
HOS Higher Order Software, Inc.
2067 Massachusetts Avenue
PO Box 531
Cambridge, Massachusetts 02140
617661 8900

CONTACT:

Ralph Specht

Higher Order Software, Inc.
(617) 661-8900

~ ORDER~ELEASES USE. IT'"

ENHANCEMENTS FOR THE IBM PRODUCT LINE

CAMBRIDGE, MASS. , March 3, 1986 -- Higher Order Software, Inc. (HOS)

today announced shipment of Re lease 2.0 of their USE.IT software pro­
duct for the IBM MVS environment. USE.IT automates the requirements

and design process which results in substantial savings in software
development and maintenance . Automating the process also el iminates

errors which are so prevalent in a manual design and implementation
process.

With USE. IT, system developers create specifications on a graphic s
terminal wi th a technology parallel ;ng computer-aided design and manu­

facturing tools (CAD/CAM). Specifications are automatically analyzed
to detect logical errors. When all logi cal errors are corrected,
USE.IT automatica11y constructs so urce code and documentation. "With
traditional de si gn methods, the end-user describes what he or she
wants the software to do. But the requi rements , specifications,

(more)

HIGHER ORDER SOFTWARE
Page two

design, and code are written in different languages, and with dif­

ferent procedures. Each language translation introduces new errors
into the development process. By the time the software ;s finished,
it may not bear much rel ationship to what was originally requested.

With USLIT, one language is used to define requirements and specifica­

tions and the source code is constructed automatically from the

design." said a company spokesman.

Specific enhancements in this re'lease include: the abil ity to

integrate data dictionary definitions with USE . IT deSigns and imple­
mentations; increased use of local terminal capabilities to reduce

machine resource requirements and further improve user productivity;
and the capability, in multi-site design/development environments, to
capture designs and implementations and transfer them from one loca­
tion to another.

In addition to the IBM MVS environment, the USE.IT product line is
also available for VAX/VMS users.

For further information contact: Higher Order Software, Inc. , 2067
Massachusetts Avenue, Cambridge, MA 02140 . Tel: (617) 661-8900.

* , *

r i-) ~~-o(kr Sw '
erf - t-\-OS

GamePlan -
ANew
Approach
To
Management
Planning

35 Medford Street
Post Office Box103
Scmerville, MA 02143
(617) 628-3200

What Is GamePlan?

GamePlan is a planning environment for professionals who plan and manage major
projects and programs.

You state your top-level assumptions and objectives. Then, as you devise a strategy to
achieve those objectives, GamePIan provides you with an optimal tactical plan.

The "intelligence" built Into GamePlan helps you to avoid tedious planning activities.
You concentrate on "what" you want to accomplish. GamePlan computes the "how".

As you identify key management roles and responsibilities, GamePlan helps you set up
guidelines for your management team. Each team member can then supply details about
specific parts of your plan. GamePlan helps you 10 integrate these sub-plans.

As your plan unfolds, Gameplan helps you to maintain a systematic approach. GamePlan
will tell you if your sub-plans are consistent with your higher level objectives .

. As you know, the only thing constant in planning is change. Because GamePlan is so
highly integrated. you can, for the first time, do real Mwhat ir analysis.

The technology underlying GamePlan is a powerful new approach to activity and
resource integration, coupled with frame-based techniques derived from AI research.
Unlike the conventional network-based project management technology, GamePlan uses
in tegrated hierarchies. The introduction of integrated hierarchies allows for a new
dimension of computational intelligence and flexibility to the planning professional.

Better planning today -- with GamePlan.

Product Overview

GamePlan has been designed to meet the following objectives:

• You should be able to plan as you manage - and manage as you plan .

• You should be able to concentrate on creativity - and leave the tedium to the
computer.

You should be able to have qualitative and guantitative summaries at your
fingertips.

You should be able to evaluate alternative plans guickly and interactively.

To meet the fi rst objectiv~, we designed a user-interface that closely mirrors the real
world of management. GamePlan is composed of three integrated hierarchies.

To meet the second objective, we have provided logical interface analysis for each of the
three hierarchies. You may design your plan top-down, bottom-up or middle-out.
GamePlan assures you an internally consistent plan.

To meet the third objective, you can consolidate or expand information at any planning
level and from any planning view.

To meet the fourth objective, you can play with confidence factors, manipulate resource
limits and reconfigure actions dynamically.

Any plan designed with GamePlan is composed of a course-of action, an operational-map
and a supporting set of resource definitions.

The course-of-action is a hierarchy of planning actions and
corresponding assumptions and objectives.

The operational-map is a hierarchy of actions and corresponding
resources distributed over a calendar period.

You define the types of resources you want as a hierarchy
of types and sub-types within the Resource Definition Facility .

2

I :::::::'

r I'

, '

~I

THE COURSE OF ACTION: A hierarchy of planning actions,

f1~f.':'3!!. .,.Ioc. _
, Uo
0. 110., ... Uo

$s!:....-, L .. . s.-.,..-. l ... 1

~-...... s.

,-"". v ~ ,-, ...
~,-

Course of Action

On the course·of·action . you divide your strategy into discrete actions. Some or all of
these actions may have their own subordinate actions. Subordinate actions. in turn, may
have subordinate actions of their own.

Through the course·of·action, you set priorities and assign assumptions and objectives.
Each action may have its own assumptions and objectives. Assumptions describe how
many or which resources an action needs: objectives describe the resources an action
produces.

If an action has no subordinates. you assign the time needed to meet the objectives of that
action. If an action has subordinates. GamePlan computes the time for you.

The course·of·action meets GamePlan's design objectives as follows:

OBJ ECTIVE: A user~interface that closely mirrors the real world of
management_

The course-at-action is integrated. This assists you to manage by
objectives.

Look at the course-ot-action example on the opposite page. Notice that the
objectives of the supervisory action appear as objectives of one of the
subordinates. The provided assumptions of the supervisory action are used
by the subordinates. The subordinates work together to meet the objectives
ot the supervisory actions.

The course-at-action is modular. This makes it easy to reconfigure your plans.

Notice that each action, be it a supervisor or subordinate follows the same
format. Each is self-contained. Each can be viewed as an individual
"contract" with its own assumptions and objectives.

OBJECTIVE: Automatic logical analysis to .IIminate tedium.

GamePlan's bu ilt-in connection rules are used to check both the interface
logic and constraint logic. If there is an error, GamePlan points you directly
to the problem.

The interfaces among supervisory and subordinate actions are automatically
analyzed by GamePlan. This makes it easy to add or delete actions.

All the interfaces among assumptions and objectives for anyone action are
analyzed by GamePlan. This makes it easy to add resource constraints to
any action.

3

OBJECTIVE: Consolidate or expand information as needed.

The Work Breakdown Structure
course-of-action by action name.
course-ot-action. You may also
action-frame's information.

provides you with a summary of
From th is view, you may select

use this view to enter or change

the
any
any

At each action-frame, you get a summary of assumptions, objectives, duration
time. confidence facto" cost and revenue for that action.

For any course-of-action, you may expand the view of the action-frame
to include its set of subordinate actions. You may use the view to enter or
change any action-frame's information.

OBJECTIVE: Reat ·"What tf· Anatysis

At any action-frame, you may assign a confidence factof , expressed as a
percentage. This factor is your estimate of how confident you are that you
can achieve your objectives as planned.

Whenever you wish, you may request GamePlan to show you the best or
worst case analysis of your plan. To compute the best case scenario,
GamePlan assumes you have 100% confidence in each action's estimate. To
compute the worst case scenario, GamePlan Mrolls·down" cumulative
confidence factors from the top of your course·ot·action to the lowest
subordinate actions.

You may. of course, change confidence factors whenever and wherever you
wish and request GamePlan to compute various scenarios.

4

,. I~~ SlIt-uP·'>'t ..

'_0000<0-"0
E><c"""te-Uti
£><<:I1""ee - 6to
Pvnc:I'>-Ulle

fo.-n-&-place

llilY-IIto - dr

Rough-in

Punch-' 1st
Butld-SuIl" ".
Construct-Ex

Con~t .. u<:t-In

Rppro".

• site r .. en i

Re""nue
Cost

18;

;1 , ' , , : 1 , , , , ,
: 1 , , : 1

, , , , ,
~ 9 : 3 " 3 , , • • • • " 3 3 , , , , , , 3 3 " " 31 : 2 "

, • • 3 3 3 3 "
, , , , , • • • , ,

" "

THE OPERATIONAL·MAP: Action and Resource Distribution
for your course of action over a
calendar period.

" " " " "
,

? used

'" '" lot., l • ,,,
'"

Operational Map

When you have defined a course-of-action, GamePlan can find both the optimal schedule
and the optimal resource allocations for all of the actions. The operational-map shows
you the schedule and resource allocations over time.

GamePlan infers the precedence relationships among actions by analyzing your
assumptions and objectives. When you describe the type of resource you want and how
many you need. GamePlan allocates the resources you request and schedules the action in
accordance with your priorities and the available resources.

GamePlan computes how resources can best be shared. Shared resources may include
time. The overhead resources of a supervisory action are shared by all its subordinates.

The operational-map meets GamePlan's design objectives as follows:

OBJECTIVE: A user·interface that closely mirrors the real world of
management.

The operational-map Is integrated. This assists you in effective utilization
ot upper, middle and lower management resources.

Look at the operational-map example on the opposite page. Notice that the time
and resource distribution are shown for both supervisory and subordinate actions.
Whenever you adjust a subordinate action, you may affect the length of time over
which you need supervisory activity. You may adjust supervisory actions without
bothering with the delails.

The operational·map is modular. This makes it easy to adapt actions to new
project environments.

Whenever you use one course-at-action as part of a new project. it can be viewed
as a reusable "template" for dynamic resource allocation.

OBJECTIVE: Automatic logical analysis to eliminate tedium.

The timing interfaces among supervisory and subordinate actions are analyzed
automatically by GamePlan. This eliminates the need for you to define precedence
rules.

The resource interfaces are analyzed automatically by GamePlan from your
assumptions and objectives. This eliminates the need for you to manually allocate
resources.

OBJECTIVE: Consolidate or expand information as needed.

The Action Schedule may be viewed for one planning level or expanded in depth to
the lowest subordinate actions.

5

The resource ~spreadsheet" shows you resource utilization and associated
revenues, costs and profit. You may request a summary for a particular
action or an expansion separating supervisory from subordinate resources.
For each summary resource, you may expand by sub· type until you see each
member.

OBJ ECTIVE: Real "Whal If' Analysis

At any scheduled action, the operatlonal·map shows you the "slack~ time.
You may Interactively adjust that action over time within the slack period.
Whenever you do so, you will immediately see the effects on resource
utilization and associated dollars.

You can then fine·tune your resource levelling interactively.

6

, _ , _ 1"_

-... ... Ito -
[_."
[lSI' I

[lSI' I

.. -. -
....... .-- - .-

"
---.- ". - -

--

RESOURCE DEFINITION FACILITY: A means 10 define resource objects.

Resource Definition Facility

With the Resource Definition Facility t you may organize your resources in types that
have common attributes. Some or all of these types may have sub-types.
Sub-types may have sub-types of their own.

Types inherit the attributes of their super-types. They may have additional attributes
of their own.

Members of a type are also members of their super-type. If a type has sUb-types. the
members of one sub-type may be members of another sub-type.

The Resource Definition Facility meets GamePlan's design objectives as follows:

OBJECTIVE: A user-interface that closely mirrors the real world of
management.

The Resource Definition Faqllity is integrated. This assists you to effectively
utilize the same resource as it plays different roles.

Look at the Resource Definition Facility example on the opposite page. Notice that
construction manager is a sub-type of manager and line manager is a sub-type of
manager. Joe could be a construction manager. He could also play the role of line
manager. Joe inherits a manager's attributes. In addition, he may have
construction manager attributes and line manager attributes. On the course­
of-action, you may use Joe as a construction manager for one action and as a line
manager for another action.

The Resource Definition Facility is modular. This assists you to effectively utilize
different resources within the same type.

Each type is self-contained with its own attributes and members. You may add or
remove members whenever you want to. You may also disconnect a type from a
super-type and connect it to another type. Whenever you do so, the type inherits
the new super-type's attributes; but it keeps its self-contained attributes and
members.

OBJECTIVE: Automatic logical analysis to eliminate tedium.

The interfaces among types are automatically analyzed by GamePlan. This makes
it easy for you to add or remove types.

All the interfaces among the attributes for anyone type are analyzed by GamePlan.
This makes it easy for you to add or remove attributes.

As GamePlan checks the interface logic, it will explain to you exactly where an
error occurs.

7

OBJECTIVE: Consolidate or expand information as needed.

The Type Breakdown Structure view of the Resource Definition Facility
gives you a summary by type-name. From this view, you may select any
type. You may also use this view to enter or change any type's attributes.

For each type. you get a summary of the limit, properties and defaults.

For each type, you can view a table of property values by member. You may use
this view to add members, delete members or change property values for any
member.

OBJECTIVE: Real ooWhat If' Analysis

For any resource type, you may assign a limit, expressed as a whole-number.
GamePlan will add members to a type for you whenever the members you have
specifically identified are insufficient to execute your plan in the shortest
possible time. Whenever you assign a limit. you restrict the number of resources
available for GamePlan to use in allocating resources for your course-ot-action.

The default assumed by GamePlan is that an unlimited number at resources can be
added. If all types are defaulted. you will see how many additional resources you
will need to execute your plan In the shortest possible time.

By changing type limits. you can evaluate resource utilization vs time to
complete.

8

GamePlan's Working Environment

As a planning professional, you need to be able to use computing power intuitively.
GamePlan. available on any of the Symbolic 3600 family of workstations supports that
need.

You use high resolution graphics to communicate rapidly and interactively. You can use
a mouse or a command language, as you prefer.

You use a large screen which gives you more information at a glance.

You lake advantage of sufficient processing power to give you the answers you need
quickly.

GamePlan combines state·oHhe·art software technology With state·of.the·art
hardware technology to provide you with the ultimate planning machine.

9

-

HO

D

MARGARET H. HAMILTON

PRESIDENT AND CHIEF EXECUTIVE OFFICER

Margaret H. Hamilton co-founnen Higher Order Software,

Inc. (HOS) in 1976 and has serve~ as l'ts
u president and

chief executive officer since that time.

She is co-creator of a formal axiomatic system

definition and development th d 1 - me 0 a ogv called Higher Order

Software, and of the functional life cycle mooel of this

methodology.

Prior to founding HOS, she directed the Apollo

on-board flight software effort for both the command ~

mooule and the lunar module systems while division leader

Irder Software, Inc,

/

Headquarters

CONTACT:
Karen Kosko
Higher Order Software, Inc.
(617) 661-8900

-or­
Paula Neely
Newsome & Company, Inc.
(617) 426-4300 FOR BUSINESS EDITORS

HIGHER ORDER SOFTWARE INTRODUCES COMPUTER-AIDED

SOFTWARE DEVELOPMENT TOOL FOR IBM ENVIRONMENT

CAMBRIDGE, Mass., April 15, 1985 -- Higher Order

Software, Inc. (HOS) today announced that the automated

software development tool, USE. IT, now runs on IBM

mainframe computers. USE.IT makes the entire process of

developing and maintaining software systems shorter and

more logical, reduces errors, ann simplifies the design

process. "The productivity of the data processing

department increases, and costs are cut with USE.IT," said

Margaret Hamilton, president and chief executive officer

2067 Massachusetts Avenue
Post Office Box 531

Eastern Region

551 FifthAvenue
Suite 1110

Western Region

8445 Freeport Parkway
Suite 420

Cambridge, Massachusetts 02140
6 17-661-8900
Telex 951253 HOS INC CAM

New York, New York 10176-0027
212-490-8721

Interfirst Place
Irving, Texas 75063
214-257-3758

HOS HI9h.,rOnlbrSO~Dte Inc
~(tlJl ,., • , !II t I\"'r= •• ,
RU l}tJ r; tJ

ilotlntfl! M,l
ih'i ~Ul

MARGARET H. HAMILTON

PRESIDENT AND CHIEF EXECUTIVE OFFICER

Margaret H. Hami.lton co-f.ounned Higher Order Software,

Inc. (HOS) in 1976 and has served as its president and

chief executive officer since that time.

She is co-creator of a formal axiomatic system

definition and development methodology called Higher Order

Software, and of the functional lif.e cycle model of this

methodology.

Prior to founding HOS, she directed the Apollo

on-board flight software effort for both the command

module and the lunar module systems while division leader

at the Charles Stark Draper Laboratory, Inc. At Draper,

she was directly responsinle for several basic research

and advanced tool development and application effort~,

including the SKYLAB flight software and the integration

of requirements for the space shuttle flight software.

Hamilton has concentrated on the relationships between

basic research and system applications. She has conducted

research in areas such as techniques for defining reliable

-rnore-

Hamil ton/Page 2

systems; operating system design; man-machine interface

design; error detection and recovery design; and methods

for managing, integrating, developing, and maintaining

large-scale, real-time, multiprogrammeo, multiprocessed

system development activities .

Hamilton holds a bachelor of arts degree in

mathematics from Ea~lham College.

• , t

0491d/ 032785/GF

•

HOS High.rOnJ." ~uflwartt, In(;.
~ 1M,
ro b ,
hI I

Company:

Founded:

Founders:

Prontlet:

Sales:

Officers:

Ownership:

Investors:

Employees:

o. ,

COMPANY FACT SHEET

Higher Order Software, Inc.
2067 Massachusetts Avenue
Cambridg~, MA 0'140
(617) ~1;l-8900

1976

Margaret H. Hamilton, Savdean Zeldin

USE.IT, a computer-aided software desiqn and
production tool, analoqous to computer-a ideo
design and manufacturing (CAD/ CAM) tools,
for the rBM mainframe and DEC VAX
minicomputer markets. USE.IT lets software
designers create specifications that are
logically consistent and complete before a
single line of code is produced, t~en
automatically generates running programs.
Additional aspects of HOS' business include
education and consulting.

HOS has sales offices in New York City,
Dallas, and Atlanta. USE.IT also is
distributed bv Metra-HOS, Brussels, which is
a joint venture hetween Serna-Metra, Paris,
and HOS.

Margaret H. Hamilton, president and chief
executive officer; Savdean Zeldin, executive
vice president and chief financial officer;
Thomas D. Lutz, vice president of marketing
and sales; Tom L. Kev, vice president of
development ; David Blohm, vice president of
finance and administration

Privatelv held: venture capital financing of
$q.2 million

Alex. Brown & Sons, Inc.; Cazenove & Co.;
Emerging Growth Partners; Frontenac Venture
Co.; Greylock Management Corp.: Henry & Co.;
Henry L. Hillman: James Martin; Merrill
Lynch Venture Capital Ltd.: Newcastle Co.
Ltd.: Sears Investment Management Co.; J.F .
Shea Co., Inc.; Venrock, Inc.

75

4122c/040385/GF

HOS ttUjher Urdu, SPU'Whotl hll
'06 M

PI:" ,

l '"
1;1 11ti

THOMAS D. LUn

VICE PRESIDENT OF MARKETING AND SALES

HIGHER ORDER SOFTWARE, INC.

Thomas D. Lutz has heen vice presinent of Higher Order

Software, Inc. since October, 1984.

Prior to joining HOS, Lutz was principal and director

of education ano communications at Nolan, Norton and

Company, a manaqement consulting firm that specializes in

information technology in business. He was responsible

for the marketing and product ion of a ll enucational

products and services, including puhlic eOllcation courses

and seminars, in-house education programs, video-based

education and education consulting.

Previously, Lutz was director of education for ITT

Programming. At ITT, Lutz spearheaded an entrepreneurial,

business approach to providing educational services for

ITT personnel and customers in the information technology

industry.

Lutz also spent seven years as the head of information

systems for the Mayo Foundation, where he was responsible

for developing and marketing clinical, research and

administrative systems.

-more-

Lutz/Higher Order Software/Page 2

Lutz began his career at raM as an a~plied scientist

and manager at the Systems Research Institute. During his

14 years with IBM, he founoed and directed the IBM Systems

Science Institute.

Throughout his career, Lutz has served as adjunct

faculty memher to several graduate schools, including the

University of Minnesota, the Pratt Institute and the

University of Newcastle (U.K.l. He is an internationally

recognized lecturer ann is the author of several DELTAK

video journals on systems management.

Lutz holds a bachelor of science degree in mathematics

from South Dakota School of Mines and Technology and an

masters of science degree in operations research from New

York University.

f t t

0384d/04038S/NEELY

HOS Hlrahot Ofd~u' !h.t~VIIt,.r It I
~Oh;,.,l ," Iw ,.
PO 10

III 1M 11

CONTACT:
Karen Kosko
Higher Order Software, Inc~
(617) 661-8900

-or­
Paula Neely
Newsome & Company , Inc.
(617) 426-4300 FOR BUSINESS EDITORS

HIGHER ORDER SOFTWARE INTRODUCES COMPUTER-AIDED

SOFTWARE DEVELOPMENT TOOL FOR IBM ENVIRONMENT

CAMBRIDGE, Mass., April 15, 1985 -- Higher Order

Software, Inc. (HOS) today announced that the automated

software development tool, USE. IT, now runs on IBM

mainframe computers. USE.IT makes the entire process of

developing and maintaining sof tware systems shorte r and

more logical, reduces errors, and simplifies the design

process. liThe productivity of the data processing

department increases, and costs are cut with USE.IT," said

Margaret Hamilton, presi~ent and chief executive off.icer

of HOS.

With USE. IT, sys t em developers create specifications

with a Graphics Editor in an easy-to-understand graphical

format. Specifications are automatically analyzed to

detect logical errors. When all logical errors are

correc ted, USE.IT automatically generates source code,

bypassing error-prone manual programming processes.

-more-

Higher Order Software/Page 2

"Computers have been usen for years to automa te

procedu r es an~ increase oroductivity in other areas, hut

the development of software itself has not been automaten ,"

sai.n Hamilton.

It is 10 to 100 times more eKpensive to correct an

error in the testing stage than to finn and correct it as

the software is being designed. With so much of their

resources oedicated to maintenance, ~ata processing

departments are falling further behinn in developing new

appl ication.c; .

"It is becoming clear that the ability of a company to

compete depends largely on its ability to process

information more efficiently than its competitors,n sain

Hamilton. "Compa nies ace demanding complex new

applications, such as manufacturing or financial control

systems, to fulfill thei~ strategic requirements . Yet

transfor ming t hese requirements into reliahle software is

time-consuming ann expensive at best, and in some cases

impossible, using current development toolS . "

USE.IT approaches this problem by applying computer­

aided design to the software development process. This is

analogous to computer-aided design and manufacturing tools

(CAD/CAM). Just as CAD tools let the designer model a

product ann correct design errors before production begins ,

USE.IT lets software designers create specifications that

-more-

Higher Order Software/Page 3

are logically consistent and complete before a single line

of code is produced. And just as CAM tools automate

pronuction, USE.IT automatically generates running

programs based on the specifications.

"USE. IT also addresses the problem of software that

does not meet the need for which it was ostensibly

designed," said Hamilton. "With traditional design

methods, the end-user descrihes what he or she wants the

software to do. But the requirements, specifications,

deSign, and code are written in different languages, and

with different procedures, using manual processes. By the

time the software is finished it may not bear much

relationship to what was originally requested."

With USE.IT, the end-user ann the software developer

can work together at a terminal to develop specifications

in a simple, easy-to-understand graphical format, using

the end-user's terminology. Specifications are

automatically analyzed for logical correctness. At any

stage in the specification process it is easy to create a

prototype to show the end user how the software will work.

"The ability to create and run prototypes quickly

enables the end user to participate closely with the

software developer in the specification process and

eliminates the problem of systems that do not do what the

user wanted them to do," Hamilton said.

When applications are completed, corrected, and

tested, USE.IT automatically pronuces computer code,

-more-

Higher Order Software/Page 4

bypassing traditional manual programming. If a completed

application must be changed for any reason, the changes

are made to the specification and code is regeneraten.

Internat lonal Data Corp. (IDC) estimates that

large-scale systems users spent approximately $126 million

on software design and development tools such as program

and application generators and database management systems

in 1984 and predicts sales of $500 million by 1988.

"These figures do not even take into account complete

automated development tools such as USE. IT," said

Hamilton. "Obviously, there is a large and rapidly

growing market for products that can ease the growing

development burden of data processing departments."

After two years of successful experience on DEC VAX

systems, USE.IT is available for IBM mainframes running

the MVS operating system and presently supports the COBOL

language. Interfaces exist for IMS and CICS . Releases

planned for late 1985 include support for the FORTRAN

language and tDMS data base management system. The

introductory price of USE.IT is $95,000 ann it will he

available in April , 1985.

For further i nformation contact: Higher Order

Software, tnc., 2067 Massachusetts Avenue, Cambridge, MA

02140. Tel: (617) 661-8900.

t t t

4391c/032085/GF

HOS Hlyh •• r O"t"rSuftwo,a, Inc
'Ij"" Mil! Aw II

P'"
CJ Id'l ~.! ,I 0 10
"lIl',tl ~ 1Q O

Contact:
Karen Kosko
Higher Order Software, Inc.
(617) 661-8900

-or­
Paula Neely
Newsome & Company, Inc.
(617) 426-4300 FOR TECHNICAL EDITORS

AN OVERVIEW OF USE.I~

USE. IT is an automated so.ftware sys tem development

tool which addresses the entire software life-cycle from

requirements to maintenance. It can proollce reliable

systems in any application area, from science to

engineering to business.

USE.IT. implements the HOS Software Development

Methodology, a mathematically-based, universally

applicable, automated systems development methodology.

The HOS Methodology reduces the incidence of errors and

provides the maximum clar ity of thought ann proceoure. It

does this by providing and e nforcing a rigorous analysis

of system logic; by insuring traceability of concept from

requirement s straight through to code; and by providing

significant automation of error-prone and laborious manual

processes.

-more-

Overview of USE. IT/Page 2

What Can USE . IT Do?

Wi th USE. -IT, system developer scan:

o State the requirements , specifications and design

of any system in a single lanquaqe that, while

mathematically has~~, is nevertheless easy for

anyone to understand and use.

o AutomaticallY' a nalyze these system descriptions

at any stage of nevelopment to detect logical

errors .

o Run prototypes of these system descriptions at

any stage of development to verify that the

system is operating as expected.

o Automatically generate computer code that exactly

corresponds to the verified specifications.

o Automatically generate English-language

documen tation for the system.

o Maintain the completed system by making changes

to the specification, and re-generating new cone

to match the changed specification.

These capabilitip.s of. USE. IT, and the HOS Methodology

itself, are based on a simplified set of three system

description structures. These three structures, called

JOIN, INCLUDE , an~ OR, represent the three basic types of

processing . i.e., dependent processes , independent

processes, and choice of processes.

-more-

Overview of USE. IT/Page 3

In the JOIN (J) structure (Fig. 1), which represents

dependent processes, the right hano chilo of the parent

function processes the inputs to the parent function, and

passes its outputs to the left hand child. This (unction

processes these inputs and produces the outputs of the

parent.

t~ the INCLUDE (I) structure (Fig. 2), which

represents independent processe8, each child processes a

portion of the inputs to the parent function, and each

produces a portion of the outputs of the parent.

In the OR (0) structure (Fig . 3), whi ch represents

choice of processes, one of the child processes is chosen,

basen on a boolean variable, to process the inputs of the

parent and produce the outputs of the parent .

The structures, ~.,hose rules can be learned hy anyone

in an hour, can be used to define any functional system.

Systems defined using these structures can be machine

analyzed for errors at any stage of the development

process.

System Specification

During system specification, system functions are

decomposed into a general hierarchical tree structure with

specific properties. This structure has been proven to he

mathematically correct. In this tree structure, complex

functions are broken down into smaller, simpler

-more-

Overview of USE. IT/Page 4

functions. These fUnctions are in turn broken down into

even simpler functions, and so Eorth.

Data variables (inputs and outputs), are assigned to

these functions according to the three rules, depending on

the relationships between the functions. The names of

both data variables and functions can be sllited to the

specific application, pronucinq a specification that even

non-technical people can understand.

HaS functional necomposition is a logical, simple

process producing a s ystem specification that is logically

consistent and complete. Errors in specifications can he

detected by computer early in the development cycle, when

error detection and resolution are up to 100 times less

expensive than in the testing phase.

This specification also can serve as the basis for

automatic source code generation. ~his capability has two

distinct advantages: first, the elimination of manual

production programming; second, the ability, using

simulation of incomplete functions, to automatically

generate working prototypes at any stage of the

development process.

The HaS Functional Life Cycle

The HaS Functional Life Cycle is a complete departure

from the familiar "waterfall" life cycle. In this

traditional life cycle, requirements, specifications,

-more-

Overview of USE. IT/Page 5

design, and code are manually written in different

languages ann with different proceoures. Errors, both

logical and conceptual, are not found until the test

stage. Manual programming takes UP a maior oortion of . .
development time. And the maintenance process consumes

enormous resources, often contributing to, rather than

reducing, the disintegration of the system.

The HOS Functional Life Cycle (Fig. 4) is quite

different, consisting of three distinct steps :

Step 1: Create Specifications with the Graphics

Editor.

Step 2 :

Step 3:

Analyze and Prototype-test Specifications

(Automatic).

Implement Specifications (Automat ic) .

Step 1: Create Specifications

The systems analyst creates functional specifications

in close cooperation with the end user. Using familiar

structured design techniques, the analyst decomposes the

application into a tree structure . The analyst specifies

the tree structure on-line, in graphical format, with the

USE.IT Graphics Editor.

The tr ee structure is specified according to the three

simple rules, which enable both data flow and control

relationships to be defined in a single diagram. Also,

for maximum clarity, function-names and data-variable

-more-

Overview of USE.IT/Page 6

names can be specified that are germane to the application

being created.

Step 2: Analyze and Prototype-test Specifications

At any point in the specification process, the analyst

can invoke the USE .IT Analyzer. The Analyzer

automatically detects logical specification errors by

performing an e'Cha ustive analysis of all nata and control

relationships throughout the entire tree structure.

Errors consist of violations of the specification rules

and include data typing, control, recursion, data

conflict, and interface errors. All errors are displayed

on the terminal screen.

The analyst then uses the Graphics Editor to correct

specification errors. He continues analyzing and editing

in an iter~tive manner until no more errors are found . At

this point, the specifications have heen proven to he

logically consistent and complete.

Also, at any stage of the specification process, th~

analyst, by directing USE.tT to simulate incompletely

defined functions, can generate and run a system or

subsystem prototype to test the conceptual correctness of

the current specifications.

Prototyping is frequently usen to demonstrate the

operation of the system to an end-user early in the

development process, The ahility to quic~ly create and

-more-

Overview of USE. IT/Page 7

run prototypes enables the end-user to participate closely

in the specif ication process ann eliminates the problem of

systems that do not do what the user wantec1 them to do.

Step 3: Implement Specifications

When the specifications have been analyzed for logical

completeness and consistency, and have been

pro totype-tested for conceptual correctness, USE.IT will

implement those specifications for a specific machine

environment.

The USE.IT module which performs th is task is callen

the Resource ALlocation Tool (RAT). After the RAT has

generated source code, the code is compiled to produce

object modules, and the object modules are linked to

create run modules.

Maintenance with USE.IT

Maintenance of USE.IT systems is an equally simple

procedure; it proceeds in the same manner as development.

When changes, either error-corrections or enhancements,

are to be made to an existing system, they are made to the

specification, using the Graphics Editor. These new

specifications are then analyzed (ann prototype tested if

necessary) , ann new code is re-generaten to match the

changed and verified specifications.

-more-

Overview of USE. IT/Page 8

For further information contact: Higher Order

Software, Inc., 2067 Massachusetts Avenue, Cambridge, MA

02140. Tel: (617) 661-8900 .

t t

4382c/040485/AMD

Output 1
OU1put 2

Parent­
Function

Join

Input 1
Input 2
Input 3

Output 1 Offspring
Output 2 Function 2

Output A
Output B

Output A Offspring Input 1
Output B Function 1 Input 2

'------' Input 3

Figure J

All
(

Input Passed Across

[Output 1 0::--- ---,
Output 2 Parent-

[Output 3 Function
Output 4 '---,.----'

Output
Group 2

Output 1 Offspring
Output 2 Function 2

Input 1
Input 2

Output 3
Ouput4

Figure 2

Input
Group 1

Offspring
Function 1

Output
Identical

Output 1
Output 2

Parent·
Function

Or

If Boolean is False I __ -"' ~;. "--__ ,If Boolean is True

/\i II \

Figur~J

-......

Figur~4

Output 1 Offspring
Output 2 Function 2

Input 1
Input2
Input 3

-

Output 1 Offspring
Output 2 Function 1

Input 1
Input 2
Input 3

_. --

HOS Illgh",r OnJtlr SuttW}l", 'n-
J1M /Iw

"- 'I ,. .
. 1

AUTOMATING SOFTWARE DEVELOPMENT

BACKGROUNDER

Ever since computer s were invented, people who use

them have been looking for ways t o make prog ra mming

easier. The original b inary coding , rlone manually, was

replaced by assembly languages and then by higher-level

languages such as BASIC ann COBOL. More recently, tool s

such as program and application generators, oata base

management sys tems, and screen pa inter s have ~elped

automate the programming phase of software development,

addressing the goal of producing more lines of code mor e

quickly. And to a great extent , t hese too15 have

succeeded.

Database management systems take over much of the nata

model ing and data maintenance operat i ons. Fourth-

generation l a nguages supported by report and corle

gener ators make it possible t o produce representations of

s imple applications quickly and to extend them into useful

production system~ . Screen painters , docume ntors, and

smart utilities also make specific tasks easier to

accomplish.

-more-

Automating Software Development/Page 2

International Data Corp. (tOC) estimates that

large-scale systems users spent approximately $17.6 million

on design ann development tools in 1984, an increase of

nearly 50 percent over 1983. tDC predicts that figure

will mor.e than double by 1986 and will r.each more than

$500 million hy 1988. Approximatelv 29 percent of the

1,100 IBM sites pollerl in another tDC s tuc1v use an

application generator..

Despite the use of these tools, t~e backlog of

applications continues to grow . A survey hy Applied

Computer Research, Inc. showed that in 1984 large data

proce~sing departments had an average applications backlog

of more than 27 months. Only three years ago a similar

survey found a backlog of only 19 months.

Not only is the backlog growing, but the applications

the data processing department is be ing asked to develop

-- insurance claims systems, order processing systems,

financial control systems -- also are becoming more

complex. Transforming these applications into reliable

software is time-consuminq and expensive at best, and in

some cases imposs ible, 11sing current development tools .

It is clear that programmer pronuctivity is not the

most significant problem facing software developers.

Programmer productivity tools have not cut backlogs, and

while the programs they help develop may be somewhat more

reliable, they address only a small set of applications.

-more-

Automating Software Development/Page 3

Historically, software nevelopment has followed a life

cycle which generally includes requirements,

specifications, design, implementation, integration,

testing, neployment, and maintenance . Requirements and

specifications often contain ambiguities . Error-prone

manual processes are used wi thin ann be tween phases.

Testing is only done near the enn, after programming,

rather than near the beginning when errors can be caught

hefore they propagate throughout a s ystem. The

requirements of the software system are influenced by

consinerations of the hardware on which it will run and

with which tools it will be develope".

Most errors enter the software design process in the

specification phase -- ann it is very difficult to

eradicate these errors once a program is developed. From

50 to 70 percent of nata processing bun gets are allocated

to application maintenance. And it is 10 to 100 times

more expensive to correct an error in the testing or

maintenance stages than in the requirements or nesign

stages.

To address this problem, a number of structured

development techniques attempt to improve the process of

formulating requirements and specifications. These

techniques make use of data flow diagrams, st r ucture

diagrams, and mini-specifications, all developed

manually. Also, as many as five languages may he used

-mo~e-

~utomating Software Development/Page 4

before a program is hand-coded, an'" the i nter face between

each language provides numerous opportunities tor

misunderstandings and errors. No portion of the

development sequence i s automate~, and there is no way to

prove the correctness of data f.low diagrams ann the

corresponding structure charts .

The need is g(owing for an automaten rlevelopment tool

that pronuces reliahle specifications ann th~n

automaticall Y generates cone ann documentation from those

specifications.

Higher Order Software, Inc. has developed such a tool,

USE.IT, which attacks the root prohlem of software

development -- the traditional life cycle itself. USE.IT

implements the life cycle bv having the developer start

off by defining the specifications in a hierarchical

manner. USE.IT then analyzes the neveloper's definition

for consistency and logical completeness. The definition

and analysis phases may be repeated several times before a

complete set of unambiguous specifir.ations are developed.

Finally, USE.IT produces programming code automatically

from the specifications . Documentation also is produced

automatica lly.

With USE. IT, software development is automateo.

Software aesigners can create specifications that are

guaranteed to be logically consistent ann complete before

a single line of code is produced . USE.IT prescr ibes a

-more-

Automating Software Development/Page 5

set of. rules that monitor the correctness of any software

system automatically . It supports the the entire

liEe- cycle of an application , including:

o Detection of errors in the early stages of the

development process, where they are easiest (ann

cheapest) to fix.

o Integration of the development process by a

rigorous and traceahle linkage between

requirements, nesign , specification, and

implementation.

o Insulation of business knowledge from computer

knowledge , by keeping descriptions of what the

system does in business terms separate from

descriptions of how it is done on the computer .

o Automated prototyping capahility, so that the

user of the system can actually run the system,

and know that it meets his requirements before

any final code is written.

o Automated generation of final production code, so

that code is guaranteed to match the

specification.

- more-

Automatinq Software Development/Page 6

o A formal link between the running system and new

enhancements required by a changing business

environment. With such a link, systems will no

longer become degraded in the maintenance stage,

ann can endure indef i nitely.

o Automaten generation of system documentation, so

that nocumentation i~ always current ann correct .

o Automated management of reusahlility. Re-use of

existing programs and structures can

significantly reduce hath nelivery time and cost

of new systems. In a~dition to reusable code and

data, USE.IT offers the unique capability of

managing reusahle specifications and designs - - a

quantum step in productivity.

USE.IT has the potential not only to drastically

reduce program errors but to attac~ the problem of

ever-escalating application hacklogs. Programmers are

freed from the burden of maintaining existi ng systems to

work on the new sys t ems management requires. Applications

will more closely meet the needs of end-users because

specifications are rigorously defined at the beginning of

the development cycle.

t t ,

AN OYERYIEW OF USE.IT

Higher Order Software, Inc.

AN OYERYIEW OF USE.IT

WHAT IS USE. IT?
USE.JT is an automated software system

development tool that enables developers to
produce more reliable systems, and produce
them faster than traditional techniques. It. is a
complete development tool which addresses
the entire life-cycle. from requirements to
maintenance. It is also completely gen­
eralized, and t an be used to produce reliable
systems in any applica tion area, from science
to engineering to business. USE.rf' is easy
to learn and easy to use, even for non­
technical people. IL makes the entire process
of developing and maintaining software sys­
tems more compact, more logical, and more
slrdightfonvard.

USE.lT implements the HOS Softlv.re De­
velopment M eUlodology, wh.ich is the first
mathematically· based, easy-to-use , univer­
sally applicable, and automated sys tems de­
velopment methodology to address the entire
software life-cycle. The HOS M ethodology
reduces the incidence of erro~ and provides
the ma.ximum clarity of thought and proce·
dure. It does this by providing and enforcing a
rigorous analysis of system logic; by insuring
traceabili ty of concept from requirements
st.rlli~ht through to code: and by providing sig­
nificant automation of error-prone and laban·
cus manual processes.

Output 1 Parent·
Function

Input 1
Input 2
Input 3

Same
Output

I
Join ~

outPut2

--------~------~

Output 1 Offspring
Output 2 Function 2

Output A
OutputB

Output A
Output B

Figure I

Output 1
Output 2

Figure 2

At!

+--
Input Passed Across

[
Output 1 ~ _ _ _
Output 2

[Output 3
Output 4 L_-,-_ _

Output
Group 2

Offspring Input 1
Function 2 Input 2

Output 3
Ouput 4

Offspring
Function 1

Input
Group 1

Input 1
Input 2
Input3

WHAT CAN USE.IT DO?
With USE .IT, system developers can:

State the requirements, specifications, and
design of any system in a single language that,
while malhematically based, is nevertJleJess
easy for anyone: to understand and use.
Automatically analyze these system descrip·
tions at any stage of development to detect
syntacticaJ , dataflow, and interlace errors.
Run prototypes of these system descriptions
at any stage of development to verify that the
system is operating as expected_
AU lom3lically generate computer code that
ex.1ctJy corresponds to tJle verified specifica­
lions.
Automatically generate Engiish-l(lnguage doc­
umentation for the system.
Maintain the completed system by making
changes to lhe specilication /de~ign, tlnd re·
generating new code to match the changed
specification.

These capabilities of USE.IT, and the HOS
Methodology itself. are based on a unique and
simplified set of three system description
stnJctures.

THE HOS CONTROL
STRUaURES

The lIu'ce primitive HOS control SlTUC­

tures, calied]OIN, INCLUDE. and OR, rep­
resent three types of processing which are
common to all functional systems. These are:
dependent processing, in which one process
(function) depends on another process to pro­
vide its dal:tl ; independent processing, in
which neitJler process depends on the other
for dat.1: and choice processing, in which one
of two processes is chosen to fulfi1l a function.

In the JOIN (j) structure (See Figure 1),
which represents dependent processes, the
right hand child of the parent function proc­
esses the inputs to the parent function, and
passes its outputs to Ule left hand c:hild. This
function proc.esses UJcse inputs and produces
the outputs of the parent.

In tile INCLUDE (I) structure (See Figure
2), which represents independent processes,
each child processes a portion of the inputs to
the parent function, and each produces a por­
tion of tbe outputs of lhe parent.

In the OR (0) structure (See Figure 3),
which represents choice of processes, one of
the dlUd processes is chosen, based on a
boolean variable, to process the inputs of the
parent and produce tile outputs of the parent.

The HOS control SUUcture5, whose rules
can be learned by an),one in an bour, can be
used to define any functional system. Systems
defined using these structures can be
computercanai}'zed lor errors at alI}' stage of
the development proces&.

SYSTEM SPECIDCATION
When specifying systems, functions are

decompc>Sed into a geneG!l hierarchical tree
structure (See FlgUCe 4), which is a larniliar
component 01 the most modern structured
design techniques. But the HOS tree struc-

Figure 3

_Memo
Master

Frgure4

cc
Upcl<ftd s-.". Updated "","ng,
Master '!aster
U_[lOA -.

ture is unique: it is a speci6c t)'pe of tree
structure with specific dataflow and control
properties. and it has been proven lobe math­
ematically correct.

In this tree structure, complex functions
are broken down into smaller. simpler func­
tions. These functions are in turn broken
dowIl into even simpler functions, and so
forth. This process of breaking down func­
tions into a hierarchical tree structure is
known as functional decomposition.

Data variables (inputs and outputs) , are
assigJred to these functions according to the
three simple specification rules. depending on

In pull
Input 2

'-------' Input 3

NewMemo~et'
OO>.O\epo<1S

the relationshi)'l5 between !be functions. The
names of both data variables and functions can
be suited to the specific application, producing
a specification that is readable by even oon­
teclmkal people.

HOSfunctionai dewmpositioo is a logical,
simple process producing a system specifica­
tion that is both easy to understand, and logi­
cally consistent and complete. And an HOS
specification also can be analyzed by compu­
ter; errors in specifications can be detected
automatically early in the development cycle,
when error detection and resolution are up to
100 times less expensive.

But automatic analysis is not the only ad'<IJl­
!age of a mathematically-based system de­
scription. Computer-readable syntax and
mathematicall)' rigorous structure allow HOS
specifications to serve as !be basis for auto­
matic source code generation. This capability
bas tm:l distinct advantages: first, obviously, is
the elimination of manual production program­
ming; the second is !be ability to automatically
generate working prototypes, at any stage of
the development process.

These capabilities, automatic specification
analysis and automatic source code genera­
tion , have been realized in !be USE.lT tool,
and tbe result is, simply. a better "'lIY 01 devel­
oping software systems - the H OS Functional
Life Cycle.

l.IpdaCed [)[lA. Mash!J"
Updateds-.".
Oosed' ACM Trnns
CtosedSU5pense File

AlScneos
OvIgoiog ACH Trans
Incoming At,.. Trans
P'cIper TI'3R$ """"'M_
_Master

rtew Memo Maslet
OOARepon6
Ck:tsed Suspense File
CJosed ACIi Tsans Updaoed __

Updaoed"""", Maste<

cc
__ ~edDOO.

s..;,.,gs ~ ...
OOA 'Repcns

C"

ScMngsMas~
Suspense fil'eo

Fie ODAMastef N!ewATMT.rans
Pcsting Suspense file Upda:Ied Memo Master

Q:rtgc;Ing ACH TIGfIS
Pape<T
Incor1Wlg ACH' TI'2OS
New A1\I Trans
Sari:Igs Mas'let"

cc
OOA Trans ACH Tr:am FIle
OOAMaster DOA TractS

CkJsed 10 File
Dosed ACH Trans

CIased~

Sawings TtanS
C&osed ACHTraos
00secI SUspense Flie

ACH: Trans Fie
OUtgoing ACt! Trans
SuspemeF"tle

File OP
10 File

OP

AlS=ons
Wef11IO Master

Pape<T<ans
Ir1c:<>r!li<lgAOiYlWlS
OltIgoing ACH Trans
New AIM TraIlS
~FiIe

_1""",
IDOOO'\ing ACH Tl<lns
f4ew AIM TraM

)

TRE HOS FUNmONAL
LIFE CYCLE

The HO Functional Life C,'de is a com­
plete departure from the familiar "waterfaIl"
life cycle (See Figure 5) . In this tradltionallife
cycle, requirements, specifications, design,
and code are written in different languages.
and 'with different procedures. using manual
processes. frequenli}', errors are not found
until the test stage. Programming takes up a
major portion of de\'elopment time. And, !be
maintenance process consumes enormous
resources, and often contributes to. rather
than reduces, !he disintegration of the
system.

Requirements L

Tile HOS Functional ute Cycle (See Figure
6) is quite different. It lS an integrated. logical,
automated, and dependable system develop­
ment process which produces conceptually
correct, reliable. and eas~y maintainable
systems.

BUllDi G SYSTEMS
WoR USE.IT

Tbe procedure for developing systems with
USE.lT is remarkably sinlp!e. It consists of
three distinct steps:

S!tif~ion L
D~Sign L

I~Plementati. L

Figllre 5

Figure 6

Traditio.nal
System
Development
Cycle
Model

Integratioo ,--1 __ --,

T~ling II1II LI _--,
Deployme nt

II1II
Maintenance

--

Step 1: Create Specifications.
Iterate

Step 2: Anal)'ze and Prototype-test Speci­
fications (Automatic).

Step 3: Implement Specifications
(Automatic) .

STEP 1: CREATE
SPECIFICATIONS

A complete USE.IT system specification
consists of a set of control ma)'l5 and a set of
dalatype definitions. The control maps. using
!be HOS structures, define all the functions
periormed by the system, the control of
those functions, and the flow of data through
!be functions . Tile datat)'pe definitions define
all the data either used or produced by the
system.

CREATING CONTROL MAPS Control maps
are created by systems analysts, using the
USEJT Graphics Editor: They COllStruct, in
graphical formal at tbe terminal screen, HOS
tree structures of functions and data. ""'ith the
Editor. the analysts can assign names to func­
tions. and decompose those functions into
less complex functions. They can -also assign
in]lUt and output data to each function. and
specify the control structure appropriate to
each functional Emiliy.

In the early stages 01 !be development
process, the analyst works closely with the
end -user in the development of higher-level
functional requirements. When these are
completed, further decomposition of !be sys­
tem into SpecificatioflS and design can be
performed by a team (or several teams)
01 analysts, with the guarantee that the inter­
faces of all modules will Ile correct.

During the entire speciJication development
process. plots of control maps as ",~n as
Engtish · language documentation of the S)'S­
tern can be automaticalJy generated, improv­
lng communication between members of the
development team.

CREATING DATATYPE DEFINITIONS USE.lT
prlWides a library containing many useful
general-purpose data types. l\1any systems
can be developed using these datatypes alone .
In some cases, however. developers may wish
to define their own dati. Trus can be done
while the control maps for tbe S)'Stem are
belng developed.

A datal}')le is defined by identifying to
USE. IT all the operations (called primitive op­
erations) that can be perfonned on members
of that type. Short , reliable code macros are
then v;titten that implement these primitive
operations: later, when automatic implemen­
tation of !be specification lake pi<J.ce, these
macros will automatically be insened in the
code at the appropriate places.

STEP 2: ANALYZE AND
PROTOTYPE· TEST
SPECIFICATIONS

At any time during the system specification
process . the analyst can invoke the USE.IT
Analyzer to \'erify the entire system, or any
pan 01 it. The Analyzer automatically detects
logical specification errors by performing an
exhaustive analysis 01 all data and control
relationships tJlroughout the entire tree
structure.

By de6nition, errors consist of violations of
the control struCt\lf CS rules. Numcrou !;i cate­
gories or logical specificati(lO errors are
detected automaticaUy by the Analyzer.
including dut.o:"l typmg errors, control errors ,
recun;ion errors, data conflict errors , and
interface errors.

Figure 7 shows an example of an error that
has been detected by the Analyzer. All errors
round are displayed on the terminal screen.
The analyst then uses the Graphics Editor to
correct specification errors . One continues to

detect and correct errors in an iterative man­
ner until the specifications have been proved
to be logically consistent and complete.

Also, at "ny stage 01 tl,e specification proc­
ess , the analyst. by directing USE. IT to simu­
late incompletely defined functions. can
gcncmte and run a sys tem or sub· systern pro­
totype to test the conceptual correctness of
the current specifications.

Prototyping is frequently used to demon­
strate the operation of the system to an end­
user early in the development process. The
ability to quickly create and run prototypes
enables the end-user to participate closely in
rile specification process and e~minates lhe
problem of systems that do not do what U,e
user wanted them to do.

Figure 8 ts an example of the screen output
01 USE.IT when running a prototype. As the
prototype runs, the user is first asked to enter
the test value inputs to the top node 01 the
tree. Completed functions execute as speci·
fied; when an incomplete (simulated) function
appears (1)1 the inputs to the function are dis­
plaYed (2). and the user is asked to enter data

TAX

EJ
GROSS

CALCTAX FEDTAB

CJ/CJ
I

FEDTAX
FEDTAX

OP

TAX STATETAX
ADD-
RAT

P

GROSS
FEDTAB

STATETAX
MUL
RAT

P

GROSS
' 0 .0575"

* Family #2 - < < (19) Offspring Not Communicating ~erro, message

Figure 7

Enter Value for MATERIAL (MATERIAL: PIC A(10)):

I iron I
Enter value for OPERATION (OPERATION: s (1 ,2,3»):
~

CD --to < User~ Simulated Operation ASSIGN_ WORK >
Inputs;

®
INST (INSTRUCTION): ~

-+ 135790
@-+ Enter output values for ASSIGN_ WORK below:

Enter voluelor PARTYPE (PARTYPE: g (1 .2.3.4.5,6)):

Figure 8

~
< User·SlmulBted Operation FABRICATEJ40tLFLAT_ >
Inputs:
MATt (MATERIAL): ~
IRON
INST (INSTRUCTION): ~
135790

o Indicates
Input By User

Enter output values tor FABRICATE-NON.-FLAT_
Enter Value for FAB..PART (PART: PIC X (20))

t non-flat pert t

W represent the output of the simuJated (unc­
tion (3). Execution of U,e prototype then con­
tinues in this way, executing completed func­
tions and simulating incomplete functions.
to completion.

STEP 3: IMPLEMENT
SPECIFICATIONS

When the specifications have been analyzed
for logical completeness and consistency, and
have been prototype-tested (or conceptual
correctness. the anal)"t invokes a USE.lT
module called the RAT (Resource Allocation
Tool) to automatically implement those speci­
fications for a specific machine environment.

After tho RAT has read through the entire
tree structure and generated source code in
the desired language. the source code is com­
piled to produce object modules. These mod­
lies are linked to produce executable code
that will run on the computer,

A complete set of control map plots and a
complete English-language System Docu­
ment are then generated. and the system
is complete.

MAINTENANCE
WITH USE.IT

Maintenance of USE.IT systems is an
equally simple procedure; it proceeds in the
same manner as development. When
changes. either error·corrections or en­
hancements. are to be made to an existing
system, they are made to the specification,
using the Gf<lphics Editor. These new specifi­
cations are then analyzed (and prototype
tested if necessary), and new code is reo
genernted to match the changed and verified
specifications.

SUMMARY
The USE.lT Functional Life Cycle provides

improvements in both reliability and produc­
tion over the familiar software development
Iile cycle.

Improvements in reliability result from im­
proved commurncation bety,reen developenl
due to the u:)e of a Single language. End-users
arc more inVOlved in the development proc­
ess. due to the clarity of HOS specifications
and to the abi~ty 01 USE.JT to automatically
generate and execute prototypes al any stage
in the development process, Specifications
are automatically analyzed. El"ror·prone pro­
gramrning is redw..:ed or eliminated.

Improvements in production result from
early detection of errors thl"Ough anaJysis and
prototype test and the reduction or elimina­
tion of Illanual programming. Existing. tested
modules can be interfaced simply to new ap­
plications. Automated code gcnernLion pro~
vidcs increased portability of functional
spccificatjons.

USE.IT is simply a better way to bluld soft­
\vare systems.

Headquarters
2067 Massachusetts Avenue
Post Office Box 531
Cambridge, Massachusetts 02140
617 ·661 ·8900
Telex 951253 HOS INC CAM

Eastern Region
55 1 Fifth Avenue
Suite 1110
New York, New York 10176·0027
212·490·8721

Western Region
8445 Freeport Parkway
Suite 420
Interfirst Place
Irving, Texas 75063
214·257 ·3758

Higher Order Software, Inc.

HOS
Hi",,,, O"lcr Son",,,,,,, Illc.

~HER ORDER SOFTWARE, INC.

BACKGROUND

Margaret H. Hamilton and Saydean Zeldin founded Higher

Order Software, Inc. (HOS) in 1976, after Hamilton had

managed the entire on-board software development project

for the Apollo space mission at M.l.T . 's Draper

Laboratory. Zeldin also held a key position in the Apollo

effort. Hamilton is president and chief executive officer

of HOS, and zeldin is executive vice president and chief

financial officer.

Hamilton and Zeldin developed a rigorous, mathematical

theory based on empirical studies they performed on the

appolo project. This theory spawned a methodology and

commercial software products consistent with that

methodology. These products address the $2.5 billions

systems software market by providing capabilities formerly

thought impossible.

One of the products, USE. IT, is a set of software

programs which is used to automate the process of building

logically correct software. For the first time, a single

tool can be used throughout the life cycle of a project by

all team members to specify, generate and maintain

logically correct software applications.

-more-

Higher Order Software, Inc . /Page 2

Hamilton and Zeldin have been joined at HOS by James

Frame, executive vice president and chief operations

officer. Frame has mor e than 22 years of software

business experience at IBM and for six years was corpora te

vice president at ITT.

The Cambridge, Mass. company has raised more than $9 . 2

million in venture capital, $5.7 million as recently as

April, 1984. Investors include Alex. Brown & Sonsi

Cazenove: Emerging Growth: Frontenac; Greylock: Henry &

Co.: the Hillman Fund; James Martini Merrill Lynch; Samuel

Montagu Co.; Newcastle; Sears Pension Trust; J . F. Shea

Co.; and Venrock. HOS quadrupled revenues in fiscal 1983.

Sales offices across the United States serve a roster

of Fortune 200 and other major corporations who have

recognized the value of HOS products and services .

Computertime Network Corporation, Ltd. of Montreal, P.O.

is a Canadian licensee.

HOS and Serna-Metra, a leading French high technology

firm, are involved in a jOint venture to market HOS

products in Europe.

James Martin, the well-known consultant and author ,

has devoted a book, "Program Design Which I s Provably

Correct," to HOS products and methodology. In the book he

said, "This methodology is so powerful that it needs to be

regarded as a major new technology for crea ting

systems •.•• The beginnings of true software engineering."

HOS
iliglier O,,!e .. SoIlwdre, Inc.

CONTACT:
Thomas D. Lutz
Higher Order Software, Inc.
(617) 661-8900 FOR IMMEDIATE RELEASE

HIGHER ORDER SOFTWARE APPOINTS JAMES FRAME

EXECUTIVE VICE PRESIDENT AND CHIEF OPERATING OFFICER

CAMBRIDGE, Mass., Oct. 4, 1984 -- James Frame has been

appointed executive vice president and chief operating

officer of Higher Order Software, Inc. (HOS), the company

announced today. Frame brings 28 years of business

experience at IBM and ITT to his new position.

HOS creates, markets and services automated software

development tools, such as USE.IT for the Digital

Equipment Corp. VAX line of superminicomputers . These

tools dramatically increase the productivity of large

software application design and maintenance.

nThe addition of Jim to our management team uniquely

positions HOS for the introduction of a significant line

of software products to the IBM marketplace," said

Margaret H. Hamilton, president and chief executive

officer of HOS. "During his 22 years of top management

achievement at IBM, he pioneered the development of

software as a standalone business product. With Jim's

help, we can extend our industry leadership in

-more-

Frame/Page 2

providing the highest level of business support to

executives seeking a competitive edge in the ' 80 ' s ."

Frame said, "HOS products represent a true watershed

in the software industry. They have the same potential to

dominate the software engi neering marketplace for decades

to come as IMS has dominated the database marketplace in

the past."

Frame jOins HOS after six years with ITT, where he was

corporate vice president of programming. Under his

leadership, the 8,000 software engineers in ITT recorded a

dramatic productivity rise within three years.

"The very success of our productivity experiences at

ITT clearly demonstrated the need for further, geometrical

productivity increases in the future," Frame said. "I am

highly confident that HOS can break the vicious computer

application backlogs facing the industry ."

Previously, Frame spent 22 years at IBM, where he led

the business development of many IBM products and services

that are industry standards today_ These include:

o IMS database management sys tem

o CICS (Customer Information Control System)

o COBOL, PL/l, FORTRAN, APL and BASIC programming

languages

o BTAM and TeAM telecommunication access methods

o DOS/VS operating system for the IBM System/370

-ffiore-

Frame/Page 3

In addition, Frame established the Programming center

Development Laboratory in Research Triangle Park, North

Carolina, and the Santa Teresa Laboratory of San Jose,

California.

"Santa Teresa was designed from top to bottom to

further software engineering," said Frame. "The

Laboratory is the first of its kind in the world, a unique

synthesis of architectural beauty, human ergonomics and

IBM software production values." It has won numerous

awards, including an American Institute of Architects'

National Honor Award, and has been imitated by several

major corporations.

Frame is a graduate of St. John's College, Annapolis,

Maryland, where he is vice chairman of the Board of

Visitors and Governors.

• • t

2728c/100384/GF

HOS
Higher ONIcr SoO."tare, Inc.

CONTACT:
James Frame
Higher Order Software, Inc.
(617) 661-8900 FOR IMMEDIATE RELEASE

HIGHER ORDER SOFTWARE APPOINTS THOMAS D. LUTZ

VICE PRESIDENT OF MARKETING AND SALES

CAMBRIDGE, Mass., Oct. 4, 1984 -- Higher Order

Software, Inc. (HOS) has appointed Thomas O. Lutz as vice

president of marketing and sales, the company announced

today.

"Tom's unbroken string of successes in the management

and systems education business will fUrther strengthen our

commitment to professionally market and support our HOS

products," said Margaret H. Hamilton, president and chief

executive officer of HOS.

Hamilton said , "We are determined to hir e the top

people throughout the information systems industry; people

who combine a reputation for business innovation with an

extraordinary depth of information industry experience~

Tom not only meets but exceeds these conditions~"

Prior to joining HOS, Lutz was principal and direc tor

of education and communications at Nolan, Norton and

Company, a high technology management consulting firm ~ He

-more-

Lutz/Page 3

Lutz also spent seven years as the head of information

systems for the Mayo Foundation, where he was responsible

for developing and marketing all clinical , research and

administrative systems.

Lutz began his career at IBM as an applied scien ti st

and manager at the Systems Research Institute. During his

14 years with IBM, he founded and directed the IBM Systems

Science Institute.

Throughout his career , Lutz has served as an Adjunct

Professor to several graduate schools, including the

University of Minnesota, the Pratt Institute and the

University of Newcastle (U.K.). He has lectured

extensively in Asia, Africa, Australia, Europe and South

America. He is also the author of several DELTAK video

journals on systems management.

Lutz holds a bachelor of science degree in mathematics

from South Dakota School of Mines and Technology and an

masters of science degree in operations research from New

York University.

4 f f

2729c/100384/GF

Esther Dyson, President
EDvcOIure HoldlOgs, Inc.
375 Park Avenue
New York, New York 10152

InOloell' es, Inc.
17 Inman Street

Massachusetts 02139
(617) 492-0056

May 4, 1988

It was a pleasure to talk to you at the Meta Software simulator meeting.
As a result of our discussion 1 am enclosing some information on our company
and our product, 001 - .

MHH/nrk
Enclosures

Sincerely.

/fI~U~
Margaret H. Hamilton
President

PRE PUBLICATION COPY
NOT FOR REPRODUCTION OR DISTRIBUTION

To be published in Proceedings, IEEE Symposium on
Policy Issues in Information and Communication
Technologies ill Medical Applications. Copyright (c)
1988 Hamilton Technologies, Inc., who reserves all
rights until publication by IEEE.

TOW ARDS ULTRA RELIABLE MEDICAL SYSTEMS

Margaret H. Hamilton
Hamilton Technologies. Inc.

17 lrunan Strttt
Cambridge, Massachusetts 02139

Abstract
With today's conventional system development techniques, as

size and complexity increase so docs the probability that a system,
when introduced into operation, cannot be trusted. This is despite an
inordinate amount of testing and evaluation . And when ;J. system
works, the COSt of attaining such a state is often need1essly high, The
predicl:!.ble result is wasted dollars, lost time lind missed deadlines.
For many systems. coping with events that cannot be entirely
prediCted is vi tal to effective real-time system perfonnance. The
uncertainty of acrual environmental conditions al the moment of truth
can present chalicnges to operational reliability that border on the
impossible. Such was the case with the Therae 25 radiation therapy
environment [1, 21. As a tesul! of hardware. software and
humanware system defects and defects in integrating these systems
during development and i.n real time, people unnecessarily lost their
lives. These incidents are a cruel remiooer that "One small break in
the chain of can:: can have grave consequencesH 13J.

For a medical environment, whether it be one with direct or
indirect human involvement, a technology which reverses these
trends is needed to develop ultra-reliable systems. Ideally. a system
that is ultra-reliable has zero defects. Zero-defect systems are
theoretically possible, but difficult, to achieve. There are loday,
however. substantial numbers of errors which exist, or potentially
exist, in developed systems or systems 10 be developed which can be
eliminated. This can be accomplished by using a combination of
common sense and advanced modeling, simulation and software
development techniques.

Properties or Zero-Defect Systems
A sySle", is an assemblage of objeclS united by some fonn of

regular interaction or interdependence. It could consist of hardware,
software o r humanware objects; or. it could be a combination of any
of these. Thus. a person, a computer, a software program or the
integration of these objects is a system. A zero-defect system is
defined in terms of propenies about the syslCm (e.g., its
developmental states of existence such as a definition or an
implementation, each of which is an evolving input object to the
system which develops it) and in tenns of properties of the system for
its operational SlBtes of existence. A uro-dqul system is one which
is reliable in both a formal and practical sense.

A !orm1Jl system is consistent and logically complete; it has no
interface errors (or ambiguities). A practical system is developed on
time and it is affordable to bllild and operate; it works. A system
which worts will handle the unpredictable. both as a system being
developed and as a system being operated; it satisfies the developer's
intent: h satisfies the user's inte",: it always gets the right answer at
the right time arK! in the right place; it is efficient to operate in lime
and in space.

To handle the unpredictable. a system, during its own
development. will handle changing development requirements
without affecting unintended mas; it will handle change and the
unexpected during its operation. This includes having the ability to
reconfigure in real· time, detect erron and ~cover from them and the
ability to be simulated in, operate in. respond to and interface with a
distribUled, asynchronous. real-time environment.

An qfJordablt system has properties which prevent errors from
being created in the future. It is portable, flexible, understandable
and repeatable; its developme.nt requires minimum people time. and
minimum calendar time.

A portable system can be implemented in or oper:ltional in
different, changing and diverse parnUel environments; 11 can exist in
different, changing, diverse, secure and multi · layers of abstraction; it
allows for the plug-in or reconfiguration of different modules. or
pans of modules, for those objects which can vary in functionality
from stale to state; it has the ability to be used by various applications

and execute on various oper:anonal environments (e.g .• human, robot
and computer environments).

Afluible system has the ability for ilS defmition to be changed
from many objects to one (providing for abstraction, integration and
applicative operators) or from one object to many (providing for
decomposition, modularity and compUiabili ty), as necessary both
during its developmental and operational states.

For a system to be understandable. one is able to define the
integration of all of its objects; traCe it and any object in that system
(including its behavior and its structure). throughout each phase of
development and from one phase to the next; denne it to be as simple
as possible, but not simpler; define it in such a way that it naturally
corresponds to the real world of which it is a model: communicate it
with a common semantics to all entities including all levels of users,
all levels of developers, all levels of managers and all levels o f
computing facilities and their respective environments; and one is able.
to defllle it with "friendly" definitions (where ~friendly~ is a relative
tenn with respect to each kind of user), using variable. user selected
syntaxes, relating to and being derived from a common semantic
base, and capitalizing on the ability to hide unnecessary detail.

A repearable , or reusable, system is defmed with mechanisms
which inherently facilitiate the process of standardization and the
ability to define and use more abstraCt and common mechanisms, all
of which by their very nature suppon functionillly natural modularity
(e.g., mechanisms ate "dumb" in that they are not aware of nor do
they need to be aware of their context of use Ol" their implementations
and an object always exists as an integrated entity with respect to
structure. behavior and propenies of control); to be repeatable a
system mu st inherently provide propenies for mechanization (and
thus the automation) of its own development processes.

Philosophy
A z.c:ro.defect system begins with a set of n:liable thoughts which

result in a reliable model. A model is a lentative definition of a
system or theory that accounts for all of its known properties [4]. A
model could be defined for JUSt about anything: an airplane. building
an airplane, flying an airplane. eating a sandwich, a missile system.
planning your day's activities, a patient, a doctOl". the process of
providing radiation treatment to a patient, a radiation machine or the
process of building a rndiarion machine. A model can be simulated
with software. A simulation is the "tunning", uercising. testing or
execution of a model. A software simulation is the set of instructions
(software) which "runs" a simulation 00 a paniculu computer.

Once a reliable model is defined (or an unreliable model is
redefined 10 be reliable) a software implementation consistent with the
model (i.e .• a reliable simulation of the model) is developed. The
next step is to OOild the real syStem (e.g. , a machine if the system is a
hardware. system). If the real system to be developed is a softwm
system, this step may not be necessary. since a software system
already exists as a result of implementing the model. The
responsibility for developing a reliable I)'stem ~sides with the user
and the developer. The user is responsible for knowing what he
wants; the developer is responsible for communicating the user
wishes to the computing environment.

The ideal model.ing environment begins with reliable building
blocks. To build a reliable system, only reliable systems an: used as
building blocks and only reliable mechanisms (sYStems, themselves)
are used to integrate these building blocks. Each new system.
constructed from only reliable systems, is then used along' with the
mo~ primitive systems to build new,larger and more comprehensive
reliable syStems.

The philosophy that reliable systems ue defined in terms of
reliable systems is applied in a more global sense in the management

of a project. For uample. if an uisting proc:ess worlts or an ex.isring
object is correct and an additional equivalent functionality is needed.
one should use that existing system and not build another one.
Unnecesary extra effon should be avoided; each new effon takes
time. introduces new errors and costs money. Thett. are also hidden
ways to repeat unnecessary effons. A system that is not ponable has
to be implemented over again in order to operate in a new
environment: most of such an implementation can be avoided before
the fact. If a system is not traceable, much wasted effon is made to
find and fix the enurs caused by a change, resuhing in new errors
and wasted time. If a system definition is ambiguous, errors are
introduced throughoul ils evolulion and its associated
implementations as a resull of misundl:ntandings.

There are times when something should not be repeated or used
over again; when something doesn't work, a new effon is justified
and a new process begins. Once the new proc:ess is well understood,
it can be mechanized. Once it is mechanized, it can be automated.

Hand·in-hand with each zero-defect system is the technology (or
integrated set of techniques) that was used to produce that system.
Measurement standards are needed to detennine the degree to which
a technology approaches z.ero-defect systems. For example, to what
degree does a technology follow the philosophy of building reliable
systems in tenns of previously existing reliable systems, define a
system which is unders tandable. define every aspect of a system,
suppan abstraCtion, flexibility and repeatability, reduce unnecessary
complexity, allow a sYSiem to respond to the unexpecled, integrate all
aspects of a system definition and its developmenl; and provide
automation. systems which are consistent and logically complete and
systems that work?

Tbe 00) Technology
One technology. OOI'I"M , began in 1968 as pan of an effon to fmc

more. reliable melhods 10 develop large. real-time syslems within
which software resided. At that time an empirical study was
perfonned by Hamilton and her staff on the APOLLO on-board flight
software system. The result was a theory [5, 6] which provided the
beginnings to many aspects of the 001 technology. From this theory
evolved a lechnology over the Jast two decades [7, 8. 9, to, It, 12,
13.14,15, 161. This technology has been automated and put into
practical use.

The 001 technology is an inlegraled hierarchical functional and
objecl-orienled modelin~ approach based upon a concept of control.
Each system is defined In tenDS of a cOlUro{ map (a tree structure
whose objects are related in tenns of control) with 001 AXES. a
language which emphasizes completeness of control over aU objects
within a system and its environment. The necessary elements to
completely specify a system in renns of conaol appear on a control
map. The foundations of 001 AXES are based on a set of six control
axioms derived from empirical data of large systems and their
developments [5] and on the assumption of the existence of a
urtiversal set of objects. Each axiom describes a relation of immediate
domination with respect to each lH)de in a hierarchy. The union of
these rel ations is conlTOI. The control axioms establish the
relationshlps of objects for invocation, input and output, input access
rightS, output access rights. error detection and recovery, and
ordering. Control affects an object, the relationships of an object,
and the development of an object in lenns of its relationships. Not
only is every object in a system controlled, but every object has a
unique controller. Each system is defined with mechanisms derived
from the control axioms: the result is a sYSiem free of interface erroJS
(or ambigui ties) and side effects. Ambiguity is elirrrinated in
unden:unding the behavior (and structure) of an object and the
behavior of that objoci in terms of its relationships.

A system defined in tenns of the control axioms results in many
other interesting propemes. Modularity thai is safe and secure r 11] is
inherenL (This propeny ensures Ihat the necessary aspc:clS of a
functional specification are treated as an integrated whole and not
artificially separated for the sake of superficial modularity; for such a
separation can introduce more errors into a system. For example, at
any node in a hierarchy, an object can always be identified with
respect 10 its structure. its behavior, its relationships in development
and in real·time and with respect to an integrated set of llspeCtS of
controL) The definirion of the behavior of an object is sepa.tale from
Ihe definition that uses the objecl; the definition of a development

layer is independent from those layers thai evolve from it (for
example, the specification of a system or object in a system is
independent of its implementation); the definition of a control
mechanism specifies total ordering among functions. allowing for the
description of that definition to be: order independent; both the
mechanisms which are defined and the systems defined with these
mechanisms ~have as jf they are "instructions"; (e.g .. a given
control structure has no knowledge aboul a higher-level control
structure): control. o r the chain of command, can be: traCed directly on
a comrol map. As a result. function flow (including both inpUi
objects and output objects) can be traced directly. CommuniC:ltion of
functions always takes place at the same level in a hierarchy; changes
can be traced and changes can be: made locally; concurrent pauerns
can be automatically detected and traced; the single-rduence,
single·assignment property of 001 syStems provides for an important
set of resource allocation alternatives, panicularly when it comes to
considenllions of parallel processing.

A 001 system is defined in terms of a single control m;tp which
integrates all other control maps. A functional control map (FMapn.!)
defines a hierarchy of funclions; a Type control map (T~lapn..)
defines a hierarchy of abstract types. For each control map
defmition, three kinds of building blocks are used 10 model :md build
ally kind of syslem: reliable dala types (in order 10 identify objeclS).
reliable functions (in order 10 relate objectS of types) and reliable
control structures (in order to relate functions). These building
blocks are used to connect functions to objects, functions to functions
and objects to objeclS (see Figure I):

- COOlrul F~ SlruCtLlrt:

Mcm - --
of,

Dala Type:
Fil:llre 1. A Usc of the 1 Buic M.xhllnisms.

A control Slruc/ure is a mechanism which relates a parcm and its
offspring according 10 a set of rules which have been deril'O:t.l from
the conlTOl axioms. On a funclional hierarchy a control structure
relates functions (members of data type fu nction). On:l type
hierarchy a control structure, in the fonn of a parameterized type,
relates Types.

A fUnction has a mapping where each input corresponds 10 one
and only one output. One or more objects serve as the inPUt and one
or more objects serve as the OUlpuL With 001 AXES, a function also
includes additional propenies. including those relating 10 access rights
and priorities in tenns of a concept of control. On a fUllctional
hierarchy there is a function at each node.

A dow ty~ is a particular set of values. A data type definition
consists of a set of prirrritive operations and a sel of rules, or axioms;
a dala type is defined in tenns or primitive operations pufonm:d on
members of th:u Iype and on members of other Iypes within ils
control. Axioms for each data type define the behavior of these
members in terms of the relationships between the primitive
operations. More abstract Iypes can be defined in temu of more
primilive types. A data type could be anything. h could. for
example, be a building, an integer, a doctor. a boolean. a rJdiation
machine or radiation, itself. On a type hierarchy there is a type at
each node.

The Primitive Control Structures
AU 001 models are ultimately defined in tenns of three prirrritive

control SIJ"UCtUl'CS which have been directly derived from the control
axioms. 'The primitive control struC~s identify control schemata on
sets of objects. There is one for dependent relationships, one for
independent relationships and one for decision-making relationships.

The use of the three primitive stnIctures are illustrated with an
example of an FMap in Figure 2a. An FMap defines actions in tenns
of relations between slates of objects; it can be used to define,
inlegnue and control objects defined by a TMap. Although syStem,

IteoaLotl patient A. uealCd p.1UcnI B!... lheJ;1py(Jlltient A,ITI3I:hine,r p!:l1iOIlnel.maehine OK.patielll. a,drugs. d personneJ)

"""" ,.,,, A L",(po"" A_"~, _~I"",,;~ OK) """" ,,"",T , _,,(po """" ~II
mll ~hillt~O _

tre:l1Cd p:lticlll A c- ve;tmenlS(paticnt A. madline:~' :"':':;D~,~~I)=-:~"":""~"~"C'C""A~~11ty again(paticnt A, mxhinc, r pcnonncl)
~

treaICd J*icnl II .;"""radiabon 1haapy(p.m,r,OK) p.m.r.OK. wait(patienl A. mll:lline, t personllCl)

filurt 2a. An <Nefvic ofS)'SICm Therapy Conant flo Oriented Gnphics

therapy, is shown in Figure 2a in terms of a lree graphics (annal
which crophasius control flow, the OOllcchnology does not dictate a
panicular synlactical form. This same system, for example, can be
defined in tcxruai Conn. Or, this sySlCm can be defmed in some o ther
gnlphical (orm, if desired, (see, for example, system, therapy.
deftned with controlled data flow graphics. which emphasizes data
flow, in Figure 2c) as long as the semantic rules oflhe technology ~
adhered 10. In all these (onns the same information is presented. but
llw which is highlighted varies from ronn 10 form.

In syStem. Iherapy, the parent (unction, thLrapy. is decomposed
imo two offspring functions, ,adiatian therapy and drug tNrapy.
The function, therapy, takes in as input patient .4, a machine,
radialion personnel, an indicator to check machine status, patient a,
drugs and drug therapy personnel. Function,therapy, produces
tn:s,cd patients, A and B, as output. Since both drug fNrapy and
radiarion fMrapy ~ controlled by therapy as independent functions,
each ulces in irs own input from its parent. Thus, for example, the
drug tNrapy function takes in its own input (pa tient S, drugs and d
personnel) directly from its p~m and produces its own output,
tTeated patielll S, giving it dirc<:t.ly 10 its parent. Radiation therapy
likewise takes in its own input directly from its parent and produces
ils own output. In th is rela,ionship between the parent and its
offspring, the offspring do not communicate with each o ther.

uealCd patient A

The relationship be'ween the radiation therapy fu nction and its
offspring is one of making a decision. Here. either the treatmenu
function will be performed or the try again function will be
perfonned. The decision as to which function is to be performed is
dependent on the condition of the I'3diation machine. If the machine
is OK. treatments will be perfo rmed; if nOI. try again will be
performed. NOIe, here. that each offspring takes in the same input
and produces the same OUlpUI, since only one of them will be
performed for a given perfonnance pass.

The function. try agajn , is decomposed into functions, radiation
therapy andwair. In this case,try again conaols its offspring in a
dependency relationship where radiation therapy depends on waits
OUtpUI (p.m,r, OK). as its input. Here radiatioll therapy C:lnnot
com~lele its pctfortnllnCe without wait; once it does, radiation Ihuapy
proV)(jes the output,tT~at~d patient A. for its parent, try again.

Each of the thru primitive StfUCtUftS has a formal name and a set
of rules associated with it for its use (See Figures 3a- ·Jc). The Join
(J) is (or defming the relationships between dependent functions; the
IlIcfud~ (0 is for definin& relationships between independent
fu nctions and the Or (0) is for defining relationships between
decision makiog functions.

mo.-e 1D:leChnician(r pcnonncl)

move to:tablc(machine)

i . (J\ Lab!e.lI\3Chine}

• • 01 t omp lru

I)
tR:aICd pGLienl

lb. A F~ Dcl;omposiLion o{Therapy.

---' d~nc:l

"''' patiefllB
..... """',

, m:lthine OK ,­
machine

paLicnt A

~ '"

0

J

,..;,

again

(J(,
m

"""'" ,
I\.

~patienlA

~ ""'""',. y
rad ia tio n
Ihuap!

Ibuapy

FillUrf 2t:. An Overview of Sy~m Tlx:IlIPY Depicted with Comrollcd D:u:I Flow OricnLed Graphics.

Output l
Outpull

/'
Same Olllp lil

Slllie Ordtrin

PARENT
f UNCTION

J

Inpnl
InpuQ

"~
Same lopu l
Simt Orderinl

Ou~FFSPRINGOulpulA OwpuIA ""' ''' OFFS PRI NCJllpul1

FUNCTIONl lnputl
Jnpuu

0u1pUl2 PUNCTIONl ~ ~LB

All OUlput pftHd Anon
• lnpuu 10 pil'ClIi are identicllllO inpuu 10 "JI'I' off$pring (includinil O'der)
• OutpUtS of parellIlR: idcntical lO 00IpW of Idt offspring (includin& c:wdcr)
• 0uIpuu oCrii/ltclilld an: idcnlicallO inputs oiler, ofispring (including ankr)

F iaurt 3 • • Synln Rules Governing JOIN Control SUUCIUJe..

Ou""", OFFSPR ING Inp~11 Inputl
0u1pU1l rUf\o'CTIONl Inpal2 000cpu1A FUNCTIOl'Ol Inplu"

• The inpl1S 0(\be pirCnt are infW,S \0 lIIe offspring. Ordct is mainwtlCd: all
inpaareusoj wil.hnoovcrlaps. andl1O~ina: ofillpUlll LhaJ.:tnI bein&

pIS.ICd 10 diffmn dIiIdn:n
• The inpru of the left oIT5prina are idl:ntical (illduding order) 10 LIle flm inpulS

or-
• 'The iDpuU 0(the ri&hl ofTspringare identical [ududingonSer) 10 \be last

inpuu of the parr:nl
• The inputS or the otrsprina exhaust tile paralt's inputs.
• TIle inpulS of the offsptn' are «clu.sive of e.:h Olhet.
• The outpUts of Lhe lefl offspring ~ identical (mduding otder) to the first

OUlputS of Lhe parmt.
• The 0UlpUU of the ri&ht offspring are identical to the last ou!pllts of the parmL
• The _puIS of the childrm eWllSt the pilrenfs outputS.
• The outpUts of the offsprinll an: elCILlSi"e of each other.

F1au re 3b. Synlal R.ules Governing INCLUDE Control SUUClure.

OuqllnJ PARENT
Ourpu\l FUNCTION

/
Oat,.t

Idullul

A~~
".1. OutpUll OFFSPRI NG inplul

0u1pUll FUNCTIONl Inpllil
lnputJ

hplll
Elft,1 Boolu.

B~{e~
Fa',,. I

OulpIlU OFFSPRlSG nplli l
~ .".seTtelSI Inpu.2 uurpu.... ~ , • InputJ

• There must be Illcast two inpuu 10 the parent node..
• A boolean Yala.e is the I~ entry on the palaLt's input list and is input to

tho parent only.
• The inpuilO bolh offspring is identiallO that of the parent with !he
exception that the boolean value is not included on the inputliSi.

• The output from bo\JI orrspnng i5 idenLicai IO the parent'S output.
• The order of\.hc variable5 in theo(f.spring·s inpul and output list.s must
be the same IL$ Ihal of the pIlItnL

· Currllfll ilrLplemenwion or "'" OR JI1UCrur..

Fll Ll re 3e. SynLU RulC$ Governing OR. Control SlI'Ucwre.

If the rules of the primitive structures arc followed, when defining a
system, interface em)('5 arc eliminated. Interface errors account fOf' at
least 75'11 of the errors found in I large system development!18] .
Each of the primitive struclUres has properties of asynchronous
real-time distributed behavior inherent within it. Each system,
defined with these structures, is an event interrupt driven system.
The existence, therefore, of an event can cause a system to
automalically reconfigure and execute a higher priorilY function.
Each function in a hiernrchy has a unique priority. A priority
precedence is eSl.lblished by the modeler and upheld throughout a
given system. For example. in the example below, the left offs pring
in the Jnclud~ sttuClure always has a higher prioriI)' than the right
offspring. In this case (Figure 4), given two processors. A and B
can Independently begin when xl and z:1 become available; fail ure

yl.)'2 - F(xl ,l2)

A
y l _A{~I) y2_B(.l2)

Whue "'_'-' I, U 1~2 1 .~ and
When: II, 12, Y I. y2 each are
!he clLildren 01 an inpulOf
OUI""I Type (i.e., the children
of Type. an Orde=l Selof Any).

FilLl r~ 4. The Priority of A>B.

of A's processor forces an interrupt of B 's processor if B is
processing; if not. then if x2 becomes available, then B must wait
until A is finished processing. Given one processor, A can initiate
when xl becomes available:; B can ininate when x2 becomes
available; if both xl and x2 become available simultaneously, then A
initiates before B; A can starve B of its resources; and B can execute
before A if resources and xl are available. Primitive functions are
available for activation when all of their input events are available.
An abstract function has a lifetime that contains the lifetimes of its
immediate children. The primitive connal structures relate objects
(including functions) , each of which has an event state which can be
either "past,H "present" or "future". The "past" stale represents an
object that was once alive but is no longer; the "present" state
represents an acrive object; and the "future" stale representS an object
that might exist or become active, T he event Slate provides a
convenient mechanism to understand fully the timing behavior of an
object: it also provides a convenient mechanism 10 trigger an intemJpt
when a state change of an object occurs.

In addition to illustrating the use of the three primitive control
struCtures, system, therapy, in Figure 2a, also illustrates the use of
recursion as it is derlJled in a control map. In system, therapy, the
function, radiation therapy, directly under therapy, controls the
function, try again, which in tum controls radiation therapy. This is a
shonhand notation for indicating that the lowest radiation therapy in
the hierarchy represents a repeat of the same pattern as its ancestor
(i.e., it controls try again and try again once again controls a lower
level radiation therapy, etc" jusl like its ancesrors). Recursion is
simply a repetition of the map inside of itself. This definition allows
the perfonnance of as many attempts at radiation thuapy as the
machine makes neces!kiIy by its malfunctioning,

The same three primitive control structures that were used to
define, integrate and control actions in the fonn of an FMap can be
used to define, integrate and control objects in a TMap. Whereas a
complete FMap is one whose lowest level nodes have primitive
operations on types, a complete TMap is one whose lowesl level
nodes have primitive types. The type of medical database lhat might
be associated with lhe FMap in Figure 2 is decomposed into data type

wllere Ul .. j. j+ 1,';'2 ... , :

people and data type "'lluria/s (Figure 5). Here, people are defmed
10 be independent of materials. Materials are shown to be either
drugs 2[a radiation machjn~. Radiation machine is decomposed
into two types ofproced~s, one of which is dependent on the other.

medical daIatase

A
people rnalC:riaJs

~I~~
~ :::. ~~
:nr~s ~y ~2 ~I

Fllure 5. A TMap Cor Type,~~,

Defined Structures
All FMaps and TMaps could be defined in terms of primitive

structures. but there is often a desire to use less primitive struCtures to
accelerate the process of defining and understanding 'a system. New,
more abstract control structures are defined in terms of the primitive
structures or in terms of other nonprimitive concrol structures. The
system., Cojoin, defined in Figures 6a and 6b, is an example of a
system that can be used as a nonprimitive control structure. Among
others, this kind of syStem pattern happens often when using all
primitive sttuctures. Wilhin lhis pauem only the functions A and B
change. The FMap panern in 6a was defined with primitive
structures, I"elude (1) and Join (J). The TMap in 6b was defined
with nonprimitive structures, themselves defined in terms of primitive
structures. As a result of the existence of repeated patterns, the
concept of defined structures (the ability to define non.primitive
structures in terms of more primitive structures) was created. A
defined structure allows the user to only show explicitly those
variables in the definition which are subject to change with each use
of a common pattern. Included with each struCture definition is the
defmition of the syntu for its use (see Figure 6c), Its use (see Figure

· whe.11: n (xJ • y. [yJ ... : [aJ ,(YI are each ch ildren ofan Input··(j.e... the ehildl1:n of an Ordered Sel of Ally):
···where a,b.cA,g 'f [a] ,]bl ,]el , (d] • 3I"Id (gl • each of which are the ch~ of an Ordered Set of indues:

where a. b arc each I L)'pe function;

a. f'l'ttap y COjoill(~)

J

y e" PfepatC iflPlllS and OUtpIIts(x' ,1") a',1" - cIone2(x)

~~'"' .'/.elect from x for left olTspring and rightoffsprinB(~',1")
Yc; get OUlput Cor pan:III(.npul for I. some from r) ~ K input C<J" I- i!'t(x) 30me from t. select input f<J" right{IO)

"-~. (y) y .. ' 'Ie input 10 Idt(inpul f<J" I. iIOn'Ie from t) ~
J some from rz n.101dt(;U) u_kl.(x"j

7i1'I1 _ ? left input ... illput (rom parent and rt(illJllll for I,.some!rom r) ~~ 6:'v ? y .. ~left.nput)" J \ n cr-u).

left inlM. klJail candidates for I) PIle from r .. klb(b)

all ~daLeS for I _ mergc(inpul for I. some from r)

Note I: Sec defLllition of id"atld cione2 in l61 MIl defLnition ofmerge in [14J.
Note 2: Aslyand Indu. art primiti V1: Typcl' .

• All input. and ou!pUt ...-iables arc each thUdrm of an ()rdered Set 01 Any:
"Input, hen, could mean InPlIL or Output.

·"All subscripu arc each children oC an Ordered ScI: 01 incb,

Flgll r c ,. A Definition for the CnjOln DerLllai Structure.

b. TMap cojoin sySlCm
A

T ~pLeOf

/ "-input inde1cs

los"'" I"'"'"
any index

d. Ellmpte or I · f(r.$,t)
lJsf,of ' ~ . .

Sylt'aJ1 /' . """
1-lI(r.w) w.vaa(t ,:;)

Sir IIclu n: radial.ion lbcr:Ipy.

F'Map: ue3~d patient. r.ldiation lhcr.Ip)'(p.llielll , macltine, pmonnel. machine OK)
o

pa, 11'11. rp. OKrn • run mactunc(lCCltnitian, person on table, maclline) '!

~~Q~"?"";"'~~'i""'-'!!P~I':'~~· :(~,.:::.m~I~. ~'P:.~O~K;m;)~,.:~ . o <laI~(p., 1111) • DOl (Orllp l.l ~
treated patient _1<\ (pi/.. 11'11)

lteaIed patiCllI_ radiation tbenlpy(pa, mi . rp,OKm)

filu., 7. A OcrlflCd SlfIItlute. for ~rromtillg Radialiool Thcr.lpy.

6d) will provide a "hidden repeat" of the entire system as defined, but
explicitly show only the necesary elements for defining functions A
and B.

To illustnlte further the definition and use of a defined strueture,
the function. treamunfS. in Figure 2a is further decomposed (Fi,ure
2b) inlO several functions, staning with get: lechnician on the ngh!
hand side and ending with completjart on the left-hand side. In this
decomposition the defined sU'Ucture, Cojoirt (Cl), is used several
times, in an N-ary stnJClure. 10 define the relationship between the
parent function , treatments, and its offspring. The lower levels of
system, therapy, (see treatments in Figure 2b) complete part of the
definition of system, therapy, since this pan of the syslem was
decomposed until primilive functions on previously defined data
types were used (see under treatIMnts, for example, Idl' or ger:table,
which are primilive operations on dala Iype, arty, and data I)'pe,
machine, respectively) or until a recursive function (see again
radian'on therapy whose anceslor is near the top of the same system
in Figure 2a). If an operation at the bottom is not primitive, it can be
funher decomposed (see function, treatmefllS, in Figure 2a which is
funher decomposed in figure 2b) or it can refer 10 an existing
operalion in the library. External operalions from outside
environmentS can also be used as operations. Operations ~ defined
implicitly by deriving them mathematically from the axioms on a rype
or explicitly in terms of conuel sC'lIctures using already defined
operations on a I)'pe. When an operation is defined bolh implicitly
and explicitly, the intent of the specification can be cross-checked for
cOlTectncss.

1be radiation therapy portion of the therapy system can be made
into a defined sU'Ucture (Figure 7). Here the semanlics of the
derl/lition is the same as the subsystem definition of radiation therapy
in system. therapy, except the run machine node is variable. The
definition of the syntax is shown in Figure 8. The radiation therapy
ponion of system, therapy, can now be rewritten to provide a choice
of type of radiation therapy depending on the patient's needs. This
change is made using the new defined sU'Ucture, radiation therapy,
twice (see Figure 9).

' .

trI:8Ied radiltion rrudlinc,
(paIIenl):: uearmcnl personncl, (.. ''"') mxhincOK

udio.uon

~ P.,,",,.) ."':' ~ ~""" ...)
machinel. '" mac:hinein penon on table,

personnel I, chosen mode machine
01(

Frgure 3, SynWl.

System development efforts where systems possess many
common structured patterns can benefil significantly from the use of
stnJcture abstractions. The node savings when using a defined
structure is:

:,-;T.!":''r1"':-;,- , •
U 1(P+ 1)+5

Where II. number or uses,
n _ nodes specified wthoul use of $UUClIIrCS,

p. "plug·in" nodes sp:d(ied rill' 5IlUCWft, I6C
s. 5lI'\.Cture size (number 01 nodes on SU\IC~)

IIld e. dTlCicncy

In the case, for example. where a definition has 40 nodes and one
plug-in function, where each use is 1 plug-in node plus the parent
node (i.e .• 2 nodes) and il is used 1,000 times, there will be 2,040
nodes with the use of defined sU'Uctures instead of 40,000 nodes
(i.e .• almosl 20 rimes more efficient with defined sU'Uctures, with a
savings of 37,96(] nodes).

As with an FMap, defined struc tures, in the: form of
parameterized types, can also be used to create a TMap. A
partlnKleTiud rype is a data type where the set of values is a set of
Iypes having a common data structure. The use of a defined slrucrure
on an FMap is analogous to the use of a parameterized type on a
TMap. As an example. pan of the TMap for system therapy is
shown in Figure 10. Here in TMap,lherapy lab, type. patient, is

__ .-,,------:---:---~;.""'"'=::c"':"'~· :'~"~.~"""'iUif'lion Ihcmpy(palicnt 3, m:l(:l!ine, r personnel. is OK, mode) O~X
IJeatro IXlLiem a ';'" provide tr~unerl/ y(p:u.ient a, machine, r pctSOflnel, is OK) trealed patient a '" proyide. treaunCllI ~ (palient a, machine, t personnel. is OK)

I Indi. ,ion
,.d,.,ion Ih.TI~
lhotlp)'

p2, m2, p2, OK2 .. run mXI!;ne mode y(technic;ian, pcn;on, machine) pi, ml. pi, OK] .. 11m m:JChine mooe x(aectmir;ian, person, ~hine)

Figure 9. UseofStruclurc.

decomposed in terms of parameterized lype,TupleO/. into its
offspring types, name. perSOn, treatmenu and prescriptions:
/rearments in terms of parameterized type, OStrO!. and (remmen! in
terms of parameterized type, OntO/. TupleOj is a parnme\C~rized type
used to deflne an abSlrnCllype that is a collection of a fixed number of
different types of objects; OStrO! is a parameterized type thai is used
10 define an abstract type thai is a coUecrion (in a linear order) of a
variable number of the same type of objects; and OIltOj is a
parameterized type that is used to define an abstract type that is a set
of abstract object types of different types from which one type is

selected. A fXlTQm~ter;zed rype ~presentS a definition of a common
pattern for types with !he same structured relations. A parameterized
type, a more abstract da ta type slfUcture than a primitive one,
provides the same generic primitive operations for any type
decomposed with it. Whereas the same type of operations can be
applied to types decomposed with a particular parameterized type, the
same type of objects can be applied to functions decomposed with a
particular defined structure. An instantiation of a parameterized type
is a structured type (Figure II). A structur~d type represents a.
definition of a common pattern for types with the same structured

Any Typeo
~

~TurOt

Any Typq Any Typel Any Ty~

Fi~un 11. SynlOlx for Par.uneterized Type TupleOf.

rela\ions. For example, an instantiation of 05etOr is patient
treatments. Parit:.ntlreatments is therefore a structured abstract type.
An instantiation of a structured type is a structured object. A
structured object represents a definition of a common pattern for
st:ues of an object with the same structured relations. Thus, a
panicular patient trealmen.: is a strucrured object.

Types are derIDed indirectly on a TMap with primitive structures
or parameterized types or defined <llittlly as algebraic types with a set
of operations and a set of axioms which defi ne the relationships
between these operations (see. for eltample, Figure 12).

The TMap tree topology of parameterized types provides a. basis for
the characterization of the conlCol of objects in tenns of their spatial
relationships. An object of a puent type conceprually represents the
containment of the objects of each of itS children types which are
component pans. (A type may be a non primitive type. a primitive
type, a reference to an object type outside of its parent doma.in, an
object type which is defined elsewhere as pan of its parem's domain

dau type: I1rugs(of I):
primitive operations: , .. top(I1ruSS t);

a:o;ioms:

dNg~

"""=
- remailliflg (drugs2l:

.. d l'l;J.uaIs(drugsIArugsi):

where t is a T;
d. d t • d2 an: drugs (ofi);

reject is a consunt drugs (ofT);
empty is a conslanl drugs (of i);

top{cmpty) .. reject:
remainini:(empIY)" reject;
top{combinc{i,d) .. t:
d .. combine(top(d). ~maining(d»;
d equaU(d l.d2l" equals{t.op(dl). top(dz)}

lind d cqua1s(romainlng(d t). remaining{dV):

mddrugs(ofi};

Figure 11. Dalll Type drugs (ofT).

or a recursive Type.) 81ch parent on a TMap and its children are
used as parameters to a parameterized type that decomposes that
parent into itS children. A parent type replaces the "type" pararnetet in
the parameterized type operation and each child rtp!aces the "child"
parameter in the parameterized type operation. This resolution results
In an abStraCllype (Figure 13).

Each parameterized type has a set of primitive oper:ltions
associated with it for its use (19). As a result. all types decomposed
with the same parameterized type inherit the same primitive
operations. Move to is an example of a primitive operation
associated with all parameterized types (Figure 13). It is therefore a

type: pI
type" k:lypc:(i'Map)

child .. move 10:ehild:type(lype)
type: pl

FigU f f 13. Parameterized Types.

universal primitive operation. The universal primitive oper:ltions are
used for controlling objects and object states. The FMap. Check, in
FiJure 14, uses the MoveTo operation with abslCacr type, trearment
(FIgure IS), to access the type of treatmellt and check if the trcarmcnt
is 10 be radiation therapy or not. The universal primitive oper:ltions

include the ability to create, destrOy, copy, rd'erence, move, a~cess a

OK .. determine uC3UT1C11I(U'eaunenu)

I . move 1O:tmr.lmenlS(treatments)

is radiation !he py . is radi~uon:therapY: (I)

OK. Is radiation llterapy r:rt not(t, is radiation \herapy)

.. A ..
Fil li rt 14, FMap which Uses AuromaLicaUy Generated "!Map

Primitives for Types Treatment and Radiation TherJpy.

type: UtlIlmc:nt
Irtlltmc:M '" k:radiation thcrapy:trmlmCl!l(TMap)

boo/earl. is md.illUon thcrnpy:trUtment(ueaullou)
l'lIdiauon Ihc:nIpy .. move LO:r.Jdia~ ~en!py:uutmc:nt(ueatment)

F1,urt IS, ExcerptS 0{ AbSl11ICt Dal.:l Type Treatment Alltomatie~ny
Gencratro from Thisp.

value, detect and recover from errors and access the tYPe of an object.
They provide an easy way to manipulate and think about different
types of objects. With the universa l primitive operations, building
systems can be accomplished in a more uniform manner. The
universal operations also provide a semantic base that can be used to
analyze the behavior of their interaction. (ConslTaints can ~ placed
on the allowed interactions. These constraints can then be used by a
constraint analyzer to eliminate a subile class of user intent errors.)
For example, the abstract type. crt!(Jtmt!lII, in Figure to, inherits the
behavior of its TupleOf parameterized type. A treatment table. type,
cab/t. is the type of object that has a lilted number or components of
different types. It has twO components: a tOp and a fixed number of
legs. The legs are defined with parameterized type, ArrayOL The
tOP may be removed from the table with the gt!t:rop:lablt primitive;
or, a tOP can be put onto the table with the put:top;table primitive
operation. These operations do not change the conceplUill shape of
the object, A table object without a top is still thought of 3S a t3ble
object; the fact that a table does not have a top does not change the
fact tha t if it is a table object. it eouId have a top.

Definition of Objects with TMap
Whereas an FMap contains knowledge about the timing of

objects, a TMap contains knowledge about the spatial organization of
objects. TMap is used to create, manipulate. and understand the
behavior of objects used in an FMap.

An Object can exist in an active or a passive state. An object as a
member of a data type is passive. That same object. as a functi on. is
active. An Object can "be" and "do" at the same time or interchange
these respective roles. A medical data base in its passive Sl3te would
be received as input and/or produced as output o f a function ; e .g ..

nc:w mcdicaI c:bubase. Of&4IlIZC{mcdicaI~)

But if the medical data base takes in an object as input or produces an
objeCt as an OIltput it is in its active state: e.g,.

In the example below. the medical d(Jlabcut!, as a function, is
viewed as an active Object with panicular operators, as inputs,
applied as passive objects. Here, the relationship between the
mt!dical databast and its offspring, pt!oplt! and matuials, is an
Include (see Figure 16). This example. which conforms to the fact
that rype, pt!oplt!, is independent of type, mauria/s, has an allowable
set of inu~rl"aces foc mt!dicai daJabast! as a function.

fQUlld pe.opIe, mMCrials. _ mcxfjaJ data/:lQe(lind. i)

~----found people. pcopIc(lind) materials; - malUials(i)

Fi !lllr~ 16. Independent Typc.s.

Similarly materials, as an active object, is sbown below, in Figure
17; where a decision is made, with an Or structure, to partition the
set of mtJ~rials into drugs Of raditlliofl machiM materials.

matcriaJ.si • ITUlIerial.s(i,b)

" • 1II'lert.tl~
for dry... """

materials .• drugs(i) mau:riab i· r.IWion macllinc(j) ,
Fil"rt 17. Partitioned Types (for Decision Makin&) .

And, people, as an active object, is shown below, in Figure 18.
where ptoplt found is created by the dependency of the objcct, all
tIlL orht!r peoplt!, on object, pt!rlOfl. In this case the relationships of
pf!Oplt! and its offspring is controlled with a 101'", structure.

peopk round . all tile other people(nnd Lhe 0Ihc7s)

If, however,

find the 0I.hc:rs • pcrsoo(lind)

F11llrt 11. DcpcndcntT)'jlCS.

rcw mcdicaI daI:abIIse _ nopUu:(mcdit:aI darabuc(inda» ;

then medical database is doing with respect to index but being with
re5pCClto reorganize:. An example is when a machine or a person as
a function A. is intenupted during its execution and is scheduled on
a queue ~ a process to continue later. here, object, A. transit ions
from an active to a passive state. Likewise, A transitions from a
passive state to an active state once A is removed from th~ pr?Cess
queue and begins once again to execute. (See, for example. Figure
19 where A and B are scheduled as passive objects and executed
asynchronously as active objects.) Structures with asynchronous
processes are discussed funher in a section below,

An object is defined in tCTTllS of an Objt!cr Map (OMllpThl) by an
operation in an FMap system. An object is a member. or inslance. o f
a type. When a complex objcct is created, placeholders for ~ll of its
component objects are created (e .g., if a patient, Fred, is cr~ated.
placeholders for his amlS and legs are created). A Start of 3n object
IS defined in terms of a S/al~ Map (SMapTN) from an Ol\'13p system
by an FMap operation. A state is an instance of an obj~ct. An
Ext!curion Map (EM3pTN) system is an FMap system with a comple
inst3lltiation of all objects plugged in for one performance paH of the
entire system. It is the result of an execution of an FMap. An FM3p
shows all the possible lines of control while the EMap s howS the
actual lines of control taken for a panicular execution phase .
Recursion is made explicit at the EMap leve l. A recursive t:kfinition
controls the tree extension process of an EMap by placing a "ttst"
function (see, (or example, machint! OK in Figure 2a) to determine
when and how 10 StOp the extensions. A series of repeated functions
that arc not nested can be convened to II nested or recur5ively defined
system by providing s topping conditions for the exten sions.
Functions that exist in different recursive extensions of the m:lp can
be performed in parn.llel if the functions arc independent.

The patient, Fred, in terms of the aforememioned srstem
viewpoints, could be a t yp~ , pUSOfl . (Sec type, puson In the
TMllp for the medical d(Jtabas~ (Figure 10). Whereas a TMap would
contain type person. an OMap would have a speci fi c person
decomposed. e.g., Fred with his own arms. legs and he3d. An
SMap would define a panicular Slate of Fred (e .g .. one SMap would
define Fred with a broken leg at one time. another SM ap would
define Fred with a healed leg at another time). An FMap could refer
to Fred as an input object or an output object in a system (e .g., 3n
X·ray machine process could accept Fred both as an input objeci and
return Fred as an output object.) An EMap for this FMap might show
Fred at one time with a broken leg and Fred at another time with a
healed leg, all in one performance pass along with other objects
whose states have been instantiated

In essence (see Figure 20), a State runs on an object "machine",
an object on a type "machine", and a type on a parameterized type
~m3Ch.ine~ whe~

and where, for example, x is "table" where the state is a new
treatment table, the object is a trealment table, the type: is a lI1ble and
the parameterized type is a TuplcOf.

(FM4IP Systcm

table .. Inyk" Irc:.11'111111 IJb lf (l~s, lOp,)
,---- (Stale) (Suue) (SIaIC) (SLate) tr; /(On~~~ On ~~ On ~~~ On ~J~

SM.:op (On PT)'pO- On!'Typo On PT)1>I! On PTypo. Systcm • , , . • • • • • • , •

0""
System

T"',
System PMap

System

Fi!:utf 20. An Example of 'Schilld the S<:e1lCS" 001 System M~rru,gs.

Given these various hierarchical definitional states or forms of
control maps, the means is provided to define parameterized type
mapping, type mapping, object mapping, state mapping. execution
mapping and the inTegnllion of These mappings. Functions are under
control with an FMap. Objects are under control with a TMap. A
complete system (i.e .. the inlegration of FMaps and TMaps) is under
contrOl since the input 3nd output objects (and their Stales) o f an
FMap are defined in terms of a TMap.

The TMap propenies ensure the proper use of a TMap by an
FMap. A TMa~ has a corresponding sel of conrrol properties for
controlling spallal relationShips between objects. One C:lOnOI. for
eltAmple. put an object inlo a datil. SII'UClure where an object already
exists; conversely, one cannot remove an object from a structure
where there is no object; a reference 10 the state of an object cann()(be
modified if there are othu references to that slate in the ruture and
reject values exist in alilypes. (arcing the FMap user to recover from
Ihem if they are encountered. A more detailed description of the
TMap theory and its capllbilities can be found in [II, 12, 13] .

The type definitions discussed above were used to define
application objectS (e.g., a patient). Sometimes the application object
could be the definit ion of an application type system. itself. For this
Kind of object a meta type is used. Data type, TMap. is a meta type
whose operations operate on TMap definitions of an application. A
TMap absO"actlYpe is defined with the parameterized type, TreeD/.
TreeOr h3S a variable number or the same Kind of components whose
ordering is hierarchical. The operations of the type, meta type. can be
used to access infotmation about the types of a particular application.

This information might in turn be USed by a system that is
knowledgeable of a general class of applicllion systems. For
example, an expen application system could search the Tt.~:lp of a
panicular application (e.g., the patient TM.3p defin~ e.arher) 3n.d
detennine its relationship to classes of pallent appilcatlons. This
might be, for example. accomplished by.3.n expert . sy~l(nl by
detennining if a cenain set of types existed In the apphc:lIIon type
system. One of the primitive operations associated with type, TMap,
can be used in this process to access the name of the absD"ilct type al a
TMap type node. The operations of another met~ type are used to
manipulate maps of objects regardless of their m.ap types or
application. This kind of meta type, OMap, has object maps as
values. The primitive operations for type, TMap. and type, OM~p,
can be found in (19].

Data type. TMap, operntions allow one to understand 3n objttl in
terms of its type and the reJ;uionships of its type to other types in the
system. Data type. OMap, operati.ons allow one to treat all obj(Cts in
the iame maMer regardless of therr Iype. An abstract type allows one
to distinguish one class of object from another class of object.

Sometimes il is desirable to layer one type onto another type
(e.g., patient onto human in one an:.hileclUr~ or the same patient onto
array In another archileclu~ or a coordinate system for radiation onto
a mattix syStem foHowed by the mattix system onto a vector system.
The layering capability of 001 prOVIdes a means for secure,
independent and open systems development within each obj~ct's
environment. This layering capability is important on a large: project,
especially when different organizations are involved in the
development of a syslem.

Ru l·Time Asynchronous
Comm un icating Distributed Systems . .

Abstract structures can be defined for parucular types of behaVIor
in a system. An example of such a struCture is a real· time:,
communicating. distributed. asynchronous structure. Async (where
Ihe Async system in Figure 21s is a variation) is an ~~ple of such a
struCture [201 . Async was defined in terms of the pnnuuve structure,
Join 0), and the non-primitive SO"UCtures, Coor (CO) and Coinclude
(el), both of which were defined in tenns of the primitive struclUres.
The syntax pan of the definilion for Async is shown in Figure 11 b.
In Async the function parameters A and B are inst3nti31ed with
fu nctions which are consistent with the input and output types
associated with functions A and B. The lines of conrroltaken during
the execution phase: of Async are illustrated by an EMap (Fi:;ule llc)
which identifies how the network of primitive functions are activated
over time and resources. The flow of objects between the :lCtiv3led
functions can be thought of as an acyclic graph where nodes on the
graph correspond 10 functions and arrows on the graph c~spond 10
objects (which go from a source function to a wget function). "!'he
Async sO"uclure defines the recursive i~leraction between muillple
invocations of functions A and B (see Ftgure llc:). If there are two
performc:r resources PI and P2 Ihal are able to execute the functions
A and B (i.e., PI :A and P2:B), then we can lise Async 10 conlTOl
their func tional intercommunication with respect 10 A and B. The

where., aI , b, bl, c are requirements
a . Map c .. async{a.b)

~1""'(.,bJ • "t r .. ,"
C .. idcnufyl(:I.,b) e _ commlD'lica1e(a,b)

~-.77:---,-.....,.,.,.
c-"2"ync(al.bJ) aJ.b!..-~a,b)

~~~~=crC1'--... 
at _A'(a,b) bl- B(a,b) 

b. Synlax c..:.,F(a.b) 

............. 1J}' n ~ ... 
al_A(a,b) bl _ B(a,b) 

Fi~ur' 21:1 and b. SlJUCIun:: Async. 

c .. A5yncl!:.2) 

bl .. B(a .b) 

,.' Or 

/' 
,. " "Flue" 

bl ' .. B(aLbl) 

.1 '. A(aLbl ) 

bl " " B(al ' ,bl ' ) 

/ A~:,~:'r:n, · o ·Fal$rr-<" .... ... 

e .. Identify I (a I" .bl") .... 

'"' A(a l',bl·) 

,---~-----, 

~~ C C~ 
b .b!. .. 

Filure 21e. An Execution of Async and lile Communication 
Paths Between A and B. 

TrUlmanl Trealment ScI ... joDS P,&dia lion 
Opllonl. 

R •• ull. ond Command 
EnOl' Ma.s.o • ., ~ c.. .. "01 Ma.s.o .. 

c~;>--r~-.n-,,-~cr"-'.-
blllalioo ROIul1l Cllmnl Sial. 

Fi.u ~ Ill. A Radiation Thera"" EnVironment . 



health condition - treat(case) 

he:Jhh condiuon, responses] .. -_~-"~,(Cd"'=~",,""'M-.. -oo~ •• ~,,-'"~~oo~):-~-lr~. '''' f:1 .syn~ ~ (casc.. responses,) 

~fl'on"n1 , dlJ'CClIOIU, 1JC:lImcnl SCIOCIIO!lSz opo:!f1IUX 1.tC3lm::I:-,OOS, 

conLroI Sla~ I .radoauon ThcI:II: { COOllol) cm.rmcssasCS) 
'"' machine \mess:lge t oomnWld tIaIa, 

trCaun=~~ 1 .. 10 putcss(lre.:ltmefll selocti005, radiation results) -""""'" radiation ~tsl.tonlIOI rness:lge" ml)l1;t~command dat:l., current slate) 

fig ur t 22b. A Radiauoo Ther.lpy Sys~m. 

EMap shows the successive activations of A and B on PI and P2 and 
the flow of information or objects between them (a, a I. ai ' .. . and 
b, bl, bl'), 

The radiation tbcrnpy environment in Figure 22a is an example of 
an asynchronous, real· time, communicating, distributed system. 
Figure 22b is one model fmm this environment which ma.ltes use of a 
multiple Async structure. Here. all of the offspring of parent, Iftal, 
a.rc: processes whose relationships with respect to each other 3Ie those 
a5 defined by the Asyn,· S[l'UCHlre. Several rea1-time environments 
have been modeled using Async, Interrupt. Update Interrupt, 
Communicate and other real-time structures (14. 21. 22. 23, 24]. 

The Automation of the Technology 
The automation of the technology is an integl'tlled tool ,uite for 

automatically developing ultra reliable models, ultra reliable 
simulations and ultra reliable softwue systems (see Figure 13). It is 
based on a philosophy that a reliable system is developed in [enns of 
reliable systems. The tool suite supplies the building blocks to build 
a reliable system: as each new system is created by the user, it, in 
tum. can be used as a building block. 

A model captures all known propenies of a system at a given 
time. It consists of an integration of functions and data types for a 
target system (for e:'I3mple. a real - time, asynch ronous, 
communicating. distributed system) which resides on a combination 
of hardware, software and humanwarc environments. Once a model 
is defined, complete source code can be generated for that model. 
Rapid protOlyping with "graceful evolution" or production can then 
proceed; the model is simulated to observe its behavior in various 
dynamic states: software portions of the model become flllly 
implemented systernCs). 

The tool suite embodies a hierarchical structured network 
modeling approach based upon a formal concept of control. A model 
is decomposed using a control map which ensures that the 
relationships of all objects, in all states, are under control. Its 
definition language, 001 AXES, is both functional and object 
oriented. Functions are decomposed with an FMap control map. 
Data types are decomposed with a TMap control map. The FMap is 
us~d to connect func tions with objects as input and output which 
abide by the rules of the data types in its associated TMap. 

At any level of construction, a model may be submiued to the 
Analyzer component of the tool suite. The Analyzer ensures that both 
data and functions are used in a consistent and logically complete 
manner, eliminating approximately 75% of all system errors. 

Once a model is decomposed to the level of existing libraries and 
it has been successfully analyzed. it may be handed to the Resource 
Allocation Tool (RAT) component of the tool suite, which will 
generate logic flow from both the function and the type control maps. 
This logic is automatiCally connected to previously existing function 

and type primitives in the core library. as well as, if desired, libraries 
developed from earlier implementations. The generated source code 

can be compiled and executed on the same machine on which the 1001 
suite resides or it can be poned to other machines for subsequent 
compilation and execution. 

r", o.>i}n "'" 
llevekJf}fnent Process 
with the 
IJIJ1 TDOI Suite 

Fleur!! ll. 

Because of its features of reliability, automation, abstraction and 
reusability, the tool suite maximizes productivity. Systems can be 
designed, developed and maintained with minimum man-months in 
minimum time. 

The tool suite contains the following components: an edilOf for 
supponing a user in defining his system graphically or in textual 
fonn: an executable specification language for defining logically 
accurate models that are consistent and 10gica\1y complete for both 
func tional and object oriented hierarchies and their integration; an 
Analyzer for automatically detecting errors according to II fomlal set 
of rules; an abstract type generntor which generates a syStenl of data 
types for a panicular application domain from an object type hierarchy 
that is decomposed in terms of parameterized types; a muhi·\anguage 
source code generator, or Resource Allocation Tool (RAT), which 
produces code of the user's chosen form (e.g., C); and a documentor 
which produces a system definition, its implementation :tnd its 
description. 

With the tool sui le, a system goes through a complete 
development process. Figures 2a, 2b, 7, 8, 9 and 22b show FMaps 
as they are entered into the automated system. Figure \0 shows 
TMap, therapy lab, liS it is entered into the 001 system. Figure 14a 
shows the results of an automatic generation of primitives from this 
TMap and the source code (Figure 24c) which has been generated by 
the RAT, for the FMap, liurapy. in Figure 2a. FMap, therapy, uses 
objects derived from TMIlP, therapy lab. Figure 24b shows the d3ta 
type implementation file, produced. by the automatic generation from 
the TMap, which was used by the RAT to automatically produce C 
source code (Figure 24c). 



A. Cenerated Abstract Type Patient 
Data Type: Patient; 

Pri.itive Operations : 
Drugs ,Patient=Get_Prescriptions Patient(Patient) 

PatieDt=Put_Pre.criptions~atient(Drucs.Patient) 

B. C Data Type t.pleaentation Pi 1. Used By RAT 

. TYPE : 
~indude 'hti_l: [hac.kler.dellOs. therapy .ilEDDB)PATIENT .B' 
• DECLARE: 

DECLARE PATIENT(VROl) 
.GET PRESCItlPTI'D'NS PATIENT : 

- GET_PiESCRIPTIONS_PATIBNT(~1,lPR02.lPR03) 

C. C Source Code Generated By the RAT UsiDg eDT Piles 
/ -THERAPY CONTROL WAF: THERAPY translated to FUNCTION THERAPY 

by BTl-~Ol version 32 .6/33.0/C-OOI - A 

• j 

at 12:47:31.54 bours on day 15-KAB- 1988 
OR's BRANCH RIGHT ON 'FALSE' BOOLEAN . 

*.odde THERAPY 
'include 'bti_I : [backler.deeos.therapy.MEDDBJPATIENT .S" 

THEBAPY(V PATIENT A,V MACHINE,V R PERSONNEL ,V WACBINEOK ,V PATIENT B, 
V- DRUGS,V-n PEisONNBL,V-TREATED PATIENT A,V TREATED PATIENT B) 
OD'ECLARE]ATIENT{V_TlEAfED]ATIENT_A) - - - -

{ 
j . 
.j 

__ LOCAL VARIABLE DECLARATIONS __ 

DBCLAiE]ATIENT(V]) 

j . __ SOUlCE CODE _ _ 
. j 

DIUG THERAPY (V PATIENT B,V DIUGS,V D PERSONNEL,V TREATED PATIENT B); 
/_RECURSION ~> IADIATION_l1fEJWiY < --7 - - -

for(LIO)=O; LI01==O;) ;_ Loop Bead _/ 
{LI01=1; 

if (V MACHINBDX < I) 

else 

return; 
) 

{- /. ----- BBGlN FALSE AND REJECT BRANCH ----- _/ 
WAIT(V_PATIENT_A ,V_MACUINE ,V_I_PERSONNEL,lV_P.iV_K,lV_R,IV_OK); 

LIO}=O; ;_ Loop End -/ 
) 

{ / - ----- BECIN TRUE BlANCH ----- . / 
TREATWENTS(V PATIENT A,V MACHINE,V I PEiSONNEL,V TREATED PATIENT A); 
) j.END U.r - - - - - - -
}; /- Restore Initial Value _/ 

filure 14. Output AUlomatlc:ally GenU.led by 001. .. 



The technology upon which the tool suite is based teaches or 
helps a person to think in a new and organized way about systems; it 
helps someone define his thollghls as simply as possible, but not 
simpler; it makes sure that a system definition is unambiguous before 
a system is implemented and it provides a means to build systems that 
are logically COITCCL 

Project Management Considerations 
The ability to build logically correct systems is imponanl on its 

own right, There is, however, a direct relationship between having 
the ability to build logically correct systems and productivity. In 
recent productivity studies with the tool suite, where each system was 
developed for the first time within a given application environment, 
systems were produced with a productivity in man months of a range 
of 10:) to 20:1 and a productivity in calendar time with a range of 
3.5:1 to 7.5:1 [23,25]. The productivity ranges are higher than this 
when a system is developed within the same application development 
environment as one that was previously developed with the tool suite. 
The reason is Ihat the developers are more familiar with either the 
application, or the technology or both, and higher level libraries are 
used that Were created on a previous application using the same 
technology. 

Contrnry to what one may expect, one need not totally reorganize 
either the corporate management structure or the life cycle model to 
use this kind of technology. It can be applied in an evolutionary 
manner. For example. in a typical life cycle model (see Figure 25) 
the 001 Axes and Analyzer component s can be used to develop 
requirements and specifications. The difference is that the 
requirements and specifications wi!) be more formally defined than 
with a conventional approach and there wi!! not be interf3ce erro~. 
The design phase is one of choosing which RAT and which 
environment 10 "RAT 10". (If a desired RAT does not exist, one is 
cre:lfed.) There may also be a design process, in this phase, for some 
additional requirements for libraries. The implementation phase is 
one of '·pushing the button" and "R3tting". Integration is inherently 
being performed throughout the life eycle process. There is still 
testing to be perfonned. There wi!) be, however, approxim:udy 75% 
less errors to se3J"ch for at the stan of the lesting phase than in a 
tr.lditional life cycle. And. ceruin kinds of tests are no lon~er an 

Re ujrt"m~II!S 

1 Sptd ficall OIl! 
I ' ..r ~hoo~ layers. 
AXES/AlIalyw-.J Du i , hbrarltS.andRAT 

(AXES/Al'laJ.yu:r) 

Im p le mfftla liOIl 

I Inhcrcmly 
5 In! tl:rlt lioo pcrfonncd 

(_75 '>\ less errors)_ 6 Test in g 
less lCS15 and options 

ill Step I 

, NO 
7 Deploymrn change 

Repeat steps 1·1- MalntnllllU 

FiKllrr 25. Evolving from the Conventional Model tQ the 001 Model. 

issue (e.g .. wire tracing). Maintenance is a repeat of development. 
That is. all changes 10 Ihe system are made 10 the requirements/ 
specifications model and code will once again be aUlOmalically 
produced. Since maimen3nce traditionally accounts for 70-90% of a 
typical large development efron, 126, 271. a method such as ooJ 
significantly impacts Ihe costs nonnally attributed to this phase. 
Table I summarizes the overall differences of using a technology like 
001 along with its automated 1001 suite as compared to building a 
system with traditional techniques. 

Therac 25 
Just as wilh avionic systems, missile systems ' and cenain 

manufacturing systems, ultra-reliable systems are needed for the 
medical environmenL The Thecac 25 incident occWTed. because the 
systems involved within the Theme 2S environment violated many of 
the principles of a zc:ro-defect system environment, (It, in fact, is not 
known not 10 be true for any olher typical system and its 

BEFORE AFTER 

Errors Erron 

• 73% itlcrl"1ICe· • No interface uron 
• Mosl fOWld a rter implem~nUlion • All found h'o« implementation 
• Soole fwrw;lllWlUlUy (44"'·) • All found by aulomati( und 
• Some found byd10amk runs Sialic ..",. 

,I • Smle IICYeI" foond • Always fWld 

hx:onsistent Rcquitements Coosistent Requirements 

Documem.nion and programming Documentation and programming 

=~"" we IlJlomatic 

No guatWltee offunction integrity Guarantee. offunctioD integrity 
afIer implementation Ilfkr implcmenwion 

Under:standabHily, portability, Understandability. portability, 
repew.bili\y not prerequisites repeatability are prerequisites 

AexibiUty lnd handling the Awbitity and handling the II unprediaable DOt prerequisites ~ are prerequisites 

Productlvit1 . Productivity II • NOI. rosLeff"cctive · 1010I,20tol, • • . 

• DiffiCUlt to moet schcdllle.! • Minimum timc 10 complcte 

I· 31O\.4tol. . • . 

" - " .. ~.-•.. . ' .. ~ ~~= ' .... ,,"""" .~. ' .,.,~ 

·Source: APOUQ o .. <i_li .. 
Table 1. A Comparison. 

development environment.) The design of the ~ 2S sys~,? was 
overly complicated; there were system deSign problems If1 the 
integration of hardware. software and humanware functions ; there 
was no back-up in the case of primary system malfunctions; there 
was a lack of hardware error detection and recovery mechanisms for 
its own malfunction; there were real-time software logic and timing 
erron; there was no back-up in the software for its own potential 
errors; poor communication existed between the subsystems (e.g., 
between the operator and the operator's maual); there was a lack of a 
fonnal definition of the system and a lack of a formal QA process. 
Anyone of these violations either did result, could have resulted or 
sti ll could result in a serious accident. We can learn from these 
incidents. There are steps that can be taken now in building future 
medical systems. They are summarized in Table 2. 

CbeckliSi for BllildlDI a System 

·Forma.lIy model integnued Jystem of llatdware. softw.-e .xl people .... :.re with 
aperu involved from all disciplines and with.1I1OIIIaWI assI$UlICC. 

- ddine.1 Th1ap for aU S)'SIO"!I Objects 
- ddinro an FMap for all fi.ntioos tbt. SY5U:ll1 sboIJld pcofcnn 
- denne all em:n that could hawen 
· (I"ioitixcmn 
· ~prtUCtionrl\lll\en"or1 in J}'SIemdesign 
• izmIp:x1If< back·up~D11 &om QWtrophlc errors iD system des,&" 
• ruildabstractions alii reilO"alC the procas 

I ~ 
Ii 
"I • AutOlllalically anaI)7lC modeJ for .mbiguities (i.e., inconsistencies:nl • 

iocomplet= of logic). (This step will prevent logic and timing errors in 
SYStem design and in software pmcIuccd from il.) 

• Aw:mwiwly prod~ codoc for 5im.1Ilaling model wwJlllI' for developing 

""'.~ 

• Simlll:llll and ttsI 

• Go back lnd change I1lIXIeI until it is satisfactory to JJllystem e~pm! 

• Build fcst of SY5{etn to go with 5IOftware 

• Ptrlorm QA proecu with indepmdenl putiu and .... ith mem~s from 
snftw.re, hard .... are and IlUD\DtlwaJ"e in each a.st: where il is IppliCOlbc. 

T.ble 2. 



Summary 
The ability to develop syStems with techniques approaching zero 

defects will not just happen by acquiring a technology and its 
associated tool set. What is needed is a mind set to define systems 
formally and a determination 10 relate to aDd adhere to the set of 
processes of modeling, simulation and software development as a 
scientific method. Once the decision has been made to follow the 
formal path, training proceeds. 

Standards are establi shed and the technology is applied. The 
technology can be applied in e ither its manual or automated form. 
Significant benefits, in fact, have been obtained by engineers and 
scientists who have used these kind of techniques manually. The 
aUlOmation of the technology helps to ensure that the technology is 
applied correctly. 

Although the transition to incorporate these techniques requires 
an adjustment, the benefits to the medical community received from 
approaching zero-defect systems are far reaching. In some medical 
environments, systems will be possible to build that were nOi 
affordable in the past; in other medical environments, many tragic 
incidents, such as those which not uocommonly and not infrequently 
occur in all of today's mOSt respected medical centers, will be 
eliminated. 

This paper was presented at the IEEE Symposium on Policy Issues 
in Information and Communicotion Technologies in Medical 
Applications, Rockville, Maryland, SeptemlHr 29, /987. 

Acknowledgement 
The aUlhor would like to express appreciation to Ron Hackler for his 
contributions and for a most helpful and critical review of this paper, 
the author would like to thank Nancy Krohngold for technical editing 
assistance, electronic publishing assistance and for preparation of this 
manuscript. 

References 
1. Atomic Energy of Canada, Ltd., Medical Products Division, 

"Corrective Action Plan -- Tyler and Yakima Incidents," July l7, 
1987, and letters dated 5/5/86 and 3/2/87 from Walter Downs, 
Manager, Quality Assurance, Atomic Energy of Canada to Ed 
Miller, Device Monitoring Branch, Center for Devices and 
Radiological Health, Food and Drug Administration. 

2. E. Joyce, "Software Bugs: A Matter of Life and Liability," 
Datamation, vol. 33, no. 10, pp. 88-92, May 15, 1987. 

3. M.A. Farber and Lawrence K. Altman, ~ A Great Hospital in 
Crisis," The New York Times Magazine, January 24, 1988, pp. 
18-21 fr. 

4. William Morris et. al., The Amen·can Hen'tag~ Dictionary Second 
College Edition. BoslOn: Houghton Mifflin Company, 1976, p. 
806. 

5. M. Hamilton and S. Zeldin, ~Higher Order Software -- A 
Methodology for Defining Software," IEEE Transactions on 
Software Engineering, vol. SE-2, no. 1, March 1976. 

6. M. Hamilton and S. Zeldin, 'The Relationship Between Design 
and Verification," The Journal of Systems aIUJ Software. vol.l, 
no. I, pp. 20-56, 1979. 

7. M. Hamilton, "Zero-defect Software: the Elusive Goal," IE££ 
Spectrum, vol. 23, no. 3, pp. 48-53, March, 1986. 

8. A. Razdowand R. Hackler, private discussions relating to the 
implementation of the predecessor tools to OOt""", Cambridge, 
MassachusellS, 1980-1985. 

9. J . Manin, System Design from Prollably Correct ConStrUCts. 
Englewood Oiffs: Prentice-Hall, Inc., 1985, pp. 3-379 passim. 

10.M. Hamilton and R. Hackler, evolving lecture notes, Hamilton 
Technologies, Inc., February, 1986 - March, 1988. 

II. R. Hackler, "Structured Relations Between Objects," in 
Proceedings of the Eighteenth A.nnual Hawaii International 
Conference on System Sciences, Honolulu, HI , January, 1984. 

12 . R. Hackler, ''TMap Basics" (Suppon Memo No.3). Cambridge: 
Hamilton Technologies, Inc., December, 1987. 

13. M. Hamilton. lecture notes on Foundations of 001 Technology, 
October,1987. 

14. M. Hamilton, "Design Propenies and Their Impact on 
AUiomation," Cambridge: Hamilton Technologies, Inc .• T.R. 
No. 2, January, 1986. 

15. R. Hackler, Prototype version of 001 tool suite. Hamilton 
Technologies. Inc., 1986. 

16. R. Haclder, R. Poirier and J. Feldman, Versions 1.0 and 2.0 of 
001 tool suite, Hamilton Technologies. Inc., 1987. 

17. D. Weinreb and D. Moon, "Aavars: Message PasSing in the Lisp 
Machine," Cambridge: Massachussetts Institute of Technology 
Anificial Intelligence Laboratory, A.1. Memo No. 602, 
November,1980. 

l8. M. Hamilton, "Design of the GN&C Flight Software 
Specification," Cambridge: Charles Swk Draper Lab., Doc. 
C-3899, Feb., 1973. 

19, Hamilton Technologies, Inc., The 001 nf System Reference 
Manual. Cambridge: Hamilton Technologies, Inc., 1987, 
Appendices A-D. 

20. M. Hamilton, 'The Ada Environment as a System," Proceedings 
of The Ada Environment Worlcshop , sponsored by 000 High 
Order Language Working Group, Harbor Island. San Diego, 
CA, November, 1979. 

21.M. Hamilton and R. Hack.ler, "Oil Discovery Example," 
Cambridge: Hamilton Technologies. Inc., T.R. No. I, January, 
1986. 

22. R. Hackler, "Real-Time and Distributed Modeling," (Support 
Memo No.4), Cambridge: Hamilton Technologies, Inc., 
[)ocen1ber, 1987. 

23. Hamilton Technologies. Inc., "Interim Repon to Rex-ham 
Aerospace and Defense Group. Task 2, Subtask 1," Cambridge: 
Hamilton Technologies, Inc .• March 7,1987, 

24. University of California Los Alamos National Laboratory 
Contract No. 4-X28-8699F-l: Defensive Technology Evaluation 
Code (DETEC) ConceplUai Model Development, 1- 14-88, 
Hamilton Technologies, Inc. 

2S. Hamilton Technologies. Inc. , "Final Report to McDonnell 
Douglas Astronautics Co. (Huntington Beach): HOE Demo 
System," Cambridge: Hamilton Technologies, Inc. , November 
3, 1986. 

26. J. Martin, A.n Information Systems Maniftsto. En&lewood 
Cliffs: Prentice·Hall, Inc., 1984, pp. 143-194. 

27. D. Stamps. "CASE: Cranking Out Productivity," Datamation, 
vol. 33, no. 13, July 1, 1987. 



About the Author 
MARGARET H. HAMILTON is President of Hamilton 
Technologies, Inc. of Cambridge. Massachusetts. a company she 
founded in January, 1986,10 develop methods for producing reliable 
models, reliable simulations and reliable software systems. 

From 1976 to 1985 she was president and founder of Higher Order 
Software. Inc. From 1965 to 1976 she headed the software 
engineering division at lhe Charles Stark Draper Laboratory of 
Cambridge, during which time she managed the on-board flight 
soflware project for lhe Apollo space missions. 

Hamihon, aJong with her Staff, created a theory for desi gning and 
developing reliable systems. This theory, which began in the late 
1%o's, formed the beginnings of the 001 te<:hnology. The 001 
technology. along with its associated automation has evolved. 
uninterrupted. under her leadership over the last twenty years. 



TM 

001 : The Thinking Person t s 
Product for Building Systems 

Hamilton Technologies, Inc. 



001 TM: The Thinking Person's Product 
001 n.t. a product of Hamilton Technologies, Inc. (HTI), is a new generation product for 

designing and producing software systems. It is a product that is all about organizing your thoughts in 
such a way that thinking can be a reliable and productive process; it is intended to teach or help a 
person to think in a new way about systems. 001 accomplishes this by helping someone define his 
thoughts as simply as possible, but not simpler*; it makes sure that a set of thoughts, or system 
definition, is unambiguous before a system is implemented. It provides a means to build systems that 
are logically correct. 001, a computer-aided reliable thinking product, is a solution towards 
developing reliable models, reliable simulations and reliable software systems. 

Philosophy of 001 
The philosophy of 001 is that reliable systems are defined in terms of reliable systems. This is 

how you make it work: Use only reliable systems; integrate these systems with reliable systems; the 
result is a system(s) which is reliable. Then, use the resulting reliable system(s) along with the more 
primitive ones to build new, more abstract and larger reliable systems. 

00 1 provides a core set of reliable primitive data types, reliable primitive functions and reliable 
primitive mechanisms to connect functions to data. functions to functions and data to data. All 001 
systems can be developed with these primitives or more abstract systems defined in terms of these 
primitives. 

You Can Manage and Integrate the Life Cycle with 001 
The concept of 001 began with APOLLO. At the time of APOLLO II , Margaret Hamilton, 

now founder and president of HTI, was then Director of the APOLLO on-board flight software effort. 
Hamilton petfonned empirical studies on the APOLLO software environment with her staff in order 
that her people and others could benefit from this experience for future software and related efforts. 
The result was a mathematical theory which when used properly would allow one to define a system in 
such a way as to prevent "before the fact" interface errors, or errors of ambiguity. 

*"Everything should be made as simple as possible, but not simpler." --Alben Einstein 



Once Hamilton and her staff realized that systems could be defined unambiguously, it was clear 
that system definitions (or models) could be analyzed for interface correctness. Furthermore, this 
finding led to the fact that source code could be automatically produced from models which are 
unambiguous. The staff of HTI has continued to build upon this theory as a foundation for the 001 
product whose sole purpose is to help you develop reliable real world applications. 

001 is an automated development product that spans and integrates the entire life cycle of 
application development 001 is more than a user friendly front end. It also does the work. 

The key is the mathematical systems theory behind 001. Because of its foundations 001 enables 
the user and developer to produce requirements specifications free of ambiguities. 001 will then 
automatically generate source code of the user's chosen form along with technical documentation from 
the reliable specifications. This source code exactly reflects the user's specifications tIrroughout the 
development and maintenance process. 

Not only does 001 deliver systems that are demonsttably reliable, regardless of their complexity 
and size, but it also delivers them more quickly than ever before. 

001 is currently available on the DEC V AX under the VMS operating system. 

The Design and 
Development Process 
with the 
001 Tool Suite 

Target 
System 
tobe -

Defined 

All 
Applications • 

001 Provides a Means for you to 

Evolving 
library 

Execution 
of 
Sysrem 

Define Logically Accurate Requirements Specifications 
Traditional software development involves many manual and disjoint steps. The system 

requirements are often presented in a verbal form and/or produced in a written form by users, each in 
his own terms. Then they are manually translated into requirements specifications written after 
numerous iterations between the users and the systems analysts. This is both an error-prone and 
lengthy process. 

001 offers a solution to this manual process. 

With {)Q1, using a computer, both the users and the system analysts can all participate in an 
integrated requirements session together. 

- 2 -



With 001 's interactive graphics component, system requirements can be easily captured and 
defmed in machine readable form using the 00 1 AXES requirement specification language. The 
computer becomes the repository for both functional requirements and the requirements of all of the 
system objects. Both functional and data requirements can be shared across all areas of an 
organization. 001 assists you in decomposing functional and data requirements where high level 
system requirements are elaborated into more detailed requirements; it represents them in conttol maps 
that show and trace all possibilities of priority, ordering, logic and data flow throughout the system. 

Hardcopy output of the requirements may be produced at any time during the development 
process. This output may be used in system reviews with management, end users and developers for 
greater clarity and communication in the system development process. 

After specifying the requirements, the next logical step in software development is the design 
process. This process is also managed and integrated by 001. With the graphics component, the same 
control map technique is used to specify functions and data at the design stage as was used during the 
requirements specification stage of development. 

The Use of the 001 Axes Language 
Controls your System and its Development Process 

With the 001 AXES language all systems requirements are defined by decomposing a system 
using a control map. 

The functions are decomposed using structures which connect them by 001 rules using a 
function map (FMap) control map. The data types are decomposed. with structures which connect 
them using 001 rules using a type map (TMap) control map. 

The FMap connects the decomposed functions with input and output data which abide by the 
rules of the data types using TMap. The result is an integrated. set of reliable requirements which set 
the foundations for the management, implementation and operation of a complete system environment 
and its development 

001 Automatically Analyzes your Requirements and Design 
Once the functions and the data for a system have been elaborated 10 the level of design which 

interfaces to existing function libraries and data libraries within the 001 environment, the system is 
submjtted to 001 's Analyzer component. The mathematically based. Analyzer not only ensures that the 
data is used in a consistent and logically complete manner, but that the interfaces between the functions 
and between the data are consistent and logically complete. Studies have shown that approximately 
75% of all system errors are errors of ambiguity (i.e., interface errors), which are errors of 
inconsistency and logical incompleteness. These include errors of timing, ordering and priority. 
These are all found by the Analyzer. 

The Analyzer finds the interface errors early in the software life cycle, where they are the least 
costly to fix. Result: a consistent, logically guaranteed and integrated system design. 

001 Automatically Provides you 
with Generated Code and Documentation 

In the traditional development cycle, the hand-coding process from the written design 
specifications would be the next step. 001 virtually eliminates this step. 

001 will automatically generate logic flow from both the functional and the data control maps 
and automatically connect this logic to previously existing function and data primitives in its core 

- 3 -



library. The option exists for system implementors to build new libraries to hook into or use existing 
libraries from other implementations should it be desirable to do so. 

The generated source code can be compiled and executed on the same machine on which 00 1 
runs or it can be ported to other computers for subsequent compilation and execution. 

Complete technical doc),lmentation is produced automatically from the code generation process, 
including the annotated source code. Additional comments can be inserted by the user into the 
requirements specifications using the graphics editor. These comments are also automatically 
generated along with the automatically generated technical documentation. 

Both the source code and technical documentation is consistent with the system design and 
requirements specifications. Result: significantly reduced effon necessary to fully document and put 
your system into production. 

001 Minimizes your 
Performance Testing Effort and Helps you to Rapid Prototype 

With 001, the petformance testing effort is significantly reduced since the generated code is free 
of ambiguities and it is consistent with both the requirements specification and software design. In 
fact, it is not necessary to test for the approximately 75% of the errors that would have still existed at 
this time in a traditionally developed system. The remaining tests that still exist at this time concentrate 
only on answering the question "Is this what the user really wants?" 

Once the system (or a part of it) has been analyzed successfully and source code has been 
automatically produced from it, a design can be interactively demonstrated through 001 's prototyping 
capability. During this phase both the user and the system designer can validate the sys tem by 
executing different paths based upon interactive input System components that are not complete at the 
time of prototype execution may be simulated. 

At this point in the software development process, a model has been produced that is consistent 
and logically complete. And it can be demonstrated to the user by prototyping or simulation that his 
requirements indeed have been defmed correctly by 001. 

Once all of the parts of the system have been brought through this same process, they are 
completely integrated and the system is operational. 

001 Will Give you the Same Benefits During Maintenance 
00 1 treats the need for system modifications as an integral part of the development process, not 

as an aftenhought. To make a change, you need only modify the control map that was used to define 
the system. The persons responsible for maintenance would use 001 in exactly the same way as a 
developer of the original system, including the Analyzer and RAT components and its prototyping 
capabilities. Revisions to the system are automatically accompanied by revised documentation and 
source code. No longer is it necessary for maintenance personnel to decipher the individual coding 
techniques of the initial system developers. 001 renders this process obsolete. 

001 is a General Systems Building Tool 
00 I is a product for building systems according to a particular user's need. A modeJ can be 

defmed with 00 1 which captures all known properties of that system at a given time. Such a model 
could have a combination of functions and data making up hardware, software and peopleware. That 
same model can be simulated with 001 to show its behavior in various dynamic states. The software 
portions of that model can be developed with 00 1 from its requirements stage as a model throughout 

- 4 -



its implementation and rapid prototyping stage as a simulation and finally as the actual target system 
that is to be developed. 

/ 

/ 
/ 

Peopleware 

/ 

/ 
/ 

001 Systems 

\ 

\ 

\ 
\ 

Hardware 

Simulations 

Software 

With 001 you can Build Reliable Systems that you can Trust 

Reliable Systems are Understandable 
Traditionally systems have been hard to understand from the requirements phase throughout 

development and fmally into the coding phase. There are several reasons for this. System definitions 
are ambiguous; users, developers, managers and computers at various levels of development more 
often than not speak different languages; the system is represented in a fonn whose focus is not 
integration; defmitions are not friendly in that each modeler or programmer often speaks to himself in 
symbols only he understands; unnecessary detail is resident thought the development process; data 
cannot be traced within the system between phases and within a phase. And, often either too much 
detail exists or not enough detail exists to state a particular concept or algorithm. 

001 directly addresses these issues. 
001 forces systems to be unambiguous; it suppons, users, developers, managers and computers to use 
the same language. That is, they have a common set of semantics with which to dialogue; yet 001 
allows the syntax to be chosen by its users and thus the medium of communication is as friendly as 
desired; each data object path can always be traced throughout a 001 system. And integration is 
inherently a focus of the properties of 001; that is, as ambiguities are driven out, integration, a narural 
process of the 001 technique takes place. 

Reliable Systems are Error-free 
Error-free means no ambiguities. This means no inconsistencies, no redundancies, no logic that 

is incomplete. It means that the output of each development phase meets the requirements of the 
previous one. 

- 5 -



001 directly addresses these issues. 
The 001 AXES technique automatically prevents ambiguities from being allowed to stay in the 
development process. 

To be error-free the system must peIfonn the job the user intended it to perform. 

001 addresses this issue. 
001 limits the area of concentration for the verification of the user's intent by having had eliminated 
approximately 75% of the errors from the system with its mathematical rules . As a result what's left 
are only errors which fall into the category of user's intent. In addition, with OOI's FMap and TMap 
capabilities in tlIe requirements specification language, 001 AXES, the user need only define what it is 
he wants to do and the rest is automatically taken care of by 001 fLlling in the how in terms of 001 's 
core primitives. With each project use of 001, and with each future enhancement of 001 , HTI 
continues to narrow the gap of possible types of user intent errors remaining within a 001 user's 
environment 

Reliable Systems are Flexible and can Handle the Unpredictable 
Flexibility and the ability to handle the unpredictable are put to the test during the operational 

phase of large, complex real-rime systems. These systems must be able to detect errors and recover 
from them; they must be able to reconfigure to changing and unforeseen events. They must be able to 
handle asynChronous events by being asynchronous themselves. This means that they must be able to 
handle interrupts, asynchronous events and be able to distinguish between priorities. 

Flexibility and the unpredictable are also put to the test when large, complex real-time systems 
are being developed or maintained. Changing requirements for these systems are often a major 
stumbling block for organizations and projects. As a result either requirements are not Changed and 
the impact on the organization or project is an adverse one or the requirements are changed and the 
effects are error-prone and costly to the system. Again, an adverse effect on the organization. 

001 addresses these issues. 
Propenies of 001 systems inherently lend themselves to change and the unpredictable. 

The very fact that ambiguities do not exist and that each change is traceable eliminates many of the 
concerns that traditionally surface with the flexibility issues. 

Single reference/single assignment is one of the properties of 001 systems. This property, in 
addition to giving you the facili ty to trace a variable thoughout the system. is the reason why the 
system is by its very nature modular and further, reconfigurable. 

The main problem that traditional techniques have had with asynchronous systems is that these 
systems. because of their complex interfaces. are error-prone. 001 has rules which control. among 
other things. priority, ordering, data flow and timing so that asynchronous behavior is forced to be 
safe in tenns of its interfaces. 

The issue that remains is how to handle the concept of dealing with the unknown. 001 has core 
primitives which serve as a foundation for a real-time asynchronous and reconfigurable environment 
that is able to deal with events which are not expected and with errors in the system from which 
recovery can be made. The RTI staff is prepared to help you build systems of this complexity with 
001. 

Reliable Systems a re Portable 
Often when a system is developed there is a need to move it or pans of it to more than one 

application environment. The same algorithm could be used, for example in a missile system as is 
used in a communication system; there may be a desire for that same system to run on more man one 
computer or to be implemented in more than one language; that same system may run on one processor 
in one operational phase and several in another, there may be a need for that system to allow for a 

- 6 -



plug· in replacement of different configurations of other systems within that same system. A layer of 
that system may be needed (e.g., the very top layer requirements) to work with various layers of other 
systems as lower layers; or there may be a desire for various layers in a particular system to be hidden 
from others either for security purposes or for separation of management in developing that system's 
layers. 

For those systems which are not modular, ponability of these various fonns are not possible. 
The result is unnecessary redevelopment of the same systems. 

001 directly addresses these issues. 
001 will automatically pnxluce by the very choice of a RAT by the user, an implementation to a chosen 
computer, language or implementation. The generated code will run in the chosen computer 
environment which has the compiler to go with the selected language. This feature alone allows for 
different application environments. 

The 001TMap func tionality automatically sets up the environment for layered and secure 
developments. Again, this feature lends itself to different application environments. 

The 001 abstraction capabilities provide for a plug·in of different modules where a chosen 
structure, the basic mechanism for connecting functions, allows for a plug-in of functions chosen by 
the user but which at the same time provides the functions and their connections that are common to all 
uses of the same structure. 

Reliable Systems Allow you to Capitalize 00 Repeatability 
Software development organizations are notorious for re·inventing the wheel. Often, the same 

concepts, requirements. algorithms and code are created over and over again; the same mistakes are 
made with each new project Lack of repeatability is the single largest reason for wasted time and 
dollars within an organization or a project 

001 directly addresses these issues. 
Repeatability is the ability to do something over and over again. 001 capitalizes throughout the life 
cycle on automation, which is the ultimate fonn of repeatability. But existing forms of automation 
themselves can be automatically used over again with 001 . 

By providing a method to share primitive libraries as well as libraries developed in terms of 
these primitives, among various development projects, 001 allows the development organization to 
concentrate on the unique aspects of each system being developed while sharing libraries which are 
common across all systems and more libraries which are common across panicular families of 
systems. The user of 001 has the capability of adding his own libraries to the 001 environment as 
well. 

00I's reusable library techniques add to significant productivity improvements. System models, 
along with their associated automatically generated code can be developed once, stored in reusable 
libraries and shared across multiple programs, projects and systems. This capability reduces the need 
to "reinvent the wheel" for every new system. 

001, through its abstraction and distillation capabilities, both in functional decomposition and in 
data type decomposition, allows you to hide information whenever it is desirable to do so; yet should it 
be necessary to look at more detail within higher level abstractions, that information is readily and 
automatically available. All of the more abstract components of a system are forced to be defmed in 
terms of more primitive components. Thus, the system is unambiguously defined and implemented 
throughout its implementation. 

As a result of the powerful repeatability concepts of 001, any work: that has been produced does 
not need to be wasted either within one development process or across many development processes. 

- 7 -



Reliable Systems are Affordable: 
Developed within Budget and Tjme Constraints 

The marketplace is replete with stories about systems not being delivered on time or about 
ovenuns running in the millions. Sometimes a system never is delivered because there are no more 
dollars, time has run out or credibility is gone. ' 

001 directly addresses these issues. 
Customers who have used the 001 technology have reponed 4 or 5 to 1 in productivity the first time 
they developed a system wi th 001 . These developments did not capitalize on repeatability and they 
were performed without the help of 001 expens. When 001 experts were involved on first time 
customer development efforts productivity approached 10 to 1. Our own more recent experiences 
have surpassed these numbers on ftrst time projects, approaching 20 to 1. This is due to (he fact that 
more 001 experts were involved and that HTI continues to enhance 001 with features which increase 
productivity even more than before. We continue to learn from our own use of 001, as developers, 
and pass this experience on to our 001 customers. 

When follow-on projects take place, especially within the same type of application (e.g., bank 
project follows bank: project or missile project follows missile project) the increase in productivity on a 
panicular development effoIt is significantly greater and continues to increase with each new round of 
development of a system of the same or similar type. 

Your Deyelopment Life Cycle will Chanee with OOt 
There is a marked difference between developing models, simulations and software with 00 1 

and its automated tool set, and developing them with conventional techniques. The comparison chart 
summarizes some of these differences in comparing actual experiences on APOLLO with experiences 
using 001. 

Whereas before 73% of the errors were interface errors, with 001 none are. Whereas before 
most interface errors were found after implementation, now all can be found before implementation. 
Whereas some of these errors were found manually and some were found by dynamic runs, with 001 
all are found by automatic and static analysis. Whereas before some of these errors were never found, 
with 001 these errors are always found~ 

Whereas before requirements were bound to be inconsistent, they are now always consistent. 
Whereas before documentation and programming were manual, now documentation and programming 
are automatic. Whereas before there was no guarantee of function integrity after implementation, now 
there is a guarantee that the implemented fonn of the system is consistent with its requirements. 

Other properties are inherent within 001 systems as a result of the theory embedded within 
them. An example is the ability of 001 systems to be flexible enough to respond to changing events 
and to reconfigure based on these events. Such properties are impoItant in a dynamic manufacturing 
environment (e.g., dynamic scheduling). 

Another example is that 001-built systems can capitalize on repeatability to the greatest extenr 
possible. 

As a result of all of the above features. productivity increases significantly with the use of 001. 
Real numbers have shown productivity on first time projects (i.e., without capitalizing on 
repeatability) starting at 4: 1 to 20: 1 in man-months and starting at 3: 1 to 7: 1 in minimum time to 
complete. And of course, with repeatability, these numbers increase dramatically. 

001 is your Edee 
001 has been used to model factories; it has been used to model a system of human behavior; it 

has been used to develop software for missile systems for applications like SDI; it has been used to 
develop simulations for discovering oil as well as the simulator which drives them; and, it has been 

- 8 . 



~EFOREk 
ERRORS 

, 73~ INTERfACE' 
• t1lST FOUND 

AFTER IMPLEMENTATION 
, SOME FOUNO HANUALL Y (44~)' 

SOME fOUND BY DYNAMIC RUNS 
, SOME NEVER FOUND 

INCONSISTENT 
REQUIREMENTS 

DOCUMENTATION AND 
PROGRAMMING ARE 
MANUAL 

NO GUARANTEE OF 
FUNCTION INTEGRITY AFTER 
IMPLEMENTATION 

UNDERSTANDABILITY, 
PORTABILITY, REPEATABILITY 
NOT PREREQUISITES 

FLEXIBILITY AND HANDLING 
THE UNPREDICTABLE NOT 
PREREQUES ITES 

PRODUC TIVI TY 
,NOT COST EFFECTIVE 

'DIFFICULT TO MEET 
SCHEDULES 

AFTER 

• tt:lNE 
• All fOUND 

BEfORE IMPLEMENTATION 
, ALL fOUND BY AUTOMATIC 

AND STATIC ANAL ¥SIS 
• ALWAYS FOUND 

CONSISTENT 
REQUIREMENTS 

DOCUMENTATION AND 
PROGRAMMING ARE 
AUTOMATIC 

GUARANTEE OF 
FUNCTION INTEGRITY AFTER 
IMPLEMENTATION 

UNDERSTANDABILTY, PORTA-
BILITY AND REPEATABILITY 
ARE PREREQUES ITES 

FLEXIBILITY AND HANDLING 
THE UNPREDICTABLE ARE 
PREREQUESITES 

, MAN-MONTHS 
5 to I . .. 90 to I ... 

10 to I 

,MINIMUM TIME TO 
COMPLETE 3 to 1 

'-_________ -I*some ApollO st.ll sties , _____ ~4!.!!tO~I..: • ..: • ..:....J 



lIsed to develop itself. 001 has been used to develop asynchronous, event-driven real-time systems 
which can be processed concurrently and which communicate with each other. 

Having a reliable system development process resulting in reliable systems is important in its 
own right, but the man-months saved and the shorter development times possible as a result of this 
reliability establishes 001 as a product which makes a dramatic impact in your organization 's 
productivity. 

Every hour you wait wastes time and dollars. 

HII Will HelD you Prove it to yourself with 001 
HTI has a special program whose focus is to help you develop reliable systems. HTI will 

develop a system of your choice for you using 001 or HTI will develop a system with you using 001 
in order that you will become more thoroughly and more quickly acquaimed with 001 and the system 
development techniques associated with it. HTI also has a training course showing you how to think 
and model using the technology behind 001 along with the 001 product. We want to share with you 
our knowledge and excitement in the use of this powerful product. 

Your success is our success. 

Our success is your success. 

To learn more about 001. write or call: 

Hamilton Technologies, Inc. 
17 Inman Street 

Cambridge, Massachusetts 02139 
(617) 492·0058 

. 9 . 



Product Name: 001" 

FUDction description: Integrated 1001 suite for aUlOmalicaliv developIng 
ultra-reliable models. simulatIOns and soilware systems. 

00 I is based on a phIlosophy that a reliable system IS developed In 

terms of reliable sys lems. 00 I supplies the building blocks tu build a 
reliable system; as each new system is created by the user, it , in lurn. can be 
used as a building block. 

A 00 I model captures all known properties of a system at a gIven time 
It consists of an integration of functions and data types for a target system 
(for elample. a real-time. asynchronous. communicating, distflhuted system) 
which resides on a combinatIon of hardware, software and humanware 
environments Once a model is defined. 00 I will generate complete source 
code for that model. Rapid prototyping or producllon can then proceed: the 
mudel is simutaled to observe its behavior in various dynamic states: 
software portIons of the model hecome fully Implemented systeml.) 

The Design and 
Developmenr Process 
with rhe 
OUI Tool Suite 

Target 
SVS1em 
tobe -
Defined 

All 
Applications 

Execution 
Execute of 

-..o111~~ A System 

With its language, 00 I AXES, 00 I embudles a hlCrarchical structured 
network modeling approach based upon a formal concept of control A 
model is decomposed using a control map whIch ensures that the 
relationships of all objects, in all states. are under control. AXES is both a 
functional and object oflented language. funcllons are decomposed with an 
FMap control map. Data types are decomposed with a TMap control map. 
The FMap is used to connect funcllens with obwcts as input and oUtpul 
which abide by the rules of the data types in it s dssoeiated TMap. 



At any level of construction, a model may be submitted to 00 I 's 
Analyzer. The Analyzer ensures that bOlh dala and functions are used m a 
consistent and logIcally co mplete manner elimmating approximately 75% cf 
all system errors. 

Once a model is decomposed to the level of elisllng libraries and it has 
been successfullY analyzed, it may be handed to the Resource Allocation Toul 
which will generate logic flow from both the function and the uata c'Onlrol 
maps. This logic is aUlomalically connected to preVIOusly eXiSting function 
and data primitives in the core Jibrarv a5 well as, If desired, libraries 
developed from earlier Implementations The generated source cude can be 
compiled and eleculed un the same machme on ... hlch 00 I reSides or .t can 
be ported 10 other machines for subsequent compJlation and execullon. 

Because of ils featu res of relIabilIty. aULOmallon. abstraction and 
reusability, 001 maximizes productivily. Systems can be deSigned 
developed and maintained with minimum man ~ monlhs In mlnlmum time 

001 contalOs lhe follOWIng components: 

• An edilor for supportIng a user to define hIS system graphicall)' or In 

tettual form 

• An elecutable speclrlcallon language for deflnmg logically accurate 
models that are conSistent and logIcally comple te for both funct ional 
and object oriented hierarchies and their integratIon 

• An Analyzer for automatically detect ing errors accordtng to a format 
set of rules 

• An abstract type generator Which generates a ",·,tem of data types lor 
a particular application domain from an object type hierarchy that is 
decomposed in terms of parameterized types 

• A multi-language source code generator IRA n which produces code of 
the users chosen form (e.g., CI 

• A documentor whicb produces <1 system deftnltlon. its implementation 
and its descriptIon 

- l -
(opyrlE,ht 0 19S5, Hamilton Technolo~ les . lllc , 



'Oct: 27-Ncw. !!;' 1985 

Margaret Hamilton : 

A 'Higher Order' Has Been Her Calling 
ApoIa astrnnauts larded on the moon with her help. Now she is applying 
software expertise to !'er second startup. 

MatftM'l lflSllliih" .Iost Jam'"" -
lh",dlllM 11:dr..oltJgia / .. - iJ 

'~""rftJnI' '"",",1M ",Ut.<d ,pin. 
don .,,.,,_ V-....... _ Mat. T .... 
.. j ... ,. ..J rUt tJIJtiJom _ «DHmrt 
, .. Idst ",tat- jr."citw1fl /nId QII tdKtif 
"' ....... P/"..,~ 1\ripl.'llibu..'IJI<fl 
~I''''' - il i& ill • _1_111;"'-1. 
/u",jl," txIIMiu , 

MIrY! \'ou didn't ~ (JO,It 01 a 
"tlvial" ~'W3t1! boo:kp>JncI". 

1I.uIlL'JQN:I~~ltthr 
Uni~ d. MidaipD &rid _lIM:re 
'or t..I! I yHr. That was 1II'bere n'G' 
'a,her """nt 10 co\ltie. 11len I lrnlsfer· 
rtd III Earlham CoIIqIe in IUchmond. tn· 
~ It iI. Q\aUer ~ and tN.!" 
'I\'lIm: lIIJ' motber _ 10 ~ and 
1l'IOII all trtt ~lali_ tar thaI maller, I 
1/01 my 6act...1or 01 Artilboft and that 
_ .. l int rn.n r..tIwn IDd anw up 
'" thi$ :aru. I _ aWaa, 10 10 10 
an..tn. and ClmtinUi! with trttl<Mnc' 
ftI de(Tft. Therll act invoI~ with this 
KIlt! called pro£fml~ ThiI ... 
~ COlIlpu~ tdena _ eom ~ 
~Id! 

MlIll Was ~ina: even a 
flm~r 1tmI? 

HAMILTON: ThLnp IiR memory 
and ~ ~ _ IalnS. 

MIA! people -.we doi", thinp by hand 
.... simple ~ macblna. Thon 
~ • lew ~ -'tine ...;u. llM:se 
~ QIIrd COIII;IlJIrn. It .. naI • tq 
INn, at tho Ii"",. I act ~ with 
~ • >er)' IIIIIlI nw:hine with 
an MIT pro6esIor and I just __ 

bock IQ doc:Ic ~ • because I 
" .. 1'NIIy '&dtinc INa it, 1_ fronI 
v.wItini II !;tlT 10 doing • little bil with 
lIM: SAGE 1I)'SlmI- at PhiIc:o-foni. 
""" Ihm I "'-d about Iht Apollo 
".., .... 

I just IOWIIed 10 WOfk on itl 
'don'l k_ ~. I joa( ... 'IIIIed to! So , _ _ 10 lIM: IIlI\J'tIIIIffIUUon 

lalxnlOry of NlT 1M- III<' ~. 
dellt C,s. Dn.P£I' Lab). 

MUll At W'IIaI poinl did the Lib 
dnt""i .. e !bat • ........!II bo: ~"fd with 

"" """"" UA."ILTON: It was ~ early in 
lhe 196Oa. n",pn;vram.ar!edo(fwith 
In.e UllII\.U\N1I n"-ions and !ben pro­
~ lhroueh 10 tht rDaDDed mis­
loJm. lI"'-"IIon&'~ I_I'UJ\II' 
tnlra IT'OUp of pe<lI>Io: ~3use I ..... ' one 
uI,~ rll'Sl poopIe in on lhe Pl'1J«t. The 
~~rs, SOInt\.irr..a, had tlftn tben: 
(mly two ....eks lea thin I hid. E\Oer\ · 
tl>illly I ~nded up hudinr lIM: II)'mnw 
.fOfIWII~ ilrfi. whir:.b ..... providillll 
"""',.,' ... 1)'SII'mI-IM aIut _lor ttw: 
Iwd~ tI\a( _ put thr appIlauons 
ml<l.it "",",,', "'" \on( at""" thaI thaI I 
~nded UII runninJI 1M ." ~ auftwa~ 
)X1)I<\:t kit t~ onbo.nIlEM (1.u:w Ex· 
............. Modulo) and lor !be ~ 
Module. 

MilT. .... ~~ 1M buic de!i~ all"" 
!be ,)'Item already bid 0tII wn.en the 
pn.;..:t -.ed or "'1l'dlOOIOCY adnn­
<""q: )(I rap;dly tNl Iboft ~ ..,.m­
eln! rilllICftI along thr WI)'~ 

UAMILTON: ~ ~re uoed IQ 
packllll! thinp in II'"t'tr \iPI at 1M 
Mile If we ~ 10 IDoIc It Iht M 01 
llit Apollo Corn~r we had Illho! rimr 
P"QP~ looUy ... 'lUlCI Ay ;1 waJ lmpc:.s;. 
bit "\1IIby ~ 1/'I!t1', UKd t.o.~ 
13)'"'5 dn'p. !be ~ lhill ifillit'd w.. 
)US! bu,.d a w-.y to shoehorn IlIltIjI!i in. 
N rourw \hal tNde It moch mrn <mn· 
pltealtd a !.uk - mort' ,'U\nenlb~ to,..... 
run and 11:01' wrt 01 thme. We did an· 
IIC"liCl if 111;01 "'.., cauld do !he jQb. But 
tl"' .... ?fOl<'<u a .... noIorious for I<IklllJ( 
kKII~' Ih;m f'$tlnulftl and !f'oOn' I'O<IJt\ 

_net ;O!ll W1< \\~ at,o~.:od '" it~\7I1<' ~Id 
"~It'r.'I. · .,d ~ '-'k 10 1M """"·L"lj( 
1 ... 1'\1 ~ r. ~II".bt"f·J limc:!\ If> ar!j1Jl51 

Mtrr. Whit ~ing Jantua~ 
skills did YIN C(IIM inlO I"" pmjm with 
and ..,haI .. V<3CIIy did )'OU pI&y in ttw: 
rnd product? 

HAMILTON, I ~ oil worII.ing 
in tho! """",ring !1)11~ ami and ,"" 
l)'$ttm JoIIWUt "~a. Then In.e whole 
toI'l .... ;lI"e tfIort - mranina: evt1')'Ihing 
from thr oper:Itm, _ or In.e ~. 

I """15 inod,oed 1Yith all of them. II""" 
Il'lOk 0\'eT the command module 10ft· 
wow. and the LEM. So I rnIa11 I"" ... · 
bmnI """-no diart. 

I ,...... that I was )'OW\i ~h II) 
that I w,u.n't awatl: 01 lilt m3,gnitude of 
..,lu.t I took on. 

MH1l AI. tIw polnt in timr did you 
I~l you laced ~ny r~de'·bo~ 
d~ti<ln? 

HAMLLTON: Wben I go( in>O)lved 
with lhiI ... ·hoIe !bini: il wu ~ 
o°kmUe bb«ationM

• 1brrto ~ ~ 
ua:plionl lor lOme lema"'- who 
beatm!: ainu.! ~ IIINCOU or buddle&, 
III the _ Who" I ... in cnIIqje I IIIOIt 
math and ilIb'lics aroI l was the CICI!y PI 
in the clul! 

I WMl!Rd"' it. 
l\m~ 50 the ~ soN! tlbric 

wac aIR 10 ~h IQ I«"OIDOdar.t 
)'QU o •• 

HAMILTON: \~ EYery onct. in • 
while !bert was an exception ~ and 
I VQ5 the ~_. I fUt!S who:oI )'00.1 

&f:I. used 10 that }W play the ~ It10R 
eaally. 

But it "' true thaI when the penon 
IIIat I ...:orIDed lor bIu.t&tM up m:r _ 
III nm the wIdr dm.ian tbIn! _ lib­
jrc:tiou ......., 1\ "ne. 

The '"'On! was thai I "'"a! I"" mo&t 
Wented and the moaI IPIl<tl'IlriaIt: or.c 
ItChnicaUy bul they wen: afmd that 
......, d Iht men miaht InYe if I bKamI' 
the big bna. 

"They were afraid that 
some of the men 

might leave if 1 became 

the big boss:' 

MH~ Did I~t o:nd up ha~ning? 
HAMILTON: No. In I:ict I had the 

IlfUUPloraboullO!"Rand I llunk Iht 
only persm lhoit lell wenl ~ lin 
lpoulLIe ....... lllOring off SOIllO:W""",. It 
"1Ii ~ "fry sublo environment. 

It __ allTICI$t likt' • 1Io""ly rIIVIl'OL'I­

..... nL We had about 11I(I1"'tlP~ at lhe 
lime. 

I don'llhlllk iI"'"A,~~lIy 10 lIIy c f\'dil 
as mut:h • it ... -:os thr Apollo ~ and 
liS btinl., ntit,nlo 1'rupIe ""'''' lhere: 
noght and llay "nd I ............. . Sl'n!lll: al 
"''''.',m 

So II~d I~ a,h1l nlaV" vi 111.11 goi~ 
~II' nw It "''IS JlIOIoI I V<'fY _I .., .... 
\lntlSWKf' _00 ..,." =11l1'li: I !IIiJllIlok 
t;"ok "" ,I I f a '\'ry t'"<Clunl/ lim", 

DiratIy. psc oYer 100 "Iri".ed 'or me. 
But ind~ly lhere _ a ~ of 
hundf1'd ~. 

MIrE l "Ou:r cnDtte backgtu,tnd in· 
dIM! naI only h"btral artI at I Qualter 
~, but also pl;tns /(r further.studies 
at 1l~1II, .• I~ did llu.t ~ 
pau lor Iat .... .....t. in IIIflware 

IlAMlLTON: AI EarIhim I IIIOIt not 
only tnI~ but. 101: d ~ 
and ~Iigion courntS. NO( ~ I..., 
really into it • I kIcuo buI beoilM the 
~ wen: 110 .gund and liwy wen: 
~y gmd COIJI1e&.I wanted to have a· 
citing ttllinGI and I wasn·t ~aactly 
whicb ~ I r.ltIIed 10 ro. 

Wbrn j'QU look at the sdt~ m· 
vironmmt, t./>I:re are two kinI;b of 
d;";;plines. One is the _ scitntifll" 
kind .nd the other is morr ablltrxt. I 
think I '- IencIed 10 be on tht: IlIOn!: 
phikaophical and abltracl bent. So the 
philr:loloplry and ~I;g;on environmml -
nI3' lather ...... also • philoeophe, - I 
lhink all of IhiI had • 101: IQ do Mth lIM: 
direction I took. 

I was trying In uncIHitand con<.'I'1JllI 
Ind maIoo: ..... conc:epe. out 01 it. ArId 
I _1Ilakq mathr!n;!li<:al. thenfy <I!i a 
.-.11 01 eq.iriaJ !I\IIdia; and Ihm do­
ina Llw .. Idt analysis (iit and wanriflg 
\u abstr.lrt and \Ira .... lront it - as 0p­
posed to ~I .. anlinlf to fflJ.ke 
lOtnrthing .....t.. 

M 1I1l 1lo you think the Y:lluo d. WI 
kind 0{ ~ioo is n!a>I!1Iircd in 
plKe!lliR Mm 

IIANILTON, I .. tl:tink 11001 -"""" --1jIM -~. 5om<:tinaa pI;o;c: Iiko: Mil; unlcNytllI 

"''''' "br(Qd list of cnursee. can KH J'I'lll 
IocRd into brine \011 ~ 

Sntndina \IOU caa 1"1 _ out: 

of very smaIIschnnl in the midd~ 
.\lid they can hi: wry pl al btil1¥ able 
10 Iwtdle /TIItI)' difle!'enl kinds 01 11111.11' 
1I0Il5. 1 don'l knowo thai II is!Ol much I 
pI\iIaIophy ~ .... th or ocir:ncc m... 
IS il is. tl'aUY ..... hel"'" yoo ha~ the 
at.;)ily to ~ and think.. 

'There an! ~ I'\IU can pO oft" 
the __ • could bo:. czpmlm' with 

ron ~ education - lhat ooukl pr0-

bably do this if they h.we lhe Ibtlily 10 
mol," or .bMf3Ct - (0' pr:o-iIlI)."a ... 
meone ,,"bo if III ...... 

It is a kind of Ireedom of 'hau~ht. 
IWplcnl M'Ta'e moeIly ~I""''''lisu_ 
\hbugh 1M"' are _ lhen: who ~ 
bWI~lndaood ~and 
.bIt In tlIink this w-.y. 

MHT! fluw did the ApOIlu WIlrk 
conclude? 

IIAMILTON: In !he Apolin ~ 
our m ...... all (I0,Il" milllioom frum Llw 
""t~ paint 01 w\ew, """" (lawless. 
1brrto -... no glitcl'd in the Iflfl,,","" 
=;t. I knnw br a /act.~. tlI.:It if 
~ had IIow!I another 10 mi:!eioonI \11M! 

"""'kI ha'"l .hown up. 
1\ ""'" 10 rompliQled and we didn·1 

really ha..., .. opportunity III _ 0tII the 

:IIoli."..., bdore thr fKt. Bot, <I!i. rHUIt 
of tho: u~ in tho: Apollo flight 
!O()/Iwar<:. I took poopII! wIIo WOfIttd for 
mr. mo:mbo::n; 0{ my Slafl. and 'decid· 
ftI \0 do an analysis of our ftpMOMCe 
., !hal we roukIlutn from ,hem "-' 
to do th,np lor tho: .pace shuu le. 

In lilt analysis ...... Ir.cyftI ill on tho: 
m.na."....,nt ,echniq1H'S and Ihe 
do:Yek>pmenl ~hmqurs kdung al 1M 
iOI'l ..... ~ and Iht' ,;uioo~ errun and Wl' 
Ic:.lkod In particular il lho: solIYo';l~ .... · 
IOI"!I lha, took place durillllht iIItqtfll­
lIOn 0{ alilior modules. \\i: 1atIk<.od" .... -
I'QfI Ihal occurred In tilt fnJlling 
!'.g<:tho:, I~ the ""KIll ....... ~nd ""vig;oliun 
and ((IJIlroi pita5/:, a:. "",1I ;a,< the mput 
and l)ulll'll ICllVila When ", oft"",", 
Pl'JPIc "" a !.:tlllt' p"".'Cf boolltn V. IlIkt· 
,h<·ir nliJl.l"Il'1I ~n'! 'o\It ,,, ... , I."" , 

··n tile All'*' ~ ... 
aI {1f' missions y.,ere 

flawless . . .1 know for 

a fact, hoINever. that if 
we had flown Brother 

10 missions ore v.Wd 

have shown L\l:' 

they .~ IOina: 10 ~ iowrfac~ I'fU' 
bIe_ - thq '"'" not aoing to work 
\(IjctJ'to!r. That·, wht~ )'011 got yo;IW" 
_ ouhtIt _ in II:qe Pnl.t«1 the 
nl&jorilyaf !lore IIIJ111n1 on ~ thM 
""Il«l of II. In lhe [lfUt"t'n o!" "'h~,'l1 
anatyring tho: ICtUiI emn 01 tho: sdt· 
...-e durinc ic. dhek'p"ltnl """ found 
thai 73 perUfI\ 01 theenun _ ... -haI 
~ called interlaa: ...",.... n.., I0d 10 
du with IImbiJtuity oIlafic - all <II"I'G" 
<!d 10 URI" illtenI. 

MilT. Wlgi 3f1' _ a.amp\tI of 
tlu.l~ 

II AloI ILll)N: f or I!Umpk. f"U 
mi&ht want 10 '- IOIJItthing -' 
with certain ndardata wlim ill fact that 
enlity ....",.Id M\Oe no rlrht to be ....... k, 
'"11 with lho' do"'. 

Or J'I'lll misht 1\II>oe tlte l iming mi...:! 
l1li110 ,hat one l'ftOdule wants IIIIUft1 on 
;on engine while mother wants 10 I_ 
iI <:tall., 
111.....:rt'~\ogoon~m 

A"I>MS""""""t.ere and they PYe ...... 
a lUI and I bmd _ else !lim' 
.... hen I ~ - thirt'san ~plo: nI 
;on intrriace problem bt_lIx: !l)'KLl:m 
""""f!cd both ..... 111 tho: amr. ktt:auon. 

It a .... d .-0 be a IImq problem 
bocaurIl: pt1t\IpI Wl' """"" haw: Nod the 
... me SUI, bul on djf~1 IlighlJ. 

We Iuund oul that 73 peI'tI!IIl of 1M 
onbtwtl mort! 'ell inlI> lhiI inlI:rba 
,"""". 

loIlfT! H ...... did jUI suo=ed in 
Ioealin.g lh$t ~n-on? 

HAMILTON: The projta, ~ 
10 todays -.cWds. _ ,10250 millOfl. 
projlKt.. Half of tllat ...... r;imulalion '" 
find <'ITtInL •• ,SO """ ran $ 125 millilJll 
>IoOI'th of .. mulalion 10 rlflli thct bu,p. 
In lact. it tumrd out, &baut half ..... I"" 
emn ~ Iuund by manUII prvcesriIS 

Oflrfl pwpk-~ JXII purposely Inok· 
in.g for rm:n but end<:d up findlne tlIem 
",lim tht:y wtft kxIkitw Inr _1IinII ..... 
W~ nad Ilt'It IfUY lrom TRW ... 'ho ","'s 

an inck:~ndenl ......uoer. lie would go 
IhrciuJl:h lhe: liJliflp aroI find all D'U 01 
~'"'" - he was just ama:ing. 

MI IT. Jli.1 peopIo spot nJOf$ becto.wc 
I~ knI>W lIIe projeCt 50 ... 'tllthlll 1M 
.f'I'OI'" ~lIo:k ""'? 

If T)l': "'1 In.e ttmr' ...... ...,'" 
".,,,, yra. old <lalli/hI, .. 

\".,,,,,~.,'I "" pOre lr.) 



Hamilton iQ ~k ~nd til ,I. \\" fell "., rouId 1110 Iv.:, "''ere aU ~l to ~L a million don.. d~fen~ spwdil\ll~ 
b",kl. !tIQllhat woold loo!< a1 lhal and pm;ect I'orour fiB!. ~ar when we k:fL HA.'IlLTON: re.. 1'111-,,,, """' a Iv! 

,,,"",,,l>Od /""" "'.l<-]) 1\llonl.ltic;aUy produtt ooon:~ oocie.ljO'l1 Uul t~ &eneral .... hn .. 3,.,on, to ~i", of ~I$ ollc>ni 123. I hid '" layoff 
.... ~lpitIa: tUn I lUI'Iubtion 01 I~ _Id bt fJ~ III tJ>a.I<o kind d ~ tk thine Idl and a MW OM "'35 ICrmr ptOpIr in my <I'Im d'IWon 1.1 
~. misIaion. Mill! \\1otn dod 1M occw1 _~. ~. "'hId! .... heart breakmt 

She ""Ill puobinr the buI_ in a ... ~ IIAMILTON: S:lydean Zeldin and I .... a ,""II I IlIew down in ~ MH'r. ADd bow did HOS ~ 
tNl!he .. """",uu ...... 1d IIOIII<II'Tm1ly ""'eI"e $till ;n Dr:t~ when ..... TUliloed of a ~ to try to satYa&" 1OITIHhi"ll. 1IA.'1ILTON: We IItuted off doIng 
pu!lh them and she found ~ major (hit. We iota lot ~f all~nlion n:gill'tlinll' We~'IXI«I ullgttting;l $2O,OOOeootract !lOlly ~t "wI<. And, t'l1tI11OI'Mn 
bull. tl>epol",UWlll>OD.ndNASA, lO we 1U get us ""ng. h WUI\'\' million ""~~)Wllrandy«ylII1IlIlwe 

TIlt third swislic tNt we found is d«>ded to au 001 and IIIin cur own doIlMI but i( was-~h 10 eat. ~. ~ olf ~ W OOOltract monitor 
lh.U 5.'1 PC"""! ol thew. I'fTOn ~ compwy, buiJd the aurornated IOOb, and tbed 01.11 Ia a .... 1Ii~. It waf very tough b ntunber d. Jara:~ rlllllS such :II 
wbnl W ~ _ Indy III fly. ~U lOOn III t~ matIoelpl;oa, to mrt I Imine-. Roc:Ioo.:Q and GTE. \'k 'Mete 1lIL~ 

II __ • CO<I\bII\.Iil;on 01 thinp tllat So 1b.1 was IhI' brginnmg 01 HIgher MIi'r. Did roo ~ any problem! tbem. We poe them lbe SUbcoolracu. 
wwId IMke it:;how up.nd come OUI. Order San .... :"'" Ioc, same 10 )..,an IIJIO. ~;II/I Orap.>r. and we ~ worRel with manufacturina 
/1.1 a rtsWto( thoee filld,np ~ atarIl'<l !'>tUT! Uad you v~ 5b.nmg the HAMILm N: They ~m1't hapPl' cffarullO b,;"z In newdesigrl ~hniq...,. 
try,,,,,, 10 find ~ 10 ~ rid uf lhe COtIlP3ny "1111 MY ITl.'pidaooru tb.t " ... left but they wl'ren'l haW\' with for defining tlunp bra&cIn than IOft-
CT\lrI. II A~U LTON: We ~re younlj: .. numbrro('~thatltftDn~ra\ wan.[t·'Joric: ... a1Iy ....... Illllmei:r-d~ 

[f .... dd"1Rfd • c:eruin oomethlne it omoo~h and ,nnpe~ ma.ch thai thaI ~ Pan 0(' the.-~ thinp In all these prajecu and "" ....,..., malt-
\IIIIlUId ~ ritI 0(' a whokdillllol mors. we dodn'l know III)' brt~. ha~ WIIS tnat Apollo _~ in.E pro/its for-.:al J"2B. Dunnll \hi, 
AI . nsull "" teU ,nlll this ,,-holt MilT! Hc.w many ~ ~ \OWlndOOwn3nd~~I~ano:n· ~wewm:tWnalheprofil::5wbqln 
n"IIIthemIUcaI thwryalled IQhcr om.... IhI!~) Cln, II ..... no excitinlfdunnl thal l~ building the IUlOnlllI:<! lO<)J Rt - "'" 
stAI ........ : II AMI LTON: The .... WI" f a lew of - some pt"Upie who"..".., tIJo!n> from 1M hnd b«n 1.l'Iina: the !heory tNIlu.1l1y 
1~ ~ 1I'U thlll II ...., u.<o<d th.. .... but 7-<,ldijn. In p;onic:ular. had """k· b"gilUlinl arid ""'"' III"re fur lhe o:nd hem. ()oc.., ..... ~ lOa ~ ~ 

Ihtwy in de{lIIin!Ia IOftWll ... sys<em.... edon llu5and ........ ktd formc"ll101I~t. had 10 110 dG IUllethnlJl else ncililll where .. .., mtdd demonstr.ilr the ~ 
_lei be rid 0( tbeK~.un: motS. W" Wlnnilbe C(lmPO"3' "'1111 110 m· T"" ~DI wun't hawY f(I lite o('th" 'ini WI! had ""-:n. pwticulu-
0rI« we ~ I~ ..... rouId do this ~ \\~ Iramed III b,'l"" "" IIOdung ~ kry IIf<lI* PI! buI; Ih<'y G'IJl 0'Ief ty \ \enrurk. IookJna" 1.11 up. They Aod 
..... 111(ft ~iI>ed thM we cooJd cIcfi..ean W" ,'iob~ .Illhe rule.. ,I and Ihty are ~ tI .-- they "a1ted ID Ul''L'$I and at W lime 
aUWoIUred tool lhat could actually \\'~ ..... nt i~lQlht I.'(fI'L'ml!lCnl """',,oS I<Dbm Duffy. W ~r of. Or:opn. \~bovl fuur) .... _~) .... said ~ didn't 
a""l~ 11>1' $ystem deroniliooi and tell bol~''''''''' ,nilia)11" "lI ~ "oilY ID baolma p and I al"l' ..e.,. good perwonal Jrie!l(b \\I\nt ~D in'~tmC"nt . We 10ft of kepI i~ 
IW "'~n yw had uled 1hI: iI~ (lUl>e1 .... "S. nuW. Iwo::hwtthexhoillerfurafewmontha 
nlm!Cl)y. Mil T! J);II )"\IU h.,,,, ~n) ~"" EI'L'Illually ....... ......-ko"tl out lhe lact and rlll'D ...... detodtd ...... _'1 reaUy 

If )'DO used lhe lheofy aInffIly)'DO 0( getting Wt kind ci t.Jsi.- wt.rn lhal ",. had IrlL !(mini: I"" Mimi .... in 1M 1"I$lIbi~ 
< .... 10:1 "di"" til.- syWm III be frc-e (Jf ,.,.. left Ora""..? Ttl III! n.... l"'M 197&. ..-hen 1"OU lhat "" 1ICC.'ded. We ~k 1lw ...... ~ 
,I"*,,,",,,,- And ifyoud.dn·1 youcwld HAM II.TON: W", thqughl we did. .',,,'II'!! \lOS, "';05;0 _I low POIflI lor f'lf\.JnctIIl am ~mer.l SUpp<)rl !oJ ________________________________________ --, ~ 1M 'DnlJl'lfIY frum 3 commen:~1 

product .lase 10 actUilUy put!>ns: 

Why Voice Mail? 

Why Vox Populi 
WIwn _ 10 rntc.I you ....... , .Hord 10 ""'~~ . 
~ "1~E.phono ~.H y"".-d a..ay 10 gel 

".,.,. ~ 1h.""IIh .... fIrsl "mil "''V Hn"Nt. And 
you nud ID know you at •• eoeMng aU YOU' ......., 
lntors*>g..........,.. KCUntcI,. In othI1 >00«10. 
I"'" nud v .. PopuI, 1M ...... mail KMce ainMd 
M~~",*r~ 

v .. Populi CVO~ Pup) I> .. ,..,. ITllIOagIng 

~ tt..t ........ you \DMnd ........ inyou' 
......., ...... uflr>j noIlWlg. mo •• llIan .. lnucl,",,,,,,, 
I~"phono. n....-It. uAAlc. ptIvIl ... mai/bo" .... 
.......... ~ ., • ...asreI, hold "nIIl hurd ., 
tho ,oq:,Iero' .....-IICO'. 

0... 01 ttw fNI"IV "'_ 01 Voa Pop II .. abll!ly 
10 broodc:aoIa ~ to.,. ~n"" 'YOI.IP 01 Voa 
POJII'rIIliIbat<n II oroc.. ThWr <>I •• ~ could rudI 
.I"'W" _ .. &loin _f~H...th _ fJ!O/t~n meuag<' -

and ...... "'OI.IkI aho ktIow JI ..."..,... dIdn'I IWft'I '" 
111M""" ... 

Vo~Pop ......... lpl""l 
• I~~~ produ<lMI}'/"'Ough lall~' 

and "-m" COmmtlnbtloM. 
• s.. ... 0/1 ~ d/$t.o"..., c.oJJ/ng. 
• B"'IIM~..eII_MXUl"W 
~~~ftllo..,J1rom '",.,. 

• fim/ru.,.. -........ conJIf""".

• w,;"'~f~.
• And. o{toIJ,.,., ~HmJfIII/. "T.J.phcM Tag."

VOl< I'<Ip ~. fill 24 hom" d.y MMe. 11\.01
"'~ifa""opodol~ or~ 1111
.... ... i\abIO _ 01 tninitnII '_10 wou beuuM the.­
&re",,_tn~ • .

F?I! LOGICAL
• RESOURCES, INC.

(6fT) 851-1555
15 1iH:h CO'C., Narick. MnUlC/KJ"",1tlI 01760

r--l
I, For More Information ,,- ... """.~__ ,

NMM Til. I , "'-'" ' , ,
I ~" I

, --- I I Moil tD. L.Dg.:al Ruo"..,. •. w.. 15 ToclIQ,d., NaIId<, MA Ol7ttl) I L-___________ _ ____________________ _ ____ ..J

!IOmethillg in the nW"ktolp~. TI.at'.
who:n ... ,. dec:>Ikd II> 10 wilh ,""
i~YeSI<)IS.

MilT! How Iarl!oe had you grill ftl
thar WI~

IIAMILW N: ~rhaJl5 $2·3 million
3nnually. We ""e~n't lluae bY! we .. ere
chog;iing aIon&-

Mill! Hnw mucb u the
LIt\"eIoIn"Ie1ll?

H A;\U LlON, II rmallJ ~ $15
m,"ion fM'r ~ I"OI.IJIdI a/ funding

J lpC!<It a fl"L'at dII~ dill)' pe!1I<>f!al
lit"" ""sing ~ .. it ";OS a , ... hoIe tlil·
"rfllll ~ a 1U/IIU.QIj aLll<&n<io. ot
llungs and the compmy.

We r.105<'d the ~ in order 10 tciId
II>!' rommen:ial product and]1111 il on
lhe VAX. and al50 to be able to build n
for manr dllfenml "uvim""",," -
.yslemS with Fort""R, C. and CoOOl

Mi lT! !slhllr'L'an)~ ets.I! Jikr this?
Ii AMI LTON, No. There are ~

who ~ done piI1 01 wh:t\ il dots.
1'btre are peupIe ..-bo ha~ COO>I' up
... ~th I""'iucu lha\ tlln prodllQ' code
1m", ",,!uirl!mcnt&, just as)'DO can pro­
duo,-, "de lrum ~ ~her order ~.
T"""" aIIo po:npIe who can ddi
",hat (he probkm iI bo.II thtre is fIOOIIt
out iht-rf who can dd'me the ""IU,~.
ment free Imm etn.Ir and prodUCt cock
"'Hb t)u, ""me ul\eVYlly.

It "",,·11x-e!I d~ k>oorkn<.:llvl~~~.
MIl 'P. Is WI p.a.tenl pnxeclfd or

propI"ict3ry~

IIATtl ILTON: !';I~t>ng sofl"~ "
QlnlpIrx. ~ theory it published m I
public do",a;n - thoo.Jch r.>W ptnp~
don't _m 10 be abk 10 uMerst2nd il

There 1m' _raJ Chafltllj/l:S alona the
way Firm 0(all you m"!l be .bIe; to
urod~1"WI1\d the lheory. TII(ft lhen: OJ

knowmllKw III We the 1lIeory and 1'\11
II ,nlO p<3t'Iice That's not ptlblw.ed
anY""l>I're. Whot toolc)'0'''''' 0(thoo.ISh:
.. haiti !O replla.

AlII<), one" ,.,0 h.1, ... I"" gn'~tI'Sl
te<:hnoloir/ In t~ w"..Id, i(110 0rlC'

understands how lOUR Il j['SIlORQOd
If neJ)Qlt" anl~ k_ t-. III ndoe a

horR and II>I'r'L' ""as a jet plane ';:111lK
IlIn-e it would be __ So ihI' ... II a

whole ..,..hrOCal """ktolinl challcnll<" -
~~\\ing IMt 001 inlll ~>!' nw-ko:tpbce. AI
H05 II",,.., -rar iIIlrdIQ. ~ ilk"
lual hurdle ci pult,ng tho! product 0111
tbm:.- alld lunl it do ,,1w It "''''II fliP­
~lQcSo, ... _. \\~didil
~ prOblem 0(":IUllty getting,1 in

10 IhI' n",.kerl~'Ct "':II ~ challenge
I,,-yood ... ·hat "" had ""'mated it \0 be

IBM h.>d tho! J)n)I>Iem ",,:t. It.:
dau~ ~nd CuUu\e"\ too. Btu laklllJ(
thai kl!ld 0(~hno:OIi"J and r<TSI. 0(aU

I~"" : ; .

.'
Ildocidr
O~ of

-<nit --. WlI~tOcome
b .. " ,1l up attn a disuttr 1i~ lighlning.
llKau .. of a ch«klist problem, 1M.
l.t/'Oll.ilit5 once h,t the wrona swil<h
which.-.bodo:d IN: cornpuk'r. It didn't
1/''''' """"ih 111M 10 the IOfIWIIO' and
INIIk ~ ha~n 1/1 tilt: \zndinjr an
lho moon. TM 1CIt~ _ ~mI
10 hand:t that. IQtI, brc:1IISI' iI .. ,,~ ... ~
''', r:alI an U)"IK"hrunuus iOfl"",,.,, m ·
''''''''!lent. h oould haOldIe un~
,""'nts.

If. MI t t tilt toft ,." know.
h~htning ha~ned - ,! kNoWS 1he d ­
[o<'t 'ofl;ght ni~81\;!Imeni"ll Eyo:ryOOc!y
1I""K. !hJ1lkJf SO!);,,,, hit I" he ~LIe
t.ll,n>d ... , .II Iht- tlIlnp that Qrl OOpPf'll

<il:lIl.~U

WoRIDTIlAJ)fCI1I71R

Oct. 27-Nov, 9, 1986

~---------------~
: DIE 9'" NORTIIEflST t ', 0 COMPUTER FRIRE ~ :
:=I WQm.D TV.Dt CImD. IOSIQf; ~ ,
_ OCTOBER 3D-NOVEMBER 1, 1986 _

~ TXlJIIIDATandntD,\' COAN-OPN t: 1
10 u:n;rEI.\T IO.uf-SN 0 I
, ~ DIscount Coupon :: ,
I - --_ _-_ _= .. "'" - I
I t: - =.:.:."!..."":.:::.: - t: I o ___ _ . 0

I ::J _ou", [&lTHE INTERFACE GROIJP.lnc." ::J L ____________ ~...!!"_

I
I

• ,
" ,
I.' ! .8 ,- !
j' ... &:
;!a.

II: .". ". .. ; :i1~
.. Q..!!

!'" .. .::
> i" '. co ,," c 'iiJ .. t-os!& .. i 3.v ::0: D -or u ~' .. w UI T . , ... ' . • •

~

~

i • •
I

•

!
!

, '. H
i!
!! [I
! --,
'1 i.
Ii

'I ~i
h "!i

U

• 0
• • i • i

[
• • • •
i
i
0 •

U .. ~
. 1,

3
•

I i
I
I

--==

Zero-defect software:
the elusive goal
/1 is theoretically possible bur difficult to achieve; logic and inter/ace
e"ors are most common, but errors in user intent may also occur

In o...'tober 11J6O. shortly after a n~w radar network
10 warn the United States or miSSIle attacks had be­
come operat ional , a radar sialion (n Greenland reo
paned the appearance of a massive attack-a large
number of radar returru coming over the eastern
horaon, The real cause of the alarm: the moon was
rising.

In late 1985. as activity in financial markets esca·
lated, the' operat ions of one financial services com·
pany were brought to a hal t as its computers repon·
ed error after error. The d~gners of a bond-tracking program
had buih room for o nly 32 767 bond issues into their tables. and
the 32 768lh had just appeared .

In 25 years, ahhough the speed , memo ry capacity, and reliabil­
ity of computer hard" arc: ha\~ incr~ased manyfold , the rdiabil­
It y o f computer soft are has not. Cen a inly soft are has b«OITIC
morC' reliable, bUI bUgl> SIlU crop up in programs of all kinds,
from the~mallest game on a micro to the largest opcrati ng system
on a mamframe.

As the Government proposes to build immense real-lime sys­
t("lllS like antimissile shields, which require enormous amounts of
trouble-free soft ware, critics question whether such s~'slems can
ever be made to function reliably. Although software develo['!­
mem method, have impro\ed mea5urabl)' in the last several
year.~, error-fre'C !>OfI are i~. in the opmion of mOSl loOftwafC cn·
gineers, an im~~ible goal.

BUI somc ~ot tware developers belit'vt' complex soft are can be
developed thai approacht) zero defec1.S by using formal sp«ifi.
Cation t(("hnique~ and computer-based tools. TIIl:SC tools first
ch«k the con~i ~tency and logical complelene~ of a set of formal
specifications and then generate program code thai matches
them . Olfxking the spe<:itkadons for completeness and consis­
tency eliminates crror~ or logk thai ;trl$(from o\cr~ig lllS , while
tools that produce code d1f&:tI~' from thl')pccir"ication~ climinale
errors that might ari~ in implement ing the specifications by
hand . SOft are de\eloJ'Cd by such techniques may not always
end up do ing hat the user walliS, but it i11 do what the uS('r
asks it to do .

How sojth1ore errors OCcur
Most software developmentlechmque~ proc!!«l fro m require­

ments to specifications \0 designs to program code, usmg people
to carr)' out the transformation s from one level to another. Only
the final slep in development-generating machine code-is usu­
ally done by machine. In tht' other steps . 1 0 l. inds of errors
arise; those III which the uSt'r 's intent is recorde<! incorrect­
ly-like a misplaced comma in o ne Nallonal Aeronautics and
Space Admimstration (NASA) program thaI knt a Voyager
spacecrafl!Oward ~1ars instead of Venus-and errors in hich
the wrong intent, considered in some larger context. is set down
in logically complete and consistent fal>hion. An example of the

Margaret H. Hamilton Hamilton Technologies Inc.

latter might be billing programs that send threaten­
ing leiters to customers who owe SO.OO.

Many techniques have been developed to deal
with the firs! kind of error-incoTTC"Ct statements in
software-especially al the program-code level.
Compilers can chetk the synlaX of statements sub·
mitted to them, and "strongly typed " languages can
en force consistency between d ifferent uses of the
same \'ariable. A variable defined as an integer in

~;;;P;;;.~,,:one place, for example, cannot be used for charac·
t somewhere else. These ~medies are static rm:thods
for software verification, which o rk by examining program
source code rather than by testing a program's execution ,

Static methods can also be used to check program specifica.
tions, or any other formal representation of a program, provided
those specifications have been Titten in machine-readable ronn.
Recently tools have begun to appear that can chetk program
specifications for inconsistencies, ambigui ties, and incomplete.
ness in the same way that compilers chC"Ck the syntax of program
code. But static methods cannot eliminate all errors from either
code or specifications; in particular, Ihey cannot deal with errors
of user intent .

Erron in user intent are tl1e hardest to catch, because a pro·
gram containing them can be consistenl and complete but slill
give the wrong results. Some errors of intent arise from over­
sights-Ihe equ ivalent of typographical errors in program
code-while others come from a genuine confusion on the part
of the USt'1 as {Q what the program should do.

An additional complication is that software is almost always
pari of a larger system that also includes hardware-and
humans. The software can be reliable and free of defects, butlhe

Defining terms

Intarlace &lTor: an error that occurs becauseollmproper use of
a program module; for example, a module might be given too
many arguments" lor Input. or the arguments might be passed
in the wrong order.
Primitive operatioo: a procedure that cannot be broken down io­
to other operations; depending on the application, a prImi tive
operation in a specIfication may translate to only a few rna·
chine Inslructions or to an entire software subsystem.
Specification: a formal descript ion 01 What a program will do,
phrased in terms of Its Inputs, Its output, and the reletlonshlps
between them. rather than in procedural form,
Strong typIng: a characteristIc of acme programming Ian·
guages that enforces constraints on the use 01 variables to
reduce mistakes: for example. a strongly Iyped language would
not a llow a varIable 01 the type apple to be added to one oflha
tYpe orsnge, even il both types were represented as integers.
User·intan! alTor: an errO(thaI occurs because the uset Clid not
property think through a problem belOl1l committing it to soil'
ware.

48 ReprlnteCl with perml3slon 00l8-92JS/86i0JOO..()().l8St.OO<9 I986 IEEE lE£ESPf.CTlt UM "" ... IICH I,,"

•

~ ing of software code 10 methods for preventing cer-
Z lain kinds of erron. Methods for testing software

aflcr it is completed give the program a set of input
values and then check whether thaI produces the cor­
rec! OUIPUL Since it is impossible to chcrk all combi­
nations of inputs for most complex programs, soft­
ware developers break up thC' program into modules
to distinguish interactions between inputs , and they
pay special allention to how a program handles both
invalid inputs and input s at the extremes of its range.
But even after a program has been thoroughly tested,
additional bugs often sho\\ up in use.

The kinds of sofl\\are drvelopmcnt practices used
have a strong impact on reliability; good program
design can reduce the likelihood of ('rrors and can
make the errors that do occur easier to find. SITUC­

tured design, for example . reduces the interactions
between program modules. Th is, in turn, reduces the
chances for errors caused by clever programming
[rkhor by [he propagation of bugs from onc module
to another.

Software alarms caused by improper actions Of the users nearly prevented
the first moon fanding. Software reliability is contingent on a system defini.
tion that includes the hardware and human pariS of the loop as well as the in ·
stroClions 10 the computer.

A technique known as information hiding . devel­
oped by David Parnas, professor of computer science
al the University of Victoria in Briti ~ h Columbia. is
basl'd on the idea that only the minimum information
required about a modulc-I'ohat orcration.<; it p.;:r·
forms and what inputs it requires-shou ld be a~'ail ­

able to any other module. Changes can thus be made
in [he internals of a module without affecling other
modules that make use of it. This approach has been
codified in the separation of the specification and im-

system that contains it can still fail, and in ways that resemble
softwar~ errors. A few examples from the NASA Apollo pro­
gram:
• Just before the Apollo 11 's moon landing, the software sent
out an alarm indicatin!- that it was overloaded with tasks and had
to reset itself continual ly to service critical functions. The pro­
gram was still functional, so the landing went ahead. Later it was
found that an astronaut had mi~ takenly been instructed !O turn
on a sensor that sent a continuous stream of interrupts to the pro­
cessor, causing the overload.
• During the midcourse phase of another early Apollo mission .
an astronaut keyed in the night software program for liftoff.
causing the computer to lose data. In later i1ights. checking soft­
ware prevented wrong selections and made the overall system
more reliable, but during one simulation, overzealous checks
prevented the crew from entering any commands at al!.

In any case, software should not be blamed fo r errors of user
intent. An extreme example would be a user who wants to guide a
rocket to the moon but inadvertently sets down a definition so
that the software directs the process of baking a cake instead. If
the software is still rational and unambiguous, is it the software's
fault that it didn 't guide a rocket to the moon or is it the user's
fault for having somehow defined the problem incorrectly?

Fortunately, problems of incorrect user intent are only a small
proportion of the total software eTTors in most projects. Far
more common and more subtle are interface errors-those re­
sulting from interactions between two software modules coded
with different premises about each other's function and syntax,
or between software modules and the rest of the system. Formal
specification techniques and software l001s for checking those
speci fications can. eliminate inconsistencies in all phases of soft­
ware development except the very first: they cannot guarantee
consistency between the requirements that the user puts down on
paper and those in the user's head (Fig. 1J.

Improving software reliability
The many methods and tools used over the years to reduce er­

rors in software systems run the gamut from trial-and-crror tcst-

plementation of program modules in the Ada lan­
guage of the U.S . Depaflment of Defense. Reducing module size
also improves reliabililY by making it easier to lest individual
modules.

Most methods for producing reliable ~oftv. are try cit her to pre­
vent the occurrence of certain kinds of errors or \0 prevent those
errors-once a programmer has made them-from finding their
way into the final program code. Methods like syntax checktng
and type checking in compilers, unlike method~ thaI eliminate
rerlain kinds of errors, cannot prevent programmers from mak-

I {IJ Del'e/Qping reliable
SySlem model software starts With logi-

cally consistent and com-
plete specifications,

(MUSI tie comple1e which are decomposed in·
.nd cons,",,,,,, , to a sel of primitive oper-

I ations combined by
Reu""ble comll()l1e"nlS means of control struc-

tures. Software tools at

I Mus, tie.
all levels ensure that the

'''' ,abl~
original specification is , comp/ere and consistent,

I and that the code generat-
Con!tOl 'U<>clu'es ed matches those specifi-

cations. However, even
software that is logically

MUS! t>e consistent and complete
.el<l,ab'e will not do what the user ,

I intended if 'he system
SpeeiliCa1ion model does not malch the

real world.

I
P,oo,am I

"

~I

I

I ,
I

lng mjslalc~; thc), simply rt' l ll'>l' to turn dl'fC\:[;I 'e 'ol~urt't' ..:0..11: iu­
to machine languugc.

loglcal PIOOrs of correctness an: another class of statk meth­
od. Here the programmer makes assertions about the behavior of
a program, and computer-based lools detennine whether those
assttlions follow from the program code. Unfortunately, proof·
of-correclness techniques ha~'e b«n used successfully only on
small algorithms. The limC' required for a proof incru.'itS ex­
ponent1a1ly with the size o f the pro~am .

Sofl warc lools known as application generators or fourth.gen­
erat ion languages, used p rimarily 10 increase programming pro­
ductivity, elimmate whole classe~ of errors by producing pro­
grams from a SCI o f hlgh<>t.level language statemenLS. This is
analogous 10 Ihe approach known as "correctnes,s by conSl ruc·
tion" in mlegrarw-circuit design. For e.~ample, a dalabaseappli.
calion generalOr nllght allow the programmer 10 spec; f)' a par·
ticular opo:r3l ion to bt: perfomled on aU entries meeting some
combination of cri leria, v.hile: a standard programming language
like Foman or C would requi re the programmer 10 wrile oul the
iterauon, felc h the variables in proper sequence from each rec·
ord, ma)"e the: appropriate tests, and branch to a simi larly e:xplicit
routine to perform v.halever operation was desired. A few lines
of executable ~peci fi cat ion for an application generator or
fourth·gen eratio n language: can lake Ihe: place: of ~eral pagcs of
pTilgram code.

Some of the: reliability benefi t ~ of application generator tools
can also be 311ained simply by reusing program modules from
one project in anolher or within a single project . Once 11 mod ule
has been debugged, u!iing il again elimins le:s errors that might
cre:ep in if it is \Hille:n from scratch. Of course the program mer
must ~till ~upp1} th~ re:u.$l-d module with the proper d:1t3 in tile
right format . Retl~ of modules is In some: ways a manual ve:n;ion
of what application ge:neratorJ do by using chunks of code to im·
plement the: speclficalions gi\'\!'n them.

In addition 10 improving re:liabil it y, the various melhods of
software: reu~ also in-:rcase productivity. Th~~ ~avC tillle: that
would olhl.'rv.isc be Sp("nl in \\-rlling the same pie:c~ of mdc 0'1(>(
and ovcr 101 each ne" projen or in debugging Ihat code \!'ach
time il wa~ wnllen .

Reuloe at~o has its problc:ms. COOt' thai was wr1l1en to fit many
diner!.'nl problems may not be a$ c:ffkiellt as code that is hand­
tuned for a \1X',:ific ... asc. An 3I'rIK:i!i(Hl gl'neral0(dc:.igned 10
JlroJuc~ olle kind 01 progralJl l'Uuld prOI'''' un\\'idd~ rOf prodll
ing a di fferenl kind.

General·purpo~ ~pe ... ifjcatton languages-sometimes called
program.(icsign languagl$-!el programmers speci fy any kind o f
soh wan: sySIe:m. The-.e ~p&:i ficalions can then be bro)"e:n dO"'n
either by hand or with automata! tooh 10 produce a deJailed map
o f program mooult') and th~ir r('lationship~ to onr another. The
map can then b(turne<!m!U a ""rking program. Howe\C'r, pro·
gram d t'Slgn languages Ihat re:ly on people 10 iml'lemenr the: nnl\1
program may ~lIc rtfice reliability. be:.'au~e there may IX' no auto­
mated "a), to ch~ck t h ... mall'll bet,\ee:n \lhllt rhe specification
says and "hat the program ... ode does.

A softl'.are 1001 called Reline, produce:d by Reasoning Systems
of Palo AltO, Calif ., tan eliminate: e:rrors b) going from spedfi.
calion to implementation . It uses a SCI of so...:alled rewrite rul~ to
convert a progr:un lI P«'ification intO an ext'Culable code. Rules
gove: rn the ~'rea tion of loop~ fo r iteration and the .specifi c imple.
mentation of abstract data tj'JX'5-~\,Ii:h as rhe choice of a linke:d
list, an array. or e:llen a string of bits to r~present a coltection of
objects.

Another tool is Usc: .I L. develop..:-d 10 automate Ih~ Ol~lhodol ·
ogrof HIgher Order Software: Inc . TIle: techniquesembodie:d in it
are also used manually by some wft l\ are de:\'elopers. The Cam·
bridge:. Mass., {'ompany's 1001 gille~ Ihe: ust'r a rig idly de:fined ~I
of control struct ures fo r decomposing a 10P'!c:vc:l sprcification
into mOOule:s until either primitive: o~rations or preexisting
modules are reached at th~ bOllom of Ihe hierarchy. The tree­
strUClure:d specification is then ched:e:d for conmtency and logi·

50

... 31 completeness and turned inlO program codt' in a conventio nal
high·lellel language.

Software without errors
The two major aspects of methods for improving software reli­

ability are: re:using e:xisting components and avoiding errors in the:
firsl place. The: besl way to build reliable software: systems is to
usc: components Ihat halle: p roved re:liable, and to link Ihe:m 10-
ge:the:r with constructs that have: been shown 10 be re:liable as well .

The implication is that a system for ere:aling reliable: programs
could be: built by limiting the designe:r, and ult imately the devel·
oper, to design me:thods that arc: provably correct. The user of
such a system would construct hierarchies of modules using only
such methods togethe:r wilh rdiable pr«xi.sting components , to
de:velop a reliable: s),stem re:gardless o f itS size: or complexity.
Mc:thods to de\'elop zero-defe...1 software: should le:ave as fewer·
rors as possible: for Ihe mosttime-consuming pan of the: process:
t he d ynamic testing phase of a system. All e:(fon e:xcept those of
user intent should be found e:arlie:r, through stalic me:thods.

The most basic target of sta tic testi ng is ambiguities-inconsis·
tent o r logically incomplete: sets o f ddinitions-that can occur in
software: systems of all a pplication types. Since there are: meth·
ods that prevent ambiguities from being written, an automatic
analyzer nc:ed o nly check for proper usc: of those methods. Othe:r
forms of static ('fTor analysis can be performed for specifiC class·
e:s o f applications o nce the behavior conuno n 10 members of that
class is understood. For example . slatic me:thoos could check
Ihat certain constraints-such as remicting dales to ptlnicular
values-are salisfie:d in the use of a particular data type:.

Once softwar~ tools have e:liminnted ambiguilie:s, only perfor­
mance: e:rrors-discre:pancic:s betwec:n what the user meant and
what he: or she actually spc:cified-remain for Ihe: tesling phase.
On nontrivial syste:ms, over three.quarters of the: erro rs that
would occur wi th conve:ntional software: de:vc:lopme:nt techniques
would be e:liminated before tcsting if software: tools for checking
consistency were: used.

Developing a program usinS re:liable me:thods will almost cer­
lainly simplify the: syslem defini tions-an additional benefillhat
e~ Ihe mechanics of test ins for any errors that may re:main.
Not o nly should the:re be far fewe:r e:rrors to fix, but the:y should
also be much e:asie:r 10 fi nd .

Developing zero·defect software
There are: three basic phases in developing S re:liable system by

the kind of methods outlined here : fi rst the user develops a sys­
tem de:fin ition. then so rtware analysis tools check the definition
for logical corrc:ctne:ss , and finally a resource allocation tool pto·
ducc:s source code in a language like Fo rtran, C, Ada, or lisp
from the definition.

Thr USe.l l software tool has bc:en successful in deve:lopins a
number of software: SySIe:ms, including a control syste:m for a
large: manufacturing plant thatlie:d toge:ther shop-noor sensors,
computer·based inventory manage:menl , and parts·handling
equipment : a ~rsollnel manage:me:nt s),SIe:m fo r the U.S. Army;
and a famil)' of operal i ng-syst~m utilitie:s for the: applications'
soflv.are di\ision of a large compute:r company.

To de \'elop a piere of soflware with Ur.e.lt, the: top·levc:l sys·
tern definit io n is drawn wilh 3 graphics edilOr Isee "Building a
real· time system," p. 5 11. listins the: inputs and o utputs for each
module in the definition , and the rdationships betwec:n the:
modules are the:n defined. As with a number of other compute:r·
based specificalion \ools. a user can choose to work with e:ither a
graphical re:prc:senlalion of the system or a te:XI representation
thaI is mon: concise but may not be as e:asy to understand .

In additio n 10 d e: fining the fu nctional compone:nts that make
up a program , the user also de:fines the: dala types the: S)'SIe:m i ll
need. A series o f axioms de:fines the: behavior of e:ach data Iype so
that its use: can be checke:d for consiste:ncy. The: axioms define: the
pnmitive operations that can be performed o n objects o f a given
data type, the relationships between primitiVe: operations, and

lEEESPECTIlU~ ~A~Ctll_

Building I real·tlme system from specifications

A program for controlling explosives and sensors for seismic
all exploration could be developed using software specifi ca·
lion toolS auch as Use.l ..

At an on prospect. a field team drills a numberol holes and
loads explosives Into them. Sensors are stra tegically placed
to detect the seismic waves (right). The cootrol program must
actIYate the sensors to record data for 10 seconds alter each
explosion. but II another explosion occurs within that time the
sensors continl.lEl recording. The automated system need not
record the dala; each sensor, connected to the automated
system, has a microprocessor attached, to record the seismic
waves. This process continues unillthe sequence of explo­
sions Is completed.

The system Is put together using either primitive control
structures or abstract structures detlved from them (below].
For example, at the top level, Join, a primi tive, transmlls the
user requirements to the InitIalization routine, which process­
es them and passes data to the monitoring module. The monI­
toring module passes data on the flnal system state back to
the top level. The monitoring module is a series of functions
controlled by an Async structure, WhiCh handles tasks that
communicate with one another concurrently and asynchro­
nously. Another Pflmltlve structure, Or, controls the subsys­
tems of the Seismic Coordinator module. Depending on
which message Is sent to the module, it returns a dllterent
state o f Its output variable.

Since the processof decomposition for a system definition
Is not complete until a primitive operation for a defined data
type Is reaChed, the developer must check out the remaining
tasks at hand at the bottom 01 the hierarchy. For example,
since Initialize Is not a primitive operation, either It must be
decomposed further or an operation by that name must exist
elsewhere lor the system to be completely defined. II such an
operation exists elsewhere, It could be built from primitive

E.w.~ ,S.O.C *,
t.l0SSIGI* '"(tn" ,-, Clock _ .. ,., •• -

(.W.W.S,D.C _ -.-1oIONIOr..,..a taplClSl¥e$. --, _. 1I\ISSiCII. s-ItII. 4&1. (:Io;g ..
OIU. (:Io;gl InIiIIIIN (rtQOir_) , -

r
C .' r·I!uto'_I"J_. '" E.W.W .. Ij"·RIki_.M
....".. dOdL) - ,

The seIsmIc prolJllng problem can be modeled as a tree of
modules, with a function at each node and control st ructures
form ing the finks between them. Th6 graphic speclflcstlon
shown offers enough Information for a computer to develop
and execute such a system, assuming the existence of previ­
ously defined /lbnJrles 01 program modules to support this
tYI» of appIlclJtlon. Here, requirements 01 tha user affl input
to the sa/smfC profiling system (top box); a final state eon­
slstlng of a set of explosions, a set of seismic waves, ames·

I

...." ,

,~ opera ns, or " OJ" Id be '11 wn en n a conve ntional program-
ming language.

A model like that below should be comprehensible to bolh
atlon
ere is
rmally
-order
mcan

ion II

analysIs and managers working on lhe seismic explor
projecl. Once these structures sre well understOOd, th
no need to look for more detail, just as one would not no
look for the assembly language underneath a higher
language. However, the detailed behavior of the syste
be generated at any time from the hlgher~rder descript
necessary to examine the behavior of particular com penents

M.H. of the system. -

I

I S.oI j" ·Soosmrxoor_."' D .o 1j"'s..w_." , _. dDtt. 11&0)

Moo,""" . " Null""

S '" 0. (IoIaupoJ S .N"'(~)

sage, a swItch, a set of recorded da ta, end a clock are/ts out·
put. Each high-level module In the system definitIon can be
rJec(Jmposed Into a set of 10wer·IB1Iel definitions. For exam·
pIe, the S6ismlc Coordinator functfon Is broken down into II
choice among three altematlves, depending on tha message
recttived. This kind of system definition technique Is appllcs·
ble to any kind of system design-software or hardware-be­
causs the functions required In each module csn be per·
formed by either a person or a machIne.

5J

I

,

1
'\ '
I I
'I I
: ..
I'

---------------~~==~=-~--==~--------------------~----------'~

the results of tho~ operations. It is particularly important 10 in­
clude o1X'ralions thaI will produce error conditions. as dl as
those Ihe software is expet:led [0 perform.

Software develorxTS working ".ith Use . It decompose systems
Into primilil'C fu nctions using COlllra! structures based on three
pnmitives: Or. Join, and Includi' tsec Fig. 21 . Strict Tules govern
the way each control structure is used , guaranteeing the COII­
sist enc~y and completeness of Ihe specification.

Or is used to control demion-ma~ing . \C S output is simply the
output of one or the ol her of the \ ·0 functions it controls, de~
pending on Ihe value of a decision-making variable. Both of the
funct ions in an 0, musllake the same variables as input and deli­
ver the same variablt'S as outpu\.

Jom IS used for COnlrolling functions Ihal depend o n each
olher. The righl.hand child in a Join tak~ its input from Ihe par·
ent and deli\'ers its outpullO Ihe left·hand child. The left·hand
child, in turn, takes its input from the righ t.hand child a nd deli·
ver~ ils output to the parent.

Indllde is used to conlrol modules thai independently perform
pari of the function of the parent module, O ne part oflhe input
is passed to the right·hand offspring, the rest to the ldt ·hand off·
spring. Output from each offspring is passed back 10 the parent.
More abstract control structures, including r«ursive ones, can
be defined in terms of Ih~ primitive control structures as they
are needed.

Although each control structure is unique. '-"eT tain generic
principles apply 10 all.
• A function al a given node COnlrois o nly those functions at Ihe
level directly below it.
• Each function muSI produce an output.
• Each funclion must contro l where its offsp ring get their input.
If o ffspring l'Ould lake their input from anywhere, verification
would become impossible.
• Each funct ion musl control where ils offspring's OutpUI goC$.
• Each function must ei ther produce values of the correct data
1)''Pe or in form its pillen! if the \'alut'S do not belong. to Ihe proper

I"".
• Al though modulrs can process C'ach input as soon as it arrives,
they must mamtain the specllied o rd('r of overall C'xecut ion with

rCSpC'Ct 10 functionality, priorities , and liming.
Violating any of these inter face p rinciples may appear benign

in itstlf, or even necC$sary to improve system per formancC'. But
any violation mak~ it impossible to verify the system and could
int roducC' subtle but fatal errou.

On thC' other hand, if the module interfaces do iiI together-if
functions do producC' values o f the proper data type, if thC' cor­
rect o rder of execution is maintained, if modulC's do not violatC'
IhC' order of the control hierarchy-then a program will be" rC' li ·
a ble. With this approach, twO syslC'ms o f vastly diffC'[C'nl siZe"
could be equally reliable, since each system would consist of reli·
a b le componC'nts Ihat are intC'gra tC'd using relia ble constructs.

Formal definUions improve productivity
The main inlent of they- formal rules for constructing soft·

ware systems is to eliminate erron before th C' fact, but the samC'
r ules that guarantC'e logical comp\C'teness a nd correctness bring
other advantages as wd!. For examplC', because each variabk is
fC'ferred to in only one place, and only one funct ion changes ilS
value, all data flo w is traceable , and the impact of C'ach change in
a model is known ahead of time.

In addition , each fu nction in the hiC'rarchy is assignC'd an un·
vaT)ing priority (a parent, (or C'xample, always has a highC'T pri·
ori lY than its offspring). ThesC' propertiC'S allow the unambiguous
allocation of computing resources to functions and processes.
Because depC'ndmcies can bC' traced easily, multiple processors
can be allocated as easily as single processors.

Software tools likC' UsC'. lt also improve programmC't produc­
tiVity, because systems can evolve ns turally from exist ing mod·
ulC'S and less time is spent trackIng down bugs. Productivity wiU
inctC'ase the first timC' such a tool is used on a project, and it will
continue to increase with each succeeding project in the sam C' ap­
plication an:a, because more application-specific subsystems wiU
bfi;ome a\·al lab!e.

Productivity and reliabili ty may incrust even if such softwuC'
tools are used only for pariS of a 50ftwate syslem, with othC'T
para built byconvemional methods. HowevC'r,lhe full reliabiii!y
gains of dC'veloping softwarC' automatically from specificaCions
can be achieved only if Ihest [ools arC' used throughoullhe devC'l·

'" "'" Y,.V,. ~, IQ

\

/ ".

Y~ BlAI'" ..~ Y, • F,Ot,)

A B
111 Three p"mitlw! control J·truC/Ure!J {'Un fw used 10 COlIS/rut:!
reliable so/t ,ore sys lem5 from mdll'ldua/ functional modules.
Each m odule IS defined b.I' ils OUlpul, thl' junCl/oli flame, unci ils
mput. In Ihe uamplt' " Sum .; Add fA .B/, .. (fit? Join primilll'e
(A) con/rols junctions Iha(depend on euch other; data flo ws
jrom Ihe parent do n to one ojjsprlllg. wherf' operalions are
per/armed on the data. Th E' new data is passed 10 tht' .recond oj/·
spring, hich perfurms additional opera lions and passes Ihe
r~fI back to /he parent. The Indude primilll'e fB) combines
resultsjrom a Sf'l oj tncle{Jf'ndE'nI junclions. One oJJ:;prtng -..wk$
on anI' pori oj thi' porMt's dala, and Ihe othl'r worlu on Ihe rest.
The re!Julls are passed back up 10 Ihe parenl. The Or primitNe re)
makes a decision OetWfi'n IWO alternatives. Each ojjspring lakes
the some Wlriables as mpuljrom its porrnt and produCi!S the same
Yariables as output. If the decision variable is Irue, Ihen the right
offspring posses on outPll1 back 10 Ihe parent; If It ISjalse, then
the felt offspring posses an OUlp/1I back. The dalaflo w m thee.l'·
ample shown IS lor the "'rue" altemotlve'.

"

Y, • F,(X,l Y _ r,OCI Y. F,OQ

C
All fu nmonal modules operole on objects of particular dala

Iypes. In turn. a.xioms dl!jine the behavior of dOlO types and the
opera/ions /hal cart tw perfonnf'd on them. The ordered $l!t, a I/St
oj objects 0/ (j smgle dala IYpe. is a usejullype In ils 0 '1 righl.
For ally orclerrd sel cor/lOining elemenfs o/Iype T, where t is an
object of t)'fW T, a and b are Ordered Sets (of T), and Nullo is a
cOflStant Ordered Set (oj T). the jolla wing rules hold: First
(Nullo) equals Reject; Second (Nullo) equals Reject; First (Com·
bin~ rr.a/J equals t; y cond (Combine (t,al) equals a; O£qua/s
(a .b) means Equals (jim (aI, First fbI) and OEquals (Second {aI,
SI'f.."ond fbll.

The following operations can be performed on an ordered sel:
First, Second, Combine, and OEquals. The firsl two axioms
define tM error conditions jar an Ordered Sel, the third and
jourth axioms define constraints/or Ihe selection of elements 011.1
of an Ordered Set, and Ihe last axiom provides a concept of
~qualilY for OrderN SeIS. Ordered Sel (ojT) is a parameterized
type-T can be replaced ith the rtame oj any type.

t"~"C_"""D''' ' "

opment process. A single error In one primitivC' operation or the
use of an external operation that has not bcm properly validated
could compromise the entire soflwarc system. Thc wider Ihe scot
of validated data types, primitive operations, and abstract con·
trol structures available, Ihe less temptation there will be for soft­
ware developers 10 compromise.

User intent still a problem
Methods based o n formal definitions will help 10 approach

zero-defecl software, but they will nOT guaranTee thaI the user
knows what he wants todo. Whatlhey will do is help the usC'r ar·
rive at conclusions much more quickly than with conl'entional
methods. mtenl issues, nOt interface or logic problC'ffis, will be
Ihe only concern in lesling software systenu in thC' fUlure.
FunhermoTe, these methods would force Ihe user 10 define
systems much more clC'arly than is typical with informal
specifications that cannot be cheded with ,sOftware tools.

Leaving the responsibility for user intent outside the domain
of software in no way abandons responsibility for the most subtle
errors. The most subtle and complex errors in the Apollo pro­
gram and in other large and sophisticated systems have usually
been interface errors. not errors of intent.

Even after interface errors and other ambiguities have bcen
taken care of, performance u~Slin8 10 prol'C' Corrttiness of intC'nt
is nOi a trivial task. But it can be conduClC'd on a more cOnlrolt~-d
and clearly definC'd module-by.moduk basis. in which bounda­
ries are well understood and unwanted side C'ffc~(,IS are a phC'no­
menon of the past. Indttd. most classes of errors that were prel·i.
ously disco\'ered during performance testing no longer C'xis!.
Well-known interface problems, like the "deadly embra~'e" -In

which multiple processes slall because each comrols a resource
that another process needs to do its tasks-arc in fa.:t ciimin<ll('d
by met hods that synthesize code from logically correct specifica­
tions.

The question put forth by software critics should not be hal
mC'lhods can be found to producC' defe.:t-free software but rather
when existing methods will becomC' widely used. The good neM
is Ihat thC' feasibility of complC'x software·hardware systems lik e
those of the SlratC'gic Defense [nitiath'C' (501) need nOI be dC'pen­
dent upon the inherC'nl reliability or unreliability of soft a,re.
The bad news, on the other hand , is that software can no longer
cloud the issue or becomC' a con\'C'nienl scapegoal when a prob­
lem is not well understood. The real problem with large sy'lC'm~
like SOl (and many smaller systems) is Ihat the user net'ds 10

undC' rstand the specific application problem before it reaches Ihe
stage of a " software problem_"

Application problems may be easier to solve if the rC'quire.
ments or specifications of a systern-rl."gardless of whether it Will

eventually be implemented as computer programs, hardwaTl!. or
human systems-arc defined in such a form that a computC'r and
its software could find thC' ambi8uities in those spa-ificallolh.
With such formal definitions, tC'ChniquC'S for dC'fining reliable
software can be used 10 define rC'liable requiremems for systems
in general, since the problem in both cases is to define a sct (If
logical statements unambiguously. Even whC'n requirements .:an
be compUierized and analyzed for ambiguity, there is no way 10

guarantee that the user has put forth his real imenl. But software
tools and formal spe.:iFications offer a ay to define exactly what
thC' user said his intent was and to determine if it is consistenT and
lo&ically complete.

If software lools arC' to be used 10 dC'lermine whether a 5<t of
requirements is logically consistent and complete, the re·
quirements must be defined formally before implementation of
the system begins. Far too oftC'n, this front end is treatro casu­
ally. It is lime to treat software seriously, as a science or engineer·
ing discipline from starlto finish.

To probe further
Reliable software has been a concC'TO of the compuler induslry

for many years. The major themes of some conferences. including

Some software experts disagree

Some Industry experts disagreed strongty with the prem­
tses 01 this artICle, saying lnal It is not possible to build
defect-free software today. They contend tnatthe power
of high-order design tanguages to provide reliable soft·
ware implementations from specIfications has been
exaggerated.

AtthCHJgh management discipline and proper use of
hlgh-order design loots will generally increase the rell­
abUity and efficiency of software production, satd one
critic, there Is 00 evidence that software toots for verIfy·
ing formal specilicattons and turning them into eKecut­
abte code will /'I9lp in this process.

The article's statement that prool 01 correctness tech­
niques-which attempt to verity an atgorithm's perlor.
mance mathematically-has been unsuccessful except
fOl very smalt algorithms was seen as undermining
claims that formal specifications and software tools can
produce lOgically comptete and conSistent software.

"Recent software engineering publications," said
another industry eKpert, make it Clear that it is not POssi­
bte to develop toots for detecting togical redundancy, in­
consistency, or incompteteness of specifications 8I'Id
that "zero-defect software" Is Impossible to build today.

Another criticat comment was Ihat "defect-free solt·
ware" is a slippery concept "My experience with soft·
ware used to sotve numericat problems has convinced
me that even when the software reliably follows the
specifications of the user and has been checked out on a
numbel' of test cases, there atways seem to be other
cases for which numerical cooditioning can obviate the
usefulness 01 the software.

;'This paper deemphasizes the enormous complexi­
ties in the development 01 very targe-scate software sys­
tems. It argues that once we get Into a difficutt probtem,
we often find that things aren't as bad as they seemed
from the outslde_ While thIs is olten true, It is not atways
true. I doubt that even with infinite time one coutddevel­
op a very large-scate software system that was error­
free." -fa.

thC' IEEE's tnternational Softwan' EnglOl-ering ~'OnferencC'. arc
prodlJclil'ily and rchability. Good flCnvdl.:ah 011 the ,uh~CI of
\Ortwarc r!."liabillty Illdude thc lUl/fllul 0/ SyStellls und SU/I ... ·llre ,

puhlished hy Elscvier·Nonh-Holland: COll1nWmCUflOfIJ oJ tilt
ACM. publishrd by Ihe AS'>(ICialion for Computing Machincr)' 111

NC' York City: and lEEE TrullSllCflonson Soft are £ngln(!(!rm~.
Thl," [kI:ember 1985 and January 1986 issu~ of the Tran.'i(l('fionJ
were dl.'\o!ed specifically to soft are reliabilily.

System desi~njrom pro~'Qblyrorr«t ('(HIS/ruelS. by James Mar-
1m (PrC'lIl1ce-Hall, 1985). diS("u~ thC' process of de-..eloping cor­
reo:.'1 sre':ll1calion~ and generaling code from them. ThC' anicle
"The rC'lalionship bC'I\\,C'('n dC'!i;gn and verification:' by Margaret
Hasmhon and Saydcan Zeldin (Journal o/SYSlems and Soj/wart',
No. I. pp. 29-56, 1979). also deals with the specifi':3tion and code
generation problem.

The oil discover}' system cOl'erC'd briefly in the bo.~ above"
di~cusscd al more Icngth in Case Study Report ttl: Oil Disco\w~
Problem, by MargarC't Hamilton and Ron Hackler. publhhed h)
Hamilton TechnologiC'S Inc. in February 1986.

A bout the author
MargarC't Hamilton (A) is prC'SidC'nl of Hamilton Technologle~

Inc. From [976 to 1986 shC' was pre~idC'nt and chairman of HlghC'r
Order Software Inc_ of Cambridge. Mass., a company founded
to dC'\'elop mC'thods for producing reliablc roftwarC' systems.
Before that. shC' workC'd at thC' Charles Stark Drapcor Laborator)'
in Cambridge. whC'rC' she managed the on-hoard night software
for the Apollo program . Sh(retclI'cd [I A.A. 10 malhemallc~
from Earlham CoU(ge, Richmond, [Ild • in 1958. •

T
/'le ApollO program /'las been cited by leaders of
Japan's fifth-generation computer protect as a
perfect model to Illustrate now a focused technol­
ogical project can yield broad benefits far beyond
its own mission accomplishments. In fact. It can

be argued that the U.S. space program spurred technologi­
cal advancements In avery nation on the glObe. Certain ad­
vances were necessary to get missions off the ground. so
to speak, but those Improvements also enabled more
sophisticated missions later on. At tna same time. these
and other trlumpl1S improved the way technology was ap­
plied in the commercial sector.

The case studies and chart that tollow are not intended
as all-lncluslveof their respective disciplines, but highlight
selected work and some of the fallout over the last 25
years. They are largely U.S.-based, but similar examples
exist in the Soviet program. As other nations become more
Involved in space, their societies, too, will benefit from the
fallout of technology from their space research and devel·
opment. How this fallout has benefited the technical com·
munlty In the United States Is examined in the first article
In this section,

Key to the Apollo mission, the most extensive project of
the U.S. space program, was tna development of a guld·
ance and navigation computer, which enabled astronauts
Aldrin, Armstrong, and Collins to land on tna moon. As ex­
plained In the second article, Apollo set new standards of
reliability and accelerated developments In Integrated
circuits.

However, there Is more to space than Apollo. The Land­
sat series Improved technology for land, ocean, and atmos·
pherlc remote sensing. Landsat has had an International
effect, too, motivating the French to develop SPOT, WhiCh
will become the highest·resolutlon imaging system ever
flown for civilian purposes when it is launched In 1985.

In each of several other areas of space technology, one
event stands out as most noteworthy. In telecommunica·
tlons, It was the successful launch and operation of the
Syncom satellites In 1963. That system demonstrated the
technical feasibility of geosynchronous communications
and became a prototype for the Intelsat system. In solar·
power supplles, a crucial component for most space mis·
sions, Skylab Is seen as the outstanding model, supporting
the largest and most complex photovoltalc array ever
flown. Indeed, phOtovoltalc wof1(throughout the world has
been led by developments In space miSSions. In fireproof­
Ing spacecraft, one area of materials science, radical
changes were made after a fire killed three Apollo astro­
nauts. Another area 01 aerospace technology, displays and
controls, has advanced due to technology transfer be­
tween designers of airplane cockpits and spacecraft crew
stations.

Finally, the benefits of the world's space programs ex·
tend beyond specific technologies to the management of
large, complex, and integrated engineering efforts. Space

(["om IEEE S?E(; faUl-l, Vo l. 20 .

programs have helped advance the status ot systems engi·
neerlng and the "systems outlook" more than any large
technology-driven program yet undertaken.

These points are underscored In the following articles.

APOLLO: THE DRIVER
AND THE DRIVEN

The sheer scale of the United States endeavor to land a man on
the moon SPUfTed a sweeping drive of tech.nologies that ha'le
since nuorished indepmdently. And the technological fallout
from 25 years in space has affected the way we develop and
manage technology and integrate systems of hardware, software,
and people.

The National Aeronautics and Space Administration antic­
ipated the depth of the impact early in its program to explore
space, giving a grant to the American Academy of Arts and
Sciences 10 study the massive technological enterprise of Ihe
space effort for its effects on technological diffusion, community
structure, manpower, and society. The first volume of the study
appeared in 1965. At the time Raymond Bauer of the Harvard
Business School, who headed the active working group of the
academy's Comminee on Space, observed that "the major diffu­
sion of technological innovation is likely to take place after its
period of maximum development when surplus technologists are
Creed to work in other secton.' ,

That may be where we stand now, al NASA's quaner-century
mark, though the diffusion point was reached sooner than ex­
pected. Space programs have come and gone so quickly that they
have made many engineers and other le1:hnologists available
earlier [0 other areas of application. Today many of the architects
and engineers of the space program occupy pivotal positions in
industry and academia. They have transferred nOt only te1:tmical
ideas, but also managerial innovation, especially in the area of in­
tegratinlllarge-scaJe systems. When NASA geared up for the alI­
out Apollo effort, perhaps the most ambitious 10Ial system proj­
ect ever attempted by a civilian team. it attracted the best and the
brightest 10 its in-house work force and to its contractors. The
Apollo program was an astonishingly complex combination of
expedient engineerinll and hundreds of inventions yet to be
made. All were lied 10 a rillorous timetable invol\;ng an enor­
mous variety of contractors and subcontractors who were drawn
from almost ~'ery lethnical field and discipline .

Evan Herbert Contributing Ed itor

" OOIIt-923S R J /09OO-OO~6St 00 1983 IEEE

Because the Apollo program was tied [0 a clear national, albeit
political. goal-beating the Soviets to the moon-NASA had
several powerful factors in its favor. First. it was infused with
almost limitless money, enabling it to enlarge its work force and
to embark. upon multiple approaches in solving problems. Up­
front money also made it possible to suppon otherwise

uneconomical development or manufacruring costs. For exam­
ple, getting the hign-reliability components for the Apolio
guidance and navigation computer did not require major process
innovation by the semiconductor industry; but the Strict
specifications fo r circuit reliability forced the setting up of multi­
ple production lines and expensive qualily-assurance programs.

Spae.technology mil.stones

Spacecraft or satelhte I Launch I Mitestones • . ~~ - .- ... :.~,1 , .
COMPUTERS

GomW3 March 23, 1965 First ~ digital computei'" control. FirS glass delay-Une registeB and COf9 main
memo<y.

Gem". March 18. 1966 First use of auxiliary storage In nl;hl
read through voter cil'ClJits.

a redundant three-trade magnetic-tape unit _ •. Nov.. 9,1987 Saturn V launch-vehicle compuler uses triple-redundancy and VolM circuits 10 i~
plement lsutt-toleranl approach to reliabi~ty. _.

Dec. 21, 1968 On-board computer controls entire manned mission 10 circumnavigate moon.

STS-1 ' April 12, 1981 Redundant Illle-compuillf. dual-tape memory system provides both aircraft "'" spacecraft control with lIy·by·wire Characteristics. First mulflple)(ed dala buses.

TELECOMMUNICATIONS

Echo 1 Aug. 12, 1960 First passive communications satemte--a mylar baaOQfl 30 meters In diameter.

Cc:u'i«lB Oct. 4, 1960 First acttve-repeater OftJited.SmaO signal loss but nmlted COnlact time. Ground stations
had to track satellite. -......, July 10. 1962 Demonstrated feasibiUty of wideband tranSlX8anic communications via sateUite.

Syrcom 2 July 26, 1963 First communications satellite in synchronous orbit. No tracking needed and 24-hour
access became available.

Earlybj" April 6, 1965 First Intelsat satellite. First commercial communications made on June 8, 1965.

Communications Jan. 17, 1978 Pioneered use 01 Ku-band (12 to 18 GHz) in broadcast satemles. Extremely high
TechnoIcIgy Sa%elfta antenna gain resulted in an effective isotropic-radiated power 01 60 dew. allowing

use of earth receivers 40 cm in diameter. Prototype IOf direct-broadcast satellites.
Joint project between Canada and the Uniled Slates.

"' , Feb. 19, 1978 First maritime communications satellite. Signals could be received from and sent
to moving ground stations on ships.

"''''''- 1984 First craft designed as a CBS wiU enable firsl entirely commercial communicalions
SatalMte satellite system. It will cover the entire United States.

AdVBr1Ce Communicatlons 1968 NASA salemle wi!1 roceive and broadcast at 30 and 20 GHl. respectIVely. Will have
Technology SatellIte 18 bed antennas, 6 mutl ip!~spoI beams. and on-board data pfOcessing and storage.

Should increase capacity 01 present sateltites by 100 l imes.

REMOTE SENSING

T1n>o 1 April " 1960 First sateilita 01 NASA's earth-observation program took 22 952 surface photos.

l.an<bat 1 July 23, 1972 First eBrth-remote-sensing satellite. Spalial resolution was 80 meters.

SMS 8' Feb. 6, 1975 First remote-sensing satellite in geosynchonous OftIit and first one stabilized in three
",os. June 26, 1978 First oceanographic remote-sensing saleillte. Spacebcrne synthetic-aperture radar
proved useful lor geologica! studies.

STS-2' NOli 12, 1981 Synthellc-aperture. or "Imaging" radar, !lown as a payload IOf the first time.

SPOT' January 1985 Spacebotne senSOtS WIth the highest spatial resolution for IlOnmlUtary uses IS to be
flown by France with Swedish and Belgian participation. Spatial resolution 01 10
meters in black and white mode is expected.

SOLAR ARRAYS

Vanguan1 1 March 17, 1958 First photovoltaic-powerad satellite.

SpacetIIgtIt 71-2 Oct 3, 1972 First Re)(ibJe-substrate photovoltaic array nown (by U.S. Air FOI'ce). Allowed large
surface area 10 be rolled up into small slowage space. Rated al I kW. S_

May 14, 1973 The largest photovoltaic power supply ever flown- 21 kW. Power-to-mass ratio was
7 W/kg.

"""'_ Jan. 17, 1976 First photovoltaic cell array (1.3 kW) on a nellible substrate that folded like an ac-
cordlan, decreasing weight as well as space. Flown by Itle European Space Agency.

Olympus platform , ... First generic solar-powered platform. Mutlikilowatt Ile)(ible array (4 kW) will be flown
by the European Space Agency and will carry communicallons satellites. Power-to-
mass ratiO will be 32 Wlkg .

, , •

SPACE TECHNOLOGY 57

A second faaor aidinl NASA was it.s fum, powerful control
of the systems engineering process. Each of the dev~lopment
centers had a systems enaineering division whose activities were
integrated by a headquarters systems office. Moreov~t all NASA
systems offices received additional technical support and advic~
from contract systems-engineering teams from companies like
General Electric Co .• Boeing Aircraft Co. , and BeUcom (fonned
by AT &:T to aid NASA). On questionabl~ approaches it was
possible to Lake multiple paths and to develop contingency plans
for each risk.

A third factor in NASA's favor was the constant feedback to
the ApoUo systems·design enginee.rs from astronauts and
ground-support operators. This feedback had a miYor effect on
software development and integration, which was recognized as
so important to systemS engineering that it was overseen from a
single manaa:eme:nt viewpoint, that of the director of flight
operations at the Johnson Space Center in Houston, Texas.

These three factors made it possible for major contractorJ to
work together effectively. because interfaces were defined
rigorously, with great depth of detail. Th~ issuance of interface
control documents compeUed early resolut ion of any contlku.

How well did it all work in practice? According to George M.
Low, now president of Rewelaer Polytechnic Insti tute in Troy,
N . Y., and director of the manned Spacecraft Center a t
Houston's Johnson Space Center during the Apollo program,
"Perhaps the most imponant lesson of Apollo was deliberau~

desiln to minimize complex interfaces, thus making the systems·
enginecrinJ task manageable ."

The enterprise also holds lessons for conducting the business
of tech.nology. One aerospace industry veteran, James E.
Ashton, vice president and general manager o f the Tulsa divisjon
of the Rockwell .Internationai Corp., said, "The success of
Apollo proved that even vrry large, terribly complicated goals
can be achieved by breaking problems down into smaller prob­
lems and smaller goals. These then can ~ fenced in and treated
as entities both from a business point of view, wi th contracts, and
from a technical point of view, witb interface-control drawings.
Later the succ:ess of the shuttle orbiter proved the value of that
concept to the design and apportionment of the system among
many contractors."

Though the practice o f engineering was driven to new heights
by the space program, there were other effects that now pro­
fo undly influence many aspects of life. Robert Seamans, once
NASA's deputY administtator and general manager and now the
Massachusetts Institute ofT«hnology's dean of engineering and
headofits Energy Laboratory, credited James E, W~bb, NASA's
flfSt administrator, for vision that went beyond his role in office.
He foresaw the scientific aspects of being in space , the projected
spinoffs intO aeronautics, and the ro[~ that university research
programs could play in ensurinl success.

Mr. Webb so impressed President John F. Kennedy with this
vision that he was able to get an unusual item in his budget:
NASA support for several thousand dOctoral candidates per
year. He also got approval for a NASA grants program to put
laboratories on campuses . This went beyond the need for
specialized Government facilities , for Mr. Webb stated that he
wanted research don~ " not only where the best minds would be
involved, but also wh.ere the work would be tied closely to the
educaJ.ional process ."

The NASA administralOf asked the presidents of the U to 20
universities that received those grants to sign a letter iaying th~
would make their best effort to sel up a multidisciplinary activity
on campw to look at aU the ramifications ofth~ space program.
Not al l the univenity programs germmated by NASA 's grants

58

program under Mr. Webb still h.ave such clear<utlabels as MIT's
5<::ience, Technology, and Society Program, but multidisciplinary
research nourishes.

Mr. Webb was also instrumental in the positioning of new
Government laboratories. He insisted that tbey be established on
or adjacent to campuses rather than in outlytnJ industrial parks,
so there would be " a nuJting of ideas with universities." Corne·
quent.lya NASA Electronics Research Center was put right in the
mlddl~ofCambridge. Mass., within a stone'S throwoffOUf large
univerSities, rather than in the high-technoloJy-industry concen·
tration along Route 128.

[n a sinular vein the uniqu~ concentration of scientists and
engineers at space centers and test sites around the Umted States
may have polarized the subsequent location of high-t«hnology
industry there. Inevitably such a ooncentration of talent up­
graded education in surrounding communities, which in tum
cont rib uted new local talent to allract higlHech.nology
industries. •

FROM DINOSAURS
Of all the electronic legacies attributed to space-age advances,
computers share popular credit with communications satellites .
However, hiStOry shows that fallout from space-flight efforts has
led only indirectly to the SAO computers in discount stores today.

Pushmg the Slate of the an was not what the National Aero­
nautics and Space Adrrunistration set out to do. Despite th~

ambitious, elegant language of the National Aeronautics and
Space Act, NASA's early years were affected by the overtones of
a race for the international political prestige to be garnered from
manned space flight . When that objectiv~ was escalated to the
unprecedented technological achievement of pUlling the first
men on the moon and safely relurning them to eanh, the space
agency sought prov~n-or at least provabl~-technololY.

Despite ongOIng advances in the science of computing, NASA
elected to build and ny what might become computer dinosaurs.
This convervatism tumed Oul 10 be appropriate in tenns of mis­
sion successes and the safety of the astronauts. But even the crea­
tion of dinosaurs affected the future of computing.

Valuabl~ le~ns were leamed in designing computers to fit in­
to small, tight spaces. Advances in software development and
debugging emerged, including a new method for program inter­
rupts that today is called memory·cycl~ stealing. And, most
critIcal for the space effort, designers and vendors I~arned new
approaches to component re liability.

As the ApoUo moon shot effort moved into high gear in 1961,
not all th~ technical problems had ~n solved. Eldon C. Hall of
the Massachusetts Institute of Technology's Instrumentation
laboratory in Cambridge, who led the dev~lopment of the
ApoUo Juidance computer, reminisced that if his design leam
had known then what they learned later, they probably would
have concluded they could nOt build the computer that was
needed with the technology of the early 1960s.

As the manned space-flight program took shape, there was lit·
lie qucstion that the computer pow~r th~n available could pro­
vid~ real-tim~ guidance and control ror th~ spacecraft. The t«h·

Evan Herbert Contributing Editor

IfEE !~,rum SEPTEMIIE~ I.,.J

00101)' had been proved in most of the ground-based computers
in exisl:ence in 1960. These were paralld general-purpose compu·
ters that had been designed in the late 19SOs. The trouble was that
few such machines, tho\llh they had the power for the con­
templated moon missions, had been designed for the aerospace
environment. Those that had been squ~ed down to meet the
size, weight. and power-supply parameters also embodied sub­
stantial compromises in computational perfonnance.

The moon mission was extremely complex. II required enor­
mous computina power that would be reliable and self-suffioent,
for the spacecraft would be in a communications "shadow" dur­
ing pan. of iu ttanslunar flight. Functioning as a general-purpose
computer, the spacecraft's computer system would have to solve
the auidanct and navilation equations for the mission. As a con­
trol computer, it would handle such major functions as aligning
the inenial measurement unit, procesSing radar data, managins
the astronauts' displays and controls, and senerating commands
to control the engines.

On top of that, two computers were needed for the Apollo
missions-one in a command module and the other in a lunar ex­
cursion module. This panicular configuration of the Apollo
spacecraft was the culm.ination of a technical controversy over
whether the guidance problem for lunar orbit rendezvous could
be solved at all.

Fortunately, rendezvous technology had been advanced con­
siderably by military projects aimed at satellite interception. If it
was possible to maneuver an unmanned inspection vehicle along­
side an orbiting satellite, why not guide and dock together two
manned spacecraft with essentially the same techniques'? The
guru of guidance and navigation. Charles Stark Draper of MIT's
Instrumentation Laboratory, was so certain of the technological
feasibility that he volunteered to go along on the fint mission to
run the computer .

The MIT laboratory had been workins on basic guidance and
navigation problems since the lat~ 19SOs under an Air Force
study conuact. From this work. on flight-path analysis for a
spacecraft to photograph Mars and then return, emerg~ a
unique design for a guidance and navigation computet. Though
the Man computer was never built, som~ of its features would be
carried over into the ApoUo guidance computer, as would the
packagin, techniques for a suidance computer developed by the
MIT Instrumentation Laboratory for the Navy's Polaris
submarin~-launched ballistic missile.

By August 1961, MIT had received the NASA contract to
desian the Apollo guidance computer. The engineers of the
Instrum~ntation Laboratory, which today is the Charles Stark
Draper Laborat.ory Inc., were faced immediatdy with the con­
straints of top-down design. Within a week of President John F.
Kennedy's proclarmuion that th~ United States would put a man
on the moon, a reasonably w~U-defined Apollo spacecraft had
been unveiled. The computer engineers were told they had a
smal.l hole in the equipment bay to fill with a functional system. It
was to guid~ and control the entir~ flight to the moon and back,
inc1udina rendezvous and linkup with the lunar excursion
modul~. The area in the command module available for this task
consisted of I cubic fOOl for the computer and some panel space
for two display and keyboard devices for the astronauts [S«
photoj.

To pack the system into that space would require high-density
information storage. A suitabl~ read-only fixed memory had
been deveJoped for the Mars computer. It was a core·rope
memory, a transfonner type that depends for its storage on weav­
inS patterns into sensing wires at the time of manufacture. A
stored bit is a I wherever a ~nse wire threads a core. and a bit is a

SP...cE TECH NOLOGY

o wherever a sense wire is not thread~ through a core.
Though the content of a core-rope memory becomes

unalterable. the medium is highly reliable. offering a density of
1500 bits per cubic inch. including all driving and sensing elec­
tronics, as well as interconnections and packaging hardware. At
the time this was a 5-to-1 Improvement over currently available
comcident memory. There was room for six 6-kilobyte rope
modules in the computer, offering 36 000 16-bit words of fIXed
Slorage. which would require advanced delivery of thoroughly
debugged software so the infonnation could be wired in.

The additional lead time imposed by hardwiring may have
been responsible for the extraordinarily error-free mission per·
fonnanc~ of Apollo computers. II bought more time for check­
ing and debuggins after a memory had been manufactured for a
particular mission.

Still. there was room for inadvencnt error, as fonner Astro·
naut lim Lovell recalls. He was the navigator on Apollo 8, the
first flight to the moon to test the navigation capability of the
system. On the return trip he accidentally punched up the wrong
program, and the suidance system began to present information
as if the spacecraft were still sitting on the launch pad at Cape
Kennedy. It also lost all reference data to determine the attitude
of Apollo 8 with relation to the celestial sphere. Mr . Lovell recov­
ered by peering out the ponholes for recognizable stars and
manually updating the guidance system via the 2048-word coinci·
dent core-erasable memory to get the inertial J.ttitude platform
back into alignment.

Architecture and hardware contributions
Though the Mars computer desisn had provLded some prece­

dents. a significant contribution to aerospace computing archi-

-••

ApOllO engmeers were presented With a l-cubu:-joof hole m {he
command module equipmt'n{ txl.v (ou{lined m block) mlO which
{hey hod {O cram {hf' gUidance and na\'igarion computer.

tecture was a program..mterrupt method of accommodating teal­
time inputs and outputs. Large-scale compU(~s had begun to use
it prior to the Mars project. The interrupt method. was incorpor­
ated into the Apollo zujdance computer for single acces.s to mem­
ory to accomplish incrementing or shifting. This process, now
known 1.5 memory-cycle stealing. has been widely used 10 link
computers to peripheral devlces.

One of the architects of the Apollo design rKaUs his reason for
selectin& tore-transistor logic: it already was a proven tech­
nology, and the transistors would be turned on only when U5ed,
thus requiring less power. nus translated into less weight and
space.

Meanwhile the hardware technology available to aerospace
computer designers was developing rapidly. Because the Air
Force had been pushing the developmenrof integrated circuits by
the semiconductor indUStry since the late 1950s, it S«med to the
project manager, Mr _ Hall, that the burgeoning computer might
be squeezed into state-of-the-an circuitry. However. he was con­
cerned about reliability. An estimate of component failure rates
and component counts showed that the resulting computer fail­
ure rate was too high to ensure a successful mission. Reliability
could be increased by convmtional techniques of redundancy,
but the design would then exceed the requirements for power.
size, and weight . The alternative was to~k computer reliability
Ih rouah more reliable compo nen rs and manufacturing
procedures.

The number or componmt t)'PC5 and range of values was con­
strained to a select few . bringing complaints fro m the mcuit
engineers that their designs would be constncted . An Iton-clad
Oig.lll-pnxessing specificalion oversaw the quality of component
lots . Defective lots were subject to wholesale rejection, with no
partial givebacks. Vendors complained bitterly. but what they
were forced to do in order to achieve reliability was underwmten
by the ample budgets of the Apollo program. Later they accepted
the reliability lessons learned from requIred internal visual in ·
spection before crates were packaged o r systems were ~ealed and
all parts were burned in. As a result. the Apollo computer was a

Higher Order Software, with fully autOmatic software products
that gene'rale' bug-free systems.

Impacts of other computer activities

Though the manned spacecraft program made the greatest use
of the new capability of advanced computers. the), were also used
(."\\mmely for simulation. prellight t heckout. launch controL
in-flight monilOring, and data reduct ion from telemetry. James
E. Tomayko of Wichila State UniverSIty In K.tnsas said NASA
enjoyed ItS greatest sueces.s In computer simulations. These
allowed e.'I(periments with eqUIpment and plans. as well as e."\Ie'n­
Slve crew training. :vir. Tomayko saw that the' perfect night
record of the Saturn booster proved the effiCIency of modeling
that 1..Lded the development of the launch vehIcle . He creditS
NASA's conllnued refinement and use of simulatIons to the fact
that the space shutlle was man-rated on its very firsl flight.

The 4Pi series hardware and software used today in space shut­
tle'S was influenced by the special-purpose flight computer that
IBM Corp. built for NASA's Gemim program in the 19605. (t

made the first use of on-board auxiliary slOtage-a magnellc
tape \.Init with Identical programs on three tracks, read through
voter ':Ircuits before the data entered the computet . [t was
another approach to reliabdjty-through redundancy. :-Aultiple
redundancy and faulHoleram equlpmem nies on loday ' ~ \hut­
tIes In systems configured of ti ... e IBM 4P8/ AP-IO I computers
and two mass-memory Units. •

p.ion~ in the flight into space of nonredundant integrated;?
ClfCUIIS.

A delayed Impact of software
Becawe the compUier programs were entered into the ~'O re ­

rope memories by the actual manufacturing process. software
had to be developed and debugged well in advance of each night _
By the time Apollo I I li fted off the pad, the software leam. led
by Margaret Hamilton, had analyzed software management and
development tKhniques and the software itself. The leam found
that 73 percent of the problems were interface-related-data and
timing conflicts within the software. :-AoreoveT. 60 percent of the'
problems foun d in a given program release turned up 10 other
releases already approved. Though they expetted to solve the
software reliability problem by elimmating errors, II turned out
that a major improvement came from defining a system in such a
way that interface ambiguities could no longer exist among the
software modules.

The empirical study of the Apollo software enabled the cate­
gorizing of axioms and definitions for scanning whole classes of
errors-program statements that were inconsistent. redundant.
or logically incomplete. This effort evolved into a theory of
higher-order software that was applied to syste'm definition pro­
cesses to get rid of interface errors. Ms. Hamilton .set out to prove
the theory, for she felt that it could be the basis ror automatIng
not onJy the verificati on process, but also the software­
development process. She is now president of a company called

60

L\:erospace (6
-----DEFENSE

SDI in Massachusetts
A _ at !Toe 501 cootract work beilg c:onciJctEd

by bcal~

~ TICIIIKIIIo.a, DIC.

MMpru Hamllr<m. the Iwndu aI
1Mu CambricIF flmt, was in
~ rJ ckIotloping the nI'ria3tiorW
IOftw.ve that ,uided the Apollo awo-­
....... lOthe_ Her~in
the Apollo PI'Oe'J'" led brr 011 • qtII:':tI
10 find ~ 1O"";1e mw.free IOl!w2re.
lIer fll'3t company, Hia;1Ier Ordrr Soli'
~. ~ the comP\lIC'r-aidcd
~~~.She~ 
H~ Clrdtr 10 lie'! '4' her """ «1m­
paayaDlideodop. _~ pr0-

duct ~oi bolidina; RfOodefect 10ft-
...... ~ ''thK ~ tllPIbIr- aI hindi--
ina: cbanp and unpre;SicQbiliry:' Ham­
ilIoa·.apmi.em~~ 

II Uobciroc~ liD !he SOl ~ 

i , 

- brr flnll "- b!WII moddol.lnock· their ., 
ina a!£urithm. dClllW 

~....,..=-

''Ow ...n maII:btI; our title:' uys 
JtidIat<I ~ 1119 Optical 5ft­
_. ¥ft prnicStnI. d PI"DIr.utI de<oeIop. 
menI. " We develop opticall)'Slems. ex· 
cluIioely for ~ ~. The 
~·bNed Iii ...... aI UUOII In· 
.t..ries ill .... ,.~1O SOl:" .. -[Irk pUlicipatei in .,Ieur. r.ou IMjor 
SOl dfort. - the "SATKA" (SurveU· 
lana: ~ 1iad< and Kill "-" 
meat) and "DEW" ~ EnnJy 
\\IupaIw) prIlIJa ..... fa SATKA. It.ell 
ill helpinc to develop ImICn tilat an 
deled .,.;.ae Iaunctrinp and deIermine 
!heir fmal COWK. It.ell', 'IIoQ'k in !he 
DEW ~ra iDch>del !'eIIUKh inlo 
both iJ"OUIId mel ~ hi&!t. 
eneJD Iutr$, III ell .. pWticle bwn 
and other dir«tto!~ wtaptlnl. 

It.ell Iw 9pe:rtioe in bath the optiaI 
and laIet .... ol DEW ~ ltd 
UIIS IHcr inlefietomelcn, to buiIcI in· 
aoedibly precioe op6cal and mirror sur· 

i·~·~·'·'·JCO~""'''~~''~;;;;~~ Kaman c....p. 01. BIoornf.e1d, Cma. Is 
an approUmalC'1)' $600 IIIilOOn COfPOOI' 
tion that ha a weure spol in the de6truIe 
industry panlhfcn » a "",ppller 01 hrli· 
copttft 10 the N.,l'. Jill Cambrid~ 
tIMed Electro "Upe6c Launch .. b­
M>ary is condunina; ---" in what its 
ptn;cIc:nl, F~ Smith, can. WZ'Idronc 
control - Wclni Ih~ abnnlionl cut of 
• direcled tne'lY beam Of bKr, 10 IMI 
it can find, idel!tify. and ~ IarJ'EU. _ ...... 

MIT'. LincolJl Llbcnu.lrieJ is the tIr· 
in! clefenat R&D con~ in Mass­
~ and SDl·~Iatm~:are 
~ at the an~ d its ""'Irk. TIw Cam­
briQe.based "",·IOr?d"1I oo-pIIiz;Itian 
hu lana done: .....t in SUl"lein;", and 
ttaCkina; 1W1istic: mil5iJoos, and dilCrim· 
~tillll ~ <I«o)rs and ...,.pons; it 
ilconlinuinc !II do 10 under theSDJ pro­
JnITI. .occuntilll to its dinIccor. WaJ~ 

kvniI~ 001_ 26) 

T E 
The Times Are A'Changtng 
For the Defense Jndusby 
Firms are adapti1g to changes n fi.ndi1g and 
prtlCU'ement policies. 

by AllIIn £. A1tfto 

The 19801 have bem aood lID !be; 
driense industry, th:anb to the Reaian 
Administr.ltiQn·, milibry Iluildup. But 
_, uy ind~ ~ .wi ex· 
fC\JIi-. !be; dI:y1o ol rditiwly US)' 

I1WInq = O'ief. 
'1'hr dd.-Ne industry ill bec:orninj 

men difficult .. a busineea," Qy1 Mi· 
chael Man, the vW:e president ol mar· 
Icetina: a lhtron'. A...:o SrItrmI llivi­
lion in \Vilmina-- '"The _ = 
t;pt bud&eU. a ~ derlCil .... • 
tiooI. and the ~ mood. The 
Reapn drienw. b\1iIdup hili come III an 
flId. iUld ..., _locIrl!w ahead to oe.mJ 
wan: ol ti&ht ~" 

"The defense nciJstry 
is becorri1g more 

The dectranics" CIIIIIpUW. end at· 
.... ~wiIlbe_~by 
t~ in Jfttqoa ..,.tine !.han 
0IMn" ~inI 10 hill BedW. the 
UIIlciat.e l":IilDl" 0( lk/ftM '"'"* in 
Wuhinpn. DC. "It will be bIrdrr .... 
WIk and truck rnaken III tel .-CGa· 
trIICta out ~ the ~t:qOn. because the 
rnotrf:'/ isn'l u.n-e" IMtIead ol buiIcIina" 
new rnisilca, al=aft. and i.hifll, bt 
prr-dicbl, the ~tens.. De~"men\ 
(000) ill "-Iy to CII'tI'hauI them, "and 
put in new ~ rw." The new 
~nI Nb, he acIcIcd, will pro­
blbIy aftm I.;,t. t.edI ~ less 
than finm in other mdustrios " Mostof 
the rri:Jrms have brm wriuen to aet 
t.ck II the aoob in the ddm.:­
boainc:a A lot ol!be ""' NIcs hrooe bit 
heaW)' inctuotriet.. ~ aircraft makffL" 

II~, hip.kd\ conbactOn an: 
twdIy immw-oe 10 ~ chanan- Philip 
PIW<ln. !IefIiot..u pnsicIent. CXIrp<InIe 
nIIfVtin&. ~ expl'CtI OCI _ a 
li&h\er <kknIe Wdaet in r..c:al 1988.. 
"we'D be lucky .. maintain three per.. 
cent growth." aya Rob.rt e.o.-, a prin­
ei~ oontractinc olfici&l at the Air 
FOIU', EIectronic:II s,-.m. DivilDlIll 
H&Mc:om Air foror, Sax. "u it turns 
0lIl ..., doXl't ..... tIwt pera:nt IQI 
~ you an: dnling with I &hrink. 
ina budioet." Either way, ..,. Bowts, 
"that __ :II procrama _Uft and 
_""""come _~ ~ will 
be I ~ fi&hI b"!be dollars ....,1-
able we wi! _ prvcr.ImJ ficht .amonc 
each other. we atre.dy an. -ina pro­
aram coo..olid;ation ImDIII !he &rmed 
~ and :II tile buda<et tiabtenl _ 
wiD _ ""'"" ~ an u..;' 

"We hnr iwewiecIJ beaIcne mort 
ooncrmtd about beina: alit compcti· 
IIvt,"Uys Marx. "All around Roulle 128. 
rou an. seting d!'oru by dr:~ 0Xt· 
UX\1;1r1IO li(nfoanu,. mIua: tile «lit 
ol bu$ines& by ~ It!dudr>a" 
-.ork ~~«. AlIol .. 

~ Iodine ..., ~ ~ be:ablt ~ <kI ~ 
-" lor iewa- daIIan." 

Man: __ many otlta- impIio;:aOons 01 
U- budceI: ch&rweL "Gr- lbit en· 
~ !be indlIItry ill zp: ., bccGne 
IllOI'e <XImpfItiIiyt. becaIIC Itme will be r.eo--~ 10 betia _ prv;ea. • 
-..clI u ., aIPPOI1 ~ mmmil· 
IMDt1 We will find CIIII"Wha in .. ill· 
d~ ~ it wiU limply be "'In <lif. 
fJCUlt II;> obtain new OlI1trac1l1 and kft-JI 
exiItina pruer.uDI mid." a.ancs ill tho! .we. ~ R&D 
fundi<Ie bzooe aIIo ~ the ddento­
busi-. ...,.. Man. The DOD ;. now 
~furd CCII: _lor R&D 
wort. " III eIIIenCe, ~upea theoon· 
tnIaw ., _ the m.:I of riIb that 

the ~ ... hiIIoritaIIr wiIIinc 
\a -...x."..,. Man.. " I" R&D pro­
....,.... it ;......xrtain ..... mutII can be 
~ and bow mudl it will ..... 
Daq: RId)..n at. furd prioI!:;" "I'I'fY 
.-,.:' Tbe ~ Ms aIIo brIlIom 
...,. fn:m another '~jIItttno:" 
corn;mIics ~ in -tr .. RAD 
1XIIIInIII:t ...n'"wn~...m 
of findina: 1hetMd_ in prudlJtlOl. 
when! lheJ CIDLIId m:ooe- thrir u.-. 
__ Noor ~ iI btiDc in­

tnIdoooed ill ~ pi.- ol a pn.xIuo;t'l 
e'dution. "\bu c:aa brine a pro&nm 10 
I ~ ~ 01 maturity, and fLDd 
,aundf in compdiban 1\ ~ __ 01 
the prIICnIII.."' I" 0Ihcr .....:b, U)'5 
Mvx. the NIcs bI>e ct.anpd _ '"Ibr 
DId .,..." ol man., earl,. ........­
with _ -...co: of Ioac~ 
payt.ck" iI p.e. "\bu &ill ~-..e III 
make early ~ but thI:-... 
aa:e!hlll theft wiD be I p;oybIdt in lam 
IIICfS ill ..... " 

" \/\Ie', be U:I<y to 

mantain three percent 

growth:' ---8owes 
CcntI"ICt o:\eIaylI an: another problem 

b" cootral:*ln,..,. Bedan:l.. '"The oer· 
n;es kftppraniBirwlNta;mrr.cuwill 
be III-.oed, end tbN ddI:r them • ,.,..« t-. Sonor com~ blow mil· 
__ 01 doIIanr;~ lOaet __ -
they can't wait that Iaq." 

"What aU ttUs boiII daoom (1)," tori­

cWeI Mus, ". that tile ~"Is 0( 
fInIin&, !be Pf'lCTUJlIItn.'Idt-oua that 
hrooe '-" ~ ...t the IIhifma: 01 
ri1k. all maIae tile ptdl~ .... the 
de6er'III: oom.:a -a. lea reIiabI!:. s.. 
thilm-oio""m'lIIt ill bo:comiEc. fn:m. 
~ IIIDIIpoiIIt. 1I'IIn difI5aA and 
_ miabI: II>:)' .. .u:tnc:ti-..e." 

TD YmW ,... • • .,.. 

a.-~thalthI:~· 
mry~;"1IDIIabIe. '"The~ 
uWx.. an: CGnlitantIJ ~ c­
pal contm..e. OCI be 'lei')' ac:tM in pro­
curemenI ~ An fi. .. in Ibe 
DOD hz¥e aid \hoot pcrlIiPl it', time lor 
~ 10 ....... !he Iqioblion clown -
let't iIIart WIlItinI with what they"w 
poe.. ... E~ owek.mcftltabk 
aroin:wneaL" 

ko:Intio"",, ... _ t7) 



SDI 
h~. Lim:oIn LaJ,.is ... conductir\i 
~ in tho pcvpIIptioo of 1Uih-­

,, _ ~ luer bNma. 

......... 
"kIytheorI is not a ~ SOl contr.lC· 

lOr," liars l'Ililip Phalen. the senior vi« 
prHoioknt of corpontr muki:ting at 
Kaytbem. " III tho: fiaaJ )1:.Or 1986. "'" 
~ number 26 in the number of SO! 
C(lnllXt • .warded. MOIII of the pro­
grlIlTJII which we ~ inYoIYed in thai ~ 
ICmY c::onsidmd SOl ~ aisIed 
prior ID tbc uistena: of SDI. \lI" W(re 
swepl un&:r u.. SOl wnbrel!.1:' 

lUy\heon', cootribution t.:I SOl rnn· 
lists 0/ a $115 million contract ID 
dr\",1op ~ prototypo: "tennirW imaging 
radar" (TIKI S)"Stom. The ...,.-d "In' 
rninaI" ",,",,, I/) tho rtnal ph~ of the 
SI)] .,enario - <10: ........ apinst intom­
ing nuclEar .... SIIilea whirh ha", manag­
ed 10 reenter the Earth', atmoIIphe ... , 
The funds will be used 10 lXln~rucl a 
phaxd amy radar sysIrm which WIll be 
UIO;'d 10 de"""",~ .and experiment 
willi ~ Il'cllnologies for Inciting in­
comin~ mlCl'CUIfinmtaJ balHltic mi.­
&iIes. Thai: ~ iI is ~. 

will enable the U.s. to dismmiM~~' 
I'ftfl 1I\>Clear "'arheads and ~ war· ,..,. 

Thto ~ric Dl*nse Inil~li", Of· 
rICe is jus! one of many fedmJ agencies 
- incIudu., the Air f~, Navy. NASA. 
o.partment at Energy. and National 
Scienct' Foundation - that is fundil1ll 
SalCon ltchnology Corp. of umlJrid&t:. 

Stile.:.. was spun off of MIT and 
Drnper Labs for tile purpose of devr.10I>" 
ing magn<"lic devices thai cao suspend 
objl'<:1S in space, and thus stabiiiu. is0-
Late, and cootrol them to a much finer 
degt'l'l' than was flOSiible until now. 
Magnetic suspensions could create 
v"bntiOQ-free environments: magnelic 
IX!inl~ Jt1OW1ts could be used for 
~~~pboIography;and 
magnelic beari"ll" could be used in OIl­
lia! compUter ''''''I'l0l')' devicn and buf·
fe~ One I'll SilICon'. projem for NASA
ill"" developrnet11 01 • magMlic oon­
!rol system 10 support a 1.2 million rpm
rotaling mirror s)'Stem: otllo:", include
nywl>eeel energy ,I(I~ systems and
momrn!1.lIn exchange altitude conlf!ll
system .. Th~ finn is 'lOW cundocting
.-esnn:h into 1Ilag""lic beMings lhal
utilize supercondu<livity. 0

Chubb
("",,,.001 from po,. 24)

~_ And, by the "'ay. there lUl' a lot
of pe<l!ILe in lh.lt business in 80ftw;lr'~
and in ~1ectnmics, SO ii's ideal for us.
and WI:' ~~ rn il. So I~!'! a ptaa,
where the laws ~"" bee:t good, """""
the ~ bas made it happen and
if you didn't ha,,, the 5I~lIfIh of the
t.urt.aucr3CY it "'<)Ilk! bave never hap-
1II',1td. frankly, And I!>.re', all lhe
business available fur lhoee tolb that
they wanl.
N~', there are t....., sides III that ,wry.

I'VlI<'tI tlley gel thaI bmille$S tiley'"" got
10 perform. ~nd usually tlley do. aome­
limf$!My don'l.

M H"r. And }'<Ill personaDy. what kind
0(relalioNhip do }'<Ill ha, ... witll the
civilian Leaders in the teclInoIotlY - do
yuu nlakto contat:1 ""'Y w!ftI with your
COUIIleI'J)IrtS OI'I'T at ~ and ~
firm~ __

CHUBB: Aboul 0lIC\' an hour_
MH'n So it'. a 11fTit)' dCR working

relalionship?
CHUBB: We'"" <lone 8 tOllPIe of

thingl. fl~. we run iI Jnny inlm2
opention IlI'OWId here with the contr.lC·
ton:. 11I-1t',OI\(' Ihing that'scaweda lilt
of contact. the othtt is we starIN ...
councU (Ihe Milit:lry Albin; Council)
~ ~ agO as an eocpniment. and thil

NORTHROP.
ONE OF

100 BEST COMPANIES
TO WORK FOR
IN AMERICA. I

f:1ljoy tMulLsfullon of Wtl'king for one nflh e 1 00 i>nl e<lm pan ics In America. NOflhrop Is ""nsiclr~
nne ort he flnhl Wtlrkplace .. ror)'Ou l/J ~nj")1 pcr.'o<'nalathil ... '~mcnt and udVa nCCOlCnt.lfytlu ar~ luuking
(Of h~h villibilily}'Ou should tun.tller th(· (oUnw;n ~ op p(>rtun ities currently available II Nnrthrop
I'~".,,, "rodUt l"-

Manager DaD Business Planning & Analysis
You willII<' involwd in "trategic husin""" oVP"n unily rl·ah,atiun. analytic .. 1 modellnll- d~la Inler­
prdllion and IonM-tum plannin~_ ln addil ion.)It,u,1 pro,,;de d~lslo.n sU ,!pOrI W up~r ,nl"nagement.
.. nIl "", form Ad h,)!" n~w bus,,"'s.~ (I'rodllct Bnd ~I'pl"'m ~>n) Id~nh'lCauon a nd plnnnlng.

Wr 31'(' ~"'ltin K fur ~ mInimum of 8 10 Y"'a'~' rnml,,·t it;v.. indust ry "na ll"li:!, 'I ral~ bu" 'nes.
plunlnK and ma ,'ket ..., ... · .. rch and/ or2·:J y,.'a",· flna ncial anab.,;!" and plunin,.. You 3hould have ,!n
MUA in Marl«-tlngl Quanttt/llln.., Melhods Of an MS In l::co""mK'll or the equ"",,"'nl uperlen.,., In
Slral~ Planning.

Manufacturing Prapasal Manager
In Ih i$ challenging ","il ilm. you ' l Ilrl"'''l~ ~"idane~ in al' l,liCDI ion nr k urn;ng (un.~ , 1\1."01)' in ad~i­
l\tIn to managin..: th~ coS! pr"IJO!I~ 1 S\l I>p"'l MatT_ 1'\<>.·~LOp ~t pro!".",al p~pa,atlon . lraleKI<"5
ron.lott O! with Ionll-t~rm I""~ram go~ls, pr~parul~ rO nll"'''''''"" nf tnln pcu tor !ltrateg)' wh~r~
a l>pr;':al.!~. J)ct,\S~>n mok ln!: ;\\lllh'ri\~ fO<',,$O." Ion 1'''>llun 00"' mode~ dL ~lopm\'ot and d"'~nnloa­
IiI.n or Irue producI 0..,;1 . You Wil l al!oo _'U l''''''' "1",1 p roPl~ ls dU'.'~1I ru.t?,!, er f""I_flndul, and
.. qeol.al"' ... nd prepare COSI I""J~ I ",.rn.·~·"'. for rn:1na!l~m~nt I"IC ,"~ d...,,,,,un!l.
If YOUt up<'ricncIO ma lrhe. Our ... ·qu"'cll1cnL ,nl<· I'nj,,)· II", satisr~\'II~n an~ r~w.a~d" ,,(working
.1 N"nhrop. W., ,,«lOr <'<Inll",'i til'r ~alar;" .• li nd" ... i,l,· ranK" ,,(I>rn~r. ts Inrtud",~ VISIOn and denIa l
rar •• ",1 • co"'puny ,,;111:0 plan . To ~arn ml,rc. 1,1<'a"" s, .. nd your II'Su n,e I.,: lI olllan Rtw.....,~,
Dept. Miff, NI>rlhnop P"""islon Prod ucta ()t"';¥ion, t OO Mo St...,d, Nurwooci, MA OZ062:.

Nurthrop ill an Equal Opportunily Emplo~r Mlf'/ JI/ V

'l1O. 1(0) I c_roon"," T,, "·"'~ f .. r In A ·. , '"",or.nj!. , .n,' K""
l\Obl 1 "" N A n 1.oI ... O)'.n "'~n" on" I",,,,. .. \,1 ... "

NORTHROP
P reci$lon Pro ducts D'vl,io l>
Ele~ t ror\lC$ S~stems G'~p

",as mostly 10 ~ c.ontaa with the
non-d~1enst people.

Geno:rany those Ihings wrk ""U ill
o;man tawM ",here there's a b;ue and
the \aWn's ,""ry dependent..., the base.
but gl'nen.lly may or may net worlt. 1I,,1l
around Iar&e cities \ikIe BoIt:n H_.
hen-, the prfticIenl of Bay8;mk, Gik:I
Mosher. ~ 10 taRGn the chairman­
ship 01 it. and that brought with ;t a lot
of noo-defense peopIt and brooillt "ith
it ~ttillg the ..uti out 10 the 00II*
fense world md to smaU bwl_ That
(the MAQ still rtlates (to them! that
they can eunpelll' on things thaI they
didn't knoW about. That's been a real
5lIC(:estI story here ill the 1a5ltwo ynrs,
far beyand anyt.'Una: .w: ever be~. A
lot of the credit goes III Giles Moe.her
and the teiU1l thaI he'llO! \IIOfkin~ fur
bim. ~ in lhis a.teI didD't knIJ\II
much about Ib.Docom or ESQ but 1I0\Io' ..,d.

Yw'rt Otting: a gre;tt clul 01 (011-

t~ny QYI'I" how much ddenK rtaOy
means to the SIlIte d MusacltllSC'llA,
and some ~ !III)' it doesn't mean
anything. But. in !act. ~ is
fourth in the I12tion in de!enae doI1an
right !lOW. We'rt the third Jariest ''buI­
i...,.." ill the state. We'"" &ot: 29,000
an on this bIK. just III Ii"" you an ideo!
of ..,..n ~ inten:st OIl thia baH:
ill ~S«Ito'.

'We p<nbably =<tll: in the Middletlex.
Counly ..-u 50-70,000 jobt_._worth
$1·2 billion ckpmdina 011 .,.". you
cakuble it. And ycu can taR the rom­
binati<>n at the defenao daUan in tI:Iis
lillie and the high teeh ...n.. particular­
lyon 128, and the edllCation bast' ~th
Khools lilu MIT and 30 other urn,."..·
sitiesarnund ~ and you'"" rully 101
an """itinM kind 01 buSi!leS!l oppomtnj.
ty. Most 01 lIS believe that's why }'<Ill
don't ~ any unemployment OUI in this
~rta - it's lhat factor 01 the t.l\noe of
IMm going together. You pUU out any
one of IhMl and it won'l happen.

N \A01! alJO bel~ thaI !lUI" own
busillC3l, electronics., WDUld ~ ILl 'lay
in Command and Control bKallK you
Iwie to ha,." il. particularly if there's a
scale-<lOl'o~1 ill nuclur m ... il.,.. It be­
~omes even more critic:al , W. brl,"",
thaI IJIlf bud~1 will ~nd to $Cly I1>Ift
UI" less the same through idmirlim"ltionl
wheresssomeother"""""..t>ere }w·~
"""""Ioping bo4nd nt!W weapms. the ~
tems may ;0 ~p and dmm. So \A01!
a continuing good economk situation in
this a.teI because of the de("nse dollar.
high te<:h indUWy. and the tducation
ba!II!' thai aiMS in thil 1>/111 of the
Non ast.

MH'n Will MITRE he expe<:ted 1<1
grow mu<h?

CHUBB: No.!N}Ibe a little. but not
much. The n:ason far th.l\ iI, and [think
;I 'S correct. lhal Congr..ss Up" the
Department 01 Defense at ce1<tin ~
bolh the mmtary and cil'i!ian sides. So
rcganlless of how ~ our busi_
",I", OIIr numben. of people will s~
rooghly the !WI1e. And roo "ill say,
'how 1110)'\l'U han<l!(' tb;ot probwmr
Well .)'UIl shift rno.>re oC the work 1<1 the
conl",c\or. " 'hieh hu its pros and conI.
li s "coo" is lhal it'.lu.rd for him 10 mtl­
Iy locus on }'OUr objectillel as ~H as)'OU

<M.
MH"r. How ~~Iy do yuu e.-.tI UP

mall2J(i1\ll MITR E?
CIIUBB: W~ work I'e7)' ~Iy with

I""m .
MH'n But ~ptfse'Do)'OUteli

"Cu" Z",ketIMITRE President! whal
10 do?

CHUBB: V.~ll.lNIna~ .. the......-ong
trrm. We'", gOl ~n Prpnilation ~3Utd
Electronics ~ Oivision. MITRE'.
job is 10 provide syoCVTI enginteri~1I
support to ESn Now thaI doesn't mean
J go 11\3J1agt' c... Zr.!1tet_ ThaI m9llS
Ihat his organization lIM 10])fUI'ide 10
each uf our progra ms. AWACS.
JSTARS, SOl. te<:hnical support fot"
neh of thoo!: pct>pl~ "orking on Iho6e
pro!!, ;. That '. a,ry direct and 3
.",,. relationship. Bul M ;"actual·
! 'n~cnt rompall)'. bul char­

\\'" .~ 11,,- u' up here. 0

20
UU'tlllru ItUm

M~HIGIfm1J March 3O-Apri 12, 1987 SOFTWARE FOCUS

CASE: The New Force in High-Tech

"We have Wee
themes: automation,

integration, and I

reuse." - Addelstcn

thai has alrudr bto<en doole. t'Unhc, ·
_ . most people whodesip 0'
I~m. a~ .educed !(I pencil, ~pt:\'.
and ~mplala toaRu:h DIll. ,lIIChi
anddoco ~

Slna! the &fly 1980&. dnn P"'"
IirAionaJs ~ "-I ~ lew illiet in t""
hallie 10 cru.~ ~. bo4·f~ 00!k
- blrth",&"O<:r.ll ion IIl1V1"gt'O., colli·
pilen., debuggera. and tilt> liM. But M·
da)', new bill .te ernerxillj whICh
.tpm.I up "'" ~ion _nd impnlW:
the qualiry '" toft~ ~ lher
mab ICl an ~ II'I<IusIty u.. lias.
In the lost y,:~r 0< two. COfl'II' 10 bo>
~1\OWtI as "CASE" - compul ~ickd
IOilnre cniine<!ri"~.

Tho-~ CASE ondwry pn;!'Iocn
100II10 aulu!Nle lbe job 01,;ting and
mainWning (a.. fi~"" updatinj(. or im­
Pf'J"'i",r)sollwa~. mIXh 8SI CAI)J(;MI
and CAE do /ordetian enJI~ d ... ft·
o:n. and ltWIufIo:tUfffll. It', a long p"""

c_ with many *Il' - anaIyrinM: what
tbe "I'<\~ pp:1IC'd 10 do (II wk
DIlen und.erukrn by or ... dh lhe tr\d.
~,~ sotl;ng p....as.e $PI"-~rltlliions:
d.,.iglll!li 1110 1)'Slt'm: =atiow ",,11., 1
code: I"'-i~ 110 • .,(1""",,, 1<1 rna ure
il if; ermr-r and Ioiic:~ny co;ln1iiu'nl.
doei ... b:K iI ;, SllJlPO*d IOdo. "Id l'\1li'
... 1ho.1wd,..,,~ pbtlorm ~ 15 n ... ~t iii
U[aile; and m:"n~"'''lI I "' Al Ihi. early tGl#. 1M CASE In­
duwy li>n.u 10 dlvKk u,,4 til"", Kroupo.
_ eompaniet tha, provok " fTOlll ~nd"

\oQIs b- des.ianint: $OI'l wa~ IRICh as I,,·
dex 1rcMolocY 01 Cambridgl>. Cod
~~ 01 f'roYicIeoo:. R.I.. N;lNL't'
tI SoollhrlCld. M och, K_'lfdll"w..,\· 01
Ann MOOr,alMI M,>cDa"ICU· I.IouJ:h"~
51 Lwis; firITIl !lilt oller ··hJck..:od··
~ms f<1r in"",..,.!..:.,I!y R~
code. incluo.tin¥ ~ eCA. Sag.!

"CASE" has the potential
11) change the way we do
business - and local

firms lead the way.

So(I~. Mkroil).:us. and TtiII',"""",
I..o,tk~ and 11 ,."1011",, cin:1r: of eoonpMOe!.
which "I("r boIh.lllL·!uding ",""x Cor·
puralioo 01 W~hham and h", Cam·
bridge-bIKd r lIiJbet OrI\er SoIt·
~ and lI aml1ton Tt..-hnulotlit:L

Sco.nl ",,,H·Iu\oo."ll h)fl:h ted! turn·
pMits ~ p;orticipal"'i In 1"'5
market. Boi.h CuHine, and Wang Lab­
OOItorilm hII"! com~ OIl! with rront~nd
CASE IDOb Ihill \11m in thcir CM1I el>­
>'in:-lmenlS - CuUintot·, flJ." SIAl'fkdtd
and WiII>jI t... ~ SOOtIitM. dncl­
oped by lho: Ibnlord lnauranoo Group
' 101 \he WMl8 VS opmIlinr 0)'Wm. DEC
"nd InM all· ... iII til· ukl ry 1lboIet,,,n;
\I) be dev!:lopIng CASE toot. <If lhI!ir
, H PIO'l>Yet. 00 """'ll'Iny domin­
alN thil ntw IndUlilr)'.

E..., II this t3rly suet. ~ II cll':ar lhat
CA~ will not '"1ly chanlr ,..., "W
romP\lI"'~re o.ood _ ~ ~ change lhe
c<rmPlil<'r industry. CASE IuuII can save
lime .nd Ihuo money. ThtY can free
aoIlwa~ dtYtlopers for more in'potUnt
wks llIat call lor lui.....", ~I.
and speed tme 10 marlarI; lor «>mpanie!;
lhal se~ eoft e as a pnocIuct 1lI";tII a
<X>mpofltfl\ 0111 Lv.,.,-II}SIlm. And lhey
will h<>lp fIUI/lul3oC1II!erl of non~
("(lOl'I'",,,,,,.,.,.:h M parnlkl proc:cIIIIOf'J by

.If'''ItDtt'i /1tI ... ,rllHl. JIIr&WII' fI/
/l1l",i/IrIu 1/rlI1II>Io1/.';""

,'NIhiinJl ltk-on h) b" iKl · awli •• uoons
~ q"io:~ly, inti 10 port old applit
liOn" men nslly CASE. bt'«lrnin,(an
illlJ""'~"~ rn."'~1 'II' "'OfkM~~iort ,~,.

Ultenulrily, CASE well clt.~ I~ " ""'.
wurk ;,. donO! in MIS al>ll RM) ~~p;1"­
"U''' , .. h "111 C!'Nh' l~'W ."wl ... 1 '"''''
:Ij(~"""" :.iII 1I)'5k'~ """ll)'1115 I_I""",
and d,m,1\OIk IKh._'fS. 'U IOU ~'" ~ P'1
WOI;n/(COROL ~ppbrMlOIlf, I""" I
",ocld J~'rl Iuokrng h ulho .. ,hin)r<~ ..
,Iq" B;t)'II , • .., CI\.<;I:: "~'~~1'" '~'Ili",.
"If)'lII' "" , ~ !<}"lo:'n~ Pl1)II'r~",,,,,·r. \ ,",
an> in 1It.oo ~I\;t"",:' h wi/l ~h" haw ~'l
,m""" po,CAOCAM. Ukt>C,\I)ICA"!.
CASI:: IJlnkli , l'" .<hlk' ~ ~I

CASE tools could bc<comI: fnml-fllC!
!Iy1tC1fIS \0 CAD/CAM ~"'ms. 01"" ...
brlic>t' ,'''' 1"'0 Il'Chr.olctlics could ""'TIC
<by compete. IndUJI:rial ~""" lila!
0uJ\>n1 a~ alrmy using CASE """"
\0 ~I bctorU ~ prnasing plants.

1111: I'(>II'nIiaI at CASE is 10 jpUI that
14 at Amm.:a·, best knDwD and ~1
~ znd dd~nJecornP3l'ies- in·
d ud;nl f!oe;n • . GeIlCI1IL ()ynamj~
I.oc;kheed. Northrop, allCl TRW - """"
04:1 up. jaint R& 0 OIpnil:l.lion c:aILtd
"'" Sofl..-an: P,lIIh>ctrrily c-..n,w.o
\II lIestor,. V3. ThI: mistoion 01 lhe Con­
SOItNm', 120 ~alf membefS is 10
,k:wl:uP CASE ttds ijlI" missioo-cmO<;al
!OI'I"",,,,. T ho: group Is now =atina.
1,brnl1' 0I~ "~d functions··
~ can br oonliruml to partiruW
~;n>nfnt>nu. ;tItI'In'in.tI CASE IOIlII
lrom lbo:· ,'ft!i~ 501"1 .. __ ck ... Iopo""n~
'')'Ct.., AAd 'IIU'/,.ornlonl CASE 1OOl" wM
projc!cl managemenl 1001 .. "W~ h _
three thtmes," says Jon>lII:In AddcWDn.
vit.~ pmidenl 01 Ole ConSCll'tNm'.IOfI­
~rt producl de.,.k>pmnol group:
""automation. in~l-' and rnI$oe."

!lUI h<>rf in lhe """Ie 128 belt. cOm'
",1;1~.' Mher llIln conpcr:!I;on is Mill

II .. , ruk',~,,) lilt I>tg """"'" i1 (A~"E .,n
"ill,tl '....,.lMn~

Two Cartohndll"ba:oOO C,\SI:: lim'­
"""'" IIJto "'ffiI' fvundrr - lI i~h"r
Order Sof, ,,·,, . ,, (HOS) ~n '
IL .",i l,oo T,'t'hn() I~cs, Inc , (t lTll
The IvI,nd\'f" in .'00",,"01 >6 .\b'\I~n '
lI"millun. ".t.. ""lI~ itt c1l;,1\"'0I d''''''''~l
on~ IIJto _!~'IOlMI ... flw: .. -" I"'" ~~ .. I
~ IIw !\poIlo Mlruoa~1$ WI'" n '
nil' oomtnon I h~iId tllln um"'> ,I~
'\ PI~1o '''' .. '''' aM tho.' two l'!II1l)l:l""'
il I bon,l wn'~ <1U.OSI 10 wrilo' ~m' ... I",
.. ,tt.,.."""

1lij,:1 Order. I bnullan'~ fir.! .,,"
,....." rrIr::I,,--d ,It U .. /I .. ,"*", in 1<1.'

• •• , IW. l iIImal"101 ~ M. - If ..
quo!\.."",nl. a .. ' <'3\L1I on _ 1"'111., 1 '
pr-.ocIl'."31 "'a)', 11>;"", '" I'Ull':><I>Ir 1t)"H"
""litai1y 1"""I~h' rtoquiJ1:n" ·,,, <I""
ml'nl~ inUt lo",cr ·I~ .. d, 't\.~hi,,,
... ad3b1e. DOClIIaI)Ir Ir)<ms.'

. '._ Maol:lln"l t b~ ,~, "," ,
m~"n'~ Ib",.b(", t.,·Iv • • ,.,. "
I'k n~ 00 ,he h'Wh tOO ,4 C.'~I
\I'bilr: II~tI1ilt"" ~uu..,ribn;~, til,: """"
pI"""<!Ph ... ", 1M! It-II "' IIIe &~'.i"I»"'.,"
,~ 1',....11, oh., ;~ dl""'k~Mn~ ~ "'''
It"-h"'.~'. caLk-d fJ(JI, '" bo.~I"tI! .. , ,
dclt ... , sc.(AlIrr !!)"l>I<'fn. ",,'h~ h "'
undL'1$W>d;lb1c C1jJOtafon: on """:OL
I .. ,,):" 300 <1"' Cilpabk· Q(It.uMlI,,,,
·ch~n)..'I: ~nd llIto "np"""'c~1bl.,' II,

;orr ddm,t,lIy a C~nd ld.114· for .""., ,,.,'
rul~" AAo:

But ~1l<'I" 11\.,,, "' """ O~I . ",·_b,·"
_"-,,, .. , H", ... 1Ioot i.; 10./<\ wdrl"\~ l,,,,.
S)"""'tlS bhtfdltnU. ~ ,. '>FII,.. r .. ,
tncn-~i(', ",,0(\("1 III M ,-.lI lt\' I. ... ,,,.,
'."hardw;,1l', "'" II",.. ~nd """,,11t»';l,,'"
lorotl~(""'I,.ny 'n>!! OI!>!!r "hr~1 i.llb
Ud.'Mr' n;.p;nlllk'fK'S !'!>I !""~'" 1

r

1984 _________ _

•

Higher Order Software, Inc.

_______ CompanyProfIle

TABLE OF CONTENTS

WHERE WE CAME FROM AND WHAT WE PROVIDE:
THE DELIVERY OF AUTOMATED SOFTW ARE ENGINEERING 1

Our Market and Our Oients:
America's Leading Corporations in Every Arena 2

OUR LEADERS:
A HISTORY OF EXCELLENCE IN MANAGEMENT S

OUR DIVISIONS AND DEPARTMENTS:
WORKING WITH YOU THROUGH THE LIFE CYCLE 8

From Initial Contact to Purchase with HOS 9
USE.lT to Manage and Support Software Engineering 12
Technical Engineering: AdvanCing the State of the Art 16

WHERE WE ARE GOING:
TOW ARD A HIGHER ORDER OF SOFTW ARE 18

THE LEADER IN COMPUTER-AIDED SOFTWARE ENGINEERING
NOW AND FOR GENERA nONS TO COME 22

HIGHER ORDER SOFTWARE, INC.

WHERE WE CAME FROM AND WHAT WE PROVIDE . .
THE DELIVERY OF AUTOMATED SOFTW ARE ENGINEERING

Higher Order Software, Inc. is a software products and services
company founded in 1976 by Margaret Hamilton and Saydean Zeldin to
develop and market a revolutionary software methodology and the USE.lT
products that express that methodology.

Our products and services have developed through reinforcing stages
of implementation, evaluation and enhancement from that time.

In 1984, we number over one hundred employees and are
eminently eIperienced to provide you with a complete commitment of
support unequalled in the industry.

Quite simply, HOS stands alone in the delivery of automated tools for
computer-aided software engineering.

Our methodology makes it possible - for the fir st time - to employ an
automated and verifiable approach to software engineering throughout the
entire life cycle.

This means that the software engineer can now use one method and
one graphical, interactive tool and design io one completely interlocked
process of project management and implementation. In fact, HOS and
USE.!T enab Ie you to:

• Automate the software engioeeriog life cycle.

• Automatically verify the logical completeness and consistency
of all design components.

• Automatically generate correct computer code from a verified
design.

The delivery of computer -aided software engineering means
tremendous productivity gains for everyone involved io a large systems
project -- and corresponding impact on the bottom line . . .

OUI MAHEr AND OUR CLIENTS. . .
AMEIICA'S LEADING CORPORATIONS IN EVElY AlENA

Applicatiolls In Every Category

Because our methodology captures the high-level abstractions at the
foundation of all software engineering, our clients can target USE.lT across
many traditional application barriers.

Our market stretches from banking to aerospace, from database
design to communications networks. Our clients are using HOS, to cite but
a few applications, for:

• Design and build microprocessors

• Construct program mabie controllers

• Simulate eIperiments for the space shuttle

• Build a fault tolerant operating system

• Create human resource management systems

• Interface to industry DBMS products

• Build weather, seismic and other geophysical devices

• Develop a communications network for funds transfer

• Monitor a major manufacturing facility

• Develop a financial modeling system for end users

Partnership With Distinguished Clients

Historically, our clients have spanned a wide range of commerical
corporations and government agencies. The clients who use our products
and services are richly represented in the Fortune 200 category.

We don't sell to these corporations in the traditional sense. Instead,
we enter into a serious, sophisticated dialogue with them that has decades
of future relationship in view.

- 2 .

Our clients must qualify us . . and we must qualify them.
Naturally. we spend months of our time to develop the trust and mutual
commitment needed to conduct the professional collaboration that marks
true software engineering.

A partial list of HOS clients includes:

ADT
Allen Bradley
Army - Computer Systems Command
Bank of America
Boeing Computer Services
Cincinnati MiJacron
Citibank
Computervision
Control Data
Data General
Dept. of Transportation
Digital Equipment Corporation
DuPont
Eastern Kentucky University
Eaton Corporation
French Ministry - CNET
General Dynamics
General Motors - PMD
GTE
Harris Corporation
Honeywell
ICAM/Natl. Research Council

of Canada
Interelec

-3 -

Lockheed
Martin Marietta (Dept. of Energy)
Matra
Metra
NASA - Singer/Link
Raytheon
Research Triangle Institute
Rochester Institute of Technology
Scott Paper
Syscon
Systems Development Corporation
Tascal
Teledyne Geotech
Tens Christian University
UCCEL
U.S. Navy - FMSO
Naval Weapons Ctr. -

China Lake. CA
University of Delaware
University of Michigan
University of S.W. Louisiana
Wang Institute
Westinghouse
World Computer Corporation

HIGHER ORDER SOFTWARE. INC.

OUR LEADERS. . .
A HISTORY OF EICELLENCii IN MANAGEMENT

EIceUeace From The BegiDDing

Our co-founders, Margaret Hamilton (CEQ and President) and
Saydean Zeldin (CFO and EIecutive Vice President) have pioneered a
continuous history of eIcellence in management:

• EIcellence in the management of research.

• EIcellence in the management of large software systems.

• EIcellence in the creation and management of Higher Order
Software, Inc. from its beginnings in 1976 until today.

Margaret Hamilton managed the Apollo moon program's on-board
software system - an eItraordinarily large, difficult and sensitive project.

She was fully responsible for two hundred project employees and a
budget that, in today's terms. eIceeded two hundred million dollars. More
significantly, she bore a large share of responsibility for the safety of the
A polio crew.

Because it was so vital to prevent software errors, both Hamilton and
Saydean Zeldin (who supervised one of the sa project groups) were forced
to pioneer techniques that might have been theoretical in an academic
setting but were a matter of life and death in space.

The very success of the Apollo program led to a further round of
research. This, in turn, generated the HOS methodology and the AXES
language. Higher Order Software, Inc. was founded with a mandate to
develop the commercial implications of these revolutionary discoveries.

-5 -

•

Breakthroughs have been leveraged since then from the solid
foundation established at the beginning. As with the Apollo project,
Hamilton and Zeldin have never enshrined theory over practice. To the
contrary, advances have been predicated on this principle:

As we meet customer requirements and distill lessons learned in the
actual practice of software engineering, Higher Order Software, Inc. will
maintain the deserved leadership role within the industry.

The Tradition Of fiICellence Continues

In 1984, we are proud to announce the addition of James Frame to
Higher Order Software, Inc. as Chief Operations Officer and Encutive Vice
President with direct responsibility for Marketing and Sales, Advanced
Support and Product Engineering .

Frame brings to HOS an immense range of management experiences
and skills that uniquely complements tbe innovative pioneering of our
founders.

He was the first corporate Vice President from the Programming
Division in the history of ITT. While tbere, be supervised 9,000 software
engineers and increased tbeir productivity within tbree years by 41".

Previously, he spent twenty-two years at IBM wbere he was
intimately involved in tbe development and management of a bost of
critical products:

- IMS database management system.
- CIes (Customer Information Control System)
- COBOL, PLlI, FORTRAN, APL and BASIC programming languages.
- BT AM, QT AM and TCAM telecommunication access methods.
- OOS/VS operating systems for tbe IBM 370.

Frame's career at IBM was capped by his management of tbe 2,000
employee Santa Teresa Laboratory in San jose, California. Designed by
him from top to bottom to further software engineering, it was the first
installation of its kind in the world and is still hailed as a remarkable
synthesis of architectural beauty, human ergonomics and IBM software
production values.

-6 -

Excellence As A Leadership Team

As the company moved from a research and development posture in
its early years to the current focus on marketing and applications support,
Hamilton and Zeldin bave translated eIcellence in project management to
eIcellence in the management of a growing business corporation.

Now, James Frame, working with them, is overseeing the
transformation or HOS from a successful but small computer corporation
into a major A merican corporation recognized worldwide as tbe leader in
computer-aided software engineering.

Their leamwork and creative leadership ensures that Higher Order
Software, Inc. will remain unsurpassed not only for software products and
support, but in the pioneering of a new management structure.

It is a structure that matches the uniqueness or our methodology
and our determination to remain tbe leader in a global marketplace. It is a
structure based on individual eIcellence, the pooling of personnel skills
across departmental boundaries and the forging of corporate consensus.

Our customers reap the benefits:

• HOS salespersons are the most tecbnically literate in the
industry.

• HOS tecbnical personnel make tbemselves sensitive to
marketplace needs so that researcb is relevant.

• Special employee positions incorporate leading-edge functions
unknown within traditional organizations.

Based on the contributions or our leaders, eIcellence in management
prevails throughout Higher Order Software, Inc . . . in many dimensions
and throughout all divisions and departments.

-7 -

HIGHER ORDER SOFTWARE. INC.

OUR DIVISIONS AND DEPARTMENTS . ..
WORJ::ING FOR YOU THROUGH THE LIFE CYCLE

HOS product development does not end with the delivery of USE.IT:
it begins. Product research is interwoven throughout our relationship to
our clients and their projects.

Likewise. HOS support services do not begin and end with the sales
cycle. Our support is designed to work in collaboration with you
throughout the life cycle of each working project ... and beyond.

We don't envision software engineering as a static set of products to
be sold, but as a dynamic mix of leading edge products and eIpert support
to be delivered in mutual relationship,

For these reasons, a traditional organizational chart, while vital for
conducting internal operations, is not the best way to present HOS to our
customers.

Instead, we present our work functionally,

We show our customers how they will interact with our people from
the first day of contact to the development of an eItremely sophisticated
set of projects many years after initial installation.

At HOS, we mobilize the entire company to provide a full
complement of products and services in interactive, permanent - and, of
course, confidential - relationship to each of our customers. Our
unswerving goal is to provide error-free systems that are robust, efficient
and on time,

We measure our life cycle of customer support in decades, not
months or years. From purchasing to training through special project
consulting services, HOS is there with you - today and tomorrow,

-8 -

FROM INITIAL CONTACT TO PURCHASE WITH H05

Comparing Qualifications

HOS is frequently contacted by companies that have heard about our
revolutionary methodology and products. We are delighted to respond
with diligent care to every contact.

Our e%periences do show that companies who appreciate the
tremendous cost penalties of traditional life cycle development and are
ready for a different approach to software engineering are the best
candidates for USE.!T.

For this reason, our sales force, led by Vice President of Marketing
and Sales, Tom Lutz, places an initial emphasis on customer qualification ..
. . and we encourage our customers to qualify us in relation to them at the
same time.

After all, you need to quantify the benefits that HOS and USE.!T can
provide to your unique set of applications. Customers must determine that
we can complement their available resources - just as we must determine
that customer needs can be reasonably and promptly met.

A striking benefit of the HOS methodology is that you can freely
employ it to implement the HOS functional life cycle or easily adapt it to
suit your own project life cycle.

Presenting HOS and USB. IT

Our unique methodology and product furnishes tremendous
productivity benefits to our customers, but it demands the utmost technical
literacy from our sales force.

We recognize that everyone from senior data processing
e%ecutives to project managers deserve a USE.!T presentation that is
customized to their job function and scope of authority. HOS
demonstrations are designed so that customers can initiate an interactive
conversation answering their unique questions and meeting their unique
needs.

-9 -

Demonstrations represent only the beginning of our response to
potential client5. Our sales force is at your disposal whenever questions
arise. We meet frequently with you during the initial stages of the
relationship.

At all points, our sales force offers the utmost in personal,
professional services to aU management eIecutives involved in the
decision-making process. A serious, sophisticated product demands a fuUy
professional presentation. We want clients to know that each salesperson
is fully empowered to caU upon all available HOS personnel to meet special
requirements and to finalize commitments.

Developinl The Technical Bvaluation

BIperience has shown that USE.!T is quickly mastered when applied
to a concrete project - whether anticipated or underway.

Our advanced support team under the leadership of Allen Razdow is
brought into the sales cycle from the very beginning to work with the
customer so that we can structure a real world fit between HOS, USE. IT and
your project. The goal of the technical evaluation is to target a specific
project to USE.!T and to develop a coherent plan for post-sale training,
education and support.

This means that customers can immediately quantify the hard
benefits of USE.!T in financial saving and increased productivity and
measure this against strategic corporate goals.

It also means that we provide, through the pre-sale presence of
advanced support, some initial training in the HOS methodology and USE. IT
- without charge - even before HOS products and support services have
been purchased.

When the technical evaluation is completed, clients are easily able to
formulate an internal plan for the deployment of HOS support and the
USE.!T product.

The sales process closes in the conteIt of a firm relationship between
two professional organizations fully committed to support one another.

-10 -

Concluding Contractual Agreements

The Finance and Administration division, led by Vice President
David Blohm, works with you to prepare a contract for both products and
services that perfectly matches each of your requirements today and plots
the desired path for tomorrow.

We make it our business to carefully specify mutual obligations so
that each party is fully satisfied.

The true eIpertise of this Leam is shown in their ability to quickly
pave the way for the installation and initial usage of the product in an
actual application. After all, their goal - as with every other employee at
HOS - is to get you up and running wiLh USE. IT. Contractual negotiations
do not lead to project down-time with HOS.

The Finance and Administration division also plays a critical
in-house role in their oversight of accounting, cash maRagement, personnel
and other administrative areas.

- 11 -

USE.lT TO MANAGE AND SUPPORT SOFTWARE ENGINEERING

T rainina Software finaineers

Anyone can seU a product. But what happens after the sale? At
HOS, purchase is only the beginning. We know our success depends as
much upon our delivery of training and education for software engineers
as on USE.IT, the automated software engineering tool.

Your training is not an afterthought at HOS, but the centerpiece of
our com mitment to advance the science of software engineering.

The advanced support group is charged with the development of an
entire range of training and support materials -- from workshops and
seminars to technical notes, booles and educational courses.

These materials have emerged from the actual eIperiences of
customers. They eIpress today's thinlcing regarding usage of tbe HOS
methodology. We update them in response to your feedback and our own
in-bouse evaluation.

Because tbese HOS personnel are as adept at bands-on application
development as with training, HOS materials and courses are targeted to
tbe vertical applications most relevant to particular sets of customers.

After all, training and education are important, but we believe our
primary goal is to support your ongoing project activity.

fi:J:pandina The Ranle or Application

HOS Account Managers are, of course, involved throughout the sales
cycle - supporting sales personnel and meeting your special needs.

It is after purcbase, bowever, tbat tbeir special skills to help you
come into focus. Witb the participation of botb sales personnel and
advanced support, account managers implement the recommendations of
the technical evaluation. We ensure that your first project with USE.lT is a
success.

-12-

An account manager serves as your liaison to HOS and as your
advisor for tbe elpanded usage of HOS products and services. Our users
report tbat their ability to apply USE.!T eIpands dramaticaUy project by
project. From the success of your first project, we help you leverage
USE.!T productivity across entire families of application projects.

Although aU users report dramatic productivity gains from the
beginning, the true value of USE.!T eIplodes in subsequent applications.
The reusability of both previously verified high level specifications and the
creation of modular library components has no ceiling.

The application services team specializes in advanced consulting and
sophisticated support of your large systems projects. In this way, our
broad range of eIperience with USE.!T can be yoked to your detailed
knowledge of your own compleI requirements.

Our goal is not to supplant customer engineers. To tbe contrary, we
find that users soon surpass us in their application of HOS methodology to
their own projects. We consider that a mark of success. However, we do
stand ready at aU times to come on-site or to work from HOS headquarters.
on any project support task where we can cycle up still further the
productivity of your systems projects.

[eeping Abreast Of Advanced Concepts

In the long term, we keep customers fuUy informed of the growing
knowledge base of software engineering skills that arise from HOS usage.
Since the HOS methodology signals a new way to think about systems
design, we want to place knowledge resources - as well as product - at
your disposal.

This intimate partnership in communication with our customers is
still another distinctive and unique element of our total support policy.

At HOS, we do not neglect the support of special research projects
that link systems design research, artificial intelligence techniques and
other farsighted developments taking place in the industry.

-13-

Ron Hackler (Director of Advanced Concepts) and his staff keep HOS
tied to this rapidly approaching future. Our experience shows that the
fruits of their special research projects usually find their way into your
hands a few brief months after their completion.

Without question, the key to future HOS development of products
and services rests secure in the elasticity between HOS theory and
methodology and the implementation of that within USE.!T. This stretch
between what can be done and what has been done constitutes our most
exciting challenge. It guarantees that today's USE.!T will never become
tomorrow's forgotten product.

Quite simply, we see no end at this time to the development of
products that simply unfold the logical consequences of the HOS
methodology .

-11-

TECHNICAL ENGINEERING:
ADVANCING THE STATE OF THE ART

The Strategy: Anticipatinl Tomorraw

Under the supervision of Tom Key, Vice President of Engineering,
HOS is eltending the industry-leading reach of USE.!T and related products
to anticipate and prepare for tomorrow's software engineering
marketplace.

The strategy calls for a three-pronged aUocation of resources to
achieve measurable gains in:

Quatity: Achieving a 100\ problem-free product.

Stability: Producing consistent performance under aU foreseeable
conditions and in aU environments.

Function: Porting USB.!T to additional environments and
interfacing it to useful industry tools.

The Interrace "ith Our Custo.en

On the one hand, customers expect the technical engineering function
to be neither seen nor heard. Customers are not a beta site for HOS
development. On the other hand, our clients rightly expect engineering to
be 'felt' at every level.

We accomplish this by interfacing with you through our sales and
marketing force. In essence, we are the servant of the marketing force as
they, in turn, serve you. You will sense our presence as we through them:

• Monitor the details of installation.

• Construct the bridge between product versions.

• Manage the USE-IT link to different hardware environments.

• Respond to requests for product enhancement.

-16-

At HOS, we consider successful engineering to be the kind that is
always working for our customers - but never intruding into their solution
of application problems.

-17-

HIGHER ORDER SOFTWARE. INC.

WHERE WE ARE GOING. . .
TOW ARD A HIGHER ORDER OF SOFTW ARIi

Each HOS achievement has signaled a new era in the implementation
of our methodology through our products. This, in turn, has led us to
greater challenges.

We will continue to lead the way to ever higher orders of automated
software engineering and design.

HOS is an innovator - M a company, [Qr. our methodology and l!itb.
our products:

The Company.

HOS has transformed itself within three brief years from a research
and development oriented company to a broadly based corporation that
moves with equal ease between commercial and government applications.

Over the coming decade, we project enormous expansion in revenue.
We will use our expanded resources to increase our massive investment in
expert personnel and leading-edge product development.

The challenge that faces us is not growtb: we are growing
exponentially. Our challenge is to manage growth.

We refuse to reduce our commitment to innovation in order to meet
this challenge -- but we are just as determined to yoke tbe stability of our
corporate structure to our mobility in responding to tbe marketplace. HOS
is ready.

We also welcome the challenge to become tbe single major
educational force within the software engineering industry. With USE.lT,
software engineering can move from a black box art to a science that can
be beld responsible for its performance. With HOS and USE.lT, software
engineering achieves accountability.

In short, we believe tbat our customers deserve our commitment to
become a major American corporation as well as tbe major industry force
in software engineering. Tbey have that commitment - in full.

-18-

Tbe Metbodol<>\lY. . .

Every company. explicitly or implicitly, has a methodology.

Every product of a company expresses the logical consequences that
flow from that methodology.

At HOS, we make methodology explicit. We have no hidden agendas.
Our products rise or fall upon tbe soundness of the theories that drive
them.

Far from hiding our methodology , we train our customers in it.

Our eight years of experience have demonstrated the essential
soundness of the theory underlying our specification language (AXES) and
the automated software engineering tool that supports that language
(USE.lT). Even so, we are diligently testing and evaluating HOS
methodology against every customer experience.

Ideally, HOS products should transparently incorporate tbe full
implications of HOS methodology.

We really believe that this ideal is attainable.

The HOS methodology already encourages the production of logically
error-free specifications and the automatic generation of error-free code
from these specifications.

We consider the tested marketplace benefits of USE.lT in forbidding
entire classes of software errors to be our best answer to thorny tbeoretical
problems of program provability. While important researcb continues in
this area, our satisfaction rests with the work our customers are doing.

Tbeir groundbreaking work is the best illustration of tbe
consequences that flow from our methodology,

- 19-

The Product. . .

While most of the industry can only promise automated tools. we
deliver USE.lT. the automated software engineering tool that works today.
In fact. the current version of the product represents several generations
of thorough development. testing and enhancement.

Because the HOS methodology is so rich. there are many future
development paths for USE IT. The unique. mathematical basis of our
methodology guarantees a future path for our products that cannot be
imitated by competitors.

We know that e·re responsible to anticipate the needs of our users
before they do. And we kno we need to listen to our users every step of
the way. They are the systems engineers whom we serve.

-20-

HIGHER ORDER SOFTWARE. INC.

THE LEADER IN COMPUTER-AIDED SOFTY ARE ENGINEERING
NOY AND fOR GENERATIONS TO COME

Excellence today. . . excellence tomorrow. That is the unstated
company aedo of Higher Order Software, Inc.

We are a group of people who believe excellence and productivity
are not merely optional but are truly vital if American technology is to
retain leadership into the next century.

The Apollo moon project and the historic achievements of our
principals with that project, important as they were, are just that - history.

HOS today is involved not with history but with the future.

The HOS message is just this:

Our methodology has enabled us to produce a software engineering
product second to none in the world. The revolutionary method embedded
within USE.lT will keep HOS state-of -the-art -- regardless of any emerging
fifth -generation tools.

More important, our methodology and product is matched by a
unique company structure that mobilizes us to keep and eItend our lead in
the delivery of software engineering education and services.

We know that tomorrow's software engineering marketplace will
include major players from around the world -- and we welcome them.
We are not so arrogant as to believe that we are the last word in software
engineering.

We think it's enough to be the best word in software engineering.

-22-

Investors in Higher Order Software, Inc. include:

Alex. Brown & Sons, Inc.

Cazenove & Co.

Emerging Growth Partners

Frontenac Venture Company

Greytock Management Corporation

Henry & Co.

The HIllman Fund

James MartIn

Merrill Lynch Venture Capital, Inc.

Montagu Investment Management Umited

Newcastle Company Umited

Sears Investment Management Co.

J. F. Shea Co., Inc.

Venrock, Inc.

-23-

-HOS 'I
, Hih""f ONlcr SoII';.,<, Inc.
~

USE.IT PRODUCT BRIEF

USE.lT - BRINGING SYSTEMS DEVELOPMENT TO A HIGHER ORDER

The world's first automated systems engineering tool for developing systems with a Hid"ler Order
of reliability, USE,lT stands alone as a tool which automates an engineering discipline tor rapid yet
correct systems design and implementation.

"Automated" - USE.IT employs the computer to automate the system development process, elimin­
ating human logic and implementation errors.

"Engineering" - USE.IT uses precise scientific principles to ensure the accuracy of systems design
to produa! efficient, economical systems. No other product combines automation and engineering
discipline for the development of reliable, unbreakable systems.

fOCUSING SYSTEMS DEVELOPMENT TOWARD PEOPLE

Because USE.IT automatically applies engineering discipline to systems design, analysis, and implemen­
tation, the system developetS effectively concentrate on fulfilling requirements. End users and systems
analysts work interactively at a termina.1 screen to construct graphical specifications in a high-level top­
down tree structure. This structure, called a control map. is easy to read and understand as the user
and analyst create a model of the system .

The model is then automatically analyzed for logical correctness and consistency to detect errors before
implementation. These errors constitute the bulk of errors traditionally made during the development
process . Models are corrected and reanalyzed in an iterative fashion until the specification is error-free .

The automatic code generator of USE.lT, the Resource Allocation TooL provides the ability to proto­
type the system or any of its subsystems so that the user can dynamically examine performance of the
verified design. The ability to perfonn rapid and accurate prototyping provides flexibility that has long
been desired in the development process.

When the entire system design has been graphically specified and analyzed, it can either be used as
input for the automatic code generator or used as a specification for manual coding.

HIGHER ORDER BENEfITS

Through automation of the HOS systems engineering disci~line, USE.lT represents a powerful tool for
meeting the business challenges of the coming decades. USE.lT offers:

• clarity and accuracy through improved communication between the end user and the DP staff.
• reduced expellse through removal of errors at the least costly stage of the development process .
• automatic generation of reliable program code to match the error-free specification.
• reduced maintenJlnce and consistently u~to-date documentation.

USE.IT FACILITIES

USE.IT consists of a family of integrated system development components which offer the full advan­
tages of HOS research and br1!:akthrough technology. The USE.lT Graphics Editor allows creation of
simple yet precise specifications. The Analyzer automatically applies mathematically-based principles to
oonfinn logical accuracy of the specifications. Together, the Graphics Editor and Analyzer allow
developers to engi..neer system specifications in a productive. fl~ible way. The Resource Allocation
Tool provides the means to quickly generate program code, as well as providing a test harness for
rapid prototyping for the end user.

USE.IT utilities provide the means to plot graphic specifications and to produce English system docu­
mentation. In addition, USE.lT is delivered with a library of both useful general operations and
language-specific operations which serve as fundamental sets of "building blocks." A menu-driven
interface allows convenient use of USE.IT and also facilitates the control. management, and tracking
of system development.

~)67 Ma~u:htt:l:tts AVC'l llK' Cant hrKlge. ~Ial).'),'lchtl sett') ()o114() 617·66 I·~)I HI

SYSTEM REQUIREMENTS

USE.IT has been designed for the DEC VAX environment under the VMS operating system (3.0 and
higher). Code generation is available in FORTRAN or PASCAL. USE.IT win be compatible with other
computer and language environments in the near future.

r-
'- ./

PROGRAM
CODe

/ /'

AUTOMATWAj
DOCUMENT
liON

RESOURCE
\

GRAPHICS - ---~
EDITOR ANALYZER ALLOCATION

TOOL

/ CREATE SPECS ~ / VERIFY SPECS~ ;1MPlEMENT SPEc:§J

f ITERATIVE DESIGN I
RAPID PROTOTYPING

LEARN MORE ABOUT THE ADVANCED TEOINOLOGY FROM HOS

For more information, including technical sales literature, regional USE.IT seminars, and demonstra­
tions, please contact HOS at the telephone number below.

Higher Order Soil"""" Inc.
2067 MassacllllseU~ Avt.~ Ille

Ca.mhritI6'lJ, Massachusetts 0"2140
617-(;61'890(1

savant institute
U.K. OFFICE:

2 NEW STREET, CARNFORTH, LANCASHIRE, LAS 9BX
Telephone: (0524) 734505. Telex: 65138

PROGRAM DESIGN WHICH IS PROVABLY CORRECT
- A QUANTUM LEAP IN SOFTWARE
by James Martin
This report presents not merely a design technique but
an important way of thinking about systems which
ought 10 be understood by all DP staff.

While it was generally thought that mathematically
provable software was a long way in the future , a new
technique has now emerged from the work of Margaret
Hamilton and Saydean Zeldin which is both highly
powerful and pract ical. The technique has been
automated so that provably correct systems can be
designed by persons with no knowledge of either
mathematics or programming. The software automat·
ically generates logically guaranteed program code.
Whereas mathematics like that of Dijkstra has been ap·
plied to only small programs, Hamilton and Zeldin 's
technique has been used successfully with highly com·
plex systems. Furthermore the technique is used nol
onty lor program design but for high level specificalion
of systems. The design is extended all the way from the
highest level statement of system functions down to
the automatic generation of code."

The technique applies from the highest level of
systems conceptualization down to the lowest level 01
program design. It results In automatic generation of
program code. The automation can save much time
and money.

Its main importance however is that the logic so
created is provably correct. At last we have the
capability 10 create systems which are engineered with
a precise discipline to be bug-free .

In the words of the author:-
" This report describes a mathematically based ap·
proach which is really usable because the mathe·
matics are hidden under the covers 01 a user-friendly
set of loots. It is one 01 loday 's most important
breakthroughs in the technology 01 designing systems.

CONTENTS

part I RATIONALE • Software Misengineering
• Specification Languages

pari 2 THE HOS METHODOLOGY • Mathematically Provable System Design
• Co-control Structures
• Loops and Recursion
• Data
• Defined Structures
• The HOS Software
• Applications of the HOS Method
• Data Base Planning
• Third Normal Form
• Automated Data Modeling
• Semantic Disintegrity in Relational Operations
• Logical Access Maps
• Data Flow Diagrams

pari 3 EFFECTS • Verification and Testing
• The Effects of HOS
• The Development Ufe Cycle
• Future

Appendix 1 AXIOMS AND PRIMITIVES
AppendiX 2 MATHEMATICAL FORMULATION
AppendflC 3 ALGEBRAIC SPECIFICATION OF SIX DATA TYPES USED IN AXES
AppendiX 4 THIRD NORMAL FORM

ISBN 0 906774 28 4 To be published November 1982 price s20000

How to Order
An order for this report can be placed by contacting Savant Institute, Carnforth , England. Orders by air mail
and telex will be accepted. Savant regrets that telephone orders cannot be accepted. Price includes delivery.

Reports wilt be delivered by air parcel post, and organizations will be invoiced separately. 48·hour Datapost
delivery can be arranged to most cities, at extra cost, if required.

Reprinted b.y penrlissiotl fro m

All rights reserved.

Bug-Free Software
ilIl ill lL'l1hl!'1.I' witll {mill'S Mnrli" I", u'tJllnm KII.'IIIn1ck
liS tirelf (I/!Iv \Iwr tlw 8!'nllllrln Trin"gl/!

Leonard Kleinrock lor7Tl: We've learned to
live with so ftware which occas io nall y
behaves in mysterious wuys- in unpredic­
table fashions, YOl l tell us you 've identi fied
a soft wJH? techno logy which generlltes
mathematica ll y provably correct software .
It seems that what you' re saying adds up to
an e no rmo us revo lut io n in th e w ll y
pr,?srams are going to be generated and
Written ,

lames Marti,,: I think that when historians
in the 21st century look back at the extrao r­
dimlry histo ry which we are crea ting today
in bu il d in~ up the compute r inoustry,
they're gomg to be qu ite amazed that we
would have da red to write complex oper­
ating systems or standa rds for local area
networks using an animal· like brain , which
is completely incapable of generaliilg ~rrO r­
free complex logic . So it' s my view that th is
tech nique, Or some other rigorously based
technique, is extl'emely important in the
histo ry of computing and tb.('I t it is SOing to
completely revolutionize everythmg fhat
we do.

'TTl : Yet, univeTs it y professors claim that
such a development won ' t take place in a
practica l way until the 21s t century. Is what
you have uncovered a system that actually
Wbrks?

1M: Yes, absolutely! ASJou know, I wrote a
bouk on the subject, an in writing the book
1 had to create qu ite a number of programs
as illustra tions, and they were easy to
Create. The system is highly usable, and it
does create programs wh ich a re mathemati ­
call y provClbly correc t.

Technology
Transfer News

Tn: Aren ' t the exa mples YOll refer to diS'
counted as toy programs?

1M: Because the ones that I wrote for the
book were tutorial , they didn 't have the
complexity of " real-life" programs, but the
technique hi.l s been lIsed "fo r programs
which a re extremely serio us, fo r exam ple, a
rador sched ul ing system on a ballistic
missil e.

Tn: That certainly would require exact
operAtio n with no possibility of failure . , .

1M: And it 's an exceedingly complex
algo l'lt hm!

Tn: Why is it so diffic ult to prove the cor­
rectness o f ~ftwarc as we know it today?

1M: Because in complex soft wi.l re there are
vast n umbers of possible control paths.
SllpPOS one took a very simple example,
i,e" the pictu re in parag raph 3,20f my book
with onfy 7 blocks . . For thIS simple example

there are over three triJlion un ique paths
through the module . If it were possible to
tes t one of tht:'ffi per mil li-second, th e total
time (or a complete test would bea hundred
years! Even if o ne cou ld do a complete test
like that' , we wf) uld n 't know when we had
detected an error . So, as o ne gets a bu ild u p
of contrul paths, program testing becomes
a lmost impossible. No w this is a technique
with which we definitely could not employ
dy namic testing. That wo uld be replaced bX
upfront s tatic verificatio n which wo uld
prove that the logic is correct ,

TTl: This is one o f the fe w times in my
(Meer when I've heard of a static approach
proving superior to ;:I dynamic approach,
and ye t it certainly seems to be the case.

1M: If you look at complex projects, more
than half the projected cost is consumed
by de- bugg inS_ Fo r exampl e, Fred
Broo kes, In hiS fam o us book, " Th e
M y t hi c a l M a n Mont h ," g iv es an
estima ti ng rule that one shoula allow .. I
least half of the ('lapsed time for pro~
~ram and integration tes ting. So yo u can
Imagine if all t1, at testing disappears, it 's
going to cut your sched ule enormously.
With th is technique, not only will the
testing d isappe<t r, but the programming
is going to disappear as well because the
teclmique is, 111 e ffec t, a speci fication
I.mg uage. And what xou' re crea ti ng are
pro vably correct speCificat ions and 1 1'001
th ose s p ec if icati o ns a ut o mati ca ll y
generated code which wo uld execute.

11'1: Are you really s<1ying thtlt once one
has speci fied the task w it11 this package,
there s no coding to be done?

1M: No, o ne co uld better describe this as an
ap pl icatio n generator. We now have many
application genera tors on the market, the
majority of them able to generate only

sp ecifications of relative ly simple "ppliti.l­
tlons, but here we have an application
ge n e rator w h k h is co mpl etely
generalized -where one could create
specifications for exceedin&ly co mplex
logic. One could create specifications for
any type computing system Clnd then
automatically gene ra te a program cod e
which is provably correct.

171: Ah, ... but isn 't there a trap there?
I low do we know that' the progr<lm which
gene-rates the code is correct?

1M: Beca~se the program which genera~ e5
the code IS created with the program which
gene~a tes the code! TI1at's a bootstrapping
functton.

ITT: We haven 't rea lly described what this
bug-free syst ~m is and just how it works.
You began discussing It earlier with the
specification . Maybe you can tell us in sim­
ple word s just w hat it is ~nd how it does its
mag ic.

1M: One can represent any function by
~'\fTiti.n .g y = ((x) and draw a picture like the
[ollowII\S:

x - [] - IYl = fIx)

Now, suppose your function is very com­
plicated ; suppose, for example, your func­
~ion is to gene rate an elect rOnic transfe.r
system . YOll ' d have certain inputs and cer­
tai n outputs, Thai One block shown above is
a n ove rall s tatem e nt o f req uire lnent ,
without <my precis io n . We now want to
make that precise by decom posing that
function iJ'l to sub-functions. ilnd w~ wish 10
keep on decomposing it until we've got fI
statement of s ufficient precisio n to be able
to gt'nE'Iflt e cod~, AU u f this is done with a
mathematical risor which enforces us to
have a specificatIon w hich is ttJlltilemntically
prounbly Co rrect. O ne of the. littracti ve
(eil lures about this is thaI" your very broad
statement of requirements is made in thco
slime language, w ith the same type of
diag ram, as your more detailed s pecifica­
tions. Tn other words, there's only one
language.. Tf one uti.1 izes the trad itional Dr
d evelopment process! we start off by
writing requirement statements in English;
we might then represent specifica tions with
the aid of d<1 taflow diagrams; we then con­
vert those into hierarchica l structures
representing program design; and we then
convert those into COBOL! 50, in tradi ­
tion al systems, we've very oft en got four
incompatible languages. Using this des ign
procedure, you've got only one language!
and unl: type uf grllphics rcpr~sent ation ,
which takes liS alr the way from the very
brc.)ad statement of requirements dQwn to i)

totally debugged system.

TTl: But how ore changos hand I d deep
down in the detailed specification?

1M: It 's wonderfu l to handle changes! It 's
just a dream for main ten ance. And-as you
can imag'inc, in w riting a buok, you make
many, many changes Decause you want to
get tutorial examples. Each time ' lhink up a
bett~ r W<ly uf w riting a paragraph , I am
forced to change the program to which the
pa ragraph relates. The examples in the
book: were chilnged many times, and as I
change a block that 's lower down on the
chart (in other words, a more deta iled
block), I get an indication nashing on the
SCreen of all consequential changes which
must be made in order to preserve a system
without Any buSS in it. The problem with
making changes In complex systems is thai,
as one makes changes, it sets off a vast chai n
reaction of other trtings wh ich have to be
modified. Usually, you don ' t sr.0t all o[
those other things! and the coSt o. mak ing a
seemingly trivia l ch ange becomes very
expensive because it creates an enormous
crop of new bugs which have to be located .
Here, as soon as you make any change, it
automiltiCilJly tells yo u of all consequential
changes.

'ITI: it seems that a lo t of it s strength comes
from this common language. In the usual
programming methodologies, if 1 change a
requirement spec. I must then ask myself,
"Wha t are the implications down a t the
coding leve17 11 Here, tha t's not necessary,

1M: Yes, if you look at the typ ica l
maintenance situation, you encOunte r a
programmer under severe time p ressure to
maKe a correctio n to a COBOL program .
What one really ought to do is change the
struct'ured cha rt of the program ana then
change the dataflow dia~arn and then
change the English text which relates to
it -and one almost neVl'r dQes that , due to
lack of time; so, the code w hich exists
bccom~s succeSSive ly patched in a way
wh ich doesn !t ma t(:h the hig hc: r leve}
representations of the program . Wi th this
system, when you make il dla nge, the
representatio n Tight (r m the top to (he OOt­
t'()m is auto matically being changed . Fur­
the rmore, you do it at' a Sere n , ana yOu Ctln
dQ it very fast. O ne of my first reactions to
this whole piece ot software was that it is a
lovely toy to play with! But I shouldn 't call it
a toy becallse it' ac tually ft very com­
p li ca te d sys~em . It i$ li ke the bes t
CAD/CAM systems or the best systems for
doing architects' drawings o n the screen .
ft' s fascinat ing to use in that yO ll have con­
text diagrams, and when yo u make o ne
change 1'0 the diagril m , many other things
happen . One can make changes in an
elegant fashion, very fast ,

Trl: Surely. yo u can ' t view theentire struc­
ture that yo u helve generated on one s ing le
screen?

1M: No, yo u 'd have many inte rconnected
screens aDd a way to navigate through
them.

TTl: So, if I wanted to ident ify ullthe places
where my change had ca used further

changes, I'd have to scan around in this
larger space?

1M: Not reall y. The reason is that the syst"em
won' t let you gene rate any code until
you 've caught alT of the errors wh ich your
changes had trisge,rcd.

ITI: Blit .I thought one doesn't produce
errors with this system?

1M: It gen. erates bug-free code, but in o rd~r
to do th ... ! , you ha ve- to ge t bug.free
speci fica tions. Now, you certainly can put
somet hins on the screen wh ich is inac­
cun'lte, ana it 'S Soing to indic(l te to you that
there. is an error in your human statement
whiCh causes it to be noncomputabl t::.

TTl: What kind of ~ rrorS will it ca tch - con­
tradictions, inconsistencies, o missions?

1M: Yes, cont rad ict ions, and yes, in,con­
$istencies, sometimes o missions.

TTl : How does Ihis sys te m h a ndle
documenta. tion?

1M: Th e do umentation is automatically
built as rOll bui ld the specifications; it 's iI
b(>a ut-ifu exa mple or " self"d ocu menting
sys tem .

TTl: Are changes immediate ly reflected in
an upd (l tcd version of the dOCllm~nt?

1M: Yes, and " long wi th each block which
represents the specifications, we can put
some explnnatory English l(lnSll(lge text.

TTl: Very good I Yo u have it T'ecu,rsively cor­
rcct systcm . Jim, are you predic ting that all
exiSting applicat i()h gene rators will be
replaced by this new bug-free system?

1M: No, because there is anothe r require­
ment in what onc migh t ca ll CI computilble
specificat ion language. As wel l as the
capabllity ((IT non - prOc~dural representa·
tion w ith which one can get resu lts very
fast, o n e a lso need s extre me user­
friendliness. F r simple sys tems, therE' is
certain ly going to remall1 a substanti al
m urke t fOr USer- fri endl y appli cation
generators.

1TI: Are you saying the price we pay for
bug-free systems is that they are not lIseJ'­
friendly?

JNf: No, ihis particulM onc is user-friendly.
but it is more appropriate for creating
systems with (omple logic than for
generating for exam ple, a .simplft report.

'TTl: llow dQ these bll~-free systems com­
pOlr€' wit h th e tradltio nill s tru c tured
ap proaches to prog ram genNDtion?

1M: Most st rudured approach('s being
taught in almost all the courses offerf'd on
the s ubject in the Un ited Stales do not even
attempt to create bug-free code and cer­
tainly do "01 succeed in crealing it. If onC
looks at the diagrams drawn by the practi­
tioners of that technique, it is possible to
ana lyze those diagram and fe .. do them
with Ihis tech nique. As th .. , is being done, it
bt.ocomes evident that typical structured
diagrams arc absolutely filII of errorS.

TTl: That sounds li.ke a wonde rful challenge
to our readers. an they put some of Ine
existing structured programming designs
to the test or Ihis bug-free des ig n procedure
and 5l"'C if. in fact , Illey do contain errors?
Thill leads to another questi n of int-erest to
QUI' readers-how long does it take .m
individual tl) lea rn to use this system?

1M: I think an intelligent individu;Jl,
including one w ho has not been involved in
the computer industry beFore, cou ld learn
how to get valuable r'esu lt s with it i" two
days , But before one became an expert, like
anything else in computing, many weeks of
practice would be needed in actua lly bui ld ·
in~ Systems.

Tn: So. ca rly on, one l'o uld generate $Ome
Simple systems il nd then, as he matures,
devt;'lop much more complt'x sys tems,

1M: Yes, there have been lotsof C'xamples of
fairl y bris ht people lea rn ing how to
generate Simple systems with this in two
aays.

rn: How long did it l ak~ yo u to lea rn touse
it ?

1M: Far I('s than two days!!

TTl: Wouid the 1'l3ivt', nun-DP user raluire
a DP ~rOfessona l to at:;sist him in this
process .

1M: Not nccessLlrily. But I think it would be
better to use the system in typica l Dr install­
lions and have a professio nal (not necessa r·
ily a programmer but certainly someone
who is very competent clnd Glpable with the
system) helping the end ·users. I tend to
rl·gard it rather mort.' as a tool (or the OP
prores~iona l than as a too l (or the cnd-user.

IT,: Is there currel~t1y avaUoble to the user·
community an implementatio n of such a
bug·free sys tem?

",1: Yes, in raCI , there is. It 's produced by a
company ca lled l1igher Order Soft ware in

ambridge, Massacllusetts and the name of
the product is USE. 11" . And it runs, to­
day, on any VAX compute r.

11'1: Is that the only system o n which it is
implemented?

1M: At Ihe pr('sent time, yes, but' it can
gene-rule code w hich is portable to other
systems.

TIl: Fo r which lan&uages d o we currently
have USE. IT compIlers?

1M: It can now generate code in FORTRAN
or PAS AL; tfiey are crea ting a COBO L
generator and they have plilns to create an
A.DA genera tor.

TTl: What is the status of the documenta­
tion on this product, USE. IT?

1M: It 's pretty gO()d document .. tion. One
C<1n learn how to uSc it from thedocumenta ·
tion - e plloCjillly if you read m.y book on the
ubject!

7TJ: Is your book ClIrnmtly aVilil .. ble?

1M: Yes, it 's entitled PROCRAM DESIGN
WHI II IS PIWVABLY O RRECT,
published by Sava nt in England .

ITI: Howcan we lea rn more about this pr
duct and thi s technique?

1M·,' Read the book, and /or gel a demonstra·
lion of it frolll HOS. But the best Wily to
lea rn more aoo u.t it is to find some pr'ogram
of reOlsonable complexity and teach yo urself
how to build that syStt"1n with this tool.

ITI: The t.'ntire develo pment of the bug~ frce
soft ware yo u have just described is enor­
mo usly e>.ci ting! O nce again , it is an exam·
pie of American creativity CI t its best . To take
fu ll advantage of the technique, it shuuld be
milde w idely available. And therein lies the
rub! Onc~ It ' publ icized , (or exarnpl€'r in

you r book. do we not run the danger of
handing o ver our la test technological
develo pments to our Foreign competitors,
in particular', the Japanese! After all , they
have not been shy in ado pting our
technology and then d omina ting the
market place.

1M: We've been protected to some extent
from Japanese hardware by the fact tha t the
Japanese softw.:ue in the past has been so
bad . The question is often asked , "Are the
Japanese likely to improve thei r software
production capability in the same way that
they have improved their hardwa re produc·
tion capa.bilily 7" And one of the things that
we might have reaSOn to be a la.rmed about
is that , iF the Japanese really take ofr with
this technique. it would tend to fit their
personalities very well , I think, because
they get on very well wi th rigorous mathe·
matkaI discipline techniques. This would
enable them to create exceedingly complex
software which is completely bug~free and
easy to maintain.

TTl : That's a frightening predictio n, Jim .
O ne wOlldcrs w hat weca n do in that case to
pr Irct ourse lves .

1M: We' ve got to keep ahead!

TTl : Are you suggesting. therefore. that our
armies o f progmmmers should now retrain
themselves in these IleW t~chno logies 110t

only in applic:ation generators, but in this
particular bllg~(rce approach ?

1M,' Absolutely! No q uestion wha tsoever!
11w ordina ry programmer ought to under·
s tand that the computer world· is changing,
and if such pTClgrammers want to ea rn nign
s .. l .. ries in the rulurc (as well as be on the
v.nguord of progres), they've gOt. lot of
new learning t do-of techniques that wil l
make them, as individuals, mnre valuable,
mOrC powerful and capable. of ea rning those
high salaries.

TTl: Inevitiibly, that mea nS the universities
w ill have to ddopt thi s new ilpproach . Do
you think they will?

1M: In twenty years' time.

T('I: Novv, now. Jim , yo u ' re talking to a
university professor!

Boston Business Journal
AWfIUJ 2().16 191J4 Vom- Fow, Num«r r-t,.Frw fJ J984 AlL PIlbiiauIoM {ftC. n ~u

CORPORATE PROALE

Draper Lab tries softening its image
WWI mvtlfic wmpotU, Q rompwtriud wwin, mlIdUn •

.. -­--D eep InUdt lhe I&byrintIIin.e <;01'-

ridon ortbo o.an. SUR t:Irac*
I..aborMorI ill CaIQbridaIr. ""'1in-

en ... IlddliQ& -' diddIinI with !he
MX 1M Tridenc II lbc
~ ~~~. Y~ ~~ w~ ___ aIId. wwiar; 1I>IIdIine. The

IIIisIik I11III "*"" 'ffOd 1Mb up lhe bn:.a
NId buueI' or III outfit bell kIIown for
"."..... precisioa ~ J}'IICIIII t.t.
CUI tOd: • . MiawmI,a ill !be hip perla:
of Il MUICO'o'iu: WIIaa:- a IUOII ID Red
5quaN. lbo ~ •• dirr_ - . II. ia. ~ IIIICbiAe lila eM
(ok! IIId __ IiaIp pioc:eI of f&bric Wo

~ __ -. aIId ilia bIdr.o 01 suit <;OR!

willi • JP* ud pra:isioa fr. ~
_m CUI I\IIUia.. F ... the llaN-hii us
appwd ~. lhc ~,...,.
rq:n:ICIIU • dYaa 10 pia • c:riIieU _
in ;11 altanpl to QW orr ODmpeOUon
(rom (onipw.mnn, ~
!110M ill lhe F..- e.. foe" Onp=r. <he
IDII:IIiM rcpraci:,u III 1IlID4'\ to di_·
1iI'J ita '*'" ~ on lhe
[)qIanmmI of Oda.. trr t" ill Ilia--. II iii abo ... _pt. enc- ol'lkilb

_ .. __ ada\X, 10 IIX .. clown- ita """- III •

Current yield below TUItional median

Oty looks to state to
manage its pension fund
..... ---Tho dry', bIir..- Bcwd t... -.ad
10 I"b ill pmDoa ruad 0Is;n,.4 miIioa
_ 01 tho 01 row privIa ~

.........- -.-. IIId ill.
~ to. __ qcao:y. illilopa
01 .,..., IlIOn .. ita .-...-. AI
~ tile ruad \IAdcr1ICrfOfll1l a ...
00a.aI ~ 01 pubIio: pmAoa m-
111M. SuI !loon "" IIId pOlicy quG­
tlono lhM 0IIIIId bkd: IN swriIdI. ill roa.
001: iuue iDYoMo " pcMDtiIoIlau 01 SJQ)
milIiDn for Sher !he __ or,.
penIi<Ia JysremI ~ M-.-:hu--

~ lab ill • WIIa th.oI bas become
lhe bolbooi of Lbo o ftccc _
_. LaR No¥ombo:l', (01' iniw.:e.
Cambridco: raideIIa "'OUd clown, by 60
pon;lCIIII to 040 per<;e:IC, I rel'crmdI.a u..
COIIId hII"c rom.! IIIrilnpc:r • d>oico be­
!Weal Ibo ~ ill
rniIUrl' ----.d lilt """"",
~ its fKilily. Drapor ofl\o;il,b

.. _­_
A , rw AnIIIuoIII ~ to ItqI

on 1M _ ', suf_ IbIr. lilly
IIi&IM in 1969, alllot of f rw;:ai

1lwuIII~~·l body
lhIa 2.10,000 m-.. .",. Hamilton md
her .- o(JOftwvc ma:iDo:m hid
pdIcreQ 10 warda dw hiRuic _ OG

\dIr¥isioa -=-• a.uta Stlrk 0r.(Ia'
~ ill ~ Of !be mil­
IiocIt 01 """* for NmIuonI;IO
take "'* r_ "'II. 0IIIy tbiI II'OIip
•• Ibt CIT<Jr Iil;allIlaIIl 01'1 • 1IIOOIiIor.
~ _ wiIlIlbe "'~
_ 1M A;ooIIo L I II**nfL

"Ow ' r ___ whU," AQ/Iad

HamiIIaL Tho tI1W IipIII poniaed. No
_ IDOIcI ftpn ... -tiM hid .­
~ rw..-..--.. _ MeCIJIiaI_
01 tho EIPa- 1'lIe '- • Onpcr Lab
_ RilL SooddaIIy I.IIc siazIII JIOA*I.
AI. \1I".jfi poll, ""-I ~ on I.bc
_ .IIId till Apollo II _

~ wiIlIIM • lIkeD.
n.1O~Aid~ the

...... Cae or the __ !lad bcaI
rollowmt .. ~. cIIo:dlIbl of __
~""""'Too~co-* __ boiDI ~ _ tile o:aIIPWf aDd
tile I)'IIaa _ 0'ICI'I0ecIin&." tile 101l­
__ bad bee:IIi cIoIia-d to prioriciz. itt-
0IIlIIiaI cilia. It _ able \0 lhrow _ tbc

Iooo-priority -.adlilld f_ on the
.-ill 1Mb. n. _ l!IouatI

.. No ! ..
.~ Haalil!OO'l t __ 1....:k)I

that. time . .. it _ kDcJorrina thar. (lid:
-...IIy .- oui ilia tIrouc/Il ~
lOa to whon Iho .today. n.. 47.,---dd
m Pridon ..,.. ~ Hir&Iw Order
Sotlw-. Is. (HOSl ill ~ The
_y .-Iy uxroctuc.d ita lint pro.
duel. .. 1Ott...! ~ toOl alIecI
USE..rT "!haI ia ~ to mate.nor·
rreclO~.
n. prodwo;I.. '-t .. a mwbmuriQ!

theory. ~ 1M _, IOftwvo
f)1I<IIIII II; ~ cIimi­
__ tho curraM ..., 01 dc:Iia:nirlI.
wriIin& aDd producial 101\--. n. in-

~HOS._ 'J

Curtain faDs 'on Puritan

HOS
d.usuy tIIa has beo:n bIis1 IUloawiDa

0UI0cr indllSlrios is oa tile,..e of bani
_ed ilMif.

1M In.Ilhcma1ic::a Lh«wy " bued 0<1 ~
study daM by H.Imilton iUId IIcr <:01-
Ieqw s.)'<IeuI ZdcIia. When tile Apollo
projca bcpa wirIdini down in tIw oarty
19'701.. tMy ~ 'Ill !be mon, or
bup, in tile pro.ica" sorn.are. The lwo

women were IootiaI! for a way 10 ~
5Ofl~ ma:/.neo:rinc. "11 \WOIIId II&w
ba::n ~bIe IICIII to to bKlr. to tho
bqinniq IDd sa: wfta _ CX>Uld haw

done bmef:' lAid ~.
ADd !My weft Iooldna for =ciummt.

llW)' _', jill! IooI!:iDc for I. mono
IoIicaI ... y LO ""'" sottw.rc: IlIcy
_ad 10 be PM of uocher maior
ttrcalt.tllro\llb . A11.er 111, Marpm
HanWlOII I\.Id ~ omd 10 \be
moon by tho limo 5bc 31. "Apollo
dsanpd my tire." sbuaid .. "Ii had I. pro­
fOlllld affea 011 III. Some pooOpk IIC¥ ...

IQl .,.,... "- ADd !heR I\&¥e IMm «III:r
spiPofb from J:)rapo!r bcaIIx of il."
The follow-up for HamikarL. """' .. ill
~ of ~ tbuI 100 iOftWW'I
IiDan at. Orapa-. _ JQinaIO 1Ia"" to be
sometIIinI: bi&. Sbe _ 10 ha ... fOUDd II
by -un, her own ~ To H.unii­
I0Il. ..It. &rOwia& IIiIIHcdI compuy is
like • million."

Teslilta; tilt tIteory
With 1M tbeDr}' in haDA, Hamibon IIIId

Zddia fOUD<ia:l HOS in 1976. HMIiItoG
is !lOW CEO mel Zddia is cbid IIrua::iaI.
officei'. As HamiIIoa u:III it. tbI! u.-y
.... illCluaily I. ___ to 1lMm. "We
_'! ~. II," _ HamiItoa.,
"II1II _didn 't SCI. 0\It 10 fiDeI il.. •• Bur. tbo
Il\coI'y bocamoe u.ar fouadMian for CUII­III, ..,ttww.:. SiDc:o: tIIc Iheory .. pr0b­
ably c:CIrTIIa. aIlllOftwve deIiped willIiD
its Iasi<aI azr of thiI IMory wuWd
~ be c:omcI, Of q.rr.. thEy ..-.
soned. For Ii :ran. HOS 0II'If-.ed u •
rsoardI IDd de ~ rlflll, _
HaNIloa lad ZcIdm 1M !bot tbeDry iau>
pneUcc. III 1911. uS£.rr iIw'o­,

lIS fin! 1$ NIl ouuicIt of HOS ...

wUh u.. AmlY. The 1l1:li I. .-.
and talk of USE..IT'. pQtmliaI bepn
~ IhnIvah 1M iIIdwuy . Tlw w«d
~par.lcd in_on' iDu::n::st. IDd as HCS
lOOk USE..IT IOtho~ lIIC.a in
tilt _ of l!illl. tbo CIlOIII*IY MIl
!he bKkiDa of _ beavr-cht tup.
l00::h _we~. la"two yan. tIIc
axnpany ball raised !!lOR tbuI S9.l
rNllioa. 0... of Ihe r.,. inYCOn _
James Mvtin, I hi&II.(Cft mtnl. • ,\IN, ~ of _ !bill 30 boob on
daIa prOa::Uins. aDd now I _tier of
lfIc HOS too.d. 0tlIcr cuiy in_on
""' Yenrod:, Gtcyiod. ~ L)1ICIL,
Fl'OnIImK ...t Ala Brown '" Sono. Of
tIw S9.2 million, 15.1 milIlon _ railed
JaR Apil. n.. rOWld of invaun indJMi.
eel tile Hillman FWId, Hmry '" Co ..
f.mcramI c..ro..m. s.n P-'on TNa.
c-, New CaRie Co. LId. . J.F.
Shes Co, ...t Sunud ~ Co.

.,...kiac for IMIp
USE.CT aD 0iPaI ~

Corp. '. VAX IIliDicDrrq:Mcn IDd KIll for
S9Z.Wl. OM_~ofVSLITiI iU
~.~. whicb _ doMIoped It

HOS. II ;' nat. uacIitionaI ~
~ II ",,:h.odco I pphia; ~y
lIId " _ biles 1IItun! ~." said
Hamilton. bccuaM I _ .;an write [\InC.

lion!; III EnaIisII pC\taIeI. ~ odIet ''''''
ma&II com_ >tc lbe AftaIyur and
l~ RCSOIII"CO AlIoc3lioa Tool (RAT).
"Thor 1_ com_l$ ar<: haI lUll>­

rTIIlA I lfIdil>Ollll prosnrMleI" 'S worlr..
The .-...aIyzer ItIlOtlW>C&ll)o do«kI ",",.
len ~ for buIl iIen l~"""
_ ,he AftaIyur commat:Id btIl,on.
Dna: llIc AftaIyur IW ~vuI ,hi: pro.
IJaI". aDCIlhcr COIIIItWtd key II lUI '0
omd iI \.0 the RAT. This rom_, ""n
_OI'IIItICIIIy ...,.nIe prosram code ,n
FonntI. Puc.I. Coboi or odIet tan·
J1'ICI!I'. as.u.. theoe ,_ prooedur .. ar<:

mlPa t:cktOIInd could -nle .IOftwvc on
USE.rT.

Hamilton said USE. rT it ~
for bukinl., iDsw"ancc. manuflc:l\uift!.
~ &lid roboticI appIicaUoru. In
Iddiliorr.. the .10ft......., tool will ~ualIy
be ~ 10 NIl 011 INoUlfnum com­
PIIl_ lhc martel in which HOS hopG
to mUc USLrT allaDdanL "We'~ p
inI &her lfIc ~ IDIIinfBIM I!!II­

viraamom.. the ~ ~
~ compIa 5yIICDIl," Ibc lAid..
'1'bcy ~ tIw \he aiel IifCl:)'dt
ILbaI it.. tht. QIITCIU 30trwwe cit. ~ I ~ a: lilt
proceIft ;. -.d\IL "

Typitally. lI>I: Klftwwt dt¥eIap- "'
~ betiIII wil.b Ilia of nquin:ma:u
for tht. IOhWln dnwa lip by- tbc ~
IiIII UICI". In I _1M for_pic.
the 1-.:1 of !be -w- -...Id -.1 •
liaol~IO_IIit ...
~lOlbtI ~
FI"CIa:I u.n:. 1M spoc;",*ims for tile
~ ClXDpuuoQo:a tI:IIu !be COlD­

IMCt will PIrl«m LO 1C ~_I~mc..
UIIIca-.- up. The~ ~
..... -..do ~.IQPI follow. All of
IlII 1'1011' ina is iD&craud at a 1Oft_
......., S)'I[aD. ThIll iI. iI ~

The r.. .. of dIiI prooaI is
-ri"l_om • - i'C 11M blip "Jb:iI,
ltIDIftlIy ... up _ of a IO~ proj-
-=t'. budpI ___ !be MIll lila _
iDeo ~ lbtI ~ an: ... _
Mrilytmlr-fra. The ~ __ ..
DOl. ...-.- br mia. of 1oP:. Pro­
.-.me is on. ~ ill .., ad boc _ .Foru-. __
ill 11M IDiIiaI ~ The ill-
~ m.a tIIe..w- LOme
procasiQJ ~ __ y be UIdIIar .
Tbe r-..Ir.;'. "l'IlIIIl __ '1 deIip­
od 10 PIrl«m tile l'\Dcaoat tIIIII iI _
~ \.0 PIrl«m. la addiIioq,
1IIiUI\I.IJ~-liD~
............ tIIIII MIll iIIIIiI* pe­
IIIM5bip em be tClpoasibie fOl en-on.
Def_...".... a.-

" c:riIic:aI fill_ ill !be u.IiUouIlOIt·
WIR~is!be~SiDctit._

1110: SKI of tbc .;yde. crron ... -'" 011
an bard 10 IiIId- Tbcy ofla ~ tile
boI:iIdia& bIodca fOl otbor """'"- J_
MIniII. a 110m! IDOIDbt:r • HOS, qK/y
men 10 y'l ~ ryIlcrDl •
miDdiddl.).Q lID book "P"rop.a o.ip
Whicb Is ~ Cornt:1," MlniD __

III ~ of • farty simI* .IOftwwt
PIVIfIIIII willi 12 iunboaI. Tbtn could
be -... lhIIa .-~ PIIbs. 01
paaiblo fuoc>:ionI. 1.Y tile JO~
aoWcI follow. he Mid.. ·'If ir;_pooatok
10 tal a::II of cboaI ill • min· 1 IDe
tou.I lime fOl • CQIlIpia ,. -..&oj be
_ lOO)'l:*S," Ma1ia ~

ASan~1011Io:~.1
___ of dynamic 1=iIc. 01 IClliaa •

_y paaibIc s-ht • liaR p.miu.. '­
bocIcIIM KUIdan1. Y Il trion is 110 p.IIIIUI­
.. tIIIII wI:w. is t-..d UId found 10 be
but-free is:i ... of llII"Iu
UIIIGIO:I in \he prosnm.. "Jb:iI, 1IIliII rat
~ 11M =- of m m opnt;.., pro.
portioollO lfIc t:OnIpIcIQry of the projcl,

WMl USLrT incroGucC. HOS
PIrlormcd tXIIDpOIriaoa tms of sorrw.n.
"'OIk done willi IDd witlIola USE.rT.
The tCSll wa.: bum 011t. done by
propaIRIIOCn • !be us ~ of
Oef_. A.c:corQinc 10 HamiIuIn. cIIao
fII"OII"I/M"III ~ to prOduoo 10
lines of prosnm codt per clay. ~
clays of PfOII"VlVI\iIla work, HOS coo­
dudcd. \OOuId We 0DIy four boun with
USE.CT. The clifferencc blUed 011 tbc
• ~ &ITIOIIIIi of lime Spall on
t~ per liM of codt compand to
USE.Ir. 1\IIOfRAQc 'estin&. HUIIIIN
ma~ """ be abIt '0 , .. "'" million.I of
po65ibk J)ItIIf., 01 funcllOlll III I .IOhwv.:
procr&m, bvl eomputcn can. In ,he
ckfcrue dtpanmenl a&mpk. Hamilton
.aid USE.IT inc:rasad lI'od\Iam,y by
600 pcrcmI and CIII com by B3 pt1CVI'.

The k~ '0 USE')T " U\AI. ic .raps bua·
ridden "'ft e before" pu ,0 ,n..
Slace, Th~ AnaI)'Ui" ..."" ., ~ a
falllly proyam. And.he RAT _ ',...,.
cttOt " '0 be 1taIUlal~ ""0 prOltlm <Ode
unks5 il is Lop;aUy COO'T«t. AS ,n the

f_HOS,_ell

THE HYATT SUMMER
WEEKEND ROOM SALE'

'almogo.rc,,"-.ano..o..
, 1.......,..'OQIT"Irooll"lCll..ol:lnQlCD.~~

• Cotncwo .. 000 .. OCCO 'w "coG." 1Oi CI'iiIcJ" ".., _ fQOI'TI Oil pcr.m
. Con_iIOi,~, eon-ooo.HBOa"CIEsPN.., o.-<Oom

,~"",--,,; •• ~_rrom""o:orottoe
• L""",,-o..or-

..... ~ ""'"'_oo-.... ___
-....~-. o...-.....~_ i ____ Il"we........--.aol __ n-.._,--.g ___ ~_o-..._

--'"--
~>- •• ~ ""'"~

'o\J.l~. ~1CiSIC>'O ... --.- --­- .--... -- ,,--

LOOK BEFORE YOU lEASE
10 L~-, oIIoeos.~ ties.. _ ¥ad!)nCft)'CIU1(rind. ~.
~ 10 't!'PtM'1on lot ~ IS well knowtl ,rwougho.l'_
E",1M1d. "It«.olI. _.~ beet! 10:'-. un t-e .. na 1M fIld
.oddi"'o OUt' ~Med cw_ ~ _ since. c;..., ~. all 01

\lOP III toOiy ~ _'~!.how you "'hy .

' ''' --, ,.. --.,...,. _ '""" 1-'

[J(1[i][i]
L EASING

_Gooowo __ ..-. I.'tl __ ru'
'-~_._,"11o(l31_

_,"_Q'~i11

Printer Port's
Summer Printer Sale

Plint., Port "u N_ Engl." cI"llarg.n1 ot><Ii$,pll y
sel+Ction ot ComOllt., ptin'era. W"-....... you "IN I

onnl .. 1".fIIUIIet' 'UI. '"'"' _sal'liI. '"'oet ItIenctry
01 S Upef 8CotIOm,CIl goll,....., III. And IOg'"

_ -.y ~ lion sat • . .. " "n uo 10 ~%
oH 1111 on '00 !\Ilional bl"ancli.

NoOocIy knowl pt,nt_ tlk. _do. That ",..,,1 w.' re
tleu .. at M1o,ng you soet t"roug" tMOOIions.

""" .. ,ng you on ,"-~I ellO.C., ¥Id gOYi"O you
art \M Itt.,·sa"l IUOoo<'l you _ , Plint.,
Fort . you' lI g.tlt\ tue you,. nd mOf • .

Doll ', m,n 'M SlIoer Soec:.arl ,.
ott g dUfing Augus'"

Sa,r ,11'0 'M Po" '"'1 ... _ !
'So .. _.oIlIIIw,,/ · ,--",J'

_ 1..,­-------- ,-,_._-------''''--''--

HOS
pme of Monop3/y •• prop1IID _

pal ''GO'' unIea it t. .-. • p)d
roll. And I JOOd roD is CI'T'OI""'"

To IIil this error-r_ propam.. USE.IT
dimirwa tile SlCP-b7«q:1 mc:thod of
PfOII'WII writina. La 1O!rmI, thtre
is no ~ "U tbiI "-'- Ibm do
thai'" t~ of COIIIIIIUId:I. lmtmd,
USI!.rT teIies 011 • " 0JQtr0I 1rIIII''' r ... •
..... IlSirqjIhe AXES ~ filii JPPh­
ics. La ~ most buic form. !be AXES
pap/Iica display is threE bIacb. Eacb
block is known •• nods IIIId repn!IaIlS
one fWx:tioa of the syaem. The \011 block
is tbc 0¥aVicw' IUlO:SIIml. or IIIIiA fUllCo
tiDn. TWo bIacb mend from ather ado
of ii, f<:>nninl'" <MnIllriu\alllar 1Iwpo.
TM conrroI map m Idbon: 10 IIoIiW
reWionship. The threE INIIia rdMiombipo
are "join," " or" aDd ' 'indude.'' SiDa:
eao:;:h sub-bkxk aIIO ~. func;Daa.
ill taU: mldt be \oP::aIIy rUed 10 the
mIiII fllllCtion. ~ rdIbomhipo
an: deri¥ed from t'- threE ..tw:n work_
ina an • _ comllic:ll: mICm·

Simplify your
business insurance

coverage

More efficient coverage can control
your business insurance costs

A Business Insurance Paclcagc policy 5tmlmline your busines.s protec­
tion and makes it simpler. You don '[have to con tend with multiple policies.
overlapping coverages, gaps in protection , and different insurance compan ies.
There 's one policy, one expiration date, and. one agent-all at a (ower COSt .

Kaler Carney LifJIer can develop a policy package that'S tailored to your
special needs. We've been serving the business community formare than
90 yeats and can provide the products and services chac mcc:t your company's
special requiremenu.

Stan simplifying your business insurance, a5 well as controlling the cost;
stop in or give us a call today.

MER CARNEY LIFFLER
&2 lJrcvonshirt Slrttt · bran, M;w.KhuKtt> 02109· (61 7) 723_3300

<51'~ REPIIEStNT1NG

-';'::::1 GA l~_ ~--"-~ .. -. ,

R __

SliD. USE.rT QUI "'" olTer • full par.
__ ibM tbcft will be..., 1ImlI1.

AItbou&b _ of the syJllcaI is_·
cd. pcopIo: an: still siltinl II. tcnaiDab ODd
axcria& dau. The h cIaDcal. !bon­
fen. Ica __ for wn>ftI infonnMioD
10 be "'" iDlo lIIe ,-,otmI. a.. • Ion& _
the WfOIII iDfonnaUoa conf_ 10 11M
0yacrII$ laP;. USE- IT will lCCJI!Pl n.
"YOII kaowI." SIlid HamiIlOD, '~
in, ~ QUl. But '" Iaol it will be
IoP:aI prVqL "

USE.rT. gid ~ is •. 'rt¥oIu­
tionII.'y procIua" tMl will "be ~
it!:III....oI.........,. _." IfHOS ha ttl
way aDd ma&D USE.IT lIIe ~
......" standard, tJaditionIlI propam­
men will be !he nc::a dIIIoaurt. 1M
lUmi\loa said HOS is ...,. trrinI 10 "'"
propwnmcn 00 lIIe ~ 1iIIe.
"w.,'rt laki/Ia out the drudIa"Y of thoir
)Db. ood ~ in llIc ~ of
.-...u..iOftw.-c, We'rtll<l\W!y~'
. their jobJ."
""V", st.: o:on<:fIIb USE.IT will probUIy
_ ""qaimI lOme resisIance. Today'J

soft erqineIn will haYe 10 r<think
!.he way Ihcy pcrfann thcir jobI.. And
lhetc ~ ..no ha-e made a c:wo:r
of automatiItl oob<:r peOPle'. jobt,
I1nd iI diflio:ulr. 10 do the _ to -1M Hamlhon said tlla "",."orau
manaacn wIlD _ fell the pUdl of hip
mainl........... 001II will .--:IiJy lCCJI!Pl
USE.IT. The diem \ill CUI1"attIy inch ...
RayU\eo<l. DiPaI Equipmatl Cof1I.,
[)au. GcncrW, GTE. HoneywdJ, Waq,
TeAl \nslnIInmta, Com~. Du­
Pont , Ealon CO"" and ~neral
Dyrwnics.. III tlw r\ll;ljfO", HuniI\OII ..xl
HOS' will cIIhana: USE.IT 10 """ oa per.
~ COllI""' linked 10 mliftfrunos.
" 1liJIU now," "'" said., "_'n: <Ui:inI
III .ITon 10 PIll ounc/YSout th<n:. SuI
OW ie>ailate_bitioul. W._ IObiltO
SO(t W3r. what IBM is to ~."D

CAD!CAM

For

Computer Applications and Software

HOS

Higher Order Software

USE. IT

In today's corporation. the tasks facing the
data processing department are more complex
than ever before. It is becoming clear that the
ability of a company to compete depends
largely on its ability to process information
more efficiently than its competitors. This
means that the DP staff must not only maintain
a myriad of existing programs. but also cope
with a large and growing backlog of new appli­
cations, just to maintain the competitive edge
ofthe corporation.

These new applications, which can range from
an insurance claims system. to an order pro­
cessing system, to a financial control system.
are based on company strategic requirements
whose complexity is often intimidating. Trans­
forming these requirements into reliable soft­
ware is time-consuming and expensive at
best. and in some cases impossible. using cur·
rent development tools .

For the successful corporation. resolution of
this problem is not a luxury; it is a necessity.
To compete. companies must be able to pro­
duce reliable software. and produce it quickly.

Software In The Modern Corporation

There is a demand for a logical method of pro­
ducing this software, and for a tool that en­
forces that method.

Such a method. and such a tool-USE.lT-are
now being introduced to the IBM marketplace

~-
USE. IT - CAD/CAM For Computer Applications and Software

USE.lT is a technological breakthrough. A
computer-aided software design and produc·
t ion tool. it is analogous to those computer­
aided design and manufacturing (CAD/CAM)
tools successfully used in industries ranging
from aircraft manufacturing to micro-chip
design. Just as CAD tools let the designer
model a product and correct design errors be­
fore production begins. USE.lT lets software
designers create specifications that are logi­
carly consistent and complete before a single
line of code is produced. And just as CAM tools
automate production. USE.lT automatically
generates running programs.

The need for such a tool is evident. Traditional
development methods are no longer able to
satisfy the demands of the modern corpora­
tion: information systems are developed
according to schedules bearing little relation to
production realities; application programs are
obsolete before they are shipped; vast groups
of employees are assigned to tinker with tl:lese
presumably finished applications for decades;
finally the accumulated weight of their fixes
causes systems to collapse beyond repair.

by Higher Order Software, Inc. USE.IT is
designed for IBM software and applications
developers who need to deliver systems that
are demonstrably reliable. regardless of com­
plexity; and who need to deliver them more
quickly than ever before.

The statistics are alarming:

• From 50 to 70 percent of data processing
budgets are allocated to application main·
tenance.

• Six generations of programmers maintain
a program throughout its lifetime.

• It is 10 to 100 times more expensive to
correct an error in the testing or mainte­
nance stages than in the requirements or
design stages.

These problems are the direct result of the lack
of a usable tool that enforces a formal and rig­
orous development method. This lack ensures
the continuation of enormous application
backlogs. These backlogs threaten to paralyze
even the maintenance of existing system s. let
alone the creation of new systems vital to
the company.

Current Productivity Tools

Currently available productivity tools, such
as database management systems. fourth­
generation languages. report generators, code
generators, and screen painters. automate the
programming phase of software development.
It is a fact, however, that the source of the

great majority of errors land of the resulting
unreliability of software systems) is not the
programming phase, but the requirements and
design phases. These tools simply do not
address requirements and design. which are
the primary problems.

A tool is required which is usable throughout
the life of an application system, Such a tool
must support:

• Detection of errors in the early stages of
the development process. where they are
easiest (and cheapest) to fix.

• Integration of the development process by
a rigorous and traceable linkage between
requirements, design. specification, and
implementation.

• I nsulation of business knowledge from
computer knowledge. by keeping descrip­
t ions of what the system does in business
terms separate from descriptions of ho wit
is done on the computer.

• Automated prototyping capability. so that
the user of the system can actually run the
system. and know that it meets his
requirements before any final code is
written.

• Automated generation of final production
code. so that code is guaranteed to match
the specification.

• A formal link between the running system
and new enhancements required by a
changing business environment. With
such a link, systems will no longer become
degraded in the maintenance stage, and
can endure indefinitely.

• Automated generation of system docu­
mentation, so t hat documentation is
always cu rrent and correct.

• Automated management of reusable code
and data. Re -use of existing programs and
structures can significantly reduce both
delivery time and cost of new systems.

Higher Order Software. Inc. has developed a
methodology that meets these requirements.
and has implemented it in USE.lT for the IBM
software market .

The value of USE. IT has already been proven
on the Digital VAX architecture. There it has
been employed to design large. complex soft­
ware systems where reliability is critical. Now
the developer of IBM software systems can
benefit from this proven product.

Typical System Development
Plan

During project planning stage, Resources
standard life cycle techniques
are used to estimate time and
resource requirements.

Acrual System Development
Experience

As new and unclear require- Resources
ments emerge, the best of
plans give way to slippage and
addedresource£ Funcaons
and features are deferred to
the maintenance phase.

Actual USE.IT Experience

The discipline and power of
USE.IT yields

Reduced resource
requirements
Completion far ahead of
standard life cycle schedule
High quality results which
all but eliminates mainte­
nance effort

Resources

"3 Views" of The Software Cvcle

Maximum Staff Available
~_.:..:..c::~ .

Time

Time

1
I

The Impact of USE.lT As a Tool
For Managing
Reusable Code and Data

Additional First Use Benefits
Establish catalog of key
code modules and
data elements
Create management stand­
ards for reusability

Second Use Benefits
Incorporate previously
tested modules and data
Increase library with
new modules
Reduced resources and time
to create successful system

Nth Use Benefits
Major time and resource
saving due to reusability of
ever growing library and
database.
Continued contribution of
new modules and elements.

The HOS Methodology

The HOS met hodol09Y provides an explicit set
of rules and procedures with w hich to design
and implement complex software systems.

Systems are designed at a terminal using a
graphics editor; the designer describes t he sys·
tem as a set of functions arranged in a t ree
structure. Functions are depicted as nodes on
this tree and are progressively decomposed
from the highest level general business func·
tions down to primitive operations that can be
implemented on a computer. The data each
function uses and the data it produces are also
shown in the tree diagram.

Detection of Errors

At any stage in t he development process. t he
system specification can be automaticatly
analyzed for errors, and necessary corrections
made immediately, when changes are least
expensive.

lime

lime

Time

Integration of Development

Every stage of the development process, from
requirements to the final design, is expressed
in the same tree diagram. There is, therefore, a
direct and traceable passage from require­
ments down 10 the final program code. This
eliminates the problem of translating systems
descriptions from one stage to another, and
allows the designer to trace the functionality of
his system from requirements straight through
to the final production code.

Retention of Business Knowledge

When creating a system description with
USE.lT, one begins at the higher levels of the
tree by describing the actual business func­
tions to be performed by the system; it is only
when one gets down into the lower levels
of the tree that the computer functions that
actually do the work are described. Thatessen­
tial business knowledge, which is the heart of
the corporation, is therefore clearly described
and saved, and is always avai'lable. If it be­
comes necessary to move this application
to another machine or another environment,
that essential knowledge does not need to be
restated. Thus, the enormous dollar invest­
ment in software products and custom applica­
tions is protected.

Automated Prototyping

Some productiv ity tools require that proto­
types be built manually. Systems created with
USE.lT are working systems from which work­
ing prototypes can be automat;ca//v generated
at any time in the development process. Speci­
fications can be "run" at any time in order to
determine if they in fact do what the user
wishes them to do. This capability, together
with automated analysis, provides the devel­
oper an unequalled abHityto verify that thesys­
tem, as it is being developed, and before any
code is w,;tten is doing what it is supposed to
do, and is doing it correctly.

Thus, management can count on the existence
of an application solution that always matches
the current business requirement. Reliable test
resu Its of the software being developed can be
delivered at all stages of the life-cycle - not
onlyat the end, when code has been produced.

Automated Code Generation

USE.lT w ill automat ically generate production
code for any USE.lT specification that has
been analyzed and found to have no errors.

Formal Lilk Between Runnilg Systems and
Enhancements

If , in the maintenance stage, changes have to
be made to the system, they are made to the
specification, and new code is generated to
matoh the specification as modified. Thus, the

specification and code always match, and the
system does not degrade over time as revisions
are made.

Automated Documentation

USE.lT w ill also generate English-language
documentation for any USE.lT system. This
unique capability ensures that any program is
correctly documef1\ed at all stages of develop­
ment. This makes it easier for multiple teams to
work on a project and simplifies maintenance
of existing programs.

Automated Management of Reusable Code
and Data

Re-use of existing, reliable code and data is
possible only il they are correctly interfaced
with the new system being developed. USE.lT
guarantees the correctness of these inter­
faces, and manages the integration 01 these
reusable modules into new applications.

USE.lT Version 1

USE.IT Version 1 runs under the MVS operat­
ing system and supports an interface to both
IMS and CICS. Device support includes the
3278179 or compatible terminals. Output can
be directed to a range of plotters and printers.

USE.lT and The Future

USE.IT is a technological breakthrough that
enlorces a rigorous and formal software devel­
opment method. It provides automation of
error analysis, prototype generation, code
generation, and documentation. Thiscombina­
tion 01 formal rigor and extensive automation
provides a real istic solution to the challenges
iacing the information profession.

USE.IT can break the chronic backlog of appli­
cations t hat current tools cannot begin to
address. It enforces consistency in both initial
system design and subsequent enhance­
ments, thus solving the expensive mainte­
nance problem. It frees the developer from
chasing interface bugs, syntax errors, and da"
tallow errors, and allows co"centration on
conceptual correctness and dynamic testing.

But USE.1T can be even more than an opera­
tional tool forthe DP department. With its rapid
prototyping capability, it can become a strate­
gic business tool. Management can quickly
determine if proposed applications win wor:1< as
envisioned; modifications can be made easily
as situations dictate. The entire developm ent
cycle becomes more flexible and responsive
to management needs, and the corporation
becomes more flexible and responsive to
the marketplace.

Better software, faster. USE.lT.

Future developments 01 USE. IT will further
implement the HOS methodology, and will
continue to add the functions required to meet
the changing needs of users.

Headqllnrters
2067 Massachusetts Avenue
Post Office 60x 531
Cambridge, Massachusetts 02140
617-661-6900
Telex 951253 HaS INC CAM

e£lstern Region
551 Fifth Avenue
Suite 111 0
New York, New York 10176-0027
212 -490-6721

Weste,,, Regl)rl

6445 Freeport Parkway
Suite 420
Interflrst Place
Irving, Texas 75063
214 -257-3758

