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design, and code are written in different languages, and with dif-
ferent procedures. Each language translation introduces new errors
into the development process. By the time the software is finished,

it may not bear much relationship to what was originally requested.
With USE.IT, one language is used to define requirements and specifica-
tions and the source code is constructed automatically from the
design." said a company spokesman.

Specific enhancements in this release include: the ability to
integrate data dictionary definitions with USE.IT designs and imple-
mentations; increased use of local terminal capabilities to reduce
machine resource requirements and further improve user productivity;
and the capability, in multi-site design/development environments, to
capture designs and implementations and transfer them from one Tloca-
tion to another.

In addition to the IBM MVS environment, the USE.IT product line is
also available for VAX/VMS users.

For further information contact: Higher Order Software, Inc., 2067
Massachusetts Avenue, Cambridge, MA 02140. Tel: (617) 661-8900.
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What is GamePlan?

GamePlan is a planning environment for professionals who plan and manage major
projects and programs.

You state your top-level assumptions and objectives. Then, as you devise a strategy to
achieve those objectives, GamePlan provides you with an optimal tactical plan.

The "intelligence" built into GamePlan helps you to avoid tedious planning activities.
You concentrate on "what" you want to accomplish. GamePlan computes the "how".

As vyou identify key management roles and responsibilities, GamePlan helps you set up
guidelines for your management team. Each team member can then supply details about
specific parts of your plan. GamePlan helps you to integrate these sub-plans.

As your plan unfolds, Gameplan helps you to maintain a systematic approach. GamePlan
will tell you if your sub-plans are consistent with your higher level objectives.

* As you know, the only thing constant in planning is change. Because GamePlan is so
highly integrated, you can, for the first time, do real "what if* analysis.

The technology underlying GamePlan is a powerful new approach to activity and
resource integration, coupled with frame-based techniques derived from Al research.
Unlike the conventional network-based project management technology, GamePlan uses
integrated hierarchies. The introduction of integrated hierarchies allows for a new
dimension of computational intelligence and flexibility to the planning professional.

Better planning today -- with GamePlan.



Product Overview
GamePlan has been designed to meet the following objectives:
* You should be able to plan as you manage - and manage as you plan.

» You should be able to concentrate on creativity - and leave the tedium to the
computer.

* You should be able to have qualitative and guantitative summaries at your
fingertips.

+ You should be able to evaluate alternative plans guickly and interactively.

To meet the first objective, we designed a user-interface that closely mirrors the real
world of management. GamePlan is composed of three integrated hierarchies.

To meet the second objective, we have provided logical interface analysis for each of the
three hierarchies. You may design your plan top-down, bottom-up or middle-out.
GamePlan assures you an internally consistent plan.

To meet the third objective, you can consolidate or expand information at any planning
level and from any planning view.

To meet the fourth objective, you can play with confidence factors, manipulate resource
limits and reconfigure actions dynamically.

Any plan designed with GamePlan is composed of a course-of action, an operational-map
and a supporting set of resource definitions.

The course-of-action is a hierarchy of planning actions and
corresponding assumptions and objectives.

The operational-map is a hierarchy of actions and corresponding
resources distributed over a calendar period.

You define the types of resources you want as a hierarchy
of types and sub-types within the Resource Definition Facility .






Course of Action

On the course-of-action, you divide your strategy into discrete actions. Some or all of
these actions may have their own subordinate actions. Subordinate actions, in turn, may
have subordinate actions of their own.

Through the course-of-action, you set priorities and assign assumptions and objectives.
Each action may have its own assumptions and objectives. Assumptions describe how

many or which resources an action needs: objectives describe the resources an action
produces.

If an action has no subordinates, you assign the time needed to meet the objectives of that
action. If an action has subordinates, GamePlan computes the time for you.

The course-of-action meets GamePlan's design objectives as follows:

OBJECTIVE: A user-interface that closely mirrors the real world of
management.

The course-of-action is integrated. This assists you to manage by
objectives.

Look at the course-of-action example on the opposite page. Notice that the
objectives of the supervisory action appear as objectives of one of the
subordinates. The provided assumptions of the supervisory action are used
by the subordinates. The subordinates work together to meet the objectives
of the supervisory actions.

The course-of-action is modular. This makes it easy to reconfigure your plans.

Notice that each action, be it a supervisor or subordinate follows the same
format. Each is self-contained. Each can be viewed as an individual
"contract" with its own assumptions and objectives.

OBJECTIVE: Automatic logical analysis to eliminate tedium.

GamePlan's built-in connection rules are used to check both the interface
logic and constraint logic. If there is an error, GamePlan points you directly
to the problem.

The interfaces among supervisory and subordinate actions are automatically
analyzed by GamePlan. This makes it easy to add or delete actions.

All the interfaces among assumptions and objectives for any one action are
analyzed by GamePlan. This makes it easy to add resource constraints to
any action.



OBJECTIVE: Consolidate or expand information as needed.

The Work Breakdown Structure provides you with a summary of the
course-of-action by action name. From this view, you may select any
course-of-action. You may also use this view to enter or change any
action-frame's information.

At each action-frame, you get a summary of assumptions, objectives, duration
time, confidence factor, cost and revenue for that action.

For any course-of-action, you may expand the view of the action-frame
to include its set of subordinate actions. You may use the view to enter or
change any action-frame's information.

OBJECTIVE: Real "What If" Analysis

At any action-frame, you may assign a confidence factor, expressed as a
percentage. This factor is your estimate of how confident you are that you
can achieve your objectives as planned.

Whenever you wish, you may request GamePlan to show you the best or
worst case analysis of your plan. To compute the best case scenario,
GamePlan assumes you have 100% confidence in each action's estimate. To
compute the worst case scenario, GamePlan "rolls-down" cumulative

confidence factors from the top of your course-of-action to the lowest
subordinate actions.

You may, of course, change confidence factors whenever and wherever you
wish and request GamePlan to compute various scenarios.






Operational Map

When you have defined a course-of-action, GamePlan can find both the optimal schedule
and the optimal resource allocations for all of the actions. The operational-map shows
you the schedule and resource allocations over time.

GamePlan infers the precedence relationships among actions by analyzing your
assumptions and objectives. When you describe the type of resource you want and how
many you need, GamePlan allocates the resources you request and schedules the action in
accordance with your priorities and the available resources.

GamePlan computes how resources can best be shared. Shared resources may include
time. The overhead resources of a supervisory action are shared by all its subordinates.

The operational-map meets GamePlan's design objectives as follows:

OBJECTIVE: A user-interface that closely mirrors the real world of
management.

The operational-map is integrated. This assists you in effective utilization
of upper, middle and lower management resources.

Look at the operational-map example on the opposite page. Notice that the time
and resource distribution are shown for both supervisory and subordinate actions.
Whenever you adjust a subordinate action, you may affect the length of time over
which you need supervisory activity. You may adjust supervisory actions without
bothering with the details.

The operational-map is modular. This makes it easy to adapt actions to new
project environments.

Whenever you use one course-of-action as part of a new project, it can be viewed
as a reusable "template" for dynamic resource allocation.

OBJECTIVE: Automatic logical analysis to eliminate tedium.
The timing interfaces among supervisory and subordinate actions are analyzed

automatically by GamePlan. This eliminates the need for you to define precedence
rules.

The resource interfaces are analyzed automatically by GamePlan from your
assumptions and objectives. This eliminates the need for you to manually allocate
resources.

OBJECTIVE: Consolidate or expand information as needed.

The Action Schedule may be viewed for one planning level or expanded in depth to
the lowest subordinate actions.



The resource "spreadsheet" shows you resource utilization and associated
" revenues, costs and profit. You may request a summary for a particular
action or an expansion separating supervisory from subordinate resources.
For each summary resource, you may expand by sub-type until you see each
member.

OBJECTIVE: Real "What If" Analysis

At any scheduled action, the operational-map shows you the "slack" time.
You may interactively adjust that action over time within the slack period.
Whenever you do so, you will immediately see the effects on resource
utilization and associated dollars.

You can then fine-tune your resource levelling interactively.






Resource Definition Facility

With the Resource Definition Facility, yo[: may organize your resources in types that
have common attributes. Some or all of these types may have sub-types.
Sub-types may have sub-types of their own.

Types inherit the attributes of their super-types. They may have additional attributes
of their own.

Members of a type are also members of their super-type. If a type has sub-types, the
members of one sub-type may be members of another sub-type.

The Resource Definition Facility meets GamePlan's design objectives as follows:

OBJECTIVE: A user-interface that closely mirrors the real world of
management.

The Resource Definition Facility is integrated. This assists you to effectively
utilize the same resource as it plays different roles.

Look at the Resource Definition Facility example on the opposite page. Notice that
construction manager is a sub-type of manager and line manager is a sub-type of
manager. Joe could be a construction manager. He could also play the role of line
manager. Joe inherits a manager's attributes. In addition, he may have
construction manager attributes and line manager attributes. On the course-
of-action, you may use Joe as a construction manager for one action and as a line
manager for another action.

The Resource Definition Facility is modular. This assists you to effectively utilize
different resources within the same type.

Each type is self-contained with its own attributes and members. You may add or
remove members whenever you want to. You may also disconnect a type from a
super-type and connect it to another type. Whenever you do so, the type inherits
the new super-type's attributes; but it keeps its self-contained attributes and
members.

OBJECTIVE: Automatic logical analysis to eliminate tedium.

The interfaces among types are automatically analyzed by GamePlan. This makes
it easy for you to add or remove types.

All the interfaces among the attributes for any one type are analyzed by GamePlan.
This makes it easy for you to add or remove attributes.

As GamePlan checks the interface logic, it will explain to you exactly where an
error occurs.



OBJECTIVE: Consolidate or expand information as needed.

The Type Breakdown Structure view of the Resource Definition Facility
gives you a summary by type-name. From this view, you may select any
type. You may also use this view to enter or change any type's attributes.

For each type, you get a summary of the limit, properties and defaults.

For each type, you can view a table of property values by member. You may use
this view to add members, delete members or change property values for any
member.

OBJECTIVE: Real "What If" Analysis

For any resource type, you may assign a limit, expressed as a whole-number.
GamePlan will add members to a type for you whenever the members you have
specifically identified are insufficient to execute your plan in the shortest
possible time. Whenever you assign a limit, you restrict the number of resources
available for GamePlan to use in allocating resources for your course-of-action.

The default assumed by GamePlan is that an unlimited number of resources can be
added. If all types are defaulted, you will see how many additional resources you
will need to execute your plan in the shortest possible time.

By changing type limits, you can evaluate resource utilization vs time to
complete.



GamePlan's Working Environment

As a planning professional, you need to be able to use computing power intuitively.
GamePlan, available on any of the Symbolic 3600 family of workstations supports that
need.

You use high resolution graphics to communicate rapidly and interactively. You can use
a mouse or a command language, as you prefer.

You use a large screen which gives you more information at a glance.

You take advantage of sufficient processing power to give you the answers you need
quickly.

GamePlan combines state-of-the-art software technology with state-of-the-art
hardware technology to provide you with the ultimate planning machine.
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systems; operating system design; man-machine interface
design; error detection and recovery design; and methods
for managing, integrating, developing, and maintaining
large-scale, real-time, multiprogrammed, multiprocessed
system development activities.

Hamilton holds a bachelor of arts degree in

mathematics from Earlham College.
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Lutz began his career at IBM as an applied scientist
and manager at the Systems Research Institute. During his

14 years with IBM, he founded and directed the IBM Systems

Science Institute.

Throughout his career, Lutz has served as adjunct
faculty member to several graduate schools, including the
University of Minnesota, the Pratt Institute and the
University of Newcastle (U.K.). He is an internationally
recognized lecturer and is the author of several DELTAK
video journals on systems management,

Lutz holds a bachelor of science degree in mathematics
from South Dakota School of Mines and Technology and an
masters of science degree in operations research from New

York University.
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"Computers have been used for years to automate
procedures and increase productivity in other areas, hut
the development of software itself has not been automated,”
said Hamilton.

It is 10 to 100 times more expensive to correct an
error in the testing stage than to find and correct it as
the software is being designed. With so much of their
resources dedicated to maintenance, Adata processing
departments are falling further behind in developing new
applications.

"It is becoming clear that the ability of a company to
compete depends largely on its ahility to process
information more efficiently than its competitors," said
Hamilton. "Companies are demanding complex new
applications, such as manufacturing or financial control
systems, to fulfill their strategic requirements. Yet
transforming these requirements into reliable software is
time-consuming and expensive at best, and in some cases
impossible, using current development tools.,"

USE.IT approaches this problem by applying computer-
aided design to the software development process. This is
analogous to computer-aided design and manufacturing tools
(CAD/CAM). Just as CAD tools let the designer model a
product and correct design errors before production begins,

USE.IT lets software designers create specifications that

=more—
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are logically consistent and complete before a single line
of code is produced. And just as CAM tools automate
production, USE.IT automatically generates running
programs based on the specifications.

"USE.IT also addresses the problem of software that
does not meet the need for which it was ostensibly
designed," said Hamilton. "With traditional design
methods, the end-user describes what he or she wants the
software to do. But the requirements, specifications,
design, and code are written in different languages, and
with different procedures, using manual processes. By the
time the software is finished it may not bear much
relationship to what was originally requested."

With USE.IT, the end-user and the software developer
can work together at a terminal to develop specifications
in a simple, easy-to-understand graphical format, using
the end-user's terminology. Specifications are
automatically analyzed for logical correctness. At any
stage in the specification process it is easy to create a
prototype to show the end user how the software will work.

"The ability to create and run prototypes quickly
enables the end user to participate closely with the
software developer in the specification process and
eliminates the problem of systems that do not do what the
user wanted them to do," Hamilton said.

When applications are completed, corrected, and

tested, USE.IT automatically produces computer code,

—more-
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bypassing traditional manual programming, If a completed
application must be changed for any reason, the changes
are made to the specification and code is regenerated.

International Data Corp. (IDC) estimates that
large-scale systems users spent approximately $126 million
on software design and development tools such as program
and application generators and database management systems
in 1984 and predicts sales of $500 million by 1988.
"These figures do not even take into account complete
automated development tools such as USE.IT," said
Hamilton, "Obviously, there is a large and rapidly
growing market for products that can ease the growing
development burden of data processing departments."

After two years of successful experience on DEC VAX
systems, USE.IT is available for IBM mainframes running
the MVS operating system and presently supports the COBOL
language. Interfaces exist for IMS and CICS. Releases
planned for late 1985 include support for the FORTRAN
language and IDMS data base management system. The
introductory price of USE.IT is $95,000 and it will be
available in April, 1985,

For further information contact: Higher Order
Software, Inc., 2067 Massachusetts Avenue, Cambridge, MA

02140. Tel: (617) 661-8900.

L A

4391c/032085/GF






Overview of USE.IT/Page 2

What Can USE.IT Do?

With USE.IT, system developers can:

o State the requirements, specifications and design
of any system in a single langquage that, while
mathematically bhased, is nevertheless easy for
anyone to understand and use.

o Automatically analyze these system descriptions
at any stage of development to detect logical
errors.

o Run prototypes of these system descriptions at
any stage of development to verify that the
system is operating as expected.

o Automatically generate computer code that exactly
corresponds to the verified specifications.

o Automatically generate English-language
documentation for the system.

o Maintain the completed system by making changes
to the specification, and re-generating new code

to match the changed specification.

These capabilities of USE.IT, and the HOS Methodology
itself, are based on a simplified set of three system
description structures., These three structures, called
JOIN, INCLUDE, and OR, represent the three basic types of
processing, i.e., dependent processes, independent
processes, and choice of processes.

-more-
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In the JOIN (J) structure (Fig. 1), which represents
dependent processes, the right hand child of the parent
function processes the inputs to the parent function, and
passes its outputs to the left hand child. This Function
processes these inputs and produces the outputs of the
parent.

In the INCLUDE (I) structure (Fig. 2), which
represents independent processes, each child processes a
portion of the inputs to the parent function, and each
produces a portion of the outputs of the parent.

In the OR (0) structure (Fig. 3), which represents
choice of processes, one of the child processes is chosen,
based on a boolean variable, to process the inputs of the
parent and produce the outputs of the parent.

The structures, whose rules can be learned by anyone
in an hour, can be used to define any functional system.
Systems defined using these structures can be machine
analyzed for errors at any stage of the development

process.

System Specification

During system specification, system functions are
decomposed into a general hierarchical tree structure with
specific properties. This structure has been proven to he
mathematically correct. In this tree structure, complex

functions are broken down into smaller, simpler

-more-—
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functions. These functions are in turn broken down into
even simpler functions, and so forth.

Data variables (inputs and outputs), are assigned to
these functions according to the three rules, depending on
the relationships between the functions. The names of
both data variables and functions can be suited to the
specific application, producing a specification that even
non-technical people can understand.

HOS functional decomposition is a logical, simple
process producing a system specification that is logically
consistent and complete., Errors in specifications can be
detected by computer early in the development cycle, when
error detection and resolution are up to 100 times less
expensive than in the testing phase.

This specification also can serve as the basis for
automatic source code generation. This capability has two
distinct advantages: first, the elimination of manual
production programming; second, the ability, using
simulation of incomplete functions, to automatically

generate working prototypes at any stage of the

development process.

The HOS Functional Life Cycle

The HOS Functional Life Cycle is a complete departure
from the familiar "waterfall™ life cycle. 1In this
traditional life cycle, requirements, specifications,

-more—
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design, and code are manually written in different
languages and with different procedures. Errors, hoth
logical and conceptual, are not found until the test
stage. Manual programming takes up a major portion of
development time. And the maintenance process consumes
enormous resources, often contributing to, rather than
reducing, the disintegration of the system,
The HOS Functional Life Cycle (Fig. 4) is quite
different, consisting of three distinct steps:
Step 1: Create Specifications with the Graphics
Editor.
Step 2: Analyze and Prototype-test Specifications
(Automatic).

Step 3: Implement Specifications (Automatic).

Step 1l: Create Specifications

The systems analyst creates functional specifications
in close cooperation with the end user. Using familiar
structured design techniques, the analyst decomposes the
application into a tree structure. The analyst specifies
the tree structure on-line, in graphical format, with the
USE.IT Graphics Editor.

The tree structure is specified according to the three
simple rules, which enable both data flow and control
relationships to be defined in a single diagram. Also,
for maximum clarity, function-names and data-variable

—more-
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names can be specified that are germane to the application

being created.

Step 2: Analvze and Prototype-test Specifications

At any point in the specification process, the analyst
can invoke the USE.IT Analyzer. The Analvzer
automatically detects logical specification errors by
performing an exhaustive analysis of all data and control
relationships throughout the entire tree structure,
Errors consist of violations of the specification rules
and include data typing, control, recursion, data
conflict, and interface errors. All errors are displayed
on the terminal screen.

The analyst then uses the Graphics Editor to correct
specification errors. He continues analyzing and editing
in an iterative manner until no more errors are found. At
this point, the specifications have been proven to he
logically consistent and complete.

Also, at any stage of the specification process, the
analyst, hy directing USE.IT to simulate incompletely
defined functions, can generate and run a system or
subsystem prototype to test the conceptual correctness of
the current specifications.

Prototyping is frequently used to demonstrate the
operation of the system to an end-user early in the
develooment process. The abhility to quickly create and

-more-—
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run prototypes enables the end-user to participate closely
in the specification process and eliminates the problem of

systems that do not do what the user wanted them to do.

Step 3: TImplement Specifications

When the specifications have been analyzed for logical
completeness and consistency, and have been
prototype-tested for conceptual correctness, USE.IT will
implement those specifications for a specific machine
environment.

The USE.IT module which performs this task is called
the Resource Allocation Tool (RAT). After the RAT has
generated source code, the code is compiled to produce
object modules, and the obhject modules are linked to

create run modules.

Maintenance with USE.IT

Maintenance of USE.IT systems is an equally simple
procedure; it proceeds in the same manner as development.
When changes, either error-corrections or enhancements,
are to be made to an existing system, they are made to the
specification, using the Graphics Editor. These new
specifications are then analyzed (and prototype tested if
necessary), and new code is re-generated to match the

changed and verified specifications.

-more-
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For further information contact: Higher Order

Software, Inc., 2067 Massachusetts Avenue, Cambridge, MA

02140. Tel: (617) 661-8900.
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International Data Corp. (IDC) estimates that
large-scale systems users spent approximately $126 million
on design and development tools in 1984, an increase of
nearly 50 percent over 1983, 1IDC predicts that figure
will more than double by 1986 and will reach more than
$500 million hy 1988. Approximately 28 percent of the
1,100 IBM sites polled in another IDC studv use an
application generator,

Despite the use of these tools, the backlog of
applications continues to grow. A survey by Applied
Computer Research, Inc. showed that in 1984 large data
processing departments had an average applications backlog
of more than 27 months. Only three years ago a similar
survey found a backlog of only 19 months.

Not only is the backlog growing, but the applications
the data processing department is being asked to develop
-- insurance claims systems, order processing systems,
financial control systems -- also are becoming more
complex. Transforming these applications into reliable
software is time-consuming and expensive at best, and in
some cases impossible, using current development tools.

It is clear that programmer productivity is not the
most significant problem facing software developers.
Programmer productivity tools have not cut backlogs, and
while the programs they help develop may be somewhat more

reliable, they address only a small set of applications.

-more-
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Historically, software development has followed a life
cvcle which generally includes requirements,
specifications, design, implementation, integration,
testing, deployment, and maintenance. Requirements and
specifications often contain ambiguities. Error-prone
manual processes are used within and between phases.
Testing is only done near the end, after programming,
rather than near the beginning when errors can be caught
hefore they propagate throughout a system. The
requirements of the software system are influenced by
considerations of the hardware on which it will run and
with which tools it will be developed.

Most errors enter the software design process in the
specification phase -- and it is very difficult to
eradicate these errors once a program is developed. From
50 to 70 percent of data processing budgets are allocated
to application maintenance. And it is 10 to 100 times
more expensive to correct an error in the testing or
maintenance stages than in the requirements or design
stages.

To address this problem, a number of structured
development techniques attempt to improve the process of
formulating requirements and specifications. These
techniques make use of data flow diagrams, structure
diagrams, and mini-specifications, all developed

manually. Also, as many as five languages mav be used

-more-
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before a program is hand-coded, and the interface between
each language provides numerous opportunities for
misunderstandings and errors. No portion of the
development sequence is automated, and there is no way to
prove the correctness of data flow diagrams and the
corresponding structure charts.

The need is growing for an automated development tool
that produces reliahle specifications and then
automatically generates code and documentation from those
specifications.

Higher Order Software, Inc. has developed such a tool,
USE.IT, which attacks the root problem of software
development -- the traditional life cycle itself. USE.IT
implements the life cycle by having the developer start
off by defining the specifications in a hierarchical
manner, USE.IT then analyzes the developer's definition
for consistency and logical completeness. The definition
and analysis phases may be repeated several times before a
complete set of unambigquous specifications are developed.
Finally, USE.IT produces programming code automatically
from the specifications. Documentation also is produced
automatically.

With USE,IT, software development is automated.
Software designers can create specifications that are
guaranteed to be logically consistent and complete before

a single line of code is produced. USE.IT prescribes a

-more-



Automating Software Development/Page

set of rules that monitor the correctness of any software
system automatically. It supports the the entire
life-cycle of an application, including:
o Detection of errors in the early stages of the
development process, where they are easiest (and

cheapest) to fix.

o Integration of the development process by a
rigorous and traceahle linkage between
requirements, design, specification, and

implementation.

o Insulation of business knowledge from computer
knowledge, by keeping descriptions of what the
system does in business terms separate from

descriptions of how it is done on the computer.

o Automated prototyping capability, so that the
user of the system can actually run the system,
and know that it meets his requirements before

any final code is written.

o Automated generation of final production code, so
that code is gunaranteed to match the

specification.

-more-
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o] A formal link between the running system and new
enhancements required by a changing business
environment. With such a link, svstems will no

longer become degraded in the maintenance stage,

and can endure indefinitely.

o) Automated generation of system documentation, so

that documentation is always current and correct.

o Automated management of reusablility. Re-use of
existing programs and structures can
significantly reduce both delivery time and cost
of new systems. 1In addition to reusable code and
data, USE.IT offers the unique capability of
managing reusable specifications and designs -- a

quantum step in productivity.

USE.IT has the potential not only to drastically
reduce program errors but to attack the problem of
ever~escalating application backlogs. Programmers are
freed from the burden of maintaining existing systems to
work on the new systems management requires. Applications
will more closely meet the needs of end-users because
specifications are rigorously defined at the beginning of

the development cycle.
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Hamilton and Zeldin have been joined at HOS by James
Frame, executive vice president and chief operations
officer. Frame has more than 22 years of software
business experience at IBM and for six years was corporate
vice president at ITT.

The Cambridge, Mass. company has raised more than $9.2
million in venture capital, $5.7 million as recently as
April, 1984. 1Investors include Alex. Brown & Sons;
Cazenove; Emerging Growth; Frontenac; Greylock; Henry &
Co.; the Hillman Fund; James Martin; Merrill Lynch; Samuel
Montagu Co.; Newcastle; Sears Pension Trust; J.F. Shea
Co.; and Venrock. HOS gquadrupled revenues in fiscal 1983,

Sales offices across the United States serve a roster
of Fortune 200 and other major corporations who have
recognized the value of HOS products and services.
Computertime Network Corporation, Ltd. of Montreal, P.Q.
is a Canadian licensee.

HOS and Sema-Metra, a leading French high technology
firm, are involved in a joint venture to market HOS
products in Europe.

James Martin, the well-known consultant and author,
has devoted a book, "Program Design Which Is Provably
Correct," to HOS products and methodology. In the book he
said, "This methodology is so powerful that it needs to be
regarded as a major new technology for creating

systems....The beginnings of true software engineering."

LI
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Higher Order Software, Ine.

CONTACT:
Thomas D. Lutz
Higher Order Software, Inc.

(617) 661-8900 FOR IMMEDIATE RELEASE

HIGHER ORDER SOFTWARE APPOINTS JAMES FRAME

EXECUTIVE VICE PRESIDENT AND CHIEF OPERATING OFFICER

CAMBRIDGE, Mass., Oct. 4, 1984 =- James Frame has been

appointed executive vice president and chief operating

officer of Higher Order Software, Inc. (HOS), the company

announced today. Frame brings 28 years of business

experience at IBM and ITT to his new position.

HOS creates, markets and services automated software

development tools, such as USE.IT for the Digital

Equipment Corp. VAX line of superminicomputers. These

tools dramatically increase the productivity of large

software application design and maintenance.

"The addition of Jim to our management team uniquely

positions HOS for the introduction of a significant line

of software products to the IBM marketplace," said

Margaret H. Hamilton, president and chief executive

officer of HOS. "During his 22 years of top management

achievement at IBM, he pioneered the development of

software as a standalone business product. With Jim's

help, we can extend our industry leadership in

-more-—
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providing the highest level of business support to
executives seeking a competitive edge in the '80's."

Frame said, "HOS products represent a true watershed
in the software industry. They have the same potential to
dominate the software engineering marketplace for decades
to come as IMS has dominated the database marketplace in
the past.™"

Frame joins HOS after six years with ITT, where he was
corporate vice president of programming. Under his
leadership, the 8,000 software engineers in ITT recorded a
dramatic productivity rise within three years.

"The very success of our productivity experiences at
ITT clearly demonstrated the need for further, geometrical
productivity increases in the future,” Frame said. "I am
highly confident that HOS can break the vicious computer
application backlogs facing the industry."

Previously, Frame spent 22 years at IBM, where he led
the business development of many IBM products and services
that are industry standards today. These include:

o IMS database management system

o CICS (Customer Information Control System)

o COBOL, PL/l1, FORTRAN, APL and BASIC programming

languages

o BTAM and TCAM telecommunication access methods

o DOS/VS operating system for the IBM System/370

-more-
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In addition, Frame established the Programming Center
Development Laboratory in Research Triangle Park, North
Carolina, and the Santa Teresa Laboratory of San Jose,
California.

"Santa Teresa was designed from top to bottom to
further software engineering,” said Frame. "The
Laboratory is the first of its kind in the world, a unique
synthesis of architectural beauty, human ergonomics and
IBM software production values." It has won numerous
awards, including an American Institute of Architects’
National Honor Award, and has been imitated by several
major corporations.,

Frame is a graduate of St. John's College, Annapolis,
Maryland, where he is vice chairman of the Board of

Visitors and Governors.
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HOS

Higher Order Software, Inc.

CONTACT:
James Frame
Higher Order Software, Inc.

(617) 661-8900 FOR IMMEDIATE RELEASE
HIGHER ORDER SOFTWARE APPOINTS THOMAS D. LUTZ

VICE PRESIDENT OF MARKETING AND SALES

CAMBRIDGE, Mass., Oct. 4, 1984 -- Higher Order
Software, Inc. (HOS) has appointed Thomas D. Lutz as vice
president of marketing and sales, the company announced
today.

"Tom's unbroken string of successes in the management
and systems education business will further strengthen our
commitment to professionally market and support our HOS

products," said Margaret H. Hamilton, president and chief

executive officer of HOS.

Hamilton said, "We are determined to hire the top
people throughout the information systems industry; people
who combine a reputation for business innovation with an
extraordinary depth of information industry experience.
Tom not only meets but exceeds these conditions."

Prior to joining HOS, Lutz was principal and director
of education and communications at Nolan, Norton and

Company, a high technology management consulting firm. He

-more-
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Lutz alsoc spent seven years as the head of information
systems for the Mayo Foundation, where he was responsible
for developing and marketing all clinical, research and
administrative systems.

Lutz began his career at IBM as an applied scientist
and manager at the Systems Research Institute. During his
14 years with IBM, he founded and directed the IBM Systems
Science Institute.

Throughout his career, Lutz has served as an Adjunct
Professor to several graduate schools, including the
University of Minnesota, the Pratt Institute and the
University of Newcastle (U.K.). He has lectured
extensively in Asia, Africa, Australia, Europe and South
America. He is also the author of several DELTAK video
journals on systems management.

Lutz holds a bachelor of science degree in mathematics
from South Dakota School of Mines and Technology and an
masters of science degree in operations research from New

York University.
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TOWARDS ULTRA RELIABLE MEDICAL SYSTEMS

Margaret H. Hamilton
Hamilton Technologies, Inc.
17 Inman Street
Cambridge, Massachusetts 02139

Abstract

With today's conventional system development techniques, as
size and complexity increase so does the probability that a system,
when introduced into operation, cannot be trusted. This is despite an
inordinate amount of testing and evaluation. And when a system
works, the cost of attaining such a state is often needlessly high. The
predictable result is wasted dollars, lost time and missed deadlines.
For many systems, coping with events that cannot be entirely
predicted is vital to effective real-time system performance. The
uncertainty of actual environmental conditions at the moment of truth
can present challenges to operational reliability that border on the
impossible. Such was the case with the Therac 25 radiation therapy
environment [1, 2]. As a result of hardware, software and
humanware system defects and defects in integrating these systems
during development and in real time, people unnecessarily lost their
lives. These incidents are a cruel reminder that "One small break in
the chain of care can have grave consequences” [3].

For a medical environment, whether it be one with direct or
indirect human involvement, a technology which reverses these
trends is needed to develop ultra-reliable systems. Ideally, a system
that is ultra-reliable has zero defects. Zero-defect systems are
theoretically possible, but difficult, to achieve. There are today,
however, substantial numbers of errors which exist, or potentially
exist, in developed systems or systems to be developed which can be
eliminated. This can be accomplished by using a combination of
common sense and advanced modeling, simulation and software
development techniques.

Properties of Zero-Defect Systems

A system is an assemblage of objects united by some form of
regular interaction or interdependence. It could consist of hardware,
software or humanware objects; or, it could be a combination of any
of these. Thus, a person, a computer, a software program or the
integration of these objects is a system. A zero-defect system is
defined in terms of properties about the system (e.g., its
developmental states of existence such as a definition or an
implementation, each of which is an evolving input object to the
system which develops it) and in terms of properties of the system for
its operational states of existence. A zero-defect system is one which
is reliable in both a formal and practical sense.

A formal system is consistent and logically complete; it has no
interface errors (or ambiguities). A practical system is developed on
time and it is affordable to build and operate; it works. A system
which works will handle the unpredictable, both as a system being
developed and as a system being operated; it satisfies the developer's
intent; it satisfies the user’s intent; it always gets the right answer at
the right time and in the right place; it is efficient to operate in time
and in space.

To handle the unpredictable, a system, during its own
development, will handle changing development requirements
without affecting unintended areas; i1t will handle change and the
unexpected during its operation. This includes having the ability to
reconfigure in real-time, detect errors and recover from them and the
ability to be simulated in, operate in, respond to and interface with a
dismibuted, asynchronous, real-time environment.

An affordable system has properties which prevent errors from
being created in the future. Itis portable, flexible, understandable
and repeatable; its development requires minimum people ume and
minimum calendar time.

A poriable system can be implemented in or operational in
different, changing and diverse parallel environments; it can exist in
different, changing, diverse, secure and multi-layers of abstraction,; it
allows for the plug-in or reconfiguration of different modules, or
parts of modules, for those objects which can vary in functionality
from state to state; it has the ability to be used by various applications

and execute on various operational environments (e.g., human, robot
and computer environments).

A flexible system has the ability for its definition to be changed
from many objects to one (providing for abstraction, integration and
applicative operators) or from one object to many (providing for
decomposition, modularity and computability), as necessary both
during its developmental and operational states.

For a system to be understandable, one is able to define the
integration of all of its objects; trace it and any object in that system
(including its behavior and its structure), throughout each phase of
development and from one phase to the next; define it to be as simple
as possible, but not simpler; define it in such a way that it naturally
corresponds to the real world of which it is 2 model; communicate it
with a common semantics to all entities including all levels of users,
all levels of developers, all levels of managers and all levels of
computing facilities and their respective environments; and one is able
to define it with "friendly" definitions (where "friendly" is a relative
term with respect to each kind of user), using variable, user selected
syntaxes, relating 1o and being derived from a common semantic
base, and capitalizing on the ability to hide unnecessary detail.

A repearable , or reusable, system is defined with mechanisms
which inherently facilitiate the process of standardization and the
ability to define and use more abstract and common mechanisms, all
of which by their very nature support functionally natural modularity
(e.g., mechanisms are "dumb"” in that they are not aware of nor do
they need to be aware of their context of use or their implementations
and an object always exists as an integrated entity with respect to
structure, behavior and properties of control); to be repeatable a
system must inherently provide properties for mechanization (and
thus the autornation) of its own development processes.

Philosophy

A zero-defect system begins with a set of reliable thoughts which
result in a reliable model. A model is a tentative definition of a
system or theory that accounts for all of its known properties [4]. A
model could be defined for just about anything: an airplane, building
an airplane, flying an airplane, eating a sandwich, a missile system,
planning your day's activities, a patient, a doctor, the process of
providing radiation treatment to a patient, a radiation machine or the
process of building a radiation machine. A model can be simulated
with software. A simulation is the "running”, exercising, testing or
execution of a model. A sofrware simulation is the set of instructons
(software) which "runs" a simulation on a particular computer.

Once a reliable model is defined (or an unreliable model is
redefined to be reliable) a software implementation consistent with the
model (i.e., a reliable simulaton of the model) is developed. The
next step is to build the real system (e.g., a machine if the systemisa
hardware system). If the real system to be developed is a software
system, this step may not be necessary, since a software system
already exists as a result of implementing the model. The
responsibility for developing a reliable system resides with the user
and the developer. The user is responsible for knowing what he
wants; the developer is responsible for communicating the user
wishes to the computing environment.

The ideal modeling environment begins with reliable building
blocks. To build a reliable system, only reliable systems are used as
building blocks and only reliable mechanisms (systems, themselves)
are used to integrate these building blocks. Each new system,
constructed from only reliable systems, is then used along'with the
more primitive systems to build new, larger and more comprehensive
reliable systems.

The philosophy that reliable systems are defined in terms of
reliable systems 1s applied in a more global sense in the management






trealed patient A, treated patient B = therapy (patient A machine r personnel machine OK patient B, drugs, d personnel)

treated patient A = radiauon therapy(patient A machine,r personnel,machine OK) wreated patient

machingw\

trealed patient A = iry again(paticnt A, maching, 1 personnel)

trealed patient A = reatments(patient A, machine, r personnel)

treated patient A = Tadiauon therapy(p,m.r,0K)
Figure 2a.

therapy, is shown in Figure 2a in terms of a tree graphics format
which emphasizes control flow, the 001 technology does not dictate a
particular syntactical form. This same system, for example, can be
defined in textual form. Or, this system can be defined in some other
graphical form, if desired, (see, for example, system, therapy,
defined with controlled data flow graphics, which emphasizes data
flow, in Figure 2c) as long as the semaniic rules of the technology are
adhered to. In all these forms the same information is presented, but
that which is highlighted varies from form to form.

In system, therapy, the parent function, therapy, is decomposed
into two offspring functions, radiation therapy and drug therapy.
The function, therapy, 1akes in as input patient A, a machine,
radiation personnel, an indicator to check machine status, patient B,
drugs and drug therapy personnel. Function,therapy, produces
treated patients, A and B, as output. Since both drug therapy and
radiation therapy are controlled by therapy as independent functions,
each takes in irs own input from its parent. Thus, for example, the
drug therapy function takes in its own input (patienr B, drugs and d
personnel) directly from its parent and produces its own output,
treated patient B, giving it directly to its parent. Radiation therapy
likewise takes in its own input directly from its parent and produces
its own output. [In this relationship between the parent and its
offspring, the offspring do not communicate with each other.

treaied palient A = reatments(patient,machine r personnel)

= drug therapy(patient B drugs,d personnel)

J
pm,r,OK = wai(patient A, machine, r personnel)

An Overview of System Therapy Control Flow Oriented Graphics

The relationship between the radiation therapy function and its
offspring is one of making a decision. Here, either the treatments
function will be performed or the fry again function will be
performed. The decision as to which function is to be performed is
dependent on the condition of the radiation machine. If the machine
is OK, treatments will be performed; if not, try again will be
performed. Note, here, that each offspring takes in the same input
and produces the same output, since only one of them will be
performed for a given performance pass.

The function, try again, is decomposed into functions, radiation
therapy andwait. In this case,try again controls its offspring in a
dependency relationship where radiation therapy depends on wair's
output (p,m,r, OK ), as its input. Here radiation therapy cannot
complete its performance without wair, once it does, radiation therapy .
provides the output,treated patient A, for its parent, Iry again.

Each of the three primitive structures has a formal name and a set
of rules associated with it for its use (See Figures 3a-3¢). The Join
(J) is for defining the relationships between dependent functions; the
Include (1) is for defining relationships between independent
functions and the Or (O) is for defining relationships between
decision making functions.

technician = move 1o:iechmcian(r personnel)
table = move to:able(machine)
person = move lo:person(paticnt)

person on Lible = putperson{person,table)

pa,m1,rp,0Km = run machine(technician, person on table,machine)

treated patient A = completion(pa,m1.rp,0Km)

treated paticnt = id; (pa,m1)

State(pa,m1) = not complete

treated patient A = radiation therapy(paml p,OKm)

Figure 2b. A Further Decomposition of Therapy.






of A's processor forces an interrupt of B 's processor if B is
processing; if not, then if x2 becomes available, then B must wait
until A is finished processing. Given one processor, A can initiate
when x1 becomes available; B can ininate when x2 becomes
available; if both x/ and x2 become available simultaneously, then A
initiates before B; A can starve B of its resources; and B can execute
before A if resources and x2 are available. Primitive functions are
available for activation when all of their input events are available.
An abstract function has a lifetime that contains the lifetimes of its
immediate children. The primitive control structures relate objects
(including functions), each of which has an event state which can be
either "past,” "present” or "future”. The "past” state represents an
object that was once alive but is no longer; the "present” state
represents an active object; and the "future" state represents an object
that might exist or become active. The event state provides a
convenient mechanism to understand fully the timing behavior of an
object; it also provides a convenient mechanism to trigger an interrupt
when a state change of an object occurs.

In addition to illustrating the use of the three primitive control
structures, system, rherapy, in Figure 2a, also illustrates the use of
recursion as it is defined in a control map. In system, therapy, the
function, radiation rherapy, directly under rherapy, controls the
functon, try again, which in wm controls radiation therapy. Thisis a
shorthand notation for indicating that the lowest radiation therapy in
the hierarchy represents a repeat of the same pattern as its ancestor
(i.e., it controls try again and try again once again controls a lower
level radiation therapy, etc., just like its ancestors). Recursion is
simply a repetition of the map inside of itself. This definition allows
the performance of as many attempts at radiation therapy as the
machine makes necessary by its malfunctioning.

The same three primitive control structures that were used to
define, integrate and control actions in the form of an FMap can be
used to define, integrate and control objects in a TMap. Whereas a
complete FMap is one whose lowest level nodes have primitive
operations on types, a complete TMap is one whose lowest level
nodes have primitive types. The type of medical database that might
be associated with the FMap in Figure 2 is decomposed into data type

where (j] = j, j+1, j+2, ... ;

people and data type materials (Figure 5). Here, people are defined
to be independent of maierials. Materials are shown to be either
drugs or a radiation machine. Radiation machine is decomposed
into two types of procedures, one of which is dependent on the other.

medical database
people materials
puw/\allnw dngs radiation
other machine
"m\ B /I’\
ams s body procedure2  procedure 1

Figure 5. A TMap lor Type,medical database.

Defined Structures

All FMaps and TMaps could be defined in terms of primitive
structures, but there is often a desire to use less primitive structures to
accelerate the process of defining and understanding a system. New,
more abstract control structures are defined in terms of the primitive
structures or in terms of other nonprimitive control structures. The
system, Cojoin, defined in Figures 6a and 6b, is an example of a
system that can be used as a nonprimitive control structure. Among
others, this kind of system pattern happens often when using all
primitive structures, Within this pattern only the functions A and B
change. The FMap pattern in 6a was defined with primitive
structures, Include (I) and Join (J). The TMap in 6b was defined
with nonprimitive structures, themselves defined in terms of primitive
structures. As a result of the existence of repeated patterns, the
concept of defined structures (the ability to define non-primitive
structures in terms of more primitive structures) was created. A
defined smucture allows the user to only show explicitly those
variables in the definition which are subject to change with each use
of a common pattern. Included with each structure definition is the
definition of the syntax for its use (see Figure 6c). Its use (see Figure

*where x= [x] , y= [y] ... ; [x] .[y] are each children of an Input**(i.c., the children of an Ordered Set of Any);
“**where abcdg =[a].[bl,[c]. [d],and [g] , each of which are the children of an Ordered Set of indexes;

where a, b are each & type function;

a. FMap ¥ o= COjoin(x) b. TMap cojoin system
J TupleOf
¥ = prepare inputs and outputs(x'x") x'x" = clone2(x) input indexes
|05w:x Iosenor

input for [, some from r = select [rom x for left of fspring and right offspring(x‘ 2") A
¥ ] any mndex
=" gct output for parent(input for I, some from r)

f] ye=f(x)

Ye=id(y)

y = (B)(left input) ? 3

left input = idd(dlmldiﬂmforl)

all candidates for |'= merge(input for 1, some from r)

Note 1: See definition of idpand clone2 in [6] and definiuon of merge in [14).
Note 2: Any and Index are primitive Types.
*All input and ourput variables are each children of an Ordered Set of Any;
**Input, here, could mean Input or Output.
***All subscripts are each children of an Ordered Set of index.

some from r = 1 to lefi(xr)

left input = input from parent and rn(input for 1, some from r)

ar=id,(x7)

= @)xn)?

input for 1=idg (x')  some from r = select input for right(x") <. Syntax
give input 10 lefi(input for L. some from r) /R /ﬁ\

Yy=Blxghyy h=Alx,)

a=f(rst)
some from 1 = id, (h) d. Elj:lm:fle of 7
Syotax
a=bir,w) w,v = a(r,s)

Figure 6. A Definition for the Cojoin Defined Structure.



Structure: radiation therpy.
FMap:

: [¢]
machine O

treated patient = radiation therapy(patient, machine, personnel, machine OK)

treated pauent = try again{pauent, machine, personnel)

treated paticnt = treatments(patient, machine,personncl)

treated patient = id (pa, m1)

person on Lable
pa, m1, rp, OKm = run machine(technician, person on table, machine)?
mpletion(pa,m1, rp, OKm)

state(pa, ml) = mot complete

treated pauent = radiation therapy(pa, m1, rp, OKm)

w wail and repair(paticnt, machine, personnel)
wreated patient = radiation therapy(p, m, r, OK)

technician = move to:technician(personnel)
table = move w:lable(machine)

person = move Lo:person(patient)

put:person(person, table)

Figure 7. A Defined Structure for Performing Radiation Therapy.

6d) will provide a "hidden repeat” of the entire system as defined, but
explicitly show only the necesary elements for defining functions A
and B.

To illustrate further the definition and use of a defined structure,
the function, trearments, in Figure 2a is further decomposed (Figure
2b) into several functions, starting with ger:rechnician on the right
hand side and ending with completion on the lefti-hand side. In this
decomposition the defined structure, Cojoin (CJ), is used several
times, in an N-ary structure, to define the relationship between the
parent function, trearments , and its offspring. The lower levels of
system, therapy, (see treatments in Figure 2b) complete part of the
definition of system, therapy, since this part of the system was
decomposed until primitive functions on previously defined data
types were used (see under trearments, for example, Id,, or get:table,

which are primitive operations on data type, any, and data type,
machine, respectively) or until a recursive function (sec again
radiation therapy whose ancestor is near the top of the same system
in Figure 2a). If an operation at the bottom is not primitive, it can be
further decomposed (see function, treatments, in Figure 2a which is
further decomposed in figure 2b) or it can refer to an existing
operation in the library. External operations from outside
environments can also be used as operations. Operations are defined
implicitly by deriving them mathematically from the axioms on a type
or explicitly in terms of control structures using already defined
operations on a type. When an operation is defined both 1mplicitly
and explicitly, the intent of the specification can be cross-checked for
correctness.

The radiation therapy portion of the therapy system can be made
into a defined structure (Figure 7). Here the semantics of the
definition is the same as the subsystem definition of radiation therapy
in system, therapy, except the run machine node is variable. The
definition of the syntax is shown in Figure 8. The radiation therapy
portion of system, therapy, can now be rewritten to provide a choice
of type of radiation therapy depending on the patient's needs. This
change is made using the new defined structure, radiation therapy,
twice (see Figure 9).

patient,
( treated ) _ radiation [ machine,
patient / | treatment | personnel,
_ machine OK
‘lheﬂpy
patient], run technician,
mmel. = machine in person on mh],e.
personnell, | chosen mode machine
OK

Figure 8. Synuax.

System development efforts where systems posscss many
common structured patterns can benefit significantly from the use of
structure abstractions, The node savings when using a defined
structure is:

u*n
ux(p+l)+s
Where u= number of uses,
n = nodes specified wthout use of structures,
p= "plug-in" nodes specified for structure use
s = structure size (number of nodes on structure)

ande= efficiency

=¢

In the case, for example, where a definition has 40 nodes and one
plug-in function, where each use is 1 plug-in node plus the parent
node (i.e., 2 nodes) and it is used 1,000 times, there will be 2,040
nodes with the use of defined structures instead of 40,000 nodes
(i.e., almost 20 times more efficient with defined structures, with a
savings of 37,960 nodes).

As with an FMap, defined structures, in the form of
parameterized types, can also be used to create a TMap. A
parameterized rype is a data type where the set of values is a set of
types having a common data structure. The use of a defined strucrure
on an FMap is analogous to the use of a parameterized type on a
TMap. As an example, part of the TMap for system rherapy is
shown in Figure 10. Here in TMap,therapy lab, type, patient, is



wreated patient a = radiation therapy(patient a, machine, r personnel, is OK, mode)
(i)

treated patient a = provide treatment y(patient a, maching, r personnel, is OK)

radiation
therapy

p2, m2, p2, OK2 = nun machine mode y(technician, person, machine)

ode = x
treated patient a = provide treatment x (patient 4, machine, r personnel, i1s OK)
radiation
therapy

pl,ml, pl, OK1 = run machine mode x(technician, person, machine)

Figure 9. Use of Structure.

decomposed in terms of parameterized type,TupleQf, into its
offspring types, name , person, treatments and prescriptions;
Ireatments in terms of purameterized type, OSetOf, and rreaunent in
terms of parameterized type, OneOf. TupleOf is a parameterized type
used to define an absmract type that is a collection of a fixed number of
different types of objects; OSerOf is a parameterized type that is used
to define an abstract type that is a collection (in a linear order) of a
variable number of the same type of objects; and OneOf isa
parameterized type that is used to define an abstract type that is a set
of abstract object types of different types from which one type is

lhcraﬂb

TupleOr
"P\m \ o
machi person
patient -ﬁ;puof 'Tu 1607 ~Torse
~7N ~ \
/Tnple()l’ y _ Lible doctor
name radiation unit
. secretary
(string)
weatments A rintions
OSetOf  (drugs)
reatment
m;;""()ne‘()l'
drug th
fiation & g therapy

Figure 10. A Type System for Therapy Objects.

selected. A paramererized rype represents a definition of a common
pattern for types with the same structured relations. A parameterized
type, a more abstract data type structure than a primitive one,
provides the same generic primilive operations for any type
decomposed with it. Whereas the same type of operations can be
applied to types decomposed with a particular parameterized type, the
same type of objects can be applied to functions decomposed with a
particular defined structure. An instantiation of a parameterized type
15 a structured type (Figure 11). A structured rype represents a
definition of a common pattern for types with the same structured

Any T
Ty
uple
AnyType;  AnyTypep  Any Type,

Figure 11. Syntax for Parameterized Type TupleOf.

relations. For example, an instantiation of OSetOf is patient
treatments. Patient trearments is therefore a structured abstract type.
An instantiation of a structured type is a structured object. A
structured object represents a definition of a common pattern for
states of an object with the same structured relations. Thus, a
particular patient treatment is a structured object,

Types are defined indirectly on a TMap with primitive structures
or parameterized types or defined directly as algebraic types with a set
of operations and a set of axioms which define the relationships
between these operations (see, for example, Figure 12).

The TMap tree topology of parameterized types provides a basis for
the characterization of the contro! of objects in 1erms of their spatial
relationships. An object of a parent type conceptually represents the
containment of the objects of each of its children types which are
component parts. (A type may be a non primitive type, a primitive
type, a reference to an object type outside of its parent domain, an
object type which is defined elsewhere as part of its parent's domain

data type: drugs(of 1);
primilive operanions:
t = lop(drugs));
drugsy = remaining (drugss);
boolean =d equals(drugs; drugs,):
drugs, = combine(t.drugs,);
axioms:
wheretisa T;
d, dy. dy are drugs (of T):
reject is a constant drugs (of T);
emply is a constant drugs (of T);

top(emply) = reject;
remaining(emply) = reject;
top(combine(t,d)) = .
d = combine(lop(d), remaining(d));
d equals(d;.dy) = equals(iop(d, ), 1op(dy))
and d equals(remaining(dy ), remaining(d,));
end drugs(of T);

Figure 12. Data Type drugs (of T).

or a recursive Type.) Each parent on a TMap and its children are
used as parameters to a parameterized type that decomposes that
parent into its children. A parent type replaces the "type" parameter in
the parameterized type operation and each child replaces the "child"
parameter in the parameterized type operation. This resolution resulis
in an abstract type (Figure 13).

Each parameterized type has a set of primitive operutions
associated with it for its use [19]. As a result, all types decomposed
with the same parameterized type inherit the same primilive
operations. Mave 10 is an example of a primitive operation
associated with all parameterized types (Figure 13). It is therefore a

type: pl
type = k:type(TMap)

child = move to:child:type(type)
type: p2

Figure 13. Parametenrized Types.

universal primitive operation. The universal primitive operations are
used for controlling objects and object states. The FMap, Check, in
Figure 14, uses the MoveTo operation with abstract type, treatment
(Figure 15), to access the type of rearment and check if the treanment
is to be radiation therapy or not. The universal primitive operations



include the ability to create, destroy, copy, reference, move, access a

OK = determine treatment(treatments)

t = move lo:treatments(reatments)

is radiation theMapy = 1s radiation:therapy: (1)

OK = is radiation therapy or not(t, is radiation therapy)

Figure 14. FMap which Uses Automatically Generated TMap
Primitives for Types Treatment and Radiation Therapy.

Lype: Lreatment
reatment = k:radiauon therapy:treatment(TMap)
boolean = is radiation Ltherapy:treatment(Lreatment)
radiation therapy = move to:radiation therapy:treatment(treatment)

Figure 15. Excerpis of Abstract Data Type Treatment Automatically
Generated [rom TMap.

value, detect and recover from errors and access the type of an object.
They provide an easy way to manipulate and think about different
types of objects. With the universal primitive operations, building
systems can be accomplished in a more uniform manner. The
universal operations also provide a semantic base that can be used to
analyze the behavior of their interaction. (Constraints can be placed
on the allowed interactions. These constraints can then be used by a
constraint analyzer to eliminate a subtle class of user intent errors.)
For example, the abstract type, trearment, in Figure 10, inherits the
behavior of its TupleOf parameterized type. A treatment table, type,
table, is the type of object that has a fixed number of components of
different types. It has two components: a top and a fixed number of
legs. The legs are defined with parameterized type, ArrayOf. The
top may be removed from the table with the ger:rop:rable primitive;
or, a 1op can be put onto the table with the put:top:table primitive
operation. These operations do not change the conceptual shape of
the object. A table object without a top is still thought of as a table
object; the fact that a table does not have a top does not change the
fact that if itis a table object, it could have a top.

Definition of Objects with TMap

Whereas an FMap contains knowledge about the timing of
objects, a TMap contains knowledge about the spatial organization of
objects. TMap is used to create, manipulate, and understand the
behavior of objects used in an FMap.

An object can exist in an active or a passive state. An object as a
member of a data type is passive. That same object, as a function, is
active. An object can "be” and "do" at the same time or interchange
these respective roles. A medical data base in its passive state would
be received as input and/or produced as output of a function; e.g.,

new medical database = organize{medical database)
But if the medical data base takes in an object as input or produces an
object as an output it is in its active state; e.g.,

medical databaseindex = medical database(index)

In the example below, the medical database, as a function, is
viewed as an active object with particular operators, as inputs,
applied as passive objects. Here, the relationship between the
medical database and its offspring, people and materials, is an
Include (see Figure 16). This example, which conforms to the fact
that type, people, is independent of type, materials, has an allowable
set of interfaces for medical database as a function.

found people, matenials, = medical database(find, i)
1

found people = people(find) materials; = materials(i)
Figure 16. Independent Types,

Similarly materials, as an active object, is shown below, in Figure
17; where a decision is made, with an Or structure, to partition the
set of materials intw drugs or radiation machine materials,

materials; = materials(i,b)
b = materials 0
for dru

materials, = drugs(i) materials; = radiation machine(i)
Figure 17. Partivoned Types (for Decision Making).

And, people, as an active object, is shown below, in Figure 18,
where people found is created by the dependency of the object, all
the other people, on object, person. In this case the relationships of
peopie and its offspring is controlled with a Join structure.

people found = people(find)

people found = all the other people(find the others)
find the others = person(find)
Figure 18, Dependent Types.

If, however,
new medical daabase = reorganize(medical database(index));

then medical database is doing with respect to index but being with
respect to reorganize. An example is when a machine or a person as
a function, A, is interrupted during its execution and is scheduled on
a queue as a process to continue later; here, object, A, transitions
from an active to a passive state. Likewise, A transitions from a
passive state to an active state once A is removed from the process
queue and begins once again to execute. (See, for example, Figure
19 where A and B are scheduled as passive objects and executed
asynchronously as active objects.) Structures with asynchronous
processes are discussed further in a section below.

An object is defined in terms of an Object Map (OMap™) by an
operation in an FMap system. An object is a member, or instance, of
a type. When a complex object is created, placeholders for all of its
component objects are created (e.g., if a patient, Fred, is created,
placeholders for his arms and legs are created). A state of an object
15 defined in terms of a State Map (SMap™) from an OMap system
by an FMap operation. A state is an instance of an object. An
Execution Map (EMap™) system is an FMap system with a comple
instantiation of all objects plugged in for one performance pass of the
entire system, Itis the result of an execution of an FMap. An FMap
shows all the possible lines of control while the EMap shows the
actual lines of control taken for a particular execution phase.
Recursion is made explicit at the EMap level. A recursive definition
controls the tree extension process of an EMap by placing a "test"
function (see, for example, machine OK in Figure 2a) to determine
when and how to stop the extensions. A series of repeated functions
that are not nested can be converted to a nested or recursively defined
system by providing stopping conditions for the extensions.
Functions that exist in different recursive extensions of the map can
be performed in parallel if the functions are independent.

The patient, Fred, in terms of the aforementioned system
viewpoints, could be a type, person. (See type, person in the
TMap for the medical database (Figure 10). Whereas a TMap would
contain type person, an OMap would have a specific person
decomposed, e.g., Fred with his own arms, legs and head. An
SMap would define a panticular state of Fred (e.g., one SMap would
define Fred with a broken leg at one time, another SMap would
define Fred with a healed leg at another time). An FMap could refer
to Fred as an input object or an output object in a system (e.g., an
X-ray machine process could accept Fred both as an input object and
return Fred as an output object.) An EMap for this FMap might show
Fred at one time with a broken leg and Fred at another time with a
healed leg, all in one performance pass along with other objects
whose states have been instantiated.



Q" y = operate(A, 2, B, b, T, Q)
d

Q" y =prepare to execuie(Ag, B, b, Q1)

CcC
y=nmnmn (A, By, ab) - ; 5
:;}lc% A Q" AgB o= select processes(Ay . By, Q)
processes

b lBya, b)Y af BAGab”
*where “b(" b) = I(Aq:. b) and
EBgfa.b) = 1(By.e. b);

In essence (see Figure 20), a State runs on an object "machine”,
an object on a type "machine”, and a type on a paramelerized type
"machine” where

behavier (x) = PType((Type(Object(State(x)))))

and where, for example, x is "table” where the state is a new
treatment table, the object is a treatment table, the type is a table and
the parameterized type is a TupleOf.

FMap System
table = make treatment uble(l?s , top
(State) (State) (Staie) ~ (Swae
(’_- On Object On Object On Object  On Object
SMap On Type On Type On Type On Type
System On FType On PType 06 fType  On Fivps
OMap
System
TMap
System PMap
System

Figure 20. An Example of "Behind the Scenes” 001 System Mappings:

Given these various hierarchical definitional states or forms of
control maps, the means is provided to define parameterized type
mapping, type mapping, object mapping, stale mapping, execution
mapping and the integration of these mappings. Functions are under
control with an FMap. Objects are under control with a TMap. A
complete system (i.e., the integration of FMaps and TMaps) is under
control since the input and output objects (and their states) of an
FMap are defined in terms of a TMap.

The TMap properties ensure the proper use of a TMap by an
FMap. A TMap has a corresponding set of control properties for
controlling spatial relationships between objects. One cannot, for
example, put an object into a data structure where an object already
exists; conversely, one cannot remove an object from a structure
where there is no object; a reference to the state of an object cannot be
modified if there are other references to that state in the future and
reject values exist in all types, forcing the FMap user to recover from
them if they are encountered. A more detailed description of the
TMap theory and its capabilities can be found in [11, 12, 13].

The type definitions discussed above were used to define
application objects (e.g., a patient). Sometimes the application object
could be the definition of an application type system, itself. For this
kind of object a meta type is used. Daia type, TMap, is a meta type
whose operations operate on TMap definitions of an application. A
TMap abstract type is defined with the parameterized type, TreeOf.
TreeOf has a variable number of the same kind of components whose
ordering is hierarchical. The operations of the type, meta type, can be
used to access information about the types of a particular application.

Q" AQB schedule A after B(A, B, . Q)
[ &
Q-n IA. Alqﬂm:;ﬁ\

Q' 15, Biy= schedule(B, 1, Q)

Figure 19. A Transition from Being o Doing.

This information might in rn be used by a system that is
knowledgeable of a general class of application systems. For
example, an expert application system could search the TMap of a
particular application (e.g., the patient TMap defined earlier) and
determine its relationship to classes of patient applications. This
might be, for example, accomplished by an expert system by
determining if a certain set of types existed in the application type
system. One of the primitive operations associated with type, TMap,
can be used in this process to access the name of the abstract type at a
TMap type node. The operations of another meta type are used 10
manipulate maps of objects regardless of their map types or
application. This kind of meta type, OMap, has object maps as
values. The primitive operations for type, TMap, and type, OMap,
can be found in [19].

Dara type, TMap, operations allow one to understand an object in
terms of its type and the relationships of its type to other types in the
system. Data type, OMap, operations allow one to treat all objects in
the same manner regardless of their type. An abstract type allows one
to distinguish one class of object from another class of object.

Sometimes it is desirable to layer one type onto another type
(e.g., patient onto human in one architecture or the same patient onto
array 1n another architecture; or a coordinate system for radiation onto
a matrix system followed by the matrix sysiem onto a vector system.
The layering capability of 001 provides a means for secure,
independent and open systems development within each object’s
environment. This layering capability 1s important on a large projecr,
especially when different organizations are involved in the
development of a system.

Real-Time Asynchronous
Communicating Distributed Systems

Abstract structures can be defined for particular types of behavior
in a system. An example of such a structure is a real-time,
communicating, distributed, asynchronous structure. Async (where
the Async system in Figure 21a is a variation) is an example of such a
structure [20], Async was defined in terms of the primitive structure,
Join (1), and the non-primitive structures, Coor (CO) and Coinclude
(CI), both of which were defined in terms of the primitive struciures.
The syntax part of the definition for Async is shown in Figure 21b.
In Async the function parameters A and B are instantiated with
functions which are consistent with the input and output types
associated with functions A and B. The lines of control taken during
the execution phase of Async are illusrated by an EMap (Figure 21c)
which identifies how the network of primitive functions are activated
over time and resources. The flow of objects between the activated
functions can be thought of as an acyclic graph where nodes on the
graph correspond to functions and arrows on the graph correspond 1o
objects (which go from a source function to a target function). The
Async structure defines the recursive interaction between multiple
invocations of functions A and B (see Figure 21c). If there are two
performer resources P1 and P2 that are able to execute the functions
A and B (i.e., P1:A and P2:B), then we can use Async to control
their funcrional intercommunication with respect to A and B. The



where a, al, b, bl, ¢ are requirements
a. Map ¢ = async(a,b)
: c co continue(a,b) = “true”
©=1dentifyl(a,b) ¢ = communicate(a,b)
c =m= process(a,b)
C
al = A(a,b) bl =B(a,b)

b. Syntax ¢ =F(ab)
RsSync Y
al = A(a,b) bl = B(a,b)

Figure 21a and b. Struciure: Async.

c= Async‘(‘aﬁ)

al = A(a,b)

B(al,bl)

€ = Async(al’.bl’)

al' = A(al,b1)

bl" = B(al',b1")
c = Async(al”,bl")

2 i
= “False’ -~
-
™

b.bl...

Figure 21c. An Execution of Async and the Communication
Paths Between A and B.
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Figure 22a. A Radiation Therapy Environment.









The technology upon which the tool suite is based teaches or
helps a person to think in a new and organized way abour systems; it
helps someone define his thoughts as simply as possible, but not
simpler; it makes sure that a system definition is unambiguous before
a system is implemenied and it provides a means to build systems that
are logically correct.

Project Management Considerations

The ability to build logically correct systems is important on its
own right. There is, however, a direct relationship between having
the ability to build logically correct systems and productivity. In
recent productivity studies with the tool suite, where each system was
developed for the first time within a given application environment,
systems were produced with a productivity in man months of a range
of 10:1 to 20:1 and a productivity in calendar time with a range of
3.5:1to0 7.5:1 [23, 25]. The productivity ranges are higher than this
when a system is developed within the same application development
environment as one that was previously developed with the tool suite.
The reason is that the developers are more familiar with either the
application, or the technology or both, and higher level libraries are
used that were created on a previous application using the same
iechnology.

Contrary to what one may expect, one need not totally reorganize
either the corporate management structure or the life cycle model to
use this kind of technology. It can be applied in an evolutionary
manner. For example, in a typical life cycle model (see Figure 25)
the 001 Axes and Analyzer components can be used to develop
requirements and specifications. The difference is that the
requirements and specifications will be more formally defined than
with a conventional approach and there will not be interface errors.
The design phase is one of choosing which RAT and which
environment to "RAT to". (If a desired RAT does not exist, one is
created.) There may also be a design process, in this phase, for some
additional requirements for libraries. The implementation phase is
one of "pushing the button" and "Ratting". Integration is inherently
being performed throughout the life cycle process. There is still
testing to be performed. There will be, however, approximately 75%
less errors to search for at the start of the testing phase than in a
traditional life cycle. And, cenain kinds of tests are no longer an

Requirements

Specifications

2 Choose layers,
AXES/Analyzer— i libraries, and RAT
(AXES/Analyzer)
RAT—dNJImplementation
(AXES/Analyzer) T Inherently
Integration performed
in Step 1

(~75% less errors)— g Testing
less 1ests and opuons
No

7 Deploymemrcm"gc

Repeal steps 1-7=8 Maintenance

Figure 25. Evolving from the Conventional Model to the 001 Model.

issue (e.g., wire tracing). Maintenance is a repeat of development.
That is, all changes to the system are made to the requirements/
specifications model and code will once again be automatically
produced, Since maintenance traditionally accounts for 70-90% of a
typical large development effort, [26, 27], a method such as 001
significantly impacts the costs normally atrributed 1o this phase.
Table 1 summarizes the overall differences of using a technology like
001 along with its automated 100l suite as compared 10 building a
system with traditional techniques,

Therac 25 |

Just as with avionic systems, missile systems ‘and certain
manufacturing systems, ultra-reliable systems are needed for the
medical environment. The Therac 25 incident occurred because the
systems involved within the Therac 25 environment violated many of
the principles of a zero-defect system environment. (It, in fuct, is not
known not to be true for any other typical system and its

BEFORE AFTER

Errors

» Na interface errors
= All found before implecmentation
= All found by automatic and

Errors

= 73% interface®

= Most found after implementation
= Some found manually (44%*)

= Some found by dynamic runs static analysis
= Some never found = Always found
Inconsistent Requirements Consistent Requirements
Documentation and programming Documentation and programmung
are manual are aulomatic
No guarantee of function integrity Guarantee of function integrity
afler implementation after implementation
Understandability, portability, Understandability, portability,
repeatability not prerequisites repeatability are prerequisites
Flexibility and handling the Flexibility and handling the
unpredictable not prerequisites unpredictable are prerequisites

Productivity Productivity

e 10to1,20t01,...
= Minimum time to complete
Jwl,4tol, .

» Not cost effective
« Difficultl 10 meel schedules

Table 1. A Comparison.

development environment.) The design of the Therac 25 system was
overly complicated; there were system design problems in the
integration of hardware, software and humanware functions; there
was no back-up in the case of primary system malfunctions; there
was a lack of hardware error detection and recovery mechanisms for
its own malfunction; there were real-time software logic and timing
errors; there was no back-up in the software for its own potential
eITors; poor communication existed between the subsystems (e.g.,
between the operator and the operator's maual); there was a lack of a
formal definition of the system and a lack of a formal QA process.
Any one of these violations either did result, could have resulted or
still could result in a serious accident. We can learn from these
incidents. There are steps that can be taken now in building future
medical systems. They are summarized in Table 2.

Checklist for Building a System

Formally model integrated system of hardware, software and peoplewure with ;:
experts involved from all disciplines and with automated assistance.

- define & TMap for all system objects

- define an FMap for all functions the system should  perform

- define all errors that could happen

- prioritize errors

- incorporate protection from errors in system design

- incorporate back-up protection from catastrophic errors in system design
- build abstractions and reiterate the process

= Automatically analyze model for ambiguities (i.e., inconsistencies and
incompleteness of logic). (This step will prevent logic and timing crrors in
system design and in software produced from it.)

= Automnatically produce code for simulating model and/ or for developing
software

« Simulate and test
* Go back and change model until it is satisfactory to all system expens
= Build rest of system to go with software

» Perform QA process with independent parties and with members from
software, hardware and humanware in each case where it is applicable.

g i e



Summary

The ability to develop systems with techniques approaching zero
defects will not just happen by acquiring a technology and its
associated tool set. What is needed is a mind set to define systems
formally and a determination to relate to and adhere 1o the set of
processes of modeling, simulation and software development as a
scientific method. Once the decision has been made to follow the
formal path, training proceeds.

Standards are established and the technology is applied. The
technology can be applied in either its manual or automated form.
Significant benefits, in fact, have been obtained by engineers and
scientists who have used these kind of techniques manually. The
automation of the technology helps to ensure that the technology is
applied correctly.

Although the transition to incorporate these techniques requires
an adjustment, the benefits to the medical community received from
approaching zero-defect systems are far reaching. In some medical
environments, systems will be possible to build that were not
affordable in the past; in other medical environments, many tragic
incidents, such as those which not uncommonly and not infrequently
occur in all of today's most respected medical centers, will be
eliminated.

This paper was presented at the [EEE Symposium on Policy Issues
in Information and Communication Technologies in Medical
Applications, Rockville, Maryland, September 29, 1987,
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With 001's interactive graphics component, system requirements can be easily captured and
defined in machine readable form using the 001 AXES requirement specification language. The
computer becomes the repository for both functional requirements and the requirements of all of the
system objects. Both functional and data requirements can be shared across all areas of an
organization. 001 assists you in decomposing functional and data requirements where high level
system requirements are elaborated into more detailed requirements; it represents them in control maps
that show and trace all possibilities of priority, ordering, logic and data flow throughout the system.

Hardcopy output of the requirements may be produced at any time during the development
process. This output may be used in system reviews with management, end users and developers for
greater clarity and communication in the system development process.

After specifying the requirements, the next logical step in software development is the design
process. This process is also managed and integrated by 001. With the graphics component, the same
control map technique is used to specify functions and data at the design stage as was used during the
requirements specification stage of development.

The Use of the 001 Axes Language

Controls your System and its Development Process

With the 001 AXES language all systems requirements are defined by decomposing a system
using a control map.

The functions are decomposed using structures which connect them by 001 rules using a
function map (FMap) control map. The data types are decomposed with structures which connect
them using 001 rules using a type map (TMap) control map.

The FMap connects the decomposed functions with input and output data which abide by the
rules of the data types using TMap. The result is an integrated set of reliable requirements which set

the foundations for the management, implementation and operation of a complete system environment
and its development.

001 Automatically Analyzes your Requirements and Design

Once the functions and the data for a system have been elaborated to the level of design which
interfaces to existing function libraries and data libraries within the 001 environment, the system is
submitted to 001's Analyzer component. The mathematically based Analyzer not only ensures that the
data is used in a consistent and logically complete manner, but that the interfaces between the functions
and between the data are consistent and logically complete. Studies have shown that approximately
75% of all system errors are errors of ambiguity (i.e., interface errors), which are errors of
inconsistency and logical incompleteness. These include errors of timing, ordering and priority.
These are all found by the Analyzer.

The Analyzer finds the interface errors early in the software life cycle, where they are the least
costly to fix. Result: a consistent, logically guaranteed and integrated system design.

001 Automatically Provides you

with Generated Code and Documentation

In the traditional development cycle, the hand-coding process from the written design
specifications would be the next step. 001 virtually eliminates this step.

001 will automatically generate logic flow from both the functional and the data control maps
and automatically connect this logic to previously existing function and data primitives in its core
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its implementation and rapid prototyping stage as a simulation and finally as the actual target system
that is to be developed.
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With 001 you can Build Reliable Systems that you can Trust

Traditionally systems have been hard to understand from the requirements phase throughout
development and finally into the coding phase. There are several reasons for this. System definitions
are ambiguous; users, developers, managers and computers at various levels of development more
often than not speak different languages; the system is represented in a form whose focus is not
integration; definitions are not friendly in that each modeler or programmer often speaks to himself in
symbols only he understands; unnecessary detail is resident thought the development process; data
cannot be traced within the system between phases and within a phase. And, often either too much
detail exists or not enough detail exists to state a particular concept or algorithm.

001 directly addresses these issues.
001 forces systems to be unambiguous; it supports, users, developers, managers and computers to use
the same language. That is, they have a common set of semantics with which to dialogue; yet 001
allows the syntax to be chosen by its users and thus the medium of communication is as friendly as
desired; each data object path can always be traced throughout a 001 system. And integration is
inherently a focus of the properties of 001; that is, as ambiguities are driven out, integration, a natural
process of the 001 technique takes place.

Error-free means no ambiguities. This means no inconsistencies, no redundancies, no logic that
is incomplete. It means that the output of each development phase meets the requirements of the
previous one.






plug-in replacement of different configurations of other systems within that same system. A layer of
that system may be needed (e.g., the very top layer requirements) to work with various layers of other
systems as lower layers; or there may be a desire for various layers in a particular system to be hidden

from others either for security purposes or for separation of management in developing that system's
layers.

For those systems which are not modular, portability of these various forms are not possible.
The result is unnecessary redevelopment of the same systems.

001 directly addresses these issues.
001 will automatically produce by the very choice of a RAT by the user, an implementation to a chosen
computer, language or implementation. The generated code will run in the chosen computer
environment which has the compiler to go with the selected language. This feature alone allows for
different application environments.

The 001TMap functionality automatically sets up the environment for layered and secure
developments. Again, this feature lends itself to different application environments.

The 001 abstraction capabilities provide for a plug-in of different modules where a chosen
structure, the basic mechanism for connecting functions, allows for a plug-in of functions chosen by
the user but which at the same time provides the functions and their connections that are common to all
uses of the same structure.

Software development organizations are notorious for re-inventing the wheel. Often, the same
concepts, requirements, algorithms and code are created over and over again; the same mistakes are
made with each new project. Lack of repeatability is the single largest reason for wasted time and
dollars within an organization or a project.

001 directly addresses these issues.
Repeatability is the ability to do something over and over again. 001 capitalizes throughout the life
cycle on automation, which is the ultimate form of repeatability. But existing forms of automation
themselves can be automatically used over again with 001.

By providing a method to share primitive libraries as well as libraries developed in terms of
these primitives, among various development projects, 001 allows the development organization to
concentrate on the unique aspects of each system being developed while sharing libraries which are
common across all systems and more libraries which are common across particular families of

systems. The user of 001 has the capability of adding his own libraries to the 001 environment as
well.

001's reusable library techniques add to significant productivity improvements. System models,
along with their associated automatically generated code can be developed once, stored in reusable
libraries and shared across multiple programs, projects and systems. This capability reduces the need
to "reinvent the wheel" for every new system.

001, through its abstraction and distillation capabilities, both in functional decomposition and in
data type decomposition, allows you to hide information whenever it is desirable to do so; yet should it
be necessary to look at more detail within higher level abstractions, that information is readily and
automatically available. All of the more abstract components of a system are forced to be defined in
terms of more primitive components. Thus, the system is unambiguously defined and implemented
throughout its implementation.

As a result of the powerful repeatability concepts of 001, any work that has been produced does
not need to be wasted either within one development process or across many development processes.
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At any level of construction, a model may be submitted to 001's
Analyzer. The Analyzer ensures that both data and functions are used in a
consistent and logically complete manner, eliminaling approximately 75% of
all system errors.

Once a model is decomposed to the level of existing libraries and it has
been successfully analyzed, it may be handed to the Resource Allocation Tool
which will generate logic flow from both the function and the data control
maps. This logic is automatically connected Lo previously existing function
and data primitives in the core library as well as. if desired, libraries
developed from earlier implementations The generaled source code can be
compiled and executed on Lhe same machimne on which 001 resides or il can
be ported to other machines for subsequent compilation and execution.

Because of its [eatures of reliability, automation, abstraction and
reusability, 001 maximizes productivity. Systems can be designed.
developed and maintained with minimum man-months 1n mmimum time.

001 contains the following components:

* An editor for supporting a user lo define his syslem graphicaily or mn
textual form

* An executable specification language for defining logically accurate
models that are consistent and logically complete for both functional
and object oriented hierarchies and their integration

e An Analyzer for automatically detecting errors according to a formal
sel of rules

e An abstract type generator which generates a system of data types for
a particular application domain from an object type hierarchy that 1s
decomposed in terms of parameterized types

¢ A multi-language source code generator (RAT) which produces code of
the user's chosen form (e.g., C)

e A documentor which produces a system definition, its implementation
and its description

Copyright o 1988, Hamilten Technologies, Inc,





















e R W AW AU

Zero-defect software:

the elusive goal

It is theoretically possible but difficult to achieve; logic and interface
errors are most common, but errors in user intent may also occur

COMPUTERS

In October 1960, shortly after a new radar network |y -
SOFTWARE

to warn the United States of mussile attacks had be-
come operational, a radar station in Greenland re-
ported the appearance of a massive attack—a large
number of radar returns coming over the eastern
horizon. The real cause of the alarm: the moon was
rising.

In late 1985, as activity in financial markets esca-
lated, the operations of one financial services com-
pany were brought to a halt as its computers report-

latter might be billing programs that send threaten-
ing letters to customers who owe $0.00.

Many techniques have been developed to deal
with the first kind of error—incorrect statements in
software—especially at the program-code level.
Compilers can check the syntax of statements sub-
mitted to them, and “strongly typed’’ languages can
enforce consistency between different uses of the
same variable. A variable defined as an integer in
one place, for example, cannot be used for charac-

ed error after error. The designers of a bond-tracking program
had built room for only 32 767 bond issues into their tables, and
the 32 768th had just appeared.

In 25 vears, although the speed, memory capacity, and reliabil-
ity of computer hardware have increased manyfold, the reliabil-
ity of computer software has not. Certainly software has become
more reliable, but bugs still crop up in programs of all kinds,
from the smallest game on a micro to the largest operating system
on a mainframe.

As the Government proposes to build immense real-time sys-
tems like antimissile shields, which require enormous amounts of
trouble-free software, critics question whether such systems can
ever be made 1o function reliably. Although software develop-
ment methods have improved measurably in the last several
years, error-{ree software is, in the opinion of most sollware en-
gineers, an impossible goal.

But some software developers believe complex software can be
developed that approaches zero defects by using formal specifi-
cation techniques and computer-based ools. These tools first
check the consistency and logical completeness of a set of formal
specifications and then generale program code that matches
them. Checking the specifications for completeness and consis-
tency eliminates errors ol logic that arise from oversights, while
tools thal produce code directly from the specifications eliminate
errors that might arise in implementing the specifications by
hand. Sofiware developed by such techniques may not always
end up doing what the user wants, but it will do what the user
asks it to do.

How software errors occur

Most software development techniques proceed from require-
ments to specifications 1o designs to program code, using people
to carry out the transformations from one level to another. Only
the final step in development—generating machine code—is usu-
ally done by machine. In the other steps, two Kinds of errors
arise: those in which the user's intent is recorded incorrect-
ly—Ilike a misplaced comma in one National Aeronautics and
Space Administration (NASA) program that sent a Voyager
spacecraft toward Mars instead of Venus—and errors in which
the wrong intent, considered in some larger context, is set down
in logically complete and consistent fashion. An example of the

Margaret H. Hamilton Hamilton Technologies Inc,

ter operations somewhere else. These remedies are static methods
for software verification, which work by examining program
source code rather than by testing a program’s execution,

Static methods can also be used to check program specifica-
tions, or any other formal representation of a program, provided
those specifications have been written in machine-readable form.
Recently tools have begun to appear that can check program
specifications for inconsistencies, ambiguities, and incomplete-
ness in the same way that compilers check the syntax of program
code. But static methods cannot eliminate all errors from either
code or specifications; in particular, they cannot deal with errors
of user intent.

Errors in user intent are the hardest to catch, because a pro-
gram containing them can be consistent and complete but still
give the wrong results. Some errors of intent arise from over-
sights—the equivalent of typographical errors in program
code—while others come from a genuine confusion on the part
of the user as to what the program should do.

An additional complication is that software is almost always
part of a larger system that also includes hardware—and
humans. The software can be reliable and free of defects, but the

Defining terms

Interface error: an error that occurs because of improper use of
a program module; for example, a module might be given too
many arguments for input, or the arguments might be passed
in the wrong order.

Primitive operation: 2 procedure that cannot be broken down in-
to other operations; depending on the application, a primitive
operation in a specification may translate to only a few ma-
chine Instructions or to an entire software subsystem.
Specification: a formal description of what a program will do,
phrased in terms of its inputs, its output, and the relationships
between them, rather than in procedural form,

Strong typing: a characteristic of some programming lan-
guages that enforces constraints on the use of variables 1o
reduce mistakes; for example, a strongly typed language would
not allow a variable of the type apple to be added to one of the
type orange, even if both types were represented as integers.
User-intent error: an error that occurs because the user did not
properly think through a problem before committing it to soft-
ware,

48 Reprinted with permission
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ing mistakes; they simply refuse 1o turn defective source code in-
1o machine language.

Logical prools of correctness are another class of static meth-
od. Here the programmer makes assertions about the behavior of
a program, and computer-based tools determine whether those
assertions follow from the program code. Unfortunately, proof-
of-correctness techniques have been used successfully only on
small algorithms. The time required for a proofl increases ex-
ponentially with the size of the program.

Software tools known as application generators or fourth-gen-
eration languages, used primarily 1o increase programming pro-
ductivity, eliminate whole classes of errors by producing pro-
grams from a set of higher-level language statements, This is
analogous to the approach known as ‘*correctness by construc-
tion"" in integrated-circuit design. For example, a database appli-
cation generator might allow the programmer to specify a par-
ticular operation to be performed on all entries meeting some
combination of criteria, while a standard programming language
like Fortran or C would require the programmer to write out the
iteration, [etch the variables in proper sequence from each rec-
ord, make the appropriate tests, and branch to a similarly explicit
routine (o perform whatever operation was desired. A few lines
of executable specification for an application generator or
fourth-generation language can take the place of several pages of
program code.

Some of the reliability benefits of application generator tools
can also be auained simply by reusing program modules from
one project in another or within a single project. Once a module
has been debugged, using it again eliminates errors that might
creep in if it is written from scraich. Of course the programmer
must still supply the reused module with the proper data in the
right format. Reuse of modules is in some ways a manual version
of what application generators do by using chunks of code to im-
plement the specifications given them,

In addition 10 improving reliability, the various methods of
software reuse also increase productivity, They save time that
would otherwise be spent in writing the same piece of code over
and over lor each new project or in debugging that code each
Lime it was wrilten,

Reuse also has its problems. Code that was written to fit many
different problems may not be as efficient as code that is hand-
tuned for a specific case. An apphication generator designed to
produce one kind ol program could prove unwieldy [or produc-
ing a different kind.

General-purpose specitication languages—somelimes called
program-design languages—Ilet programmers specify any kind of
software system. These specifications can then be broken down
either by hand or with automated tools to produce a detailed map
of program modules and their relationships to one another, The
map can then be rurned nto a working program. However, pro-
gram design languages that rely on people to implement the final
program may sacrifice reliability, because there may be no auto-
mated way to check the maich between what the specification
says and what the program code does.

A software ool called Refine, produced by Reasoning Systems
of Palo Alto, Calif,, can eliminate errors by going from specifi-
cation to implementation. It uses a set of so-called rewrite rules to
convert a program specification into an executable code. Rules
govern the creation of loops for iteration and the specific imple-
mentation of abstract data types—such as the choice of a linked
list, an array, or even a string of bits to represent a collection of
objects.

Another tool is Use.It, developed 1o automate the methodol-
ogy of Higher Order Software Inc. The lechniques embodied in it
are also used manually by some software developers. The Cam-
bridge. Mass., company's tool gives the user a rigidly defined set
of control structures for decomposing a top-level specification
into modules until either primitive operations or preexisting
modules are reached at the bottom of the hierarchy. The tree-
structured specification is then checked for consistency and logi-
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cal completeness and turned into program code in a conventional
high-level language.

Software without errors

The two major aspects of methods for improving software reli-
ability are reusing existing components and avoiding errors in the
first place. The best way to build reliable software systems is to
use components that have proved reliable, and to link them to-
gether with constructs that have been shown to be reliable as well.

The implication is that a system for creating reliable programs
could be built by limiting the designer, and ultimately the devel-
oper, to design methods that are provably correct. The user of
such a system would construct hierarchies of modules using only
such methods together with reliable preexisting components, to
develop a reliable system regardless of its size or complexity.
Methods to develop zero-defect software should leave as few er-
rors as possible for the most time-consuming part of the process:
the dynamic testing phase of a system. All errors except those of
user intent should be found earlier, through static methods.

The most basic target of static testing is ambiguities—inconsis-
tent or logically incomplete sets of definitions—that can occur in
software systems of all application types. Since there are meth-
ods that prevent ambiguities from being written, an automatic
analyzer need only check for proper use of those methods. Other
forms of static error analysis can be performed for specific class-
es of applications once the behavior common to members of that
class is understood. For example, static methods could check
that certain constraints—such as restricting dates to particular
values—are satisfied in the use of a particular data type.

Once software tools have eliminated ambiguities, only perfor-
mance errors—discrepancies between what the user meant and
what he or she actually specified—remain for the testing phase.
On nontrivial systems, over three-quarters of the errors thai
would occur with conventional sofiware development techniques
would be eliminated before testing if software tools for checking
consistency were used.

Developing a program using reliable methods will almost cer-
tainly simplify the system definitions—an additional benefit that
eases the mechanics of testing for any errors that may remain.
Not only should there be far fewer errors to fix, but they should
also be much easier to find.

Developing zero-defect software

There are three basic phases in developing a reliable system by
the kind of methods outlined here: first the user develops a sys-
tem definition, then software analysis tools check the definition
for logical correctness, and finally a resource allocation tool pro-
duces source code in a language like Fortran, C, Ada, or Lisp
from the definition.

The Use.lt software tool has been successful in developing a
number of software systems, including a control system for a
large manufacturing plant that tied together shop-floor sensors,
computer-based inventory management, and parts-handling
equipment; a personnel management system for the U.S. Army;
and a family of operating-system utilities for the applications-
software division of a large computer company.

To develop a piece of software with Use.It, the top-level sys-
tem definition is drawn with a graphics editor [see “*Building a
real-time system,"’ p. 51}, listing the inputs and outputs for each
module in the definition, and the relationships between the
modules are then defined. As with a number of other computer-
based specification tools, a user can choose to work with either a
graphical representation of the system or a text representation
that is more concise but may not be as easy to understand.

In addition to defining the functional components that make
up a program, the user also defines the data types the system will
need. A series of axioms defines the behavior of each data type so
that its use can be checked for consistency. The axioms define the
primitive operations that can be performed on objects of a given
data type, the relationships between primitive operations, and
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the results of those operations. It is particularly important to in-
clude operations that will produce error conditions, as well as
those the software is expected to perform.

Software developers working with Use.lt decompose systems
into primitive functions using control structures based on three
primitives: Or, Join, and Include [see Fig. 2]. Strict rules govern
the way each control structure is used, guaranteeing the con-
sistency and completeness of the specification.

Or is used to control decision-making. 1ts output is simply the
output of one or the other of the two functions it controls, de-
pending on the value of a decision-making variable. Both of the
functions in an Or must take the same variables as input and deli-
ver the same variables as output,

Join is used for controlling functions that depend on each
other. The right-hand child in a Join takes its input from the par-
ent and delivers its output to the left-hand child. The lefi-hand
child, in turn, takes its input from the right-hand child and deli-
vers its output to the parent.

Include is used to control modules that independently perform
part of the function of the parent module, One part of the input
is passed to the right-hand offspring, the rest to the left-hand off-
spring. Output from each offspring is passed back to the parent.
More abstract control structures, including recursive ones, can
be defined in terms of these primitive control structures as they
are needed.

Although each control structure is unique, cerfain generic
principles apply to all:

* A function at a given node controls only those functions at the
leve! directly below it.

» Each function must produce an output.

* Each function must control where its offspring get their input.
If offspring could take their input from anywhere, verification
would become impossible.

= Each function must control where its offspring’s outpui goes.
* Each function must either produce values of the correct data
type or inform its parent if the values do not belong to the proper
Lype.

* Although modules can process each input as soon as it arrives,
they must maintain the specified order of overall execution with

respect to functionality, priorities, and timing.

Violating any of these interface principles may appear benign
in itself, or even necessary Lo improve sysiem performance. But
any violation makes it impossible to verify the system and could
introduce subtle but fatal errors.

On the other hand, if the module interfaces do fit together—if
functions do produce values of the proper data type, if the cor-
rect order of execution is maintained, if modules do not violate
the order of the control hierarchy—then a program will be reli-
able. With this approach, two systems of vastly different size
could be equally reliable, since each system would consist of reli-
able components that are integrated using reliable constructs,

Formal definitions improve productivity

The main intent of these formal rules for constructing soft-
ware systems is to eliminate errors before the fact, but the same
rules that guarantee logical completeness and correctness bring
other advantages as well. For example, because each variable is
referred to in only one place, and only one function changes its
value, all data flow is traceable, and the impact of each change in
a model is known ahead of time.

In addition, each function in the hierarchy is assigned an un-
varying priority (a parent, for example, always has a higher pri-
ority than its offspring). These properties allow the unambiguous
allocation of computing resources to functions and processes.
Because dependencies can be traced easily, multiple processors
can be allocated as easily as single processors.

Software tools like Use.It also improve programmer produc-
tivity, because systems can evolve naturally from existing mod-
ules and less time is spent tracking down bugs. Productivity will
increase the first time such a tool is used on a project, and it will
continue 10 increase with each succeeding project in the same ap-
plication area, because more application-specific subsystems will
become available,

Productivity and reliability may increase even if such software
tools are used only for parts of a software sysiem, with other
parts built by conventional methods. However, the full reliability
gains of developing software automatically from specifications
can be achieved only if these tools are used throughout the devel-
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[2] Three primitive conirol structures can be used to consiruct
reliable software svstems from individual functional modules.
Each module is defined by its output, the function name, and its
mpul. In the example “Sum = Add (A,B), " the Join primitive
(A) controls functions that depend on each other; data flows
Jrom the parent down to one offspring, where operations are
performed on the data. The new data is passed 1o the second of/-
spring, which performs additional operations and passes the
result back 1o the parent, The Include primitive (B) combines
results from a set of independent functions. One offspring works
on one part of the parent’s data, and the other works on the rest.
The results are passed back up to the pareni. The Or primitive (C)
makes a decision between two alternatives. Each offspring takes
the same variables as input from i1s parent and produces the same
variables as output. If the decision variable is true, then the right
offspring passes an output back 1o the parent; if it is false, then
the left offspring passes an output back. The data flow in the ex-
ample shown is for the ‘‘true"’ alternative.
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All functional modules operate on objects of particular data
types. In turn, axioms define the behavior of data types and the
operations that can be performed on them. The ordered sel, a list
of objects of a single daia tvpe, is a useful type in its own right,
For any ordered set containing elements of type T, where  is an
object of type T, a and b are Ordered Sets (of T), and Nullo is a
constant Ordered Set (of T), the following rules hold: First
(MNullo) equals Reject; Second (Nullo) equals Reject; First (Com-
bine [T,a}) equals \; Second (Combine [t,a)) equals a; OEquals
(a,b) means Equals (first [a], First [b]) and OEquals (Second [a),
Second [b)).

The following operations can be performed on an ordered set:
First, Second, Combine, and OEquals. The first two axioms
define the error conditions for an Ordered Set, the third and
Sfourth axioms define constraints for the selection of elements out
of an Ordered Set, and the last axiom provides a concept of
equality for Ordered Sers. Ordered Set (af T) is a parameterized
tvpe—T can be replaced with the name of any type.
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opment process. A single error in one primitive operation or the
use of an external operation that has not been properly validated
could compromise the entire software system. The wider the set
of validated data types, primitive operations, and abstract con-
trol structures available, the less temptation there will be for soft-
ware developers to compromise.

User intent still a problem

Methods based on formal definitions will help 10 approach
zero-defect software, but they will not guarantee that the user
knows what he wants to do. What they will do is help the user ar-
rive at conclusions much more quickly than with conventional
methods. Intent issues, not interface or logic problems, will be
the only concern in testing software systems in the future.
Furthermore, these methods would force the user to define
systems much more clearly than is typical with informal
specifications that cannot be checked with software tools,

Leaving the responsibility for user intent outside the domain
of software in no way abandons responsibility for the most subtle
errors. The most subtle and complex errors in the Apollo pro-
gram and in other large and sophisticated systems have usually
been interface errors, not errors of intent.

Even after interface errors and other ambiguities have been
taken care of, performance testing to prove correctness of inteni
is not a trivial task. But it can be conducted on a2 more controlled
and clearly defined module-by-module basis, in which bounda-
ries are well understood and unwanted side effects are a pheno-
menon of the past. Indeed, most classes of errors that were previ-
ously discovered during performance testing no longer exist,
Well-known interface problems, like the “*deadly embrace’ —in
which multiple processes stall because each controls a resource
that another process needs to do its tasks—are in fact eliminated
by methods that synthesize code from logically correct specifica-
tions.

The question put forth by software critics should not be what
methods can be found to produce defect-free software but rather
when existing methods will become widely used. The good news
is that the feasibility of complex software-hardware systems like
those of the Strategic Defense Initiative (SDI) need not be depen-
dent upon the inherent reliability or unreliability of software.
The bad news, on the other hand, is that software can no longer
cloud the issue or become a convenient scapegoat when a prob-
lem is not well understood. The real problem with large systems
like SDI (and many smaller systems) is that the user needs 1o
understand the specific application problem before it reaches the
stage of a “‘software problem.”

Application problems may be easier to solve if the require-
ments or specifications of a system—regardless of whether it will
eventually be implemented as computer programs, hardware, or
human systems—are defined in such a form that a computer and
its software could find the ambiguities in those specifications.
With such formal definitions, techniques for defining reliable
software can be used to define reliable requirements for systems
in general, since the problem in both cases is 1o define a set of
logical statements unambiguously, Even when requirements can
be computerized and analyzed for ambiguity, there is no way 10
guarantee that the user has put forth his real intent. Bul software
tools and formal specifications offer a way to define exactly what
the user said his intent was and to determine if it is consistent and
logically complete.

If software tools are to be used to determine whether a set of
requirements is logically consistent and complete, the re-
quirements must be defined formally before implementation of
the system begins. Far too often, this front end is treated casu-
ally. It is time to treat software seriously, as a science or engineer-
ing discipline from start to finish.

To probe further

Reliable software has been a concern of the computer industry
for many years. The major themes of some conferences, including

Hamilton—2Zero-defect software: the dusive goal

Some software experts disagree

Some industry experts disagreed strongly with the prem-
ises of this article, saying that it is not possible to build
defect-free software today. They contend that the power
of high-order design languages to provide reliable soft-
ware implementations from specifications has been
exaggerated.

Although management discipline and proper use of
high-order design tools will generally increase the reli-
ability and efficiency of software production, said one
critic, there is no evidence that software tools for verify-
ing formal specifications and tuming them into execut-
able code will help in this process.

The article’s statement that proof of correctness tech-
niques—which attempt to verify an algorithm's perfor-
mance mathematically—has been unsuccessful except
for very small algorithms was seen as undermining
claims that formal specifications and software tools can
produce logically complete and consistent software.

“Recent software engineering publications,” said
another industry expert, make it clear that it is not possi-
ble to develop tools for detecting logical redundancy, in-
consistency, or incompleteness of specifications and
that “zero-defect software" is impossible to build today.

Another critical comment was that “defect-free soft-
ware" is a slippery concept: “My experience with soft-
ware used to solve numerical problems has convinced
me that even when the software reliably follows the
specifications of the user and has been checkedouton a
number of test cases, there always seem to be other
cases for which numerical conditioning can obviate the
usefulness of the software.

“This paper deemphasizes the enormous complexi-
ties in the development of very large-scale software sys-
tems. It argues that once we get into a difficult problem,
we often find that things aren'l as bad as they seemed
from the outside. While this is often true, it is not always
true. | doubt that even with infinite time one could devel-
op a very large-scale software system that was error-
free." —Ed.

the IEEE's International Software Engmeening conlerence, are
productivity and reliability. Good penodicals on the subject of
soltware reliability include the Journal of Svstems and Software,
published by Elsevier-North-Holland; Communications of the
ACM, published by the Association for Computing Machinery in
New York City; and [EEE Transactions on Software Engineering.
The December 1985 and January 1986 issues of the Transactions
were devoled specifically 1o software reliability.

Svstem design from provably correct constructs, by James Mar-
tin (Prenuce-Hall, 1985), discusses the process of developing cor-
rect specifications and generating code from them. The article
**The relationship between design and verification,”” by Margaret
Hamilion and Saydean Zeldin (Journal of Svstems and Software,
No. I, pp. 29-56, 1979), also deals with the specification and code
generation problem.

The oil discovery system covered briefly in the box above 15
discussed at more length in Case Study Report #1: Oil Discovery
Prablem, by Margaret Hamilton and Ron Hackler. published by
Hamilton Technologies Inc. in February 1986.
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A second factor aiding NASA was its firm, powerful control
of the systems engineering process. Each of the development
centers had a systems engineering division whose activities were
integrated by a headquarters systems office. Moreover all NASA
systems offices received additional technical support and advice
from contract systems-engineering leams from companies like
General Electric Co., Boeing Aircraft Co., and Bellcom (formed
by AT&T to aid NASA). On questionable approaches it was
possible to take multiple paths and to develop contingency plans
for each risk.

A third factor in NASA's favor was the constant feedback to
the Apollo systems-design engineers from astronauts and
ground-support operators. This feedback had a major effect on
software development and integration, which was recognized as
50 important to systems engineering that it was overseen from a
single management viewpoint, that of the director of flight
operations at the Johnson Space Center in Houston, Texas.

These three factors made it possible for major contractors to
work together effectively, because interfaces were defined
rigorously, with great depth of detail. The issuance of interface
control documents compelled early resolution of any conflicts.

How well did it all work in practice? According to George M.
Low, now president of Rensselaer Polytechnic Institute in Troy,
N.Y., and director of the manned Spacecraft Center at
Houston's Johnson Space Center during the Apollo program,
“‘Perhaps the most important lesson of Apollo was deliberate
design to minimize complex interfaces, thus making the systems-
engineering task manageable."’

The enterprise also holds lessons for conducting the business
of technology. One aerospace industry veteran, James E.
Ashton, vice president and general manager of the Tulsa division
of the Rockwell International Corp., said, '‘The success of
Apollo proved that even very large, terribly complicated goals
can be achieved by breaking problems down into smaller prob-
lems and smaller goals. These then can be fenced in and treated
as entities both from a business point of view, with contracts, and
from a technical point of view, with interface-control drawings.
Later the success of the shuttle orbiter proved the value of that
concept to the design and apportionment of the system among
many contractors.”

Though the practice of engineering was driven to new heights
by the space program, there were other effects that now pro-
foundly influence many aspects of life. Robert Seamans, once
NASA's deputy administrator and general manager and now the
Massachusetts Institute of Technology’s dean of engineering and
head of its Energy Laboratory, credited James E. Webb, NASA's
first administrator, for vision that went beyond his role in office.
He foresaw the scientific aspects of being in space, the projected
spinoffs into aeronautics, and the role that university research
programs could play in ensuring success.

Mr. Webb so impressed Presidemt John F. Kennedy with this
vision that he was able to get an unusual item in his budget:
NASA support for several thousand doctoral candidates per
year. He also got approval for a NASA grants program to put
laboratories on campuses. This went beyond the need for
specialized Government facilities, for Mr, Webb stated that he
wanted research done ‘‘not only where the best minds would be
involved, but also where the work would be tied closely to the
educational process.’’

The NASA administrator asked the presidents of the 15 10 20
universities that received those grants to sign a letter saying they
would make their best effort to set up a multidisciplinary activity
on campus to look at all the ramifications of the space program.
Not all the university programs gernunated by NASA's grants
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program under Mr. Webb still have such clear-cut labels as MIT’s
Science, Technology, and Society Program, but multidisciplinary
research flourishes.

Mr. Webb was also instrumental in the positioning of new
Government laboratories. He insisted that they be established on
or adjacent to campuses rather than in outlying industrial parks,
so there would be *‘a fluxing of ideas with universities.'' Conse-
quently a NASA Electronics Research Center was put right in the
middle of Cambridge, Mass., within a stone’s throw of four large
universities, rather than in the high-technology-industry concen-
tration along Route 128.

In a similar vein the unique concentration of scientists and
engineers at space centers and test sites around the United States
may have polarized the subsequent location of high-technology
industry there. Inevitably such a concentration of talent up-
graded educaton in surrounding communities, which in wm
contributed new local talent to attract high-technology
industries. *

- COMPUTERS: LEARNING
FROM DINOSAURS

Of all the electronic legacies attributed to space-age advances,
computers share popular credit with communications satellites.
However, history shows that fallout from space-flight efforts has
led only indirectly to the $40 computers in discount stores today.

Pushing the siate of the art was not what the National Aero-
nautics and Space Admunistration set out to do. Despite the
ambitious, elegant language of the National Aeronautics and
Space Act, NASA's early years were affected by the overtones of
a race for the international political prestige to be garnered from
manned space flight. When that objective was escalated to the
unprecedented technological achievement of putting the first
men on the moon and safely returning them to earth, the space
agency sought proven—or at least provable—technology.

Despite ongoing advances in the science of computing, NASA
elected to build and [y what might become computer dinosaurs.
This convervausm turned out to be appropriate in terms of mis-
sion successes and the safety of the astronauts. But even the crea-
tion of dinosaurs affected the future of computing.

Valuable lessons were learned in designing computers to fit in-
to small, tight spaces. Advances in software development and
debugging emerged, including a new method for program inter-
rupts that today is called memory-cycle stealing. And, most
critical for the space effort, designers and vendors learned new
approaches to component reliability.

As the Apollo moon shot effort moved into high gear in 1961,
not all the technical problems had been solved. Eldon C. Hall of
the Massachusetis Institute of Technology's Instrumentarion
Laboratory in Cambridge, who led the development of the
Apollo guidance computer, reminisced that if his design ream
had known then what they learned later, they probably would
have concluded they could not build the computer that was
needed with the technology of the early 1960s.

As the manned space-flight program took shape, there was lit-
tle question that the computer power then available could pro-
vide real-time guidance and control for the spacecraft. The tech-
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tecture was a program-interrupt method of accommodating real-
time inputs and outputs. Large-scale computers had begun to use
it prior to the Mars project. The interrupt method was incorpor-
ated into the Apollo guidance computer for single access to mem-
ory to accomplish incrementing or shifting. This process, now
known as memory-cycle stealing, has been widely used 1o link
computers to peripheral devices.

One of the architects of the Apollo design recalls his reason for
selecting core-transistor logic: it already was a proven tech-
nology, and the transistors would be turned on only when used,
thus requiring less power. This translated into less weight and
space.

Meanwhile the hardware technology available to aerospace
computer designers was developing rapidly. Because the Air
Force had been pushing the developmenr of integrated circuits by
the semiconductor industry since the late 1950s, it seemed to the
project manager, Mr. Hall, that the burgeoning computer might
be squeezed into state-of-the-ar circuitry. However, he was con-
cerned about reliability. An estimate of component failure rates
and component counts showed that the resulting computer fail-
ure rate was 100 high to ensure a successful mission. Reliability
could be increased by conventional techniques of redundancy,
but the design would then exceed the requirements for power,
size, and weight. The alternative was to seek computer reliability
through more reliable components and manufacturing
procedures.

The number of component types and range of values was con-
strained to a select few, bringing complaints from the circuit
engineers that their designs would be constncted. An iron-clad
flight-processing specification oversaw the quality of component
lots. Defective lots were subject to wholesale rejection, with na
partial givebacks, Vendors complained bitterly, but what they
were forced to do in order to achieve reliability was underwnitten
by the ample budgets of the Apollo program. Later they accepted
the reliability lessons learned from required internal visual in-
spection before crates were packaged or systems were sealed and
all parts were burned in. As a result, the Apollo computer was a
pioneer in the flight into space of nonredundant integrated
circuits.

A delayed impact of software

Because the computer programs were entered into the core-
rope memories by the actual manufacturing process, software
had to be developed and debugged well in advance of each flight.
By the time Apollo 11 lifted off the pad, the software team, led
by Margaret Hamilton, had analyzed software management and
development techniques and the software itself. The team found
that 73 percent of the problems were interface-related— data and
timing conflicts within the software. Moreover, 60 percent of the
problems found in a given program release turned up n other
releases already approved. Though they expected (o solve the
software reliability problem by eliminating errors, it turned out
that a major improvement came from defining a system in such a
way that interface ambiguities could no longer exist among the
software modules.

The empirical study of the Apollo software enabled the cate-
gorizing of axioms and definitions for scanning whole classes of
errors—program statements that were inconsistent, redundant.
or logically incomplete. This effort evolved into a theory of
higher-order software that was applied to system defimition pro-
cesses to get rid of interface errors. Ms. Hamilton set out te prove
the theory, for she felt that it could be the basis for automanng
not only the verification process, but also the software-
development process. She is now president of a company called
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Higher Order Software, with fully automatic software products
that generate bug-free systems.

Impacts of other computer activities

Though the manned spacecraft program made the greatest use
of the new capability of advanced computers, they were also used
extensively for simulation, preflight checkout, launch control,
in-flight monitoring, and data reduction from telemetry. James
E. Tomayko of Wichita State University in Kansas said NASA
enjoved its greatest success in computer simulations. These
allowed experiments with equipment and plans, as well as exten-
sive crew training, Mr. Tomayko saw thai the perfect flight
record of the Saturn booster proved the efficiency of modeling
that aided the development of the launch vehicle. He credits
NASA's continued refinement and use of simulations to the fact
that the space shuttle was man-rated on its very first flight,

The 4Pi series hardware and software used today in space shut-
tles was influenced by the special-purpose flight computer that
IBM Corp. built for NASA's Gemini program in the 1960s, [t
made the first use of on-board auxiliary storage—a magnetic
tape unit with identical programs on three tracks, read through
voter circuits before the data entered the computer. It was
another approach to reliability—through redundancy. Multiple
redundancy and fault-tolerant equipment [lies on today’s shut-
tles in systems configured of five IBM 4P8/AP-101 computers
and two mass-memaory umts. *






















OUR MARKET AND OUR CLIENTS . . .
AMERICA'S LEADING CORPORATIONS IN EVERY ARENA

Applications In Every Caiegory

Because our methodology captures the high-level abstractions at the
foundation of all software engineering, our clients can target USE.IT across
many traditional application barriers.

Our market siretches from banking to aerospace, from database
design to communications networks. Our clients are using HOS, to cite but
a few applications, for:

@ Design and build microprocessors
® Construct programmable controllers
® Simulate experiments for the space shuttle

@ Build a fault tolerant operating system
® Create human resource management systems

2 Interface to industry DBMS products

© Build weather, seismic and other geophysical devices
] Develop a communications network for funds transfer
® Monitor a major manufacturing facility

@ Develop a financial modeling system for end users

Partnership With Distinguished Clients

Historically, our clients have spanned a wide range of commerical
corporations and government agencies. The clients who use our products
and services are richly represented in the Fortune 200 category.

We don't sell to these corporations in the traditional sense. Instead,
we enter into a serious, sophisticated dialogue with them that has decades
of future relationship in view.









Breakthroughs have been leveraged since then from the solid
foundation established at the beginning. As with the Apollo project,
Hamilton and Zeldin have never enshrined theory over practice. To the
contrary, advances have been predicated on this principle:

As we meet customer requirements and distill lessons learned in the
actual practice of software engineering, Higher Order Software, Inc. will
maintain the deserved leadership role within the industry.

The Tradition Of Excellence Continues

In 1984, we are proud to announce the addition of James Frame to
Higher Order Software, Inc. as Chief Operations Officer and Executive Vice
President with direct responsibility for Marketing and Sales, Advanced
Support and Product Engineering.

Frame brings to HOS an immense range of management experiences
and skills that uniquely complements the innovative pioneering of our
founders.

He was the first corporate Vice President from the Programming
Division in the history of ITT. While there, he supervised 9,000 software
engineers and increased their productivity within three years by 44%.

Previously, he spent twenty-two years at IBM where he was
intimately involved in the development and management of a host of
critical products:

- IMS database management system.

- CICS (Customer Information Control System)

- COBOL, PL/1, FORTRAN, APL and BASIC programming languages.
- BTAM, QTAM and TCAM telecommunication access methods.

- DOS/VS operating systems for the IBM 370.

Frame's career at I[BM was capped by his management of the 2,000
employee Santa Teresa Laboratory in San Jose, California. Designed by
him from top to bottom to further software engineering, it was the first
installation of its kind in the world and is still hailed as a remarkable
synthesis of architectural beauty, human ergonomics and IBM software

production values.
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HIGHER ORDER SOFTWARE, INC.

OUR DIVISIONS AND DEPARTMENTS . . .
WORKING FOR YOU THROUGH THE LIFE CYCLE

HOS product development does not end with the delivery of USE.IT:
it begins. Product research is interwoven throughout our relationship to
our clients and their projects.

Likewise, HOS support services do not begin and end with the sales
cycle. Our support is designed to work in collaboration with you
throughout the life cycle of each working project . . . and beyond.

We don't envision software engineering as a static set of products to
be sold, but as a dynamic mix of leading edge products and expert support
to be delivered in mutual relationship.

For these reasons, a traditional organizational chart, while vital for
conducting internal operations, is not the best way to present HOS to our
customers.

Instead, we present our work functionally.

We show our customers how they will interact with our people from
the first day of contact to the development of an extremely sophisticated
set of projects many years after initial installation.

At HOS, we mobilize the entire company to provide a full
complement of products and services in interactive, permanent - and, of
course, confidential - relationship to each of our customers. Our
unswerving goal is to provide error-free systems that are robust, efficient
and on time.

We measure our life cycle of customer support in decades, not
months or years. From purchasing to training through special project
consulting services, HOS is there with you - today and tomorrow.






Demonstrations represent only the beginning of our response to
potential clients. Our sales force is at your disposal whenever questions
arise. We meet frequently with you during the initial stages of the
relationship.

At ail points, our sales force offers the utmost in personal,
professional services to all management executives involved in the
decision-making process. A serious, sophisticated product demands a fully
professional presentation. We want clients to know that each salesperson
is fully empowered to call upon all available HOS personnel to meet special
requirements and to finalize commitments.

Developing The Technical Evaluation

Experience has shown that USE.IT is quickly mastered when applied
to a concrete project - whether anticipated or underway.

Our advanced support team under the leadership of Allen Razdow is
brought into the sales cycle from the very beginning to work with the
customer so that we can structure a real world fit between HOS, USE.IT and
your project. The goal of the technical evaluation is to target a specific
project to USE.IT and to develop a coherent plan for post-sale training,
education and support.

This means that customers can immediately quantify the hard
benefits of USE.IT in financial saving and increased productivity and
measure this against strategic corporate goals.

It also means that we provide, through the pre-sale presence of
advanced support, some initial training in the HOS methodology and USE.IT
- without charge - even before HOS products and support services have
been purchased.

When the technical evaluation is completed, clients are easily able to
formulate an internal plan for the deployment of HOS support and the
USE.IT product.

The sales process closes in the context of a firm relationship between
two professional organizations fully committed to support one another.

-10-






USE.IT TO MANAGE AND SUPPORT SOFTWARE ENGINEERING

Training Software Engineers

Anyone can sell a product. But what happens after the sale? At
HOS, purchase is only the beginning. We know our success depends as
much upon our delivery of training and education for software engineers
as on USE.IT, the automated software engineering tool.

Your training is not an afterthought at HOS, but the centerpiece of
our commitment to advance the science of software engineering.

The advanced support group is charged with the development of an
entire range of training and support materials -- from workshops and
seminars to technical notes, books and educational courses.

These materials have emerged from the actual experiences of
customers. They express today's thinking regarding usage of the HOS
methodology. We update them in response to your feedback and our own
in-house evaluation.

Because these HOS personnel are as adept at hands-on application
development as with training, HOS materials and courses are targeted to
the vertical applications most relevant to particular sets of customers.

After all, training and education are important, but we believe our
primary goal is to support your ongoing project activity.

Expanding The Range Of Application

HOS Account Managers are, of course, involved throughout the sales
cycle - supporting sales personnel and meeting your special needs.

It is after purchase, however, that their special skills to help you
come into focus. With the participation of both sales personnel and
advanced support, account managers implement the recommendations of
the technical evaluation. We ensure that your first project with USE.IT is a
success.

-12-



An account manager serves as your liaison to HOS and as your
advisor for the expanded usage of HOS products and services. Our users
report that their ability to apply USE.IT expands dramatically project by
project. From the success of your first project, we help you leverage
USE.IT productivity across entire families of application projects.

Although all users report dramatic productivity gains from the
beginning, the true value of USE.IT explodes in subsequent applications.
The reusability of both previously verified high level specifications and the
creation of modular library components has no ceiling.

The application services team specializes in advanced consulting and
sophisticated support of your large systems projects. In this way, our
broad range of experience with USEIT can be yoked to your detailed
knowledge of your own complex requirements.

Our goal is not to supplant customer engineers. To the contrary, we
find that users soon surpass us in their application of HOS methodology to
their own projects. We consider that a mark of success. However, we do
stand ready at all times to come on-site or to work from HOS headquarters
on any project support task where we can cycle up still further the
productivity of your systems projects.

Keeping Abreast Of Advanced Concepts

In the long term, we keep customers fully informed of the growing
knowledge base of software engineering skills that arise from HOS usage.
Since the HOS methodology signals a new way to think about systems
design, we want to place knowledge resources - as well as product - at
your disposal.

This intimate partnership in communication with our customers is
still another distinctive and unique element of our total support policy.

At HOS, we do not neglect the support of special research projects

that link systems design research, artificial intelligence techniques and
other farsighted developments taking place in the industry.
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Ron Hackler (Director of Advanced Concepts) and his staff keep HOS
tied to this rapidly approaching future. Our experience shows that the
fruits of their special research projects usually find their way into your
hands a few brief months after their completion.

Without question, the key to future HOS development of products
and services rests secure in the elasticity between HOS theory and
methodology and the implementation of that within USE.IT. This stretch
between what can be done and what has been done constitutes our most
exciting challenge. It guarantees that today's USE.IT will never become
tomorrow's forgotten product.

Quite simply, we see no end at this time to the development of

products that simply unfold the logical consequences of the HOS
methodology.
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TECHNICAL ENGINEERING:
ADVANCING THE STATE OF THE ART

The Strategy: Anticipating Tomorrow

Under the supervision of Tom Key, Vice President of Engineering,
HOS is extending the industry-leading reach of USE.IT and related products
to anticipate and prepare for tomorrow's software engineering
marketplace.

The stirategy calls for a three-pronged allocation of resources to
achieve measurable gains in:

Quality: Achieving a 100% problem-free product.

Stability:  Producing consistent performance under all foreseeable
conditions and in all environments.

Function: Porting USE.IT to additional environments and
interfacing it to useful industry tools.
The Interface With Our Customers

On the one hand, customers expect the technical engineering function
to be neither seen nor heard. Customers are not a beta site for HOS
development. On the other hand, our clients rightly expect engineering to
be Telt' at every level.

We accomplish this by interfacing with you through our sales and
marketing force. In essence, we are the servant of the marketing force as
they, in turn, serve you. You will sense our presence as we through them:

® Monitor the details of installation.

& Construct the bridge between product versions.

@ Manage the USE.IT link to different hardware environments.

@ Respond to requests for product enhancement.
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At HOS, we consider successful engineering to be the kind that is
always working for our customers - but never intruding into their solution
of application problems.

-17-



HIGHER ORDER SOFTWARE, INC.

WHERE WE ARE GOING . . .
TOWARD A HIGHER ORDER OF SOFTWARE

Each HOS achievement has signaled a new era in the implementation
of our methodology through our products. This, in turn, has led us to
greater challenges.

We will continue to lead the way to ever higher orders of automated
software engineering and design.

HOS is an innovator - as a company, for our methodology and with
our products:

The Company . . .

HOS has transformed itself within three briel years from a research
and development oriented company to a broadly based corporation that
moves with equal ease between commercial and government applications.

Over the coming decade, we project enormous expansion in revenue.
We will use our expanded resources to increase our massive investment in
expert personnel and leading-edge product development.

The challenge that faces us is not growih: we are growing
exponentially. Our challenge is to manage growth.

We refuse to reduce our commitment to innovation in order to meet
this challenge -- but we are just as determined to yoke the stability of our
corporate structure to our mobility in responding to the marketplace. HOS
is ready.

We also welcome the challenge to become the single major
educational force within the software engineering industry. With USE.IT,
software engineering can move from a black box art to a science that can
be held responsible for its performance. With HOS and USE.IT, software
engineering achieves accountability.

In short, we believe that our customers deserve our commitment to
become a major American corporation as well as the major industry force
in software engineering. They have that commitment - in full.
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The Methodology . . .
Every company, explicitly or implicitly, has a methodology.

Every product of a company expresses the logical consequences that
flow [rom that methodology.

At HOS, we make methodology explicit. We have no hidden agendas.
Our products rise or fall upon the soundness of the theories that drive
them.

Far from hiding our methodology, we train our customers in it.

Our eight years of experience have demonstrated the essential
soundness of the theory underlying our specification language (AXES) and
the automated software engineering tool that supports that language
(USE.IT). Even so, we are diligently testing and evaluating HOS
methodology against every customer experience.

Ideally, HOS products should transparently incorporate the full
implications of HOS methodology.

We really believe that this ideal is attainable.

The HOS methodology already encourages the production of logically
error-free specifications and the automatic generation of error-free code
from these specifications.

We consider the tested marketplace benefits of USE.IT in forbidding
entire classes of software errors to be our best answer to thorny theoretical
problems of program provability. While important research continues in
this area, our satisfaction rests with the work our customers are doing.

Their groundbreaking work is the best illustration of the
consequences that flow from our methodology.
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The Product . . .

While most of the industry can only promise automated tools, we
deliver USE.IT, the automated software engineering tool that works today.
In fact, the current version of the product represents several generations
of thorough development, testing and enhancement.

Because the HOS methodology is so rich, there are many future
development paths for USE.IT. The unique, mathematical basis of our

methodology guarantees a future path for our producis that cannot be
imitated by competitors.

We know that we're responsible to anticipate the needs of our users
before they do. And we know we need to listen to our users every step of
the way. They are the systems engineers whom we serve.
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Investors in Higher Order Software, Inc. include:

Alex. Brown & Sons, Inc.
Cazenove & Co.
Emerging Growth Partners
Frontenac Venture Company
Greylock Management Corporation
Henry & Co.

The Hillman Fund
James Martin
Merrill Lynch Venture Capital, Inc.
Montagu Investment Management Limited
Newcastle Company Limited
Sears Investment Management Co.
|.F.Shea Co,, Inc.
Venrock, Inc.
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SYSTEM REQUIREMENTS

USE.IT has been designed for the DEC VAX environment under the VMS w?ﬁe.rating system (3.0 and

higher). Code generation is available in FORTRAN or PASCAL. USE.IT
computer and language environments in the near future.

be compatible with other
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specifications of relatively simple applica-
tions, but here we have an application
generator which is completely
generalized —where one could create
specifications for exceedingly complex
logic. One could create specifications for
any type computing system and then
automatically generate a program code
which is provably correct.

TTI: Ah, . . . but isn’t there a trap there?
Flow do we know that the program which
generates the code is correct?

JM: Because the program which generates

the code is created with the program which
enerates the code! That's a bootstrapping
unction.

TTI: We haven't really described what this
bug-free system is and just how it works,
You began discussing it earlier with the
s;laecificatiun. Maybe you can tell us in sim-
ple words just whalt it is and how it does its
magic.

JM: One can represent any function by
writing y = f(x) and draw a picture like the
following;:

x— [f1— [¥] = §x)

Now, suppose your function is very com-
plicated; suppose, for example, your func-
tion is to generate an electronic transfer
system. You'd have certain inputs and cer-
tain outputs. That one block shown aboveis
an overall statement of requirement,
without any precision. We now want to
make that precise by decomposing that
function into sub-functions, ang we wish to
keep on decomposing it until we've got a
statement of sufficient precision to be able
to generate code, All of this is done with a
mathematical rigor which enforces us to
have a specification which is mathematically
provably correct, One of the attractive
features about this is that your very broad
statement of requirements is made in the
same language, with the same type of
diagram, as your more detailed specifica-
tions. In other words, there's only one
language. If one utilizes the traditional DI
development process, we start off by
writing requirement statements in English;
we might then represent specifications with
the aid of dataflow diagrams; we then con-
vert those into hierarchical structures
representing program design; and we then
convert those into COBOL! So, in tradi-
tional systerns, we've very often got four
incompatible languages. Using this design
procedure, you've got only one language,
and one type of lFraphics representation,
which takes us all the way from the very
broad statement of requirements down to a
totally debugged system.

TTI: But how are changes handled deep
down in the detailed specification?

JM: It's wonderful to handle changes! It's
just a dream for maintenance. And as you
can imagine, in writing a book, you make
many, many changes because you want to

et tutorial examples. Each time I'think up a

etter way of writing a paragraph, | am
forced to change theﬁ:ogram to which the
garagraph relates. The examples in the

ook were changed many times, and as |
change a block that’s lower down on the
chart (in other words, a more detailed
block), I get an indication flashing on the
screen of all consequential changes which
must be made in order to preserve a system
without any bugs in it. The problem with
making changes in complex systems is that,
as one makes changes, it sets off a vast chain
reaction of other things which have to be
modified. Usually, you don’t spot all of
those other things, and the cost of making a
seemingly trivial change becomes wvery
expensive because it creates an enormous
crop of new bugs which have to be located.
Here, as soon as you make any change, it
automatically tells you of all consequential
changes,

TTI: 1t seems that a lot of its strength comes
from this common language. In the usual
programming methodologies, if 1 change a
requirement spec, [ must then ask myself,
"What are the implications down at the
coding level?” Here, thal's not necessary.

JM: Yes, if you look at the typical
maintenance situation, you encounter a
programmer under severe lime pressure to
make a correction to a COBOL program.
What one really ought to do is change the
structured chart of thecrrogrnm and then
change the dataflow diagram and then
change the English text which relates to
it—and one almost never does that, due to
lack of time; so, the code which exists
becomes successively patched in a way
which doesn’t match the higher level
representations of the program. With this
system, when you make a change, the
representation right from the top to the bot-
tom is automatically being changed. Fur-
thermore, you doitat ascreen, and you can
do it very fast. One of my first reactions to
this whole piece of software was that it is a
lovely toy to play with! But [ shouldn’t call it
a toy because it's actually a very com-
licated system. It is like the best
"AD/CAM systems or the best systems for
doing architects” drawings on the screen.
It's fascinating to use in tﬁat you have con-
text diagrams, and when you make one
change to the diagram, many other things
happen. One can make changes in an
elegant fashion, very fast,

TTI: Surely, you can’t view the entire struc-
ture that you have generated on one single
screen?

JM: No, you'd have many interconnected
screens and a way to navigate through
them.

TTI: So, if | wanted to identify all the places
where my change had caused further

changes, 1'd have to scan around in this
larger space?

JM: Not really. The reason is that the system
won't let you generate any code until
vou've caught all of the errors which your
changes had triggered.

TTI: But I thought one doesn’t produce
errors with this system?

JM: It generates bug-free code, but in order
ta do that, you ghave to get bug-free
specifications. Now, you certainly can put
something on the screen which is inac-
curate, and it's going to indicate to you that
there is an error in your human statement
which causes it to be noncomputable.

TTI: What kind of errors will it catch —con-
tradictions, inconsistencies, omissions?

JM: Yes, contradictions, and yes, incon-
sistencies, sometimes omissions.

TTI: How does this system handle
documentation?

JM: The documentation is automatically
built as you build the specifications; it's a
beautifur example of a self-documenting
system.

TTI: Are changes immediately reflected in
an updated version of the document?

JM: Yes, and along with each block which
represents the specifications, we can put
some explanatory English language text,

TTL: Very good! You have a recursively cor-
rect system, Jim, are you predicting that all
existing application generators will be
replaced by this new bug-free system?

JM: No, because there is another require-
ment in what one might call a computable
specification language. As well as the
capability for non-procedural representa-
tion with which one can get results very
fast, one also needs extreme user-
friendliness. For simple systems, there is
certainly going to remain a substantial
market for wvser-triendly application
generators.

TTI: Are you saying the price we pay for
bug-free systems is that they are not user-
friendly?

JM: No, This particular one is user-friendly,
but it is more appropriate for crealing
systems with complex logic than for
generating for example, a simple report,

ITI: How do these bug-free systems com-
pare with the traditional structured
approaches to program generation?



IM: Most structured approaches being
taught in almost all the courses offered on
the subject in the United States do not even
attempt to create bug-free code and cer-
tainly do not succeed in creating it. If one
looks at the diagrams drawn by the practi-
tioners of that technique, it is possible to
analyze those diagrams and re-do them
with this technique. As that is being done, it
becomes evident that typical structured
diagrams are absolutely full of errors,

TTI: That sounds like a wonderful challenge
to our readers, Can they put some of the
existing structured programming designs
to the test of this bug-free design procedure
and see if, in fact, ﬁwy do contain errors?
That leads to another question of interest to
our readers—how long does it take an
individual to learn to use this system?

JM: 1 think an intelligent individual,
including one who has not been involved in
the computer industry before, could learn
how to get valuable results with it in two
days. But before one became an expert, like
anything else in computing, many weeks of
practice would be needed in actually build-
ing systems.

TTI: So, early on, one could generate some
simple systems and then, as he matures,
develop much more complex systems.

JM: Yes, there have been lots of examples of

fairly bright people learning how to

§enerate simple systems with this in two
ays.

TTI: How long did it take you to learn to use
it?

JM: Far less than two days!!

TTI: Would the naive, non-DFP user require
a DP grufessunal to assist him in this
process.

LM.- Not necessarily. But I think it would be
etter to use the system in typical DP install-
tions and have a prufessi(ma?(nut necessar-
ily a programmer but certainly someone
whaois very competent and capable with the
system) helping the end-users. | tend to
regard it rather more as a tool for the DI
professional than as a tool for the end-user.

TTI: Is there currently available to the user-
community an implementation of such a
bug-free system?

JM: Yes, in fact, there is. It's produced by a
company called Higher Order Software in
Cam ridge,Massac usetts and the name of
the product is USE. IT* . And it runs, to-
day, on any VAX computer.

TTI: Is that the only system on which it 15
implemented?

JM: At the present time, yes, but it can
generate code which 1s portable to other
systems.

TTI: For which languages do we currently
have USE. IT compilers?

JM: It can now generate code in FORTRAN

or PASCAL; they are creating a COBOL

ﬁenerator and they have plans to create an
DA generator.

TTI: What is the status of the documenta-
tion on this product, USE. I'T?

JM: It's pretty good documentation. One
can learn how to use it from the documenta-
tion —especially if you read my book on the
subject!

TTI: Is your book currently available?

JM: Yes, it's entitled PROGRAM DESIGN
WHICH IS PROVABLY CORRECT,
published by Savant in England.

TTI: How can we learn more about this pro-
duct and this technique?

JM: Read the book, and/or get a demonstra-
tion of it from HOS. But the best way to
learn more about it is to find some program
of reasonable complexity and teach yourself
how to build that system with this tool.

TTI: The entire development of the bug-free
software you have just described is enor-
mously exciting! Once again, it is an exam-
Fle of American creativity atits best. To take

ull advantage of the technique, it should be
made widely available. And therein lies the
rub! Once it's publicized, for example, in

ﬁour book, do we not run the danger of
anding over our latest technological
developments to our foreign competitors,
in particular, the Japanese! After all, they
have not been sﬁy in adopting our
technology and then dominating the
market place,

JM: We've been protected to some extent
from Japanese hardware by the fact that the
Japanese software in the past has been so
bad. The question is often asked, “Are the
Japanese likely to improve their software
production capability in the same way that
they have improved their hardware produc-
tion capability 7" And one of the things that
we might have reason to be alarmed about
is that, if the Japanese really take off with
this technique, it would tend to fit their
personalities very well, [ think, because
they get on very well with rigorous mathe-
matical discipline techniques. This would
enable them to create exceedingly complex
software which is completely bug-free and
easy to maintain.

TTI: That's a frightening prediction, Jim.
One wonders what we can do in that case to
protect ourselves.

JM: We've got to keep ahead!

TTI: Are yousuggesting, therefore, that our
armies of programmers should now retrain
themselves in these new technologies not
only in application generators, but in this
particular bug-free approach?

JM: Absolutely! No question whatsoever!
The ordinary programmer ought to under-
stand that the computer world is changing,
and if such Em%ram mers want to earn hi
salaries in the future (as well as be on the
vanguard of progress), they've got a lot of
new learning to do — of techniques that will
make them, as individuals, more valuable,
more powerful and capable of earning those
high salaries.

TTI: Inevitably, that means the universities
will have to adopt this new approach. Do
you think they will?

JM: In twenty years' time.

TTI: Now, now, lim, you're talking to a
university professor!
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