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Object·Oriented Programming Language Issues 
for Human Interface Development, 

the case for SmaJltalk. 

By 
Edward Klimas 

The proportion or software associated with human interface has bcc.n estimated to be be[>NCCO 
lhirty and eighty percent [Case 89J (MITRE 86]. This software is often of a very high complexity 
level requiring disproportionate development effort when oompared to the rest of tbe application 
code. Recent advances in personal oomputer hardware technology. cx)s1 and perfonnance have 
openod up new opportunities for the practical application of objcct-orientod programming (OOP) 
languages to solve this problem. These languages bave significant poteotial for manipulating larger 
aod more complex software applications than current tcchnology. The software industry trade 
journals are routioeJy documenting notable software productivity opportunities using object~rieoted 
programming. 

'The issue of which object-oricoled language is best for a given application has been of significant 
managemeot coooern reeeoOy. In many applicatioos there is 00 questioo that SmaUtalk, C++ and 
ObJc<:tivc-C bave distinct features that clearly delineate which language is the best choice. In the 
araI of embedded re.1·Ume firmware (or control and device VO, future IOnwart dew.lopl1lut 
wUI probably co,otJaue to be handled b, C and posslbl,lts objed-Griented extensions. The era 
of human infu1ace intensive sotiware dnelopment, bowner, requires much closu enalysls of the 
Issues. 10 geoera~ ext:cllent buman interfaces bave been developod with low level languages such 
as C and even assembly code for applications ranging from CASE tools to process oootrol among 
others. 1berc.Core ODC should DOl assume that object..oriented languagC$ are necessary for 
development of good bum .. ioterface software. Rather, OOP provides I potentiaUy good paradigm 
for managing the inbereot oomplexity oC such applications io a more productive fashion. An 
empirical test of ideoticallarge programmiog tasla io multiple object-orieolod languages is requirod 
10 test the true limits of the various object-orieotcd teebnologies bounding eovelopes. Although 
I prelimioary comparative analysis of some OOP language issues has been perfonnod for the 
development of a simple game [Love 9OJ, to this author's knowIodge, no such large.seale replicatod 
testing bas been documented. 

This document will try to review some of the issues that management should be aware of before 
committing to a particular object..oriented programming language. This document also tries to 
promote tbe concept that human interface Intensive sortware development needs a high lne) 
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obJed-orle.nt,ed language such as Smalltalk to compl mat tbe low lC'" IlincUllCt ca".blUU ()f 
IDd its objcct-oriented extensions. 

!be current debates are cenlered lroUnd two major cam,.. the C d.aJccu J\Kh • 
C++/Objcctive-C and SmalllJlllc. A number of otber objcct-oricnted I.on,u."" .be exDt, but r. 
not discussed here because they typically do not have the same ","".t mom<'ntum 0< .", ..,. 

amenable to supporting commercial group developmeot efforu. 

Issues for consldentJoD: 

C++/ObJedlve.C are DOl IHemallves to Smalltalk. 
There is a gcnc,,1 feeling in tbe objeet-orieoted prog"mmtn, commuNty th.t C++ ', end 
Objcctive-C. founding premises arc quite different from Sml ll,II"', and thl t tbqt abould _ be 
considered as equivalent alternatives [SlrOustrup 901. The C IanplC ..... oriJina11y developed 
as • low level language [!Cornlgh.n 881 that could substitute fo r assembly code, "".h ,he prlm_". 
concern for. highly portable, .trueturcd language with good execution cJr.aeocy, developed .... n' 
'IJIndard college textboolc comp~er .echnolo&Y. Smtlltalk "'"' developed witb !be eJJIph.,. 0<1 
improved sonware productivi'y, reuse of code, .nd an integn .ed deveIopmen. environm<'n Thc 
computing resources reqailled '0 support Small talk were of JCCOndary cooeero durin, " 
developmeo~ with the vision th •• one day there would he <XlIt effeetWe hardwore 10 support .be 
language. The reoeot adven. of acceptable perfonnanoe, low ODS' penooal computers hi"" now 
made the Sm.lltalk language a viable ODSt effective .echnolo&Y. One might consider ~. !be 
objcct-orieoted C djaJeets are "beller" Cs tbat happened '0 include a number or solutions '0 tbe 
C\<)lutionary computer seieoee 1essoos learned" since the l, npIC "'"' initially introduced. 
Fortunately, the improvemcots to C++ included objeet-orieo.ed fUnd io .. ~t had C\'OIvaI r.­
the developments in Simula and Small'allc. In the ongoing industry improw:meot o f C eompilc:n, 
one can cxpeet ali ... jor C tool vendors to 1000 .upport on<: of the objcct-oric:nted extensions 
C as a mal1er or oou.nc; but the rundamental principles or C wi" still prove to be • limita1ion 10 
aehieviog the [uU benefits of the 00 paradigm. Although limited, these obJ ... ..,ri .... ed ext<a 10 ... 
to C could prove beneficial to some sorlware product Unes by pt.rm1ttine Crta1u funceJonaUt, to 
be embedded In tJme aitk:li,1 products such a.5 device drivers and bleb JKrformanu data~ 

Ex .... tJo. Speed! ObJoctlve-{; •• d C+ + .'" Castu lb •• Smallllllk. 
Oureot literature indicates that SmalilJllk is between a factor of two to teo tima sIowcr than C + + 
and Objcctive-C for tnditiooal applications [Uagar 891. H""""",", as applications become more 
objcct-oriented, C++ and Objeetivc.-C rapidly lose their performanee tdvaolJlge UDti~ in some: 
cases. SmaUlJIlk will actually outperform the C dialects [LaLonde 891. Some windowin, sy<tema 
developed with SmalltaUrJV286 have deJJIons.rated aeeeplJlble performance even ",ben opentio& 
It XT speeds. In general. oomputllionaUy intensive algorithms Ire C:XCCUled more quickly in the 
C di.locu. However, through various improvemenlJ in SmlUtalk interpreters aDd compilers. the 
differences in speed wiU be less or aD issue in the fulure. For human Inlerfacc applk::aUons, the 
speed of the language Is Dot an Issue with CUrft-nl 80286 and 68000 personal computu 
t,ecbnology, as tbe application program normall, spends a significant amount or its time w:.fllnC 
for the user to respond. 
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lu:: For LArce Synmas, C Ubnrles, Objed..lve.C .nd C+ + consume slenlDCllnt), more 
1H.o". "'D ... lIlalk. 
For J&rJe 'ppticalions, SmaUt.lk is .nywhcre from a factor of 5 10 10 times more compact lban 
cqUMlen, C code (LaLotodt 891. SmaU'aUc-3l requires approximalcly 3Mb oC memory and 

math Ik/V286 requires I liltJe oYer 1Mb memory for minimal functionality. This must be 
""'I"red WI,h the IOUrce and object code Cor UNIX which bas Icss functionaliryand requires more 
than 10 times more .paoe (Cox 84J. AJ another eumple consider X-Windows wbich alone 
COOIUmeo more memory and is .Iower llIan all of Smalllallc/V. 1bis .ignifocan, dilTerence in 
memory lize i& nollpprccillod until. pagjng.memory based system', performance is compared with 
In entirety memory resident windowing system's performance. 

ProdtKtIrily: Objoctloe-C aDd C++ are DO' U productl .. u SmalIlJlIk. 
Allhou,h Iherc are • number of IIudiex sbowing 1lIa1 productivi'y is primarily impacted by the way 
people are mana,ed and treat'cd, there are lOme lochnical issues related to bow OOP productivity 
is also imracted. as fol~: 

-1.0", COlDpll.IJOD Ilm<s: SmalllalJc. being an in'erpretive language (no, unlike BASIC), can 
.1rnc:.1 immediately respond to changes in tbe code during developmenL The ability 10 make 
chances and ICC tbe results immediately. bas been shown to dramaticaUy improve productivity 
because the code developer can continuously maintain a high level oC ooncc.ntration 00 the 
work at hand. lbe current long oompile limes required Cor the C dialects significantly impede 
productivity IS the user waits !rom several minutes to 5CYeral boun Cor results.. Productivity 
is especially a major ooooem Cor buman interface development beause oC the historiaUy large 
number of minor changes that are required during deveIopmenL Incremental oompiiation is 
I rccogniuld benefi~ and Plre Place Sys'erDS and GlocIcenxpiel In,emalional bave developed 
incremeotal C++ compilation facilities. 

.FahtR. software dt'ftJopmeaC should Include In latql"llted environment.: Another productivity 
(acaor that is often overlooked is the benefit or an integrated environment that pe.nniu 
deYcIopeB seamlcss and "'pid a=os '0 mulliple ediling sessions, dcvelopmen' 'ools and 
'mmedia'" compila.ion and display of r .. ull.. This conccp~ originally envisioned by SmaUtaUc, 
is currently being dupliea'ed in some C++ and Objective-<: product offerings '0 varying 
degrees. It is premature to oonjecture on tbe long term viability of these "roe--also· fuoctioos 
at lhis time. However, to improve current software development productivity, one must adopt 
an 'llfegrated software dndopment enriroallltDt that pennlts dt'ftloprmnt or J.arcc': sorl'Wllre 
pa!dcages wt'.hout the coastralnt or long compile times ror viewln& c.haDCes • 

..support IIb"ui .. for C++ and ObJ<ctIoe-C mus! be standardfud, Al'bougb lbere are 
currently no significant standard human interface libraries for C++. one can anticipate more 
"andardized 'n,maces in.o ffiM/Microsoft W~ MaciolOSh .nd X-Windovos to bocome 
available (tbese windowing environments are already supported in various SmaUtalk dialects to 
varying dcgreex). Objective-C and C++ support differen. librariex for differen, platfonns and 
have the associated compatibility problems. For comparison, applications developed under 
Smalllalk~ 8.re directly portable 10 any platConn tbat supporu it without change in look and 
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feel Appliallioos de\ocloped under SmaJltalJc/\1286 and Smalltallc/V·M"" con be mocIWcd 10 
ruD uDder SmalltalkN-PM Cor OS/2 as I Presentation Manager window. 

· J{l&b .... 1 laagu_ .... beltor sulled 10 complex procrammln, tas WIOlIowin, 
environments and other advaneed human mterfaces I re generally considered to be complc< 
software 'l'tems [Case 89J. The fad that C was developed as I low k:veJ • .. ancIardalcd 
assembly language" (Keml&bl. 88J is orten overlooked by develope ... and lianif""nt efron Ia 
expended on interfaemg the C dialeels mto luillble windowing libraria (benee, the 100, 
development times for DEC. X·Wmoo... and MiaoSort Wi""""~ as Jus. lWO examples). 
Industry opens ha.., also liken positions: 

"A multi.year lIudy by Arthur Andersen on wrtware productivi.y led '0 • conclusloo 
that the objee.~rien.ed Smalltalk language is the mos. produc.ive PlOV"mmm, 
language because it .ignificantly reduces program complexil)l'hrough ill inhetiWICC 
mochanisms" [Case 89J. 

·Automatic mvnory managc.me:al can Dot be bandied by C diAlects: This is probably tbe most 
Knous sboncomla& of the C dlaltcts and Is. sJgnlficant proble.m for IlIrce, complu son WWi rc 
sysltms. Windowing environments and many other IOftware fuoc.tions detenninod It run "~ 
require carefuJ and e.ffJCicot allocation and deaJlocalion of memory Cor the complex d.lta 
.trudures mvalved.. Per Brad Cox, tbe developer of Objective-C, [Co. 87). 

-rite be:ndit of aulomatJc camage COllectiOD Is Dot small, btc:ause It eliminates • 
wbole class of truly Dasty bues. It eliminates lhe dangling pointer problem, in 
wbich mvalid object iden.ifiers (produced by freeing the objcc. they pom. '0) can 
Iic dormant for arbitrarily long periods and then cause bard •• o-<Iiagnose problems 
(crashes) when they are finally aa:asod. And i. prevents the oqua Uy daDgeroUS 
problem in which a long-running application strangles from laclt or memory because. 
unneeded objects have no. been freed. If the programmer is responsible foc freeing 
objects when they are 00 Jonger occded, be must be aware of the entire system to 
ensure tbat eaeb object is freed only once during its lifetime and never ....... sed 
afterward This increases program complexity [or the programmer tremendously. 
since it forcc:s t:Nery programmer to understand the entirety of the application, DOt 

just the interface: to the appropriate routines.· 

Commercialwftware qualil)l assurance: probiems with C+ + ba.., also been referenced m the 
litera.ure [Au.r 89J. 

"Objective-C and C++ do not provide automatic gamage collection. The allocation 
and deaIIoeation of memory for the objects is under control of the developer. In 
a large and highly mleroctive application, this burden ean be .igniGc:aoL I have 
beard from one deYeloper, at a company which is working at creating. significant 
class lJbrary in C++, that the majority of their QA elIon is spent figuring out 
where and why memory is not being deallocated.· 
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An ~alod issue is that Objeclive-C and C++ developers' training must include significant 
5tJCt1Onl on the intricacies of manual beap management and leak detection. 

urIC l)'Stems need what are called ·comprehension avoidance techniques-, i.e. minimize what 
the devdopcr and maintainer need to know to errectively do their jobs. Requiring the 
cSto.oc:loper to manually allocate and deallocate I data structure places the burden of knowing 
cxactJy bow that data structure is used throughout the system at aU times. For small real-time 
')'Stems this is oot In unreasonable situation. bUI for large programs it is a potentially 
uruealistic expectalioD thai .ignificantly impaclS productivity and quality. 

SmaUtalt has lutomatic garbage coUeaion facilities which have been optimized 10 CODSume less 
than ~~ 0( the 10 .. 1 O'U resources. This functioDality can 001 be apccted 10 be iooorporaled 
inlO C or the 100% com~tJble dialects of C due to inherent limitations in tbe definition of 
the C languasc ~Load. 89J. (II is impossible 10 perform aUlomatic garbage COUeetioD with 
C:. unconstrained ability 10 change poinlCl1 10 arbitrary da.. types i.e. coercioo.) U 

proc,. .. aat.rs are Dot ttpeded to devt.lop their 0W1I code (or storioG" maDoglng and retrieving 
dlsk nits, t.bey should DOl ~ requlrtd 1.0 pe.rronn compnr1llble manipulations with me.mory 
.. a.qelllull 

TbcIe productivity issues should manifest themselves in tbe (inal development costs of an 
appUcalton. Some uocontroUod embryonic lest CC1ullS are emerging in tbe OOP commuDity that 
do .bow .izeable differences in Ibe COSI of delivered SYSlems based upon the OOP laDgu.sc being 
employed. Small .. 1k developments can COSI between S6 10 SI per source line or rode depending 
UpoD the amounl or code reused, while SSO per source line of C++ code eaD abo be expoeted 
f\\"dss 9OJ. There are a number oC issues that noed to be iovatigaled to ensure a fair comparison 
Cor this dltl and it is DOl realistic to draw firm conclusions from this data al this lime., however the 
trend seems to corroborate some oC the points previously mentioned. 

A rule of Ibumb in new software developmeDI is thai il usually takes lbree allemplS <major 
revisions) oC the IOflWare to achieve acceptable results. The current argument is. that since 
SmaUtal1c is estimated to be 5 times more productive than traditional programming languages 
[Ban-y89J and twice as productive as C++ on a IOU= lines of rode basis [Lo .. 9OJ, one can .. ve 
up 10 12 limes the developmenl cosl over ""ditioDal languages using Smalltalk venus 3 times the 
developmenl costs with the C dialects. 

With market ~ continuing to become sborter in the future and inaeasing demand (or robust 
software; ODe might conslde.r a strategy thai would promote Initial human Interface product 
dnclopme.Dt aDd delivery io a high level language like Smalllllk, and the.n, once tbe JX,rfOnn.8DC't 
bottkDe.cks are IdedtUied, rewrite. only that necessary runctionallty as C or assembly code 
primitiYes interfacing into the existing software fral1le\lo'Ork. If the marlcet windows of opportunity 
continue to shorten, the latter approach may in fact be lhe only viable avenue (or market 
competitive human interface developments.. 

Ruo-tlme Issues and tools: Smalltalk..80 was initially developed with lingle user support in mind. 
This Jed to aiticism of its lack of team programming support and Jaclc of support for commercial 
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deploymenl of the resultin, oode. SmaUtalkJV ~ have ,coponded 
mllure lools 10 provide the followin, aoIuUons: 

tbCle -= 

-Objecl Teeboology InlctDltloali Is mlrteltn, I number of loois foc .upport .... 
developmenl for commercW prod...... Tbcae Include: 

ENVY/MANAOER. a node IllAOOaemenl ')'JICJ1I l bol .upporu Idlm """",,,,rom .. "h 
Smoillolk/V286 over I Iocol lrea nel\loO,k lied into I JCI"CI' 'The O)'lcm b .. ,Ib 
NOVEU.. and OEC/V AX·PCSA O)'lemo and II In bela leol II I oumber of 0""'-

lools for .tripping OUI unneceJSlry peru of lhe Smalltalk eDYlI'OI'IlI"'lIt and oonYCt1.n, the 
resull into executoble (.EXE) files or """" "ROM"lble oode. 

a common image of SmaUtaik thaI will be portable ...... JCYtnl plalfonns. 

-SmaUlOlkJV {V7:86 N ·M .. Ind N · PM .uppon inlerfacin, into Otber un .... aeo ,uch II nl""'" 
osscmbly language, C, C++, Forlno, etc.. tbrou,b I function coiled "user prim.II"",,". For tv 
/II: {V7:86 dlCb primitive eon be up to 64Kb in.ize. SmlUlllkJV·PM perm.1I much urau ..... 
primitives through the use of OSfl'. Dynlmic Unk Ubrory (OLJ..) {unCIiooL This fcoture: 
provides • powerful interface. 10 time critical code for rcal-time hardware driven and CDun, 
applications. 

-SmaUtoIk~ .uppons inlerfacing into C progroms de¥I:Ioped under the MlrrAWARE Ili,h C 
compiler rev 1.4 or higher, 

.'The SmaUlOlk source code eao be 10lOUy hidden from the user or poniaUy .upplied Wllh the 
run-time to permit USC.tI to lCam.Jessly "'book. in- their own SmaUlilk applications if appropriate. 
Within the limitolions of the primitM:J, usel'l eon Iiso include foreign ungul'" devioe dn.c:r.. 

.OigilOlk Inc. olIe .. several run· time licenses for their """ions of SmaU1011c. 'The low end 
SmaUlOlkJV eon be run·time licensod for a Oat S500 per year per product. 'The more odvancod 
SmaUtalkJV286 and N·Mac eon be run·time licensed for I Olt SSO per copy wilb In unlimitod 
ODpy, S2OO,OOO royalty buy-oul cap (olber limitod royalty agreemen .. eao be negotiatod). 
SmaUtalk/V-PM for OS/2 and the presentation manager will compile the SmaU,--lk code into 
an 0Sfl exeeutoble (.EXE) file which eao be distributod royalty free. 'The SmaUlOlkJV {V7:86 
and N·M .. lUD·lime licenses include tools for .tripping oul unnecessory SmaU101k node IS v.dl 
as I tool to permit display oC user defined informalion It start up. 

.Pare Place olIers .imilar SmaUtoIk~ run·time: .uppon 10 Oigilalk's for aU or i .. platfollllS. 
Runtime: licenses are available Ibat ronge [rom SISO per ODpy for Ibe 80386 MS-DOS and 
Macintosh 10 SS9S per copy Cor aU of tbeir other plalfnllllS. 

All major hardware platforms bart support: AU of the objcct-orientcd languages are wen 
represented on a Dumber of platforms although only Smalllalk..so claims to be tOlally platform 
independent and not require aoy porting of source code to different platforms. Smalltalk/V286 is 
currently tbe ooly SmathaJk dialect that supportS true learn program development and sharing of 
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cod< throu,h I ~htrd pany code management system. Although currently, C++ and Objcctive-C 
hIYe: IOIDC ratncHOns on lbc availabiliry of libraries acros.s platforms as well as some dependence 
upon optnlUl' systCJ1l venioos, these limi~tions sbould be r=ificd as the C+ +/Objective-C 
........ t """*CO. 

LA .. ..,. 

SmIIl~Ik/V 
mlll~lk/V286 

SmaJl~IIcIV·PM 
Sm.II~Ik/VMac 
SmaJl~lk.jj() 

0bjectM>C 
C++ 

Pl.Illonns IUpported 

MS-DOS, IBM·XI', AT, 386 
MS-DOS, IBM·AT, 386, 486 
OS/2, IBM·AT, 386, 486 
Apple Macintosb, SE 
386 MS-DOS PC, with MS-Wind""" 
DEC.~tion, UNIX SUN, Macintosb, 
Apollo, RP9000 
UNIX SUN, MS-DOS, IBM·PC .. NeXT 
UNIX. ULTIUX, SUN, MS-DOS, OS/2, IBM·PCs, 
IBM.RT, Macintosb, V AXNMS 

10<1"111 _rs ...... rocogalud Sm.II~lk's merits: The beoefits DC SmaUt.", for graphical user 
IDterf .... bave been r<>COgoiz.cd by industry leaden. For esample: 

IBM', VISual LAnguages for Interfaces group in the User Interface Institute of IBM 
T J WIlSOn Resc:arclJ Center has been involved in object-orientcd programming siooe 1983 
lad cum:otly bas a group of Smalltalk programmen involved in user interface research 

(OOPSLA 89J. 

Alan K.oy, Apple FclIow, Apple Computer, the driving visionary behind the Apple Usa and 
Macintosb graphic interfaces, bas publicly endoned SmaU~Ik/V as the SmaUtaik be """ 

(DI&I~lk 88J. 

Arthur'Aodenen is promoting the use DC SmaUtaik/V·PM as tbe object-orieotcd language of 
eboiee aDd bas developed several oommercial CASE tool packages using it [SCOOP 89J. 

MicroIOft Olairmao, Bill entes is publicly promoting Small~lk/V·PM as "the right way to 
deYcIop IPPJicltioDS Cor OS/2 and Preseo~tioo Manager. OS/2 PM is a tremendously rich 
environment which makes it inherently oompla. Small~IIcIV·PM renlO"CS that oomplcxity, 
and lets you ooooeotrate 00 writing great programs." [Dlgl~lk 89J. 

At leaSt one indusuy trade journal bas given Small~Ik/V·PM the bighest rating of all of the 
current development tools ror the notoriously oomplelt OS/2 Presen~tioo Manager (Rosdt 89J. 
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Tntining bolh ronnal and OD-the-job is impotttDL SmaIlt&ll hOI been ,...,."w""od .. lb< boll 
woy 10 learn objec:t-<>rieoled programming irrespc<:lNe or !be tinal implcmctlla .. Oft Ian -
it is • completely objed-or1enlod environment and doeJno, permit tbe ptOIJ1Immer any.. 10 
subven lbe 00 p.nodigm. Smaliialk also supporu malure libntrles rot b plat) code 
as a means or learning OOP_ Allhough SmaUlJIlk is now hein, adopled .. lhe 1111 ot'f 
computer JCiencc programming language in several urUYCt1ilica. mlny unh'Cn:jum lrot' 'lill 
offering C++ or Objective-C This approach bas been critJciz.cd because il ,Ms ,he .. ...senl ', • 
paucily or objOCl-<>rienled code rrom which 10 Jearn &ood p ..... i<a and docI bllJe Pf""""1 
,(udcntJ from subverting the language and cootinuinB 10 program in non~-orienlcd (¥h1Oft 

An aa:eplllble a1lernative appel" 10 be a palh thai bas been rollowed by some IarlC" companico. 
where periodie in bouse Smalltalk eou"'" arc offered and vidcc>-lapea and course .... Ieriob arc 
avaiJable ror sell' paced <raiDing periodically supplemenled by rceognUcd oulJide consullJlnU C.e. 
eonsullIIn .. with proven tnek rceords in delNering eommercial OOP buc:d app"calions~ Jr ,be 
pel$OOncl bave bad rormal eompu'er-tcienee or enginoering and sor.ware baek&<Ounds, IhlS 
approach eoupled with 00 'be job ""ining wilh c::xperieneed peBOnnel, appea.. 10 produce 
prodUCIive .... ul .. aller aboul 60 10 90 days. Evenlually in-bouse aperIS Will ernerJC Ihat ean play 
I crucial role in further supporting the internal ".a: PreJimin.ry results show Ihl' the: 'ot 
rdt'llnlng cxpt.rfc.nCCS' Ire lIot much dirreren( (bin willi -t.ndWonl'· .Ingul (Le.. as with ~ 
prognomm= Jeaming Fonnon, 10% immedillcly adap~ 8O\l(, vaciJllIe baeIc and rom ror a "'hilc, 
10% never adapl)_ This would argue ror a Dumber or small low visibility proJCCU (e." ntpM! 
prolOlypes and iD house lools ror IeSliog) 10 be initiaUy pursued in bouse, 10 develop a crilical 
mass with the proper skills, before large projects are actempted. 

There is aD unfounded rear of significant culture sbock associatod with convening C pl'OJl1Immc:n 
over 10 SmaULa1Ic prognomming and beDee ,be peroeption thai C+ + or Objective-<: should be used 
boc:ause they v.oouJd be less disruptive. Initial experience. seems to iodate thl' Ihis is not I well 
rounded eoncern and tbal in ra~ developen wilh a rew yea .. or C programming c:xperienee, 
readily adapled 10 !be 00 panodigm and SmalllalJc. Those who hive hId previous experience 
interfacing into C based windowing libraries quite readily adapt and appreciate the inteanlec:l 
nature of the SmaUtalk environment and window management system. 

Another misperoeption is thll SmalllIIlk is morc diffieuJl 10 Jearn IhaD lbe bybrid langulg",- In 
genera) thi'li is 001 true. Tbe syntu or SmalUalk Is much simpler t,ban C++. To be productiYe 
in any I.oguage, ooe mUSI Jearn !be Hbnories, The larger !be hbraries, lbe more potenlial c:xis .. 
ror sollwarc reuse and grealer reliability_ The SmaJJLa1Ic "JeamiDg eurve· musl be pUl io perspeetive 
against tbe equivalent training for C, where I programmer must learn an odilor, • gnphics kemet. 
• wiodowing system. I file interface system, a database system and numerous development and 
debugging lools. When analyzed in Ibis ligh~ Smalllllik is easier 10 learn Iban lbe hybrid lingua&<" 
bcc:ause all of the features are integrated into. commoo seamless environmenl Smalltallc has 
much larger libnorles (classes) than Ihe hybrid languages_ For eomparison, Smallllllk-SO supplies 
over 240 cia=, SmallllllkIV over 110 classes and Objective-<: 20 1080 classes. CunenOy C++ 
does not typically come 'With any standard class libraries. (It is dirrlCUlt to create a truly reusabk:. 
class in C++ bee:luse Ihe type cheelcing preven .. genenol classes, like .Iacks or anytbing.) The 

8 
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,.. ,tbe 'Ibranca,. lhc longer it ",ill tile \0 learn I language. Tberefore although C+ + is 
<1,,1_' be Itr •• ks,.. thaD m"IIl"Ik, I"'~ Is mIlCh less ksmcd [Au .. 89]. 

I ... 

A!.bou b C and ,II obp:I-onenled dialocts Ire cxpcc:ted 10 conlinue 10 be well suiled for lhe 
doc....-,.l allow 1cYC~ speed critiea~ embedded real-lime conlrol software, they have significanl 

uctMt • qWlhry and COli issues associaled with their use (or development of the large complex 
.oft.alC~.' J)'ItCmL Modem window based grapbical user interface environments although nOl 
canpuUllinn It)' anlcos.iYc, Ire relltiveJy oomplo sortware s)'Stems, even when supplied as libraries. 
A h k'YcJ JI"~&e ,uch 1$ Smalltalk compliments the computational aIDuence of current 

IWI>'IO"O pc:nonal compul ... for the rapid developmenl of robUSI complex graphical user 
loteti'1IX' bIICd ~c.ms. BccIuse or the trend (or increased software conlent related to buman 
iotetl'acc. Sm UIIJI: c:IJI be expected 10 fit well with many future product development 

''''1'''''''''''01<. 
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Animating Programs Using Smalltalk 

Ralph L. London IInd Robert A. Ouisbtrg 

ompuler Research L!lbof!llo1')' . Tektronix. Inc . 

An animation Idt can be 
Ided to explain how a 

program works by 
creating groph/col 

61lopmot8. animations, 
and movies cotTelated 

with the program '. 
actions. Such a facility 

could play an /mporlant 
role in program design, 

development. and 
testing. 

AugUlt 11165 

'T"te availability of loday's po .... er· 
.. (ul personal workstatk)ns WIth 

hiah·resolution bit-map dis~ays and 
potnun, de\'K:ts makes pouible the 
crcalion and display of dra .... ma.s con­
tlinin, • wide auonment of charac­
lers. fonts. icons, and ",ures. all of 
which can be conunuow.ly moved for 
realistic animallon. We are currently 
invoh'ed in usina such animation to 
visu:t1ize programs and algorithms by 
crealinl ,raphical snapshots and 
movies correlated wnn the proa,rams' 
actions. Such a facility 'We hope: will 
provide pro&/,ammers or computer 
wen In Jeneral with an understandin, 
of what the pro&rams do. how the)' 
work. and why they work. II also will 
Jive ~ VIsual feedback IS • pro­
gram and its pans are bcin, executed. 
Thil animatIOn system will provide 
pK:torW representations of those data 
structures. at the proper level of 
abstraction. which are used by a pro­
&f1lJll. Standard rqnsmtauoru of in­
ternal data structures. such as linked 
lisu or arrl)':Ii with separate index 
variables. are ofien insumcialt be­
cause the viewer must mentally 
transcribe such representations to the 
abstractions involved in the usc of 
those structures. We use the type of 
diagrams or 1ketches a proarammer 
draws al a desk or Wallboard. or the 
kinds of schematic fi,ures found in a 

proJraffimin, or data SU"\K1ures tc:xt; 

fortunately. \I.e do not need pictures 
\Iolth exqUilue shadinas that re<reate 
photOlf3.phs. Such fi,um chanle 10 

reflect the chanles dun", lhe uecu­
tion of the proJranl. People's ap­
parent tendency to understand by vi.su­
a1izinl spaually the abst.r3a.ions that 
constnute theinlenuon. or "mearun,." 
or a proanun i.s exploited by thes)~tem. 
For e.umple. onc vuualizc:s in two 
dimensions the trees or matrices ma­
rupulated by D proaram. whereas the 
code is aJwa)~ linear and ~uentlal. 

Value of animating programs 

There art numerous reasons fortak­
in,thisapproach. We expect such I fa­
dhty to be useful. probably even im­
portant, for dcsiafunl and dC'\lelopina 
programs. for debuuma them. for 
momtonnl thtir performance. for 
documtntina and describtna them. for 
shawin, them to COUealue:s and to 
technical and manastrial VlSIION. and 
for directing and IOteracuna WIth ext­
cuung programs. Funhmnore. such. 
facility shouJd serve to recall to the 
proa,ram's author and Olhen the tnnCf 
.... ·orkinas of a proaram .fter months 
of nonuse, pemuuma. for example. 
the enhancement and chanainl of the 
program. New project monben and 

-. 
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-. - bmcru from an",w"", - lbt_ .... hilkhlh<). 

III to< "«1"". "t bdkot lhal aru. 
lIWiOQlQs AI rolt '0 Piay 1ft Ihe Iritlsfc."l' 
of IctIInoqy from Ihe laborato<} 10 

of futtller de>dopm",1. 
nlmadon tw Iho ~t1 ustd fue_ 
(uU~ in Ihtcluvoom IS an Irnpor_ 

wt! 1l"aChifta f«hruqUt for COUIltS In 

plore mOrt: general lechniqu~ for Ihe 
imp1emenlalion or the animnlion kil . 
in panicular Ine use of conslrainl 
lanJuaaes 10 express and mainlain re­
lallons ~ .... een \'iews and Ihe objms 
!.hey represenl. We say more aboul this 
in Ihe final S«lion. 

like Balsa we emphasize CUSlom­
iZCd diagrams (or panicular Proarams 
and multiple views of Proatnms in ac. 
lion rather than jusigeneral_purpose, 
SIalic displays. We dirfer, hO\\C\'er, by 
emphasizins Ihe cre:uion of smOOfh 
Irnn.s:ilions becwt'en ,tUphical imaaes 

inUoJUC"IQr)' pro,rammin,. 1"0- Related work 
nlhms. "nd lUll 1fU\."1urn, and och~r 
artU,' Our ~'q)tnm,e suqesu Ihe 
usdulness of prO\ .dln, stude",s ~ilh 
an ··.atlim~1Of1 kU"-a $(t of tasily 
larned .nd cas.dy appl,C'd roou-and 

lin, them 10 ~ud) an algOrithm by 
ere,IIIft, 111InlIIIQIb Ihtm.sch-es, Ihw: 

~r'lIna -hallhey retl 10 be: 1m. 
portant 111 Ilk- aJronlhm. They ~ouJd 

Previous CJ(amples o( animaled pro­
&rims may be (OUnd in thuupt:rb(and 
COSily 10 creale) color SOund film Sort­tn, Out Sorting by Ronald Baecker: 
and in Ihe impressl\-'e and effcai\,t 

10 help \'ie ..... ers follow the changes 
ralher Ihan rely on updalts alone. We 
also lend 10 emphasize small e.'(ampl~ 
wilh more detail, an appropriate com­
plernenc 10 Ihe impressions aoined 
(rom Balsa'J larger e.'(amp~. Wc arc 
using an ObJ«H)nenl~ approach and 
a difrerenl prOBrnmmina en\;;ronment 
Ihal. amon, olher lhinas, pro\ilde 8 

bt I1*kd by fhe quality of Ihrlr am. 
milton and the numbn Orr'cttsofthe 
"',omhm Ih:1I arc shown We ""ere led 
fO Ihu "leT .nunalln. In al,omhm 
(lor findlnJ kmane common subst_ 
que-nco) Ihl' .'as and S(dJ IS 01- impor. 
'atK:C to • collt"qut. but about ~hlch 

From Ih~ animallon 
upmenc~. Wt oCqll/rM 

o rtal IInd~standing ollh~ 
olgorilhm :r k'Orkings: w~ 

l!XJ]«[ 10 opply rdOI W 
[«hn/qu~ to rt qllinmtnts, 
du/gns, lIJ1d s~ijiCQ[/o"s. 

14(" lhe 'nlmaJors, 1011l.,ly kntw \ery 

lillIe. hom Ihe 'nimallOn c'(j')n"iencr BrO'A n Uni",ersllY Al,Orilhm Simula. 
.. one. "'t acquired real understanding lor and Animator, Or Balsa, SOflwart 
of Ihe Illllonlhm's ~orkina.s. Finally, sY~lem by Brown and Scdgel%'ick,' 
~e e'l;pect 10 apply rd:ueej Or Jimilar which has ~n used for many c.'am. 
Itl:hniqut't 10 such objects as reqUire-- pl~. Addilional inslances, one as early 
menu, dt1i,ns. Spc:CinCIII005. and as 1966, may be found in Iheir di.scus. 
pan'ill prOjrams. sion and iU referenceJ. I Graphical 

COO\enien! viewin.s framework . final­
ly, OUr ~ork is aim~ primarily 81 in­
duslnaJ protOl)'Ping and simulation. 

Ocher .... ork rel:u~ 10 ours in\'oh es 
Pfoarams lhal can explain lheir o ..... n 
actions. We ole 1""0 reprCSCntau\-'eel(_ 
8mples. Fim. medical consullalll pro­
,rams. such as the Oi81laJis Therapy 
AdYisor, ha\'e an ability loe:l[plam .... hy 
8 qUeslion is beina asked, i.e., tuen­
IlaJly to explain the COnlcxl in ..... hleh 
fhe proaram is operautlg and \aJue of 
Ihe question ,; see also the rulMn. 
enled part of Loops.' Second, Ihe 
Smalhalk em'ironmenc can explllin 
\'ariable names or messa,e RImers in 
methods, aenerally by providin, a 
commenc, but sometimes also by Pro­
\ilding an expression to be eo.-aIU31ed in 
order to oblam funhcr informalion 
perhaps lhrouah a browser.' The ex­
planabons are 10lual although dia­
&rams and animalions are t:enllnly 
VOUible. Our emphasis I.!. on the taller 
1 ..... 0. Thcst can be realized by USina the 
faciullCS of lhe SmalhaJk Graphics Ker-
rid to produce araphjcaJ explanations. 

We r«OlrtJle [hal an effmi\'e ani· displays of Sialic pictures OfdalUlruc. 
mallon SyMem for UR b)' olhcrscan reo tures are pro\ilded by Ihe Incense s)'S. 
qui~ no mOre lhan an accqxable level Irm ofM)'O's. J COhSlraJ:nlS3.cis(action 
of Iher effort. much like II nO\'n in ThingLab~ Produced reslricted ant. 
~)"fem don. In order 10 achu~\'e Ihis malions in respon5t to user rC'qUCSIS 10 

ease of arumalJon. OUr ~'ork ha.s shooA.l1 update. figure. Simulaltons of har. 
Ihe IrnporlallCf of i~lallng as much as monic mQlion of a spring, of \'ehicular 
pos,wble lhe ,raphics code from lhe IIC· bridac:s, and of the usc o( an abacus 
lual code of the aJ,Onlhm and Ihus may be found in the EJea.ronic EnC)" 
prOmolm, lhe modulanly and pon!· dopedia work by WeyCf and Somma.' 
bllil)' oflhe araphics routines. SUllllble Anolher relaled project is Ihe Pro­
isoIaoon ~·as achlc\'cd wlIh a refine· arammina by Rehearsal World b)' 
men! of Smalhalk's Model·View. GoUld and Finur.* This JY~rm is a 
ConcroUer conslrucu, bUI we SOOn en- Smalhalk-ba.sed viSual programmina 
COuniered $Orne limllalions in this and desian en\'lronmenc in ~'hich 
mechod. Corulruct.in. animallons iJ _ "performers" can be mo\'ed around 
sli/l a proaramming-inlt:nsi\e lask. on "scages" and tauahl how 10 inler­
Thoe: limltJ have prompled us 10 ex- act by sendina "cu~"to one another. 

Moving 10 Smallialk 

Our original animations .... ere COn­
Slrucled usin, Pascal with character 

araphics and.some ability 10 hllhJiahl, 
shade, underline. and boIdf~. Ordi-



All)' compilers -at' used \to .thou! any 
1I>«Wmvfn>nm<n1 V"1'"pIoralory 
1ft aatUtt, tMK IUltmpU conflll1lro 
tbt ~ of atUmauon (If such ~crt 
nm:swy) but qwcktye.'C"poICd the 11m· 
katiom of ctwacrn- ,",plues and the 
n«d for arumatlOO sy~trm suppon. 

'llIPtt', II an InteflctlVe c:nviron· 
mmc tOf PucaJ, tw K\lcra.I C2p1bil· 
din of Inlrrnt to anlmallon. With 
' I pte's n'cnt monitor m«hanism, 
\ ambia an br marked SO that a van· 
ablt'·,pcrane procedure can bt e'(e· 
aned .... hen the ... anable is acccued or 
chln,ed. 11uJ provides a eapabtlit)' 
Slmlw to (he actl\'e values of Loops. 
While this faolity is onOl llS(:(ul, there 
art many ttmc:s ..... htn updalina at r3ch 
\arlJble ehanJe is inappropriate, and 
it lJ btUcr to upcble at SCICC1cd pomtJ 
'IIolth I mOrt ,Iobal outlook. Event 
monilonn. also allow' procedure· 
spccinr.: rOUtine! 10 be called al pro­
cedure entry and exit. These facilities 
of MaaPle would aDow I con\cnient 
scpatItion betw«n the proaram btm, 
anlmaled and the arunuuion code. It is 
nlll ntt't5S1ty to invokr animation 
codc:u, say, a proadurccallDJemain 
POUltJ not CQ\'n-cd by these c:lpabil. 
hies, i.e" to ha ... e an equivalent capa· 
bility 10 the inttrdtin, e\'entJ of Balsa. 
With just e\'ent monitorin, and the 
displl)'ln, o( the procedure call stack, 
the Magpie authors ..... ere able to con· 
SUU(1 intereslln, demonstrations and 
animallons o( chanlin, data struc· 
tures and computational proJTCSS. Ex· 
amples included Simple soninl. the 
to ..... el"S o( Hanoi. and binary $C3rth . 

While Maapit: could. in principle, 
ha\"e provided us access to (he same 
araphia it uses, it could not support 
the size o( proaranu we would soon 
develop. Ho ..... r ... cr. Smailialk ' is a 
powerful al(crnati\e that we are able to 
exploit to obtain a more ,eneral and 
productive proanmmina environment 
plus superior J"lphic:s and some S)'S-

'ScMa~ . .$maIItalk"'. _hid! • I fq.IMCrild 
~olx.-Corp 1II • .,.rr SmaiWl._ _ ... 
Auoust 1985 

Itm-supplicd animation lools.11 The 
Balsa dCSlgners, instead o( using a SY'· 
(ctn such asSmalltalk, "chose to build 
• tailored special·purpose system 
ImainJy becaweJtht real-time dynamo 
ics of the proarams in operation is of 
(undamental importance: we wert not 
prepared to pay the performance pen. 
alties inherent in a aeneral·purpose 
,ystem." I Wr do not criticize their 
choice; wert wr in thtlr position, we 
would likely ha\'e chosen similarly. 
However. we are (ortunate that our 
colleague Allen Wirls· Brock has writ · 
ten suitably fast Smalltalk inter· 
preters 11 executing on our Maanolia ' 

Obj«.t-()riemtd 
programming Itmels itself to 

program animation; sciJ/ 
additional lay-out information 

must be proulded or 
generated by default. 

and Tektronix 4404 workstations. t 
For lhe examples we have run so far, 
we ha .. e always b«n able to provKte 
animallons with appropriate real·time 
dynamic propenies. Indeed. at umes it 
is necessary to include proarammed 
delays .$0 that a viewer sees cnouah. 
And. o( course, the animations must 
often paUle until the user sianais 
(usually with the mouse) to proceed. 
We lhould nOle that while we have 
made e(fca.i\·e we of Smalltalk 111 our 
work, there is much more (or us to 
learn about itJ besI: and proper u.sc. o~ 
limal Jlyle. and efficient proaram 
orpniution techniques. We h8\'e nOt 
had to perform deep optimizations to 

.\tIpoIIII It .. laluaaIy dctottoped. """'_ . 
6IXOt f-u...~I""" ....... 
.... ...-, .. ' I , __ ~to. 

DEC \ ' .. lin ,.,. 

tFat bcw::.Iioiiiiab ror .. ~. _~ ... ~ 
""".No. .. s...I"'.p. I' v. ..... ~ .... dIIrccr." of _ ~".. 1*. ~. 
.... _.l*dIe~ 

pin the necessary speed; just avoiding 
obviow ineffioencies and poor prac­
tices have so (ar sufficed . 

Even withoul the graphics, Small· 
talk is auractive as a programminllan­
,uoge and environment (or animation. 
The philosophy and discipline of 
objcct-oriented proarammilll in cen· 
eraI, and Smalltalk in particular. lend 
thtnlSCl .. es quite 'Adl to the task of 
proaram animation. There is a certain 
naturalness in represtntinl I data 
structure as I KI(.oContamed objC'C1. 
and an algonthm workinaon that data 
structure as a method cxeC"Uted \\oith· 
inlupon thaI objca.: this approach has 
bcc:n 'IIoidely adv~ted. Funhcr, a dis· 
played representation o( that objca is 
naturally thouaht of as a "vicw" 
thereon. If such a teprestntatlon dy· 
namically rencas the c.ban&ina state of 
the object as it e\'olves durin, the exe· 
cution of the al,orithm. all the basic 
dements o( an arumation art In place. 
Slill •• JlUt deal of additional layout 
in(onnlltion must be provided or be 
generated by a de(ault procedure in or­
der for the view to display the objca 
state. The view must also mainwn 
some kind Oflpatlll map bef\Ioeen diJ. 
plly objectS III which the u.scr may 
point and thear correspondina pans In 

the object bona anunatcd. becau.sc the 
user must commurucate with the ext­
cutin, al,orithm through what is pre· 
SCflted. Even ~'thout user pDlnuflI. 
the spaual map l5 n«es:sM)' Just to dis· 
playa view tnCremcntally. 

Smalltalk for controlling views 

Smalltalk currently provides ..... hat is 
called the Mod~· Vkw-Q)ntroJ/~. or 
MVC. systctn that, though presently 
undocumolted in the thte'C Smallt.alk 
boob. pervadc:s the symm impkmc:n­
tatian of the: display interface. For ex­
ample, mouse menu mcssqcs, " ""hat· 
you·see· il-what-you-let" tCXl and 
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Moon 

~ 1. The t)'PlCal M~j.VI.w.con. 
ftoilef llruet'" 

Flgute 2. The . nlm. llon vl.wlng l irue. 
Iur. with lhe . dded plrt lcul., d lspl. y 
routine . nd clrcuitoul menu m.lsag. 
Pilling. 

code edit in., K',olled ~lOdo .... s. and 
process schedulin, arc .11 in the 
\fodd· View·Controlier plrldi,m. 
\1VC seemed 10 be I reasonable tool 
(or buildl11, an lrumllC'd view on algo­
nlhm ~ea",on, In Iny case, much 
may be learned (rom the exemse of 
lu,menun, '1 VC to accommodate 
anlmauon b)' di.sco\'trinl .... ~I strUc. 
lUres pro\~ nea:ssary 10 the task 

In the \1 VC sch~. the model may 
be any SmaUtalk. ob.t«1. A "'leW IS 
taken tbn-eon by creal,", panicular 
uwanccs of c1aues View and Con· 
troller and ronncct'"llhe pomlm as 
1110 .... '11 1M FiguR! I. The VIeW object 
takes care of such thinJS as framing. 
l.belin., scroll in •• borderina. and 
trarufonnations from local view coor· 
dmates to display coordinales. The 

.. 
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controller handles the moU5e menu in. 
terfact and window schedulin.: the set 
of all controllers is polled by the p~ 
cess scheduler to learn if any wmdow 
wants conlrol (typically when the 
mouse has bttn clicked WllhlO some 
window). It is of interest thai In Ihls 
structure, the modd has no direct 
polnlers back to any pan of the \iew. 
ina Structure. Rather. a modd' s view is 
accessed throuah the "dependency" 
struaure inherited from cLus Object. 
which is • list of aU \'~s open on an 
object. The model may then broadOlSl 
a me:ssaBe to all or Its dependents. 
wilhout .ny knowledge of how many 
or what !clOd of views may be open on 
the model. It is by usina this bullHn 
mechanism of SmalltaJk that we have 
implemented the equivaJem of Balsa's 

interestina evems and Loops' active 
\'nlues. The sequential activation of 
the v~·s in the dependcney list p~. 
dudes simultaneow updates or multi. 
pie views on a sinaJe object. 

The pnncipal refinement of this 
Siructure for anirnalton vtcv.'S is the ad. 
ditton of a panicula! display routine to 
the view; see Fiaure 2. ThIS ob,tea con. 
lams the specifIC methods (or creauna 
Ihe displayed imqe or the modd rtp­

rc.setllins its current Slale. Funher. the 
menu mcssaae recei\'er to whach the 
controller passes me:uaaes is no lon,er 
the conlroUer iudf as 1M mosc Sntem 
views. Rather. a menu message is fltSt 
passed to the display rouline that 
knows the spatial map bet .... 'ea1 Images 
and model pans, so that the user can 
5C:lect the pan 10 be changed and the 

COMPUTER 



y ~mt inrcrprtU the WCf'i It'­

bOn and Pwcs I mtSJ:t.ir on 10 lhe 

modcIlbdf. 
In our ImplanmtaaK>n the broad· 

or an Intt:fCsUnl:E\"CfII ' _nNn a 
mcdtod I)'picdJ)' u~n 1M (arm: 

Id( broIdcw! ,uf'Cble: 
"llh: flrUtrOhng£,enl 

01;, opcrItlon I,I. lIh: \'aJue 
on actor), 

Hrrt.1n 11U111'I«' of 1M class ' nleresl­
""E,Cftt illLmply I padqc lo bundle 
up -~tr ,"(armalion the display 
,OUIIft( may neN 10 perform Ihe up­
cb.lr cltexnlly. TOilUffi II Pfobeonto 
an ~11\eVaJuc one optnS an Anima-
honVwwonlo some irulaIk:e \'IJ1able. 
lAy t. "111'1," Ihe anlmilled structure. 
n.cn lrt\1cad of IIInMa 

t: - ncwVaJue 

_hen am,",", 10 lhal \-ariab~. one 
Slmpl), III ntes 

x chanred: (x - ncwValur), 

The "chanacd:" messaae. like the 
"bl'Olldcasl:" mc:uqe. broadcasu; 10 

all or .1:", dependent views thc message 
"UpciaIC: ," send'"a as an araument 
Ihe \'a)ue oflhc aui,nmenl slalcmenl. 
.... hlCh LJ newValue. Other synUl:< thai 
IS (\'cn less Intrusive has been sua' 
,csted 10 w. 

Fi,urt J shows, as an eumple of the 
'1nue of lCU\le \aJues, our aOimalion 
of Hunt and Sl}maruki's al,orilhm IJ 

to find the longest common subse· 
quence in 1 .... 0 strinas. The alaorilhm 
maintains a "threshold array" defined 
&$ ni, kJ - Ihe least J such lhat the 
11110 Slnnas A(I:O and 8(1 :j) have I 

rom man subsequence of Icnath k. 
(This ddinilion seems remarkably 
obscurt 10 ,"Iuilion, but Its meanina 
becomes much cie3J'er ""hen one is able 
to walch the snimaled array ,row.) In 
the animaled viC'" there art three dif-
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a bad e 

bad e f b 

A 

& ~ ~ 
V 

I Tlk • min J u . A(1;1) & B(1;J) " • ..,. comSubSeq. length k.l 

)0 J 10 10 10 10 10 10 

4 10 10 10 10 10 10 10 

2 • 10 10 10 10 10 10 

1 2 1 6 10 10 0 10 10 

1 2 3 • 7 '0 10 10 10 

1 2 3 6 7 10 10 10 10 

2 3 • 7 & 10 10 10 

1 2 3 4 7 a g 10 10 

2 3 4 7 8 g 10 10 

.t-. • 7 8 
1 7 8 g 

t 2 3 4 

4 • • 

tt 
Agura 3. Anlmallon 01 Hunl .nd Szymanski', . Igotithm for find ing k>nge.t 
common .ubsequences In two strings. The algorithm consists of • pair 01 
nes ted loops In which lhe Index J Inlo the second Siring scans to the lell In lhe 
string looking 'Ot'. malch with that character ~nled 10 by the Index " n the fi rs t 
Siring. If a match Is loond. the mltcMd PIIlr 01 characters video-reverus. and 
the value/ mlgr1ll" In a data lozenge from Its value window down to the growing 
threshold an"ay T(1,k/and!rom there to the linked list vktw at the bottom ollhe 
display, where It Is joined by Its matched I value. The longest linked list Ihrough 
s uch bonded Index pairs a llows the retriev.1 ol lhe common s ubsequence.ln' 
dlcated finally by video reversal . .. 
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fermc \1Nf Opa1 on the inda I: I~O 
Itt In tb( lorm of :slidin, POinlm thou 
anctiarc the J'OSIlion of index I in the 
(1t1I stna, and In the IfOWtn& malro:. 
and Ihclturd U I hlile vtew thai simply 
shows ,', \I.'ue_ The code of the 
aJaonrhm reOtcU none of lhis. but by 
lUI,nln, into i in [he manner de. 
scnbtod abo"", .11 of these: \I~WS on i 
lUlornahcaOy chan,e themselves. The 
updatcs Ire scquemial.,though simul. 
lancow upelalin, would be preferrtd. 

pictures of (he cemraJ data struaure 
musl be Ot3led and updated as [he 
execution of the aJgorilhm proceeds. If 
('nouah detrul$ are suppresstd in the 
laller Or if it u sufflCienlly differenr, 
One can vaew the araphicaJ representa. 
tion as an abmaa reprcstmation or 
Ihe inlcmal Stale. In many casc::s it is 
possible and appropriate 10 presen! 
JUSt graphical images with lillie or no 
1('''lual repreSenttHion; i.e .. cerlain 
neces.so.ry but 5tCOndnry inronnalio" 
is best omined 10 avoid distraction and 
cluner. It may be deSIrable for in. 
dividual viJual paru to have some 
capabilities built into them. for exam. 
pIe. the possibility lhat the wer point 
al them to let • menu of commanw 10 
the objecu reprc:st:nted. 

bol is deposiled. (If the buffer is full, 
Ihe monilor scnw Ihe lounge back (0 

the producer, which then video. 
reverses 10 indicate .Ihat il is blocked, 
awailina a notFullSianal: ancmpled 
consumplion from an cmply buffer 
causes anaJogous behavior.) Similarly. 
when Ihe poinlttS in the buffer ad. 
vance.lhcydososmOO(hly. Ukewise. 
in the lonaesl common subsequence 
animalion in Fiaure 3, values of the in­
dices are packaged into lozenaes. 
which then mfarnle from the index 
counters mlo the appropriale place m 
the arowina matrn .nd Ihen inlO 
linked lists: of PIl1I1 of indica. This e(. 
fca was produced emciendy not by 

Cre.llng Individual animations 

eftalin, an tnimalion slam by 
cod,", the: aJj:Onthm cleanly just as 
OOe *OUkf an unanimated \'mIDn. 

0/(01 ills b~/u"lo show smoolh transitions IHtk'Hn Slotu; viewers 
Q/'tl nOt Slanlnl k'h~n the new state /la.sha Onto thtl scr«n and they 

can see how the new image nJOllJI!d. 

There m.y be ad"anlqes in devdop­
in,.nd codin,the algOrithm logether 
with lIS 'nlmation, but we ha\'e not 
done this yd. In any case, \Ioe then 1M' 

SCrt a few appropriate broadcasu or 
InteresdngE .. enu and probes onlO Ac· 
11\'eValues, In Ihis way, much of the 
"lewin, structure, in panicular the An. 
im'IKlnView and AnimallonCOntrol. 
Itt, will be directly ponable from one 
'rumation to the n(')(t. ThiJ iJ impor. 
tant 1M .pplyinJ animation to .id in aJ. 
JOnlhm discovery because there is II 
ItneraJJy conmnt set of views, as, for 
example. in the open "Pancake Aip­
pm," problem.'f The entire viewing 
structure can ll.y intact because, with 
the minimaJ effon invoh·ed in insert. 
IMa probes and InlerestingEventJ, one 
can install. new .Igorithm 10 Jeoe what 
II does, just as one \Ioould instaJJ a nev.' 
slide under. microscope. 

What will be viev.'ed is a arnphicaJ 
representallon of the essentials of the 
aJaonlhm, which means one or more .. 

It is Imponant 10 prOvide before and 
after "jews of Pro&ram states, ell.her as 
two $tpante ,maaes or, better, as .n 
updated View with only Ihe ahered 
pam chanaed, i.e" wlthOUI the dis­
traction and COSt of a complete redis­
play. Often it is even betler 10 5how 
smOOlh lraruilions between states; if a 
Slructure chanaes and the new state 
simply flashes onlO the .screen, the 
viewer is typically Startled .nd cannoc 
see immedialely without some mental 
effort how the new image (could have) 
~ol\-'Cd from the previous one. For ex. 
ample, in the anlnlalion of the Pr~ 
ducer-Con5umer.RinaBuffer system 
in Fiaure 4, productIOn of. data ele­
ment is shown by the creatton ofa cir. 
cular data lounae.· a black dot With a 
.symbo! pnnted in il. which mo"·cs 
smoothly from the produ~ to the 
morulor and then down into the nexl 
open slot m the buffer where the sym. 

."'tId! wr AI ., "\'~"f." door 10 • ~ _ . 

(he usuat arumation lechruque of re­
dra"",nllhe updated diJplayoff.screen 
.nd then rediJpla)"in.&:, but rather by 
crollnl' class called Lozenae, 

Each mstallCC of class L.ozena:e con. 
talns intemally 1"'0 forms (bit maps), 
one of "hich is an inslanct: of das.s 
OpaqueForm thai shows whal the 
Ioztnae looks like. The other stores the 
backaround that the Iottnae, ..... hen 
displayed, conceals. A IoWlae also 
keeps track of itJ current pcKition and 
keeps a pomter to Its "re(erent." the 
objca bema ammaled of which the 
loztnae is the &f3phlcal irnqe, so Ihal 
the actuaJ data object may be aa:essed 
throuah the POSition of its araphic:aJ 
representallon. Upon ret.'C!pc. of the 
messqe "mo\-'eTo: newPosiuon" the 
Iozenae divides the ' ·ector from iLS cur. 
rent position to lhe nev. POSitIOn into 
len pans and SUcctss.J,,·ely displ.ys 
itself alona the path while restonnJ the 
backaround. This ~pctiaJ treatment of 
mOvina clements cC$ults from the 
riJldilY of subview placement wittUn 
MVC. In II more Uniform tretlrn(nl, 
one would like to think of such movut& 
lozenges IS views on the data elcnent 
in the al&omhm ... hose PGSIllon is con. 
Strained to COI'Tespond in some ...... y (0 

"here the dalum is stored, i.e., in a 
"pon" in the prodUCer or monrlor. 
This .pproach is beina explored In the 
dC"\"elopment of the arumauon kit. 
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Tbc parucuLu form of tht animal· 
IllI routine may bt bUilt directly from 
malhalk prlmlll\~ and supplied 

mcthoch. or It rna)' bt built from a li· 
brary of componentS of sliders. data 
Iozrnacs. pc'lmtet1. etC'. O&o .... erina. 
ltl\'oklRl. com~mi. modifyina. and 
p.ckalln, components to mctt our u· 
aa needs arc no diffe:rem from ocher 
Pfo&rammlll, applications. We: began 
to aca1mulatc eJ(per1e:nce: and "rcus· 
able" components applicable In later 
~umplcs from one examplc. ThO( in­
dude the rnO .... '"1 lozcnies. expanding 
and contractlna rcaions. Ammallon· 
Vicw and ArumalionComrollcr. and 
lUC1' control of an aromation. 

Vie",m can intermix sinl'e·step­
PI", !.hrouah the C\'enu of an anima· 
tlOn and proceed,", Without pau~ by 
USU1, the mouse as "brake and ae· 
cdcr.uor pcdab." We bave not yet 
u.5Cd YI~$ of code oonl CX«Uled. for 
e:umplc. smale·steppma throulb 
5Calcmcnts. because: we beliC\e suth 
views arc usually unnCCC$$lt)'. There 
arc even e.umplcs of recursiye pro­
anms that can be animated effecti\'ely 
"'I!.hout explicitly showing the recur· 
51ye control stack. Thus. in quick.son. 
say, each recursio,.e call shows (ani· 
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Figure 4. The P(oducer.consumer·RI~Buller e)l' 
ample. The moving lozenges are aught In , top­
action: A hal been removed from the Ironl 01 the 
queue and I, on II, way to the consumer through 
the monitor. and E Is on its way 10 the newly 
avanable " ot (denoled by 11) at lhe blc:k of the 
queue . Tha fronl pointer and Ih. currently 
unlVlllabl. cell have .tready moved. but the back 
polntar hal yet 10 move. 

mates) only Ihe subarray in\'ol\'ed in 
thai caU. bUllhcsubarrayLS po1auontd 
properly with respect to the full array. 
Panin, and trtc ",alkina al,omhms 
can be arumated similarly. 

IntCTCSCina C\'eJ1U arc clostly rtlated 
to 1R\'3riam IWCnions. It should not 
be tOO surprlSlRa that the places 10 put 
imcrestinl e\'enu include the begm· 
nma and cndina of a routine. tbe ini· 
tlBlizalion and e:<it of a loop, and at 
least one POlRt Wllhtn C\'ery loop. 
Thus. illurnsoUllhallRlacs.m, e\'cm 
locations arc essentially Ihe same loca· 
Lions at .... hieh one mlJhI place m\-art­
ant asscnions. "'ere one 10 \'erify an 
aJaonthm to be comlStcnl "'lth ItS 

specificauons. We an thtnk of ani· 
matlnga prOlJ1lm as iIIustrauna Iheln· 
\'ar1anU and how they arc mamlamed. 
The dcsi&n of an animation is often In· 
nuenced by consldcnnllhe task to be 
one: of mamwnma the \'isual tnyan· 
anlS, especially those bct .... 'cctl the in· 
ternal concrete rcpr~ntauon of the 
proaram state and lIS Jl'l.phlcal repre­
sentation. In turn. procram dC\'elop­
mern is ~implified when proarammcrs 
sec new ways to matnUlln prOlJ1lm tn· 
variants. This happened to us in a 
small way. which we describe tn the 

Dulch national fla, example in thc 
next secuon. 

As we proceeded in trtatin, the 
animation. we usuallytncountcrcd the 
cxpc:rimentaJ nalure of the prOCN. 
What smncd 10 bt a aood approach 
.... ould need to be sub~antiall>' modi· 
fied because: the animation .... auld rc­
o,.callcss than .... e c.q>cCted or b«alUe 
JUSt serina the animation .... ould su,· 
lest better ways to us or to other 
viC'Aers. Bcc:ause: Ihe purpose of an 
ammalion is 10 usc visual cues to com· 
municate an undcrstanchna of a pro­
CC$S. II must nccc:ssarily imolve com· 
plex ps)'cboIDglcaJ and aesthetic issues, 
includinl whether the ammalion ae· 
atcs the: Illusion of ""hat it purporu 10 
represent. Such issues arc not easily 
delineated, orc\'cn .... ell undcntood. so 
IhlS c,xpl:nmcntai and il«3me ap­
proach seems una\'oidable for now, 
Style. taste. and anistic crC3llo,.ny arc 
all Important here forthc:samc: reasons 
th:u some user interfaces are bata 
than ochen. 

Ammations can, of course. mislead 
users, or outriJht lie, about the wor ... • 
inas of an algorithm. What an anima· 
tion should or mighlshow may depend 
on the ~~pectcd audience. A vwtor 
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OOI:C ret us If.c hid any ~ic-ru 
itb Doll'" men. In parucubr. ~er(' 

lhrn conc:rpu obvicM.q to ~pcnmced 
PI' ammen that Ikn lea lurpnsmaly 
mlSuDdcnaood' 8caUK our aucbcnce 
tw bmI mcran proarammrrs and be­
ClUK wrusually t.ll'edabout Ihcalao-­
rithm dW'UtI its lAlm&llon. ~c hl'rc 
had DO tOflI.'tpCWLI pro~lcnu. Ho~ ­
C\"Cf. U1 an arumAOOn of a btnary $C3I'th 
.tr.C' the numbrr bem, souJht ~ a.s 
tuJ;hli hlrd IUtl\(' ume (and [he active 
fqKlf1 or the JtII'th ~ould shnnk al 
each iter.lton). one nO"lCe vie .... er did 

• In df«t. "")'OU already know 
.here the number lS. ~hy are you d0-

tbe' buwy search al aU'" 

Further .. ample. 

One of the fim examples we did in 
SmaUtl1k ""&I • replication of the 
tdcc1ton son that is done 10 the movie 
Sorttlll Oul Sonml: the elements of 
the ...-ray of inlqm bORJ SOr1ed were 
repracnled IJ a row of varym.-Ienph 
.helts. each propt)r1ionaJ in lenath to 
the clcnent and each extendiRJ up­
w'ard from a common horizontal line. 
Al two elementS (slickJ) .... ere com· 
JWtd. they ,",,'ere hiahliJhted. At the 
md of each search. the tYlO elements to 
be sv.'Ipped were hiJhIiJhted. Then the 
tWO elmlents would simply rt3ppear in 
thor new locations. Later we made the 
two clementS mO\'e eonunuously (rom 
onainaJ to new locations. This was aU 
acc:ompli\hed stra1&tu(orwardJy with 
mcssa.aes to the: ...-ray object to invoke 
iu methods (ordupla)'lRJ it.sclfand its 
elements In this representation: no 
MVC mccluuu1m was involved. 

WeaJso arumaled an abstract queue 
or rin, buffer and later included It. as 
noted above and in Fiaure 4. as a sub­
part of the Produc:c:r-Consumer-Rina­
Buffer system. The intema1 represen­
tation is an amy made circular by 
modular arithmetic with POinters to 
rt'prescnt the (ront and back of the 
queue. The JTl.phica.l representation .. 
,. 

was t .. ·o concnllric artles with the 
space in between divided into slots for 
dements. As we queued elements into 
this arcular structure and removed 
dttnmts from it. the two pomters con· 
unuously m()\'ed inside the smaller cir· 
cleo To distinguish the full and empty 
queues internally. one amy location 
Will always unavailable: this changina 
bcation was speda1ly identified. From 

Ont 0/ OUT first examplu 
was Q sort 0/ an Q"a), 0/ 

integm represented as a row 0/ 
sticks 0/ varying Imgth: as two 
l'/ements Wtrt compared, Ihe)' 

k't're highlighted. 

this arumatioo lIo'e 110 ere able to answer 
the question. "When. if ever. do the 
two pointm cross?" Our prior ex· 
perience in severaJ contexts with this 
well·mown data structure had not 
provided the correa ans~er. 

The Dutch national naa problem IJ 

kd to an interestina suies of anima· 
tions. The problem may be brieny 
Stated as follows: For a row of buck· 
eu. each containina one pebble whose 
color is either red. white. or blue. rc­
arranae the pebbles in the order of the 
Dutch national flaa.i.e., nut the reds. 
then the whites. and fina1ly the blue 
pebbles (one. two. or allthret ~ors 
may be absent). Only swaps involvina 
twO pebbles arc permitted. the color of 
each pebble may be: ooemuned only 
once. and only a very limited amount 
of memory is available. independent 
of the number of buckcu. so that no 
arrays may be: U5ed by the proaram 
(beyond the bueket array. of course). 
A reader who has not seen this prob­
lem before may wish to auack it before 
reading the next parqraph. It is not 

necessary to sec Dijlcstra's discussion 
and solution to undentand lhe anima· 
tion o(trus example, but his discussion 
is iIIuminatina. 

The animations (see Fiaure S) repre­
sent the buckets and pebbles as a naa 

of adjac:c:nt. verticaJ stripes in three 
shades: gray. wh.ite. and black. Under· 
neath the n3J is a band that represents 
the four different zones of pebbles: es­
tablished red. established wh.ite, estab­
lished blue. and as yet uninspected. 
There are pointers that show the 
boundaries of each of the three estab­
lished %ones_ The band of zones and 
the pointer! together iUusltate the in· 
variant that is the key to discoverina 
the solution and to understanding it. 
There is an "eye" icon that shows a 
pebble having its color determined, 
after which the correspondina stripe 
contains a "punch mark" to indicate 
the expiration of the one-ume capabili­
ty. Those stripes about to be swapped 
are designated by flashing a smaU por­
tion of the stripes. Over the time we 
developed the senes of animations. 
each of the four chlnglRJ pa.ru (e)'t 

kx:ations. swaps. pointer chanaes. and 
zone expansions) went from instan­
taneous change to smooth motion. In 
p3r1kular. the smooth swaps or two 
stripes ~ere nrst accomplished bywip­
ina. i.e .. aradually and simuha.ncously 
ove:rwritina (a small vertical Stripe of) 
the color of each with the color o( the 
other. Later lIoe chanaed with little e(­
fon the swapplOa to be: done with 
smOOthly moving loz.enges. We first 
used four Steps: each stripe le:avina its 
orijJnaJ position. stoppilll, and then 
aOIRJ to its rmal position. This was 
next chan&cd to three steps that . as it 
turns OUt. doseiy resemble a three­
Statement swap with one temporary. 
To avoid J,hostJy images when mavina 
• white stripe. we then added a border 
to each stripe oflhe flas. Most impor­
tantly. watchi.na the animations led to 
• simple. new way (at least to us) (or 
a"""",, ,he pmiousIy Imown. llllllCC· 

essary swaps in the case of. for exam­
ple, an aD-«d Ilaa· The new Prosnm. 
wtuc:h may be vlcv.-ed as an opumiza· 
tion Ul the c:ase of sec:in& and then plac. 
ina a red pebble. is d.iffere:nt (rom the 
proarom ,kClched by DiJkstr.l r", deal. 
ina with the unnecessary red S'A'8ps. The 
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new prtlIf1IT1 results (rom addin, to the 
ona.naJ _ and. occordu1alY. ~ 
almost Immediately ammated. The 
mearunJ of the "as yet uninspected" 
tone must now lJl(.lude "or not )'C1 

plaad in an e5tablilhcd zone." In aD 
Instanc:a. It is clear from the anima­
tions that no pebble is color-deter­
mined morc than once, It fact that can 
be made clear by various other con­
siderations. 

FinaU),. because a colleague asked 
us why y,c had not.nim.ted the eight 
qUC'ClU problem.· we soon ammated a 
prop-&m dom, backtrack search. Sys­
ternallcally, Quuns moved conlin· 
uously (rom one squart to the no::t: if Il 
queen ",,'as unsafe, a ray y,-as dra"'11 
between the queen and onc of its at­
tackers. While watchin, it •• visilina 
coUcaauc essentially noced, "So that's 
how bld,trlckin, works (or Ute eight 
queens problem." 

T he field of prosram animatKm is 
an appliC3l1on arQ involving a 

..... ....,. .... DIll_ C'- boIrd 10 M",-
1ft _r ,.. ,..curr 
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wide ranac of issues from the technical 
to the psycholOlical and the rich inter­
face bct",ecn the ' .... 0. Since Smalltalk 
is an open system desianed WIth much 
,"enlion to tht human intt'l'face and 
.... ;th many tlepnt facilities at our dis-­
posal (modifiablt, If n«eSSaIY), it 15 
nOl surpnsinalhat y,.t h .... t bten ablt 
to usc it sueces.sfully in our exploratory 
and prototypma rCKaIth. Whal. m· 
couragc:s us. ho .... eo.·t'I'. is tht rdative 
cast of prototypma In spitt of our not 
bC'tna SmaJltaik expc:rtS. Wt art also 
encouraged by "'Icv.en .. ho suuested 
new uses for arumatlon IR their own 
\\oor\.;. for example, intcractlvt com­
pilcn. applic:auon acctierators. distrib­
uttd objtt't manaccrs. and dynanuc 
provammina ianauaae enwonmc:nts 
such as Proloa. We ha\'e disoo\'ercd 
that the number of potential applica­
tions. disamlons. and issues to which 
animation may contnbute is far broad­
tt than we iRlliaJly iJna&ined. 

So far Wt have relied on tht anima­
tions Ihemseivc:s and our own ... ttbal 
remarks to oplain the symbolisms 
onploytd and tht meanift&5 of the 

Figure 5. The Dutch national flag 
example wUh a "lew Irom the 
new prOQfam In mldlwap. Hav· 
Ing seen a red (g~y) pebble 
(Which Is partially visible In this 
view) above the white arrow, tM 
eye cheCks lhe pebble aboYethe 
red arrow. II finds a blue (bLKk) 
pebble. In this CI.e, It II necel' 
PlY to swap the two pebbles. 
Had the eye found. red Pfbb'e. 
no swap would be m.se. 

icons. ObvlouslY .• view could incor­
porate explanatory messqes or run­
runa commentary, \lSina text or even 
auditory messa&CS or mus.icaJ accom­
paniment. An espccialJy intri&uina 
techniqut to auament c:xplanations 
would be: to incorporalt Ward Cun· 
ninaharn's set of iconic "robou." 
which can be: tauJht 10 delh,tt and 
commtnt on a demonstration." 

In tht COUl"$c of creatina these 
animations. dir«tions fOf rurther 
research have become: evident. The 
planned animation kit must include a 
library or reusable and connectable 
ammation routines for creatina new 
\iews. It is impossible to anticipate 
e'\I'trJ Deed. or course, buttheaoalis to 
allow the v\eWS to be composed m 
variOUS ways and to be used as tem­
plates ror morespecirlC uses ifnccd bC'. 
in k«PIf1l wlth much SmaDtalk pro­
pamminapracticc. WernustalsosptC­
ify and abstract tht efftcts of combin­
ing movable ptctorial dm'lCflu as 'Adl 
as their potential interactions and in­
terftmlCCS. As an cxamplt of a kit 
a>mponcnl, RId1atd w.."... has paclt-

•• 
• 



• method rIX "",nna 

....... 01>)«11 -t aIot>a 
nx s-tJu IN)' wer· 

IiI!C ad nerd DOC contaJ.n the &am~ - -." II Is cbt 1lW. dinCI.ppliauon of 
"" 'I~ \ .c __ och<m< .. 
.. ..,. Wsu un be quh~ ....... ard. 
piIIti(W&r _ben 'Io( IU(IIlpt to com­
btne. number 01 up 11110 one corn­
pouIc II or tuml'le. rC\:um\'c send­
n, (If th~ m 1<" "dlsplayVI~" 

tbrOUlh the sub'. ~ tuerard1)' causes 

oon$, Ordetin, the interactions of 
thee frqmenu in the network of ob­
)ca.s and corutraulU. and then actually 
comptlin, detailed update and lraph­
ia code arc the jobs of constraint 
Jltuf,cuon a1,orithms. A constraint 
H'~Cf11 could suppon the ,",phol 
u)'1e of a novICe proarammin, inter­
face th:u one cxpectS from a kit in 
which new objecu arc con.structed 
from the buildinl blocks provided. 
Thin,Lab's ability to compile incre­
mentally new methods in rC$pon.sc to 

If " an InL~ftilQtln( the UM 0/ ronstralntlanguages b«DtlSe Ih~JI 
tqWIS rt/Dtlons Q( a hlfh tn~1 0/ abstrac.tion while /ragmmrs 0/ code 

maintain those rtlot;ons, 

1M d!s:pla) 10 redraw luelf repealed!)' 
upon 1M lCuv.uon of. \Io1l'ldow. To 
1''CId redr,"'IlI.' spedal case mUil be 
mack a' IOCDC r.d In the hlC'rarchy to 
OJI orf the tecursion.) The arranae-
mtnt of model. "tCW. controller •• nd 
auocialcd diiplay routine shown '" 
flrure 2 ~ tOO compleJ(. A cleaner 
III1pkmmtallOn might be aehiC'o'ed by 
the .ubsumpuon of VlCW. contrOller. 
and duplay rouun~ 1010 a sina1e 
mediaun, object .. hose function is to 
m&IIHIlO cONattnC)' bet .. ccn the ob­
ICCl Vl(Voted and the pphkal Unlge, 
ho .. ev~r Ihll consislency may be 
spcofied. AI least the functionality of 
th~ US(IIciated dISPlay rouun~ miab! be 
bdter achtC\ed by d~jnct subclasses 
of A.rumauon\'ICVo'" SimpiJrteations by 
such data abiCraction should racilitate 
composition of nu~ \;cvo"s. 

To .ddress lhe:sc problem.s. we art 
currently invcsuptina the use or con­
stralftU to specify and maintain rela· 
uons bet .. een v;cws and their r~fer· 
enls. A constralnl language such as 
thai supponed in ThingLab is atuac­
u\o~ for a numbn of reasons. Con­
straints exprc15 rel31ions at a high level 
of aMlraction while containin, rrag· 
menlS of code 10 maintain those rell· 
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user reques:ts supplies the pot.entiaJ to 
download a sel of such compiled 
methods as a "pac:k.aacd" animation 
that may run indepmd~ntly from the 
constraint specification and satafac­
lion mechanism. Common dirncultics 
thai arise in constraint s)'ltms are not 
c,~pttled in aromation .sInCC here con­
straint networks ha .. e I low branchin, 
factor and generally lack. circular 
depend~nci~s amon, conSlrain~d 
values. (For example. I constraint that 
• view be consist~nt with th~ Ihina it 
represents rna)" alwa)'~ be satisfied if 
we update the view. which in tum 
would rarely chanae lhe mode!.) 

Thus our fint implement.lllon or an 
animation kit ~ill be built on tOP of 
ThUl,Lab. A fundame:ntal reqUired 
C(I~nsion to current constraant lan­
luaaes is a mechanism for «abna tem-
poral constraints. All existin, con-
5lraant systems specify consistency of 
static state, but time requites special 
treaunmt and cannot simply be in­
serted as another variable 1ft a con­
straint relation. This is w,dy due: to 
the disjunction between the tnhcrcntly 
discret~. lime-slice character of our 
di.splay hardware and the kincb of con­
tinuum statcmcnll one would like to 

make in describin, smooth motion 
and rates or change, e.g .• u :: dxldt. 
In a discrete approximation, during 
the evolution from one: consistent state 
to the next. some consuuinu arc ex­
plicitly not satisfied. and tht constraint 
satisfier must not insist that they be lest 
the computation boa do~n in error 
relaxation. Funhermore, constraints 
like to salisfy themselves in any possi­
ble dir«lion dtpcndins on compula· 
Donal circumstanct:S. but lime marches 
on ralher unidirectionally, and it 
would not do to have a constraint set 
th~ clock back to some larlt: nepth"e 
number jWt because: it did nOI know 
how to resolv~ olhe("\o\oise the incon­
sistency. In the system currently betn, 
implemented II th~ temporal specifica· 
hon is abstracted from the: constraUlcd 
object and placed into the above-men­
tioned "mediating object." ..,hich 
maintains vcmons and histories of the 
COf\StralRed object and owns the: tem­
poral QOIlStrainu Ih:lt relat( one \fUSIon 

to the: next. This mediator also Q\\ollS the 
constratnU bf:t;A."ccn view objCCU and 
th~ current vmion's Slate. Since TIuna­
Lab constraints between ob,tC'ClS art 
alwaY' owned by a mUlual ancestOf. 
this mediator is not implemented as a 
filter bdwccn view and object but as a 
parent of both that manages vmions 
and doc,", and owns all the rde\.Ut 
constraints amona them. 0 
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Simon 
Functional Description and Architectural Design 

Revision 1 

R.J. Steige, 

ParcPlace Systems 
DRAFT. CONFIDENTIAL, NOT FOR DISTRIBUTION 

1. Introduction 

1.1. Purpose 

This documem defines the functionality and archRedural design of a SIMPLE demo prototype 
called Simon. 

1.2. Related Documents 

(1( StMPLE Product Requirement Specification A. Steiger, March 20, 1987 

(2( LOOM - La'lle Object-OnentOO Memory fo, Smat#a/k-80 Systems Ted Kaehler, Glenn 
Krasner. in Smallta/k-BO: Bits of History, Words 01 AdVice, Glenn Krasner, ed. 

1.3. Revision History 

(1(lIrsl draH. 

2. Overview 

2.1 . Simon's Purpose 

Simon Is Intended to be an experimental testbed to belter underslard the funalonal. lechncal. 
and perfonnance Issues Involved in integrallng database and Sma/halk technology. 

There are two broad motivations for such an integration (see reference (1 D. The first is to pro­
vide a bener information management application development and delivery environment to 
organizations using existing convnercial databases, leveraging off 01 Smaltlalk's general benefits 
- portability, produClivlty , powerlul and consistent user Interlaces. rich lunctiona'ty. and applica­
lion integration, The second is to augment SmalUalk's transient, private objects with persistent , 
sharable objects, In both cases, there is a strong requirement that the resutling capability be 
Simple to apply and easy to use. 

2.2. Phasing 

It is expected that Simon will evotve through several phases. The overall strategy is to build 
each phase on top of the previous one, minimizing unnecessary future rewo~ where possible 
through principled design. 
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ThIs doeumert describes the initial version called Simon- 1 in considerable detail, and anlici­
pal" 15 successor Smon-2 In some of the design choices. 
Stmon-n prvnary focus is on achieving: 

fA) If'lnsparsflCy- relalNely seamless integration of Smalllalk and a relational database, result­
Ing in radICal application sirrplificatlon fe/aUve to non-transparent systems. through the fol­
lowIng means: 

(1) obJect--onented representation - data Is represented in the form of SmaUtalk objects 
thaI are accessed unifonnly through message-passing, as oPPOSed to tuples or some 
olher non-obi_CI model: 

(2) location Independence and automatic data migration - objects may be referenced 
Independently 01 their Iocalion, and may be accessed without having 10 explicitly 
locale and transpon them; the control 01 data migration between Smalltalk and the 
database Is thereby rendered as invisible to Ihe casual user as feasible: 

(3) automatic object storage - under fainy general circumstances, objects are automati­
cally stored In the database when doing so Is required to maintain consistency; 

/t& 

(4) semi-automatic selection of represenration - dass definitions for SmaUtalk objects 
and table definitions of associated database records may be automatically generated / 
from each other, whh intelligent defau~ing; ( 

(5) flexible representation - more knowledgeable users may override default representa1 \ 
Uon choices In order to tune the system's performance; 

(8) Information integrity - basic data integrity guarantees via value constraints and concurrencY 
conl,"I. : - --r ~ - ;l(-

(e) end-user famlllan'ty . user intenaces oriented toward a Iook-and-feel famil/ar to current f 
commercial databases users: and 

(0) portability· the power of underlying databases Is brought out in a generic (database­
Independent) form, and which applies equaUy well to acceSSing objects residing within the 

~maHtark image or the database. -:::l 

~n'2'S pciw,ary primary focus is on extending Simon-1 by achieving: ~ 
(E) sharing- alloWing multiple users to interactively and safely share the same set of objects, \\ 

inctuding providing update coordination and IlOtificatiol): 

(F) conceptual modeling - providing a higher-level design and query capabUity based on the 
Entity.Relationship model; 

(G) relational completeness - providing views, joins, and derived attributes, thereby matching 
or exceeding the power of Sal as a qusry and application language; 

(H) user Interface kits - providing a more powerful and flexible set of building blocks for 
developing domain-specific applications and tools: 

(I) graphical design aids - providing direct manipulation of schemas; 

(J) persistent storage reclamation - extending garbage collection to the database: and 

(K) schema evolution - integrating classes and change management into the database, 
securely linking persistent objects 10 their definitions. 

As critical as it is, developing sharing is defer~ to Simon·2 because (a) the under1ying DBMS 
doesn't support it, and (b) sharing relies heavily on the mors fundamental transaction and per­
sistence management mechanisms in Simon-1 . 

We use the generic term "Simon" when describing an aspect of the whole Iramework, and a 
more specific version name "Simon·j" when discussing an aspect specifjc to that version. 
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2.3. Rtml'nf"g Document Structure 

s.c:.on 3 desc:rt)es S.,.",,.s hlgh-Ievel configuration and archlteClure. 

Sec:bon .. descrbes the PerslSlent Object Manager's functionality as seen by applications. 

s.ct.on 5 descrbes Smon"s apphcatlon functionality as seen by end-users. 

5_ e desctibes the design of the Perslslent Ob/eCl Manager. 

s.c:.on 7 desctibes the design of the Server Intertace Module . 

.kJne 16. 1987 
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3. Simon ArehllOC' Urt 

3. I. Major Suosysrems 

F'OUrt 1 .. I block diagram 01 Simon's overall configuration. Simon comprises four major sub. 
SyJI'" 

I/PPbCaIIDIJS • rools and utilities fo r manipulating persislenr and trans/enl objects; 

P'lSlSltmt Ob;8Ct Mafl8gsf - adds database--independent persistent object capabiHtles to 
,he basic Smam.ik .y.'em; 

SlflItJf Interface Modules (SIMs) - translate between the generk: persistent obJect and 
operation wortd, and various servers' (typically very differen!) data and operation work:ls; 
tach type of server has its own SIM; and 

S'fV8rs - underlying storage subsystems (DBMSs. file systems. elc.). 

Figure 2 Is a more detailed block diagram lllustraling the managers whhin each of Ihe above 
subsystems, and their consthuent classes. 

3.2. System Conflgurallon Phasing 

Simon Is wnllen primarily as an ordinary SmaJ~alk program. plus a few user primitives linked Inro 
rhe \1M 

SUTxm-, runs in Smalltalk-80 Version 2.2, Sun Release 1.1. II accommodates only a single 
server type, Sun Oracle. Version 5,020.4. Since this version of Oracle supports Iocal-only 
access. II canl provide sharing, and because It rruSI run on the same workstation as the 
Smalttalk Image, considerable swapping overhead between the two systems is 10 be expected. 
The Interlace 10 the Persistent Objeci Manager will be formalized In this phase. 

Simon-2 Is expected to also have only a single server, Sun Oracle Version 5.1. Since this ver­
sion provides remote access from multiple worlo;stations, it can support sharing, and can be run 
on a central server, Ihereby reducing user Worlo;staUon swapplrYJ overhead. 

Simon-3 Is expected 10 add at least one other kind of server and associated SIM. It is at this 
stage that 10rmaliZing a generk SIM Interlace Is 10 be undertaken. 

In general, SIMs consist of two parts, one running in the Smalltalk Virtual Image. the other a set 
01 user primitives that In tum calilunctions In the server's funetton library . 

.AlMe 16 1987 
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. 5 . 

4. "',.,.lIn, ObIIC! Manager Functlona ll,y 

T'hiI Me'., 'iI1IIJ the cs.em (appI"lCalion) Interlace 10 Simon's cenlral subsystem, the Per­re 00. MiII<IgIr 

4 ,. s.m nile Modelling 

A COte ISPtCf 01 Simon Is the eXlenskm 01 SmaUlalk object semantics 10 deal with the necessity 
10 hlv. "",lIlpIt repl'85entdlves and muhlple represemalions 0' individual conceptual objects, 
Thit HaIOlt contains a descnplion of Ihese semantic extensions as visible to elien! applications. 
s.tnon usn Hmantic modelling 10 provide the foUowing services: 

• IUlomaUcaly generallng database and class designs trom each olher; 

• IUlomalcaly propagating changes to class designs to Ihe associated database des~ns : 
• IUlomaucaly generating operahons Ihal map between Smalttalk and server dala represen­

tatiOlll; 

.UfomaUcafy moddylng an instances of a modified class to keep Ihem In synchronism with 
,he class; 

.nlolClng da'a Irnegnty constrain,s; and 

provdlf"9 delauft Slales lor newly..c;realed obJects. 

4.1.1. Amlbulos 

Simon uses rhe nolion of attribute 10 represent a generallzarlon of Smaliialk variables 10 encom­
pass both Bxtensional (factual or stored) and Intensional (derived. computed, or Intered) Infor­
mal/on, Slmon·1 restricts attributes to be Instance variables, while Slmon.2 extends anributes to 
Includes selected methods. 

An obJect's SlalB may be thought of as the objed's set 01 aUribute-lo·value bindIngs. 

4.1.2. MetaAltrfbutes and Schemas 

Each Smantalk object Is a repr8SenlaliV8 01 some real-wortd or conceptual thing, fact, event, or 
concept, called the object's referent . The aUribures of an Object Iherefore represe,.. prepenies 
01 ~s referent . 

We distingUiSh an Object's attributes frem its meraAltribtiles thai describe properlies of Ihe 
object IIself in lis capacity as its relerent's representative. 

Simon defines melaAnribules on Objects, aUributes. dasses, and various database objects. 
Simon organizes metaAnribules into fWo kinds of schemas: 

logical schema - SmaJltalk classes extended to indude declaralions, and 

physbl schema - a representation of the database's data dictionary. 

A class Is declared if II has an associaled declaration in the logical SChema, and therelore an 
aSSOCiated table In the physical schema and database. Only declared classes may have per­
sistent Instances, and any anelTlll to store an instance of an undeclared class raises a rlOtifier. 
Since dasses may be dynamically deelared, when such a notirier is raised, the user has the 
option 01 declarirg the class, then proceeding oul of the notifier. 
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Proaoc:oM ••• fOf ereatrng. modltyu"lg, and querying schemas. In addition, prolocols exist for 
cr. no one lnet ol schema from lhe other, and lor propagaUng changes made In the logical 
ICI\tfnoIIO 11'111 physCal schema and the server These are discussed In more delaillater on. 

4 1.3. Objec1 MoIIAllrlbUles 

Sornon rwc"gruzes IWO IUndamerul object-level melaAnribules - persistence and identityType. 

41.3.1 . Perslstenc. 
e" ry obftCt has a persistence melaAnribule whose value is in the enumeration {transient per­
.'stent p.ndlngP,rsls1enll, controlling the scope of the object's accessibifily and lileUme, (In 
general we shan us, metaAllnbute values as adjectives, so shall speak 01 "transient obJects" In 
place 01 the mora verbose ·ob/ects whose persistence melaAnribule Is transient",) 

The gtafIJlanty ot perslslence Is ellhe IndIVidual object level. 

TranSt.m ob)eds afe local to a single Smalltalk Image: aJfTent SmaUtalk systems generally con­
lam onty transllnt objects, Transient objects arB named within an image by an oop, which we 
call a local refersncll. 

By contrast. persistent objects are globaJ to aU Images. Each persistent Object has a principal 
copy Wing in the database, and zero or more local copies living in Smalttalk: Images, at most 
one per mage, Pnnclpal copies are named by some kind of global refef8nces that are indepen­
dent 01 any Image, while local copies are named by local relerences. Within an Image, local 
and global references lor the same object are therefore in one-to-one correspondence. In this 
model, persistence and sharabillty are equivalenl. 

An object Is pendingPersistent if it has only a local copy, and Is reachabfe from some persistent 
object When a Smalltalk image Is synchronized with the database (described In detail below), 
Its pending Persistent objects are stored InlO the dalabase, thereby becoming persistent. 

4.1.3.2. GlobalReferenceForm 

Every persistent object has a globalReferenceForm melaAtlribute whose value Is in the 
enumeration {unique keyed value }. controllirg the representation of its gbbal reference. The 
granulanty of globaJRelererceForm Is at the class level. 

Unique objects are identified via a system-generated uniqueld that fs independent of the obfect's 
state. Unique Objects may therefore have any possible state without losing their identity. 

Keyed objectS are Identified via the value 01 some key comprising one or more 01 the object's 
attnbutes. Unlike unique objects, there can be at r.lOst one keyed object having a given key 
value. and changltlg the value of the key can effectively atter or destroy the identity ot the 
object. 

Value objectS have no identity. onty value, and theretore can't be referenced, only stored as 
values of other objects' anributes. 

Because the relational data model is based on keyed references, all objects defined by tradi­
tional relational database schemas are restricted 10 being keyed. 

Objec1s defined by Smalttalk application programmers may have any globalReferenceFonn. 
Objects representing ent~ies (conceptuaJ things) are generally untq'ue, such as classes. 
melhods, Images, and documents. Objects representing relationships among enl~ies are gen­
erally keyed, such as part-whole relationships and irnerdocument linkages. Objects represer'dlng 
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~ .... UIS IS OPPOsed 10 conceP!ual lokens (such as numbers and times) are given value 
gIoOIIR 'lI.nctForm.. 

.1.4 AIU1bu1. MelaAllrlbuies and Deel'rallons 

Evtll' ."~It hIS IN 10l1owl/1g melaAnrilules: 

_. dtcI~ Iht 501 01 allowable values lor Ihe 8l1ribule; 

• IIfNf/tC.Fonn- eomronl'9 how the allribule's values are represented; and 

.. tlflIUltV.w · lhe 8unbull's initial vakJe in new Instances. 

In &mon. lht class daRn/lion Interlace Is extended to include such melaAttribules. by relnlerprel­
~ • crass', Instanc.VarfableName stnng as a specification wntten in a declaration language. 
In lhII -'nguagt, anribull declarauons are separated by commas; each declaration consists of 
,,,. atlrWIe name, followed by Ihe domain spealicallon enclosed In angle brackets. and zero or 
mort keywonj.valu. pairs tor Ihe remaining metaAllriootes. 

4 1.4.1. Domains 

DomaN conslilUta a silll'le type system, comprising Ihe following elements: 

an instance of Class, wnnen ~class~: the domain consists of all Instances of the class or 
any of Its subclasses; 

an Wtslance of the Union Collection subclass, written ·class llclass21 ..... : the domain con­
slslS of the union of all oonSlltuent classes' Instances: 

an instance of the Enumeration collection subclass. containing an artlHrary ordered sel of 
objects, wnllen "(obJect1 ob,ect2 ... J": Ihe dom,ln Is Ihls sel ; 

an instance of Intorval. wotten "min to: max": the domain is the elements of the interval: 
and 
an inslance of the ColiecUonType class. written "colledionClass on: index Domain of: 
elementOomain", or "coliectionClass of: elementDomaln": the domain is the set of aU 
Inslances of coliectlonClass havfng elements In the given elementDomaln, and indexed 
over the index Domain If given, else Smalllnteger. 

For exa"",le. 
<ldentltyDlctionary on: Class of : (ClassDeclarationIUnderinedObjecl» 

defines the domain of idenlltyDictionanes that map classes 10 classOeclarations or nil . (Notice 
the use 01 parentheses for subdomain grouping; the angle brackets are used to delimit a group 
01 statements constituting a domain declaration.) We shall use these declarations in the 
remainder of this document. 

4.1.4.2. Attribute ReferenceForm 

Recall that objects have a gJobaJReferenceForm controllirg how their global names are 
represented, in essence how the "head 01 the pointer" to the object Is encoded. Similarly. 
objects containing the "tail 01 the pointer" also have a say in how references are encoded. The 
actual representation used is therefore negotiated between the referring and referred objects. 

On the referring side. the attribute holding a reference has a melaAnnbule referenceForm 
whose domain is « reference value» . Reference attributes contain a global reference 10 some 
autonomous persistent object, e~her a unlqueld or a key (somewhat like call-by-reference or 
call· by-name procedure parameters, respectively) . Value attributes conlain the object itself 
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,,'* • caI·by,v.l" ptOCeQjre Patame'ersJ, packed info 'he re'ering object Such 
PICbd '"ObfIC1s· have no separate identity. and therefore can't be shared. In return for being 
~~ lhoy art tI'IJCh more eH.Ic'luu In space and lime Ihan objects having idenlity, so are 
In ~nc Iotm 01 repte .. nca'"n. 

fOf any Q:)n'tIlI1, If ollis vakJes rTlISI have the same globalAeferenceForm, so as to allow sialic 
~ 01 me InrbJI8's tepf'esenralK)n, We may therefore extend the globaJReferenc:eForm 
mttI.AUrlbuf. from. domatn's vall. sel to the domain Itself, and can therefore speak of .value 
1IOmainI" llId 10 lonh. 

AnrlbJlH ""lh vakle domains are forced 10 be value aflributes. For example. any aMbut9 with 
domuI Smanln,lO'" lU'ome,ocaly ermed. hs va'ue •. 

For nnbufes wrth non-vatla domains whose values won't be shared by olher perslslenl objec1s, 
rhl dfltglV' Is free to selaa value referenceForm, thereby asking Simon to pack the object 
'., .... ncld by that anrb.Jta's value into the same database record as the retering object. Such 
~ provides a several.fold Improvement In storage and retrieval speed, and a Signllicam 
rwQjd"n In storage space For example, In a CAD app'lcallon, circuh block. may have display. 
Box rectangles thai have pol",s fhal have coordinafes. The deSigner will roost likely choose to 
.mbed I' these objects info a single Circuit Object, since sharing is unnecessary for a/l bUI Ihe ,op-lev., CliQJli 

4 2. Oatabase Interface 

Database servers are represerted within Simon by Instances of subclasses of the abstract Data. 
base etass Simon-l has only one concrete subclass of Database - Orac/eDatabase, and per­
ITlIts a maXIIT'l,rm of one Instance to exis!. (We shall use Ihe term "the dalabase~ to reter to both 
lhe server and lis represenhlive object.) 

Orac/eOatabasa class Prolocol is as IOllows: 
new 
rotums the unique Instance database. 

Database Instance protOCOl is as follows: 
open : use rid 

opens database for access, where userld contains the user's name and password; 
IsOpen 
relums true If database is open, else false; 
store: anObject 

immediately makes anOb,eC! a persistenl ObJect in the database; and 
close 
closes the database. 

4.3. Ob/ect lllelime. 

Simon-2 Is expected to have the same object lifetime semantics for transient and persistent 
ObJects: objects COntinue 10 live if and only if they are reachable lrom some root Object. 

The implementation of this semantics for persistent objects Is expected 10 be sufficiently difliQJIt 
that Simon-l takes a shorter-term approach, allowing explicit persistent object deletion. How. 
ever, this opens Ihe door 10 dangnng references, ones fhat point 10 non-eXlalll objects or which 
alias themselves to olher eXlant objects. When Simon encounters a reference to a non-extalll 
Object, it maps it 10 nil. Since unique objects' references are lruly unique and never reused, 
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neve, 
Keyed relere".., have an lnIle,.", dange, 01 anasing. 

•• 0 ... , • 

Sinon- t '. Uty Y IS very rudimervary, "allows lor retrieval 01 collections of objects all 
of Int UtnI dau, based on various Boolean Mers. and SOt1ed in various ways. The moSI 
basJc: ICOregnl. functJons (yteldtng a smg/e value lor the entire collection such as sum and aver. 
100) ,t, ~ Query syntax and semantics are nalive 10 Smalllall<, not 10 SOL or some 
ott'IIf' 101. lonnaham. Simon·, provides no Joins; In Simon-2, the plan is 10 provide joins 
Itwougn vlftUm obfecrs (called VIeWS In normal database parlance) whose allf/bures are indited 
reI.fencet 10 on. or more other objects' aMbulas. 

Outnos III ~serwed by the OrderedCollectlon subclass Query. In Simon-" query a/emartt 
domI.,. .re restricted 10 a slngla Class, thereby greally simplifying their implementalion. (An 
IIfltmpf \Ir'U be made In Simon·2 10 generaJize query domains to encompass subclass hiera,­
choet 'nd POSlbly un"ns). 

The base ide. 0' QUerles ts thaI they repressOI their a/emams Intensionally (-virtually"" as an 
itp.Jt c:oIJealOn, ptls some transformation on the Input to Produce an output COlledion. 
rrensJorma'"ne IIlClJde 

filters · prechcales thai must be rrue of their output elements; 

sorters· whch reorder the collection based on the value of some aUribute; and 

aogregate functions· generally numerical functions of tha entire collectbn. 

SInCe query representation Is intensional and highly-structured, It Is straightforward to COmpile 
equivaJent starements In servers' query languages, such as Sal, so as to access persistent ele­
mems_ OUertes also operate Jocally 10 obtain transient elements. 

Quertes may be cascaded, eaCh new QUery representing a rel/nement of its Inpur query. Since 
any IlJmber ot queries may share the same Input without mutual interference, trees of queries 
may be created and explored, forming the basis for query-by-reflnamem style user interlaces 
(ala ISL's Rabbil and Inrerrico'll" InloScope), 10 be developed in Slmon.Z. 
Class has Ihe following adddional instance protocol 

selOC1 

relums a new QUery whose domain is Ihe Class, and whose elemenls ate the class's Instances. 

Query Instance protocol Is as follows: 

with: anAllrlbuleName relation aValue 

elements are restricted 10 Ihose whose named attribUte stands in relalion to aValue, where 
relatjoo is one of aqualTo:, lessThan:, matchIng:, nOIMatchlng:, elc. 
orderASCendingBy: anAttrlbuteName 
orderOascendlngBy: anAllribuleName 
elements are sorted aCCOrding to values of 3nAttnbute; 
+ aOuery 

elements are the union of lhose In both SOurce collections (where bolh collections rT'lJSI 
have equivalent domains); 
• aOuery 

elements are lhose In the first COllection and nOI In the second COllection (where both COl­
ledions must have equivalent domains); 
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COlI", 

I/Ie IIUrI()er 01 ........... In lhe COIoctlOn. 
• mlrOl. InAl1l1bu1.N.ml 

'"'nOt, nAl1rlbut.Naml 
hlraglOt, InAl1rtbut. Nam. 
aumOf. InAnnbur. Nam. 

• 10· 

ma. n'WWnJm. average 01. and sum 01 named aUribute of COllection; and 
• .xtcut,'n: . Transactlon 

•• ea.: lihe quety, making Irs elemems available via the query's normal Collection prolQ­
col. cbng tIC) WIIM .Transactlon's envirorvnenl. 

AI tn • .r~. query. Ih. lellowlng will relum a Query 01 aI/ employees whose names contain 
IhI 'Illng 'SmoCh' "'Ih Alary In Ihe range $35.000 10 $50.000. soned IIrsl on name (ascending) 
IhIn on ,Jal)' Idescondlng), 

(((((Employ .. "'ect) 
with: . name matchIng: ··Smlth ', 

wllh: l sal"I)' grealerThanOrEqualTo: 35000) 
wllh: l salary I.5.Than: SOOOO) 

orderAscendlng8y: ' name} 
orderOescendlngBy: ' salary 

GIV.n an object retneved by a query, applications are then free 10 navig3le from the object 
Ibng '"knks- fOrmed by attributes. Any persistent objects encountered along such a link Is 
IUlomaral)' letched from the database, 11 not already present In the Image. 

4.5. Transactions 

Transacrlons provide environments In which groups 01 querying, storage. updating. and deletion 
achons may be performed on a set 01 (transient or persistent) objects as a single atomic action. 

Transactions are onhogonal to processes: any number of processes may execute Inside each 
tranSactIOn, and each process may execute inside any number of transactions. Each transac. 
tlon Is bound to some database. 

Transacllon class Protocol Is as follows: 

openOn: aOatabase 
returns a new transaction bound to aOatabase; and 
scavenge 

scavenges the Transaction Manager's interna/lables, removing objeas that are no kmger 
accessed from anywhere else in the image. 

Transaction Instance Protocol is as follows: 
remove: anOblect 

effectively removes anObject from the transaction and any current query, releaSing any 
lock; 

add: anObJecl 
add anObject lnlo the transaction; 
commit 

commits a/l updates, additions, and removals to the database, and releases any locks 
held; returns only aller all changes are secured In the database; and 
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lIndOn I uPdates, D401S, and removals, restoring the siale to the beginning of the 
lfanslla'Otl, Ind "' ..... any lodes held. 

Objtc1 I¥Ce ptOIoccIos IUgmenfed 10 COnlrei object locking as follows: 

• flCIU,lIItJyLockln: .rransactlon wailing: arlme 

lOcka &hi oo;ect lor excluSive access in aTransactlon; relums lrue if and only jf lock was 
.,." obtam.d. ~ the object is Jocked by another transaction, waits up to aTIme 

'01'1 IIbIg. ,.,ummg I.ise; 

• unlOCk 

tt" as .. thl lock on the object. If any; signals any processes waiting to lock the object to 
1'1111.""" Iod<mg; 
IockfngTr.nuclfon 
,.Iums the transactIOn QJrrenlly holding the lock on the object. 

Object. may N 'flely updated In the usual way by assignment to their instance variables. On 
COfTVl'lrntnI. only lhase obJBC1S whose slates have changed are updated in the database. 
~¥10 does"l prolea objecrs from unwarranted access; h Is provided purely as a way for 
'NfI-bthlYld appficallOns to correctly coordinate their access to shared Objects. (Enforcing 
IUCh ptOIeCUO" would require deep VM changes.) 

Whenever an objea is retrieved or slored through a transaction, we say that the object becomes 
,ncJoSlld by the transaction, and say that an Object Is transacted if and only if it is enclosed In 
II least one lransachon. 

4.15. Image· Database Synchronization 

Whenever an Image Is suspended, aU outstanding transactions are committed, thereby syn­
chronlzlrg the Image wilh the database. 

Whenever an Image Is restarted alter being SlOpped, the slales of aU persistent objects are 
resynchronlzed, In the sense Ihat their local copies are refreshed from their principal copies (this 
isn, done 10' snapsholling). 
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A pp/lUlion , 1IIIC11O""ny 

on the .dtmal OthavC)( 01 S~/rs applicatIOn user interfaces. 

' .1. ThlO "8_ 

onty • ·no" IppMcar()n •• genert dSlaBrowser. OalaBrowsers give Ihe user the 
10 Mlea • a:tIecr.", ...... ~,ry. then View the collection al a number of levels of detail: 

oo::oaionu. •. Indrvct.raJ Objects. and allribute values. Each dalaBrowser has a Iran. 
UCUon i1 "'fl.ith I C)petItIS. Menu commands are provided for creallng, de/eHng, and modifying 
OIljKlJ. &nd IboIttng or cornmnll1g the lransaer/on. OalaBrowsers provide direct manipulation 
It'd hOC rCOftQ.oousIY"""O>(1,1t., ."Wlng. 

TIlt Bill h.u Ill< p.n ... Class tal"OOry. class, query, collection, object. and a"flbu.e. 

l'IIt ogory 'nd dass panes aro copied 110m Ihe Small/all< brower. and .'Iow seleCllon 01 
.. ClUJ tltvttotr1'lltm ., whCh 10 perform querles and creale new Instances. Only declared 
cl>liSn lit pr.s.nted tor sel4alOn. 

'Tht Q,itty pane I. • standard COdeVtew in which the user enters queries. When the user 
--.. IhI -'pI - menu ftem. Ihe query pane doe. the equivalent 01 prelixlng For 
.,.".,... tilt ibov. ex~ employee query would be executed by selecting the Employee 

nd ept'l1O tho lO/lowlng lext. 

I(((wllh : ' nom. malchlng : "Smllh ', 
WIth: . salary grealerThanOrEqualTo: 35000) 

wllh: Isalary lesSThan: 50000) 
orderAscendlngBy: ' name) 

OrderOescendlngBy: . salary 

The ntSU~lng query Is displayed In Ihe col/ectlon pane as a table whose rows are the objecls In 
lhe col/ecuon. and whose columns contain the values of the various objecls' aUribules. The 
user may select an indivlrual object in Ihe lable wijh the lett mouse bunon. Columns occupy a 
tneed vortical regKm wUhin the pane, and each column 15 labelled with the associated attribute's 
name at the lap. Numeric values are right-Justified, all other lett-JusUfied. and values too long to 
/if W1 Ihe co .... mn are tttmcaled. Column widths are defaulted from Ihe aSSOCialed atlnbules' 
domall'lS. This pane Provides twO-dimensional scrolling, allOWing scannlrg verticalry through 
objects, and horiZoOlally across columns when objects are too wide to til within the pane. Scrol­
Ung in either dimension Is COntrolled by scroll bars, scroll bunons. and by moving Ihe QJrsor out-
5d8 lhe pane dunng ssleerlon. The middle butlon menu for the COllection pane has the follow. Ing ~.ms: 

delele' deletes the selected object; 

accept: commHs the transaction: and 

cancel: aborts the transaction. 

Having selected an object in the COllection pane, the resu~lng object Is shown in more detail in 
the objeer pane. Each row shows an attribute. with a name COlumn on the lell. and a value 
coh.Jmn on the right. One may think of Ihe object pane as a ~super inspector in which all attri. 
buies are slrrultaneousty shown in the view, wilh values truncated as necessary to fit on one 
line each. When an obJecl is selected. the dataBrowser allempls to lock it; it succeSSful, Ihe 
user is none the wiser. It the loCking limes OUI (aNer some fixed duration). selection is can. 
celed. and a warning nolifier is spawned. When an object is deselected, it Is unlocked. 
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An iCtJII I, raw may be s~lecJed wah Ihe left mouse burton, in which case ils value is 
-- In I". • "'lit, • $Iandard ParagraphVlew The value may be /reely edlled as 

• .and bocomn r'ISIaJed In the ob,ect when Ihe user Invokes Ihe aceepi middle bullon 
'""" f1ft. 'dS ITt IUlomatcaly and immediately ret/scred In the objecl and collection 
J)IntJ.. On tnlry. vaJuts are cheQ;ed 8Oalns. the attribute's domain, and if illegal, the 
'4)CW' II aoontd 'W ,n • notlfier 

Tht tnicde bunon mef"ll lor lht obJect pane provides insert and copy Hems. Both of Ihese 
crw • I IWIII tnsl.nce ollhe selected class and put a In Ihe object pane for the user to 1m in. 
r". _ ... 00 WI lhe conectlon pane Is deselecled 10 Indlcale Ihal Ihe object Isn'l part ollhe 
CiOIIa.()ll I,.en Wlnlafaes the new obJect's altributes from their defauHValue melaAttribules, 
VI copy i'IitiIliZes them trom Ihe previously selected obJecl. When containing a new object. 
U'II 00If<;t pant', mddle butlon meoo conlalns the followlrg additional items: 
• Cdncel. d,lel"he obJect, 

• .a:tJpI validare the objea's allribules. and n Jaga', keep the Object. else raise an error; 

':011 ' Ilkt accept. bul also Slores the obJect In the database. 

When I dataSrowser is ckJsed. lis transaction Is aborted. 

5.2. $mllf1alk Browser Changes 

Tht Jlandartf Smalltalk browser is modified to accommodate melaAttribute access as follows: 

new variables globalReferenceForm and lableName are added 10 class definitions: and 

tilt interpretation ol lhe instanceVariableNames string becomes a declaralion language, as 
described above. 

5.3. Standard Menu Item Changes 

The standard middle bullon menu acquires a new stofe Item, which directly stores the seleCled 
oblect Into Ihe database, if il exists and Is open, else spawns a rlOlifier. 
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TIliI _ion doi~ 

• 1 ODjocl '.opplng 

gtr o.lIgn 

R.IIIII deSIgn 0' lhe PerslSlenl Object Manager . 

Ant CQC:tiCal Pfrailtenl ~a system trlIst map among various data represernalions. Even 
• - ~ • Smal •• ·IIIe dal. model (e.g. LOOM (relerence (2])). ft would have 10 
InIP ballI'rd QtobIf oops When e"l>loyj~ a non-obfect-oriented server such as a 

Ion • -"14_ mappong Is reqUIred berween Smalnalk objec1s and records. Indeed. 
l1>li ~ Is • mlIfO' 1IOtJ,.,. 0' oomplextly and compulallonal overhead. 

A CIltf pon 01 lhe Stmon lramework Is Ihere'ore Ihe objecl mapping mechanism. In order 10 
..:I ..... tllJdtrcy. pans 0' lho. mechanism are Implemented pnmftlvely. 

.. ntl, contJd« reprtSertallOn and mappf,.,., for various kinds 0' oblecls. 

,.'.1. SimP" Dllllypo Repro..,nrallon and Mapping 

~ dall1rypeJ are Smanlnleger. Fbal. Time, Dale, Character, and enumerations, 
EtuntrlJfd vllues are stored as their cardinaJ numbers. The remaining cases afe straightfor. 
~lId and wonl be d;SQJssed 'unher. 

'.1.2. Byl' Ind.xed ObJecI Repressn.allon and Mapping 

ThI ."menes 01 byte·lndexed objeas (suCh as Strings and ByteArrays) are packed inlO texi 
holds. Such obJects may have any of the globalRelerenceForms. 

Oracle allows either variable or fixed length texi fields up to 240 bytes In length, or variable 
length tong fields up to 64 Kbytes In length. Onty one long lIeld Is allowed per table, however. 

On retnevaJ, symbols are interned In the Smalltalk dlc1lonary. 

6.1.3. Keyed Object Representation and MappIng 

Every keyed objea Is generally stored as a record ("tuple") in a table associated wrth the 
object 's class. Each of the class's attributes has an associated field In the lable. Fields for 
reference attributes contain either a unlqueld or a key, while fields for value attributes coniain 
the Inllre slale of the referenced oblect . (Notice that fields may be composhe, COrTlJrising a col. 
Jec!iOn of subfleJds; for example, munlaUribure keys map 10 composite fields.) 

Keyed object tables are indexed on their key lields. 

6.1.4. Unique Object Representation and Mapping 

Unique objects are represented like keyed ones, With the addition of an intemallield containing 
the vakJe of a sysfem-generated uniqueld object . Uniquelds have the following propenies: 

they are unique across databases and users; 

findIng a record given hs uniqueld Is reasonably fast; 

unlqueld generation Is fast; 

the Object's table and class are recoverable from the uniqueld; 
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tnt oqecu creaIiOn hlne and dal. are recoverable trom the unlqueld; and 
• Iho ImIQUtId tor Iny lIM1ediata obJect conralnS Ihe object. 

U~ a,. stored In lhe d.1labase as a 64 bll Inregers. In Simon-l.lhe represenralion of un~ 
""kII for non·_IO" obJOClS fs lhe concalenation of 
• • CCKie, 

• I lIno! 1.".51""1>. and 

I .. nil I'IJmber within the timestarJl) Interval (10 guaranlee uniqueness when more Ihan 
one un.queld IS erealed In Ihe same second). 

In Simon·2, I unique workstation Id Is added, as well. 

Tht rtpr."nlahOn of unique Ids for irrvnediate objects Is the concalenalion 01 a class code and 
lhe objtct .• 1181u,. 

TI*I conta,ning unique objects are Indexed on their uniquald fields. 

S.1.5. Word Indexed Object Representation and Mapping 

Word·&ndexed obJ8C!s are !reated similarty to byte-Indexed objects. Each elemem's oop is con­
verted Wlto 111 uruque/d, 8 bytes per elemenl, and stored in a raw texl field. (For efficiency, each 
of the major collecflon classes may require ils own mappirg strategy. to be determined during 
mort delo,led des.gn.) 

6.2. Object Killing 

Under cenain condillons described in subsequent sections. it is necessary to kill a local object, 
thereby destroying its Identity. This is done by asking Ihe object to become: an instance of 
OeadObJect. a root dass (I,e. one having no superclass) lhat responds 10 essentiaUy all mes. 
sages by spawning a noUlier. The notifier informs the user that the object no longer exists. and 
doesn1 allow the user to proceed. 

6.3. Schema Manager Design 

6.3.1. Logical Schema Structure 

Class Is given a new class variable ClassOeclarationDlctionary containing an identityOiction­
ary mapping classes to ctassOeclaration objects. (A more effident Implementation would add 
an instance variable to each class pointing to its declaration, but this appears 10 be diffiQJlt, and 
not worth optimiZing now.) 

ClassDeclaratlon has the foilowing instance attributes: 

declaredClass <Class> 
the class that this declaration describes; 

c/assCode <Smalllntegel'> 
the code of the class used 10 fonn its instances' unique Ids; 

globalAeferenceForm <(unique keyed value» 
the class's Instances' globalReferenceForm; 
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Ill"bul" <Collecllon 01: AllnbuteOescrlpllon> 
ro allnbull melaAnrtutes, 

k.ya <Collecllon 01: KeyOescrlptlon> 
ro !he WlSlanets' keys, d any: 

I O"'Nlm. <SirIng> 

'hi name 0' the assoaaled database fableDescription (this is moved elsewhere in future 
I)' , InS 10 • classes 10 span muQipfe databases); and 

lib", <Tlbl.Descrlpllon> 
IhI ssocialed lableOescnptlon (same comment), 

A1Itibut.O.scrfplfon has lhe folloWIng Instance attributes: 

nl me <Symbol> 
IhI anrbJt.'. nama, 

• Index <SmalllniDger> 

"'" ennbull'S posHfon In the object: 

domain <crass/unlon/Enumerallon /lntervaIICollectlonType> 
IhI domam 01 a!towable values: 

da'aullVolue <Objecb 
lhe 8ttnbuts's IMia! value as lilled in by the dalaBrowser on Instance creation; and 

,.f. renceForm « reterence varue}> 
lhe attribute'S reference Form. 

K. yD. sclaratlon has the following instance all ribules: 

name <Symbol> 

allrlbutes <CollecUon of: AttrfbuleDescrfptloo> 

<00 WE WANT KEYS TO BE SPECIAL KINDS OF ATTRIBUTES?> 

6.4. PhysIcal Schema Structure 

In Simon, the abstract dass Database has a single concrete subclass · OracleDatabase. (Addi. 
lIonal server rypes would have their own classes.) 

Database has the following instance attributes: 

physlcalSchema <Ordered Collect ion of: TableDescriptlon> 
describing the database's tables. 

TableOescrlplion has the following instance attributes: 

columns <Collection of: Column Descriptor> 
describlrg the table's columns; 

representedClass <Class> 
the class whose instances are stored in this class; 

mapping <ObjectMapplngOescriptof'> 
specifies object· record mapping, described below. 

ColumnOescrlption has the following instance attributes: 

name <String> 
the column's name; 

type <String> 
the columns datalype: 
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. I. ltint.ger> 
Iht I\Imbor Of bllH ., 1110 ~roo 

1.4 1. Scnem. SIOtag. And RtlrllVll 

In t IrOQIcaIIChtmas art s&lJl)ty .Mched classes, so are filed oul and in in the normal 
(rn:xllIO ~ 10 1110 class siorago and palSing machinery as described above). In 

C:::I::<IS &/IouId be $IOt'od In • dalabase. 

In 6mon-l. pIt)lIcaIlChtnw Itt tX1ractod trom the database by querying Us data dictionary, 
_~ 110m 1110 LIbIoN_ ot tach dectared ctass This Is possible since Oracle's data diction· 
A1Y IUf1dtnf informatIOn to regenerate the schema. (Physical schemas should also be 

ltd It lulU" ~''''nI,' 

e." 2. Logk:ll To Physical Schema Tmnslallon 

..... 'hott IOn( the messagl geMf1I18PhYSJeaISchBma, a classDeclaralion will return a new 
I~cn When Sfnr the message Instan, a tableDescnptlon will In tum Issue a sel of 
COfMIjInds 10 tllO dalabase 10 create the corresponding table. <details TBS, 

e.~.3. ObjeelMapplngOescrlplor Implementation 

cTo be supplied> 

6.5. Transaction Manager DesIgn 

The Transachon Manager Is the main clearinghouse for metalnformalion required to manage 
persIStence and transacuons within Simon. 

6.!i.l . The TransactodObJectTable 

For each object In Ihe syslem subject 10 Iransactions (including all persistent objects), a 
separate object called a transactedObjeC10escrlptor (or -TOO", Is maintained, containing the 
object's metainformaUon. 

Transaction has the following class variable: 

TransactedObjectTable <Transacted ObJect Dictionary> 
(the "TOr). a dictionary containing all TOOs, Indexed under two Independent lookup keys 
- the TODs' local and global object references. 

Whenever any object becomes Iransacted, it Is Interned (rooch the way symbols are interned), 
yielding a unique TOO. Transient become transacted either indirectly when they are retrieved 
by a query, or directly when stored through a transaction. Persistent objects become transacted 
when they are retrieved from the database, again by a query. In the persistent object case. a 
unique bcaJ copy is made.: the TOO binds the persistent object's local and global references 10 
each other wnhin each image. 

TransaC1edObJectDescrlptor has the lollowing instance annbutes: 

10caiReference <Object> 
Ihe oop ot the Object's local copy; 
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• glO I~""nc. UnJqUlld AITIY UndelinodOOJect> 
I gIobAf .. _ • per1ISt .... els. noI. 

~ .......... c trant,tnt pendlngPlro's.enl paro'sten. pendfng OefetedJ> 

0bj0cI. 0f'C8 motaM""". • 

• 
_ Object> 

a COPyoC t/ll1oc:II COPY, used fot roflback and update detection; 

• ngTr1nSKIlon. <UndlnnodObJect lTransaclionlOtderedColleclion of: Tran· 

SKllon thO Itt 0' ~ IrartSadlOns (space-optilT'llzed lor the extremely frequent zero or one 

If&/ISIdlOII tI). 

Ow'" Undl"ntdOOJIC"Transaclloo> 
Itwt uan .. ,1Ion With •• a.s • acceSS to thiS obJect" any; and 

...... pllOtI s.mapnotl> 
lhI pnorl enforCIng rT'lJfUaJ 8)(cusion on the owner attribute. 

T,..~Hon hli thlloDowil1Q Instance annbules; 

• d IabfI ... O.t.b.S8> 
fno .td da.abaSe: 

• 
Irlnpc1tdO

b
jects <OrderedCollecllon ot : TransactedObJectDeScrlptor> 

,,,. objects known 10 the Ifansactlon. 
fOJrt 3 IllUstr.ateS the TransactIOn Manage(s object management stale diagram. Nole that 

, .. may b' represented In twO dimensions, With persistence along the vertk:al axis. and "tran· 
pcttdness. ak)nQ the hOnzontal dimension. The diagram emphasizes the state machine's sym-

melnts. Obi~' art umransocted if and only it they have no TOO In the TOT. II transacted. they are 
dian ~ their loCal COPY and shadOW have the same states, else are dirty. Hence. updates 

ea,lle clean·lo-d"lrty transitiOns. 
Transient objectS beCOme transacted eLther when fetched or stored through a transacHon. They 
beCOme pendlOQPerslstent when stored. else remain transient. Persistent objectS become tran-

sacted wnen ,etched 
CommdS bnng their shadoWS into synch with their local copys. In the case 01 persistent objects, 
commls ask the database to update their principal copies from their local copies. In the case 01 
pend,ngPerslstent objectS, comlTlLts create a new prindple copy and Insert It Into the database. 
In the case of pendingOeleted objects. the database is asked to delete the principal copy. and 

the k)cal copy Is killed to avoid inconsistencies. 
AbOrtS undo updates by restonng obJects' Slates 10 their shadoWS' states. thereby causing dirty­
to.clean transLtiOns. In adchtion, abons cause pendingPersistent objects to revert to transient 
ones, cancelling their addLtlon to the database. Similarly. abortS cancel pending deletions. caus-

Ing pendingOeleted-to-persistent transitions. 
In either transaction termination case, the enclosed objects are left In a clean state. 

6.S.2. Implicit Retrieval 
Whenever a persistent object Is fetched from the database, a loCal ropy is made. A design 
Invariert requires that only local references exist in loCal oopies, while only global references 
exist in principal copies. Hence. when creating the loCal copy. all global references roost be 
translated to loCal ones. In the case that the referenced object is transacted. its loCal reference 
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Ie oop 01 U ball copy Howrver, _ rh. ""'''need oblecl is untransacted, an 
local ~ In4I be mao. tor. I~ 

8lrron 
ProlV 

• 0Chr~ lOIII lOOM , ... ,eI.,.,.,. (2D, crealong an Inslance 01 Ihe rool 
S local tIIfa, and ~omg lhe ptOXjI 10 lhe associaled TOO. 

P",IV II 1/001 tIliIC ~ 10 _nUafy .. messages by a"emplonglo lelch Ihe obJecl 
t till uP1g !hi QIoboII ,..1 re,.,. ., rhe ptOXjI'S TOO. It successlul, Ihe p,oxy is 

10 _ till I _ obIu<t H no such petSlSlent object can be lound, Ihe p,oxy 
• Niall 10 _.: In lIIIIanct 01 O •• dObjec l, 

1.5.3 implicit $.oragl 
~ • now ~ obilCt or updallnO an exisllng one, the dual process of convert· 

~ I , ''''""'* 10 gIObat on.$ muSI be perlormed. This Implies Ihal any ,ele,eneed I,an· 
0bjadI m.n.I be mid. perslslent $0 as 10 have global references. 

15~ _.nglng 

lit 'hi ~.'" of IhI Tt'iJnsact.lOn Manager, scavenging means revening objects 10 unlransacted 
JlItIl to as to release thelf TOT-related storage. In general. the overall design attempts to 
mlnint:. c:ydH IjIjohtnever possible. such as removing aU pointers beMeen transactions and 
TOOl whfn the IlInS8C!JOn5 are lermnaled, 

As J",*menhtd In Simon-!, scavenglflg simulates soft references: the TOT is scanned. and 
1ft'( TOO whOse reference count indicates that there are no other references to II. is clean, and ,It,.., lranslem or perslslent ts dropped. This process is expected to be extremely slow (and 
would be unnecessary If sott references were Implemented inSide the VM). 

6.6. Quory Managor Oeslgn 

Queries use CUf${Jr5 provided by the server as object streams on retrievaL They are 
represenled by opaque handles provided by Ihe server primitives. 

Each query. being an orderedCollecllon, cache hs elements on relrieval, transacting each ele­
ment in the associated transaction. The query also maintains an alEnd lIag. When asked to 
retrieve an element beyond the cache, it checks the alEnd flag. and if reset, asks the server for 
the sutficienl elements 10 fill in the cache up to the requested element, passing the cursor in the 
request . Altempts to access an element beyond the atEnd limIt results in an error. 

This design optimizes the query overhead to just those elements requested by the application, 
such as lhose actually viewed in the dataBrowser, and allows the dataBrowser to show the lirsl 
lew elements In a bounded lime, even though queries are unbounded. 

6.7. Image-Database Synchronizat ion 

When an image is being shut down, atter transactions are committed, the local copies of aJl per­
sistent objects are asked to become: their proxies, so as to force them to be refelched on the 
first access aller image resumption. 

June 16. 1987 

June 16. 1987 I 



- -
20· 

7 ,.'" r "'tort ... t."""''' DHlgn 

7 1. Query Compl lion 
TIlt go. 01 ~ .. 10 general. an SOl slatemeni lhal will perlonn Ihe equivalenl 

CJit'Y TIlt ba iC • 01 In SOl "I"""al Slalemem IS 
t • from 01 N mJ who" ;On<WOD orderBy sonlngCQlumos 

TIlt Ion II 1"".lort vtry Slraoghlforward Ja~le!'!amlls obtained Irom lhe source class's 
on. 1(')0 • I$Stmbted from lhe vanous hiler queries, and the sortlnoCo!umns is 

~ 110m lno VI(()US 1Or1"'11 quen ... 

72. Orec:lt Sen.ma Transl.lor 
TJ\t lCtwmIu4l'1Sla10r hIS the ,lOb of convertIng Ofacle·specilic dala diCtionary Information Into 
tnt O"',r.: plI.,abII tchtma desctlbed above. II also has Ihe dual job 01 converting physical 
ICf'teml crution ,00 update operatIOns 10 corresponding SOL commands. Neither is very 

tmtlng 

7.3. oracl.OalabaH primitives 
Oracl.OatlbaS. haS the followIng pnmuve prolOCOI: 

• " IUP: InArrayOICIaSSOoPS 
called after startup or reslart from snapshots to pass a set of class oops used by the primi-

IlVts. 

connect: userld 
opens a connection to the database; 

dlsconnecl 
closes a connection 10 the database: and 

createCursor 
creatSS and returns an opaque handle to an Oracle cursor. 

7.4. OracleCursor Primitives 
The OracleCursor dass represents Oracle cursors, and has the following primitive protocol: 

Iree 
frees Ihe internal cursor resource: 
startauery: aQueryStrlng withMapplng: anObjectMapplngOescrlptor 
initiates a query on aQueryString, and establishes the record-to-object mapping; 

next 
sequences to the next result object, returning its global reference, or nil if at end of stream: 

getLocalCoPY 
returns the local copy of the current result object: 

getErrorMessage 
returns the Oracle error message string corresponding to the last error; 

getErrorPosltlon 
returns the position of the last error (context dependent interpretation): 

June 16. 1987 
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abon 
aborts the curren! transaction; 

commit 
commits the CUrrrenllransaction; and 

doCommand: aCommandSlring 

- 21 -

submns aCommandStnng lor execution by the server. 
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Declarative Semantics in Smalltalk-80: 
Applications and Approaches 

Revision 1.1 

R.J. Steiger 

ParcPlace Systems 
DRAFT. CONFIDENTIAL. NOT FOR DISTRIBUTION 

1. Introduction 

1.1. Purpose 

The purpose of this position paper is 10 explore possible applications of declarative semantics 
within the Smalltalk·80 system and technical approaches to integrating declarative mechanisms 
inl0 the system. 

(This version Is intended to seed a brainstorming session on this topic at the July 10 technical 
meeting,) 

1.2. RevIsion History 

{1. 7/8/87] sketch tor eaMy teedback. 

(1 .1. 719/87} rough draft for inpullo brainstorming. 

2. Overview 

2.1. Motivation 

Smautalk·80 is unique among programming languages In the relatively small set of declarative 
constructs, namety class and method definitions. In essence, Smalltalk's radical adoption of 
message-passing semantics has eliminated the requiremem lor type declarations Inherent in 
type-safe languages based on procedure calling Instead of message passing. The general 
advantages of message-passing semantics are well known, and won't be dwealt on further here. 

The main purpose of this paper Is to argue that as powerful as these advantages are, there are 
numerous IlT1JOrtant and desireable capabilities and propenies that are Impractical or impossIble 
to provide without additional declarative Information. 

This idea for this paper began when I noticed that the need for declarative semamics was show­
ing up in a diverse set of circumstances, including the current database integration project, vari­
ous proposals lor opllmizing SmaUtalk compilers, and a wide variety of CASE tools (see section 
3 for a summary of such applications). My hope is that a single unified declaration facility can 
be made to serve most of these applications, at least the ones of shortesHange interest. 

From a more general perspective, declarative mechanisms span a wide range of abstraction lev­
els, from relatively simple, localized variable and method type constraints and signltures, through 
k>gic formalisms such as Prolog, to higher-level frame-based -knowledge represemation- (KR) 
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systems While tn a bralnstormi1g roode, I suggest that we allow ourselves to look at declara· 
Irv, semanHcs 81 all 01 these levels before forussing on shorHerm needs, in the hopes thaI 
lOme unificatIOn can rssub 

2.2. The Bask: Oeclarat lVelProcedural Distinction 

The uadeolfs between dedaraUve and procedural approaches to the design of KR systems, 
ptOgra.mrTW1g languages. data models. and user intertaces have been the subjec1 01 numerous 
cftsatssons. papers, and debales over the lasl 15 years or so. We summarize the main poinls 
here 10 'stabllsh COlTVTlOn concepts and language lor the rest of the paper. (The loUowlrg dis· 
CUSSIO" is In the lerTT'unoklgy 01 the KR field, since this Is hlstorlcalty where most of the attention 
has been focussed, but should be construed to apply to computing in general.) 

All old ptlilosophical distinction exisls between "knowing what" and "knowing how". Procedural· 
lslS assert that knowfedge 01 a given domain is represented as, and intimately bound Inlo, a sel 
01 procedures that operate whh ln thai domain. In this view, knowledge Is coextensive with 
kl1()W!ng how 10 operaUonally apply Ihe knowledge. 

Declarauvls's. on the o,her hand, assert 'hat knowledge is represented as a set of generic 
(domaln-lndepender1) inference procedures. pius a set of domain-specific facts manipulated by 
these procedures. In this view. knowledge is coextensive whh knowing what is true about the 
domain. 
The general advantages of declarative knowleciJe are: 

flexlbilhyleconomy - a given fact may be used in several ways by the general inference 
engine, such as forward or backward chaining: procedures are more restricted in their 
applicability to specHJc contexts : 

understandabllitylieamabDity - declarative facts tend to be more loosely coupled to • and 
hence more Independem of - each other, and may therefore be treated ~additlvery": pro­
cedural systems tend to be more tightly coupled and Iragile. insolar as seemingly small 
local changes can have massive global eHects (frequently breaking a system altogether) : 
declarative systems are thus roore easily understood and changed; 

naturalness - many facts are declarative in nature. and nalural language itself is primarily 
declarative. so seems optimized for encoding declarative facts. 

The general advantages of procedural knowledge are: 

behavioral modeling • describing the behavior 01 systems is olten done most naturally in 
procedural form as a set 01 activities; 

second-order knowledge - an essential part of knowing Is knowing what we know, what we 
can know, and how to apply what we know; in general , the represemalion of such 
second-order knowledge Is rruch easier in procedural terms, typically heuristic. 

Winograd summarizes the arguments in the controversy as follows : 

Economy. Procedures specHy knowledge by saying how it is used, and every use requires 
a different procedure. Oeclaratives require only a single copy for all uses. 

Modularity. Procedures bind knowledge and control in a single package. By keeping facts 
separate, a declarative approach makes it easier to update and generalize the knowledge 
base. 

Exception handting. Procedures can do anything. and problems that aren't covered by the 
formal theory can often be handled by an ad hoc piece of code. Dedaratlve approaches 
may find handling of unanti~ated exceptions difficult to i~ssible . 

JulY 9 1987 



-= 
. 3 . 

One may view much 01 the work in AI and KR over the lasl decade as various attempts to 
rallOnaly rec:onci~ these tradeoffs through the development of frameworks that unify declarative 
and pR)CIdJraJ semanllCS 

3. Some Applications of Declarative Semantics 

Smalnltlt dedarauve Informallon is encoded in its dass hierarchy and compiled methods, and is 
abae to put It 10 good use In the browser, providing a rich variely 01 Information about program 

Itructure . 
The loUowU'lg Is a lop·level summary of some addijlonal capabilities that would be rendered 
more feasible through expanslorVgenerallzation 01 Smalnalk's declarative mechanisms: 

• opIlmiZln{j compilation 
user docUmenlallon and annotation 10 improve readability 

• SIalIC program checJ<lng 
• mechaniCal generation 01 Interfaces to extemallremote services: 

libranes wntten In other languages 

databases and liIe systems 

graphics presentation services 
specialized processors (e.g. signal or array processors) 

liher-based user Interaction frameworks 
software system structural design. analysiS. and display toolS: 

context-specific senders. lmplemenors, accessors relations 

data slruC1ure schema display 

bener modification impact reporting 

Improved semantic data modelling 

online doCUmentation. assistance. and learning facUities 
data entry assistance (for commands, information forms, property sheets. etc): 

completion 

delaultlng 

explanation 
Integrity enforcemenl (type/range checking. other constraints) 

more general logical inference (ala Prolog and other logic languages). 

4. Competltlon 
The following competitive or potentially-COf11X!titive products have some form of declarative 
semanticS. which they use to gain performance, static-checking. and other advantages: 

commcn Lisp 

Objective C 

C++ 

Actor 

Enlel 
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Object Pascal 

OpaVGemslone 

VBese (OntoJogoc's OOOS) 

ObjTalk 

Ouict<Talk 

- 4 -

In &dalton, rumerous expenmental objed-oriented systems employ some form of declarative 
semantICS, such as: 

Typed SmaJnalk IJohnson87) 

Field's dalallow type Inferencing in Smalhalk IFie1d87) 

Finer Browser IBomlng87J 

SIG I?J 

Incensel?1 

IrTIlUlsa-86ISmfth86J 

S. Roferonces 

IBobmW75] 
Bobrow. 0 •• and ColOns, A. Representation and Understanding: Studies in Cognitive Sci· 
ence, Academic Press. 1975. 

IFleld87) 
Fletd, R.

t 
Data Flow Type In'8fencing in Smafltalk: Detection of Generic Classes Maslefs 

Thesis, UCSC, June 1987, 

IJohnson87) 
Johnson, R., A Use,'s Guide 10 Typed Smafllalk Dept. CS., U, III., May 1987. 

ISmilh861 
Smith, R.G., Olnitz. A. , Barth. P. Impulse-86: A Substrate for Object·Oriented Interface 

Design In IOOPSLA86) 

ISowa84J 
Sowa, J . Conceptual Structures: Information Processing in Mind and Machine. Addison· 
Wesley IBM Systems Programming Series. 1984. 

IWinograd75] 
Winograd, T. Frame Representations and the Declarative-Procedural Controversy, in 

IBobrow75]. 
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Programming by Example 

Daniel C. Halbert 
(Professor S. L. Graham) 

Xerox Corporation 

Most computer· based applications systems cannot be 
programmed by their userA. Programming is considered a 
difficult skill for the average person to learn, so most systems 
do not provide facilities for ordinary users to write programs 
that help lhem do their work. 

We believe, however, that ordinary users could program their 
systems us ing a technique called "programming by example," 
wh.ich is a way of programming a system in its Own user 
interface. The system user writes a program by giving an 
example of what it should do. The system remembers the 
sequence of actions and can perform it again. Suctinctly. 
programming by example is "Do What I Did." 
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Programming 
Languages and 
Systems 

Progr.mmlna by Example 

Daniel C. Halbert 
(Professor S. L. Graham) 

Xerox Corporation 

221 

Our research projects in programming systems seek to facilitate 
sortwarc production by providing advanced interactive systems, 
improved programming language translation capabilities. and 
support for program development. OUf efforts are increasingly 
directed toward exploiting the benefits of high-speed personal 
workstations to enhance programmer productivity. ... 

We are studying interactive systems both for nonprogrammers 
and for ex-perts. A system for the imcractive development of 
programs by modification of example computations has recently 
been completed. A high-quality document preparation system 
is being designed. We are also developing a language-based 
editor, intended as the user interface both for program design 
and for preparation of other kinds of structured text. 

As part of an inlegrated hardware-software system for 
Smalltalk-80 called SOAR, we are developing a compiler, a 
debugger, a garbage collector, and the operating environment 
for Smalltalk. Our research on the implementalion of Ada· is 
focusing on the design of the runtime syslem. 

We have an ongoing project to develop tools to aUiomate the 
production of high-quality compilers. We have just completed 
a study of techniques for register allocation and intermediate 
representation. We have developed a new method for 
automated discovery of low-level target code improvements. 
Under investigation are a tree transformation system and 
techniques for the automatic generation of symbol table 
managers. 

An important aspect of software development is the design, 
construction, and maintenance of large systems. We have 
implemented an interactive transition diagram editor, used to 
model parts of the development process. The Evolution 
Support Environment is being designed to provide a variety of 
support facilities. In addition, we are designing and building 
software tools for new forms of computer-assisted collaboration . 

• Ada is • trademark or the Depllrtment of Defense (Ada Joint Prolram Olf\ce). 

Most computer-based applications systems cannot be 
programmed by their use~. Programming is considered a 
difficult skill for the average person to learn, so most systems 
do not provide facilities for ordinary users to write programs 
that help them do their work. 

We believe, however, that ordinary users could program their 
systems using a technique called "programming by example," 
which is a way of programming a system in its own user 
interface. The system user writes a program by giving an 
example of what it should do. The system remembers the 
sequence of actions and can perform it again. Succinctly. 
programming by example is "00 What I Did." 
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rnS seek to facilitate 
interactive systems, 

n caoabilities. and 

Programming by example has been added to a simulation of a 
commercial office information system. In addition to a basic 
programming-by-example mechanism, the facility provides 
program parameterization. data searching and selection 
mechanisms. control structure, and a static. readable program 
representation that can be edited. 

With the now widespread popularity of document preparation 
systems and with the advent of new technologies. such as local 
workstations and bit-mapped displays, it makes sense to 
reexamine these systems and to see what new techniques can 
be employed. For example, a unirorm mechanism ror 
combining two-dimensional media (text, drawings. 
photographs, cirplolS, etc.) will be the center or a new. 
interactive document system that automatically updates pans or 
a document when its source has changed, The system would 
present a page-by-page approximation or the final document on 
the display, and the user could interactively update those parts 
or the document ror which local editors exist. It may even be 
possible to have an editor thai presents a unirorm interrace to 
objects or distinctly different types. 

Presently. different editors exist at Berkeley (e .g .• vi and 
EMACS ror text. Gremlin for diagrams, and Magic for VLSI 
designs). An integrated system could use these editors as black 
boxes. transforming to and from a common representation 
when needed. The environment thus created is envisioned as 
being more interactive and incremental than previous batch­
oriented systems and would allow the entry of any new two· 
dimensional data whose format was describable within the 
system. 

This project is working in two different directions toward the 
system described above. At a high level, techniques for 
incremental rederivation and for managing multiple 
representations of tWO-dimensional data mUSt be found. A user 
interface. a common representation. and a rramework for them 
both must be designed. Progress here has included identifying 
the problems involved and researching systems that have tried 
to solve subsets of them. An interesting formalism that could 
be used to automatically derive new transformations was 
discovered. 

At a lower level, the editors and transformation programs here 
at Berkeley must be brought closer together. Some other 
groups here have unwiuingly aided this effort (e.g., Gremlin 
and Magic have been ported to the SUNs) . Also, a simple 
system for experiments must be set up. Much or the effort has 
been spent here, exploring project reasibility. The typeseuing 
language TeX, with its notions or boxes and glue, has been 
adopted as a basis ror the system. TeX produces device­
independent output files thai can be printed on all our local 
bit-raster printers (and many others) . We have recently ported 
TeX to the SUN workstation. along with most of its related 
software. A previewer for TeX on the SUNs has been adapted 
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fO run under the window system. These represen l the first 
~(eps in brin,ina up a simple prototype of [he system. Progress 
In Ihe future \¥ill focus on complcling and using this prototype . 
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PII. 14·1. The (M,'O document pages shown on Ihis page Qnd lhe 
nexl are from a TeX document being displayed by dvisun on a 
SUN·150. Using current/ants. only fK'O-lhirds 0/ each page can ~ 
shown on the display Of one lime; commands COn moW! Ihis 
'window'ln any direclion 10 reach the rest a/the page. Although 
one page Invo/~V!s SOme graphics and the other many font changes. 
dvisun can redisplay them in One and ('MlO seconds. rtspecli~V!Iy. 
A ~'t!rQge pages take only about three-quarters 0/0 second. This is 
jive to len times/oster Ihon lhe local dllroffprev~wer. 



• 

• 

124 

Higher-Level Language-Based 
Editors 

Robert A. Ballance 
(Professor S. L. Graham) 

(DARPA) NOOOJ9-84-C-0089 

• • , • , 
•• • • •• •• • • --
" -~ ".~ • •• •• 

~. 

•• • • • , • •• .~- , • 
•• 
" 

_ . 
•• 

•• ..' .. -
........ 

-....-, .. -._._._ ....... ... 
<r·"' .. , ..... ~Ito.' .. '.1 
NA'C ... ' ..... ,., .. .. 

1II."C ... " .... ~' ..... 1 

u·"',',.",1 
I'lpo •• -""" .............. - ~ - ._ .. ... 
... • .. _ .. ___ .. _ ..... _ .. It_ ... _, .. __ • .. , ..... • .. 

... n. _ ... _ .... _ ...... _ .... ____ .. . _ ............. -. _ .. _ ..... _ .. __ . __ ... __ ... _M. ___ .. __ 

.. __ ..... _ ...... _ .... n ...... ..... _ ,_ ..... _--. 

• ___ It_ ..... ,..,,_ no""'''''C •• _ ..... _ .... . _--.... -_ .......... ., .... -.. -........... 
"" ... \ ........... _ ........ _ .... __ ............... _-­.. 

Langu8ge·based editors support the programmer by using 
language-specific inrormation during the editing process. This 
supper! includes checking for syntactic or semantic errors, 
tcmplatc·based entry of basic structures, and special display 
algorithms for viewing the program. To date, most systems 
impose a rigid development methodology on the user. 

1 am interested in developing "higher· level" language-based 
editors that support multiple languages and allow users to 
manipulate programs in terms of the underlying language. This 
approach subsumes both text- and structure-based editing. 
Programs and structured text can be manipulated either as text 
or in terms of their underlying structures. For example. in a 
program. the user might choose to operate on functions. 
blocks. statements. expressions. tokens. or characters. At all 
times. the editor will offer full flexibility between text and 
structure. 

This research is aimed at creating an editor·generating system 
that accepts a language description as input, creating tables and 
code for use in a standard front end. The standard front end 

• 
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pro\,ides. consistent user interface for editing objects written 
in different Janluages. Areas of investigation include 
.I,orilhms for parsing, slatic-semantic description and checking. 
and connections to knowledge-based programming 
c:nvironmenlS . 

A new class of programming systems is evolving that integrates 
a processor, a high-quality display. a programming language, 
and an operaling system with the gont of enhancing 
programmer productivity. These systems allow the creation of 
soflware prototypes using considerably less manpower. 
Smalltalk·80 is the most mature example of an integrated 
software system. 
The primary disadvantage of such systems is their slowness. 
We are in the midst of a three-year project 10 apply compiler, 
systems. architectural. and MOS VLSI implementation 
expertise to building a low-cost version of such a system (t J. 
We have built a sort ware implementation under UNIX called 
Berkeley Smalltalk (8S) and have distributed it to twenty sites. 
Allhough wrillen in a high-level language (C) and running on a 
microprocessor (SUN workslluion). BS is as fast as a 
microcoded version of the Smallt3lk-80 system run on the 
Xerox Dolphin. Our long-term goal is to create a new 
hardw3re/sortware system - SOAR (Smalllaik On A RISC) -
that runs a hundred times faster than Smalltalk on the VAX 
11/750. 
Garbage collection presents a serious challenge for a Smalltalk-
80 system. Smaillalk programs create seven bytes of garbage 
for every eight instructions executed. We have designed an 
algorithm called Generation Scavenging and incorporated it into 
as (2). Pauses disrupt thought and decrease productivity. The 
pause time for our Bigorithm is only a fraction of a second. All 
other Smalltalk-80 systems need indirection to help manage 
objects. BS. with Generation Scavenging. is the first one with 
direct object addressing . Our garbage collector also runs in half 
the lime of the best previous algorithm. 

(II D. Ungar. R. Blau. P. Foley. 0 Samples. and D. A. 
Palterson. "Architecture of SOAR: Small talk on a RiSe." 
J lth Annual Symp. on Computer Archit~tur~ Ann Arbor, 
MI. 1984. ' 

(2) O . Ungar. "Generation Scavenging: A Non-Disruptive 
High Performance Storage Reclamation Algorithm." 
ACM SIGSOFrISIGPLAN Software Engineering Symp. on 
Practical Software Development Environments. PitlSbuflh. 
PA, April 1984. 
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A necessary part of the SOAR (Smalltalk On A RISe) project 
involved conslrucling a compiler thai would compile Smalltalk 
programs into SOAR machine instructions instead of the 
standard Smalllalk vinusl machine bYlecodes. The primary 
concern in designing Ihis compiler was the code explosion thai 
could resul t from using SOAR instructions instead of the much 
denser bY lccodes. 

Thai the seman tics of Smal'talk preclude many standard 
optimizations made the Smalilalk bytecodes themselves an 

I 811ractive intermediate represenl31ion for the compiler. The 
runtime slack used by the stack-oriented bylecodes is simulated 
by the compiler at compile time, which converts those 
operations to register-oriented SOAR instructions. This in 
practice produces reasonably dense SOAR code, with an 
average of one SOAR instruction generated for each bytecode. 
The compiler was written in Smaillalk, and the Small talk 
environment, although sophisticated. requires substantially 
more resources (primarily in terms of CPU power) than a 
conventional one in order 10 provide equivalent programming 
throughput. 

Smaliialk On A RISC (SOAR) is a microprocessor designed to 
run Smalilaik efficiently. Smalllaik is defined on the Small talk 
Virtual Machine (STVM), and the compiler generales virtual 
machine instructions. known as bYlecodes. from Smaliialk 
methods. On SOAR. bytecode methods are further translated 
into SOAR machine instructions to be executed by the 
hardware. 

The debugger in Xerox's Smalhalk Virtua l Image operates by 
simulating the semantics of the bytecode instructions. which are 
no longer available on SOAR. There are also problems with 
the breakpoint-setting mechanism in the bytecode debuger. 
Breakpoints are set by inserling "halt" instructions in the 
instruction Stream and recompiling the procedure. This makes 
seuing breakpoints in recursive routines impossible. 

The following are guidelines for the design of the SOAR 
Debugger: 

• To provide the basic mechanisms for perrorming the same 
functions as the bYlccode debugger SO that high-level 
software. like the Debugger Browser. can be reused with 
minimal change 

• To provide a beller breakpoint mechanism SO that 
breakpoints can be set and unset without recompiling the 
procedure 

• To allow breakpoints to be taken conditionally, thus 
allowing breakpoints to be set in recursive routines or 
rou tines that are shared with the debugger itself. 
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Professor Pallerson hilS sel OUI to design a RiSe (Reduced 
Inslruclion Set Computer) microprocessor that will provide a 
fasl c'(etution \lchicle for the Smalltalk-80 programming 
environmenl The Daedalus project under Professor Hilfinger 
has provided an inlcrmediale step toward implemenling 
Smailialk on Ihis processor (SOAR). A basic version of 
Daedalus Ihal allows testing of benchmarks and large portions 
of the Smalltlllk-SO system is now running. Most of the 
Smalltalk-80 runlime system is written in the Small talk 
Illn&u!lge itself; this ponion has been translated into SOAR 
machine code. . 

We are now in the final stages of designing the R ISC/UNIX 
interface required to run Smalltalk on the hardware . When the 
chip is fabricated. we will have hardware and software ready to 
execute Smalltalk using SUN workstations 10 handle files and 
graphics. My current tasks are to finish the operating 
environment specifications and to document the rUnlime 
system and virtual machine. 

Research supervised by Paul Hilfinger was aimed at designing 
and implementing an efficient and conceptually simple runtime 
strategy for Ada The implementation involved using an Ada 
front end (provided by AT&T Bell Laboratories and modified at 
Berkeley) that produces DIANA. a proposed standard 
intermediate representation OR) for Ada programs, Our so­
called "middle end" takes the DIANA representation and 
produces the lower-level intermediate tree form used by the 
portable C compiler . 
Experiences with the DIANA representation have shown that a 
normalization pass is necessary to make the representation 
usable by the middle end. Although the IR of the portable C 
compiler was not intended as a lo,y-Ievel representation for 
Ada. we found that it was almost entirely adequate for the task, 
Furthermore. using the IR allowed us to take advantage of 
table -driven code-generation lools being resellrched at Berkeley, 

The runtime design stressed efficient applicalion of uniform 
runtime type representations to implement such features as 
dynamic arrays and parameterized records. Furthermore. the 
implementation of these objects did nol introduce any 
distributed overheod on the implementatio n of objects familiar 
to the Pascal user. Execution time for a Pascal subset of Ada 
was comparable to the execution time of code generated by the 
Berkeley Pascal compiler. as demonstrated by a small set of 
benchmarks. 
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The final goal of our work is to produce a sel of tools thai will 
allow Ihe construction of high-quality code generators for Von 
Neumann-architecture computers in a short time and with a 
minimum of machine-specific coding . 
We have already developed a table-driven code generator using 
the Graham-Glanville method. We are working on developing 
formal methods to attack the problems that it fails 10 address. 
The result will be a largely table·driven code generator that is 
rCllugcloble to diverse architectures with a minimum of 

t recoding. 
One major goal of Ihis research is to formaliz.e the register 
allocation of the code generator. we are investigating how to 
coalesce the optimizations found by a procedurewide data-flow 
analyzer with the allocation of registers needed during the 
process of instruction selection. The allocators are driven by a 
description of the number and types of various registers and 
some policy description. We are evaluating various coloring 
techniques as the basis of the allocation policy. 

Another major goal of this research is to investigate semantic 
alternatives to the current syntactic specification of conversions 
done by the code generator. We are experimenting with 
different specifications to measure their COSlS in terms of size. 
space. and comprehensibility. 

I am investigating techniques to automate the discovery of 
machine 'specific transformations thai will improve the quality 
of code produced by retargetable compilers. Current 
retargetable code generators produce provably correct, often 
optimal code for single statemenlS. However. they fail to take 
full advantage of target architectures and often use complex 
instructions only with hand-coding 10 recognize special cases. 
The goal of this project is to recognize those special cases 
automatically, thus making retargetable code generators more 
robust and easier to retarget. 
I distinguish two stages in this process. The first analyzes a 
description of the target machine when the compiler is 
constructed and generates tables for the second stage, which 
transforms each program run through the compiler. This 
separation allows the analysis of the target machine to be 
arbitrarily thorough in its allempts to exploit features of the 
target machine and reduces transformation to a simple pa1tern 
match and replacement. The analysis "decomposes" the 
complex instructions of the target machine. finding sequences 
of instructions that can be replaced by those complex 
instructions. The transformation stage uses information 
derived by the analysis to transform assembler source code. 
Automating transformation of other representations of 
programs is possible. A prototype system has been 
demonstrated and retargeted. and a dissertation describing this 
work is in progress. 
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Trees Irc convenient representations in many situations largely 
because of their hjerarchical struclure, which models many 
SItuations. and because of the ease with which they can be 
manipulated. This manipulation frequently corresponds to 
transformations between different tree representations to 
e~pose or mo(firy some propenies of the object being 
represcnlcd . 

The loa' of our project is to investigate tree transformations. 
especially in the context of compilalion syStems, program 
tnmsformadon systems, and programming environments. We 
will use result5 and experiences from Ihe areas of term 
rewrilina systems, production systems, and programming 
languages, among others, 10 find descriptional mechanisms that 
are adequate for efficient implementotion while also being easy 
to program, have provable properties. and have an adequate 
interface to the compiling process. particularly to pattern­
matcher-based code generators. 

Our approach is quite praamatic, and we hope to design a tree 
transformation tool in the tradition of scanner, parser, and 
code-aeneralor generators. As an application of our research. 
we expect to fill the gap between the high-level abstract trees 
that can be obtained from thc parser and the low-level trees 
required by the Graham/Glanville/Henry technique of code 
generators. In the process. we expect to clarify the relation 
between program optimization and code aeneration. 

We have implemented a simple tree transformation system, 
which we have used to aather some first experience. We 
recently completed an extensive bibliography revision and are 
evaluating different description mechanisms. 

Symbol Table Managers (STMs) must currently be hand-coded, 
though some efforts are under way to automate their 
production. The task of writing an STM can be very difficult 
for languages such as Ado. Automatic production of an STM 
from a specification of the relevant parts of the language being 
processed would have a number of benefits: less work, greater 
understandability and modifiability. improved faith in the 
correctness of the g'ener8led STM. and automatic optimization. 
Such a specification would also be useful for formal language 
definition and for language comparison. 

A model of scoping and naming in languages has been 
developed, and the primitive operations implied by this model 
have been identified. A functional specification language based 
on these primitives has been designed as an extension of an 
anribute grammar system. The extensions will be implemenled 
so that the usefulness of this specification language can be 
evaluated on real lnnguages. 

Because symbol tables are large objects, copying them 
unnecessarily must be avoided ir reasonable efficiency is to be 
achieved. Elimination of simple copies is well understood. but 
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thm.",lllOn of COPIes necessililed by modific:uion of objects has 
been Jludlcd only in certlin cases (e , ., pass-orienled anribulc 
anmm1rs). Two different methods Ihat will handle ordered 
Iflnbule ,l'1mmars ha\le been developed. 

This project crcated • highly inlcractive mouse-and-menu­
driven ,raphicaJ edllor for Siale uansilion diagrams. along with 
• leoerllor Ihll provides input to a Iransilion diagram 
inlcrprclcr. The Transition Oia&ram E<liIor (TOE) is used to 
tSupporilhe User Software Engineering (USE) methodology. an 
approach 10 the specification and implementation of interactive 
information syslcms. Augmented slalC transition diagrams are 
used to model human-computer interaction, wit h nodes 
reprcsentin. system outpUi and arcs (transitions) associated 
with user input, system operations occur during a transition. 

Rather than usin. a textuallanguaae to describe the diagram 
structure. TOE .1I0ws the diagram to be drawn and edited 
intetllctively. then generates the textual diagram description for 
interpretive execution. TOE and its related tools are especially 
effective for rapid prototypinS of interactive systems. TOE 
runs on the SUN workstation: the other tools run not only on 
the SUN, but on most other UNIX systems. 

' U C San Fnnc:iKO 

Evolution Support Environment (ESE) is an integrated and 
automatic environment for the software development/evolution 
process. An ultimate goal for the software development 
process is to develop an automatic soflware familY generator 
tha t. given the specificlltions for a member of a family. could 
generate an implementation for the member by reusing as 
much existing software as possible. Three basic requirements 
for such an environment include promoting (I) traceability 
between user requirements. design, and code, (2) reusability of 
existing designs and code. and (3) compatibility between 
various phases of the software life cycle. Our next step is to 
design and develop the Software Engineer Assist System, which 
would guide the designer's decisions based on metrics (we call 
that Metric-Guided Design Methodology>' 

CoLab is a laborator)' to experiment with new forms of 
computer-assisted collaboration. Although networks connect 
computers and enable electronic mail and sharing of faci lities. 
computer s)'stems aren ·t usually designed for group activities. 
When we think of people working with computers. we usually 
think of them in separate offices working mostly in isolation. 
To use computers for demonstrations, several people gather 
around a display designed for a single person. If people decide 
to work together on a problem. the), leave lheir computers 
behind and go to a whiteboard . Secondary ideas, argumenlS, 

; 
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and random ftOlet are onen lost or forgonen 'Nhen records of a 
con botIl.~C .tcSSion mu~1 be enlered into a compuler system as 
• sepmlc srep When instructors Ini" people 10 use 
lnlCrxtl~e PfOlt'lnu. there is no easy way 10 interact with 
.,crJl siudenti ,I once 
Rceenl technoloaic.al.dvlnces (c I Elhernet. Ihe use of Ihe 
tnmJ\c. EVllScr ... er (e\,,'ullion of LISP s·exps on remolc 
machines! •• nd bilmap displays) have made possible new 
tort .. "e tools.nd new classes of lools. including lools for 
,roup '(livU), medialion and enhancement There has been 
hlile pre\llou! Siudy of personal vs. ,roup use of computers. 
We are desianin, soflware lools for inlelieclUol teamwork 
(enljahlcned ,roup problem solving). The soflware design of 
chcse lools addresses (he synchronization of shared objects and 
dJ[I spJce. the nelworle coordination of closely interacting 
""chines. and forms of new· primitives for active and 
interactIve displays, 
The ,oals of the Colab project are ItS follows: 
• To explore the dynamics of group problem solving and 

interaction 
• To elCplore existinl communication devices and paradigms 

used for collaboration 
• To experimenl with software. hardware, and social 

techniques to assist group problem solving 
• To build the software foundnlions and several 10015 for 

these ex.perimenlS and exploralions 
• To analyze renl group use of our system nnd tools. 
CoLab is ex.pected to be an environment in which com pulers 
unobtrusively supper! humon interactions. nOI one in which 
humans only use com pulers. 

1 
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OUf research projects in programming systems seele 10 facilitate 
software production by providing advanced interactive systems, 
improved programming language translation capabilities, and 
support for program development. qur efforts are increasingly 
directed toward exploiting the benefits of high*speed personal 
workstations to enhance programmer productivity. 

We are studying interactive systems both for nonprogrammers 
and for experts. A system for thc interactive development of 
programs by modification of example computations has reccnlly 
been completed. A high-quality document preparation system 
is being designed. We are also developing a language-based 
editor, intended as the user interface both for program design 
and for preparation of other kinds of structured text. 

As part of an inlegrated hardware-sonware system for 
Smalltalk-80 called SOAR, we are developing a compiler, a 
debugger. a garbage collector, and the operating environment 
for Smalltalk. Our research on the implemenlation of Ada· is 
focusing on the design of the runtime system. 

We have an ongoing project to develop tools to automate the 
production of high-quality compilers. We have just completed 
a study of techniques for register allocation and intermediate 
representation. We have developed a new method for 
automated discovery of low-level target code improvements. 
Under investigation are a tree transformation system and 
techniques for the automatic generation of symbol table 
managers. 

An important aspect of software development is the design, 
construction. and maintenance of large systems. We have 
implemented an interactive transition diagram editor. used to 
model parts of the development process. The Evolution 
Support Environment is being designed to provide a variety of 
support facilities. tn addition, we arc designing and building 
software tools for new forms of computer-assisted collaboration. 

-Ada is. tmlemuk or (he Oe~nmen( or Defense (Ada JOint Prolram Office). 

Most computer-based applications systems cannot be 
programmed by their users. Programming is considered a 
difficult skill for the average person to learn. so most systems 
do not provide facilities for ordinary users to write programs 
that help them do their work. 

We believe, however, that ordinary users could program their 
systems using a technique called "programming by example," 
which is a way of programming a system in its own user 
interface . The system user writes a program by giving an 
example of what it should do. The system remembers the 
sequence of actions and can perform it again. Succinctly. 
programming by example is "Do What J Did." 
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Programmi ng by example has been added to a simula tion of a 
commercial office information sys tem. In addition to Ii basic 
programming-by-example mechanism. the fneiHl), provides 
program parameteriza tion. dala searching and selection 
mechanisms. conlrol structure, and a slatic. readable program 
representation thal .ca n be edited. 

Wit h the now widespread popularity of document preparation 
systems and with the: advent of new technologies. such as local 
workstations and bit-mapped displays, it makes sense 10 

reexamine these systems and 10 see what new techniques can 
be employed, For example, a uniform mechanism for 
combining two-dimensional media hext. drawings. 
photographs. cifplots, etc.) will be the center of a new, 
interactive document system that automatically updates parts of 
a document when its source has changed. The system would 
present a page·by·page approximation of the final document on 
the display. and the user could interactively update those parts 
of the document for which local editors exist. It may even be 
possible to have an edi tor that presents a uniform interface to 
objects of distinctly different types. 

Presently. different editors exist at Berkeley (e.g., vi and 
EMACS for text, Gremlin for diagrams, and Magic for vLSI 
designs) . An integrated system could use these editors as black 
boxes. transforming to and from a common representation 
when needed . The environment thus created is envisioned as 
being more interactive and incremental than previous batch. 
oriented systems and would allow the entry of any new two­
dimensiona l data whose format was describable within the 
syste m. 

This project is working in twO different directions toward the 
system described above. At a high level. techniques for 
incremental rederivation and for managing multiple 
representa tions of two-dimensional data must be found. A user 
interface, a common representation. and a framework for them 
both must be designed. Progress here has included identifying 
the problems involved and researching systems that have tried 
to solve subsets of them. An interesting formalism that could 
be used to a utomatically derive new tr3nsformations was 
discovered. 

At a lower le ve l. the editors and transformation programs here 
at Berkeley must be brought closer togelher. Some other 
groups here have unwillingly aided this effort (e.g., Gremlin 
and Magic have been poned to the SUNs) . Also, a simple 
system for experiments must be set up. Much of the effort has 
been spent here. exploring project feasibility . The t)'peselling 
language TeX. with its notions of boxes and glue, has been 
adopted as a basis for the system. TeX produces device­
independent output files that can be printed on all our local 
bit· raster printers (and many others) . We have recently ported 
Te X to the SUN workstation. along with most of its related 
software . A pre viewer for TeX on the SUNs has been adapted 

-
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[0 run under Ihe window SYSII:m. These represent [he firs! 
sleps in bringing up !J simple prolOlype of (he syslem. Progress 
in the future will focus on campleling and using this prololype . 
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Fig. 14-/. The IWO document pages shown on (his page and (he 
next aTe /rom a TeX document being displayed by dllisun On a 
SUN· ISO. Usillg cflrrent/onts. Ollly (V.'O·thirds o/each page CQn be 
shown On lhe display Qt one time; commands can mOl-'e this 
'window' in any diTeclion 10 reach lhe reSI 0/ the page. Although 
One page invol\·t!s SOme graphics and Ihe olher many font changes. 
clvislln can redisplay them in one and two seconds. respect;\'ely. 
A\'erage pages take only about three· quarters % second. Th is is 
jh't! (0 ten limeS/OSier than the (ocal dilfoffprellie ..... er. 
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Language·based editors support the programmer by using 
language·specific information during the editing process. This 
support includes checking for syntactic or semantic errors. 
template-based entry of basic structures. and special display 
algorithms for viewing the program. To dale, most systems 
impose a rigid development methodology on the user. 

I am interested in developing "higher·level" language·based 
editors that support multiple languages and allow users to 
manipulate programs in terms of the underlying language. This 
approach subsumes both text- and structure-based editing. 
Programs and structured text can be manipulated either as text 
or in terms of their underlying structures. For example. in a 
program. the user might choose to operate on functions. 
blocks. statements, expressions. tokens. or characters. At all 
times. the editor will offer full flexibility between text and 
strUClUre. 

This research is aimed at creating an editor-generating system 
thai accepts a language description as input. creating tables and 
code for use in a standard front end. The standard front end 
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provides a consislenl user interface for editing objects written 
in differenl laogunges. Areas of investigation include 
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algorithms for parsing, static-semantic description and checking, 
and connections to knowledge-based programming 
environments. 

A new class of programming systems is evolving that integnlles 
a processor, a high-quality display. a programming language. 
and an openlli ng system with Ihe goal o f enhancing 
programmer productivity. These systems Bilow the creation of 
software prolOlypes using considerably less manpower. 
Smalllalk·80 is the most mature example of nn inlegTllled 
software system. 

The primary disadvantage of such systems is their slowness. 
We are in the midst of a three·year project to apply compiler, 
systems. architectura l. and MOS VLSI implemen tation 
e;<'pC:rtise to building a low·cost version of such a system 01. 
We have built a software implementation under UNIX called 
Berkeley Smallialk (BS) and have distributed it to twenty sites. 
Allhough wrillen in a high·levellanguage (C) and running on a 
microprocessor (SUN workstation>. as is as fast as a 
microcoded version of the Smalltalk·80 system run on the 
Xerox Dolphin. Our long-term goal is to create a new 
hardware/software system - SOAR (Smalltalk On A RISC) -
that runs a hundred times faster than Smalltalk on the V AX 
111750. 

Garbage collection presentS a serious challenge for a Smalllalk· 
80 system. Smalltalk programs crente seven bytes of garbage 
for every eight instructions executed . We have designed an 
algorithm called Generation Scavenging and incorporated it into 
BS (2 1. Pauses disrupt thought and decrease productivity. The 
pause time for our algorithm is only a frnction of a second. All 
other Smalltnlk-SO systems need indirection to help manage 
objects. BS, with Generation Scavenging. is the first one with 
direct object addressing. Our garbage collector also runs in half 
the time of the best previous algorithm 

[I) D. Ungar. R. Blau, P. Foley. 0 Samples. and D. A. 
Pauerson, "Architecture of SOAR: Smalltalk on a RISC," 
11th Annual Symp. on Computer Archirectllre. Ann Arbor. 
MI, I984 

(2) D. Ungnr. "Generntion Scavenging: A Non-Disruptive 
High Performance Storage Reclamation Algorithm ." 
ACM SIGSOFTISIGPUN Software Engineering Symp. on 
Practical Software De~'elopmenr Enllironments. Pittsburgh , 
PA. April 1984. 
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A necessary part of the SOAR (Smnilialk On A RiSe) project 
involved constructing a compiler that would compile Small talk 
programs into SOAR machine instructions instead of the 
standard Smalilnlk virtual machine bytecodes. The primary 
concern in designing this compiler was the code explosion thai 
could result from using SOAR instructions instead of the much 
denser bytecodcs. 

Thai the semantics of Smalltalk preclude many standard 
optimizations made the SmalJlolk bytecodes Ihem~elves an 

• attractive intermediate representation fo r the compiler. The 
runtime slack used by the slack·oriented bylecodes is simulated 
by the compiler at compile lime, which converts those 
operations to register·orien ted SOAR instructions. This in 
practice produces rellSonably dense SOAR code. with an 
average of one SOAR instruction generated for each bytecode. 
The compiler was wrillen in Smalltalk. and the Small talk 
environment. although sophisticated. requires substantially 
more resources (primarily in terms of CPU power) than a 
conventional o ne in order to provide equivalent programming 
throughput. 

Small talk On A RISe (SOAR) is a microprocessor designed to 
run Smalltalk efficiently. Small talk is defined on the Smailialk 
Virtual Machine (STVM). and the compiler generates virtual 
machine instructions. known as bYfecodes.. from Small talk 
methods. On SOAR. bytecode methods are further translated 
into SOAR machine instructions to be executed by the 
hardware . 

The debugger in Xerox's Smalllalk Vinual Image operates by 
simulating the semantics of the bytecode instructions. which are 
no longer available on SOA R. There are also problems with 
the breakpoint-selling mechanism in the bytecode debugger. 
Breakpoints are set by inserting "halt" instructions in the 
instruction stream and recompiling the procedure. This makes 
setting breakpoints in recursive routines impossible. 

The following are guidelines for the design of the SOAR 
Debugger: 

• To provide the basic mechanisms for performing the same 
functions as the bytecode debugger SO that high-level 
soflware. like the Debugger Browser. can be reused with 
minimal change 

• To provide a better breakpoint mechanism SO thaI 
brcakpoin ts can be set and unset without recompiling the 
procedure 

• To allow breakpoints to be taken conditionally. thus 
allowing breakpoints to be sel in recursive routines or 
routines that arc shared with the debugger itselr. 
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Professor Patterson has 5e1 out 10 design a RiSe (Reduced 
lnstruclion Set Compurer) microprocessor Ihat will provide 11 

fast cltet:ulion vehicle for the Smalhalk·SO programming 
environment The Daedalus project under Professor Hilfinger 
has provided an inlermediale step toward implementing 
Smallialk on Ihis processor (SOAR). A basic version of 
Daedalus fhat allows testing of .benchmarks and large ponions 
of the Smalltalk-80 system is now running. Most of the 
Smallllllk·80 runtime system is wrinen in Ihe Smaliialk 
language itself; Ihis portion has been Iranslaled inlo SOAR 
machine code. ' 

We are now in the final stages of designing Ihe RISe/UNIX 
imerface required to run SmalJlalk on the hardware. When the 
chip is fabricated. we will have hardware and software ready to 
execute Smaillalk using SUN workstations to handle files and 
graphics. My currem tasks are to finish the operating 
environment specificalions and to document the rUnlime 
system and virtual machine. 

Research supervised by Paul Hilfinger was aimed at designing 
and implementing an efficient and conceptually simple rUOIime 
strategy for Ada The implementation involved using an Ada 
front end (provided by AT&T Bell Laboratories and modified at 
Berkeley) that produces DIANA. a proposed standard 
intermediate representation OR) for Ada programs. Our so­
called "middle end" lakes the DIANA representation and 
produces the lower-level intermediate tree form used by the 
portable C compiler . 

Experiences with the DIANA representation have shown that a 
normalization pass is necessary to make the representation 
usable by the middle end. Although the IR of the portable C 
compiler was not intended as a low·level representation for 
Ada. we found that i( was almost entirely adequate for the task . 
FUflhermore. using the IR allowed us 10 lake advantage of 
table-driven code-generation tools being researched 3t Berkeley. 

The runtime design stressed efficient application of uniform 
runtime type representations to implement such features as 
dynamic arrays and parameterized records. Funhermore, the 
implementation of these objects did not introduce any 
distributed overhead on the implementation of objects familiar 
to the Pascal user. Execution time for a Pascal subset of Ada 
was comparable to the execution lime of code generated by the 
Berkeley PascOlI compiler. as demonstrated by a small set of 
benchmarks. 
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The final goal of our work is 10 produce 3 set of tools thaI will 
allow the construction of high-quality code generators for Von 
Neumann-architecture computers in a short lime and with 3 

minimum of machine-specific coding. 

We have already developed a table-driven code generator using 
the Graham-Glanville method. We are working on developing 
formal methods to atlack the problems thai it fails to address. 
The result will be a largely table-driven code generator that is 
retargelable 10 diverse architectures with a minimum of 

, recoding. 

One major goal of this research is to formalize the register 
allocation of the code generator. We are investigating how to 
coalesce the optimizations found by a procedurewide data· now 
an31yzer with the allocation of registers needed during the 
process of instruction scleclion. The allocators are driven by a 
description of the number and types of various registers and 
some policy description. We are evaluating various coloring 
teChniques as the basis of the allocation policy. 

AnOlher major goal of this research is to investigate semantic 
3l!ern3tives to the current syntactic specification of conversions 
done by the code generator. We are experimenting with 
different specifications to measure their costS in terms of size. 
space, and comprehensibility. 

I am investigating techniques to automate the discovery of 
machine-specific transformations that will improve the quality 
of code produced by retargelable compilers. Current 
retargetable code generators produce provably correct, oflen 
opt1mal code for single statements. However. they fail to take 
full advan tage of target architectures and of len use complex 
instructions only with hand-coding to recognize special cases. 
The goal of this project is to recognize those special cascs 
automatically. thus making relargetable code generators more 
robust and easier to retarget. 

I distinguish two stages in this process. The first analyzes a 
description of the target machine when the compiler is 
constructed and generates tables for the second stage, which 
transforms e3ch program run through the compiler. This 
separation allows the analysis of the target machine to be 
arbitrarily thorough in its attempts to e;llploit features of the 
target machine and reduces transformation to a simple pattern 
match and replacement . The analysis "decomposes" the 
complex instructions of the target machine. finding sequences 
of instructions that can be replaced by those comple;ll 
instructions. The transformation stage uses information 
derived by the analysis to transform assembler source code. 
Automating transformation of other representations of 
programs is possible. A prototype system has been 
demonstrated and retargeted. and a dissertation describing this 
work is in progress. 

• 
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Trees Ife conveniem represenl31ions in many 5ilU311005 largely 
because of their hierarchic:!1 struclure. which models many 
Siluiuions, and bec3use of the ease with which Ihey can be 
maOlpulaled. This manipuJali90 frequently corresponds to 
Irnnsformalions between different tree representations to 
expose or modify some properties of the object being 
represented . 

The goal of our projee! is to investigate tree transformations, 
especially in the COnlex[ of compilluion systems, program 
Inlnsformlllion systems. and programming environments. We 
will use resullS and experiences from the areas of term 
rewriling sySlems, production systems. and programming 
languages. among others. to find description!!1 mechanisms that 
nrc adequate for efficient implementation while !llso being easy 
to program. have provable properties. snd have an adequate 
interface to the compilins process. particularly to pauern­
mutcher-based code generators. 

Our approach is quite pragmatic. and we hope to design II tree 
transformation tool in the tradition of scanner. parser, and 
code-generator generators. As an application of our rese .. rch. 
we expect to fililhe gap between the high-level abstract trees 
thai can be obtained from the parser and the low-level trees 
required by the Graham/Glanville/Henry technique of code 
generators. In the process. we expect to clarify the relation 
between program optimizlltion and code generation . 

We have implemented II simple tree transformation system. 
which we hove used to aather some first experience. We 
recently completed an extensive bibliography revision and are 
evaluating different description mechanisms. 

Symbol Table Managers (STMs) mUst currently be hand-coded. 
though some efforts are under way to automate their 
production The task of writing an STM can be very difficult 
for languages such as Ada. Automatic production of an STM 
from a speCification of the relevant pariS of the language being 
processed would have a number of benefits: less work. greater 
understandability and modifiability. improved faith in the 
correctness of the g'eneraled STM. and aUlomalic oplimization. 
Such a specification would also be useful for formal language 
definition and for language comparison. 

A model of seoping and naming in languages has been 
developed, and the primitive operations implied by Ihis model 
have been identified. A functional specification language based 
on Ihese primitives has been designed as an extension of an 
attribute grammar system. The extensions will be implemented 
so that the usefulness of this specification language can be 
evaluated on real languages. 

Because symbol tables are large objeclS. copying them 
unnecessarily must be avoided if reasonable efficiency is to be 
achieved. Elimination of simple copies is well understood. but 
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elimination of copies necessitated by modification of objeclS has 
been studied only in cerla;n cases (e.g., pass·orienled attribute 
Ifimmars). Two different methods that will handle ordered 
allribule grammars have been developed. 

This project crealed I highly interactive mouse-and-menu­
driven graphical editor fot stale transition diagrams. along with 
II generalor thaI provides input 10 a transition diagram 
inlcrprclcr. The Transition Diagram Editor (TOE) is used to 

ISuPporilhe User Software Engineering (USE) methodology. an 
approach 10 the specifictllion and implementation of interactive 
informalion systems. Augmented state transition diagrams are 
used to model human-computer interaction. with nodes 
representing system output and arcs <transitions) associated 
with user input: system operations occur during a Iransition. 

Rather than using a textual language to describe the diagram 
SlruclUre. TOE allows the diagram to be drawn and edited 
interactively. then generales the textual diagram description for 
interpretive execution. TOE and its related tools are especially 
effective for rapid proto typing or interactive systems. TOE 
runs on the SUN workstation: the other tools run not only on 
the SUN, but on mOSt other UN IX systems. 

'U C. San Fr.lnciSCO 

Evolution Support Environment (ESE) is an integrated and 
automatic environment ror the sonware development/evolution 
process. An ultimate goal for the software development 
process is to develop an automatic software family generator 
that, given the specifications for a member or a ramily . could 
generate an implementation ror the member by reusing as 
much existing software as possible. Three basic requirements 
ror such an environment include promOling (1) traceability 
between user requirements. design. and code. (2) reusability of 
existing designs and code. and () compatibility between 
various phases of the software lire cycle . Our next step is to 
design and develop the Sort ware Engineer Assist System. which 
would guide the designer's decisions based on metrics (we call 
that Metric-Guided Design Methodology). 

Colab is a laboratory to experiment wilh new rorms or 
computer·assisted collaboration. Although networks connect 
computers and enable electronic mail and sharing or facilities. 
computer systems aren't usually designed for group activities. 
When we think or people working with computers, we usually 
think or them in separate offices working mostly in isolation. 
To use computers ror demonstrations. several people gather 
around 3 display designed ror a single person. If people decide 
to work together on a problem. they leove their computers 
behind and go 10 a white board. Secondary ideas, arguments. 
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and IIndom notes Ire orren losl or forlonen when records of a 
coU.aborau\'( lt$SJon must be: enlered inlo a computer syslem as 
I Jepuate uep When inslfuclors train people 10 use 
intcrKtJ\<c prOjtlm);. Ihere is no easy way to interact with 
If!\e,al iludenlS .II once 

Rectol fc:"chnolosial .Jd\'ances Je g, Ethernet the use of the 
mouse. EulStrver (evaluation of LISP s·exps on remote 
m.tchlnesJ. and bitmap displays) have made possible new 
softv.lfe 10015 .nd new classes of 10015. including 10015 for 
lfOuP aclivity medialion and enhancement. There has been 
hllie pre\l;ou\ study of personal 'Is. ,roup use of com pulers. 

We are desi,nin, $Orr ware lools for inlelleclUal teamwork 
tenli,hlencd ,roup problem solving). The software design of 
these lools addresses the synchronizalion of shared objec!s and 
WI. Splice. the network coordin.3tion of closely interacting 
machmes. and forms of new primitives for I!.clive and 
mlerlclive displays. 

The ,oals of the Colab project are as follows: 

• To ('(plore the dynamics of group problem solving and 
int(raction 

• To ('(plore elCisting communication devices and p3i.1digms 
used for colJabof.3tion 

• To uperimenl with software. hardware. and social 
techniques to assist group problem solving 

• To build the sorrware foundations and several tools for 
these experiments and explorations 

• To annlyze real group use of our SYSlem and tools, 

Colab is expected to be nn environment in which computers 
unobtrusively support human interactions. nOt one in which 
humans only use computers. 
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This report summarizes my observations of Systems Concepts 
Laboratory (SeL) and its "remote work site" experiment (to 
be referred to here as the Portland Experiment) from October 
1985 until January 1988. The primary purpose ot this report 
is to document and interpret what was learned from the 
Portland Experiment during this time. 

Background 

In the spring of 1985 two significant events occurred: seL 
became a full-fledged laboratory and the Portland site began 
operation. The details of the establishment of the Portland 
site will not be reviewed here. During the next six months, 
seL grew from twelve to eighteen members, with four of the 
six new members based in Portland. Only one member of the 
lab transferred from Palo Alto to Portland. 

The espoused "vision" of the laboratory under which the 
Portland experiment played a key role was originally 
described by Adele Goldberg, SCL lab manager until september 
1986, as interpersonal computing. Its roots were in the 
previous fOCUS, of the group which was the predecessor to 
SCL, on personal computing. While personal computing 
supports individuals and involves their interaction with a 
computer, it does not support person-to-person interaction 
or work group collaboration. The notion of interpersonal 
computing is that it supports people communicating and 
working together through computers. Thus it would include 
tools to support face-to-face interaction and meetings as 
well as interaction separated by time and/ or space . One lab 
member articulated it this way: "There is a vision of an 
environment in which it is easy to work with anyone you want 
to in space and time. That requires the ability to 
interact, to get in touch, to share resources . II 

The evaluation project began with a pilot consisting ot two 
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visits, in October 1985 and December 1985. The project was 
subsequently funded for one year and then extended for a 
second year. The researcher made eight more visits over the 
two year period. Each visit consisted of two full days at 
each site, interviewing (on an individual basis) as many of 
the lab members as possible. All interviews were open-ended 
and unstructured. The lab members discussed a wide range of 
issues, many of which were not directly related to the 
Portland experiment. However, through these interviews the 
researcher was able to learn about the overall social 
process and culture of the lab as well as specific projects; 
these issues inform in an important way the evaluation of 
the Portland experiment. 

The researcher produced an interim report in November 1986 
and a final report, including recommendations for further 
research, in November 1987. The Portland site was closed 
three months later. The purpose of this report is to 
reexamine the Portland Experiment in light of the tact that 
it is now complete, and the body of knowledge it generated 
can be summarized. This report does not address the 
rationale for either opening or closing the Portland site, 
nor does it deal specifically with whether the Portland 
Experiment was a Ilsuccess" or a "failuretl • 

The Central Research Question 

The Portland Experiment was designed to be a forcing 
function for the lab to focus on the issues of collaboration 
in a geographically distributed organization. The central 
research question is thus two-fold. What did the Portland 
Experiment teach PARC in terms of: 

• the process of collaboration in a distributed 
organization; 

• the definition and implementation of tools to 
support collaboration in a distributed 
organization. 

outline of the Report 

The next section of the report briefly describes the 
environment and technology of the Portland experiment. 
Then, some background to understanding the research 
contribution, in terms of work group collaboration, 
socialization, management control, and physical place versus 
tlsocial place", is provided. The research contributions of 
the lab during this period are then reviewed and analyzed in 
view of the central research question defined above. 
Finally, some conclusions about the contribution of the 
Portland Experiment to PARC research are given. 

For readers who are unfamiliar with SCL or the Portland 
experiment, a discussion of the evolution of lab process and 



culture in seL and the two sites over the two year period is 
contained in Appendix A. 

THE PORTLAND SITE AND TECHNOLOGICAL ENVIRONMENT 

The dominant espoused research goal ot the Portland 
experiment was to be a forcing function tor the lab to 
develop tools to support collaboration 1n a distributed 
environment. The fact of the Portland site created two 
types of barriers to communication and collaboration: 
geographical and cuI tural. The assumption was that these 
barriers would have to be overcome, forcing the lab to 
develop tools to help overcome them. For this reason, a 
second site geographically closer to PARe, where the 
barriers could be overcome easily (i. e., by travel between 
sites) was ruled out. 

The Portland site was designed to support up to eight full­
time researchers plus one technical and one administrative 
support person. For most of the two year period of the 
evaluation, there were seven full-time researcher., two 
support people, and at various times a consultant and a 
graduate (summer) student. The facility was designed to be 
similar to the lab in Palo Alto, with a large "commons" area 
for meetings and informal interaction, individual offices on 
the periphery, and a conference room for more formal or 
private meetings. 

The key technology providing a "link" between the two sites 
was an open communication channel to support (at 56kb) 
interactive video and audio at all times. It became 
commonly known as tithe link" or "the Widcom", referring to 
the first system installed for the video connection . 
Originally, the video (cameras and monitors) and audio 
equipment was installed in the commons areas at each site, 
and used for informal interaction as well as group meetings. 
Later, experiments were done with moving all or part of the 
equipment into individual offices for private meetings . 
Eventually, video switches were installed at each site and 
many of the offices were equipped with monitors and cameras. 
At each site the equipment was linked through the video 
switch and also linked to the computing environment, so that 
a person in an office could establish a video link with 
another oft ice at the same site or, through the single 
channel between portland and Palo Alto, to an office at the 
other site. This environment, with assorted other features, 
became colleotively known as the "media space". 

BACKGROUND TO UNDERSTANDING THE RESEARCH CONTRIBUTION 

In this section, some research areas that help put in 
perspective the Portland Experiment are reviewed. 
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The Nature of Work Group Collaboration 

Recently, computer sciencI and intormation systems 
researchers have begun to pay attention to technoloqical 
support tor work group collaboration (Greif, 1988; Olson, 
1988). In the academic fields of management AS well as 
social psychology and sociology, there 1s a considerable 
body of research on the nature of work groups. While 
research in social psychology has tended to focus on group 
process, particularly in decision makinq (e.q., Kelley , 
Thibault, 1968), research in sociology haa focused more on 
official work units (i.e., departments) and their 
interdependence in terms at organizational structure (e.g., 
Pugh, at a1; Hags and Aiken). Research in management theory 
has focused recently on "teamwork" and participative 
management Ce . g., Tjosvold, 1986). Most of this re.earch 
has attempted to demonstrate the benefi ts of teamwork in 
terms of employe. motivation and productivity. Very little 
research in any field has specifically focused on how work 
is performed in and managed by groups. Computer scientists 
interested in building tools to support groups at work have 
not found a useful framework in any of this research to 
define what happens in work groups and how information 
technology might improve work group process and output. 

The computer science community addressing this issue has 
come to be known as the CSCW community, after the first 
conference on Computer Supported Cooperative Work in 
Oecember 1986. There has been much debate about the name; 
some object to the term "cooperative" since work groups are 
not necessarily so and might be in direct conflict. The 
author prefers the term tlcollaborationn ; according to 
Webster I s Oictionary, to "collaborate" means "to work 
together, particularly in an intellectual effort." 

The type of work group collaboration dealt with in this 
report is strictly of the "intellectual" variety, as opposed 
to work groups assigned to assembly, manutacture, or 
construction ot physical artifacts. This type ot 
collaboration haa aeveral distinguishing features: 

• There i. at least one common goal shared by 
group members, although subordinate goals may 
be shared by all members or may even be 
conflict; 

all 
not 

in 

* The primary "resource" required to carry out the 
activity is information or ideas; thua there must 
be some facility tor work group members to share 
intormation; 
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• 
• The coordination ot effort required to accomplish 

the task primarily requires knowing what other 
work group members are thinking and/or doing; 

• Work group members are thus interdependent in the 
long run, although tor periods of time they may be 
able to work independently. 

The nature of interdependence ot collaborative work groups 
is best defined by Thompson (1967) . Thompson defines three 
types of interdependence ot resources in any work process: 

• Sequential interdependence, where resources are 
consumed sequentially, as in an assembly line; 

* Pooled interdependence, where the resource to be 
consumed may be accessed simu! taneaously by 
multiple facilities requiring it, as in access to 
a centralized database for an airline reservations 
system; 

• ReciDrocal interdependence, where each ot two 
facilities also has resources required by the 
other, and coordination of the two is required. 

It should be clear that when work is organized with 
reciprocal interdependence, more resources are required tor 
coordination of the work than for the other two types of 
interdependence. In intellectual work, where the primary 
resource to be coordinated is information, reciprocal 
interdependence in a work group implies that each facility 
(in this case, people) needs to know what the other members 
of the work group are doing and/ or thinking. This knowledge 
must span time (how did they arrive at this solution? What 
did the group do yesterday when I was out of the office?) 
and space (What are the other members doing now? Is it 
necessary for us to meet face to face to resolve this 
disagreement?) . 

Alternative Goals for Development of New Tools 

Different tools have different effects on work group 
process . Some alternative goals leading to development of 
different tools are examined here. 

1. To make two separate physical environments "more like" a 
single environment. This has traditionally been the goal of 
video teleconferencing: to be as much as possible like a 
face - to- face meeting. 

2. To improve the accessibility of more information. This 
implies moving from reciprocal interdependence to pooled for 
at least information that can be "shared". Videotape 
recordings that provide a "sense of the past" would be an 
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example, as well as image processing. The notion of an 
object service as an underlying technology supports this 
desiqn qoal. 

3. To improve the efficiency of reciprocal interdependence. 
For II. task where reciprocal interdependence is necessary, 
generally a great deal of time is spent "informing" other 
members of the work group. Tools that focus on improving 
the efficiency of this process might reduce the amount of 
information required to be shared by increasing specificity. 
A common example today is the substitution of electronic 
mail for telephone because it eliminates unnecessary 
II social" conversation. An example of a new tool is an 
electronic mail system wHich imposes II. structure on the 
dialog, such as the Coordinator by Action Technoloqies 
Corporation. 

4. To increase the capacity ot reciprocal interdependence. 
Tools ot this type increase the amount ot intormation 
sharing among work group members, either in order to 
overcome barriers of space and time (e.g . , interactive video 
in offices) or to make face-to-face interaction more 
effective (e.g., meeting augmentation, group decision 
support systems). 

The Nature of socialization 

Another aspect of work group collaboration which has been 
neglected in research to date is the process by which work 
group members learn and act out their roles. This has to do 
with the nature of contracts: who determines who should do 
what and how is commitment from work group members elicited? 
There may be different models, from highly authoritarian 
(the manager dictates task assignment and demands 
commitment) to highly participative (all work group members 
negotiate together and agree on tasks). Prior to task 
assignment, understanding of the expertise and knowledge 
each work group member brings to the proj ect is a more 
subtle aspect of work qroup process that is particularly 
important it the work group wants to be cooperative and 
foster trust among members . For instance, it a person takes 
on a particular task voluntarily, the other group members 
should have some a priori belief that the person is 
competent to do the task and can be trusted to deliver as 
promised. 

The primary type of organization of which SCL is a 
prototypical example is defined by Henry Mintzberq (1979) as 
an adhocracy. The dominant form of coordination of work in 
an adhocracy is mutual adjustment, which refers to 
ucoordination of work by the simple process of informal 
communicationu• Furthermore, the adhocracy is fairly flat, 
with few layers of management. Roles and organizational 
responsibilities are fairly loosely defined and hiqhly 
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ambiquous, with individuals given a considerable amount ot 
leeway to chooae how to prioritize their time. The process 
of adjusting to an organization of this sort involves 
learning what ara the appropriate "proj ects" to work on 
without any explicit direction ofrered, and establishing 
and/or demonstrating competence and trustworthiness in order 
that other work group members seek out the new member tor 
projects. 

The Nature ot Management Control 

The tinal aspect of learning ond doing rolell in the work 
group process is the nature ot control. With certain types 
of tasks, milestones and deliverables may be highly specific 
and meAsurable so that individual performance can be eas11y 
determined. In many work groups, the only real control by 
either management or other work group members is pure 
observation ("He is never in his ottice. No wonder he isn't 
going to meet the deadline -- he is never working."). 

An adhocracy tends to support an egal i tarian, trequently 
participative, management style. Thus the organization 
members themselves may set policy and direction. In many 
such organizations, the implicit culture strongly indicates 
what is acceptable behavior (including such mundane things 
as dress, punctuality, etc.) without any explicit rules or 
policies. Individuals are "expected to tigure it out", and 
those who do not are either misfits (working on the "wrong" 
things) or teel uncomfortable in the environment and choose 
to leave. 

In a work group where group members themselves determine 
task assignments and roles, it is more likely that at least 
some control is held by group members themselves . Thus if 
one group member is "slacking off", the most etfective 
control process might be peer pressure. 

Physical Place versus social Place 

Many of the phenomena regarding work group process and 
socialization are, at least traditionally, highly dependent 
on physical place and physical (i.e., face-to-face) 
interaction. Indeed, virtually all of the research reviewed 
above assumes that a work group is colocated . In the 
literature on socialization, strong emphasis is placed on 
observation. Anything which is not face to face is "less 
than" and therefore necessary but not as good. 

Most representative of this point of view is the 
considerable body of research on teleconferencing (Johansen 
et aI, Short et all, which emphasizes specifically how it is 
less than face to face. For instance, Short and his 
colleagues operationalize the notion of II social presence" ot 
a media and measure it relative to face-to-face interaction. 
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In the socialization process, physical place plays a much 
more subtle but possibly more important role. People learn 
how to act in organizations by watching other people. The 
"culture" ot the organization is reflected in its physical 
environment (Deal and Kennedy). Roles and status are 
reflected in a very formal way in the size of an otfice, the 
number of windows, the type of desk (in one organization, 
the "wooden desk people" are the only one. who make 
decisions), even the color ot the carpet. On a more subtle 
note, who talks to whom in the elevator, who g08s to lunch 
together, etc. are all cues that are carefully observed by 
other organization members, 

Furthermore, the physical place of the organization exerts a 
direct, it not very efficient, form of control over 
individuals. In essence, when an employee enters the 
facility, his or her time is "owned" by the organization. 
Even if employees are not being very productive, their "time 
in" is the basic metric on which their performance is 
determined. This fact was brought home to the author in 
extensive research on "telework", where employees worked at 
home instead of going to the office . The primary obstacle 
to telework as an employee work option was management's 
discomfort with not being able to "see" that their employees 
were working, and furthermore that the employee was in an 
environment, the home, which was explicitly outside of the 
organization's control (Olson, 1987). 

These notions of physical place are challenged in a very 
important book (Meyrowitz, 1985). Meyrowitz argues that 
"social place" is becoming a dominant factor in society 
today. If we examine the role of electronic media 
(particularly television) in our understanding of the world 
around us, it is apparent that assuming that physical and 
social place are equivalent is inadequate. In the case of 
work groups embedded in an organizational culture, this 
means that the traditional research and practice assumptions 
of physical place (epitomized by the face-to-face meeting) 
are inadequate to understand the impact of electronic media. 
In essence, electronic media present a new set of roles and 
meanings that "undermine the traditional relationship 
between physical setting and social situation" (p. 7). 

THE CULTURE OF SCL AND ITS WORK 

In this section, we will examine the work group and 
socialization culture of SCL in light of the research 
discussed above. The primary purpose of this section is to 
define the SCL culture relative to other types of 
organizations, so that the research findings can be placed 
in the proper context. 

-
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The Sooial Organization 

seLl s management structure, while often debated, was 
relatively participatory. There were two levels ot 
management (area managers and lab manager), who took 
seriously the responsibility to handle administrative 
matters so that their subordinates could concentrate on 
research . There are several important characteristics: 

* There were no explicit task assignments . Lab 
members decided themselves what to work on, and 
thus new members had to figure out what was 
appropriate by learning what others did. 

• Being a competent researcher was highly valued 
and rewarded but the standards of competence were 
not well defined. While one way of demonstrating 
competence was to build an artifact and the 
emphasis was on this rather than producing papers, 
once someone had gained respect as a competent 
researcher they had more latitude to do what they 
wanted. This made "learning what to work on" by 
new members even more difficult. 

• There were only highly subjective measures of 
performance. Programming is an excellent example; 
it is very difficult to detect programming 
performance and programming output can vary by 
orders of magnitude. A few members of the lab 
were remarkably proficient at programming but 
v i sually they looked like they worked just as hard 
as some other members who were "slacking oftU on 
programming tasks. 

The Nature of Lab Research Work 

What was the nature of the work actually performed? 
Although some members worked alone, the common mode was to 
work together, and the common thread across many proj ects 
was collaboration in design . (See next section for 
descriptions of specific projects . ) While the Design 
Methodology group worked on very different things than, for 
instance, the group developing Amber, they were both 
nevertheless doing collaborative design. Several 
characteristics of the design process in seL generally hold 
across projects: 

• The design process is uresearchu rather than 
engineering. The artifacts to be produced are 
generally evolutionary prototypes and vehicles for 
exploring possibilities rather than finished 
products. 
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* The mode of operation is reciprocal 
interdependence, with the primary resource to be 
shared being information or ideas. In order to 
work together, everyone needs to know at all times 
what everyone else in the work group is doing and 
how they got where they did. 

Furthermore, the nature of the collaborative design process 
has the following characteristics: 

• It is highly interactive, requiring dialog in 
real time; 

* It generally requires a shared workspace as the 
focus of that interaction, to create a visual 
record or representation of the interaction; 

• It often requires add! tional reterence materials 
-- notes, documents, manuals, etc.; 

* It requires some record of past interaction, even 
though it may be highly informal -- memory of work 
group members (e. g., Do you remember why we came 
up with that solution?). 

Actiyities in Design 

The term "design" in this context is used broadly to refer 
to an overall process which can be broken down into 
different observable activities. The activities defined 
below, and used subsequently to classify research projects, 
are based primarily on the discussions between the 
researcher and SCL members with respect to IIWhat are you 
working on?". 

Definition: There is an identifiable subactivity 
ot the design process which generally involves 
defining and seoping the problem. Some proj ecta 
(l.e., architecture) only engage in this activity; 
subsequent activities are performed by other 
parties. In a narrow definition of the term 
"design" this stage is the real lIdesign process". 

Implementation: This refers to actual production, 
i. e. , of code, an artifact, an equipment 
installation. This activity generally has a 
tangible output. 

Experiment: Some activities involved gathering 
data and analyzing it. This may be directly 
related to the design of something (e.g., 
statistics on volume of disk accessess to inform 
the design of the Object Service) or more indirect 
(e.g., the IlDay in the Life ll experiment). 

-- I -
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The daUni tion ot proj ecta was dona by the author based 
entirely on interview notes, rather than project 
documentation or individual progress reports. In 80me cases 
a large project is broken down into smaller projects or 
stages; tor instance, "straw proposals" and "core samples" 
are two sub-projects of the "new language" effort and are 
defined as two separate projects. Appendix B shows the list 
of projects, the number of people involved at each site, the 
classification of activity, and the output . The name of the 
project is often a combination of different names; the same 
project miqht be listed as ditterent projects at ditterent 
stages with different ac.~ivities and outputs (e.g., "SCL 
villages" and "media space"). In total, seventy separate 
projects were identified. 

Appendix C lists the lab members over the two-year period, 
and the number of projects on which they worked alone, in 
collaboration at a single site, and in collaboration across 
sites. Since being associated with a project has very 
little do with a person's relative contribution, and since 
the sizes ot the proj ects varied qreatly. this list in no 
way reflects individual members' contributions to the lab. 
It does show a few interesting things. First, virtually 
everyone in the lab worked on some projects collaborativelYI 
two work alone predominantly but even they work with others 
on occasion. Second, all except one lab member and three 
contract employees worked on at least one project across 
site. Some, particularly, those in portland, worked 
predominantly in collaboration across sites. 

Table I shows the projects categorized by activity. It 
shows that projects (or project stages) focusing on 
definition are the most numerous, followed by programming. 
Althouqh proqramminq is predominantly done individually or 
at a single site, far more definition projects are done 
collaboratively and most of these involved both sites. Thus 
collaborative design (i.e., definition) across the two sites 
was a predominant activity in the lab over the two-year 
period. 

Table II shows projects classified by output. It shows that 
the dominant output of cross-sita collaboration is 
speciticationa (the primary output ot definition). It is 
also worth noting that nearly half of the proj ects done 
collaboratively across sites (nine) resulted in no tangible 
output, far more than projects done collaboratively at a 
sinqle site or individually. Havinq no tanqible output does 
not necessarily mean the project failed. Many of these 
projects were hiqh-level detinitions (e . q.. early Object 
Service, New Language) that produced documents reflecting 
members I thought process but no operational output in the 
sense of specifications or code . 
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AN INTERPRETATION OF THE RESEARCH CONTRIBUTION 

In this section, the research contribution of 
of articulating the collaborative design 
building tools to support it, is examined. 

Articulating the Collaborative Design Procesl 

seL, in terms 
process and 

The Design Methodology group articulated a vision early on 
which, although not explicitly shared widely with the rest 
of the group, implicitly tit the work of the entire group. 
The Deeign Methodology group tended to focus specifically on 
architectural design with a heavy visual orientation; as 
should be clear below, their notions of supporting design 
extend to other collaborative design activities, 
particularly systems design, as well. 

As was noted in a previous section, seL member. view 
themselves as researchers rather than engineers. It 1s this 
underlying assumption about design which holds them 
together. In the words of one member, IIThere is a recursive 
process o~ evolving the system and allowing the system to 
support the process. II This is the overriding model ot 
design that was similar across architectural and system 
design. 

Furthermore, this type ot design is not highly structured, 
and does not benefit from tools to help structure the 
process. As de~ined above in terms o~ alternative goals, 
the tools required to support this type ot collaborative 
design must increase the availability o~ information and 
increase the capacity for reciprocal interdependence (Goals 
2 and 4), rather than simulating face-to-tace (Goal 1) or 
improving the efficiency of the process (Goal 3) through 
structuring tools such as, in system design, CASE tools are 
purported to do. 

One lab member described the research theme in the ~ollowing 
way : !fIt is about the theory o~ the process ot design, how 
people interact with design. To support the process ot 
design, we need intra structure tools -- video, computing, 
social proceS8. You also need to be able to carry in your 
head what everyone else is doing. It is not about 
structuring, not hierarchical. It is about expanding the 
capacity o~ the intrastructure." 

The Nature o~ Interaction in Design 

Two dimensions of supporting this design process are thus: 
supporting communication in real time and recording the 
process over time as an artifact of the process. We shall 
call the first synchronous (or supporting interactivity) and 
the second asynchronous (or creating a record). A second 
dimension deals with focus of the interaction : we shall 
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distinquish open process from focused process. The four 
alternatives, with exemplary projects done within the lab, 
are summarized in Table III. Each alternative or quadrant 
may be thought of as a separate design environment for which 
support tools can be developed. 

The activities of the group over the period (see Appendix B) 
can be classified into understanding and/or building tools 
for each of the four quadrants. It is important to note 
that they did not only focus on collaboration over a 
geographical barrier (i.e., remote collaboration), but also, 
and probably more important, on making the desiqn process 
more effective even withou~ that constraint. 

The work in each quadrant is briefly discussed below. 

Quadrant Ii Open. Synchronous Activities 

General problem definition takes place in this type of 
design environment. The primary product of this aspect of 
design is tAlk. Examples of this type ot design process 
are the straw proposals and core samples of the New Language 
effort, as well as the pre-Amber object service work. The 
forums are frequently open meetings (with many "kibitzers") 
for "kicking around ideas", also intormal spontaneaous 
meetings, and many informal IIdrop-in" conversations. They 
take up a significant amoun~ of time with the only tangible 
output being an occasional document of user needs (as in the 
Object Service scenario paper) or "straw proposal". The 
primary purpose of these exercises is to provide clarity of 
ideas for the writer, not to inform the reader, although 
they are generally read. As the general design process 
progresses, the documents produced along the way become out 
of date. 

One general problem with this aspect of design is keeping it 
sustained. According to one member involved with the new 
language project, IIHigh-level goal issues have not 
stimulated alot of interaction. There is alot of 
interaction on fairly low-level language issues. II According 
to another lab member, "Normally in the lab people spend 
thirty seconds thinking about what to do and almost no 
planning; then they just start coding. 1I 

In the lab, tools for "making connections lightweight", 
which were often labeled as supporting informal interaction, 
supported this type of collaboration. The primary "tool" 
for this support is of course the link between sites, that 
permitted both formal and informal interactions to occur. 
An artifact designed to support connection is CONTACT. 
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Quadrant IIi Open. Asynchronous Activities 

This aspect ot design deals primarily with capturing the 
"thought processes" generated by the high-level design 
activity described above . In informal meetings or 
spontaneaOlls interaction, a formal record is rarely kept and 
the primary source of recall for later, more focused design, 
is human memory.. 'fet many new research ideas are generated 
in just such an "open", informal interaction. 

The lab did no specific work on capturing informal 
interaction for later r ,ecall. However, the constant 
presence of the "media space" in offices was beginning to 
generate a sensitivity to the need to be able to record and 
recall this type of interaction. 

Quadrant III; Focused. Synchronous Activities 

A focused design process resulting in operational deaiqn 
specifications (written, graphic, verbal, etc.) takes place 
here. Support for this aspect of design requires intensive 
dialog (audio) support and a shared, focused workspace for 
drawing. Overwhelming, regardless of the type of design, 
lab members expressed this as their greatest need in cross­
site design: the ability to have a shared workspace. In 
architectural design it is clear that drawing capability 
would be essential, but the same need seems to hold true for 
collaborative systems design as in the Amber project. 
According to one member, "This proj ect pushes some things 
with respect to ambiguity in collaboration. When people 
collaborate they need to manipulate the things in their 
world. " 

The primary tool developed 
of design is media space. 

in the lab to support this aspect 
According to one lab member: 

IITwo things came together to form media spaces -- the 
Portland link and the recognition that design requires 
support for not just goal-oriented activity but the 
process of design itself." 

The ottice/ Design Experiment explicitly examined what 
happens if the environment is controlled in such a way that 
only the focussed interaction, without the potential 
distractions of a more open environment is available. As 
documented in (Stultz], the experiment revealed some 
i mportant insights about the focused design process. A 
major theme which emerged was the relationship between 
working together and privately at the same time. The 
participants in the experiment acted as if they were working 
privately not taking breaks, not chatting, feeling 
compelled to work, and they were amazed at the volume of 
work produced . yet it was indeed an intense collaboration 
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throuqh shared dialoq (as well as live video) and a shared 
video drawing space. 

"The tapes show the discovery of moving through the 
video space .••• One guy wanted to draw on the other 
person's screen, and he figured out a way to use 
tracinq paper to essentially do that. It helped that 
we had very visually oriented people." 

Another study that specifically focused on use of a shared 
workspace, comparing face-to - face, video and audio, and 
telephone only, is reported in (Bly, 1988). An interestinq 
observation from this study is that lithe process of creating 
drawings may be as important to the design process as the 
drawings themselves." 

Quadrant IYi Focused. Asynchronous Activities 

The focused design process frequently takes place over time 
rather than a single intensive session. Some problems 
requiring a record of the process are the need to review 
assumptions, and the need to bring a new person "up to 
speed" on a design. Early work in Design Methodology 
demonstrated how a rich record of the design process, 
primarily based on video recording and selective videodisk 
access, could be used to bring a new member into a design 
group in the middle of the process. A second major theme of 
the work/office experiment was recording the process so that 
it could be recreated selectively for the client (user) as 
well as the designers. The fundamental notion of needing a 
repository of IIthings ll for sharing -- and thus the Object 
service -- fits into this aspect of collaborative design. 
CORAL was a prototype for providing this sharing, as well as 
some simple videodisk server implementations and the "sense 
of the present" database prototype. In general, any 
applications which are built on the Object Service would 
support this aspect of design . 

The Design Methodology group did not pursue this aspect of 
tool building as much as media space. It was a much greater 
technical problem that could not go far without an Object 
Service in place. It was also a difficult operational 
problem: without effective tools for indexing and selecting 
materials, a massive amount of material could be 
accumulated. In the office/design experiment, human labor 
was used to simUlate this support, but this was not very 
feasible for more experiments. 

One member of the lab artiCUlated the relationship between 
recording the process over time and supporting the process 
across space: "We want to say that if you put communication 
media and ritual into place you can make it easier to 
participate in the present moment. The present moment has a 
past .. . . . up to two weeks. There are fewer 
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interruption •.•.• it is about getting rid ot overheads that 
the group demand-driven activity requires." 

In the Amber project, there were many complaints about 
misunderstandings among group members which were generally 
attributed to the two locations. According to one member, 
"We have discussiona here and they have the same discussions 
there. Sometimes we make decisions about the same things 
they do and they con~lict.1f In another case: "There is a 
small project to develop a database in Palo Alto. 
Independently I thought it was a good idea and wanted to do 
it. I didn't know they were already doing it." While it is 
easy to dismiss these Pfoblems as lack of face-to-face 
interaction, having adequate tools to record the process may 
have solved most of these kinds of problems. 

Summary of Research Contribution 

In general, the group started with a preoccupation with I, 
but steadily moved in the direction of supporting more 
focused collaborative design in III and IV. They did not 
tackle problems that were easier but less interesting and 
less critical to their work, such as programming together or 
enhanced electronic mail. They focused on the job that for 
them was both hardest and most rewarding: collaborative 
design. with media space they made significant progress in 
supporting focused, synchronous design and were moving 
toward real progress with support of asynchronous design. 
The underlying technology of the Object Service is a 
critical component primarily of Quandrant IV, but to some 
extent of all four quadrants. The group had also designed 
and was in the process of implementing GEAR, which provides 
the underlying technical infrastructure (equipment access) 
for tools to support all four quadrants. If the work had 
continued, once Object Service and Gear were in place the 
technical developments to support all four aspects of 
collaborative design would have taken off. 

THE LAB EXPERIENCE 

What did it II feel liken to work in this environment? 
Certainly the Portland Experiment was not a we11-
articulated, goal-oriented project. The experiences and 
frustrations of the lab members working in a distributed 
environment were probably a more important contribution 
(although more difficult to detect) than the activities or 
outputs of specific projects. 

The Nature of Work Group Collaboration 

It is clear that, in terms of the espoused research goal of 
understanding and supporting collaboration in a distributed 
organization, the lab became preoccupied with activities in 
the collaborative design process rather than other sorts of 
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projects. In doing so, they used the same model which was 
successfully with Small talk -- buildinq somethinq which they 
could use in their own work, which is of course, 
collaborative design . A siqniticant number of prototypes 
(artifacts) were built during the period but taw members 
focused on supporting collaboration in the building of a 
prototype (although there are some interesting examples). 
Although at first "programming together" was telt do be 
necessary and supportable across sites, the needs of the lab 
over the period did not push them in this direction either. 

As shown in Table I, collaborative definition across sites 
was a dominant activity • . Dealinq with their frustrations in 
coping with the limitations of the "media space", the group 
was able to gain valuable insights related to this 
particular type of collaborative activity and the tools 
required to support it. The greatest trustration was 
expressed, for instance, in Amber, in the stage ot 
detinitiont when they began to implement code, they were 
able to work effectively with much less communication 
between group members. 

One example of the 
following, describing 
project: 

expression of 
the detini tion 

frustration is the 
stage ot the Amber 

IISometimes things were in such a state that the link 
worked well because we HAD to communicate .... We agreed 
we wouldn't change it any more but it didn't work. 
There were alot more changes .•.. It shoved you over the 
barrier to communications [i.e., the link]. The 
telephone became more important .... It was good there 
was more than one person at each site. It provided 
local support for sanity testing. For some reason the 
more bandwidth the easier it is to do perspective 
shifting. II 

There are many examples that show the lab members I 
sensitivity to the process ot design and the need to support 
that process rather than simply providing more information: 

"The other labs think ot knowledge as a base you can 
draw on. I think knowledge is also a process . •.. there 
is knowledge implicit in the process; e.g., knowledge 
engineering. The design process and knowledge of how 
different people approach the problem is part of the 
knowledge base. It is knowledge about process or 
procedure, not just about content." 

"This project [Amber] has no central management. That 
is not a problem. The whole group has to come to the 
revelation of a problem when there is one. It is up to 
the group to manage itself." 
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"It i. vary nice to have them [the other group members] 
up there in a way . They don't come in and see where 
I'm at all the time.tI 

The second goal of the research agenda was the definition 
and implementation of tools to support distributed 
collaboration. It is clear from Table IV as well as the 
list of projects in Appendix A that the lab made 
considerable progresB toward this goal. The lab had a very 
clear understanding of the infrastructure required to 
support collaborative design and was progressing on that 
infrastructure with Gear and Amber. In support of specific 
focused design interactiQn (see Table III), there was also 
considerable progress wi tli proj ects related to interaction 
in the media space (e. g., the Work/Off ice experiment, the 
tlJanaia" study). 

The Nature of Socialization 

As described earlier, socialization is the process by whiCh 
work group members learn and act out their roles. In SCL, 
this process was affected by the Portland Experiment in 
dramatic but subtle ways. 

Many problems, such as those described in the Interim 
Report, were exacerbated if not caused by the two-site 
split. This is particularly' an issue because so many of the 
Portland members were new to PARC, and their "cues" (i.e., 
what to work on, what is research versus "play", how much is 
acceptable, what are acceptable hours, etc.) were mostly 
provided in Palo Al to. As in a typical adhocracy 
(Mintzberg), there was no formal orientation; roles and 
norms, including even what to work on, were primarily 
learned by observation. As already discussed, the standards 
of competence were not well defined and the indicators of 
performance were highly subjective. These issues were all 
exacerbated by the distributed organization. 

It would be presumptuous to point to any particular 
personnel problems and attribute their cause to the fact 
that the person was not in Palo Al to and thus was not 
properly "socialized" (although it is certainly tempting). 
However, this is a rich area for further investigation, 
particularly in the light of Meyrowitz's insights regarding 
"social place". 

Meyrowitz emphasized the role of television in allowing 
formerly "private" spheres to become "public". By contrast, 
SCL was beginning to experiment with a "social place" 
extended by video and audio that changed the relationship 
between "private" and "publicI! workplaces. It was not at 
all unusual for a person's office to be "tuned in" to 
another office with video as well as audio and for this to 
be treated as unobtrusive background noise and not regarded 
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as an invasion of the other person's privacy. 
extension of private workspac8s offers 
possibilities tor patterns ot socialization 
unexplored. 

This type ot 
whole new 

which remain 

Some ot the experiences with using media space are 
particularly enlightening: 

"This 1s more like a window than a workstation or a 
microphone. It is more like an open office with shared 
acoustic space." 

"It doesn I t intrude; it is there and you can pay 
attention or consider it background. Also you don I t 
need to leave your workspace to interact with others in 
your group. You can choose when and how to 
participate. II 

Some of the most interesting insights 1n terms of social 
process had to do with defining the etiquette of the media 
space. Certainly the media space technology could be used 
tor much more intensive but unobtrusive monitoring of 
workers. In SCL, the goal was to build media space so that 
it encouraged the status quo of shared control. For 
instance, a person should always be able to know if someone 
else was looking at them; such a feature was built into 
Contact. Another notion was that a person should always 
know what the other part is seeing; this leads to a scheme 
of relating a single camera and a single monitor. 

The media space was not yet at the point where lab members 
could easily move in and out of each other's "spaces", 
particularly cross-site. It is possible, however, that had 
the experiment gone on, many more insights into the diffuse 
nature of socialization in IIsocial places", and the design 
of tools to support them (etiquette of two-way interaction 
versus unobtrusive monitoring, etc.) would have been gained. 

The Nature of Management Control 

What can be generalized from SCL and the Portland experiment 
regarding the nature of control over work? Systems that are 
designed to improve the efficiency of coordination or to 
move from reciprocal to sequential or pooled interdependence 
are also implicitly about the control process. The work 
done in SCL is differentiated from these approaches 
specifically because it emphasized sharing control by 
increasing the capacity of reciprocal interdependence. 

Cross-site reporting was often debated and the area 
managers, while admitting it made sense as part of the 
lIexperiment" I generally felt uncomfortable with it. Since 
there were few specific objectives or deliverables, 
individual performance was often determined in a fairly 
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subj ect! va ad hoc way. This is not unusual, but managers 
tended to discount their intuitions when the subordinate was 
not on-a1 te. Managers in palo Al to made frequent trips to 
portland to "contirm a hunch" about a problem (e.g., a 
subordinate slackinq off) and then to deal with the problem 
face-to-face . 

Alternatiye Goals tor Development ot New Tools 

In terms of the four goals of tool development, to which did 
seL make a contribution? The group began by focusing on 
(1), making the two separate environments more like a single 
one. Many continued with. a preoccupation that it was not 
"as good as" face-to-face and thus the split site was a 
frustrating obstacle. An example was in the definition 
process of Amber, where there were frequent expressions of 
frustration with the limitations ot the media. In this case 
in particular, the group did not seize on th eopportunity to 
ask "What is the real problem? II and thus articulate the 
group I s real need -- i. e., a shared work space. In other 
ettorts, such as the Work/ ott ice experiment and the tlJanaia" 
study, the group did take advantage of the opportunity to 
learn what is difterent about collaboration in a media space 
rather than simply measuring it against the metric ot tace­
to-tace interaction. 

Much of the ongoing work of the lab focused on (2), 
improving accessibility ot more intormation which is needed 
for collaboration in design. The underlying infrastructure 
of Object Service and Gear supported this goal, as did the 
aspect of Design Methodology having to do with creating and 
accessing a record ot the design process. 

Some members of the qroup thouqht (in hindsiqht) that the 
direction they expected of the group was in support of (3). 
For instance, they might have developed the next-generation 
electronic mail system or group authoring system. Instead, 
the group turned to (4) and, in so doing, made a 
contribution which is unique to the CSCW community. It is 
significantly different from work on meeting augmentation, 
such as CoLab, because it opens up many possibilities for 
interaction across space and time while keeping the 
interaction at least as effective as, and possibly more 
etfective than, face-to-face interaction with its 
qeoqraphical and timinq limitations. 

CONCLUSIONS 

Table III and Appendix B demonstrate a significant body of 
work directly or indirectly related to the Portland 
Experiment. What does this mean relative to the stated 
goals of the experiment, as well as to the collective body 
of research known as CSCW? 
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The focus on collaborative design emerged rather than was 
defined a priori. It is clear that in fact, in the process 
of defining and tackling diUerent problems in the design 
process, the lab was better able to articulate that process. 
More important, it was able to articulate the tools 
required, both for an underlying infrastructure (i.e., 
Amber, Gear), and for specific aspects of design (e.g., a 
shared workspace). It is interesting to speculate whether 
such progress could have been made on any individual project 
without the overall driving force of the Portland 
experiment. 

There is a considerab~e amount of ongoing work on 
collaboration support that: treats work groups generically. 
A major contribution of the SCL work 1s that it focuaes on a 
spectic type ot work group collaboration which evolved to be 
identitied as the design process. Their work, however, can 
be generalized to other types ot collaborative work with the 
following characteristics: 

• Collaboration in an intellectual effort; 

• The primary resource required is information, 

• Reciprocal interdependence of group members 
for information; 

• Control primarily through example and peer 
pressure. 

The cumUlative work of the two years of the Portland 
experiment is good work by itself. This report should 
clearly demonstrate that the nature of the Portland 
experiment did indeed act as a "forcing function" to produce 
this rich and well-differentiated body of work that will be 
a significant contribution to the body of research on 
technological support for work group collaboration. 
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APPENDIX A 
EVOLUTION OF SCL PROOCESS AND CULTURE 

DURING THE PORTLAND EXPERIMENT 

In this section, changes in process and cuI ture o~ the 
laboratory, as they relate to the Portland Experiment, will 
be briefly reviewed. Four distinct stages of evolution of 
the relationship between the two sites since the 
establishment of the Portland site have been identified. 
Each stage is described below. 

stage Ii Simulating Being There 

In the early period after ' the Portland lab was established, 
a considerable amount of experimentation focused on 
simulating "being there". The link was used a great deal 
for meetings and there were a number of informal experiments 
designed to make the two sites feel more like one group. 
One, for instance, involved remote control of the camera. 
There were also a number of informal experiments with 
informal interaction and establishment ot contact with 
people at the other site. 

The transition to a laboratory and accelerated growth ot the 
lab were telt in Palo Alto rather strongly, in that there 
was considerable discussion ot the need for a "vision" to 
drive the labls work. There was some concern about the myth 
perpetuated not only by some longer-term members ot the lab, 
but by stories told by others even outside of PARC ot the 
vision which drove the early development ot Smalltalk. In 
Palo Alto, there were strong feelings of ambiguity and lack 
of community awareness ot a shared vision. 

In portland, most of the members were new and knew less 
about the myth surrounding SCL than even the newer members 
in Palo Alto. The part ot Palo Alto they experienced was 
primarily through informal interaction, constantly 
encouraged or championed by the Portland side, and the sense 
ot ambiguity felt in Palo Alto did not come across. 

In this stage, there were four area managers under the lab 
manager. Only one member ot the lab located in Portland was 
a cross-site report to an area manager in Palo Alto, and 
that did not occur until six months after the Portland site 
was established. 

In terms of work, the Collaborative Systems group was 
nominally established in Portland with no collaborators in 
Palo Al to. One proj ect, remote control of the camera, 
involved one person from each site. The Object Service 
project had been defined at that point; there was work at 
both locations but it did not overlap, so that the need for 
communication on technical issues was low. Design 



Methodology was a distinct group with all members in Palo 
Alto. 

For moat of the lab member., knowledge related to skills and 
technical competence was not generally transmitted across 
the linkl it was not unusual tor a peraon to comment that 
he or she had heard someone in the other site was doing 
similar work but had no idea what it was. 

In summary, Stage I involved experimentation with using the 
single audio and video link to simulate being in the other 
place. Most of the cross-site activity was around informal 
(generally non-work-related) interaction or meetings . 
Beyond the norm of keeping others informed by electronic 
mail, little cross-site collaboration took place. 

stage I lasted trom the time ot establishment of a critical 
mass in portland (early summer 1985) until early 1986 . 

stage IIi Separate Entities 

The transition to the second stage took place with the 
Portland Pow-Wow in February 1986. The Pow-Wow brought all 
lab members together for two days in Portland. After the 
Pow-Wow, most lab members had a strong impression of the 
unity of the lab in terms of vision and consensus on 
research goals. The word they used to refer to this least 
common denominator of consensus was sharing. 

After the Portland Pow-Wow, a number of lab members made 
attempts to establish cross-site collaborative 
relationships . The word "kibitzing" came up often, as in "I 
am kibitzing on the new language project". The New Language 
project began formally, and lab members at both sites 
attended meetings, some as kibitzers. The role of the 
Collaborative Systems group and/ or the Portland lab members 
as users of the new language, who therefore should have 
significant input into its design, was identified. 

with the establishment of the New Language project and the 
continuation of Object Service as a separate project, the 
lab settled down into project-oriented groups. The other 
two groups were Collaborative Systems, exclusively in 
Portland, and Design Methodology, exclusively in Palo Alto. 
The role of project leader, with technical responsibility 
for a project, emerged more-or-less officially. For a short 
time, there were four designated project leaders who met 
regularly (the "project managers' lunch") in that role. 
After the initial flurry of "kibitzing", attempts to make 
cross-site contacts trailed off . A second Portland member, 
newly hired, became a cross-site report to a Palo Alto area 
manager. 
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OVer the link, there were fewer attempts to simulate "being 
there" in intormal interaction. Members became accustomed 
to using the link and seeing themselves on video and began 
to rely on it tor everyday use. With many meetings tor both 
the New Language and Object Service projects, the lab began 
to use the link extensively tor technical meetings . 

In general, the lab settled into aa close a routine aa can 
be expected in a research organization. The attempts to 
push on the connection were reduced, and the lab began to 
operate more as two separate entities. With the decreased 
emphasis on being "together", Portland began to develop a 
somewhat separate and distinct culture. After a time, there 
was 80me strain between 'the two s1 tea focused on serious 
lapses of communication and misunderstandings in projects. 
In particular, the Object Service project and the 
Collaborative systems effort experienced minor crises based 
on miscommunication and misunderstandings across sites. 
Many of the problems were attributed to the lab manager' 8 
personal style and her inability to adapt it to remote 
supervision. These incidents are discussed in the interim 
report. 

This stage lasted until approximately late summer 1986. 

stage III: Remote Management 

The third stage of lab culture was precipitated by the 
change in management of both PARC and the laboratory in 
September 1986. The lab went through a period of major 
readjustment, which was experienced differently in the two 
sites. In particular, Palo Alto had the physical presence 
of the new entity, Parc Place Systems, for the next six 
months . Portland members expressed concerns about the 
relationship between SCL and PPS but did not feel it in 
terms of everyday presence. There were, of course, many 
misgivings about the new management structure and the lab's 
survi vabili ty under the new structure of PARC. With time, 
however, these fears subsided. 

More important, with the reorganization almost all of the 
keepers of the "myth" of how SCL operates left PARe. 
Several other significant changes occurred. Much of the 
decision making on day-to-day administrative matters shifted 
to the lab and area managers with selective input from lab 
members . Most important for the Portland experiment, the 
reorganization provided the opportunity for the vision of 
interpersonal computing held by the former lab manager to be 
redefined. According to one lab member, "Can we take this as 
an opportunity to make Portland and Palo Alto come to a more 
positive set of working relations? We could not do that 
before because Adele identitied the Portland / Palo Alto 
link as her personal research agenda." 

• 
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OVer the next tew montha, three more members changed 
management and reported cross-site. In the new 
organization, there were three area managers I allot whom 
had at least one croaB-site report. There was an increase 
in re.earch activity specifically addressing remote 
collaboration. 

In general, this was a period ot adjustment to management 
and articUlation ot new rese4cb agendas under a redefinition 
of the research vision. The period lasted until February or 
March 1987 . 

stage IV: consolidation and Focus 

The lab then moved into a stage of consolidation and tocus 
around key projects. The most significant change was the 
consolidation of the New Language and Object Service groups 
and the creation ot the Amber project. This project had a 
core group of people with relatively well-defined work roles 
(i.e . , no kibitzers). The project gained signiticant 
momentum quickly, with the successful delivery of a feasible 
design on April 15. Most important for this evaluation, th.' 
project was a true exercise in cross-site collaboration, 
with three members in Portland and two, later three, members 
in Palo Alto. 

Other projects also gained momentum and independent focus. 
The Design Methodology group executed its Work/ Office 
experiment in this stage. The Gear project was designed and 
began implementation. The Collaborative Systems group began 
to explore alternative methodologies, including involvement 
in an Interaction Analysis Laboratory with members of ISL 
and a Collaborative Readings group. One of the Palo Alto 
lab members became more active in these activities, 
signaling the first time the Collaborative Systems group had 
some cross-site collaboration. 

This stage was winding down in September 1987. At that time 
it was not clear what direction the lab would take next; it 
was a particularly crucial time for the Collaborative 
Systems group . There was beginning to be a considerable 
amount of discussion of how to position and focus the 
Collaborative Systems research agenda, so that its third 
year would produce some more concrete results. At this 
time, I wrote an evaluation report which included 
recommendations for the Collaborative Systems research 
agenda. 

Termination of the Portland Experiment 

In December, 1987, PARC management announced 
would be a reorganization of the existing 
particular, SCL and ISL would be reorganized 
other project lines and probably be divided into 

that there 
labs. In 
along some 
three labs. 

-
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Proposals tor reorganization were lett to lab members, and 
this topic monopolized their time tor the next two months. 
In early January 1988 management announced that the Portland 
tacility would ba closed. All the Portland employees were 
ottered position. in Palo Alto, but, with the exception ot 
the administrative support person, they all declined. The 
reorganization ot the labs in Palo Alto was completed by the 
beginning ot March. 

. . 
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APPENDIX B 
SUl!MARY OF SCL PROJECTS 

PROJECT 

PARTICIPANTS 
PA PTLD ACTIVITY OUTPUT 

Early Object Service 

conversion of Smalltalk 
to Sun 

control ot video from 
computing environment 

ReCording design process 

Remote camera control 

Meeting on meetings 

weather map 

Servo design 

Stable storage (OS) 

Audio solutions 

CORAL 

SCL villages 

Planning the Pow-Wow 

Object Service Stage II 

New Language 

Illustrate design process 

Video space 

video server 

Media space 

Transparent forwarding (OS) 

straw proposals (New 
language) 

Media space implementation 

3 

2 

2 

2 

1 

1 

2+ 

3 

o 

1 

o 

2 

3 

5 

2 

2 

2 

2 

2 

o 

5 

4 

1 

3 

o 

o 

1 

3 

o 

o 

2 

1 

3 

1 

1 

1 

o 

o 

o 

o 

1 

3 

1 

o 

Design 

Working 
Implement system 

Design Prototypes 

Experiment ? 

Implement Prototype 

Talk 

Implement Prototype 

Definition 

program Code 

Implement 

Define/lmpl Prototype 

Define 

Define specs 

Define 

Define 

Document Report 
(Video) 

Implement prototype 

Implement Prototype 

Define specs 

Program Code 

Define Specs 

Implement Prototypes 
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ARK experiment. 2 0 Experiment Report 

Scenario paper (OS) 4 0 Define Specs 

Cora sampl •• (New lanquage) 3 1 Oe~ine Specs 

OS Requirements 1 2 Detine Specs 

"A Day in the Life of SeL" 2 1 Experiment 

contact 0 3 Define/Impl Prototype 

Amber design . ~ 2 Define Specs 

Gear desiqn 2 0 Define Specs 

Relational DBIIS Impl. 2 0 Implement Prototype 

Shoptalk III 2 0 Document Report 
(Video) 

Office/design experiment 4 (+2) 0 Experiment Report 

Amber virtual machine 0 2 Program Code 

Amber compiler and cloner 0 2 program Code 

Amber image 2 0 Program Code 

Amber simUlations 2 0 Program Code 

as "design" 1 1 Define 

ARK extensions 1 +2 0 Define/Impl Prototypes 

Office/design documentation 4 0 Document Report 
(Video) 

ARK conversion 1 1 Program Code 

Audio solution work group 0 3 Talk 

Portfolio of collab. studies 1 1 Define Specs 

Collaborative readings 3 4 Talk 

Trans Ian implementation 2 1 Implement System 

ARK beasts 1 2 Program Code 

"Janaia" study 1 (+1) 0 Experiment Report 
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SINGLE PERSON PROJECTS 

ARK 

Babar 

Knowledge representation 

Viewers 

Screen sharing 

opu. 

1 

1 

1 

1 

Digraph browser 1 

- . 

1 

1 

Print spooler 1 

Sense of the present database 1 

Screen saver 1 

MVC interrace 1 

color coding algorithms 1 

Frame grabber 1 

ARK experiments 1 

Shared ARK 

Chinese temple 

Videodisk interface 

SOUP 

Tanga painting 

Gear implementation 

Mail sorter 

Videodisk data 

video switch 

1 

1 

1 

1 

1 

1 

1 

1 

1 

• 
, _ _ _ Nt_ 

Detine/Imp/ Prototypes 
Experiment 

Implement System 

D.~in. Spee. 

Implement System 

Program Prototype 

Detine/Impl Prototype 

Program Coda 

Program Prototype 

Program Prototype 

Program Prototype 

Program Code 

Program Prototypes 

Implement Prototype 

Experiment Report 

Define 

Implement Prototype 

Program Code 

Define Specs 

Define Specs 

Implement Prototypes 

Program Code 

Experiment Report 

Implement Prototype 
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APPENDIX C 
LAB MEMBERS AND COLLABORATION 

COLLAB COLLAB 
PERSON SINGLE ONE SITE CROSS-SITE 
PALO ALTO 
Bay 2 
Bly 3 1 3 
Deutsch 1 2 
Flegle 1 3 4 
Godreau 3 3 1 
Harrison 1 10 2 
Hibbert 1 3 4 
Horton . 

1 
Krasner 2 
McCall 1 2 
Minneman 2 
O'Shea 1 2 
Putz 1 1 
Ranjit 2 1 
Robson 1 2 
Smith 3 2 3 
Stultz 10 2 
Trow 1 
Weber 2 
Zybdel 1 2 5 

PORTLAND 
Abel 1 4 
Axel 1 
Ballard 3 2 3 
Darlington 2 
Goodman 3 2 
Larsen 2 3 2 
McCUllough 3 4 
Merrow 2 4 
Purdy 1 4 

b 
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INTRODUCTION 

This report describes an effort t.o design and implement a set of computer-based 

graphic tools that enable people, unskilled in either Graphic Arts or Computer Science 

to casily illustrate technical ideas and information. The basic notion explored was: is 

it possible to break down the world of technical graphics into 'idioms' (constrained 

environments) such that the computer could provide both mechanical and aesthetic aid 

to t.he non-professional user. 

In order to test this concept, we divided technical graphics into four bas ic 
environments: 

1. quantative 

2. ideographic 

3 . isomorphic 

4. volumetric. 

Each of these basic environments was t.hen furt.h er subdivided into graphic 'idioms' , 

For example, Piecharts and barcharts are quantative idioms while exploded views and 

cutaways arc examples of volumetric idioms. 

From the wide spectrum of possible idioms we choose to examine three of them: a 

typographic idiom, block diagrams and piecharts. This report is primarily devoted to 

a descri ption of the 'idiomatic' approach to computer graphics as we experienced it 

within the context of working with these three idioms . 





--------------------------------------------~ 

J. IDIOMATIC ILLUSTRATORS 

ODJECTIVES 

The aim of this project was to provide Alto- based graphics tools that. would enable 

people unskill ed in eit.her computer science or the graphic arts to easily construct. 

articul ate graphic s ta tements. This was a six- month projec t, begun in February, 1975 
and concluded in August, 1975. 

METHOD OF APPROACH 

We conceived a resea rch plan for creating a series of specia l-purpose su bsys tems, 

ca ll ed illustrators, to deal with gr aphic problems on a specific rather than a general 

level. The des ign o f these specia l-purpose illustrators was driven by an altempt to 

conform to conventiona l notions a boul graphi c 'idioms' which are commonly 

understood and used in the working world. To est.abli sh a comprehensive frame of 

reference for this approach we reviewed a wide variety of illustrations, and 

constructed a graphic mural (reproduced on the following page) which represented 
four basic graphi c environments: 

I. quantitative 

2. ideographic 

3. isomorphic 

4. volumetric 

Quantitative fi gures dealt with vi sual translations of numerica l data. Ideographic 

figures symboli zed conceptua l information. Isomorphic fi gures communicated through 

abbreviated versions of real forms. Volumetric fi gures represented objects as they 

appear or might appear. In each envi ronment we s ubdi vided illustration types in 

terms of communicative aim, and displayed various particular occasions of each aim. 

Each of these specifi c aims, along with its associated occas ions, we called an 'idiom'; 

and it is on this basis that we built the idiomatic illustrator project. 
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The reason for choosing the idiomaLic approach is th.t one dMs not nel"Ci to have the 

whole world or graphic language at one', command to cr~ate a bar r:hart (a graphic 

'idiom'); a ll one needs is some bars, a scale, and somt labfoJa. By thto aaml!' tokf'n, if one 

would rather make a pie chart (another graphic 'idiom') ont' dQt"S.n·t n d bars and 

scales; one needs a ci rcle and some diViding lint'. Appl)'inS thIS apprr 8ch, the 

barchart program would only draw ban, and tht' pil"r:hart program would .,nly draw 

pies. Too constrained? Not for the unskilled USf'J" who .imply wanll a bar 'hart now 

without having to master the illustrator's bag of trid.s, both t«hnieRI and luthetic. 

For the unskilled user constraint means support: tht' u~r .. oten lhl" gnphl ..... orld at 

an idiomatic level, and so can deal with hialhu id~ .. uti"S thl" .. pe:eifie 'Condary 

forms which represen t them (scales, bars, pies, .. tc,) rath .. r th,," thr mOrt' genera l 

primary form vocabulary (line, shape, tuture, etc.) of thf" prof,. ionlll i lustrator. 

SCOPE 

From the range of possible idiomatic illustrators WI!' choM' to work With three: 

SIGN - A typographic program for aimulating letrawt type in making "elttl ines, 

poster-nolices, view-graphics, elC. (This idiom was not rf'ptUenl~ in the 
graphic mura1.) 

BLOCK - An illustrator program (or makin, block rliagrams, (lrJaniu.tion charts, 
process charu, etc. 

PIE - A program (or visualizing tabular data 8uto:nalicall). in the form o( Q pie 
charl. 

S.IGN was chosen because of its aimplicity and because It w,-, n ... l'"d~ by the PARe 
Video communications g k • I r 

roup to rna e tit ea (or their vidf"Ot"&I'C"5. This mt'ant • set 0 
real users with whom Id . 

we cou tryout Our idpaJ. BLOCK was choM"n because of Its 
poten ti al value to PARC . 

. as a commuOication tool, and ~nu'&O it offeT\.d us an 
opportunity to deal with th b . . . 
) e a61C graphical problem of form and .pace inleracuon. 
liE was selected so th t Id 
. a we cou get some tXf""rience with an automatic table-dri\'en Illustrator. 

All o( these programs _" . 
LRG Th . were written tn SMALLTALK, with much help from people In 

. e follOWing three se r f' 
of SIGN DLOCK c IOns 0 thus report dPKribe in d"tail the buic features 

, , and PIE The 1 " r 
Ih"' . ast section preaenu rea.earch conclu6iont drawn rom 

IS proJect. 



2. THE SIGN PROGRAM 

SIGN is a modest typographic program originally designed to produce hard copy text 

t.itles for use in PARe's videotape projects, but it is eq ually useful for creating 

bullelin-board notices, small posters, identification labels, view-graphs, and other 

kinds of 'social-style' office communications. SIGN distinguishes itself from other 

text systems in that it is environmental: that is to say, it can be used to create word 

'pictures' that calch the eye in the physical world of competing visual objects, such as 

t.he PARe office scene. 

The basic design criteria for SIGN were: 

1. A minimum 24 point font size. bold, and sans serif to insure r eadability in 

the video medium. A 24 point helvetica bold face was chosen. 

2. Exact compositional control on the ALTO screen and identical hard copy by 

SLOT - so that what you see is what you get. 

3. A simple operating procedure that enables people not sk ill ed in computer 

science or the graphic arts to create professional headline text a-la-Ietraset. 

SIGN is also a step toward solving the graphica l problems associated with text 

headings. Currently, it lacks a coherent scheme for dealing with margin justification, 

color, changeable leading, inter-character spacing, etc. 

remains to be done in this area. 

Much interesting design 

Two details about SIGN deserve mention: the spatial gridding and the ease with 

which a user can obtain hard copy. Vertical gridding is always enforced between 

lines. There is a grid of 112 of the inter-line spac ing in the horizontal direction when 

a line of text is first specified. Thi s aids centering along a vertical guideline. After 

the initial placement of a line of text, the horizontal gridding is relaxed. This allows 

for subsequent margin justirication. The output is obtained through the use of 

command files (lots of crocks) which eventually send a press-format file of the screen 

image to LPT. The important point about output is that the program owes much of its 

popularity to the ease with which one can obtain it ... with the 'push of a button'. 

-;ox;J 
Pnvat8 
08t. 
~ 



I 
I 

Pr ate 
D 

The coml\land language (or SIGN is mt'nu-cirjo.'en and 'modele .. '. The menu itseH 

looks like a sign so as to relate '~lhelic.l1y with the lU I on the acrern. The SIGN 

program is the most complete of the illustrators diacuUf'd in this (t'port; the design 

criteria ..... ere mel, and the program ha. found much uat'!. SIGN i •• particularly 

interesting idiom in Ihat it. lies graphically bt'twt"'en 'run ·on' tul and illust ration. 

Simply staled, SIGN deals with text plcton.II)' , Thi. i •• "f'r)' common procedure in 

the graphic design world in the production of headline matf'r,.l, (or mlg.lInes, books, 

brochures, etc. 

How to use SIGN: 

I. Obtain an ALTO disk l.btoltd 'SION'. 

2. Load that disk into an ALTO. thton puah thfO boot button_ 

3. Type 'start sign' (ot- carriage return) and til t" ALTO acret'Tl will apptar like 
the image on the following page: 
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The comrtland language (or SIGN l' meonu-Gri"fn and 'modf l e- " The menu ituJ( 

looks like a sign so IS to rel.te IE'5thf'tiC'ally with the 1('11 on thf Itl"ffn. The SIGN 

program is the most complete or the illuilrators di K UUM 10 thu re-por l j the design 

criteria wefe mel, and the pz-osram hu round muth use. S IGN .. ill p.t rtic:ularly 

interesting idiom in thai il Jies gr.phie.lJ)" btIWf. " ' run --o n ' hrkl and iIlustrition. 
Simply stated, SIGN deals with lUI pat tori. II)" Thi. i • • \' r y cammon procedure in 

the graphi c design world in the production of ht'lldhn. malui . l . tor magal lnes, books, 
brochures, etc. 

How to use SIGN: 

1. Obtain an ALTO disk I.htlrd 'SIGN' 

2. Load that disk into In ALTO, th n pus h th lt boot bU l ton. 

3, Type "tart ,ign' (+ earriilltc> nturn) and til t' ALTO .I('r n wilJ .p~.r like 
the image on the following PIle: 
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4. Touch the word 'TEXT' (locatN in the bl.ck portion o~ the alto 
screen) with the mouse cUr$Or, then to uch . plaC't> on thl! ",lute k reen 
area (which corresponds to your UPf'.C ll~ 8 1/2 x 11 pa~r outpull thal 
you want to be the center (or your hne or text: 

5. Then ty~ your desired line of l u t , rollowt'd by • ca rriage 
return. Your lext will appear, centered on th" d(lsilntlted point; 

FIRST·WORD 

6. Try a ~nd line of lfOx t, touch ing .hou t I INt,.r hei$'ht 
underneath the first line. You wi ll notlc. Ihl th. Meond hne 
a,ulomaticaly spaces itself 3/S" bflow the ( If&t lillt' (30 Alto CRT sean 
Imes) for norma) teXl placemenL g xtra verliul ,)"fin ~ fIlay b" added 
by increasing the diuance of lh~ nex t mou '" toul'h : 

FIRST WORD 
SECOND 

THIRD 

FOURTH 

FIFTH 

- _ .... 
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7. If you want to change the position of a line of text, first touch 
the word 'MOVE' with the mouse cursor. Then touch the text line to 
be moved. Third, touch the new center for the text line; The text win 
move as you have indicated: 

FIR~T-· WORD 

-
FIRST·-WORD 

8. If you want to throw Away a line of tex t, touch 'MOVE'; t h en 
touch the text line to be elimina ted , and then touch the 'trash can' 
area (b lack) at the bottom of the Alto screen. That line of text wi ll 
disappear. 

9. To print a SIGN image type 'PRINT' (+ca rri age return) . This 
will cnuse much fl ashing and nonsense on the Alto sc reen. When you 
see a MAXC logout message at the boltom of t he screen, push the boot 
button and you will return to your SIGN image. Then walk down the 
hall to the SLOT machine and you will find the hardcopy of your 
SIGN. 

10. To save a SIGN image for possible printing or modification at a 
la ter date type 'SAVE' ... a file name. 

11. To reca ll a previously saved SIGN image type 'RECALL' + a file 
namc. 

12. To c lean the image area of unwanted debri s (location points, 
etc.) type 'CLEAN'. 

13. To begin a new SIGN with a clear sc reen type 'NEW'. 

The foll owing examples illustrate some poss ible uses for SIGN. 
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• 

LRG STUDENT SCHEDULE 

DAY TIME NUMBER 

MON 9:00 - 11 :30 5 

TUE 3:00 - 4:30 3 

WED ---------- -

THU 1 :30 - 3:00 10 

FRI 9:00 - 11 :30 5 

X ,ex 
,v 
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BY: ROBERT KAHN 

TITLE: "PACKET RADIO --
A MICROPROCESSOR 
BROADCASTING NETWORK" 

TIME: 11 :00 AM 

PLACE: CSL COMMONS ROOM 



SIGN: SUMM ARY EVALUATION 

1. Video ta pe title appli cations are very successful, and the program is now used 

regula rly for that purpose by PARe's video communication group. 

2. Tota lly inexperi enced users in the video group were able to operate the 

program immediately. as were secretaries, research ers, and others in the PARe 
communi ty. 

3. The vo lume of gene ral (non-video) orri ce applications has bee n much larger 

than we expected, and has proved the program t o be a use ful multi-purpose 

workhorse . A drib ble- fil e associated with the program has reco rded this volume 

of use. 

4. S IGN's single-font (ca ps onl y) ca pability is far too limited for mos t 

practical applica t ions. Currentl y, we have no easy answer for this deficiency. 

5. Thl;! pl'ogram is essenti a lly an elegant h ack, and consequently some users 

have experienced frustra t ing breakdowns. 

6. The move funct ion is s till crude, and offers inadequate support for the 

variety of align men t and s paci ng situa ti ons which commonly occur in graphic 

design . 

7. Co nce ptua ll y, SIGN offe rs cons iderable promise as a headlining device for 

graph ic design wo rk , parti cula rly in the areas of magazine, boo k, and brochure 

production. The main reason for thi s is that it t.reats word forms as graphical 

objects. and co nseq uently r e lat.es to the graphic designer' s methodology. 
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3. THE BLOCK PROGRAM 

BLOCK is designed to deal with graphic problems in the idiom of block diagrams; 

including organ iza tion charts, process charts, and other rectilinear figures. This 

program is a speciali st. It does not attempt to take on the whole world of graphic 

needs, although a few interesting by-products such as 3-D perspective arc possible. 

BLOCK takes a view of gra phic language tha t emphasizes design grammar (spatial 

dynamics, composition, etc.) rather than form vocabulary (gray scale. so phisticated 

detail, e tc.). It is intended to help the ordinary (non-illustrator) use r const ruct an 

articula te graphi c rigure wilhout having to learn the i ll ust rator's proression. Das ic 

aesthetics as we ll as manual skill s are suppli ed by the program. 

The design crite ria for BLOCK were: 

1. A basic form vocabulary of lines and rec tangles for building the s tructural 

element s necessa ry to block diagra ms. Secondary r equi remen ts included word and 

arrow forms. 

2. A spatial grammar for composing form elements on the ALTO pictl!re plane 

with respect to aesthe ti cs of planar design (vi s ual relationship and 

differentiation). 

3. A capability for vi sual editing. including move and copy functions. Later, 

an arca move/copy func ti on was added to the criteria. 

4. A set of graphic processing utilities, including such functions as clean 

(refresh), file ( save and get), print (xgp), and reset. 

BLOCK, like SIGN, has been deve loped to the point that it is a usable SMALLTALK 

subsystem for maki ng illustrations. The essence of the BLOCK program li es in its 

gridding scheme which s pa tially organ izes its graphica l forms (box. line, arrow, text) 

in an aesthetica lly relat.ed manner. Du r ing the design of BLOCK it became clear that 

no existing font was suitable for diagrammatic purposes, so we des igned and executed a 

new fon t.· The design criteria for the font (BLOCK FONT) were: 

1. Tha! it be a condensed font to maximize h orizontal space on the ALTO 

screen, which is a major constraint in making diagrams. 



2. That it have the smallest bold (2-bit thick) flee pouiblf! on the ALTO 
screen, and still remain readable. 

3. That the font relate aesthetil::al1y to the rKtdin tar form. lenerat~ with the 
BLOCK program. 

First, an ALTO font satisfying these crileria was dt' !Io il n,.d . l u dimtnsi on a re 6 x 10. 

Subsequently a coordinated spline outline veNion Will ~onS lrU~If!d. Thia fo nt should 

find wide usage in PARe terminal diaploYI where hori zont l l . pace i . a t .\ premium. 

The command language for BLOCK is menu -dri ven and ·modele ... •• The th irteen 
commands are divided into four logi('al rroups: 

l. form vocabulary (box, line, arrow, tut) 

2. space control (grid module) 

3. editing functions (area, move, copy) 

4. memory commands (print, save, ,et, reHt, d u n) 

The menu itself is presented in the form of. block di llram for (1) aesthet ic relevance 

and (2) to enable the visual presence of I numbt-r of command optiona wi thout 

creating a sense of visual confusion. It .p~.n on the ALTO acreen like th ,. image on 
the following page: 
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Individua l command functions (or BLOCK are as (ollowa: 

BOX: 

Draws boxes, any size or shape. The command requires two mouse inputs: upper 

left and lower right box coordinates. The box corners are positioned at the 

nearest points on a 32-unit grid. This aligns boxes automatically, provides 

consistent spacing, nnd allows the user to be rough in his/her manual command 
execu tions. 

LI NE: 

Draws lines, any length or direction. The command requires two mous(' inpu ts: 

beginning and ending poinls of the line. The line endpoints are positiont'd at the 

nearest points on a I6-unit because of the grid, lines will automatically split 

spaces between boxes, and provide (entering and exact box contact when used as 

connecting links. In addition, lines buill at right angles to each other 

automatically form 8 perfect corner. Again, the user may be somewhat rough in 
manual execution without problem. 

ARROW: 

Draws lines with arrowheads attached to the point desiBllated by the second 

mouse input. Arrow lines may be any length, venically or hori~ontally. In all 
other respects this command functions like line. 

TEXT: 

Prints a line of text as objects anywhere in the figure, on 8-ul1it grid. The text. 

automatically cent.ers itself within boxes. Inputs are typed sequences (terminated 

with ca rriage return); and mouse points (center location for text). 
MOVE: 

Moves any of the above objects anywhere in the imnge, in terms of its assigned 

grid. Move can also be used to dump unwanted objects into thp garbage can at 

the bottom right of the screen, causing them Lo disappear. Two mouSe! inputs are 
required, corresponding old and new locations. 

COPY: 

Copies objects anywhere in lhe image, in terms of assigned gridding. Like move, 

two mouse inputs are required, to indicate fOfm selected and the de.~ircd position 
of its copy. 



I 

AREA: 

Selects a form area rather than an object, for moving or copying. As in box, two 

mouse inputs are required to indicate upper left and lower right corners of the 
recta ngular area selected. In addition, third and fourth mouse inputs are 
required corresponding to old and new locations for the forms included within 

the rectangular area selected. The rectangular area selected will then be moved 

or copied in the new location. 

GRID: 

Permits the user to change the ass igned grid spacing for any particular form. 

PRINT: 

Crea tes an XCP file for hard copy. Input is a filename (one word terminated 

with line- feed). The file created may then be transmitted to a NOVA with an 

XGP, and the command 'XPLOT filename' given to the NOVA operating system. 

eLF-AN: 

Refreshes lhe entire image, restoring torms damaged by moving. etc. 

SAVE: 

Allows imDges to be saved tor tut.ure di splay, print.ing or modification. 

Allows previously saved images t.o be recalled. 

Erases ent.ire sc reen and rest.arts the BLOCK program. 

In nddit.ion to menu commands, line weight tor any torm may be conLt'olled by the 

mouse bu t.ton pushed: 

1. t.op button: tine line 

2. middle button: medium line 

3. bottom button: heavy line 

We have included a group ot illustrations which describe BLOCK's range at 
capabili ti es, and suggest how the program might be used. 
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BLOCK: SUMMARY EVALUATION 

1. The most successful aspect of thi s program is its spatial control of form. 

The notion of 'invisible' gridding as a stralegy (or the management of (orm/space 

interaction (design grammar) worked well, and has since been used with equa l 

success by other programs at PARe (e,g. MARKUP). 

2. The s implicity of BLOCK has enabh'd many (graphically) inexperienced 

users to construct effective block diagrnms. lIowever, it is nlso clear from the 

work done that BLOCK does not 'do it all' as we had hoped, and that some 
elementary graphics skills are still required. 

3. The BLOCK FONT worked well as a conserver of horitontal spAce, and 
competes well in the context of diagrammatic form. 

4. Area move and copy functions are still difficult to control, and re-quire too 

much visua l editing. The displacement. for all objects within the area is gridded 

according to the current grid seLling for texL objccu (usually the smalles t). 

5. The concept. of n fixed push-button graphic menu was, as in TAPE, felt to be 

an improvemenL over keyboard-oriented command systems. Dy the same loken, it 

now appears that MARKUP's spatia lly-flexib le menu sySlem and TOOLBOX's 

keyse l control system are much easier to 0 l'enle lhan BLOCK's fi xed men u. 

6. BLOCK lets the user know where his/her cursor is in relati on to the 

' invisible' grid spacing by moving the cursor LO the nearest grid point (according 

Lo the form being created) when the mouse button is depreued. As long 8S I.he 

button remains depressed the cursor "hops" from grid point Lo grid point when 

the mouse is moved, and a poi nt is specified when the mouse button is released. 

7. IL is a demonstrable facL that infinite variaLions on the 'block diagram' 

theme can be created with relative ease using this program. However, exactly 

where BLOCK ends and FLOW, or PERT, etc., begin is nOL yeL clear. Further 

exploration with other related idioms would help Lo answer this question. 
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8. Some fairly sophisticated illustrations can be created through line 

vocabulary alone. 

9. Mouse buttons work well as a tactical means for controlling line weight. 

10. In an illus trator con text, it helps to be able to dea l with words as gra phic 

form objects (like lines or boxes) . 





4. THE PIE PROGRAM 

PIE is an experimental errort to creale an 'automatic illustrator'; that is, a program 

that puts the 'illus trator' entirely within the machine and thus allows the uscr to get 

a professional-l evel illus tration without having to perform any graphica l tasks. The 

graphic idiom of pie charts was chosen for thi s experiment because, as a data-based 

idi om, it. lends itse lf naturally to mechanical graphic translation. The basic graphic 

design decisions in making a pie chart arc quantitative: not only the spatia l division 

of the pie into its component segments, but also the placement of labels in re lation to 

the availa ble space resulting from those segments. Therefore , all that PIE requires of 

the user is a table of items (labels) nnd their associated numerical values (segments) . 

The progra m (1) makes the pie, (2) translate the numbers into percent values and cuts 

the pie into corresponding pieces, and (3) attaches item labels to the segments. User 

interaction takes place entirely within the context of creating and/or editing the 

tabular da ta. a familiar and ordinary office activity. 

Basic desig n criteria for PIE were: 

1. A form vocabulary comprised of a single fixed-diameter circle; straight 

radia l lines within that circ le. and text labels. 

2. A spatial grammo.r that translates a se t of numbers into degree equiva lents, 

and represents those equivalents as pie segments using radial lines. 

3. Automatic/aes thetic labe l placement, with respect to spaces and positions of 

pi e scgmen ts. 

4. A sys tem for tabular data entry that permits interactive user editing. 

In sa t is fying the design criteria for an automatic piechal·t-maker the most difficult 

problem was that of label placement. The strategy for this part of the program was as 

follows: Ir a pie segment had adequate siz.e and/or an advantageous position ror 

(hori z.o ntal) text then (I) the label would be placed internally and generally centered 

within the avnil~ble space. If the segment was small and lor vertically oriented, t~en 
(2) the label would be plaeed externally, and related to its segment by a connectlOg 

link. 
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The space available for a text label within a slice of the pie was computed as follows: 

h .I.u t it li es on the bisecto r of angle 8 .. <p (a) point p is c csen so 2 

and is located 3/5R from the center of the circle. 

LI 

I 
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( b) the four po ints SI' 82, S3' Rod 
intersections of the line y .: cry ... 'h h) 

P. 

U 
.4 

S'I nre computed by finding the 
.x with lines 11' 12 and the circle. 

(Note: h"(olll height) 

(e) next the four points t l , l2' 13 and t .. arc computed by finding the .. 
interseclions of the line y = illy - 'h h) x with lines 11' 12 and the circle. 

P. 

(d) finally. i£ 5i and Sj E(s l's2.s3's .. } nre the inte rsection that lie 

immediately to the le fl and right of Px and lx, ir E(ll, t
2

,13,14} IlI'C defined 

s imila rly then the rectangle with upper left co rner a t mnx (Si,t
x

) and lower 

lef t corner at min (Si,tl) is the space that text may occupy and sti ll he inside 

the s lice derined by 8 and rp. 

It sh ould be noted that the space for tex t obtained by the methorl just described does 

not yield the maximum width rec tangle that ca n lie in a segment of t he pie. 

Originally we completed the maximum width rectallgle that can li e in a segment. 

Placing the tex t centered in thi s rectangle caused grnphica l interference between the 

text and the rndial lines which div ide the pie and the links used where text could not 

fit inside the s li ce. Hence we chose the algorithm which, in general, produced a 

smaller space for the text but yielded a more aesthetically pleasing result. 
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The system for external pielabel s sought to maximi:te the number of possible labels 

that could be automatically arrayed around the pie, and at the same lime make the 

most economical use of available space on the ALTO screen. It appeared that a 

parabolic arrangement of labels around the pie produced the most efficient and 

manageable external pieiab le system, 85 illustrated by the following design drawing: 
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The user interface for PIE is a simple table, into which the user types item names ( for 

labels) and corresponding numeri ca l quantities (for segments). As the user types in 

items and quantiti es the table ex pands downward. This table can be edited: items and 

quantities can be added. deleted, exchanged, or moved as desired, The order in which 

items are di splayed corresponds to the order in which they are represented in the pie 

(starting at 'noon' and advancing clockwise) . Thus, the user has conlrol over the 
segment arra ngment in hi s piecharL 

It. should be emphasized that unlike SIGN and DLOCK, PIE is s till in an experimental 

state, and not yet ready for dependable work applications. However, we have tested 

the program against a variety of data s ituations, and ha\'e essentially succeeded in 

satidying the original design cri teria established for the idiom, We can ofter the 

following illustration, executed with PIE, as an example of the program's curren t 
capability: 
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PIE: SUMMARY EVALUATION 

1. For certain kinds of illustrations (particularly quantitative) automatic 

illustrator programs are quite possible. Essentially, PIE can produce a good pie 

chart without any user participation in the graphic process. Based on our 

experience with PIE, we believe that bar charts and curve graphs can also be 

produced in a more or less automatic fashion. 

2. Word and number labeling (because of its unpredictable length) is a serious 

problem for automatic illustrators, and as of now there appears to he no simple 

solution. 

3. Graphic execution time saved in PIE-like illustrators is enormous - much 

more than in SIGN or BLOCK. 

4. Creating and editing tabular data is in itself a graphically idiomatic process 

(quite aside from its application) and from our experience with PIE looks like a 

pregnant area for future research. 



5, CONCLUSIONS 

These conclusions are an a ttempt to summarize our research r' d' , ] ' In mgs In re atlon to 
BLOCK. SIGN and PIE. We hope these conclusions will be ], ] r ] t th ' ] d e p U 0 0 ers IOva ve 

in the design ot illlerl)Cli ve picture-making systems. 

ON METIIODOLOGY 

We did not odopl the more common approach of specifyi ng and implementing a 

graphic .yalem and then writing the applicAtion programs. We rather scrounged 

whatevrr graphics capabili ty was available (SMALLTALK) and began by simulating 

the 1I11.,trolor'& habit of building op a 'graphics language' as we worked. We were 

able to do lhill becBuse SM ALLTALK already con tained a rich set of graphics 

primitives. 

We b 'gan our inv('stigalion with three oC the simplest and mos t commonly used 

idiom"" Our .. ~u~on. for thi s decision were twofold: first, about a dozen simple, 

wel1~known conv{'nlionnl idioms account for the bulk of technica l graph ics used in the 

working world, and secondly, it a llowed us to concentrate on user issues such as 

comlluuui languns('s rother than on sys tem issues that arise when dea ling with complex 

pictorial r('preA""lalion. This ap proach drove out two insights that we might have 

missed had we adopted the more conventional approach that involves the deve lopment 

of a grdllhic5 A)'stem and then the design and implemen tation of the application 

prognun.. The insighta a re: (I) a very simple set of programming tools is 

suffieirnt for th(" development of most graphical idioms for genera l office use and (2) 

the u!te r r('quiremenls In applica ti ons where the presentation is 2~dimensi onal and 

dynamic art' much more subtle and complex than we had imagined, We found 

ourselve deaigning form 'processes' rather than form 'p roducts' through which to 
, . d th 

create pictures. Picture creation takes place in a human lime con tlOuum an e 

'rhythm' of viaualization is as important as the availabi lity of form options. 

L 



ON RESOURCES 

As mentioned above one does not need much in the way or a graph ics system to write 

useful appli cation programs. The SMALLTALK picture man ipu lation and drawing 

primitives are quite sufficient. These include and enable: 

1. rectangles, points and grids - SPATIAL GRAMMAR 

2. lines of up to seven thicknesses - FORM VOCABULARY 

3. text strings - LITERAL IDENTIFICATION 

4. turtle delineation - GRAPIIIC STATEMENT 

For a complete desc ript ion of thi s system please re fer to t he SMALLTALK manual. 

ON PROJECT RESULTS 

We fee l that thi s project wus a success in t hat we have demons trated that it is possi ble 

to combine co nventional gra phi c idioms and cur re nt. computer technology to make it 

poss ible for ordinary (gra phi call y unsk illed ) people to crea le art icul a te graphical 

sta tements. This has been demons tra ted by vario us utilizations of the BLOCK 

program within the PARC community involving the creation of block di agrams. The 

simple compositional help t hat is offered by BLOCK greatly enhanced the aesthe tic 

characte r of the user diagrams. The piecha r t program offers a powerful 'machine 

tool' fo r the person who wants to represen t tabular data in vis ual form without hav ing 

to ac ti vely engage in the techniques of technical illus trati on, or in this case, decisions 

of label placement. Evidence of SIGN's utili ty can be found in PARC videotapes and 
on man y PARC bu lle tin boards. 
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ON FUTURE RESEARCH 

We have in the scope of thi s project only scratched t.he surface of t he idiomatic 

illustrator concept. There remain many modifications to explore with BLOCK, PIE 

and SIGN. For example, can one make the stages in pi cture speci fi cat ion like 

block-out and touch-up morc explicit? Thus offer ing t he non-proCessional user even 

more help during lhe creation of his/her illus tratio n. 

There also remai n a host of other idioms to explore, such as barc harts, curve graphs, 

plans, maps, volumetric representations, c tc. We be lieve an understanding of 

commonly understood graphic communication idioms in the co ntext of a display-based 

inleractive compuLi ng sys tem will have large payoffs in office information systems oC 

the future. ~'or such systems (idiomat ic illustrators) to be really useful they need to 

be inh.ograted with a system that includes text. Resea rch in this area is cu rren tly 

underway a t PARe (Moster-maker Project). 

Proj('cting even further into the future, text/graphics systems shou ld allow for the 

personali,.ation of graphic pro:rams so that professionals in the fie lds of graphic 

design and illustration can incorporate the computer as an effective medium for visual 

communication. 
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An Annotated Bibliography of PIE publications 

Ira Goldstein and Dan Bobrow 
July 28,1980 

General Abstract 
PIE is an experimental personal information environment implemented in smal1talk. PIE uses 
a description language to support the interactive development of programs, and to support 
the office· related tasks of document preparation, electronic mail, and database management. 

PIE's salient characteristics are: 
1 . The system employs a network of nodes to represent specifiC facts (personnel 
data, appointments, Smal1talk methods), generic information about different kinds of 
entitites (constraints, defaults), and procedural knowledge regarding the functions 
associated with different entitites (summariz.ing personnel data, producing specialized 

code from abstract descriptions). 
2. Each node can be assigned several perspectives. A perspective describes a 
different aspect 01 the entity represented by the node, and provides specializ.ed 

actions Irom that point 01 view. 
3. The network is layered, that is, the links between nodes are separated into distinct 
sets. This allows alternatives to be expressed regarding the structure of a design 
described in the network. It also facilitates cooperative design by separating the 

contributions of collaborators inlo distinct layers. 
4. Contracts can be created that monitor several nodes whose descriptions must be 
kept consistent. Contractual agreements are expressible as formal constraints, Of, to 
make the system failsoft, as English text interpretable by the user. 

Bibliography 

General Discussions 

(ivy}<pie>AAA1.PreSS (10 pages) Goldstein, I. P. and O. G. Bobrow, "Descriptions for a programming environment", 
Proceedings of the Fi rst Annual Conference 01 the National Association lor Artificial 

Intelligence, Stanford, Cal .. August, 1980, pp. 187·194. 
This paper provides a short introduction to the PIE project from the perspective of its 

application to software development. 

[ivy]<pie>Chatham.press (5 pages) Goldstein. L P. , "PIE: A network.based personal information environment", Presented at 
the conference on Office SemantiCS, Chatham, Mass., June 15·18, 1980. 

This paper provides a complementary introduction 'rom the perspective of its 

application fO office related tasks. 

Description Languages 

[fly}(pie)USpconf.Press (10 pages) Goldslein, I. P. and D. G. Bobrow, "Exlending Objecl Orienled programming in 
8malil

alk
", Proceedings of the Lisp Conference, S1anford, Augusl, 1980, pp. 75·81. 

This paper discusses the extensions requ ired to Smalltalk to support a network.based 

description language. 



[ivy]<pie)NBS.Press (3 pages) 
Goldstein, L P., "Position Paper lor the NBS/ACM Workshop on Data Abstraction , Data 
Bases and Conceptual Modelling", Pingree Park, Colorado, June 23·26, 1980 

Layers 

This paper discusses the relation of our Smafftalk e)(fensions /0 other work on data 
modelfing and abSlfact datatypes. 

'fivy]<pie)AISB,Press (10 pages) 
Bobrow. D. G. and I. P. Goldstein, "Representing Design Alternatives," Proceedings of 
the Conference on Artificial Intelligence and the Simulation of Behavior, Amsterdam, 
July. 1980. 

This paper provides a brief discussion regarding layers as a means to represent the 
evolution of a software system. 

[ivy]<pie)Software.Press (30 pages) 
Goldstein, I. P. and O. G. Bobrow, "A Layered Approach to Software Design," 
(submitted for publication). 

This paper provides a more thorough discussion of layers. 

User Interface 

[ivy]<pie) Browsers.Press (17 pages) 
Goldstein, I. P. and D. G. Bobrow, "Browsing in a programming environment ", to appear 
in the Proceedings of the 14th Hawaii Conference on Systems Science, Jan. 1981-

This paper focusses on issues related to the system interlace for examining and 
manipulating networks. 
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Desc riptions for a Programming Environment1 

Ira P. Goldstein and Daniel G. Bobrow 
XerOK Palo Alto Research Center 
Palo Alto, California 94304, U.S.A 

. Abstract: . PIE is an experimental pe rsonal information environment 
~mplemente d In Smalltalk that uses a descripti on language to suppo rt the 
rnt~ractlve d~ve l op~ent of programs. PIE contains a network of nodes, each of 
wh Ich can be asslgnod several perspectives. Each perspec ti ve desc ribes a 
dlfte~e r:'t aspec.t of the program structure repre sented by the node, and provides 
spec Ialized actIons from that point of view. Contracts can be crea ted that monito r 
nodes describing different parts of a program's description. Contractual 
agreements are expressi ble as tormal constraints, or, to make the system failsoft, 
as English text interp retable by the use r. Contexts and laye rs are used to 
rep rese nt alte rnati ve designs for programs described in the net work . The layered 
nctw~rk database also fac ilitates coope rative program design by a group, and 
coo rdinated, structured documentation. 

Introduction 

In most programmmg environments. there is support for the text ediling of program 
specifications, and support for building the program in bits and pieces. However, there is 
usually no way of linking these interrelated descriptions into a single integrated structure. 
The Eng lish descriptions of the program. its rationale, general structure, and tradeoffs are 
second class citizens at best, kept in separate files, on scraps of paper next to the terminal, 
or, for a while, in the back of the implementor's head. 

Furthermore, as the software evolves, there is no way of noting the history of changes, 
except in some primitive fashion, such as the history list of Interi isp [Teitelman78]. A history 
list provides little support for recording the purpose of a change other than supplying a 
comment. But such comments are inadequate to describe the rationale for coordinated sets 
of changes that are part of some overall plan for modifying a system. Yet recording such 
rat ionales is necessary if a programmer is to be able to come to a system and understand 

the basis for its present form. 

Developing programs involves the exploration of alternative designs. But most 
programming envltonments provide little support for switching benveen alternative designs or 
comparing their similarities and differences. They do not allow alternative definitions of 
procedures and data structures to exist simultaneously in the programming environment; nor 
do they provide a representation for the evolution of a particular set of definitions across 

time. 

In this paper we argue that by making descriptions first class objects in a programming 
enVironment, one can make life easier for the programmer through the life cycle of a piece 
of software. Our argument is based on our experience with PIE, a description-based 
programmIng environment that supports the design, development, and documentation of 

Smalltalk programs. 

Published In tl'll! Proceedings of First Annual Conference of tile American Association lor Artificial 

Intelligence. August. 1980. pp. 187-194. 
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Networks 

, The PIE en~ironment is based on a network of nodes which describe different types of 
entities. We beheve such networks provide a better basis for describing systems than li[es. 
N~es provide a uniform way of describing entities of many sizes. from small pieces such as 
a single procedure to m,uch larger conceptual entities. In our programming environment, 
nodes are used to describe code in individual methods, classes, categories of classes, and 
configurations of the system to do a particular job. Sharing structures between 
configurations is made natural and efficient by sharing regions 01 the network. 

Nodes are also used to describe the specifications for different parts 01 the system. 
The programmer and designer work in the same e:nviranment, and the network links 
elements of the program to elements of the design and specification. The documentation on 
how to use the system is embedded in the network also. Using the network allows multiple 
views 01 the documentation. For example, a primer and a reference manual can share many 
01 the same nodes while using different organizations suited to their different purposes, 

In applying networks to the description of software, we are following a tradition ot 
employing semantic networks for knowledge representation. Nodes in our network have the 
usual characteristics that we have come to expect in a representation language--Iar example, 
defaults, constraints, multiple perspectives, and context-sensitive value assignments. 

There is one respect in which the representation machinery developed in PIE is novel: it 
is implemented in an object-oriented language. Most representation research has been done 
in Lisp. Two advantages derive from this change 01 soil. The tirst is that there is a smaller 
gap between the primitives of the representation language and the primitives of the 
implementation language. Objects are closer to nodes (frames. units) than lists. This 
simplifies the implementation and gains some advantages in space and time costs. The 
second is that the goal of representing soft..vare is simplified. Software is built of objects 

whose resembfance to frames makes them natural to describe in a frame-based knowledge 

representation. 

Perspectives 
Attributes of nodes are grouped into perspectives. Each perspective reflects a different 

view of the entity represented by the node. For example, one view 01 a Smal1talk class 
provides a definition of the structure of each instance, specifying the fields it must contain; 
another describes a hierarchical organization of the methods of the class; a third specifes 
various external methods called from the class; a fourth contains user documentation of the 

behavior of the class. 
The attribute names of each perspective are local to the perspective. Originally, this 

was not the case. Perspectives accessed a common pool of attributes attached to the node. 
However, thIS conflicted with an important property that design environments should have, 

namely, that dIfferent agents can create perspectives independently. Since one agent 
cannot know the names chosen by another. we were led to make the name space of each 

perspective on a node independent. 
Perspectives may provide partial views which are not necessarily independent. For 

example, the organization perspective that categorizeS the methods of a class and the 
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documentation perspective that describes the public messages of a class are interdependent. 
Attached procedures are used to maintain consistency between such perspectives. 

Each perspective supplies a set of specialized actions appropriate to its point of view. 
For example. the p rint action of the structure perspective of a class knows how to prettyprint 
its fields and class variables, whereas the organization perspective knows how to pretlyprint 
the methods of the class. These actions are implemented directly through messages 
understood by the Small talk classes defining the perspective. 

Messages understood by perspectives represent one of the advantages obtained from 
developing a knowledge representation language within an obJect· oriented environment. In 
most knowledge representation languages, procedures can be attached to attributes. 
Messages constitute a generalization: they are attached to the perspective as a whole. 
Furthermore, the machinery of the object language allows these messages to be defined 
locally for the perspective. Lisp would insist on global functions names. 

Context s and Layers 

All values of attributes of a perspective are relative to a context. Context as we use the 
term derives from Conniver [SussmanMcDermott72]. When one retrieves the values of 
attributes of a node, one does so in a particular context, and only the values assigned in that 
context are visible. Therefore it is natural to create alternative contexts in which different 
values are stored for attributes in a number of nodes. The user can then examine these 
alternative designs, or compare them without leaving the design environment. Since there is 
an explicit model of the differences between contexts, PIE can highlight differences between 
designs. PIE also provides tools for the user to choose or create appropriate values for 

merging two designs. 

Design involves more than the consideration of alternatives. It also involves the 
incremental development of a single alternative. A context is structured as a sequence of 
layers. It is these layers that allow the state of a context to evolve. The assignment of a 
value to a property is done in a particular layer. Thus the assertion that a particular 
procedure has a certain source code definition is made in a layer. Retrieval from a context 
is done by looking up the value of an attribute, layer by layer. If a value is asserted for the 
attribute in the first layer of the context, then this value is returned. If not, the next layer is 

examined. This process is repeated until the layers are exhausted. 

Extending a context by creating a new layer is an operation the.t is sometimes done by 
the system. and sometimes by the user. The current PIE system adds a layer to a context 
the first time the context is modified in a new session. Thus, a user can easily back up to 
the state of a design during a previous working session. The user can create layers at will. 
This may be done when he or she feels that a given groups of changes should be 
coordinated . Typically, the user will group dependent changes in the same layer. 

Layers and contexts are themselves nodes in the network. Describing layers in the 
network allows the user to build a description of the rationale for the set of coordinated 
changes stored in the layer in the same fashion as he builds descriptions for any other node 
in the network. Contexls provide a way of grouping the incremental changes, and describing 
the rationale for the group as a whole. Describing contexts in the network also allows the 
layers of a context to themselves be asserted in a context sensitive fashion {since all 

3 



I. P. Goldstein and D. G. Bob row Programming Environments 

descriptions in the network are context·sensitive). As a result, super· contexts can be 

created that act as big switches for altering designs by altering the layers of many sub. 
contexts. 

Contracts and Constraints 

In any system, there are dependencies between different elements of the system. If one 
changes, the other should change in some corresponding way. We employ contracts 

between nodes to describe these dependencies. Implementing contracts raises issues 
Involving 1) the knowledge of which elements are dependent; 2) the way of specifying the 
agreement; 3) the method of enforcement of the agreement; 4) the time when the agreement 
is to be enforced. 

PIE provides a number 01 different mechanisms for expressing and implementing 
contracts. At the implementation level , the user can attach a procedure to any attribute of a 
perspective, (see BobrowWinograd77 for a fuller discussion of attached procedures); th is 
allows change of one attribute to update corresponding values of others. At a higher level. 
one can write simple constraints in the description language (e.g. two attributes should 
always have identical values). specifying the dependent attributes. The system creates 
attached procedures that maintain the constraint. 

There are constraints and contracts which cannot now be expressed in any formal 
language. Hence, we want to be able to express that a set of participants are 
interdependent, but not be required to give a formal pred icate specifying the contract. PIE 
allows us to do this. Attached procedures are created for such contracts that notify the user 
if any of the partic ipants c hange. but which do not take any action on their own to maintain 
consistency. Text c an be attached to such informal contracts that is displayed to the user 
when the contract is triggered. This provides a useful inter·programmer means of 
communication and preserves a lailsolt quality of the environment when formal descriptions 
are not available. 

Ordinarily such non· formal contracts would be of little interest in artificial intelligence. 
They are, atter all, outside the comprehension of a reasoning program. However, our thrust 
has been to build towards an artificially intelligent system through succcessive stages of 
man· machine symbiosis. This approach has the advantage that it allows us to observe 
hUman reasoning in the controlled setting of interacting with the system. Furthermore. it 

allows us to investigate a direction generally not taken in AI applications: namely the design 
of memory·support rather than reasoning·support systems. 

An issue in contract maintenance is deciding when to allow a contract to interrupt the 
user or to propagate consistency modifications. We use the closure of a layer as the time 

when contracts are checked. The notion is that a layer is intended to contain a set of 
consistent values. While the user is working within a layer. the system is generally in an 

inconsistent state. Closing a layer is an operation that declares thaI the layer is complete. 
After c ontracts are checked , a closed layer is immutable. Subsequent changes must be 

made in new layers appended to the appropraiate contexts. 

Coordinating des ig ns 

4 
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So far we have emphasized that aspect of design which consists of a single individual 
manipulating alternatives. A complementary facet of the design process involves merging 
two partial designs. This task inevitably arises when the design process is undertaken by a 
team rather than an individual. To coordinate partial designs, one needs an environment in 
which potentially overlapping partial designs can be examined without overwriting one 
another. This is accomplished by the convention that different designers place thei r 
contributions in separate layers. Thus, where an overlap occurred, the divergent values for 
some common attributes are in distinct layers. 

Merging two designs is accomplished by creating a new layer into which are placed the 
desired values for attributes as selected from two or more competing contexts. For complex 
designs, the merge process is, of course, non-trivial. We do not, and indeed cannot, claim 
that PIE eliminates this complexity. What it does provides is a more finely grained 
descriptive structure than files in which to manipulate the pieces of the design. Layers 
created by a merger have associated descriptions in the network specifying the contexts 
participating in the merger and the basis for the merger. 

Meta·description 

Nodes can be assigned meta-nodes whose purpose is to describe defaults, constraints, 
and other information about their object node. Information in the meta-node is used to 
resolve ambiguities when a command is sent to a node having multiple perspectives. 

One situation in which ambiguity frequently arises is when the PIE interface is employed 
by a user to browse through the network. When the user selects a node for inspection, the 
interlace examines the meta-node to determine which information should be automatically 
displayed for the user. By appropriate use of meta· information, we have made the default 
display of the PIE browser identical to one used in Smalltalk. (Smalltalk code is organized 
into a simple four-level heirarchy, and the Smalltalk browser allows examination and 
modification of Smalltalk code using this taxonomy.) As a result, a novice PIE user finds the 
environment similar to the standard Smalltalk programming environment which he has 
already learned . 

Simplifying the presentation and manipulation of the layered network underlying the PIE 
environment remains an important research goal, if the programming environment supported 
by PIE is to be useful as well as powerful. We have found use of a meta-level of 
descriptions to guide the presentation of the network to be a powerfu l device to achieve this 
utility. 

Conclusion 

PIE has been used to describe itself, and to aid in its own development. Specialized 
perspectives have been developed to aid in the description of Smalltalk code, and for PIE 
perspectives themselves. On·line documentation is integrated into the descriptive network. 
The implementors find this network-based approach to developing and documenting 
programs superior to the present Smalttalk programming environment. A small number of 
other people have begun to use the system. 

This paper presents only a sketch of PIE from a single perspective. The PIE description 
language is the result of transplanting the ideas of KRL [BobrowWinograd77] and FRL 

5 
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[GoldsteinRoberts77] into the object oriented programming environment of Smalltalk 
[KayGoldberg77, Ingalls78]. A more extensive discussion of the system in terms of the 
design process can be found in BobrowGoldstein80, and GoldsteinBobrow80a. A view of the 
PIE description language as an extension of the object oriented programming metaphor can 
be found in GoldsteinBobrowBOb. Finally, the use of PIE as a prototype office information 
system is described in Goldstein80. 
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Extending Ob j ect Oriented Programming in Small t alk
' 

Ira P. Goldstein and Daniel G. Bobrow 
Xerox Palo Afto Research Center 

Abs trac t : 
Sma lltalk is an object oriented programming language w ith behavio r invoked by 
passing messages between objects. Objects with similar behavior are grouped 
mto c lasses. These c lasses form a hiera rc hy. When an object receives a 
message, the c l ass or one of i t s s uperc l asses p rov ides the co rresponding method 
to be exec uted . We have built an experimental Pe rsona l In formation Environment 
(PIE) In Smailialk t hat extends t his pa radigm in several ways. A PIE objec t , ca lle d 
a node, can have mu ltiple perspectives, each of which p rovides independent 
spec ia lized behav iors for t he object as a whole, t h us providing multiple 
inheritance for nodes . Nodes have metadescription to guide viewing of the 
objects during browsing, provide default values , const rain the values o f 
att r ibutes, and define p rocedu res to be run when values are sough t o r se t. A ll 
nodes have unique names which allow objects to mig rate between use rs and 
machines. Finally attr ibute lookup fo r nodes is context sensitive, t here by 
allowing alte rnative desc riptions to be c reated and man ipulated. 

Object oriented programming is a powerful computational framework for many applications, 

and Smalltalk [Kay72] is a good example of a fanguage that embodies this framework. 

Smalltalk is especially excellent for simulation, as one would expect from the fact that 

Simula [Oah166] is part of its intellectual genealogy. Objects can represent the participants 

in a simulation; messages can represent their interactions. However, the 1976 

implementation of Smalltalk [ln9alls76] lacks a number of capabilities that we believe can 

extend its power considerably, especially for applications (including simulation) that occur 

in the context of an overall design process. These capabilities arise from the assignment of 

different kinds of description to objects. 

(1 ) 

(2) 

(3) 

(4) 

multiple perspectives: the assignment of more than one point of view that allows 
inheritance of behavior from independent superclasses. 

me/adescrip,ion: the assignment of constraints to attributes that allows the 
system to check new values and propagate their intended effects. 

identification: the assignment of identifers, u~ique across an entire comp.uting 
community that allow multiple users to mampulate a common set of Objects. 

conteKI sensitive description: the assignment of a situation marker to values that 
allows alternative descriptions to coexist within a common workspace. 

Our overall goal is to crossbreed Smatltalk with recent AI representation languages in order 

to obtain a hybrid that exhibits the strengths of both lineages. We have pursued this 

crossbreeding with the help and cooperation of Smalltalk's originators, the Xerox PARe 

Learning Research Group. 

1 Published illlhe Proceedings ollhe 1980 Lisp Conference, Aug . 24-27, 1980, Palo Alto, CaL. pp. 75-81 . 
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This paper first reviews SmaJltalk, then discusses our implementation of each of the above 

capabilities within PIE, a SmaJitalk system lor representing and manipulating designs. We 

then describe our experience with PIE app lied to software development and technical 

writing. Our conc lusion is that the resulting hybrid is a viable offspring lor exploring design 

problems. 

Cu rrent Smallta lk 

Smalltalk·76 is a programming language based on three metaphors: simulation, 

communication and classification. An atomic element of the language. termed an object. 

simulates a computer. It has internal state and responds to a set of instructions termed 

messages. An object responds to a message in one or all of the following ways: it changes 

its internal state; it transmits messages to other objects; it reads or writes an 1/0 channel 

such as the display. A sender need have no knowledge of the internal structure of a 

receiver: it need only know the receiver's message set. For example, there exist display 

objects such as rectang les that store their position and extent, and respond to messages to 

move, show and erase themselves. 

Each object is associated with a single class. The objects associated with a given class are 

called its instances. The class owns a dictionary that defines methods for a set of 

messages. When a message is sent to an instance, that instance in turn requests the 

appropriate method from its class. The method returned by the class is then applied to the 

arguments of the message. Smalltalk has predefined classes for Rectangle and BitRect, the 

latter being a class that includes a state variable for storing the display state of the points 

enclosed by the rectangle. (Rectangle and BitRect define behavior for classes that interact 

with a BitMap display). 

Classes are hierarchical. A superclass is used to describe the behavior common to several 

classes. Given superclasses, the protocol for retrieving a method is extended as follows: 

when a message is sent to an instance, the instance asks its class for the method 

associated wi th the message. If the class knows this method directty, it supplies it. If it 

does not, the class asks its superclass. If the superclass responds with a method, this 

method is passed back to the object. For example, BitRect is defined as a subclass of 

Rectang le. A method like blink is defined only in Rectangle since its definition, a repetitive 

invocation of show and erase, applies to instances of both classes. When blink is sent to 

an instance of BitRect, BitRect finds no associated method, and hence passes the buck to 

Rectang le, which has the desired definition. 

The root of the class hierarchy tree is the class Object . If a request for a method 

associated with a message comes up to Object, and it does not know the definition of the 

message, an error occurs. 
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Although one class may have a great deal in common with the behavior of another, they 

may still differ on some methods. For example, the show method of BitRect differs from 

the show method of Rectangle in that BitAect displays the contents of the rectangle while 

Rectangle only displays the outline. The desired behavior is achieved by redefining the 

show method in the subclass. Since method retrieval is bottom up, the redefinition in 

8itReei will dominate the definition in Rectangle for instances of BitRect, yet be invisible to 

instances of Rectangle. 

In addition to a method dictionary, each class also owns a list of variable names. The 

state of an instance is defined in terms of values tor variables with these names as well as 

values tor any variables whose names appear in the superclass chain. For example, 

Instances of BltAect store state lor contents, the instance variable defined in BitRect, as 

well as origin and extent, the instance variables defined in the superclass Rectangle. When 

any method of an instance is activated by passing it a message, that activation can read 

and change the values of these instance variables. 

A message consists of selectors and arguments. For example, the method with selector 

move: has an argument named distance. A particular call to this method might look like 

rect 1 move: 3 , where rect 1 is an instance of class Rectangle and the argument distance 

is bound to 3. 

The three classes, Object, BitRect, and Rectangle, appear in Figure 1 with their associated 

instance variables and some of their messages. The syntax employed in this and other 

figures of this article is for didactic purposes only. and does not correspond to SmaJltalk 

syntax for defin ing classes. 

The class Object with instance variables {} and methods { i s: class, •.• } 

The class Rectangle, a subctass of Object, with instance variables {origin, extent} 
and methods {show, e rase, move: d istance, blink, ... } 

The class BitRect, a subclass of Rectangle, with instance variables 
{contents} and methods {shOW, e ras e, ... } 

Figure 1. A class hie rarchy in Smallta lk. 
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Mul tiple Inheritance 

Smalllalk·76 does not support multiple inheritance. Classes are organized into a strict 

hierarchy and an instance can be associated with only one class, al a single position in the 

hierarchy. However, there are situations in which one desires greater descriptive power. 

For example, consider an environment for hardware design. Objects in this environment 

represent circuit elements .. resistors, chips, wires, etc. There are at least two points of 

view from which one may wish to examine these objects. The first is as circuit elements 

with associated electrical behavior; the second is as display objects that know how to draw 

pictures of themselves. To choose one point of vie~ as primary, Le., as the class of the 

object, and copy methods of the other paints of view into th is class, is clearly 

unsatisfactory. Equally unsatisfactory is making one class, say DisplayObjecl , a subclass of 

another, say Circuit Element. Such subclassing would be erroneous lor other display 

objects that are not circuit elements. One would really like to be able to have multiple 

superclasses. 

We have explored two designs for multiple inheritance. Both are based on the use of class 

Node, which defines the basic representational unit. An instance 01 Node represents some 

entity: a circuit part, a Smalltalk method, a paragraph of a document. Multiple inheritance 

is achieved by assigning perspectives to nodes. A perspective is an instance of a class that 

represents the node from a particular point of view. For example. a node representing a 

part of a displayed circuit design might have a CircuitElement perspective and a 

DisplayQbject perspective. Class Node defines an instance variable perspectives that stores 

each node's list of perspectives. 

In our first design for multiple inheritance, the state of the object was represented entirely 

in the node. Perspective classes carried no state: they supplied method definitions only. 

This required that perspectives have backpointers to their node, since their methods 

manipulated the state variables stored directly in this node. 

Smalltalk.76 constrains the number of named state variables to be fixed when the class is 

created. This is an efficiency constraint: it allows compiled code to reference instance 

variables by their position in a vector of fixed length rather than by their name. However, in 

our scheme, we prefer that it be possible to assert or delete perspectives at any time. 

Hence, an instance 01 Node cannot know all of its state variables at creation time. Our 

solution was to give class Node a second state variable whose value was a dictionary keyed 

by variable names. All variable access went through this dictionary and the dictionary 

could be modified at run time. Flexibility was obtained at increased computational cost. 

Figure 2 shows a node representing a resistor in a circuit simulation. 
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R17, an instance of Node, with 

state .: (ohms::: 100; connection1::: wire6; connection2::: wire8; 
location = (100,100)) 

and perspectives = {CircuitElement ; DisplayObject} 

Figure 2 . A Node with multiple perspectives and a common set of state va riables . 

Our lirst design for multiple inheritance presumed that a slate variable such as ohms had a 

meaning independent of the individual perspectives. Hence, it was sensible for it to be 

owned by the node itself. All perspectives would reference this single variable when 

referring to resistance. This proved adequate so long as the system designer knew all of 

the perspectives that might be associated with a given node, and could ensure this 

uniformity of intended reference. 

When we extended PIE from a single user to a multiple user system, we encountered the 

difficulty that two users might define perspectives that employed a variable of the same 

name, although they had different purposes in mind for the variable. For example, one user 

might define a perspective InventoryPart that used the variable location to point to the node 

representing the bin containing the part, while another user might define a perspective 

DisplayObject that used a variable of the same name to refer to the location of the part on 

the screen. The result would be an unintentional clash. In our first implementation. both 

perspectives would be erroneously referencing the same variable in the common pool of 

node variables. 

Our solution was to eliminate the central database owned by the node in favor of local 

databases owned by each perspective. Th is new design achieved privacy at the cost of 

additional space. Furthermore, it required the user to supply fun ctions for coordinating 

state variables in different perspectives that represented the same data. However. this 

seemed unavoidable if we were to open the process of perspective creation to mul!iple 

users. Figure 3 illustrates our representation for RU using this second design. There is no 

longer a common pool of state variables. 
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R17 , an ins tance o f Node, w ith p e rspectives = 

{ A CircuitElement w ith ohms = 100, connection 1 ;:; w ire6, and 

connection2 ;:; wi re8 ; 

A Display Ob j ect with location = (100, 100); 

An Invento ryPa rt w ith location :; biol01}. 

Figure 3 . A node w ith st ate distribu ted among the p e rspectives. 

In both implementations, a message sent to a node consists of the message pattern and the 

class of the inlended perspective. Thus, to obtain the resistance, one would execute the 

following statement: (R17 as: Res istor) ohms. The as: message to R17 causes AI ? to 

return the perspective of the desired class. in th is case perspective 1. Perspective 1 is then 

sent the message ohms . 

An alternat ive to passing the perspective to the node is to require thai the node poll its 

perspectives lor any that understand the message. This approach has the advantage that 

the source code is more concise. but introduces the necessity to resolve cases in which 

more than one perspective responds to the message. This resolution could be based on a 

predefined ordering of the perspectives. We have not adopted this approach for two 

reasons: (1) In most cases, we have found that the sender knows the point of view that the 

recipient should employ to understand the message. (2) There is generally no good 

c riterion for declar ing that one perspective shou ld dominate another. In those few cases 

where the intended perspective is not known, we have adopted the procedure that the node 

poUs its perspectives for any that understand the message. If an ambiguity exists, a user 

interrupt occurs. 

The use of perspectives for multiple inheritance is not new. FRL [GoldsteinRoberts77] had 

a scheme very much like our first implementation; KAL [BobrowWinograd77] has multiple 

perspectives like those of our second implementation. Both of these implementations were 

based on the assumption that one wants to make it easy to add a new perspective to an 

existing instance at any time. We have adopted this assumption in PIE. 

An alternative approach is available if one allows multiple inheritance for classes, but not 

for instances: thai is, an instance can be associated with one, and only one, class but a 

class can have more than one superclass. In this case, it is only in the construction of a 

class that clashes must be resolved between variable names occurring in more than one 

superclass. Th is is the approach employed by Th inglab [Borning77). a multiple inheritance, 

constraint satisfaction system. 
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To summarize, perspectives differ from ordinary SmaUtalk objects in four respects: 

• They expect to be part of a closely interacting system consisting of other 

perspectives and a central node; hence they come with a backpointer to their node. 

They share some of their state with other perspectives in this system, but maintain a 

private variable pool for their own purposes . 

• They are intended to represent a point of view on an entity, rather than the entity 

itself. 

They can be aHached at any time to a node. It is not necessary to assign all 

perspectives when the node is created. 

Metadesc ription 

Perspectives express different descriptions of the entity represented by the node. Changing 

these descriptions can lead to inconsistencies. We handle this problem by providing the 

node with various kinds 01 information about itself. We term th is information 

metadesctiption to distinguish it from the primary description implicit in the node regarding 

the entity in the world that it represents. For a general discussion of metadescription see 

[BobrowWinograd77]. 

The first kind of metadescription we supply is knowledge of the expected type of an 

attribute. This information is supplied in a constraint dictionary. For each attribute, the 

constraint dictionary supplies an expression that describes the class of the expected value. 

For example, a value for the ohms attribute of the resistor perspective is expected to be of 

class Integer, while the value of connection1 is expected to be a node with an associated 

Wire perspective. This mechanism takes care of simple unary constraints. 

Secondly, we supply procedures that are triggered by the retrieval or storage of a value. 

These procedures typically serve to maintain consistency between dependent attributes. 

For example, if a change is made by the user in the connectivity of the displayed schematic, 

then procedures attached to the instance variables being altered can update the circuit 

element perspectives to correspond to the new display linkages. Similarly, attached 

procedures can update the inventory perspective as parts are added or deleted from the 

design. 

To take care of tess formal cases in which only the user knows what to do, we have 

dependency notification. A dependency list can be added to the metadescriptions of a 

node. The user supplies this list for a node or attribute, but does not inform the system of 

what actions to take if a change is made. Consequently. when the node is altered, the user 

is reminded of these dependencies by attached procedures, but no automatic actions are 

taken. For example, the user might place a dependency link between a capacitor and an 
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inductor to serve as a reminder that the two elements are intended to operate together as a 
tuned circuit. 

A more powerful dependency model replaces the dependency list with a painter to a node 

with a contract perspective. The contract perspective contains a list of participants and, at 

a minimum, an English statement of the contract. We plan to formalize this contract 

progressively. For the electrical world, contracts might include the mathematical formulae 

that describe the circuit. For the programming domain, contracts would include the 

expected type of a variable. See [Borning77] for a general study of constraints as the basis 

of a Smalltalk system and [SussmanStallman77] for a more detailed study of dependency 
relations in circuits. 

Unique Identification 

The object metaphor suggests that each user of Smalltalk has his or her own unique set of 

objects. I run on my computer; you on yours. But the description metaphor suggests that 

you and I may well be working on the same set of descriptions. Hence, we need a way to 

separate my contributions from yours but, at the same time, to clearly identify that they are 

being generated to describe the same topic. To solve the first problem, we employ 

machinery to separate descriptions into contexts. Th is is discussed in the next section. To 

solve the second problem, we employ unique identifiers. 

Consider the following scenario : I create a set of nodes representing a design and deliver 

these nodes to your envi ronment for subsequent development. To accomplish this delivery, 

I generate a set of descriptions that can be used to recreate a set of Smalltalk objects with 

the same state. This was our first implementation. 

However, the following difficulty arises with this scheme. You modify and supplement these 

nodes, and then generate a new set of descriptions. But when I reread them into my 

environment, how can I determine which of these descriptions shoutd be added to existing 

nodes, ralher than used to create a new collection of nodes? 

Recognizing that two sets of descriptions describe the same intended object is a difficult 

problem. However, in this special case, the problem can be solved easily. A node is 

assigned a unique identifier when created. This identifier travels to the consumer when 

descriptions are generated. The consumer checks to see jf a node already exists with the 

tdenlifer. If so, the descriptions of th is node are appended to those al ready there. If no 

such node exists, a new node with this unique identifier is created. 

The computational cost of this scheme is not excessive, since the consuming environment 

can maintain a table that associates identifiers wilh existing nodes within Ihat environment. 

Hence, in consuming a set of descriptions, it is necessary only to check this table to lind 
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the preexisting node, if any. This is similar to the way lisp atoms, or Smalltalk unique 

identifiers are implemented, with the important difference that the idenlilers are generated 

by the machine in such a way that twa users can never create identical identilers. In fact, 

the identifiers consist of an encoding of the time and machine of creation. 

Contextuallzalion 

From a design standpoint, it is important that alternative descriptions be able to coexist in 

the same environment at one time. Alternatives arise from a designer exploring different 

plans to achieve his goals; or from the interactions of several designers on a jOint project. 

For example, one designer may propose a particular circuil to realize the specifications of a 

module; while another designer may propose an entirely different circuit to accomplish the 

same goals. In a design environment. descriptions are sensitive to who has created them 

and for what purpose. A user must be able to examine and manipulate such descriptions 
from different paints of view. 

To Implement context sensitive descriptions, we have altered the behavior of the 

dictionaries thai store the attribute/value pairs of perspectives. In Smarrtalk-76. a dictionary 

is a list at attributes and an associated list of values. We have replaced the value 

associated with the attribute with another level at dictionary. This level of dictionary 

associates a fayer marker with different values. The layer marker is a tag for the situation 

in which the value was supplied. Figure 4 shows a partial view of a layer structured 
description of R 17. 

A1 7, an instance of Node, with pe rspectives = 

{A Ci rcuitElement with ohms = [<laye r1 100>] , connectiont = [<layer1 

wi re6)] , and connection2 = [<layerl wi reS> <laye r2 wfre13]; 

A OisplayObject with location = [<Iayen (100, 1 00» <layer2 (300, 300)]} 

Figure 4_ A partial view of the node R17 with layers indicated. Laye r1 stores the 

original design_ Laye r2 sto res a change in the display location of the res istor and 

an associated change in the circuit connectivit y. 

Storage and retrieval is therefore situation dependent. Storage is done with respect to a 

layer. Retrieval is done with respect to a sequence of layers. The retrieval algorithm 

checks the layers in order for a value. returning the first value in the layer sequence. This 

layer sequence is called a context. These notions of layer and context are derived from 

Conniver [Sussman72] . There are minor differences in the implementation, and major 

... ------------------------------
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differences in the use of the mechanism. 

[BobrowGoldstein80). 
This is discussed in more detail in 

Values stored in a layer represent a coordinated set 01 values. Suppose the connectivity of 

R17 in a circuil is changed as a display object. An attached procedure (or the user) might 

make the corresponding change in the circuit simulation. These fivo changes are meant to 

be coordinated, and are therefore placed in the same layer. By "coordinated", we mean 

that one sees either both changes or neither in any view of the circuit. All retrievals in a 

context will get either both these values (if the layer is included in the context) or neither. 

The flexibility to represent alternative descriptions in layers comes at the cost of increased 

complexity. We have designed several display interfaces to explore different mechanisms 

for simplifying the presentation of this inherently more complex database. For example, one 

interface provides a way for a user to view two different contexts simultaneously with 

differences between the two highl ighted. We have also explored the use of metadescription 

to default some of the contex tual choices that would otherwise fall on the user, e.g., 

selecting the default layer for assertions and the default context for retrieval. Finally, we 

have supplied commands that suppress the context machinery. The user stores and 

retrieves state in a context free fashion . This is faster, occupies less space, and has no 

cognitive overhead for remembering alternative contexts. But the user no longer can 

explore alternatives or separate his contributions from those of a codesigner. All three of 

these strategies have proved useful in some circumstances, but it remains an important 

research goal to make the context machinery available to the user in a convenient fashion. 

Use of PIE 

The PIE system provides an environment for doing software development. Perspectives are 

provided for representing Smaliialk classes and methods. A user of PIE is therefore able to 

build a collection of nodes that represent a software system. Unique identifers and 

contexts allow users to engage in cooperative design and to explore alternatives. When a 

design is complete, it can be installed in Small talk by generating executable code from the 

node descriptions. Other designs described in separate contexts remain unaffected by this 

installation. Metadescriplion is used to express type knowledge regarding method variables, 

thereby obtaining the strengths of a typed language while still preserving the underlying 

flexibility of an untyped interpreter. 

The utility of this descriptive base lor developing software is illustrated by the following 

experiments: (1) We have successfully redesigned PIE 's user interface within PIE. 

Ordinarily, such redesigns would clobber the cod ing environment itself, but the separation 

between description and installed code prevents such conflict. (2) We are able to describe 

a method as belonging 10 multiple classes, despite the fact that the Smalltalk kernel does 

not allow this. At the descriptive level, a node representing a method may be linked to 
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more than one class. Within Smalltalk itself, a method is local to a class. For compatibility, 

all that is necessary is that installation of the description involves placing copies of the 

compiled code in each class . However, at the descriptive level, the designer can treat the 

method as a single integral entity; editing it affects its occurrence in all of its classes. (3) 

Multiple perspectives and metadescription support improved browsing and prettyprinting of 

code. thereby improving the user's abitity to examine his designs. (4) Unique identifiers and 

contexts provide a mechanism for generating an incremental system release. The new 

system is created by transmitting a layer with the changes to a consumer and then asking 

the consumer to do a reinstallation. Separating release changes into layers allows the 

consumer to examine the alterations of the release and exercise some choice regarding 

which parts he wishes to accept, before performing the reinstallation. 

The same machinery has also been used to support a document design environment. 

Nodes are used to represent the structure 01 the document; Le., the document is a tree 01 

nodes whose root represents the document as a whole and whose terminals are the 

individual paragraphs. The nonterminals of the tree are chapters, sections and sub­

sections. Again, contexts and identifers facili tate coauthoring and exploring alternative 

organizations. two capabilities not well supported by present text editing environments. 

Metadescription can be used to express formatting constraints. Multiple perspectives allow 

a paper to appear as either an abstract, a citation , a bibliographic reference, the outline for 

a lecture. or a formatted document, depending on the desired point of view. 

The PIE system code occupies approximately 200 kilobytes and 100 pages of listing in a 

Smalltalk system of approximately 1 megabyte and 1000 pages of listing. Storage space for 

nodes grows as layers increase. and previous or al ternative values for attributes of nodes 

are stored. Retrieval time increases with the number of layers in the retrieval context. 

However, neither price has proved exorbitant since PIE has been used largely as an 

interactive design tool. In this application, time is primarily limited by the responses of the 

user, i.e. there is more thinking Ihan computing. Space is released when the design is 

complete and an installed package of code is created. 

ConclUSion 

We conclude by reconsidering Smalltalk's underlying metaphors of simulation, 

communication and classification in the light of our addition of descriptive machinery to the 

language. 

In SmaHtalk-76, objects simulate computers and therefore have a fixed identity. They use a 

predetermined set of state variables and respond to a fIxed set of messages. In PIE, nodes 

have a flexible set of state variables which can grow or shrink as the attributes of individual 

perspectives are changed. Furthermore, the message set can change as new perspectives 

are supplied or old perspectives deleted. Nodes are more analogous to an evolving 
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biological species than to an inanimate computer. At any moment in time, a member of the 

species has a fixed anatomy and physiology. Over time, however, both the anatomy and 

physiology evolve. 

In Smalltalk·76, objects have an unambiguous message semantics. A message is sent to an 

object and that object, in turn, requests the appropriate method from its class. In PIE, 

nodes have multiple perspectives and more than one perspective may supply a method for 

a given message. The user must specify the perspective, or allow the node to decide. 

Communication is stilt an applicable metaphor, but the complexity of communication has 

increased as the underlying objects have moved from a monolilhic to a pluralistic society. 

In $malltalk.76, objects participate in a simple, hierarchical classification scheme. In PIE, 

nodes are the locus 01 a set of descriptions and behaviors. each generated from a different 

point 01 view. Classi fication, with its implication of simple hierarchy, has been replaced by 

description, with lis more open·ended connotation. 

ThuS, the evolution from Smailialk to PIE has produced a change in the behavior of the 

basic computing element. In Smal1talk, objects have a fi xed structure and engage in 

communication based on a simple classification scheme. In PIE, nodes have an evolving 

structure and engage in a more complex communication based on the use of descriptions. 

We believe that this evolution yields a more flexible environment lor exploring design 

problems. 
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Abstract: 

Rep resenting Des ign Alternatives 1 

Daniel G. Bobrow and Ira P. Goldstein 
Xerox Palo Alro Research Center 
Palo Alto, California 94304, U.S.A 

Artit i~ia l intelligence systems are c omplex designed artifacts. Techniques 
used In AI systems to describe structures and to represent alternatives c.:Jn be 
used to support the design at the systems themselves. PIE is an experimental 
personal information environment which provides users with desc ri ptive 
s truc tures for programs and documents. In PIE, a lte rn ative designs for 
program s and documents are simultaneously viewable in the system through 
the use of a context structured database. This short paper gives an overview 
of how the use of these facilities improves the design envi ronment for builders 
of software sys tems. 

Int roduction 

A major activity in artificial intelligence research is the design of complex systems. Yet 

most software environments do not support this activity well. They do not allow within 

the system description of different properties of a design nor the fl exible examination of 

alternative designs. All designers create alternative solutions, develop them to various 

degrees, compare their properties. then choose among them. Yet most software 

environments do not allow alternative definitions of procedures and data structures to 

exist simultaneously; nor do they provide a representation for the evolution of a particu lar 

set of definitions across time. It is our hypothesis that a context-structured database can 

substantially improve the programmer's ability to manage the evolution of his software 

designs. 

Present computing environments support the creation of alternative designs only with file 

services. Typically users record significant alternatives in files of dHferent names; the 

evolution of a given alternative is recorded in files of the same name with ditferent 

version numbers. We contend that this use of files provides both an impoverishoo 

structu re as well as an inflexible one. The poverty is a result of the fact that file names 

are simply a limited length sequence of characters, hardly an adequate scheme to 

describe the purpose and contents of a file, and its relation to other files. It can be an 

adequate reminder to the originater of the name, but is often opaque to a new reader. 

The rigidity is a reflection of the fact that one typically cannot use parts of files as part of 

a new composite design, except by tedious text editing. Finally, the most serious 

limitation is that files are "off-line" in the sense that the alternative designs are not 

stored within the computing environment in a form that can be easily manipulated by the 
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programmer. Although Interlisp [Teitelman, 78J provides some lacililies for manipulating 

pieces of a file (e.g. individual function defin itions), it still suffers from the "off.line" 
limitation. 

To ameliorate this software bottleneck, we have constructed a computing environment in 

which "on·line" descriptions of alternative sofu'Jare designs can be readily created and 

manipulated. We use a context·structured description· centered database to describe 

code. Such databases have been explored in artificial intelligence research for over a 

decade as a mechanism to represent alternative world views. [e.g. Hewitt, 71; Sussman 
& McDermott, 72]. 

Our application of this machinery is novel in several respects. (1) Previous applications 

have focussed on the use of such databases by mechanical problem solvers. We are 

exploring the use of such databases in a mixed·iniliative fashion with the user primarily 

responsible for their creation and maintenance. (2) Previous applications have always 

demanded a uniform overhead in space and time lor adopting the context machinery. 

We are exploring configurations for a design environment that allow the programmer to 

trade flexibility for efficiency, decreasing the system's investment in tracking the 

evolution of particular parts of a design at the price of not being abte to represent 

alternatives simultaneously in primary memory. Thus, employing the design environment 

is not an all or nothing choice for the user. (3) Previous applications have been to 

problems of limited complexity. In our application of context structured databases to 

software design, we are exploring their utility in a world several orders 01 magnitude 

more complex. 

To understand the pros and cons of context structured environments for software design, 

we have implemented a prototype environment and conducted several experiments. The 

environment is called PIE, an acronym for personal information environment. PIE allows 

the user to build context sensitive descriptions of code, documents, and, indeed. any 

object for which a machine representation exists. PIE has been employed (1) to allow a 

programmer to create alternative software designs, examine their properties, then choose 

one as the production version , (2) to coordinate the interactive design of two 

programmers, and (3) to coordinate the documentation and definitions of an evolving 

package of code. 

The Smalltalk environment 

To describe PIE further, we must first introduce Smalltalk [Ingalls, 78; Kay, 74), the 

programming environment in which it has been implemented. Smalltalk is an object­

orien led programming language. (See Oahl & Nygaard [66) on Simula and Hewitt et al 

[731 on "actors" for related work on such programming languages). Behavior arises 

from the transmission of messages between objects. Each object is, in essence, a 
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simulation of a computer. It can respond to some number of messages and it maintains 

its own state between message invocations. 

The message set of an object is specified by Smalltalk's class structure. Each object is 

an instance of a class. When a message is sent to the object, it asks its class for the 

method associated with that message. The class either contains the definition directly, 

or if not, passes the request to its superclass. For the object 10 understand the 

message, its definition must occur somewhere in this superclass chain. Thus, objects of 

the same class are analogous to computer products of the same model. 

Figure 1 shows a fragment of the definition of a Smalltark class for Spaceship. The 

fragment shown indicates that instances of Spaceship understand messages that 

simulate motion and collision and that each instance carries its own private state 

regarding its position and velocity. 

Class new title : Spaceship 
superClass : Object ~class Object Is thfl root of the sUp8rClass h1erarch'l.~ 

declare: 'a llSpaceships' He cfass variable -shared by a/l Instances" 

fields: 'posi tion velocity' " instance variables ·· each Instance has private versions of these" 

Moving ~methods are dMded Into 'protocols' •• this one Is called Moving" 

accele rate : dv "dv Is the argument of the method with selector accelerate" 

[velocity ~velocity + dV] 

move [position~position + velocity. "points vnderstand the message + " 
sell crashes::) Hself relars to this Ins/flnce. • > indicates a conditional express/on" 

{t self explode] "If condition Is true. move re/vms with value of selfaxplode
H 

self display. "done If condition /s la/sa .. display is a message this Instanca underslands" ] 

Collisions "flnother protoco'" 

crashes I ship H$hlp /$ fI local variable for /ha actlvlal/on" 

HThis a$Sumes that eU ships ara 01 unit size. end collide only when at the same point" 
[for: ship from: aliSpaceships do: [ ship coliideAt: position = } {"tlrueJ]:tfalse] 

colli deAt : place 
"a method fa test " I collide with another object at place. H 

[position = place :: ) [ttrue] tlalse] 

Figure 1: Partial Definition of a Smalltalk class 

We chose Smalltalk over Lisp, the usual vehicle for AI research, because Smalltalk has a 

superior set of interactive display facilities. DLISP (Teitelman, 77] provides enough 

capabilities we believe, but was not available on the same fast hardware. These 

interactive display facilities were of crit ical importance to allow the functionality of the 

design environment to be delivered to a user. No matter how powerful the design tools, 
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no experiments would have been possible with an interface based on an inadequate 

communication channel. Using Smalltalk, however, has required that we reimplement 

machinery common to such AI languages as FRL [Goldstein & Roberts, 77} and KRL 

{Bobrow et ai, 77]. Th is has proved straightforward because the object oriented 

structure of Smalltalk is congenial to the frame·based viewpoint of a AI representation 

languages. 

The PIE environment 

To describe Smalltalk code, we created a class of Small talk objects called nodes . Nodes 

are analogous to KRL units, or FRL frames: they consist of a set of attribute value pairs 

with support for attached procedures, the use of defaults, meta·descriptions and 

inheritance. 

PIE provides convenient ways of viewing relationships between nodes, and viewing and 

changing the properties of nodes. One can automatically create nodes which describe 

existing pieces of the SmaUtalk system, and conversely, make the system congruent with 

a description of it. Node23 in Figure 2 is a description that might have been been 

computed from one method of the SmaJltalk code shown in Figure 1. 

Node23 
class Node17 ~Nod817 Is the node describing the class SpeceshlpH 
selec tor 'crashes - This i.s e unique string .. 11118 e Usp Atom

H 

localVariables ('ship) HThis Is a set of un/que stringsH 
varlables Used ('ship 'allSpaceships 'position 'mySize) 
method Body NTh/sis an editable paragraphH 

[ for: ship from: allSpaceships 
do: [ sh ip colHdeAt: position '" >[1"truel1·1"false] 

commen t 
'This assumes that all ships are of unit size, and collide 
only when at the same point' 

Figure 2. A node describ ing the method fo r c rashes 

In PIE, changing the values of any of these attributes does not au tomatically change the 

object being described by the node. The node describes an intended object in the 

system, not necessari ly the version that exists in the system. This is worth emphasizing 

as one of the principles characterizing our point of view towards the design process. 

* The Description Principle: In a system there should exist a descriptive 

level at which objects can be described without actually affecting the objects 

themselves. 
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Representing alternat ive designs 

Using node structure, there are two distinct ways to have alternative descriptions of the 

same object: coreference and context. We have explored both, with our current 

preference being for the use of contexts. 

Coreference uses separate nodes to describe separate alternatives. In Figure 3, Node25 

is a description of an alternative version of c rashes. The intended identity of the 

Node23 and Node25 (they are both are describing the same object) is made explicit 

with the coreferentNodes attribute. 

Node25 
c lass Node18 

se lector 'crashes 
localVariables ('ship) 

"Node18 Is the node describing the class Spaceship whfch differs 
from Node17 In having an additional Instance variable •• mySlze~ 

variablesUsed ('ship 'aUSpaceships 'position 'mySize) 
method Body -a different method body" 

[for: ship from: aUSpaceships 
do: ( ship collideAt: position of: mySize = >{tt rue)):tfalse] 

commen t 'Uses mySize for each ship to determine overlap' 
corefe rentNodes (Node23) 

Figure 3. An alternative method for crashes 

However, coreference has certain difficulties. The first is that it does not represent the 

manner in which two descriptions may differ on some attributes but otherwise be 

identical. The second is that the coordination of the choice of Node23 vs. Node25 and 

other choices in the system for consistency is not expressed. For this reason we have 

chosen to explore another way of expressing alternatives. 

In this second method, aU descripti ons (values of attributes) of any node are relative to a 

context. Context as we use the term extends the notion of context as used in Conniver 

[Sussman & McDermott, 72], and has certain similarities to the vistas of partitioned 

semantic nets [Hendrix, 75]. 

* The Context Principle: All attribute·values in the system are relative to a 

context, and alternatives in a system are expressed by alternative contexts. 

When one retrieves the values of attributes of a node, one does so in a particular 

context, and only the values assigned in that context are visible. 
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Incremental design 

Design involves more than the consideration of alternatives. It also involves the 

incremental development of a single alternative. Every programmer is aware that 

software has a life cycle: following its birth, it undergoes progressive refinement in 

response to changing external requirements. PIE supports the incremental modification 

of a design by providing a fine structure to contexts that we have not, as yet, discussed. 

A context is structured as a sequence of layers. It is these layers that allow the state of 

a context to evolve. The aSSignment of a value to a property is done in a particular 

layer. Thus the assertion that a particular procedure has a certain source code 

definition is made in a layer. Retrieval from a context is done by looking up the value of 

an attribute, layer by layer. If a value is asserted for the attribute in the first layer of the 

context, then this value is returned. If not, the next layer is examined. This process is 

repeated until the layers are exhausted. 

Figure 4 shows a layer C containing some coordinated changes to the spaceship class of 

Figure 1. This layer contains those changes necessary to allow the class to use size 

information in determining collisions. In a context which contained this layer dominating 

those containing the information implicit in Figure 1, the changes would be visible. 

Those attribute-values such as the superclass of Spaceship that are not contained in 

layer C would be found in less dominant layers. 

Node17 " the node for the classSpaceshlp~ 
fields: ('position 'velocity 'mySize) ~a chanQe ln a declaratJon~ 
methods ( ... Node23 Node27 ... ) 

Node23 ~the node lorthemethod crashes" 
methodBody 

[for: ship from: aliSpaceships 
do: [ ship coUideAt: position of: mySize = >[ttrue]].tfalse] 

Node27 .. ,he node fo r 'he method that tests for a collislon H 

selector 'collideAt:of: 
melhodBody 

[(position + mySize>place·size)and:(posilion-mySize<place + size) = >[ttrue] 
tfalse] 

Figure 4 . Layer C, containing coord inated changes 10 use mySize 

Figure 5 shows several spaceship nodes in which the values of attributes have not been 

filtered by a context sensitive lookup. Instead, we see the underlying data structure, 

which is an association list of layers and values. Layer B is the base layer in which all 

the nodes were presumed to have been originally defined for this example. 
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Node 17 ·the node for the c/ess Spaceship ~ 
fields: LayerB ('position 'velocity) 

LayerC (,position 'velocity 'mySize) 
Node23 ~Ihe node for Ihemelhod creshes H 

method Body 
LayerB 

[for: ship from: aliSpaceships 
do: [ship collideAt: position : ) (ttrue]] .ffalse] 

LayerC 
[for: ship from: aliSpaceships 
do: {ship collideAt: position of: mySize '" ) [ftrue] ]. ffalse] 

Figu re 5. An unlayered view of node st ructure 

AISB-80 

Extending a context by creating a new layer is an operation that is sometimes done by 

the system. and sometimes by the user. The current PIE system adds a layer to a 

context each time the context is modified in a new session. Thus, 8 user can easily back 

up to the state of a design during a previous working session. The user can create 

layers at will. This may be done when he or she feels that a given groups of changes 

should be coordinated. Typically, the user will group dependent changes in the same 

layer. 

Given the existence of layers, a complex design developed over many stages can be 

summarized into a single new layer. The old layers, reflecting past choices, can then be 

deleted. Thus, the designer, if he wishes, can compress the past , achieving a more 

compact representation at the price of no longer representing the dynamics of the 

design. 

Coo rdinating designs 

So far we have emphasized that aspect of design which consists of a sing le individual 

manipulating alternatives. A complementary facet of the design process involves 

merging two partial designs. This task inevitably arises when the design process is 

undertaken by a team rather than an individual. To coordinate partial designs, one 

needs an environment with these properties: (1) non-interference. Two designs may 

overlap. It must be possible to examine the overlap without the designs overwriting one 

another. (2) incompleteness. It must not be necessary for a design to be complete 

before it is examined. (3) merging. It must be convenient to create a common design 

from the individual contributions. It was encouraging for us to learn that the 

context/layer machinery created to manage alternatives lent itself well to meeting these 

requirements for coordinating partial designs. 
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Non·interference between the overlap of two partial designs was accomplished by 

adopting the convention that different designers place their contributions in separate 

layers. Thus, where an overlap occurred, the divergent values for some common 

attributes were separated by distinct layers. Handling incomplete designs of software 

was facilitated by the distinction between intensional node descriptions and the actual 

code definitions. Since the node descriptions were not instalJed code, they could be 

partial and hence non-executable with no difficulty. 

Merging two designs can be viewed as a process that creates a new layer into which are 

placed the desired values for attributes as selecle~ from two or more competing 

contexts. II is hence very much like the summarization process described earlier, but it 

is relative to more than one context and requires user interaction. For complex designs, 

the merge process is, of course, non-trivial. We do not, and indeed cannot, claim that 

PIE eliminates this complexity. What it does provides is a more finely grained descriptive 

structure than files in which to manipulate the pieces of the design. 

Understanding how to merge two designs is facilitated by examining commentary 

supplied by the designers regarding the rationale of their choices. But this raises the 

classic software problem of coord inating documentation with design. Fortunately no 

additional machinery is required in PIE to address this problem. Commentary such as 

the rationale of a procedure, or its dependencies on other procedures, can be stored as 

attribute value pairs within the node describing the procedure in question. A request to 

be informed of the rationale of some change is answered by fetching this information 

from the same layer as the one which records the change, thus keeping them 

coord inated. Figure 4 shows ho~ the rationales of various method definitions are 

recorded in the layer along with the altered definitions. 

Complexity. 

We claimed in the Introduction that PIE copes with problems several orders of magnitude 

more complex than those previously represented in AI systems such as Conniver. By 

complexity we mean both the size of the data base in the system, and the variety of 

operations done on contexts. The Conniver database was never efficient enough to 

implement any useable subsystems. McDermott's [McDermott, 74] examination of the 

Monkey and Bananas problem within Conniver exercised it to its limit. 

PIE is able to build a context sensitive description of any class within Smalltalk. Thus, it 

can be applied to any programming problem that a Smalltalk programmer undertakes. 

This is analogous to using Conniver to build a programmer's interface to Lisp. Attacking 

problems 01 this size is, in part, possible because we have more computational resources 

than were available in the early 70's. PIE runs as a stand alone job on a processor with 

at least the power of a KA10. However, it is also possible because we have implemented 
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machinery to allow the programmer to move between context sensitive and context free 

descriptions at will. Thus. there is a more congenial marriage between PIE and Smalltalk 

than there was between Lisp and Conniver. This is diSCussed in the next section. 

An interesting side effect of PIE's ability 10 describe any code within Smalltalk is that it 

can and has been used to describe itself. Thus. PIE's present capabilities have passed 

the test of being sufficiently powerful to support its own development, for example, by 

allowing us to examine alternative implementations of the PIE user interface within PIE. 

Effic iency versus Flexibility 

PIE allows the user to trade flexibility for efficiency. At one extreme, the user can 

employ standard Smalltalk mechanisms for defining new code. If this route is chosen, 

then no evolutionary history is maintained, and no context overhead is paid. However, if 

the user wishes to pay the price of some decrease in efficiency of storage and retrieval 

time, then he can first build a set of nodes describing Smalltalk code. then continue his 

development in a context structured fashion. From this point forward , the evolutionary 

history is maintained. If the user reaches the point where he once again prefers 

efficiency to flexibility, the context definitions can be converted to pure Smalltalk and the 

layers deleted. If desired , the user can first store the layers remotely, preserving the 

ability to recreate the context description later. All these facilities are curently 

implemented. 

This discussion suggests how a central design facility can serve as the nucleus of a 

network of remote servers that provide current packages to users. Periodically, the 

design server can release new layers to these servers with updates to particular designs. 

The servers can then generate new Smalltalk versions and release these designs to 

clients. Clients who wish to know what has changed, can get a description from the new 

layer. 

Interaction 

PIE's abili ty to represen t non·trivial alternative designs raises deep problems related to 

the user interface. How can we make available this power in a useable form? What are 

the cognitive requirements of the programmer? Presently we are employing an interface 

modelled on the standard Smalltalk interface for examining and altering code. This 

interface, called the browser, displays a hierarchy of descriptions of Smalltalk code to the 

user. The user can examine any method by a process of selection that specifies first a 

category of classes. then a particular class, then a protocol of methods within the class, 

and finally a particular method. This scheme of organizing code into a four·level 

taxonomy has been adopted in PIE to min imize the overhead for a Smalltalk user 

learning to employ the PIE environment. However, PIE makes this classi fication context 
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dependent. As with the standard Smalltalk browser. the user can alter the definitions of 

any object viewed. But these alterations are made in the dominant layer of the 

associated context, and do not affect the Smalltalk kernel itself, whereas making changes 

with the standard Smalltalk browser forces immediate incorporation of any changes. 

Research is needed to explore whether this interface is adequate given the increased 

complexity of a context structured environment. In Smalltalk, the hierarchy of code 

definitions is the primary structural organization. In PIE, this hierarchy is now context 

dependent. Has th is additional complexity made the Smalltalk organization inadequate? 

Will we need a classification scheme with more levels of division, or will some other kind 

of organization be appropriate? Just one of the problems that we will have to consider is 

that in a design environment, there is no need for a particular method description to be 

associated with on ly a single class, even though the actual Smallta[k system· requires that 

the method be separately compiled for each class to wh ich it belongs. Hence, a strict 

hierarchy is obviously inadequate. 

Conclusions 

ThiS paper presents on ly a sketch of the PIE system; our research is reported in greater 

detail in Goldstein & Bobrow (80). We have not discussed here issues in the design of 

the user interface, although a successful interface is critical to delivery of these 

capabilities to the user. We only suggest here that layered networks are applicable to 

more than software: an extended example in cooperative writing 01 a document is given 

in the larger work. Finally, the system has as yet had only limited use. We do not know 

which features will be used most, which need to be automated to be helpful, and which 

may prove to be too complex to be useful. Recording and analyzing th is experience is 

an important part of our research prog ram. 

A major theme of Artificial Intelligence research has been the development of languages 

to describe complex evolving structures. [n general, these structures have been the 

belief structures 01 an artificial being about some subject matter (e.g., the SRI 

consultant's (Hart, 75] beliefs about the state of a water pump being constructed, or 

SAM's [Schank et al. 75) betiefs about what went on in a story it just read). We have 

been exploring the premise that these techniques can be used to describe the complex 

evolving structure of a software system, and as such can provide aids to the designer of 

such a system. One use of artificial intelligence is to amplify human intelligence. We 

suggest that the (recursive) application of A[ techniques to A[ can have a powerful effect 

on the development of the field . 
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Browsing in a Programming Environment l 

Ira P. Goldstein and Daniel G. Bobrow 
Xerox Palo Alto Research Center 
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Abstrac t : Program~ing today takes place in a complex environment 
containing a large collec lton of p reviously defined packages routines and data 
st ru c~ures .. A browser is a d isplay based inte rface WhiCI; allows a use r to 
examllle th is complox environment without prio r knowledge of its exac t s tructure. 
The Smallta lk browser allows pe ru sal of a four leve l informat ion net of code in the 
sys tem: Our ex tensi.on, the PIE browse r, allows examination of an arbit raril y deep 
net wh ich can describe many aspects of the programmer's envi ronment, including 
messages between programmers and design notes as we ll as code and 
doc umentation. In this paper, we p rov ide a general fra~ewo rk for describing and 
evaluating browse rs, and use it to highlight the strengths and weaknesses of 
these two oxamples. 

Introduction 

A browser is a software development toot Ihat supports the incremental examination of 

a system by accessing some kind of information network. A user starts at a canonical place 

in this network , and selects entities Ihat represent parts of the system. This causes the 

browser to display the substructure of the system connected to the selected entity, and some 

information about that entity. tn this manner, a browser can be employed to engage in a 

hierarchical examination of a system by proceeding level by level from subsystem to module 

to sub· module, unUl the terminal structure-possibly individual procedure defin itions- is 

reached. In addition, the browser aHows a user to add or alter structure at any point in this 

examination process. 

Most programming environments allow a user to retrieve and manipulate different parts 

of a software system, if the programmer knows their exact name and location; but do not 

support well the examination of structure whose exact description the programmer does not 

know. In such situations, the programmer will frequently be reduced to examining file 

directories, hoping thai the file names reveal the contents of the fite. A browser seeks to 

ameliorate this diflicully by allowing a user to examine different regions of a software system 

based on their general classification. Thus, the underlying database imposes an 

organization on the software system analogous to the organization imposed on a library by 

the Dewey decimal system. The browser provides an electronic analog of moving from a 

general classification to the stacks, and then subsequently browsing there. 

Browsers were introduced into Smalltalk by Larry Tesler in 1977, and have since 

become a mainstay of the Smalltalk programming environment. (The general nature and 

goals of Smalltalk are described in Kay [77]; tile 1976 implementation in Ingalls [78]; and the 

Smalilaik browser in Goldberg and Robson [79].) In recent research, we have extended the 

simple, hierarchical system model provided by Smatllalk and developed a generalization of 

the Smalltalk browser to manipulate these richer descriptions [GoldsteinBobrow80a,b,c; 

I To appear in the proceedings or the 141h Hawaii Conrerence on System Science. JAnuary. 1981. 
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BobrowGoldstein80}. We have dubbed this extended environment PIE, an acronym for 
Personal Information Environment. 

In the next two sections, we describe the Smalltalk system model and its associated 

browser. This is followed by two sections that describe the PIE system model and its 

browser. The following nine questions are used as a framework for comparing the 

functionality of these two browsers. 

1) Ovcrview: How much of the information network can the user see at one time? 

2) Pa lh: What part of his path to the current position is visible to the user? 

3) Prcsentation: What should be displayed on the screen for each selection? 

4) Operations; What operations can be performed on the view for each selection? 

5) Multiple Views: Can more than one view of the network be seen? Are they all of 

the same form? 

6) Consistency: What guarantees of consistency are there between multiple views? 

7) Alternative Access: Can the user find a known entity in the system without tracking 

through the network? 

8) Integration: Is the data environment integrated with Ihe operational environment of 

the underlying system? 

9) Changeability: Can the user change the format in which information is displayed? 

The Sma ll ta lk System Model 

Smalllaik is an object oriented programming system, where behavior arises from the 

transmission of messages between objects. Objects are grouped into classes , all of which 

have identical internal structure, and respond to the same set of messages. An object is like 

a simulation of a computer; it can respond to set of instructions, maintaining its state 

between invocati ons. Smalltalk generalizes Simula67 [Birtwistle731 and is related to the 

Actor languages developed by C. Hewitt [HewiIl73]. 

The SmalJlalk information network partitions all classes into categories lor ease of 

access. These categories are not mutually exclusive, although multiple category membership 

is generally avoided. (Since classes are stored in files corresponding to their category, 

mUltiple category membership gives rise to redundant storage and possible inconsistencies 

between versions.) A methOd is the code which implements the class specific response to a 

message. The set of methods of each class is partitioned into mutually exclusive groups 

called protocols. Neither categories nor protocols has any significance for the Small talk 

interpreter; rather they are artifacts of the desire to browse through the system. 
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There is a subclass hierarchy in the Smalltalk system that does have semantic 

-:: ignificance. A class can inherit behavior and structural description from another class 

called ils superclass. All instances of a particular class contain tile fields specitied in the 

..uperclass. If the subclass has no specialized behavior (method) for responding to a 

articular message, it will request that its superclass respond to the message. This 

... heri tance is a very powerful way of sharing behavior. 

The Smalltalk Browser 

Figure 1 shows a sequence of views of a Smalltalk browser as a user selects a path 

through the network. The browser is a rectangular region on the display screen called a 

window and is built from 6 sub· windows called panes. The top pane is the title pane and 

,haws the label 'SmaUtalk Browser'. Below it is a row of four list panes that display, from 

left to right, categories, classes, protocols and methods. The lower pane is a text pane that 

displays text associated with the most recen tly selected item. 

Figure 1a shows the browser in its initial state with the leftmost list pane displaying part 

,f the list of categories defining the Smalltalk system. The pane can be scrolled to view 

)ther categories in the list. The browser enters the state shown in Figure Ib in response to 

he user selecting the category Data Structures. A selection is made by moving a cursor 

'Ier the item to be selected and depressing a bullon on the device controlling the cursor. 

Selections appear in inverted video in the actual system, but are shown in boldface in the 

fIgures. The most recent selection is in bold italics. The selection of Data St ructures 

causes the classes of this category to be displayed in the second list pane and a template 

for defining a new class to appear in the text pane. In Figure, c, the user selects Set, a 

class whose instances provide the behavior of sets by appropriately manipulating an array. 

This selection causes the class' protocols to be displayed in til e third list pane and the 

definition 01 the class to appear in Ihe tex t pane. The user can edit this definition to modify 

the tille, superclass, or fields of the class. In Figure 1d, the user selects the Access 

protocol, causing its methods to appear in the last list pane and a template for defining new 

methods to appear below. In Figure 1e, the user selects the has: element method and its 

definition appears in the text pane. Figure 2 shows the path that the user has traversed in 

the system taxonomy. (This particular graphic view is not generated by Smalltalk.) 

The organization entries under categories and protocols are not actually items of that 

type, but ralher data structures that can be edited to alter the taxonomy. For this reason, 

the organization entries are not shown in Figure 2. Changing the category organization by 

selecting it and editing the text that appears below can move existing classes to different 

categories. The protocol organization serves a similar function for its class. 

Overview: The browser shows a slice of the four level system taxonomy that extends 

through all four levels but is of limited breadth. Figure 2 shows this slice relative to a 

graphic view of the taxonomy. At his discretion, Ihe user can select any element in the 
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displayed slice 01 the taxonomy. To see other elements on a given level, the user must 

'(olf that pane, thereby changing the slice of the tree seen in the pane. 

Path: Since the hierarchy is only four deep, the user can see the entire path from the 

rool. The user cannol see, and Ihe browser does not maintain, a history of other nodes that 

t !lve been selected before, but are not on the path . 

Presentation: Selection causes tex t and sub·structure to be displayed. Sub·structure 

IS displayed in the list pane 10 Ihe right. Text consisting of either templates or definitions is 

displayed below. For categories and protocols, a template is shown for defining new classes 

d methods respectively; lor classes and methods, their definition appears. The reason for 

lis difference is that categories and protocols have no semantic significance other than 

rouping a set of subordinate elements. 

Operations: For each of the list panes, operations are defined fOf deleting, printing 

and filing the selec ted element. These commands afe available from a menu that is not 

.hown. 

Insertion is not an explicit menu command. Instead, it occurs in two different ways. 

Ntlw classes and methods are inserted in their respective categories or protocols as a side 

tfect of compiling their definitions. Old classes and methods can be rearranged by 

nanipulating the table that the browser presents when the o rganization entry is selected in 

the category or protocol pane. Manipulating this table is also the mechanism for creating 

new categories and protocols. 

A limitation is that the browser does not permit the creation of partially defined classes 

or methods. A c lass or method must be compilable to be successfully included in a category 

or protocol; this Is a result of the browser assumption that the data structure it is viewing is 

the one currently installed in the system. This has undesirable consequences for program 

design when the designer wishes to delay certain decisions. In this respect, the marriage 

between the browser and the software environment is too intimate, 

Multiple Views: several browsers can be brought to the screen at once and can 

overlap. Commands are provided to move a browser to a new region of the screen and to 

view an obscured browser. The result is that the display screen is like a desktop with 

multiple browsers representing different pieces of paper. 

This browser provides a command to spawn additional text windows that display the 

selected method. These windows maintain a constant view of the method, allowing the user 

to browse to other regions of the network. They are incomplete views of the method, 

however, in that they do not display its class or protocol, and hence these attributes of the 

method cannot be altered through this window. 
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The hardcopy 'format 01 Smalltalk code represents a third view of the system. This view 

ie:. ') depth first listing of Ihe tree. Users occasionally prefer this view to the browser in order 

h ,btain a perspective on a segment of code. The hardcopy format cannot be manipulated 

within the system. 

The browser does not support other taxonomic views 01 the system such as an 

e lminalion of the class/subclass hierarchy. 

Consistency. The view seen on one browser is almost completely independent 01 that 

St n on a second, even if they are both looking al the same method or class definition. ' 

This means that if a method is changed using one browser, the definition seen on the screen 

for the other is not altered because that browser is unaware that the underlying model it is 

VI wing has changed since it fetched the defini lion. Only if an explicit request is made to 

fetch Ihe definition again is the underlying model queried, thereby ensuring that the view is 

consistent. 

• The exception Is that browsers do check whether the Ust 01 classes hIlS changed whenever 
they ate ' 8<)cINOIOO. If a cl3SS has been added Of deleled from this list, the browsers reentefS 
its Ini tial Slolo No check Is made for changes 10 the definitions 01 existing classes, ptolocols, 

or methods. 

The reason for the inconsistency is tYlo·fold. First, the view in the browser is just that, 

a omputed view, and changes to that view are not reflected immediately in the model. Only 

when the method is compiled is the underlying system model altered. This is desirable since 

the user should be able to complete a set of changes to a procedure before it is altered 

permanenlly. Otherwise compilation might be attempted on an inconsistent state. Second, 

when a change does occur to some software object, there is no way for that object to inform 

the appropriate views since the underlying system model has no knowledge of existing views. 

There are at least two solutions to this problem. One is to give each object 

responsibilily for updating views of itself, using a "notification protocol"; for example, a class 

whose method changes would nolify all browsers which have informed it 01 their current 

interest. A second solution is to give each view the responsibility for keeping itself updated, 

and to provide a way for il to check whal the last time an object it is viewing changed. Then 

any lIme a viewer becomes active, it can compare its lasl update time with this list to see if 

updating is required. 

Alternative Access: The only means to move through the network is by progressive 

selection of displayed objects. No browser commands exist to select an object via a partial 

description or even by specifying its name. 

Integration: The browser does not support access 10 other kinds of data such as 

manuals, primers, and system specifications nor does it support examination and 

manipulation of instances of classes. 
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The browser is integrated in a limited fashion with a history list of changes in the sense 

trllt defining or .redefining methods affects this list. However, deleting a method has no 

ell ~t ~n ~he history nor can the history list be examined through the browser. No 

dl !!nctlon IS made between different kinds of modifications such as the difference bet\'1een 

a Ing a breakpoint and making a permanent change made to the code. 

Cha"geability: The user can change the size, number and position of browsers on 

tht d isplay screen by invoking commands supplied by the browser, but no commands are 

supplied to alter the relative widths of various panes. 

The user can alter the behavior of the browser in two ways. He can redefine methods 

in the browser (using the browser itself), although bugs in these changes could make the 

Interface inoperative. Or he can subclass the classes used to define the browser and make 

whatever changes he wishes in these subclasses. This is a safer strategy, since old style 

br<; Nsers are unaffected, but all behavioral changes must be programmed in Smalltalk itself. 

It equally parsimonious in that subclasses inherit all of the behavior of their superclasses, 

e) apt for messages that they define directly. 

The browser does not support idiosyncratic behavior for particular objects of a given 

tyPv. a1l c lasses, for example, are treated identically. 

Summary of Smalltalk browser strengths and weaknesses 

Stre ngths: The Smalllaik browser provides an excellent way of examining and editing 

the SmaUtalk system code as evidenced by its universal adoption within the Smatttalk 

community and relative stabitity. Its browsing capabilities and the associated system 

architecture of a taxonomy of constructs serve a useful documentation role. Users often 

familiari ze themselves with new software by browsing througl1 new categories in a system 

release. The browser provides a uniform way to examine and manipulate the software, and 

guides novices with templates for creating new entities. 

Weaknesses: The SmaUtalk browser keeps no history of its interactions except for the 

names of methods that have been changed. It only reflects the current state of the world; 

there is no way to go back and forth between different consistent states. The system does 

not help a user to maintain any design constraints other than the ones implicit in the 

programming language. For example, a programmer cannot indicate that two methods in a 

class are dependent. and that subsequent modifications to one should be checked for 

compatibility with the other. There is no incremental way of modifying the behavior of the 

browser by attaching your own procedure to provide a specialized function in the interface; 

for example, one cannot provide specialized templates for new methods of a particular class. 

The Smaillalk browser also reflects deficiencies in the underlying system model. 

SmaUtalk provides for comments for classes and methods but not for categories of classes 

or protocols of methods. Class comments are separately manipulable from the class 
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del rll tion; method comments are no'. S.O· hod ring a met comment requires that the 
procedure be recompiled. 

The PIE System Model 

PIE was motivated, in part, by the goal of providing a more complete and more 

int. ,rated representation for Smalllaik systems. "provides a network structured database 

wh(l ,e nodes describe all the entities in the system and employs techniques developed for 

describing entitles in knowledge representation languages like KRL [BobrowWinograd77]. 

Nodes provide a uniform way of describing entities of many sizes, from a small piece 

such as a single procedure to a much larger conceptual entity. For example, nodes are 

us~d to describe code in individual methods, classes, categories of classes, and 

configurations of the system to do a particular job. Sharing structures between 

cont guratJons is made nalural and efficient by sharing regions of the network. 

Tile uniform use of node structure extends to software documentation. Manuats and 

spe :ations con be embedded in the network using nodes representing the chapters, 

sec ions and paragraphs of the material and can be cross·linked to the relevant software. 

Bee ~e software and documentation coexist in the same environment, it is easier to develop 

then in a coordinated manner. 

Nodes are distinct from the system obiects that they represen t. Changing a node does 

not mmediately al ter its corresponding software object. For example, the node representing 

a cla~ can be created and a partial definition supplied. This node can be stored, examined 

and edited. It does not affect the underlying Smal1talk environment, however, until its 

description is compiled. 

Attributes of nodes are grouped into perspectives. Each perspective rellects a different 

view 01 the entity represen ted by the node. For example, the st ructuralSpec of a Smalllaik 

class defines the structure of each instance by specifying the fields it must contain; the 

proceduralSpec defines the protocols; the intc rl aceSpec defines the set of messages 

required by ex ternal clients, and the documentSpec describes the implementation and its 

use. 

Perspectives may provide parlial views which are not necessari ly independent. For 

example, the proceduralSpec and the inte rfaceSpec both describe certain methods of the 

class. Attached procedures are used to maintain consistency between such perspectives. 

Each perspective SlIPplies a set of specialized actions appropriate to its point of view. 

For example, the print action 01 the structuralSpec perspective of a class kno~ how to 

prellyprint its fields and class variables, whereas the proceduralSpec perspective knows 

how to prettyprint the methods of the class. These actions are implemented directly through 

messages understood by the Smalltalk classes defining Ihe perspective. 
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All values 01 aitributes of a perspective afe relative to a context. Context as we use the 

term derives from Conniver [SussmanMcDermott72j. When one retrieves the values of 

attributes of a node, one does so in a particular context, and on ly the values assigned in that 

context are visible. Therefore it is possible to create alternative contexts in which different 

valu are stored lor attributes of various nodes. For nodes representing software, these 

con i ts typically describe alternative designs. One can compare and test alternatives 

wi tho II leaving the design environment. 

Contexts Bf e themselves nodes in the network. This allows a description of the 

raUe. lie for the set of changes to be stored in the context node in the network, in the same 

way that descrip tions for for a method node contain commen ts on their purpose. 

In any system, there are dependencies between different elements of the system. If one 

changes, the other should change in some corresponding way. We employ contracts 

belw !n nodes to describe these dependencies. These contracts are themselves nodes with 

speci;Jhzed behaviors. These behaviors include installation of procedures to maintain 

con' tency of simple constraints expressed in a lormal language, and notification to the 

user when changes have been made to contract participants. Use of contracts raises a 

numb r of questions which we have iust begun to explore; e.g. when shou ld one check 

agrf:: mts and still avoid seeing temporary stales of inconsistency during the process of 

chan 

F-mally, Ihe PIE system provides perspectives which allow the system to describe itself. 

Pers~tjves themselves are described in the system, and small modifications to the behavior 

01 a particular perspective can be made by manipulation 01 the ner.vork structure. Nodes 

can be assigned meta-nodes whose purpose is to describe defaults, constraints, and other 

information about thei r object node. Information in the meta· node is used to resolve 

ambiguities when a message is sent to a node having multiple perspectives. 

The PIE Browse r 

The PIE browser was constructed as a generalization of the Smalllalk browser, in order 

10 minimize Ihe overhead 01 Smalllaik users immigrating into Ihe PIE environment. It is 

shown in Figure 38. Two addilional panes have been added in the middle of the browser. 

The lell pane lists the perspectives of the most recently selected node while the rig~t pane 

lists the attributes of the selected perspective. The title pane shows the node at which the 

browsing begins and the context from which the network is being viewed. 

In Figure 3b, the user has selected the node representing the Data Sl.ru c~ures 
" t" of this node to be displayed. The first IS tile 

category. ThiS couses the two perspec I-YeS . 
perspective describing categories: it includes a classes attribute and additional attributes 

describing the most recen t file and modification dales to classes in the catego~. The 

t
" e common to many nodes, that speci fies a tItle and 

second is the doscrlptlon perspec IV , 
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opti lOal text for the node. In this case, the text attribute is employed 10 siore a comment 

reg,..rdlng the category, and this comment is displayed in the text pane. 

In Figure 3c, Ihe user has selected the category perspective and ils attributes appear 

in II; attribute pane. In Figure 3d, the classes attribute is selected and its value, a list of 

nod representing the classes of this category, appears in the second list pane. The 

altnlJLJte is used as a label for the pane. In Figure 3e, the user has selected the Set node, 

and It.,o:; perspectives appear below. Thus, moving from one node to the next in the network 

reqUires selection of a node, then a perspective, then an attribute. Figure 4 shows a graphic 

(ep't ,enl{llion of the PIE network and the path traversed by Ihe user. 

Overview: As with the Smalttalk browser, the user can see a slice of the network. In 

addiliOn to nodes surrounding previous selections, this slice includes Ihe perspectives and 

att ributes of the current selection. We have explored browsers that show the perspectives 

and lttributes of every node in the path, but these trade breadth of view for increasing 

coml Ixity on the screen. 

The labels on the four upper list panes are dynamic and computed from the selection. 

The nalltalk browser employed static labels since the same attribute was always displayed 

in 1iven list pane. 

Path: The PIE network Is not restricted to a depth of four. However, the PIE browser 

cant'" IS only four list panes, a constraint derived from the size of the screen. To go deeper 

into the network, the user can shift the view to the left. In Figure 5, the user has moved the 

view one to the left. The origin of the browser is now the Data Structures category and 

the nghlmosl pane is available to show subordinate nodes linked to the has: element 

method. In this case, the user is examining nodes representing constraints on the definition 

of the method. [I the user tried to see substructure which would logically be to the right of 

the fourth pane, pte blinks the browser to indicate that it cannot show the requested 

information in the current browser configuration. The user can Ihen shift the view as 

described, or spawn a new browser rooted further down the tree, and continue. 

The PIE browser does not maintain a chronological history of selections. Hence, it is 

limited, like the Smal ltalk browser, to displaying only four steps in the path to the current 

selection. An unfortunate consequence of this lack of historical information is that while the 
, . ~ th b wser cannot recreate selections VIew can be shifted to any node In Ihe netwo,,,,, e (0 

'h I ample from the Data Structu res made from that node. Hence, a shift 10 the ng I, or ex, .' 
, h ser remake his selecllOn chOices to 

node back to the Code node, would reqUIte that t e u 

again be examining the has: elemen t method. 

. . equired by the user, the browser can 
Presenta tion : To minimize the IOteracllOns ( .... 

t d . 'ons on its own Inlllative. These 
operate in a mode in which it makes various defau t eClSI 

, , 'd d 'n the network. For example, the 
deCisions are based on additional descnptlOns provi e I 
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net" 'Ork contains descriptions that specify that the c;Jtegory perspective should be selected 

by ddault over the dose ription perspective and Ihal ·1s I . • I C asses attribute should be 
displayed. As a result of these default specifications, the selections of Figures 3c and 3d are 

ma. by the system and selecting the data structures category in Figure 3b produces the 

dis. 'w of Figure 3e immediately. Hence, the user need not engage in any more interaction 

WiUI the PIE browser than with the Smalltalk browser to conduct 'similar actions. The user 

can override these defaults by making explicit perspective or attribute selections. 

The specification of the default display behavior of a node is described in meta·nodes 

Ilnk~ d to perspectivo types and to particutar nodes. In the former case, the meta·node 

applies to all instances of the perspective. In the latter case, its advice is idiosyncratic to a 

pari :ulllr node. These meta·nodes can be examined and edited from the browser. 

Templates for creating new nodes of a particular type are avaitable upon request and 

are :tored in the meta· node 01 the perspective. They are shown au tomatically only if they 

are peclfied to be the default display information. Many perspectives, not just those lor 

cl ru ~s and methods. have templates. 

Opera tions: The PIE browser supplies four standard operations: insertion, deletion, 

fil inlJ and printing. Insertion consists 01 adding a node to the list and assigning it a 

pe(~ x:tive. Default knowledge is employed to supply a particular perspective when the list 

is constrained to be a set of nodes of a particular kind. For example, the c lasses attribute 

of the ca tegory perspective has the default description that all 01 its elemenls have a class 

pe(!)Pective assigned. Descriptions of nodes can be stored without having to compile them. 

Therefore partial descriptions of methods can be left in the network and returned to laler. 

Insertion of nodes 01 arbitrary type eliminates the need for an organization entry. 

Categories and protocols are created by adding nodes with those perspectives. Rearranging 

an old organization is accomplished by moving nodes from one attribute set to another. 

The PIE browser also differs from the Smalltalk browser in Ihat special actions specific 

to perspectives at a node can be invoked by the user through a special menu. This menu is 

computed from the selected node, using default description that specifies a subset of the 

messages of a perspective to be user commands. The PIE browser can view nodes wilh 

arbitrary perspectives in any pane. Hence, the ability to interrogate tile perspective for its 

associated commands was necessary. Since the Smalltalk browser views only four kinds of 

objects and these objects are lied to particular panes, this generality was not included. 

MUltiple views: There are three different senses in which multiple views are available 

to the user of PIE. The first is similar to that of the Smalltalk browser. There can be more 

than one instance of a browser on the screen at a time, viewing different parts of the 

Smalltalk system. 
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A second kind of multiple view c I . ames rom the nollons of contexl embodied in the PIE 
network. The value of any attribute is context dependent Th h . . ' e user can c ange the view 
seen In the browser by changing the context associated with that particular browser. This 
causes the browser to recompute all fields seen. 

The third arises from the fact that the user can request an ou tline view to be generated 

of the substructure of the selected node. A portion of the subtree descending from the 

sel 'cled node is shown in an indented outline formal. The defau lt perspective and attribute 

of -ach node is used to determine which part of the subtree to d isplay. For class Set, this 

oulilne would include the Set node, the protocol nodes of its stru cturalSpcc perspective, 

and the method nodes of each protocol. This outli ne is very close to the standard hardcopy 

vie ~ of SmalUalk cocle-a fact that is nol accidental. The defaults have been chosen to 
make this view the preferred one. 

Consis tency: As with the Smalltalk browser, there are no backpointers from nodes to 

vie IS. This means that a change made to the network through one browser is not reflected 

in mol her browser's view computed earlier. One approach to solving this problem is 

pr6 ..1nUy being introduced into Smalltalk by providing backpointers from sotlware objects to 

the views. A separate control process is assigned responsibility for maintaining 

COli 1<;lency. Another approach that we are considering is to describe the browser itself in 

th( PIE network in order to take advantage of the contract machinery provided by PIE 10 

mio 'ltain consistency between descriptions. However, thrs is still an unexplored area. 

Alternative Access: A browser provides one way to get access to a node in an 

information network, Sometimes it is useful to shift the point 01 view of the system to a node 

whi:h mntches a given description without having to browse through one level at a time. 

This Is provided in PIE. A user can specify the perspective type and some distinguishing 

features of a node, For example, he can search for classes entitled Set, any class that is a 

subclass of these classes, or even any class whose comment includes the substring 'set'. 

PIE engages In a a search and causes the view to be shifted to the selected node. If more 

than one node matches the description, PIE offers the user all matches. Selection of a 

match causes the view to be shifted to the selected node. 

Some indexing facilities are provided to limit the potential candidates for a match: each 

perspective maintains a list of the nodes to which it has been assigned. This is a very 

simple scheme, but the present size of the Smalltalk system---consisting of several hundred 

classes owning several thousand methods-does not require anything more elaborate. 

One novelty of our searching machinery with respect to traditional database design is 

Ihat no general set of indices are maintained. Rather, each perspective has its own 

matching protocol. Thus, if a perspective receives a description like 'set' without a 

specification of Ihe attribute of the perspective to which this description must match, the 

perspective itself decides which attributes can be used as the basiS of a match. For 
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example, Ihe s tructuralSpcc perspective checks Ihe title and superclass attributes, but nol 

the field variable or class variable declarations. This is in contrast to most data base 

envi onments where entities are matched against a pattern by a standard algorithm which 

rna! hes Ihe values o f attributes. perhaps using range lesls. Because PIE is inlegrated in the 

Sm,lltalk system, each entity can run its own idiosyncratic program to test whether it 
matthes a description. 

In tegration: The PIE browser in tegrates the examination of data, code, 

documentation, and system description since all of this information is uniformly described in 

Ihe network. Tho browser also integrates the computation of views 01 the database with the 

underlying programming language. In most data bases, "views" are supported which 

compute vi rtual relations from real ones that exist in the data base. However, the 

programming language 10 compute these views is impoverished, usually being restricted to 

expn .;sions in the relational calculus. The advantage of this language is that it makes Ihe 

update problem easier by providing an expression calculus with no side effects for speCifying 

how 10 compute a view each time. In PIE, the lutl power 01 the Smaltlalk language is 

avait<lble, but we must provide notification and time stamp mechanisms to help with the 
upda A problems . 

. hs"geabillty: In addition to the ways that the Smalltalk browser can be altered, the 

beha~ or of the PIE browser is affected by changes to the information network. A user can 

aller Ihe default display behavior of perspectives by editing the meta·nodes involved. For 

example, the user can change the meta·node 10 cause the default text displayed when a 

class .s selected to be the comment describing the class rather than the class definition. 

Summary Of PIE browser strength s and costs 

Strengths: Some strenglhs of the PIE browser arise from the improvements in tile PIE 

system model over the standard SmaUtalk model. The network database that the browser 

manipulates is arbitrarily deep, allows mulliple perspectives and context-sensitive description, 

integrates the representation of text and software, and supports search and maICh ~~9 

behavior. Olher strengths arise from the availability in the network of interface -speclhc 

deSCription. This includes description of default perspectives and aUributes for display, and 

idiosyncratic behavior of particular entities. This self·description minimizes the user's 

workload for expected actions. 

Weaknesses: The PIE browser shares a number of weaknesses with th~ Smalltalk 
" h" t 1 ser inleractions and It does not browser. For example, it does nol maintam a IS ory 0 u 

If Ie views However, the PiE model provide any means to maintain consistency between mu Ip . 
k es Nodes can be employed to provides a pOSSible solution to both of these wea ness . .., 

t Is between multiple views. ThiS represent the history of a design and to represent can rac . .. h" hi 
"t' machinery and malnt8lnmg a 19 Y solut ion has the appeal of building upon eXls log 

in tegrated system model. These are current research issues for us. 
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Another potential weakness common to both the Sm,III.,k d Ih PIE b . 
an e rowsers IS that 

they do not present the network in a two dimenSional graphical notation such as the one 

shown in Figures 2 and 4. Indeed, since those figures were used to elucidate the network 

slrU! lure being examined by the browsers, one might very well ask why il is not the lormal 

actually generated by the interfaces. The answer, of course, is that the pane· oriented 

structure of both browsers is simpler to implement than a general two.dimensional layout 

prag':tm. However, a research issue is whether this implementati on Simplicity comes at a 

serious cost in comprehensibility to the user. Experimen ts need to be performed with users 

of different levels of expertise to investigate which graphical metaphors are most useful in 

c1arilYlOg the presentation of a network description of software. 

Conclusions 

PIE reflects a nalural evolution 01 the Smalltalk system model to provide a more 

extenSIve description of an evolving software design. The PIE browser has evolved in 

parall I. An unexpected resul t is that the boundaries between the two have become fuzzy as 

the twork describing the software system is employed to describe the desired display 

beha\ lor. Specifications of system semantics do nol usually include such descriptions. 

HOWl lr, the availability of more powerful machines, coupled to the increasing complexity of 

softw re, makes their Inclusion both possible and necessary. 

"'"he PIE system and its associated browser is largely independent of Ihe seman tic 

deta, 5 of SmalUalk. II Is based on the existence of a network description of a software 

systelll II could be the basis for programming environments for other software languages, to 

the extent that those languages supported display facilit ies and a network. database which 

can hold rep resentations of code easily accessible by the language processors. Experiments 

reported in {CatteU80J are planned for exploring these ideas in a programming environment 

for Mesa, a PASCAL·derlved systems programming language. 
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SmaUtalJ< Browser 

CAHGO RIES- -ClASSES- - PROTOCOlS- -METHODS-
C' qaniza t lon - ClASSES- - PROTOCOlS- - METHODS -
0(. a. Structu.res 
WLllIlows 

fill · 1. The browser Is <n Its Inltlal state , alsplayl"9 a list of categorIEs. 

S.,...,UtalJ< Browser 

-CA HGORIES- -ClASSES- - PRO TOCOlS- - METHODS-

Organization Array - PROTOCOlS- - METHODS-

Data Structures Dil;tlonary 
Wmdows Se t 

Class new tItlE: 'NameOfClas s' 

sUbGlassof: Objec t 
f!etas: 'IUlmes of IltS tance uarlablEs' 
<leclare: 'names of class uarlablEs ' 

fill· lb. The user has selec teG! the Data Strucwres category. 
The classes of this category appear In tile ctasses pane 
atlll a templa te for aeflnL"9 new classes appears <It the text palle. 

ST·BROWSER-AB 



S"""UtaiJ< Browser 

~ ATE GORIES- -ClASSES- -PROTOCOlS- ~METHODS-
0' lnlZatlon ArrC1Y Or9anIZettion ~METHODS~ 
Duta Structures Diotionary InitialLza.tion 
WI tows Set Access 

eltA .s new title: 'Set ' 
sutx:tassof: Object 
fleWs: 'array It "The set is storee! in the first n elements of 

tlte arra!J. II , 

f'9 . 1 The user has selectee! the class Set. 
The protocOls of this ctass appeC1r ilt the Protocols pet"e 
a nd the definition of the class appeetrs in the text pane. 

S""'Utal~ Browser 

-CA TEG ORIES- -ClASSES~ ~PROTOCOlS~ -METHODS-

Org,lnlZatlon Array Or9anlZation ctel.ete: elemen.t 

Data Structures Diotionary InitlallZettion has: element 
Wlndo>vs Se t Access insert: element 

Messa9" name and Arguments I Temporary variables 

"Comment" 
[Meth04 body] 

fig. 1 d . The user has selectecl the Access protocol. 
The me thods of this protocol appear In the MethO'ls. p,me 
and tI template for aefiltlng new methods appears tn the text petne. 
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SmalHail< Bro>vser 

~CA TEGORIES~ 

I'rganlZ"tlDn 
Data Structures 

" Imaows 

f1 tS: element 

~ClASSES~ 

Array 

DlctlDnary 
Set 

~PROTOCOlS~ 

Or9anIZettUln 
InItialIZation 
Access 

~METHODS~ 

ettlete: element 
has: element 
insert: element 

"Usc sequential access to delcrmtne if element is In the set" 
[for: \ from: I to: n cID: 

[Ifg (element = (array IDOkt<p : I» then: [retum: true]]. 
retu rn: false] 

flgur Ie . The user has selected. the nas: element method. and. lts defLnition 
appears ill the text pane. 

Array delete: 

Data Initialization 
Structures 

Dictionary h il S: 

Access 

Windo ws Sel insert: 

Printing 

Numbers 
Vector size 

Filing 

String 

Categories Classes protocols MethoGls 

f ig. 2. a at. t"xonomy The pa.th selecteci 
A tree representatlDn of the s'l~af t e The sLice of tl1£ taxonomy 
In the brotvser IS sllo",n Ln be"."C . . 
UlSlbIe In the brolvser IS sM'VIl tn ItttLlCS. 
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PIE Browser. Or"lin; COde. Context; SetReaesUJn. 

~CA TEGORI[S~ 

Data Structures 
WLndows 

Numbers 

-PERSPECTlVES~ ~A TTRIBUTES~ 

-PERSPECTlV ES~ ~ A TTRIBUTES~ 

flQ 3a . PIE browser vie,vLng network wW, or"lin at Code. 

IE Browser. Onl)ln; ccae . Con«xt; SetRedesUJn. 

~CA TEGORIES~ 

Data Structures 
Wlnc.lows 

Numbers 

-PERSPECTIVES- -A TTRIBUTES-

Category -A TTRIBUTES-

Description 

~PERSPECTIVES-

This category contains classes that define abstract 
data types. 

fUJ.3b. The Data Struc""e node is se"'ctecl. ancl. its perspectlves appeGl" 
Tlte comment is the text attribute of tile description perspectiVe anci Is 

dLSpU.1.yea by default. 

PIE_BROWSER-AB 
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PIE Bro,,,ser. Orlqln: Code. Context: SetRedesign. 

-CA TEGORIES-
Data Strucwres 
Windows 
Nu.mbers 

-PERSPECTIVES- -A TTRIBUTES-
Category classes 
Description file 
-PERSPECTIVES- mOdified 

Thi.s category con tams classes that Gleflne abstract 
d<lta. types. 

flq . 3c. The ca.tegory perspective is selectee! and its a.Ltributes appe"r. 

PIE Browser. Ori9ln: Code. Context: SetRedeslqn. 

-CA TEGORIES- -ClASSES-
Data Structures Arr"y 
Wlndows DiLtionGlrY 
Numbers Set 

-PERSP ECTIVES- -A TTRIBUTES-

Category classeS 

Descrlption fil£,[ 

-PERSPECTIVES- modifled 

Htis c"tegory contains classes tMt deflne abstrac t 
data. types. 

flq. 3d.. The classes attribute is sel£cted one! the list of classes appears. 
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PIE Browser. Ori9in: Code. Context: Se tRedesign. 

-CA TEGORIES- -ClASSES-
Data Structures ArrGLY 
Windows DiLtionary 
Numbers Set 

-PE RSPECTIV ES- -A TTRIBUHS-

StructLIralSpec -A TTRIBUTES-
Proced,,,aISpec 
DocumentSpec 

Fl •• 3e. The Set node Is selEcted and Its perspectives appear. 

Oala 
Structures 

Windows 

NUmbers 

nodes 

Category 

Description 

perspectives 

Array 
classes 

i filed 

modified 

Dictionary 

Set 

Vector i litle 

lexl 

String 

attributes nodes 

Structural 

Procedural 

Document 

Interface 

perspectives 

Fig. 4. A graphiL represemation of the PIE networl< . TM patn selected 
tn the browser Is sltOwn In bold, tM visible sliLe Of tM networl< en "alu;s. 
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PIE Browser. Ori9in: Coele. Context: SetReaesi9n. 

~CA HGORIES~ ~ClASSES~ - PROTOCOlS- -METHODS~ 

Data Structures Army Initialization aelAm: element 
\",mGtows Dictiona.ry Acc;ess lias: e/em enl 

Numbers Set Printing insert: element 

~PERSPE C TlVES~ -A TTRIBUTES-

M.lIwd defintlton 
l scription message 
·P[RSPEC TIVES~ contracts 

'las: element 
"Lise sequential access to determine if element is in tlle see ll 

[for: i from: I to: n ao: 
[Lf : (element = (array IooI<LLP: ill then: [return: true]]. 

return: false 1 

F'9. '.. The user is four leuels deep in the PIE neUVO!1<. 

Pll Browser. Or'9in: Data Structures. COntext: SetReaesi9n. 

'<;,ASSES- - PROTOCOlS- -METHODS- -CONTRAC TS~ 

Army Initlailzatlon delete: element representntlon 
DICtIOnary Access lias: e/em en I init lailzatlon 
Set Printing tnse rt: elc me I'lL ~CONTRACTS~ 

~PERSPEC TIVES- -A TTRIBUTES~ 
Merllod definition 
Descnptlon message 
- PERSPECT IVES- contracts 

Fi9. 5b. The ori9in has been slufted to the Data Structures noae, allowing 
the lIser to UleW the neu~ork one leuei aeeper. 
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