction set, been made even faster with a dual interleaved design. It consists of fast SRAM that supplies microinstruction words to both the execution and instruction units.
Two more arrays control the addressing of microinstructions in the control store and four chips receive the output of the control store and put it into the three-stage pipeline of microinstructions. The four chips are identical, each one fourth of a total data flow path to the logic that executes the instructions.

TWIN MICROINSTRUCTION BANKS

In the control store is a unique design feature that contributes significantly to improving the operating speed of the macrocell arrays in the instruction unit. It consists of two separate banks of SRAM, each containing identical copies of the microinstructions.
A conventional interleaving scheme divides the microinstructions into two halves, even-address microinstructions in one bank and odd-address ones in the other. The state ma-chine-or instruction unit, in this system-would execute one microinstruction from bank A, the next from bank B, the third from bank A, and so on, because the cycle time of the instruction unit is faster than the RAM access time.

In Tandem's implementation, the instruction unit fetches a microinstruction from bank A, and as it executes, fetches the
quired some additional logic. But Tandem decided that the increased performance resulting from faster execution of instructions was significant enough to warrant the extra logic.
"From what our early benchmarks told us about our existing computer architecture, we discovered which instructions to optimize," says Beirne. "We plotted histograms of instruction usage to see how much time it requires to execute each instruction. Looking at instructions that were executed the most told us where to look for the greatest savings in instruc-tion-execution time. From this data we were able to perform analysis which would tell us we would get so much improvement in performance by adding logic to improve instructionexecution performance. We made the changes, then reran the simulations to see that the benchmarks improved."

OLD BUS, NEW PROTOCOL

Another increase in speed is provided by using a new bus protocol on the existing Dynabus. The previous bus protocol had radial clock distribution, which requires costly cabling. The new protocol uses a double-clocking scheme in which the clocks are distributed with the data. This method automatically reduces the amount of skew between the clock and data, thus allowing the system to more tightly compress the interval of data transmission.
The clock and data slow down the same amount over a longer length-if the data arrives later, so does the clock. Once transmission begins, the interval between data bursts can be very tight.
The new protocol allows Tandem to extend the length of the bus as well as increase its speed from 13 to 20 megabytes $/ \mathrm{s}$ per bus. With two buses in the system, the aggregate bus transfer rate went from 26 to 40 megabytes/s. "We have not seen a case where bus speed is a bottleneck," says Beirne. "However, we feel that the improvement positions us well for future processors as well as allowing heavier loading on the VLX processor. It gives us more margin."
When the system is operating, packets of transaction information move to and from the CPU through its I/O channel and the Dynabus. A high-speed bus on the CPU connects the Dynabus, I/O channel, and diagnostic data transceiver (a mi-
croprocessor that automatically monitors the CPU) with the execution and instruction units. Packets enter a one-packetwide input queue in the Dynabus, diagnostic data transceiver, or 1/O channel, depending on which is active, and their arrival generates an interrupt flag to the instruction unit. The interrupt causes the instruction unit to begin processing the packet. During this time, the processor's instruction unit begins fetching instructions from memory to determine what kind of processing the incoming packet requires. The incoming packet enters the execution unit when the program running in the instruction unit executes a Receive instruction.

ONE MACROCELL PER BUS

On the Dynabus board are two macrocell arrays that execute a sequence of prescribed instructions for receiving data off the bus. There is one macrocell array for each part of the dual bus. These chips receive data from the bus, check it, and pass it into the one-packet-wide input queue on the Dynabus. Previously, discrete logic performed this operation by executing microinstructions.
Functional logic that handles packet receipt and transmission is in the same macrocell array that receives and transmits data to and from the bus. Processing occurs much faster because more processing is performed inside the chip, with fewer chip crossings-movements of signals from
one logic chip to another on a pc board.
Two macrocell arrays make up the I/O channel and perform a function similar to the Dynabus. The two arrays replace the 70 or so discrete TTL components comprising the earlier system's I/O function. Improved reliability and a reduced chip count were the main benefits of using macrocells in this instance. Improving performance was a secondary consideration because the system was required to remain compatible with existing TXP 1/0 channels.
The execution unit holds seven macrocell arrays: four arith-metic-logic-unit slices, two register-file slices, and a barrel shifter. The ALU is a slice of the execution data flow path. It includes all the registers, parity-prediction logic, multiplexers, and the data path. Each of the four arrays represents one fourth of a 32 -bit-wide ALU, each identical eight-bit-wide units. Each operates on eight bits of the total data word being processed.
The ALU follows the strategy of creating one common macrocell and using it four times, rather than partitioning the ALU function into several distinct functions. The former method reduced the number of unique array designs for the ALU by a fourth. This strategy was used wherever possible throughout the processor and memory boards.
Each two-board CPU can have one or two memory boards, which store 8 megabytes each, for a total of 16 megabytes per

CHANGING COMPUTER FAULT SIMULATION AND REPAIR

The conventional wisdom in fault diagnosis and repair says wait until the problem occurs, then begin. But too often, the fault is a transient failure that cannot be recreated. So in the new NonStop VLX system from Tandem Computers Inc., the TMDS (Tandem Maintenance Diagnostic Subsystem) constantly monitors the system environment: processors, interprocessor bus, and tape subsystem. Microprocessor-based sensors scattered throughout the system can detect a fault as it occurs.
There are microprocessors throughout the system. The two system bus controllers contain the 68000 -based remote maintenance interface. Halleffect sensors inside the fans monitor intake and exhaust temperatures. On power supplies, TMDS can measure the actual analog output level. "These microprocessors collect this information and feed it into the remote maintenance interface and it is then fed back into TMDS, where it is analyzed constantly," says software manager Jamie Allen.

If a fault occurs, say, on one of the main processors, its 6809 microprocessor captures its entire state, 4,000 bits (500 bytes) of information called the event signature, and stores it on disk. It stops the processor clocks within one cycle and captures all the registers and states of the parity checkers throughout the machine. "We do parity checking across the control lines," says Allen.

Expert-system techniques are used to perform the fault analysis, In 90% of the cases, the program isolates problems down to field-repairable units, such as circuit boards and disk-drive modules. Eventually, the TMDS designers expect

WATCHDOGS. Microprocessors scattered around the VLX system gather maintenance data.
to achieve 100% accuracy.
There are other fault analyzers in the system. A general-purpose program called the Mother Fault Analyzer is written in Lisp using MRS, a rule-based language that sits on top of Lisp. Developed at Stanford University, MRS is similar to Prolog.
Because it is rule-based, the generalpurpose analyzer knows nothing about the events. The program interprets the rules against the event to determine what to do next. It may do nothing, for example, if it reasons that an event is of no importance, such as a corrected soft memory error. The fault analyzer can make some repairs itself.
A user can trace the entire analysis process, including results, at a terminal running a program called Problem Reporter. A Tandem engineer can also per-
form the analysis over the phone. Re motely, he can perform maintenance operations such as measuring the powersupply voltage, checking the operation of fans, adjusting power-supply margins, and adjusting the clock frequency up or down by 5%.
"We can come in over a modem and perform the analysis and in some cases actually perform the repair, especially if the cure is to rebalance the system, reload a processor that had an internittent error, or patch a software bug." says Allen.
The remote capability addresses one of the most troublesome parts of the maintenance problem, the "no fault found" service call caused by intermittent faults. With this system, the actual event is captured without having to duplicate the trouble after it has gone. \square
processor set. The company points out that memory capacity can be expanded up to 256 megabytes as higherdensity megabit RAM chips become available.
Gathering maintenance data has been speeded up, too. Two macrocell arrays inside the diagnostic data transceiver can capture every internal state of the VLX processor board in one clock cycle. Once the data is grabbed, it is shifted serially to a separate maintenance processor. Another macrocell array controls the collection of reliability data. There are eight strings of reliability data collected from each board in the VLX system.

MICROPROCESSOR-MACROCELL INTERACTION

One chip in the diagnostic data transceiver controls all the scanning for data and multiplexes it into a serial bit stream that goes to a 6609 microprocessor on-board the diagnostic transceiver. From the 6809, the information is routed to a separate 68000 -based maintenance processor. The second macrocell interfaces the 6809 to the execution and instruction units. "Here is a case where a single microprocessor is used but its related support circuits are put into one custom macrocell array," says Beirne.
Another way macrocell arrays improve processing speed is by allowing the system designer to concentrate on maximizing the performance of circuits that have the greatest impact on
sign tradeoff that paid off," says McBride. "We did not have to use controlled-impedance circuit boards, which would be required if using full-ECL gate arrays."

In addition, the company is able to build its boards using many off-the-shelf VLSI and LSI RAMs and microprocessors without having to redesign the entire computer from the ground up. Tandem's designers could have used ECL arrays throughout. But then they would not have been able to use non-ECL VLSI and LSI and the whole processor would have cost more.
A TTL I/O buffer interface on a macrocell chip is slower than ECL I/O buffers typically found on ECL macrocell arrays. "ECL is about two times as fast as TTL, but $1 / 0$ only affects 20% of the total performance of the computer, so you're talking about only a 10% effect on the total cycle time of the computer," says McBride. In addition, implementing macrocells with ECL I/O could raise the price of the design considerably. .
Tandem's design resulted from the fact that they could get enough system performance improvement even using TTL I/O, but TTL I/O allows the chips to be interfaced with all general-purpose commodity parts, RAMs, microprocessors and other non-ECL circuits. It gave Tandem a better system solution in terms of other components on the board as well as the pe-board technology.
the overall system processing speed. Tandem's analysis rerealed that about 50% of a computer's operating cycle is spent either in the cache or control store.
Another 20% of the total operating cycle is spent moving data between chips: the output of one logic chip is routed into the next. Gate delays and travel time between chips combine to slow computer performance. Finally, 30\% of a computer's operating cycle is spent in the logic of any given chip in a computer design.
Thus in designing VLX, the company spent much of its design effort improving the cache and control store and using high-speed ECL internal chips to speed processing. But they chose to compromise speed for simplified board design in the 20% of the total processor time spent moving data between chips.

Up until recently, ECL macrocells all came with ECL I/O cells. These cells require special interfacing translations if the macrocell I/O is to be connected with TTL circuits. They also require specialized pe boards. All of these requirements conspire to make ECL difficult to design with.

Tandem chose to change the macrocell array so that it offered a TTL t/O cell instead of ECL. "It was a de-

THREE YEARS AND A MILLION DOLLARS LATER...

Tandem's MonStop mainframe project was one program that lived up to its name-technology director Al McBride can attest to that "My first day, when I entered an empty office, I had $\$ 1$ million and a note from Jim [James G, Treybig, Tandem's president and chief executive officer] saying turn this into chips," he recalls.
The Cupertino, Calif., company's VLX project began in the fall of 1983 and was fully staffed to meet product requirements by March of the following year. McBride was charged with developing the semiconductor technology.

The first order of business was finding a supplier that could produce high-performance semicustom chips for the VLX, and developing a symbiotic relationship was

the key. "When we went into the agreement with Motorola Inc., we were looking at a nine-year marriage. If anything should happen during that time, it could jeopardize our product coming out."
Tandem would help define a new macrocell array, thereby getting the semiconductors it needed. Motorola, in turn, got to sell it as a standard part. "The rationale was simple," McBride says. "When you are a $\$ 100$ million company and have never bought gate arrays before, and you have a one-man cir-cuit-design department, you make a deal."

McBride worked at IBM Corp. for 15 years before joining Tandem. Since the early 1970s, he has worked on microprocessor and microcomputer chips, some for

IBM's Personal Computer.
It took about two years to develop the silicon technology, and then the system architects began. "We dovetailed the effort," McBride says. "We developed the silicon technology, and with about a three-month overlap, the system architects began their effort to develop the central processing unit."

That's when hardware manager and fellow IBM alumnus John Beirne took over. "I had two roles: CPU development manager and hardware program manager," he says. "We staffed up a team that designed the macrocell chips for the CPU."

Before coming to Tandem, Beirne, an energetic young man with engineering degree and MBA, spent seven years with IBM. "I was a technical leader and led a software project and worked with advanced chip technologies," he says. "One reason I got on the VLX project was my experience with very largescale integration."
Though McBride developed the chip technology separately from the actual system, there was considerable interplay. "If we had an idea for a circuit, we could evaluate it within a day or two against what impact it would have on system performance."

TANDEM'S OLD ARCHITECTURE PAYS OFF IN NEW MARKETS

IS IT A 'THREATENING COMPETITOR' TO IBM IN TRANSACTION PROCESSING?

by Clifford Barney

sunnyvale, calif.

Tandem Computers Inc. is a true original in a world of look-alikes. Though all computer makers strive mightily for product differentiation, they tend to come up with variations on a very few themes. Tandem has parlayed a unique computer architecture into an almost unmatchable position in the specialized world of transaction processing. The fault-tolerant design is now offering a new payoff: a powerful role in distributed computing and networking, two of the high-growth markets of the 1980s.
"The world is moving toward on-line processing," says Tandem president James G. Treybig. "Businesses are distributed everywhere: branch banks, retail stores, sales offices, point-of-sale operations. If they can understand what is happening instantaneously, they can keep inventories low and provide better services."
The company claims to have 60% of the automatic bank teller marketwhere it goes head to head with IBM Corp,-and a similar share of the electronic funds-transfer business between banks. Every major oil company uses Tandem equipment for cred-it-card transactions, Treybig says, and Tandem machines are used in 15 major stock exchanges, including the New York Stock Exchange. And the company is about to sign a contract for total automation of a major U.S. airline. Tandem hopes for even more market penetration with its new NonStop VLX, a cheaper and more reliable successor to its two-year-old NonStop TXP superminicomputer (see related story, p. 34).

Transaction processing will account for $\$ 1.8$ billion in sales for U.S. computer manufacturers this year, according to a recent report by Frost \& Sullivan Inc., the New York market research firm, and will grow to $\$ 4.7$ billion by 1990. At present, two thirds of the market is from online processing, such as automatic
teller machines. But office automation, now only 6%, will triple its market share by the end of the decade, and industrial process control will jump from 20% to 25%, the report forecasts. Tandem is even more bullish about the future of on-line processing. Dennis P. McEroy, vice president of software development, says the market already runs well beyond $\$ 10$ billion annually, the exact size depending on how the categories are chosen and who is doing the counting.
Last year, Tandem recorded $\$ 624.1$ million in sales, a sum over $1 \% \%$ higher than fiscal 1984's $\$ 532.6$ million and a reasonable figure in a miserable year for computer makers. The outiook is tougher this year: first-quarter sales increased only 6.5% over the comparable period in 1985.
"How well we do in 1986 depends on how well the computer market does in the U.S. If it doesn't pick up, we will be hard-pressed to have a better year than last year." Treybig says. International business-mostly to European coun-tries-is strong, he adds, but domestic

sales remain soft. "We did relatively well last year," Treybig says. "At least all of our people" $-5,500$ people at five manufacturing sites, 100 sales offices worldwide, and 19 subsidiary compa-nies-"kept their jobs."
Tandem's architecture is a form of parallel computing. But instead of breaking down one large problem into many small ones, as in most parallel systems, the Tandem approach starts with many small problems and processes them very quickly. Hence its suitability for distributed computing.
tailor-made. The location of a data base or a peripheral is immaterial in a Tandem system, which makes it wellsuited for networking. One process communicates with another through packet-switched messages without regard for physical location. The process of creating a network is therefore straightforward, requiring less input/ output buffering than with conventional architectures.
Its ability to offer networks makes Tandem one of the first mainframe manufacturers to be able to challenge networking companies. Through product development, it is already beginning to stress valueadded networks, and, with Rockwell International's Switching Division, it has developed an integrated communications and computer system for telemarketing.

Tandem was founded in 1974 to make computers for financial institutions, manufacturers, transportation companies, and others who needed the continuous processing of multiple events rather than batch processing of data. Instead of building hardware redundancy into its system. Tandem designed a message-based architecture, which allows all parts of the system to operate independently. Because the Tandem system can shut down gracefully, nodes can also be added easily. And because all this equipment must be continuously

TREYBIC: 'We are far ahead.

TANDEM'S OLD ARCHITECTURE PAYS OFF IN NEW MARKETS

IS IT A 'THREATENING COMPETITOR' TO IBM IN TRANSACTION PROCESSING?

by Clifford Barney

sunnyvale, calif.

Tandem Computers Inc. is a true original in a world of look-alikes. Though all computer makers strive mightily for product differentiation, they tend to come up with variations on a very few themes. Tandem has parlayed a unique computer architecture inte an almost unmatchable position in the specialized worid of transaction processing. The fault-tolerant design is now offering a new payoff: a powerful role in distributed computing and networking, two of the high-growth markets of the 1980s.

The world is moving toward on-line processing," says Tandem president James G. Treybig. "Businesses are distributed everywhere: branch banks, retail stores, sales offices, point-of-sale operations. If they can understand what is happening instantaneously, they can keep inventories low and provide better services."
The company claims to have 60% of the automatic bank teller marketwhere it goes head to head with IBM Corp.-and a similar share of the electronic funds-transfer business between banks. Every major oil company uses Tandem equipment for cred-it-card transactions, Treybig says, and Tandem machines are used in 15 major stock exchanges, including the New York Stock Exchange. And the company is about to sign a contract for total automation of a major U.S. airline. Tandem hopes for even more market penetration with its new NonStop VLX, a cheaper and more reliable successor to its two-year-old NonStop TXP superminicomputer (see related story, p. 34).
Transaction processing will account for $\$ 1.8$ billion in sales for U.S. computer manufacturers this year, according to a recent report by Frost \& Sullivan Inc., the New York market research firm, and will grow to $\$ 4.7$ billion by 1990. At present, two thirds of the market is from online processing, such as automatic
teller machines. But office automation, now only 6π, will triple its market share by the end of the decade, and industrial process control will jump from 20 ; to 25%, the report forecasts. Tandem is even more bullish about the future of on-line processing. Dennis P. McEroy, vice president of software development, says the market already runs well beyond $\$ 10$ billion annually, the exact size depending on how the categories are chosen and who is doing the counting.

Last year, Tandem recorded $\$ 624.1$ million in sales, a sum over $1 \% \%$ higher than fiscal 1984's $\$ 532.6$ million and a reasonable figure in a miserable year for computer makers. The outiook is tougher this year: first-quarter sales increased only 6.5 F over the comparable period in 1985.
"How well we do in 1986 depends on how well the computer market does in the U. S. If it doesn't pick up, we will be hard-pressed to have a better year than last year," Treybig says. International business-mostly to European coun-tries-is strong, he adds, but domestic

sales remain soft. "We did relatively well last year," Treybig says. "At least all of our people"- 5,500 people at five manufacturing sites, 100 sales offices worldwide, and 19 subsidiary compa-nies-"kept their jobs."
Tandem's architecture is a form of parallel computing. But instead of breaking down one large problem into many small ones, as in most parallel systems, the Tandem approach starts with many small problems and processes them very quickly. Hence its suitability for distributed computing.
tailor-made. The location of a data base or a peripheral is immaterial in a Tandem system, which makes it wellsuited for networking. One process communicates with another through packet-switched messages without regard for physical location. The process of creating a network is therefore straightforward, requiring less input/ output buffering than with conventional architectures.

Its ability to offer networks makes Tandem one of the first mainframe manufacturers to be able to challenge networking companies. Through product development, it is already beginning to stress valueadded networks, and, with Rockwell International's Switching Division, it has developed an integrated communications and computer system for telemarketing.
Tandem was founded in 1974 to make computers for financial institutions, manufacturers, transportation companies, and others who needed the continuous processing of multiple events rather than batch processing of data. Instead of building hardware redundancy into its system, Tandem designed a message-based architecture, which allows all parts of the system to operate independently. Because the Tandem system can shut down gracefully, nodes can also be added easily. And because all this equipment must be continuously

TREYBIC: We are far ahead.
available to its users, Tandem made it fault-tolerant. As a result, any given fault can be quickly isolated from the rest of the system.
So well has Tandem succeeded in establishing a reputation for fault tolerance that the company's other big strength-expandability-tends to be overlooked in the industry, and Tandem is not generally seen as a leader in technology. Says MeEvoy, "If we were a new company and announced the VLX [Tandem's new top-of-the-line product]
, everyone would say that we had outstanding technology, But we didn't start three years ago with venture capital, we started 11 years ago, and people tend to say we have older technology."
EXPANDABLE TO 48 mips. The new machine is linearly expandable from 3 million instructions per second to 48 mips. all completely transparent to the user, with no special programming. It can be "put into a distributed network with the same programs, with alternate routing in case of failures," says McEvoy. It boasts stateof-the-art ECL gate arrays and a special disk architecture for parailel throughput, he says.
To compensate for its lack of visibility, Tandem is beginning to take the wraps off some of its technology. With its own semiconductor facility and computer-aided design tools, Tandem worked directly with Motorola Inc. on the design of the ECL gate array for the VLX, thus shaving weeks off turnaround time. This circuit is only the beginning. A CMOS processor is in the wings, and Al McBride, director of very large-scale integration, hints that a new generation of processors awaits only the development of triple-layer metalization for the fabrication of very
dense "sea of gates" arrays.
MeEvoy claims that Tandem's zetworking software is also years ahead of the competition. No other distributed data base can run asynchronously and concurrently in multiple memories, he says; Tandem got a jump because it already runs a distributed data base in a single system.
One criticism sometimes leveled at Tandem machines is that the messagebased architecture means higher system overhead for users. But McEvoy says that it also results in the lowest cost per transaction and the cheapest route to modular expansion.
"If you stay with a single box," he says, "you are limited to the 20% to 30%

Tandem's success forced IBM to offer fault-tolerant systems

performance gain made each year by the technology." With the Tandem system, linking processors results in a near-linear increase in performance, the company maintains.
That's important, says McEvoy, because it gives customers a chance to start small. "You don't always know how successful an on-line application will be," he adds. "Automatic tellers have taken off, videotex hasn't. Modular expandability lets users invest more as demand grows."
McEvoy concedes that Tandem's mes-sage-based architecture rules out its participation in the engineering and scientific market and in real-time applications that require microsecond response time. "We are not compute intensive, we
are I/O intensive," he says. "You can call it special-purpose computing, but it's applicable to a good third of the business."

On the business side, says Treybig, Tandem's major achievement is its performance against IBM. "We forced them to buy someone eise's computer," he says proudly, referring to IBM's use of equipment made by Stratus Computer Ltd., Natick, Mass., in some of its transaction-processing applications. In addition, Treybig adds, AT\&T had to come out with a hardware-redundant machine, the 3 B 20 , to compete with Tandem in on-line computing.
threatenima. Indeed, says Stephen K. Smith, an analyst at Paine Webber Inc., New York, Tandem is a "threatening competitor" to IBM in transaction processing, a market IBM has traditionally dominated. IBM has mounted a significant effort to stop Tandem from taking away business, Smith says.
But Tandem's networking ability will keep the company a jump ahead of Stratus, IBM's supplier, says Michael Murphy of the California Technology Stock Letter. "They are clearly the leader [in transaction processing] and they can sell a network, not just one or two machines," Murphy says.
To broaden its markets, Tandem is be ginning to introduce message-handling software. It is beginning to offer a range of information-transfer programs, including electronic mail, data communications, facsimile, and microcomputer-tomainframe communications. Its networking software supports both IBM's LU. 6 Systems Network Architecture and the International Organization for Standardization's open-systems interconnection reference model.

Tandem also sees opportunities in factory automation and was one of the first companies to support the General Motors Corp.sponsored Manufacturing Automation Protocol. Late last month. Tandem bought a small piece of Triplex, a Torrance, Calif., maker of fault-tolerant programmable logic controllers, and the two will jointly produce a MAP system. "We are far ahead of anyone on networking software and distributed data bases," Treybig says in summary. "Others build networks on top of individual processors. Our lowest-level operating system is a network. That is unique."

[^0]: EDP Industry Report is published in annual volumes of twenty-four issues each by International Data Corporation, Post Office Box 965 , Five Speen Street. Framingham, MA 01701. Entire contentse 1985 by International Data Corporation. Editor, David Moschella, Associate Edilor, Donald Bellomy; Census Editons, Lioyd Cohen; Contributing Editors, Aaron Goldberg. Hank Janson, Ken McPherson, Ann Morley, Molly Upton, William F, Zachmann; Circulatlon Manager, Mary M. Trayte, Patrick J. McGovern, Chairman, International Data Group; Peter Rowell, President, International Data Corporation. Editorial ideas and information are researched and formulated by the editorial staff. Information and opinions in each issue are based on the best information available, but their accuracy and completeness cannot be guaranteed. Subscriptions: One year \$395, two years, $\$ 705$. Single copies priced as indicated on inside pages. Prices for multiple copies on request. Reproduction without written permission is completely forbidden. Teiex 95-1168 Telephone 517/872-8200.

[^1]: EDP Indintry Report is published in annual volumes of twenty-four issues each by International Data Corporation, Post Oftice Box s95s, Five Speen Street, Framingham, MA 01701. Entire contentse 1985 by Intemational Data Corporation. Edllor, David Moschella. Aesoclate Editor, Donald Bellomy, Census Editors, Lloyd Coher; Contributhg Edhors, Aaron Goldberg. Hank Janson, Ken McPherson, Ann Moriey, Molly Upton, William F. Zachmann; Circulation Maneger, Mary M. Trayte, Patrick J. McGovern, Chairman, International Data Group; Peter Rowell, President, International Data Corporation. Editorial ideas and information are researched and formulated by the editorial staff. Information and opinions in each issue are based on the best information available, but their accuracy and completeness cannot be guaranteed. subacriptiona: One year $\$ 395$, two years, 5706 . Single copies priced as indicated on inside pages. Prices for multiple copies on request. Reproduction without written permission is completely forbidden. Telex 95-1168 Telephone 617/672-8200.

[^2]: Reproduction forbidden. Copies of this information and other data available in the bound volume, Review \& Forecast Special Report for $\$ 425.00$ Call (617) $872-8200$

[^3]: Roferences
 'Malcolm A. Gleser, Judith Bayard, and David D. Lang. "Benchmarking for the Best" Datamation, May 1981.
 ${ }^{2}$ Computer Architecture News, 10 : 1, March 1982, p. 29.
 ${ }^{3}$ Gartner Group Inc., Starnford, Conn, market research surveys.

[^4]:

 Yon hre Yon ane aosiont maty sticts fotlapt peed o Worwes PO Repotation Nince moje

 intormation Gove Ausse C What Corvoing mid Compricasione

 Editorial department phones: Administration (212) 512-2645, News and New Products (212) 512-2685, Technology (212) 512-2666. Bureaus: Boston (617) 262-1160, Chicago (312) 751-3811, Dallas (214) 458-2400, Los Angeies (213) 480-5234, New York (212) 512-3322. San Francisco/Palo Atto (415) 9682712. Washington (202) 463-1650, Frankturt 72-5566, London 493-1451, Pans 42-89-03-80, Toky0 5819816. Business departmenta: (212) 512-3469 (Business departments follow the Advertisers' Index).

