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The proportion of software associated with human interface has been estimated to be between
thirty and cighty percent [Case 89) [MITRE 86]. This software is often of a very high complexity
level requiring disproportionate development effort when compared to the rest of the application
code. Recent advances in personal computer hardware technology, cost and performance have
opened up new opportunities for the practical application of object-oriented programming (OOP)
languages to solve this problem. These languages have significant potential for manipulating larger
and more complex software applications than current technology. The software industry trade
journals are routinely documenting notable software productivity opportunities using object-oriented

programming.

The issue of which object-oriented language is best for a given application has been of significant
management concern recently. In many applications there is no question that Smalltalk, C+ + and
Objective-C have distinct features that clearly delineate which language is the best choice. In the
area of embedded real-time firmware for control and device IO, future software development
will probably continue to be handled by C and possibly its object-oriented extensions. The area
of human interface intensive software development, however, requires much closer analysis of the
issues. In general, excellent human interfaces have been developed with low level languages such
as C and even assembly code for applications ranging from CASE tools to process control among
others. Thercfore one should not assume that object-oriented languages are necessary for
development of good human interface software. Rather, OOP provides a potentially good paradigm
for managing the inherent complexity of such applications in a more productive fashion. An
empirical test of identical large programming tasks in multiple object-oriented languages is required
to test the true limits of the various object-oriented technologies bounding envelopes. Although
a preliminary comparative analysis of some OOP language issues has been performed for the
development of a simple game [Love 90), to this author’s knowledge, no such large-scale replicated
testing has been documented.

This document will try to review some of the issues that management should be aware of before
committing to a particular object-oriented programming language. This document also tries to
promote the concept that human interface intensive software development needs a high level




object-oriented language such as Smalltalk to complement the low level language capabilities of ©
and its object-oriented extensions.

The current debates are centered around two major camps, the C dialects such =

C++/Objective-C and Smalltalk. A number of other object-oriented languages also exist, but are
not discussed here because they typically do not have the same market momentum Of are not
amenable to supporting commercial group development efforts.

Issues for consideration:

C+ +/Objective-C are not alternatives to Smalltalk.
There is a general feeling in the object-oriented programming community that C+ 4% and

Objective-C's founding premises are quite different from Smalltalk’s and that they should not be
considered as equivalent alternatives [Stroustrup 90]. The C language was orniginally developed
as a low level language [Kernighan 88] that could substitute for assembly code, with the primary
concern for a highly portable, structured language with good execution efficiency, developed using
standard college textbook compiler technology. Smalltalk was developed with the emphasis on
improved software productivity, reuse of code, and an integrated development environment. The
computing resources required to support Smalltalk were of secondary concern during its
. development, with the vision that one day there would be cost effective hardware to support the
language. The recent advent of acceptable performance, low cost personal computers have now
made the Smalltalk language a viable cost effective technology. One might consider that the
object-orieated C dialects are "better” C's that happened to include a number of solutions to the
evolutionary computer science “lessons learned” since the language was initially introduced.
Fortunately, the improvements to C++ included object-oriented functions that had evolved from
the developments in Simula and Smalltalk. In the ongoing industry improvement of C compilers,
one can expect all major C tool vendors to soon support one of the object-oriented extensions to
C as a matter of course, but the fundamental principles of C will still prove to be a limitation to
achieving the full benefits of the OO paradigm. Although limited, these object-oriented extensions
to C could prove beneficial to some software product lines by permitting greater functionality to
be embedded in time critical products such as device drivers and high performance databases.

Execution Speed: Objective-C and C++ are faster than Smalltalk

Current literature indicates that Smalltalk is between a factor of two 10 ten times slower than C+ +
and Objective-C for traditional applications [Ungar 89]. However, as applications become more
object-oriented, C++ and Objective-C rapidly lose their performance advantage until, in some
cases, Smalltalk will actually outperform the C dialects [LaLonde 89]. Some windowing systems
developed with Smalltalk/V286 have demonstrated acceptable performance even when operating
at XT speeds. In general, computationally intensive algorithms are executed more quickly in the
C dialects. However, through various improvements in Smalltalk interpreters and compilers, the
differences in speed will be less of an issue in the future. For human interface applications, the
speed of the language is mot an issue with current 80286 and 68000 personal computer
technology, as the application program normally spends a significant amount of its time waiting

for the user to respond.




Code Skze: For Large Systems, C Libraries, Objective-C and C++ consume significantly more
memory than Smalltalk.

For large applications, Smalltalk is anywhere from a factor of 5 to 10 times more compact than
equivalent C code [Lalonde 89]. Smalltalk-80 requires approximately 3Mb of memory and
Smalitalk/V286 requires a little over IMb memory for minimal functionality. This must be
compared with the source and object code for UNIX which has less functionality and requires more
than 10 times more space [Cox 84]. As another example consider X-Windows which alone
consumes more memory and is slower than all of Smalitalk/V. This significant difference in
memory size is not appreciated until a paging-memory based system’s performance is compared with
an entirely memory resident windowing system'’s performance.

Productivity: Objective-C and C+ + are not as productive as Smalltalk.
Although there are a number of studies showing that productivity is primarily impacted by the way
people are managed and treated, there are some technical issues related to how OOP productivity

is also impacted, as follows:

-Long compilation times: Smalltalk, being an interpretive language (not unlike BASIC), can
almost immediately respond to changes in the code during development. The ability to make
changes and see the results immediately, has been shown to dramatically improve productivity
because the code developer can continuously maintain a high level of concentration on the
work at hand. The current long compile times required for the C dialects significantly impede
productivity as the user waits from several minutes to several hours for results. Productivity
is especially a major concern for human interface development because of the historically large
number of minor changes that are required during development. Incremental compilation is
a recognized benefit, and Parc Place Systems and Glockenspiel International have developed
incremental C++ compilation facilities,

-Future software development should include an integrated environment: Another productivity
factor that is often overlooked is the benefit of an integrated environment that permits
developers scamless and rapid access to multiple editing sessions, development tools and
immediate compilation and display of results. This concept, originally envisioned by Smalltalk,
is currently being duplicated in some C++ and Objective-C product offerings to varying
degrees. It is premature to conjecture on the long term viability of these "me-also® functions
at this time. However, to improve current software development productivity, one must adopt
an integrated software development environment that permits development of large software
packages without the constraint of long compile times for viewing changes.

-Support libraries for C++ and Objective-C must be standardized: Although there are
currently no significant standard human interface libraries for C++, one can anticipate more
standardized interfaces into IBM/Microsoft Windows, Macintosh and X-Windows to become
available (these windowing environments are already supported in various Smalltalk dialects to
varying degrees). Objective-C and C++ support different libraries for different platforms and
have the associated compatibility problems. For comparison, applications developed under
Smalltalk-80 are directly portable to any platform that supports it without change in look and




fecl. Applications developed under Smalltalk/V286 and Smalltalk/V-Mac can be modified to
run under Smalltalk/V-PM for OS/2 as a Presentation Manager window.

-High level languages are better suited to complex programming tasks: Windowing
environments and other advanced human interfaces are generally considered to be complex
software systems [Case 89). The fact that C was developed as a low level “standardized
assembly language” [Kernighan 88) is often overlooked by developers, and significant effort is
expended on interfacing the C dialects into suitable windowing libraries (hence, the long
development times for DEC's X-Windows and MicroSoft Windows as just two examples).
Industry experts have also taken positions:

"A multi-year study by Arthur Andersen on software productivity led to a conclusion
that the object-oriented Smalltalk language is the most productive programming
language because it significantly reduces program complexity through its inheritance
mechanisms® [Case 89).

-Automatic memory management can not be handled by C dialects: This is probably the most
serious shortcoming of the C dialects and is a significant problem for large, complex software

systems. Windowing environments and many other software functions determined at run-time,

require careful and efficient allocation and deallocation of memory for the complex data

structures involved. Per Brad Cox, the developer of Objective-C, [Cox 87],

"The benefit of automatic garbage collection is not small, because it eliminates a
whole class of truly nasty bugs. It climinates the dangling pointer problem, in
which invalid object identifiers (produced by frecing the object they point t0) can
lic dormant for arbitrarily long periods and then cause hard-to-diagnose problems
(crashes) when they are finally accessed. And it prevents the equally dangerous
problem in which a long-running application strangles from lack of memory because
unneeded objects have not been freed. If the programmer is responsible for freeing
objects when they are no longer needed, he must be aware of the entire system to
ensure that each object is freed only once during its lifetime and never accessed
afterward. This increases program complexity for the programmer tremendously,
since it forces every programmer to understand the entirety of the application, not
just the interface to the appropriate routines.”

Commercial software quality assurance problems with C++ have also been referenced in the
literature [Auer 89).

*Objective-C and C++ do not provide automatic garbage collection. The allocation
and deallocation of memory for the objects is under control of the developer. In
a large and highly interactive application, this burden can be significant. I have
heard from one developer, at a company which is working at creating a significant
class library in C++, that the majority of their QA effort is spent figuring out
where and why memory is not being deallocated.”




An associated issue is that Objective-C and C++ developers’ training must include significant
sections on the intricacies of manual heap management and leak detection.

Large systems need what are called “comprehension avoidance techniques®, i.c. minimize what
the developer and maintainer need to know to effectively do their jobs. Requiring the
developer to manually allocate and deallocate a data structure places the burden of knowing
exactly bow that data structure is used throughout the system at all times. For small real-time
systems this is not an unreasonable situation, but for large programs it is a potentially

unrealistic expectation that significantly impacts productivity and quality.

Smalitalk has automatic garbage collection facilities which have been optimized to consume less
than 4% of the total CPU resources. This functionality can not be expected to be incorporated
into C or the 100% compatible dialects of C due to inherent limitations in the definition of
the C language [LaLonde 89). (Tt is impossible to perform automatic garbage collection with
C's unconstrained ability to change pointers to arbitrary data types ie. coercion.) If
programmers are not expected to develop their own code for storing, managing and retrieving
disk files, they should not be required to perform comparable manipulations with memory

management!

These productivity issues should manifest themselves in the final development costs of an
application. Some uncontrolled embryonic test results are emerging in the OOP community that
do show sizeable differences in the cost of delivered systems based upon the OOP language being
employed. Smalltalk developments can cost between $6 to $1 per source line of code depending
upon the amount of code reused, while $50 per source line of C++ code can also be expected
[Weiss 90]. There are a number of issues that need to be investigated to ensure a fair comparison
for this data and it is not realistic to draw firm conclusions from this data at this time, however the

trend seems to corroborate some of the points previously mentioned.

A rule of thumb in new software development is that it usually takes three attempts (major
revisions) of the software to achieve acceptable results. The current argument is, that since
Smalltalk is estimated to be 5 times more productive than traditional programming languages
[Barry 89] and twice as productive as C++ on a source lines of code basis [Love 90], one can save
up to 12 times the development cost over traditional languages using Smalltalk versus 3 times the
development costs with the C dialects.

With market windows continuing to become shorter in the future and increasing demand for robust
software, one might consider a strategy that would promote initial human interface product
development and delivery in a high level language like Smalltalk, and then, once the performance

bottlenecks are identified, rewrite only that mecessary functionality as C or assembly code
primitives interfacing into the existing software framework. If the market windows of opportunity

continue to shorten, the latter approach may in fact be the only viable avenue for market
competitive human interface developments.

Run-time issues and tools: Smalltalk-80 was initially developed with single user support in mind.
This led to criticism of its lack of team programming support and lack of support for commercial
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deployment of the resulting code. Smalltalk/V developers have responded 10 these needs with
mature tools to provide the following solutions:

-Object Technology International is marketing a number of ook for supporting Smalitalk
development for commercial products. These include:

ENVY/MANAGER, a code management system that supports team programming with
Smalltalk/V286 over a local arca network tied into a server. The system works with

NOVELL and DEC/VAX-PCSA systems and is in beta test at a number of sites.

tools for stripping out unnecessary parts of the Smalltalk environment and converting the
result into executable ((EXE) files or even "ROM™able code.

a common image of Smalltalk that will be portable across several platforms.

Smalltalk/V /V286 /V-Mac and /V-PM support interfacing into other languages such as pative
assembly language, C, C++, Fortran, etc.. through a function called “user primitives”, For /V
& /V286 each primitive can be up to 64Kb in size. Smalltalk/V-PM permits much larger size
primitives through the use of OS2's Dynamic Link Library (DLL) functions. This feature
provides a powerful interface to time critical code for real-time hardware drivers and existing

applications.
~Smalitalk-80 supports interfacing into C programs developed under the METAWARE High C
compiler rev 1.4 or higher.

-The Smalltalk source code can be totally hidden from the user or partially supplied with the
run-time to permit users to scamlessly "hook in" their own Smalltalk applications if appropriate.
Within the limitations of the primitives, users can also include foreign language device drivers.

-Digitalk Inc. offers several run-time licenses for their versions of Smalltalk. The low end
Smalltalk/V can be run-time licensed for a flat $500 per year per product. The more advanced
Smalltalk/V286 and /V-Mac can be run-time licensed for a flat $50 per copy with an unlimited
copy, $200,000 royalty buy-out cap (other limited royalty agreements can be negotiated).
Smalltalk/V-PM for OS/2 and the presentation manager will compile the Smalltalk code into
an OS2 executable ((EXE) file which can be distributed royalty free. The Smalltalk/V /V286
and /V-Mac run-time licenses include tools for stripping out unnecessary Smalltalk code as well
as a tool to permit display of user defined information at start up.

-Parc Place offers similar Smalltalk-80 run-time support to Digitalk’s for all of its platforms.
Runtime licenses are available that range from $150 per copy for the 80386 MS-DOS and
Macintosh to $595 per copy for all of their other platforms.

All major hardware platforms have support: All of the object-oriented languages are well
represented on a number of platforms although only Smalltalk-80 claims to be totally platform
independent and not require any porting of source code to different platforms. Smalltalk/V286 is

currently the only Smalltalk dialect that supports true team program development and sharing of
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code through a ‘lhird party code management system. Although currently, C++ and Objective-C
have some restrictions on the availability of libraries across platforms as well as some dependence

upon opruung system versions, these limitations should be rectified as the C+ +/Objective-C
marke! increascs.

Language Platforms supported

Smalitalk/V MS-DOS, IBM-XT, AT, 386
Smalltalk/V286  MS-DOS, IBM-AT, 386, 486
Smalitalk/V-PM OS2, IBM-AT, 386, 486
Smalltalk/VMac ~ Apple Macintosh, SE
Smalltalk-80 386 MS-DOS PC’s with MS-Windows,
DEGstation, UNIX SUN, Macintosh,
Apollo, HP9000
Objective-C UNIX SUN, MS-DOS, IBM-PC’s, NeXT
Ct+ UNIX. ULTRIX, SUN, MS-DOS, 0S72, IBM-PCs,
IBM-RT, Macintosh, VAX/VMS

Industry leaders have recognized Smalltalk’s merits: The benefits of Smalltalk for graphical user
interfaces have been recognized by industry leaders. For example:

[BM's Visual Languages for Interfaces group in the User Interface Institute of IBM
T J Watson Research Center has been involved in object-oriented programming since 1983

and currently has a group of Smalltalk programmers involved in user interface research
[OOPSLA 89].

Alan Kay, Apple Fellow, Apple Computer, the driving visionary behind the Apple Lisa and
Macintosh graphic interfaces, has publicly endorsed Smalltalk/V as the Smalltalk he uses

[Digitalk 88].

Arthur-Andersen is promoting
choice and has developed seve

the use of Smalltalk/V-PM as the object-oriented language of
ral commercial CASE tool packages using it [SCOOP 89].

Microsoft Chairman, Bill Gates is publicly promoting Smalltalk/V-PM as “the right way to
develop applications for OS/2 and Presentation Manager. OS2 PM is a tremendously rich
environment which makes it inherently complex. Smalltalk/V-PM removes that complexity,

and lets you concentrate on writing great programs.” [Digitalk 89].

At least one industry trade journal has given Smalltalk/V-PM the highest rating of all of the
current development tools for the notoriously complex OS/2 Presentation Manager [Rosch 89].




Training

Training both formal and on-the-job is important. Smalltalk has been recommended as the best
way to learn object-oriented programming irrespective of the final implementation language bocause
it is a completely object-oriented environment and doesn’t permit the programmer any way 1o
subvert the OO paradigm. Smalltalk also supports mature libraries for browsing exemplary code
as a means of learning OOP. Although Smalltalk is now being adopted as the introductory
computer science programming language in several universitics, many universitics are still only
offering C++ or Objective-C. This approach has been criticized because it gives the student’s a
paucity of object-oriented code from which to learn good practices and does little to prevent
students from subverting the language and continuing to program in non-object-onented fashion

An acceptable alternative appears to be a path that has been followed by some larger companies,
where periodic in house Smalltalk courses are offered and video-tapes and course materials are
available for self paced training periodically supplemented by recognized outside consultants (Le
consultants with proven track records in delivering commercial OOP based applications). If the
personnel have had formal computer-science or engineering and software backgrounds, this
approach coupled with on the job training with experienced personnel, appears to produce
productive results after about 60 to 90 days. Eventually in-house experts will emerge that can play
a crucial role in further supporting the internal stafl. Preliminary results show that the OOP
retraining experiences are not much different than with "traditional” languages (i.c. as with Cobol
programmers learning Fortran, 10% immediately adapt, 80% vacillate back and forth for a while,
10% never adapt). This would argue for a number of small low visibility projects (e.g. rapid
prototypes and in house tools for testing) to be initially pursued in house, to develop a critical
mass with the proper skills, before large projects are attempted.

There is an unfounded fear of significant culture shock associated with converting C programmers
over to Smalltalk programming and hence the perception that C+ + or Objective-C should be used
because they would be less disruptive. Initial experience seems (o indicate that this is not a well
founded concern and that in fact, developers with a few years of C programming experience,
readily adapted to the OO paradigm and Smalltalk. Those who have had previous experience
interfacing into C based windowing libraries quite readily adapt and appreciate the integrated
nature of the Smalltalk environment and window management system.

Another misperception is that Smalltalk is more difficult to learn than the hybrid languages. In
general this is not true. The syntax of Smalltalk is much simpler than C++. To be productive
in any language, onc must learn the libraries. The larger the libraries, the more potential exists
for software reuse and greater reliability. The Smalltalk "learning curve® must be put in perspective
against the equivalent training for C, where a programmer must learn an editor, a graphics kernel,
a windowing system, a file interface system, a database system and numerous development and
debugging tools. When analyzed in this light, Smalltalk is easier to leam than the hybrid languages
because all of the features are integrated into a common secamless environment. Smalltalk has
much larger libraries (classes) than the hybrid languages. For comparison, Smalltalk-80 supplies
over 240 classes, Smalltalk/V over 110 classes and Objecti 20 to 80 classes. Currently C++
does not typically come with any standard class libraries. (It is difficult to create a truly reusable
class in C++ because the type checking prevents general classes, like stacks of anything.) The




larger the librarics, the longer it will take o learn a language. Therefore although C++ is
mnmuumnunms-.nun.mu-mmmod[Amwl.
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computationally intensive, are relatively complex software systems, even when supplied as libraries.
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expected to fit well with many future product development
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Animating Programs Using Smalltalk

Ralph L. London and Robert A. Duisberg
Computer Research Laboratory, Tektronix, Inc.

An animation kit can be
used to explain how a
program works by
creating graphical
snapshots, animations,
and movies correlated
with the program'’s
actions. Such a facility
could play an important
role in program design,
development, and

testing.

Thc availability of today’s power-
ful personal workstations with
high-resolution bit-map displays and
pointing devices makes possible the
creation and display of drawings con-
taining @ wide assortment of charac-
ters, fonts, icons, and figures, all of
which can be continuously moved for
realistic animation. We are currently
involved in using such animation to
visualize programs and algorithms by
creating graphical snapshots and
movies correlated with the programs’
actions. Such a facility we hope will
provide programmers or computer
users in general with an understanding
of what the programs do, how they
work, and why they work. It also will
give users visual feedback as a pro-
gram and its parts are being executed.
This animation system will provide
pictorial representations of those data
structures, at the proper level of
abstraction, which are used by a pro-
gram. Standard representations of in-
ternal data structures, such as linked
lists or arrays with separate index
variables, are often insufficient be-
cause the viewer must mentally
transcribe such representations to the
abstractions involved in the use of
those structures. We use the type of
diagrams or sketches a programmer
draws at a desk or wallboard, or the
kinds of schematic figures found in a

001 §-91 6278 /0800008 | 431 00 1943 LEEE

programming or data structures text;
fortunately, we do not need pictures
with exquisite shadings that reCreate
photographs. Such figures change to
reflect the changes during the execu-
tion of the program. People’s ap-
parent tendency to understand by visu-
alizing spatially the abstractions that
constitute the intention, or *‘meaning,"
of a program is exploited by the system.
For example, one visualizes in two
dimensions the trees or matrices ma-
nipulated by a program, whereas the
code is always linear and sequential.

Value of animating programs

There are numerous reasons for tak-
ing this approach. We expect such a fa-
cility to be useful, probably even im-
portant, for designing and developing
programs, for debugging them, for
monitoring their performance, for
documenting and describing them, for
showing them to colleagues and to
technical and managerial visitors, and
for directing and interacting with exe-
cuting programs. Furthermore, such a
facility should serve to recall to the
program’s author and others the inner
workings of a program after months
of nonuse, permitting, for example,
the enhancement and changing of the
program. New project members and
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nary compilers were used without any

in nature, these attempts confirmed
the value of animation (if such were
necessary) but quickly exposed the lim-
fations of character graphics and the
need for animation system support.
Magpie, '° an interactive environ-
ment for Pascal, has several capabil-
ities of interest to animation. With
Magpie's event monitor mechanism,
variables can be marked so that a vari-
ablespecific procedure can be exe-
cuted when the variable is accessed or
changed. This provides a capability
similar to the active values of Loops.
While this facility is often useful, there
are many times when updating at each
variable change is inappropriate, and
it is better to update at selected points
with a more global outlook. Event
monitoring also allows procedure-
specific routines to be called at pro-
cedure entry and exit. These facilities
of Magpie would allow a convenient
separation between the program being
animated and the animation code. It is
still necessary to invoke animation
code as, say, a procedure call at certain
points not covered by these capabil-
ities, i.e., to have an equivalent capa-
bility to the interesting events of Balsa.
With just event monitoring and the
displaying of the procedure call stack,
the Magpie authors were able to con-
struct interesting demonstrations and
animations of changing data struc-
tures and computational progress. Ex-
amples included simple sorting, the
towers of Hanoi, and binary search.
While Magpie could, in principle,
have provided us access to the same
graphics it uses, it could not support
the size of programs we would soon
develop. However, Smalltalk® is a
powerful alternative that we are able to
exploit to obtain a more general and
productive programming environment
plus superior graphics and some sys-
*Specifically, Smalltalk-80, which is a registered

urademark of Xerox Corp. In tha paper Senalitalk means
Senalltalk 80
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tem-supplied animation tools.!! The

* special environment. Very exploratory = Balsa designers, instead of using a sys-

tem such as Smalltalk, **chose to build
a tailored special-purpose system
[mainly because] the real-time dynam-
ics of the programs in operation is of
fundamental importance: we were not
prepared to pay the performance pen-
alties inherent in a general-purpose
system.""! We do not criticize their
choice; were we in their position, we
would likely have chosen similarly.
However, we are fortunate that our
colleague Allen Wirfs-Brock has writ-
ten suitably fast Smalltalk inter-
preters'? executing on our Magnolia*

Object-oriented
programming lends itself to
program animation; still
additional layout information
must be provided or
generated by default.

and Tektronix 4404 workstations.t
For the examples we have run so far,
we have always been able to provide
animations with appropriate real-time
dynamic properties. Indeed, at times it
is necessary to include programmed
delays so that a viewer sees enough.
And, of course, the animations must
often pause until the user signals
(usually with the mouse) to proceed.
We should note that while we have
made effective use of Smalltalk in our
work, there is much more for us to
learn about its best and proper use, op-
timal style, and efficient program
organization techniques, We have not
had to perform deep optimizations Lo

*Magnolia i an internally developed, single-user,
68000-based workstation providing a high-resolution bit-
map duplay and CoOMEuLation resources comparahie 10 8
DEC Vax 11/75%0

tFor benchunarks for the 4808, ser Smalitalk S0 Newy-
letter, No. 4, Sept. |94, p. 19 Withowt changing a singke
character, all of our work runs on this workstation &
least as fast &3 on the Magnoda

gain the necessary speed; just avoiding
obvious inefficiencies and poor prac-
tices have so far sufficed.

Even without the graphics, Small-
talk is attractive as a programming lan-
guage and environment for animation.
The philosophy and discipline of
object-oriented programming in gen-
eral, and Smalltalk in particular, lend
themselves quite well to the task of
program animation. There is a certain
naturalness in representing a data
structure as a self-contained object,
and an algorithm working on that data
structure as a method executed with-
in/upon that object; this approach has
been widely advocated. Further, a dis-
played representation of that object is
naturally thought of as a “‘view"
thereon. If such a representation dy-
namically reflects the changing state of
the object as it evolves during the exe-
cution of the algorithm, all the basic
elements of an animation are in place.
Still, a great deal of additional layout
information must be provided or be
generated by adefault procedure in or-
der for the view to display the object
state. The view must also maintain
some kind of spatial map between dis-
play objects at which the user may
point and their corresponding parts in
the object being animated, because the
user must communicate with the exe-
cuting algorithm through what is pre-
sented. Even without user pointing,
the spatial map is necessary just to dis-
play a view incrementally,

Smalltalk for controlling views

Smalltalk currently provides what is
called the Model-View-Controller, or
MVC, system that, though presently
undocumented in the three Smalltalk
books, pervades the system implemen-
tation of the display interface. For ex-
ample, mouse menu messages, ‘*what-
you-see-is-what-you-get’’ text and
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Figure 2. The animation viewing struc.
ture with the added particular display
routine and circuitous menu message

passing.

code editing, scrolled windows, and
process scheduling are all in the
Model-View-Controller paradigm.
MVC seemed to be a reasonable tool
for building an animated view on algo-
rithm execution. In any case, much
may be learned from the exercise of
augmenting MVC to accommodate
animation by discovering what struc-
tures prove necessary to the task.

In the MVC scheme, the model may
be any Smalltalk object. A view is
taken thereon by creating particular
instances of classes View and Con-
troller and connecting the pointers as
shown in Figure 1. The view object
takes care of such things as framing,
labeling, scrolling, bordering, and
transformations from local view coor-
dinates to display coordinates. The

controller handles the mouse menu in-
terface and window scheduling; the set
of all controllers is polled by the pro-
cess scheduler to learn if any window
wants control (typically when the
mouse has been clicked within some
window). It is of interest that in this
structure, the model has no direct
pointers back to any part of the view-
ing structure, Rather, a model's view is
accessed through the “‘dependency’’
structure inherited from class Object,
which is a list of all views open on an
object. The model may then broadcast
a message to all of its dependents,
without any knowledge of how many
or what kind of views may be open on
the model. It is by using this built-in
mechanism of Smalltalk that we have
implemented the equivalent of Balsa's

interesting events and Loops' active
values. The sequential activation of
the views in the dependency list pre-
cludes simultaneous updates of multi-
ple views on a single object.

The principal refinement of this
structure for animation views is the ad-
dition of a particular display routine to
the view; see Figure 2. This object con-
tains the specific methods for creating
the displayed image of the model rep-
resenting its current state, Further, the
menu message receiver to which the
controller passes messages is no longer
the controller itself as in most system
views. Rather, a menu message is first
passed to the display routine that
knows the spatial map between images
and model parts, so that the user can
select the part to be changed and the
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display routine interprets the user’s ac-
Bon and passes a message on 1o the
mode! itself,

In our implementation the broad-
cast of an InterestingEvent® within a
method typically takes the form:

self broadcast: Fupdate:
with: (InterestingEvent
of: ¥ operation with: value
on: actor).
Here an instance of the class Interest-
ingEvent is simply a package to bundle
up whatever information the display
routine may need to perform the up-
date cfficiently. To insert a probe onto
an ActiveValue one opens an Anima-
tion View onto some instance variable,
say x, within the animated structure,
Then instead of writing

x = newValue

when assigning to that variable, one
simply writes

x changed; (x — newValue),

The “‘changed:'" message, like the
“broadcast:"’ message, broadcasts to
all of x's dependent views the message
“update:,” sending as an argument
the value of the assignment statement,
which is newValue. Other syntax that
is even less intrusive has been sug-
gested to us,

Figure 3 shows, as an example of the
virtue of active values, our animation
of Hunt and Szymanski's algorithm
to find the longest common subse-
quence in two strings. The algorithm
maintains a *‘threshold array’ defined
as T1i, k] = the least j such that the
two strings A(1:/) and B(1:/) have a
common subsequence of length £,
(This definition seems remarkably
obscure to intuition, but its meaning
becomes much clearer when one is able
to watch the animated array grow.) In
the animated view there are three dif-

*The typography follows Smalltalk conventions.
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Figure 3. Animation of Hunt and Szymanski’s algorithm for finding longest
common subsequences in two strings. The algorithm consists of a pair of
nested loops in which the index / into the second string scans to the left in the
string looking for a match with that character pointed to by the index / in the first
string. If a match is found, the matched pair of characters video-reverses, and
the value j migrates in a data lozenge from its value window down to the growing
threshold array T[i,k] and from there to the linked list view at the bottom of the
display, where it is joined by its matched | value. The longest linked list through
lmhbmdodhdoxpnlnanowsthQMﬂwanimmnmsmm.lw
dicated finally by video reversal.




ferent views Open on the index i two
are in the form of sliding pointers that
indicate the position of index i in the
first string and in the growing matrix,
and the third is a little view thar simply
shows 's value. The code of the
algorithm reflects none of this, but by
assigning into / in the manner de-
scribed above, all of these views on {
automatically change themselves. The
updates are sequential although simul-
taneous updating would be preferred.

Creating individual animations
Creating an animation starts by

coding the algorithm cleanly just as
one would an unanimated version.

pictures of the central data structure
must be created and updated as the
execution of the algorithm proceeds. If
enough details are suppressed in the
latter or if it is sufficiently different,
one can view the graphical representa-
tion as an abstract representation of
the internal state. In many cases it is
possible and appropriate 1o present
just graphical images with little or no
textual representation; i.e., certain
necessary but secondary information
is best omitted to avoid distraction and
clutter. It may be desirable for in-
dividual visual parts to have some
capabilities built into them, for exam-
ple, the possibility that the user point
at them to get a menu of commands to
the objects represented.

\

Often it is better to show smooth transitions between states; viewers
are not startled when the new state Slashes onto the screen and they
can see how the new image evolved.

There may be advantages in develop-
ing and coding the algorithm together
with its animation, but we have not
done this yet. In any case, we then in-
sert a few appropriate broadcasts of
InterestingEvents and probes onto Ac-
tiveValues. In this way, much of the
viewing structure, in particular the An-
imationView and AnimationControl-
ler, will be directly portable from one
animation to the next. This is impor-
tant in applying animation to aid in al-
gorithm discovery because there is a
generally constant set of views, as, for
example, in the open “Pancake Flip-
ping’ problem.'* The entire viewing
structure can stay intact because, with
the minimal effort involved in insert-
ing probes and InterestingEvents, one
can install a new algorithm to see what
it does, just as one would install a new
slide under a microscope.

What will be viewed is a graphical
representation of the essentials of the
algorithm, which means one or more
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Itis important to provide before and
after views of program states, either as
IWO separate images or, better, as an
updated view with only the altered
parts changed, i.e., without the dis-
traction and cost of a complete redis-
play. Often it is even better to show
smooth transitions between states: if a
structure changes and the new state
simply flashes onto the screen, the
viewer is typically startled and cannot
see immediately without some mental
effort how the new image (could have)
evolved from the previous one. For ex-
ample, in the animation of the Pro-
ducer-Consumer-RingBuffer system
in Figure 4, production of a data ele-
ment is shown by the creation of a cir-
cular data lozenge, * a black dot with a
symbol printed in it, which moves
smoothly from the producer to the
momitor and then down into the next
open siot in the buffer where the sym-

"Which we call an "MnM." dowe 10 3 registered
trademnark

bol is deposited. (If the buffer is full,
the monitor sends the lozenge back to
the producer, which then video-
reverses to indicate that it is blocked,
awaiting a notFullSignal; attempted
consumption from an empty buffer
causes analogous behavior.) Similarly,
when the pointers in the buffer ad-
vance, they do so smoothly. Likewise,
in the longest common subsequence
animation in Figure 3, values of the in-
dices are packaged into lozenges,
which then migrate from the index
counters into the appropriate place in
the growing matrix and then into
linked lists of pairs of indices. This ef-
fect was produced efficiently not by
the usual animation technique of re-
drawing the updated display offscreen
and then redisplaying, but rather by
creating a class called Lozenge

Each instance of class Lozenge con-
tains mternally two forms (bit maps),
one of which is an instance of class
OpaqueForm that shows what the
lozenge looks like. The other stores the
background that the lozenge, when
displayed, conceals. A lozenge also
keeps track of its current position and
keeps a pointer to its “referent,” the
object being animated of which the
lozenge is the graphical image, so that
the actual data object may be accessed
through the position of its graphical
representation. Upon receipt of the
message “‘moveTo: newPosition" the
lozenge divides the vector from its cur-
rent position to the newPosition into
ten parts and successively displays
itself along the path while restoring the
background. This special treatment of
moving clements results from the
ngidity of subview placement within
MVC. In a more uniform treatment,
one would like to think of such moving
lozenges as views on the data element
in the algorithm whose position is con-
strained to correspond in some w ayto
where the datum is stored, i.e., in a
“port’”” in the producer or monitor.
This approach is being explored in the
development of the animation kit.
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The particular form of the animat-
ing routine may be built directly from
Smalltalk primitives and supplied
methods, or it may be built from a li-
brary of components of sliders, data
lozenges, pointers, etc. Discovering,
invoking, composing, modifying, and
packaging components Lo meet our ex-
act needs are no different from other
programming applications. We began
1o accumulate experience and “‘reus-
able’’ components applicable in later
examples from one example. These in-
clude the moving lozenges, expanding
and contracting regions, Animation-
View and AnimationController, and
user control of an animation.

Viewers can intermix single-step-
ping through the events of an anima-
tion and proceeding without pauses by
using the mouse as “‘brake and ac-
celerator pedals."” We have not yet
used views of code being executed, for
example, single-stepping through
statements, because we believe such
views are usually unnecessary. There
are even examples of recursive pro-
grams that can be animated effectively
without explicitly showing the recur-
sive control stack. Thus, in quicksort,
say, each recursive call shows (ani-
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mates) only the subarray involved in
that call, but the subarray is positioned
properly with respect to the full array.
Parsing and tree walking algorithms
can be animated similarly.

Interesting events are closely related
to mvariant assertions. It should not
be too surprising that the places to put
interesting events include the begin-
ning and ending of a routine, the ini-
tialization and exit of a loop, and at
least one point within every loop.
Thus, it turns out that interesting event
locations are essentially the same loca-
tions at which one might place invari-
ant assertions, were one to venly an
algorithm to be consistent with its
specifications. We can think of ani-
mating a program as illustrating the in-
vanants and how they are maintained.
The design of an animation is often in-
fluenced by considering the task to be
one of maintaining the visual invari-
ants, especially those between the in-
ternal concrete representation of the
program state and its graphical repre-
sentation. In turn, program develop-
ment 1s simplified when programmers
see new ways 1o maintain program in-
variants. This happened to us in a
small way, which we describe in the

Figure 4. The Producer-Consumer-RingBuffer ex-
ample. The moving lozenges are caught in stop-
action: A has been removed from the front of the
queue and Is on its way to the consumer through
the monitor, and E is on its way to the newly
available slot (denoted by ?7) at the back of the
queue, The front pointer and the currently
unavailable cell have already moved, but the back
pointer has yet lo move.

Dutch national flag example in the
next section.

As we proceeded in creating the
animation, we usually encountered the
experimental nature of the process.
What seemed 1o be a good approach
would need to be substantially modi-
fied because the animation would re-
veal less than we expected or because
just seeing the amimation would sug-
gest better ways 1o us or to other
viewers. Because the purpose of an
animation is (o use visual cues to com-
municate an understanding ol a pro-
cess, it must necessarily involve com-
plex psychological and aesthetic issues,
including whether the animation cre-
ates the illusion of what it purports to
represent. Such issues are not easily
delineated, or even well understood, so
this experimental and iterative ap-
proach seems unavoidable for now
Style, taste, and arustic creativity are
all important here for the same reasons
that some user mterfaces are better
than others.

Animations can, of course, mislead
users, or outright lie, about the work-
ings of an algorithm. What an anima-
tion should or might show may depend
on the expected audience., A visitor




once asked us If we had any experience
with naive users; In particular, were
there concepts obvious to experienced
programmers that novices surprisingly
musunderstood? Because our audience
has been veteran programmers and be-
cause we usually talked about the algo-
rithm during its animation, we have
had no conceptual problems. How-
ever, in an animation of a binary search
wheoe the number being sought was
highlighted all the time (and the active
region of the search would shrink at

each iteration), one novice viewer did

ask, in effect, “If you already know

where the number is, why are you do-
ing the binary search at all?"

Further examples

One of the first examples we did in
Smalltalk was a replication of the
selection sort that is done in the movie
Sorting Owt Sorting: the clements of
the array of integers being sorted were
represented as a row of varying-length
sticks, each proportional in length to
the element and each extending up-
ward from a common horizontal line.
As two clements (sticks) were com-
pared, they were highlighted. At the
end of each search, the two elements to
be swapped were highlighted. Then the
two elements would simply reappear in
their new locations. Later we made the
two elements move continuously from
original to new locations. This was all
accomplished straightforwardly with
messages to the array object to invoke
its methods for displaying itself and its
elements in this representation; no
MVC mechanism was involved.

We also animated an abstract queue
or ring buffer and later included it, as
noted above and in Figure 4, as a sub-
part of the Producer-Consumer-Ring-
Buffer system. The internal represen-
tation is an array made circular by
modular arithmetic with pointers to
represent the front and back of the
queue, The graphical representation
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was two concentric circles with the
space in between divided into slots for
elements. As we queued elements into
this circular structure and removed
elements from it, the two pointers con-
tinuously moved inside the smaller cir-
cle. To distinguish the full and empty
queues internally, one array location
was always unavailable; this changing
location was specially identified. From
[ae A oaitrsmt non A L WY v b |

One of our first examples
was a sort of an array of
integers represented as a row of
sticks of varying length: as two
elements were compared, they
were highlighted.

this animation we were able to answer
the question, ““When, if ever, do the
two pointers cross?'" Our prior ex-
perience in several contexts with this
well-known data structure had not
provided the correct answer.,

The Dutch national flag problem
led to an interesting series of anima-
tions. The problem may be briefly
stated as follows: For a row of buck-
ets, each containing one pebble whose
color is either red, white, or blue, re-
arrange the pebbles in the order of the
Dutch national flag, i.e., first the reds,
then the whites, and finally the blue
pebbles (one, two, or all three colors
may be absent). Only swaps involving
two pebbles are permitted, the color of
each pebble may be determined only
once, and only a very limited amount
of memory is available, independent
of the number of buckets, so that no
arrays may be used by the program
(beyond the bucket array, of course).
A reader who has not seen this prob-
lem before may wish to attack it before
reading the next paragraph. It is not
necessary to see Dijkstra’s discussion
and solution to understand the anima-
tion of this example, but his discussion
is illuminating.

The animations (see Figure 5) repre-
sent the buckets and pebbles as a flag

of adjacent, vertical stripes in three
shades: gray, white, and black. Under-
neath the flag is a band that represents
the four different zones of pebbles: es-
tablished red, established white, estab-
lished blue, and as yet uninspected.
There are pointers that show the
boundaries of each of the three estab-
lished zones. The band of zones and
the pointers together illustrate the in-
variant that is the key to discovering
the solution and to understanding it.
There is an “eye’ icon that shows a
pebble having its color determined,
after which the corresponding stripe
contains a “‘punch mark" to indicate
the expiration of the one-time capabili-
ty. Those stripes about to be swapped
are designated by flashing a small por-
tion of the stripes. Over the time we
developed the series of animations,
each of the four changing pars (eye
locations, swaps, pointer changes, and
zone expansions) went from instan-
taneous change to smooth motion. In
particular, the smooth swaps of two
stripes were first accomplished by wip-
ing, i.e., gradually and simultaneously
overwriting (a small vertical stripe of)
the color of each with the color of the
other. Later we changed with little ef-
fort the swapping to be done with
smoothly moving lozenges. We first
used four steps: each stripe leaving its
original position, stopping, and then
going to its final position. This was
next changed to three steps that, as it
turns out, closely resemble a three-
statement swap with one temporary.
To avoid ghostly images when moving
a white stripe, we then added a border
to each stripe of the flag. Most impor-
tantly, watching the animations led to
a simple, new way (at least to us) for
avoiding the previously known, unnec-
essary swaps in the case of, for exam-
ple, an all-red flag. The new program,
which may be viewed as an optimiza-
tion in the case of seeing and then plac-
ing a red pebble, is different from the
program sketched by Dijkstra for deal-
ing with the unnecessary red swaps. The
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new program results from adding to the
original program and, accordingly, 18
almost immediately animated. The
meaning of the “'as yet uninspected’’
zone must now include *'or not yet
placed in an established zone."” In all
instances, it is clear from the anima-
tions that no pebble is color-deter-
mined more than once, a fact that can
be made clear by various other con-
siderations.

Finally, because a colleague asked
us why we had not animated the eight
queens problem,” we soon animated a
program doing backtrack search. Sys-
tematically, queens moved contin-
wously from one square 10 thenext;ifa
queen was unsafe, a ray was drawn
between the queen and one of its at-
tackers. While watching it, a visiting
colleague essentially noted, **So that’s

how backtracking works for the eight

queens problem.”

he ficld of program animation is
an application area involving a

*Place cight queens on 3 chess board so that all queens

are sale from capture
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wide range of issues from the technical
to the psychological and the rich inter-
face between the two. Since Smalltalk
is an open system designed with much
attention to the human interface and
with many elegant facilities at our dis-
posal (modifiable, if pecessary), it is
not surprising that we have been able
to use it successfully in our exploratory
and prototyping research. What en-
courages us, however, is the relative
ease of prototyping in spite of our not
being Smalltalk experts. We are also
encouraged by viewers who suggested
new uses for animation in their own
work, for example, interactive com-
pilers, application accelerators, distrib-
uted object managers, and dynamic
programming language environments
such as Prolog. We have discovered
that the number of potential applica-
tions, discussions, and issues to which
animation may contribute is far broad-
er than we initially imagined.

So far we have relied on the anima-
tions themselves and our own verbal
remarks to explain the symbolisms
employed and the meanings of the

Figure 5. The Dutch national flag

example with a view from the
new program in midswap. Hav-
ing seen a red (gray) pebble
(which is partially visible in this
view) above the white arrow, the

eye checks the pebble above the
red arrow. It finds a blue (black)
pebble. In this case, it Is neces-
sary to swap the two pebbles.
Had the eye found a red pebble,
no swap would be made.

icons. Obviously, a view could incor-
porate explanatory messages or run-
ning commentary, using text or even
auditory messages or musical accom-
paniment. An especially intriguing
technique to augment explanations
would be to incorporate Ward Cun-
ningham's set of iconic “robots,"’
which can be taught to deliver and
comment on a demonstration. '*

In the course of creating these
animations, directions for further
research have become evident. The
planned animation kit must include a
library of reusable and connectable
animation routines for creating new
views. It is impossible to anticipate
every need, of course, but the goalisto
allow the views to be composed in
various ways and to be used as tem-
plates for more specific uses if need be,
in keeping with much Smalltalk pro-
gramming practice. We must also spec-
ify and abstract the effects of combin-
ing movable pictorial elements as well
as their potential interactions and in-
terferences. As an example of a kit
component, Richard Wagner has pack-
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aged a general method for moving
wveral objects samultancously along
separate paths. The paths may inter-
vect and need not contain the same
number of steps. '’

1 is clear that a direct application of
the Model-View-Controlier scheme as
i now exists can be quite awkward,
particularly when we attempt to com-
hine a8 number of views into one com-
posite. (For example, recursive send-
ing of the message *displayView"'
through the subview hierarchy causes

tions, Ordering the interactions of
these fragments in the network of ob-
jects and constraints, and then actually
compiling detailed update and graph-
ics code are the jobs of constraint
satisfaction algorithms, A constraint
system could support the graphical
style of a novice programming inter-
face that one expects from a kit in
which new objects are constructed
from the building blocks provided.
ThingLab's ability to compile incre-
mentally new methods in response to

#

We are investigating the use of constraint languages because they
express relations at a high level of abstraction while fragments of code
maintain those relations.

the display to redraw itself repeatedly
upon the activation of a window. To
avoid redrawing, a special case must be
made at some level in the hierarchy to
cut off the recursion.) The arrange-
ment of model, view, controller, and
associated display routine shown in
Figure 2 seems t00 complex. A cleaner
implementation might be achieved by
the subsumption of view, controller,
and display routine into a single
mediating object whose function is to
maintain consistency between the ob-
ject viewed and the graphical image,
however that consistency may be
specified. At least the functionality of
the associated display routine might be
better achieved by distinct subclasses
of AnimationView. Simplifications by
such data abstraction should facilitate
composition of numerous views.,

To address these problems, we are
currently investigating the use of con-
straints to specify and maintain rela-
tions between views and their refer-
ents. A constraint language such as
that supported in ThingLab is attrac-
tive for a number of reasons. Con-
straints express relations at a high level
of abstraction while containing frag-
ments of code to maintain those rela-
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user requests supplies the potential to
download a set of such compiled
methods as a “‘packaged’’ animation
that may run independently from the
constraint specification and satisfac-
tion mechanism. Common difficulties
that arise in constraint systems are not
expected in animation since here con-
straint networks have a low branching
factor and generally lack circular
dependencies among constrained
values. (For example, a constraint that
a view be consistent with the thing it
represents may always be satisfied if
we update the view, which in turn
would rarely change the model.)

Thus our first implementation of an
animation kit will be built on top of
ThingLab. A fundamental required
extension to current constraint lan-
guages is a mechanism for stating tem-
poral constraints. All existing con-
straint systems specify consistency of
static state, but time requires special
treatment and cannot simply be in-
serted as another variable in a con-
straint relation. This is largely due to
the disjunction between the inherently
discrete, time-slice character of our
display hardware and the kinds of con-
tinuum statements one would like to

make in describing smooth motion
and rates of change, e.g., v = dx/dL.
In a discrete approximation, during
the evolution from one consistent state
to the next, some constraints are ex-
plicitly not satisfied, and the constraint
satisfier must not insist that they be lest
the computation bog down in error
relaxation. Furthermore, constraints
like to satisfy themselves in any possi-
ble direction depending on computa-
tional circumstances, but time marches
on rather unidirectionally, and it
would not do to have a constraint set
the clock back to some large negative
number just because it did not know
how to resolve otherwise the incon-
sistency. In the system currently being
implemented '* the temporal speci fica-
tion is abstracted from the constrained
object and placed into the above-men-
tioned ‘‘mediating object,’” which
maintains versions and histories of the
constrained object and owns the tem-
poral constraints that relate one version
to the next. This mediator also owns the
constraints between view objects and
the current version’s state. Since Thing-
Lab constraints between objects are
always owned by a mutual ancestor,
this mediator is not implemented as a
filter between view and object but as a
parent of both that manages versions
and clocks and owns all the relevant
constraints among them.
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Simon
Functional Description and Architectural Design
Revision 1
R.J. Steiger

ParcPlace Systems
DRAFT. CONFIDENTIAL, NOT FOR DISTRIBUTION

1. Introduction

1.1. Purpose
This document defines the functionality and architectural design of a SIMPLE demo prototype
called Simon

1.2. Related Documents

[1] SIMPLE Product Requirement Specification R. Steiger, March 20, 1987
[2] LOOM - Large Object-Oriented Memory for Smalltalk-80 Systems Ted Kaehler, Glenn
Krasner, in Smalltalk-80: Bits of History, Words of Advice, Glenn Krasner, ed.

1.3. Revision History
(1] first draft.

2. Overview

2.1. Simon's Purpose
Simon is intended to be an experimental testbed to better understand the functional, technical
and performance issues involved in integrating database and Smalltalk technology

There are two broad motivations for such an integration (see reference [1]). The first is to pro-
vide a better information management application development and delivery environment to
organizations using existing commercial databases, leveraging off of Smalltalk’s general benefits
-- portability, productivity, powerful and consistent user interfaces, rich functionality, and applica-
tion integration. The second is to augment Smalltalk's transient, private objects with persistent,

sharable objects. In both cases, there is a strong requirement that the resulting capability be
simple to apply and easy 1o use

2.2. Phasing

It is expected that Simon will evolve through several phases. The overall strategy is to build
gach phase on top of the previous one, minimizing unnecessary future rework where possible
through principled design.
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This document describes the initial version called Simon-1 in considerable detail, and antici-

pates its successor Simon-2 in some of the design choices.

Simon-1's primary focus is on achieving:

(A) transparency- relatively seamiess integration of Smalltalk and a relational database, result-
ing in radical application simplification relative to non-transparent systems, through the fol-
lowing means:

(1) object-onented representation - data is represented in the form of Smalltalk objects

that are accessed uniformly through message-passing, as opposed to tuples or some

other non-object model:

(2) location independence and automatic data migration - objects may be referenced

independently of their location, and may be accessed without having to explicitly

locate and transport them; the control of data migration between Smalltalk and the
database Is thereby rendered as invisible to the casual user as feasible;

(3) automatic object storage - under fairly general circumstances, objects are automati-
cally stored in the database when doing so is required to maintain consistency;

(4) semi-automatic selection of representation - class definitions for Smalltalk objects
and table definitions of associated database records may be automatically generated
from each other, with intelligent defaulting;

(S) flexible representation - more knowledgeable users may override default representa-
tion choices in order to tune the system's performance: i

(8) Information integrity - basic data integrity guarantees via value
controls; -

(C) = end-user familiarity - user interfaces oriented toward a look-and-feel familiar to current f
commercial databases users; and

(D) portability - the power of underlying databases is brought out in a generic (database-
independent) form, and which applies equally well to accessing objects residing within the
Smalltalk image or the database. A

E‘Sa on-2's pemary primary focus is on extending Simon-1 by achieving: ~ ,

1"' (E) ) sharing- allowing multiple users to interactively and safely share the same set of objects, |||

v\ * Iincluding providing update coordination and notification;

)

(F) conceptual modeling - providing a higher-level design and query capability based on the
Entity-Relationship model;

(G) relational completeness - providing views, joins, and derived attributes, thereby matching
or exceeding the power of SQL as a query and application language;

(H) user interface kits - providing a more powerful and flexible set of building blocks for
developing domain-specific applications and tools:

()  graphical design aids - providing direct manipulation of schemas:

(J)  persistent storage reclamation - extending garbage collection to the database: and

(K) schema evolution - integrating classes and change management into the database,
securely linking persistent objects to their definitions.

As critical as it is, developing sharing is defered to Simon-2 because (a) the underlying DBMS

doesn’t support it, and (b) sharing relies heavily on the more fundamental transaction and per-

sistence management mechanisms in Simon-1.

We use the generic term "Simon" when describing an aspect of the whole framework, and a

more specific version name "Simon-i* when discussing an aspect specific to that version.

constraints and concurrency
—r T

| -

|
H
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/, - 2.3. Remaining Document Structure

tion 3 describes Simon's high-level configuration and architecture.

2ection 4 describes the Persistent Object Manager's functionality as seen by applications

Section 5 describes Simon's application functionality as seen by end-users.
Section 6 describes the design of the Persistent Object Manager

Section 7 describes the design of the Server Interface Module.




A

4

3. Simon Architecture

3.1. Major Subsystems
Figure 1 is a block diagram of Simon's overall configuration. Simon comprises four major sub-
Systems
appications - tools and utilities for manipulating persistent and lransient objects;
Persistent Object Manager - adds database-independent persistent object capabilities to
the basic Smalltakk system;
Server Interface Modules (SIMs) - translate between the generic persistent object and
Operation world, and various servers’ (typically very different) data and operation worlds:
each type of server has its own SIM: and
servers - underlying storage subsystems (DBMSs, file systems, etc.).
Figure 2 is a more detailed block diagram lllustrating the managers within each of the above
subsystems, and their constituent classes.

3.2. System Configuration Phasing
Simon s written primarily as an ordinary Smalltalk program, plus a few user primitives linked into
the VM

Simon-1 runs in Smalltalk-80 Version 2.2, Sun Release 1.1. It accommodates only a single
server type, Sun Oracle, Version 5.0.20.4. Since this version of Oracle supports local-only
access, it can't provide sharing, and because it must run on the same workstation as the
Smalitalk image, considerable Swapping overhead between the two Systems is to be expected
The interface to the Persistent Object Manager will be formalized in this phase.

Simon-2 is expected to also have only a single server, Sun Oracle Version 5.1. Since this ver-
sion provides remote access from muitiple workstations, it can Support sharing, and can be run
on a central server, thereby reducing user workstation swapping overhead.,

Simon-3 is expected to add at least one other kind of server and associated SIM. It is at this
stage that formalizing a generic SIM interface is 10 be undertaken

In general, SIMs consist of two paris, one running in the Smalitalk Virtual Image, the other a set
of user primitives that in turn call functions in the server's function library
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4. Persistent Object Manager Functionality

This section defines the client (application) interface 1o Simon's central subsystem, the Per-
sistent Object Manager.

4.1. Semantic Modelling

automatically generating database and class designs from each other;
automatically propagating changes to class designs to the associated database designs;
automatically generating operations that map between Smalltalk and server data represen-

lations;
automatically modifying all instances of a modified class to keep them in synchronism with

the class;
. enforcing data integrity constraints: and
. providing default states for newly-created objects.

4.1.1, Attributes

Simon uses the notion of attribute to represent a generalization of Smalltalk variables to encom-
pass both extensional (factual or stored) and intensional (derived, computed, or infered) infor-
mation. Simon-1 restricts attributes to be instance variables, while Simon-2 extends attributes to

includes selected methods.

An object's state may be thought of as the object's set of attribute-to-value bindings.

4.1.2. MetaAttributes and Schemas

Each Smalltalk object is a representative of some real-world or conceptual thing, fact, event, or
concept, called the object's referent. The attributes of an object therefore represent properties

of its referent,
We distinguish an object’'s attributes from its metaAttributes that describe properties of the

object itself in its capacity as its referent’s representative.
Simon defines metaAttributes on objects, attributes, classes, and various database objects.
Simon organizes metaAttributes into two kinds of schemas:

. logical schema - Smalltalk classes extended to include declarations, and

- Pphysical schema - a representation of the database's data dictionary.

A class is declared if it has an associated declaration in the logical schema, and therefore an
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Protocols exist for creating, modifying, and querying schemas. In addition, protocols exist for
creating one kind of schema from the other, and for propagating changes made in the logical
schema 1o the physical schema and the server. These are discussed in more detail later on.

4.1.3. Object MetaAttributes
Simon recognizes two fundamental object-level metaAttributes - persistence and identity Type.

4.1.3.1, Persistence

Every object has a persistence metaAftribute whose value is in the enumeration (transient per-
sistent pendingPersistent], controlling the scope of the object's accessibility and lifetime. (In
general, we shall use metaAttribute values as adjectives, so shall speak of "transient objects” in
place of the more verbose "objects whose persistence metaAttribute is transient” )

The granularity of persistence is at the individual object level.
Transient objects are local 1o a single Smalltalk image: current Smalitalk systems generally con-
tain only transient objects. Transient objects are named within an image by an oop, which we

call a local reference.

By contrast, persistent objects are global to all images. Each persistent object has a principal
copy living in the database, and zero or more local copies living in Smalltalk images, at most
one per image. Principal copies are named by some kind of global references that are indepen-
dent of any image, while local copies are named by local references. Within an image, local
and global references for the same object are therefore in one-to-one correspondence. In this
model, persistence and sharability are equivalent.

An object is pendingPersistent if it has only a local copy, and is reachable from some persistent
object. When a Smalltalk image is synchronized with the database (described in detail below),
its pendingPersistent objects are stored into the database, thereby becoming persistent.

4.1.3.2. GlobalReferenceForm

Every persistent object has a globalReferenceForm metaAttribute whose value is in the

enumeration (unique keyed value}, controlling the representation of its global reference. The

granularity of globalReferenceForm is at the class level.

Unique objects are identified via a system-generated uniqueid that is independent of the object’s

state. Unique objects may therefore have any possible state without losing their identity.

Keyed objects are identified via the value of some key comprising one or more of the object’s
attributes. Unlike unique objects, there can be at most one keyed object having a given key
value, and changing the value of the key can effectively alter or destroy the identity of the
object.

Value objects have no identity, only value, and therefore can't be referenced, only stored as
values of other objects’ attributes.

Because the relational data model is based on keyed references, all objects defined by tradi-
tional relational database schemas are restricted to being keyed.

Objects defined by Smalltalk application programmers may have any globalReferenceForm
Objects representing entities (conceptual things) are generally unique, such as classes,

methods, images, and documents. Objects representing relationships among entities are gen-
erally keyed, such as part-whole relationships and interdocument linkages. Objects representing
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simple values as opposed 1o conceptual tokens (such as numbers and times) are given value
globalReferenceFom.

4.1.4. Auribute MetaAttributes and Declarations

Every attribute has the following metaAtiributes:
cdomain- declaring the set of allowable values for the attribute;
referenceForm- controlling how the attribute's values are represented; and

celauitValuse- the attribute’s initial value in new instances.
In Simon, the class definition interface is extended to include such metaAttributes, by reinterpret-

Ing a class’s InstanceVariableName string as a specification written in a declaration language.
In this language, attribule declarations are separated by commas; each declaration consists of
the atiribute name, followed by the domain specification enclosed in angle brackets, and zero or

more keyword-value pairs for the remaining metaAttributes.

4.1.4.1, Domains

Domains constitute a simple type system, comprising the following elements:

an Instance of Class, written "class”: the domain consists of all instances of the class or
any of its subclasses;

an instance of the Unlon Collection subclass, written “classi|class2|...": the domain con-
sists of the union of all constituent classes’ instances;

an instance of the Enumeration collection subclass, containing an arbitrary ordered set of
objects, written "{object1 object2 ...]": the domain is this set;

an instance of Interval, written "min to: max": the domain is the elements of the interval;
and

an instance of the CollectionType class, written "collectionClass on: indexDomain of:

elementDomain”, or “"collectionClass of: elementDomain®: the domain is the set of all
instances of collectionClass having elements in the given elementDomain, and indexed

over the indexDomain if given, else Smallinteger.

For example,
<ldentityDictionary on: Class of: (ClassDeclaration|UndefinedObject)>

defines the domain of identityDictionaries that map classes to classDeclarations or nil. (Notice
the use of parentheses for subdomain grouping; the angle brackets are used to delimit a group
of statements constituting a domain declaration.) We shall use these declarations in the

remainder of this document.

4.1.4.2. Attribute ReferenceForm

Recall that objects have a globalReferenceForm controlling how their global names are
represented, in essence how the "head of the pointer” to the object is encoded. Similarly,
objects containing the "tail of the pointer” also have a say in how references are encoded. The
actual representation used is therefore negotiated between the referring and referred objects.

On the referring side, the attribute holding a reference has a metaAttribute referenceForm
whose domain is <[reference value|>. Reference attributes contain a global reference to some
autonomous persistent object, either a uniqueld or a key (somewhat like call-by-reference or
call-by-name procedure parameters, respectively). Value attributes contain the object itself
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(80 r!‘.cw?“..‘n hho-caﬂ-by-value Procecdure parameters), packed into the refering object. Such
Packed “objects” have no Separate identity, and therefore can't be shared. In return for being
unsharable, they are much more efficient in space and time than objects having identity, so are
an impornamnt form ol representation.

For any domain, all of i1s values must have the same g!obalHeteremeForrn. S0 as o allow static
bingding of the attrbute's representation. We may therefore extend the globalReferenceForm
metaAltribute from a domain's value set to the domain itself, and can therefore speak of "valye
COMains” and so fonh,

Altributes with value domains are forced to be value attributes. For example, any attribute with
domain Smallinteger automatically embeds its values.

For attributes with non-value domains whose values won't be shared by other persistent objects,
the designer is free to select value referenceForm, thereby asking Simon 1o pack the object
feferenced by that attribute’s value into the same database record as the refering object. Such

packing provides a several-fold im

lop-level circuit.

4.2, Database Interface
Database servers are represented within Simon by instances of subclasses of the abstract Data-
base class. Simon-1 has only one concrete subclass of Database - OracleDatabase, and per-
mits a maximum of one instance to exist. (We shall use the term “"the database” to refer to both
the server and its representitive object.)

OracleDatabase class protocol is as follows:

new
returns the unique instance database,

Database instance protocol is as follows:

open: userid
opens database for access, where userld contains the user's name and password:

IsOpen
retums true if database is open, else false;

store: anObject
immediately makes anObject a persistent object in the database: and

close
closes the database.

4.3. Object Lifetimes
Simon-2 is expected to have the same object lifetime semantics for transient and persistent
objects: objects continue 1o live if and only if they are reachable from Some root object.

The implementation of this semantics for persistent objects is expected to be sufficiently difficult
that Simon-1 takes a shorter-term approach, allowing explicit persistent object deletion. How-
ever, this opens the door to dangling references, ones that Point 1o non-extant objects or which
alias themselves to other extant objects. When Simon encounters a reference to a non-extant
object, it maps it to nil. Since unique objects’ references are truly unique and never reused.
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(hey will never allas Keyed references have an inherent danger of aliasing.

44. Queries
Simon-1'g Query capability is very fudimentary. It allows for retrieval of collections of objects all
of the same class based on various Boolean fiters, and sorted in various ways. The most
basc aggregate functions (ylelding a single value for the entire collection such as sum and aver-
400) are provided. Query Syntax and semantics are native to Smalltalk, not to SQL or some
Other foreign formalism. Simon-1 provides no joins: in Simon-2, the plan is to provide joins
through virtual objects (called views in normal database parlance) whose attributes are indirect
relerences 10 one or more other objects’ attributes,

Queries are represented by the OrderedCollection subclass Query. In Simon-1, query element
domains are restricted 1o a single class, thereby greatly simplitying their implementation. (An
attempt will be made in Simon-2 to generalize query domains to encompass subclass hierar-
chies and possibly unions)
The basic idea of queries is that they represent their elements intensionally (“virtually"), as an
input collection, plus some Iransformation on the input to produce an oulput collection
lransformations include

fiters - predicates that must be true of their output elements;

sorters - which reorder the collection based on the value of some attribute; and

aggregate functions - generally numerical functions of the entire collection,
Since query representation is intensional and highly-structured, it is straightforward to compile
equivalent statements in servers' Query languages, such as SQL, so as to access persistent ele-
ments. Queries also operate locally to obtain transient elements.

Queries may be cascaded, each new Query representing a refinement of its input query, Since

may be created and explored, forming the basis for query-by-refinement style user interfaces
(ala ISL's Rabbit and Intellicorp’s InfoScope), to be developed in Simon-2.

Class has the following additional instance protocol

I

:::uif}ts a new query whose domain IS the class, and whose elements are the class's
instances

Query instance protocol is as foll WS:
with: anAttributeName relation aValue
elements are restricted 1o those whose named altribute stands in relation to aValue. where
felation is one of equaiTo:, lessThan:, matching:, notMatching:, etc.
orderAscendingBy: anAttributeName

orderDescendingBy: anAttributeName
elements are sorted according to values of anAttribute;

+ aQuery
elements are the union of those in both source collections (where both Collections must
have equivalent domains);

- aQuery

elements are those in the first collection and not in the second Collection (where both col-
lections must have equivalent domains):
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coumt
the number of elements in the collection;

maxOf: anAttributeName
minO1: anAttributeName

averageOf: anAttributeName

sumOf: anAttributeName

maximum, minimum, average of, and sum of named attribute of collection: and

executein: aTransaction
executes the query, making its elements available via the query’s normal Collection proto-
col, doing so within aTransaction's environment.

((((Employee select)
with: sname matching: “Smith’)
with: #salary greaterThanOrEqualTo: 35000)
with: #salary lessThan: 50000)
orderAscendingBy: #name)
orderDescendingBy: #salary

Given an object retrieved by a query, applications are then free to navigate from the object
along "links" formed by attributes. Any persistent objects encountered along such a link is
automatically fetched from the database, if not already present in the image.

4.5. Transactions

lransaction, and each process May execute inside any number of lransactions. Each transac-
tion Is bound to some database.
Transaction class protocol is as foliows:

- openOn: aDatabase
returns a new transaction bound to aDatabase: and

scavenge
scavenges the Transaction Manager’s internal tables. removing objects that are no longer

accessed from anywhere else in the image.
Transaction instance protocol is as follows:

remove: anObject
effectively removes anObject from the transaction and any current query, releasing any

lock;
- add: anObject
add anObject into the transaction;

- commit
commits all updates, additions, and femovals to the database, and releases any locks

held; returns only after all changes are secured in the database; and
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abon
uncoes all updates, additions, and femovals, restoring the state to the beginning of the
transaction, and releases any locks held.

Object instance protocol is augmented to control object locking as follows:
exclusivelyLockin: aTransaction waiting: aTime
OCxs the object for exclusive access in aTransaction; returns true if and only if lock was
successiully obtained; if the object is locked by another transaction, waits up to aTime

before falling, retuming false:

uniock
releases the lock on the object, if any; signals any processes waiting to lock the object to

reaftempt locking,

lockingTransaction
relurns the transaction currently holding the lock on the object.
Qbjects may be freely updated in the usual way by assignment to their instance variables. On
commitment, only those objects whose states have changed are updated in the database.
Locking doesnt protect objects from unwarranted access: it is provided purely as a way for
well-behaved applications to correctly coordinate their access to shared objects. (Enforcing

such protection would require deep VM changes.)

Whenever an object is retrieved or stored through a transaction, we say that the object
énciosed by the transaction, and say that an object is transacted if and only if it is enclosed in

becomes

at least one transaction.

4.6. Image-Database Synchronization
Whenever an image is suspended, all outstanding transactions are committed,
chronizing the image with the database.

Whenever an image is restarted after being stopped, the states of all persistent objects are
resynchronized, in the sense that their local copies are refreshed from their principal copies (this

isn't done for snapshotting).

thereby syn-
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5. Application Functlonlmy
SoClion defines the extemal behavior of Simon's application user interfaces,

3.1. The DataBrowser

#&y 1o select a collection vig a Query, then view the collection at a number of lev
he collection as a whole, Individual objects, and atiribute values, Each dataBrowser has 3 tran-

S&Ction in wh
00yects, and aborting or committing the transaction. DataBrowsers provi

and hot (continuously up-to-date) viewing.
The Data Browser has six panes: class category, class,

The classCategory and class panes are copied from the Smalltaik brower, and allow selection of
& class environment in which 10 perform queries and create new instances, Only declared

classes are presented for selection.

Query, collection, object, and attribute.

wokes pane does the equivalent of prefixing For
8€ query would be executed Dy selecting the Employee

{(((with: sname matching: "“Smith’)
with: #salary greaterThanOrEqualTo: 35000)

with: #salary lessThan: 50000)
orderAscendlngBy: #name)
orderDescend!ngEly: #salary

llon pane as a table whose rows are the objects in

The resulting query is displayed in the collec
values of the various objects’ attributes. The

the collection, and whose columns contain the
user may select an individual object in the table with the left mouse button, Columns Occupy a

fixed vertical region within the pane, and each column is labelled with the associated attribute’s
name at the lop. Numeric values are right-justified, all other left-justified, and values too long to
fit in the column are truncated. Column widths are defaulted from the associated attributes’
domains. This pane provides two-dimensional scrolling, allowing Scanning vertically through
objects, and horizontally across columns when objects are too wide to fit within the pane. Scrol-

ling in either dimension is controlled by scroll bars. scroll buttons, and by moving the cursor out-
Gdle button menu for the collection pane has the follow-

ing ilems:

gelete : deletes the selected object;

accept: commits the transaction: and

cancel: aborts the transaction.
Having selected an object in the collecti
the object pane. Each row shows an attribute. with a name column on the left, and a valye
column on the right. One may think of the object pane as a "super inspector” in which all attri-
butes are simultaneously shown in the view, with values lruncated as necessary to fit on one
line each. When an object is selected, the dataBrowser attempts to lock it: if successiul, the
user is none the wiser. If the locking times out (after some fixed duration), selection IS can-
celed, and a waming notifier is spawned. When an object is deselected, it is unlocked.
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vidual attrbute row may be selected with the left mouse button, in which case its value is
whoin the atiribute pane, a standard ParagraphView. The value may be freely edited as
i, and Decomes installed in the object when the user invokes the accept middle button

]

menu item pdates are automatically and immediately reflected in the object and collection
panes. On entry, new values are checked against the attribute's domain, and if illegal, the
UpGate is abored with a notifier

The middle button menu for the object pane provides insert and copy items. Both of these
Creale a new instance of the selected class and put it in the object pane for the user to fill in.
he current object in the collection pane is deselected to indicate that the object isn't part of the
coliection. Insert intializes the new object's attributes from their defaultValue metaAttributes.
while copy initializes them from the previously selected object. When containing a new object,
the obyect pane’s middie button menu contains the following additional items:

cancel: delete the object;
dccepl: validate the object’s attributes, and if legal, keep the object, else raise an error:;
siore: Iike accept, but also stores the object in the database.

When a dataBrowser Is closed, its transaction is aborted.

5.2. Smailtalk Browser Changes
The standard Smalltalk browser is modified to accommodate metaAttribute access as follows:

new varables globalReferenceForm and tableName are added to class definitions; and

the interpretation of the instanceVariableNames string becomes a declaration language, as
described above.

5.3. Standard Menu Item Changes
The standard middle button menu acquires a new store item, which directly stores the selected
object into the database, if it exists and is open, else spawns a notifier.
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6. Persistent Object Manager Design
Tt section describes the internal design of the Persistent Object Manager.

6.1. Object Mapping

Any practical pergistent Smalitalk system must map among various data representations. Even
¥ Ihe server provided a Smalltak-lke data model (e.9. LOOM (reference [2])), it would have to
map Daetween local and giobal oops. When employing a non-object-oriented server such as a
relation DBMS, adaditional mapping Is required between Smalltalk objects and records. Indeed,

ihis mappang is a major source of complexity and computational overhead.
A core pant of the Simon framework is therefore the object mapping mechanism. In order to
Achwve efficiency, parts of this mechanism are implemented primitively.

We next consider representation and mapping for various kinds of objects.

6.1.1. Simple Datatype Representation and Mapping
Simple datatypes are Smallinteger, Fioat, Time, Date, Character, and enumerations.
Enumerated values are stored as their cardinal numbers. The remaining cases are straightfor-

ward and wont bé discussed further

6.1.2. Byte Indexed Object Representation and Mapping
The elements of byte-indexed objects (such as Strings and ByteArrays) are packed into text
fiekds. Such objects may have any of the globalReferenceForms.

Oracle allows either variable or fixed length text fields up to 240 bytes in length, or variable
length long fields up to 64 Kbytes in length. Only one long field is allowed per table, however.

On retrieval, symbols are interned in the Smalltalk dictionary.

6.1.3. Keyed Object Representation and Mapping

Every keyed object is generally stored as a record ("tuple”) in a table associated with the
object’s class. Each of the class’'s attributes has an associated field in the table. Fields for
reference attributes contain either a uniqueld or a key, while fields for value attributes contain
the entire state of the referenced object. (Notice that fields may be composite, comprising a col-

lection of subfieids; for example, multiattribute keys map to composite fields.)

Keyed object tables are indexed on their key fields.

6.1.4. Unique Object Representation and Mapping
Unique objects are represented like keyed ones, with the addition of an internal field containing
the value of a system-generated uniqueld object. Uniquelds have the following properties:

they are unique across databases and users:

finding a record given its uniqueld is reasonably fast;

uniqueld generation is fast;

the object’s table and class are recoverable from the uniqueld;
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ihe object’s creation time and date are recoverable from the uniqueld: and
the uniqueld for any immediate object contains the object.
Uniqueids are stored in the database as a 64 bit Integers. In Simon-1, the representation of uni-
quelds for non-immediate objects is the concatenation of
a class code,
& Unix timestamp, and
a senal number within the timestamp interval (to guarantee uniqueness when more than
one uniqueld is created in the same second).
In Simon-2, a unique workstation id Is added, as well.
The representation of uniquelds for immediate objects is the concatenation of a class code and

the object’s value.
Tables containing unique objects are indexed on their uniqueld fields.

6.1.5. Word Indexed Object Representation and Mapping

Word-indexed objects are Ireated similarly to byte-indexed objects. Each element's oop is con-
verted into its uniqueld, 8 bytes per element, and stored in a raw text field. (For efficiency, each
of the major collection classes may require its own mapping strategy, to be determined during

more detailed design.)

6.2. Object Killing

Under centain conditions described in subsequent sections, it is necessary fo kill a local object,
thereby destroying its identity. This is done by asking the object to become: an instance of
DeadObject, a root class (i.e. one having no superclass) that responds to essentially all mes-
sages by spawning a notifier. The notifier informs the user that the object no longer exists, and

doesn't allow the user to proceed.

6.3. Schema Manager Design

6.3.1. Logical Schema Structure
Class is given a new class variable ClassDeclarationDictionary containing an identityDiction-
ary mapping classes to classDeclaration objects. (A more efficient implementation would add
an instance variable to each class pointing to its declaration, but this appears to be difficult, and
not worth optimizing now.)

ClassDeclaration has the following instance attributes:

- declaredClass <Class>
the class that this declaration describes:

classCode <Smallinteger>
the code of the class used to form its instances' uniquelds;

globalReferenceForm <[unique keyed value]>
the class’s instances' globalReferenceForm:

June 16, 1987
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attributes <Collection of: AttributeDescription>
describing attribute metaAttributes:

keys <Collection of: KeyDescription>
cescribing the instances’ keys, if any;

tableName <String>
the name of the associated database tableDescription (this is moved elsewhere in future

systems 10 allow classes to span multiple databases): and

table <TableDescription>
the associated tableDescription (same comment).

AttributeDescription has the following instance attributes:

name <Symbol>

the attribute’s name;

Index <Smallinteger>

the attribute’s position in the object;

domain <Class|Union|Enumeration|interval|CollectionType>
the domain of allowable values;

defaultValue <Object>
the attribute’s initial value as filled in by the dataBrowser on instance creation: and

referenceForm <[reference value)>
the attribute’s referenceForm.

KeyDesclaration has the following instance attributes:
name <Symbol>

- attributes <Collection of: AttributeDescription>

<DO WE WANT KEYS TO BE SPECIAL KINDS OF ATTRIBUTES?>

6.4. Physlcal Schema Structure
In Simon, the abstract class Database has a single concrete subclass - OracleDatabase. (Addi-

tional server types would have their own classes.)
Database has the following instance attributes:
physicalSchema <OrderedCollection of: TableDescription>
describing the database's tables.
TableDescription has the following instance attributes:
columns <Collection of: ColumnDescriptor>
describing the table’s columns;

- representedClass <Class>
the class whose instances are stored in this class:

mapping <ObjectMappingDescriptor>
specifies object-record mapping, described below.

ColumnDescription has the following instance attributes:

- name <String>
the column’'s name;

type <String>
the columns datatype;
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size <Smallinteger>
the number of Dytes in the column

6.4.1. Schema Storage And Retrieval

n Semon 1, logical schemas are simply enriched classes, so are filed out and in in the normal
manner (Moouio changes 10 the class storage and parsing machinery as described above). In
future versions, classes should be stored in a database.

In Simon-1, physical schemas are extracted from the database by querying its data dictionary,
slanting from the tableName of each declared class. This is possible since Oracle’s data diction-
ary contains sufficient information o regenerate the schema. (Physical schemas should also be

databased in future versions.)

6.4.2. Logical To Physical Schema Translation
When sent the message generatePhysicalSchema, a classDeclaration will return a new
wableDescription. When sent the message /nstall, a tableDescription will in turn issue a set of
commands 1o the database lo create the corresponding table. <details TBS>

§.4.3. ObjectMappingDescriptor Implementation
<To be supplied>

6.5. Transaction Manager Design
The Transaction Manager is the main clearinghouse for metainformation required to manage

persistence and transactions within Simon.

6.5.1. The TransactedObjectTable
For each object in the system subject to transactions (including all persistent objects), a

separate object called a transactedObjectDescriptor (or "TOD") is maintained, containing the

object’s metainformation.
Transaction has the following class variable:

TransactedObjectTable <TransactedObjectDictionary>

(the "TOT"), a dictionary containing all TODs, indexed under two independent lookup keys

- the TODs' local and global object references.
Whenever any object becomes transacted, it is interned (much the way symbols are interned),
yielding a unique TOD. Transient become transacted either indirectly when they are retrieved
by a query, or directly when stored through a transaction. Persistent objects become transacted
when they are retrieved from the database, again by a query. In the persistent object case, a
unique local copy is made,; the TOD binds the persistent object’s local and global references to
each other within each image.
TransactedObjectDescriptor has the following instance attributes:

- localReference <Object>
the oop of the object’s local copy.
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globalReterence <Uniqueld Array|UndefinedObject>

the object's global reference, i persistent, eise nil;

persistence «<|(transient pendingPersistent persistent pendingDeleted)>

the obyect’'s persistence metaAtiribute;

shadow <Object>

a shallow copy of the local copy. used for rolback and update detection;

enclosing Transactions wmﬂnodomoctlmmctlon[t)rdemdcmlecuon of: Tran-

saction»
the sel of enciosing transactions (space-optimized for the extremely frequent zero or one

transaction cases),

owner <Unddlnod00)octleuctlon>
the transaction with exclusive access to this object, if any; and

semaphore <Semaphore>
the semaphore enforcing mutual exclusion on the owner attribute.

Transaction has the following instance attributes:
database <Database>
the associated database;
transactedObjects <OrderedCollection of: TransactedObjectDescriptor>
the objects known 10 the transaction.

3 illustrates the Transaction Manager's object managem

ent state diagram. Note that

::::: may be represented in IWO dimensions, with persistence along the vertical axis, and “tran-
sactedness” along the horizontal dimension. The diagram emphasizes the state machine’s sym-
metries.

in the TOT. If transacted, they are

ed if and only it they have no TOD

§ are untransact
y and shadow have the same states,

clean It their local cop

cause clean-10 dinty transitions.
Transient objects become wransacted either when fetched or stored through a transaction. They
become pendingPersistent when stored, else remain transient. Persistent objects become tran-

sacted when fetched.
Commits bring their shado

else are dirty. Hence, updates

ws into synch with their local copys. Inthe case of persistent objects,
commits ask the database 1o update their principal copies from their local copies. In the case of
pendmgPersis!ent objects, commits create a new principle copy and insert it into the database.
in the case of pendingDeleled objects, the database is asked 10 delete the principal copy. and
the local copy IS killed to avoid inconsistencies.

Aborts undo updates by restoring objects’ states 10 their shadows' states, thereby causing dirty-

to-clean transitions. In addition, aborts cause pendingPersistent objects to revert 10 transient
ones, cancelling their addition to the database. Similarly, aborts cancel pending deletions, caus-

ing pandingDeleled-lo-persistem transitions.
in either transaction termination case, the enclosed objects are left in a clean state.

6.5.2. Implicit Retrieval

Whenever a persistent object is fetched from the database, a local copy is made. A design
invarient requires that only local references exist in local copies, while only global references
exist in principal copies. Hence, when creating the local copy, all global references must be
translated to local ones. in the case that the referenced object is transacted, its local reference
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Ply the oop of is local copy. However, If the referenced object is untransacted, an
vent local object must be made for it anyhow

Dorows a lechnique from LOOM (see reference [2)), creating an instance of the root
Proxy as is ocal reference. and dackpointering the proxy to the associated TOD.

Proxy s a rool class that responds 10 essentially all messages Dy attempling to fetch the object
e database, using the global reference in the proxy’'s TOD. If successful, the proxy is
1ssod 1o become: the lfeiched local object. If no such persistent object can be found, the proxy

10ad asked 1o become: an instance of DeadObject.

6.5.3. Implicit Storage
Whaen inserting a new principal object or updating an existing one, the dual process of convert-
ng all local references 1o global ones must be performed. This implies that any referenced tran-

siant objects must be made persistent so as 1o have global references.

6.5.4. Scavenging
in the context of the Transaction Manager, scavenging means reverting objects to untransacted

gtates 80 as lo release their TOT-related storage. In general, the overall design attempts to
minimize cycles whenever possible, such as removing all pointers between transactions and
TODs when the transactions are terminated.

As implemented in Simon-1, scavenging simulates soff references: the TOT is scanned, and
any TOD whose reference count indicates that there are no other references to it, is clean, and
elther transient or persistent is dropped. This process is expected to be extremely slow (and
would be unnecessary if soft references were implemented inside the VM),

6.6. Query Manager Design
Queries use cursors provided by the server as object streams on retrieval. They are

represented by opaque handles provided by the server primitives.
Each query, being an orderedCollection, cache its elements on retrieval, transacting each ele-
ment in the associated transaction. The query also maintains an atEnd flag. When asked to
retrieve an element beyond the cache, it checks the atEnd flag, and if reset, asks the server for
the sufficient elements to fill in the cache up to the requested element, passing the cursor in the
request. Attempls to access an element beyond the atEnd limit results in an error.

This design optimizes the query overhead to just those elements requested by the application,
such as those actually viewed in the dataBrowser, and allows the dataBrowser to show the first

few elements in a bounded time, even though queries are unbounded.

6.7. Image-Database Synchronization
When an image is being shut down, after transactions are committed, the local copies of all per-
sistent objects are asked to become: their proxies, so as to force them to be refetched on the

first access after image resumption.

June 16. 1987
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7.1. Query Compiiation

The goal of query compilation is lo generate an SOL statement that will perform the equivalent
The basic template of an SOL retrieval statement Is:

select * from tableName where condition orderBy sortingColumns

The compiation is therelore very straightforward: lableName is obtained from the source class's

seciaration, the congition is assembied from the various filter queries, and the sortingColumns is

assembled from the various soring quernies.

b4 34
Jory

7.2 Oracle Schema Transiator

The schema transiator has the job of converting Oracle-specific data dictionary information into
the generc physical schema described above. it also has the dual job of converting physical
schema creation and update operations to corresponding SQL commands. Neither is very

interesting

7.3. OracleDatabase Primitives

OracleDatabase has the following primitive protocol:

setup: anArrayOfClassOops

called after startup or restart from snapshots 0 pass a set of class oops used by the primi-
tives,

connect: userid

opens a connection to the database;

. disconnect
closes a connection to the database; and

createCursor

creates and returns an opaque handle to an Oracle cursor.

7.4. OracleCursor Primitives

The OracleCursor class represents Oracle cursors, and has the following primitive protocol:

- free
frees the internal cursor resource;

- startQuery: aQueryString withMapping: anObjectMappingDescriptor
initiates a query on aQueryString, and establishes the record-to-object mapping;

. next
sequences to the next result object, returning its global reference, or nil if at end of stream;

- getLocalCopy
returns the local copy of the current result object;

. getErrorMessage
returns the Oracle error message s

- getErrorPosition
returns the position of the la

tring corresponding to the last error;

st error (context dependent interpretation);
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abort
aborts the current transaction:

commit
commits the currrent transaction: and

doCommand: aCommandString
submits aCommandString for execution by the server.

I June 16. 1887







- :,;31 8.{

Declarative Semantics in Smalltalk-80:
Applications and Approaches
Revision 1.1

R.J. Steiger

ParcPlace Systems
DRAFT. CONFIDENTIAL, NOT FOR DISTRIBUTION

1. Introduction

1.1. Purpose

The purpose of this position paper is to explore possible applications of declarative semantics
within the Smalltalk-80 system and technical approaches 1o integrating declarative mechanisms
into the system.

(This version is intended to seed a brainstorming session on this topic at the July 10 technical
meeting.)

1.2. Revision History
[1, 7/8/87] sketch for early feedback.
[1.1, 7/9/87] rough draft for input to brainstorming.

2. Overview

2.1. Motivation

Smalitalk-80 is unique among programming languages in the relatively small set of declarative
constructs, namely class and method definitions. In essence, Smalltalk’s radical adoption of
message-passing semantics has eliminated the requirement for type declarations inherent in
type-safe languages based on procedure calling instead of message passing. The general
advantages of message-passing semantics are well known, and won't be dwealt on further here.

The main purpose of this paper is 1o argue that as powerful as these advantages are, there are
numerous important and desireable capabilities and properties that are impractical or impossible
to provide without additional declarative information.

This idea for this paper began when | noticed that the need for declarative semantics was show-
ing up in a diverse set of circumstances, including the current database integration project, vari-
ous proposals for optimizing Smalltalk compilers, and a wide variety of CASE tools (see section
3 for a summary of such applications). My hope is that a single unified declaration facility can
be made to serve most of these applications, at least the ones of shortest-range interest.

From a more general perspective, declarative mechanisms span a wide range of abstraction lev-
els, from relatively simple, localized variable and method type constraints and signitures, through
logic formalisms such as Prolog, to higher-level frame-based “"knowledge representation” (KR)
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systems. While in a brainstorming mode, | suggest that we allow ourselves to look at declara-
tive semantics at all of these levels before focussing on short-term needs, in the hopes that
some unification can result.

2.2. The Basic Declarative/Procedural Distinction

The tradeolfs between declarative and procedural approaches to the design of KR systems,
programming languages, data models, and user interfaces have been the subject of numerous
discussions, papers, and debates over the last 15 years or so. We summarize the main points
here to establish common concepts and language for the rest of the paper. (The following dis-
cussion is in the terminology of the KR field, since this is historically where most of the attention
has been focussed, but should be construed to apply to computing in general.)

An old philosophical distinction exists between "knowing what" and "knowing how". Procedural-
ists assen that knowledge of a given domain is represented as, and intimately bound into, a set
of procedures that operate within that domain. In this view, knowledge is coextensive with
knowing how to operationally apply the knowledge.

Declarativists, on the other hand, assert that knowledge is represented as a set of generic
(domain-independent) inference procedures, plus a set of domain-specific facts manipulated by
these procedures. In this view, knowledge is coextensive with knowing what is true about the
domain.

The general advantages of declarative knowledge are:

flexibility/economy - a given fact may be used in several ways by the general inference
engine, such as forward or backward chaining; procedures are more restricted in their
applicability to specific contexts;

understandability/leamability - declarative facts tend to be more loosely coupled to - and
hence more independent of - each other, and may therefore be treated "additively”; pro-
cedural systems tend to be more tightly coupled and fragile, insofar as seemingly small
local changes can have massive global effects (frequently breaking a system altogether);
declarative systems are thus more easily understood and changed;

naturalness - many facts are declarative in nature, and natural language itself is primarily
declarative, so seems optimized for encoding declarative facts.

The general advantages of procedural knowledge are:
behavioral modeling - describing the behavior of systems is often done most naturally in
procedural form as a set of activities;

second-order knowledge - an essential part of knowing is knowing what we know, what we
can know, and how to apply what we know; in general, the representation of such
second-order knowledge is much easier in procedural terms, typically heuristic.

Winograd summarizes the arguments in the controversy as follows:

- Economy. Procedures specify knowledge by saying how it is used, and every use requires
a different procedure. Declaratives require only a single copy for all uses.

Modularity. Procedures bind knowledge and control in a single package. By keeping facts
separate, a declarative approach makes it easier to update and generalize the knowledge
base.

Exception handling. Procedures can do anything, and problems that aren't covered by the
formal theory can often be handled by an ad hoc piece of code. Declarative approaches
may find handling of unanticipated exceptions difficuit to impossible.
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rationally reconcile these tradeoffs through the development of frameworks that unify declarative

One may view much of the work in Al and KR over the last decade as various attempts to i
and procedural semantics. ‘ ;
| §

|

3. Some Applications of Declarative Semantics

Smaltalk dgclaraﬂve information is encoded in its class hierarchy and compiled methods, and is 3
able 1o put it to good use in the browser, providing a rich variety of information about program

structure., :
The following is a top-level summary of some additional capabilities that would be rendered |
more feasible through expansior/generalization of Smalitalk’s declarative mechanisms:
optimizing compilation

user documentation and annotation to improve readability

static program checking

mechanical generation of interfaces to external/remote services:

. libraries written in other languages

- databases and file systems

- graphics presentation services

. specialized processors (e.g. signal or array processors)

fiter-based user interaction frameworks

software system structural design, analysis, and display tools:

context-specific senders, implementors, accessors relations

. data structure schema display
. better modification impact reporting
. improved semantic data modelling
online documentation, assistance, and learning facilities
data entry assistance (for commands, information forms, property sheets, etc):

- completion
. defaulting

. explanation
. integrity enforcement (type/range checking, other constraints)

more general logical inference (ala Prolog and other logic languages).

4, Competition

The following competitive or potentially-competitive products have some form of declarative
semantics, which they use to gain performance, static-checking, and other advantages:

- Common Lisp

- Objective C

- C++

- Actor

- Eiffel
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Object Pascal

Opal/Gemstone

VBase (Ontologic's OODB)

ObjTalk

QuickTalk
In addition, numerous experimental object-oriented systems employ some form of declarative
semantics, such as:

Typed Smalltalk [Johnson87]

Field's dataflow type inferencing in Smalltalk [Field87]

Fiter Browser [Borning87]

SIG (7]

Incense [7)]

Impulse-86 [Smith8E]
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Programming
Languages and
Systems

Our research projects in programming systems seek to facilitate
software production by providing advanced interactive systems,
improved programming language translation capabilities, and
support for program development. Our efforts are increasingly
directed toward exploiting the benefits of high-speed personal
workstations to enhance programmer productivity.

We are studying interactive systems both for nonprogrammers
and for experts. A system for the interactive development of
programs by modification of example computations has recently
been completed. A high-quality document preparation system
is being designed. We are also developing a language-based
editor, intended as the user interface both for program design
and for preparation of other kinds of structured text.

As part of an integrated hardware-software system for
Smalltalk-80 called SOAR, we are developing a compiler, a
debugger, a garbage collector, and the operating environment
for Smalltalk. Our research on the implementation of Ada® is
focusing on the design of the runtime system.

We have an ongoing project to develop tools to automate the
production of high-quality compilers. We have just completed
a study of techniques for register allocation and intermediate
representation. We have developed a new method for
automated discovery of low-level target code improvements.
Under investigation are a tree transformation system and
techniques for the automatic generation of symbol table
managers.

An important aspect of software development is the design,
construction, and maintenance of large systems. We have
implemented an interactive transition diagram editor, used to
model parts of the development process. The Evolution
Support Environment is being designed to provide a variety of
support facilities. In addition, we are designing and building
software tools for new forms of computer-assisted collaboration.

*Ada is a trademark of the Department of Defense (Ada Joint Program Office).

Programming by Example

Daniel C. Halbert
(Professor S. L. Graham)

Xerox Corporation

Most computer-based applications systems cannot be
programmed by their users. Programming is considered a
difficult skill for the average person to learn, so most systems
do not provide facilities for ordinary users to write programs
that help them do their work.

We believe, however, that ordinary users could program their
systems using a technique called “‘programming by example,"
which is a way of programming a system in its own user
interface. The system user writes a program by giving an
example of what it should do. The system remembers the
sequence of actions and can perform it again. Succinctly,
programming by example is *“Do What | Did.”’
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Programming by example has been added to a simulation of a
commercial office information system. In addition to a basic
programming-by-example mechanism, the facility provides
program parameterization, data searching and selection
mechanisms, control structure, and a static, readable program
representation that can be edited.

Multiple Representations of
Documents

Charles L. Perkins
(Professor M. A. Harrison)

NSF Graduate Fellowship and
(DARPA) N00039-82-C-0235

With the now widespread popularity of document preparation
systems and with the advent of new technologies, such as local
workstations and bit-mapped displays, it makes sense to
reexamine these systems and to see what new techniques can -
be employed. For example, a uniform mechanism for
combining two-dimensional media (text, drawings,
photographs, cifplots, etc.) will be the center of a new,
interactive document system that automatically updates parts of
a document when its source has changed. The system would
present a page-by-page approximation of the final document on
the display, and the user could interactively update those parts
of the document for which local editors exist. It may even be
possible to have an editor that presents a uniform interface to
objects of distinctly different types.

Presently, different editors exist at Berkeley (e.g., vi and
EMACS for text, Gremlin for diagrams, and Magic for VLSI
designs). An integrated system could use these editors as black
boxes, transforming to and from a common representation
when needed. The environment thus created is envisioned as
being more interactive and incremental than previous batch-
oriented systems and would allow the entry of any new two-
dimensional data whose format was describable within the
system.

This project is working in two different directions toward the
system described above. At a high level, techniques for
incremental rederivation and for managing multiple
representations of two-dimensional data must be found. A user
interface, a common representation, and a framework for them .
both must be designed. Progress here has included identifying
the problems involved and researching systems that have tried

to solve subsets of them. An interesting formalism that could

be used to automatically derive new transformations was
discovered.

At a lower level, the editors and transformation programs here
at Berkeley must be brought closer together. Some other
groups here have unwittingly aided this effort (e.g., Gremlin
and Magic have been ported to the SUNs). Also, a simple
system for experiments must be set up. Much of the effort has
been spent here, exploring project feasibility. The typesetting
language TeX, with its notions of boxes and glue, has been
adopted as a basis for the system. TeX produces device-
independent output files that can be printed on all our local
bit-raster printers (and many others). We have recently ported
TeX to the SUN workstation, along with most of its related
software. A previewer for TeX on the SUNs has been adapted
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to run und_cr the window system. These represent the first
Steps in bringing up a simple prototype of the system. Progress
in the future wijl focus on completing and using this prototype.
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Fig. 14-1. The two document pages shown on this page and the
next are from a TeX document being displayed by dvisun on a
SUN-150. Using current Jonts, only two-thirds of each page can be
shown on the display at one time:; commands can move this
‘window' in any direction o reach the rest of the page. Although
one page involves some graphics and the other many font changes,

dvisun can redisplay them in one and wo seconds, respectively.
Average pages take only about three-quarters of a second. This is
Jive to ten times Jaster than the local ditroff previewer.
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Higher-Level Language-Based Language-based editors support the programmer by using
Editors language-specific information during the editing process. This
i support includes checking for syntactic or semantic errors,
Robert A. Ballance template-based entry of basic structures, and special display
(Professor S. L. Graham) algorithms for viewing the program. To date, most systems
impose a rigid development methodology on the user
(DARPA) N00039-84-C-0089 | am interested in developing *‘higher-level’ language-based
editors that support multiple languages and allow users to
manipulate programs in terms of the underlying language. This
approach subsumes both text- and structure-based editing.
Programs and structured text can be manipulated either as text
or in terms of their underlying structures. For example, in a
program, the user might choose to operate on functions,
blocks, statements, expressions, tokens, or characters. At all
times, the editor will offer full flexibility between text and
structure.
This research is aimed at creating an editor-generating system
that accepts a language description as input, creating tables and
code for use in a standard front end. The standard front end




provides a consistent user interface for editing objects written

in different languages. Areas of investigation include
algorithms for parsing, static-semantic description and checking,
and connections to knowledge-based programming
environments.

Experimental Design of a
High-Performance, Object-
Orlented Personal Computing
System

David Ungar
(Professor D. A. Patterson)

(DARPA) N00039-83-K-0107
and IBM Corporation

A new class of programming systems is evolving that integrates
a processor, a high-quality display, a programming language,
and an operating system with the goal of enhancing

programmer productivity. These systems allow the creation of

software prototypes using considerably less manpower.

Smalltalk-80 is the most mature example of an integrated

software system.

The primary disadvantage of such systems is their slowness.

We are in the midst of a three-year project to apply compiler,

systems, architectural, and MOS VLSI implementation

expertise 1o building a low-cost version of such a system [1].

We have built a software implementation under UNIX called

Berkeley Smalltalk (BS) and have distributed it to twenty sites.

Although written in a high-level language (C) and running on a

microprocessor (SUN workstation), BS is as fast as a

microcoded version of the Smalltalk-80 system run on the

Xerox Dolphin. Our long-term goal is to create a new

hardware/software system — SOAR (Smalltalk On A RISC) —

that runs a hundred times faster than Smalltalk on the VAX

11/750.

Garbage collection presents a serious challenge for a Smalltalk-

80 system. Smalltalk programs create seven bytes of garbage

for every eight instructions executed. We have designed an

algorithm called Generation Scavenging and incorporated it into

BS [2]. Pauses disrupt thought and decrease productivity. The

pause time for our algorithm is only a fraction of a second. All

other Smalltalk-80 systems need indirection to help manage
objects. BS, with Generation Scavenging, is the first one with
direct object addressing. Our garbage collector also runs in half
the time of the best previous algorithm.

(1] D. Ungar, R. Blau, P. Foley, D. Samples, and D. A.
Patterson. **Architecture of SOAR: Smalltalk on a RISC,"”
11th Annual Symp. on Computer Architecture, Ann Arbor,
MI, 1984 )

(2] D. Ungar, “Generation Scavenging: A Non-Disruptive
High Performance Storage Reclamation Algorithm,™
ACM SIGSOFT/SIGPLAN Software Engineering Symp. on
Practical Software Development Environments, Pittsburgh,
PA, April 1984,
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A Smalltalk Compiler for
SOAR

William Bush
(Professors P. N. Hilfinger and
D. A. Patterson)

(DARPA) N00039-83-C-0107

A necessary part of the SOAR (Smalltalk On A RISC) project
involved constructing a compiler that would compile Smalltalk
programs into SOAR machine instructions instead of the
standard Smalltalk virtual machine bytecodes. The primary
concern in designing this compiler was the code explosion that
could result from using SOAR instructions instead of the much
denser bytecodes.

That the semantics of Smalltalk preclude many standard
optimizations made the Smalltalk bytecodes themselves an
attractive intermediate representation for the compiler. The
runtime stack used by the stack-oriented bytecodes is simulated
by the compiler at compile time, which converts those
operations to register-oriented SOAR instructions. This in
practice produces reasonably dense SOAR code, with an
average of one SOAR instruction generated for each bytecode.
The compiler was written in Smalltalk, and the Smalltalk
environment, although sophisticated, requires substantially
more resources (primarily in terms of CPU power) than a
conventional one in order to provide equivalent programming
throughput.

A Debugger for SOAR
(Smalltalk On A RISC)

Peter K. Lee
(Professors P. N. Hilfinger and
D. A. Patterson)

(DARPA) N00039-83-C-0107

Smalltalk On A RISC (SOAR) is a microprocessor designed to

run Smalltalk efficiently. Smalltalk is defined on the Smalltalk

Virtual Machine (STVM), and the compiler generates virtual

machine instructions, known as bytecodes, from Smalltalk

methods. On SOAR, bytecode methods are further translated

into SOAR machine instructions to be executed by the

hardware.

The debugger in Xerox's Smalltalk Virtual Image operates by

simulating the semantics of the bytecode instructions, which are

no longer available on SOAR. There are also problems with

the breakpoint-setting mechanism in the bytecode debugger.

Breakpoints are set by inserting “*halt’® instructions in the

instruction stream and recompiling the procedure. This makes

setting breakpoints in recursive routines impossible

The following are guidelines for the design of the SOAR

Debugger:

® To provide the basic mechanisms for performing the same
functions as the bytecode debugger so that high-level
software, like the Debugger Browser, can be reused with
minimal change

® To provide a better breakpoint mechanism so that
breakpoints can be set and unset without recompiling the
procedure

° To allow breakpoints to be taken conditionally, thus
allowing breakpoints to be set in recursive routines or
routines that are shared with the debugger itself.
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Smalltalk On A RISC
(SOAR)

A. Dain Samples
(Professors P. N. Hilfinger and

D. A. Patterson)

(DARPA) N00039-83-C-0107

Professor Patterson has set out to design a RISC (Reduced
Instruction Set Computer) microprocessor that will provide a
fast execution vehicle for the Smalltalk-80 programming
environment. The Daedalus project under Professor Hilfinger
has provided an intermediate step toward implementing
Smalltalk on this processor (SOAR). A basic version of
Daedalus that allows testing of benchmarks and large portions
of the Smalltalk-80 system is now running. Most of the
Smalltalk-80 runtime system is written in the Smalltalk
language itself, this portion has been translated into SOAR
machine code. "

We are now in the final stages of designing the RISC/UNIX
interface required to run Smalltalk on the hardware. When the
chip is fabricated, we will have hardware and software ready to
execute Smalltalk using SUN workstations to handle files and
graphics. My current tasks are to finish the operating
environment specifications and to document the runtime
system and virtual machine.

Implementing an Efficient
Runtime Organization for Ada

Benjamin G. Zorn
(Professor P. N. Hilfinger)

NSF Graduate Fellowship and
(DARPA) N00039-84-C-0235
and N00039-84-C-0089

Research supervised by Paul Hilfinger was aimed at designing
and implementing an efficient and conceptually simple runtime
strategy for Ada. The implementation involved using an Ada
front end (provided by AT&T Bell Laboratories and modified at
Berkeley) that produces DIANA, a proposed standard
intermediate representation (IR) for Ada programs. Our so-
called *middle end" takes the DIANA representation and
produces the lower-level intermediate tree form used by the
portable C compiler.

Experiences with the DIANA representation have shown that a
normalization pass is necessary to make the representation
usable by the middle end. Although the IR of the portable C
compiler was not intended as a lo'v-level representation for
Ada. we found that it was almost entirely adequate for the task.
Furthermore, using the IR allowed us to take advantage of
table-driven code-generation tools being researched at Berkeley.

The runtime design stressed efficient application of uniform
runtime type representations to implement such features as
dynamic arrays and parameterized records. Furthermore, the
implementation of these objects did not introduce any
distributed overhead on the implementation of objects familiar
to the Pascal user. Execution time for a Pascal subset of Ada
was comparable to the execution time of code generated by the
Berkeley Pascal compiler, as demonstrated by a small set of

benchmarks.
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Register Allocation and Data
Conversion In Machine-
Independent Code Generators

Marshall Kirk McKusick
(Professor S. L. Graham)

(DARPA) N00039-82.C-0235
and N00019-84-C-0089

The final goal of our work is to produce a set of tools that will
allow the construction of high-quality code generators for Von
Neumann-architecture computers in a short time and with a
minimum of machine-specific coding.

We have already developed a table-driven code generator using
the Graham-Glanville method. We are working on developing
formal methods to attack the problems that it fails to address.
The result will be a largely table-driven code generator that is
retargetable to diverse architectures with a minimum of
recoding.

One major goal of this research is to formalize the register
allocation of the code generator. We are investigating how to
coalesce the optimizations found by a procedurewide data-flow
analyzer with the allocation of registers needed during the
process of instruction selection. The allocators are driven by a
description of the number and types of various registers and
some policy description. We are evaluating various coloring
techniques as the basis of the allocation policy.

Another major goal of this research is to investigate semantic
alternatives to the current syntactic specification of conversions
done by the code generator. We are experimenting with y
different specifications to measure their costs in terms of size,
space, and comprehensibility.

Automated Discovery of
Machine-Specific Code
Improvements

Peter B. Kessler
(Professor S. L. Graham)

(DARPA) N00039-82-C-0235
and N00039-84-C-0089

| am investigating techniques to automate the discovery of
machine-specific transformations that will improve the quality

of code produced by retargetable compilers. Current

retargetable code generators produce provably correct, often

optimal code for single statements. However, they fail to take

full advantage of target architectures and often use complex
instructions only with hand-coding to recognize special cases.

The goal of this project is to recognize those special cases
automatically, thus making retargetable code generators more .
robust and easier lo retargeL.

I distinguish two stages in this process. The first analyzes a
description of the target machine when the compiler is
constructed and generates tables for the second stage, which
transforms each program run through the compiler. This
separation allows the analysis of the target machine to be
arbitrarily thorough in its attempts to exploit features of the
target machine and reduces transformation to a simple pattern
match and replacement. The analysis “‘decomposes’’ the
complex instructions of the target machine, finding sequences
of instructions that can be replaced by those complex
instructions. The transformation stage uses information
derived by the analysis to transform assembler source code.
Automating transformation of other representations of
programs is possible. A prototype system has been
demonstrated and retargeted, and a dissertation describing this

work is in progress.
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I'ree Transformation Systems
in Compllers

Eduardo Pelegri-Llopart
(Professor S. L. Graham)

(DARFPA) N0O0D39.84.C-0089
and Venezuelan Research
Council (CONICIT)

Trees are convenient representations in many situations largely
because of their hierarchical structure, which models many
situations, and because of the ease with which they can be
manipulated. This manipulation frequently corresponds to
transformations between different tree representations to
expose or modify some properties of the object being
represented

The goal of our project is to investigate tree transformations,
especially in the context of compilation systems, program
transformation systems, and programming environments. We
will use results and experiences from the areas of term
rewriting systems, production systems, and programming
languages, among others, to find descriptional mechanisms that
are adequate for efficient implementation while also being easy
to program, have provable properties, and have an adequate
interface to the compiling process, particularly to pattern-
matcher-based code generators.

Our approach is quite pragmatic, and we hope to design a tree
transformation tool in the tradition of scanner, parser, and
code-generator generators. As an application of our research,
we expect to fill the gap between the high-level abstract trees
that can be obtained from the parser and the low-level trees
required by the Graham/Glanville/Henry technique of code
generators. In the process, we expect to clarify the relation
between program optimization and code generation.

We have implemented a simple tree transformation system,
which we have used to gather some first experience. We
recently completed an extensive bibliography revision and are
evaluating different description mechanisms.

Automatic Generation of
Symbol Table Managers from
Specifications

Phillip E. Garrison
(Professor S. L. Graham)

(DARPA) N00039-82-C-0235
and N00039-84-C-0089

Symbol Table Managers (STMs) must currently be hand-coded,
though some efforts are under way to automate their
production. The task of writing an STM can be very difficult
for languages such as Ada. Automatic production of an STM
from a specification of the relevant parts of the language being
processed would have a number of benefits: less work, greater
understandability and modifiability, improved faith in the
correctness of the generated STM, and automatic optimization
Such a specification would also be useful for formal language
definition and for language comparison.

A model of scoping and naming in languages has been
developed, and the primitive operations implied by this model
have been identified. A functional specification language based
on these primitives has been designed as an extension of an
attribute grammar system. The extensions will be implemented
so that the usefulness of this specification language can be
evaluated on real languages.

Because symbol tables are large objects, copying them
unnecessarily must be avoided if reasonable efficiency is to be
achieved. Elimination of simple copies is well understood, but




he Transition Diagram
Fditer

Charles C. Mills
Professor A, |. Wasserman®)

(DARPA) N00039-82-C 0235

elimination of copies necessitated by modification of objects has
been studied only in certain cases (e.g., pass-oriented attribute
grammars). Two different methods that will handle ordered
attribute grammars have been developed.

This project created a highly interactive mouse-and-menu-
driven graphical editor for state transition diagrams, along with
a generator that provides input to a transition diagram
interpreter. The Transition Diagram Editor (TDE) is used to
wupport the User Software Engineering (USE) methodology, an
approach to the specification and implementation of interactive
information systems. Augmented state transition diagrams are
used to model human-computer interaction, with nodes
representing system output and arcs (transitions) associated
with user input; system operations occur during a transition.

Rather than using a textual language to describe the diagram
structure, TDE allows the diagram to be drawn and edited
interactively, then generates the textual diagram description for
interpretive execution. TDE and its related tools are especially
effective for rapid prototyping of interactive sysiems. TDE
runs on the SUN workstation; the other tools run not only on
the SUN, but on most other UNIX systems.

*U.C. San Francisco

Evolution Support
Environment (ESE)

Kozo Bannai, Atul Prakash,
Jaideep Srivastava, Wei-Tek
Tsai. and Yutaka Usuda
(Professor C. V
Ramamoorthy)

(BMDSC) DASG60-81-C-0025

Evolution Support Environment (ESE) is an integrated and
automatic environment for the software development/evolution
An ultimate goal for the software development
process is to develop an automatic software family generator
that, given the specifications for a member of a family, could
generate an implementation for the member by reusing as
much existing software as possible. Three basic requirements
for such an environment include promoting (1) traceability
between user requirements, design, and code, (2) reusability of
existing designs and code, and (3) compatibility between
various phases of the software life cycle. Our next step is o
design and develop the Software Engineer Assist System, which
would guide the designer’s decisions based on metrics (we call
that Metric-Guided Design Methodology).

process.

CoLab — Tools for Computer
Collaboration

Gregg Foster
(Professor R. 1. Fateman)

(DOE) DEAMO3-76500034
and Xerox Corporation

ColLab is a laboratory to experiment with new forms of
computer-assisted collaboration. Although networks connect
computers and enable electronic mail and sharing of facilities,
computer systems aren’t usually designed for group activities.
When we think of people working with computers, we¢ usually
think of them in separate offices working mostly in isolation.
To use computers for demonstrations, several people gather
around a display designed for a single person. If people decide
to work together on a problem, they leave their compulers
behind and go to a whiteboard. Secondary ideas, arguments,




and random notes are often lost or forgotten when records of a
collsborative session must be entered into a computer system as
a separate step. When instructors train people to use
interactive programs, there is no easy way to interact with
several students at once.

Recent technological advances (e.g. Ethernet, the use of the
mouse. EvalServer [evaluation of LISP s-exps on remote
machines), and bitmap displays) have made possible new
software tools and new classes of tools, including tools for
group activity mediation and enhancement. There has been
little previous study of personal vs. group use of computers.
We are designing software tools for intellectual teamwork
(enlightened group problem solving). The software design of
these tools addresses the synchronization of shared objects and
data space, the network coordination of closely interacting
machines, and forms of new primitives for active and
interactive displays.

The goals of the CoLab project are as follows:

e To explore the dynamics of group problem solving and

interaction
e To explore existing communication devices and paradigms
used for collaboration
To experiment with software, hardware, and social

.
techniques to assist group problem solving

e To build the software foundations and several tools for
these experiments and explorations

e To analyze real group use of our system and tools.

n which computers

CoLab is expected to be an environment i
t one in which

unobtrusively support human interactions, no
humans only use compulers.




e ———ee T —

%C’\ 'l:\L.E C@N
/F?J::W\ U. ef b oA k!
“ - Gﬂ\)\ RES 1y P.(C':‘Mm\ g«b‘-&mﬂoo 221

' Lol e Smlmu.s\
v, of Elacin Eogw o
!:‘-.U‘-w\:nt_s Res LAg SecTiom ‘

ALY A DT LAR. \\ASon PRoG-RAWM
. Our research projects in programming systems seek to facilitate
Programmlng software production by providing advanced interactive systems,
Languages and improved programming language translation capabilities, and
support for program development. Qur efforts are increasingly
Systems directed toward exploiting the benefits of high-speed personal

workstations to enhance programmer productivity.

We are studying interactive systems both for nonprogrammers
and for experts. A system for the interactive development of
programs by modification of example computations has recently
been completed. A high-quality document preparation system
is being designed. We are also developing a language-based
editor, intended as the user interface both for program design
and for preparation of other kinds of structured text.

As part of an integrated hardware-software system for
Smalltalk-80 called SOAR, we are developing a compiler, a
debugger, a garbage collector, and the operating environment
for Smalltalk. Our research on the implementation of Ada® is
focusing on the design of the runtime system.

We have an ongoing project to develop tools to automate the
production of high-quality compilers. We have just completed
a study of techniques for register allocation and intermediate
representation. We have developed a new method for
automated discovery of low-level target code improvements,
Under investigation are a tree transformation system and |
techniques for the automatic generation of symbol table |
managers.

An important aspect of software development is the design,
construction, and maintenance of large systems. We have
implemented an interactive transition diagram editor, used to
model parts of the development process. The Evolution
Support Environment is being designed to provide a variety of
support facilities. In addition, we are designing and building
software tools for new forms of computer-assisted collaboration.

*Ada is a trademark of the Department of Defense (Ada Joint Program Office)

Programming by Example Most computer-based apphcatsons systems cannot be
programmed by their users. Programming is considered a

Daniel C. Halbert difficult skill for the average person to learn, so most systems

(Professor S. L. Graham) do not provide facilities for ordinary users to write programs
that help them do their work.

Xerox Corporation We believe, however, that ordinary users could program their

systems using a technique called *‘programming by example,”
which is a way of programming a system in its own user
interface. The system user writes a program by giving an
example of what it should do. The system remembers the
sequence of actions and can perform it again. Succinctly,
programming by example is “*‘Do What I Did."
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Programming by example has been added to a simulation of a
commercial office information system. In addition to a basic
programming-by-example mechanism, the facility provides
program parameterization, data searching and selection
mechanisms, control structure, and a static, readable program
representation that can be edited.

Multiple Representations of
Documents

Charles L. Perkins
(Professor M. A. Harrison)

NSF Graduate Fellowship and
(DARPA) N00039-82-C-0235

With the now widespread popularity of document preparation
systems and with the advent of new technologies, such as local
workstations and bit-mapped displays, it makes sense to
reexamine these systems and to see what new techniques can -
be employed. For example, a uniform mechanism for
combining two-dimensional media (text, drawings,
photographs, cifplots, etc.) will be the center of a new,
interactive document system that automatically updates parts of
a document when its source has changed. The system would
present a page-by-page approximation of the final document on
the display, and the user could interactively update those parts
of the document for which local editors exist. It may even be
possible to have an editor that presents a uniform interface to
objects of distinctly different types.

Presently, different editors exist at Berkeley (e.g., vi and
EMACS for text, Gremlin for diagrams, and Magic for VLSI
designs). An integrated system could use these editors as black
boxes, transforming to and from a common representation
when needed. The environment thus created is envisioned as
being more interactive and incremental than previous batch-
oriented systems and would allow the entry of any new two-
dimensional data whose format was describable within the
system.

This project is working in two different directions toward the
system described above. At a high level, techniques for
incremental rederivation and for managing multiple
representations of two-dimensional data must be found. A user
interface, a common representation, and a framework for them .
both must be designed. Progress here has included identifying
the problems involved and researching systems that have tried

to solve subsets of them. An interesting formalism that could
be used to automatically derive new transformations was
discovered.

At a lower level, the editors and transformation programs here
at Berkeley must be brought closer together. Some other
groups here have unwittingly aided this effort (e.g., Gremlin
and Magic have been ported to the SUNs). Also, a simple
system for experiments must be set up. Much of the effort has
been spent here, exploring project feasibility. The typesetting
language TeX, with its notions of boxes and glue, has been
adopted as a basis for the system. TeX produces device-
independent output files that can be printed on all our local
bit-raster printers (and many others). We have recently ported
TeX to the SUN workstation, along with most of its related
software. A previewer for TeX on the SUNs has been adapted
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to run under the window system. These represent the first
steps in bringing up a simple prototype of the system. Progress
in the future will focus on completing and using this prototype
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Fig. 14-1. The two document pages shown on this page and the
next are from a TeX document being displayed by dvisun on a
SUN-150. Using current fonts, only two-thirds of each page can be
shown rlrr the display ar one time; commands can move t his
‘window’ in any direction to reach the rest of the page. Although
one page involves some graphics and the other mans Jfont changes

dvisun can redisplay them in one and two seconds, respectively
Average pages take only about three- quarters of a second. Tr‘.'s
Jive to ten times faster than the local ditroff previewer,
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Higher-Level Language-Based Language-based editors support the programmer by using
Editors language-specific information during the editing process. This
support includes checking for syntactic or semantic errors,
Robert A. Ballance template-based entry of basic structures, and special display
(Professor S. L. Graham) algorithms for viewing the program. To date, most systems
impose a rigid development methodology on the user.
(DARPA) N00039-84-C-0089 I am interested in developing *‘higher-level” language-based
zditors that support multiple languages and allow users to
manipulate programs in terms of the underlying language. This
approach subsumes both text- and structure-based editing
Programs and structured text can be manipulated either as text
or in terms of their underlying structures. For example, in a
program, the user might choose to operate on functions,
blocks, statements, expressions, tokens, or characters. At all
times, the editor will offer full lexibility between text and
structure.
This research is aimed at creating an editor-generating system
that accepts a language description as input, creating tables and
code for use in a standard front end. The standard front end
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provides a consistent user interface for editing objects written

in different languages. Areas of investigation include
algorithms for parsing, static-semantic description and checking,
and connections to knowledge-based programming
environments.

Experimental Design of a
High-Performance, Object-
Oriented Personal Computing
System

David Ungar
(Professor D. A. Patterson)

(DARPA) N00039-83-K-0107
and |BM Corporation

A new class of programming systems is evolving that integrates
a processor, a high-quality display, a programming language,
and an operating system with the goal of enhancing
programmer productivity. These systems allow the creation of
software prototypes using considerably less manpower.
Smalltalk-80 is the most mature example of an integrated
software system.

The primary disadvantage of such systems is their slowness.
We are in the midst of a three-year project to apply compiler,
systems, architectural, and MOS VLSI implementation
expertise to building a low-cost version of such a system [1].
We have built a software implementation under UNIX called
Berkeley Smalltalk (BS) and have distributed it to twenty sites.
Although written in a high-level language (C) and running on a
microprocessor (SUN workstation), BS is as fast as a
microcoded version of the Smalltalk-80 system run on the
Xerox Dolphin. Our long-term goal is to create a new
hardware/software system — SOAR (Smalltalk On A RISC) —
that runs a hundred times faster than Smalltalk on the VAX
11/750.

Garbage collection presents a serious challenge for a Smalltalk-
80 system. Smalltalk programs create seven bytes of garbage
for every eight instructions executed. We have designed an
algorithm called Generation Scavenging and incorporated it into
BS [2]. Pauses disrupt thought and decrease productivity. The
pause time for our algorithm is only a fraction of a second. All
other Smalltalk-80 systems need indirection to help manage
objects. BS, with Generation Scavenging, is the first one with
direct object addressing. Our garbage collector also runs in half
the time of the best previous algorithm.

(1] D. Ungar, R. Blau, P. Foley, D. Samples, and D. A.
Patterson, **Architecture of SOAR: Smalitalk on a RISC.”
I1th Annual Symp. on Computer Architecture, Ann Arbor,
MI, 1984, )

[2] D. Ungar, “Generation Scavenging: A Non-Disruptive
High Performance Storage Reclamation Algorithm,"
ACM SIGSOFT/SIGPLAN Software Engineering Symp. on
Practical Software Development Environments, Pittsburgh,
PA, April 1984,
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A Smalltalk Compiler for
SOAR

William Bush
(Professors P. N. Hilfinger and
D. A. Patterson)

(DARPA) N00039-83-C-0107

A necessary part of the SOAR (Smalltalk On A RISC) project
involved constructing a compiler that would compile Smalltalk
programs into SOAR machine instructions instead of the
standard Smalltalk virtual machine bytecodes. The primary
concern in designing this compiler was the code explosion that
could result from using SOAR instructions instead of the much
denser bytecodes.

That the semantics of Smalltalk preclude many standard
optimizations made the Smalltalk bytecodes themselves an
attractive intermediate representation for the compiler. The
runtime stack used by the stack-oriented bytecodes is simulated
by the compiler at compile time, which converts those
operations to register-oriented SOAR instructions. This in
practice produces reasonably dense SOAR code, with an
average of one SOAR instruction generated for each bytecode.
The compiler was written in Smalltalk, and the Smalltalk
environment, although sophisticated, requires substantially
more resources (primarily in terms of CPU power) than a
conventional one in order to provide equivalent programming
throughput.

A Debugger for SOAR
(Smalltalk On A RISC)

Peter K. Lee
(Professors P, N. Hilfinger and
D. A. Patterson)

(DARPA) N00039-83-C-0107

Smalltalk On A RISC (SOAR) is a microprocessor designed to
run Smalltalk efficiently. Smalltalk is defined on the Smalltalk
Virtual Machine (STVM), and the compiler generates virtual
machine instructions, known as byrecodes. from Smalltalk
methods. On SOAR, bytecode methods are further translated
into SOAR machine instructions to be executed by the
hardware.

The debugger in Xerox's Smalltalk Virtual Image operates by
simulating the semantics of the bytecode instructions, which are
no longer available on SOAR. There are also problems with
the breakpoint-setting mechanism in the bytecode debugger.
Breakpoints are set by inserting ‘*halt’” instructions in the
instruction stream and recompiling the procedure. This makes
setting breakpoints in recursive routines impossible.

The following are guidelines for the design of the SOAR

Debugger:

L] To provide the basic mechanisms for performing the same
functions as the bytecode debugger so that high-level
software. like the Debugger Browser, can be reused with
minimal change

® To provide a better breakpoint mechanism so that
breakpoints can be set and unset without recompiling the
procedure

° To allow breakpoints to be taken conditionally, thus
allowing breakpoints to be set in recursive routines or
routines that are shared with the debugger itself.




Smalltalk On A RISC
(SOAR)

A. Dain Samples
(Professors P. N. Hilfinger and
D. A, Patterson)

(DARPA) N00039-83-C-0107

Professor Patterson has set out to design a RISC (Reduced
Instruction Set Computer) microprocessor that will provide a
fast execution vehicle for the Smalltalk-80 programming
environment. The Daedalus project under Professor Hilfinger
has provided an intermediate step toward implementing
Smalltalk on this processor (SOAR). A basic version of
Daedalus that allows testing of benchmarks and large portions
of the Smalltalk-80 system is now running. Most of the
Smalltalk-80 runtime system is written in the Smalltalk
language itself’, this portion has been translated into SOAR
machine code. g

We are now in the final stages of designing the RISC/UNIX
interface required to run Smalltalk on the hardware. When the
chip is fabricated, we will have hardware and software ready to
execute Smalltalk using SUN workstations to handle files and
graphics. My current tasks are to finish the operating
environment specifications and to document the runtime
system and virtual machine.

Implementing an Efficient
Runtime Organization for Ada

Benjamin G. Zorn
{Professor P. N. Hilfinger)

NSF Graduate Fellowship and
(DARPA) NO0039-84-C-0235
and N00039-84-C-0089

Research supervised by Paul Hilfinger was aimed at designing
and implementing an efficient and conceptually simple runtime
strategy for Ada. The implementation involved using an Ada
front end (provided by AT&T Bell Laboratories and modified at
Berkeley) that produces DIANA. a proposed standard
intermediate representation (IR) for Ada programs. Our so-
called “*middle end"™ takes the DIANA representation and
produces the lower-level intermediate tree form used by the
portable C compiler

Experiences with the DIANA representation have shown that a
normalization pass is necessary to make the representation
usable by the middle end. Although the IR of the portable C
compiler was not intended as a low-level representation for
Ada, we found that it was almost entirely adequate for the task
Furthermore, using the IR allowed us to take advantage of
table-driven code-generation tools being researched at Berkeley
The runtime design stressed efficient application of uniform
runtime type representations to implement such features as
dynamic arrays and parameterized records. Furthermore, the
implementation of these objects did not introduce any
distributed overhead on the implementation of objects familiar
to the Pascal user. Execution time for a Pascal subset of Ada
was comparable to the execution time of code generated by the
Berkeley Pascal compiler, as demonstrated by a small set of
benchmarks.




Register Allocation and Data
Conversion in Machine-
Independent Code Generators

Marshall Kirk McKusick
(Professor S. L. Graham)

(DARPA) N00039-82-C-0235
and N00039-84-C-0089

The final goal of our work is to produce a set of tools that will
allow the construction of high-quality code generators for Von
Neumann-architecture computers in a short time and with a
minimum of machine-specific coding.

We have already developed a table-driven code generator using
the Graham-Glanville method. We are working on developing
formal methods to attack the problems that it fails to address.
The result will be a largely table-driven code generator that is
retargetable to diverse architectures with a minimum of
recoding.

One major goal of this research is to formalize the register
allocation of the code generator. We are investigating how to
coalesce the optimizations found by a procedurewide data-flow
analyzer with the allocation of registers needed during the
process of instruction selection. The allocators are driven by a
description of the number and types of various registers and
some policy description. We are evaluating various coloring
techniques as the basis of the allocation policy.

Another major goal of this research is to investigate semantic
alternatives to the current syntactic specification of conversions
done by the code generator. We are experimenting with _
different specifications to measure their costs in terms of size,
space, and comprehensibility.

Automated Discovery of
Machine-Specific Code
Improvements

Peter B. Kessler
(Professor S. L. Graham)

(DARPA) N00039-82-C-0235
and NO0039-84-C-0089

e —

I am investigating techniques to automate the discovery of
machine-specific transformations that will improve the quality
of code produced by retargetable compilers. Current
retargetable code generators produce provably correct, often
optimal code for single statements. However, they fail 1o take
full advantage of target architectures and often use complex
instructions only with hand-coding to recognize special cases.
The goal of this project is to recognize those special cases
automatically, thus making retargetable code generators more
robust and easier to retarget.

I distinguish two stages in this process. The first analyzes a
description of the target machine when the compiler is
constructed and generates tables for the second stage, which
transforms each program run through the compiler. This
separation allows the analysis of the target machine to be
arbitrarily thorough in its attempts to exploit features of the
target machine and reduces transformation to a simple pattern
match and replacement. The analysis ‘‘decomposes’” the
complex instructions of the target machine, finding sequences
of instructions that can be replaced by those complex
instructions. The transformation stage uses information
derived by the analysis to transform assembler source code.
Automating transformation of other representations of
programs is possible. A prototype system has been
demonstrated and retargeted, and a dissertation describing this
work is in progress.

L
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Tree Transformation Systems
in Compllers

Eduardo Pelegri-Llopart
(Professor S. L. Graham)

(DARPA) N0O0039.84-C-0089
and Venezuelan Research
Council (CONICIT)

Trees are convenient representations in many situations largely
because of their hierarchical structure, which models many
situations, and because of the ease with which they can be
manipulated. This manipulation frequently corresponds to
transformations between different tree representations to
expose or modify some properties of the object being
represented.

The goal of our project is to investigate tree transformations,
especially in the context of compilation systems, program
transformation systems, and programming environments. We
will use results and experiences from the areas of term
rewriting systems, production systems. and programming
languages, among others, to find descriptional mechanisms that
are adequate for efficient implementation while also being easy
to program, have provable properties, and have an adequate
interface to the compiling process, particularly to pattern-
matcher-based code generators.

Our approach is quite pragmatic, and we hope to design a tree
transformation tool in the tradition of scanner. parser, and
code-generator generators. As an application of our research.
we expect to fill the gap between the high-level abstract trees
that can be obtained from the parser and the low-level trees
required by the Graham/Glanville/Henry technique of code
generators. In the process, we expect to clarify the relation
between program optimization and code generation.

We have implemented a simple tree transformation system,
which we have used to gather some first experience. We
recently completed an extensive bibliography revision and are
evaluating different description mechanisms.

Automatic Generation of
Symbol Table Managers from
Specifications

Phillip E. Garrison
(Professor S. L. Graham)

(DARPA) N00039-82-C-0235
and N00039-84-C-0089

Symbol Table Managers (STMs) must currently be hand-coded,
though some efforts are under way to automate their
production. The task of writing an STM can be very difficult
for languages such as Ada. Automatic production of an STM
from a specification of the relevant parts of the language being
processed would have a number of benefits: less work. greater
understandability and modifiability, improved faith in the
correctness of the generated STM. and automatic optimization
Such a specification would also be useful for formal language
definition and for language comparison

A model of scoping and naming in languages has been
developed, and the primitive operations implied by this model
have been identified. A functional specification language based
on these primitives has been designed as an extension of an
attribute grammar system. The extensions will be implemented
so that the usefulness of this specification language can be
evaluated on real languages.

Because symbol tables are large objects, copying them
unnecessarily must be avoided if reasonable efficiency is to be
achieved. Elimination of simple copies is well understood, but

D e e ————
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elimination of copies necessitated by modification of objects has
been studied only in certain cases (e.g., pass-oriented attribute
grammars). Two different methods that will handle ordered
attribute grammars have been developed.

The Transition Diagram
Editor

Charles C. Mills
(Professor A. I. Wasserman®)

(DARPA) N00039-82-C-0235

This project created a highly interactive mouse-and-menu-
driven graphical editor for state transition diagrams, along with
a generator that provides input to a transition diagram
interpreter. The Transition Diagram Editor (TDE) is used to
support the User Software Engineering (USE) methodology, an
approach to the specification and implementation of interactive
information systems. Augmented state transition diagrams are
used to model human-computer interaction, with nodes
representing system output and arcs (transitions) associated
with user input; system operations occur during a transition.

Rather than using a textual language to describe the diagram
structure, TDE allows the diagram to be drawn and edited
interactively, then generates the textual diagram description for
interpretive execution. TDE and its related tools are especially
effective for rapid prototyping of interactive systems. TDE
runs on the SUN workstation; the other tools run not only on
the SUN, but on most other UNIX systems.

*U.C. San Francisco

Evolution Support
Environment (ESE)

Kozo Bannai, Atul Prakash,
Jaideep Srivastava, Wei-Tek
Tsai, and Yutaka Usuda
(Professor C. V.
Ramamoorthy)

(BMDSC) DASG60-81-C-0025

Evolution Support Environment (ESE) is an integrated and
automatic environment for the software development/evolution
process. An ultimate goal for the software development
process is to develop an automatic software family generator
that, given the specifications for a member of a family, could
generate an implementation for the member by reusing as
much existing software as possible. Three basic requirements
for such an environment include promoting (1) traceability
between user requirements, design, and code, (2) reusability of
existing designs and code, and (3) compatibility between
various phases of the software life cycle. Our next step is to
design and develop the Software Engineer Assist System, which
would guide the designer's decisions based on metrics (we call
that Metric-Guided Design Methodology).

CoLab — Tools for Computer
Collaboration

Gregg Foster
(Professor R. J. Fateman)

(DOE) DEAMO3-76500034
and Xerox Corporation

LI

CoLab is a laboratory to experiment with new forms of
computer-assisted collaboration. Although networks connect
computers and enable electronic mail and sharing of facilities,
computer systems aren't usually designed for group activities.
When we think of people working with computers, we usually
think of them in separate offices working mostly in isolation.
To use computers for demonstrations, several people gather
around a display designed for a single person. If people decide
to work together on a problem, they leave their computers
behind and go to a whiteboard. Secondary ideas, arguments,
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at ndom tes are \I-'- n I sl Or !'”.‘;‘:
¢ VE SCSSIon must be entered into a computer system as
a separate step. When instructors train people to use

ictive programs, there is no easy way to interact with
several students at once '

Kecent technological advances (e.g. Ethernet, the use of the
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We are designing software tools for intellectual teamwork
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THE PORTLAND EXPERIMENT IN SCL
XEROX PALO ALTO RESEACH CENTER

Margrethe H. Olson
Associate Professor
New York University

August 30, 1988

INTRODUCTION

This report summarizes my observations of Systems Concepts
Laboratory (SCL) and its "remote work site" experiment (to
be referred to here as the Portland Experiment) from October
1985 until January 1988. The primary purpose of this report
is to document and interpret what was learned from the
Portland Experiment during this time.

ac (o]

In the spring of 1985 two significant events occurred: SCL
became a full-fledged laboratory and the Portland site began
operation. The details of the establishment of the Portland
site will not be reviewed here. During the next six months,
SCL grew from twelve to eighteen members, with four of the
six new members based in Portland. Only one member of the
lab transferred from Palo Alto to Portland.

The espoused "vision" of the laboratory under which the
Portland experiment played a key role was originally
described by Adele Goldberg, SCL lab manager until September
1986, as S0 om - Its roots were in the
previous focus, of the group which was the predecessor to
SCL, on personal computing. While personal computing
supports individuals and involves their interaction with a
computer, it does not support person-to-person interaction
or work group collaboration. The notion of interpersonal
computing is that it supports people communicating and
working together through computers. Thus it would include
tools to support face-to-face interaction and meetings as
well as interaction separated by time and/or space. One lab
member articulated it this way: "There is a vision of an
environment in which it is easy to work with anyone you want
to in space and time. That requires the ability to
interact, to get in touch, to share resources."

The evaluation project began with a pilot consisting of two
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visits, in October 1985 and December 1985. The project was

subsequently funded for one year and then extended for a
second year. The researcher made eight more visits over the
two year period. Each visit consisted of two full days at
each site, interviewing (on an individual basis) as many of
the lab members as possible. All interviews were open-ended
and unstructured. The lab members discussed a wide range of
issues, many of which were not directly related to the
Portland experiment. However, through these interviews the
researcher was able to learn about the overall social
process and culture of the lab as well as specific projects;
these issues inform in an important way the evaluation of
the Portland experiment.

The researcher produced an interim report in November 1986
and a final report, including recommendations for further
research, in November 1987. The Portland site was closed
three months later. The purpose of this report is to
reexamine the Portland Experiment in light of the fact that
it is now complete, and the body of knowledge it generated
can be summarized. This report does not address the
rationale for either opening or closing the Portland site,
nor does it deal specifically with whether the Portland
Experiment was a "success" or a "failure".

The Central Research Question

The Portland Experiment was designed to be a forcing
function for the lab to focus on the issues of collaboration
in a geographically distributed organization. The central
research question is thus two-fold. What did the Portland
Experiment teach PARC in terms of:

* the process of collaboration in a distributed

organization;

* the definition and implementation of tools to
support collaboration in a distributed
organization.

Outline of the Report

The next section of the report briefly describes the
environment and technology of the Portland experiment.
Then, some background to understanding the research
contribution, in terms of work group collaboration,
socialization, management control, and physical place versus
"social place", is provided. The research contributions of
the lab during this period are then reviewed and analyzed in
view of the central research question defined above.
Finally, some conclusions about the contribution of the
Portland Experiment to PARC research are given.

For readers who are unfamiliar with SCL or the Portland
experiment, a discussion of the evolution of lab process and




culture in SCL and the two sites over the two year period is
contained in Appendix A.

THE PORTLAND SITE AND TECHNOLOGICAL ENVIRONMENT

The dominant espoused research goal of the Portland
experiment was to be a forcing function for the lab to
develop tools to support collaboration in a distributed
environment. The fact of the Portland site created two
types of barriers to communication and collaboration:
geographical and cultural. The assumption was that these
barriers would have to be overcome, forcing the lab to
develop tools to help overcome them. For this reason, a
second site geographically closer to PARC, where the
barriers could be overcome easily (i.e., by travel between
sites) was ruled out.

The Portland site was designed to support up to eight full~-
time researchers plus one technical and one administrative
support person. For most of the two year period of the
evaluation, there were seven full-time researchers, two
support people, and at various times a consultant and a
graduate (summer) student. The facility was designed to be
similar to the lab in Palo Alto, with a large "commons" area
for meetings and informal interaction, individual offices on
the periphery, and a conference room for more formal or
private meetings.

The key technology providing a "link" between the two sites
was an open communication channel to support (at 56kb)
interactive video and audio at all times. It became
commonly known as "the 1link" or "the Widcom", referring to
the first system installed for the video connection.
Originally, the video (cameras and monitors) and audio
equipment was installed in the commons areas at each site,
and used for informal interaction as well as group meetings.
Later, experiments were done with moving all or part of the
equipment into individual offices for private meetings.
Eventually, video switches were installed at each site and
many of the offices were equipped with monitors and cameras.
At each site the equipment was linked through the video
switch and also linked to the computing environment, so that
a person in an office could establish a video link with
another office at the same site or, through the single
channel between Portland and Palo Alto, to an office at the
other site. This environment, with assorted other features,
became collectively known as the "media space".

BACKGROUND TO UNDERSTANDING THE RESEARCH CONTRIBUTION

In this section, some research areas that help put in
perspective the Portland Experiment are reviewed.




The Nature of Work Group Collaboration

Recently, computer science and information systems
researchers have begun to pay attention to technological
support for work group collaboration (Greif, 1988; Olson,
1988). In the academic fields of management as well as
social psychology and sociology, there is a considerable
body of research on the nature of work groups. While
research in social psychology has tended to focus on group
process, particularly in decision making (e.g., Kelley &
Thibault, 1968), research in socioclogy has focused more on
official work units (i.e., departments) and their
interdependence in terms of organizational structure (e.gq.,
Pugh, et al; Hage and Aiken). Research in management theory
has focused recently on "teamwork" and participative
management (e.g., Tjosvold, 1986). Most of this research
has attempted to demonstrate the benefits of teamwork in
terms of employee motivation and productivity. Very little
research in any field has specifically focused on how work
is performed in and managed by groups. Computer scientists
interested in building tools to support groups at work have
not found a useful framework in any of this research to
define what happens in work groups and how information
technology might improve work group process and output.

The computer science community addressing this issue has
come to be known as the CSCW community, after the first
conference on Computer Supported Cooperative Work in
December 1986. There has been much debate about the name;
some object to the term "cooperative" since work groups are
not necessarily so and might be in direct conflict. The
author prefers the term "collaboration"; according to
Webster's Dictionary, to ‘'collaborate" means "to work
together, particularly in an intellectual effort."

The type of work group collaboration dealt with in this
report is strictly of the "intellectual" variety, as opposed
to work groups assigned to assembly, manufacture, or
construction of physical artifacts. This type of
collaboration has several distinguishing features:

* There is at least one common goal shared by all
group members, although subordinate goals may not
be shared by all members or may even be in
conflict;

* The primary "resource" required to carry out the
activity is information or ideas; thus there must
be some facility for work group members to share
information;




* The coordination of effort required to accomplish

the task primarily requires knowing what other
work group members are thinking and/or doing;

* Work group members are thus interdependent in the
long run, although for periods of time they may be
able to work independently.

The nature of interdependence of collaborative work groups
is best defined by Thompson (1967). Thompson defines three
types of interdependence of resources in any work process:

* Sequential interdependence, where resources are
consumed sequentially, as in an assembly line;

* Pooled interdependence, where the resource to be

consumed may be accessed simultaneaously by
multiple facilities requiring it, as in access to
a centralized database for an airline reservations
system;

* o , Where each of two
facilities also has resources required by the
other, and coordination of the two is required.

It should be clear that when work is organized with
reciprocal interdependence, more resources are required for
coordination of the work than for the other two types of
interdependence. In intellectual work, where the primary
resource to be coordinated is information, reciprocal
interdependence in a work group implies that each facility
(in this case, people) needs to know what the other members
of the work group are doing and/or thinking. This knowledge
must span time (how did they arrive at this solution? What
did the group do yesterday when I was out of the office?)
and space (What are the other members doing now? Is it
necessary for us to meet face to face to resolve this
disagreement?).

e v o v (o]

Different tools have different effects on work group
process. Some alternative goals leading to development of
different tools are examined here.

1. To make two separate physical environments "more like" a
single environment. This has traditionally been the goal of
video teleconferencing: to be as much as possible like a
face-to~face meeting.

2. To improve the accessibility of more information. This
implies moving from reciprocal interdependence to pooled for
at least information that can be "shared". Videotape
recordings that provide a "sense of the past" would be an




example, as well as image processing. The notion of an
object service as an underlying technology supports this
design goal.

3. To improve the efficiency of reciprocal interdependence.
For a task where reciprocal interdependence is necessary,
generally a great deal of time is spent "informing" other
members of the work group. Tools that focus on improving
the efficiency of this process might reduce the amount of
information required to be shared by increasing specificity.
A common example today is the substitution of electronic
mail for telephone because it eliminates unnecessary
"social" conversation. An example of a new tool is an
electronic mail system whHich imposes a structure on the
dialog, such as the Coordinator by Action Technologies
Corporation.

4. To increase the capacity of reciprocal interdependence.
Tools of this type increase the amount of information
sharing among work group members, either in order to
overcome barriers of space and time (e.g., interactive video
in offices) or to make face-to-face interaction more
effective (e.g., meeting augmentation, group decision
support systems).

The Nature of Socialization

Another aspect of work group collaboration which has been
neglected in research to date is the process by which work
group members learn and act out their roles. This has to do
with the nature of contracts: who determines who should do
what and how is commitment from work group members elicited?
There may be different models, from highly authoritarian
(the manager dictates task assignment and demands
commitment) to highly participative (all work group members
negotiate together and agree on tasks). Prior to task
assignment, understanding of the expertise and knowledge
each work group member brings to the project is a more
subtle aspect of work group process that is particularly
important if the work group wants to be cooperative and
foster trust among members. For instance, if a person takes
on a particular task voluntarily, the other group members
should have some a priori belief that the person is
competent to do the task and can be trusted to deliver as
promised.

The primary type of organization of which SCL is a
prototypical example is defined by Henry Mintzberg (1979) as
an adhocracy. The dominant form of coordination of work in
an adhocracy is mutual adjustment, which refers to
"coordination of work by the simple process of informal
communication". Furthermore, the adhocracy is fairly flat,
with few layers of management. Roles and organizational
responsibilities are fairly loosely defined and highly




ambiguous, with individuals given a considerable amount of
leeway to choose how to prioritize their time. The process
of adjusting to an organization of this sort involves
learning what are the appropriate "projects" to work on
without any explicit direction offered, and establishing
and/or demonstrating competence and trustworthiness in order
that other work group members seek out the new member for
projects.

The Nature of Management Control

The final aspect of learning and doing roles in the work
group process is the nature of control. With certain types
of tasks, milestones and déliverables may be highly specific
and measurable so that individual performance can be easily
determined. In many work groups, the only real contreol by
either management or other work group members is pure
observation ("He is never in his office. No wonder he isn't
going to meet the deadline -- he is never working.").

An adhocracy tends to support an egalitarian, frequently
participative, management style. Thus the organization
members themselves may set policy and direction. In many
such organizations, the implicit culture strongly indicates
what is acceptable behavior (including such mundane things
as dress, punctuality, etc.) without any explicit rules or
policies. 1Individuals are "expected to figure it out", and
those who do not are either misfits (working on the "wrong"
things) or feel uncomfortable in the environment and choose
to leave.

In a work group where group members themselves determine
task assignments and roles, it is more likely that at least
some control is held by group members themselves. Thus if
one group member is "slacking off", the most effective
control process might be peer pressure.

Physical Place versus Social Place

Many of the phenomena regarding work group process and
socialization are, at least traditionally, highly dependent
on physical place and physical (i.e., face-to~-face)
interaction. Indeed, virtually all of the research reviewed
above assumes that a work group is colocated. In the
literature on socialization, strong emphasis is placed on
observation. Anything which is not face to face is "less
than" and therefore necessary but not as good.

Most representative of this point of view is the
considerable body of research on teleconferencing (Johansen
et al, Short et al), which emphasizes specifically how it is
less than face to face. For instance, Short and his
colleagues operationalize the notion of "social presence" of
a media and measure it relative to face-to-face interaction.




In the socialization process, physical place plays a much
more subtle but possibly more important role. People learn
how to act in organizations by watching other people. The
"culture" of the organization is reflected in its physical
environment (Deal and Kennedy). Roles and status are
reflected in a very formal way in the size of an office, the
number of windows, the type of desk (in one organization,
the "wooden desk people"™ are the only ones who make
decisions), even the color of the carpet. On a more subtle
note, who talks to whom in the elevator, who goes to lunch
together, etc. are all cues that are carefully observed by
other organization members,

Furthermore, the physical place of the organization exerts a
direct, if not very efficient, form of control over
individuals. In essence, when an employee enters the
facility, his or her time is "owned" by the organization.
Even if employees are not being very productive, their "time
in" is the basic metric on which their performance is
determined. This fact was brought home to the author in
extensive research on "telework", where employees worked at
home instead of going to the office. The primary obstacle
to telework as an employee work option was management's
discomfort with not being able to "see" that their employees
were working, and furthermore that the employee was in an
environment, the home, which was explicitly outside of the
organization's control (Olson, 1987).

These notions of physical place are challenged in a very
important book (Meyrowitz, 1985). Meyrowitz argues that
"social place" is becoming a dominant factor in society
today. If we examine the role of electronic media
(particularly television) in our understanding of the world
around us, it is apparent that assuming that physical and
social place are equivalent is inadequate. In the case of
work groups embedded in an organizational culture, this
means that the traditional research and practice assumptions
of physical place (epitomized by the face-to-face meeting)
are inadequate to understand the impact of electronic media.
In essence, electronic media present a new set of roles and
meanings that "undermine the traditional relationship
between physical setting and social situation" (p. 7).

THE CULTURE OF SCL AND ITS WORK

In this section, we will examine the work group and
socialization culture of SCL in 1light of the research
discussed above. The primary purpose of this section is to
define the SCL culture relative to other types of
organizations, so that the research findings can be placed

in the proper context.




The Social Organization
SCL's management structure, while often debated, was
relatively participatory. There were two levels of

management (area managers and lab manager), who took
seriously the responsibility to handle administrative
matters so that their subordinates could concentrate on
research. There are several important characteristics:

* There were no explicit task assignments. Lab
members decided themselves what to work on, and
thus new members had to figure out what was
appropriate by learning what others did.

* Being a competent researcher was highly valued
and rewarded but the standards of competence were
not well defined. While one way of demonstrating
competence was to build an artifact and the
emphasis was on this rather than producing papers,
once someone had gained respect as a competent
researcher they had more latitude to do what they
wanted. This made "learning what to work on" by
new members even more difficult.

* There were only highly subjective measures of
performance. Programming is an excellent example;
it 1is very difficult to detect programming
performance and programming output can vary by
orders of magnitude. A few members of the lab
were remarkably proficient at programming but
visually they looked like they worked just as hard
as some other members who were "slacking off" on
programming tasks.

The Nature of Lab Research Wo

What was the nature of the work actually performed?
Although some members worked alone, the common mode was to
work together, and the common thread across many projects
was collaboration in design. (See next section for
descriptions of specific projects.) While the Design
Methodology group worked on very different things than, for
instance, the group developing Amber, they were both
nevertheless doing collaborative design. Several
characteristics of the design process in SCL generally hold
across projects:

* The design process is "research" rather than
engineering. The artifacts to be produced are
generally evolutionary prototypes and vehicles for
exploring possibilities rather than finished
products.
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b The mode of operation is reciprocal

, with the primary resource to be

shared being information or ideas. In order to

work together, everyone needs to know at all times

what everyone else in the work group is doing and
how they got where they did.

Furthermore, the nature of the collaborative design process
has the following characteristics:

* It is highly interactive, requiring dialog in
real time;

* It generally réﬁuires a shared workspace as the
focus of that interaction, to create a visual
record or representation of the interaction;

* It often requires additional reference materials
-= notes, documents, manuals, etc.;

* It requires some record of past interaction, even
though it may be highly informal -- memory of work
group members (e.g., Do you remember why we came
up with that solution?).

Ac ities es

The term "design" in this context is used broadly to refer
to an overall process which can be broken down into
different observable activities. The activities defined
below, and used subsequently to classify research projects,
are based primarily on the discussions between the
researcher and SCL members with respect to "What are you
working on?".

t : There is an identifiable subactivity
of the design process which generally involves
defining and scoping the problem. Some projects
(i.e., architecture) only engage in this activity;
subsequent activities are performed by other
parties. In a narrow definition of the term
"design" this stage is the real "design process".

Implementation: This refers to actual production,
i.e., of code, an artifact, an equipment
installation. This activity generally has a
tangible output.

Experiment: Some activities involved gathering
data and analyzing it. This may be directly
related to the design of something (e.qg.,
statistics on volume of disk accessess to inform
the design of the Object Service) or more indirect
(e.g., the "Day in the Life" experiment).




The definition of projects was done by the author based
entirely on interview  notes, rather than project
documentation or individual progress reports. In some cases
a large project is broken down into smaller projects or
stages; for instance, "straw proposals" and "core samples"
are two sub-projects of the "new language" effort and are
defined as two separate projects. Appendix B shows the list
of projects, the number of people involved at each site, the
classification of activity, and the output. The name of the
project is often a combination of different names; the same
project might be listed as different projects at different
stages with different activities and outputs (e.g., "SCL
villages" and "media space"). In total, seventy separate
projects were identified.

Appendix C lists the lab members over the two-year period,
and the number of projects on which they worked alone, in
collaboration at a single site, and in collaboration across
sites. Since being associated with a project has very
little do with a person's relative contribution, and since
the sizes of the projects varied greatly, this list in no
way reflects individual members' contributions to the lab.
It does show a few interesting things. First, wvirtually
everyone in the lab worked on some projects collaboratively;
two work alone predominantly but even they work with others
on occasion. Second, all except one lab member and three
contract employees worked on at least one project across
site. Some, particularly, those in Portland, worked
predominantly in collaboration across sites.

Table I shows the projects categorized by activity. It
shows that projects (or project stages) focusing on
definition are the most numerous, followed by programming.
Although programming is predominantly done individually or
at a single site, far more definition projects are done
collaboratively and most of these involved both sites. Thus
collaborative design (i.e., definition) across the two sites
was a predominant activity in the lab over the two-year
period.

Table II shows projects classified by output. It shows that
the dominant output of cross-site collaboration |is
specifications (the primary output of definition). It is
also worth noting that nearly half of the projects done
collaboratively across sites (nine) resulted in no tangible
output, far more than projects done collaboratively at a
single site or individually. Having no tangible output does
not necessarily mean the project failed. Many of these
projects were high-level definitions (e.g., early Object
Service, New Language) that produced documents reflecting
members' thought process but no operational output in the
sense of specifications or code.
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AN INTERPRETATION OF THE RESEARCH CONTRIBUTION

In this section, the research contribution of SCL, in terms
of articulating the collaborative design process and
building tools to support it, is examined.

Articulating the Collaborative Design Process

The Design Methodology group articulated a vision early on
which, although not explicitly shared widely with the rest
of the group, implicitly fit the work of the entire group.
The Design Methodology group tended to focus specifically on
architectural design with a heavy visual orientation; as
should be clear below, their notions of supporting design
extend to other collaborative design activities,
particularly systems design, as well.

As was noted in a previous section, SCL members view
themselves as researchers rather than engineers. It is this
underlying assumption about design which holds them
together. In the words of one member, "There is a recursive
process of evolving the system and allowing the system to
support the process." This is the overriding model of
design that was similar across architectural and system
design.

Furthermore, this type of design is not highly structured,
and does not benefit from tools to help structure the
process. As defined above in terms of alternative goals,
the tools required to support this type of collaborative
design must increase the availability of information and
increase the capacity for reciprocal interdependence (Goals
2 and 4), rather than simulating face-to-face (Goal 1) or
improving the efficiency of the process (Goal 3) through
structuring tools such as, in system design, CASE tools are
purported to do.

One lab member described the research theme in the following
way: "It is about the theory of the process of design, how
people interact with design. To support the process of

design, we need infrastructure tools =-- video, computing,
social process. You also need to be able to carry in your
head what everyone else is doing. It is not about

structuring, not hierarchical. It is about expanding the
capacity of the infrastructure."

The Nature of Interaction in Desian

Two dimensions of supporting this design process are thus:
supporting communication in real time and recording the
process over time as an artifact of the process. We shall
call the first synchronous (or supporting interactivity) and
the second asynchronous (or creating a record). A second
dimension deals with focus of the interaction: we shall
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distinguish open process from focused process. The four
alternatives, with exemplary projects done within the lab,
are summarized in Table III. Each alternative or quadrant
may be thought of as a separate design environment for which
support tools can be developed.

The activities of the group over the period (see Appendix B)
can be classified into understanding and/or building tools
for each of the four quadrants. It is important to note
that they did not only focus on collaboration over a
geographical barrier (i.e., remote collaboration), but also,
and probably more important, on making the design process
more effective even without that constraint.

The work in each quadrant is briefly discussed below.
t 22 O nc E \'4

General problem definition takes place in this type of
design environment. The primary product of this aspect of
design is talk. Examples of this type of design process
are the straw proposals and core samples of the New Language
effort, as well as the pre-Amber object service work. The
forums are frequently open meetings (with many "kibitzers")
for "kicking around ideas", also informal spontaneaous
meetings, and many informal "drop-in" conversations. They
take up a significant amount of time with the only tangible
output being an occasional document of user needs (as in the
Object Service scenario paper) or "straw proposal". The
primary purpose of these exercises is to provide clarity of
ideas for the writer, not to inform the reader, although
they are generally read. As the general design process
progresses, the documents produced along the way become out
of date.

One general problem with this aspect of design is keeping it

sustained. According to one member involved with the new
language project, "High-level goal issues have not
stimulated alot of interaction. There is alot of

interaction on fairly low-level language issues." According
to another lab member, "Normally in the lab people spend
thirty seconds thinking about what to do and almost no
planning; then they just start coding."

In the 1lab, tools for "making connections 1lightweight",
which were often labeled as supporting informal interaction,
supported this type of collaboration. The primary "tool"
for this support is of course the link between sites, that
permitted both formal and informal interactions to occur.
An artifact designed to support connection is CONTACT.
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Quadrant II: Open, Asynchronous Activities

This aspect of design deals primarily with capturing the
"thought processes" generated by the high-level design
activity described above. In informal meetings or
spontaneaous interaction, a formal record is rarely kept and
the primary source of recall for later, more focused design,
is human memory. Yet many new research ideas are generated
in just such an "open", informal interaction.

The lab did no specific work on capturing informal
interaction for 1later recall. However, the constant
presence of the "media space" in offices was beginning to
generate a sensitivity to the need to be able to record and
recall this type of interaction.

Quadrant III: Focused, Synchronous Activities

A focused design process resulting in operational design
specifications (written, graphic, verbal, etc.) takes place
here. Support for this aspect of design requires intensive
dialog (audio) support and a shared, focused workspace for
drawing. Overwhelming, regardless of the type of design,
lab members expressed this as their greatest need in cross-
site design: the ability to have a shared workspace. 1In
architectural design it is clear that drawing capability
would be essential, but the same need seems to hold true for
collaborative systems design as in the Amber project.
According to one member, "This project pushes some things
with respect to ambiguity in collaboration. When people
collaborate they need to manipulate the things in their
world."

The primary tool developed in the lab to support this aspect
of design is media space. According to one lab member:

"Two things came together to form media spaces =-- the
Portland link and the recognition that design requires
support for not just goal-oriented activity but the
process of design itself."

The Office/Design Experiment explicitly examined what
happens if the environment is controlled in such a way that
only the focussed interaction, without the potential
distractions of a more open environment is available. As
documented in [Stultz], the experiment revealed some
important insights about the focused design process. A
major theme which emerged was the relationship between
working together and privately at the same time. The
participants in the experiment acted as if they were working
privately =-- not taking breaks, not chatting, feeling
compelled to work, and they were amazed at the volume of
work produced. Yet it was indeed an intense collaboration
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through shared dialog (as well as live video) and a shared
video drawing space.

"The tapes show the discovery of moving through the
video space....One guy wanted to draw on the other
person's screen, and he figured out a way to use
tracing paper to essentially do that. It helped that
we had very visually oriented people."

Another study that specifically focused on use of a shared
workspace, comparing face-to-face, video and audio, and
telephone only, is reported in (Bly, 1988). An interesting
observation from this study is that "the process of creating
drawings may be as important to the design process as the
drawings themselves."

Quadrant IV: Focused, Asynchronous Activities

The focused design process frequently takes place over time
rather than a single intensive session. Some problems
requiring a record of the process are the need to review
assumptions, and the need to bring a new person "up to
speed" on a design. Early work in Design Methodology
demonstrated how a rich record of the design process,
primarily based on video recording and selective videodisk
access, could be used to bring a new member into a design
group in the middle of the process. A second major theme of
the work/office experiment was recording the process so that
it could be recreated selectively for the client (user) as
well as the designers. The fundamental notion of needing a
repository of "things" for sharing =-- and thus the Object
Service -- fits into this aspect of collaborative design.
CORAL was a prototype for providing this sharing, as well as
some simple videodisk server implementations and the "sense
of the present" database prototype. In general, any
applications which are built on the Object Service would
support this aspect of design.

The Design Methodology group did not pursue this aspect of
tool building as much as media space. It was a much greater
technical problem that could not go far without an Object
Service in place. It was also a difficult operational
problem; without effective tools for indexing and selecting
materials, a massive amount of material could be
accumulated. In the office/design experiment, human labor
was used to simulate this support, but this was not very
feasible for more experiments.

One member of the lab articulated the relationship between
recording the process over time and supporting the process
across space: "We want to say that if you put communication
media and ritual into place you can make it easier to
participate in the present moment. The present moment has a
past..... up to two weeks. There are fewer
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interruptions....it is about getting rid of overheads that
the group demand-driven activity requires."

In the Amber project, there were many complaints about
misunderstandings among group members which were generally
attributed to the two locations. According to one member,
"We have discussions here and they have the same discussions
there. Sometimes we make decisions about the same things
they do and they conflict." In another case: "There is a
small project to develop a database in Palo Alto.
Independently I thought it was a good idea and wanted to do
it. I didn't know they were already doing it." While it is
easy to dismiss these problems as lack of face-to-face
interaction, having adequate tools to record the process may
have solved most of these kinds of problems.

Su o es o

In general, the group started with a preoccupation with I,
but steadily moved in the direction of supporting more
focused collaborative design in III and IV. They did not
tackle problems that were easier but less interesting and
less critical to their work, such as programming together or
enhanced electronic mail. They focused on the job that for
them was both hardest and most rewarding: collaborative
design. With media space they made significant progress in
supporting focused, synchronous design and were moving
toward real progress with support of asynchronous design.
The underlying technology of the Object Service is a
critical component primarily of Quandrant IV, but to some
extent of all four quadrants. The group had also designed
and was in the process of implementing GEAR, which provides
the underlying technical infrastructure (equipment access)
for tools to support all four quadrants. If the work had
continued, once Object Service and Gear were in place the
technical developments to support all four aspects of
collaborative design would have taken off.

THE LAB EXPERIENCE

What did it "feel 1like" to work in this environment?
Certainly the Portland Experiment was not a well-
articulated, goal-oriented project. The experiences and
frustrations of the lab members working in a distributed
environment were probably a more important contribution
(although more difficult to detect) than the activities or
outputs of specific projects.

W (o) o oratio

It is clear that, in terms of the espoused research goal of
understanding and supporting collaboration in a distributed
organization, the lab became preoccupied with activities in
the collaborative design process rather than other sorts of
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projects. In doing so, they used the same model which was
successfully with Smalltalk -- building something which they
could use in their own work, which 1is of course,
collaborative design. A significant number of prototypes
(artifacts) were built during the period but few members
focused on supporting collaboration in the building of a
prototype (although there are some interesting examples).
Although at first "programming together" was felt do be
necessary and supportable across sites, the needs of the lab
over the period did not push them in this direction either.

As shown in Table I, collaborative definition across sites
was a dominant activity. Dealing with their frustrations in
coping with the limitations of the "media space", the group
was able to gain valuable insights related to this
particular type of collaborative activity and the tools
required to support it. The greatest frustration was
expressed, for instance, in Amber, in the stage of
definition; when they began to implement code, they were
able to work effectively with much 1less communication
between group members.

One example of the expression of frustration is the
following, describing the definition stage of the Amber
project:

"Sometimes things were in such a state that the link
worked well because we HAD to communicate....We agreed
we wouldn't change it any more but it didn't work.
There were alot more changes....It shoved you over the
barrier to communications [i.e., the 1link]. The
telephone became more important....It was good there
was more than one person at each site. It provided
local support for sanity testing. For some reason the
more bandwidth the easier it is to do perspective
shifting."

There are many examples that show the lab members'
sensitivity to the process of design and the need to support
that process rather than simply providing more information:

"The other labs think of knowledge as a base you can
draw on. I think knowledge is also a process....there
is knowledge implicit in the process; e.g., knowledge
engineering. The design process and knowledge of how
different people approach the problem is part of the
knowledge base. It is knowledge about process or
procedure, not just about content."

"This project [Amber] has no central management. That
is not a problem. The whole group has to come to the
revelation of a problem when there is one. It is up to
the group to manage itself."




"It is very nice to have them [the other group members]
up there in a way. They don't come in and see where
I'm at all the time."

The second goal of the research agenda was the definition
and implementation of tools to support distributed
collaboration. It is clear from Table IV as well as the
list of projects in Appendix A that the 1lab made
considerable progress toward this goal. The lab had a very
clear understanding of the infrastructure required to
support collaborative design and was progressing on that
infrastructure with Gear and Amber. In support of specific
focused design interaction (see Table III), there was also
considerable progress with projects related to interaction
in the media space (e.g., the Work/Office experiment, the
"Janaia" study).

The Nature of Socialization

As described earlier, socialization is the process by which
work group members learn and act out their roles. In SCL,
this process was affected by the Portland Experiment in
dramatic but subtle ways.

Many problems, such as those described in the Interim
Report, were exacerbated if not caused by the two-site
split. This is particularly an issue because so many of the
Portland members were new to PARC, and their "cues" (i.e.,
what to work on, what is research versus "play", how much is
acceptable, what are acceptable hours, etc.) were mostly
provided in Palo Alto. As in a typical adhocracy
(Mintzberg), there was no formal orientation:; roles and
norms, including even what to work on, were primarily
learned by observation. As already discussed, the standards
of competence were not well defined and the indicators of
performance were highly subjective. These issues were all
exacerbated by the distributed organization.

It would be presumptuous to point to any particular
personnel problems and attribute their cause to the fact
that the person was not in Palo Alto and thus was not
properly "socialized" (although it is certainly tempting).
However, this is a rich area for further investigation,
particularly in the light of Meyrowitz's insights regarding
"social place".

Meyrowitz emphasized the role of television in allowing
formerly "private" spheres to become "public". By contrast,
SCL was beginning to experiment with a ‘"social place"
extended by video and audio that changed the relationship
between "private" and "public" workplaces. It was not at
all unusual for a person's office to be "tuned in" to
another office with video as well as audio and for this to
be treated as unobtrusive background noise and not regarded
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as an invasion of the other person's privacy. This type of
extension of ©private workspaces offers whole new
possibilities for patterns of socialization which remain
unexplored.

Some of the experiences with using media space are
particularly enlightening:

"This is more like a window than a workstation or a
microphone. It is more like an open office with shared
acoustic space."

"It doesn't intrude; it is there and you can pay
attention or consider it background. Also you don't
need to leave your workspace to interact with others in
your group. You can choose when and how to
participate.”

Some of the most interesting insights in terms of social
process had to do with defining the etiquette of the media
space. Certainly the media space technology could be used
for much more intensive but unobtrusive monitoring of
workers. In SCL, the goal was to build media space so that
it encouraged the status quo of shared control. For
instance, a person should always be able to know if someone
else was looking at them; such a feature was built into
Contact. Another notion was that a person should always
know what the other part is seeing; this leads to a scheme
of relating a single camera and a single monitor.

The media space was not yet at the point where lab members
could easily move in and out of each other's "spaces",
particularly cross-site. It is possible, however, that had
the experiment gone on, many more insights into the diffuse
nature of socialization in "social places", and the design
of tools to support them (etiquette of two-way interaction
versus unobtrusive monitoring, etc.) would have been gained.

The Nature of Management Control

What can be generalized from SCL and the Portland experiment
regarding the nature of control over work? Systems that are
designed to improve the efficiency of coordination or to
move from reciprocal to sequential or pooled interdependence
are also implicitly about the control process. The work
done in SCL is differentiated from these approaches
specifically because it emphasized sharing control by
increasing the capacity of reciprocal interdependence.

Cross-site reporting was often debated and the area
managers, while admitting it made sense as part of the
"experiment", generally felt uncomfortable with it. Since
there were few specific objectives or deliverables,
individual performance was often determined in a fairly
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subjective ad hoc way. This is not unusual, but managers |
tended to discount their intuitions when the subordinate was
not on-site. Managers in Palo Alto made frequent trips to
Portland to "confirm a hunch" about a problem (e.g., a
subordinate slacking off) and then to deal with the problem
face~-to-face.

Alternative Goals for Development of New Tools

In terms of the four goals of tool development, to which did
SCL make a contribution? The group began by focusing on
(1), making the two separate environments more like a single
one. Many continued with, a preoccupation that it was not
"as good as" face-to-face and thus the split site was a
frustrating obstacle. An example was in the definition
process of Amber, where there were frequent expressions of
frustration with the limitations of the media. 1In this case
in particular, the group did not seize on th eopportunity to
ask "What is the real problem?" and thus articulate the
group's real need -- i.e., a shared work space. In other
efforts, such as the Work/Office experiment and the "Janaia"
study, the group did take advantage of the opportunity to
learn what is different about collaboration in a media space
rather than simply measuring it against the metric of face-
to-face interaction.
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Much of the ongoing work of the lab focused on (2),
improving accessibility of more information which is needed
for collaboration in design. The underlying infrastructure
of Object Service and Gear supported this goal, as did the
aspect of Design Methodology having to do with creating and
accessing a record of the design process.

Some members of the group thought (in hindsight) that the
direction they expected of the group was in support of (3).
For instance, they might have developed the next-generation
electronic mail system or group authoring system. Instead,
the group turned to (4) and, in so doing, made a
contribution which is unique to the CSCW community. It is
significantly different from work on meeting augmentation,
such as Colab, because it opens up many possibilities for
interaction across space and time while keeping the
interaction at least as effective as, and possibly more
effective than, face-to~-face interaction with its
geographical and timing limitations.

CONCLUSIONS

Table III and Appendix B demonstrate a significant body of
work directly or indirectly related to the Portland
Experiment. What does this mean relative to the stated
goals of the experiment, as well as to the collective body

of research known as CSCW?




The focus on collaborative design emerged rather than was
defined a priori. It is clear that in fact, in the process
of defining and tackling different problems in the design
process, the lab was better able to articulate that process.
More important, it was able to articulate the tools
required, both for an underlying infrastructure (i.e.,
Amber, Gear), and for specific aspects of design (e.g., a
shared workspace). It is interesting to speculate whether
such progress could have been made on any individual project
without the overall driving force of the Portland
experiment.

There is a considerable amount of ongoing work on
collaboration support that treats work groups generically.
A major contribution of the SCL work is that it focuses on a
specfic type of work group collaboration which evolved to be
identified as the design process. Their work, however, can
be generalized to other types of collaborative work with the
following characteristics:

* Collaboration in an intellectual effort;

* The primary resource required is information;

* Reciprocal interdependence of group members
for information;

* Control primarily through example and peer
pressure.

The cumulative work of the two years of the Portland
experiment is good work by itself. This report should
clearly demonstrate that the nature of the Portland
experiment did indeed act as a "forcing function" to produce
this rich and well-differentiated body of work that will be
a significant contribution to the body of research on
technological support for work group collaboration.
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APPENDIX A
EVOLUTION OF SCL PROOCESS AND CULTURE
DURING THE PORTLAND EXPERIMENT

In this section, changes in process and culture of the
laboratory, as they relate to the Portland Experiment, will
be briefly reviewed. Four distinct stages of evolution of
the relationship between the two sites since the
establishment of the Portland site have been identified.
Each stage is described below.

Stage I: Simulating Being There

In the early period after the Portland lab was established,
a considerable amount of experimentation focused on
simulating "being there". The link was used a great deal
for meetings and there were a number of informal experiments
designed to make the two sites feel more like one group.
One, for instance, involved remote control of the camera.
There were also a number of informal experiments with
informal interaction and establishment of contact with
people at the other site.

The transition to a laboratory and accelerated growth of the
lab were felt in Palo Alto rather strongly, in that there
was considerable discussion of the need for a "vision" to
drive the lab's work. There was some concern about the myth
perpetuated not only by some longer-term members of the lab,
but by stories told by others even outside of PARC of the
vision which drove the early development of Smalltalk. 1In
Palo Alto, there were strong feelings of ambiguity and lack
of community awareness of a shared vision.

In Portland, most of the members were new and knew less
about the myth surrounding SCL than even the newer members
in Palo Alto. The part of Palo Alto they experienced was
primarily through informal interaction, constantly
encouraged or championed by the Portland side, and the sense
of ambiguity felt in Palo Alto did not come across.

In this stage, there were four area managers under the lab
manager. Only one member of the lab located in Portland was
a cross-site report to an area manager in Palo Alto, and
that did not occur until six months after the Portland site

was established.

In terms of work, the Collaborative Systems group was
nominally established in Portland with no collaborators in
Palo Alto. One project, remote control of the camera,
involved one person from each site. The Object Service
project had been defined at that point; there was work at
both locations but it did not overlap, so that the need for
communication on technical issues was low. Design




Methodology was a distinct group with all members in Palo
Alto.

For most of the lab members, knowledge related to skills and
technical competence was not generally transmitted across
the link; it was not unusual for a person to comment that
he or she had heard someone in the other site was doing
similar work but had no idea what it was.

In summary, Stage I involved experimentation with using the
single audio and video link to simulate being in the other
place. Most of the cross-site activity was around informal
(generally non-work-related) interaction or  meetings.
Beyond the norm of keepihg others informed by electronic
mail, little cross-site collaboration took place.

Stage I lasted from the time of establishment of a critical
mass in Portland (early summer 1985) until early 1986.

Stage II: Separate Entities

The transition to the second stage took place with the
Portland Pow-Wow in February 1986. The Pow-Wow brought all
lab members together for two days in Portland. After the
Pow-Wow, most lab members had a strong impression of the
unity of the lab in terms of vision and consensus on
research goals. The word they used to refer to this least
common denominator of consensus was sharing.

After the Portland Pow-Wow, a number of lab members made
attempts to establish cross-site collaborative
relationships. The word "kibitzing" came up often, as in "I
am kibitzing on the new language project". The New Language
project began formally, and lab members at both sites
attended meetings, some as kibitzers. The role of the
Collaborative Systems group and/or the Portland lab members
as users of the new language, who therefore should have
significant input into its design, was identified.

With the establishment of the New Language project and the
continuation of Object Service as a separate project, the
lab settled down into project-oriented groups. The other
two groups were Collaborative Systems, exclusively in
Portland, and Design Methodology, exclusively in Palo Alto.
The role of project leader, with technical responsibility
for a project, emerged more-or-less officially. For a short
time, there were four designated project leaders who met
reqularly (the "project managers' 1lunch") in that role.
After the initial flurry of "kibitzing", attempts to make
cross-site contacts trailed off. A second Portland member,
newly hired, became a cross-site report to a Palo Alto area

manager.
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Over the link, there were fewer attempts to simulate "being
there" in informal interaction. Members became accustomed
to using the link and seeing themselves on video and began
to rely on it for everyday use. With many meetings for both
the New Language and Object Service projects, the lab began
to use the link extensively for technical meetings.

In general, the lab settled into as close a routine as can
be expected in a research organization. The attempts to
push on the connection were reduced, and the lab began to
operate more as two separate entities. With the decreased
emphasis on being "together", Portland began to develop a
somewhat separate and distinct culture. After a time, there
was some strain between the two sites focused on serious
lapses of communication and misunderstandings in projects.
In particular, the Object Service project and the
Collaborative Systems effort experienced minor crises based
on miscommunication and misunderstandings across sites.
Many of the problems were attributed to the lab manager's
personal style and her inability to adapt it to remote
supervision. These incidents are discussed in the interim

report.
This stage lasted until approximately late summer 1986.
: te

The third stage of lab culture was precipitated by the
change in management of both PARC and the laboratory in
September 1986. The lab went through a period of major
readjustment, which was experienced differently in the two
sites. In particular, Palo Alto had the physical presence
of the new entity, Parc Place Systems, for the next six

months. Portland members expressed concerns about the
relationship between SCL and PPS but did not feel it in
terms of everyday presence. There were, of course, many

misgivings about the new management structure and the lab's
survivability under the new structure of PARC. With time,
however, these fears subsided.

More important, with the reorganization almost all of the
keepers of the "myth" of how SCL operates left PARC,
Several other significant changes occurred. Much of the
decision making on day-to-day administrative matters shifted
to the lab and area managers with selective input from lab
members. Most important for the Portland experiment, the
reorganization provided the opportunity for the vision of
interpersonal computing held by the former lab manager to be
redefined. According to one lab member, "Can we take this as
an opportunity to make Portland and Palo Alto come to a more
positive set of working relations? We could not do that
before because Adele identified the Portland / Palo Alto
link as her personal research agenda."




Over the next few months, three more members changed
management and reported cross-site. In the new
organization, there were three area managers, all of whom
had at least one cross-site report. There was an increase
in research activity specifically addressing remote
collaboration.

In general, this was a period of adjustment to management
and articulation of new reseach agendas under a redefinition
of the research vision. The period lasted until February or
March 1987.

Stage IV: Consolidation and Focus

The lab then moved into a stage of consolidation and focus
around key projects. The most significant change was the
consolidation of the New Language and Object Service groups
and the creation of the Amber project. This project had a
core group of people with relatively well-defined work roles
(i.e., no kibitzers). The project gained significant
momentum quickly, with the successful delivery of a feasible
design on April 15. Most important for this evaluation, the
project was a true exercise in cross-site collaboration,
with three members in Portland and two, later three, members
in Palo Alto.

Other projects also gained momentum and independent focus.
The Design Methodology group executed its Work/Office
experiment in this stage. The Gear project was designed and
began implementation. The Collaborative Systems group began
to explore alternative methodologies, including involvement
in an Interaction Analysis Laboratory with members of ISL
and a Collaborative Readings group. One of the Palo Alto
lab members became more active in these activities,
signaling the first time the Collaborative Systems group had
some cross-site collaboration.

This stage was winding down in September 1987. At that time
it was not clear what direction the lab would take next; it
was a particularly crucial time for the Collaborative
Systems group. There was beginning to be a considerable
amount of discussion of how to position and focus the
Collaborative Systems research agenda, so that its third
year would produce some more concrete results. At this
time, I wrote an evaluation report which included
recommendations for the Collaborative Systems research

agenda.

Termination of the Portland Experiment

In December, 1987, PARC management announced that there
would be a reorganization of the existing labs. In
particular, SCL and ISL would be reorganized along some
other project lines and probably be divided into three labs.




Proposals for reorganization were left to lab members, and
this topic monopolized their time for the next two months.
In early January 1988 management announced that the Portland
facility would be closed. All the Portland employees were
offered positions in Palo Alto, but, with the exception of
the administrative support person, they all declined. The
reorganization of the labs in Palo Alto was completed by the
beginning of March.
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APPENDIX B
SUMMARY OF SCL PROJECTS
PARTICIPANTS

PROJECT PA PTLD ACTIVITY OUTPUT
Early Object Service 3 1 Design -
Conversion of Smalltalk Working
to Sun 2 3 Implement System
Control of video from
computing environment 2 0 Design Prototypes
Recording design process 2 0 Experiment 7
Remote camera control 1 1 Implement Prototype
Meeting on meetings 1 3 Talk -
Weather map 2+ 0 Implement Prototype
Servo design 3 0 Definition ===~
Stable storage (0S) 0 2 Program Code
Audio solutions : 1 Implement ————
CORAL 0 3 Define/Impl Prototype
SCL Villages 2 1 Define -———
Planning the Pow-Wow 3 1 Define Specs
Object Service Stage II 5 1 Define -
New Language 2 0 Define -
Tl1lustrate design process 2 0 Document Report

(Video)
video space 2 0 Implement Prototype
video server 2 0 Implement Prototype
Media space 2 1 Define Specs
Transparent forwarding (0S) 0 3 Program Code
Straw proposals (New
language) 5 | Define Specs

Media space implementation 4 0 Implement Prototypes




ARK experiments

Scenario paper (08)

Core samples (New language)
0S8 Requirements

"A Day in the Life of scL"
Contact

Amber design

Gear design

Relational DBMS Impl.
Shoptalk III

Office/design experiment
Amber virtual machine
Amber compiler and cloner
Amber image

Amber simulations

0S "design"

ARK extensions

office/design documentation

ARK conversion |
Audio solution work group
Portfolio of collab. studies
Collaborative readings

Trans lan implementation
ARK beasts

"Janaia" study
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Document

Experiment
Program
Program
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Program
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Document

Program
Talk
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Experiment
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Prototype

Report
(Video)

Report
Code
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SINGLE PERSON PROJECTS

ARK

Babar

Knowledge representation
Viewers

Screen sharing

Opus

Digraph browser

Print spooler

Sense of the present database
Screen saver

MVC interface

Color coding algorithms
Frame grabber

ARK experiments

Shared ARK

Chinese temple
Videodisk interface
SOUP

Tanga painting

Gear implementation
Mail sorter

Videodisk data

Video switch
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Experiment
Implement
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Implement

Program
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Program
Program
Program
Program
Program
Program
Implement
Experiment
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Implement
Program
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Implement
Program
Experiment

Implement

System
Specs
System
Prototype
Prototype
Code
Prototype
Prototype
Prototype
Code
Prototypes
Prototype
Report
Prototype
Code
Specs
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Prototypes
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APPENDIX C
LAB MEMBERS AND COLLABORATION

COLLAB COLLAB
PERSON SINGLE ONE SITE CROSS~-SITE
PALO ALTO
Bay
Bly
Deutsch
Flegle
Godreau
Harrison
Hibbert
Horton
Krasner
McCall
Minneman
O'Shea
Putz 1
Ranjit 2
Robson
Smith 3
Stultz 1
Trow
Weber
Zybdel 1
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Abel 1
Axel

Ballard 3
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Merrow

Purdy
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INTRODUCTION

This report describes an effort to design and implement a set of computer-based
graphic tools that enable people, unskilled in either Graphic Arts or Computer Science
to easily illustrate technical ideas and information. The basic notion explored was: is
it possible to break down the world of technical graphics into 'idioms' (constrained
environments) such that the computer could provide both mechanical and aesthetic aid

to the non-professional user.

In order to test this concept, we divided technical graphics into four basic

environments:
; quantative
2. ideographic
3. isomorphic
4, volumetriec.

Each of these basic environments was then further subdivided into graphic 'idioms'.
For example, Piecharts and barcharts are quantative idioms while exploded views and

cutaways are examples of volumetric idioms.

From the wide spectrum of possible idioms we choose to examine three of them: a
typographic idiom, block diagrams and piecharts. This report is primarily devoted to
a description of the 'idiomatic' approach to computer graphics as we experienced it

within the context of working with these three idioms.







1. IDIOMATIC ILLUSTRATORS

OBJECTIVES

The aim of this project was to provide Alto-based graphics tools that would enable
people unskilled in either computer science or the graphic arts to easily construct
articulate graphic statements. This was a six-month project, begun in February, 1975

and concluded in August, 1975.

METHOD OF APPROACH

We conceived a research plan for creating a series of special-purpose subsystems,
called illustrators, to deal with graphic problems on a specific rather than a general
level. The design of these special-purpose illustrators was driven by an attempt to
conform to conventional notions about graphic 'idioms' which are commonly
understood and used in the working world. To establish a comprehensive frame of
reference for this approach we reviewed a wide variety of illustrations, and
constructed a graphic mural (reproduced on the following page) which represented

four basic graphic environments:

quantitative
ideographic
isomorphic

[ I

volumetric

Quantitative figures dealt with visual translations of numerical data. Ideographic
figures symbolized conceptual information. Isomorphic figures communicated through
abbreviated versions of real forms. Volumetric figures represented objects as they
appear or might appear. In each environment we subdivided illustration types in
terms of communicative aim, and displayed various particular occasions of each aim.
Each of these specific aims, along with its associated occasions, we called an 'idiom":

and it is on this basis that we built the idiomatic illustrator project.
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2, THE SIGN PROGRAM

SIGN is a modest typographic program originally designed to produce hard copy text
titles for use in PARC's videotape projects, but it is equally useful for creating
bulletin-board notices, small posters, identification labels, view-graphs, and other
kinds of 'social-style' office communications. SIGN distinguishes itself from other
text systems in that it is environmental: that is to say, it can be used to create word
‘pictures’ that catch the eye in the physical world of competing visual objects, such as
the PARC office scene.

The basic design criteria for SIGN were:

1. A minimum 24 point font size, bold, and sans serif to insure readability in
the video medium. A 24 point helvetica bold face was chosen.

2. Exact compositional control on the ALTO screen and identical hard copy by
SLOT - so that what you see is what you get.

3. A simple operating procedure that enables people not skilled in computer
science or the graphic arts to create professional headline text a-la-letraset.

SIGN is also a step toward solving the graphical problems associated with text
headings. Currently, it lacks a coherent scheme for dealing with margin justification,
color, changeable leading, inter-character spacing, etc. Much interesting design

remains to be done in this area.

Two details about SIGN deserve mention: the spatial gridding and the ease with
which a user can obtain hard copy. Vertical gridding is always enforced between
lines. There is a grid of 1/2 of the inter-line spacing in the horizontal direction when
a line of text is first specified. This aids centering along a vertical guideline. After
the initial placement of a line of text, the horizontal gridding is relaxed. This allows
for subsequent margin justification. The output is obtained through the use of
command files (lots of crocks) which eventually send a press-format file of the screen
image to LPT. The important point about output is that the program owes much of its
popularity to the ease with which one can obtain it..with the 'push of a button'.
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7. If you want to change the position of a line of text, first touch
the word 'MOVE' with the mouse cursor. Then touch the text line to
be moved. Third, touch the new center for the text line; The text will
move as you have indicated:

FIRST-WORD
FIRST-WORD

8. If you want to throw away a line of text, touch 'MOVE'; then
touch the text line to be eliminated, and then touch the 'trash can'
area (black) at the bottom of the Alto screen. That line of text will
disappear.

9. To print a SIGN image type 'PRINT' (+carriage return). This
will cause much flashing and nonsense on the Alto screen. When you
see a MAXC logout message at the bottom of the screen, push the boot
button and you will return to your SIGN image. Then walk down the
gall to the SLOT machine and you will find the hardcopy of your

IGN.

10. To save a SIGN image for possible printing or modification at a
later date type 'SAVE' + a file name,

11. To recall a previously saved SIGN image type 'RECALL' + a file
name,

12. To clean the image area of unwanted debris (location points,
etc.) type 'CLEAN'.

13. To begin a new SIGN with a clear screen type 'NEW'.

The following examples illustrate some possible uses for SIGN.
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SIGN: SUMMARY EVALUATION

1. Videotape title applications are very successful, and the program is now used
regularly for that purpose by PARC's video communication group.

2. Totally inexperienced users in the video group were able to operate the
program immediately, as were secretaries, researchers, and others in the PARC

community.

3. The volume of general (non-video) office applications has been much larger
than we expected, and has proved the program to be a useful multi-purpose
workhorse. A dribble-file associated with the program has recorded this volume

of use.

4. SIGN's single-font (caps only) capability is far too limited for most
practical applications. Currently, we have no easy answer for this deficiency.

5. The program is essentially an elegant hack, and consequently some users

have experienced frustrating breakdowns.

6. The move function is still crude, and offers inadequate support for the
variety of alignment and spacing situations which commonly occur in graphic

design.

7. Conceptually, SIGN offers considerable promise as a headlining device for
graphic design work, particularly in the areas of magazine, book, and brochure
production. The main reason for this is that it treats word forms as graphical

objects, and consequently relates to the graphic designer's methodology.







3. THE BLOCK PROGRAM

BLOCK is designed to deal with graphic problems in the idiom of block diagrams;
including organization charts, process charts, and other rectilinear figures. This
program is a specialist. It does not attempt to take on the whole world of graphic
needs, although a few interesting by-products such as 3-D perspective are possible.
BLOCK takes a view of graphic language that emphasizes design grammar (spatial
dynamics, composition, etc.) rather than form vocabulary (gray scale, sophisticated
detail, etc.). It is intended to help the ordinary (non-illustrator) user construct an
articulate graphic figure without having to learn the illustrator's profession. Basic
aesthetics as well as manual skills are supplied by the program.

The design criteria for BLOCK were:

1. A basic form vocabulary of lines and rectangles for building the structural
elements necessary to block diagrams. Secondary requirements included word and

arrow forms.

2. A spatial grammar for composing form elements on the ALTO picture plane
with respect to aesthetics of planar design (visual relationship and

differentiation).

3. A capability for visual editing, including move and copy functions. Later,

an area move/copy function was added to the criteria.

4. A set of graphic processing utilities, including such functions as clean
(refresh), file (save and get), print (xgp), and reset.

BLOCK, like SIGN, has been developed to the point that it is a usable SMALLTALK
subsystem for making illustrations. The essence of the BLOCK program lies in its
gridding scheme which spatially organizes its graphical forms (box, line, arrow, text)
in an aesthetically related manner. During the design of BLOCK it became clear that
no existing font was suitable for diagrammatic purposes, so we designed and executed a
new font.. The design criteria for the font (BLOCKFONT) were:

1. That it be a condensed font to maximize horizontal space on the ALTO

screen, which is a major constraint in meaking diagrams.




2. That it have the smallest bold (2-bit thick) face possible

screen, and still remain readable.

3. That the font relate aesthetically to the rectilinear forms gen:

BLOCK program.

First, an ALTO font satisfying these criteria was designed. Its dime:

Subsequently a coordinated spline outline version was constructed. T

find wide usage in PARC terminal displays where horizontal space
The command language for BLOCK is menu-driven and ‘modele
commands are divided into four logical groups:

1. form vocabulary (box, line, arrow, text)
space control (grid module)

editing functions (area, move, copy)

e L0 o

memory commands (print, save, get, reset, clean)

The menu itself is presented in the form of a block diagram for (1)
and (2) to enable the visual presence of a number of
creating a sense of visual confusion. It
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Individual command functions for BLOCK are as follows:

BOX:

Draws boxes, any size or shape, The command requires two mouse inputs: upper
left and lower right box coordinates. The box corners are positioned at the
nearest points on a 32-unit grid. This aligns boxes automatically, provides
consistent spacing, and allows the user to be rough in his/her manual command

executions.

LINE:
Draws lines, any length or direction. The command requires two mouse inputs:
beginning and ending points of the line. The line endpoints are positioned at the
nearest points on a 16-unit because of the grid, lines will automatically split
spaces between boxes, and provide centering and exact box contact when used as
connecting links. In addition, lines built at right angles to each other
automatically form a perfect corner, Again, the user may be somewhat rough in

manual execution without problem.

ARROW:
Draws lines with arrowheads attached to the point designated by the second
mouse input. Arrow lines may be any length, vertically or horizontally. In all
other respects this command functions like line.

TEXT;
Prints a line of text as objects anywhere in the figure, an 8-unit grid. The text
automatically centers itself within boxes. Inputs are typed sequences (terminated
with carriage return); and mouse points (center location for text).

MOVE:

Moves any of the ahove objects anywhere in the image, in terms of its assigned
grid. Move can also be used to dump unwanted objects into the garbage can at
the bottom right of the screen, causing them to disappear. Two mouse inputs are
required, corresponding old and new locations.

COPY:

Copies objects anywhere in the image, in terms of assigned gridding. Like move,

two mouse inputs are required, to indicate form selected and the desired position
of its copy.




AREA:
Selects a form area rather than an object, for moving or copying. As in box, two
mouse inputs are required to indicate upper left and lower right corners of the
rectangular area selected. In addition, third and fourth mouse inputs are
required corresponding to old and new locations for the forms included within
the rectangular area selected. The rectangular area selected will then be moved
. or copied in the new location.
J GRID:
Permits the user to change the assigned grid spacing for any particular form.
PRINT:
Creates an XGP file for hard copy. Input is a filename (one word terminated
with line-feed). The file created may then be transmitted to a NOVA with an
XGP, and the command 'XPLOT filename' given to the NOVA operating system.

CLEAN:

Refreshes the entire image, restoring forms damaged by moving, ete.
SAVE:

Allows images to be saved for future display, printing or modification.
GET:

Allows previously saved images to be recalled.
RESET:

Erases entire screen and restarts the BLOCK program.

In addition to menu commands, line weight for any form may be controlled by the

mouse button pushed:

1. top button: fine line

2~

middle button: medium line

3. bottom button: heavy line

We have included a group of illustrations which describe BLOCK's range of

capabilities, and suggest how the program might be used.







COMMUNICATIONS
NETW ORK
TERMINAL
TERMINAL
| CONTROL
PHONE
SYSTEM
BELL |
SYSTEN VOicE
DIGITAL
communicatiens
OTHER SLOT PAPER
METWORKS 2 coPY
[ MAXC
FILES
SERVER
SERVER




xe=N(x)

I

P(x)

x+=N(x)

x"
°

N MALT

Figwre fo. A backward-sxpanded flow shart







BLOCK: SUMMARY EVALUATION

1. The most successful aspect of this program is its spatial control of form.
The notion of 'invisible' gridding as a strategy for the management of form/space
interaction (design grammar) worked well, and has since been used with equal

success by other programs at PARC (e.g. MARKUP).

2. The simplicity of BLOCK has enabled many (graphically) inexperienced
users to construct effective block diagrams. However, it is also clear from the
work done that BLOCK does not 'do it all' as we had hoped, and that some
elementary graphics skills are still required.

3. The BLOCKFONT worked well as a conserver of horizontal space, and

competes well in the context of diagrammatic form.

4.  Area move and copy functions are still difficult to control, and require too
much visual editing. The displacement for all objects within the area is gridded

according to the current grid setting for text objects (usually the smallest).

9. The concept of a fixed push-button graphic menu was, as in TAPE, felt to be
an improvement over keyboard-oriented command systems. By the same token, it
now appears that MARKUP's spatially-flexible menu system and TOOLBOX's

keyset control system are much easier to operate than BLOCK's fixed menu.

6. BLOCK lets the user know where his/her cursor is in relation to the
‘invisible' grid spacing by moving the cursor to the nearest grid point (according
to the form being created) when the mouse button is depressed. As long as :he
button remains depressed the cursor "hops” from grid point to grid point when

the mouse is moved, and a point is specified when the mouse button is released.

7. It is a demonstrable fact that infinite variations on the 'block diagram'
theme can be created with relative

ease using this program. However, exactly
where BLOCK ends and FLOW, or PERT, etc., begin is not yet clear. Further
exploration with other related

idioms would help to answer this question.




Some fairly sophisticated illustrations can be created through line

ocabulary alone.
Mouse buttons work well as a tactical means for controlling line weight.

10. In an illustrator context, it helps to be able to deal with words as graphic

form objects (like lines or boxes).







4. THE PIE PROGRAM

PIE is an experimental effort to create an 'automatic illustrator'; that is, a program
that puts the 'illustrator’ entirely within the machine and thus allows the user to get
a professional-level illustration without having to perform any graphical tasks. The
graphic idiom of pie charts was chosen for this experiment because, as a data-based
idiom, it lends itself naturally to mechanical graphic translation. The basic graphic
design decisions in making a pie chart are quantitative: not only the spatial division
of the pie into its component segments, but also the placement of labels in relation to
the available space resulting from those segments. Therefore, all that PIE requires of
the user is a table of items (labels) and their associated numerical values (segments).
The program (1) makes the pie, (2) translate the numbers into percent values and cuts
the pie into corresponding pieces, and (3) attaches item labels to the segments. User
interaction takes place entirely within the context of creating and/or editing the

tabular data, a familiar and ordinary office activity.
Basic design criteria for PIE were:

1. A form vocabulary comprised of a single fixed-diameter circle, straight

radial lines within that circle, and text labels.

: A spatial grammar that translates a set of numbers into degree equivalents,

-

and represents those equivalents as pie segments using radial lines.

3.  Automatic/aesthetic label placement, with respect to spaces and positions of

pie segments.

4. A system for tabular data entry that permits interactive user editing.

In satisfying the design criteria for an automatic piechart-maker the most difficult

problem was that of label placement. The strategy for this part of the pro :
follows: If a pie segment had adequate size and/or an advantageous position for
(horizontal) text, then (1) the label would be placed internally and generally centered
within the available space. If the segment was small and/or vertically oriented, tl"xen
(2) the label would be placed externally, and related to its segment by a connecting

link,

gram was as




The space available for a text label within a slice of the pie was computed as follows:

(a) point p is chosen so that it lies on the bisector of angle f}q_o_ @

i

and is located 3/5R from the center of the circle.

(b) the four points Sl' Sa, S;y and 54 are computed by finding the
intersections of the line y = (Py + %h) x with lines l4» 1, and the circle.

Px . ]
(Note: h=font height)

(¢) next the four points ty by, tg and ty are computed by finding the 4
intersections of the line y = (Py = %h) x with lines l;s 1, and the circle.

Px

(d) finally, if s; and §; 6{51-50-53»54) are the inlersection that lie

immediately to the left and right of Px and ter to E{tl.l.},l.i,t‘} are defined

similarly then the rectangle with upper left corner at max (Si‘lt} and lower

left corner at min (Sj,tl) is the space that text may occupy and still be inside

the slice defined by 6 and P.

It should be noted that the space for te

xt obtained by the method just described does
not yield the maximum width

rectangle that can lie in a segment of the pie.
Originally we completed the maximum width re

Placing the text centered in this rectang
text and the radial lines which divide
fit inside the slice.

ctangle that can lie in a segment.
le caused graphical interference between the

the pie and the links used where text could not
Hence we chose the algorithm w

hich, in general, produced a
smaller space for the text but yielded a

more aesthetically pleasing result.
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The system for external pielabels sought to maximize the number of possible labels
that could be automatically arrayed around the pie, and at the same time make the
most economical use of available space on the ALTO screen. It appeared that a
parabolic arrangement of labels around the pie produced the most efficient and
manageable external pielable system, as illustrated by the following design drawing:
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The user interface for PIE is a simple table, into which the user types item names (for
labels) and corresponding numerical quantities (for segments). As the user types in
items and quantities the table expands downward. This table can be edited: items and
quantities can be added, deleted, exchanged, or moved as desired. The order in which
items are displayed corresponds to the order in which they are represented in the pie
(starting at 'noon' and advancing clockwise). Thus, the user has control over the

segment arrangment in his piechart.

It should be emphasized that unlike SIGN and BLOCK, PIE is still in an experimental
state, and not yet ready for dependable work applications. However, we have tested
the program against a variety of data situations, and have essentially succeeded in
satisfying the original design criteria established for the idiom. We can offer the
following illustration, executed with PIE, as an example of the program's current

capability:




LABELS DATA
CORH 5
YECETABLES B
COWS AHD HORSES 4
PEAHUT AND SOY OIL 4
DAIRY PRODUCTS []
WHEAT 60
0ATS 30
DARLEY 40
HOGS 25
OTHER 30

CORN
YEGETABLES
COWS AND HORSES
PEANUT AND $0Y OIL

DAIRY PRODUCTS

L xplot 'test'?




PIE: SUMMARY EVALUATION

1. For certain kinds of illustrations (particularly quantitative) automatic
illustrator programs are quite possible. Essentially, PIE can produce a good pie
chart without any user participation in the graphic process. Based on our
experience with PIE, we believe that bar charts and curve graphs can also be

produced in a more or less automatic fashion.

2. Word and number labeling (because of its unpredictable length) is a serious
problem for automatic illustrators, and as of now there appears to be no simple

solution.

3. Graphic execution time saved in PIE-like illustrators is enormous - much

more than in SIGN or BLOCK.

4. Creating and editing tabular data is in itself a graphically idiomatic process
(quite aside from its application) and from our experience with PIE looks like a

pregnant area for future research.




5. CONCLUSIONS

hese conclusions are an attempt to summarize our research findings in relation t
P ) . : ion to
BLOCK, SIGN and PIE. We hope these conclusions will be helpful to others involved

in the design of interactive picture-making systems

ON METHODOLOGY

We did no : i
id not adopt the more common approach of specifying and implementing a

graphics system and then writing the application programs. We rather scrounged
whatever graphics capability was available (SMALLTALK) and began by simulating
the illustrator’s habit of building up a 'graphics language' as we worked. We were

able to do this because SMALLTALK already contained a rich set of graphics

primitives.

_w" began our investigation with three of the simplest and most commonly used
idioms. Our reasons for this decision were twofold: first, about a dozen simple,
well-known conventional idioms account for the bulk of technical graphics used in the
working world, and secondly, it allowed us to concentrate on user issues such as
command languages rather than on system issues that arise when dealing with complex
This approach drove out two insights that we might have
approach that involves the development

ation of the application

pictorial representation.
missed had we adopted the more conventional
of a graphics system and then the design and implement

(1) a very simple set of programming tools is

programs. The insights are:
al idioms for general office use and (2)

sufficient for the development of most graphic

the user requirements in applications where the presnntation is 2-dimensional and

dynamic are much more subtle and complex than we had imagined. We found
rather than form 'products’ through which to
human time continuum and the

lity of form options.

ourselves valor ' 4
urselves designing form 'processes

create i . - »
ite pictures. Picture creation takes place in a

rhythm' of visualization is as important as the availabi




ON RESOURCES

As mentioned above one does not need much in the way of a graphics system to write
useful application programs. The SMALLTALK picture manipulation and drawing

primitives are quite sufficient. These include and enable:
1. rectangles, points and grids - SPATIAL GRAMMAR

2. lines of up to seven thicknesses - FORM VOCABULARY
3. text strings - LITERAL IDENTIFICATION

4, turtle delineation - GRAPHIC STATEMENT

For a complete description of this system please refer to the SMALLTALK manual.

ON PROJECT RESULTS

We feel that this project was a success in that we have demonstrated that it is possible
to combine conventional graphic idioms and current computer technology to make it
possible for ordinary (graphically unskilled) people to create articulate graphical
statements. This has been demonstrated by various utilizations of the BLOCK
program within the PARC community involving the creation of block diagrams. The
simple compositional help that is offered by BLOCK greatly enhanced the aesthetic
character of the user diagrams. The piechart program offers a powerful 'machine
tool’ for the person who wants to represent tabular data in visual form without having
to actively engage in the techniques of technical illustration, or in this case, decisions
of label placement. Evidence of SIGN's utility can be found in PARC videotapes and
on many PARC bulletin boards.




ON FUTURE RESEARCH

We have in the scope of this project only scratched the surface of the idiomatic
illustrator concept. There remain many modifications to explore with BLOCK, PIE
and SIGN. For example, can one make the stages in picture specification like
block-out and touch-up more explicit? Thus offering the non-professional user even
more help during the creation of his/her illustration.

There also remain a host of other idioms to explore, such as barcharts, curve graphs,

plans, maps, volumetric representations, etec. ~We believe an understanding of
commonly understood graphic communication idioms in the context of a display-based
interactive computing system will have large payoffs in office information systems of
the future. For such systems (idiomatic illustrators) to be really useful they need to
be integrated with a system that includes text. Research in this area is currently
underway at PARC (Master-maker Project).

Projecting even further into the future, text/graphics systems should allow for the
personalization of graphic programs so that professionals in the fields of graphic

design and illustration can incorporate the computer as an effective medium for visual

communication.
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An Annotated Bibliography of PIE Publications

ira Goldstein and Dan Bobrow
July 28, 1980

General A bstract

PIE is an experimental personal information environment implemented in Smalitalk. PIE uses
a description language to support the interactive development of programs, and to support
the office-related tasks of document preparation, alectronic mail, and database management.
PIE's salient characteristics are:

1. The system employs a network of nodes 1o represent specific facts (personnel
data, appointments, Smalltalk methods), generic information about different kinds of
entitites (constraints, defaults), and procedural knowledge regarding the functions
associated with different entitites (summarizing personnel data, producing specialized

code from abstract descriptions).

o Each node can be assigned several perspectives. A perspective describes a
different aspect of the entity represented by the node, and provides specialized
actions from that point of view.

3. The network is layered. that is. the links between nodes are separated into distil_'lct
sets. This allows alternatives to be expressed regarding the structure of a design
described in the network. It also facilitates cooperative design by separating the
contributions of collaborators into distinct layers.

4. Contracts can be created that monitor several nodes whose descriptions must be

kept consistent. Contractual agreements are expressible as tormal constraints, o to
make the system failsoft, as English text interpretable by the user.
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Descriptions for a Programming Environment’

Ira P. Goldstein and Daniel G. Bobrow
Xerox Palo Alto Research Center
Palo Alto, California 94304, U.S.A

Abstract: PIE is an experimental personal information environment
implemented in Smalltalk that uses a description language to support the
interactive development of programs. PIE contains a network of nodes, each of
which can be assigned several perspectives. Each perspective describes a
different aspect of the program structure represented by the node, and provides
specialized actions from that point of view. Contracts can be created that monitor
nodes describing different parts of a program's description. Contractual
agreements are expressible as formai constraints, or, to make the system failsoft,
as English text interpretable by the user. Contexts and layers are used to
represent alternative designs for programs described in the network. The layered
network database also facilitates cooperative program design by a group, and
coordinated, structured documentation.

Introduction

In most programming environments, there is support for the text editing of program
specifications, and support for building the program in bits and pieces. However, there is
usually no way of linking these interrelated descriptions into a single integrated structure.
Ihe English descriptions of the program, its rationale, general structure, and tradeoffs are
second class citizens at best, kept in separate files, on scraps of paper next to the terminal,
or, for a while, in the back of the implementor's head.

Furthermore, as the software evolves, there is no way of noting the history of changes,
except in some primitive fashion, such as the history list of Interlisp [Teitelman78]. A history
list provides little support for recording the purpose of a change other than supplying a
comment. But such comments are inadequate to describe the rationale for coordinated sets
of changes that are part of some overall plan for modifying a system. Yet recording such
rationales is necessary if a programmer is to be able to come to a system and understand

the basis for its present form.

Developing programs involves the exploration of aiternative designs: But_ most
programming environments provide little support for switching between altet:natwe ‘_:le_s_lgns or
comparing their similarities and differences. They do not allow alter_natwe Fleflnlttons of
procedures and data structures to exist simultaneously in the programming en_wf-:?nment; nor
do they provide a representation for the evolution of a particular set of definitions across

time.
In this paper we argue that by making descriptions first class objects in a programming
environment, one can make life easier for the programmer through the life cycle of a piece

of software. Our argument is based on our experience with PIE, a description-based

programming environment that supports the design, development, and documentation of

Smalltalk programs.

; Published in the Proceedings of First Annual Conference of the American Association for Artificial
Intelligence, August, 1880, pp- 187-194.
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Networks

The PIE environment is based on a network of nodes which describe different types of
entities. We believe such networks provide a better basis for describing systems than files.
Nodes provide a uniform way of describing entities of many sizes. from small pieces such as

a single procedure to much larger conceptual entities. In our programming environment,
nodes are used to describe code in individual methods, classes, categories of classes, and
configurations of the system to do a particular job.  Sharing structures between
configurations is made natural and efficient by sharing regions of the network.

Nodes are also used to describe the specifications for different parts of the system.
The programmer and designer work in the same environment, and the network links
clements of the program to elements of the design and specification. The documentation on
how to use the system is embedded in the network also. Using the network allows multiple
views of the documentation. For example, a primer and a reference manual can share many
of the same nodes while using different organizations suited to their different purposes.

In applying networks to the description of software, we are following a tradition of
employing semantic networks for knowledge representation. Nodes in our network have the
usual characteristics that we have come to expect in a representation language--for example,
defaults, constraints, multiple perspectives, and context-sensitive value assignments.

There is one respect in which the representation machinery developed in PIE is novel: it
is implemented in an object-oriented language. Most representation research has been done
in Lisp. Two advantages derive from this change of soil. The first is that there is a smaller
gap between the primitives of the representation language and the primitives of the
implementation language. Objects are closer to nodes (frames, units) than lists. This
simplifies the implementation and gains some advantages in space and time costs. The

second is that the goal of representing software is simplified. Software is built of objects

whose resemblance to frames makes them natural to describe in a frame-based knowledge

representation.

Perspectives

Attributes of nodes are grouped into perspectives. Each perspective reflects a different
view of the entity represented by the node. For example, one view of a Smalltalk c|a§s
provides a definition of the structure of each instance, specifying the fields it must contain;
another describes a hierarchical organization of the methods of the class; a third specifes
various external methods called from the class; a fourth contains user documentation of the

behavior of the class.

The attribute names of each perspective are local to the perspective. Originally, this
was not the case. Perspectives accessed a common pool of attribute_s attached to the node.
However, this conflicted with an important property that design enwronmer!ts o g i
namely, that different agents can create perspectives independently. Since one agent
cannot know the names chosen by another. we were led to make the name space of each

perspective on a node independent.
vide partial views which are not necessarily independent. For

Perspectives may pro
g ' tive that categorizes the methods of a class and the

example, the organization PErspec
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documentation perspective that describes the public messages of a class are interdependent.
Attached procedures are used to maintain consistency between such perspectives.

Each perspective supplies a set of specialized actions appropriate to its point of view.
For example, the print action of the structure perspective of a class knows how to prettyprint
its fields and class variables, whereas the organization perspective knows how to prettyprint
the methods of the class. These actions are implemented directly through messages
understood by the Smalltalk classes defining the perspective.

Messages understood by perspectives represent one of the advantages obtained from
developing a knowledge representation language within an object-oriented environment. In
most knowledge representation languages, procedures can be attached to attributes.
Messages constitute a generalization: they are attached to the perspective as a whole.
Furthermore, the machinery of the object language allows these messages to be defined
locally for the perspective. Lisp would insist on global functions names.

Contexts and Layers

All values of attributes of a perspective are relative to a context. Context as we use the
term derives from Conniver [SussmanMcDermott72]. When one retrieves the values of
attributes of a node, one does so in a particular context, and only the values assigned in that
context are visible. Therefore it is natural to create alternative contexts in which different
values are stored for attributes in a number of nodes. The user can then examine these
alternative designs, or compare them without leaving the design environment. Since there is
an explicit model of the differences between contexts, PIE can highlight differences between
designs. PIE also provides tools for the user to choose or create appropriate values for

merging two designs.

Design involves more than the consideration of alternatives. It also involves the
incremental development of a single alternative. A context is structured as a sequence of
layers. It is these layers that allow the state of a context to evolve. The assignment of a
value to a property is done in a particular layer. Thus the assertion that a particular
procedure has a certain source code definition is made in a layer. Retrieval from a context
is done by looking up the value of an atiribute, layer by layer. If a value is asserted for the
attribute in the first layer of the context, then this value is returned. If not, the next layer is
examined. This process is repeated until the layers are exhausted.

Extending a context by creating a new layer is an operation that is sometimes done by
the system, and sometimes by the user. The current PIE system adds a layer to a context
the first time the context is modified in a new session. Thus, a user can easily back up to
the state of a design during a previous working session. The user can create layers at will.
This may be done when he or she feels that a given groups of changes should be

coordinated. Typically, the user will group dependent changes in the same layer.

Layers and contexts are themselves nodes in the network. Describing layers in the
network allows the user to build a description of the rationale for the set of coordinated
changes stored in the layer in the same fashion as he builds descriptions for any other node
in the network. Contexts provide a way of grouping the incremental changes, and describing
the rationale for the group as a whole. Describing contexls in the network also allows the
layers of a context to themselves be asserted in a context sensitive fashion (since all
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descriptions in the network are context-sensitive). As a result, super-contexts can be
created that act as big switches for altering designs by altering the layers of many sub-
contexts.

Contracts and Constraints

In any system, there are dependencies between different elements of the system. If one
changes, the other should change in some corresponding way. We employ contracts
between nodes to describe these dependencies. Implementing contracts raises issues
involving 1) the knowledge of which elements are dependent; 2) the way of specifying the
agreement; 3) the method of enforcement of the agreement; 4) the time when the agreement
is to be enforced.

PIE provides a number of different mechanisms for expressing and implementing
contracts. At the implementation level, the user can attach a procedure to any attribute of a
perspective, (see BobrowWinograd77 for a fuller discussion of attached brocedures); this
allows change of one attribute to update corresponding values of others. At a higher level,
one can write simple constraints in the description language (e.g. two attributes should
always have identical values), specifying the dependent attributes. The system creates
attached procedures that maintain the constraint.

There are constraints and contracts which cannot now be expressed in any formal
language. Hence, we want to be able to express that a set of participants are
interdependent, but not be required to give a formal predicate specifying the contract. PIE
allows us to do this. Attached procedures are created for such contracts that notify the user
i any of the participants change, but which do not take any action on their own to maintain
consistency. Text can be attached to such informal contracts that is displayed to the user
when the contract is triggered. This provides a useful inter-programmer means of
communication and preserves a failsoft quality of the environment when formal descriptions
are not available.

Ordinarily such non-formal contracts would be of little interest in artificial intelligence.
They are, after all, outside the comprehension of a reasoning program. However, our thrust
has been to build towards an artificially intelligent system through succcessive stages of
man-machine symbiosis. This approach has the advantage that it allows us to observe
human reasoning in the controlled setting of interacting with the system. Furthermore, it
allows us to investigate a direction generally not taken in Al applications: namely the design
of memory-support rather than reasoning-support systems.

An issue in contract maintenance is deciding when to allow a contract to interrupt the
user or to propagate consistency modifications. We use the closure of a layer as the time
when contracts are checked. The notion is that a layer is intended to contain a set of
consistent values. While the user is working within a layer, the system is generally in an
inconsistent state. Closing a layer is an operation that declares that the layer is complete.
After contracts are checked, a closed layer is immutable. Subsequent changes must be
made in new layers appended to the appropraiate contexts.

Coordinating designs
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So far we have emphasized that aspect of design which consists of a single individual
manipulating alternatives. A complementary facet of the design process involves merging
two partial designs. This task inevitably arises when the design process is undertaken by a
team rather than an individual. To coordinate partial designs, one needs an environment in
which potentially overlapping partial designs can be examined without overwriting one
another. This is accomplished by the convention that different designers place their
contributions in separate layers. Thus, where an overlap occurred, the divergent values for
some common attributes are in distinct layers.

Merging two designs is accomplished by creating a new layer into which are placed the
desired values for attributes as selected from two or more competing contexts. For complex
designs, the merge process is, of course, non-trivial. We do not, and indeed cannot, claim
that PIE eliminates this complexity. What it does provides is a more finely grained
descriptive structure than files in which to manipulate the pieces of the design. Layers
created by a merger have associated descriptions in the network specifying the contexts
participating in the merger and the basis for the merger.

Meta-description

Nodes can be assigned meta-nodes whose purpose is to describe defaults, constraints,
and other information about their object node. Information in the meta-node is used to
resolve ambiguities when a command is sent to a node having multiple perspectives.

One situation in which ambiguity frequently arises is when the PIE interface is employed
by a user to browse through the network. When the user selects a node for inspection, the
interface examines the meta-node to determine which information should be automatically
displayed for the user. By appropriate use of meta-information, we have made the default
display of the PIE browser identical to one used in Smalltalk. (Smalltalk code is organized
into a simple four-level heirarchy, and the Smalltalk browser allows examination and
modification of Smalltalk code using this taxonomy.) As a result, a novice PIE user finds the
environment similar to the standard Smalltalk programming environment which he has
aiready learned.

Simplifying the presentation and manipulation of the layered network underlying the PIE
environment remains an important research goal, if the programming environment supported
by PIE is to be useful as well as powerful. We have found use of a meta-level of
descriptions to guide the presentation of the network to be a powerful device to achieve this
utility.

Conclusion

PIE has been used to describe itself, and to aid in its own development. Specialized
perspectives have been developed to aid in the description of Smallitalk code, and for PIE
perspectives themselves. On-line documentation is integrated into the descriptive network.
The implementors find this network-based approach to developing and documenting
programs superior to the present Smalltalk programming environment. A small number of
other people have begun to use the system.

This paper presents only a sketch of PIE from a single perspective. The PIE description
language is the result of transplanting the ideas of KRL [BobrowWinograd77] and FRL




I. P. Goldstein and D. G. Bobrow Programming Environments

[GoldsteinRoberts77] into the object oriented programming environment of Smalltalk
[KayGoldberg77, Ingalls78]. A more extensive discussion of the system in terms of the
design process can be found in BobrowGoldstein80, and GoldsteinBobrow80a. A view of the
PIE description language as an extension of the object oriented programming metaphor can
be found in GoldsteinBobrow80b. Finally, the use of PIE as a prototype office information
system is described in Goldstein80.

References

Bobrow, D.G. and Goldstein, I.P. "Representing Design Alternatives", Proceedings of the
AlISB Conference, Amsterdam, 1980

Bobrow, D.G. and Winograd, T. "An overview of KRL, a knowledge representation
language", Cognitive Science 1, 1 1977

Goldstein, I.P. "PIE: A network-based personal information environment", Proceedings of the
Office Semantics Workshop, Chatham, Mass.,, June, 1980.

Goldstein, I.P. and Bobrow, D.G., "A layered approach to software design”, Xerox Palo Alto
Research Center CSL-80-5. 1980a

Goldstein, I.LP. and Bobrow, D.G., "Extending Object Oriented Programming in Smalltalk",
Proceedings of the Lisp Conference. Stanford University, 1980b

Goldstein, LP. and Roberts, R.B. "NUDGE, A knowledge-based scheduling program”,
Proceedings of the Fifth International Joint Conference on Artificial Intelligence, Cambridge:

1977, 257-263.

Ingalls, Daniel H., "The Smalltalk-76 Programming System: Design and Implementation,”
Conference Record of the Fifth Annual ACM Symposium on Principles of Programming
Languages, Tucson, Arizona, January 1978, pp 9-16.

Kay, A. and Goldberg, A. "Personal Dynamic Media" IEEE Computer, March, 1977.

Sussman, G., & McDermott, D. "From PLANNER to CONNIVER -- A genetic approach". Fall
loint Computer Conference. Montvale, N. J.: AFIPS Press, 1972.

Teitelman, W., The Interlisp Manual, Xerox Palo Alto Research Center, 1978







Goldstein and Bobrow Extending Object Orienled Proegramming

Extending Object Oriented Programming in Smalltalk!

Ira P. Goldstein and Daniel G. Bobrow
Xerox Palo Alto Research Center

Abstract:

Smalltalk is an object oriented programming language with behavior invoked by
passing messages between objects. Objects with similar behavior are grouped
into classes. These classes form a hierarchy. When an object receives a
message, the class or one of its superclasses provides the corresponding method
to be executed. We have built an experimental Personal Information Environment
(PIE) in Smalltalk that extends this paradigm in several ways. A PIE object, called
a node, can have multiple perspectives, each of which provides independent
specialized behaviors for the object as a whole, thus providing multiple
inheritance for nodes. Nodes have metadescription to guide viewing of the
objects during browsing, provide default values, consirain the values of
attributes, and define procedures to be run when values are sought or set. All
nodes have unique names which allow objects to migrate between users and
machines. Finally attribute lookup for nodes is confext sensitive, thereby
allowing alternative descriptions to be created and manipulated.

Object oriented programming is a powerful computational framework for many applications,
and Smalltalk [Kay72] is a good example of a language that embodies this framework.
Smalltalk is especially excellent for simulation, as one would expect from the fact that
Simula [Dahl68] is part of its intellectual genealogy. Objects can represent the participants
in a simulation; messages can represent their interactions.  However, the 1976
implementation of Smalltalk [Ingalls76] lacks a number of capabilities that we believe can
extend its power considerably, especially for applications (including simulation) that occur
in the context of an overall design process. These capabilities arise from the assignment of
different kinds of description to objects.

(1) multiple perspectives: the assignment of more than one point of view that allows
inheritance of behavior from independent superclasses.

(2) metadescription: the assignment of constraints to attributes that allows the
system to check new values and propagate their intended effects.

(3) identification: the assignment of identifers, unique across an entire comp.uting
community that allow multiple users to manipulate a common set of objects.

ent of a situation marker to values that

(4) context sensitive description: the assignment of :
within a common workspace.

allows alternative descriptions to coexist

Our overall goal is to crossbreed Smalltalk with recent Al representation languages in order
to obtain a hybrid that exhibits the strengths of both lineages. We have pursued this
crossbreeding with the help and cooperation of Smalitalk’s originators, the Xerox PARC

Learning Research Group.

080, Palo Alto, Cal., pp. 75-81.

i Published in the Proceedings of the 1980 Lisp Conference, Aug. 24-27,1
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This paper first reviews Smalltalk, then discusses our implementation of each of the above
capabilities within PIE, a Smalitalk system for representing and manipulating designs. We
then describe our experience with PIE applied to software development and technical
writing. Our conclusion is that the resulting hybrid is a viable offspring for exploring design
problems.

Current Smalltalk

Smalltalk-76 is a programming language based on three metaphors: simulation,
communication and classification. An atomic element of the language, termed an object,
simulates a computer. It has internal state and responds to a set of instructions termed
messages. An object responds to a message in one or all of the following ways: it changes
its internal state; it transmits messages to other objects; it reads or writes an 1/O channel
such as the display. A sender need have no knowledge of the internal structure of a
receiver: it need only know the receiver's message set. For example, there exist display
objects such as rectangles that store their position and extent, and respond to messages to
move, show and erase themselves.

Each object is associated with a single class. The objects associated with a given class are
called its instances. The class owns a dictionary that defines methods for a set of
messages. When a message is sent to an instance, that instance in turn requests the
appropriate method from its class. The method returned by the class is then applied to the
arguments of the message. Smalltalk has predefined classes for Rectangle and BitRect, the
latter being a class that includes a state variable for storing the display state of the points
enclosed by the rectangle. (Rectangle and BitRect define behavior for classes that interact

with a BitMap display).

Classes are hierarchical. A superclass is used to describe the behavior common to several
classes. Given superclasses, the protocol for retrieving a method is extended as follows:
when a message is sent to an instance, the instance asks its class for the method
associated with the message. If the class knows this method directly, it supplies it. If it
does not, the class asks its superclass. If the superclass responds with a method, this
method is passed back to the object. For example, BitRect is defined as a subclass of
Rectangle. A method like blink is defined only in Rectangle since its definition, a repetitive
invocation of show and erase, applies to instances of both classes. When blink is sent to
an instance of BitRect, BitRect finds no associated method, and hence passes the buck to

Rectangle, which has the desired definition.

The root of the class hierarchy tree is the class Object. If a request for a method

associated with a message comes up to Object, and it does not know the definition of the

message, an error occurs.
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Although one class may have a great deal in common with the behavior of another, they
may still differ on some methods. For example, the show method of BitRect differs from
the show method of Rectangle in that BitRect displays the contents of the rectangle while
Rectangle only displays the outline. The desired behavior is achieved by redefining the
show method in the subclass. Since method retrieval is bottom up, the redefinition in
BitRect will dominate the definition in Rectangle for instances of BitRect, yet be invisible to
instances of Rectangle.

In addition to a method dictionary, each class also owns a list of variable names. The
state of an instance is defined in terms of values for variables with these names as well as
values for any variables whose names appear in the superclass chain. For example,
instances of BitRect store state for contents, the instance variable defined in BitRect, as
well as origin and extent, the instance variables defined in the superclass Rectangle. When
any method of an instance is activated by passing it a message, that activation can read
and change the values of these instance variables.

A message consists of selectors and arguments.  For example, the method with selector
move: has an argument named distance. A particular call to this method might look like
rect1 move: 3, where rect1 is an instance of class Rectangle and the argument distance
is bound to 3.

The three classes, Object, BitRect, and Rectangle, appear in Figure 1 with their associated
instance variables and some of their messages. The syntax employed in this and other
figures of this article is for didactic purposes only, and does not correspond to Smalltalk
syntax for defining classes.

The class Object with instance variables {} and methods {is: class, ...}

The class Rectangle, a subclass of Object, with instance variables {origin, extent}
and methods {show, erase, move: distance, blink,

The class BitRect, a subclass of Rectangle, with instance variables
{contents} and methods {show, erase, ...}

Figure 1. A class hierarchy in Smalltalk.
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Multiple Inheritance

Smalltalk-76 does not support multiple inheritance. Classes are organized into a strict
hierarchy and an instance can be associated with only one class, at a single position in the
hierarchy. However, there are situations in which one desires greater descriptive power.
For example, consider an environment for hardware design. Objects in this environment
represent circuit elements -- resistors, chips, wires, etc. There are at least two points of
view from which one may wish to examine these objects. The first is as circuit elements
with associated electrical behavior; the second is as display objects that know how to draw
pictures of themselves. To choose one point of view as primary, i.e., as the class of the
object, and copy methods of the other points of view into this class, is clearly
unsatisfactory. Equally unsatisfactory is making one class, say DisplayObject, a subclass of
another, say CircuitElement. Such subclassing would be erroneous for other display
objects that are not circuit elements. One would really like to be able to have multiple
superclasses.

We have explored two designs for multiple inheritance. Both are based on the use of class
Node, which defines the basic representational unit. An instance of Node represents some
entity: a circuit part, a Smalltalk method, a paragraph of a document. Multiple inheritance
is achieved by assigning perspectives to nodes. A perspective is an instance of a class that
represents the node from a particular point of view. For example, a node representing a
part of a displayed circuit design might have a CircuitElement perspective and a
DisplayObject perspective. Class Node defines an instance variable perspectives that stores
each node's list of perspectives.

In our first design for multiple inheritance, the state of the object was represented entirely
in the node. Perspective classes carried no state: they supplied method definitions only.
This required that perspectives have backpointers to their node, since their methods
manipulated the state variables stored directly in this node.

Smalltalk-76 constrains the number of named state variables to be fixed when the class is
created. This is an efficiency constraint: it allows compiled code to reference instance
variables by their position in a vector of fixed length rather than by their name. However, in
our scheme, we prefer that it be possible to assert or delete perspectives at any time.
Hence, an instance of Node cannot know all of its state variables at creation time. Our
solution was to give class Node a second state variable whose value was a dictionary keyed
by variable names. All variable access went through this dictionary and the dictionary
could be modified at run time. Flexibility was obtained at increased computational cost.

Figure 2 shows a node representing a resistor in a circuit simulation.
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R17, an instance of Node, with

state = {ohms = 100; connectiont = wire6; connection2 = wire8;
location = (100,100))

and perspectives = {CircuitElement; DisplayObject}

Figure 2. A Node with multiple perspectives and a common set of state variables.

Our first design for multiple inheritance presumed that a state variable such as ohms had a
meaning independent of the individual perspectives. Hence, it was sensible for it to be
owned by the node itself. All perspectives would reference this single variable when
referring to resistance. This proved adequate so long as the system designer knew all of
the perspectives that might be associated with a given node, and could ensure this
uniformity of intended reference.

When we extended PIE from a single user to a multiple user system, we encountered the

name, although they had different purposes in mind for the variable. For example, one user
might define a perspective InventoryPart that used the variable /ocation to point to the node
representing the bin containing the part, while another user might define a perspective
DisplayObject that used a variable of the same name to refer to the location of the part on
the screen. The result would be an unintentional clash. In our first implementation, both
perspectives would be erroneously referencing the same variable in the common pool of

node variables.

Our solution was to eliminate the central database owned by the node in favor of local
databases owned by each perspective. This new design achieved privacy at the cost of
additional space. Furthermore, it required the user to supply functions for coordinating
state variables in different perspectives that represented the same data. However, this
seemed unavoidable if we were to open the process of perspective creation to multiple
users. Figure 3 illustrates our representation for R17 using this second design. There is no

longer a common pool of state variables.
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R17, an instance of Node, with perspectives =
{A CircuitElement with ohms = 100, connection1i = wire6, and

connection2 = wire8;
A DisplayObject with flocation = (100, 100);
An InventoryPart with location = bin101}.

Figure 3. A node with siate distributed among the perspectives.

In both implementations, a message sent to a node consists of the message pattern and the
class of the intended perspective. Thus, to obtain the resistance, one would execute the
following statement: (R17 as: Resistor) ohms. The as: message to R17 causes R17 to
return the perspective of the desired class, in this case perspective 1. Perspective 1 is then

sent the message ohms.

An alternative to passing the perspective to the node is to require that the node poll its
perspectives for any that understand the message. This approach has the advantage that
the source code is more concise, but introduces the necessity to resolve cases in which
more than one perspective responds to the message. This resolution could be based on a
predefined ordering of the perspectives. We have not adopted this approach for two
reasons: (1) In most cases, we have found that the sender knows the point of view that the
recipient should employ to understand the message. (2) There is generally no good
criterion for declaring that one perspective should dominate another. In those few cases
where the intended perspective is not known, we have adopted the procedure that the node
polls its perspectives for any that understand the message. If an ambiguity exists, a user

interrupt occurs.

The use of perspectives for multiple inheritance is not new. FRL [GoldsteinRoberts77] had
a scheme very much like our first implementation: KRL [BobrowWinograd77] has muitiple
perspectives like those of our second implementation. Both of these implementations were
based on the assumption that one wants to make it easy to add a new perspective to an
existing instance at any time. We have adopted this assumption in PIE.

An alternative approach is available if one allows multiple inheritance for classes, but not

for instances; that is, an instance can be associated with one, and only one, class but a

class can have more than one superclass. In this case, it is only in the construction of a

class that clashes must be resolved between variable names occurring in more than one
superclass. This is the approach employed by Thinglab [Borning77], a muitiple inheritance,

constraint satisfaction system.
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To summarize, perspectives differ from ordinary Smalltalk objects in four respects:

* They expect to be part of a closely interacting system consisting of other
perspectives and a central node; hence they come with a backpointer to their node.

* They share some of their state with other perspectives in this system, but maintain a
private variable pool for their own purposes.

* They are intended to represent a point of view on an entity, rather than the entity
itself.

* They can be attached at any time to a node. It is not necessary to assign all
perspectives when the node is created.

Metadescription

Parspectives express different descriptions of the entity represented by the node. Changing
these descriptions can lead to inconsistencies. We handle this problem by providing the
node with various kinds of information about itself. We term this information
meladescription to distinguish it from the primary description implicit in the node regarding
the entity in the world that it represents. For a general discussion of metadescription see
[BobrowWinograd77].

The first kind of metadescription we supply is knowledge of the expected type of an
attribute. This information is supplied in a constraint dictionary. For each attribute, the
constraint dictionary supplies an expression that describes the class of the expected value.
For example, a value for the ohms attribute of the resistor perspective is expected to be of
class Integer, while the value of connection1 is expected to be a node with an associated
Wire perspective. This mechanism takes care of simple unary constraints.

Secondly, we supply procedures that are triggered by the retrieval or storage of a value.
These procedures typically serve to maintain consistency between dependent attributes.
For example, if a change is made by the user in the connectivity of the displayed schematic,
then procedures attached to the instance variables being altered can update the circuit
element perspectives to correspond to the new display linkages. Similarly, attached
procedures can update the inventory perspective as parts are added or deleted from the

design.

To take care of less formal cases in which only the user knows what to do, we have
dependency notification. A dependency list can be added to the metadescriptions of a
node. The user supplies this list for a node or attribute, but does not inform the system of
what actions to take if a change is made. Consequently, when the node is altered, the user
is reminded of these dependencies by attached procedur"es. but no automatic actions are
taken. For example, the user might place a dependency link between a capacitor and an
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inductor to serve as a reminder that the two elements are intended to operate together as a
tuned circuit.

A more powerful dependency model replaces the dependency list with a pointer to a node
with a contract perspective. The contract perspective contains a list of participants and, at
a minimum, an English statement of the contract. We plan to formalize this contract
progressively. For the electrical world, contracts might include the mathematical formulae
that describe the circuit. For the programming domain, contracts would include the
expected type of a variable. See [Borning77] for a general study of constraints as the basis
of a Smalltalk system and [SussmanStallman77] for a more detailed study of dependency
relations in circuits.

Unique identification

The object metaphor suggests that each user of Smalltalk has his or her own unique set of
objects. | run on my computer; you on yours. But the description metaphor suggests that
you and | may well be working on the same set of descriptions. Hence, we need a way to
separate my contributions from yours but, at the same time, to clearly identify that they are

being generated to describe the same topic. To solve the first problem, we employ
machinery to separate descriptions into contexts. This is discussed in the next section. To
solve the second problem, we employ unique identifiers.

Consider the following scenario: | create a set of nodes representing a design and deliver
these nodes to your environment for subsequent development. To accomplish this delivery,
| generate a set of descriptions that can be used to recreate a set of Smalltalk objects with
the same state. This was our first implementation.

However, the following difficulty arises with this scheme. You modify and supplement these
nodes, and then generate a new set of descriptions. But when | reread them into my
environment, how can | determine which of these descriptions should be added to existing
nodes, rather than used to create a new collection of nodes?

Recognizing that two sets of descriptions describe the same intended object is a difficult
problem. However, in this special case, the problem can be solved easily. A node is
assigned a unique identifier when created. This identifier travels to the consumer when
descriptions are generated. The consumer checks to see if a node already exists with the
identifer, If so, the descriptions of this ncde are appended to those already there. If no
such node exists, a new node with this unique identifier is created.

The computational cost of this scheme is not excessive, since the consuming environment
can maintain a table that associates identifiers with existing nodes within that environment.
Hence, in consuming a set of descriptions, it is necessary only to check this table to find
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the preexisting node, if any. This is similar to the way Lisp atoms, or Smalltalk unique
identifiers are implemented, with the important difference that the identifers are generated
by the machine in such a way that two users can never create identical identifers. In fact,
the identifiers consist of an encoding of the time and machine of creation.

Contextualization

From a design standpoint, it is important that alternative descriptions be able to coexist in
the same environment at one time. Alternatives arise from a designer exploring different
plans to achieve his goals; or from the interactions of several designers on a joint project.
For example, one designer may propose a particular circuit to realize the specifications of a
module; while another designer may propose an entirely different circuit to accomplish the
same goals. In a design environment, descriptions are sensitive to who has created them
and for what purpose. A user must be able to examine and manipulate such descriptions
from different points of view.

To implement context sensitive descriptions, we have altered the behavior of the
dictionaries that store the attribute/value pairs of perspectives. In Smalltalk-786, a dictionary
is a list of attributes and an associated list of values. We have replaced the value
associated with the attribute with another level of dictionary. This level of dictionary
associates a Jayer marker with different values. The layer marker is a tag for the situation
in which the value was supplied. Figure 4 shows a partial view of a layer structured
description of R17.

R17, an instance of Node, with perspectives =

{A CircuitElement with ohms = [<layer1 100>], connection1 = [Klayer1
wire6>], and connection2 = [<layer1 wire8> <layer2 wire13];

A DisplayObject with location = [<layer1 (100,100)> <layer2 (300, 300)]}

Figure 4. A partial view of the node R17 with layers indicated. Layer1 stores the
original design. Layer2 stores a change in the display location of the resistor and
an associated change in the circuit connectivity.

Storage and retrieval is therefore situation dependent. Storage is done with respect to a
layer.  Retrieval is done with respect to a sequence of layers. The retrieval algorithm
checks the layers in order for a value, returning the first value in the layer sequence. This
layer sequence is called a context. These notions of layer and context are derived fn?m
Conniver [Sussman72]. There are minor differences in the implementation, and major




~;~—‘

10
Goldstein and Bobrow Extending Object Oriented Programming

differences in the use of the mechanism. This is discussed in more detail in
[BobrowGoldstein80].

Values stored in a layer represent a coordinated set of values. Suppose the connectivity of
R17 in a circuit is changed as a display object. An attached procedure (or the user) might
make the corresponding change in the circuit simulation. These two changes are meant to
be coordinated, and are therefore placed in the same layer. By "coordinated", we mean
that one sees either both changes or neither in any view of the circuit. All retrievals in a
context will get either both these values (if the layer is included in the context) or neither.

The flexibility to represent alternative descriptions in layers comes at the cost of increased
complexity. We have designed several display interfaces to explore different mechanisms
for simplifying the presentation of this inherently more complex database. For example, one
interface provides a way for a user to view two different contexts simultaneously with
differences between the two highlighted. We have also explored the use of metadescription
to default some of the contextual choices that would otherwise fall on the user, e.g.,
selecting the default layer for assertions and the default context for retrieval. Finally, we
have supplied commands that suppress the context machinery. The user stores and
retrieves state in a context free fashion. This is faster, occupies less space, and has no
cognitive overhead for remembering alternative contexts. But the user no longer can
explore alternatives or separate his contributions from those of a codesigner. All three of
these strategies have proved useful in some circumstances, but it remains an important
research goal to make the context machinery available to the user in a convenient fashion.

Use of PIE

The PIE system provides an environment for doing software development. Perspectives are
provided for representing Smalltalk classes and methods. A user of PIE is therefore able to
build a collection of nodes that represent a software system. Unique identifers and
contexts allow users to engage in cooperative design and to explore alternatives. When a
design is complete, it can be installed in Smalltalk by generating executable code from the
node descriptions. Other designs described in separate contexts remain unaffected by this
installation. Metadescription is used to express type knowledge regarding method variables,
thereby obtaining the strengths of a typed language while still preserving the underlying
fiexibility of an untyped interpreter.

The utility of this descriptive base for developing software is illustrated by the following
SXperiments: (1) We have successfully redesigned PIE's user interface within PIE.
Ordinarily, such redesigns would clobber the coding environment itself, but the separation
between description and installed code prevents such conflict. (2) We are able to describe
@ method as belonging to multiple classes, despite the fact that the Smalltalk kernel does
not allow this. At the descriptive level, a node representing a method may be linked to
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more than one class. Within Smalitalk itself, a method is local to a class. For compatibility,
all that is necessary is that installation of the description involves placing copies of the
compiled code in each class. However, at the descriptive level, the designer can treat the
method as a single integral entity; editing it affects its occurrence in all of its classes. (3)
Multiple perspectives and metadescription support improved browsing and prettyprinting of
code, thereby improving the user's ability to examine his designs. (4) Unique identifiers and
contexts provide a mechanism for generating an incremental system release. The new
system is created by transmitting a layer with the changes to a consumer and then asking
the consumer to do a reinstallation. Separating release changes into layers allows the
consumer to examine the alterations of the release and exercise some choice regarding
which parts he wishes to accept, before performing the reinstallation.

The same machinery has also been used to support a document design environment.
Nodes are used to represent the structure of the document; i.e., the document is a tree of
nodes whose root represents the document as a whole and whose terminals are the
individual paragraphs. The nonterminals of the tree are chapters, sections and sub-
sections. Again, contexts and identifers facilitate coauthoring and exploring alternative
organizations, two capabilities not well supported by present text editing environments.
Metadescription can be used to express formatting constraints. Multiple perspectives allow
a paper lo appear as either an abstract, a citation, a bibliographic reference, the outline for
a lecture, or a formatted document, depending on the desired point of view.

The PIE system code occupies approximately 200 kilobytes and 100 pages of listing in a
Smalitalk system of approximately 1 megabyte and 1000 pages of listing. Storage space for
nodes grows as layers increase, and previous or alternative values for attributes of nodes
are stored. Retrieval time increases with the number of layers in the retrieval context.
However, neither price has proved exorbitant since PIE has been used largely as an
interactive design tool. In this application, time is primarily limited by the responses of the
user, i.e. there is more thinking than computing. Space is released when the design is
complete and an installed package of code is created.

Conclusion

We conclude by reconsidering Smalltalk's underlying metaphors of simulation,
communication and classification in the light of our addition of descriptive machinery to the
language.

In Smalltalk-76, objects simulate computers and therefore have a fixed identity. They use a
predetermined set of state variables and respond to a fixed set of messages. In PIE, nodes
have a flexible set of state variables which can grow or shrink as the attributes of individual
Perspectives are changed. Furthermore, the message set can change as new perspectives
are supplied or old perspectives deleted. Nodes are more analogous to an evolving
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biological species than to an inanimate computer. At any moment in time, a member of the
species has a fixed anatomy and physiology. Over time, however, both the anatomy and
physiology evolve.

In Smalltalk-76, objects have an unambiguous message semantics. A message is sent to an
object and that object, in turn, requests the appropriate method from its class. In PIE,
nodes have multiple perspectives and more than one perspective may supply a method for
a given message. The user must specify the perspective, or allow the node to decide.
Communication is still an applicable metaphor, but the complexity of communication has
increased as the underlying objects have moved from a monolithic to a pluralistic society.

In Smalltalk-76, objects participate in a simple, hierarchical classification scheme. In PIE,
nodes are the locus of a set of descriptions and behaviors, each generated from a different
point of view. Classification, with its implication of simple hierarchy, has been replaced by
description, with its more open-ended connotation.

Thus, the evolution from Smalltalk to PIE has produced a change in the behavior of the
basic computing element. In Smalltalk, objects have a fixed structure and engage in
communication based on a simple classification scheme. In PIE, nodes have an evolving
structure and engage in a more complex communication based on the use of descriptions.
We believe that this evolution yields a more flexible environment for exploring design
problems.
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Representing Design Alternatives'

Daniel G. Bobrow and Ira P. Goldstein
Xerox Palo Alto Research Center
Palo Alto, California 94304, U.S.A

Abstract:

Artificial intelligence systems are complex designed artifacts. Techniques
used in Al systems to describe structures and to represent alternatives can be
used to support the design of the systems themselves. PIE is an experimental
personal information environment which provides users with descriptive
structures for programs and documents. In PIE, alternative designs for
programs and documents are simultaneously viewable in the system through
the use of a context structured database. This short paper gives an overview
of how the use of these facilities improves the design environment for builders
of software systems. '

Introduction

A major activity in artificial intelligence research is the design of complex systems. Yet
most software environments do not support this activity well. They do not allow within
the system description of different properties of a design nor the flexible examination of
alternative designs. All designers create alternative solutions, develop them to various
degrees, compare their properties, then choose among them. Yet most software
environments do not allow alternative definitions of procedures and data structures to
exist simultaneously; nor do they provide a representation for the evolution of a particular
set of definitions across time. It is our hypothesis that a context-structured database can
substantially improve the programmer's ability to manage the evolution of his software

designs.

Present computing environments support the creation of alternative designs only with file
services. Typically users record significant alternatives in files of different names; the
evolution of a given alternative is recorded in files of the same name with different
version numbers. We contend that this use of files provides both an impoverished
structure as well as an inflexible one. The poverty is a result of the fact that file namas
are simply a limited length sequence of characters, hardly an adequate scheme to
describe the purpose and contents of a file, and its relation to other files. It can be an
adequate reminder to the originater of the name, but is often opaque to a new reader.
The rigidity is a reflection of the fact that one typically cannot use parts of files as paft of
a new composite design, except by tedious text editing. Flnallg‘(. the rjnost serious
limitation is that files are "off-line" in the sense that the alternative designs are not
stored within the computing environment in a form that can be easily manipulated by the
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programmer. Although Interlisp [Teitelman, 78] provides some facilities for manipulating
pieces of a file (e.g. individual function definitions), it still suffers from the "off-line"
limitation.

To ameliorate this software bottleneck, we have constructed a computing environment in
which "on-line" descriptions of alternative software designs can be readily created and
manipulated. We use a context-structured description-centered database to describe
code. Such databases have been explored in artificial intelligence research for over a
decade as a mechanism to represent alternative world views. [e.g. Hewitt, 71; Sussman
& McDermott, 72].

Our application of this machinery is novel in several respects. (1) Previous applications
have focussed on the use of such databases by mechanical problem solvers. We are
exploring the use of such databases in a mixed-initiative fashion with the user primarily
responsible for their creation and maintenance. (2) Previous applications have always
demanded a uniform overhead in space and time for adopting the context machinery.
We are exploring configurations for a design environment that allow the programmer to
trade flexibility for efficiency, decreasing the system's investment in tracking the
evolution of particular parts of a design at the price of not being able to represent
alternatives simultaneously in primary memory. Thus, employing the design environment
is not an all or nothing choice for the user. (3) Previous applications have been to
problems of limited complexity. In our application of context structured databases to
software design, we are exploring their utility in a world several orders of magnitude

more complex.

To understand the pros and cons of context structured environments for software design,
we have implemented a prototype environment and conducted several experiments. The
environment is called PIE, an acronym for personal information environment, PIE allows
the user to build context sensitive descriptions of code, documents, and, indeed, any
object for which a machine representation exists. PIE has been employed (1) to allow a
programmer to create alternative software designs, examine their properties, then choose
one as the production version, (2) to coordinate the interactive design of two
programmers, and (3) to coordinate the documentation and definitions of an evolving

package of code.

The Smalltalk environment

To describe PIE further, we must first introduce Smalitalk [Ingalls, 78; Kay, 74], the
programming environment in which it has been implemented. Smalltalk is an object-
oriented programming language. (See Dahl & Nygaard [66] on Simula and Hewitt et al

[73] on "actors" for related work on such programming languages). Behavior arises
Each object is, in essence, a

from the transmission of messages between objects.
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simulation of a computer. It can respond to some number of messages and it maintains
its own state between message invocations.

The message set of an object is specified by Smalltalk's class structure. Each object is
an instance of a class. When a message is sent to the object, it asks its class for the
method associated with that message. The class either contains the definition directly,
or if not, passes the request to its superclass. For the object to understand the
message. its definition must occur somewhere in this superclass chain. Thus, objects of
the same class are analogous to computer products of the same model.

Figure 1 shows a fragment of the definition of a Smalltalk class for Spaceship. The
fragment shown indicates that instances of Spaceship understand messages that
simulate motion and collision and that each instance carries its own private state
regarding its position and velocity.

Class new title: Spaceship
superClass: Object "class Object is the root of the superClass hierarchy."
declare: ’allSpaceships’ "a class variable --shared by all Instances"
fields: 'position velocity’ "instance variables - each instance has private versions of these"

Moving “"methods are divided into 'protccols’ -- this one is called Moving"

accelerate: dv "dv is the argument of the method with selector accelerate”
[velocity«velocity +dv]
move [position+position + velocity. “points understand the message +"
self crashes => ‘“self refers to this Instance. => indicates a conditional expression”
[t self explode] “if condition is true, move returns with value of self explode”
self display. "done if condition is faise - display is & message this instance understands "]

Collisions “another protocol”

crashes | ship “ship is a local variable for the activiation”
“This assumes that all ships are of unit size, and collide only when at the same point"”
[for: ship from: allSpaceships do: [ ship collideAt: position =>[ttrue]].tfalse]

collideAt: place
"a method to test If | collide with another object at place.”

[position = place =>[ttrue] tfalse]
Figure 1: Partial Definition of a Smalltalk class

We chose Smalltalk over Lisp, the usual vehicle for Al research, because Smalltalk has a
superior set of interactive display facilities. DLISP [Teitelman, 77] provides enough
capabilites we believe, but was not available on the same fast hardware. These
interactive display facilities were of critical importance to aliow the functionality of the
design environment to be delivered to a user. No matter how powerful the design tools,
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no experiments would have been possible with an interface based on an inadequate
communication channel. Using Smalltalk, however, has required that we reimplement
machinery common to such Al languages as FRL [Goldstein & Roberts, 77] and KRL
[Bobrow et al, 77]. This has proved straightforward because the object oriented
structure of Smalltalk is congenial to the frame-based viewpoint of a Al representation
languages.

The PIE environment

To describe Smalltalk code, we created a class of Smalltalk objects called nodes. Nodes
are analogous to KRL units, or FRL frames: they consist of a set of attribute value pairs
with support for attached procedures, the use of defaults, meta-descriptions and

inheritance.

PIE provides convenient ways of viewing relationships between nodes, and viewing and
changing the properties of nodes. One can automatically create nodes which describe
existing pieces of the Smalitalk system, and conversely, make the system congruent with
a description of it. Node23 in Figure 2 is a description that might have been been
computed from one method of the Smalltalkk code shown in Figure 1.

Node23

class Node17 "Nodel17 is the node describing the class Spaceship”
selector ‘crashes “This is a unique string -- like a Lisp Atom"
localVariables ('ship) “This is a set of unique strings"”
variablesUsed (‘'ship 'allSpaceships ’position 'mySize)

methodBody “This is an editable paragraph"

[for: ship from: allSpaceships
do: [ ship collideAt: position =>[ttrue]].tfalse]

comment i ]
‘This assumes that all ships are of unit size, and collide

only when at the same point’

Figure 2. A node describing the method for crashes

In PIE, changing the values of any of these attributes does not automatically change the
object being described by the node. The node describes an intended object in the
system, not necessarily the version that exists in the system. This is worth emphasizing
as one of the principles characterizing our point of view towards the design process.

% The Description Principle: In a system there should exist a descriptive
level at which objects can be described without actually affecting the objects

themselves.




D. G. Bobrow & I. P. Goldstein Representing Design Alternatives AlSB-80

Representing allernative designs

Using node structure, there are two distinct ways to have alternative descriptions of the
same object: coreference and context. We have explored both, with our current
preference being for the use of contexts.

Coreference uses separate nodes to describe separate alternatives. In Figure 3, Node25
is a description of an alternative version of crashes. The intended identity of the
Node23 and Mode25 (they are both are describing the same object) is made explicit
with the coreferentNodes attribute.

Node25
class Node18 "Node18 is the node describing the class Spaceship which differs

from Nodei7 in having an additional instance variable -- mySize"
selector ’'crashes
localVariables ('ship)
variablesUsed ('ship 'allSpaceships 'position 'mySize)
methodBody "a different method body"
[for: ship from: allSpaceships
do: [ ship collideAt: position of: mySize =>[ttrue]].tfalse]
comment 'Uses mySize for each ship to determine overlap’
coreferentNodes (Node23)

Figure 3. An alternative method forcrashes

However, coreference has certain difficulties. The first is that it does not represent the
manner in which two descriptions may differ on some attributes but otherwise be
identical. The second is that the coordination of the choice of Node23 vs. Node25 and
other choices in the system for consistency is not expressed. For this reason we have
chosen to explore another way of expressing alternatives.

In this second method, all descriptions (values of attributes) of any node are relative to a
context. Context as we use the term extends the notion of context as used in Conniver
[Sussman & McDermott, 72], and has certain similarities to the vistas of partitioned

semantic nets [Hendrix, 75].

* The Context Principle: All attribute-values in the system are relative to a
context, and alternatives in a system are expressed by alternative contexts.

When one retrieves the values of attributes of a node, one does so in a particular
context, and only the values assigned in that context are visible.




D. G. Bobrow & I. P. Goldstein Representing Design Alternatives AISB-80

Incremental design

Design involves more than the consideration of alternatives. It also involves the
incremental development of a single alternative. Every programmer is aware that
software has a life cycle: following its birth, it undergoes progressive refinement in
response to changing external requirements. PIE supports the incremental modification
of a design by providing a fine structure to contexts that we have not, as yet, discussed.

A context is structured as a sequence of layers. It is these layers that allow the state of
a context to evolve. The assignment of a value to a property is done in a particular
layer., Thus the assertion that a particular procedure has a certain source code
definition is made in a layer. Retrieval from a context is done by looking up the value of
an attribute, layer by layer. If a value is asserted for the attribute in the first layer of the
context, then this value is returned. If not, the next layer is examined. This process is
repeated until the layers are exhausted.

Figure 4 shows a layer C containing some coordinated changes to the spaceship class of
Figure 1, This layer contains those changes necessary to allow the class to use size
information in determining collisions. In a context which contained this layer dominating
those containing the information implicit in Figure 1, the changes would be visible.
Those attribute-values such as the superclass of Spaceship that are not contained in
layer C would be found in less dominant layers.

Node17 “the node for the class Spaceship”
fields: ('position 'velocity 'mySize) "a change in a declaration"
methods (... Node23 Node27 ...)

Node23 "the node for the method crashes™
methodBody
[for: ship from: allSpaceships
do: [ ship collideAt: position of: mySize =>[ttrue]].tfalse]

Node27 “the node for the method that tests for a collision™
selector 'collideAtof:

methodBody y ~ _ !
[(position + mySize>place-size)and:(position-mySize<place + size) = >[ttrue]

tfalse]

Figure 4. Layer C, containing coordinated changes to use mySize

Figure 5 shows several spaceship nodes in which the values of attributes have not been

filtered by a context sensitive lookup. Instead, we see the underlying data structure,

which is an association list of layers and values. Layer B is the base layer in which all
the nodes were presumed to have been originally defined for this example.
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Node17 “the node for the class Spaceship”
fields: LayerB ('position 'velocity)
LayerC ('position 'velocity ‘'mySize)
Node23 ‘“the node for the method crashes”
methodBody
LayerB
[for: ship from: allSpaceships
do: [ ship collideAt: position =>[ttrue]].tfalse]

LayerC
[for: ship from: allSpaceships
do: [ ship collideAt: position of: mySize = >[ttrue]].tfalse]

Figure 5. An unlayered view of node structure

Extending a context by creating a new layer is an operation that is sometimes done by
the system, and sometimes by the user. The current PIE system adds a layer to a
context each time the context is modified in a new session. Thus, a user can easily back
up to the state of a design during a previous working session. The user can create
layers at will. This may be done when he or she feels that a given groups of changes
should be coordinated. Typically, the user will group dependent changes in the same

layer.,

Given the existence of layers, a complex design developed over many stages can be
summarized into a single new layer. The old layers, reflecting past choices, can then be
deleted. Thus, the designer, if he wishes, can compress the past, achieving a more
compact representation at the price of no longer representing the dynamics of the

design.

Coordinating designs

So far we have emphasized that aspect of design which consists of a single individual
manipulating alternatives. A complementary facet of the design process involves
merging two partial designs. This task inevitably arises when the design process is
undertaken by a team rather than an individual. To coordinate partial designs, one
needs an environment with these properties: (1) non-interference. Two designs may
overlap. It must be possible to examine the overlap without the designs overwriting one
another. (2) incompleteness. It must not be necessary for a design to be complete
before it is examined. (8) merging. It must be convenient to create a common design
from the individual contributions. It was encouraging for us to learn that the
context/layer machinery created to manage alternatives lent itself well to meeting these

requirements for coordinating partial designs.
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Non-interference between the overlap of two partial designs was accomplished by
adopting the convention that different designers place their contributions in separate
layers. Thus, where an overlap occurred, the divergent values for some common
attributes were separated by distinct layers. Handling incomplete designs of software
was facilitated by the distinction between intensional node descriptions and the actual
code definitions. Since the node descriptions were not installed code, they could be
partial and hence non-executable with no difficulty.

Merging two designs can be viewed as a process that creates a new layer into which are
placed the desired values for attributes as selected from two or more competing
contexts. It is hence very much like the summarization process described earlier, but it
is relative to more than one context and requires user interaction. For complex designs,
the merge process is, of course, non-trivial. We do not, and indeed cannot, claim that
PIE eliminates this complexity. What it does provides is a more finely grained descriptive
structure than files in which to manipulate the pieces of the design.

Understanding how to merge two designs is facilitated by examining commentary
supplied by the designers regarding the rationale of their choices. But this raises the
classic software problem of coordinating documentation with design. Fortunately no
additional machinery is required in PIE to address this problem. Commentary such as
the rationale of a procedure, or its dependencies on other procedures, can be stored as
attribute value pairs within the node describing the procedure in question. A request to
be informed of the rationale of some change is answered by fetching this information
from the same layer as the one which records the change, thus keeping them
coordinated. Figure 4 shows how the rationales of various method definitions are
recorded in the layer along with the altered definitions.

Complexity.

We claimed in the introduction that PIE copes with problems several orders of magnitude
more complex than those previously represented in Al systems such as Conniver. By
complexity we mean both the size of the data base in the system, and the variety of
operations done on contexts. The Conniver database was never efficient enough to
implement any useable subsystems. McDermott's [McDermott, 74] examination of the
Monkey and Bananas problem within Conniver exercised it to its limit.

PIE is able to build a context sensitive description of any class within Smalitalk. Thus, it
can be applied to any programming problem that a Smalltalk programmer undertakes.
This is analogous to using Conniver to build a programmer’s interface to Lisp. Attacking
problems of this size is, in part, possible because we have more computational resources
than were available in the early 70's. PIE runs as a stand alone job on a processor with
at least the power of a KA10. However, it is also possible because we have implemented
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machinery to allow the programmer to move between context sensitive and context free
descriptions at will. Thus, there is a more congenial marriage between PIE and Smalltalk
than there was between Lisp and Conniver. This is discussed in the next section.

An interesting side effect of PIE's ability to describe any code within Smalltalk is that it
can and has been used to describe itself. Thus, PIE's present capabilities have passed
the test of being sufficiently powerful to support its own development, for example, by
allowing us to examine alternative implementations of the PIE user interface within PIE.

Efficiency versus Flexibility

PIE allows the user to trade flexibility for efficiency. At one extreme, the user can
employ standard Smalltalk mechanisms for defining new code. If this route is chosen,
then no evolutionary history is maintained, and no context overhead is paid. However, if
the user wishes to pay the price of some decrease in efficiency of storage and retrieval
time, then he can first build a set of nodes describing Smalltalk code, then continue his
development in a context structured fashion. From this point forward, the evolutionary
history is maintained. |If the user reaches the point where he once again prefers
efficiency to flexibility, the context definitions can be converted to pure Smalltalk and the
layers deleted. If desired, the user can first store the layers remotely, preserving the
ability to recreate the context description later. All these facilities are curently

implemented.

This discussion suggests how a central design facility can serve as the nucleus of a
network of remote servers that provide current packages to users. Periodically, the
design server can release new layers to these servers with updates to particular designs.
The servers can then generate new Smalitalk versions and release these designs to
clients. Clients who wish to know what has changed, can get a description from the new

layer.

Interaction

PIE's ability to represent non-trivial alternative designs raises deep problems related to
the user interface. How can we make available this power in a useable form? What are
the cognitive requirements of the programmer? Presently we are employing an interface
modelled on the standard Smalltalk interface for examining and altering code. This
interface, called the browser, displays a hierarchy of descriptions of Smalitalk code to the
user. The user can examine any method by a process of selection that specifies first a

category of classes, then a particular class, then a protocol of methods within the class,

and finally a particular method. This scheme of organizing code into a four-level

taxonomy has been adopted in PIE to minimize the overhead for a Smalltalk user
learning to employ the PIE environment. However, PIE makes this classification context
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dependent. As with the standard Smalltalk browser, the user can alter the definitions of
any object viewed. But these alterations are made in the dominant layer of the
associated context, and do not affect the Smalltalk kernel itself, whereas making changes
with the standard Smalltalk browser forces immediate incorporation of any thanges.

Research is needed to explore whether this interface is adequate given the increased
complexity of a context structured environment. In Smalltalk, the hierarchy of code
definitions is the primary structural organization. In PIE, this hierarchy is now context
dependent. Has this additional complexity made the Smalltalk organization inadequate?
Will we need a classification scheme with more levels of division, or will some other kind
of organization be appropriate? Just one of the problems that we will have to consider is
that in a design environment, there is no need for a particular method description to be
associated with only a single class, even though the actual Smalltalk system requires that
the method be separately compiled for each class to which it belongs. Hence, a strict
hierarchy is obviously inadequate.

Conclusions

This paper presents only a sketch of the PIE system; our research is reported in greater
detail in Goldstein & Bobrow [80]. We have not discussed here issues in the design of
the user interface, although a successful interface is critical to delivery of these
capabilities to the user. We only suggest here that layered networks are applicable to
more than software: an extended example in cooperative writing of a document is given
in the larger work. Finally, the system has as yet had only limited use. We do not know
which features will be used most, which need to be automated to be helpful, and which
may prove to be too complex to be useful. Recording and analyzing this experience is

an important part of our research program.

A maijor theme of Artificial Intelligence research has been the development of languages

to describe complex evolving structures. In general, these structures have been the

belief structures of an artificial being about some subject matter (e.g., the SRI #
consultant’s [Hart, 75] beliefs about the state of a water pump being constructed, or
SAM's [Schank et al, 75] beliefs about what went on in a story it just read). We have
been exploring the premise that these techniques can be used to describe the complex
evolving structure of a software system, and as such can provide aids to the designer of
such a system. One use of artificial intelligence is to amplify human intelligence. We
suggest that the (recursive) application of Al techniques to Al can have a powerful effect

on the development of the field.
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Browsing in a Programming Environment!

Ira P. Goldstein and Daniel G. Bobrow
Xerox Palo Alto Research Center
Palo Alto, California 94304, UU.S.A

Abslract: Programming today takes place in a complex environment
containing a large collection of previously defined packages, routines and data
structures. A browser is a display based interface which allows a user to
examine this complex environment without prior knowledge of its exact structure.
The Smalltalk browser allows perusal of a four level information net of code in the
system, Our extension, the PIE browser, allows examination of an arbitrarily deep
net which can describe many aspects of the programmer’'s environment, including
messages belween programmers and design notes, as well as code and
documentation. In this paper, we provide a general framework for describing and
evaluating browsers, and use it to highlight the strengths and weaknesses of
these two examples.

Introduction

A browser is a software development tool that supports the incremental examination of
1 system by accessing some kind of information network. A user starts at a canonical place
n this network, and selects entities that represent parts of the system. This causes the
browser to display the substructure of the system connected to the selected entity, and some
information about that entity. In this manner, a browser can be employed to engage in a
hierarchical examination of a system by proceeding level by level from subsystem to module
to sub-module, until the terminal structure—possibly individual procedure definitions—is
reached. In addition, the browser allows a user to add or alter structure at any point in this

examination process.

Most programming environments allow a user to retrieve and manipulate different parts
of a software system, if the programmer knows their exact name and location; but do not
support well the examination of structure whose exact description the programmer does not
know. In such situations, the programmer will frequently be reduced to examining file
directories, hoping that the file names reveal the contents of the file. A browser seeks to
ameliorate this difficuity by allowing a user to examine different regions of a software system
based on their general classification.  Thus, the underlying database imposes an
organization on the software system analogous to the organization imposed on a library by
the Dewey decimal system. The browser provides an electronic analog of moving from a
general classification to the stacks, and then subsequently browsing there.

Browsers were introduced into Smalitalk by Larry Tesler in 1977, and have since
become a mainstay of the Smalltalk programming environment. (The general nature and
goals of Smalltalk are described in Kay [77]; the 1976 implementation in Ingalls [78]; and the
Smalltalk browser in Goldberg and Robson [79]) In recent research, we have extended the
simple, hierarchical system model provided by Smalltalk and developed a generalization of
the Smalltalk browser to manipulate these richer descriptions [GoldsteinBobrow80a,b,c;

lanuary, 1981. |

! To appear in the proceedings o the 14th Hawaii Conlerence on System Science, .
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BobrowGoldstein80). We have dubbed this extended environment PIE, an acronym for
Personal Information Environment.

In the next two sections, we describe the Smalltalk system model and its associated
browser. This is followed by two sections that describe the PIE system model and its
rowser. The following nine questions are used as a framework for comparing the
functionality of these two browsers.

1) Overview: How much of the information network can the user see at one time?
2) Path: What part of his path to the current position is visible to the user?
3) Presentation: What should be displayed on the screen for each selection?
4) Operations: What operations can be performed on the view for each selection?

5) Multiple Views: Can more than one view of the network be seen? Are they all of
the same form?

8) Consistency: What guarantees of consistency are there between multiple views?

7) Alternative Access: Can the user find a known entity in the system without tracking
through the network?

8) Integration: Is the data environment integrated with the operational environment of
the underlying system?

9) Changeability: Can the user change the format in which information is displayed?

The Smalitalk System Model

Smalltalk is an object oriented programming system, where behavior arises from the
transmission of messages between objects. Objects are grouped into classes, all of which
have identical internal structure, and respond to the same set of messages. An object is like
a simulation of a computer; it can respond to set of instructions, maintaining its state

between invocations. Smalltalk generalizes Simula87 [Birtwistle73] and is related to the

Actor languages developed by C. Hewitt [Hewitt73].

The Smalltalk information network partitions all classes into categories for ease of
access. These categories are not mutually exclusive, although multiple category membership
is generally avoided. (Since classes are stored in files corresponding to their category,
mulliple category membership gives rise to redundant storage and possible inconsistencies
between versions.) A method is the code which implements the class specific response o a
The set of methods of each class is partitioned into mutually exclusive groups
Neither categories nor protocols has any significance for the Smalitalk
ifacts of the desire to browse through the system.

message.
called protocols.
interpreter; rather they are art
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There is a subclass hierarchy in the Smalltalk system that does have semantic
ignificance. A class can inherit behavior and structural description from another class
alled its superclass. All instances of a particular class contain the fields specified in the
uperclass. If the subclass has no specialized behavior (method) for responding to a
wticular message, it will request that its superclass respond to the message. This
heritance is a very powerful way of sharing behavior.

'he Smalltalk Browser

Figure 1 shows a sequence of views of a Smalltalk browser as a user selects a path
rough the network. The browser is a rectangular region on the display screen called a
vindow and is built from 6 sub-windows called panes. The top pane is the title pane and
1ows the label 'Smalltalk Browser'. Below it is a row of four list panes that display, from
[t to right, categories, classes, protocols and methods. The lower pane is a text pane that

plays text associated with the most recently selected item.

Figure 1a shows the browser in its initial state with the leftmost list pane displaying part

the list of categories defining the Smalltalk system. The pane can be scrolled to view
her categories in the list. The browser enters the state shown in Figure 1b in response to

. user selecting the category Data Structures. A selection is made by moving a cursor
or the item to be selected and depressing a button on the device controlling the cursor.
“clections appear in inverted video in the actual system, but are shown in boldface in the
igures. The most recent selection is in bold italics. The selection of Data Structures
wuses the classes of this category to be displayed in the second list pane and a template
‘or defining a new class to appear in the text pane. In Figure 1c, the user selects Set, a
Jlass whose instances provide the behavior of sets by appropriately manipulating an array.
This selection causes the class' protocols to be displayed in the third list pane and the

definition of the class to appear in the text pane. The user can edit this definition to modify

the title, superclass, or fields of the class. In Figure 1d, the user selects the Access

protocol, causing its methods to appear in the last list pane and a template for defining new
methods to appear below. In Figure 1e, the user selects the has: element method and its
definition appears in the text pane. Figure 2 shows the path that the user has traversed in

the system taxonomy. (This particular graphic view is not generated by Smallitalk.)

The organization entries under categories and protocols are not actually items of that

type, but rather data structures that can be edited to alter the taxonomy. For this reason,
the organization entries are not shown in Figure 2. Changing the category organization by
selecting it and editing the text that appears below can move existing classes to different

categories. The protocol organization serves a similar function for its class.

e four level system taxonomy that extends

Overview: The browser shows a slice of th
Figure 2 shows this slice relative to a

through all four levels but is of limited breadth.

y. At his discretion, the user can select any element in the

graphic view of the taxonom
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lsplayed slice of the taxonomy. To see other elements on a given level, the user must
oll that pane, thereby changing the slice of the tree seen in the pane.

Path: Since the hierarchy is only four deep, the user can see the entire path from the
1. The user cannot see, and the browser does not maintain, a history of other nodes that
2 been selected before, but are not on the path.

Presentation: Selection causes text and sub-structure to be displayed. Sub-structure
displayed in the list pane to the right. Text consisting of either templates or definitions is
splayed below. For categories and protocols, a template is shown for defining new classes
d methods respectively; for classes and methods, their definition appears. The reason for
. difference is that categories and protocols have no semantic significance other than |
uping a set of subordinate elements.

Operations: For each of the list panes, operations are defined for deleting, printing
| filing the selected element. These commands are available from a menu that is not

)Wn.

Insertion is not an explicit menu command. Instead, it occurs in two different ways.

v classes and methods are inserted in their respective categories or protocols as a side J

‘ect of compiling their definitions. Old classes and methods can be rearranged by
nipulating the table that the browser presents when the organization entry is selected in
category or protocol pane. Manipulating this table is also the mechanism for creating

ew categories and protocols.

A limitation is that the browser does not permit the creation of partially defined classes
or methods. A class or method must be compilable to be successfully included in a category
or protocol; this is a result of the browser assumption that the data structure it is viewing is
the one currently installed in the system. This has undesirable consequences for program |
design when the designer wishes to delay certain decisions. In this respect, the marriage ,
between the browser and the software environment is too intimate.

Multiple Views: Several browsers can be brought to the screen at once and can
overlap. Commands are provided to move a browser to a new region of the screen and to

view an obscured browser. The result is that the display screen is like a desktop with

multiple browsers representing different pieces of paper.

a command to spawn additional text windows that display the

This browser provides ’
the method, allowing the user

selected method. These windows maintain a constant view of
to browse to other regions of the network. The
however, in that they do not display its class or protoco
method cannot be altered through this window.

y are incomplete views of the method,
I, and hence these attributes of the
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The hardcopy format of Smalitalk code represents a third view of the system. This view
depth first listing of the tree. Users occasionally prefer this view to the browser in order

blain a perspective on a segment of code. The hardcopy format cannot be manipulated
n the system.

The browser does not support other taxonomic views of the system such as an
nination of the class/subclass hierarchy.

Consistency: The view seen on one browser is almost completely independent of that
 on a second, even if they are both looking at the same method or class definition.”
means that if a method is changed using one browser, the definition seen on the screen
‘he other is not altered because that browser is unaware that the underlying model it is
ing has changed since it fetched the definition. Only if an explicit request is made to
' the definition again is the underlying model queried, thereby ensuring that the view is
isistent.
* The exception is that browsers do check whether the list of classes has changed whenever
they are reactivated. If a class has been added or delated from this list, the browsers reenters
its initial stale. No check is made for changes to the definitions of existing classes, protocols,
or mathods.
The reason for the inconsistency is two-fold. First, the view in the browser is just that,
nputed view, and changes to that view are not reflected immediately in the model. Only
" the method is compiled is the underlying system model altered. This is desirable since
the user should be able to complete a set of changes to a procedure before it is altered
permanently.  Otherwise compilation might be attempted on an inconsistent state. Second,
when a change does occur to some software object, there is no way for that object to inform
the appropriate views since the underlying system model has no knowledge of existing views.

There are at least two solutions to this problem. One is to give each object
responsibility for updating views of itself, using a "notification protocol”; for example, a class

whose method changes would notify all browsers which have informed it of their current

interest. A second solution is to give each view the responsibility for keeping itself updated,

and to provide a way for it to check what the last time an object it is viewing changed. Then

any time a viewer becomes active, it can compare its last update time with this list to see if

updating is required.
to move through the network is by progressive

Alternative Access: The only means ‘ : )
ommands exist to select an object via a partial

selection of displayed objects. No browser ¢
description or even by specifying its name.

es not support access to other kinds of data such as
it support examination and

Integration: The browser do
manuals, primers, and system specifications nor does

manipulation of instances of classes.
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The browser is integrated in a limited fashion with a history list of changes in the sense
thot defining or redefining methods affects this list. However, deleting a method has no
t on the history nor can the history list be examined through the browser. No
nction is made between different kinds of modifications such as the difference between

ng a breakpoint and making a permanent change made to the code.

Changeability: The user can change the size, number and position of browsers on
lisplay screen by invoking commands supplied by the browser, but no commands are
lied to alter the relative widths of various panes.

The user can alter the behavior of the browser in two ways. He can redefine methods
o browser (using the browser itself), although bugs in these changes could make the
face inoperative. Or he can subclass the classes used to define the browser and make
taver changes he wishes in these subclasses. This is a safer strategy, since old style
ssers are unaffected, but all behavioral changes must be programmed in Smalltalk itself.
equally parsimonious in that subclasses inherit all of the behavior of their superclasses,
pt for messages that they define directly.

he browser does not support idiosyncratic behavior for particular objects of a given
t all classes, for example, are treated identically.

Summary of Smalltalk browser strengths and weaknesses

sl

Strengths: The Smalitalk browser provides an excellent way of examining and editing
the Smalltalk system code as evidenced by its universal adoption within the Smalltalk
community and relative stability. lts browsing capabilities and the associated system
architecture of a taxonomy of constructs serve a useful documentation role. Users often
familiarize themselves with new software by browsing through new categories in a system
release. The browser provides a uniform way to examine and manipulate the software, and

guides novices with templates for creating new entities.

alk browser keeps no history of its interactions except for the
It only reflects the current state of the world;
there is no way to go back and forth between different consistent states. The syst.err'i does
not help a user to maintain any design constraints other than the ones implicit m_the
a programmer cannot indicate that two methods in a
class are dependent, and that subsequent modifications to one. s'hould be chc?cked for
compatibility with the other. There is no incremental way of r.nudafymg 'lhe ‘behaw'or of the
browser by attaching your own procedure to provide a specialized function In th’e interface;
for example, one cannot provide specialized templates for new methods of a particular class.

Weaknesses: The Smallt
names of methods that have been changed.

programming language. For example,

erlying system model.

r also reflects deficiencies in the und
methods but not for categories of classes

e separately manipulable from the class

The Smalltalk browse
Smalitalk provides for comments for classes and

or protocols of methods. Class comments ar
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defirution; method comments are not. Storing a method comment requires that the
procedure be recompiled.

The PIE System Model

was motivated, in part, by the goal of providing a more complete and more ,
int ted representation for Smalltalk systems. It provides a network structured database :
wi nodes describe all the entities in the system and employs techniques developed for !
de bing entities in knowledge representation languages like KRL [BobrowWinograd77].

des provide a uniform way of describing entities of many sizes, from a small piece ;
su 15 a single procedure to a much larger conceptual entity. For example, nodes are
L to describe code in individual methods, classes, categories of classes, and
C rations of the system to do a particular job. Sharing structures between
rations is made natural and efficient by sharing regions of the network.

he uniform use of node structure extends to software documentation. Manuals and
\tions can be embedded in the network using nodes representing the chapters,

. and paragraphs of the material and can be cross-linked to the relevant software.

B -~ software and documentation coexist in the same environment, it is easier to develop

the n a coordinated manner.

des are distinct from the system objects that they represent. Changing a node does

not immediately alter its corresponding software object. For example, the node representing
a class can be created and a partial definition supplied. This node can be stored, examined
and edited. It does not affect the underlying Smalitalk environment, however, until its
description is compiled.

are grouped into perspeclives. Each perspective reflects a different
view of the entity represented by the node. For example, the structuralSpec of a Smalltalk
class defines the structure of each instance by specifying the fields it must contain; the
proceduralSpec defines the protocols; the interfaceSpec defines the set of‘ messagfes
required by external clients, and the documentSpec describes the implementation and its

use.

Altributes of nodes

| views which are not necessarily independent. For
describe certain methods of the
perspectives.

Perspectives may provide partia
example, the proceduralSpec and the interfaceSpec both

class. Attached procedures are used to maintain consistency between such

Each perspective supplies a set of specialized actions appropriate to its point of view.
For example, the print action of the structuralSpec perspective of a class knov‘vs how to
prettyprint its fields and class variables, whereas the proceduralSpec pers?eclwe knowsh
how to prettyprint the methods of the class. These actlions are implement.ed directly throug
messages understood by the Smalltalk classes defining the perspective.
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All values of attributes of a perspective are relative to a context. Context as we use the

term derives from Conniver [SussmanMcDermott72]. When one retrieves the values of
atl les of a node, one does so in a particular context, and only the values assigned in that
coniext are visible. Therefore it is possible to create alternative contexts in which different
val are stored for attributes of various nodes. For nodes representing software, these
contoxis typically describe alternative designs. One can compare and test alternatives
wil t leaving the design environment.

ntexts are themselves nodes in the nelwork. This allows a description of the
rati le for the set of changes to be stored in the context node in the network, in the same
way it descriptions for for a method node contain comments on their purpose.

any system, there are dependencies between different elements of the system. If one

changes, the other should change in some corresponding way. We employ contracts
bet nodes to describe these dependencies. These contracts are themselves nodes with
specialized behaviors.,  These behaviors include installation of procedures to maintain
con<i-tency of simple constraints expressed in a formal language, and notification to the
user when changes have been made to contract participants. Use of contracts raises a
number of questions which we have just begun to explore; e.g. when should one check
agrs nts and still avoid seeing temporary states of inconsistency during the process of
ch:

nally, the PIE system provides perspectives which allow the system to describe itself.
Perspectives themselves are described in the system, and small modifications to the behavior
of a particular perspective can be made by manipulation of the network structure. Nodes

can be assigned meta-nodes whose purpose is t0 describe defaults, constraints, and other
information about their object node. Information in the meta-node is use.d to resolve
ambiguities when a message is sent to a node having multiple perspectives.

The PIE Browser

generalization of the Smalltalk browser, in order

The PIE browser was constructed as a It is

to minimize the overhead of Smalitalk users immigrating into the F’IF.E environment.
shown in Figure 3a. Two additional panes have been added in the mlddl? of the. browser.
The left pane lists the perspectives of the most recently selected node while the ngh.t pane
lists the attributes of the selected perspective. The B paiia shows.the n-ode s
browsing begins and the context from which the network is being viewed.

e representing the Data Structures
this node to be displayed. The first is the
es a classes attribute and additional attributes
to classes in the category. The
des, that specifies a titte and

In Figure 3b, the user has selected the nod
category. This causes the two perspectives of
perspective describing categories: it includ
describing the most recent file and mo
second is the description perspective,

dification dates
common to many no
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|
optional text for the node. In this case, the text attribute is employed to store a comment
regrrding the category, and this comment is displayed in the text pane.

1 Figure 3c, the user has selected the category perspective and its attributes appear
in itribute pane. In Figure 3d, the classes attribute is selected and its value, a list of

n representing the classes of this category, appears in the second list pane. The
attrioute is used as a label for the pane. In Figure 3e, the user has selected the Set node,
an perspeclives appear below. Thus, moving from one node to the next in the network
red » selection of a node, then a perspective, then an attribute. Figure 4 shows a graphic
re| ntation of the PIE network and the path traversed by the user.

Overview: As with the Smalltalk browser, the user can see a slice of the network. In
additon to nodes surrounding previous selections, this slice includes the perspectives and

attr 5 of the current selection. We have explored browsers that show the perspectives
an ributes ol every node in the path, but these trade breadth of view for increasing
co ity on the screen.

» labels on the four upper list panes are dynamic and computed from the selection.
Th alltalk browser employed static labels since the same attribute was always displayed

in iven list pane.

ath: The PIE network is not restricted to a depth of four. However, the PIE browser

cont only four list panes, a constraint derived from the size of the screen. To go deeper
into the network, the user can shift the view to the left. In Figure 5, the user has moved the
viev e to the left. The origin of the browser is now the Data Structures category and
the rightmost pane is available to show subordinate nodes linked to the has: ele.rrfelmt
method. In this case, the user is examining nodes representing constraints on the definition

of the method. If the user tried to see substructure which would logically be to the nghtt oc:
the fourth pane, PIE blinks the browser to indicate that it cannot show the requeste

{ . ift the view as
information in the current browser configuration. The user can then shift the

ontinue.
described, or spawn a new browser rooted further down the tree, and ¢

. : i it is
The PIE browser does not maintain a chronological history of selections. Hence, it

browser, to displaying only four steps in the path to the current

limited, like the Smalltalk ——

; istorical i ation is tha
selection. An unfortunate consequence of this lack of historical u'lformt S
view can be shifted to any node in the network, the browser canno

: ata Structures
made from that node. Hence, a shift to the right, for example, from the D

, i tion choices to
node back to the Code node, would require that the user remake his selec

again be examining the has: element method. |

tions required by the user, the browser can
tiative. These

ple, the

Presentation: To minimize the interac . 7

i isions on its own Ini

Operate in a mode in which it makes various default decalsm ko
descriptions provided in the network.

decisions are based on additional
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network contains descriptions that specify that the category perspective should be selected

by decfault over the description perspective and that its classes attribute should be

displayed. As a result of these default specifications, the selections of Figures 3¢ and 3d are |
m by the system and selecting the data structures category in Figure 3b produces the ,
di / of Figure 3e immediately. Hence, the user need not engage in any more interaction '
with the PIE browser than with the Smalltalk browser to conduct*similar actions. The user

ca verride these defaults by making explicit perspective or attribute selections.

he specification of the default display behavior of a node is described in meta-nodes
linked to perspective types and to particular nodes. In the former case, the meta-node
applies to all instances of the perspective. In the latter case, its advice is idiosyncratic to a
particular node. These meta-nodes can be examined and edited from the browser. |

lemplates for creating new nodes of a particular type are available upon request and '

are tored in the meta-node of the perspective. They are shown automatically only if they
ari cified to be the default display information. Many perspectives, not just those for
cli and methods, have templates.

merations: The PIE browser supplies four standard operations: insertion, deletion,

fil il printing. Insertion consists of adding a node to the list and assigning it a !
per tive. Default knowledge is employed to supply a particular perspective when the list '
is trained to be a set of nodes of a particular kind. For example, the classes attribute
of the category perspective has the default description that all of its elements have a class
per live assigned. Descriptions of nodes can be stored without having to compile them.
Therefore partial descriptions of methods can be left in the network and returned to later.

isertion of nodes of arbitrary type eliminates the need for an organization entry. .
Cateqories and protocols are created by adding nodes with those perspectives. Rearranging |
an old organization is accomplished by moving nodes from one attribute set to another.

The PIE browser also differs from the Smalltalk browser in that special actions spemfi.c
to perspectives at a node can be invoked by the user through a special menu. This menu is
using default description that specifies a subset of the

' r can view nodes with
messages of a perspective to be user commands. The PIE browse |

arbitrary perspectives in any pane. Hence, the ability to interrogate the perspective for its i |

' : i rowser views only four Kinds of
associated commands was necessary. Since the Smalitalk b

objects and these objects are tied to particular panes, this generality was not included. |

s in which multiple views are available
f the Smalltalk browser. There can be more
viewing different parts of the

computed from the selected node,

Multiple views: There are three different sense

to the user of PIE. The first is similar to that o
screen at a time,

than one instance of a browser on the
Smalltalk system.
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A second kind of multiple view comes from the notions of context embodied in the PIE
network. The value of any attribute is context dependent. The user can change the view

i in the browser by changing the context associated with that particular browser. This
es the browser to recompute all fields seen.

'he third arises from the fact that the user can request an outline view to be generated
: substructure of the selected node. A portion of the subtree descending from the
ted node is shown in an indented outline format. The default perspective and attribute
ich node is used to determine which part of the subtree to display. For class Set, this
» would include the Set node, the protocol nodes of its structuralSpec perspective, i
the method nodes of each protocol. This outline is very close to the standard hardcopy |
of Smalltalk code—a fact that is not accidental. The defaults have been chosen to
n this view the preferred one. i'

Consistency: As with the Smalltalk browser, there are no backpointers from nodes to

lhis means that a change made to the network through one browser is not reflected

ther browser's view computed earlier. One approach to solving this problem is

ly being introduced into Smalltalk by providing backpointers from software objects to

t Views. A separate control process is assigned responsibility for maintaining
lency.  Another approach that we are considering is to describe the browser itself in
network in order to take advantage of the contract machinery provided by PIE to

n consistency between descriptions. However, this is still an unexplored area.

\lternative Access: A browser provides one way to get access to a node in an
information network. Sometimes it is useful to shift the point of view of the system to a node

wi matches a given description without having to browse through one level at a. tirlne. }
This is provided in PIE. A user can specify the perspective type and some distinguishing
features of a node. For example, he can search for classes entitied Set, any class that is a
subclass of these classes, or even any class whose comment includes the substring ‘set’.
PIE engages in a a search and causes the view to be shifted to the selected node.l If more
than one node matches the description, PIE offers the user all matches. Selection of a

match causes the view to be shifted to the selected node.

Some indexing facilities are provided to limit the potential candidates for a r.nafch: each
perspective maintains a list of the nodes to which it has been ass?gned. il i
simple scheme, but the present size of the Smalitalk SYSte‘“—COnSiS“ng o
classes owning several thousand methods—does not require anything more elaborate.

One novelty of our searching machinery with respect to traditional database design is

el ive has its own
that no general set of indices are maintained. Rather, each perspective

Thus, if a perspective receives a description like 'set’ without a
. perspective to which this description must match, the
For

Mmatching protocol.

Specification of the attribute of the :
; f a match.
perspective itself decides which attributes can be used as the basis 0
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example, the structuralSpec perspective checks the title and superclass attributes, but not

the field variable or class variable declarations. This is in contrast to most data base

environments where entities are matched against a pattern by a standard algorithm which
m s the values of attributes, perhaps using range tests. Because PIE is integrated in the

Si Ik system, each enlity can run its own idiosyncratic program to test whether it

matches a description. |
itegration: The PIE browser integrates the examination of data, code, ,

di ntation, and system description since all of this information is uniformly described in I

the work. The browser also integrates the computation of views of the database with the

underlying programming language. In most data bases, "views" are supported which

compule virtual relations from real ones that exist in the data base. However, the -||

programming language to compute these views is impoverished, usually being restricted to | |

expressions in the relational calculus. The advantage of this language is that it makes the

up problem easier by providing an expression calculus with no side effects for specifying

ho ompute a view each time. In PIE, the full power of the Smalltalk language is

av but we must provide notification and time stamp mechanisms to help with the

upd problems.

ingeability: In addition to the ways that the Smalltalk browser can be altered, the
bel of the PIE browser is affected by changes to the information network. A user can
alter lefault display behavior of perspectives by editing the meta-nodes involved. For
the user can change the meta-node to cause the default text displayed when a
cla selected to be the comment describing the class rather than the class definition.

Summary of PIE browser strengths and costs

! : i IE
Strengths: Some strengths of the PIE browser arise from the improvements in the P

system model over the standard Smalitalk model. The network database that the br""w'_'ser
manipulates is arbitrarily deep, allows multiple perspectives and context-sensitive descrrpil?n.
integrates the representation of text and software, and supports searCh Al matchl‘n-g
behavior. Other strengths arise from the availability in the network of interface-specific

. : i and
description. This includes description of default perspectives and attributes for display,

o : it inimi he user's
idiosyncratic behavior of particular entities. This self-description minimizes 1

Workload for expected actions.

Weaknesses: The PIE browser shares a number of weaknesse‘s with lhta Smal!talsi
browser. For example, it does not maintain a history of use.r interactions and utptilgenfogoel
Provide any means to maintain consistency between multiple views. However, the e
provides a possible solution to both of these weaknesses. Nodes can 1?61:[\:2»\;: This
represent the history of a design and to represent contracits between m-utlr?nin . ;righty ’
solution has the appeal of building upon existing machinery and maintaining

_ issues for us.
Integrated system model. These are current hesearch' iesus

;
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Another potential weakness common to both the Smalltalk and the PIE browsers is that

they do not present the network in a two dimensional graphical notation such as the one
sh in Figures 2 and 4. Indeed, since those figures were used to elucidate the network
structure being examined by the browsers, one might very well ask why it is not the format
act ¢/ generated by the interfaces. The answer, of course, is that the pane-oriented
str re of both browsers is simpler to implement than a general two-dimensional layout
pre n. However, a research issue is whether this implementation simplicity comes at a
ser ost in comprehensibility to the user. Experiments need to be performed with users
of ditierent levels of expertise to investigate which graphical metaphors are most useful in
cla g the presentation of a network description of software.

Conclusions

reflects a natural evolution of the Smalltalk system model to provide a more |

ext description of an evolving software design. The PIE browser has evolved in
par An unexpected result is that the boundaries between the two have become fuzzy as
the notwork describing the software system is employed to describe the desired display
bel Specifications of system semantics do not usually include such descriptions.
Ho the availability of more powerful machines, coupled to the increasing complexity of
softv makes their inclusion both possible and necessary.

PIE system and its associated browser is largely independent of the semantic

deta [ Smalltalk. It is based on the existence of a network description of a software

sysl It could be the basis for programming environments for other software languages, to

the it that those languages supported display facilities and a network database which

can | representations of code easily accessible by the language processors. Experiments !
reported in [Cattells0] are planned for exploring these ideas in a programming environment

for Mesa, a PASCAL-derived systems programming language.

References

Birtwistle, G., Dahl, O.-J., Myhrhaug, B., and Nygaard, C., Simula Begin, Auerbach,

Philadelphia, 1973. |

Bobrow, D.G. and Goldstein, I.P. "Representing Design Alternatives"”, Proceedings of the |
AISB Conlerence, Amsterdam, 1980. ek

Bobrow, D.G. and Winograd, T. "An overview of KRL, a knowledge represen

g o s ming/Information Environment”,

t(;‘)all::-r;f.,{:::-‘ E"auh,l,::;:-?;:m;\ls‘:?ug ?)?tzgzésﬁgf t%TG?DHLELE,mgL%mSIG?Wr , October, 1980.

Proceedings of the |
148-157.

{‘. nl.‘
Goldberg, A. and Robson, D. "A Metaphor for Users;lr!t?]fgiécngl?:"%g?g‘ pp.
13th Hawaii International Conference on System Science, ing in Smalltalk"
- H H n ]

Goldstein, 1.P. and Bobrow, D.G., "Extending Object or;_?ntE?gg{Jrg?ramm! a
Proceedings of the Lisp Conference. Stanford University, ‘

.......




T EEERR—SSS...

Goldstein & D. G. Bobrow Browsers November 3, 1980 2:18 PM 14

i, L.P. and Bobrow, D.G., "A Layered Approach to Software Design", Xerox PARC
1980b.,

I.P. and Bobrow, D.G. "Descriptions for

l'.‘

a Programming Environment",
the First Annual Conference of the American Association for Artificial
August, 1980c. :

Bishop, P., and Steiger, R., "A Universal Modular ACTOR formalism for artificial

Proceedings of the Third International Joint Conference on Artificial
1973, pp. 235-245,

wniel H., "The Smalltalk-76 Programming System: Design and Implementation,"
‘ecord of the Fifth Annual ACM Symposium on Principles of Programming
fucson, Arizona, January 1978, pp. 9-16.

Microelectronics and the Personal Computer" Scientific American, September,

Goldberg, A. "Personal Dynamic Media" IEEE Computer, March, 1977.

1., & McDermott, D. "From PLANNER to CONNIVER -- A genetic approach", Fall
ler Conlerence, Montvale, N. J., AFIPS Press, 1972.

P. McCreight, E. M., Lampson, B.W,, Sproull, R.F., and Boggs, D.R._"AIRO: A
puter" in Siewiorek, Bell and Newell, Computer Structures: Readings and

1980




iltalke Browser

The classes of this category appear in the
and a template for defining new classes app

ATEGORIES~ ~CLASSES~ ~PROTOCOLS~ ~METHODS~
inization ~CLASSES~ ~PROTOCOLS~ ~METHODS~
L Structures
dows
Fig 'he browser is in its initial state, displaying a list of categories.
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Fig. 1b.  The user has selected the Data. Structures category.
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Fig 'he user has selected the class Set.
'he protocols of this class appear in the Protocols pane

nd the definttion of the class appears in the text pane.
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T1 sloarto o ) [OCOL.
Fig. 1d. The user has selected the Access }m'm e o

thods appears in the text pane.
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|
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_ » path selected
Fig. 2. A tree representation of the Smalltal ;ﬂ:ogﬁég%f J&b;gmnomg
in the browser is shown in boldface.
Uisible in the browser is shown in italics.
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Fig. 3b, The Data Structure node ption perspective and is
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displayed by default.
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|
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|
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Category classes
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Fig. 3d. The classes attribute is selected and the list of classes appears.
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Fig. 5a.  The user is four levels deep in the PIE network.
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