
' • f

AK J<
TTKM(•

•45

' • %

IOT

Second International
Logic Programming Conference

Proceedings of the

Second International
Logic Programming Conference

Uppsala University,
Uppsala, Sweden

July 2-6, 1984

Edited by Sten-Ake Tarnlund

PROGRAM COMMITTEE

K.A. Bowen, Syracuse University, USA
M. Bruynooghe, Leuven University, Belgium

K. Fuchi, ICOT, Japan
H. Gallaire, Laboratories de Marcoussis, France

K M. Kahn, Uppsala University, Sweden
P. Koves, SZKI, Hungary

F.G. McCabe, Imperial College, UK
F. Pereira, SRI, USA

L.M. Pereira, Universidade Nova de Lisboa, Portugal
J.A. Robinson, Syracuse University, USA

E. Shapiro. Weizmann Institute, Israel
S.-A. Tarnlund, Uppsala University, Sweden, Chairman

M. van Caneghem, University of Marseille, France

All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system or transmitted in any form or by any

means, computerized, mechanical, photocopying, recording or
otherwise without the prior permission of the copyright owner.

II

CONTENTS
V

Foreword
Sten-Ake Tarnlund V

Acknowledgement

Tuesday. July 3, Morning Session

APPLICATION OF LOGIC PROGRAMMING ,

t Karoi1""*- t T'
K. Sakai. J. Tsuji J J

Prolog as a Tool for Optimizing Prolog Unifiers . .

M. Nilsson 23
DrawingTrees and their Equations in Prolog

J.F. Pique
Tuesday. July 3. Afternoon Session

FOUNDATIONS OF LOGIC PROGRAMS 35
A Logical Reconstruction of Prolog 11

M.H. van Emden. J.W. Lloyd ^

A Comparison of Two Logic Programming Languages: A Case Study

M. Szots ,
Computation Trees and Transformations of Log.c Programs

O. Stepankova, P. Stdpanek

APPLICATION OF LOGIC PROGRAMMING
Semantic Interpretation for the Epistle System

M. McCord

On Gapping Grammars
V. Dahl, H. Abramson

Wednesday. July 4. MorninR Session

LOGIC PROGRAMMING LANGUAGES
Eager and Lazy Enumerations in Concurrent Prolog

H. Hirakawa, T. Chikayama. K. Furukawa

Incorporating Mutable Arrays into Logic Programming
L-H Eriksson. M. Rayner

Equality, Types. Modules and Generics for Logic Programming
J. Goguen, J. Meseguer

Ill

LOGIC PROGRAMMING METHODOLOGY

Unfold/Fold Transformation of Logic Programs 127

H. Tamaki, T. Sato

Bounded-Horizon Success-Complete Restriction of Inference Programs 139
M. Sintzoff

An Efficient Bug Location Algorithm 151

D.A. Plaisted

Thursday, July S, Morning Session

ARCHITECTURE AND HARDWARE FOR LOGIC PROGRAMMING

Or-Parallelism on Applicative Architectures 159

G. Lindstrom

A Class of Architectures for A Prolog Machine 171

L.V. Kale, D.S. Warren
1 An Architecture for Parallel Logic Languages

J.A. Crammond, C.D.F. Miller

A Highly Parallel Prolog Interpreter Based on The Generalized Data Flow Model 19?
P. Kacsuk

Thursday, July 5, Afternoon Session

APPLICATION OF LOGIC PROGRAMMING

Unification for a Prolog Data Base Machine 207

G. Berger Sabbatel. W. Dang, J.C. Ianeselli, G.T. Nguyen

A Prolog System for the Verification of Concurrent Processes Against
Temporal Logic Specifications 219

P.G. Bosco, G. Giandonato, E. Giovanetti

Logical Levels of Problem Solving 231

Leon Sterling

LOGIC PROGRAMMING METHODOLOGY

Using Symmetry for the Derivation of Logic Programs 243
A-L. Johansson

A Model Theory of Logic Programming Methodology 253

H. Sun, L. Wang

IV

Friday, July 6, Morning Session

FOUNDATIONS OF LOGIC PROGRAMS

A Unified Treatment of Resolution Strategies for Logic Programs .
D.A. Wolfram, M.J. Maher, J-L Lassez

APPLICATION OF LOGIC PROGRAMMING

FAME: A Prolog Program that Solves Problems in Comb.natorics.

Yoav Shoham

A Mycin-Like Expert System in Prolog
A. Littleford

Parlog for Discrete Event Simulation
Krysia Broda, Steve Gregory

Friday. July 6, Afternoon Session

LOGIC PROGRAMMING LANGUAGES

263

277

. 2X9

. 301

Logic Programming by Completion
N. Dershowitz, N.A. Josephson

Associative Concurrent Evaluation of Logic Programs .
K. Nakamura

A Unification Algorithm for Concurrent Prolog
J. Levy

ARCFIITECTURE AND HARDWARE FOR LOGIC PROGRAMMING

A Memory Management Machine for Prolog Interpreters .
Y. Bekkers, B. Canet, O. Ridoux, L. Ungaro

313

321

. 331

AUTHOR INDEX

343

355

V

FOREWORD
This is the proceedings of the biennial second international logic programming confer
ence It gives us a view on the research and progress of Logic Programming and also
informs the participants about technical content and details, some of which have to be

omitted in the presentations.
Around 100 papers from more than 20 countries and including all continents but

Africa were submitted to the conference, they were refereed for their clarity, originality
and significance by three members of the program committee.

It is a pleasure to thank all authors who responded to our Call for Papers, unfortu
nately. restrictions on the size of the conference unabled us to include all fine papers.

1 also wish to thank the program committee. special thanks are due to those members
who attended the busy meeting in Atlantic City. It is most appropriate to thank Doug
DeGroot for his support during this meeting and Alan Robinson and his office for their

"uhould'L thank Marianne Ahrne. Elisabeth Askebro and Ingrid Fagerstrom for

their good work in our group for local arrangements.
Finally. I thank our sponsors for their support. ^ ̂

Pmoram Chairman

ACKNOWLEDGEMENT
This conference is sponsored by ASEA. Ericsson, IBM, Digital Equipment. Philipsand

the Swedish ministry of education.

.

OVERALL DESIGN OF SIMP OS
(Sequential Inference Machine Programming and Operating System)

Shigeyuki Takagi, Toshio Yokoi, Shunichi Uchida, Toshiaki Kurokawa
Takashi Hattori, Takashi Chikayama, K5 Sakai, Junichiro Tsuji

ICOT
(Institute for New Generation Computer Technology)

Mita Kokusai Building, 21F.
4-28, Mita 1-Chome, Minato-ku, Tokyo 108 JAPAN

ABSTRACT
As the first major product of Japanese

FGCS (Fifth G»n«r*tlon Computer Syitemi) pro
ject, Personal Sequential Inference Machine
(PSI or tp) is under development. Here we
describe the design of the rp's programming
system and operating system SIMPDS, its
major language ESP (Extended Self-contained
Prolog), and the development tools.

The major research theme of i> is to
develop a logic programming based pro
gramming environment including system
programs.

The basic design philosophy of SIMPOS
it to build a super personal computer with
database features and Japanese natural lan
guage processing under a uniform frame
work (logic programming) based system
design.

At the end of March 1985, we will be able
to show that the logic programming based
operating/programming system is working
well and has a good human interface.

1 Preface
As the first major product of Japanese

FGCS project, tp it under development. Here
we describe the overall design of rp't Pro"
gramming System and Operating System
called SIMPOS, its major language ESP, and
some development tools.

The major rp research themes are to de
velop:
0 System programs in logic programming,

o A programming environment for logic

programming.
ip is the pilot model of the FGCS soft

ware development. It is a high-performance
personal machine and will be used as the
research tool for the FGCS project.

The hardware and firmware design of tp
was completed at ICGT, and the first pilot
model has already been manufactured. Its
firmware debugging has been finished in
March 1984. Installation of SIMPOS was
started in February.

SIMPOS has 5 basic design principles.
They are:
o Uniform framework-based system design

A single uniform PROLOG-like logic pro
gramming based framework covers all
of the machine architecture, language
system, operating system, and pro
gramming system,

o Personal interactive system
We hope tp will be one kind of per
sonal and very highly interactive com
puters similar to many super personal
computers,

o Database features
PROLOG has database facilities that can
easily conform to relational database
systems. We hope to construct a new
programming system and a new operat
ing system that fully uses the database
features,

o Window features
In order to facilitate high level inter
action, V "ses a bitmapped display and

2

a pointing device,
o Japanese language processing

All computers until now have been
based on Western cultures. This is a
major disadvantage for peoples of other
cultures when they want to use com
puters. Everyone should be able to use
computers in his own tongue. So, the
Japanese should be able to use com
puters in Japanese.

SIMPOS consists of a programming sys
tem (PS) and an operating system (OS). OS
consists of a kernel, a supervisor, and I/O
media subsystems PS consists of subsys
tems called experts. PS subsystems are con
trolled by users, but there is a need to coor
dinate the subsystems or processes. This
task is accomplished by the coordinator
subsystem.

All the other subsystems are:
Window (os),
File (os),
Network (os),
Debugger/Interpreter (PS),
Editor/Transducer (PS),
Library (PS).

2 ESP

2.1 Overview
SLMPOS is described in a user pro

gramming language called ESP. Programs
written in ESP are compiled into KLO. KLO is
the machine language of x/> and is a PROLOG-
like logic based language with several ex
tensions.

As based on a PROLOG-like execution
mechanism, ESP naturally has many of
the features available in PROLOG. The im
portant ones among them are the use of
unification in parameter passing and a tree-
search mechanism based on backtracking.

The main features of the ESP language,
except for those in common with PROLOG-
like languages, are:
o Objects with states,
o Object classes and inheritance mecha-

nisms, and

o Macro expansion
The assertion and atom name database

features (assert, name, etc) are not directly
available, though lower level features (srrsy
access, string manipulation, etc) for imple
menting them are provided

2.2 Objects and Classes
The control structure of ESP IS basically

that of PROLOG AND-on tree search by back
tracking. However, from another point of
view, an ESP program U constructed in an
object oriented manner

An object in ESP represents an axiom
set, which is basically the same concept
as world* in some PROLOG systems (M VU
Csn»»htm isea) The same predicate call
may have different semantics when applied
in different axiom sets. The axiom set to
be used in a call is specified by pasting an
object as the first argument of a call and
prefixing the call with a colon (:).

An object may have lime dependent state
variables called object slots Values of slots
can be examined by certain predicates using
their names In other words, the slot values
define a part of the axiom set The slot
values can also be changed by certain pred
icate calls. This corresponds to altering tbe
axiom set represented by the object Tins
it similar to assert and retract of OEC-D
PROLOG, but the way of alteration it limited

It seemed to be difficult to us, if not im
possible, to describe an entire operating sys
tem in pure logic without any built-in no
tion of time dependency As many of lb*
currently available ideas for the building
blocks of an operating system are bated on
the notion of state, much more investiga
tion is required before starting to writ*
an entire operating system in pur* logic
(this approach it being tried by Shapiro (*
Shapiro less)). This it why object oriented
features with side effects are introduced into
ESP.

An ESP program consists of one or more
class definitions. An object class, or simply
a class, defines the characteristics common
in a group of timilar objects, i.e., objects

3

which differ only in their slot values (only
values; slot names are common to the ob
jects belonging to the same class). An ob
ject belonging to a class is said to be an
instance of that class. A class itself is an
object which represents a certain axiom set.

2.3 Inheritance Mechanism
A multiple inheritance mechanism similar

to that of the Flavor system (D. Wetnreb and
D. Moon 1981), rather than the single in
heritance seen in Smalltalk-80 (A. Goldberg
and D. Robaon 198S), is provided in ESP. A
class definition can have a nature definition,
which defines one or more super classes.
When a class is a super class of another
class, all the axioms in the axiom set of
the former class are also introduced into the
axiom set of the latter class, as well as the
original axioms given in the definition of the
latter class. By this inheritance mechanism,
classes form a network of is-a hierarchy.

Some of the super classes and the sub
class which inherits them may have axioms
for the same predicate name. Since basi
cally the axiom sets of the super classes
are simply merged, such axioms are ORed
together. Though the order in the ORed
axioms has no significance as long as pure
logic is concerned, it can be specified in EBP
for hand optimisation and to control cuts
and side effects.

Clauses called demon clauses define de
mon predicates, which are ANDed, rather
than ORed, either before or after, as
specified, the disjunction of usual axioms
They are used to add non-monotonic
axioms. For example, a door with o lock has
a demon for the predicate open for making
sure it is already unlocked. In this way, a
class wtth_aJoek can be defined separately
from the class door as a class that contains
non-monotonic knowledge.

Par t - o f hierarchy can also be imple
mented using the i$-a hierarchy and object
slots. Assume that we want to make in
stances of class A to be a part of an instance
of class B. First, the definition of A should
be given. Then, a class with_A should be

defined so that instances of the class wlth_A
has a slot which holds an instance of class
with_A. Finally, class B is defined to be a
subclass of wlth_A; in other words, the class
B it-a class with_A.

2.4 Macros
Macros are for writing meta programs

which specify that programs with so and
so structures should be translated into such
and such programs. Macros can be defined
in the form of an esp program, fully utiliz
ing the pattern matching and logical infer
ence capability of the logic programming
language.

In various languages with macro ex
pansion capability, a macro invocation is
simply replaced by its expanded form.
Though this simple macro expansion mech
anism may be powerful enough for LlSP-like
functional languages, it is never enough for
a PROLOG-like logic based language. For ex
ample, a macro which expands

p (a , f (X + Y))

to a sequence
a dd (X ,Y ,Z) , p (a , f (Z))

cannot be defined with a simple expansion
mechanism.

Macros of ESP are not only expanded at
the place of the macro invocation. Certain
additional goals can be spliced in before or
after the goal in which the macro invocation
is given. If the macro is invoked in the head,
these goals will be added at the top or the
end of the body.

The same macro definition:
X+Y = > Z when add (X ,Y ,Z)

can be used in two ways. The clause
"addl(M, M + 1)." is expanded into
t he c l ause "add l (M, N) : - add (M, 1 , N) . " ,
while the body goal °p(M + l)" is expanded
in to a goa l s equence "add (M, l ,N) , p (M)" .

2.5 Implementation
Currently (in March 1984), a cross com

piler of ESP into klo is available.
The implementation of the object oriented

calling mechanism is rather straightforward:

4

each object has a slot containing a database
of codes corresponding to the axiom set as
sociated with the object.

The current implementation uses slot
name atoms for accessing object slots. Such
access has been found to be very fast thanks
to the built-in hashing mechanism of KLO
Certain other firmware supports for ac
celerating the execution are also planned.

3 Operating System
The operating system part of SIMPOS con

sists of 3 layers; kernel, supervisor, and I/O
media subsystems.

3.1 Kernel
The kernel manages the hardware re

sources and fills a gap between the i> hard
ware and the supervisor. It includes the
processor manager which realises multiple
process environments, the memory manager
which allocates and deallocates memory
space and performs garbage collection, and
the I/O device manager which controls the
input/output devices.

3.2 Supervisor

The supervisor provides the basic facilities
useful for program execution, such as ob
ject storages, inter process interactions, and
execution environments. For details, refer
to (Yokoi and Hattori 1883). Note that a user
may extend and modify these facilities as
he chooses.

A pool is a container, which is also an
object, of objects of any class. A list and
an array are examples of pools. An object
can be put into or taken from a pool.

A directory is a pool of objects which are
associated with a name. An object can be
bound and retrieved with a name in a direc-
tory SinCe a directory can contain another

7 *S Wel1' a tree of directories is sran °bject is id-'fied "th

flow 8 A?mKiS a.pip' thrOUgh which object, flow. An object which is put into one end

end Smm' Wl1 K6 retrieved at the other
When no object i, in the stream, a

used for synchronisation and commutes
lion between processes

A channel is defined on the top of i
stream to allow message rommuucsUx be
tween two processes A port u s setup
box for two-way communication, connected
to other ports A message sent throsgk the
port will arrive at these connected pom
and a message sent from one of these pom
will arrive at this port

A process executes a given program
which U an instance of a program dsn
The main goal of the program is define!
as an instance predicate, and the slots of t
prog*am instance hold objects local to iht
program

A process has several environments s
program, a library, n world, and a uaivent
They can be referred to at any point of
the program A world It n sequence cf
directories held by n process as its ssorbat
world A universe is a system directory trie
held in a class slot of class directory

3.3 I/O Media S u b s y s t e m s

I/O media subsystems manage the inter
faces with the outer worlds This sobsystea
consists of 3 subsystems window, file, and
network.

3.3.1 Window Subsystem
The window subsystem is the main part

of high level man-machine interface of 1
(Ksroksw. at u ies<) It supplies muKipts
logical displays for processes in tp on a singt*
physical display. The Lisp Machine devel
oped at MIT also supplies such an environ
ment. The Lisp Mnchine window subsys
tem manages the mnjor part of the man-
machine interface. But our window subsys
tem manages only the pnmitiee functions
Other functions like echoing are done by
other subsystems, transducer, coordinator,
etc^ This concept increases the modularity
o t e whole system, and make each sub-
system simpler.

For each process, one window is dedi-

5

cated for its own display and it need not
mind other windows. In the window sub
system, each window is defined as an in
stance of the window class and each predi
cate for the window is written as methods of
the class. So the window manager need not
consider the interaction among the windows
and each process can consider its window as
its own display. Each window is a rectan
gular area which is a part of the physical
screen, and is the communication channel
to the process.

In the window subsystem, windows con
struct a hierarchy. The most superior win
dow is the logical screen, and normal win
dows (editor window, etc.) are inferior
windows of the logical screen. Each win
dow may hare inferior windows (called sub-
windows) within it, and each inferior win
dow can haTe its own inferior windows. For
example, an editor window hat command
subwindow, text sub-window, etc. Sub-
windows can neither have a site that ex
ceeds their superior window's sise, nor go
out from the superior window. They must
be inside of the superior window.

Each window may have one of the follow
ing 5 states:
selected: Connected to the keyboard. Only

one window cam have this status at a
time.

shown: Completely displayed on the physi
cal screen, and the mouse button click in
this window is interpreted using the key-
command definition of this window,

exposed: Completely displayed on its su
perior window. However, when the su
perior window does not have the shown
status, even if the window is completely
displayed on the screen, it docs not have
shown status, but exposed status.

overlapped: Partly or completely hidden by
its superior window. This window is hid
den by another inferior window of its su
perior window,

deactivated: Not managed by the window
subsystem. Windows in this status will
never be shown on the physical screen un-

Table 3-1. Window Status

Status KB mouse output
Selected done done done
Shown wait done done

Exposed wait wait wait
Deexposed wait wait wait
Deactivated fail fail fail

til activated. However, its memory image
is not destroyed.
These states are managed by the window

manager. The I/O function is determined
by these states. The relation between the
window states and the I/O functions are
shown in table 3-1.

Whenever there is a keyboard input, the
window subsystem has to decide which win
dow the input should be sent to. The win
dow manager has the instance slot seleeted_
window which keeps the selected window.
As another input device, V bas a point
ing device mouse. The mouse can move
anywhere on the display screen, and the
window manager can recognize the window,
which the mouse click is sent to, by the
position of the mouse. The mouse click is
treated by the window's definition in only
the shown window. It is because if the
mouse click changes the window's output
image, the user may not see it since he can
not see the whole of the not shown window,
and the window manager cannot recognize
which part of the window is hidden.

3.3.J File Subsystem
The file subsystem provides permanent

storage both for data and objects.
A permanent storage of data (records) is

a file. Three types of files are available; bi
nary files, table (fixed length record) files,
and heap (variable length record) files. A
record is identified with its stored position
and/or its associated key through an in
dex file. A binder mechanism will be sup
ported so that a user can define a virtual
file with many data and index files. A rela
tional database management may be built
on these facilities.

6

A permanent storage of objects is an in
stance file. It is tbe main feature of the file
subsystem not provided by other machines'
ordinary file systems.

A directory file is a file which associates
an instance record with a name. A per
manent directory is a directory which has
a directory file as its permanent storage.
When included in a permanent directory,
a permanent object is stored as an instance
record in an instance file and included in the
directory file with a pathname. Therefore,
it can be restored even after the system is
rebooted.

3.3.3 Network Subsystem
The network subsystem provides three

types of interfaces to communicate with
other machines.

Inter-machine communication is sup
ported to connect one ip with another i>
or other different machines. The network
subsystem defines the classes node, socket,
cable, and plug to implement the com
munication.

Inter-process communication allows two
processes on different rt> nodes to communi
cate with each other, just as if they ex
ist on the same node. A remote channel
is defined to represent an original channel
on the other node. A process can send a
message to the remote channel and another
process on the remote node can receive it
from the corresponding original channel.

The introduction of remote objects is a
main feature of the network subsystem. A
remote object represents an object in a
remote node. It can be manipulated just
as an ordinary object.

4 Programming System
The programming system of SIMPOS is

a collection of expert processes. An ex
pert process is a process which has an in
dependent communication window (called
e_window) with the user. It performs the
special action upon the user's request.

This view is different from the views such
that the programming system is a collec

tion of dumb software tools, nor is it t
collection of programs to support the pro
gram production. Our view frees us from
the overhead of the controlling process to
manage the available tools or the informa
tion between the programs

From the user's viewpoint, he can invoke,
control, and terminate any expert through
the expert's e window. He need not
navigate the complicated process invocation
tree to accomplish his task He need not
bother about the unexpected destruction of
his work through wrong navigation

4.1 Coordinator
In SIMPOS, there is no explicit supervising

process such as srwti in urt« However,
there is a work-behind process named
Coordinator. Coordinator itself is not an
expert process but a process that manages
the set of experts.

As noted above, tbe user may think that
he controls tbe expert directly through the
window, but actually, coordinator helps the
user's control via the window interface that
is the associated key command table of the
window.

The principal functions of coordinator
are as follows:
o Send a user's key command through the

window to an expert,
o Create, delete, and activate an expert via

system.menu,
° Get and process special commands from

an expert, and
o Help communications between experts

via the whiteboard.
The whiteboard it just like a blackboard

where an expert puts a message to another
expert, who in turn picks up the message
by the user's instruction.

The other way to solve this communica
tion problem it to set a communication
channel with another expert But, in this
case, the channel should be set between
the experts before the user decides the
partner of the expert It is not easy to tell

7

•who talks to who before communication be
comes necessary.

The ultimate solution in this line would
be to set a communication channel between
any two experts, even though the cost be
comes very high as the number of experts
grows. And still, a few problems remain.
The user may change the partner after he
ordered the expert to put the message. It
may difficult to denote both the partner and
the message using only the mouse click.

Using the whiteboard, we can set vir
tually complete communication channels
between experts. The user can select any
expert after he has ordered one to put the
message. This operation will be realised
with one mouse click.

Each user has a directory to create ex
perts. It contains the experts' names and
the program names to create experts. The
user can change the directory and the com
mand table as he likes.

A user has his own directory which is
inherited from the system's common direc
tory, i.e., the standard set of experts.

An expert has its own set of key com
mand table associated with its window.
However, Coordinator permits the user to
change the key command table of the win
dow only when that window accepts the
change keg command table command from
the user.

This freedom is achieved at the least cost
of execution. This minimum overhead and
the maximum provision of user control is
the main theme of Coordinator.

4.2 Debugger/Interpreter
This subsystem interprets programs and

provides information concerning the control
flow of the programs. The basic facilities
of the Debugger/Interpreter subsystem is
similar to the debugging facility of dec-io
prolog (D. L. Bowen .t »L 1981). New features
are:
o Procedure and clause box control flow

model,
o Calls between interpretive and compiled

codes, and
o Multi-window user interface.

DEC-lO PROLOG uses Box Control Flow
Model for its debugger. It considers that
each predicate is the debugging unit. In
this view, each clause looks like a black-box
and cannot be traced whether the unifica
tion of its head or body fails. The predicate
call simply fails in both cases. However,
it is often the case that the clause head is
correctly selected, but the definition of the
body is erroneous. When the Procedure and
Claute Box Control Flow Model is used, it
is possible to check whether unification of
the head or that of the body fails (see fig.
4-1).

In i>, it is possible for interpretive and
compiled codes to mutually call each other.
However, Debugger cannot trace in the
compiled code. Debugger treats the invo
cation of compiled codes just like a simple
built-in predicate invocation. If interpretive
codes are invoked from compiled codes,

procedure

Call

FaU

clause
head body

Unify Pirlr F.xit Unify
->

Misa Redo Next Misa Redo

Unify Pick Frit Unify

"f

Pick
->

<-
Redo Next MISS Redo

Unify Pick F.xit Unify Pick

1 j
<-

Redo Next MlSf Redo

Exit

Redo

Fig. 4-1. Procedure and Clause
Box Control Flow Model

for interpretive code

8

there is no way to pass the trace infor
mation to the interpretive codes. In such
a case, Debugger restarts tracing with no
trace information.

}/> has a bitmapped display screen.
Debugger uses the window subsystem that
offers a multi-window user interface with
the mouse. A user can select one of the con
trol options at break points, look at ances
tors or spy points, check the values of slots,
or see the class definitions using the library
subsystem. This information is shown in
sub-windows of Debugger and all the selec
tions can be done using the mouse click.

4.3 Editor
An editor is a typical component of a

programming system and an indispensable
software tool in using a computer system.
Though there can be editors to manipu
late abstract structures completely different
from texts, here we limit our discussion to
the editors which edit texts or data ex
pressed in texts.

Even text expressions usually have nested
structures. So the editor for V (called Edipo)
is designed to be a general structure-editor.
But we do not believe that there can be a
general purpose editor which is convenient
for every structure. A good general editor is
one that is convenient for a specific purpose
and can be used for general purposes even
if less powerful. Under this criterion, Edipn
is designed to be especially convenient for
editing ESP programs and can manipulate
other structures. In addition, Edip« has the
following features:
o Customization with macro definition,
Q A small number of commands easy to

memorize, and

° Failsoft with many recovery environ
ments.

To make Edipa general, we allow users to
define the syntax. Though other general
structure-editors usually use BNF, we do
not adopt it because usual editing opera
tions are neither to trim a branch of
the syntax tree nor to traverse the tree.

Editing operations are more closely re-
lated to the text expression of edited data
So we adopted an operator precedence
grammar with user definable parentheses
An operator precedence grammar it more
simple and has better correspondence to the
text expression.

Every token in the text expression of
edited data is classified into 6 categories:

o Atom,
o Prefix operator,
o Infix operator,

o Postfix operator,
o Left parenthesis, and
o Right parenthesis.

Each operator has a precedence. For edit
ing purpose, however, too many precedence
levels should not be adopted, because prec
edence introduces structures without direct
correspondence to the text structure As
for an ESP editor, 2 or 3 levels are necessary
and sufficient. They are for:
o logical symbols such as

•
•" I * I $

o function symbols such as

V-
If necessary,

o predicate symbols such as
<", •>•, •=

will be added.

As explained above, the operator prec
edence grammar is very simple, but has
enough expressive power to define the syn
tax of almost all structured programming
languages.

It is desirable that the parser and the
pretty printer for the grammar can be used
by other programming tools such as com-
piler, interpreter and debugger So, those
tools are made as separate utilities from the
editor Ed.pe consists of the editor kernel
and those utilities which are also used by
other tools.

9

4.4 Library

The library subsystem manages all the
classes and predicates on tp. It controls
the registration of classes, loading program
files, compiling, and building class objects
by the analysis of inheritance.

Each class has a class source file, a class
template file, and a class object file on some
secondary storage. Class templates and
class objects exist only in the main stor
age, but are saved to and restored from the
secondary storage.

Class source files are text files coded by
the users. A class source file can have
just one class definition. Like source files,
template files and object files also have just
one class information in each.

A class template is built from a single
source file. It holds all the information
of that class except those from inheritance
analysis. The predicates of that class
are kept as interpretive codes when the
template is built. They are compiled when
the user requests. After the compilation,
both interpretive and compiled codes are
kept. Templates can be saved or restored
before compiling the predicates.

Class objects are built from some class
templates. In a class object, all the in
heritances are analysed and solved. It is
an executable image of an object oriented
program.

Another feature of the library subsystem
is to manage predicates. It contains the
features of referring to one predicate of a
class, i.e., object oriented invocation, and
the invocation from compiled codes to inter
pretive codes or the converse. This mecha
nism is implemented by indirect references.
All the invocation of predicates are done via
indirect references. When some interpretive
codes are invoked, that indirect word points
the entry of the interpreter. This mecha
nism causes a uniform invocation scheme
even if both the interpretive and compiled
codes are mixed.

For object oriented invocation, it is neces
sary to find which method should be in

voked during the execution time. Here, the
library has to distinguish those predicates
that have the same predicate name but are
defined in different classes. In the com
piled codes, all the references are processed
and changed to the direct invocation of the
specific predicate, but in the interpretive
codes, the library has to search the pred
icates during the execution time.

The compiler is simply a subroutine of
the library subsystem. It compiles a single
predicate from interpretive codes. This
process is done only in main storage. After
the compilation, library holds both inter
pretive and compiled codes. The user can
specify which code should be used for build
ing up a new class object. The template file
is automatically rebuilt after the compila
tion.

5 Development Tools
Almost all of the os/PS programs are

written in ESP. Since they were designed
and coded before the rp machine becomes
available, we need a cross system of ESP for
software development

Most of the programs are written in
PROLOG. The programs are:
o ESP cross simulator,
o KLO cross compiler,

o KLO cross assembler,
o ip microprogram cross assembler,

o Cross linkage editor for both KLO and
microprogram,

o Table generator for the microprogram.
Some programs, the execution speed of

which is critical for debugging (micropro
gram simulator, etc.) are developed in
PASCAL.

One of the powerful support tools is Cus-
tomisable Assembler (S. Takagi 1983). It
is the kernel of both the KLO assembler
and the tp microprogram assembler. Only
the machine-dependent parts such as the
length of the object word, field definitions,
mnemonic definitions, and checking con
ditions are changed. Machine-dependent

10

parts are pre-processed and are compiled
with the assembler kernel into a machine-
dependent assembler.

The definition of KLO is about 500 lines
while the definition of the V microprogram
is approximately 1100 lines. About 80% of
them are conversion tables from mnemonics
to field values. The kernel part is about
900 lines of PROLOG program. Compared
with many so-called generalized assemblers
or universal assemblers, this assembler has
only 1/5 to 1/10 as many codes. Its assem
bly speed is, however, approximately com
parable.

Using PROLOG'S unification and back
tracking mechanism, it is possible to write
a sophisticated error-checking routine. If
one field overlaps another, the unification
fails and the next alternative value setting
is tried. Setup conditions are processed in
the same way. If an assembler variable
X is unified to the value ease_l while one
field is processed, the process for any other
field cannot unify ease_2 for X. So, the
unification fails and the process backtracks.
Finally, when all of the unification is suc
cessfully completed, the object bit-pattern
is generated and written out to the object
file.

6 Conclusion
A logic programming based inference ma

chine (V1) and its Programming/Operating
System (SIMPOS) is now under development.
The first pilot hardware has already been
manufactured and firmware debugging was
finished. Installation of SIMPOS was started
in February.

The first release of rj> and SIMPOS for
FGCS research and development will be at
the end of March 1985. We will continue
its improvements and enhancements. At
that time we will be able to show that the
logic programming based Operating/Pro
gramming system is working well and has
a good human interface.

Many investigations and researches are
necessary for building logic programming
based programming and operating systems.

We hope this work will contribute to such
researches.

ACKNOWLEDGMENTS
The authors thank Mr . G. Hagio and Mr

H. Ishibashi for their contribution to onr
project.

11

APPENDIX I

Inference
Functions

— > Logic
Programming

Parallel +
inference |
Model I

High-speed —> Parallel
Computation and
(Symbol Pipeline

Manipulation)

—>

Modular
Programming

-> Abstract -+
Data Type, I
Capability +-

Distributed —> Concurrents
Processing Processing,

Message
Passing

A large —> Relational
Capacity Database
Knowledge Base

Software —> Personal —
Development Computer,
Tool Local

Network

Dataflow
and
Reduction
Machines

+-> Parallel -
| Inference

I Machine

Multiple-SIM !
> System for —+
Parallel Soft
ware Development
based on KL1 -> FGCS

Proto
type

System

—> RDBM) +
(Delta) I I

I +- Knowledges
Base I
Machine I

> Sequential +
Inference
Machine +
for KLO +->

(PSI, SIM) I

Super
Personal !
Computer |

> 1 chip
Inference
Machine

Intelligent —> Speech I/O,—> Special +
Man-machine Picture I/O Purpose
Interface Processors

VLSI
Technology

> VLSI-CAD, > Development
Architecture Support,
Design DB Hardware

Description

-> Intelligent
VLSI CAD
System

Fig. 1-1 An Approach to the Fifth Generation Computer

12

REFERENCES
Bowen, D. L., Byrd, L., Perelra, F. C.

N., Perelra, L. M., Warren, D. H. D.
DECsystem-10 PROLOG User's Manual.
Dept. AI., Univ. of Edinburgh, p. 101,
1983.

Chlkayama, T. ESP - Extended Self-
contained Prolog - as a Preliminary
Kernel Language of Fifth Generation
Computers. New Generation Computing
1, No. 1, 11-24, 1983.

Chlkayama, T., Yokota, M., Hattori,
T. Fifth Generation Kernel Language:
Version-0. Proceedings of the logic pro
gramming conference '83, 7.1 1—10, 1983.

Fuehl, K. The Direction of the FGCS
Project will Take. New Generation Com
puting 1, No. 1, 3-9, 1983.

Goldberg, A., Robson, D. SMALLTALK-
80 — The Language and its Implementa
tion. Xerox Palo Alto Research Center,
p. 714, 1983.

Hattori, T., Yokoi, T. Basic Constructs
of the SIM Operating System. New Gen
eration Computing 1, No. 1, 81-85, 1983.

ICOT Report of the FGCS Project's
Research Activities 1982. ICOT Journal
1, No. 2 , 1983.

Krasner, G. SMALLTALK-80 — Bits of
History, Words of Advice. Xerox Palo
Alto Research Center, p. 344, 1983.

Kurokawa, T., Tsqjl, J., Tojo, S., Bma, Y.,
Nakazawa, O., Enomoto, S. Dialogue
Management in the Personal Sequen
tial Inference Machine (PSI). ICOT
Technical Report TR-046, 1984.

Nishlkawa, H., Yokota, M., Yamamoto,
A., Tald, K., Uehlda, S. Design
Philosophy and Architecture of the
Sequential Inference Machine PSI (In
Japanese). Proceedings of the logic pro
gramming conference '83, 7.2 1-12, 1983.

Shapiro, E. Systems Programming in
Concurrent Prolog. Eleventh Annual
Symposium on Principles of Programming
Languages (to appear).

Takagi, S. Customizable microprogram

assembler. ICOT Technical Report TR-
021 (In Japanese), p. 25, 1983

Uehlda, S-, Yokota, M-, Yamamoto, A,
Taki, K., Nishlkawa, H. Outline of
the Personal Sequential Inference Ms-
chine PSI. New Generation Computing 1
No. 1, 75-79, 1983

Van Caneghem, M. PROLOG I! Manuel
D'Utilisation, Groupe Intelligence Artifi-
cielle, FaculU des Sciences de Luminj,
Marseille, 1982

Welnreb, D., Moon, D. Lisp Machine
Manual, 4tb ed , Symbolics, Inc 1981

Yokol, T-, Hattori, T. The concepts and
facilities of the SIMPOS supervisor (to
appear as an ICOT Technical Report)

Prolog as a Tool for Optimizing Prolog Unifiers
Martin Nilsson

Uppsala Programming Methodology and Artificial Intelligence Laboratory
Computing Science Department, Uppsala University

P.O. Box 2059, S-750 02 UPPSALA, Sweden

This work was supported by the National Swedish Board for Technical Development
(STU).

1. Abstract

The unification procedure is a cen
tral part of every Prolog implemen
tation. A Prolog interpreter spends
roughly half of its time unifying data
structures. Therefore, it is important
to speed up unification as much as pos
sible.

How can we generate a speed opti
mal unifier program? Is there a signifi
cant speed difference between the best
and the worst unifiers? In order to an
swer these questions a method for find
ing speed optimal unifiers is developed.
The unifiers are generated by a Prolog
program which is a declarative partial
description of the unifier. This method
has been applied to an experimental
interpreter, for which some data are
given.

Keywords: Unification, Optimiza
tion, Prolog.

2. Introduction

The derivation of efficient unifi
cation algorithms from specifications
has been studied by a number of re
searchers, e.g. (Eriksson 83).

However, it seems that few peo
ple have studied the problems of find
ing the most efficient implementations
of unification algorithms, although it

was noted early that Prolog inter
preters rely heavily on efficient unifiers
(Warren 77).

Some interesting questions are:
How can we generate a speed optimal
unifier program? Is there a significant
speed difference between the best and
the worst unifiers? This paper is an
attempt to clarify the situation some
what. We shall describe a method to
find speed optimal unifiers. The uni
fiers are generated by a Prolog program
which is a declarative partial descrip
tion of the unifier.

The organization of this paper is
as follows: The section after this in
troduction describes a general way of
specifying programs. The third section
describes some primitives for a class of
unifier programs. The specification is
specialized to unifiers in section four.
This specification is translated to a
Prolog program, which in section five
is modified to find an optimal unifier.
In the last two sections some experi
mental results are discussed.

3. A class of programs

Two different languages are used in
this article. One is the specification
language, which is First Order Logic.
The specified unifier programs are writ
ten in a second language, the program
ming language. Programs in this lan-

14

guage are ground terms in the specifi
cation language.

First, we shall describe how pro
grams in the second language can be
specified. Henceforth, if we talk about
programs, and the language is implicit,
we mean programs in this second lan
guage.

A program can be seen as a (possi
bly degenerate) binary tree. An execu
tion follows a path from the root node
to a leaf. At every node during execu
tion, the program has a state, on which
some primitive operation is performed.
The state is held in a set of state vari
ables, implemented as memory cells in
the physical program.

A program can be constructed from
three kinds of operations: tests, trans
formations, and terminals. A test node
has two successor nodes. It does not
change the state variables, but merely
directs execution to either the right
or the left successor depending on the
current state. A transformation has
only one successor, but may change the
state. A terminal has no successor. It
is responsible for returning some out
put from the entire program.

Syntactically, programs are lin
earized as ground terms. A program
can be a terminal. Another possibility
is SEQUENCER, y), where z is a trans
formation and y is a program. The
meaning of this is that z is executed be
fore y. A program can also be IF(z, y, z),
where z is a test and y is a program (the
then-branch") and z is a program (the

"else-branch").

In other words, p is a program
with respect to a set of possible in
put states si iff p satisfies program(ii.p),
where program is defined as

Vti.p (program(ti.p) —•
correctttatetct(ti) A Sop.p,. PJ. to,. zoj(

terminal) »i.p)
v p = SEQUENCE)op,pt)

A trans format ion)ti, op. #o)
A program(to.p,)

V p =» IF[op.Pi.Pi)
A tett(ti. op. to,. to,)
A pr<vram(«0|,pi)
A program(to,.p,)))

The to variables are output lets of
states, i.e. states that come out of oper
ations. The predicates terminal, trans
formation, and test are supposed to be
false whenever their second argument
is not an operation name

Suppose that TTiM denotes a typi
cal terminal operation in our program.
TTiM could be specified by

Vti.to (terminat)si.T/i M) —
precondition)ti. TTiM))

if the set of possible input states <• is
specified by the precondition

Likewise, suppose that TUNS is a
transformation operation. The relation
between ti and the set of corresponding
output states to is specified by a post-
condition:

Vsi, to (transformational, TUNS, to) ~
precondition)ti, TliNS)
A poitcondition(ii. to.TRNS))

A typical test operation, say TFT,
tests if the input state satisfies some
condition:

V«i, to,, tot (tesffei, TST, to,.to,)
precondition) ti, TST)
A postcondition,(si, to,, TST)
A postcondition,(ti. to,. TST))

The output set of states ««i would
be the subset of «i where the condition
is satisfied, while to, would be the sub
set where it is not.

15

Every primitive operation requires
satisfaction of some precondition on
the set of possible input states. The
precondition on the input checks that
the operation is always applicable.
There are also postconditions on the
output states. A postcondition speci
fies the set of output states for a given
set of input states. Postconditions for
test operations should also check that
the operation is nontrivial: Both sets
of output states should be nonempty.

Some observations can be made
here: No program can generate a run
time error, since the applicability of
each operation is guaranteed by the
operation's precondition. Every pro
gram can be insured to be partially cor
rect by having a correctness criterion
as a precondition of every terminal. All
programs will also be totally correct, if
it can be proved that every primitive
operation requires a finite amount of
execution time.

4. Unifier building blocks

Since we are going to specialize
our programs to unifier programs, we
shall describe primitive operations for
a reasonable class of unifiers. Although
we shall have to make some assump
tions about implementational details,
the principles should apply to other
kinds of unifiers as well.

The unifier is assumed to opejate
on data structures which are Prolog
terms represented as binary trees. This
is how terms are implemented in, for
instance, FOOLOG (Nilsson 83) and
HORNE (Frisch, Allen, Giuliano 83/84).
A term is either a pair of terms, a con-
eta nt, or a variable. A variable ex
ists in one of four states: It can ei
ther be unbound, or ultimately bound
to an unbound variable, to a constant,
or to a pair. When we say "ultimately

bound", we mean bound through a
chain of variable bindings.

A unifier program normally takes
two input parameters z0 and y0, which
are two terms to unify. If unifica
tion is successful, the program updates
the variable bindings and returns the
Boolean value true. If unification fails,
the program returns false.

We assume that a possible state
representation for such a program
would be a pair of state variables z and
I/, initially set to z0 and y0.

We have chosen the following prim
itive operations as a relevant selection:

Terminals:
FAIL. Returns from the program with
the value false. This operation may
only be applied to a state if z is a pair
and y a constant, or vice versa.
EQUAL: Returns true if * = y, else
false, z and y must both be constants.
BINDXY: Binds z to y, unless z is iden
tical to y. z must be an unbound vari
able. y must not be a bound variable.
Returns true. Note that the binding
process is internal to this primitive.
How internal things like trailing etc.
are handled inside the operations does
not affect the specification.
BINDYX: Similar.
RECURSE: Calls the unifier program
recursively on the right and left sub
trees of z and y. Returns true if both
of the recursive calls do. z and y must
both be pairs.

An additional precondition (the cor
rectness criterion) for all terminals is
that the state variables z and y must
have either their initial values, or their
initial values dereferenced. I.e. if the
initial value z0 is a variable, z0 derefer
enced is what this variable ultimately
is bound to.

16

Transformations:
DEREFX: Dereference the variable x .
x must be a bound variable.
DEREFY: Similar.

Tests:
UNBOUNDX: Chooses the left succes
sor if x is unbound, else the right one.
x must be a variable.
UNBOUNDY: Similar.
CONSTX: Chooses the left successor
if x is a constant, else the right one.
CONSTY: Similar.
NOTVARX: Chooses the left successor
if x isn't a variable, else the right one.
x must not be a constant.
NOTVARY: Similar.

5. Generating all unifiers

We shall first simplify the specifica
tion of the primitive operations. Then
we shall translate the specification to a
Prolog program that generates all uni
fier programs.

The correctness criterion requires
the state variables not to be changed
from their initial values, except that
they may be dereferenced. The state
variables can only be changed by trans
formation operations. Since the only
transformations available dereference
the state variables, this criterion is al
ways satisfied, and need not be checked
in the Prolog program.

Since we use two state variables x
and y, the program's state is a tuple
(x,y). We shall divide the set of pos
sible states in subclasses to simplify
the specification of pre- and postcondi
tions. Let us recall that x and v rep
resent memory cells in the program.
These cells contain some data struc
tures. They could belong to, for in
stance, the set of constants. We de
note this set Se. The structures could
also belong to the set of unbound vari

ables, which we denote by 5.; or the
set of all pairs, S„ the set of all vari
ables ultimately bound to constants,
Sci the set of all variables ultimately
bound to pairs S>; or, finally, the set
of all variables ultimately bound to un
bound variables, Sv. For convenience,
let S» be the set of all variables that are
bound to something, even if it is an un
bound variable, S» — 5cU^rU^v- The
set S = S,US.US.US» then conUl,u

all possible data structures The set of
possible program states is S x 5:

V«i (correctitatciet(ii) - «'C Sxi|

There is an important observation
that simplifies the Prolog program con
siderably: All preconditions care only
about which types of data structures
(constants, variables bound to pairs,
etc.) the state variables hold There
fore, any details in the postconditions
beyond those specifying the classifica
tion of the output state, are unneces
sary.

The simplified logical specification
of operations will then be

V«i (terminal(ii, FAIL) —
si + $ A •iC(S,xS,|U(S,xS,||

V«i (rrrminoi(«i. EQUAL) —
si jt • A ii C 5, x S,)

Vji (tcrminaHii. lilNDXY) ~
A «£S.x|5\Si||

V«« (terminalfii, BINDYX) —•
«i • A li C (5 \ S») x 5.)

V«i (terminaJ(ii, RECUTtSE) —
>=» A li CS|X Sp)

V«», to (tr ant f ormation) ti. DEREFX.tt) -
•o = (*xS)n«i A si*#)

V«i, to (tram formation)ri. DEREFY. #•) -

17

10 = (5 x S(,)n «• a ti 0)

Yti, to,, to, (te«<(«i, UNBOUNDX, JOi, «Oj) «-»
«iC(S»|JS,)xS A
»o, = (5, x S)D« A «oi 0 A
to, = (Si x S)(~|" A «oj?fc0)

Yti,to,,tO} (<e#t(«i, UNBOUNDY, to,,to2) «->
iiC5x(5»U5.) A
to, =(S xS.lfl" A «0i jfc 0 A
40, = (5 x S»)n«» A «oiyfc0)

V«i, to,, 10} [tett(ii, CONSTX,iO|,to2)«-»
«oi = (Se x 5)0" A to, jfc 0 A
,o,=((S\5,:)xS)ri»« A «o, *0)

Vii,l«i,iO| (tr<((ii. CONSTY, «0|, «0j) «-»
«o, = (S x Se)0" A to, 0 A
• oj = (S x (5\5c))n«« A toj 1= 0)

V«i,«0i,<0t (te«t(«»\ NOTVARX,to,, toi) «-•
ti C (5\SC) x S A
to, =((5,U5»)xS)n«> A to, ,M A
to, = (S, x 5)f|'» A to t 0)

Vti.to,,tO} [teif(ti, NOTVARY,to,,tO}) «-»
«»CSx (S \ Se) A
to, =(Sx (5.US»))n«» Al»ut0A
»o, = (S x 5,)n« A tO} 0)

When we translate the specification
to Prolog, the following statements will
be taken care of by the negation-as-
failure rule:
V«i, op (-> tcrminal(ii, op) —

op t [RAIL, EQUAL, BINDXY,
B1NDYX,RECURSE})

Vti.to.op (-> traniformation(ti, op, to) —

op({DEREFX, DEREFY})

Vii, op. to,,tO} (-» teit(ii, op, to,,tO}) —
op t [UNBOUNDX.UNBOUNDY,

CONSTX, CONSTY,
NOTVARX, NOTVARY})

Every test and transformation op
eration deals with one state variable

only. This suggests a compact Pro
log encoding of the sets of states: Let
the Prolog lists of constants {6}, {«},
{c}, and {p} denote the sets Sb, S„ Sc,
and Sp. Unions and intersections corre
spond straightforwardly to lists. E.g.,
5cUsp i3 encoded as {c,p}. A Carte
sian product of sets is encoded as a tu
ple of lists: Sc x (Sc U Sp) corresponds to
(M,{c,p}).

The program-predicate can now
easily be translated to Prolog (upper
case symbols are Prolog variables):

program(Sl, OP) «— terminal(SI, OP).
program(SI, tequence[OP, PI)) «—

tram formation(SI, OP, SO) A
program(SO, PI).

program(SI, if [OP, PI, P2)) «—
teit(Sl, OP, SOI, S02) A
program(SO 1, PI) A
program(S02, P2).

The Prolog specification for the FAIL
operation looks like:

terminal([{p}, (c}),/ai7).
terminal[({c}, {p}), foil).

The first of these clauses says that the
FAIL operation accepts an input state
[x, y) e Sp X Se. Specifications for the
other operations are similar:

termina/(({c), {c}), equal).
terminal(((v},Y),bindzy) <-

intereection(Y, (6), {}).
terminal((X, {»}),bindyz) «-

intertedion[X, (6), {})•
teTminal(({p), [p}),recurte).

frontformation[[{b}, Y), derefz,[[v,c,p},Y)).
trantformation((X, {6}), derefy, [X, {», e,p})).

te«t(({6, »}, y), unboundz, ({»}, y), ({6}, y)).
fetf[(X, (6,»}), Unboundy, (X, {»}), (X, {6})).
tett([X, Y), conetz, (XI, Y), (X2, Y)) «-

inter tection(X, {c}, XI) A XI 0 A
intertection(X, {6, o, p},X2) A X2 0.

18

teit((X,Y), consty, (X, Y1), (X, Y2)) —
inter,ection(Y, {c},Xl) A Yl *= 0 A
intersection^, {b,v,p},Y2) t^Y2 ^ 0.

te»t((X, Y), notvarz, (X1, Y), (X2, Y)) «-
»nier«ect«on(X, {c}, {}) A
inter«ection(X, {6, «}, X1) A X1 ?«= 0 A
infer«ec<»on(X, {p}, X2) A X2 0.

te«t((X, X), notvary, (X, XI), (X, X2)) «-
inter,ection(Y, {c}, {}) A
inter,ection(Y, {6, »},X1) A XI ¥= 0 A
inter,ection(Y, {p},X2)AX2?fe 0.

Consider the sample Prolog call

program(({c, p}, {c, p}), P)

The Prolog program will instantiate
p to different unifier programs on the
premise that x<> an(l Vo are constants
or pairs. Two possible programs P are
generated:

if (con,tx,if (consty, equal, fail),
if (consty, fail, recur, e))

and

if(con,ty,if(con,tz, equal, fail),
if(con,tz, fail, recur,e))

The call

program(({b, v, c,p), {6, v, c,p}),P)

will generate all different unifier pro
grams. If we assume that all primitive
operations require only a finite amount
of time, the generated programs will be
correct.

6. Finding an optimal unifier

The Prolog program from the pre
vious section can now be modified so
that a statistically expected cost - here,
the execution time — is estimated along
the generation of the unifiers. To do
this, we introduce cost parameters and
frequency tables in the parameter lists
of the predicates.

A frequency table is a list of 36
numbers They are the frequencies of
the 6 x 6 = 36 different combinations
of types of state variables: * belongs
to one of Sv, Sci Sr•
similarly for p. At every node, the cur
rent frequency table is summed up, and
multiplied with the execution tune of
this node's operation, in order to com
pute the expected cost. The primi
tive operations affect the table: For in
stance, a DEREFX operation changes
all (Sc x S,)-states to (5, x S,(-states
The frequency of the former kind of
state will be sero after the operation
has been performed. The frequency of
the latter kind will increase with the
same amount as the frequency of the
former decreased. Another example is
a test operation, which splits the fre
quency table into two new tables: one
for the left successor and one for the
right successor.

The COST parameter holds the ac
cumulated expected cost. The predi
cate sum adds up the total number of
different cases in the frequency table.

The FRBQ parameter holds the "in
put" frequency table, and the FREQl
and FREQ2 parameters hold the "out
put" tables.

program(Sl, OP, HiEQ. COST) —
terminal(Sl. OP. HiEQ) A
co«t(OP, C) A
,um(FREQ. N) A
COST it C • N.

program(Sl, ,cquence(OP, PI),
FREQ. COST) —

tran,formation(SI, OP, SO.
FREQ, FREQl) A

program(SO, PI, FREQl,COSTl) A
co*t(OP, C) A
tum(FREQ, N) A
COST is C • N + COSTl.

19

program(SI,if(OP ,P1,P2),

FREQ, COST) —
teit(Sl, 0P,SOl,SO2,

FfiSQ, FREQl, FREQ2) A

proyram(S01, Pi, FREQ I, CO ST I) A

propram(S02, P2, F/?£<J2, COST2) A

co«t(OP, C) A

<um(FREQ, N) A
COST it C • N + COST 1 + COST2.

There should be one clause cott(OP,C)
for every operation OP. C is the re
quired execution time for OP. The call
tum[FREQ.N) binds N to the sum of all
numbers in the table FREQ.

We assume that an operation re
quires constant time, regardless of the
state it operates upon. (This has shown
to be a reasonable approximation for
our test implementation of the primi
tive operations.) There is one excep
tion to this: The RECURSE operation.
However, if N is the number of calls to
the unifier, and T is the expected exe
cution time of executing one step of the
unifier without recursion, the expected
cost of the complete unification will be
NT.

Suppose that we have generated
two unifier programs Pi and Pj for
some set of input states. Suppose also
that the execution of Pi ends with a
BIND (i.e. BINDXY or DINDYX) opera
tion, given some particular input state.
Then the execution of P, must also end
with a BIND operation for the same in
put. Likewise, if Pi ends with FAIL, I'i
also ends with FAIL. The same thing
holds for the EQUAL and RECURSE op
erations as well. That is to say, if Pi

spends an expected time T0 executing
terminal operations, then Pj will also
spend the expected time To at terminal
operations.

For the program Pi, our unifier gen
erator will compute Tt — To, where 7\ is
the expected time of one step of the

unifier without recursion. If T, — T0 is
the value computed for P2, the relation
between these two values provides us
with an upper hound on the speed dif
ference. Without restriction, assume
that P, is faster than P, (Ti > Tj):

Ti-To _T, (T,/T, — 1) NT.

Tt-To~ Tt T, — T0 NT,

Here are some examples of what
the unifier generator looks like. We do
not list all the clauses for all operations
since the rest of the program does not
contain anything essential beyond what
is given here.

The Prolog specification for the
FAIL operation looks like this:

terminaf(({p}, {e}), foil, FREQ).
termina/(({c}, {p}), foil, FREQ).

The FREQ variable is just a dummy in
terminal clauses. In tr ant formation and
test clauses, however, is passes the fre
quency table, which is in the following
format:

{FW, FVC, FVP, FVv,FVc, FVp,
FCV, FCC,FCP,FCv,FCc,FCp,
FW, FPC,FPP,FPv,FPc,FPp,
FvV, FvC, FvP, Fvv, Fvc, Fvp,
FcV, FcC, FcP, Fcv, Fee, Fcp,
FpV, FpC, FpP, F)pv, Fpc, Fpp)

The element Fij is the frequency of the
states (z,y) e S, x Sj. Example: FPc is
the frequency of the state where z holds
a variable that is bound to a pair, and
y holds a constant.

The specification for DEREFX is

tr ant formation{{{b), T), derefz, ({», c,p}, T),
{FW,FVC,FVP,FVV,FVC, FVp,
FCV, FCC,FCP,FCv,FCC, FCp,
FW, FPC, FPP, FPv,FPc, FPp,

0, 0, 0, 0, 0, 0,
0, 0, o, 0, 0, 0,

20

o,
{0,
0,
0,

o,
0,
o,
0,

0,
o,
0,
o,

0, 0, 0},
0, 0, 0,
0, 0, 0,
0, 0, 0,

FW, FVC,FVP,FVv,FVc, FVp,
FCV, FCC ,FCP,FCv,FCc, FCp,
FPV, FPC, FPP, FPv, FPc.FPp]).

For CON STY, it looks like this:

test((X, r), consty, (X, Y1), (X, ̂ 2),
{FW ,FVC,FVP,FVv,FVc, FVp,
FCV, FCC,FCP,FCv,FCc, FCp,
FPV, FPC, FPP, FPu,FPc, FPp,
FvV, FvC, FvP, Fvti, Fvc, Fvp,
FcV, FcC, FcP, Fcv, Fee, Fcp,
FpV, FpC,FpP,Fpv,Fpc, Fpp),
{0. 0, 0, 0, FVc, 0,
0, 0, o, o, FCc, 0,
0, o, 0, 0, FPc, 0,
0, 0, 0, 0, Fvc, 0,
o, o, 0, 0, Fee, 0,
o, o, 0, 0, Fpc, 0}.

{FW,FVC,FVP,FVv, 0, FVp,
FCV, FCC ,FCP,FCv, 0, FCp,
FPV, FPC,FPP,FPv, 0, FPp,
FvV, FvC, FvP, Fvv, 0, Fvp,
FcV, FcC, FcP, Fcv, 0, Fcp,
FpV, FpC,FpP,Fpv, 0, Fpp}) —

intersection{Y,{c},Yl) A Y I f*= 0 A

intersection^, {6, v,p},Y2) A Y2 jfc 0

7. Results

We have made a simple test imple
mentation of the primitive operations
to try out the optimization method.

The na ive - r eve r se benchmark is a
common way to measure the efficiency
of Prolog systems (Warren 77). It was
used to compute frequencies of differ
ent types of parameters to unify:

I*

V c P • e r

V 0 0 0 0 0 0
c 0 0 0 0 0 0
P 1 0 0 10 0 0
V 0 436 841 30 60 60
e 0 31 464 1 406 1
P 20 31 464 406 0 1064

The execution times of the trans
formation and the test primitives were
approximately

operation cost (a*)

DEREFX, DEREFY 75
CONSTX, CONSTY 4
UNROUNDX, UNUOUNDY 40
NOTVAliX, NOTVAIVY &

When the Prolog call

proffrom(({6, v,c.p). {6, n.e.p}),/',
FREQ, COST)

was executed with FREQ instantiated
according to the frequency table above,
the difference between tht maximum
COST and the minimum COST, was
about 2%. If FREQ was instantiated
to a table of uniform frequencies the
difference was 4.5%. If the costs of the
transformations and tests were all set
to one, and FREQ instantiated accord
ing to the frequency table, the differ
ence was around 8%. With uniform
frequencies the difference was 2%.

No significant difference could be
measured between actual implementa
tions of a worst case and a best case
uni f ie r p rogram when the no tve - r t v t r t t
benchmark was run.

21

8. Discussion

The differences in speed between
the best and the worst unifiers will be
smaller than the values computed in
the previous section, since the execu
tion time of the terminal operations is
excluded. The speed differences of Pro
log interpreters using those unifiers will
be even less.

Even in such a case as natwe-
reverse, with a very non-symmetric
distribution of types of arguments, it
seems to matter very little what the
order of the unifier's primitive opera
tions are. However, it should be re
membered that the situation might be
different for a unifier with other prim
itive operations. Maybe the most se
vere restriction of our set of primitives
is that no "multi-way conditional" ex
ists. Such an operation can be used to
dispatch very efficiently on data type
tags, and will increase the speed of the
unifier substantially.

One of the anonymous referees of
this paper suggested that our method
could be used in a compiler for finding
fast unification code. A typical situa
tion for a Prolog compiler which tries
to opencode unification is that some
thing is known about the types of the
terms to be unified. The compiler s
task is to use that knowledge to find
the fastest and smallest sequences of
instructions which perform the unifica
tion.

The method described in this paper
seems to be useful for optimizing other
kinds of small programs, too. However,
a hard problem is that the set of gen
erated programs easily grows far too
large. It becomes impossible to find the
optimal programs by pure depth-first
search. An approach that might prove
to be valuable in the future would be
to use a best-first search based on the

accumulated cost.

9. Acknowledgments

I would like to thank my colleagues
at ITPMATL for the help to proofread
this article. I am also grateful to the
anonymous referees for useful sugges
tions, to Annika Strom for checking the
English of part of the paper, and to
Peter Lothb erg for improving the print
ing quality.

10. References

Eriksson, L.-H.: Synthesis of a Unifi
cation Algorithm in a Logical Program
ming Calculus. Technical Report No.
22. TTPMATTi, Computing Science De
partment, Uppsala University, Sweden,
August 1983.

Frisch, A., Allen, J., Giuliano, M.: An
Overview of the Home Logic Program
ming System. Logic Programming
Newsletter No. 5, p 2-3. Winter
1983/1984.
Nilsson, M.: FOOLOG - A Small and
Efficient Prolog Interpreter. Technical
Report No. 20. UPMAIL, Computing
Science Department, Uppsala Univer
sity, Sweden, June 1983.

Warren, D. H. D.: Implementing Pro
log - compiling predicate logic pro
grams. D.A.I. Research Report No.
39, 40. Department of Artificial Intel
ligence, University of Edinburgh, May
1977.

—

hi

DRAWING TREES AND THEIR EQUATIONS IN PROLOG

Jean Francois Pique
Groupe Representation et
Traitement des Connaissances
C.N.R.S.
31 chemin Joseph Aiguier
13402 Marseille CEDEX 9,France

ABSTRACT

This paper describes in
detail how to compute efficiently
a drawing of Prolog trees with the
smallest number of nodes. This is
done using a system of equations
as in Colmerauer (1982). We give
examples with finite and infinite
trees in different domains.

1.0 INTRODUCTION

When handling complex trees,
the usual functional notation is
really a maze, and is a major
cause of mistakes. When creating
natural language front ends in
Prolog, I have regretted the lack
of a more visual representation of
trees which is the main difficulty
in grammar debugging. This was
the original motivation for
building the tools described here.
Colmerauer's modification (Colme
rauer 1982) of the theoretical
model of Prolog, while adding the
complexity of infinite trees,
introduces powerful ideas for tree
representation optimisation:

mainly, to define a tree with a
system of equations with the
smallest number of symbols. This
point is described in detail in
the second chapter.

Of all the possible represen
tations (functional, indentation,
...) of terms, the graphical
representation of the arborescence
is by far the clearest and the
most pleasant, although the most
difficult to manage. A convenient
algorithm to draw finite trees in
a compact manner is described in
the third chapter.

In what follows are given
examples in three different
domains. The first one (Fig. 1)
demonstrate the semantic tree
(Pique 1982) obtained in the
analysis of the sentence:

"A guard is standing at each
gate of the town where the
mayor was killed"

>draw-tree(the(y,and(town(y),the(z,mayor(z),was killed in(z,y))
),each(r,gate-of(r,y),an(s,guard(s),stand at(s,r)))>),

the
i

i r -i

y and e£|ch

i 1 1 r — 1

town the r gate-of an

I i i 1 ' .
y z mayor was-killed-in r y s guard stand at

rH I ^

24

NOTE ON PROLOG II SYNTAX

Before continuing, some
remark on the Prolog II syntax is
worth noting: constant symbols
begin with two letters, while
variable symbols begin with only
one letter eventually followed by
digits and single quotes. An
hyphen may appear inside a symbol.
A semicolon ends a rule. Lists
are written with infix dot
notation. Terms may be written as
functions e.g. ff(al,...,an) or
as tuples e.g. <ff,al,...,an>.
These two notations are
equivalent, however the first one
is only allowed when the first
element of the tuple is an
identifier. With the tuple
representation one can do very
fast and easy term composition and
decompostion.

The next example shows the
output of a compiler for a
structured language like Pascal.
This compiler compiles loops into
infinite trees of code instruc
tions . Each structured instruc
tion has only one entry point "e"
and one exit point "x". The same
is true for the generated code,
except for the conditional branch
which has two exit points: the
left one is the true condition
exit point, the right one is the
false condition exit point. As an
example, for the structured
instruction "while", we get:

e
I

while cond do cond
begin ->

ins ins x
end

cond
/ \

ins x
I

cond
/ \

x

Compiling is nothing but the
connection of code instruction
trees:

compile!WHILE(C,i),e,x> ->
compile-test!c,e,xl,x2)
compiled.e" ,x")
equal(xl,e')
equal(x',e>
equal(x2,x);

compile!REPEATUNTIL!l,C>,e,x> ->
compiled,e,x')
compile-test!c,e",xl,x2>
equal(x*,e')
equal<x2,e)
equaltxl,x);

compile(IF(c,il,i2),e,x) ->
compile-test(c,e,xl,x2 >
compile*il,el,x)
compile!12,e2,x)
equal(xl,el>
equal(x2,e2>;

compile*INS(i),e,x> ->
equal<e,<i,x>>;

compile<nil,e,x> ->
equal(e,x);

compiled.l,e,x) ->
compiled,e,x")
compile!l,e',x)
equal< x',e');

compile-test!N0T(c),e,xl,x2) ->
compile-test(c,e,x2,xl);

compile-test(c,e,xl,x2) ->
atomic(c)
equal(e,<c,xl,x2>>;

equal!y,y) ->;

Consider now a fragment of a
classical program to parse an
expression "term {• term}" with
one character lookahead:

next token;
term ;
while token'"*' do
begin
nexttoken;
term

end;

25

It is interesting to compile and
then draw the solution:

>compile
(iNS(call-nexttoken)

.INS(call-term)
,WHILE(is-token-PLUS

, INS(call-nexttoken)
.INS(call-term)
.nil)

.nil
, e
. x)

draw-equ(e);
e = call-nexttoken

I
call-term

I
token-is-PLUS

r-Ln
e x

As one can see, the solution
is very simple, exhibiting a
minimum code sequence. We can
also compare with the alternate
"repeat" solution in structured
programming:

nexttoken;
term ;
if token='+' then
repeat
nexttoken;
term

until not (token='+*);

which, when compiled, leads to the
same infinite tree:

draw-equ(e);
e = call-nexttoken

I
call-term

I
token-is-PLUS

Hi
e x

The third example defines the
transition diagram of a three
state switch. Each state is
described by a list of pairs
(transition, new state), nil
meaning no transition. The
initial state is "x":

z y x
o o o

/
o

switch(x) ->
equal(x,<left,y>.nil)
equal(y,<left,z>.<right,x>.nil)
equal(z,<right,y>.nil);

>switch(x) draw-equ(x);

x = . y =

1—' ! ' '
left nil left

right nil

right nil x
I
y

>compile
(INS(call-nexttoken)
•INS(call-term)
. IPCis-token-PLUS

, REPEATUNTIL
(INS(call-nexttoken)

.INS(call-term)

.nil
, NOT(is-token-PLUS))

, nil)
.nil
, e
. x)

2.0 COMPUTING A MINIMAL SYSTEM
OF EQUATIONS

A Prolog program manipulates
rational trees, finite or even
infinite as in the Marseille
extension (Colmerauer and al
1981) . These trees are defined in

26

the new theoretical model by a
system of equations, hence comes
the idea to compute from the tree
a pleasant representation of a
system defining it. Colmerauer
has given in his paper (Colmerauer
82) a program to do this. I
describe in detail here an
efficient program which computes a
system built from the functional
symbols of the tree and a set of
variables. A good looking system
is one fulfilling the following
conditions:

The number of symbols of the teres
of a system is then the sum of the
numbers from each equation. The
system is however not minimal if
all symbols of the equation are
counted as can be seen from the
following two equivalent systems :

{x=f(y,y), y«g(a>)

{x=f<g<a),g<a>)}

As an example,
tree defined by
Prolog program:

consider the
the followin?

A minimum number of equations

No duplication of non atomic
terms.

The second condition enhances
the ability to identify identical
complex terms. It can be proved
that, among the equivalent
systems, it is minimal in the
number of symbols of FuV occuring
in the right member of the
equations. This is interesting
because each term symbol will
correspond to a node in the
drawing.

More precisely, we define the
number of symbols of a term in an
equation "vi=ti", where "vi" is a
variable and "ti" a term, as:

1. If "ti" is a constant or a
variable : one.

^^ ti is of the form
fn(tl,...,tn)", where "fn" is a
member of Fn, and "tl,...,tn" are
terms : one plus the sum of the
number of symbols of the terms
"tl,...,tn" .

tree(x > ->
equal(x, ff<u,y,z>)
equal(y, gg<a))
equal(z, gg(b) >
equali b, gg(a))
equal(a, gg(b))
equal(u, ff(ff<x,z,a>,a,b>

equal< x, x) -> ;

is a member Of the set
assertions:

ff
/ 1 \

ff 99 99
/ 1 \ 1 1

ff 99 99 99 99
/ 1 \ 1 1 1 1

ff gg gg 99 99 99 99

of

/ I \ I I I I I

A system of equations
defining this tree and satisfying
our criterions (it is also Biniaal
with the second definition) is for
example:

{x=ff(x,y,y), y>gg(y)}

Since terms in the equation
are finite, they can be drawn as
arbor escences, enhancing further
readability. As a consequence of
minimality, even finite trees »ay
gain a plus from this represents"

27

tion. First consider completely
specified trees (i.e. with no
variables). We will assume that
the first equation in the system
defines the root of the tree.

The algorithm consists in
building a basic system with one
equation per subtree, and then
reducing it. Remember that Prolog
programs can only define rational
trees (i.e. trees with a finite
set of subtrees), so this basic
system always has a finite number
of equations. To build this basic
system, first pair each different
subtree with a different variable
symbol of the system. Then the
system is easily constructed as
follows: For each different
subtree add to the system the
equation "v=f(vl,...,vn)" where
"v" is the variable symbol paired
with the subtree, "f" is the
functional symbol of the subtree,
and "vl,...,vn" are the variable
symbols paired with the sons of
the subtree.

For example, the preceding
tree has two subtrees: itself,
and the tree "gg(gg(...)}". If we
pair them with the symbol
variables "x" and "y" respecti
vely, we obtain the system already
seen:

{x=ff(x,y,y), y=gg(y)}

In case of an uncompletely
specified tree (i.e. a tree
containing variables) we must
define the exact meaning of
"different subtrees". We say that
two uncompletely specified sub
trees are different if there
exists a tree assignment such that
they are different, which is what
formal inequality involves. We
may thus consider tree variables
as constants different from those
of the tree, and formally
represented by variable symbols
not occurring in the system.
Different variables are different

constants paired with different
variable symbols.

Now, to reduce the system S,
we consider every equation "vi=ti"
of the system except the first
one. There are two reduction
conditions:

1. If "ti" has only one symbol,
remove the equation and replace
each occurrence of "vi" in S by an
occurrence of "ti".

2. If "ti" has more than one
symbol, "vi" has no occurrence in
"ti", and there is only one
occurrence of "vi" in the system
when the equation is removed,
remove the equation, and replace
this occurrence by an occurrence
of "ti".

For example the tree

ff
/ \

gg hh
I / I \
gg gg x ff
II / \
aa aa gg

I
gg

I
aa

has six subtrees:

x
aa
gg(aa)
gg(gg(aa))
hh(gg(aa),x,ff(—))
ff(gg(gg(aa)),hh(...))

We get the basic system:

{ xO = ff(xl,x4),
xl = gg(x2),
x2 = gg(x3),
x3 = aa,
x4 = hh(x2,x5,x0) }

after reduction:

28

{ xO = ff(gg(x2),hh(x2,x5,xl)),
x2 = gg(aa) }

using our program to draw the
system, we get:

y = gg

I
aa

In our program we use Prolog
variables as system variable
symbols. This allow very fast
reduction because replacement of
occurrences can be done by
unification. While computing each
subtree, we also pair a new
variable symbol, create the
corresponding equation and carry

out the fxrst type of reduction.
Subtrees with multiple occurrences
are also flagged, so that the
final reduction stage is straight
forward. Each equation is
represented by a 2-uple "<v,t>"
where "v" is a variable and "t" a
term. The system is represented
as a list of equations, the first
one being the last in the list.
Rational trees are denoted *r",
"st" is a triplet tsubtree,
equation, number of subtree
occurences as immediate son of a
subtree), "pair-subtrees" take a
pair "(v,r)" and add the nee
subtrees in it to the list of
subtrees. Lists variables begin
with "1-". e.g. "1-st" is a
variable standing for a list of
subtree triplets.

y y z x

equations(r, <v,r>.nil) -> constant! r) ;
equations(r, 1-e) ->
specified(r)
term-representation(r, t, 1-son-pairs
pair-subtrees(1-son-pairs, St(r,<v,t>,1i.ni1, 1-st >
reduce(1-st, 1-e) ;

term—representation(<rl>, <vl>, pair(vl,rl).nil) —> •
term-representation(<rl,r2>, <vl,v2>

, pair(vl,rl).pair(v2,r2).nil) -> ;

pair-subtrees(nil, 1-st, 1-st) -> ;
pair-subtrees(p.l-p, 1-st, 1-st') ->

subtrees(p, 1-st, 1-stl)
pair-subtrees(1-p, 1-stl,1-st") ;

subtrees(pair(v,r), 1-st, 1-st) ->
constant(r)
substitute(v, r) ;

subtrees(pair(v,r), 1-st, 1-st') ->
specified(r)
in-list(r, l-st, c, 1-stl)
add subtree(c, pair(v,r), 1-stl, 1-Sf) ;

29

in-list(r, nil, not-in, nil) -> ;
in-list(r, st(r',<v,t>,n).1-st, named(v)

, st(r',<v,t>,add(l,n)).1-st) ->
formally-equal(r, r') ;

in-list(r, s.l-st, c, s.l-st') ->
eg(s, st(r',e,n))
formally-inequal(r, r')
in-list(r, 1-st, c, 1-st') ;

add-subtree(not-in, pair(v,r), 1-st, 1-st') ->
term-representation(r, t, 1-p)
pair-subtrees(1-p, st(r,<v,t>,1) .1-st, 1-st') ;

add-subtree(named(vl), pair(v,r), 1-st, 1-st) ->
substitute(v, vl) ;

reduce(st(r,e,n).nil, e.nil) -> ;
reduce(st(r,e,add(l,n)).1-st, e.l-e) -> reduce(1-st, 1-e) ;
reduce(st(r,<v,t>,1).1-st, 1-e) ->
substitute(v, t)
reduce(1-st, 1-e) ;

formally-inequal(r, r') -> dif(r, r') ;
formally-equal(r, r*) -> not(dif(r,r')) ;

substitute(v, t) -> variable(v) eg(v, t) ;

constant(r) -> ident (r) ;
constant(r) -> string(r) ;
constant(r) -> variable(r) ;

specified(r) -> not(variable(r)) ;

30

3.0 DRAWING OF A FINITE TREE

We must first examine some
conditions on the way we want
things to work. First, we do not
want to set any bounds on the
depth of the drawn trees. Second,
we need as much independance as
possible from the kind of hardware
on hand (paper teletype,
video,..), although we want to be
allowed to benefit from graphic
features when these exist. Third
and last, we want to represent the
tree with as much compactness as
is compatible with good readabi
lity. The first two conditions
imply to output the tree line by
line, starting from the root. To
fulfil the third one, the
bidimensional optimisation of the
nodes' placement was rejected,
because it is too complex and
costly. We prefer to place each
node with the same depth level on
the same line, as close as
possible not to overlap their
arborescences. A subsidiary
advantage is that the ramification
symbols are kept apart on the same
line, allowing the use of
semi-graphical possibilities when
present (the program which made
the drawings in this paper has a
data base defined for the DEC
VT100 terminal and an Epson FX80
hardcopy).

A survey of the problem sets
up an interesting dilemma : how
do we do determine the position
of, say, the root? This position
will depend on the other node
positions, but they too will each
depend on others (every node
ramification may arbitrarily
extend to the left or to the
right), giving an appearance of
circularity in which, as with the
egg and the hen, one does not know
where to start.

The solution is to keep
separate the problem of the
absolute position of the nodes.

from that of their relative
horizontal distance. Then, the
distance between two nodes will be
the minimum one such that there is
no overlap of their branches.
Knowing the relative distance
between all the sons of a node, we
can compute their relative
distance from this node, we thus
have a bottom up process which,
starting from the leaves, allows
for each node the computation of
its deviation from the father.

dl 2

gll_l :» dll 12/2
gl_0 dl 2 / 2

The key point is therefore to
determine the non overlapping
condition. To do this, we compute
for each node, a list of the
maximum width of its subtrees at
each depth level. These lists can
be computed during the same bottom
up process: knowing the relative
widths for each son of a node, we
get the node width by merging the
lists from the sons, with the
necessary shift. Once we know all
widths from the root, we can
compute its position with regard
to the margins, and then that of
every node. In the program, each
son deviation is relative to the
position of the first son. The
computation of their absolute
position is coroutined on the
evaluation of the first son

31

position which in turn is
coroutined on the evaluation of
the position of the father. So,
all absolute position computations
are delayed until the position of
the root is determined from the
tree width in the "margin" rule.
The tree is then drawn top down
breadthfirst. To do that, each
time a slice of nodes is printed,
the list of sons' descriptions are
concatenated. This can be fast
when using difference lists (for
information on d-lists see: Clark
K.L. an Tarnlund S.A. 1977) Her®
is an outline of the program. g
(left) and "r" (right) denote the

extreme deviations of an
arborescence at a given level, "d"
is the deviation of a node from
his leftmost brother, "x" the
absolute position of a node, "t" a
tree and "t"' the description of
his drawing, "o" is the printing
sequence of a node symbol and ' s
his size. Lists variables begin
with an "1", so "1-t" is a
variable representing a list of
trees. Difference list variables
are denoted "d-1", and "<l,q>"
denotes a d-list starting at "1"
ending at "q". "1-w" is the list
of extreme deviations (i.e. pair
"(g.r)") of a subtree until
maximum depth level.

draw-finite-tree(t) ->
node-positions(t, x, t , 1-w)
margin(x, 1-w)
by-slice(t'.nil) ;

node-positions(t, x, node(x,<o,g>), (g.r).nil) ->

atom(t, o, s)
center-node(s, g, r) ;

node-positions(t, x, node(x,<o,g,n,d 1>), (9-
specified(t)
tree-split(t, o, s, n, 1-sons)
center-node(s,g,r) , . , .
son-positions(1-sons, xl, nil, d- , w,
value(dl, sub(0,div(d-max,2)))
shift(1-w, dl, 1-w')
freeze-on(x, value(xl, add(dl,x))) ,

center-node(s, g, r) ->
value(r, div(s,2))
value(g, sub(add(r,1),s)) J

son-positions(t.nil, xl, 1-w, <t .q,q>, 1 w , d)
node-positions(t, x, t', 1-nw)
min-distance(1-w, 1-nw, 0, d)
merge(1-w, shift(l-nw,d), 1-w' >
freeze-on(xl, value(x, add(xl.d))) , d-max)->

son-positions(t.l-t, xl, 1-w, <f.l-f,q>, 1-w , d max) >

dif(1-t, nil)
node-positions(t, x, t', 1-nw)
min-distance(1-w, 1-nw, 0, d)

merge(1-w, . f q>, 1-w', d-max)
son-positions(1-t, xl# 1 wi» #

freeze-on(xl, value(x, add(xl,d) >

min-distance(nil, 1-w, d, d) > ,
min-distance(1-w, nil, d, d) -> ,

32

min-distance((gl.rl).ll, (g2.r2).12, d, d') ->
no-overlap(rl, g2, d, dl)
min-distance(11, 12, dl, d') ;

no-overlap(rl, g2, d, d') ->
value(d', if(inf(add(r1,1),g2)

, d
, sub(add(rl,2),g2))) ;

merge(1-w, shift(nil,d), 1-w) -> ;
merge(nil, shift((g2.r2>.12,d), (g.r).l) ->
value(g, add(g2,d))
value(r, add(r2,d))
merge(nil, shift(12,d), 1) ;

merge((gl.rl).ll, shift((g2.r2).12,d), (gl.r).l) ->
value(r, add(r2,d))
merge(11, 12, 1) ;

atom(t, ex(t), s) -> ident(t) lengthf t, s) ;

tree-split(tl.t2, exm("."), 1, 2, tl.t2.nil) -> ;
tree-split(<tl,t2>, ex(tl), s, 1, t2.nil) ->
ident(tl)
length(tl, s) ;

margin(x, (g.r).l-w) ->
left-most(1-w, g, x) ;

left-most(nil, g, g) -> ;
left-most((gO.rO).l-w, g, g'•) ->
value(g', if(inf(gO,g>, gO, g))
left-most(1-w, g', g'1) ;

by-slice(nil) -> ;
by-slice(1) ->
dif(1, nil)
print-slice(1, <1-next-slice,nil>)
new-line
print-ramifications-of(1)
new-line
by-slice(1-next-slice) ;

print-slice(nil, <q,q>) ->;
print-slice(n.l-n, <l,q>) ->
print-node(n, <l,li>)
print-slice(1-n, <11,q>) ;

print-node(node(x,<o,g>), <q,q>) ->
blanks-until(sub(x,g))
o ;

Pr^t-,n0de(node(x'<0'9.n,d-l>), d-1) ->
blanks-until(sub(x,g))
o ;

33

print-ramifications-of(1) ->
{ terminal dependant }

valuei v, f) -> val(f, v) ;

4.0 CONCLUSION

If symbolic representation is
the key for mental concept
expression in A.I., graphical
images are far easier to analyse
for people. We have described
some way to help to bridge the
gap. The tools we have described
will be included with the new
Prolog II Marseille interpreter.

5.0 ACKNOWLEDGEMENT

I am indebted to A.
Colmerauer for many fruitful
discussions. He proposed the
switch example.

BIBLIOGRAPHY

CLARK K.L. and TARNLUND S.A.
1977, "A First Order Theory of
Data and Programs", pp. 939-944,
IFIP Congr. Ser., Vol. 7, Publ:
North-Holland, Amsterdam.

COLMERAUER A., KANOUI H. and VAN
CANEGHEM M. 1981, "Last Steps
Toward an Ultimate Prolog", Proc.
7th IJCAI, Vancouver.

COLMERAUER 1982, "Prolog and
Infinite Trees", in: Logic
programming, p231-251, A.P.I.C.
Studies in Data Pocessing No.16,
K.L.Clark and Tarnlund Ed.,
academic press, London.

PIQUE 1982, "On a Semantic
Representation of Natural Language
Sentences", Proceedings of the
First International Logic
Programming Conference, Sept.
14-17th 1982, pp.215-223,
Marseille.

A Logical Reconstruction of Prolog II

A/.//, van Emden

Department of Computer Science
University of Waterloo

J.W. Lloyd

Department of Computer Science
University of Melbourne

.ABSTRACT

Colmcrauer has proposed a
theoretical model for Prolog II
based on tree rewriting rather
than logic. In this paper, we show
that Prolog II can be regarded as a
logic programming language.

1. Introduction
We take the view that a logic pro

gramming language is one in which a pro
gram is a first-order theory and computed
answers are correct with respect to this
theory (Clark 1979, Lloyd 1983).

One can then pose the question: is
Prolog II (Colmerauer 1982a, Colmerauer
1982b) a logic programming language
and, if so, in what sense is it? This ques
tion naturally arises from Colmerauer s
account of his theoretical model for Pro
log II. There, all explicit connection with
first order logic has been severed.
Instead, Prolog II is regarded as a system
for rewriting possibly infinite trees. Unifi
cation is replaced by transformations on
sets of equations.

Most Prolog implementations unify
without occur check. This lack may lead
to incorrect answers; hence it must be
regarded as a shortcoming to be accepted
for compelling reasons of execution effi
ciency. Prolog II also lacks the occur
check. But Colmerauer considers this
lack an essential feature of the language,
accounting for it in his tree-rewriting

model. Keeping in mind that the lack of
occur check may lead to incorrect
answers in ordinary Prolog, one may well
ask whether Prolog II is a logic program
ming language.

We show that the answer to this
question lies in making explicit Prolog IPs
theory of equality. Once that is done, it
is easy to demonstrate that answers com
puted by Prolog II are correct with
respect to a first-order theory consisting
of (essentially) the program plus the
equality theory.

Section 2 contains a brief account of
Prolog II. In section 3, we introduce the
idea of the"general procedure", which is
an SLD-resolution proof procedure under
lying both Prolog and Prolog II. In sec
tion 4 we show that Prolog is essentially
the general procedure plus the equality
theory {z = z}. (The meaning of "Prolog"
here excludes any form of negation.) In
section 5 Prolog II is shown to be essen
tially the general procedure plus a rather
more complicated equality theory. What
distinguishes Prolog from Prolog II then is
the different way they handle equality.
Section 6 contains some concluding
remarks.

Throughout, P denotes a Horn-
clause logic program not containing the
predicate " = ". Similarly, G will always
denote a goal which does not contain the
predicate " = ".

36

2. Prolog II
The following brief description of

Prolog II is taken from (Colmerauer
1982).

Definition An equation is an expression
of the form = t2 where t, and t2 are
terms.
Definition A set of equations is in sub
stitution form if it is
{ * i = < i , = t . } , w h e r e z „ . . . , z .
are distinct variables and none of
<j,. . . ,tn is a variable.
Definition A set {z, = {„ .. . >x% =
of equations in substitution form has a
loop if for some k = l,...,n, tk has an
occurrence of xk or if such an occurrence
of xk can appear after possibly repeated
substitutions in tk using equations of the
set.

In Prolog II, the solution of a set of
equations is a substitution of trees for
variables that makes both sides of each
equation the same tree. A set of equa
tions in substitution form is obviously
solvable over the domain of rational trees.
A set of equations in substitution form
without a loop is obviously solvable over
the domain of finite trees. Thus, equa
tions can be solved by reducing them to
substitution form by applying solution-
preserving transformations.

Consider the following transformations
(Colmerauer 1982):
Compaction:

Eliminate any equation of the form
x = x.

Variable Anteposition

If, f V variable and t is not a vari
able, then replace t = x by z = t.

Splitting

y s i • • • ' « » =
Confrontation

If * is a variable and tv t2 are not
variables and the size of t, is not

greater than the site of l2, then
replace z - I,. z - t, b;
z - t „ l , - l t .

Variable Elimination
If z and g are distinct variables,
r*» is in the system and x has
other occurrences in that system,
then replace these other occurrences
of z by y.

He asserts that for any finite set of equa
tions, application of the transformations
in any order is only possible a finite
number of times. Then either a set is
obtained which is io substitution form or
the set contains an equation of the form
<t™l2 where I, and 12 have different
outermost functions symbols. In the
latter case the set has no solution over
the domain of rational trees.

In Prolog II the clauses of a program
are regarded as rules for rewriting a tret
to a possibly empty sequence of trees. A
query consists of a sequence of trees and
a set of equations. A query is rewritten
to another according to

< (A|P..^—i-A, .A, •j,...^4>|. E > •

< M i nm.

^ +i« • • •» ^»|. E' >

if there is a rule

B «B|,Bm (m i 0)

in the program, if E U {B - A,} can be
transformed to substitution form and if
E' is such a form.

The final query in a derivation has
an empty sequence of trees. The
corresponding set of equations is the
answer.

Now that we have given a brief over
view of Prolog II, we are in a position to
explain in what sense it is possible to give
a logical reconstruction of Prolog II.

The domain of interest for Prolog II
is the set of infinite trees. What we have
to do is find a first-order theory for which
the intended interpretation is a model

37

and also for which every answer com
puted by Prolog II is correct with respect
to this theory. Naturally, the main part
of this theory is the program itself. The
remainder is simply a theory of equality.
We have to find an equality theory so
that each of the transformations
employed by Prolog 11 (compaction, etc.)
can be justified because they always pro
duce a set of equations that is a logical
consequence of the parent set of equa
tions plus the equality theory.

3. The General Procedure
Definition The homogeneous form of a
clause p((|> • • •> (s) ~ Bt, Bm is

p(x,,.... x«)

- = '«• ®1» • • • t Bm

where x,,. .., x. are distinct variables
not appearing in the original clause.

Definition Let P be a program. The
homogeneous form P* of P is the collec
tion of homogeneous forms of each of its
clauses.
Definition An atomic formula, whose
predicate symbol is " ** is called an
equation.

We now describe the general pro
cedure. We call it "general" because,
depending on the theory of equality
invoked after it, we get Prolog, Prolog II
or other specialized languages.

The general procedure uses the
homogeneous form P* of a program P and
produces an SLD-derivation (Kowalski
1974, van Emden 1977). It consists of
constructing, from some initial goal G, an
SLD-derivation using input clauses from
P", while never selecting an equation. The
general procedure terminates if a goal
consisting solely of equations is reached.
Note that because of the homogeneous
form of P* the general procedure never
constructs bindings for the variables in
the initial goal.

For a particular language, the gen
eral procedure needs to be supplemented
by a theory E of equality. E is used to
prove the equations resulting from the
general procedure. During the proving of
the equations, substitutions for the vari
ables in the initial goal are produced. If
the equation-solving process is successful
(that is, the empty goal is eventually pro
duced), then these substitutions for the
variables in the initial goal are output as
the answer.

The equation-solving process would
normally be done by resolving goal
clauses with clauses from the equality
theory. However, other methods are pos
sible. For example, the last step in the
equation solving process for Prolog II is
not a resolution step.

The introduction of the general pro
cedure is purely a didactic device to
explain which parts of Prolog and Prolog
II are the same. Obviously, it would be
very inefficient in practice since unsocia
bility of a set of equations is not detected
until near the end of a computation. A
practical system must perform some
equation solving throughout a computa
tion and, of course, this is what both Pro
log and Prolog II do.

4. Equality theory for Prolog
Proposition 1. Let P be a program, G a
goal and P' the homogeneous form of P.
Then P U {G} is unsatisfiable iff
pi (j {z = x) U (G) is unsatisfiable.

Proof We first prove that P is a logical
consequence of P' U (x = x). Let M be a
model for P' U {x = x}. We have to show
M is a model for P. Take in P any clause
P(tt - Bv..., Bm with vari
ables y, Vi- Suppose that for some
assignment of these variables
n • • B is true in A/. Consider the o j m
homogeneous form

p (x j , • • • , * »)
- z , = t j , . • • , x H = t „ , B v • . • , B m

38

of this clause in P. Let x, be the element
assigned to t, for the above assignments
of the y^'s, for i = 1,..., n. By the axiom
x = z and the assumption that
Bx ••• Bm is true in Af, we have that
p(zv , xn) is true in Af. That is,
p(tv , in) is true in Af. Consequent ly,
Af is a model for P and so P is a logical
c onse que nc e o f P ' U { z = x} .

It follows from this that if P U {<?}
is unsatisfiable, then so is
P ' U {x = x} U {G} .

Conversely, suppose
P ' U { z = z } U {G} is unsatisfiable. Let
Af be a model for P. Then we can
extend Af to a model AP for f U {z = z)
by assigning the identity relation to

• Thus G is false in AP and hence in
A/. (Note that G contains no occurrence
of " = ".) Hence P U {£?} is unsatisfiable.
•

Proposition 1 shows that the
equality theory for Prolog is the single
ax iom V x x = x .

5. Equality theory for Prolog II
The equality theory E for Prolog II

is rather more complex than the one for
Prolog and consists of the following
axioms:

1. V x x = x

2 - V r V j x = y . y = 2

3 - V x V y V x x = y y = , „ ,

4 Vx, .. Vx, Vy, .. Vy^

(zi = ' ' ' (*. = Vn)

- I (X X J =

for all function symbols /.

5- 3 », • • • 3x. 3 y, . . . 3 yt

<x l = «!) • • (x, = t n) ,

where the x. 's are distinct variables,
he f.'s are terms and

In" ' vf"' " " ' ' is the set of
all variables in the formula.

Note that axioms 4 and S are actu
ally axiom schemas. The first task is to
show that all the above axioms are true
for the intended interpretation of " • "
as the identity relation on the domain of
infinite trees. Axioms I to 4 are the
usual axioms for " • " and are certainly
true in the intended interpretation.
Axiom S is true by Colmeraner's
solvable-form theorem (Colmeraner 1982).
This theorem states that a system of
equations {*, - I, - t,) has a
solution in the domain of infinite trees,
provided the r,"s are distinct variables.

Now we are in a position to pro re
our main result, which amounts to the
soundness of Prolog II. lotnitively, it
states that every answer computed bj
Prolog II is correct with respect to the
first order theory consisting of the homo
geneous form of the program plus the
eq u a l i t y t heo ry E .

Proposition 2. let P be a program. P
i t s homoge ne ous f o rm . G a goa l and E
the above equality theory for Prolog II. If
Prolog II solves the goal G, then
P1 U E U (C) is unsatisfiable.

Proof Since the general procedure uses
resolution, it produces intermediate goals
all of which are a logical consequence of
P1 U {G}. We now verify that each of the
five transformations of Prolog II can be
justified on the basis of resolution steps
u s ing t he equa l i t y t h eo ry E .

Compaction

Consider a goal - y - e„ ..., ct,
where e,, . . ., ek are equations. Elimina
tion of y = y is justified by resolving the
goal with the equality axiom Vx * - *-
Thus «- , .. ., et is a logical conse
quence of { • y = y, e, q)U £.

Variable Antepoaition

This is justified in a similar way to
compaction, but using axiom 2.

39

Splitting
Resolve with axiom 4.

Confrontation
It suffices to show that

-x = t, = tj is a logical consequence
of |»r = l,,i =I2}U£. Indeed we
have the following derivation:

- x = t , . x - t 2

- X = 1„ X - t,, t, = t 2

(resolving with an instance of axiom 3)

- x - t 2

Variable elimination
We let «|x/y| denote the result of

replacing in t all occurrences of x (if any)
by y. The following lemma will be useful.

Lemma

x = y - i - «|x/y|

and z " y — '\z!y\ ™ a

are logical consequences of E .

The proof is by repeated applications
of axioms 1 and 4, plus an application of
axiom 2.

To justify variable elimination, it
suffices to show that

-x = y , i \ z l y \ - «|x/y|

is a logical consequence of

(• X > | , l > l } U E

Indeed we have the following derivation:

- x = y , t = t

- x « y , i * «|x/y], a|x/y] = ' (axiom 3)

• x m y, x m y, a|x/y] m ' (lemma)

- x • y, «|x/y| *» t

- z = y, a|x/y| = t|x/y|. t [z / y | = t

(axiom 3)

— z = y , «|x/y] = t[x/y], x — y (lemma)

- x = y, s|x/y] = t \ x ! y \ .

Finally, the last step in a Prolog II
computation is the application of the
solvable form theorem. From a logical
point of view, this is equivalent to an
application of axiom 5 above.

This completes the proof of the pro
position. •

8. Concluding Remarks
In (Colmerauer 1982) the theoretical

model of Prolog II is extended to cope
with inequalities. We have not attempted
to deal with these.

Note that the general procedure can
be followed by the use of any theory of
equality. We have given two useful
theories in this paper. It should be
interesting to consider other equality
theories. We are particularly interested
in theories suggested by two existing sys
tems related to Prolog. The first is
DLOG (Goebel 1984) logic-based database
management system which uses two dif
ferent equality theories: one for equality
of descriptions and the other for heuristic
evaluation of queries. The second is a
version of Prolog (Kornfeld 1983) with an
extended unification.

7. Acknowledgments
Many thanks to Sten-Ake Tarnlund

for his suggestions for improvement.
We are indebted to Imperial College

of the University of London for its hospi
tality which made this work possible.
MHvE gratefully acknowledges support
from the UK Science and Engineering
Research Council. We also acknowledge
our debt to the Canadian National Sci
ence and Engineering Research Council
for providing document preparation facili
ties.

40

8. References
K.L. Clark: Predicate logic as a computa
tional formalism. Research Report 79/59,
Department of Computing, Imperial Col
lege, 1979.
A. Colmerauer: Prolog and infinite trees,
pp. 231-251 in: K.L. Clark and S.A. Tarn-
lund (eds.): Logic Programming.
Academic Press, 1982 (a).
A. Colmerauer et al.: Prolog II Reference
Manual and Theoretical Model. Groupe
Intelligence Artificielle, Faculte des Sci
ences de Luminy, Marseille, October 1982
(b).
M.H. van Emden: Programming with reso
lution logic, pp. 266-299 in: E.W. Elcock
and D. Michie (eds.): Machine Intelligence
8. Ellis Horwood, 1977.
R.G. Goebel: A logic data model for the
machine representation of knowledge.
PhD Dissertation, Dept. of Computer Sci
ence, University of British Columbia,
1984.

Hansson. A. and Haridi. S. Programmiq
in a natural deduction framework. Proc
Symp. Functional Languages and Com
puter Architecture, Gothenburg 1981.
Hansson. A., Haridi. S. and Tarnlund.S-A
Properties of a logic programme
language. In: Clark. K.L. and Tvnlud.
S-A. Logic Programming. Academic Press,
1982.
W.A. Kornfeld: Equality for Prolog. Proc
8th International Joint Conference oi
Artificial Intelligence. A. Bnndjr (ed-l
William Kaufmann. Lot Altos. 1983.
R.A. Kowabki: Predicate logic a» s pro
gramming language. Proc. IFIP74, PP
569-574.
J.W. Lloyd: Foundations of logic pro
gramming. Technical Report 82/.,
University of Melbourne, revised May
1983.

A COMPARISION OF TWO LOGIC PROGRAMMING LANGUAGES: A CASE STUDY
Szots Miklos

Research Institute of Applied Computer Science
P . O . B o x 1 4 6 B u d a p e s t 1 1 2

H 1502 Hungary

ABSTRACT

Two logic programming languges,
the well known PROLOG and the new
LOBO are compared. LOBO is defined.
Two examples dealing with planar
covering problems are analyzed. It
is shown that both languages are
able to realize the same algorithms.
However LOBO is nearer to tradition
al languages: it does not use pat
tern matching, it can be complied
easily, and it is able to use tra
ditional features of programming.

INTRODUCTION

A cotnparision of two logic
programming languages, namely
PROLOG and LOBO (defined here) is
presented. The two languages stu
died here are equivalent in the
sense that both are suitable to
define every partial recursive
functions. In this sense both can
be considered universal. The ques
tion is, what class of algorithms
can be realised in them. Here theo
retical comparison is not presented,
a forthcoming paper will do it, but
a case study is analyzed. Programs
are introduced dealing with planar
covering problem, namely how a rec
tangle can be covered by given ele
ments.

DEFINITION OF LOBO

All formulas we write down be
long to the language of arithmetics
of integers, that is they belong to
the language whose similarity type
includes the numerals as constants,

function symbols +,-,•,div,rem,
and so on, relation symbols <,£,
and so on. Let I denote the stan
dard model of integers, and let Ax
be an axiom system of integer
arithmetics. Clearly, I is the on
ly Herbrand interpretation in

Mod (Ax).

Two sets of formulas are defi

ned :

$={Ti<y4T2:T1 and i ̂ are term

free of y}U
{x=y:T is a term free of y}

$ ={r<y:r is a term free of y}
q

In the following formulas belonging
to $ and $ are used to bound the

q
domain of bound variables. Quanti
fiers in the form Vy(qj(y)-><|,(y)),
if <p(y) belongs to 3>, and
3y(<p(y)A<p(y)), if <p(y) belongs to
$ or $, are called bounded quan-

q
tifiers. We define a language,
where all quantifiers are bounded.

Definition 1

C is said to be the set of
cuttable formulas and is defined
inductively as follows:

(i) quantifier-free formulas
belong to C;

(ii) if <|>. and ij>2 belong to C,

then formulas jA4>2» V4»2

also belong to C»

42

(iii) if (|> belongs to C, then,
formula kJ" also belongs to
C;

(iv) if q>(y)*$, and <J» belongs to
C, then y((p(y)-*^) also be
longs to C;

(v) if p(y)e$, and C belongs to
C, then y(<p(y)A<(.) also be
longs to C;

(vi) only formulas obtained by
the above rules belong to
C.

Definition 2

Cq is said to the set of quasi-
cut table formulas and is defined
inductively as follows:

(i) quantifier-free formulas
belong to C

V

V*2

(ii) if (pj and belong to Q

then formulas <J> ^ A<

also belong to C

(111) if <J, belongs to C then for
mula nj, belongs to C •

q *
(iv) if qj(y)4$ and ^ belongs to

Cq, then*y((p(y)^,) also be_
longs to Cq;

Table

(v) if t(y) i t u t and 4 belongs

C^, then I y(»(y)A4) alto
belongs to C :

9
(vi) only formulas obtained by

the above rules belong to

V
Definition 3

The languages <C ,(I),b»> is
9

called the Language of Quasi cut-
table Formulas (LQF).

Every cuttable or quasi-cuttab-
le formula has a well defined
truthvalue in I. A calculus is pre
sented to determine this truthvalie.

We give this rules in the fori
of algol-like programs. Let p de
note a function with C as domain,

9
and the set of algol like prograas
as range. If q,. (x) is a quasicut-

table formula, p(q.) is a procedu

re to compute the truthvalue of
d»j(a), where a is an evaluation of

x, as an input for procedure p(dj).
1 .

+i pCtbj)

quantifier-free
formula of type t.

2- — d>.: 1 yl1

2. . V 4,
J K p(d- j)

— zj tben z£ true else
begin P(Tk) zi*\i end;

43

4-i pC^)

1. ^y((T]<y i<x2)-4'j) (y i» z i) - (T , , true);
while z^A(y<t„) do

begin
y. - y.+l; j i J x i
p(4j)
z . z . ;

end; 1 J

2 - 3Y I ((X ,<Y i<T 2)A4 . J) (y i ,Zi) — (t , , false);
while I 2 .A(y<r,) do

begin
y. — y.+l;
p(4j)
z . *• z . ;

end; 1 J

3. 3 y.(y.-x)A4,j y . - T;

p(4j)
z . — z . l j

4. 3 y i(t<y i)A4.j (v. .z .) - (T , false);
while iz , do

begin
y. - yj+J;
p(4j)
z . — z . ;

end; 1 J

5. R(T 0 . - -*»T n_|> call R (T q Tn-1' Z i^'

6« <t - J(y i)ty i /F (T O , . . .

or
3 y i (yi"F (T 0 Vi) A

Mjtyj)

cal l F (T q Tn-1' y i ' ZF^ '
i f zF then

begin
P(4.j)
z i Zj '

pnd else z. ~~ false;

Table 2.

44

Boolean variable in pid^) Eets

the truthvalue.

The definition of mapping p for
quasi—cuttable formulas can be
found in Table 1 and in rows 1-4 of
Table 2. The calculus consisting
of these rules let be denoted by K.

Theorem 1

Let 4(xq xn-l^ be a quasi-
-cuttable formula with free variab
les x

Xn-l)Cao'"

Kn_l • If It=<l>(xo

.,an_j3, then

KH*Cxo /ao Vl /an-lL

In the following we deal with
definitions rather then theorems.
Let R and F be relation and func
tion symbols not occuring in the
similarity type in question. Defi-
nitions of relation R and function
F respectively are formulas

R(x

F(x

y • • • y X n -
p (x , . . . , X o n -

j • • • , X n— ,) « y -

"O

/-
N

X

o

• 'V i

) and

If the new symbol occurs in formu
la p (defining formula), the defi
nition is called implicit, if not,
I ? explicit. In the case

of definition of a function, let
X o V l> b e a qua s i - c u t t ab l e

formula having variable y as an
existentiaily bound variable. If
9(x) is equivalent with 3yp(x v)
<P(x) is considered as the quasi-'
cuttable definition of F(x) and it
is denoted by F(x)§„(x). The most
important properties r>f • •

theorems. 7 f°llowing

Theorem 2

Every partial recursive func
tion* can be defined by quasi-
cuttable formula*.

Theorem 3

Definition with quati-
cutcable defining fonwla hat ef
fectively computable least fix
point.

The question, we are interes
ted in, is whether a given n-tulpc
belongs to a relation defined by s
quasi-cuttable formula. The case
of explicit definition* it covered
by Theorem I. To handle implicit
definitions new inference rules
are introduced. The corresponding
program segments can be teen in
the rows 5,6 of Table 2. Calculus
K completed with the new rules it
d e n o t e d b y K . . a

Definition 4

The pair <LQF,Kd» is called

the LOgic of Bounded quantifiers
(LOBO).

Theorem 4

Calculus K. is s complete csl* a
cuius for unfolding quasi-cuttsbl'
definitions that is, if <* ,.•••

belongs to the least fit
point of the definition

'1 ' ,'v.]wo then o(x)Cx /,_
o o > . *

be proved in K
d*

LOBO can be considered ss »
logic programning language. Quasi-
cuttable formulas are programs,
with free variables as input va
riables, and existentiaily bound
variables as output ones. A proT
ram realising function p computes
a program written in a traditional
programning language from any
quasi-cuttable formula.

45

Here we only outlined the most
important facts, for further details
see CI3,C23,C33.

THE EXAMPLES

Two problems are presented,
both dealing with covering a rec
tangle with given elements. The
first problem is a special task
coming from architectural CAD, the
second one can be considered gene
ral.

1. The special problem

A rectangle is given with edges
of length X,Y respectively. It has
to be covered by rectangular ele
ments of given measurements. Ele
ments of unlimited numbers can be
used from each type. However, the
covering has to meet the following
requirements:

(i) the same element must be
applied in all 4 corners;

(ii) apart from the corner ele
ments, the same element
must be applied along the
edges in the x-direction;

(iii) apart from the corner ele
ments, the same element must
be applied along the edges
in the y-direction;

(iv) apart from the corner and
edge elements, the same ele
ment must be applied
troughout the remainder of
the rectangle.

Let us see first the PROLOG
program.

A remark: the MPROLOG syntax is
used (see C43), but MPROLOG pecula—
rities are avoided. Constants are
written with lower, and variables
with upper case letters.

The types of elements are rep
resented in facts of the form ele-
ment(P,Xl ,Y1), where P is an iden
tifier of the type, XI and Y1 are
the length of edges in x and y di

rection respectively. The rule des
cribing the possible coverings can
be formularized in one clause:

covering(X,Y,Pl,P2,P3,P4) —
element(PI,X1,Y1),
element(P2,X2,Y1),
rem(X-2»Xl,X2,0),
element(P3,Xl,Y2),
rem(Y-2-Yl,Y2,0),
element(P4,X2,Y2). (PP1)

Let us complete the above
clause with facts:

element(first,4,2). (PP2)

element(second,3,2) . (PP3)

element(third,2,2). (PP4)

element(fourth,2,1) . (PP5)

and with goal statement — covering
(13,8,P1,P2,P3,P4).
The search tree and the solution
is shown on Figure 1.

In LOBO programs the bounding
formulas are written as upper in-
deces of the corresponding quanti
fier, and the corresponding connec
tive (A or —) is omitted.

The LOBO program to solve our
problem can be seen in Figure 2.

Here N is the numer of types
of elements, and the measurements
of the i-th type are stored in
the i-th row of in a two dimensi
onal array ELEMENT. In the same
concrete case as above, N is 4 and
array ELEMENT is:

ELEMENT(1,1)=4, ELEMENT(1,2)=2
ELEMENT(2,1)=3, ELEMENT(2,2)=2
ELEMENT(3,1)=2, ELEMENT(3,2)=2
ELEMENT(4, 1) =2, ELEMENTS,2) = 1

The and/or tree representing
the proof search of the formula
can be seen on Figure 3. Clearly
the search tree of the PROLOG
and the LOBO program is basically
the same.

46

* rem(.,.)=0 is false

Figure 1.

Figure 3.

2. The general problem

The rectangle to be covered is
supplied with a mesh, whose para-
lels are at equal distance. So the
rectangle can be considered con
sisting of elementary squares. The
elements, which can be used in co
vering, are also considered being
constructed from such elementary
squares. The elements cannot be
rotated or reflected. We keep on
supposing that from each type there
is an unlimited supply.

First let us see the LOBO prog
ram. There are KK types. These ty
pes are represnted by two arrays.
Array E is of three dimensions.
Values E(i,.,.) describe the i-th
type by giving the characteristic
function of the element: E(i,jl,
j2) is different from {5 iff the
elementary square with coordinates
j1,j2 is covered by the i-th ele
ment. Every element can be covered
by a rectangle, the length of its
edges are in ME(i,l) and ME(i,2).
The foregoing conditions are il
lustrated on Figure A.

2 *

E(i,l,2),E(i,2,l),E(i

E(i,2,3), E(i,3,2)

are not 0, other E(i

values are 0

Figure 4.

. d covering(X,Y,ELEMENT,N) =
3p)0<PUN3p20<P2<N

{(ELEMENT(P1,2)"ELEMENT(P2,2)A
rem(X-2*ELEMENT(Pl,1).ELEMENT(P2,1))=0)A

3p30<P3* N

{(ELEMENT(P1,1)"ELEMENT(P3,1)A
rem(X-2-ELEMENT(PI,2),ELEMENT(P3,2))=0) A
3p40<P4.<N

(ELEMENT(P2,1)"ELEMENT(P4,I)
ELEMENT(P2,2)-ELEMENT(P4,2))}}

Figure 2.

48

The LOBO program, displayed on
Figure 5, consists of the defini
tion of three relation. Relation
full shows, whether an elementary

square of coordinates x,y is cove
red or not; and relation "fits" is
true iff the K—th element can be
placed at coordinates X,Y without
conflict with the squares covered
yet. Relation "coverable" is true
iff a rectangle of measurements
XX, YY can be covered. The numbers
of copies of elements used for co
vering is JJ, and their data is
expressed by function RESULT as
follows.

RESULT(I,1) is the serial num
ber of the I-th covering element;

RESULT (I, 2), and RESULT<I,3)
show its position (see Figure 6).

Note that formulas Vi3id,m
and 3fVi(+(j)Ci/f(i)3) are equi
valent. The only "dirty" trick in
the program is that variable sym
bol j is substituted by f(j), _ that
IS NEWRESULTCJJ,!), and ̂ _
and this expression is not hand
led as a term but as a variable
However this notation helps to
repress this function by an array

sr1 ""•* —
.y-b.l (NEWRESULT) wL""ei"™,"","

4-t__ a nrooram
the same array idem-i*-f • i_ '

for and NEWRESULT.

To interpret variables X Y n r

" e formula of reU-
proPerly, «.

" figure '*«'•
tion of the partirePresenta-
tangle also ecu s ̂ i reC"
for each m m - "rs "sing facts:

=r-Tr"°""f>'pr

not.

1

e (cross, 3,3,<l ,2>,<2, l>.
<2,2>.<2,3>.<3,2>.nill).

Figure 7.

The program:

coverable (XX, YY)*-cover(XX,YY).
cove rab 1 e (XX, YY)-cove red.

cover(XX, YY)*-empty(X,Y),
e(K,N,M,LIST), at(LIST,H,I),
XI is X-H, Yl is T-I,
XI+N<XX, YI+MtYY,
fits (K,LIST,XI,Yl),
cover(XX.YY).

at(<H,I>.LIST,H,I).
at(<G,F>.LIST,H,I)-at(LIST,H,I).

fits(K,nill,x,Y),
fits(K,<C,F>.LIST,X,Y) -

XI is X+G.YI is Y+F,
empty(K,XI,Yl), modify(K,XI,YI),
fits(K,LIST,X,Y).

modify(K,Xl,Y1)-
fsupclause (empty (XI, Yl)),
assclause(full(K,Xl,YI)).

covered - not(empty(XI,Yl)).

Here fsupclause and assclause
are uilt-in predicates, the first
f etes, the second creates a

c ause. Both are backtrackable.

foliN°te ^hat the prOLOG program
lows the structure of the LOBO

Lf3"1, Sl8nificant difference is
y m representation of the par-

coverable (XX, YY,E, ME, KK.JJ, RESULT)!
HX0<Xj;XX3Y0<Y«YY ^ ful l(Etjj>RESULT>x,Y)A

r3 k0<K<KK3 h0<H^ME (K, 1)3 j0<HME (K, 2)

((X-H+ME(KE,1))<XX)A(Y-I+ME(K,2)^YY))A

fits(E,JJ,RESUTL,X-H,Y-I)A

VL0<uj^N0<U33NEWRESULT(L,N)newresul t (l 'n)=resul t (l 'n)

9NEWRESULT(JJ+.,.)newresul t (j j+1)=k

3 NEWRESULT(JJ+. >2)NEWRESULT(JJ+2)=X-H

3newresult(JJ+I,3)newresul t (j j+1 '3)"y-1

coverable(XX,YY,E,ME,KK,JJ+1, NEWRESULT)33V

[Vx*WG^#<Y<YY ful l(E>jj>RESULT,X,Y):

full(E,JJ, RESULT ,X,Y) =

3J0<J<JJCj)<X-RESULT(J,2)<ME(RESULT(J,l),l)A

0<Y-RESULT(J,3)<ME(RESULT(J,1),2)A

E(RESULT(J,I),X-RESULT(J,2),Y-RESULT(J,3))^3

fits(K,E,ME,JJ,RESULT,X,Y) =
vh0<H<ME(K,I)¥iO<I<ME(K,2)

E(K,H,I) - nfuXl(E,J,RESULT,X+H,i+I)

Figure 6.

50

tially covered rectangle.

COMPARISON

The two examples presented
above show that the algorithms
which can be described by the two
languages may be the same. The ana
lysis of equivalences and diffe
rences will show that this experi
ence can be generalized. There are
few essential differences beetwen
the two languages in spite of the
different syntax and calculi.

(1) The basic difference
beetwen the two languages is that
PROLOG is based on a strict normal
form making superflous most con
nectives, while in LOBO one uses
all the logical connectives and
quantifiers. In the case of con
nectives it is not an important
difference. MPROLOG syntax allows
to use connective "or" in the an-
tecendent of a clause. As an
example, the partition "coverable"
may be written as:

coverable(XX,YY)-cover(XX,YY);
covered.

where reads V. The usual in
terpretation of "not" in PROLOG
does not differ essentially from
the usage of negation in LOBO.

(2) The difference is more im
portant in the case of quantifiers.
In PROLOG rules all variables are
free (universally quantified) ones.
Their equivalents in LOBO are the
existentially quantified variables.
^TS^ is.n0t contradiction, because
PROLOG is based on a refutation
proof procedure, while LOBO is
based on a direct one.

The most evident difference is
6 unlversal quantifier in LOBO

If connective "not" can be used in
the PROLOG version in question,
sometimes "Vx"_can be substi tu 'ed

y 13xt , as it was done in the

definition of "covered". Other
wise the partition corresponding
to a subformula begining with
universal quantifier has to be
progransned on a roundabout way.

(3) The interesting point is
that the almost identical search
trees of PROLOG and of LOBO prog
rams are organized by different
tools. In the case of LOBO, loops
running on the bounded variables
are explicitly expressed by the
bounding formulas. In the case of
PROLOG, the search strategy cont
rols loops on the different
clauses in the same partition,
using first of all the pattern
matching mechanism. It is a bar
gain: LOBO looses the possibili
ties provided by the pattern
matching mechanism, - that is the
role of input and output variables
are fixed, and equality has to be
stated explicitly. However, LOBO
gaines the possibility of simple
implementation, moreover of simple
compilation. Note that this basic
difference is difference in the
calculi. The difference is the
syntax occurs, because syntax in
both cases follow the demands of
calculi.

(A) The search trees that is
the executions of the programs may
be almost identical at the top le
vel, but at the bottom there is a
distinct difference. The data of
elements usable in covering are
expressed by facts in PROLOG, and
by arrays in LOBO in both examples.
The usage of arrays is not compul
sory: any data type can be used.
The important point is that a LOBO
program can use in a quantifier
free subformula any programming
feature, availahl p at the computer
system in question. In PROLOG the
built-in predicates correspond
to this feature, but they are
provided in a limited supply.

51

The importance of this factor
can be seen in the second example.
While the LOBO program is expres
sed in "pure logic", the PROLOG
one is based on such metalogical
features as the built-in predi
cates rewriting the formula itself.
Without this possibility the equi
valent of array RESULT has to be a
list structure overburdening the
program by handling lists.

SHORT SUMMARY

PROLOG and LOBO seem to be
basicly equivalent logic program
ming languages. The most important
differences:

(i) LOBO does not use pattern
matching, loosing so some program
ming facilities, and gaining the
possibility of simple compilation.

(ii) LOBO can use any progam-
ming feature of the computer sys
tem.

These differences makes us
claim that LOBO is nearer to tra
ditional programming. However we
think that it can play an important
role in developing fifth generation
computer systems. In CI 3 a simple
non-von-Neumann architecture is
suggested to execute LOBO programs.

REFERENCES

CI] Gergely T., Szots M.: "Cuttable
formulas for logic programming"
1984 International Symposium
on Logic Programning IEEE Press,
Mr

C2] Gergely T., Szots M.: "LOBO -
a new logic programming langu
age" in preparation

[31 Szots M., Csizmazia S.: "A ^
method for program synthesis
International Symposium on
Programming 5th Colloquium
Lecture Notes in Computer

Science 137 Springer Verlag
1982.

C43 "MPROLOG language reference
manual" SZK1, Budapest 1982.

COMPUTATION TREES AND TRANSFORMATIONS OF LOGIC PROGRAMS

Olga Steplnkovi
Institute for Computation
Techniques, CVUT
Horski 3, 128 00 Praha 2
Czechoslovakia

Petr Stepdnek
Charles University
Malostranske ncJmesti 25
118 00 Praha 1
Czechoslovakia

ABSTRACT

We shall introduce new con
cept of computation trees of log
ic programs and we shall use it
in reasoning about programs. We
shall describe three types of
transformations improving the
structure of logic programs. The
re are two natural measures of
ccrplexity suggested by computat
ion trees, namely, the number of
nodes called by recursion and the
maxinal number of AND/OR altern
ations on a branch. We shall show
that both measures collapse, more
precisely, we shall shew that eve
ry logic program can be transform
ed to a program computing the same
function the computation tree of
which has at most one called node
and at most two alternations on
every branch. We shall discuss so
me conclusions related to this
Normal Form Theorem.

0 INTRODUCTION

Problem reduction based on
deconposition of goals to several
subgoals is a prominent feature of
the procedural interpretation of
Horn Logic used in Logic programm
ing. It is well-known that problem
reduction can be naturally depict
ed by AND/OR graphs with altern
ating and- and or-nodes. D. Har-
el /1980a, 1980b/ described a sim
ple tree-like programming specif
ication language of so called AND/
OP-schemes which allow to capture
the logical structure of programs

developed by the stepwise syn
thesis in the discipline of stru
ctured programming. It was shown
in /Stepinkovi et al. 1983/ that
AND/OR schemes are naturally emb
edded in the class of logic prog
rams, namely, that to every AND/
OR-scheme corresponds a logic
program computing the same relat
ion. There are logic programs,
however, vdiich cannot be describ
ed by an AND/OR-scheme.

In this paper, we shall in
troduce a new concept of comput
ation trees for logic programs
extending the definition of a
computation tree frcm /Sebelik et
al. 1982/. The extension is mot
ivated by AND/OR-schemes.

We shall describe three typ
es of transformations of comput
ation trees which allow us

— to avoid recursion calls
frcm one branch of the tree to
another

— to move the nodes called
by clean recursion closer to the
root

— to push upwards the nodes
of OR-branching

These transformations have
many interesting implications to
logic programs. One of them is
the existence of a Normal Form of
Logic Programs. This generalizes
a similar result due to /Harel,
1980b/ concerning AND/OR-schemes.

54

The computation tree of every prog
ram ±n normal form has the follow
ing properties

/i/ there are at most two
alternations of AND- and OR-
nodes on every branch

/ii/ there is exactly one no
de to which refers every recursion
call

We suppose that the reader
is familiar with the operational
and least fixed-point semantics of
logic programs introduced in /van
Emden and Kowalski 1976/.

1 COMPUTATION TFRPS

We shall use the standard
graph-theoretic concepts like no
de, edge, leaf, root and branch.
If we describe a tree, we usually
put the root on top, the branches
grcwing dcwn. Hence the only par
ent node is above and all the suc
cessors of a node are below it we
speak about the depth of a node
instead of its height, we call a
node internal if it is not a leaf.

Let L be a first-order
language and R be a predicate in
L. An AND/OR-tree T is called
a corputation tree for p provid_

A/ the root of T is an

OR-node labelled by
where v,,...,v is an appraprlb
tuple or distinct variables. Even
OR-node of T is labelled by jr.
atomic formula of L and the lab
els of internal QR-nodes consist
of a predicate symbol and a topic
of distinct variables.

/ii/ If n is an OR-node
with the label A , all its sw-
oessors are AND-ncdes labelled is
Horn clauses the head of which
contains the sane predicate such
as A . Every edge oonnectinc s
with its successor n' is label is'
by a substitution which unifies i
with the head of the label of n".

/ill/ To avoid nultiplicity t
defining predicates, the labels c£
different internal OR-nodes have
different predicate symbols.

/iv/ If n is an NOtae
labelled by the clause

B * t • • •
then for every i*k, there Is J
successor OR-node n, of n the
label of which oantains the sat
predicate symbol as A,.

Moreover, if n. is a If
af, its label is A.1 . If Oj a
internal and A. is of the "
Q/t., where
are terms, the label
Q/Ul,... ,1^/ , where " 416

distinct new variables and there
are other mtrrmutnr leaves of c

labelled by the eoualities 0js

for j « m. If a tens t^

FKCT(x , ,y)

JKTh.1.])- FiCT(i,).TmBM.v.J>

- FKCT(i.y) TlMtS(w.v . y)

figure i

55

is a variable, we can use it in
stead of u. and leave out the
successor labelled u^ = t ̂.

/v/ Every AND-node labelled
by an unconditional statement B
is a list.

Example 1. Let L be the langu
age of arithmetic containing two
constants 0 , 1 denoting zero
and one and a binary function +
for addition of natural numbers.
The computation tree for the fac
torial of x is on Figure 1.

we distinguish two types of
OR-leaves according to the attach
ed predicate symbols. We call the
loaf primitive if its predicate
syntol is different from every
predicate attached to an internal
OR-node, otherwise we say that it
is a call-leaf. Since the predica
te symbols attached to internal
OR-nodes are different, the predi
cate symbol attached to a call-le
af 1 coincides with the predica
te symbol of exatly one internal
OR-node, vAich is a called node
/called by 1/. Note that the com
putation tree frcm Figure 1 cont
ains only one call leaf and one

called node. They are connected
by a dashed bow.

It follows from the defin
ition that the set of all clauses
labelling the AND-nodes of a com
putation tree for the predicate
R is a logic program computing R.
On the other hand, if P is a
logic program computing R , it
is not difficult to construct a
computation tree for R which
corresponds to the program CP
If there is a recursion in P ,
there might be several OR-nodes
with the same attached predicate
symbol. Thus we have to decide
which of these nodes will be int
ernal, the remaining ones being
leaves. Hence there may be finite
ly many computation trees for a
predicate R corresponding to a
given program P .

2 COMPUTATION TREES AND TIDY
PROGRAMS

Let A, IB be logic prog
rams. We say that /A extends E
iff the denotation /see van Emden
and Kowalski 1976/ of any predica
te P of B in /A is the sa
ne as that in B , i.e.

$QlEG(n.m,lO

**•, PU/S(if,m.n)

nuswiSu> piusMu) liusM,n> muitmov

[MULTU.p.u) PWS(*.u,z)

u•>

Figure 2a SQI£G/n,m,k/ iff k -(n + m)(n - m)

56

{ : A i -

I B P (t ^ , . . . , t ^) }

Vfe say that a computation tree is
tidy iff every call leaf 1 has
its called node on the paths from
the root to 1 .

Note that the computation
tree on Figure 1 is tidy but that
on Figure 2a is not.

A logic program A is tidy
for a predicate P iff A ha«,
tidy computation tree for P

let T be a computation
tree of A for P . Suppose T
is not tidy. We say that a cai
node is bad provided that one of
its calls causes untideness of T
/bad call/ - e.g. the node referr
ed to by call /l/ ̂Figure 2a
is bad. Namely, a node v of T
is bad iff there exists a i<̂ f
referring to v which is on a
different branch than v

The untideness of t can
be characterized by a pair/a,, a S
of natural numbers, denoted 2 (v / m \ ^r utdiKjuea

I T) , s u c h t h a t a i s t h e n a x -

iQLEG(n,m,k)

imal depth of all bad nodes of T,
«• 2 is the nurber of all ba3 no
des of T of the depth a j .

This characterization allow
to identify tidy trees, since T
is tidy iff ofT Wo, 0> . We
shall use the lexicographic well-
ordering of pairs of natural
numbers.

Lenma A Let A be an un
tidy conputation tree of a logic
program A for P . Then there
is a transformation of A to a
program A' with a conputation
tree A' for P such that

/i/ A" extends A
/Li/ x(A ") *. a (A) •

Corollary Given a predicate
P . every logic program A can

llary
logic ,—,— -

be transformed to a program B
which extends A and is tidy
for p .

Proof of the corollary: The
transformation frem. Lenma A pro
duces a program A * which extends

" PLdS(n,rr,.jt)

iĝ o-PiuS(n.m,). nust̂ o).rimu.»

PLUS(n.S t Su)- PL US(n.C,u)

PLUSfn.i'.u.)

NUlTfa., ,)

PtW(nO,n)«-
/' MULTk£">'MOlTfcp.u), nuiTfxO.w-

ptusau p.u)
/ | /V Aw '

twu.D.*)'

PMOUy,*)

Figure 2b

57

A with a carputation tree A',
the K -characteristics of which
is smaller than that of /K . Sin
ce ' is a well-ordering and the
extension property of programs is
transitive, it is clear that the
iteration of this transformation
gives a tidy program B extend
ing /Pi after a finitely many
steps.

Sketch of the proof of Lem
ma A : Let a.(A)-<or1, <X2>/<0,0>.

n be one of the bad nodes
with the maximal depth ..

be all call
to n , the

Denote

Let
of A
Let
leaves
calls of which are bad.
the parent nodes o f 1 . , . . . , L by

respectively. Denote by

i* * • • • # li,
s referring

the
/s

'subtree of A
Figure 3a/.

rooted in

fer from the labels of:
- all leaves of B ref-

ferring to nodes outside of B,
- primitive leaves of B.

Let A' be obtained from A hy
- attaching the tree B tc

every node 1. and cancelling
the call frcm 1. to n

- replacing the occurence
of Q/a./ in the label of rm
corresponding to the node 1^
by Qi/ai/

- adding the successor
z = a. to the AND-node m. /this
step1can be avoided by proper re
naming of variables in B when
ever a. is a variable/ for
every 1 i^ k /see Figure 3b/.

A •

ft'

4 <*0
"A/

Figure 3a
Let us assume for sinplicity that
the root of B is labelled by a
unary predicate Q .
Ifit B be obtained frcm B by
renaming of variables in such a
way that the label of the root
of B° is Q/z/ , where, z does
not occur in A . Let B be a
tree obtained from B by attach
ing an index i to all occurenc
es of those predicates which dif—

Figure 3b

This construction is illustrated
on the program frcm Figure 2a, 2b.
It is easy to see that A has
all the properties stated in lem
ma A .

3 PUSHING UP A CALLED NODE

The number of called nodes
seems to be one of natural measu
res of the complexity of tidy
logic programs. We shall show
that this measure can be collaps
ed to 1 . We shall use a method
similar to that of Section 2 .

Let n be the root of the

58

minimal subtree of T , which
contains all called nodes of T
and has an OR-node as a root. We
call any OR-node between n and
a called node of T supercalled
node .

We characterize any tidy com
putation tree T by a triple

ft/T/
1' a 2 >

of natural numbers, where /3>0
is the number of all supercalled
nodes of T (3 .
depth of all its
and (i.
called

Obviously,
node iff n> = o

is the maximal
called nodes

is the number of all its
nodes of the depth (I l.
T has a single called

1 .

Lemma. B Let A be a tidy
computation tree for P of a
logic program A with several
called nodes.
Then there is a transformation of
A to a program A' with a com
putation tree A' for P such
that

/i/ /A' extends A,
/ii/ (ft /A / x, (ft / a

Corollary Let A be a ti
dy logic program for p . Then
A can be transformed to a loqic
program B , which extends ,
and has a computation tree for
with a single called node.

This corollary follows from
lemma B in the same way as S?e
frSSaV™ S fclk"

Sketch of the proof of Tern-
is : Let

A

P

-T\

ma

^/a/ = </3o, n> v

Let n be one of and ft > i
the ° î oiie or
ft called nodes with depth
1 .• l̂y- if > 1 thS

, too. Let m ° be the ft: > i 1 J- , jj, -
first OR-node above n ietn m
Le labelled by n/x/ snH* Z/ /
respectively */£%££ _

Figure 4a

Let Aj be a program obtained
from A as follows

- the predicate R/y/ Is
replaced everywhere by a new bi
nary predicate Ttyy,F/ , where F
is a boolean constant.

- the clause R/y,T/ «- Q/y/
is added, where T is again a
boolean constant.

- the occurence of Q/t/
in the body of any clause free. A
is replaced by "R/t,T/ /see Fi
gure 4b/. ->

• • • 7X

b . r //K.

> 'r, . . %\ \

Figure 4b

59

It is not difficult to realize
than Aj extends /A . Let

be a program which is a tidy ext
ension of /A obtained by remov
ing the only bad call /l/ from
the computation tree of A /see
Figure 4b/ by the method of lem
ma A . Let be its computat
ion tree.
Now the proof is complete provided
that m is not the root of A .
In the other case, the predicate
P coincides with R . Then we
have to add the clause

R/y/ *- R/y,F/

to A, to obtain /A' . It is ob
vious that A' extends A . The
tree A* is obtained again from

Aj .

The proof of the fact that
fi/A'/ *. (I / A / i s a m e r e
technicality.

Remark The assumption about
tidyness of the program subjected
to the transformation can be drop
ped. But then no claim can be made
on the ft -characterization of the
resulting program.

4 PISHING UP PR-BRANCHING
Vfe have just seen that the

number of called nodes of a prog
ram does not reflect the complex
ity of the relations the program
expresses. Our present interest
will be in the minimization of the
maximal number of alternations of
AND- and OR-nodes on a branch
of a computation tree. We shall
prove that even this measure can
be collapsed to 2 .
First, we shall prove that branch
ing in an OR-node, which is not
a called node, can be pushed clos
er to the root. Then we notice
that non-called OR-nodes with a
single successor can be avoided.

The idea is illustrated by
the self-explanatory example /see
Figures 5a, 5b and 5c/. The pre
dicate MCOUSIN/x,y/ describes
the relation "y is a cousin of x
frcm x mother's side". The
branching in the node labelled by
the predicate PARENT can be
pushed up to the root by appropri
ate combination of two different
copies of the contoured subtree
/compare Figures 5a, 5b/. Unfortu
nately, this method does not lead
to the decrease of the number of
OR-nodes with multiple successors
That is why we are forced to in
troduce a rather complicated meas-

HCOUSltlU.j)

HtOUSW (*.*)«• t>Mt[HT(pg>.$IBLIilC(m,p)

SIBLm&tm.p) NU»)

PM£NT(P.,KF(M) PIRtNT(pi)-M(p.j>

I I
SlBUNC(nr),p>- M(l,">\M(i,p), WKnn,p)

PlF/m, p) Mk'm) H(l,p)

SlEimC(m,p)«- Ru,m),F(u,p), J>IF(m,p)

Hufi)

Figure 5a

PlF(m,p)

60

sure § on the nodes of the oorrp-
utation trees. Its purpose is to
characterize the complexity of the
path frcm the root to the given
node in terms of intervening OR-
nodes with several successors.

Let T be a computation
tree, the single called node of
which is the root. We say that
there is multiple branching below
an OR-node v of T iff there
is an OR-node with multiple
branching in the subtree of T
rooted in v . It allows us to
define valuation > on every edge
e of T . Vfe proceed as follows

- if the upper node of e is
an OR-node, we set v/e/ = 1 when

ever this node has several succes
sors, we set v/e/ » 0 otherwise

- if the lower node of e
is an OR-node and if there is no
ml tiple branching below this no
de then v/e/ - O , otherwise v/e/
is the nurber of all these irradi
ate successors of the upper node
of e bellow which there is a
multiple branching.

The weight J/v/ of a node
v of T is the sun of the we
ights of all the edges on the path
from the root to v .

The branching of a captat
ion tree T , where the root is
the only called node, can be cha
racterized by the pair j/T/

Mtowinu.))

MK*} MK

PhRi(p.y) * • F (p , y)

F (p , y)
Wf-sr)

Figure 5b

I
Ufa)

Figure 5c

61

natural nutters / , . whe-
^ is the maximal weight^/v/

1̂

of natural numbers
re
of a node v of T and is
the ranter of all nodes n such
that §/n/ ~ f and §>/m/<?/n/
for every node m above n.

Lama C Let A be a ccmp-
utation tree for P of a program
A , such that its root is the only
called node. Then A can be
transformed to a program A with
a confutation tree A' for P
such that

/i/ A' extends /A
/ii/ ^/A'/ /t ^/ A/

corollary Let A satisfy
the assinptions of Lenta C. Then
A can be transformed to a prog
ram B extending A with a
ccnputaticri tree B for P
such that no OR-node different
fron the root is called as well as
no such node has more than one
successor.

Sketch of the construction
for lemma C : Let m be such a
node of A that one of its sons
n has the maximal weight and

§>/n/=(£/A/> (p Mq/ . In such

a case m must be an OR-node
with several successors. Generally
mQ may have a sibling with

several successors, too. /see Fi
gure 6a/. The transition of Fig
ure 6a to 6b demonstrates the
basic steps of the process of push
ing up the branching of mQ to
the node k labelled by E .
We proceed as follows

1. we tear off the subtree
starting in the edge li

2. we make a new copy of the
contoured subtree and we attach to
it appropriately the subtree cut
off at the step 1.

3. the subtree frcm the step
2. is attached to the node k .

be the resulting
tree /Figure 6b/.

It is obvious that Â extends A.
The weights of those edges which
are changing during the process
are indicated on Figures 6a, 6b.
Obviously //A-,/ ̂ / A/ • T̂ ie

nore complex cases are treated
similarly.

Let
computation

Eh.,)/

£ B fv.Su), D(u,y)

*/L<

Cl(BflW)*- Cbt*)

CI (v) C b(*)

Figure 6a

62

Lemma D Let A be a logic
program such that its computation
tree A for P has a single
called node and a single OR-node
with several successors - both
are the root of A .

Then there is a program B
such that

- the maximal depth of
the computation tree for B and
P is two

- P has the same denotat
ion in B and A .

Proof : The non—called nodes
without multiple branching can be
avoided similarly as the node n
in Figure 5b /see Figure 5c/.

4 NOEMAL FORM THEOREM AND ITS
APPLICATIONS

By the combination of the
above methods, we can prove

Theorem Let be _ — logic
program ccnputing the relation P.
Then there is a program B ccnp
uting the same relation P with
a tidy computation tree B ,
vhich has at most one called node
and at most two alternations of
AND- and OR-nodes on one branch.

The extensive use of capit
ation trees in Sections 2 - 4 de
monstrates that graphical descrip
tion of logic programs provides
deep insight into their structure.
For exanple, the binary programs
/see Tarnlund 1977/ , stratifiab-
le programs /see Sebellk and St£-
pinek 1982/ or recursion-free pro
grams have certain characteristic
types of confutation trees. Many
structural properties of logic
programs are easily recognizable
in computation trees, which help
to detect those parts of programs
calling for special attention or
optimization. Oonputation trees
clearly visualize the dependencies
between predicates of a given pro
gram and thus make it possible to
recognize those subgoals which can
be solved concurrently.

We have suggested several
methods how to modify oonputation
trees to obtain better organized
programs computing the same relat
ion. In a subsequent paper /Ste-
pdnek and St£pinkov3/, we will
use them to prove that the synt
actical restrictions of the lang
uage PRIMLOG /Markusz and Kapo
si 1982/ do not impose any sig-

EKv.yk- BIMid.DKu.y)

B1 M- u. D1fcjT>-S

*7
&1kSn)-C1(v),C26)

EG»,y)- &26.Sh).D2(U.J)

C1M C2(0
CiU)

Figure 6b

63

nificant restrictions on the class
of carpu table functions.

REFERENCES

Greibach, S.A. Theory of Program
Structures: Schemes, Semantics,
Verification. Lecture Notes in
Carpiter Science, Vol. 36, Sprin—
ger-Verlag, Heidelberg, 1974

Harel, D. And/Or Programs: A New
Approach to Structured Programning
ACM Transactions on Programning
Languages and Systems 2 , No. 1,
1 - 17 , 1980.

Harel, D. On And/Or Schemes, in
Mathematical Foundations of Comp
uter Science 1980, P. Dembinski
/Editor/, lecture Notes in Comput
er Science, Vol. 88 , Springer-
Verlag, Berlin, 246 - 260, 1980.

Markusz, Z., Kaposi, A.A. A Des
ign Methodology in Prolog Program
ming, in Proc. 1st International
Logic Programming Conference, Mar
seille. Van Caneghem /Editor/,
139 - 145, 1982.

Sebelfk, J., St&pdnek, P. Horn
Clause Programs for Recursive
Functions, 325 - 340, in Logic
Programning, Clark, K.J., Tarn-
lund, S.A. /Editors/, Academic
Press, London 1982

StSpinkovd, 0., St&pcinek, P. And/
Or Schemes and Logic Programs,
/to appear/ in Proceedings of the
Colloquium on Algebra, Combinator
ics and Logic in Computer Science,
Gyor 1982

St^pdnek, P., StSpcinkov^, 0. Im
proving the Structure of Logic
Programs, /to appear/ in Proceed
ings of 3rd International Confer
ence Artificial intelligence and
Control Systems of Robots, Snole-
nice 1984, North Holland, Amster
dam 1984.

Tarnlund, S.A. Horn Clause Ccmnp-
utability, BIT 17, No. 2, 215 -
226, 1977.

Van Caneghem /Editor/ Proceedings
of the First International logic
Programming Conference, Marseille
1982. Groupe Intelligence Artifi-
cielle et Association pour la Dif
fusion el le Development de PROLOG
1982.

Van Brden, M.H., Kowalski, R.A.
The Semantics of Predicate Logic
as a Programming Language. J ACM
23, No. 4, 733 - 742, 1976.

SEMANTIC INTERPRETATION FOR THE EPISTLE SYSTEM
Michael C. McCord
IBM Thomas J. Watson Research Center
P.O. Box 218
Yorktown Heights, NY 10598

ABSTRACT

EPISTLE is a natural language
processing system being developed
at IBM Research, with current
application to text-critiquing:
criticism of grammar and style in
documents. The EPISTLE grammar,
with a very broad coverage, can be
considered purely syntactic. This
paper describes a semantic inter
pretation component, SEM, written
in PROLOG, which will be useful in
further developments for the
system. SEM is based partly on
previous work by the author, but
the present system is different in
that it translates surface parses
to logical forms in a single stage,
in which there is interleaving of
the processes of sense selection,
slot filling, other types of
modification, movement of nodes,
and exercising of semantic
constraints. Furthermore, the
constraints used are not simple
type-checks, but involve inference
with world knowledge.

1 INTRODUCTION

EPISTLE (Miller, Heidorn and
Jensen, 1981, Heidorn et al., 1982)
is a natural language processing
system applied currently to text
critiquing: Authors preparing a
document will be able to use EPIS
TLE to get corrections and criti
cism of grammar, spelling, and
style in the text. Other applica
tions to document analysis and
generation are planned for the
system. EPISTLE uses a grammar
(Jensen and Heidorn, 1983) written

in the NLP rule language (Heidorn,
1972) and a lexical/morphological
component (Byrd, 1983) which
together give the system a very
broad coverage of English. The
grammar can be considered to be
purely syntactic, using no semantic
constraints and producing purely
syntactic analyses of sentences.

This paper describes a semantic
interpretation component, SEM,
written in PROLOG, which takes the
output of the syntactic component
and produces logical forms for
sentences. SEM will be useful for
refinements of the text-critiquing
application, and will be crucial
for certain planned applications,
such as document indexing and
expert systems associated with text
analysis.

SEM has some elements in common
with previous semantic interpreta
tion systems of the author (McCord,
1982, 1981). The logical language
used' as the target of interpreta
tion is much like that in (McCord
1981), including focalizers. Scop
ing problems are dealt with.
However, the present system is
different in that it is organized
into a single stage in which there
is interleaving of the processes of
sense selection, slot filling and
other types of modification, move
ment of nodes, and exercising of
semantic constraints. In many
natural language systems, the
semantic constraints used are
simple type-checks in a hierarchy
of types. It is argued in this
paper that this is not adequate

66

generally, and that general infer
ence with world knowledge is needed
during semantic interpretation.
Such a mechanism is used in SEM.

2 NATURE OF THE INPUT TO SEM

In the interests of modularity
and broad coverage, the approach of
the EPISTLE grammar is to be as
independent of semantics as possi
ble, and to produce syntactic
analyses which in themselves often
have enough information for useful
text critiquing. When semantics
(and pragmatics) are ignored in a
natural language system, sentences
can be extremely ambiguous. For
avoiding multiple analyses, the
design of the EPISTLE granwnar
i nc ludes t he i dea o f t he approxi
mate surface parse. For most
sentences, a single, "approximate"
syntactic analysis is produced
Achieving this involves, mainly,
two decisions.

One decision is that modifiers
are attached in canonical ways.
For example, postmodifying preposi-

ri phrases are normally
attached to the next higher node
u ^ ̂ 3 VSrb phrase °r clause.
With this decision, the following
example has only one analysis.

John saw the man in the park with
the telescope.

in mostb'cast01^ £ ^
o f " d e l e t e d " ' o r W d " "
Thus, in m°Ved l tems-

Which horse did you want to win?

no indication ic
subject or object of "win" ° a ^
fact, no "trace" u ' * ln

for "which horse" To " 311

this sentence Is" „• Conse(lueatly,
analysis. Similarly, £ * °ne

John was killed by the river.

there is only one analysis, with no
indication of the logical subject
of "killed" ("by tha river" is
siaiply a prepositional phrase post-
Modifying "killed").

Interestingly, the idea of the
approximate surface parse is rather
similar to F. Pereira's right-most
normal form (Pereira 1983), which
was designed for the saee purpose
(reducing ambiguities in syntax).
These ideas were arrived at inde
pendently. Pereira's analyses do
contain more information pertinent
for semantics, for instance the
indication of traces, produced by
use of an extraposition graoisr
(Pereira 1981).

For SEN, an interface froe NLP
to PROLOG produces, for each
syntactic analysis, a PROWG ten
of the form

syn (Features, Marker,
Head, Daughters)

which we call a syntactic itw.
Here Features is a list of tens
representing the syntactic features
of the sentence (or phrase) being
analyzed. Marker is a variable
which relates the item to copies of
it made by SEM, through unified0®
with the markers of the copies (SEH
can make copies for handling
deleted and moved phrases). 1° ^
input to SEM, no two markers are
unified. Head is (the root fors

of) the head word of the phrase
(The grammar has the flavor of a

dependency grammar and every phrase
has a head word.) MorphologicS

features of Head are included in
Features. Daughters is a list of
syns representing the modifiers °
the head word (its daughters in
analysis tree). The position of
the head is indicated in this list'

3 OUTPUT OF SEM

SEM takes syntactic items and
produces logical forms representing

67

the meanings of sentences. These
forms are built up from variables,
constants, and compound terms
consisting of a predicate (usually
a sense of some word appearing in
the sentence) with its arguments,
or a conjunction of forms. Some
predicates can have logical forms
as arguments. This is the case for
(senses of) verbs like "believe .
Quantifiers, like "each" and
"many", and other focalizers (cf.
McCord 1981), like "only" and
"even", are also considered high
er-order predicates in the system
which happen to take (two) logical
forms as arguments.

As an example, the logical form
produced by SEM for the sentence

Who does Mary believe that every
man likes?

is
wh(X,person(X)&

believe(El.rnary,
every(man (Y) , 1ike(E2,Y,X))))

The first argument of every noun or
verb sense, such as X for "person
and El for "believe", is called the
entity argument, and stands for
the event, state of affairs, or
individual referred to by the pred
ication. Any free variables (such
as El and E2) in a logical form are
considered to be existentially
quantified.

Other examples of logical forms
will be given below. For more
discussion of the logical language
being used here, see (McCord 1981).

4 SEMANTIC ITEMS

In barest outline, the main
procedure of SEM converts each node
of a syn tree to a logical form
(representing a sense of the head
of the node), and combines these
forms to make a logical form for
the whole sentence.

However, in doing the combining,
richer structures, called semantic
items, are actually manipulated. A
semantic item is of the form

sem(Features .Connector,
Marker, LogicalForm).

Here, Features and Marker are as
in syntactic items, with the addi
tional condition that for noun
phrases and clauses, the Marker is
unified with the entity variable
for the head predication in the
LogicalForm. In the initial
semantic item created for a node,
the LogicalForm is normally a
simple predication (corresponding
to a sense of the head word); but,
after modification by (combination
with) other semantic items, this
field becomes ever more complex.

The Connector is a term which,
roughly, determines how the seman
tic item can combine with other
semantic items in the process of
modification. The procedure mod,
described below, which allows one
semantic item to modify (or combine
with) another to produce a third,
keys mainly off the connectors of
the first two items. Typically, a
connector term contains variables
which are (unified with) argument
variables of the head predication
in the semantic item; and the
structure of the connector term (as
interpreted by mod) determines how
these arguments get filled. A
special case of a connector is a
slot frame, and slot filling for
verbs and nouns is handled in SEM

by mod.

Examples of semantic items are

sem(quant:..,Q/P,nil,each(P,Q)) •

s em (quant: . . ,/^Q,nil,
each(man(X),Q))•

sem(vp:..,nil-(subj:X)-(obj:Y),
E,see(E,X,Y)).

68

sem(vp:..,nil-(subj:Y)-(pobj(by):X) ,
E,see(E,X,Y)).

In the first item, the connector
Q/P is such that modification by
the item results in (1) unifying P
with the logical form of the modi-
ficand, and (2) creating a new item
like the second item above. This
second item has a new connector %Q
which can "cause" unification of Q
with a further modified logical
form. The third and fourth items
have connectors which are slot
frames. (The format for these is
slightly simplified.) In the
fourth one, the slot frame has
undergone a transformation which
would be appropriate for a passive
VP.

In (McCord 1981), semantic items
were terms with slightly less
information, containing only the
Connector and LogicalForm fields
Connectors were called operators.
The new name is more appropriate
especially in the new system, where
connectors can be slot frames
because mod can use the connectors
of both a modifier and its modifi-
cand: The control is more symmet-
ric.

PRO

in T t h T i n t f O U r maln in«redients the interpretation procedure-
sform ietaction' modification, fram
ing Th"*' ^ know|edge-check-
semantl „ procedure (called
nod̂ s of as™ 11?"™}* 0" the
four of th • 311 uses all
level 6 lnSre<fients at every

Sense selection is done bv call

£ «

get filtered out by the other three
ingredients named above. Sense
selection is discussed further in
Section 6.

Modification, residing in the
procedure mod, is the heart of the
interpretation process. As indi
cated in the preceding section,
mod allows one semantic itea to
modify (or combine with) a second
to produce a third. As for vhich
pairs of items are combined by
modification, the basic, sisplified
idea is that all the daughters of s
node modify the node (with the
leftmost acting as outermost eodi-
fier), after the daughters then-
selves have been interpreted and a
sense for the given node is chosen.
Modification is discussed further
in Section 7.

Transformations are needed in
this scheme because the structure
of the syntactic analysis tree say
need "correcting" in order to sake
the straightforward process of
modification work correctly, there
are two sources of this need for
correction.

One source is that quantifiers
(and several other types of oodifi*
ers) may have intended scopes in
logical form which do not corre
spond to their positions in the
syntactic structure. This probles
was discussed extensively hi
(McCord, 1982, 1981) and was dealt
with there by a type of tree trans
formation called reshaping. I®
these previous systems, reshaping
was done in a whole separate stage
(on the whole tree), before any
modification was done. In the

present system, the steps of
reshaping are interleaved with all
the other steps of interpretation,
so that there is only one stage of
interpretation. This is done so
that there can be more "immediate
feedback" and filtering for the
choices of reshaping from the other

69

steps of interpretation, especially
knowledge-checking.

The other source of the need for
correction is the fact that the
syntactic analysis tree is an
approximate surface parse, so that
modifiers may need to be moved,
created, or identified in some way.

Transformations appear in
several different ways in SEM.
There are some (though very few)
like ordinary transformations of
transformational grammar, operating
on whole syn trees. The others
are more implicit. In the (reshap
ing) transformations dealing with
scoping, semantic items correspond
ing to original tree nodes are
moved, but their positions are kept
track of in arguments of PROLOG
procedures. Still another type of
transformation is of slot frames,
handled by the procedure sense.
These various types will be
discussed below where they are
pertinent.

Knowledge-checking is a gener
alization of semantic type-check
ing, in which the reasonableness of
a logical form is checked, with
inference, against knowledge about
the use of the predicates in the
form. At every level of call to
semant, the logical form of the
semantic item produced at that
level is checked with the procedure
kcheck, which is discussed in
Section 8.

Now let us look at the defi
nition of the main procedure
semant.

semant (Syn, Sem, Sisters) <-
transform(Syn.Synl) &
semant(Synl,Sem,Sisters).

semant(syn(Features , E ,Head,Daus) ,
Sem,Sisters) <-

semantlist(Daus.Mods) &
reorder(Mods.Modsl) &
sense(Features,E ,Head, SemO) &

mod1ist(Mods1,SemO,
Sem,Sisters) &

satisfied(Sem) &
kcheck(Sem).

The top-level use of semant is
to take a syntactic item Syn and
produce a semantic item Sem.
However there is an additional
output, Sisters, which is important
for lower-level calls. Interpreta
tion of a node Syn can produce new
(left) sisters for it because of
the operation of raising. This is
a type of transformation involved
in reshaping (to handle scoping
problems). For example, the quan
tifier node "each" in the noun
phrase "each man" is raised to
become a sister of the noun phrase.
Raising is handled by mod and will
be discussed further in Section 7.
In the top-level call to semant,
the Sisters list is required to be
nil.

The first clause defining
semant calls the procedure trans
form to perform a tree transforma
tion on Syn, and then calls semant
again on the output. (Thus another
transformation could apply, and so

on.)

Some of these transformations
are like the transformations of
transformational grammar, although
SEM needs only a very few. The
only transformations of this type
in the current version of SEM are
wh-movement for wh-questions and
relative clauses. However, coordi
nation (with ellipsis) will proba
bly be treated in SEM by use of
transformations. (This will there
fore be an alternative to the meta-
erammatical, parsing approach to
coordination in (Dahl and McCord,
to appear).)

Other transformations performed
by transform have the purpose of
trying out corrections to the
approximate surface parse. For

70

example, postmodifying preposi
tional phrases can be reattached.
The non-determinism of PROLOG
allows wrong reattachments to be
blocked by other ingredients of
interpretation.

The various transformations of
these two sorts are defined simply
by PROLOG clauses for transform,
one clause per transformation.

Now let us look at the second
clause for semant. The call to
semantlist does the recursive
^ rP re t® t ion on the daughters
(u s) . o f t h e s y n t a c t i c i t e m ,
pro ucing a list Mods of semantic
items which are to be the (seman
tic) modifiers of the node. This
procedure just calls semant itself
on each member of the list Daus
and any sisters produced are blend
ed into the list Mods during the
process. ® ne

^e procedure reorder is a
reshaping procedure (dealing with
scoping). i t performs a

tron.of th* "ods list according to
scoping heuristics (see Mrf ^
1982 i qo i \ A ^see McCord rvss* ingredients. y other

selects if lca ted above, sense

representing TTen'e of^th (Sem0)

being worked on. node

can"™ ^ £°±*" ̂
Modsl. This ic A i. m°difiers
modlist, which jhe ca l1 to

member of Modsi f° r each

items act on Semo' these

the outermost modified this^ "
procedurally that means
actually modifies Semn , r ightD,ost

next-to-rightmost m°. f l rs t, the
result, and so Qn ®°difies the

satish4daSLdW°tor°kCS^ek C311S' to

« »>• sk„ If th«|

» - uuc
blocks Sen if the connector of Sea
is a slot frame containing
(unfilled) obligatory slots. The
procedure kchmck is discussed in
Section 8.

6 SENSE SELECTION

In the call

sense(Features.E,Head,Sea),

the list Features, the marker E,
and the head word Head are used as
input, and the output is the sesan-
tic item Sea representing a sense
of Head as head word of a phrase of
type Features with aarker E.
Another way of saying it is that
Sem is an initial semantic itea for
the given phrase-with-head before
anything has BK>dified it. The
logical form of Sem is a predi
cation whose predicate is one of
the senses of Head (for the given
Features); and the connector,
depending also on Features,
controls how the arguments of this
predication get filled in. For a
given word sense, different connec
tors can be produced by sense,
because the connector can depend on
non-lexical features of the phrase.
For example, a passive VP syn gets
a different sem from an active
one.

Currently, sense produces ten
different types of connectors.
Examples of three different types
were given in Section 4. These
will not be described systemat
ically in this paper, because most
o them are like connectors already
described in (McCord 1981). Howev-
er, slot frames were not used as
connectors in (McCord 1981), and

ese are worth describing here,
especially because sense has to do
a work to produce them.

A slot frame is of the form

frame (Type, Slots).

71

Here, Slots is a list of slots,
each of which is a pair (as in
(McCord 1982)) Slotname: Marker.
Because of the way the procedure
mod is applied, slots get filled
right-to-left. So for convenience
in displaying slot lists, these
lists are formed with the left-as
sociative operator ' Thus,
examples of slot lists are

nil-(subj :X)-(obj :Y)- (pobj (to): Z)

nil-(subj :X)-(iobj :Z)-(obj : Y)

Each of these could get associated
with a predication like
give(E,X,Y,Z) for a ditransitive
verb.

The Type field for a slot frame
is either nil or is of the form
adjunct(X). The latter type is
used when the semantic item comes
from a phrase like a prepositional
phrase, a participial clause, or a
relative clause, where there is a
"topic" X (the first argument of
the preposition, the missing
subject in the participial clause,
the topic of the relative clause)
which will be unified with the
marker of the modificand when this
semantic item acts as an adjunct
modifier.

For phrases whose head is a
verb, sense does the following
things to find a corresponding
sem.

First a transitivity type (tran
sitive, ditransitive, etc.) is
obtained from the features. (This
is actually non-deterministic,
because some verbs can have more
than one transitivity feature.)
The voice (active, passive) is also
determined from the features. For
the given transitivity type and
verb, a predication Pred corre
sponding to a sense of the verb,

a canonical slot list Slots,

are made up (assuming an active
clause environment for the verb).

Then a procedure slotrans looks
at the canonical slot list Slots
and the voice, and produces a
transformed slot list Slots 1 (which
could be left the same as Slots
itself). For example, in the
passive case, the slot list

nil-(subj:X)-(obj:Y)

is transformed to

nil-(subj:Y)-(pobj(by):X).

This operation is non-determinis
tic; e. g., for ditransitive verbs
more than one result is possible.

Finally, a procedure mkframe
looks at the phrase category and
Slotsl, and makes the frame that
will be the connector for the
desired sem. In the case of
participial clauses, mkframe
deletes the subject slot from
Slotsl, so that in this clause no
overt subject is sought. The mark
er X associated with this deleted
subject slot is, however, stored in
the type, adjunct(X), of the frame.
In the case of imperative clauses,
mkframe also deletes the subject
slot, but unifies its marker vari

able with "you".

As an example, for the partici
pial clause "given me by my aunt ,
the successful choices would be the
following. The predication is
give(E,X,Y,Z), and the canonical

slot list is

nil-(subj:X)-(obj:Y)-(pobj(to):Z) .

This is transformed by slotrans to

nil-(subj:Y)-(iobj:Z)-(pobj(by) :X) .

Then mkframe produces the frame

frame(adjunct(Y),

72

nil-(iobj:Z)-(pobj(by):X)) ,

and the sem produced by sense is

sem(ptprtcl: . . ,
frame(adj unct(Y),
nil-(iobj: Z) -(pobj(by):X)),
E, give(E,X,Y,Z)).

7 MODIFICATION

The procedure mod handles the
interaction between a semantic item
Sem and a semantic item SemO which
has been made (implicitly) a daugh
ter of Sem by semant, so that SemO
is a candidate to modify Sem.
There are actually three types of
interactions:

(1) The daughter SemO can simply
modify the mother Sem, producing a
new (modified) version Semi of the
mother. In this case, the daughter
goes away (no longer is used in
the interpretation). This is the
case, for example, when the daugh
ter fills a slot in the mother, or
is an adjunct modifier such as a
relative clause.

(2) The daughter SemO is simply
raised to become a (left) sister of
the mother Sem, and no real modifi
cation takes place. This happens,
for example, within the processing
of the grades of each student"
where the quantifier "each" (after
already having modified "student")
gets raised to a • nt >

and the mother ra daughter

the new version o8fetrnhanged' 3"d
Sets promoted to be

the the moth«, This happens" "hen

"student^in^thi "eaCh" modifies
student". The ra°UnaPhraSe "e3Ch

the daughter Ls " lo^"^ °f
each (student (X) Q) form

J > M) a n d a co n n e c t o r

«Q so that it is ready to modify
its new mother (by unifying Q), or
to be raised even further, as in
(2). The "student" node still
needs to be there for slot filling.
It has a slightly different connec
tor, so that it does only slot
filling for its mother. (If there
had been no determiner, the
original noun phrase would modify
its mother both by slot filling and
by left-conjoining.)

The procedure mod manages these
three types of interactions by
having the calling form:

mod (SemO, Sem. Semi, Sisters, Sistersl).

Here SemO is the daughter, Ses is
its mother, and Semi is the new
version of the mother. The last
two arguments are treated as a
difference list (for convenience of
the calling procedure modlist)
which contains the raised daughter
in cases (2) and (3) above ana is
empty in case (1). Case (2) is
handled by calling a procedure
above which is like the procedure
of that name in (HcCord 1981)-
Everything else is handled by a
series of clauses for mod which
look mainly at the connectors of
SemO and Sem (especially Se«0).
These are like clauses for trans in
(McCord 1982, 1981), except that
they now handle slot filling and
raising, as well.

A sample clause of this type,
which illustrates case (3) above,
is

mod(sem(FeasO,P/Q,XO,LFO),
sem(Feas,*,X,Q),
setn(Feas ,nil,X,Q),
S, sem(FeasO,»P,X0,LF0):S)•

Here, the logical form LFO in t'ie

daughter could be each(Q,P).
the logical form in the moth"
could be student(X), so that Q gets

unified with student(X).

73

One of the clauses for mod
calls a procedure filler, which
handles slot filling. This proce
dure expects the connector of the
mother node to be a slot frame.
From the slot list, a slot is
chosen, looking from the right
(since modifiers do their work
right-to-left). This choice is
non-deterministic. Slots can be
passed over, but only if they are
not declared to be obligatory. Any
slots passed over, plus the chosen
slot itself, are discarded from the
slot list (in the sense that the
new version of the mother has a
slot frame with these slots
removed). The marker of the chosen
slot is unified with the marker of
the modifier. (This is the main
point of slot filling.) Then, to
check on the correctness of this
filling, filler calls a procedure
fill, which looks at the name of the
chosen slot and knows what specific
slots require of their fillers.
For example, the slot pobj(by).
would require a prepositional
phrase whose preposition is by .

The action of fill can also unify
other marker variables. For exam
ple, in the clause

John was asked to see Bill.

the main verb gets a predication
ask(E,X,Y,Z) (read "X asks Y to
Z"), and the associated slot list
is

nil-(subj :Y)-(pobj (by) :X)-
(infcomp(Y):Z).

At the time of filling the
infcomp(Y) slot, the infinitive
complement "to see Bill" has been
interpreted and has semantic item
of the form:

sem(infcl:...,
frame(adjunct(U) ,nil), El>
see(El,U,bil1)).

The procedure fill knows to unify U
with the variable Y in the slot
infcomp(Y). After the subj:Y slot
for "ask" is filled by "john", the
resulting logical form for the
whole sentence (neglecting tense)
is

ask(E,X,john,see(El,john,bill)) .

In (McCord 1982, 1981), slot
filling was done during parsing.
In some ways, that is more natural.
Indeed, it would be attractive to
have only one pass (parsing) in
which complete logical forms are
produced, as has been done in the
earliest logic grammars (see Dahl
1981). But there are strong argu
ments for having a second pass in
which one can look at the whole
parse tree. A good treatment of
scoping is easier on a second pass,
and coordination is probably easier
to treat on a second pass (with
transformations which duplicate
elided material). The first-pass
treatments of coordination in (Dahl
and McCord, to appear) and (Woods
1973) involve looking at parse
histories, which can be difficult
to manage. A second-pass treatment
of coordination would go hand-in-
hand with slot filling on the
second pass. The system of
(Pereira 1983) is akin to SEM in
that slot filling is done there on
a second pass. However, in
(Pereira 1983) there is a third
pass, where scoping is treated and
the final logical form is produced.
It seems advantageous to have only
one pass after parsing, in which
all the steps are interleaved, so
that logical forms get built up in
the cycle and can serve as input at
every level to checks like know
ledge-checking. (An early version
of SEM actually had three passes:
slot filling, reshaping, and
modification. No systematic
comparisons of efficiency have been
made, but it seems likely that
immediate feedback from constraints

74

will produce greater efficiency.
In addition, the current version is
simpler is design.)

8 KNOWLEDGE CHECKING

In producing semantic interpre
tations, many choices can be made
(selection of word senses, place
ment and action of modifiers,
etc.). Some sort of guidance or
filtering is needed. In manv
natural language systems, semantic
type-checking is used for filter
ing: Senses of words (especially
verbs) have a semantic type associ
ated with each slot in their slot
frames. Thus a sense seel(E,X,Y)
of "see" might have the slot list

nil-(subj:X:animal)-(obj:Y:physobj) .

Slot fillers are required to have
types which match the slot type,
perhaps after moving about in a
hierarchy of types.

In logic grammars, the matching
of types within a hierarchy can be
implemented in a particularly
powerful way by using unification
° b°glc terms representing

iglm r£peclfied types (see Dahl
(Types can be represented

as lists like tl:t2:t3:*, where tl
is a supertype of t2, t2 is a

theTT- °f and the ta*l
taeeof Variable"> An advan-
tage of this unification approach

cL be" type."matchin8 requirements
can be exercised in a top-down way
durmg parsing (by PROLOG, for a

andT Cl3USe Srammar (Pereira and Warren 1980)).

Semantic type-checking may

.pPrr
c™u.r «£

U9M): °""d

The pen is in the box.

The box is in the pen

be
it
in

Let us just consider two senses of
tl tl It • , H pen : writing pen am
"an taa 1 pen". Most people would
get the "writingpen" interpreta
tion in the first sentence and the
"animal pen" interpretation in the
second. The dissanbigustion can be
made by requirements of the
"conta ined_ in" sense of "in",
together with knowledge about
(normal) sises of writing pens,
animal pens, and boxes. For
simplicity, we could say that the
precondition for

contained in(X,Y)

is

smaller(X.Y).

A frame with semantic types like

X:small, Y: large

will not do, because the require
ment on X and Y is relative^ Of
course, in a limited domain, with a
small number of types of objects,
one could suitably enumerate the
required pairs. But, in general,
this cannot be done, and we nust
make a computation (an inference
not based simply on finite look-up
In fact, the two noun phrases in s

sentence of the form

The ... is in the ... •

as in

The object weighing 800 pounds
is in the pen.

could be very complex, and al» °*
the information could be used
determine smaller(X.Y).

So, instead of doing
type-checking, we need to do know
ledge-checking, where M1'''
forms are checked for reasonably
ness by doing more general *n^c'
ence with real-world knowledge-

75

present in SEM, knowledge-checking
is implemented in the following
(approximate) way.

Recall that semant makes the
call

kcheck(Sem)

at every level. There is a
(partial) logical form LF in Sem,
which is to be checked. As an
example, if we are looking at the
top level of

Each box is in a pen.

the logical form LF (with the
"animal_pen" sense of ' pen) is
essentially

each(box(X) ,animal_pen(Y)&
contained_in(X,Y)).

The next step (to make the know
ledge-check easier to handle) is to
strip LF of quantification, forming
a conjunction of the remaining
bases, as well as to remove any
qualification in these bases. For
the example, the stripped form is

box(X)&animal_pen(Y)&
cont a ined_ in (X, Y)

where, as usual, the free variables
are considered to be existentially
quantified. Finally, we replace
the head predication by its
precondition (given by a unit
clause for the predicate precond).
This results in the form

box(X)&animal_pen(Y)&
smaller(X,Y).

Finally, we pass this form to
PROLOG to try to prove it, i. e.,
to find a case of a box X and an
animal pen Y where X is smaller
than Y. With this method, SEM does
succeed in getting the reasonable
disambiguations of "The pen is in

the box" and "The box is in the
I t pen .

This method of doing kcheck can
be seen to be a true generalization
of type-checking in a hierarchy of
types. To illustrate the mapping,
if the predication seel(E,X,Y) has
the type requirements

X:animal, Y:physobj,

then we can give it the precondi
tion

animal(X)&physobj(Y).

Given the sentence "John saw a
star", kcheck will try to prove

star(Y)&animal(john)&physobj (Y) .

Given clauses

man(john).
star(si).
physobj(X) <- star(X).
animal(X) <- human(X).
human(X) <- man(X).

this proof will succeed. Condi
tional clauses of the sort given
correspond to type-hierarchy
relationships.

But this method of defining
kcheck is probably only an approx
imation to what is needed. Working
with the stripped logical forms is
not sufficient. And perhaps
instead of looking merely at prec
onditions, one should in general be
testing for consistency of the
logical form with the current know
ledge base. There may be no clear
distinction one could make between
the requirements of preconditions
and the general requirements of
consistency, although one must be
concerned with efficiency. (For a
discussion of the role of consist
ency in information systems, see
Kowalski 1979). This point of view
for SEM will be investigated.

76

REFERENCES

Bar-Hillel, Y. Language and Infor
mation. Addison-Wesley, 1964.

Byrd, R.J. Word formation in
natural language processing
systems. Proc. 8th IJCAI, 704-706,
1983.

Dahl, V. Translating Spanish into
logic through logic. AJCL, 13,
149-164, 1981.

Dahl, V. and McCord, M.C. Treating
coordination in logic grammars.
AJCL, to appear.

Heidorn, G.E. Natural Language
Inputs to a Simulation Programming
System. Naval Postgrad. School
Tech. Report No. NPS-55HD72101A
1972.

Heidorn, G.E., Jensen, K. , Miller,
L.A., Byrd, R.J. and Chodorow M.S
The EPISTLE text-critiquing system.
IBM Systems Journal, 21, 305-326
1982. '

Jensen, K. and Heidorn, G E The
fitted parse: 100% parsing capabil
ity in a syntactic grammar of

9729^1983. IBM ReSearch ReP°r t Rc

Kowalski, R.A. Logic_forProblem
-Solving North-Holland, 1979.

McCord, M.C. Using slots and aodi-
fiers in logic grammars for natural
language. Artificial Intelligence,
18. 327-367, 1982.

McCord, M.C. Focal iters, the scop
ing problem, and semantic interpre
tation rules in logic grassars.
Tech. Report, Univ. KY, 1981. To
appear in Logic Programming and its
Appl icat ions, 0. Warren and h. van
Caneghem, Eds.

Miller, L.A., Heidorn, G.E. end
Jensen, K. Text-critiquing with
the EPISTLE system: an author's
aid to better syntax. AFIPS Conf.
Proc., 50 , 649-655, 1981.

Pereira, F. Extraposition gras-
mars. AJCL, 7, 243-256, 1981.

Pereira, F. Logic for natural
language analysis. SRI Interna
tional, Tech. Note 275, 1983.

Pereira, F. and Warren, D.H.
nite clause grammars for language
analysis - a survey of the formal
ism and a comparison with transi
tion networks. Artificial
Intelligence, 13 , 231-2 78, 1980.

Woods, W.A. An experimental pars
ing system for transition network
grammars, in Natural Language Proc:
essing. R. Rustin, Ed., 145-1*'.
Algorithmics Press, 1973.

On Gapping Grammars

Veronica Dahl
&

Harvey Abramson

Department of Computer Science
Simon Fraser University
Burnaby, B.C. Canada

Department of Computer Science
University of British Columbia

Vancouver, B.C. Canada

ABSTRACT

A Gapping Grammar (GG) has rewrit
ing rules of the form:

«*I, fO/>(*l)> «!. ••••

a_„ f»p(*.-i). <>. — 0
<*,' vr

G — { }ap{i t). f ap(r?), yarfz^t) }

*. t Vr

01 nu Vtu
0

'

where Vr and V,v are the terminal and non
terminal vocabularies of the Gapping Gram
mar. Intuitively, a GG rule allows one to
deal with unspecified strings of terminal sym
bols called yapt, represented by Zi.Za—>*s-i>
in a given context of specified terminals and
non-terminals, represented by 1®«>
and then to distribute them in the right hand
side d in any order. GG's are a gencralita-
tion of Fernando Pereira's Ezlrapoeition
Grammari where rules have the form (using
our notation):

ah ;ap(z,), o2, pap(i2),...,pop(x»-i).o«

0, yap(z l), yapizj), pap(*»-i)

i.e., gaps are rewritten in their sequential
order in the rightmost positions of the rewrit
ing rule. In this paper we motivate GG s by
presenting grammatical examples where XGs
are not adequate and we describe and discuss
alternative implementations of GGs in logic.

X. Introduction
A grammar is a finite way of specifying

a language which may consist of an infinite
number of "sentences". A logic grammar has
rules that can be represented as Horn clauses.
Such logic grammars can conveniently be
implemented by the logic programming
language Prolog: grammar rules are
translated into Prolog rules which can then
be executed for either recognition of sen
tences of the language specified, or (with
some care) for generating sentences of the
language specified.

Since the development of the first logic
grammar formalism by A. Colmerauer in
1975 (Colmerauer,1975), and of the first size
able application of logic grammars by V.
Dahl in 1977 (Dahl,1977), several variants of
logic grammars have been proposed, some
times motivated by ease of implementation
(Definite Clause Grammars, DCGs,
[Pereira&Warren, 1980]), sometimes by a need
for more general rules with more expressive
power (Extraposition Grammars, XGs,
|Pereira,198l]), sometimes with a view
towards a general treatment of some
language processing problem such as coordi
nation (Modifier Structure Grammars, MSGs,
[Dahl&McCord.to appear]), or of automating
some part of the grammar writing process,
such as the automatic construction of parse
trees and internal representations (MSGs,

op.cit; Definite Clause Translation Gram
mars, DCTGs, [Abramson, 1984]). Generality
and expressive power seem to have been the
main concerns underlying all these efforts.

In this paper we present another logic
grammar formalism called Gapping Gram
mars, GGs, which we believe to be the most
general to date. We examine three possible

78

implementations, and discuss the adequacy of
GGs for certain language processing problems
that cannot be expressed as easily in any
other formalism.

GG rules can be considered as meta
rules which represent a set (possibly infinite)
of ordinary grammar rules. They permit one
to indicate where intermediate, unspecified
substrings can be skipped, left unanalysed
during one part of the parse and possibly
reordered by the rule's application for later
analysis by other rules. For instance, the GG
rule:

A, gap(X), B, gap(Y), C -»

gap(Y), C, B, gap(X)

can be applied successfully to either of the
following strings:

A, E, F, B, D, C

with gaps X = E F and Y = D, and

A, B, D, E, F, C

With gaps X= [] and Y = D E F. Applica
tion of the rule yields

and
D C B E F

D EF CB

respectively. We can therefore think of the
above GG rule as a shorthand for, among
others, the two rules:

A, E, F, B, D, C — D, C, B, E, F

A, B, D, E, F, C —• D, E, F, C, B

The idea of gapping grammars, as well
as of the compiler implementation scheme

iSbv V0nMSeCtiOn 31 Was d^'°P"d i"
H p ' * 3S a result of examining Fer-

r; ° P/n7aSHWOrk °n Extraposition Gram
mars and finding the formalism limited
mainly w.th respect to the problem of treat'

oecause the formalism itself has

some rather interesting aspects.
Gapping grammars are iaterrstiug in

the first place because each mela-rule. some
what like a restricted version of
VanWijngarden's two-level grammars shirk
were used in the definition of Algol 68
(Van Wijngardrn.1975). represents infinitely
many specific rules: each gap can be satisfied
by many strings of terminals: to specify each
of these unstructured substrings might
require infinitely many grammar roles in
other formalisms. Gapping grammars there
fore cover a wide variety of rewriting situa
tions using very few rules

Secondly, there seems to be some
psychological basis to the idea of focusing on
the next relevant substring during analysis
and leaving an intermediate one suspended in
the background of consciousness, to be
brought bark into the focus of attention
later, possibly repositioned with other more
closely related substrings When parsing
discontinuous constituents, for instance as in
the course and colloquial sentences "Desmond
knocked the girl with green eyes down a'
opposed to "Desmond knocked the girl with
green eyes up", the human hearer will prob
ably suspend his attention from the inter
mediate string "the girl with green eyes
until the completing substring to 'Desmond
knocked", i.e., "down" or "up", is beard,
repositioned, and comprehended within if®
interrupted context.

A third argument for sometimes not
specifying which constituents should be inter
mediate between two substrings is the fac'
that there is some empirical linguistic evi
dence in support of the existence of categories
intermediate between lexical and phrasal
categories (Radford.I98l|. While these aren 1

clearly captured as traditional categories in
linguistic theory, it is possible to compac
tion ally account for them simply by perceiv
ing and naming them as gaps.

2- Background, Motivation, *D<'
Definition of Gapping Grammars.

Logic grammars originated with A-
Colmerauer's Prolog implementation of
Metamorphosis Grammars as an alternative
notation for logic programs. They consist of
rewriting rules where the non-terminal sym-
bols miv K-ax-« J i_ -rxnlira-

79

lion may therefor? involve unification. For
instance, a rule such as:

np(.Y) -» name(Aj

can be applied to the strings np(4) and
np(unnc) yielding, respectively. name(4) and
nam^annr) but cannot be applied to either
of the strings nj> or np(x.y). The left hand
side of a normaliied Metamorphosis Gram
mar rule must start with a non-terminal sym
bol, but may be followed by a sequence of
terminals (terminal symbols are written
between / and J), whereas the right hand side
may contain any sequence of terminals and
non-terminals, as in:

MH. M - IM. •• I«i

(Unnormalized Metamorphosis Grammars
may contain rules beginning with a terminal,
followed possibly by other terminals and
non-terminals; there is no loss of generality,
however, in restricting oneself to normalized
MGs. See |Colmerauer.l978|.) Definite Clause
Grammars. DCGs, are a simplification of
MGs in that rules are allowed only a single
non-terminal on the left hand side, as in:

verb_phrate(X) —• t>erh(.Y, V), object^)')

Extraposition Grammars (XGs) allow
the interspersing of gaps in the left hand
side,and these are routinely rewritten in their
sequential order at the rightmost end of the
rule, as in:

rtl_marktr, gap{X). trace —•

rel_pronoun, ja/^X)1 (')

In an XG rule, symbols on the left hand side
following gaps represent left-extraposed ele
ments (e.g., "trace* above marks the position
out of which the "noun_pbrase" category is
being moved in the relativization process).

Let us briefly examine the step-by-step
rewriting of a sentence with a relative clause
to understand how the gapping rule above
works. Our complete grammar is:

sentence -> np, vp

np -> proper_name

lWe we oar aouuoa tor eoaioteacy Perora'r no-
tUiot (or fip(X) is written " * in the left band
ride and simply left implicit on the right.

np -> det, noun, relative
np -> trace

vp -> verb, np
vp -> verb

relative -> [)
relative -> rel_marker, sentence

rel_marker,gap(X),trace ->
rel_pronoun,gap(X)

det -> (the)

noun -> [house]

rel_pronoun -> [that]

proper_name -> [jack]

verb -> [built]

Applying these rules as graphed below, we
analyse "the house that jack built" from np:

np

det—noun—relative

I ! 1 1
the house reljnarker sentence

I ^

|P rh
proper_name verb np

jack built trace

re l_pronoun jack built

that

where the gap is "jack built". Notice that by
adding appropriate symbol arguments to the
rules, we can carry the antecedent's represen
tation all the way to the constituent from
which it was moved. Also notice that the
same grammar, but with a larger lexicon,
serves to analyse, for example, the sentence
"the women who built the house , this time
with an empty gap, and with the trace
derived from the first np in the relative sen-

tence.
Thus, XGs allow us to describe left-

extraposition phenomena powerfully and con
cisely, and to arrange for the desired
representations to be carried on to the posi
tions from which something has been extra-

posed.

80

2.1. Motivation.

2.1.1. Left extraposition with more
than one gap.

While XGs have the expressive power
just shown, the restriction on how gaps are
rearranged poses some expressive constraints
even within the framework of left-
extraposition. Consider for instance the noun
phrase:

the man with whose mother john left

We can consider this noun phrase as the
result of left-extraposing two substrings from:

the man [john left with [the] mother lof
the man]] 1

where "of the man" is left-extraposed before
the and subsumed with it into "whose"

t*6 ,W,h0u °0mplement is extraposed to
the left of john left".

If we wanted to capture these move
ments in a s.ngle rule (which seems a practi
cal way, since they are all related), we might
express ,t through the somewhat simplftic
but illustrative rule: ""pusitc

•»(*). W(J% prep, del, gap{Z), prep(of), np(X)

- np(X), prep, [whose], gap(Z), gap{ y)

where X stands for the internal representa
t.on that is built up from the noun phr^
being analysed. A derivation graoh for
example would look roughly like:

sentence

unifies the internal representation X for 'th
man* with the representation W of the rgkt
most complement The result of oae partial
analysis thus spreads to cover all imphcit
occurrences of the same substring

preferred gapping 2.1.2. Equivalent,
formulations.

I ernando Pereira gives the following
XG for the language {i*»V}.

2.1.2.1. Grammar 1.
'•> «. ba. cs.

« - > 0 -
*>• gap|X). xb -> |a). as. gap(X)

bs-> o.
»>*. xe -> xb. |b|. bs. gap(X)

cs -> ||.
•> XC. |c|. cs.

Other formulations of grammars which use
gaps are conceivable, however, and it should
be up to the grammar writer to choose a for
mulation unconstrained by fixed reordering
rules. The following GG. for example-
describes the same language:

2.1.2.2. Grammar 2.
s as, bs, cs.

as-> (J.
as -> xa, (a), as.

bs -> ().

*a. gap(X), bs -> gap(X). |b|. bs. xb

cs -> (j.

*b gap(X), cs -> gap(X). |c|. cs.

In Grammar I, symbols such as zh can he
considered as marks for i's which arc being

extraposed. In Grammar 2, such maris
can e seen as right-extraposed. Whereas in

ls particular example our choice may just
e a matter of personal preference, there are

,, PS ,'n wb'cb movement is more naturally
ought of in terms of right rather than left-

toldaP°S"IOD ^ ID ^he man is here that I
effirie >OU alx>ut")- There also may be
extran"0^ reasons to prefer a right-
ment °S'ns formulation: in the first imple-
works /°n °r GGSl Gramm" 2 above

WOrks than Grammar 1.

81

2.1.3. Interaction between different
gapping rules.

Consider the language {o"i*c"d™}
which can be described by the following GG:

s •> as, bs, cs, ds.

as-> 0.
as, gap(X), xc -> |a|, as, gap(X).

bs -> (|.
bs. gap(X), xd -> |b|, bs, gap(X).,
cs -> D-
cs -> xc, |c|, cs.

ds -> ||.
ds -> xd, |d], ds.

This is a perfectly good GG. XGs cannot,
however, be used in this situation because of
the XG constraint on the nesting of gaps: two
gaps mnst either be independent, or one gap
must lie entirely within the other.

3. Implementations of GGs.

3.1. A Compiler: beautiful but dumb.
Typically. logic grammars are

translated into Prolog programs by augment
ing each non-terminal symbol with two argu
ments: one argument X which represents the
input string yet to be parsed, and the other
argument)' which represents what is left of
the input string after the rule being applied
has consumed some of it. We then say that
the siring .V- Y (read as 'X minus F) can be
recognired as belonging to the category
denoted by the non-terminal. Thus, a rule
such as:

sentence —• name, verb.

is translated into a Prolog clause:

senlence(.Y|,X'J) «—

namr(Xi,X2), eert(X2,Xj) (a)

meaning roughly: "there is a sentence in the
string Afj - Xt if there is an initial substring
Yj - Xj that can be parsed as a name and is
followed by a substring A'2 - X3 that can be
parsed as a verb".

Terminal symbols do not give rise to
Prolog predicates, but become instead
involved in the specification of the input and
output strings being manipulated by the
non-terminals. For instance, the rules

name —*• [mary],

verb —» [laughs],

can be translated into the unit clauses:

name([mar\\X],X) <— (b)

verb([laughs\X],X) «— (c)

where (ft) means roughly: "a name is recog
nized in any input string which begins with
'mary', yielding an output string which is the
remainder of the input string after consuming
'mary'".

Thus, with respect to rules (a), (ft), and
(c), a query such as:

sentence([mary, laughs], [[)

will unify X, with [mary,laughs] and X3 with
[], proceed to consume a name from X,, yield
ing X2 = [laughs], and then consuming a
verb from X2, yielding X3 = []. The string
X! - Xs, i.e., [mary,laughs]- [], has been
recognized as a sentence.

Let us now consider a graphical
representation of this translation process,
where non-terminals are viewed as labeled
arcs connecting nodes representing phrase
boundaries. Rules (a), (ft), and (c) above can
then be represented as follows:

j tarae V

f mary f lai aughs

[mary!Xl f laughs | x] X

Normalized MG rules accept a sequence
of terminals after the single non-terminal
head on the left hand side (since more than
one non-terminal would result in a non-Horn
clause). The translation of such a rule to
Prolog may be represented graphically by
adding more arcs to the upper part of the
graph. The rule

A, [b], [c]-r D, [e], F

would translate as indicated by:

82

rb.c|X3l b [c|Xjl

which is the Prolog clause:

MXi.MXJ) - Wi.[e\XJ), f\X2,Xs).

Let us now consider a rule with gaps
and how it should be represented graphically

as, gap(G), xb -» [a], as, gap(G)

We can think of a gap C simply as a sub
string of the input that is skipped unanalyzed
and appended elsewhere in the output string
Thus, if we denote the appending of G to a
S "T V5/'"*1' WC CaD rePrese"' this rule graphically by:

gap(H) v

The symboI gap{G) jn fact can ^ ^

of as a version of append. When fnnd •
rules into clauses, gap(G) becomes the predf
cate call gap(G,X„X0), which can be spec fied
as the appending of G to X0 yielding V In
other words, the input string X® J,
doetrdTthed,;;rar L ̂
expressed in Prolog 2 thUS be

- a^X,),

9ap(G,X1,X2), gap(G,X,Xs), zb(X„X2)
or alternatively as:

asi/alx0J,X) - as(X0,X1), aPPend(G,X2^),

oppendf G,XS,X), xb(Xt,X2)

S C V d l e f t
body, and We7hereLe °' ^ C'aUSess

Horn clause subset of fi /ema,D Within the

too, that this t'^slLlT °fF '0g,r Notice

tioo of terminals. aon-terminals, ud mi
Prolog calls ran be exprewed as context

The compiler shown belo» produces lb
corresponding Prolog clauses from gapping
grammar rales by first constrnctuig no
pseudo-rales. From a rale sack is

A . B - C

where A is Ike non-terminal head symbol,
and wkere B is Ike remainder of Ike Ml hand
side of the rule, and C is Ike right band side,
it constructs clauses corresponding lo lb
pseudo-rules

e_n»nltrm — C

i_nonlrrm -• B

where e-nonterm and h_n«n/rrm are pseudo-
non-terminals. In doing so. it also binds lb
output strings corresponding to both pseodo-
non-terminals. In our example, the clauses
generated are:

c_nonltrni/a\XJ.Z) — mf-Vo-A',).

b_nonterm(X.Z) — g df< (7. A". A',). rl<A'j,/)

Next it constructs the head of the desired
clause by using and retrieving the input slid
output strings from Ike input strings of
c_nonterm and b_nonterm. In our example
this yields

•4HXJ.X)

The desired clause's body is constructed by
appending the two bodies of ihc pseodo-
clauses

"HHXrJ.X) - ur^A,).

S"riG.X\,X2), gap<«.-V..Y,).ri(.Y|.A':)

The compiler's full listing is shown below. In
addition to accepting purrlv syntactic gap-
ping grammar rules, it also accepts gappini
grammar rules with a superadded rwtsnhn
component to specify a translation The gen
eral form of such a rule is:

A, B — C<:>5em

where Sem consists of one or more Horn
clauses which specify how semantic attributes
of the head symbol .4 are computed in terms
of semantic attributes of C and possibly even
°f B. The Horn clauses in Sem govern
traversal of the derivation or parse tree which
is constructed automatically |Abram'
son, 1984], Gapping grammar rules which are

83

purely syntactic have the trivial semantic
unit clause (rue attached to them. The
predicate form_nodt below creates the deriva
tion tree for the head symbol A by con
catenating the trees for the pseudo-clauses
corresponding to B and C.

svnal((A,B -> C<:>Sem),Clause)
expand_term(

(c_nonterm- > C<: > Sem),CClause),
expand_term((b_nonterm->B),BCIause),
clauseparts(CCIause,CHead,CBody),
clauseparts(BCIause,BHead,BBody),
Cllead = .. [c_nonterm,CTree,X,Z),
Bllead = .. |b_nonterm,BTree,Y,Z),
A =.. |Pred|Args|,
form_nod e(CTree, BTree.Pred.ATree),
concatenf Args,|AT ree,X,Y) ,New Args),
NewA =.. |Pred|NewArgs|,
combine) CBody ,BBody ,Body),
formclause(N'ewA,Body .Clause).

synal((A,B -> C),Clause) !,
synal((A,B-> C<:>true),Clause).

clauseparts((lle3d Body),Head,Body) I.
clauseparts(llead,Head,true).

formclause(llead,true,Head) !.
formclause)Head,Body,(Head Body)).

combine(true,B,B)!.
combine(A,true,A) !.
combine(A3,(A,B)).

form_node(node(_,Nl,Sem),
node(_,N2,_),
Pred,node(Pred,N,Sem))
node(Pred,N,Sem))

concaten(Nl,N2,N).

n-
gap(|Word|List|)-> [Word), gap(List).

concaten([),X,X).
concaten(|X|L|,M,|X|N]) concaten(L,M,N).

The beauty of the compiler resides in
its simplicity and conciseness. The compiler
is dumb, however, in that the gap predicate
successively consumes substrings of length
0, 1, 2,... with no further control than simple
backtracking as to what should be in the gap.
Thus, even on simple languages, such as
{u'i'c*} with relatively low values of n, say
" = 5, it is very slow. Some more informal
'ion needs to be incorporated in the gap
predicate, but this seems to involve dynamic
information about the state of the computa

tion, and such information is accessible only
in some Prolog implementations. Another
alternative which we are considering is to use
concurrency in parsing; we sketch this idea
below and are planning a future detailed arti
cle on the subject.

Although the ideas on compiling GGs
are due to V. Dahl, credit is due to Michael
McCord for the actual writing of the compiler
in terms of pseudo-clauses.

3.2. Another Compiler: Efficient but
not general.

In this section we introduce a class of
Gapping Grammars which can be imple
mented in Prolog efficiently. This class con
sists of those Gapping Grammars in which
each gapping rule is of the form:

a, gap(X), [term]-* 7, gap(X) (A)

That is, there is only one gap which is rewrit
ten to the rightmost position of the right
hand side, and on the left there is a single
(pseudo-)terminal following the gap. This
class of grammars includes a subclass of
Pereira's Extraposition Grammars, but also,
depending on the definition of the gap and fill
predicates, may include grammars which can
not be handled by Extraposition Grammars,
such as, for example, a grammar for the
language {a"bmc"dm}, with m,n>0.

This class may be viewed as a generali
zation of normalized Metamorphosis Gram
mars. A normalized Metamorphosis Gram
mar rule is of the form:

a, P -* 7 (B)

or
a -* 7 (C)

where

a e VN

/»£ Vi

and

7 £ V'T (J VN

The notation gap(X), [term] therefore
represents a large set of MG rules.

The implementation technique is based
on message passing during parsing and rests
on the following considerations. The terminal
symbols which occur on the left hand side of

84

XG rules and to the immediate right of a gap
may be said to be pseudo-symbols in that
they are generally not expected to occur in
input strings to be parsed, but are generated
during parsing to act as signals of some sort
and are absorbed later in the parse Con
sider, for example, in the XG grammar for
the language {o"A"c"} the rule:

as, gap(X), xb -> /a/, at, gap(X)

The xb is generated to mark the end of the
gap and to count an occurrence of an /a/ The
xh u then absorbed by a matching fbj in the

gap(X), xc - xb, [b] be

Similarly in the XG for a small subset of
English, the rule (1) in Section 2 generates
trace to mark the point from which a noun
phrase has been left-extraposed, and the rule

np —*• trace

absorbs the trace. The introduction of such
pseudo-symbols, moreover, produces a sliuht
theoretical problem in that they may occur in
some sentential forms of fh.

>.,-<• J",:wz\r'y,v * ~ "*•
"terminal" .th'S gap 18 followed by a
ing. ' W<? Wnte inst-d °f -4 the follow-

«, 9ap(X), [term] —• 7 (D)

and read this: an a in n,„
which is terminated by ah4!°a??Xt °f 3 g3f>

rewritten to a 7 fo,|0wed bbp

is implicit on the rieht h a ,g P' The 8aP
Thus our signal Inn, d S'de °f the rul*
the form (B), (C) or "J?8 are °f

Signal which closes snrh sending of a
the predicate 3 83p ,S lnd'cated by

fil!{ter m)

which generates (accents) it,
°ur version of the „ emPty string.
{«"*"«'} is as fonowirammar fW thp laaSuagge

s->as,bs,cs.

aa:;g>ap(X,,[xb]->[aU.

bsS:>fj(X)''XCj">fi1I(xb)'[b),bs.

cs-'->fiil(xc),[cJ,cs.

«->0-
la implemeattng (hit form of GG *e specnl-
i" tfnat predicate at follows:

»y nal(((A ,gap(\ame).|Snaal) ».>C< :>Sm|
Clause) :• I,

expaad_tertn(
(c_nontcrm-^

(C.gap(Signal.\ame))<>Sem),
CCIause),

clauseparl»(CClatts*.CHeid.C8od.v|.
Cllead «•.. jc_aoaterm.CO.Ga.CTree,X.Z|,
A —|Pred|Arg»|.
CTree •— aode{gap.|!>ignal.NainrJ.trar).
f°fm_node{CTree.CTree ,Pred.ATr*e|.
»Ppend(Args.|GO.Gn.ATfee.X.V|..Vw.tfjs|,
New A —[Pred|NewArgtJ.
combinefCBody.

*ap{.Signal. Name. CTree, Y,Z),
Body).

formclaose(.\ew A .Body .Clause).

«yoal(((A.gap(.\ame).|Sigaal|) -> C|,
Clause) :- !,

synal(
((A.gapfName),[Signal|) -> C<:>M
Clause).

In the goal czpani_lerm the Si fail is added
to the named gap which is placed at tit
right end of the syntactic portion of the rule,
since the only context of a rule is of the form
gap{Name), [Signal], we dispense with
BClaute and construct the clause for d
directly; other changes in [orm_noie involve
the formation of a "tree" to record the con
tents of the gap as a difference list (see
below), eynal compiles, for example, the rule

gap(Name), [xc] - /i/frl), [»|, If-
to:

bs(SO,
S3,
node(bs,

(FillTree,
b,
BsTree,
GapTree,
node(gap,[xc,Name|,true)|,

true),
X,
Y) :-

fi"(xb,SO,Sl,FillTree.X,Xl),

85

c(Xl,b,X2),
bs(Sl,S2.BsTree.X2,X3),
gap(xc,Name,S2,S3,GapTree,X3,Z),
gap(xc,Name,node(gap,[xc,Name], true), Y,Z).

The reader will notice that in addition to the
pair of arguments for the "input* and "out
put" strings (.V,A1,.Y2,X3I Y,Z), and the argu
ment for the parse tree, there is another pair
of arguments - the "input message stream"
and the "output message stream" - which has
been added to all the non-terminals except
the rightmost instance of gap. These are 53,
51, 52, and 53, and are added to non
terminal symbols only by the predicate
lrantlatt_rulc (not shown here, but called by
tipanijerm. see |Abramson,1984[) which
processes non-gapping rules. Note that non-
gapping rules are normalized metamorphosis
grammar rules and are translated as outlined
in Section 3.1. The ordinary non-terminals,
such as hi, will neither add messages to the
input stream nor delete messages from the
input stream in order to produce a new out
put stream, the input stream will be passed
to whatever is called, and a possibly new out
put stream will be formed as a result of the
call. Messages are inserted by gap and
removed by fiil. Let us examine the definition
of gap and fill to see how these streams are
manipulated:

gap(Symbol,
Gap,
nodefgap,[Symbol,Gap] .true),
StartGap,
EndGap) :-

Gap = StartGap - EndGap.

gap(Symbol,
Gap,
StackIn,
[]Symbol,Gap||Stackln],
node(gap, [Symbol, Gap] .true),
StartGap,
EndGap) :-

Gap = StartGap - EndGap.

fi'USymbol,
[|Symbol, Gap]|StackOut|,
StackOnt,
node(fill, [Symbol, Gap], true),
EndGap,
EndGap) :-
Gap = StartGap - EndGap.

When gap is called with a pair of stream
arguments, the start of a gap is known. Gap
is instantiated to the difference list
StartGap - EndGap, with EndGap uninstan-
tiated. The pair [Symbol,Gap] is added to the
input message stream to form a new output
message stream. The Symbol is the signal
which will indicate the end of a gap. When
gap is called without the stream arguments,
as in the last call to gap in the compiled ver
sion of bs, the context is merely being
checked (please refer to the discussion of
synal in the previous section) and the input
and output strings, StartGap and EndGap,
respectively, verify the extent of the gap.
EndGap will still be uninstantiated.

When fill is called, the end of a gap
with the signal Symbol has been found. There
must be a pair of the form [Symbol,Gap] at
the front of the input message stream.
EndGap is instantiated at this point, and the
pair is removed from the input message
stream to yield a new output message stream.
When EndGap is instantiated, the "trees" of
the gap and fill predicates, which have been
made to look like ordinary non-terminals, are
also instantiated. The trees for both gap and
fill contain a record of the signal Symbol and
the gap itself as the difference list to which
Gap is instantiated. The message streams act
as a stacking mechanism for unfilled gaps.
Note that fill accepts the empty string.

A string is parsed with this grammar by

a call to:

s(Source) :-
sfO.fl.Tree.Source,!]).

which indicates that Source is an s, with no
input left, and that no messages are left in
the streams, ie, the stack of messages, ini
tially empty, is empty at the end of parsing.
A parse tree Tree records the derivation.
(See [Abramson ,1984]).

With this definition of gap and fill we
have a new implementation of a subset of
XGs- it contains rules with only one gap fol
lowed by a terminal. The compiler for this
subset, synal above, is somewhat simpler than
the general processor of Pereira.

By changing the definition of gap and
fill however, we can process grammars which
cannot be handled by XGs. Here is our sig
nalling GG for the language {a b c a).

86

s->as,bs,cs,ds.

as.gap(X),[xc]->[a),as.
as ->[].

bs,gap(X),[xd)->[bj,bs.
bs->[J.

cs->BII(xc),[cj,cs.
cs->[j.

ds->fill(xd),[dl,ds.
ds->[J.

We redefine g a p and fill so tbat Ihe input and
output message streams manipulate a pair of
stacks, one to handle ic signals and the
other to handle zd signals. The gaps can now
be dealt with independently of one another
gap(Symbol,

Gap,

node(gap,[Symbol,Gapl,true)
StartGap,
End Gap) >

Gap = StartGap - EndGap.
gap(xc,

Gap,
[StackC.StackDJ,
[[[xc,Gap]|StackCJ,StackD|
node(gap,[xc,Gap),true)
StartGap,
EndGap)

Gap = StartGap - EndGap.
gapfxd,

Gap,
[StackC.StackDj
[Stackc,[[xd,GapJ)Stack

EndGap)

Gap = StartGap - EndGap
aiif.xc,

ifSic1£rDl,0,'SMD|'
EndGap) >
Gap = StartGap . EndGap

fi!I(xd,

teasr"—*
EndGap)

Gap — StartGap • EadCnp

The general GG nnpletnealitni is ttn
powerful and taefiriral. this unplerociiiira
although not general. is more rfirirnt: u<jit
at the cost of some programming of the /i,
and fill predicates by the grammar writer,
extendable to classes of granatin sit)
independent gapping systems which cannot
be handled by XGs It is interesting that
subclasses of GGs caa be paramrteriinj bt
data structures one may think of trxing to
characterise the subclass of GGs with a queer
(deque, tree) implerneotation of |if and fH
for example.

A complete tisliag of these Prolog
implementations is available from II Abtim-
son or V. Dahl

3-3. Toward* a concurrent Implementa
tion of gapping grammars.

The beautiful but dumb compiler is
inefficient because of the w*y it tries to
establish what is coo lataed ia a gap. It ami-
lates the n on-deterministic breaking op of the
input string into the contents of the gap and
the unconsumed output siring by trying one
solution of npprnd)Gtp,Output,Input), back
tracking to the next solution if the first is no!
suitable, and so on. A concurrent implemen
tation might, however, proceed as folio*-'.
^or each solutioa
apptndfGap, Output.Input) a copy of the pro
cess which represents the state of the parse so
ar is created. Each of these processes is a

clone of the original process up to the call of
!aP- Each process continues, however, with 1

d,fferfnt solution *>
aPpmd(Gap, Output,Input). Those processes
w ich have not been given a solution which

Perm't the parse to continue will eveutu-
a y die. Those processes which have been
given a solution which allows the parse to
complete will each be left suspended at the

with a derivation tree representing the
uceessful parse. (Note that this notion of

Process is similar to the notion of process
Used ,n ''•e Unix operating system.)

to h Strau?sy to work, it will be necessary
aer a% P a mcta-logical predicate which gives
Thi«SS.'° ")e state °' a Prolog computation,
p . rateg> utilizes independent sequential

ba„dLPr0TSSe5 " ,he pars,n«' "cept Wk°
dentK « gap' Proceeds by top-down,

r®1 search with backtracking. An

87

alternative strategy would be to develop an
entirely concurrent implementation of gram
mars.

The authors plan to investigate whether
Concurrent Prolog [Shapiro, 1983], the distri
buted logic of |Monteiro,1982], or Epilog
[Percira,1982j, [Porto,1982) could easily
specify such implementations of Gapping
Grammars.

4. Discussion, work In progress.

4.1. Advsntsges of gapping grammars.
GGs, although theoretically no more

powerful than MGs - which have the compu
tational power of a Turing machine - have
more expressive power than MGs in that they
permit the specification of rewriting transfor
mations involving components of a string
separated by arbitrary strings. The expres
sive power lakes the form of conciseness: one
does not have to give a rule or rules for the
generation of the intervening string, but
rather a single meta-rule involving gaps
replaces a possibly infinite set of non-gapping
rules.

One aspect of GG expressiveness has
not yet been fully explored. GGs, like MGs
and XGs, allow Prolog calls in the right hand
side of a rule, but unlike them, GGs allow
Prolog calls in the left hand side of a rule
(refer to rynal above to see why this is so). It
is possible therefore to write GGs which can
establish context checks dynamically during
parsing.

The compiler for GGs - our second
implementation - provides an alternative
implementation of a restricted class of extra
position grammars, but also, depending on
the definition of gap and fill, provides the
grammar writer with a mechanism for writing
rules which go beyond the nesting constraints
of the XG formalism. Our example above
shows bow to deal with two independent gap
ping systems: the extension to the general
case is obvious. Another possibility is to
parameterize classes of grammars by the data
structures used to implement the gap and fill
predicates, for example, by queues instead of
stacks, etc. Another extension lies in permit
ting the signal to be parameterized, i.e.,
instead of having rules of the form (D) with
'erm a functor of zero arity, term might be a

functor of positive arity. This would permit
more sophisticated gap handling by the gap
and fill predicates.

4.2. Limitations.
In some cases GGs may prove, however,

to be too powerful. Consider, for instance,
the following grammar which one naively
might think suitable for checking that input
strings are balanced with respect to (and):

left, gap(X), [')'] -> ['(']. gaPPO-

s -> left, [')'], gap(X), s.
s - > [] •

With this grammar, strings such as
(a + (b + c)) and ((a + 4) - (c * d)) / / are
recognized as balanced, but also a string such
as (a + b is recognized as balanced. The rea
son for this error is that nothing in the gram
mar precludes the gaps from containing
parentheses, so that unbalanced parentheses
will be absorbed into gaps. The grammar
can, of course, be modified so that only those
strings which are balanced with respect to
parentheses are accepted, but it seems
appropriate for the grammar formalism to
provide the user with a convenient means for
constraining the gaps. It would be interest
ing to determine how much of an extension
along these lines could be usefully provided
without falling into the trap of describing the
complement of a language.

Another approach to be investigated
with respect to too general a notion of gaps is
allowing strings not in the language to be
generated, these strings to be subsequently
filtered out by another process. Primitives
for describing filters would then be necessary.
In natural language applications, a mixture of
both approaches may be needed. Both con
straints and filters have already been pro
posed in Chomsky's Extended Standard
Theory (see references in [Radford,1982]),
and it would be interesting to study ways of
constraining and filtering GG rules in the
light of this theory.

4.3. Work In progress.
We have only tentatively sketched a

concurrent implementation of GGs. Details of
this strategy have to be worked out and
specified in Prolog, Concurrent Prolog
[Shapiro, 1983], the distributed logic of [Mon-

88

teiro,1982), or Epilog [Pereira. 19821
[Porto,1982). Ideally, a parallel architects
should support a concurrent GG system.

Another implementation of GGs which
we are exploring is an interpreter which
works with derivations directly rather than

Bv !hfs ft,'?* ^ DOD^rm,naJ Procedures
By this method, we would for a rule such as

8 b f , C B

r:::r:r: t ibe° **• tht°
a list of goals which would represent a sen
tential form. The original list of goal, ,
wo» d be repl3ced by a)ist of goafa

Context sensitive rules would involve m>„;

sPee if°Dso!nthe Sfnt",ial r̂m to"

derive the desired coZxt.^

.» G"G;" "i-
5. Acknowledgements.

Jd"ErPPO"ed " "«
CooBcil of Canada. Mic h Jl vw" e.RrW:lrcb

bution, mentioned in Section's l * C°Dtri"
acknowledged A ref» *' 1S 8ratefully
expand on our eomm^U TT'T ̂ ~
sition will be treated in a f » "g extraP°"

^up^tiS^SSK,^

6. References.

Abramson, R, Definite Clause T, ,
Grammars Proceedings IEF.FI Traas'ation

™Sr'SX"

Computers, Lecture Notes :™Urn,Cat,on wi">
ence 63, Springer, i978 Computer Sci-

through logicT American 'Dt° lo8lc

tional Linguistics, vol 13 °f ComPuta-
DaH V. & McCo ' • PP- 149-164, i981

in Logic Grammars' .Treat,nS Coordina-
ean Journal of Computation Ameri"
Monteiro, L. a 11 tlonal Linguistics.
specifying concurrency '°gic for

International Lorf n"88 of

Conference, pp. !_8 °8,c Programming
Pereira, F.C N L

American Journal of CoIf'0' Gr^mars,
Computational Unguis

tie*, vol. 7 bo 4. 198], pp J4J.JSS.
Pereira. L.M-. Logic cot ml with lop
Proceedings of the First Isteitalioeal Logic
Programming Coafrretrr. pp 0-18.1982
Pereira. F.C.N. k Warret. DiU), Oeiiitc
Clause Grammars for Language Aiilrsr
Artificial lotelligracr vol. 13 pp 231-271
1980
Porto, A. Epilog - a laagsage for exteaded
programming la logic. Proceedilgs ol Ik
First loteroaiioaal Logic Prognmmii!
Coofereace. pp 31-37. 1982
Radford. A.. Transformational SriUi Can-
bridge University Press. 1981.
Shapiro, E.Y.. A subset of Concurrent Prolo;
and its ioterpreter. ICOT Teclskal Report
TR-003, 1983
\ an Wijogardea. A. et al.. Revised report os
the algorithmic language Algol 68, Ada
Informatira. vol. 5. pp 1-236. 1975.

Eager and Lazy Enumerations in Concurrent Prolog

Hideki Hirakawa, Takashi Chikayama, Koichi Furukawa

ICOT Research Center
Institute for New Generation Computer Technology,

Mita Kokusai Bldg. 21F, 4-28 Mita 1-chome,
Minato-ku, Tokyo 108

ABSTRACT

Logic programming languages
have inherent possibility for
AND-parallel and OR-parallel ex
ecutions. Concurrent Prolog de
signed by E.Shapiro introduces an
AND-parallel ism and an limited
OP-parallelism, i.e, a don't-
care-nondeterminism. The other
aspect of OR-parallel execution,
i.e, don't-know-nondeterminlsm is
formalized as an ' eager_enumerate'
operation on a set expression.
This paper describes a computa
tional model which provides the
eager enumerate function to Con
current Prolog and shows its im
plementation in Concurrent Prolog
itself. This paper also shows a
lazy enumerate function can be im
plemented easily by introducing a
bounded buffer communication tech
nique to the eager enumerator.

1. INTRODUCTION

A growing area of research in
highly parallel processing covers
computer architectures, program
ming languages and computational
models. One of the best cand
idates for a high level machine
language for highly parallel pro
cessors is a logic programming
language which represents AND and
OR relations between predicates.
Logic programming languages pos
sess inherent potential for paral
lel processing, that is, AND-
parallel and OR-parallel execu
tion.

Based on this concept, several
parallel programming languages
have been proposed: such as KL1
(Furukawa et al. 84), Concurrent
Prolog (Shapiro 83), PARLOG (Clark
and Gregory 83) and Bagel machine
language (Shapiro 84). Researches
in parallel programming are being
conducted using these languages.
In these languages, AND-paral
lel ism is used for the description
of parallel processes, which is
based on the process interpreta
tion of logic (Emden 82). 0R-
parallelism has two aspects, the
so-called don't-care-nondeter-
minism and don't-know-nondeter-
minism (Kowalski 79). The don't-
care-nondeterminism is adopted in
all the languages mentioned above.
However, the don't-know-nondeter-
minism is introduced only in
PARLOG and KL1 where it is used to
find multiple solutions for a
query. PARLOG and KL1 use a "set
expression" as the interface
between AND-parallelism and 0R-
parallelism (don't-know-nondeter-
minism).

In this paper we regard the
OR-parallelism for finding all
solutions as enumerating elements
of a set in the same way as in
KL1. This paper describes the
•enumeration' in Concurrent Pro
log, which the implementation of
the OR-parallel execution in the
AND-parallel execution. An
advantage of this approach is that
both AND-parallel and OR-parallel

90

execution can be achieved within a
small basic framework of Concur
rent Prolog. This implies a dec
rease in the complexity of the ar
chitecture and in the amount of
hardware required in the parallel
machine.

Various models for parallel
processing of logic programs are
proposed from the computational
model viewpoints. Nitta and
Conery described parallel inter
pretation methods based on an
AND/OB process model (Nitta et

83)' CConery 83). Haridi
proposed a language based on
natural deduction, which covers a
wider class of statements than
Horn Logic (Haridi and Sahlin 83).
iodel^h Pr°P°Sed 3 conPutational
model based on multi-processing
and graph reduction mechanism
(Hirakawa et al. 83). In "h^
paper, a computational model for

and °n multi-Processing
and message communication betweeA

j. *

Based on this model w
implemented a Pure PrAt « Ve

Preter in DEC-20 fnn 8 inter~
(3h.„lro 83, ® ssLT;Lpr°loE

ssr: J1™""" •»»»«.bivT

communicatio^portion used in^h"
interpreter with K 5 n the

communication imni 0 ed. buffer
by adding Bom„ ementation and
lazy interpreter wh^ changes»
accordance with d W°rks

easily obtained^

a
in
be

Section 2 of th.-,.
Plains the ? paper ex-
meration-. s J°n°ept 'enu-
fche computational°nmod describes
implementation in

log. Section A describes Use toi-
lflcatlon of the interpreter fnx
the eager version to the laiy one.

2. EMUHERAT TOMS

An Interface between AND-paral-
lellaa and OR-pa rail el isa (a
don't-know-nondetereinise) is ifr
troduced using set expressions it
PARLOG and ELI. A set expression
has the syntax such as:

CX IT| where X is a ten am)
T is a goal sequence

In ELI f the basic operation on
a set is an 'enuaerate' operation.
In this paper the same expression
is introduced in Concurrent Prolog
as in ELI. 'Enumerate* is sialic
to the 'bagof' operation in DEC-10
Prolog (Warren 81).

Prolog : bagof(X.I,Collection)
Concurrent Prolog :

enuaera te({XlT),Streaa)

The meaning of the 'bagof
literal above is "Collection is
the collection of terns of the
Torm x, which satisfy the goal
sequence T". in Concurrent
log, 'Stream' in the 'enumerate'
clause is the same as 'Collection'
in 'bagof' logically, but it is 3

stream of terms rather than a
simple collection. This is 3

natural interface to an AND-paral-
lei process.

There are two types of streams.
°ne is an uncontrolled stream and
the other is a controlled stream.
'Uncontrolled' means that once
'enumerate' is called, its output
stream is never stopped until all
the solutions are generated.
the other hand, 'controlled' means
that the generation of the solu
tions is invoked by a demand of 3

Process outside of 'enumerate'-
The former type of enumeration is
called 'eager enumeration' and the

91

latter 'lazy enumeration'. The
eager enumeration is used for
finding all solutions to a data
base query and generally requires
many computation resources, while
lazy enumeration is used for find
ing a part of the solutions which
satisfy some requirements of other
processes. The eager and lazy
computation mode for the 'collec
tion' is introdeced as primitives
for the control of logic program
ming (Kahn 81). The following are
simple examples of lazy and eager
enumerations.

Eager enumeration s "display all
countries with a population of
more than one hundred million"

Goal: eager_enumerate(
(Nam |country(Nan, Capl, Pop),

Pop>100),Str),
display_stream(Str?).

Lazy enumeration : "display three
countries with a population of
more than one hundred million"

Goal: lazy_enumerate(
{Nam|country(Nam,Cap, Pop),

Pop>100),Str?),
display(Str,3).

In the above examples, 'enu
merate' and 'display' run in
parallel (concurrently). In the
former example, 'eager_enumerate'
produces a stream of country names
and 'display_stream' displays them
in turn. In the latter example,
'display' sends three demands for
solutions to ' lazy_enumerate' and
'lazy_enumerate' produces them.

3- EAGER RNHMFBATTfiM

The eager enumeration is pro
vided by a Prolog interpreter
which computes subgoals serially
and clauses in parallel. In this
section, a computational model for
an eager interpreter and its im
plementation in Concurrent Prolog

are described.

3.1 Computational Model

3.1.1 Components

The computational model for the
eager interpreter consists of
three components: processes,
channels and a Horn Clause
Database (HDB).

A process plays a key role in a
computation. An arbitrary number
of processes can be generated in a
system. A process corresponds to
a clause being computed, such as
H< G1,G2. There are two types of
processes, that is, active and
waiting. The waiting process
waits until it receives data from
another process.

A channel is a communication
path between processes and is
dynamically generated during the
computation. Data transferred
through a channel is called a mes
sage. A message is passed from a
process called a "generator" to
processes named "consumers". The
distinction between a generator
and a consumer is relative, and a
single process can simultaneously
play both roles. One generator
process can simultaneously send a
message to multiple consumer pro
cesses via a channel. Similarly,
one consumer process can be con
nected to multiple generators.

The Horn Database (HDB) is a
set of Pure Prolog clauses. A
process can fetch a set of clauses
which have heads unifiable with a
certain term. A fetching opera
tion about term P is called a
"P-related fetch".

2.1.2 Process Operation

In the computational model
given here, computation progresses
while multiple processes are ex-

92

changing messages. This subsec
tion provides a more detailed
description of the process, shows
a simple example, and presents the
execution mechanism of the com
putational model.

A process is defined by five
components: Status, Head, Goals,
Input-Channel, and Output-Channel,
as shown in the following format:

process(Status,Head,Goals,IC,OC)

'Status' indicates the state of
a process and is either 'active'
or 'waiting'. -Head' is a predi
cate (term) and represents what
the process must eventually com
pute. 'Goals' is either null,
true* or a sequence of predicates

and indicates the predicates to be
computed to compute the Head. For
example if the HpB includes

a<--b,c , there may be the
iollowing process:

process(Status,a,(b,c),IC,OC)

ias^h^n0"' if the Plicate b has been computed, there may be a
process as follows:

proeess(Status,a,(c),IC,OC)

A 'channel' is used t t

po — Process sppcsrs
~i ror "•
generator for itr/outn'f"3 38 3
(OC). output channel

tion of' a^rocess^6^ine th6 °Pera"

(A) Active process

pro2L°pj~t;!s.r* °r

termination Tr reduction or
tbe lefSSt ^uCTor0: re'
is expanded usinp ?nrl clause
in HDB; the 1 renCe rule= active process is

maintained after the reduction is
completed. By contrast, tenis-
tlon means that Inference reaches
'true' or the application of u
Inference rule falla; in bote
cases, the process la imnediatel;
deleted.

flBfiTAtlan ln.rcgiisUon wit
Assume process(acti*e,H,G,I,0).

If G is neither null nor 'true'
and G is in the fora of either P
or (P,...) where P is a predicate
defined in the HDB, then the pro
cess performs a P-related fetch to
the HDB to obtain a clause set, S,
generates active processes for all
the components of S, and connects
each process with itself through
Channel I (each process functions
as a producer). It also changes
Its status to 'waiting'.

Operation in f.fpupation aodf
There are two types of ter

minations: success or failure. '
success termination occurs
reduction reaches true, 1

failure termination occurs when t
fetch operation fails. The fell"
ure termination corresponds tc

Prolog's 'fail'.

Success tfnrinaUP"
When G is either null or true,
the process sends H via cbanne

Failure tent! na tier
The process deletes itself-

(B) Waiting process

uessage

ing
of

Having received a
(term) M via channel I, a waitiW
process generates G', a copy
its Goals G, in the format P' 0

(p,t P1,...), and unifies the he«
element P' with M (transfer of »
computation results) Then, it eJ*
tablishes NewG, which is G' W1

its head element re*^-
However, when G' contains only ' '
NewG will be true. Then, tn
"siting process generates tr'

93

following active process:

process(active, H, NewG, X', 0)
Where I* is a new channel.

The waiting process will be
maintained in the original form.

The entire computation ter
minates, when all the processes
are deleted.

3.1.3 Computation Example

This subsection presents a
simple example to show the way the
computational model is executed.
In the following figures, the ac
tive process p, the waiting pro
cess q and the channel c are
denoted by r)d. I la and

<—c—, respectively (p, q and c
may be omitted). The Head H and
Goals G are shown as H<—G.

Assume that the HDB is given as
follows:

{ ap([),X,X).
ap([U|X],Y,[U|Z])<--ap(X,Y,Z))

To compute [X,Y] that satisfies
a goal ap(X,Y,[a])f the following
process is generated as the ini
tial process:

, c0 <[X,Y]<-ap(X,Y.[a])) pO

A message output through eO is
ie solution. Since pO is an
:tive process, it performs a
itch operation and generates new
•ocesses, pi and p2, and then
langes its status from active to
liting.

cO
pO

[X,Y]<—ep(X,YJa])
p1

-Cap(n.[a1.[»])<-true)
P2

—f ap([»|X],Y,[a])<—ap(X,Y,LJ)J)

There are two active processes.
Each process runs simultaneously.
As p1 has a terminated clause, it
sends the head of the clause and
deletes itself; pO receives mes
sage 'ap([],[a],[a])' and creates
a new process p3; p2 performs a
reduction mode operation and
produces a new process ph.

An active process pi sends the
message ' ap([],[],[1)' to P2 anc^
deletes itself. Receiving the
message, p2 creates a new process
p5 and deletes itself because it
has no child process; p3 sends
•[[],[a]]• (the first solution) to
cO and deletes itself.

pO
[X,Y]<—ap(X,Y ,[a])

p5
-fap(ra],[].[a])< true)

P5 sends the message
*ap([a],[] , [a])' to pO and deletes
itself. PO produces p6 and
deletes itself.

<-^-Crral,ri1<--true)p6

P6 sends message '[[a],[]]'
(the second solution) to cO and ,
finally, deletes itself.

94

3.2 Eager Interpreter
Implementation

3.2.1 Eager Interpreter
in Concurrent Prolog

Concurrent Prolog adopts AND-
parallelism to describe concurrent
processes and OR-parallelism to
describe nondeterministie actions
of processes (don»t-care-nondeter-
minism). In Concurrent Prolog,
once a clause is selected, the
choice of other clauses is
ignored. Concurrent Prolog pro
vides interprocess communication
mechanism (shared-variable) and
process synchronization mechanism
(read-only-annotation).

With the computational model
implemented in Concurrent Prolog
a process is expressed by the
following term:

process(Status,OutputChannel,
InputChannel,Clause)

A generation of a process is
performed by parallel AND's such
and 'r°C?SS:-Proc^1,process2.,
and a deletion of a process is ex-
oe®® , tericinati°n of the pro
cess, 'process:-true' A i
is implemented by shared variables
and process synchronization is
t2n a^ read-°nl* annota-

Although not shown in this

paper, our system constructs the
KDB using a Beta representation,
'ax(Horn clause)', in the internal
database of Concurrent Prolog.
Flg.1 shows the program of the
eager interpreter.

(pi) to (p3) define the behav
ior of active processes, while
(p4) and (p5) define that of a
waiting process.

(p1) performs reduction. The
predicate 'reduce' checks whether
or not the first element of the
subgoals in 'Cls' Is defined in
the HDB. When the first eleaent
is not found In HDB, the predicate
•reduce' fails. When the guard
portion of (pi) succeeds, two
predicates in the goal portion,
'process' and 'process_fork', are
executed in parallel. 'process'
is the original process in waiting
mode, and '?• is attached to the
variable ' IC'. • proeess_fork'
generates a new active process for
each newly fetched clause,
'merge' predicate is used for con-
structlng a channel between a
parent process and its child pre-

cesses. Note that this merger
deletes itself, when one input
channel is closed.

(p2) corresponds to a proces-
in a termination aode. The predi-
cate 'terminate' checks that 'Cls

P1) process(active,OC,Cis) reduce(Cls NxGll .
Pr'ocessfwait or tro m \ lst"*Gl) j

P ' P r c , c ess(active,[Messl rn*5 'Pr°cess_fork(IC,NxGl).
P3 process(active, [1 da? • IZ terminate(Cls,Mess) ! true.
P4) process(wait,OC, [Mess'C11 ^h3rvi3e 1 true-

Process(wait,OCl :T newclau«(Cl3 tMeSS,NewC) !
Process(active QCP 'l *3) 'Berge(oc1?.°C2?,0C),

Pr°cess(wait,[],[].Cls? *
process_fork(0C Goalh .
forks([],[]). ' clauses(Goal, Clses) | f or ks(Clses,OC).
forks([Clause!R],0C) •-

,UC) ,forks(R,0C2).
J^^^^tnterpreter Prograffl

95

is in the format 'X<—true'. The
second argunent '[Mess]' specifies
that the message is sent to 'OC'
and the active process is ter
minated. Then, the process
deletes itself.

(p3) shows the operation of
active processes in which further
reduction has become impossible.
(p3) deletes itself closing the
output channel.

In (pi), the Input-Channel is a
read-only variable; when a value
is instantiated to the variable
(i.e, when a message is received),
the process starts operating. The
predicate 'newclause' generates a
copy 'NewC' from the original
clause 'Cls' according to the
waiting process operation defini
tion mentioned in 3-1-2. The goal
portion of the program specifies a
new process generation with the
new clause and the original pro
cess to remain as it was. The
output channels of these two pro
cess ('0C1' and 'OC2') are merged
into the original output channel
'OC'.

(p5) is for a waiting process
with a closed message stream,
which means that all the child
processes have completed their
Jobs. The waiting process deletes
itself closing its output channel.

Using this Interpreter, the
eager enumeration can be con
structed as follows:

eager_enumerate({XjY) ,Str) :-
process(active,Str, (X<—Y)) •

As described above, a computa
tional model can be written in
Concurrent Prolog very easily,
because of its high descriptive
capability. This also shows that
OR-parallel ism can be implemented
by AND-parallelism.

3.2.2 The Refined Version of
The Eager Interpreter

The eager interpreter described
above is the direct implementation
of the computational model in sec
tion 3.1. This implementation
utilizes a 'merge' network for
message communication. The merge
predicate merges two streams non-
deterministically to provide a
characteristic of a channel where
every child process can send a
message to its parent independent
of other child processes.
However, the merge network has two
drawbacks: it consumes a certain
amount of the resources since a
'merge' is also a Concurrent Pro
log process, and the message
transfer takes relatively much
time because the message is sent
via more than one merger. By
eliminating the nondeterminacy of
the message transfer, we can con
struct a more efficient eager
interpreter without the merge net
work.

The basic idea of the new ver
sion is to use D-li3t and linear
ize the channel. In this version,
an input channel of a parent pro
cess is the concatenation of the
output channels of its child pro
cesses. To achieve this feature,
a reduction of an active process
is changed as follows:

pr(active,OCs,OCe,(m< a)) :-
pr(wait,OCs,OCe,IC1?,IC,(m<--a)),

pr(active,IC1,IC2,(a<—b1)),
pr(active,IC2,IC3»(a<—b2)),

pr(active, ICn, IC, (a<~bn)).

The first goal of the above
clause specifies the parent pro
cess and the rest specifies its
child processes. Each active pro
cess has both the output channel
of its own (second argument) and
its successor's output^ channel

96

clause is selected, eacb child
process computes its solutions to
attach them to its output channel.
Fig.2 shows the situation that the
child_process1 produced two solu
tions, child_process2 produced one
and the parent_process has re-
ceived one solution 'solll'. When
a child process puts all the solu
tions into its output channel, it
concatenates its output channel
and its successor's channel. The
parent process receives messages
the h

exrutes lt£
°Peration until

the head pointer reaches the tail
pointer of its inn„t u
When it fcerminatls, a parent^prol
cess concatenates its output chan-
bê ausT tE" °f itS 3UC~"-

Socessr°CeThi?re^e ^^"hparent
the ordering of sorSSnf^'^J
as OR-parallel execution.
4* LAZY

Lazy^interpreter ^
fication of the' S? " 3 nc,di-
scribed in sectLc^^*' de"

functironr°VldeS thS l3Zy enumerate

solution^LTglvefgLr0^068 3

according to the d ®oal sequence
the othei dnmand frOE °ne

Processes. Then the^inf ProloS
suspends the interpreter
receives the next d Until ifc

the interpreter re deoand- When
demand, it should re^se 3 "kil1"
sources and terminafcsa the^re-

regardless of Its computational
state. To Implement the deaacd
driven aechaniaa, the way of
deaand transfer and execution sus
pension control should be estab
lished. These ere achieved by
bounded buffer coouunicatioo
aethod in Concurrent Prolog
(Takeuchl and Purukawa 83).

*•1 Bounded Buffer

The Interprocess communication
Is provided by the shared vari
ables in Concurrent Prolog. Send
ing a aessage Is instantiating a
shared variable to the aessage.
Since one instantiation corre
sponds to one aessage transfer, a
r*w shared variable aust be
generated to continue the COMU-
nication. According to Talceuchi,
unbounded and bounded buffer coe-
ounications can be supported in
Concurrent Prolog.

The bounded buffer cooounica-
tion is achieved when the aessage
receiver generates new shared
variables. The followiig is a
simple example of the bounded buf
fer communication with buffer
length 2.

G°al :: integers(0,[X,T|N?])i
outstream([X, T'N]\H)

integers(X,[X!MJ)
T := X+1 | integers(I,H)-

outstream([X!H]\[P|R?])
wait(X)4write(X) I

outstrean(M\R).

Integers' generates an integer

Parent-process

Child-pro 1 Child-pro2 Ohi.d
fsom ^ \ \ 53-,ld^ro3 Child-pron
[soli 1,sol12,X] [sol21^V] \ ̂ \

'i « O mv

97

stream. ' Outstream' outputs the
elements of the stream. The
symbol '\' is an infix operator
which is used to write a head and
a tail of D-list in one term. The
call of 'integers' contains vari
ables 'X,Y' which specify a buffer
length of two. Process 'integers'
can instantiate 'X' and 'Y' to 0
and 1 respectively, but cannot
bind 2 to the variable 'N' because
of its read only annotation. This
process waits until the variable
*N' is bound. On the other' hand,
process 'outstream' waits until
the 'integers' process binds the
value because of the predicate
'wait(X)'. When the variable is
bound to 0, 'outstream' writes the
value and enters the recursive
call. At this moment, a new vari
able ' P' is attached to the end of
the communication channel because
the tall of the channel (variable)
is bound to ' [P JR?]' in the head
of 'outstream' definition. This
instantiation enables the
'integers' process to continue the
processing.

enables the receiver process to
control the sender process. At
taching an uninstantiated variable
to the tail of the communication
channel corresponds to the demand
transfer from a receiver process
to a sender process. Lazy enu
merator communicates with other
Concurrent Prolog processes via a
bounded buffer as follows:

Goal lazy_enumerate({X!Y},[UIV?]),
receiver([UiV]\V)

A 'kill' demand to an enumera
tor is to close the communication
channel by binding '[]' to the
tail of a channel.

H.2 l.azv Interpreter
Tmnl ementation

Lazy Pure Prolog interpreter is
obtained by changing the charac
teristics of the eager one as

follows:

1) Replacing each communication
channel from an unbounded buf
fer to a bounded buffer.

The bounded buffer technique 2) Using a linearized channel in-

p1) process(active,[],[] ,Cls).
P2) process(active,OPs,OPe,Cls) :- reduce(Cls,NxGl) ,

process(wait,OPs,OPe,[B jN]\N,Cls),
process_fork(NxGl, [B |N?]) •

P3) process(active,[Mess!R],R,Cls) :- terminate(Cls,Mess) , true,
pt) process (active, OPs, OPs, Cls) :- otherwise I true.

P5) process(wait,[],[]#[] \—»—..., m-• ̂pndi' ! true*
P6) process(wait,OPs,OPs,[M|_]_,Cis) wait(M) A M- end ,

P7) process (wait, OPs, OPe 1 ,[Mess |C1] \R, Cls) .-
wait(Mess) 4 newclause(Cls,Mess,NewC) i

process(active,OPs,OPe,NewC) 4
transfer_demand(OPe?,R,S) 4

I rorks(Clses,OPs).

f 1) forks(_,[]).
f2) forks([],['end' !_])•

transfer_demand([_!_),[P|S7] ,S) .
transf er_demand([],_,[])•

Fig.3 Lazy Interpreter Program

98

stead of a merge network.
3) Adding process operations for a

kill demand.

Fig. 3 shows the program
lazy interpreter. of the

(p1) to (p4) define the behav
ior of active processes. The
second argument of an active pro-
thfn/8 ltS °UtpUt channel and the
third argument is its successor',
output channel which is needed for
linearazing a channel as mentioned
in 3.2.2. When an active process
is generated, its output channel
is bound to '[BIN?]' or

manipulation lr r°r

whion apacifi.a tfl, ter„lratj;^
active process. (p2) to

correspond to the defi^ti^s P^
interPneter. (p2)

in
spec-

mode where"new"childPeduce

generated an?t U c ^T563 are

oranges its status to 'wam^f binding '[B|R?T ° waiting-
channel. This hind- d inPut

«. SlVS. * '
shows a demand transf^ Trt
Parent process to its ohn/ 3

cess. Predicate f hild Pfo-
executes 'clauses' PI"andSS~f°rk'
'forks' which is t- calls
Processes. ^ generate child
«»n in «onSu.dPr~»" f

r mechanl» at/, e bounded buffer mechanism (tbf b°URded

«•« or .rSa" sS!nd "*«-
generation of second

[X|V?]
(^active-pr ocess^i

u
^ [X|Y?1

u
^ [X|Y?1

waiting-process
j [B|N?]^

child-process
F'g-4 The demand transfer

second
is

postponed until the next demand Is
detected, (fl) specifies the be-
hsvior of 'forks' when * desaod is
to kill one. The serial-AM ii
(f3) specifies that a recursite
'forks' caill should be tried after
one process terminates. This is
for only the efficient iapleaenta-
tlon in DEC-20 Concurrent Prolog
which doesn't have a non-busy-wit
mechanism.

(p3) and (p4) define that an
active process terminates con
catenating its output channel and
its successor's (a unification of
the second argument and the third
one).

(P5) to (p7) defines the opera
tion of waiting processes. (p5)
which specifies a process termina
tion is for a kill desand. W>et
the message sent via its input
channel is 'lend*', a waiting pro
cess concatenates its output chan
cel and its successor's and ter
minates itself. The aessage
'*end|' means that all child pro
cesses of a waiting process are
terminated. (P7) specifies a
waiting process operation when it
has received a solution. Fig-5
shows the configuration of an out-
Put channel of a waiting process
and that of a new active process.
Output channel 'OPe' will be at
tached to the tail of the output
channel of 'new process' when it
terminates. Predicate 'trans-
fer—demand' in (P7) transfers a

. t* IV?] , ,
I waitlng-proc«ss |

[solution (N?l
1 - child-processes

new process *) / ^^e J v waiting-process

child-processes

99

demand, for example, the waiting
process in the above figure in
stantiates 'N« to ' [B' |N'?] ' or
'[]' according to a demand it
receives.

Osing the lazy interpreter,
'lazy_enumerate' i3 defined as
follows:

lazy_enumerate((X (Goals) ,OPs) :-
process(active,OPs,OPe,

(X<—Goals)) 4
sendend(OPe?).

sendend([end_of_solution |_]).
sendend([]).

'Sendend' sends message
'emLof_solution' when a demand
number exceeds the total number of
the solutions. The demand-sender
process receives 'end_of_solution'
instead of a solution when it has
received all solutions.

The interface between
'lazy_enumerate' and other Concur
rent Prolog process is a bounded
buffer.

5. PiscnssmN

To realize don't-know-nondeter-
minism, an environment of variable
bindings must be maintained for
oultiple solutions. The inter
preter described in this paper
retains the environment by copying
a clause, that is, a waiting pro
cesses copies its clause when it
receives a message. A simple
copying method has drawbacks on
both space and time efficiencies.

The space problem is that a
simple method produces a whole
copy of a given term which con
tains non-variable portions which
can be shared. This problem is
avoided by introducing a 'rename'
Predicate which produces a copy of
a term sharing ground term por
tions with its original term.

The time problem is that a copy
operation should search the whole
part of a given term. This will
increase a computation time of a
waiting process according to the
size of the terms it contains.
One of the possible optimization
methods for this problem is to
determine the portion to be shared
in compile time (either automati
cally or by giving declarations).
The development of an efficient
renaming method is one of the
important topics for implementa
tion of the don't-know-nondeter-
rainism.

6. COHCLUSION

This paper described an 0R-
parailel execution model for Pure
Prolog and the implementation of
an enumerate function in Concur
rent Prolog based on the model.

The computational model is
based on multi-processing and
interprocess communications. The
model provides an eager Pure Pro
log interpreter implemented in
Concurrent Prolog. Also a lazy
interpreter can be obtained easily
by introducing a bounded buffer
communication mechanism to the
eager interpreter. The eager
Interpreter and the lazy inter
preter provides eager and lazy
enumerate functions to Concurrent
Prolog, which are very important
functions for parallel logic prog
ramming.

This approach shows that both
OR-parallel and AND-parallel
execution of a logic program is
achieved only by AND-parallel
execution. This feature is very
important because it decreases the
complexity of the computer archi
tecture and the amount of required
hardware of a highly parallel
machine.

100

ACKNOWLEDGEMENT University, (1984)

We would like to thank Mr.
Takeuchi for his valuable sugges
tions on the use of Concurrent
Prolog and on the computational
model. We would also like to
thank Dr. E. Shapiro and Dr.
K. Kahn for their useful advice
about the OR-parallel execution of
logic programs.

REFERENCES

Clark,K.L and Gregory,S PARLOG: A
Parallel Logic Programming Lan
guage. Imperial College Research
Report, (May 1983).

Conery,J,S The AND/OR Process
Model for Parallel Interpretation
of Logic Programs. Technical
Report 204, University of
California Irvine, (1983).

Emden,M.H. and de Lucena Filho,
G.J. Predicate Logic as a Lan
guage for Parallel Programming,
in LOGIC PROGRAMMING. Clark K L
and Tarnlund.S.A. eds., Academic
Press, (1982).

Furukawa,K. and the Kernel Lan
guage Design Group. Conceptual
Specification of the Fifth Genera-

Kernel Language Versionl
(KL1). to appear as an ICOT
Technical Report, (1984).

tiondiAr* iand Sahlin 'D- Evalua-
° °f_ Programs based on

Natural Deduction. The Royal In
stitute of Technology, TRITA-CS
8305, (1983). CS~

Hirakawa.H., Onai n
Furukawa\ r , ' and

Paralle^'L- Plementingan °R~
(POPS) in P miZlng Pr° l0g ^^em IPOPS) in Concurrent Prolog. ICOT
Technical Report, TR- 020 , (1983) .

Kahn.K.M. &
Control of Lomic p ® the

i JSZ

Kowalski, R. Logic for Problm
Solving. North Holland, Nev lork
(1979).

Nitta.K. Hatauaoto.T. awl
Furukawa, K. Prolog Interpreter
Based on Concurrent Programing.
Proc. of 1st International Logic
Programming Conference, pp.38-'2i
(1982) .

Shapiro,E.T. A Subset of Concur
rent Prolog and Its Interpreter.
ICOT Technical Report TH-003,
(1983).

Shapiro, E.T. The Bagel: *
Systolic Concurrent Prolog
Machine, to appear aa an ICO.
Technical Report, (1984).

Takeuchi,A and Furukawa Interpro
cess Communication in Concurrent
Prolog. Proc. of Logic Progran-
ming Workshop, (1983).

Warren,D.H. Higher-Order
tensions to Prolog: *re ^
Needed? D .A.I. Research Paper
No. 154, (1981).

Incorporating Mutable Arrays into Logic Programming
Lara-Henrik Eriksson and Manny Rayner

Uppsala Programming Methodology and Artificial Intelligence Laboratory
Computing Science Department, Uppsala University

P O. Box 2059, S-750 02 UPPSALA, Sweden

This work was supported by the National Swedish Board for Technical Development
(STU).

I. Abstract

Logical terms are the only com
pound data structures in logic pro
gramming languages such as Prolog.
Terms are sufficiently general that no
other data structures are needed. Re
stricted uses of terms correspond to the
bits, character strings, arrays, records,
etc. of other programming languages.
The computational overhead, however,
of using a very general data structure
in specialised situations can be very
high Side-effects cannot be performed
upon logical terms and the alternative
of constructing new terms which dif
fer slightly from the old can be very
costly. We propose to alleviate these
short-comings of terms, without losing
their logical clarity and purity.

We have introduced into LM-
Prolog, a Prolog dialect running upon
Lisp Machines, predicates for creating
and manipulating arrays. These pred
icates could have been written com
pletely as Horn clauses without the use
of any primitives. They are imple
mented in terms of physical arrays and
"virtual arrays" in a manner that is
transparent to the user. For some uses
of these predicates, it is possible for a
compiler to produce code performing
array references and updates that is as
good as that produced by compilers for
traditional programming languages.

2. Motivation

The goal of this research is to
significantly improve the efficiency of
some logic programs without sacrific
ing their logical purity. First we will
consider where the use of arrays can
improve performance and then address
the question of whether a complex im
plementation just to maintain logical
purity is worthwhile.

There is a growing interest in at
tempting to extend the domain of logic
programming to systems program
ming. The Japanese fifth generation
project exemplifies this [Chikayama
1983]. It is difficult to imagine an
efficient file system or editor which
does not do side-effects upon compound
structures. We believe that logical ar
rays as described in this paper pro
vide a viable alternative to non-logical
primitives which perform such side-
effects.

There are many existing Prolog
programs whose performance could be
enhanced by using logical arrays. A
chess or go program can represent the
board as a two-dimensional array. A
program using association lists could
instead use hash tables. A text prc^
cessing program that deals with text as
lists of character codes can be replaced
by one using character arrays. And so
on.

102

One may question our insistence
that arrays be incorporated into logic
programming in a logical fashion. Pro
log already has non-logical predicates
for i/o and changing the database why
not add a few more for dealing with
arrays? Admittedly the implementa
tion of such predicates would be sim
pler than the one we describe later
The reasons why we want the imple
mentation to remain within logic are
both theoretical and pragmatic. If we
can maintain a simple semantics for ex
tensions to Prolog then the job of veri
fying synthesizing, analyzing, optimis
ing, debugging or understanding logic
prop-ams will be easier. Pragmatically

array into Prolog in a
logical fashion we maintain the gener
ality of the logic programs. A Prolog
predicate that, for example, works for
any instantiation pattern and that uses
to." can often be made more effective

er JSv '5 jrrayS Tith0Ut loss gen-erahty. Logical arrays show promise
of being well-suited for implements
ions up°n p lleJ processorsPby a«£

with side-effects. Programs

3. Semantics

using pure Prolno- j Pnmitives
with ar-

3.1 Array processing primitives

cates to deafwitTarrays™14^6 PFedi"

is_array(Array,N)

This predLate^used both f elements-
and type check-inn- j r creation
instantiation of the argument^ °D

nrray .element^ Array,Index,Vsht)

The value of the element corre
sponding to the index Index of the ar
ray Array is Value. This is the prim
itive for accessing arrsy elements

ar ray. upda te(Old -array Jndei,
Value, New .array)

The array New_array is the same
as array Old-array, except that the
value of the element corresponding to
the index Index in New_array is
Value. This is the primitive for up
dating arrays.

3.2 Horn Clause Definitions

In the sequel, we will sssume that
the semantics of the array processing
primitives are as if they were defined
by the following Horn clauses, array is
a reserved functor symbol that cannot
be used anywhere else.

laarray(array(irrayjlat) .Elsa) :*
langth (Array Jiat.Slsa).

*rr*7-alaaaat (array (Irraj-llat),
Iadax.Val)

•th-alaaaat (Intyllat, Iidax. Vil)

•rrayapdata (array(Old) . Iidax,
Val, array (lav))) .—

•pdatajl»B«at(01d, Iidax, Val,I«)

/* lixlliapy pradlcatas •/
l a n g t h (0 , 0) .
laBsth(qLlet],Laa)

tan>0. Laal la L«a-1,
lanfth(Llat.Laal).

"th^l.aaat(0Sl«a|J ,o,Elaa) .
"th.aiaBant(C/Liat] .Poa.Elaa)

Po,>0. Po.l i. po,-^
atk^laa.at (Llat. Po.l .Elm).

"Pdata.aloaaBt (CjLiat] .O.Iavjalas,
CSav.alaa|Li»t]).

103

apdata.alaaant ([SOB».»1»«|0Id .11 at] ,
Poa .Sawjalaa,
[SOAAjl«a|Ha*Jlat])

Poa>0, Poll la Poa-1,
opdata-alaaant (Old-liat, Poal,

Sawjalaa, HaaJiat).

4. Implementation

The Horn clauses describing the se
mantics of the array predicates can be
executed by a Prolog system. There
are, however, two sources of ineffi
ciency. The use of lists precludes
any random accessing. This is not
a serious problem since terms can be
used as described in section 5.2. The
serious problem is the copying that
update.element does. Our imple
mentation avoids both of these prob
lems by using arrays. We manage to
do this in a way that the semantics
of the predicates is not violated. An
array used by these predicates is im
plemented as a real array and a data
structure which masks the values of
some of the array elements. Both the
old and new versions of an array being
updated share the same real array.

This chapter will describe the prin
ciples of the implementation of muta
ble arrays and the primitive operations
on them. The implementation requires
that certain arguments to the primi
tives are instantiated when the prim
itives are called. If they are not, our
implementation cannot handle the case
in other ways than signalling an error,
freeiing [Colmerauer 1982] the subgoal
until enough arguments are instanti
ated, or possibly successively binding
(by backtracking) an index argument
to all possible indices.

Mutable arrays are represented in
ternally by a chain of value blocks, ter
minated with an physical array. In the

rest of this chapter, the term "array"
will refer to the entire mutable array.
When the underlying physical array is
referred to, the term real array will be
used. There should not be any way for
a logic program to look at the internal
structure of a mutable array.

The terms old and neu; (or updated)
array will be used to refer to the muta
ble array to be updated and the muta
ble array created as a result of the up
date (in a procedural sense). Note that
even though the values of the elements
stored in the old array are unchanged
by an update (since pure logic pro
gramming is side-effect free), the struc
ture of the old array might change.
Thus we will refer to the old array be
fore and after the update. Since this
chapter describes the actual implemen
tation of mutable arrays, this procedu
ral view of Prolog will be used through
out.

Each value block - except the last
one in a chain - contains an index-value
pair. The value of a certain element of
the mutable array is the value stored in
the real array, unless one of the value
blocks in the chain has that index. In
the latter case, the value of the ele
ment in question is the value stored in
the first value block with that index
instead. Two mutable arrays which
differ only in the values of a few el
ements, sometimes share the real ar
ray, the differences being handled by
the value block chains.

Aside from the index and value, a
value block contains a pointer to the
next value block in the chain, or to the
real array, should this be the last value
block of the chain. If the value block is
the last one in the chain, it will not ac
tually contain a valid index-value pair.
This can be represented by a flag bit,
by some special code in the index or

104

value fields or simply by the fact that
the value block points to a real array.

The new-real scheme update algo
rithm (see below) requires that the real
array is never pointed to by more than
one value block at a time. The sole pur
pose of this last value block is to fulfill
this requirement and still provide for
different mutable arrays to have differ
ent value block chains pointing to the
real array. All the chains simpfy share
the same last block

4.1 is_array

SZZZZf*
When the call is made with th„ A

ray argument uninstantiated a mutl"
ble array will be created T
the mutable array a real create
located for it pi I , array « al-
real array Vnit?fC\element of the
variables^(or possiblv so UDb°Und

A single value-index bloTk
Pointing to the re" ar"
index block is flan- j r he value-
i»g a vJd " »»' c°ntain-
erence to the vit ° J? PVf A ref"
turned as the referen +6X u 13 re"
table array. The C<i Dew mu"
Pointed to directly. aFray " never

OT-r~t Umpty value D , -1 '
block tteal array

A newly created array
4.2 array .element

b" "f„pThe

value of an element of the mutable ar
ray ia done by comparing the index ol
the element to be looked up to the in
dex in each value block in turn (except
for the final value block which does
not contain a valid index-value pair).
Should a block with a matching index
be found, the corresponding value is
the one looked for. If no such value
block is found, the real array is in
dexed in the ordinary manner. When
the value is found, it is unified with the
Value argument to arrayjelement

4.3 array.update

All arguments to array.update,
except possibly the New^rray argu
ment, should be instantiated. If the
New_array is instantiated, but the
O'd-array argument is not, it is still
possible to handle the call by using the
fact that

•rrayapS.tsCoidarray.Iadsx.
VaXit.ln array)

can be replaced by

arr*7-*l«ant(Vwwarray,Iadax,ralu).
•"•y-apdata (law array, ladax,., Oliarray)

which switches the old and new arrays

When an element of a mutable ar
ray is updated, a copy of the array is
actually made to preserve the value of
1 e array. This copying is done in
such a Way that the real array is &
ways shared with the old array. In ed
ition, the internal structure of the old

,array might be changed by the updat-
mg- This change is, of course, done in
such a way that is does not alter the

ue any of the elements of the old
array.

Updating can be done using two
different schemes, called the old-real
th '"I I and nevj-real tchemt. I"

old-real scheme, the value blocks

105

&re used to keep a history of all changes
made to the array. In the new-
real scheme, the real array is actually
changed and the value blocks are used
to keep a history of the old values be
fore the updates, for the benefit of the
old array.

In most cases the programmer can
specify, as control information, which
of the methods he wants to use (both
schemes are semantically equivalent);
however the new-real scheme fails in
a few cases, in which cases the sys
tem should do an old-real update in
stead. In both cases, the update
concludes by unifying the new ar
ray with the New_array argument to
array .update.

The names refer to whether the old
or the new array will consist of only the
real array and the compulsory value
block without a value, when a freshly
created array is updated.

The old-real scheme

This scheme is the simplest one.
The new array is simply a new value
block, containing the index and value
of the updated element, pointing to the
old array. In this scheme the structure
of the old array is not changed at all,
but the new array has an index block
chain one element longer. If the old-
real scheme is used several times in
succession, a long chain of value blocks
will be built up, increasing the time
needed to access the array.

NEW OLD

mttn W: 1 r T -
The situation after the third

element of the old array has been
set to Y (previous value X), using
the old-real scheme.

The new-real scheme

The idea of this scheme is to up
date the real array and add a value
block containing the previous value to
the value block chain of the old array
to mask the change. In this way, access
to the new array will be as efficient as
access to the old array was before the
update took place. Instead, access to
the old array will be slowed down by
the addition of a value block.

An update using the new-real
scheme takes place in a number of
steps:

1. The new array is created by copy
ing the value block chain of the
old array, omitting any value
block whose index is the same as
the index of the element being up
dated.

2. The index of the element being
updated together with its current
value in the real array is stored
into the (hitherto unused) last
block in the old value block chain.

3. The pointer in that value block is
set to point to the last value block
in the copied chain, rather than to
the real array.

4. The new value of the element to
be updated is stored into the real
array.

Note that the values of all elements
of the old array are unchanged by this
operation, since the storing of the old
value in step (2) masks the update of
the real array in step (4). We know that
all mutable arrays using this real ar
ray will point to the real array through
the value block used in step (2), so the
masking applies equally well to other
arrays than the old array of this par
ticular update. The new array, on the

106

other hand, is identical to the old ar
ray, except for the updated element,
since that element was changed in the
real array in step (4) and any value
blocks that could have masked the
changed was omitted when the chain
was copied in step (1). The reason this
copy was necessary was both to omit
any blocks that could have masked the
change as well as preventing the new
value block from masking the change
from the new mutable array.

The motivation for step (3) is to en
sure that there is still only one value
block that points to the real array,
so that step (2) in later updates will
work. Step (3) also increases the length
of the old value chain by one value
block. When the old array is not re
ferred to any more (which probably
happens soon after the update), its
value block chain could be garbage col
lected. Since the new value block chain
is not longer (but possibly shorter) than
the old chain, programs that don't use
old arrays after they have been up
dated will run using constant space.

This procedure can be simplified if
the value block chain contains a block
for the element to be updated, already
containing the new value, or if the real
array element already contains the new
rtU? h H 2 thf the °ld value could still be different.) In the former case
he copying in step (1) is only done up

to, but not including the value block in
question. In the latter case the copying
* done up to but not including the last
value block if the real array contained
the desired value. The last block in

PlaceTthe* u",16* P°mtmS to the Place in the old chain where the CODV
ing stopped. and step, 2.4 „e tkt "

-ma wa-cn.-
Situation before...

OLD
CCME

...and after the third element
of the old array has been set to
Y (previous value X), using the
new-real scheme.

L
In order to undo the side-effects

performed on the old array in steps 2-4
on backtracking, the pointer fields and
real array elements need to be trailed
(Warren 1077). Prolog trailing com
monly only involves just recording 'he
address of the location that was set, as
only unbound variables can be change
in Prolog. Tb reset these variables to
an unbound status, only their address
need be known. This simple trailing13

not sufficient here. Rather, the pre*1

ous contents of the changed cell mil"
be trailed along with the address of t e
cell. This requires that the trail has
space to store the old contents, or tha
two trails, one with and one withon
previous values, are used.

If the elements of a real array have

fewer bits than are normally require
to store information in the particu ar
Prolog system (e.g. a character arr»f>
where all elements are eight bits wi e,<
it is possible that some information re
quires more bits (e.g. logical variables,
that ordinarily requires a full poin'eu
and thus cannot be stored in the re
array in step (4). If an attempt is
to update an array element with ' i
information, the new-real scheme ess
not be used, since it always updates t

107

real array The old-real scheme must
be used instead.

Comparison

In the old-real scheme the value
block chain of the updated array will
be one block longer that that of the old
array, while in the new-real scheme it
will have the same length. This means
that if several updates in succession are
done on successive versions of an array,
the site of the value block chain (and
thus the time needed to access the ar
ray) will be constant for the new-real
scheme, but linearly increasing for the
old new scheme. On the other hand,
the time to access the earliest version of
the array will increase linearly as new
versions get updated.

In most cases, the updated array is
probably going to be used more than
the old array, so the new-real scheme
will usually be advantageous. If the
old array will continue to be used ex
tensively, the old-real scheme might be
more efficient as the old array is not
affected in any way by the updating.

Another factor to the disadvantage
of the new-real scheme, is that it has
to copy the value block chain of the
old array Should this chain be long,
the copying could take substantial time
and memory.

4.4 Unifying arrays

The unification mechanism of Pro
log must be extended to deal with ar
rays. In accordance with our Horn
clause definition, we define two arrays
to be unifiable iff they have the same
dimensionality and corresponding ele
ments unify. The occur check is as
much (or little) applicable here as when
standard terms are unified. Since the
Horn clause definitions use a reserved
functor to represent arrays, an array
oan never unify with something that is

not another array.
4.6 Realization in LM-Prolog

The LM-Prolog implementation of
the array predicates is generalized
somewhat. The index and dimension
are replaced by indices and dimen
sions which are lists which can have
up to seven elements. This extension
could clearly be written in pure Hom
clauses. Is .array takes an extra argu
ment which is a list of options. The
options can be used to declare whether
the elements of the underlying real ar
ray should be full words, 16 bits, 8 bits,
4 bits, 2 bits, or single bits. This op
tion has no affect upon the semantics
of the primitives and can be viewed as
user-provided control information. An
other option specifies how, if at all, the
array should be initialized. This too
could easily be written in pure Prolog.

The development and implemen
tation of logical arrays and experi
mentation with various optimization
was greatly facilitated by the extent
to which LM-Prolog is designed to be
extensible by users ([Kahn 1984] and
[Carlsson 1983]). The entire array
package was written in Lisp and Pro
log without making any changes to
the underlying implementation of LM-
Prolog. Unification in LM-Prolog is
extensible by using the Lisp Machine's
Flavor message passing facility [Moon
1983]. Logical arrays are implemented
as flavor instances that receive mes
sages to unify with others, to lookup
elements, to perform updates, to copy
themselves, etc. Another important
facility is the ability to "trail" arbi
trary computation. In the normal ex
ecution of Prolog programs a trail of
cells which upon backtrackmg need to
be re-set to unbound is kept. In LM-
Prolog, the trail consists of both such
cells and Lisp forms to be executed.
In order to implement backtracking

108

when the underlying implementation
performs side-effects upon arrays, it
was necessary to trail array locations
and their previous values. Another fac
tor which facilitated the implementa
tion of logical arrays in LM-Prolog is
the smooth interface to the facilities of
the underlying Lisp system. Lisp Ma
chine Lisp has an excellent array facil
ity which supports various byte sizes,
array dimensions, and overlaying.

5. Optimizations

Programs using logical arrays are
often substantially more efficient than
programs built upon the existing al
ternatives in logic programming lan
guages. If, however, logic program
ming is to compete with Lisp or Pas
cal then we must consider carefully the
overhead involved in supporting logical
arrays. In general, the overhead is nec
essary, but there are commonly occur
ring uses of logical arrays that could be
significantly optimized.

Our attitude towards optimiza-

below ^ Summa"*ed Deiow. it is based upon a distinr

th":~ S"br that th" Myogram ulfills certain properties. If a declara
ion is incorrect then the executTonof

the program may also be. In descenH
mg order of desirability we cWr
timizations as follows: classify op-

Automatically detected and perform
ed optimizations. E g tail i
optimizations. g' recursion

the "oie
array usage iWi i- °g and the
below. IdeaUv tii OIj de3cnbed

eaUy these declarations

should be verified either by the sys
tem or the user. Failing that the
system should optionally do run-time
checking.

There are three kinds of control ad
vice one can give the LM-Prolog imple
mentation of arrays. One is what the
byte size of the underlying real array
should be. If, for example, one declares
the size to be a single bit, then the ar
ray can efficiently hold only 0 or 1. Any
other value, including an unbound vari
able, is captured in a value block which
costs a few words of memory and slows
down array accesses. If, however, the
vast majority of values in an array are
limited to 0 or 1, LM-Prolog can pack
32 values into each machine word.

Another type of control advice is
when an array should be copied. IfM

array with a long chain of value blocks
is used frequently, either directly or n<
its ancestors, then it may be worth
while re-representing it as a real array
This real array's contents are the same
as those of the old logical array Thr
operation takes time and memory but -fwotiuu lasca tunc »uu LUIU— I
can be critical for sufficiently fast tie-
ment access. Logically, this copying is
just advice to the system and does not
change the semantics of the programs
involved.

One can consider the choice be-
tween old-real and new-real updates as
control advice. If older versions are
used more frequently than newer one
then one should advise the system ''
use old-real updates.

The usage declarations that LM
Prolog accepts describe whether th
array will be used in a determinis'1'
manner, whether only the most recen
version of an array will be accessed
whether the array indices in a lookup
or update will always be ground, an|
if a byte array is being used that

109

of its values will fit. If an array's us
age is declared to be deterministic from
its creation to its last update, then no
trailing is performed. The idea is that
if the system backtracks to the last up
date, then it will backtrack all the way
back to the creation of the array, so it
does not matter if its elements are in
consistent.

It is quite common to use an array
in a linear fashion so that after an ar
ray is updated, the old version is never
used. This is the way arrays are used
in traditional programming languages.
If an array is declared to be used in
this fashion then an update can simply
perform side-effects upon the real array
of the old array reference since the old
array won't be used anymore.

The logical implementation of ar
rays must be prepared to find that the
array indices in a lookup or update are
only partially instantiated. The cost
of checking first if they are ground is
small but can be optimized away if the
array is declared to be used only with
ground indices. Similarly, byte arrays
must check that the value is an integer
in the proper range and this check can
he declared away.

If the usage of an array is declared
as deterministic, recent version only,
ground indices and proper values for
hyte arrays then the efficiency of the
current implementation is about one-
half of that of Lisp. This is because,
in addition to the array reference or up
date, a message must be sent. With a
little micro-code support for arrays this
overhead could become insignificant. A
micro-coded primitive could if passed a
real array do the ordinary array refer
ee or update, otherwise send a mes-
8age to the flavor instance.

In order to verify a logic pro
gram containing array usage declara
tions, the declarations must be shown
to be correct. The verification of usage
declarations is an important area for
future research. The implementation
does allow one to declare that a decla
ration be checked at run-time and that
an error be signaled if it is violated.

6. Element-wise Alternative

Under certain circumstances, the
implementations discussed above may
become inefficient. Suppose that the
array is large; that is to say, that it
will be a very expensive operation to
copy it. Suppose moreover that a large
number of updates will be carried out
on it, and that it will be necessary to
access not only the most recent, but
also old states. Such a situation could
easily arise, for example, if the array is
being used to represent the state of a
large dynamic system, and the object is
to collect states which fulfill some con
dition, in order to compare them later.
The problem here is that every array
access will have to "go through" all up
dates between the version in question
and the most recent version; however,
in general each individual element will
only have been updated a small number
in times compared to the total num
ber. It is thus apparent that a very sub
stantial optimization can be performed
if we "localize" update information to
the element affected. How this could
be done is now discussed.

The basic scheme is similar to
that used by Conniver [McDermott
1974]; an array is a triple consisting
of a real-array, a version-identifier tree
and a version-identifier. The version-
identifier is unique for each version of
an array, and consists of a list of in
tegers. The version-identifier tree is

110

a tree which contains all the version-
identifiers current for the array in
question, partially ordered by the re
lation older than. One can reason
ably think of the version-identifier as
a "Dewey decimal" number; then the
version-identifier tree is a catalog of all
the versions of the array that have been
created.

The relationship older-than we de-
fine as follows: it and „ are Iwo ver-

• a'° " °ld"lh" -

tb. t'"" *°mlt,al °<

for thVf ̂ liStS arC identic^ except for the last elements, and the last

tn w ™rP',Trsth;hr:i »°-
e«h pi, containing ^ value ai^
sion identifier To find th i a ver"
element for an arrav ' tl^f °f an

a and version identifier an"ay

the a-list until we find the " i g° d°™
with the first ver*i J Paired
older than ot Sua? t that "
to update the array we first ^6'?13"'
new version identifier „< in the f .7 ' a

way: rf it does not al™ J hefoll°wing
form the identifier that is a' We

as v except for the l a same list
» incremented by i, 1?""'
the list with a 1 otherwise, it is
"' is then inserted fnfofht '° ̂ eDd'
Place in the version-id ^ecaPProPnate
a pair composed of tree> and

hard to estimate^sin'ce^^H SC^eme 13

"veral independent X " ?,epeads on
most ^Portant of th?1"3' The

f these » the way

in which the arrays are updated; i
this is done "linearly", so that the
version-identifier tree only has i sin
gle branch, the version identifiers ire
all single-element lists and both updit-
ing and referencing are fairly efficient.
In general, the "bushier* the version-
identifier tree the worse the method
will perform, since the lists represent
ing the version identifiers will become
longer and the overhead in process
ing them correspondingly greater An
other important question is how evenly
the updates are spread through the
array; clearly, if they are concen
trated on a small proportion of the el
ements the method is correspondingly
worse. One definite disadvantage of
this scheme compared to those above is
that garbage collection would be very
expensive, but since it is only intended
to be used in cases where old values
are of interest this is perhaps not seri
ous. Also, it is impossible to implement
byte-arrays, since each element in 'he

real array must be sble to hold an ar
bitrary value.

Dec 10 Prolog Alternative

Many Prolog implementations haw
the predicates functor and srg *hicl1

can be used to define efficient versions
of the array predicates ([Pereira l^i
[Clocksin 1981)). Prolog terms can be
used as pure arrays using these pri®1

tives.

The difficulty with this approach i3

the lack of an efficient way to dnp'^
ment array .update under the new-
r e a l s c h e m e . R e c a l l t h a t t h e c o s t o f »
lookup of an array updated under the
old-real scheme is proportional to t e

number of times that array has been
updated. Under the new-real sche®«
one needs to perform side-effects up1®
the real array. Since such side-effects

Ill

are not possible on terms, one is forced
to consider other unattractive alter
natives such as adding and removing
clauses from the Prolog database to im
plement the side-effects.

8. Concurrent Prolog Alternative

Another way to obtain the advantages
of mutable arrays and yet remain log
ical is to use the Concurrent Prolog
technique of defining processes which
accept messages [Shapiro 1983a). Mu
table arrays can be implemented this
way by having each array element cor
respond to an argument to the "array"
process. The process accepts message
to "look up" values and to "update".
A schema for writing such processes is
given below.

*"**«(Clooksp (1, Element,)|Mor«M»g«] ,
Elaaaati Elaaaat.)

array.(NoraMtfa?,
Elaaaati.....Elaaaat.).

vray,([apdata(l.IavValaa)|Mor*Naga],
Elaaaati.... .Elaaaat.)

array,(MoraMagaT,
lasValaa Elaaaat.).

The practicality of such an implemen
tation of mutable arrays depends upon
sophisticated argument passing and
tail-recursion optimizations. An awk
wardness is the need to define different
processes for each array size. One way
around this is to define one or a few
standard size arrays, and build larger
ones as arrays of arrays. The complex
ity of a lookup or update would then be
0('oj.(n)) where » is size of a standard
array and n the size of the array be
ing accessed. It can be easily seen that

this implementation of arrays will not
work in Prologs based upon depth-first
search.

0. Arrays as Impure Predicates

An alternative way to provide arrays in
Prolog is to implement each array as a
separate predicate. Given the appro
priate indexing advice, a Prolog system
could use an array for indexing. Ar
ray updates would be realized by data
base updates. Such an implementa
tion of arrays is similar to what tradi
tional programming languages provide.
Older versions of the array are not ac
cessible, there is no backtracking, and
programs become more sensitive to the
order in which its parts are executed.
The semantics of such arrays becomes
the semantics of database updates.

10. Other Alternatives

Recently, two other schemes for rep
resenting arrays in Prolog have been
suggested. The idea described in [Co
hen 1984] is extremely ingenious, but
appears to suffer from some serious
problems; access time in the general
case is proportional to the total num
ber of updates, and garbage collection
is very difficult. Also, if a virtual
array is replaced by a concrete one,
the change leaves versions logically de
pendant on the changed version unaf
fected. This makes optimization by
"concretization" very inefficient.

[Pereira 1984] gives a representation of
arrays as trees, with access in loga
rithmic time and update logarithmic in
both time and space. One attractive
feature is that it is possible to post
pone allocating space to an entry until
it is updated for the first time. This
makes the idea very suitable for sparse
arrays, but in the general case it is not

112

clear that the overhead is acceptable
for a large array size.

11. Applications

The use of mutable arrays on conven
tional hardware can easily be defended
in terms of efficiency. Even in the
areas where Prolog is usually applied,
symbolic processing and databases, ar
rays can be important. Hash tables,
for example, implemented using arrays
are often used in symbolic processing.
While all serious Prolog implementa
tions use hash tables, a Prolog user has
no access to the hash table routines and
is forced to use less efficient alterna
tives.

Graphics is another area where arrays
seem appropriate. Typically changes
are made to some small part of a model
Lorir 7° °r three dimens'°nal space
Logical arrays provide the exciting pos-
sibffity °f exploring the idea of doing
computer animation where the entirf
history of the display needs to be com
puted. Considering the millions of bits

Two applications are currently h,in

PTATO? by ,he Aft ft As™ ft °° A
i»g] represents the J""1™®-
&rr&vs TKio m i with mutable
ciSSrvS:sbr,in"seo,th"p-
mally interested in exam," °De D°r"
number of positions ^ ,lng a larSe

fer slightly from th*. ODly dif-
other profect ^tJ U"ent °ne' Ad
vance K -c » m°re dir<*t rele-
ural deduction-basfd^T " a Dat~
the type described in JHaridHLfls™ A

problem that arises is that it is nec
essary to keep several different bind
ing environments simultaneously; this
occurs in a large variety of "paral
lel" logic programming systems. Im
plementing environments as a-lists ii
clearly too expensive, but by regard
ing variables as offsets into an "envi
ronment array" it is possible to use the
methods described here to provide an
efficient solution inside pure logic. This
will be discussed more fully in a later
paper.

12. Discussion

On top of logical arrays one can, within
LM-Prolog, provide strings, hash ta
bles, general record structures and the
like. There are two questions here
that warrant more research. Is this»
good way of providing such capabili
ties? Should such facilities be built on
top of arrays or should they be pro
vided in a manner analogous to how
arrays are implemented?

The latter question is rather system de
pendent. Since the Lisp Machines pro
vide well-designed hash-tables, record
structures, and strings with significant
micro-code support it would seem sen
sible to take advantage of them and im
plement the "logical" versions of them
in Lisp rather than Prolog.

The question about whether this is 'fie
right way to introduce, say, strings
into Prolog is less dear. A disad
vantage of logical arrays is that they
are awkward to compute in compaf''
»°n to lists. Unification of lists pro
vides a very succinct and clear way of
expressing something that may require
a series of calls to arrayjelement and
array .update. Perhaps strings should
be introduced into logic programming
as terms that one can perform string
unification upon. Or perhaps they

113

should remain as lists of characters as
they are in many Prolog implementa
tions and effort should, instead, be put
into packing several characters to a
word [Shapiro 1083bj. Another alter
native is to implement strings as logi
cal arrays and put effort into extending
unification to enable one to deal more
comfortably with both strings and ar-
rayi.

We presented the "old-real" and "new-
real" schemes which can co-exist side-
by-side. We also discussed an alter
native element-wise scheme which for
some uses of arrays was ideal. An inter
esting avenue of future research is how
to let the system choose the appropri
ate underlying representation depend
ing upon how the arrays are used.

We have only begun to consider the de
sign of generally useful utilities for ma
nipulating arrays. We expect that the
ability to perform some operation upon
each element of an array, to create ar
rays that are pieces of other arrays, and
the like to be desirable. APL [Iverson
1962], for example, is successful not be
cause it provides array referencing and
updating, but because it provides a rich
md powerful set cf tools built upon
those primitives. One primitive that
we are exploring is array-differences
where depending upon how its used can
perform parallel operations upon an ar
ray or find differences between two ar
rays.

One motivation for providing mutable
arrays in a pure fashion is that the re
sulting techniques and algorithms ap
ply equally well in the context of func
tional programming. Our introduction
of virtual or logical arrays to logic pro
gramming applies equally well to func
tional programming. Virtual arrays
may also be useful in Lisp and mes-
•age passing systems. The LM-Prolog

implementation is really in two layers.
First, virtual arrays are implemented
as actors (flavor instances) and then in
terfaced into LM-Prolog.

An interesting area for further research
is to consider logical arrays in the con
text of parallel processing. Clearly the
old-real update works well in the face
of concurrency since there are no side-
effects. The new-real implementation
has side-effects that are completely hid
den from the user. Could the problems
of simultaneous updates also be han
dled by the implementation in a trans
parent manner?

We have began to work on manipulat
ing Prolog databases in a manner anal
ogous to mutable arrays. Both the old-
real and new-real schemes have data
base analogs. The three array primi
tives are replaced by primitives to cre
ate, query, and modify databases. An
awkwardness of this scheme is that one
must explicitly provide a database ar
gument to the calls of Prolog predi
cates using mutable databases. The
advantages of maintaining a pure se
mantics typically outweigh this clum
siness. Perhaps a syntactic sugar for
defaulting database arguments is feasi
ble.
In summary, the introduction of logical
arrays into Logic Programming is very
promising. The range of programs that
can be effectively run in logic has been
expanded. The unique ability to use
old versions of arrays supports many
new applications. In the long run, ex
perience with using logical arrays will
decide how useful they really are.

13. Acknowledgements

We would like to acknowledge the con
tribution made to this work by Dr.
Ken Kahn, who but for technical rea-

114

sons would have appeared as a co
author.

14. References

[Carlsson 1983] Carlsson, M., Kahn,
K., "LM-Prolog User Manual", UP-
MAIL Technical Report No. 24, Up
psala University, Sweden, Nov. 1983
[Chikayama 1983] Chikayama, T., Yo-
kota, M., Hattori, T., "ESP - Extended
Self-contained Prolog as a Preliminary
Kernel Language of Fifth Generation
Computer", New Generation Comput
ing, Vol. 1, No. 1, Tokyo, Japan, 1983
[Clocksin 1981] Clocksin, W. and
Mellish, C., Programming in Pro
log, Springer-Verlag, Berlin, Hiedle-
berg, New York 1981

[Cohen 1984] Cohen, S., draft, Univer
sity of California, Berkeley

[Colmerauer 1982] Colmerauer, A.
"PROLOG II Manuel de Reference
et Modele Theorique", Proe. Pro
log Programming Environments Work
shop, Linkoping Sweden, March 1982
[Haridi 1983] Haridi, S., Logic Pro
gramming Based on a Natural Deduc
tion System, Doctoral Thesis, Royal In
stitute of Technology, Stockholm Swe
den, 1983

[Iverson 1962] Iverson, K., A Pro
gramming Language, Wiley, New York
1962. '

?ahD' K"' Carlsson> M., "How To Implement Prolog on a Lisp
' "/'A"" In Prolo<> ImFo

mentations, ed. Campbell, J Ellis Hor
wood Ltd, W«,SmsP„,dJZS;

[McDermott 1974] McDermott, D
Sussman, G., "The Conniver Reference
Manual", MIT AT T av,„- * *» No OCQ' A C1. laboratory Memo
1974 Cambridge, USA, January

[Moon 1983] Moon, D., Stallman, R.
M., Weinreb, D., "Lisp Machine Man
ual", MIT AI Laboratory, January
1983

[Pereira 1979] Pereira L., ByTd L,
Pereira F., Warren D. H. D., "User's
Guide to DECsyatem-10 Prolog", DAI
Occasional Paper 15, Department cl
Artificial Intelligence, University of Ed
inburgh, Edinburgh, Scotland
[Pereira 1984] Pereria F., Arpanet Pro
log Digest, Vol 2, No. 12, March 14
1984
[Rayner forthcoming] RaynerM., "The
concepts of sente and aji in Go
and chess", Upmail Technical Report,
forthcoming
[Shapiro 1983a] Shapiro, E., A Sub
set of Concurrent Prolog and Its In
terpreter ICOT Technical Report, TR-
003, ICOT, Tokyo, 1983
[Shapiro 1983b] Shapiro, E. Informal
presentation at ICOT, Tokyo, Novem
ber 1983
[Warren 1977] Warren, D. "Implement
ing Prolog - compiling predicate logic
programs", Department of Artificial
Intelligence, University of Edinburgh,
D.A.I. Research Report Nos. 39 and
40, May 1977

Equality, Types, Modules and Generics
for Logic Programming1

Joseph A. Goguen and JosF Meseguer

SRI International, Menlo Park CA 94025

and

Center for the Study of Language and Information

Stanford University, Stanford CA 94305

1 Introduction
Thr origisil vision of Logic Programming called
for using predicate logic as a programming
litgmge [via Linden k Kowalski 76|. Prolog
only partially rvalues this vision, since it has
muy features with no corresponding feature in
first order predicate logic, and also fails to
realue every feature of predicate logic. Perhaps
the mini benefit of the system suggested in this
paper, hereafter railed Fqlog, is the way it
combines the technology of Prolog (its efficient
implementation with unification and
backtracing) with functional programming (in an
efficient first order rewrite rule implementation)
•« yield more than just their sum: logical
variables can be included in equations, giving the
ability to find general solutions to equations over
user defined abstract data types (ADTs); this
new power is provided in a uniform and rigorous
"ay by using 'narrowing* from the theory of
rewrite rules to get a complete implementation
of equality; it can be seen as a special kind of
resolution. In addition, user definable ADTs and
generic (i.e., parameterized) modules become
available with a rigorous logical foundation;
Eqlog ako has a subvert facility that greatly
increases its expressive power. Since our
approach to generic modules and ADTs relies on
general results from the theories of specification
languages and rewrite rules, it applies to
ordinary unsorted Prolog, and should also apply
toother logic programming languages such as
Concurrent Prolog.

Many other authors have synthesized logic and
functional programming For example, [Kornfeld
"I gives several interesting examples (some of
*nich inspired examples given here), but gives no
theoretical justification for his implementation of
equality; in fact, it is not complete (i.e., it can

'Supported is part by Office of Naval Research
Contract No. NOOOI4-WOOZJZ, by National Science
foundation Grant No. MCS8201S80. and by a gift from

Syitem Development Foundation to the Center for
* ' Study of Language and Information »t Stanford
Unhrerrity.

sometimes fail to find the right answer when one
does exist). Moreover, the ADT and object
oriented facilities are less general than might be
desired, since neither modularity nor strong
typing are provided, and functions are not
carefully distinguished from predicates. The
Funlog "language of [Subrahmanyam & You 84]
also has infinite data structures, lazy eva uation,
and non-determinism; however, uo formal logic is
given for these features, either model theoretic
or proof theoretic, and Funlog's 'semantic
unification' algorithm is also incomplete
in «on Haridi & Tarnlund 82] suggest a

structures by , semantic theory for the
not aware of any forma ^ ^ & Leyi 82)

!fDgU heeFPL a logL programming notation for

2 The Underlying Logic
Horn clause logic without equality First order Horn i cllau 8 ^ there are many

underlies ordi y which seem to have distinct
other logics, som or<j(.r logic with equality
advantages. Thus, nr ^ many.50rted
supports user typing. Pure equational logic
log'0 TeS:vS'rrise to programming languages,
can also gj [Q0guen, Meseguer &
°ne such languag & Tardo 7Q] whose

Plaisted 82, Gogu j terprets equations as

ADTs. -

w~- °r

wiu'ev^ly produce the result that the log.c

Tays it should.

116

We now briefly review many-sorted Horn clause
logic with equality. Here, one has a set S of
sorts, plus signatures /7 and E which give the
predicate and function symbols, respectively.
Each predicate symbol Q has an arlty which is a
string of sorts that serves to indicate the number
and sort of arguments that it can take; thus,
arity SJSJSJ indicates that Q takes three
arguments, of which the first and third must be
of sort Sj, and the second of sort s2. Similarly,
each function symbol has a rank consisting of a
sort s (its value sort) and a string w of sorts (for
the sorts of its arguments). Equality enters as a
distinguished binary predicate symbol =s for
each sort s, which we will write with infix
notation, usually without the subscript.
Sentences are Horn clauses in the usual sense,
but may involve the distinguished equality
predicate; that is, they are of the form

P P1 Pn'
where each P and is a positive atomic formula
of the form Q(tj,... , ta), and each is a term
of sort Sj when s,...sn=w is the arity of Q; these
terms may include variables, which will of course
be "logical variables"; also P and/or any Pi can
be equations, since it may use an equality
predicate. P is called the head of the clause,
and Pt PB constitute its tall.

A simple Eqlog3 program for calculating the
population density of countries is

density (C) = pop(C) / area(C) .
In ordinary Prolog, this would be given by the
clause

density(C.D) pop(C,P), area(C,A), D
is P / A.
using the impure is feature, which is a weak
analog of Lisp's eval function. Also, we can add
facts to the database with assertions like

pop(china) = 800.
(in millions!) instead of the more awkward

pop(china,800).
Similarly, we can compute the temperature in
Fahrenheit from that in Centigrade by the usual
formula,

f(C) = (9 / 5)* C + 32.
where f is a rational (abbreviated rat) valued
function and C is a rat sorted variable
(assuming these are available; or, one could use
floating point numbers)4. However, we can still
write the query f (C) = 77. and get the right
answer C = 25 (but unless a suitable output
simplifier is provided, one is liable to get large
unreduced fractions).

3We use the convention that variables names begin
with a capital letter, while both function and predicate
names are all lower case.

^Compare this with [Kornfeld 83], which uses functions
like Stilts having bizarre definitions that seem to
involve putting arbitrary Lisp functions inside clauses

We now indicate how to get the rationals from
the integers by using equality. In fact, one can
define equality of rational numbers just as usual
in mathematics,

x / r = z / • r • z = x *»
where / is a rat-valued function symbol
denoting division (the denominator must be
nonzero), and X, Y, Z. I are variables of sort
lnt (i.e., integer). The above clause (with a little
syntactic sugar for declarations, as shown in
Section 5) will enable an Eqlog user to define the
rationals; by contrast. [Kornfeld 83] uses logical
variables in a non-obvious way.

Logical precision requires specifying the intended
models. For first order many-sorted logic with
equality, these have one set for each sort s,
together with a predicate among those sets for
each predicate symbol, having arguments of the
sorts in its arity; similarly, with a function
among those sets corresponding to each function
symbol, such that the argument and values
match those of the sorts in its rank. It is also
assumed that equality predicates are always
interpreted as actual equalities in the models. In
addition, there may be a number of sorts and
associated function and predicate symbols that
have a fixed interpretation. For example, it is
desirable to build in the integers for reasons of
efficiency.

A model M satisfies a clause of the form
P P, P..

iff for every assignment a of values in the model
M to variables in the clause (such that sort
restrictions are satisfied), aP holds in M
whenever aPj holds in M for all i. A model M

satisfies a set C of clauses iff it satisfies every
clause in C. However, we are not really
interested in all models satisfying all the clauses
in C; on the contrary, we are only interested m
the "standard" model of C, which we now
explain. Given signatures E and /7of function
and predicate symbols (respectively) and a set
of Horn clauses (with equations), the standard
model, denoted T£/7£, has as its elements

equivalence classes of ground terms under the
equivalence relation

t=t' iff C |- t=st',
where [— is the provability relation for many-
sorted first-order logic with equality. Let [t]
denote the equivalence class of t under this
relation. Then function symbols are interpreted
in the usual way, and predicate symbols are
interpreted by: P([tj] [tj) is true in TrAC

^ I- P('(i—.t„); and is false otherwise. Tjyj,C
is like the Herbrand universe, except that it
consists of equivalence classes of terms instead ot
individual terms.

117

The basic facts m this situation ore given by:
Theorem It Let C be a set of Horn clause#
with equality, using function and predicate
symbols from the signature* E and 77
respectively. Then:

I T £ n C **li*fie* C ;
2. if M is any other model satisfying C , then

there is a unique i.\/7-bomomorphism b:

T£jj£-»M (where a JT./f-homomorphism
is a many-sorted function preserving the
function and predicate symbols in the
signatures), i.e., Tr n £ is an Initial

I,//-model satisfying C;
3. any model initial among those satisfying C

is isomorphic to Tj- nQ\
4. two r-terms denote the same element of

TZ.n.C ® 'hey can be proved equal using
the clause* in C; and

5- for P a predicate symbol and *,terms
in variable* Y, Ym, one has

C h (3 Y , YJP(t, t.)
iff there is a substitution o sending the Y;

to ground terms such that
P(WliH W.H) » troe '» Tr.l7.C'

n
AM thu is just another way of stating the so-
called 'Closed World* assumption for the initial
m<xlelTJ-/J£. This model has *no junk* in the
®cnse that that every element of the model can

denoted by a term using tbe given function
symbols, and *no confusion* in that a predicate
holds of some elements ifT it can be proved to
hold using tbe axioms; in particular, two
elements are identified iff they can be proved
equal using the given axioms. In fact, these two
conditions together are equivalent to initiality.
• ote that full first order predicate calculus does
'ot always have initial models in this sense.

3 Solving Equations over Built-
in Sorts

Assume that we are given a signature E of
function symbols and a reachable -L-model A.

°* 'el E be a set of iT-equations over a set X
°!variables. Then a ground solution of E in A
B an assignment a from the variables in X to
values in A such that o(E) is satisfied in A. Now
letting T^Y) denote the r-terms with variables
'torn Y, we define a solution of E in A to be an

Til! means thu every element of A is denoted by
»me r-jrooaj term

assignment o from X to terms in T^Y) such
that cr(cr(E)) is satisfied in A for every
assignment a from Y to A. A complete
solution of E in A is a set L of solutions such
that every solution of E in A is a substitution
instance of one in L; i.e., such that for any
solution T (from variables X to T^Y.)) there is a
solution o in L and a substitution p from the
variables in Y to T^Y) such that T=p(a). (Note
that these definitions do not require most general
substitutions.)

For example, let N be the natural numbers with
only the function +, so that E contains elements
of N as constants and +. Let us consider just
linear equations, regarding 3X as an abbreviation
for (X + X + X). Thus, the equations

3X + Y + 2Z = 1
X - 2Y = 3

has a ground solution <R(X)=7, <R(Y)=2, <R(Z)=
-11 and has a complete solution given by
(7jX)=3+4V, <R(Y)=2V, <t(Z)= -4 -7V where V
is a parameter variable. It is a general theorem
that any set of linear equations over the integers
has either no solution, or else a complete solution
consisting of just one substitution.

Complete solutions do not necessarily exist; also,
just because a complete solution exists does not
mean that it is recursively enumerable, i.e., that
there is an algorithm that will produce all the
substitutions in it. Moreover even if a
recursively enumerable complete solution exists,
the algorithm can still fail to terminate when
faced with a case for which no solution exists.
L* US say that we have a totally complete
solution in case there is an algorithm that will
explicitly fail if there IS n0 solutl°n- an° ..
otherwise will enumerate a complete solution.
Similarly let us say we have a r.e. complete
solution'in case there is an algorithm that will
enumerate a complete solution when there is one,
- awe have a finite solution if we have a

totally complete solution that is always finite.
More algorithmically, we will assume that
SOLN(E) produces substitutions in the solution
of E, if any exist, one at a time on request until
there are no more.

A further desirable property of a solution L of E

sense'tha ̂ fo'r any^olution subset" titm'<7,"there

essential y . ompiete solutions exist, but
n^mo^t general solution exists. The classical
"° is lhere the model is the set of terms over

cifjnature E , and the functions are just
Skme n r Then unification gives a finite
solution (totally complete, with just one most

orol unifier).

118

4 Computing in Horn Clause
Logic with Equality

This section considers sublogics of Horn clause
logic with equality within which equations over
user definable ADTs can often be solved. We
begin with a basic logic and then extend it; most
logic programming applications seem to be
included. The basic sublogic assumes all clauses
are of two types, either a pure equation, or else a
clause whose head is not an equation. Let £
denote the set of equations and P the set of Horn
clauses whose head clause is not an equation;
thus, C=£ U P. To unify two positive atomic
formulae, say Q,(t,,...,tn) and Q2(u, uj, we
must of course have that Q, is Q2, the arity w
of Qj is the arity w2 of Q2 so that n=m and the
sort of t; equals that of Uj, and we must also
solve the system

tj=ui, ..., tn=un

of simultaneous equations modulo the equations
given in £; this is called (f-unlflcatlon. Because
of our assumptions about the structure of
clauses, those in />can have no influence on
c-unifiers.

The computation algorithm of ordinary Prolog
has been described clearly but informally
by [Warren 80]: "To execute a goal, the system
searches for the first clause whose head matches
or unifies with the goal. The unification
process finds the most general common instance
of the two terms, which is unique if it exists If
a match is found, the matching clause Instance is
then activated by executing in turn, from left to
right, each of the goals of the body (if any) If
at any time the system fails to find a match for
a goal ,t backtracks, i.e., it rejects the most
recently activated clause, undoing any
substitutions made by the match with the head
of the clause. Next it reconsiders the original
goal which activated the rejected clause and
tries to find a subsequent clause which also
matches the goal." IS0

SOLN(E)getsdTJ
procedure and may not'halt* buTwhen SOLN
r e. complete, then our alnnrith™ • b(->L.\ is
Say that a predicate P (Xh mav hT'P ete)"
equality =) dlrectlv rW .. y be an

4 y) aireetly depends on another Q if

f'Zt: ¥^7J'z;'r°"
evaluation algorithm wnrk1 ture that °ur
predicate depends on itself Fn" e1ua|ity
reasonable to define - f examP'e. it is -rit in terms of = since

there is no dependence of (be clauses defining lot
on those defining rat.

5 User Defined Abstract Data
Types

There is much work on providing user defined
ADTs in programming languages (see Clu and
Ada) and on the foundations in ecjuational logic
(e.g., [Meseguer & Goguen 84, Goguen, Thatcher
6 Wagner 78]). The essential idea is that users
introduce modules that define new sorts and
associated functions. A purely syntactic notion
of module has been given for Mprolog
by (Domolki & Sieredi 83].

Let us now give a complete definition for the
data type rat in proper Eqlog syntax. Eqlog
keywords are underlined, and module names are
in capitals (built-in types come in modules; the
module IKT has sort lnt with subsort mint of
nonzero integers). "Attributes" can be given for
operators; for example, assoc. coil, and idp
indicate that a binary operator is associative,
commutative, and idempotent, respectively; and
id: e indicates that it has « as its identity. The
associative and commutative properties of
functions can be built into unification
algorithms. Eqlog "mix-fix" notation permits
any desired ordering of keywords and arguments
for operators; this is declared by giving a
syntactic "form" consisting of a string of
keywords and underbar characters (_J, followed
by a •. • followed by the arity as a string of
sorts, followed by followed by the value
sort of the function; if there are no underbars,
then the usual parentheses with comma notation
must be used. Similar conventions are used for
predicates. An expression is considered "well-
formed" in this scheme iff it has exactly one
parse; the parser can interactively help the user
to satisfy this condition*

®°dule BASICRAT using IHT is
sorts rat
subsorts lnt < rat
fns

—/_ : Int.nzlnt -> rat
—: rat,rat -> rat (assoc COM 0

: rat, rat -> rat (assoc COM JJ: ''
X-Y.Z.W.N : lnt

axioms
» = » / ! .

,, The parstr is greatly helped if spaces always sep"
e keywords declared in the form of a function, and
per ° otws that convention throughout; but since

are *lso delimiters, they do need not to 1
thnc™ r spaces- These syntactic conventions fo
those of OBJ [Goguen, Meseguer t Plaisted 82l.

119

x / r = z / f : - x * w = r » z .
K / T)»(Z /•) = «• Z)/(T • W).
(X / TWZ / I) =

((X • •) • (Z • T))/(T • I).
eafood BASICRAT

Here the keyword using indicates that the sorts,
subsorls, predicates, functions, and axioms of the
listed modules should be imported to the module
being defined We will refer to the relationship
between modules being defined and being used as
tbe using hierarchy We now enrich BASICRAT
to define division and the subsorl of nonzero
rationals

nodule RAT using RATO Is
sorts nsrat
subsorts nsrat < rat
fns

J_ : rat,nsrat -> rat
!»rsX,T.Z.» : lnt
sxioss

nzrat(X / Y) nzint(X).
(X / T)/(Z / 1) = (X • »)/(Y • Z).

endsod RAT

We have already noted that the sorts and
subsorts currently defined form an acyclic graph
jtbus supporting so-called 'multiple
inheritance'). This motif is repeated at the
module level, with another acyclic graph under
the using hierarchy. In fact, the subsort
hierarchy and the using hierarchy interact, since
subsorts are declared inside of modules: At a
given node M of the using hierarchy, the set of
curently defined sorts is the union of those
declared in M with all those declared io nodes
below M in the using hierarchy (i.e., all those
related to M by the transitive extension of the
H'hng relation); similarly, the subsort relation
nttree at M is the union of the subsort
declarations in M with those from modules below
M. Thus, the subsort graph of a lower level
module is a subgraph of that of a higher level
module (AH this has already been implemented
m OBJ and has been found very natural and
helpful.)

' Generic Modules
^Usability is a major goal of modern software
"gineering. In order to achieve this goal, it is
Pessary that software be broken into
omponents that are as reusable as possible;
arameterization is a technique that can greatly
zbance the reusability of components [Goguen

i for example, bag-of and set-of, which
ayc caused considerable controversy in the
Toioj Digtit, can easily be defined as generic
wtract data types, and then automatically
"Plernented using rewrite rules. Generic

modules also greatly ameliorate the otherwise
odious need for defining abstractions whenever
they are used.

Before giving details, we consider how to specify
a parameterized module's interface, especially
the requirements that an actual parameter
should satisfy for the instantiation to make
sense, expressed in the form of a theory, that is,
a set of axioms, that the actual must satisfy.
Such a theory may include sort, subsort,
predicate and function declarations, saying what
the actual parameter must provide to the
parameterized module, as well as axioms saying
what properties must be satisfied. For example,
a generic sorting module might have the theory
of quasi-ordered sets as its requirement theory;
this means that an actual must provide a
designated sort and a binary relation on it that
is transitive and reflexive. In Eqlog, this theory
is given as follows:

theory QUOSET is
sorts elt
preds _=<_ : elt,elt
vars A,B,C : elt
axioms

A =< A.
A =< C A =< B, B -< C.

endth QUOSET

Theories are not intended to be used for
computation, but only for declaring the
properties of interfaces. The idea is that before
an instantiation of a generic can be certified, it
must be shown that the actual parameter does in
fact have the properties required by the theory.
Because computations do not use the axioms
given in theories, there is no reason to restrict
the form of the axioms in theories, and in fact
we allow arbitrary first order axioms. Difficulty
only arises when one has to prove that the
axioms hold of some particular module; then one
needs a first order theorem prover. Here is an
even simpler theory, the one that is actually
used for the generic SET example.

theory TRIV is
sorts elt

endth TRIV
This theory requires nothing except that a
LrUcular sort be designated. We now give a

IR RA^ICSET module, providing only
genemetric difference, Ia), and intersection; later
Sy v^U define the rest of the set functions from
*e W1" the name of the module comes a
LfTsquare bracket, indicating that ^at follows •s TJZX srssrrii;
required to satisfy; the formal parameter part is
[hen closed by a right square bracket.

nodule BASICSET[ELT :: TRIV] is

120

sorts set
fns
0.J7 : set
{_> : elt -> set
b : set,set -> set (assoc coma id: 0)
P : set,set -> set (assoc coma idD

id: n)
vars S.S'.S" : set, elt,elt' : elt
axioms
S W S = 0.
{ elt > D { elt' > = 0 elt 0 elt'
S n 0 = 0.

S IKS' b S") = (S U sOwcs U S") .
endaod BASICSET

This way of defining finite sets follows [Hsiang
81]'s approach to the propositional calculus- Q is
the "universal" set, i.e., the set of all things' of
sort elt. The attribute id: should be taken as
an abbreviation for the identity equation In
many cases, this definition will execute faster
than more conventional axiomatizations. It
should be noted that the BASICSET module
provides not only all finite subsets of the set
given as actual parameter, but also all cofinite
sets (i.e., sets whose complement is finite) The
inequality in the axiom

,-C elt > n { elt' > = 0 elt + elt,
violates the purity of the language only in
appearance, since Section 7 shows how to reduce
the semantics of inequality to that of equality.

To instantiate a generic module, one must
provide an actual parameter A; but more than
this is needed. Since both modules and theories
can involve more than one sort, we need to sav
thoseWH1C? S°itS 1D,the actual correspond to
those declared in the requirement theory T of
the generic; similarly, we need to say which
functions and predicates in an actual A
correspond to those required by the theory
Following [Goguen 83) and ideas from Clear this
correspondence is given by a view wh^h consists of: w- wnicb

1. a function from the sorts of the theory T
to those of A;

2. a function from the functions of T to those

3. «Junction from the predicates of T to
those of A,

such that
• the subsort relation is preserved-

*:tre^irtionsandpred'---
• the translations of the axioms in T to

axioms about A are in fact true of the

initial model of A.7

In the language of |Goguen k Burstall 84], a
view is a "theory morpbism.'

In many rases, it is obvious bow to construct a
view of A as T; this is formaliied by the notion
of a default view in [Goguen S3]. In other
cases, there is only one appropriate view in the
current environment, and of course that is the
one to apply. In such cases, it is not necessary
to indicate what view is intended, one can just
write the name of the actual. For example, in
order to construct SET-OF-INT. we just say

nake SET-OF-INT is SETtINT] endnate
since there is a default view of IHT as a THIV. In
other cases, it may be necessary to include a
view in the make statement. For example,

•ake SORTING-OF-INT-DIV is SORTIHG[IHT-
AS-DIV-QUOSET] endnaks
instantiates a generic SORTING module with the
quoset of integers ordered by the divisibility
relation. When it is not necessary to give the
instantiated module a name, we can just write,
e.g., SET[INT].

We now enrich the generic BASICSET module
given earlier (recall that it provided symmetric
difference and intersection) to provide union,
difference and cardinality functions, plus some of
the usual predicates.

nodule SET[X :: TRIV] using HAT,
BASICSET[X] is

fns
U : set.set -> set

•' set,set -> set
*_ : net -> nat

preds
G '• elt,set
empty : set
JL : elt,set

"ers X : elt. S.S'.S" : set
axioms

s u s' = (s n sOy s w s*.
s - s* = s n(s y sO.
empty(S) S = 0.
N 6 S : - { K > U S = S .
N 6 S : - { H > n s = 0 .
#0 = 0 .

*({ X > u S) = succ(# S) :- X 0 S.
#({ X > tj s) = # s :- X 6 S.

endmod SET

Although # does not yield the answer oo for
infinite sets, it does work reasonably. For
example in the case of SET [INT], # 0 is Just 1

7
seni" rar *ri1 llrke scale programming, one may

e or less than a formal proof of this; for exam
informal proof might be acceptable.

121

again, a reduced term rather than a non-
terminatiog computation. Also, •({ 14 > U 17)
evaluates to f CI again.

We can also enrich a module without giving the
enrichment an explicit name; this can be useful if
some constants are being defined for a single
query or example Another feature illustrated by
the following module is that when the
requirement theory is TRIV, a view can be
determined just by giving a sort name (provided
that the sort only occurs in one module in the
current environment). If the sort name does not
occur in any module in the current environment,
then it serves to declare a new sort and apply
the generic to it; we shall call this a declaration
•on the fly.'

Views also provide an elegant form of
declaration at the module level. In ordinary
sequential programming, •assertions' can be
inserted after a statement to indicate that the
program's state is supposed to satisfy some
property after the execution of that statement.
In logic programming with modules, a view from
a theory to a module serves to indicate that the
module (i.e., its sorts, functions and predicates)
satisfies certain axioms. It should be noted that
one can also compose generics. For example, one
can form BAG (SET (I ITT J J.

Of course, there is nothing special about the
details of the features and syntax described here
'or Eqlog modules and generics; what is special is
the underlying semantic ideas. Unfortunately,
there is not room in this paper for a full
exposition of this semantics, which is based on
jdeas from the Clear specification
language [Burstall k Goguen 80|. The ideas are
not really difficult, but they use some
comparatively advanced mathematics. Some
discussion of the issues iovolved is given in

'on 7. The application of these ideas to the
equational logic programming language OBJ is
described in (Goguen 83|.

^ Logical Foundations
This section discusses in more detail four issues
regarding the foundations of Eqlog: subsorts,
institutions, narrowing, and inequality.

T-l Subsorts and Institutions
Mtay of our examples use subsorts and subsort
P'e I'ares We now explain why this is not an
mpure feature, but rather an expressive
orthand for a specification in standard Horn
uses logic with equality. We also describe

°o itions that insure valid use of the equality
rt 1Cite; these conditions could be enforced

syntactically. Although more permissive uses of
subsort predicates are possible and certainly
worth exploring, the one presented here is
already very general.

Whenever a subsort s < s' is declared, a
corresponding unary predicate s(_) of sort s'
also becomes available; intuitively, this predicate
is true of a term iff that term lies in the subsort.
Users can give axioms involving the subsort
predicate; but these should only assert that
certain functions restrict (and constants belong)
to the subsort. For example, the subsort pos <
lnt of positive integers can be characterized as
containing 1 = succ(O) and being closed under
the successor function, by the two clauses

pos(l).
pos (succ(X)) pos(X).

Our reconstruction of subsorts within Horn
clause logic with equality involves giving
ordinary signatures L and 77, and a set C of
Horn clauses, such that the initial model T£ £
is isomorphic to the model intended for the
subsort declarations and their corresponding
predicates. The first step is to introduce a new
ordinary sort for each subsort. We then force
that in all models, the new sort a is identified
with a subset of the sort a' whenever a < a' by
introducing a new function symbol j : a -> a'
that is made to play the role of an inclusion by
satisfying the axiom

j (x) = j CY) X = Y.
Similarly, we can express the fact that certain
functions or constants restrict to a subsort by
introducing new function symbols for these
functions and constants such that their value
sort is the subsort; equations are then given to
insure their relationship to the functions and
constants in the supersort.

The module, theory, view and instantiation
features of Eqlog support generic (i.e.,
oarameterized) programming, a form of
programming-in-the-large that seems to permit
an unusually high degree of reusability. All
these features can be defined for any logica
system satisfying some very simple and
reasonable axioms that make^lt ani
institution [Goguen & Burstall 84]. In
Darticular, it has been shown that the logic o
Horn clauses with equality is an institution so
the general machinery can be applied directly to
this rase giving a semantics for the
^'rasterization features in Eqlog. There is not
P »,.re for the details of this approach, which
r°.°« on category theoretic concepts like colimit.
T rth remarking that the subsystem of
u 15 "nluse logic with equality consisting of pure
equations plus Horn clauses whose heads are not
equations, is also an institution.

122

7.2 Unification in an Equatlonal Theory

An equational theory is given by a pair (E,T)
where £ is an S-sorted signature of function
symbols and T is a set of E-equations. The
rules of many-sorted equational
deduction [Goguen & Meseguer 81] define an
equivalence relation =T between E-terms with
variables, namely that of being provably equal
using the equations in T. If X denotes an S-
sorted set containing an infinite supply of
variables of each sort, and if T^X) stands for

the E-algebra of terms with variables in X, then
a substitution is an S-sorted function a: X->

TV(X); such a function extends to a unique
Ediomomorphism from T^X) to itself that we
also denote by a. A substitution a is said to
have domain Y={YJ when Ys={xeX |
a(x)=jtx}; we then write Y=dom(a). The set of
variables introduced by a is the S-sorted
int(o)s=U{vars(a(x)) | xedom(a)8}, where
vars(t) denotes the set of variables occurring in a
term t. Given an S-sorted set of variables YCX
and substitutions a and we write [Y] iff
a(x)=T/9(x) for each x in Y. Similarly, w^ write
<*<T0 [Y] iff there is a substitution 7 such that

£=T7°a [Y], A T-unifier of two terms t and t'
is a substitution a such that a(t)=Ta(t'). Given

terms t and t' with Y=vars(t)Uvars(t'), a set L
of T-umfters of t and t' is called a complete set
of t h °ft aDd ''iff for each T-unirier 7

and t there is an a in L with a<T7 [Y]
(This was called a most general complete
solution in Section 3.) Without loss of generalitv
we may assume, for technical reasons that
dom(o)CY and mt(a)nY=0 for each'a in L.

Given an equational theory T, a complete
^unification algorithm SOLN is an
algorithm such that if started with any two
terms t and t', SOLN generates a complete set of
T-unifiers for t and t'- SOLN is flow r •

rules, a unification ,i_ •.. s K 0' rewrite
has been given by [Fay "gUnd''"8 narrowin8
order to give a twlin ^ improved in
80]. Then 0 °" Cnterion b* [HuUot

n\ ' . erms one has t= t' iff

The one step narrowing relation is defined as
follows: Let I be a term: by renaming of
variables (or some other convention) we can
always assume that the variables occurring in t
do not occur io any of the rules. Let t,, be a
nonvariable subterm of t that unifies (in the
ordinary sense) with the left hand side t, of a

rule t, =tj in ft. with a the most general unifier.

Let l' be the term obtained by replacing in ojt)
the subterm a(t0)»a(t,| by «(tj) Then we say

that t' is a one utep narrowing of t, and we
write t^t'. The narrowing relation is the
reflexive and transitive closure of one step
narrowing, and contains the rewriting relation as
a subset. The following algorithm then provides
a complete set of T-unifiers.

Theorem 2t [Fay 79. Hullol 80|. Let T=^ be
a confluent and terminating set of rewrite rules.
Given a pair t,t' of terms, introduce a new
function symbol8 r and consider all the
narrowing chains that begin with rft.t'). If such
a chain ends with a term of the form r(tD,'',,)

such that t_ and t' are unifiable by a
substitution a, then compos* a with the
substitutions obtained at the previous narrowing
steps in the chain, and add this composition to
the set of unifiers already generated. The set so
obtained is a complete set of T-unifiers for t an
tf. Q

This algorithm has been extended to handle the
more general situation when the equations in

can be partitioned into a set of rewrite rules

and a set of equations t in such a way that IS

terminating and confluent 'modulo S' Many
common examples fall into this category- A
general answer is given by [Jouannaud, Kite
& Kirchner 83], who generalize Theorem - 1
showing that if there is a finite ^-unification
algorithm, then narrowing modulo £ still

provides a complete T=JEu£-unification
algorithm. The idea, in this case, is to have pa
of the T-unification work done by a built-in

^-unification algorithm, and the rest by
if-narrowing. Both [Hullot 80] and [Jouannaud,
Kirchner & Kirchner 83] give sufficient
conditions for termination of their algorithms-

Now a simple example showing how a query
involving an equation is evaluated by narrow
for illustrative purposes, this example does n
use the built-in natural number type, hut ra

The reader may find it helpful to construe
symbol as a formal equality symbol.

this

123

provides its own, of sort natl, with successor
function succ; also, notice there is no nil list
here.

nodule LIST[ELT :: TRIV] in
sorts elt, list, natl
subsorts elt < lint
Ins

0 : natl
succ : natl -> natl

: lint,elt -> lint
length : Hit -> natl

vers Ela : elt. Lnt : lint
sxicss

length (Ela) = succ(O).
length (Lot • Ela) = succ (length (Lnt)).

eniaod LIST

The sort elt is a parameter, and is empty in the
Herbrand universe; however this causes no
problem if a suitable modification of the rules of
deduction is used (see (Goguen & Meseguer 81]
for the equations! case). The query

length(Lst') = succ (succ (nucc(O))) .
evaluates to

length ((Ela" • Els') • Ela) =
succ (succ (succ (0)))

b)' accumulating the substitutions associated
*itb the narrowings from the root length (Lnt')
10 'lie expression succ (succ (succ (0))).

acc (nee Uace (0)))

Fl|vr* ii Narrcmiog on lb* Lenftb Fuoelioo

'•3 Equality and Inequality
TL

e use °' negation for arbitrary predicates
es rise to difficulties. However, perhaps

n '"lsi|1gly, it is not so difficult to treat the
"Wjon 0f equality. For example, the BASICSET

u e of Section 6 contains the axiom
whit1' } ^ (elt' > = 0 elt t elt',
clau fpp*ars t0 lie outside the realm of Horn
an - f lc *'"• equality. However, this is only
inenfrarance' ,5ecau5e the semantics of
Th* T can be reduced to that of equality,
be Rational part of any Eqlog module should

a computable abstract data type. This is

implicit in our requirement that the equations
form a confluent and terminating set of rewrite
rules (perhaps modulo some decidable equations
such as associativity, commutativity, etc.) since
is has been shown that any computable data
type can be presented that way. Equality and
inequality of ground terms is then built in, since
one can just compute the canonical forms of the
terms in question and see whether or not they
are equal. Moreover, as shown in [Meseguer &
Goguen 84], a data type is computable if and
only if its equality is finitely axiomatizable by
equations. This means that we can always
axiomatize equality for each sort a as a function

= : a,a -> bool, by means of a finite set of
equations, bool is a new sort having two
constants, true and false, such that for any
two ground terms t,t' we have t=t' (in the data
type) iff (t=t')=true (in the equational equality
enrichment) and similarly, t=^=t' (in the data
type) iff (t=t')=false (in the equational
equality enrichment). In this way, inequality is
reduced to equality.

Given an inequality t =jt t', the Eqlog system will
then:

1. compute it by rewriting if both t and t are
ground terms; and

2. otherwise, requiring the existence of an
equationally defined equality, =, for the
sort in question, translate the inequality
into the equation (t=t') = false, and
then solve this equation using narrowing.

8 The Missionaries and
Cannibals Problem

To illustrate the power of Eqlog, we show how
to use some standard generics, plus subsorts,
functions and predicates, for a general
Missionaries and Cannibals problem (hereaf.ter'
MAC); once the parameters are instantiated,
Eqlog solves MAC by (f-narrowing, for t a set of
equations including associativity and
commutativity equations for the set operations.
We begin with a theory MACTH of the
preconditions for MAC: there are two disjoint
sets of persons, nO of missionanes and cO of
cannibals. Later we instantiate MACTH to tne
usual case of three missionaries and three
cannibals. MACTH uses a generic SET module to

f difference union, and cardinality. By
convenUan'a module with a •principal- sort has
the same name as that sort_ (unlessexphcilb y
indicated otherwise); e.g., the sort of PSET
paet.

124

theory MACTH[PERSON :: TRIVJ using SET
PSET = SET[PERSON] is

fns

aO : pset
cO : pset

axioms
mO n cO = 0.

endth MACTH

The MAC module also uses a generic LIST module
that provides the empty list nil, the length
function #, and concatenation «. The new sort
trip is introduced -on the fly" (see Section 6) in
the submodule TRIPLIST. We now briefly
discuss the intuition behind this specification. A
solution is a list of trips having certain 'good"
properties, where a trip is a boat containing a set
of persons; odd numbered trips go from the left
bank to the right, and even trips go from the
right to the left. Missionaries and cannibals are
persons. The predicate boatok indicates that a
boat has an ok number of persons; the predicate
good is true if a list of trips never allows there to
be more cannibals than missionaries on a bank
the predicate solve indicates that a trip list is a
solution to the problem. The functions lb'and
rb give the sets of persons on the left and right
banks, respectively, and the functions mset and
cset extract the subsets of missionaries and
cannibals (respectively) from a set of persons.

S°dule MAC[T :: MACTH] using NAT
TRIPLIST = LIST [trip] is

preds —

boatok : trip
solve,good : tripllst

fns

boat : pset -> trip
lb.rb : triplist -> pget
mset,cset : pset -> pset

IHS PS pset, L : triplist,
P : person, T : trip

axioms

boatok(boat(PS)) #
boatok(boat(PS)) #
lb (nil) = mo ucO.

mset(PS) = PS n mO
cset (PS) = PS n cO.
rb(nil) = 0

lb(L * boat (PS)) = ib(L)
e v e n # L .

rb(L * "oat(PS)) = rb(L) y
even # L '

rbtt. b»t<PS)) . ,b(L) . ps

I ' O . . l l (u y P S

PS = 1 .
PS = 2.

PS

good(L • T) » cs«t(lb(L » I)) =<
• •••t(lb(L • T)),
• cset(rb(L • T)) =<
• mset(rb(L • T)), good(L),
boatok(T).

good(nil).
solve(L) good(L), lb(L) =0

endaod MAC

Now (he constants to instantiate MAC to the
usual case.

•oduls EX1 using SET[ID] is
axioms

aO = { taylor, hslen. tilliu }.
cO = { uaugu. nzsats. taoc).

sndmoduls EX1

The notation {a, b, c) is shorthand for { a)
U(b)u(c). We can now instantiate MAC
and ask Eqlog to solve the resulting problem
with
make MAC[EX1] endmake
solve (L.)
using the default view of EX1 as MACTH, and no
bothering to give the resulting module a name

Acknowledgements
We extend our most sincere thanks to Jean-
Pierre Jouannaud and Fernando Pereira for
extensive comments on this paper, and for t 1

help and encouragement while it was being
imagined and then constructed.

References
1. Bellia, M., Degano, P. and Levi, G. The Call
by Name Semantics of a Clause Language wW1

Functions. In Logic Programming, Clark, KT
and Tarnlund, S.-A., Eds., Academic Press, lAM
pp. 281-295.

2. Burstall, R. M., and Goguen, J. A. The
Semantics of Clear, a Specification Language-
Proceedings of the 1979 Copenhagen Winter
School on Abstract Software Specification,
Springer-Verlag, 1980, pp. 292-332.

3. Domolki, B. and Szeredi, P. Prolog in
Practice. In Information Processing SSi Mas0"'
R. E. A., Ed..Elsevier, 1983, pp. 627-636.

125

4. Fay, M. 'First-order Unification in an
Equitionil Theory.* Proceedings, Fourth
Workihop on Automated Deduction 4 (February
1979), 161-167.

5. Gojoen, J. A. Parameterited Programming.
In Proceedings, Workshop on Reusability in
Proiremming, Biggerstaff, T. and Cheatham,
T, Eds., ITT, 1083, pp 138-150.

6. Gojuen, J. A. and Burstall, R. M.
Introducing Institutions. In Proceedings, Logics
olProgramming Workshop, E. Clarke and
D- Koten, Ed ,Springer-Verlag, 1984, pp.
221-256.

7. Goguen, J. A. and Meseguer, J.
'Completeness of Many-sorted Equational
Logic.' SIGPLAN Notices 10, 7 (July 1981),
24-32. Also appeared in SIGPLAN Notices,
January 1982, vol. 17, no. 1, pages 9-17;
extended version as SRI Technical Report, 1982,
and to be published in Houston Journal of
Mathematics.

8. Goguen, J. A. and Tardo, J. An
Introduction to OBJ: A Language for Writing
and Testing Software Specifications. In
Specification of Reliable Software, IEEE, 1979,
PP-170-189.

'• Goguen, J. A., Meseguer, J., and Plaisted, D.
L'ogramming with Parameteriied Abtract
Objects in OBJ. In Theory and Practice of
Software Technology, D. Ferrari, M. Bolognani
a«d J. Goguen, Eds., North-Holland, 1982, pp.
163-193.

10. Goguen, J. A., Thatcher, J. W. and
agner, E. An Initial Algebra Approach to the

Pacification, Correctness and Implementation of
bstract Data Types. In Current Trends in

™famming Methodology, R Yeh,
M ,Prentice-Hall, 1978, pp. 80-149.

p1, Nansson, A., Haridi, S. and Tarnlund, S.-A.
, ropert'es of a Logic Programming Language.
* L°lic Programming, Clark, K.L. and
a'nlund, S.-A., Eds., Academic Press, 1982, pp.

267-280.

'Liiang, J. Refutational Theorem Proving
'ng Term Rewriting Systems. Ph.D. Thesis,

n'v eristy of Illinois at Champaign-Urbana.

13. Hullot, J.-M. Canonical Forms and
Unification. In Proceedings, 5th Conference on
Automated Deduction, W. Bibel and
R. Kowalski, Eds., Springer-Verlag, Lecture
Notes in Computer Science, Volume 87, 1980,
pp. 318-334.

14. Jouannaud, J.-P., Kirchner, C., Kirchner, H.
Incremental Construction of Unification
Algorithms in Equational Theories. Automata,
Languages and Programming, Barcelona, 1983.,
1983, pp. 361-373.

16. Kornfeld, W. A. "Equality for Prolog."
Proceedings, Seventh International Joint
Conference on Artificial Intelligence 7 (1983),
514-519.

18. Meseguer, J. and Goguen, J. A. Initiality,
Induction and Computability. In Algebraic
Methods in Semantics, M. Nivat and
J. Reynolds, Eds., Cambridge University Press,

1984.

17. Subrahmanyam, P. A. and You, J.-H.
Pattern Driven Lazy Reduction: a Unifying
Evaluation Mechanism for Functional and Logic
Programs. In Proceedings, Eleventh ACM
Symposium on Principles of Programming
Langagues, ACM, 1984, pp. 228-234.

18. van Emden, M. H. and Kowalski, R. A.
•The Semantics of Predicate Logic as a
Programming Language." Journal of the
Association for Computing Machinery 83, 4

(1976), 733-742.

10 Warren, D. "Logic Programming and
Compiler Writing." Software - Practice and
Experience 10 (1980), 97-125.

•

UNFOLD/FOLD TRANSFORMATION
V.

OF LOGIC PROGRAMS

Hisao TAMAKI
Ibarakl University
Dept. of Information Science
Hitachi, 316, Japan

Taisuke SATO
Electrotechnical Laboratory
Machine Inference Section
Umezono, Sakura-mura, 305
Japan

ABSTRACT

The unfold/fold transforma
tion method is formulated for
logic programs in such a way that
the transformation always pre
serves the equivalence of programs
as defined by the least model
semantics. A detailed proof for
the basic system is presented
first. Then some augmenting rules
are Introduced and the conditions
of their safe application within
the unfold/fold system are clari
fied. There are useful special
cases of those rules whose appli
cation is always safe.

1 INTRODUCTION

The unfold/fold program
transformation method was devel
oped by Burstall and Darlington
(Burstall & Darlington 1977) in
the context of their recursive
equation language. The idea was
generalized and applied to logic
program synthesis (Clark & Sickel
1977) (Hogger 1981), where the
authors naturally formulated the
unfold and fold transformations as
just special cases of logical
deduction. Thus each clause in
the synthesized program is a
theorem deduced from the specifi
cation axioms. This ensures the
partial correctness of the synthe
sized program because every result
of computation (atomic theorem
deduced from the program) is
derivable directly from the speci
fication as well. Total correct

ness, however, is not guaranteed
in general and should be proved
separately(Clark 1979) .

They applied this deductive
approach to logic program trans
formation taking the initial pro
gram, viewed as if-and-only-if
definitions, to be the specifi
cation. But what is ensured in
general is again just partial
correctness: the relations
computed by the transformed pro
gram are narrower or equal to
those computed by the original
one. In other words the least
Herbrand model(Van Emden &
Kowalski 1976) of the transformed
program is included in that of
the initial one. If we want
exact equivalence, the inverse
inclusion should be proved for
individual cases.

As an alternative to the
deductive approach, we have
formulated an unfold/fold trans
formation system for logic pro
grams (Tamaki & Sato 1983) in such
a way that the transformation
always preserves the equivalence
of programs as defined by the
least model semantics. Though we
have to sacrifice the generality
of the deductive approach, the
guaranteed equivalence should
worth the cost.

This paper augments the

basic unfold/fold system with

128

some other transformation rules.
Though the rules themselves are
obviously equivalence preserving,
their interaction with unfold/fold
transformation needs careful study.
The condition for the application
of the rules to be safe will be
clarified.

Section 2 describes the basic
unfold/fold system and proves
that it preserves the equivalence
of programs. The proof is simpler
than the one given in (Tamaki &
Sato 1983) and more suitable for
our purpose. Section 3 and 4
introduce and study augmenting
rules.

The readers are assumed to be
familiar with the standard notions
and notations of logic programs
(Kowalski 1974). Note that our
target language is a pure one
rather than a practical implemen
tation such as existing Prologs.
Thus a program is a set (not an
ordered list) of definite clauseg
A definite clause is a pair of a
goal (atomic formula), called a
head, and a multi-set (again not

u.o o t e o a lf .

2 MSIQNFOLD/FOLT) .SVCTVW
2 •1 Pggcrietion of the sv.t^

The transformation process
proceeds as follows.

Transformation
begin PQ := the initial program;

D0 := O; /* the set of
definitions of

mark o nSW Predicates */
mark every clause in P
foldable'; 0

for i ._ i t0 arbitrary N
^PPly any of the trans
lation rules to ob-

In this section we are only con
cerned with the three basic rules,
namely, definition, unfolding and
folding, each of which are
described in the sequel.

Example (initial program)

PQ : CI. subseq([],X)

C2. subseq ([A|X], [A|Y])
*• subseq (X,Y)

C3. subseq (X, [A | Y])
• subseq (X,Y)

We use this example to illus
trate the process and rules of
transformation. The upper case
letters are variables, [] denotes
an empty list and [A|X] a list
with head A and tail X. Thus the
predicate subseq(X,Y) is intended
to mean that X is a subsequence
of Y.

Rule 1. definition

Let C be a clause of the
form p(xr...,xn) - Ax V

where
1. p is an arbitrary p re d i c a t e not

appearing in P. , or V. ,« l—l
9x are distinct vari-n • •

ables, and
A.

end

. " co c tarn Pi and D from

i-1

• . ,A are goals whose m 6

predicates all appear in Pq•

Then let be P^ U {C} and D-
be Di-1 U {<?>•
Do not mark C 'foldable'.

The predicates introduced by the
definition rule are called new
predicates while those in PQ are

called old. Those variables
occurring in A A other than

1 777
—,xt are called internal

variables of C.

(continued)

129

We define C4, motivated by
some need for a common subsequence
relation.

C4. csub(X,Y,Z) «- subseq(X.Y),
subseq(X,Z)

Then • {C1,C2,C3,C4}, £^-{04}.
Underline Indicates 'foldable'
clauses. We are going to optimize
this predicate 'csub'.

Rule 2. Unfolding

Let C be a clause in A

a goal in its body and Cy ... ,

be all the clauses in P. , whose
t-1

heads are unlflable with A. Let
be the result of

resolving C with C\ upon A.
Then let P. be (P. . - {C}) U {<7. v I" 1 X
•••,C '} and D. be P. ,.

n i i-l

Mark each C'foldable' unless
it is already in

Example (continued)

We unfold C4 at its first
goal to obtain ?2 = {CI,C2,C3,C5,

£>2 = {C4} where the clauses

C5,C6 and C7 are listed below.

C5. csub([] ,Y,Z) - subseq([] ,Z)
C6. csub((A|X],(A|Y),Z)

• subseq (X, Y) , subseq ([A| X] , Z)
"• C8ub(X, [A| Y] ,Z) +• subseq(X.Y) ,

subseq(X,Z)

Then C5 is unfolded into

C5\ csub([],Y,Z)

and we get P- {CI,02,02,02' ,02,
—} and P3 . {C4}.

The folding rule in our
system is not just the inverse of

the unfolding rule as it is in the
Burs tall and Darlington's system.
To fold a goal set into a goal, we
allow only a clause in to be

used as the folder.

Rule 3. folding

Let C be a clause in P. , of l-l
the form A *• 4 , ... ,A^ and be a

clause in P. , of the form B *• B^, •p-1 i
...B . Suppose there is a subst-
' m

itution 0 and a subset {A.
U1

,A. } of the body of C such that

the following conditions hold.

1. A. =5.0 for ,7=1, — ,m,
3

2. 6 substitutes distinct vari
ables for the internal variables
of Cy and moreover those vari

ables do not occur in A or {Ay —

,A } - {A. ,...,A. }, and
n hn

3. C is marked 'foldable' or
m <n.

Then let P^ be (P^_1 - {5}) U {C}
and D. be D. . where C' is a

/ A
clause with head A and body {{Ay .

..,A } - (A, » U{50}.
' n t-i ^m

Let C' inherit the mark of C.

Example (continued)

Folding the whole body of C7
by C4, we obtain P^ = {C1,C2,C3,

C5',C6,C8> and D4={C4} where C8

is

C8. csub(X, [A| Y) ,Z) csub (X,Y,Z) .

To see the need for the con
dition 2, suppose we fold the
clause p(X) - q (X,Y) r(Y) using a
definition s(U) *• q(U,V) into the
clause p(X)-s(X),r(Y). Then the
equivalence is destroyed because

130

the result clause would correspond
to a clause p(X) q(X,Yl) ,r(Y) but
not to the original one.

The condition 3 prevents for
example immediate folding of a
definition by itself. Without the
condition we fold C4, in PQ of our

example, by itself to end in P '

={C1,C2,C3,C4'} where C4' is

csub(X,Y,Z) -i- csub(X,Y,Z) .

To complete our example, we
need one more new predicate.

Example (continued)

Motivated by the failure to
fold the body of C6, we introduce
an auxiliary predicate 'csubl' and
define

C9. csubl(A,X,Y,Z) •*- subseq(X,Y) ,
subseq([A|X],Z) '

to obtain *5-{C1,C2,C3,C5\C6>C8.
C9^» d5 ={C4,C9}.

By unfolding C9 at its second
goal, we get P& = {C1.C2,C3,C5•,C6,

C8,C10,C11} and z?6 = {C4,C9} where

CIO and Cll are

CIO. csubl(A,X,Y,[A|z])

subseq(X,Y) , subseq (X,Z)

Cll. csubl(A,X,Y,[B |z])

" subse9(X,Y) , subseq ([A |x] ,Z).

Folding C6, CIO and m

the p, - tliJLS"1"
C5',C6',C8,C10',C11'} and D = {C4

S
independently fr„

C5'. csub([],Y,z)

C6>. csub([A|X],[A|Y],Z)
csubl(A,X,Y,Z)

C8. csub(X,(A|Yj,Z) «-csub(X,Y,Z)

CIO', csubl(A,X,Y,[A|Z])
*csub(X,Y,Z)

Cll'. csubl (A,X,Y, [B |Z])
• csubl(A,X,V,Z)

When used for generating common
subsequences of two given lists,
the final program is far more
deterministic than the original
one because a selection of an
element in the first list is
immediately checked against the
second one. (Of course we are
assuming here the fixed order
control under which the original
program behaves as a typical
generare-and-test program.)

The point is that P^ is

equivalent (in the least model
semantics) to P^ U D^ and that

this is generally true for any
transformation sequence obeying
the rules. The rest of this
section is devoted to the proof of
this fact.

2.2 Correctness of the Basic
System

First we characterize the
least model semantics by means of
proof trees. We assume a fixed
Herbrand universe and a fixed set
of predicates so that the set of
ground goals is fixed.

Definition. proof tree

Let S be a program. A tree
T, whose nodes are labelled with
ground goals, is called a proof
tree, or simply a proof, in $ ̂
the following conditions hold.

f * Let A be the root label of
2"i(,n>_0) its immediate

subtrees and A,,...,A their root
1* ' n

1'' ..x,
labels. Then A

•L "

instance of some clause C in

131

2. Each Immediate subtree T . (1<_i
<«) is a proof in S. t —

We say that T is a proof of A in 5
and that 4 is provable (by 2") in
S . We also say that the clause C
is used at the root of the proof T
and that T,,..,T are immediate 1 n
subproofs of T.

In the following, we often
argue by induction on the struc
ture of proofs and omit the base
case, which is usually subsumed by
the induction step as the special
casen=0, as in the above defini
tion.

The meaning, M(S), of the
program S is now defined as the
set of all ground goals provable
in S. This M(S) is nothing but
the least Herbrand model of 5
(Van Emden 76).

For a transformation sequence
Vo1 tfrV' we define
a sequence SQ,...,SN called
virtual transformation sequence,
by

WW-
in particular SQ -PQU Dn and

In the following discus
sion we will always deal with
""irtual transformation sequences,
ihis amounts to pretending that
the definitions of all new predi
abetes are given at the beginning.
"e set of definitions D„ will be

a
ixed and referred to as D
nroughout. Since the definition
nansformation is an identity
tansformation in the virtual
tansformation sequence, it will
e ignored.

THEOREM

Let S.,...,SN be the trans

formation sequence. Then

= Af(50).

To prove the theorem we need some
definitions.

Definition, rank of a ground goal

Let A be a goal in M(S Q) and

r ' (.A) be the size of the smallest
proof of A in SQ. Then r(.A), the

rank of A, is r ' (A) if A has an

old predicate and r ' (A) - l if A has
a new predicate.

Definition, rank consistent proof

Let S . be a program in the
%

transformation sequence. Let T
be a proof in C the clause

used at its root, (nl°)

its immediate subproofs, and A,
A A their root labels. Then
1 ' " n .

T is said to be rank-consistent
if

1. r(4) >rW1)+..«'<V with

equality holding only when C is
not marked 'foldable', and

0 m n> axe. rank consistent.
L' ' n

Now the proof of the theorem
consists of showing that the
following invariants hold for each

1 (0f _ i ± N) -

11. M i S j = M { S q)

12. F°r each 8oaI ̂ in '

there is a rank-consistent
proof of A in S

. T 1 trivially

132

holds for x = 0. As for 12, for
any goal A in W(5Q) , the smallest

proof of A is obviously rank-con
sistent. (Remember SQ = PQ U D and

the clauses in PQ are marked

'foldable' while those in D are
not.)

The preservation of the
invariants is proved in the three
lemmas b elow.

LEMMA 1

If II holds for Sthen

Proof.

Let A be a ground goal in
and T its proof in S.

T T " We construct a proof T ' of A in
Sl by induction on the structure
of T.

Let C be the clause used at
t h e r o o t o f T , a n d 2 ^ , . . , 2 ^ (n > 0)

the immediate subproofs of T Bv
the induction hypothesis we can
c o n s t r u c t p r o o f s 2 ^ ' , . . y r i n

Si+1 Wlth each Tj' corresponding
to 2\. if c is in we can

immediately construct 2" from r
and the proofs ». If c

is the result of unfolding, we can
construct T ' from T ' % > ?

1 ' n usin8
the two clauses in S . of which C
is the resolvent.

Now suppose C is the resoTr
of folding. Then for some f

_n) , the root label A . o f T
is an instance of the f„la a J'
in the body of C u °lded Soal

— v ' l s f - 1 -
V- " i. auo pra,abl<! ^ ̂

the invariant II. So there should
be a ground instance A^

o f some clause in D such that
,.. ,Bm are provable in Pg.

Again by II, are provable
1 "1

in 5.. Let C ' be the clause inS.
x 1

of which C is the folded result.
Owing to the condition 2 of fold
ing, we can combine the proofs of

and proofs i n ? L n

with C ' to obtain J", the proof of
A in Si. []

LEMMA 2

If the invariants II and 12
hold for , then

Proof.

Let A be a ground goal in
M(SA). Then by the invariant

there is a rank-consistent proof
T of A in S . . We construct a

x
proof T ' of A in S£+1 by induc

tion on the well-founded ordering
» defined on M(S^) (as

A » B iff

f(A) >r(S) or
r(A) =r(B) and A has a new and
B has an old predicate.

The base case where r (A) = 2 a n < ^
has an old predicate obviously
holds because then A should be
ground instance of some unit
clause in PQ which should be in

both S . and S.^,. x i+l
Let C be the clause in S -

_ f
used at the top of T , and T n

the immediate subproofs 0

T- By the invariant 12, f°r ea

root label A . of T A » h
x x

holds. So by the induction 2
pothesis there are proofs

133

V'"'V of Al'"'An in si+1'
If C Is in S... the construction t+1
of 2" is immediate.

Suppose C is unfolded into
C,,..,C in S... and assume that 1 ' m t+1
the root label of 2"^ is the
instance of the goal at which C is
unfolded. Let T,,,..T, be the 11* lp
immediate subproofs of 2^, and

^ll'"*^lp their root labels.
Then again by 12 and the induction
hypothesis, there are proofs
Tn''"'Tip' ot Aii'"'Aip ln

Combining the proofs
Tll'.--,rip', T2',..,Tn' With some
(l£fe<m) we get a proof 2" of

A in S. ..
t+1

Now suppose C is folded into
C' in Assume that the root
labels Av..,Ak of Tv--,Tk (k <n)
are the instances of the folded
goals in C. Let B be a goal such
that B •dj,.. ,Ak is a ground
instance of the clause in D used
in the folding. By definition,
rM1)+.. .+r(A?{) > r(B) . By the
condition 3 of folding, either C
is marked 'foldable', which means
pU) >r(i41)+. ..+r(i4fe), or k<n.

In either cases, r(j4) >r(B) holds.
Moreover, by the equivalence of

^t to ^oJ ® *8 Provable in ̂ •
Therefore by the induction hy
pothesis, B has a proof T^ in

"t+1* Combining the proofs

V Tk+l''"'Tn' with the clause

C> we obtain the proof 2" of A
in S.

£+1*

LEMMA 3

If the invariant II and 12
holds for S\, 12 holds for

Proof.

We first note that in the
proof of lemma 2, T' is con
structed in such a way that it is
rank-consistent. Thus every goal
in M(S.) has a rank-consistent

proof in S^+1- Because A?(£^+1)
c by lemma 1, 12 holds

for Si+1. []

This completes the proof of
the theorem.

3 MAL REPLACEMENT

The unfold/fold system
becomes more powerful when com
bined with goal replacement
rules.

3.1 General Principle

Let 5 be a program and
3xBx&..&Bn be an existentially

quantified conjunction of goals
without free variables. (By x
we represent a vector of vari
ables.) We say the formula is
provable in S and write
3xB &Bn if there is some

around instantiation 9 of x such
that every B A <1<*±«> " prov-
able in S.

Now let C be a clause in S
of the form

A '' 'Bm

and C be a clause (not in S) of
the form

,pt x\u~\ be variables occurring Let XLi/J , B t] and not
in B, , • •>'->Dn 1

134

in A, A1,..,A]< and [B.^

..,B].
m

Suppose for every ground
instantiation 0 of A, A^,..,Ak it

holds that

S-{C}|- 3x(Bl(S. .&B)0
' 1 m

iff S-{C} \-3y(B1'&..&Bn')Q.

Then we can transform S into
B' = (S-{C}) U{C'}.

It is rather obvious that the
transformation itself preserves
the least model. But when we use
this rule within the unfold/fold
system, we must be careful so that
the second invariant 12 of the
transformation process is pre
served. Consider the following
transformation sequence.

P0: q(s(X)) -s-q(X)
q(o)
r(s(X)) «-r(X)
r (0)

Define.
pl(X,Y) •*- q(X) ,r (Y)
p2(X,Y) •*- q(X) ,r (y)

Unfold q in (5) .
pl(0,y) -f-r(Y)
pl(s (X) ,Y) •*- q(x) ,r (Y)

Replace r(Y) by r(s(Y)>.
pl(s(X) ,Y) •*-q(x) ,r(s(y))

Unfold r in (6) .
p2(X,0) •*- q(X)
p2 (X, s (Y)) q(X) ,r (Y)

Replace q(X) by q(s(X)).

Fold)̂(X'S(Y))̂ <l(s(X))^(Y)

Fold gg5X)'T)*P2<*.s(*))

p2 (X, s (Y)) pi (s (x) 5 Y)

(D
(2)
(3)
(4)

(5)
(6)

(7)
(8)

(9)

(10)
(H)

(12)

(13)

(14)

Though each step of goal replace
ment is valid by itself, the
resulting program contains infi-

lent to the original one. This
is because the goal replacement
steps destroyed the invariant 12.

The general condition to
preserve the invariant 12 is that
for every ground instantiation 6
of At

r(3x(Sid..iSjB)0)

> r(3j/(B, 'S..SB')B) (*)
— "1 n

holds, where by r(3aS^i..tBj we

represent the minimum of f(B^o)+

. .r*(B? a) for every ground instan

tiation O of s.

Under this condition, a
rank-consistent proof in S can be
converted into a rank-consistent
proof in S'. There are many
special cases where this con
dition unconditionally holds.

3.2 Special Cases

goal deletion

Let C be a clause of the
form A -<-B,,.. ,B . If for every

1* * n
ground instantiation 0 of the
clause, S-{C) |- (Bjd..
implies S-{C) I- B 0, then B can i ye '
be deleted.

Considering this as the replace
ment of B^..^ by B^...#,^'

the condition (*) is obviously
satisfied.

goal merging

We can merge identical goals
in a body into one goal. The
condition (*) is also satisfied-

function merging

Suppose there are two g°als
P(tj, . and p(£jj*-»*«-l'
y) ill the body of the clause.
Assume further that a ground g°a

p(V--*V in ls unique

UP to s . ,s , . (The relati°n
1 71—1

135

denoted by p is actually a func
tion.) Then we can merge the two
goals applying the substitution
{y/x) to the rest of the clause.
The condition (*) is satisfied.

goal addition
This is the inverse of goal

deletion. The following example
shows the utility of this seeming
ly pessioising transformation.

Example (sorting by permutation
and order check)

P.: perm([).[])
perm([A|x) ,Y) * perm(X,Z) ,

ins(A,Z,Y)
ins(A,X,[A|X1)
ias(A,[B|Xj,(B|Y]) *• lns(A,X,Y)
ord([))
ord([A))
ord([A,B|X)) «-A < B,ord((B|X])

Define .
sort(X.Y) • perm(X,Y) ,ord(Y)

Unfold perm .
80"([).Y) *ord((])
sort([A|X],Y) «-

perm(X,Z),ins(A,Z,Y) ,ord(Y)
Add ord(Z) in the body because for
any ground terms and ty
PQ |-in8(tltt2tt3)dord(t3) implies
P0|-ord(t2).

aort([A|X J ,Y) +• perm(X,Z) ,
ord(Z) ,ins(A, Z, Y) ,ord(Y)

fold the first two goals.
sort([A|X],Y) •

sort(X.Y) ,ins(A,Z,Y) ,ord(Y)

bhus this technique is a vital
"ep from the 0(n!) sorting pro-
gram to an 0(n) insertion sort

2V program. To obtain an 0(n) pro
gram, however, we need the idea of
context (Wegbreit 76), which is
beyond the scope of this paper.

Though goal insertion clear-
by violates condition (*), the

above transformation sequence does
preserve equivalence. A technique
to get around the difficulty will
be presented in section 3.3.

laws of primitives

There are various laws for
primitive predicates, such as
associativity of the predicate
'append' defined by

P : append([],X,X)
aP append([A|X],Y,[A,Z])

+- append(X,Y,Z) .

We can prove by induction that

p |-3X append(t. ,t ,X) &
ap ' 1 z

append

iff P l-3^ append(t. ,Y,t.) &
ap 1 -1- \

append(t2»t3 Y)

for any ground terms So

we can apply the associativity of
append in any program incorpo
rating Pap.

The condition (*) holds if
we use the associativity in one
direction (the left hand side of
iff to the right hand side), but
does not hold in the other direc

tion.

3,3 Weakening the Condition

We have seen that in many
cases the goal replacement rule
can be used with the unfold/fold
transformation unconditionally.
But we have also seen interesting
cases where the condition ()
does not hold, ^r such cases we
can weaken the condition (*) into
the following, (though at the
cost of additional bookkeeping of
folding conditions.)

For every such 0 as in (*),f
there is a partition of lBj_

o '1 «uch that for each part

136

' 'j • • *B . "} of the partition,

. &Sm>9) >_r(3y(B1 ' .

SB .' ')0) holds.
<7

In the sorting example, we
replaced the goals {ins(A,Z,Y>,
ord(Y)} by {ord(Z),ins(A,Z,Y) ,
ord(Y)}. This is now justified
because 2>(ord(t2)) <r(ins(t ;L,t ,

+^(ord(t^)) for any ground

terms and for which the

goals are provable. But we have
to put labels on the introduced
goals as

sort([A|X],Y) - perm(X,Z),
o£d(Z),ins(A.Z.Y).ord(Y)

1 . 1 1 . 2 1 . 2

Inheriting these labels through
transformation and prohibiting
folding of goals of label 1.1 and
of label 1.2 together, we can make
the induction in the proof of
lemma 2 valid.

To prove the correctness of
this technique, the condition 1
m the definition of rank-con
sistency should be changed:

I ' " w . * * (4 . } f o r
1 m

any subset { A A } Qf { A
i-m 1J • • *

V such that two goals in the
subset have imcompatible labels
With equality holding only when'
C is marked 'foldable'.

The detail of the modified proof
IS omitted. proot

Note that the folding of ri,
first two goals in the the

lause does not violate the] ah i

example^of'sorting''^
The reverse direction ofSthfle<3'
ass o c i a t i v i t y o f ' a ™ j . y °t append' can

also be handled in this manner.

4 CLAUSE ADDITION/DELETION

clause addition

Let C be a clause not in S .
If for every ground Instance
A *A1,..,An of C, S |- 4^.44,

implies 5 |- A , we can add C to S .

clause deletion

Let C be a clause in 5. If
for every ground instance A*~A^,.

. , A n of C , S - { £ } | - ^4..^

implies 5- {C } |- A , we can
delete C from 5.

The correctness of these
transformations themselves is
again obvious. When combined
with the unfold/fold transforms"
tion, clause addition causes no
problem. Clause deletion can in
general destroy the invariant 12
of the transformation process.
As in the case of goal replace
ment, there are important special
cases.

Let C and C ' be clauses in
S of the forms A *Ay .. ,A^ and

B * - B . 3 . . B such that A is an
i r n

instance B o of B . Let x [y] b e
the sequence of variables in
A . . 3 A I B - 3 . . , B] but not in

r l i m
4[B]. If for every ground
instantiation 0 of A , S - { C) ! "

. A A ^) 0 implies S - I"
3 y (B & . . S B)c0, then C can be J- 777

deleted. In this special case
of goal deletion, the condition

r (B x (A . & . . & A)0) >

r(ax(S,&..&B)CT0) for every »
-L 777

guarantees the preservation of
the invariant 12. In particular.
i f • . , B m o } c { A v . . , A n) ,

137

which means syntactic subsumption,
the condition is trivially satis
fied.

Finally, it should be remark
ed that clause addition/deletion,
unlike goal replacement, are
often used apart from the unfold/
fold system. In such cases we
need not worry about the invar
iant.

5 CONCLUDING REMARKS

We have proved the correct
ness of the basic unfold/fold
system and then examined the
interaction of the augmenting
transformation rules with the
correctness property. We have
stated a sufficient condition for
their application to be safe. To
ensure the equivalence of the
result of some transformation
sequence with the Initial program,
we need only to check the con
dition for each application of
those rules. As we have seen, in
nany useful special cases this
involves only a simple syntactic
checking. In other cases, proving
the condition can be a difficult
task. However, we can still claim
the advantage over the usual
separate equivalence proof ap
proach because we have the choice
°i either keeping the conditions
through transformation sequence
°r proving separately the equiv
alence of the result with the
original program.

Though one might expect that
the unfold/fold system preserves
stronger properties like comple
tion or finite failure(Clark 1978)
tApt and Van Emden 1982) , this is
"°t the case for these properties.

ere are easy counter examples.

The practical power of the
system depends on the heuristics
We emPl°y: we have a large
search space generated by the

choice of applicable transforma
tion rules. We are currently
investigating this strategic
aspect with some experimental
implementations.

ACKNOWLEDGEMENTS

We would like to thank
Yoshihiko Futamura for initiating
our interest in this area, Hozumi
Tanaka, Toshio Yokoi and Kouichi
Furukawa for encouragement,
Koukichi Futatsugi and other
members of ETL for helpful dis
cussions, Rodney Harries for
correcting the English of the
first manuscript, and Kazuko Hata
for typing the final manuscript.

REFERENCES

Apt, K.R. and Van Emden, M.H.
Contributions to the theory of
logic programming. Journal of
the ACM 29, No. 3, 1982.

Burstall, R.M. and Darlington, J.
A transformation system for
developing recursive programs.
Journal of the ACM 24, No. 1,

1977.

Clark, K.L. and Sickel, S. Pred
icate logic: a calculas for
deriving programs. Procs. IJCAI
77, Boston, 1977.

Clark, K.L. Negation as Fallu«>
in H. Gallaire and J. Minker(eds),
Logic and Databases, Plenum Press,

1978.

Clark K.L. Predicate logic as a
computational formalism. Imperiai
College research monograph /y/o?
TOC, December 1979.

Hoeeer, C.J. Derivation of logic
programs. Journal of the ACM 23,

No. 4, 1976.

138

Kowalski, R.A. Predicate logic
as a programming language. IFIP
74, North Holland Publishing Co.,
1974.

Tamaki, H. and Sato, T. A trans
formation system for logic pro
grams which preserves equivalence.
ICOT TR-018, July 1983.

Van Emden, M.H. and Kowalski, R.A.
The semantics of predicate logic
as a programming languages.
Journal of the ACM 23, No. 4, 1976.

Wegbreit, B. Goal-directed program
transformation. 3rd POPL sympo
sium, Tucson, January 1976.

BOUNDED-HORIZON SUCCESS-COMPLETE RESTRICTION
OF INFERENCE PROGRAMS

Michel Sintzoff

Unity d'Informatique
University Catholique de Louvain

chemin du Cyclotron 2
B-1348 Louvain-la-Neuve, Belgium

ABSTRACT

The paper deals with the control
of search in logic programming
(Horn clause inference) by the ad
dition of restrictive predicates
to rules so as to cut off all
blind-alleys without loosing pos
sible results. Criteria are pro
posed to ensure that additional
preaises in clauses allow to es
tablish results without trials-
and-errors. These criteria require
neither the introduction of spe
cial well-orderings nor the induc
tion of limits of predicates. They
take into account structural pro
perties of bounded-length composi
tions of the original clauses, and
consequently are only sufficient.

•1- IHTRonnrTjf)fi

Exhaustive search, or backtrack-
ln9> remains a fundamental
stuabling-block on the way to
economic use of programs based on
inference techniques, such as
canonical Post productions, defin
ite Horn clauses, elementary for-

systems (Smullyan 1961), or
van Wijngaarden two-level gram-
*ats- To overcome that obstacle,
°ui lines of work have been ex-

P °red, and continue to be so.
ustly, various non-von-Neumann

computer architectures are
esigned in order to permit high

concurrency in the parallel ex-
P oration of alternative computa-
10" paths. Secondly, refined
valuation regimes are introduced

so as to abandon unsuccessful
paths earlier, thanks to an
analysis of previous failures;
typical techniques are the alpha-
beta heuristics and the intelli
gent backtracking (Bruynooghe
1978). Thirdly, lower-level state
ments are made available for the
explicit programming of more effi
cient control-flow and data-flow;
simple illustrations are the
sequentialization of clauses and
the cut-operator in Prolog.
Fourthly, inference programs can
be specialized by adding in
clauses selective premises which
eliminate blind alleys; this is
known as the "logic control by
logic" (Pereira 1982) and can be
seen as an instance of efficiency
improvement by program transforma
tions; successful and important
examples of this approach in other
formal systems are the generation
of parsers for context-free
languages and the Knuth-Bendix
technique.

The work reported here focuses
on the derivation of deterministic
programs from nondeterministic
specifications by bounded-depth
transformations. Thus it follows
the fourth, transformational
method. A major problem proves to
be the lack of elementary means
for ensuring the adequacy of add*
tional, selective premises. On the
one hand, these should remove all
deadends! On the other hand, they

140

should not remove too much, viz.
they should preserve the possibil
ity of deriving each result com
putable by the original program.
As a rule, in order to deduce
selective premises correctly, or
simply to validate these, termina
tion functions are introduced.
But then the problem is to discov
er appropriate orderings; this is
typically the case for methods
based on the Knuth-Bendix comple
tion procedure (Dershowitz 1982).
The present work explores an al
ternative technique, namely the
use of straightforward criteria
for ensuring the adequacy of
selective premises; whenever these
criteria are verified and yield
deterministic programs, it is
guaranteed that all blind-alleys
are cut off and that no possible
result is lost. These criteria
directly use structural properties
of the original inference clauses
including their commutativity'
equivalence, or idempotence They
do not require the introduction of
intelligent orderings, the perspi
cacious induction of exact limits
of iterations on predicates, or
the construction of insightful
proofs in logic. However, these
criteria are only sufficient, not
necessarys they take into account
bounded-length compositions of
inference steps. For this reason
they are called "bounded-horizon"!

trSucesrSt °f the paper introduces inference proqramc"
which are Horn clauses (van EmdL
and Kowalski 1970 Emden
hierarchically and expresser!,^
canonical form. Auxiliarv *

• -

this simplifies the t kUS6S:
developments ana technical SteS.r"KPOMa nteria have been

found out. The generalization to
non-linear inference prograis is
introduced afterwards.

Only the validity of the pro
posed criteria is proved in detail
since they constitute the sain
contribution. The other, subser
vient results should be clear
enough, and are aerely presented.
References (Shoenfield 1967, van
Emden and Kowalski 1976, Dijkstra
1976) provide a useful background
for predicate calculus, Horn
clauses, and weakest precondi
tions, respectively.

Notations:

A <-B1,...,Bn : Horn clause
v, &, =>, * : or, and, then, not
7A : a thesis predicate

T.i stands for T3 when i=3
Si:T.i stands for T1 + T2 + •••

2. INFERENCE PROGRAMS

An inference program T c0,pJis®f
a basic clause TO and a set Tr
inductive clauses T.i (i>0); th®
identifier Tr suggests "the recur
sive part of T":

T = TO + Tr '2,1)

Tr = $i:T.i
= T1 + T2 + ... + Tn

The basis clause TO has the for®

P(x) <- pO(x) (2'2)

where p is the principal pie&iS&tS
^ffibei, and pO is the
predict? symbol . Each
clause T.i has the form

P(x) <- r.i(x.y), p(y) (2'3)

where r.i denotes a known relati011

between the tuples x and y•

A ̂ op-down computation consist®

141

in an iterative application of
•odus tollens using the inductive
and basis clauses. A basis compu
tation step is

?p(t) p(x) <- pO(x)
(2.4)

?pO(z)

in inductive computation step is

?P(t)
P(x) <- r.i(x.y), p(y)

r . i (x ,w) 5 . ?p (w)
(2.5)

The preimaae of a predicate Q(x)
through an inductive clause T.i is

T.i(Q) (2.6)
• }y= r.i(x.y) E< Q(y)

For Tr=($i -.T. i) , the pre image i s

Tr(Q) = T1 (Q) v...v Tn(Q) (2.7)

The "success domain" or relation
Rel(T) defined by an inductive
EI2am T = TO + Tr is the set of
tuples which can be proved to ver
ify P by using (2 .4-5):

Rel(T) = least solution (2.8)
of [X = pO v Tr(X)]

hs usual, this least solution can
be computed iteratively:

Rel(t) = Jn: H.n (n20)

"here HO = pO (2.9)
H.(n+1) = pO v Tr(H.n)

= H.n v Tr(H.n)

The formulae (2.8-9) are valid be
cause Tr is continuous, hence
•onotonic; indeed,

Tr(}n:Q.n)
= ii;}y : [r.i(x.y) f> }n:Q.n(y)]
= J";}i:}y: r.i(x,y) 6 Q.n(y)
= Tr(Q.n)

I n Par t icular ,

Tr(Q1 v Q2)
= Tr(Q1) v Tr(Q2) (2.10)

Note that, in general, we only
have

Tr(Q1 6, Q2)
=> Tr(Q1) & Tr(Q2) (2 . 1 1)

The reverse implication holds pro
vided each r.i(x,y) is functional
w.r.t. x. In this case,

T1(Q1) 6. T1(Q2)
= }y,z: r1 (x,y) Ec Q1 (y)

6c r1 (x,z) 6c Q2(z)
= > Jy: r 1 (x,y) 6. Q1(y) 6c Q2(y)
= > T1(Q1 6c Q2)

The relation r.i(x,y) in an in
ductive clause (2.3) may embody
syntactical as well as semantical
constraints, corresponding to un
ifications and to auxiliary prem
ises respectively. A thesis takes
the form

3x=(x',x"): (x' =e) 6c ?P(X)

where the expression e is known;
this means that x' and x" are the
known and unknown parts of the tu
ple x, respectively. A top-down
computation "succeeds" if it
rewrites the thesis into a predi
cate which does not contain the
principal predicate symbol p
anymore and which yields true
thanks to successful proofs of all
the subtheses depending on auxili
ary predicates pO and r.i. Given a
successful computation, the con
junction of the definitions of the
successive new variables such as w
• (25), corresponds to an
• a n s w e r 'substitution" or a "recur
sion stack". Top-down computa
tions as defined here reduce con
junctions of positive atoms to
true- this is isomorphic to the
reduction to false of disjunctions
of negative atoms, as is customary

142

with the resolution principle.

Example of inference program:

An append program can be written
as follows; x and y are triples,
and app((x1, x2, x3)) stands for
"to append x1 to x2 yields x3":

TO: app(x) <- pO(x)
T1: app(x) <- r1(x,y), app(y)

The auxiliary predicates pO and r1
are defined by

pO((x1, nil, x1)) <- true
r1((x1, a.x2, a.x3), (x1, x2, x3))

<- true

Consider then the thesis

3x: (x1=1.nil) & (x2=2.nil)
Sc ?app(x)

By (2.5), this is rewritten as

}x: (x1=1.nil) & (x2=2.nil)
& [}w: r1(x,w) 6c ?app(w)]

which can be simplified to

}x,w: (x3=2.w3)
& ?app((1.nil, nil, w3))

By (2.4), the latter becomes

3x3,w3: (x3=2.w3)
Sc ?p0((1 .nil, nil, W3))

for The last atom is true
w3-1.nil. Thus we proved

3x: (x1 = 1 .nil) 5, (x2=2.nil)
Sc (x3=2.1.nil) Sc app(x)

V I Z . '

app((1.nil, 2.nil, 2.1.nil)).

!• RESTRICTION OF PROOR/MMjc

To restrict an inference program

SS2. S. "

predicate C.i is such that

VQ: S.i(Q) » C.i & T.i(Q) (3.1)

Namely,
T.i : p(x) <- r . i (x,y)i ply)
S.i: p(x) <- r'.i(x,y), p(y)

for r'.i(x,y) * C.i(x) 8. r.i(x,y).

The restriction S flf an infold
program T by predicates C.i's is
the result of restricting each in
ductive clause T.i by C.i, accord
ing to (3.1). Clearly,

VQ: Sr(Q) => Tr(Q) (3-2)
where Sr = ($i:S.i).

Hence, by (2.9), Rel(S) => Rel(T).
Accordingly, the restricted pro
gram S does not permit the suc
cessful computation of a thesis
for which no computation by T
succeeds.

The restriction of T into S is
success-complete if Rel(S) equals
Rel(T): no tuple valid for T is
lost by S.

The restricted program S is
determinjs^ir- if the selective
premises C.i are mutually ex"
elusive and depend only on known
values in all computation steps:

C.i 8< C. j = false, for i#3»
and, for all i,

C.i 6, pO = false
C.i(x', x") = C'.i(x')

where x' and x" respectively
represent the known and unknown
parts of the tuple x. Thus, r"
any computation step, at most one
clause can be applied successful"
ly, and the choice of that clause
can be made using the available
information, without delay.

If the restricted program S is

deterministic and success-compleie

w • r. t. T, then the top-down compu
tations by s from all the theses

143

coiputable by T do succeed neces
sarily, without trials-and-errors.
Indeed, because of completeness,
for each thesis acceptable by T
there sust exist a successful
top-down computation by S: the
property

Va'.a': [(a',a') e Rel(T)
•> (a',a') e Rel(S)]

entails

v»':[[}«•: (a' ,a") € Rel(T)]
=> [}a«: (a-,a*) e Rel(S)]]

Moreover, determinism prevents
backtracking: since there must ex
ist a successful path for each ac
ceptable thesis, and since there
«ay exist at most one path, no
blind-alley may be entered.

Consequently, it is most useful
to transform an inference program
1 into a deterministic, success-
c°»plete equivalent. This is pos
sible under the following assump-

using the notations
hereabove: for all valid input x',
there exist a unique output x"
s«ch that (x',x") belongs to

EMT). Otherwise, we should weak-
en as follows the definition of
success-completeness: for each in-

if Rel(T) contains some
x 'x), then Rel(S) must contain

COIM '*'* alternatively, we
relax the constraint of

aeterminisn.

The remainder of the paper
velops sufficient criteria for
e success-completeness of given

testrictive premises.

1 IFISIASIFIB RELATION

*e Propose a simple way of tel-
in'5 k*1611 cfauses are "included
Uar° tfl6t ones- * couple of auxi-
duckl properties first intro-

• Using (x=z) for Q(x) in
yields

T.i(x=z) = Jy: r.i(x,y) & (y=z)
= r.i(x,z) (4.1)

By (4.1), definitions (2.6) and
(2.7) entail

T.i(Q)= Jy; T.i(x=y) & Q(y)
Tr(Q) = §y: Tr(x=y) & Q(y) (4.2)

Similarly, in general,

Tr(Sr(Q)) = (4.3)
5y. Tr (Sr (x=y)) & Q(y)

The inclusion relation between two
inductive clauses T1 and T2 is de
fined by

VQ: T1(Q) => T2(Q) (4.4b)

This is entailed by

Vy: T1(x=y) => T2(x=y) (4.4a)

Indeed, by (4.2,4.4a),

T1(Q) (%
= Jy: T1(x=y) & Q(Y)
=> Jy: T2(x=y) & Q(y)
=> T2(Q)

Thanks to (4.4a), the inclusion
relation between clauses can be
checked without considering all
possible predicates Q.

This can be generalized as fol
lows; Tr is a set of inductive
clauses; T. j , T .i, T.k are induc
tive clauses; the range of k
left understood:

IF Vy:[T . j(T.i(x=y)) (4.5a)
=> (x=y) v Tr(x=y)

v 5k: T.k(Tr(x=y))]

THEN VQ:[T.j(T-i(Q))
=> Q v Tr(Q)

V 5k: T.k(Tr(Q))]

Indeed, by (4.3,4.5a,4.2),

(4.5b)

144

=> }y: [(x=y) V Tr(x=y)
v 0k:T.k(Tr(x=y))] & Q(y)

=> Q v Tr (Q) v }k: T. k (Tr (Q))

5. BOUNDED-HORIZON CRITERIA

. G^Yen (2.9), Rel(T) = Rel(S) is
implied by the following, for n>0:

where H1
K1

H.(n+1)
K.(n+1)

Vn: H.n = K.n

= Tr(pO)
= Sr(pO)
= H.n v Tr(H.n)
= K.n v Sr(K.n)

(5.1)

(5.2)

e look for simple criteria which
merely ensure the existence of a
proof of (5.1), without requiring

S c?hlT«ct such a proof KS?
induction that £ the

useful structural properties*^
amilies of actual proofs by in-

tural10"' ̂ t0 USe these struc
tural properties as criteria Tr.

start with, we consider the set of
Proofs by induction with lenth
two: it is a typical case, neithS
too trivial nor too eUbora£d

corresponding criteria =
called "bounded-horizon criter^6

Program n°ted

of T- P0 is +h rrtriCtlon (3.1)
(2.2); i is aj1S predicate
inductive clauses j£j.8et °f the

Bounded horizon criteria BH[2]:

Tr(P0) => Sr(p0) ^ ̂

Tr(Sr(P0))

=> Tr(pO) v Sr(Tr(pO))5'4)

VJcI: }jej; Viei:

t [T.j(c.i) (5.5)

=> Tr(pO) v Tr(Tr(pO))

v T.j(T.i(xIyJ;ej: c-i]
=> (x=y) v Tr(x=y)

V }kGlW: T.k(Tr(x=y))]]

The criteria (5.3) and (5.4) en
sure the two basis steps, and
(5.5) guarantees the induction
step, for an induction of depth
two.

Theorem Let the inference pro
gram S be the restriction of a
program T by selective premises
C.i's. if the criteria (5.3-5)
are verified, then S is success-
complete w.r.t. T.

Proof. Let us show that the cri
teria (5.3-5) do ensure that a
proof of (5.1) by induction on n
exists.

Base n=1: (5.3) expresses H1=>K1,
and (3.2) entails K1=>H1.

Base n=2: Given H1=K1, we say
rewrite (5.4) as HI v Tr(B1) => *1
v Sr(K1). This expresses H2=>K2;
(3.2) entails K2=>H2.

Induction step n>1: the induction
hypotheses are

H. (n-1) = K. (n-1) (5-6)

H.n « K.n

The induction thesis is

H.(n+1) = K.(n+1)

By (5.2,5.6,3.2), this induction
thesis is reduced to

Tr (K.n) => H2 V H.n v Sr(H.n)

We unfold K.n and H.n by (5.2):

Tr (K. (n-1)) v Tr(Sr(K. (n-1)))
-> H2 v H.(n-1) v Tr(H. (n-D)
v Sr (H. (n-1)) v Sr(Tr(H. (n-1))'

We observe Sr(H.(n-1))
r(H. (n-1)) because of (3.2), an(*

use (5.6) again; the induction
thesis becomes

Tr(Sr(H.(n-1)) (5.7)

145

=> H2 v H. (n-1) v Tr (H. (n-1))
v Sr(Tr(H. (n-1)))

On the o ther hand, (5 .2) and (5 .6)
i ip ly the fo l lowing property:

H .(n - 1) v Tr(H.(n-1))
= H. (n-1) v Sr(H.(n-1))

(5 .8)

*e thus have to show the ex is tence
of a proof o f (5 .7) on the bas is
of (5 .8) , v iz . a proof o f (5 .0) | -
(5 . 7) . He do i t for a vers ion ob
tained by abstract ing from
B.(n-1) , v iz . by subst i tut ing an
indeterminate predicate Q for
B. (n-I) :

V Q: Q v Tr(Q) » Q V Sr(Q) (5 .9)
I" Tr(Sr(Q))

=> B2 v Q v Tr(Q) v Sr(Tr(Q))

I t reaains to prove (5 .9) on the
bas is o f the cr i ter ion (5 .5) . We
f irs t note that the antecedent in
• 5 -5) enta i l s T.k(QvTr(Q)) =
T -k(QvSr(Q)) for any k ranging
o v er some subset o f I , say I \J .
Hence , apply ing (2 .10) and adding
i j6j ;T. j (Q) on both s ides , we nay
assume

T r <Q) v jk:T.k(Tr(Q)) (5 .10)
= Tr(Q) v jk:T.k(Sr(Q))

Let us recal l the ident i ty

Uie i : D. i)

e -9 • (D1 vD2) =

' }Jf i I : (VjSJ: D. j)
& (Vkei\J : *D.k)

(D1S."D2) v (D2&~D1)
v (D1&D2)

use th is ident i ty for the term
r(Sr(Q)) = (J ie i ; Ti (Sr (Q))] . The

consequent o f (5 .9) then becomes

HJf i l : (Vjej ; D. j)
6 (Vkei\J: *D.k)]

* > H 2 V Q V Tr (Q) v Sr(Tr (Q))

each D.h s tands for
h(Sr(Q>) . W e B O V e t j , e quant i f -

i^ r o n 7 to the front of the whole
Plication and the one on k

within the conclus ion, and we use
(5 .10) for weakening Sr into Tr
wi th in the k- terms:

Vj£ l : [VjGJ: T . j (Sr(Q)) (5 .11)
=> H2 v Q v Tr(Q)

v Sr(Tr(Q))
v JkGI\J: T .k(Tr(Q))]

We may wri te Sr(Tr(Q)) as

Sr(Tr(Q))
= JjGJ: C. j & T. j (Tr(Q))
v }kGI\J: C.k St T ,k(Tr(Q))

Each j - term in Sr(Tr(Q)) can be
s impl i f ied to C. j because the an
tecedent of (5 .11) conta ins each
T j (Sr(Q)) , and because Sr(Q) =>
Tr(Q) by (3 .2) . Each k- term in
Sr(Tr(Q)) can be removed a l togeth
er s ince i t i s inc luded in the k-
terms a lready present in the con
c lus ion of (5 .11) . Thus the
thes i s (5 .11) can be wri t ten as
fo l lows , a f ter moving the quant i f
i er on j to the front:

Vj£ l : 3jGJ:
r T . j (Sr(Q))

=> H2 v Q v Tr(Q) v } ;J6J : C . : j
v 3kGI\J: T .k(Tr(Q))]

We unfo ld Sr(Q) into [J iGI: C. i S .
T i (Q)] and use T . j (C. i S < T. l (Q))
= > T j (C. i) S t T . j (T. i (Q)) < 9 iven
/2 11) - a thes i s A=>C can be re
p laced'by a thes i s B=>C when A - > B .
We move the quant i f ier on l tothe
front and apply the ident i ty (A S t B
= > cI d) < = > (A=>C) v (B = > D) ; hence
the new thes i s :

ujc l • } jGJ= v i e l : ?, , 1 2)

[T. j (C. i) => H2 v 3 je j :C. 3]
v [T. j (T. i (Q))
V 1 J = > Q v Tr(Q)

v JkGI\J: T .k(Tr(Q))]

Now by assumption, the cr i ter ion
(55) ver i f ied; because of
(4 * 5) , i t e n t a i l s

•

146

VJcI: }jeJ: ViGI: (5.13)
[[T . j (C. i) => H2 v } je j ; C. j]
V VQ: [T.j(T.i(Q))

=> Q v Tr(Q)
v }kei\J: T.k(Tr(Q))]]

Formula (5.13) does imply (5.12),
because [A v VQ:B] => VQ:[A v B]
and }jVQ:Z => VQ}j:Z. QED

gxample of. use of the criteria:

The greatest common divisor
f(x1,x2) can be defined by

f(x1,x1) = x1, f(x1,x2) = f(x2,x1)
f(x1,x1+x2) = f(x1,x2)

The relation gcd((x1,x2,x3)) <=>
(f(x1,x2)=x3) can thus be defined
by

TO: gcd(x) <- pO(x)
H: gcd(x) <- r1(x,y), gcd(y)
T2: gcd(x) <- r2(x,y), gcd(y)

plus the auxiliary clauses

pO((x1,x1,x1)) <- true
r 1 ((x 1 , x 2 , x 3) , (x 2 , x 1 , x 3))

<- true
r 2 ((x 1 , x 2 , x 3) , (x 1 , y 2 , x 3))

<- (x2=x1+y2)

The program T0,T1,T2, permits in
finite computation paths because
of the permutating clause T1 in
order to eliminate the unsuccess
ful paths without loosing solu
tions, it is proposed (aha") to
restrict T and T2 by using t£
two selective premises

C1 = (x1>x2), C2 = (x2>x1)

The program thereby obtained is
deterministic. To show "
success-complete w r t T
Ply the criteria BH[2] ' rL aP~
"fixation of (5.3) and (5 5) "-I
immediate. For (5 ;
the central stejs.)r Sketch

The case JM1). i=1. ^

cause T1(T1(x=y)) = (x=y); T1 is
idempotent, and thus it is of no
use to apply T1 twice. The case
J*(1), i«2, holds because T1
transforms C2 into CI, viz. T1(C2)
= > C1: the domain from which T1
establishes C2 is contained in C1.

For J-(2), i-1, we must check

[T2(C1) -> H2 v C2]
V Vy: [T2(T1(x=y))

=> (x»y) v Tr(x=y)
v T1(Tr(x=y))]

where Tr=T1+T2. The Part

T2(C1) = >C2 amounts to (x1+x1>x2 =>
x2>x1), i.e. (x1<x2). The ters
T2(T1(x=y)) amounts to (x2-x1, x1,
x3)=y which is false when x1 2 *2.
Hence we do have [x1<x2] v Vy:
[T2(T1(x=y)) «> ...].

For J=(2), i*2, we verify T2(C2)
= > C2 viz. (x2>x1+x1 => x2>x1).

Finally, all the cases J=(1,2lr
for any j and i, yield true be
cause H2 v C1 v C2 is identically
true: indeed, H2 contains x2=x
since pO implies x1=x2 and T1 ex

changes x1 and x2.

This simple example illustrates
how the proposed criteria (5.3-5
directly benefit from structural
properties of the original infer"
ence clauses: the more such Pr°
perties are available, the less
constraints on the selective pre®'
ises must be verified. This is
be contrasted with the Krmth"
Bendix approach, where property
such as idempotence, commutatiw
ty, associativity, require addi
tional work, viz. special *e'-1

orderings.

£• GENERAT, INFERENCE PROGRAMS

The adaptation of the previ°u®
developments to the non-linea

case is straightforward.
with the quadratic case. The in

147

duc t ive c l ause T . i (2 .3) t akes the
fo r i

P (x) < - r . i (* ,y ,y ') , (6 .1)
p (y) , P (y ')

The i nduc t ive computa t ion s t ep
(2 .5) becomes

Tp(t) T . i (6 .2)

r . i (S |M,W') & p (w)Sq>(w ')

The preimage o f two p red ica tes Q
and Q ' i s

T i (Q,Q ') (6 .3)
= i y ,y ' : r . i (x ,y ,y*)

6 . Q(y) & Q(y ')

Accordingly, (2 .7 -9) r e spec t ive ly
becoae

T r (Q .Q") = } i : T . i (Q .Q ') (6 .4)

Ael (T) = l eas t so lu t ion (6 .5)
o f [X = pO v Tr (X,X)]

= Jn : H .n (6 .6)
xhere HO = pO

Mn+1) - H.n v Tr (H.n , H .n)

Ihe gene ra l i za t ions o f (2 .10) and
(2 .11) a r e c l ea r , v i z .

T r <Q1 v Q2 , Q1 • v Q2*)
* Tr (Ql , q i •) v Tr(Q1 ,Q2 ')
v Tr(02 ,QD v Tr (Q2 ,Q2 ')

s « i l a r ly ,

T - i (*=z , x=z 1)
* Jy .y ' : r . i (x ,y ,y ')

St (y=z) s . (y '=z ')
a r . i (* , z , t ') (6 .7)

* h e r e s t r i c t ion (3 .1) o f an induc-
1 V e c lause i s now de f ined us ing

r ' - i (* .y ,y ') (6 . 8)
• C. i (x) s , r . i (x ,y ,y ')

inc lus ion r e l a t ion be tween
j n " l inea r c l auses has two fo rms .

In the f i r s t case , t he p red ica tes
Q, Q ' used a s pa ramete r s a re in
dependen t :

IF Vy ,y 1 : (6 .9a)
T1(x=y ,x=y ') => T2(x=y ,x=y ')

THEN VQ,Q ' : (6 .9b)
T1 (Q ,Q ') => T2 , (Q,Q ')

Indeed , by (6 .7 ,6 .9a ,6 .3) ,

T1(Q,Q ')
= 3y .y" : T1(x=y , x=y 1)

s . Q(y) Sc Q ' (y ')
=> 3y .y ' : T2(x=y , x=y ')

s . Q (y) & Q ' (y ')
=> T2(Q,Q ')

In the second case , t he same
p red ica te Q i s used fo r bo th
pa ramete r s :

IF Vy,y1: ^•10a'
T1(x=y , x=y 1)
=> T2(x=y ,x=y) v T2(x=y ,x=y ')

v T2(x=y ' ,x=y) v T2(x=y ' ,x=y ')

THEN VQ: (6 .10b)
T1(Q,Q) => T2(Q,Q)

Indeed , by (6 .7 ,6 .10a , 6 .3) ,

T1(Q,Q)
_ ly^ y 1 •

T1(x=y , x=y ') & Q(y) & Q(y ')
=> 3y .y ' <z <z ' '• , , , .

(Z = y v z=y") & (z ' =y V z =y)
S , T2(x=z , x=z ') & Q(y) Sc Q(y ')

_y l Z f Z « .
T2(x=z , x=z ') S t Q(z) St Q(z)

=> T2(Q,Q)

The case (6 .10) wi th iden t i ca l
pa ramete r s i s the one used
he rea f t e r , because o f t he fo rm o f
t he equa t ions in (6 .5 -6) .
sha l l abbrev ia te (6 .10a) in to

Vv .y ' : 3 Z * Z ' — y»y : I X T1(x=y , x=y ') => T2(x=z , x=z)

The inclusion property (4.5) is
generalized similarly:

148

IF Vy1...y4: (6.11a)
3z1...z4 £ yl...y4:
[T.j(T.i1(x=y1, x=y2),

T.i2(x=y3, x = y4))
-> (x=z1) v Tr(x=z1, x*z2)

v }k: T.k(Tr(x=z1, x»z2),
Tr(x=z3, x=z4))]

THEN • (6.11b)
[T.3(T.l1(Q,Q), T.i2(Q,Q))
=> Q v Tr(Q,Q)
v }k: T.k(Tr(Q,Q),Tr(Q,Q))]

The bounded-horizon criteria of
hav£ f°r thC quadratic case
rt i C, same structure as
in* J °ne. Berely replaces the

linear compositions by their qua-
0d a ~ generalizations. The proof

f the theorem of section 5 is ob-
callv reMmilarly: °ne systematically replaces Tr (Y) by Tr(Y Y>
and Sr(Y) by SrfY v> lY,Y) , 1 a r i i f i j , f o r a n y Y
and as long as possible; for in
stance, Sr(Tr(H.(n—1))) becomes

Sr(Tr(H.(n- 1) , H.(n-I)),
Tr(H.(n-1), H.(n-1)))

One can check that the

t of lo(5"ir s*

T3(n1tLUQ,Q)' C2&T2(Q,Q)) => T3(C1,C2)
& T3CT1CQ,Q), T2(Q,Q))

The difference between v-h* i •
case in section 5 and fh* near

ic case essentially am 1uadrat-
difference betweei! lin* S t0 the

tions of computation <-C°mposi~
quadratic compositions ®teps and

extended°Vtoginferencati0n Ca" be

any degree i"e Programs of

program is in homogeneous fori of
degree n if all its inductive
clauses have exactly n premises
which use the principal predicate
symbol. Such an homogeneous fori
can always be obtained by adding
redundant premises in clauses.
For instance, p(y) is equivalent
to p(y) & p(y*) & (yy'l.

1. DISCUSSION

The research on methods of
transforming formal systems for
the complete elimination of back
tracking without any loss of solu
tions, is as practically important
as technically hard. Note this
only tackles a restricted problem,
in comparison to more general
methods for the formal derivation
of efficient inference programs;
these may demand 'genuinely deep
theorems requiring mathematically
challenging proofs' (Hogger 1981)'

Two major classes of transforma
tion methods for backtrack-
elimination are well established.
The first one concerns the genera
tion of deterministic parsers f°r

context-free production systems,
which correspond to a very res"
tricted form of inference Pr0"
grams. The methods in the second
class transform eguational systems
into confluent systems of rewrit
ing rules (Knuth and Bendix 1970):
since equational systems are com
parable in power and structure t°
inference programs, it is possible
to use these methods for H°r" - an(j clauses also (Barbuti, Degano
Levi 1982). The fundamental
difference between the Knuth
Bendix approach and the method ex
plored here is that the latter
does not depend on the definiti°n

of ad-hoc well-orderings and actu
ally benefits from properties such
as idempotence or commutativity rr

original program clauses; but
this does not imply that the

Present method is any better i®

149

practice, especially in view of
systems such as REVE (Lescanne
1983).

The first results of the present
approach appeared in (Sintzoff
1976): ideas based on bounded-
context parsing methods were
developed for computations by
"transition* programs or by infer
ence ones. Transition programs
are sets of condition-action
pairs, where boolean expressions
and substitutions respectively
stand for conditions and actions;
Wiey correspond to restricted
guarded-command loops, without
nesting. The inference programs
uere expressed by two-level gram
mars similar to Horn clauses. The
criteria in (Sintzoff 1976) prove
quite limited, and apply if the
initially given programs permit at
most one successful computation
path for each input; this restric
tion originates from the fact that
Parsing methods assume the
context-free grammars are not am
biguous. in (van Lamsweerde and
Sintzoff 1979), parallel programs
are studied in the form of transi
tion programs, and specialization
techniques are given to eliminate
deadlock and starvation; these
techniques demand the actual in-
"ction of greatest and least fix-

Points, and thus are general but
difficult to use. A first version

bounded-horizon criteria is
developed in (Sintzoff 1978), for
tansition programs only; a weaker

*"iant is studied in (Sintzoff
83) to prevent failures after

inite paths, but without cutting
0 i infinite blind-alleys.

The present work pursues these
investigations and applies the
Jesults to inference programs.

ch more work clearly is needed.
JJ ly constructive ways of using

criteria BH[2] must be
eveloped; to use bounded-horizon

Ctiteria for proving or improving

programs, even mechanically, ap
pears promising: any set of selec
tive premises C.i's solving
(5.3-5) is acceptable, not just
extremal solutions. Generaliza
tions and variants should be in
vestigated, e.g. by allowing for
bounded horizons of rank greater
than two, by permitting nondeter-
ministic selective premises, by
not giving priority to shorter
compositions of computation steps
over longer ones, or by ensuring
specific data-flows in the
clauses. Last but not least, the
practical applicability of the
proposed technique must be ex
plored.

To the cost of appearing foolish
and presumptuous, we venture some
personal views on the relationship
between the present work and ar
tificial intelligence. See (Rich
1983) for a presentation of the
relevant technical concepts.

Instead of weak search implemen
tations, we look for strong ones,
e.g. transformations which yield
absolutely deadend-free production
systems. In particular, we want to
derive conditional and iterative
plans for parametrized goals and
by use of an homogeneous design
strategy.

Incompleteness is inescapable in
a bounded world. Here, it concerns
only the bounded-horizon transfor
nation process: this one may well
fail but whenever it succeeds, it
yields a program which is
guaranteed to be success-complete.
The transformation is weak whereas
the result, if any, is strong It
is at the program design level
that the spirit of heuristics
reigns.

The term "bounded-horizon"
refers also to the burning issue
of the horizon effect. We try to
tackle this problem statically ,

150

by analyzing specific composition
properties of rules, before
searching w.r.t. singular goal
states. To use bounded-horizon
criteria of rank two for "remote
horizons" may seem as naive as ap
proximating pi by 22/7, but could
prove as attractive as the LR[2]
parsing techniques for context-
free grammars; who knows?

Naive systems, built on basic
knowledge and inference compila
tion, must complement expert sys
tems made of knowledge bases and
inference engines.

REFERENCES

Barbuti, R., p. Degano, and G.
Levi, Towards an inductionless
technique for proving properties
of logic programs, in: Proc. 1st
Intern. Logic Progr. Conf., Mar
seille, 1982, 175-181.

track?nfS; Intelli^«t back-
Horn f an inteiPreter for
CW16 UnlT t C programs' Report

Univ- Leuven, Belgium, 1978.

Dershowitz, N., Orderings for

Knuth, D., and P
word problems Bendix, simple

London, 1970, 263-297*' Pergamon.

with^th; REVE^ermT eXperilBents
tem generator Sys-
Conf • on Princini^ 10th

Languages, ACM, 1983 giMos^091'

Pereira, L.N., Logic control with
logic, in: Proc. 1st Intern. Logic
Progr. Conf., Marseille, 1982,
9-18.

Rich, E., Artificial Intelligence,
McGraw-Hill, Tokyo, 1983.

Shoenfield, J.R., Mathematical
Logic, Addison-Wesley, London,
1967.

Sintzoff, M., Eliminating blind
alleys from backtrack programs,
in: Proc. 3rd Int. Coll. Automata,
Languages and Programming, Edin
burgh Univ. Press, 1976, 531-557.

Sintzoff, M., Ensuring correctness
by arbitrary postfixed-points, in:
Proc. 7th Symp. Math. Found. Coup.
Sci., LNCS 64, Springer, Berlin,
1978, 484-492.

Sintzoff, M., Issues in the

methodical design of concurrent
programs, in: A.V. Biermann and G.
Guiho (eds.) Computer Program Syn
thesis Methodologies, D. Reidel,
Dordrecht, 1983, 51-78.

Smullyan, R.M., Theory of E°rial

Systems, Princeton Univ. PreSSl
1961.

van Emden, M.H., and RA. Kowal-
ski, The semantics of predica
logic as a programming langua9e'
J. ACM 23(1976), 733-742.

van Lamsweerde, A., and M. Sintz-
°ff, Formal derivation of strong 7
correct concurrent programs, Ac a
Informatica 12(1979), 1-31.

AN EFFICIENT BUG LOCATION ALGORITHM

David A. Plaisted
Department of Computer Science

University of Illinois
1304 West Springfield Avenue

Urbana, Illinois 61801 USA

ABSTRACT

We present an efficient algo
rithm for locating bugs in Prolog.
This algorithm is based on the method
of (Shapiro 1983), and can be applied
to any high level programming
language. The method is optimal to
within a constant factor for space,
time, and number of queries to the
user. This significantly improves the
performance of Shapiro's method,
which is not optimal for space or time
and for which the number of queries
depends on the branching factor of
the computation. Since no current
Programming environment uses this
method, it should be a significant aid
to programmers in debugging
software.

1 INTRODUCTION

Probably millions of dollars of
computer time are spent each day by
Programmers tracing their programs
to locate errors and understand their
Programs better. This often requires
repeated execution of parts of the pro
gram in order to locate a bug. Typi
cally the programmer will execute a

Tbia rettirch wu sopported in P»rt by the Na-
l|oul Science Foundation nnder grantj MCS-81-09831
"d MCS-83-07755

top-level procedure to find which sub-
procedure returns incorrect values;
he or she will then execute the sub-
procedure to find which of its subpro-
cedures return incorrect values; and
this process continues until the error
is found. This process can be quite
time consuming for programs with
large execution times, so much so that
much of this tracing is probably not
done because of the excessive cost,
and other methods are used to debug
programs.

Ideally, programs should prob
ably be written using some kind of
program transformation scheme or
program verifier to help insure their
correctness; however, in practice, pro
gram testing and debugging is the
main programming methodology used.
Current programming environments
such as INTERLISP permit a pro
grammer to examine the stack when a
run time error occurs. This is often
not sufficient because the error may
not be in a procedure invocation
currently on the stack. Another alter
native is to insert trace statements in
the program. This is also not satisfac
tory for long executions, since there
may be thousands of lines of output
to examine.

It would be a significant aid to

152

program debugging if a more efficient
method of searching computation
trees were available. This would save
not only programmer time and com
puter time, but would also make prac
tical certain kinds of tracing that are
currently prohibitive in cost. It turns
out that there is such an efficient
method for searching computation
trees; the basic idea is that the
results of selected subcomputations
are remembered so that those sub-
computations need not be repeated.
These subcomputations are carefully
chosen and the manner of examining
the tree is carefully structured so that
the increase in computation time to
search the tree can be made arbi
trarily small. The method may be
viewed as a generalization of binarv
search to trees.

I fa. •ShT„r°, haS siven one method
(Shapiro 1983) of searching the com-
putation tree. Our method is similar

X <!1n nd qUery" method but has the following advantages: 1 The
number of queries does not depend on
the branching factor. This can be
significant if the branching factor is
arge say, a thousand, which is con

stat ln % Pr°gram with iterative

progrL Thre<imred by the °riginal

method, in^vhlch *the s^orage^required

required 'b^e * W, that

siSSc?** ^„elhecomp^^,„

made arbitrarily small in our method.
That is, if the original program execu
tion took say an hour, then it will be
possible to find the bug in an extra 5
minutes of computation time using
our method, with an appropriate
number of intermediate results saved.
However, in Shapiro's method, it may
be necessary to run the whole pro
gram again, to learn its execution
time, and then run it a third time to
find the bug. The third execution
may take as long as the first, so the
total execution time can be increased
by a factor of 3. It is not difficult to
modify Shapiro's method to eliminate
the second execution to determine the
execution time, but even with such a
modification, there is still a factor of 2
in execution time required.

Our method may be used for
Prolog or for other high-level pro
gramming languages, but there may
be difficulties for languages with
pointers. Also, if there are arrays, the
storage requirement can be large-
Shapiro also mentions a "top down
query strategy which requires little
extra storage, but which may square
the execution time. This "top down"
method can be made more time
efficient, at the expense of a possibly
large amount of storage. We do not
consider the problem of nontermina-
tion; this may be approached by
related methods, as Shapiro mentions
(Shapiro 1983). Another approach to
oracles is given in (Edman and Tarn-
lund 1983) where methods for semi-
automating the construction of aD

oracle are given. They are concerned
with the problem of guaranteeing the
correctness of the oracle, and show
how a correct oracle may be con
structed from program specifications-

153

We may consider the program
execution as a tree, where a procedure
invocation P that calls subprocedures
Pt, , Pt corresponds to a node in
the tree labeled P with sons labeled
Pv • • •, Pt. The object is to find a
procedure invocation such that the
procedure P returned a wrong result
but all subprocedures executed
correctly; this procedure then con
tains a bug. To find this erroneous
invocation, queries are given to the
user asking if a procedure invocation
with specified input and output is
correct. If the program as a whole
contains a bug, one can show (Shapiro
1883) that there must be some pro
cedure invocation that is erroneous in
the above sense. Our method is essen
tially a fast method of examining com
putations of programs, with little
overhead in storage or time; it appears
that no current system (such as
INTERLISP) contains a comparable
method.

2 REDUCING THE BRANCH
ING FACTOR

We first give a method for
transforming the execution tree to
reduce the branching factor to two.
The branching factor is the maximum
number of sons of any node in the
treel the method in (Shapiro 1983) is
sensitive to the branching factor.
Suppose a procedure invocation P
n a i l s p r o c e d u r e s P v • • • , P f W e
ullow queries of the form, "If pro
cedure P was called with such and
such inputs, then should it be possible
to reach a state after P, returns in
which the variables accessible to P
bave such and such values?" Thus we
can determine if an error has occured
before the end of the j'k procedure
call, using a single query.

Note that if j—k then this is
equivalent to asking if P itself
returned with correct values. (For
languages having global variables,
these must also be included in the
values used and returned by P since P
may use and change them.) This has
the effect of transforming a subtree of
the form

to a subtree of the form

/%
* / X

* ./ ,
/ \

3. CHOOSING I/O PAIRS

The method works as follows:
A program is run. During the run of
this program, certain procedure invo
cations are chosen and the inputs and
outputs to these are stored. If the
urogram terminates with a correct
answer then nothing need be done.
Suppose the program terminates with
a wrong answer. Then some of the
selected i/o pairs are used to query
the user about the correctness of the
corresponding procedure invocations.
Based on the results of these queries,

154

either the incorrect invocation is
found or else a smaller subcomputa-
tion is found which contains the bug;
the method is then applied recursively
to this subcomputation. Note that no
recomputation is necessary until all
relevant queries based on stored i/o
pairs have been made.

The i/o pairs are chosen as fol
lows: A procedure invocation is called
a A cutoff if there exists an integer n
such that the procedure takes time
greater than or equal to nA, but no
called procedure takes time greater
than or equal to nA, where time is
measured by numbers of procedure
calls. One can show the following:

Proposition 3. 1 . For any A
the 4 cutoffs form an upper semi-
lattice. That is, if p and q are two
invocations which are A cutoffs, and s
is the minimal subtree containing D

and q , then the root o f s i s a l so a A
cutoff.

size t P™P°Siti0n 3-2- For a tree of
size t, there are at most 2n-i invoca
tions which are A cutoffs, for Atz-L.

n

Proposition 3 . 3 . Suppose a
procedure invocation p takes t time
u n i t s , a n d ^ 2 a > a n d > T ™

ofTsLrth Vt°Cati°n q iD the Subtree

talrL f- q is a 4 cutoff and q
time tq for ast s2a. (We are

-=)theb^hing facto! ist^

tially Jet'yVotTn'owHLow0fcng Z
program is going to run. We have L

»h»ru?hep'redore c"is»
stored invocationswrn' o r m a S o

cutoffs for small enough A. We show
how to do this in the next section.

3.1. Storing i/o pairs

Suppose that at some time, all
8 cutoffs have been stored, and 8 is
about —, where the execution time is

f t

t. Then only the 28 cutoffs are saved,
and only 28 cutoffs are stored until the
execution time is about 2t. This pro
cess is then repeated (i. e. only the 48
cutoffs are stored until time about ti)
until the execution ends. At any time,
A cutoffs are stored for —s4^2-. n »
This requires the storing of at most
2n-i i/o pairs, by proposition 3.2.
During the execution, it is necessary
to keep a counter with each procedure
call telling the time at which it
occurred, so that when the procedure
returns we may know how long it took
and whether it is a A cutoff. Also, it
is necessary to save the inputs to each
procedure until it exits. In languages
such as Prolog, this is no problem,
since the backtracking mechanism
requires that this information he
saved. In other languages, such values
may need to be explicitly saved, cost
ing possibly some extra storage. If the
procedure changes global variables,
their original values will also have to
be saved.

4 QUERYING THE USER

Suppose all A cutoffs have been
stored, for As±. This may require

storing 4n-i i/o pairs during the exe
cution of the program, by above rea
soning. Then the user is queried by ®
kind of "binary search". The firs

query is some A cutoff p such that the

155

time t f taken by p is between — and
3

2 i j, where t is the execution time of

the program. Such a cutoff p exists
by proposition 3.3. If p is correct,

then a subtree of size at least — is
3

known not to contain the bug; if p is
incorrect, a subtree of size at most —

3
is known to contain the bug. In either

case, at least j of the tree is elim

inated from consideration by this
query.

Such queries are continued on
the relevant subtree, possibly with
certain of its subtrees known to be
correct. In a constant times log(n)
queries, the user will have located a
cutoff q which is incorrect but such
that all cutoffs in the subtree rooted
a' 1 are correct. In fact, by proposi
tion 3.1, there will be at most two
maximal cutoffs f, and q2 below q
which are known to be correct.

erefore Ibis series of queries has
reduced the size of the region in which

the bug may occur to at most 2—.

The method is then continued on this
reduced region, with and q2 con-
sidered to be eliminated from the sub-
ree This is possible since their i/o

Pa'rs have been stored, and any
^computations need not repeat the
c°mputations below f, or q r

PAIRSELIMINATING OLD 1/0

The above method can be
^t • 'D storage, since the q, need to

e stored, and they can accumulate
uring each pass of the method. To

around this problem, we give a
e °d that insures that the number

of such old i/o pairs is never more
than two. The idea is to save extra
i/o pairs during the next pass of the
method, which when queried will nar
row the search for the bug down to a
subtree in which at most one such old
i/o pair exists.

For example, if there are two
such old i/o pairs r, and r2, let T be
the minimal tree containing both of
them. Then during the next pass of
the algorithm, we save the i/o pair for
the root of T, as well as the i/o pairs
for its two sons. Then we query the
user whether the root of T is correct.
If so, the entire subtree can be elim
inated and we only have to store the
i/o pair for the root of T instead of
both r,. Suppose the root is incorrect.
Then we query for the sons. If both
are correct, then the bug has been
found; it is at the root of T. If one
son is incorrect, then attention may
be restricted to that subtree, which
contains only one old i/o pair.

6. COST OF THE METHOD

Each phase of the method
reduces the size of the computation
tree from t to —- Therefore the
part of the computation must be
repeated, and so on, leading to a com-

, , , 2 1 . 4 1 , . . .
put at ion time of <+—+"^"+

or For n large enough, the

extra computation time can be made
very small.

The number of i/o pairs that
must be stored is 4n-l, since extra
pairs need to be stored to account for
the fact that the total execution time
of the program may not be known in
oHvance. Also, possibly 3 I/o pairs

156

may be needed for the extra queries to
eliminate the buildup of old i/o pairs,
and at most one old i/o pair needs to
be stored. Thus we may need 4n+3
i/o pairs. The number of queries to
the user will be 0(log<). For the
method to work, n must be at least 3,
so 15 i/o pairs may be needed. Prob
ably this can be reduced significantly;
if arrays need to be kept with each i/o
pair, even 15 pairs may be excessive.

7. BACKTRACKING

In the above discussion we have
assumed that no backtracking occurs.
If backtracking does occur, the
method can be modified to deal with
it. A procedure call may fail, in which
case the calling procedure must try to
find an alternative procedure call or
sequence of calls, or else must itself
fail. Each state in the sequence of
calls may be considered a possible
query, of the form "If procedure P is
called with such and such input
values, is it possible to reach a state in
which Pi • - • , Pj have returned

successfully and the values of the vari
ables accessible to P are such and
such. Note that calls which fail may
lead to bugs, smce possibly they
should have succeeded.

8- VARIATIONS

If the desired i/o relation of a
then T I 1S given Procedurally
then instead of querying the user it is'

*:•

if a fast, complicated program

is equivalent to a slow, simple pro
gram, the slow program may be used
as an automatic query answerer for
the fast program, but it is best not to
query the slow program very often.
Shapiro has observed that answers to
previous queries can be remembered,
to further reduce the number of
queries.

Another variation of the
method is to query the user during
the first execution of the program,
even before the user knows that it
contains a bug. That is, as each i/o
pair as in section 3.1 is stored, it is
also used as a query to the user. It is
easy to show that the total number of
queries is increased at most by a con
stant factor by this method. How
ever, if the program is unreliable, then
it probably will give wrong results
early in the computation, and this can
be detected early. Also, if each i/o
pair is used as a query as soon as it is
stored, then fewer i/o pairs need to be
stored. For example, suppose p and q
are i/o pairs which are stored, and q is
in the subtree of p (that is, q is an
invocation of a procedure during the
computation of p). If p is correct,
then it is not necessary to save q-
Thus fewer pairs need to be saved.
On the average this reduces the
number of i/o pairs stored at any
given time to be proportional to the
log of the number required otherwise.

REFERENCES

Clocksin, W. and Mellish, C., Pro
gramming in PROLOG, Springer-
Verlag, Berlin, 1981.

Edman, A. and Tamlund, S., Mechan
ization of an oracle in a debugging
system, Proceedings of IJCAI-83,

Karlsruhe, Germany, 1983, 553-555.

Shapiro, E., Algorithmic Program
Debugging, MIT Press, Cambridge,
Massachusetts, 1983.

OR-PARALLELISM ON APPLICATIVE ARCHITECTURES1

Gary Lindstrom2

Laboratory for Computer Science
Massachusetts Institute of Technology

545 Technology Square
Cambridge, MA 02139

ABSTRACT 1. BACKGROUND

In a previous paper we introduced an
abstract model for OR-parallel logic program
execution, oriented toward applicative
architectures Central to this method is
pipelined processing of streams of
substitution data objects. We now address
two implementation issues associated with
tbis approach:

1 The efficient representation of
substitution data objects, and

2 A parallel unification algorithm
compatible with this representation.

Our approach to the first issue involves a
compact vectorized representation permitting
indexed access of local variable bindings,

esults on the second issue exploit a
ormulation of unification as a write once
atabase update problem, which can be

e lc'en"y implemented by a particular
combination ol applicative and imperative
architectural features.

This research was supported in part by
a'onal Science Foundation Grant MCS

'915255.

llnivi
Currently

ersity of Utah
on sabbatical leave from the

1.1 OR- vs. AND-Parallelism

Efforts to exploit parallelism in the execution
of logic programs may be categorized into
two domains (Conery and Kibler 1981):

OR-parallelism, where multiple clauses
unifiable with a goal literal are attempted
concurrently, and

AND-parallelism, where multiple literals
within a clause body are attempted
concurrently.

OR-parallelism is jmplementationally
simpler, since the alternative clauses under
consideration are logically independent
(Haridi and Ciepielewski 1983, Furukawa et al.
1982. Umeyama and Tamura 1982, Warren
1984) However, control of eagerness in OR-
parallelism is known to be a problem.

In contrast, the concurrent goals pursued
under AND-parallelism are not logically
independent, since they are generally
'cooperatively' seeking to bind one or more
shared variables. This cooperation provides a
basis for concurrency control, if read/write
disciplines are placed on the shared variable
occurrences within a clause. Some semantic
and implementational complexities are
incurred, but the net effect is a more familiar
•process oriented' view of the computation.
Two principal approaches to AND-parallelism
through shared variable c°ntrol ha^
appeared (Clark and Gregory 1983, Shapiro

160

We believe that a blend of OR- and AND-
parallelism will prove most effective in the
long run, but that the best such combination
will depend on the underlying architecture
employed. For this reason, we are
investigating parallel logic programming on a
particular applicative architecture named
Rediflow (Keller et al. 1984), with the strategy
of first understanding the implications of OR-
parallelism. AND-parallelism will be
subsequently introduced, when our
implementation understanding has grown and
(perhaps) a consensus has arisen at large on
what forms of AND parallelism are most
desirable.

1.2 Issues in Implementing OR-Parallelism

Given that we wish to develop an OR-
parallel logic programming implementation on
an applicative architecture, two general
issues arise:

1. Multiple environments: Under sequential
logic programming implementations, e.g.
Warren's Prolog compiler for the
DECSystem-10 (Warren 1977), there is only
one binding environment in existence at a
time. The others are 'hidden', and are
restored as necessary under backtracking.
For this reason, variable binding by
destructive writes into unique locations can
be utilized (assuming that references to the
changed variables are retained, e.g. on a
trail list, so that the bindings can be later
undone if necessary). The result is a
shallow binding' effect, similar to that used
in interpretive Lisp systems, but with the
simplification that values to be restored are
uniformly the pseudo-value unbound, which
we denote by the atom Q, representing the
lack of a binding.

In contrast, several instances of a given
goal can be concurrently active under OR-
parallelism. Hence multiple logical
environments must exist logically, though
complete physical separation is potently

2. Parallel unification: A unification
algorithm is needed which:

a) is compatible with the multiple
environment requirement (i.e. will bind
variables such that they are 'shared' within
a clause instance, but 'non-shared' among
OR-siblings of that instance), and

b) exploits well the potential concurrency
in typical unification invocations.

In a previous paper (Lindstrom and
Panagaden 1984) we presented a model for
an OR-parallel execution method based on
compositions of substitution data objects.
Since that paper's completion, we have
refined the method to deal with the two
important problems just cited. We now
describe these refinements.

2. REVIEW OF BASIC APPROACH

2.1 Kev Features

Our previously reported approach is based
on the following ideas:

1. a stream-based analog of the 'standard'
backtracking execution model (in particular,
left-to-right pursuit of goals within clause
bodies);

2. OR parallelism, with a particular form of
induced AND-parallelism (eager passing of
subsolutions to AND siblings):

3. an applicative formulation, except for
indeterminate stream merging (we will
weaken this a bit further);

4. concurrent processing of several top-
level goals, if desired, and

5. a pure code' utilization of program
clauses, with all instantiation done via
composition of substitution records.

2-2 Binding Operatinng

Central to our method is the use of
substitution objects as the sole means of
representing environments. For a detailed
treatment of the associated mechanics, the

161

reader Is directed to the previous paper.
However, we summarize here the essential
ideas necessary to understand the issues of
immediate interest.

Initially, we will assume the substitutions are
represented symbolically (i.e. as sets of
assignments on identifiers). The major
operations on substitutions are the following:

I.Goa/ instantiation: Let be a goal
literal appeanng m a clause Cc and J, be a
substitution on HCQ). the set of variables
appeanng in C0 (the native' name space of
Co) Then 5' m 9g • denotes the
instantiation of this goal by (a 'goal
instance'). We term f an instantiation
substitution, and stipulate that range(3J C
domain)^), where domain(f) (resp. range)
ls the set of variables appearing on the left
tep, right) of assignments in a substitution
'• THus instantiation substitutions:

a) Have domain and range in the same
name space, and

b) permit the important effect of binding
"scaping, whereby chains of bindings are
established (e.g. X«a. Y). Y : - g(Z, b),
eta-). This possibility, as we shall see, is a
natural consequence of unification, where
brndings can be incrementally refined.

2 Subgoal unification. Now suppose we
:w,sh ,0 attempt unification of tf ' with literal

v 'He head of a target clause C|. We
present the success of this unification by

Jta substitution pair |J?. jy. such that CJQ' °
sV '' * h ,erm a unification
• -'tufior jg 0(course an instantiation

th ,S'ltl"'0n- Playing the same role for 1 ^
"•'i does for (f

m r s'5ecia' condition, we require that S2

unbound variables in ?0' into terms
a the name space of C, (possibly

smented to accomplish this). Thus we

/N
CJ ° f

O f o f o f
J0 1 2

uninstantiated literal

instances of

no ' fan0e(J2) C domam{l3). There is
>aliv!aSCatJ'n® of bindings in unification
^"SHtutions.

specializations of
T0 ° f, by unification

cj .j oj «r solutions to
0 -^-3 VV*2

Fig. 1 • Multiple environments under
substitution application.

3 Solution restatement: By our method,
each solution to «F, • ?3 will be represented
as a refinement $3 of T3, so domain(f3) C
domain(*,'). (The domain of *3 may include
an expansion to accommodate new
unbound variables contained in the solution
o(? of; this will be clarified later.)
Moreover, since range($2) C domam(f3),the
solution conveyed by f3 may be restated in
terms of n%) by the composition f= X,
f of', f ' is then used to instantiate the
right AND-sibling of 90, or, if % is the
rightmost literal in its clause, for solution
restatement in terms of the name space of

the parent goal of

The data structures presented in our
previous account provide a meettanism for
matching a solution subshtution fi.e. ^
„s associated goal mstance.asremappedDy
, occnriated unification substitution (i.e.
' f T This s done by packaging instantiation

inconsequential here.
.ont tn note that the functional

It is important to no jts re|iance
nature of this tec n< jjon) ensures the
s°|e|y on substitu mn^ion requjred

162

under ORparallelism. Each substitution
application produces a distinct object, with
new bindings automatically separated from
any existing substitutions. Fig. 1 summarizes
how multiple environments arise under our
approach.

3. REPRESENTING SUBSTITUTIONS

3.1 Vectorized Substitutions

We now address the need for a 'compiled'
substitution representation. The symbolic
representation we have used hereto'— •-
two significant drawbacks:

1. binding lookup is associative,
identifier keys, and

r" I io uail

arise upon variable importation.

We adopt the following efficiency criteria for
our new representation:

1. direct access of bindings without
searching;

2. control of physical copying costs, and

3. compactness, whereby an instantiation
substitution ^ should have a physical size
on the order of \domain(?J\.

Our solution is of course
representation, with local
into serial indices. We
indices as 'V1', 'V2',
variable with index 1'.

vectorized substitutions
portions:

to use a vectorized
variables compiled
will denote such

meaning 'the local
index 2', etc. Our
will include two

an initial portion, equal in length to the
number of local variables in the clause
involved, and

an extension, required to represent
bindings of variables 'imported' by
instantiation. y

Sample clause

P(X. Y) :• q(X. f(Z)). r(Z. Y. c).

Compiled lorm:

p(V1. V2): q(V1. f(V3)|. r(V3. V2, c).

Sample instantiating substitution
(symbolic):

[X := b, Y: = g(a.W).Z:» Z,W:= W]

Sample instantiating substitution
(vectorized):

b g(a, V4) Q Q

by
V1

by
V1 V2 V3 V4
(X) (Y) (Z) (W)

Fig. 2. Vectorized substitution representation.

The variable importation effect is a special
requirement of our technique for representing
environments by substitutions. We require
that every unbound variable appearing in a
goal instance be mapped by unification onto a
term in the target clause name space. This
may be seen in fig. 2, for example, where the
variable W is introduced into the clauses
name space. Hence every variable as yet
unbound in a goal instantiation has a local
instance in the resulting substitution. This is
the essense of our technique for representing
environments by substitution data objects.

3-2 Applying Substitution^

We now indicate how substitutions can
efficiently be applied to literals using our
selected representation. There are two
occasions where such applications occur.

During unification: A unification attempt
involves an instantiated goal literal (e.g-^o °
*,) and the uninstantiated head literal (e g-
9^) of a target clause. If successful, this
produces a substitution pair [if2, T3], 33

163

FUNCTION app ly21 [s 1 1 s2] | t •
IF 1sva r : t
THEN IF eq : [t se lec t : [t , s i] ,

unbound]
THEN t se1ec t : [t . s2]
ELSE app l y2 | [s l . s2] |

(t se lec t : [t , s i])
ELSE IF a tom. - t

THEN t
ELSE app 1y21 [s 1 . s2] | | t .

FUNCTION res ta te : [s l , s2 , s3] •
{$3b * b1ndsubs t : s3 ,

FUNCTION f : 1 .
IF eq : [t se lec t : [1 . s i] ,

unbound]
THEN t se lec t : [

t se lec t : [1 , s2] ,
s3b]

ELSE t se lec t : [1 , s i]] .

RESULT make:['tuple,
tlength: s l , f] > ,

FUNCTION b1ndsub$ t : s •
{ s b * b lnd te rm 11 s .

FUNCTION b l nd te rm : t •
IF 1 s v a r : t
THEN t seTec t : [t , sb]
ELSE IF a tom: t

THEN t
ELSE b l nd te rm | | t ,

RESULT sb)

9' 3. Substitution application functions
Svar detects variable occurrences).

Sep t h S e d previ°usly In section 4 .1 we will
** that f »
seg ^ " »"wusiy. in section 4.1 we win

.. 2 is dually constructed prior to
j J^,l0n 01 T, to 9 so the image of
ThK K 9 unification is 9. ° f. ° f..
Represented by ° 1

,i] m ,o

'epreserrtJ > 12 * f0 = 90 in ,up,e

sh0wn|f|^' and «Pply2 is defined as

During solution restatement: Here we wish
to compute ^ ° 32 ° ;f3'. This is
accomplished by

res ta te : [s l , s2 , s3]
whe re s i = s2 = f f 2 , s3
restate is defined as shown in fig. 3.

Tg', and

The auxiliary function b tndsubs t is used
to decascade $3', i.e. apply Tg' to itself
exhaustively. This is done in a particularly
efficient manner, exploiting a form of
definitional circularity discussed in (Keller
and L inds t rom 1981) .

The functions in fig. 3 are expressed in the
Function Equation Language FEL (Keller
1982) , wh i ch resemb les ISWIM (Bu rge 1975)
in many ways. The following comments
should help clarify the notation:

Block expressions are denoted
{equations RESULT expression}

where the equations define locally bound
names, generally used within the result
expression. Static scoping rules apply. In

addition,

1. Right associative function application is
deno ted by an in f i x co lon , i . e . f : x : y

f : (x : y)

2 " I " d e n o t e s l e f t a s s o c i a t i v e f u n c t i o n
. r i v i u - (f • x) : y - W h e n ' C u r r y i n g , i . e . f | x | y - { > • * / *

used in a function heading, e.g.
app1y2 | [s 1 , s2] | t

a Curried or 'multi-tiered' function is
de f i ned . Hence appTy2 may be invoked i n

expressions of the form
(appTy2 : [s l > s2]) . t ,

o rs imp ly app l y2 | [s l . s2] | t .

„ m i i " jn FEL denotes tuplewise

application ('appiy-toa"'l> £ '"I"'-
xk] = L r - X 1

4 Selection of the i-th component of a
,upi® •« it;:oU"'

' * ob,ained "y

t l e n g t h : t .

164

5. In addition to direct creation by
'displays' of the form [vl, vie],
tuples may be created indirectly by via the
u t i l i t y f u n c t i o n m a k e : [' t u p l e , k , f] ,
which yields the tuple [f: 1, f: 2
f:k]. Tuples of writeable cells may be
crea ted v ia makece l I s .

3.3 A Special Prohiem

There is a flaw in the res ta te function
given in fig. 3, in the case where solutions
contain unbound variables. An example is the
unit clause C:

contemporaries(fatherof(V1), motherof(Vl))
unified with the goal instance

contemporaries(V1, V2)
under the instantiating substitution 3 = [Q,
Q], Unification produces [T2, y] = 1

[[V2, V3], [fi, fatherof(VI), motherof(Vl)]].
The resu l t i ng y = y a n c j by t h e restate
function defined above we obtain the
malformed substitution

y = [fatherof(fi), motherof(Q)]
due to accesses of the unbound variable V1 in
y. Under our vectorized approach, treating
this effect correctly requires relocating the
indexed representation for V1 and extending
J. Oflf* mmnnnont -r-. . . ip , • ^AicilUIIIU
i one component position. That is we

should instead obtain

Tj = [fatherof(V3), motherof(V3), 0],

Since this difficulty is comparable to the
variable importation problem durinq
unification, we defer discussion of correcting
restate until section 4.5, after our
unification technique is presented.

4- PARALI FL UNIFICATION!

We now consider the issue of efficient
unification within this framework. From 0

>S2" 01 cooc"""» pmotw

2. exploitation of that concurrency through
straightforward use of applicative
implementation techniques;

3. appropriate synchronization controls to
ensure consistent binding of shared
variables, and

4. compatibility
approach.

with our vectorized

Unification has of course been intensely
studied as a sequential algonthm; the recent
algorithm of (Martelli and Montanari 1982) is
representative of the current state of the art.
Indeed, recent results indicate that in certain
pathological cases, unification is inherently
sequential in nature (Dwork et al. 1983).
However, it is clear that in typical unification
applications considerable potential for
parallelism can arise nevertheless. For
example, when variable occurrences are
unique within the terms to be unified,
concurrency on the order of the arity of the
terms is clearly possible.

Our approach will seek to exploit such
typically available concurrency, while
observing necessary synchronization controls
when multiple bindings of a given variable are
attempted. This will be achieved by:

viewing unification as a special 'write
once database update problem, and by

utilizing a particular combination of
applicative and imperative language
features.

Note our objective here is the smooth
integration of unification into our overall
evaluation method, in which concurrency
arises primarily through OR-parallelism. By
exploiting whatever concurrency is available
(albeit limited) within each unification attempt
two benefits result on an architecture such as
Rediflow:

1 • greater activity breadth (i.e. enabled
instructions') within each processing
element (PE), thereby reducing the chance
of PE idleness due to memory latency, and

165

2 speedier determination ol tailing
unification attempts

4.1 Unification as a Database Problem

To begin, we simplify our unification
problem to a more familiar form in which
bindings are collected in a single substitution,
rather than in the \1r *3) pair suggested
above We accomplish this by constructing ?2

prior to actual commencement of the
unification algorithm, as follows Suppose
* 90 • J, is to be unified with tf the head of
a clause Cy Let n be MC,)!- Then for 13 we
create a (nonwnteable) tuple with length(J2)
• lengthf^), as follows:

If J,[i] « Q. then JJi] - V(n • UB(i, J,)),
whereUB{i, J) - |{k(k £ i and flK] « Q)|.

Otherwise, the value of ffjii) is undefined,
and no accesses will be made through it.

The result is a mapping of ?Q' by 13 into the
name space of C., as extended by the
importation of images of all unbound
variables in 9n'. Since simply serves a
variable relocation' function, it can be fixed
at unification set up time Then all bindings
during the actual unification process are done
via assignments to ?3

Now, let us consider parallel unification as a
classical' database update problem within an
applicative framework, e g as formulated in
(Keller and Lindstrom 1982) Here:

The database' is the vector initialized
to uniformly ft values.

The database system consists ol a stream
of transactions applied to a stream of
database versions. Each transaction
involves an indivisible access and bind
operation, which reads a variable s binding,
ond, if equal to ft, binds it. The response
generated for the transaction indicates
whether the binding was adopted, or, if not,
what binding is already in effect for that
variable.

The execution of each transaction yields
in addition an updated database version ((f3

vector), which is then fed back in a cyclic
fashion, to be paired with the next
transaction arriving. An overall transaction
serialization effect thereby results.

This approach is quite clean functionally,
relying on a single pseudo functional
operator, viz. the stream merge used to
collect transactions for application against
the database. However, from a pragmatic
viewpoint, this approach is suboptimal, for the
following reasons:

1. All accesses of the database are made
mutually exclusively, when in fact
serialization on a per-variable basis is
sufficient.

2. Moreover, unsynchronized reads of the
database can be permitted, as follows. By
the special nature of the unification
algorithm, each variable is bound (written)
at most once. That means:

a) Whenever a binding is read, if the
value returned is other than ft, that value is
necessarily correct and final.

b) However, if the variable is seen to be
unbound, any attempt to bind it must be
done through a serializer which performs
the required access and bind operation,
but with serialization on a per variable

basis.

c) In short, the liberalized access policy
permitted by this special 'write once'
property is 'read freely, queue to bind .

3. Finally, the recirculating database
version method can be criticized for
excessive tuple copying as the stream o
intermediate ff3 representations is produced.

4.2 A lutnre Liboral Solution

Suppose we seek to unify S0 0 ^ ° *2 ^
«F the head clause of a target clause C,. Th»
vJrile once' idea described above can be

166

FUNCTION un1fy:[tl. t2. k2] •

{s3 = makece11s : [' t up le . k2 ,
a l l ub] ,

FUNCTION a11ub:1 * unbound.

FUNCTION
IF
THEN
ELSE
IF
THEN
ELSE
IF
THEN

ELSE

te rmun l fy : [t l , t 2] -
1svar : t l
t r yb lnd : [t l , t 2]
(* t l 1s a func t ion •)
1svar : t2
t r yb1nd : [t2 . t l]
(* two non va r iab les •)
eq : [head : t l , head : t2]
a rgun1 fy : [t l , t 2 , 2 ,

t l eng th : t l]
fa l se ,

FUNCTION tryblnd:[var, newblnd] •
IF eq : [t se lec t : [van , s3] ,

unbound]
THEN (• b id to b ind var •)
{o ldb lnd = ab : [va r , newb lnd] ,
RESULT J

IF eq : [o ldb1nd , []]
THEN (• b ind ing OK •)

t rue
ELSE (• recur •)

te rmun l fy ; [newb lnd ,
o ldb lnd] }

ELSE (• a l ready bound •)
te rmun l fy : [t se lec t :

[va r , s3] ,
newb lnd] ,

RESULT [te rmun l fy : [t l , t 2] , S 3]>

Fig. 4. Unification functions.

We create J, as a tuple of writeable cells
equal in number to 1^)1 + UB(length(f)'
j), i.e. the number of native variables in C

Plus the number of variables imported into
this instantiation of C,. All entries in y are
initialized to Q. 3 are

The cells in f3 are read freely during
unification, and, when seen to be equal to 0.
attempts to bind them are made as required.

A serializer procedure (pseudo functional)
is created for each variable to service
access and bind requests in the sense
described above. Mutual exclusion within
serializers is achieved by the mutex
resource control construct described in
(Jayaraman and Keller 1980).

Fig. 4 gives the basic functions involved in
our unification approach. Note:

1. Literals are represented as nested
tuples, with constants denoted as Oary
functions. Hence the representation for the
compiled clause in fig. 2 would be:
[p. V1, V2] :• (q, VI. [f. V3J], [r, V3, V2, (c]J.

The top-level invocation is
un i f y : [t l . t2 . k2]

where 11 = 'J() • o J tZ =1,. and k2 is
the length of the desired if, substitution
tuple. The result is [irue. f3] # A16

unification succeeds, and liaise, undel]
otherwise.

The internal function is termunlfy
performs most of the required case analysis
II tl and t2 are nonatomic. the auxiliary
function argun1fy:[tl, t2, a, b] (not
shown) attempts pairwise unification of
{tselect: [1, tl], tselect:[1. t2]}.
for i € {a,.... b}. This is done in parallel, on
a divide and conquer' basis, with eager
failure reporting. We assume unique arities
for each functor symbol.

2 . t r yb l nd does unsynchron ized reads o f
variable occurrences. If a variable is found
to be already bound, or appears to ^
unbound but fails a binding attempt,
termunlfy is called on the value retrieved
and the rejected new binding.

167

s3m « make:['tuple, k2, allmut],

FUNCTION allmut:1 * gmutex:[],

FUNCTION ab:[var, newblnd] -
(* access and bind serlaHzer •)

wa11:[tse 1 ect: [var, s3m],
IF eq:[tseTect:[var, s3],

unbound]
THEN (• free to bind now •)

seq:[trepTace:[var, s3,
newblnd],

[]]
ELSE (• too Tate •)

tseTect:[var, s3]]

Fig. 5. Unification synchronizer (nested in
unify).

V
vv

V

*1 =

p(X, a, U, V)

P(X, a, f(Z), Y)

P(Z. X, Y, g(X))

a f(V4) n fl

V1 V2 V3 V4
(X) (U) (Y) (Z)

V4 undel V5 V6

V1 V2 V3 V4
(X)

f3 =

(U) (Y) (Z)

V4 a f(V6) fi g(V2) n

V1 V2 V3 V4 V5 V6
U) (X) (Y) (X') (Y) (Z)

4.3 Synchronization Control

The function tryblnd in fig. 4 relies on
ab:[var, newblnd] ('access and bind') to
manage the writeable cells representing Y3.
Applications of ab return a null tuple [] if the
requested binding was adopted; otherwise,
the existing binding is returned. Fig. 5
provides the code for ab.

The following comments will be helpful in
understanding fig. 5:

The tuple s3 is parallelled by a tuple s3m
of mutex data objects (each created by the
primitive gmutex:[]). The FEL construct
wa1t:[m, exp] ensures that at most one
exp within a wait on a mutex m will be
executed at a time. Hence a critical
section' type effect is obtained.

The operation trepTace:[1, t, v] is
the write analog of tseTect: [1, t].

The pseudofunction seq:[a, b] causes
the sequential evaluation of a and b,
generally for their side effects, and then
returns the value of b.

A sample application of unify is shown in

fig. 6.

4.4 Parallelism Obtained

We claim, without rigorous proof, that the
unification approach just outlined exploits as
much concurrency as is possible within a
straightforward manner. Observe in

particular:

Argumentwise concurrency is attempted
whenever two nonatomic terms are to be

unified.

Since mutexes are implemented on
Rediflow with individual server processes,
no delays are experienced on wait
operations unless two involve the same
mutex (here, when two bindings of the same
variable are attempted simultaneousyl
These delays seem inherent

^'9.6. Sample unification execution.

168

4.5 Variable Exportation

We now return to the question of
exportation of unbound variables in solution
substitutions. The problem is comparable to
that of variable importation during unification
accomplished by T2, and a similar relocation
technique suffices.

Suppose we are to compute f ' = f • } < >
f3 . Let n = UB(length(lf3'), d3'), the number
of variables left unbound in f3'. If n = 0, we
have no variable exportation problem.
Otherwise, we define a vector s3rel, where
s3rel[i] = Vflength^) + UB(i, ^)), and
extend ^ to include n new variables, all
unbound. Then when references to unbound
variables are detected in blndterm, they are
relocated through s3rel.

4.6 Economic Issues

We now offer a brief economic analysis of
this technique for representing binding
environments. Two questions naturally arise
when this method is considered for large
scale logic programming applications:

1.Will variable importation cause
substitution vectors to become
unreasonably large, and

2. Will the repeated use of composition
functions eventually degrade the speed of
producing each subgoal solution?

We believe the answer to each question is
no, but do not as yet have conclusive
empirical evidence for support. However, we
offer the following informal arguments.

Question V. The size of each substitution
vector is equal to the number of native
variables in its associated clause, plus the
number of unbound variables imported into
its environment. If an imported variable
does appear in a term bound to a native
variable, that variable importation is
necessary and useful under our technique
for management of multiple environments
The wasteful case is when a variable is
imported, but is in fact unreachable. Note

such variables could be detected by
complete traversal of the goal terms
undergoing unification, but we |udge this
test to be unacceptably slow in practice

Instead, we offer the following simple
optimization Each imported variable Vj in
an instantiation substitution 13 will be the
image of some Vi in the matching unification
substitution If Vj is unreachable, it will
surely be still unbound when restatement of
a solution 13 takes place Hence Vj can be
mapped by s3rel back to Vi. rather than to a
new Vj". The net effect is that the number of
potentially unreachable imported variables
in a goal environment is proportional to the
path length from that goal to the root query
in the overall AND/OR tree (i.e. the number
of 'parent goals'). Thus unreachable
imported variables do not accumulate as we
move left to right in the AND/OR tree.

Question 2: In examining the code of fig, 3,
we see recursive traversal of terms in
apply2 and restate While it is true that
such traversals do cascade as we move to
the right (and upward) in the AND/OR tree,
we also point out that

a) such traversals are done only as
genuinely required, given Rediflows
underlying lazy evaluation method, and

b) once such a traversal is done, its
result is recorded in a substitution vector,
thereby saving OR-siblings from the same
effort.

5-CONCLUSIONS

We have presented a vectorized
representation for substitution data objects as
an efficient technique for environment
representation when doing OR-parallel login
programming on applicative architectures.
Procedures for maintaining these
representations were outlined in the b"°
situations of most interest: concurrent
unification, and solution reporting.

169

This work has similar intent as do most
storage management techniques within OR-
parallel logic programming implementations.
Of particular relevance is the work in
(Ciepielewski and Haridi 1983a, Ciepielewski
and Haridi 1983b). However, our work
contrasts with theirs in the following respects:

1. Environment separation is
accomplished incrementally as a preface to
unification, rather than as bindings are
performed.

2. All variables pertinent to a goal are
collected in a single vector, which we
believe will have locality advantages on
distributed architectures.

3. No 'directory' or 'context' structures are
used; vectorized substitutions suffice for all
environment representations.

4. The method is integrated with a
concurrent unification algorithm.

5. Finally, solution reporting (to AND-
siblings or a parent goal) is done by a
substitution composition technique which is
both efficient and purely applicative, thereby
facilitating additional concurrency in its
execution.

ACKNOWLEDGEMENTS

The author is grateful for the insightful
comments of S. Haridi and P. Roussel while
Preparing this paper. Also, the kind
hospitality of Jack Dennis and the MIT
Computations Structures Group during the
Preparation of this paper is gratefully
acknowledged.

REFERENCES

Surge, W. H. Recursive Programming
fechniques. Addison-Wesley, 1975.

Ciepielewski, A., and Haridi, S. A formal
tiodei for OR-parallel execution of logic
Programs. In R.E.A. Mason, editor,
nformation Processing '83. IFIP, Paris, 1983.

Ciepielewski, A. and Haridi, S. Storage
models for OR-parallel execution of logic
programs. Technical Report TRITA-CS-8301,
Royal Inst, of Tech., 1983.

Clark, K. L., and Gregory, S. PARLOG: a
parallel logic programming language.
Technical Report DOC 83/5, Imperial College,
May, 1983.

Conery, J. S. and Kibler, D. F. Parallel
interpretation of logic programs. In Proc.
Conf. on Func. Prog. Lang, and Comp. Arch.,
pages 163-170. ACM, New York, 1981.

Dwork, C., Kanellakis, P. C. and Mitchell,
J. C. On the sequential nature of unification.
Technical Report CS-83-26, Brown University,
December, 1983.

Furukawa, K„ Nitta, K. and Matsumoto,
Y. Prolog interpreter based on concurrent
programming. In Proc. First Int'l. Conf. on
Logic Programming, pages 38-44. Marseille,
September, 1982.

Haridi, S. and Ciepielewski, A. An OR-
parallel token machine. Technical Report
-ppijA-CS-8303, Royal Inst, of Tech., May,

1983.

jayaraman, B„ and Keller, R. M. Resource
control in a demand-driven data-flow model.
In Proc International Conference on Parallel
Processing, pages 118-127. IEEE, August,

1980.

Keller R. M. and Lindstrom, G. Applications
of feedback in functional programming. In
Proc. Conf. on Func. Lang, and Arch., pages
123-130. ACM, Portsmouth, N.H., October,

1981.

Keller, R. M. FEL Programmer's Guide.
AMPS Technical Memorandum 7, Univ. o
Utah, Dept. of Computer Science, April, 1982.

Keller, R. M. and Lindstrom, G. Toward
function-based distributed database systems.
Technical Report UUCS-82-100, Univ. of
Utah, January, 1982.

170

Keller, R.M., Lin, F.C.H., and Tanaka,
J. Rediflow multiprocessing. In Proc.
Compcon '84, pages 410-417. IEEE, San
Francisco, February, 1984.

Lindstrom, G., and Panangaden, P. Stream
based execution of logic programs. In Proc.
Int'l. Symp. on Log. Prog., pages 168-176.
IEEE, Atlantic City, NJ, February, 1984.

Martelli, A. and Montanari, U. An efficient
unification algorithm. ACM Trans. Prog.
Lang. 4(2):258-282, April, 1982.

Shapiro, E. Y. A subset of concurrent
Prolog and its interpreter. Technical Report
TR-003, ICOT, January, 1983.

Umeyama, S. and Tamura, K. Parallel
Execution of Logic Programs. Technical
Report, Electrotechnical Lab., 1982.

Warren, D.H.D. Implementing Prolog
Technical Report D.A.I. Research Report No.
39, Univ. of Edinburgh, May, 1977. Vol. 1.

Warren, D.S. Efficient Prolog memory
management for flexible control strategies. In
Proc. Int'l. Symp. on Log. Prog., paqes
198-202. IEEE, Atlantic City, NJ, February
1984.

A CLASS OF ARCHITECTURES
FOR A

PROLOG MACHINE
L. V. Kale

David S. Warren
Computer Science Department

SUNY at Stony Brook
Stony Brook, NY 11794, USA

ABSTRACT

This paper presents a view of the
computation of Prolog programs that
is suitable for expressing parallelism.
We develop an idealized architecture
consistent with this view which allows
for exploiting most types of parallel-
™s; The architecture is based on an
efficient broadcast link. The idealised
architecture requires infinite resources,
and so we consider various ways of
mapping it onto practical topologies,
fypes of parallelism that should be
retained while making this approxima
tion are discussed, and a class of
architectures is developed that
approximates the ideal. The parame
ters of this class are defined and cri-
ena for evaluating them are given.

L Introduction.
Prolog is becoming widely

accepted as a powerful programming
anguage. Its non-procedural formula-
1Qn (van Emden 1976) and clean

semantics (of pure Prolog at least)
make it an executable specification
anpage. A large number of AI appli-

, ions were programmed in a rela-
've'y short time in Prolog (Szeredi

°2). The increased availability and
ow cost of hardware along with the
'Dcreased demand for computational
Power makes it important to attempt
harcf'3ee<^ fr0'0® using parallel

, Prolog has certain properties that
ake it an attractive language for

exploiting parallelism. The expression
parallelism is natural in Prolog.

•Multiple clauses for a single predicate
allow for expressing OR-parallelism.

The body of a clause consists of a con
junction of literals, and this allows for
AND-parallelism. Although most Pro
log implementations impose a left-to-
right sequencing, for pure Prolog it
can be considered as an optimization,
implemented because in most cases
(when variables are shared between
literals), sequential execution is more
efficient than independent execution of
subgoals. Besides, in the absence of
parallel hardware, there is little
motivation for not imposing sequenc
ing.

The criteria that we stipulate for
an implementation of parallel Prolog
are: (1) it should be realizable with
current or foreseeable hardware. (2) it
must be scalable, i.e., one should be
able to add extra processing power to
the system and get a gain in perfor
mance without a significant redesign
of the system. Implementations based
on shared global memory are not
acceptable, because shared access to a
common memory will take more time
as the number of processors increases.

Several attempts have been made
towards this goal. The AND-OR process
model of (Conery and Kibler 1983,
Conery 1983) concentrates on how to
decompose a problem into its subprob-
lems when there are dependencies
across the subproblems. It is a
process-based model of computation,
questions of assigning processes to pro
cessors and the structure of communi
cation links between the processors are
postponed to a later stage.

The EPILOG system of (Wise

172

1982) deals mainly with the changes
that need to be made to the language
Prolog to make it a suitable candidate
for implementation on a data-flow
machine. Since Prolog as it stands
now has constructs that are useful
only in a sequential implementation,
making changes in the language is cer
tainly an important issue. We believe
that the architectures for a Prolog
machine could be investigated con
currently. An architecture should
implement at least pure Prolog and
should be flexible enough to incor
porate extensions as needed.

, ?^e,PRISM sy.stem (Kasif, Kohli
and Minker, 1983) implements Proloe
on a special architecture called ZMOB
(Kieger, Bane and Trigg, 1980) Thev
have a set of problem-solving
machines and an additional set of pro?
eessors to store clauses. Thus each
unification requires two messages
the processors communicate via a tin
gle fast conveyer belt'. So the com
munication delays increase linearly

R„FTH« SOŜ °' T>ROCTSSO'S'

pa^er devel°Ps an approach
that does not assume shared memory
and deals with issues starting from the
available hardware level through
architectures execution methods and
contro strategies. The next section
presents a general view of Prolog com
putation that is suitable for parallel
interpretation. I„ Section 3 "e

develop and optimize an idealized

RSRWAR RR *

of the class of arch.W Parameters
erated and examine the issuesthat**'
i n v o l v e d i n s e l e c t i o n o f e a c h o f t h " ®
parameters. or these
2. A View of the Computation.

TION L2DIBS*FEDPRI°6 C°MP»"-
VIEWED AS AN AND-OR

tree (Bruynooghe 1982) with the AND
arcs corresponding to each literal of
the query and the OR arcs correspond
ing to the possible clauses for each
literal. Although elegant in some
respects, this picture of computation
hides its complexity in the require
ment that all the substitutions must
be consistent across the tree. Ability
to view the subproblems indepen
dently is crucial to developing models
that will execute them in parallel.
Therefore we constrain our tree
models so that each node represents a
completely described subproblem that
is solved without any reference to the
nodes in the tree above it. We make
the constraint more concrete by asso
ciating a partial solution-set (PSS) with
each node in the tree. This set con
sists of substitutions for variables that
make the subgoal represented by the
node true, and is to be computed
using only information from other
nodes in the tree below it.

The tree, then, should represent
the subproblem reduction process via
the AND-arcs and exploration of alter
native solutions via theOR-arcs. How
ever, in a large number of cases, the
AND-OR tree does not represent the
subproblem reduction process faith
fully. Consider an AND-node with the
query: 'p(X),q(X,Y)\ In most practical
implementations (parallel or sequen
tial), this problem would be solved by
solving one of the literals (say, p(X)j
farst, and solving the other literal with
the values for X provided by the first.
Thus, if Xj,x2 .. x. are the values for X
returned by p(X), the true subprob
lems of the problem, i.e. those that
must be solved to solve the original
problem are: 'p(X)\ 'q(x„Y)\ VlM)'
•• q(x»>Y). (assuming q(x„,y) was the
only q to succeed). This sub-division
cannot be represented in the AND-OR
tree, it has just one node for the
literal q(X,Y). Given our constraint
that a problem must be solved using
only information from below it, the
AND-OR tree dictates that the two
problems, p(X) and q(X,Y) should be
solved independently; the solution sets

173

would then be joined to get a con
sistent solution.

We therefore introduce a some
what different picture of a Prolog
computation. The computation is
represented by a REDUCE-OR tree,
similar to an AND-OR tree. The root
corresponds to the query, and is a
REDUCE node. Except the root, each
REOt'CE-node corresponds to one
clause of the program. The sub-nodes

a REDUCE node are OR-nodes.
They correspond to a set of subprob-
lems that can help solve the problem
that the REDUCE node represents.
There mav be multiple ways of reduc
ing a problem to subproblems. How-
aver, the arcs correspond to one par
ticular way chosen by the control stra
tegy (CS). Thus, for example, if
PlX'l.qlX.Y)' is the query, a possible

structure for the root of the tree is as
shown in Figure l.a. A dot on top of
a variable indicates that the literal
containing the dotted occurrence is
the generator of that variable. The
values of that variable used in the
subproblems for other literals are
those that satisfy the generator literal.
The generators are chosen by the CS.
The cs might have dictated the struc
ture shown in Figure l.b, or another
(Figure l.c), where the parent node
oomputes the join.

Each OR node corresponds to a
single literal. The multiple arcs from
't correspond to potential solutions to
'his literal. To make the picture more
uniform, we will consider each clause
°f the program as a potential way of

solving any literal. (As opposed to
only those clauses that have the goal
predicate as their head literal). All
OR-nodes now have the same struc
ture. Each has exactly N children,
where N is the number of clauses of
the program.

The computation can be viewed
as a process of developing this tree.
Starting with the main query as the
sole REDUCE node in the tree with an
empty PSS, one extends the tree in any
of the following ways:
(1) Corresponding to any literal of an
active REDUCE node E, one may add
an arc from R to a new OR node O
representing an instance of the literal,
provided the generator literals for
those variables that are not generated
by this literal have already been
attached to R. Then O is instantiated
with a consistent composition of the
substitutions, one from each of the PSS
of the generator literals.
(2) To any OR-node that is a leaf of
the tree, one may add N arcs to
REDUCE nodes, one corresponding to
each clause of the program. Each
REDUCE node with a clause whose
head unifies with the literal of its
pa ren t node i s cons ide red an ad tve
node The root is defined as an active
node. The instantiated body of the
clause becomes the goal of the new
REDUCE node (say R)- If the body is
empty (the clause is a fact), the PSS
associated with R becomes a singleton
set with the unifying substitution as
its only member.

174

(3) Any entry from the PSS of a
REDUCE node can be added to the PSS
of its parent node. A substitution can
be added to the PSS of a REDUCE node
R (representing a composite goal G) if
it is a consistent composition of the
substitutions, one for each of the
literals of G, from the PSS's of the OR
nodes below R.

3. An Idealised Architecture.
We will develop an architecture

for implementing an execution scheme
based on the REDUCE-OR tree. Our
first approximation is isomorphic to
the tree itself, with a processor
corresponding to each node and a phy
sical communication link correspond
ing to each arc. In this section, we
optimize this architecture step by
step, and show how it can support
various kinds of parallelisms.

First, let us describe the execu
tion method and its properties on this
architecture. The top level node gets
the query and decides on the grouping
and sequencing of the subproblems. It
then sends the appropriate subprob
lems to the OR-nodes just below it in
a sequence consistent with the control
strategy and the tree-development
rules stipulated above. Note that we
assume an arbitrarily large number of
OR-nodes available to each REDUCE
node. Each OR-node transmits the
literal it received to all the REDUCF
nodes that are its children. A REDUCR
node sends any answer that it con
structs either by matching a fact or
sentTo TStS01 >bnS °f subPr°blems sent to it to its parent OR-node
which sends them to its D a r e n /
REDUCE-node. Since the onlyTom
mun,cation needed is between a chUd
and !ts parent, and th h M
cal hnk between them, no costlyr0ut_
ing of messages is necessary.

the (naturerStof°PttKm'Zati0n concerns

its children nodes t >•
» identical message ^

links, it would be more economical if
the message is broadcast to all the suc
cessor nodes at once. So let us replace
the links from the OR node with a sin
gle link to an efficient broadcast chan
nel to all the subnodes. For brevity,
we will call such a channel a net. An
ethernet (Metcalf and Boggs 1976) is
an example of an efficient broadcast
link. As this link is used to pose the
problem to the net and to collect the
answers back from it, we will call it
the master link to the net. The inter
connection structure around an OR
node now looks as shown in Figure 2.

od n CO- ,\od(^

OR-Node

^ The Net

i ^—i r~^) r̂ n

Figure 2

Let us now examine the work
that an OR-node needs to do. It gets (a
message corresponding to) a goal
literal from its parent node and broad-
c.^sts that onto its net. It_ then
watches for any solutions appearing on
the net and sends them back to the
parent. It really acts as a front-end to

Master-link

Slave-link

Figure 3

175

the REDUCE node. We therefore elim
inate the OR-nodes altogether. The
modified structure is shown in Figure
3.

Now we have only one type of
nodes in the tree. Each node nas a
single clause. It receives a literal to be
solved from the net and tries to use its
clause to solve it. If the head of its
clause unifies with the literal, it
becomes the manager of the (possibly
empty) sub-query consisting of the
right hand side of the instantiated
clause. It then invokes the control
strategy to decide the grouping and
sequencing of the subproblems. Using
this, it communicates the subproblems
in appropriate order to different nets
via its master-links. For each solution
to the subproblem obtained from a
subnet, it either starts new subprob
lems that were waiting for the value of
i variable provided by this solution, or
combines the answers of subproblems
to form a solution to the original
problem. It sends each solution so
obtained to its parent node.

Our next optimization is really a
generalization to allow more flexibility
tor the control strategy. It concerns
communication needs across the sub-
problems. Consider the query:
P(X,Y),q(X).'. Let p be the generator

of X and q a filter of X. In our
current version, the two problems will
be solved on different nets as shown in
r rgure 4.

Figure 1

Consider the communication
between nets Nj and N2. After the

pair (Xl>yi) is found, a message
S°es from N, to the parent node,
^jdch sends another message to N2.
these two messages could be avoided

if Nj and N2 were the same net and
were given the joint problem.
'p(X,Y),q(X)\ An algorithm for exe
cuting such problems on a single net is
described in (Warren et al. 1984) .
Note, however, that this groups
together the functions of all the N,'s,
thus potentially reducing the parallel
ism between solutions of the q(x,)'s: all
the q(x,)'s have to be solved on the
same net now. As it is not always
beneficial to solve the composite query
on a single net, it should be the prero
gative of the control strategy to pose
either a composite multi-literal prob
lem or a single literal one to a net.
3.1. Opportunities for exploiting paral
lelism.

We now examine how different
kinds of parallelisms can be exploited
on this architecture. The discussion
here will help our search for practical
implementations of the architecture in
the next section: they should try to
retain as much of this parallelism as
possible.

The AND parallelism involves
evaluating two or more literals of a
composite goal simultaneously. As a
node has master links to an arbitrarily
large number of nets, this parallelism
can be easily implemented on our
architecture. When the literals share
variables, it is not always efficient to
compute them in parallel. So it is left
to the control strategy (OS) to choose
whether to execute the literals in
parallel or not.

The OR parallelism at the literal
level involves exploring all the solu
tions to a given literal simultaneously
As the literal is broadcast on a net
and all the nodes start working on it
at once, this parallelism is inherent in
our architecture.

The OR parallelism at the query
level is the OR-parallelism across
ifterals which iS exhlb.ted by cot,-
deterministic predicates. Given two
literals with common variables, it
involves starting execution, in parallel
IS ,«.<«»««' 'HrTti To
for every solution of the first.

•

176

f^mple, if the query is
P(X,Y),q(Y,Z)' and p has multiple

solutions then we can start exploring
c QifuZ) &s soon as p returns a new
Y^Jue U)- Although in our idealized

architecture it is always beneficial to
do so, m practical models, where the
nets and the nodes need to be shared
it may not be so. In such models, the
usefulness depends on features of the
problem (program and query) and the
specific topology of the architecture
which are best handled by the CS. .As'
the solutions are always sent to thp
P»'„. node, (which .i th" ̂
litoln Process for the next
literal), this parallelism is implement
able on this architecture, although the
decisions to do so is left to the CS.

i u Th° L°PKUP parallelism involves
in' M. Tht"eS°^'h§da.'*^«
between this and the OR nar«M I™ °D

the literal level.^There onf f, ?
to start parallel processes corrp Dee^s

mg to different matchtaTcCsSV' haviner lookpH NN ° I after
database (program Tn SeS JD the

th.; dhuCTJliJ;»rS;.»
nodes of a net and all nf tb •
the literal to be solved simuhL^T
(via a broadcast) ,slmuJtaneously
automatically done i'n paralleh P ^

IogliPPrOXlmat,0nS and Practl"l Topo.

ted ldc"-

assumes;resources- ^ particular,"^

%d"o,"3 °rber «
clause); Det (one f°r each

master-links^from^ number of
the nets, one for *^1. D°de to

(3) an arbitrarily large n.,rr,k nets fa* ®e number of
could be arbitrarU™lParge)i0n ^

nodSfnets an^lhe^Iuf^0^68' the
shared. llnks have to be

Firstly, we have to limit the
number of nodes on a net to a fixed
number. Thus, we must allow a single
node to have more than one clause.
Some of the advantages of parallel
lookup are reduced by doing this, but
with a careful distribution of clauses it
can (in most cases) be brought at the
same level as before. It has a further
advantage of effective resource utiliza
tion: the idle time of a node is reduced
because a set of nodes will remain
unused in the original model if the
predicate that they represent does not
figure in the computation. With multi
ple clauses at each node, the chances
are better that some clause on any
given node will be used in the compu
tation.

Secondly, we limit the number of
master-links coming out of a node to
some fixed number. Now, more than
one subproblem may have to be sent
via the same master-link onto the
same net. The nets may have to solve
more than one goal concurrently. The
answers coming back on the net from
individual nodes have to be labeled so
that the master can recognize them as
answers to a particular query. The
control strategy (CS) at each node
must take into account the fact that
the nets it subcontracts may already
b® working on some other problems.
Thus it must keep track of the tasks
that it has assigned to each of the
sub-nets, and load-factors of the nets.
It could use this information to choose
the link on which to send a new sub-
problem.

So far we have bounded the
branching factor of the tree architec
ture. The depth, and hence the
number of resources, still remains
unbounded. To limit that, we have to
allow multiple master-links to the
nets. With such links a net is responsi
ble not just for multiple subproblems
from the same master-node, but multi
ple subproblems from multiple master
• *tS" Tbis allows for cyclic structures
m the topology, and thus sharing of
nets for different goals. It also brings
our architecture into the domain of

177

the physically implementable. This is
the step in which we map the (infinite)
tree architecture onto a finite inter
connection network. As we shall see
later, this mapping can be done in a
variety of ways, leading to a variety of
architectures.

Before proceeding to discuss some
of the specific architectures with the
above properties, let us examine the
essential features of this class of
models. The network consists of a
number of nets and processors. There
are two kinds of connections between
a processor and a net: master-link,
through which a node poses a problem
to a net, and slave-link, through which
a node gets a literal to be solved. The
set of clauses on all the slaves of a net
are exactly the clauses of the program,
without any duplication, i.e. a net is a
complete problem-solver.

We can make further simplifying
assumptions and optimizations which
will help us categorize the possible
networks. Firstly, we assume that
each node has the same number of
slave-links. Secondly, the same physi
cal link may be used as both a
master-link and a slave-link to a node.
However, there is an important asym
metry here. A node may have a
master-link to any net whereas it may
nave slave-links to only those nets
that do not have slave-links to
pother node with the same clauses as
't has. Thus, a slave-link can be used
ns a master-link without any problem,
hut a master-link, if used as a slave-
'mk, may cause duplication of clauses
among the slaves. We henceforth
assume that every slave-link is also a
master-link.

As the master-links can be
added/removed without restriction,
whereas the slave-links are subject to
ki ah°ve restriction, it seems reason-

a le to categorize the possible topolo-
Pes according to the slave-links first.
A diagram of a topology depicts all
the nodes, each labeled with a number
denoting its set of clauses, all the nets

and all the master and slave-links
between them. A skeleton is a
diagram without the master-links.
The skeleton shows how the problem
solvers (the nets) of a topology share
the resources (the processors). The
diagram shows how they can commun
icate with each other.

4.1. Topology of the Slave-llnksi the
Skeleton.

We now examine the different
kinds of structures of skeletons possi
ble. Each of them gives rise to a series
of topologies. The skeleton-structure
decides the scalability and strongly
affects the performance. By scalability
we mean the ease with which the net
work can be expanded. Following
(Reed 1983), we will measure the sca
lability in terms of the minimum
increment of processers needed to
move to the next bigger topology in
the series. For the purposes of this
section we will ignore the effect of
control strategy (CS) on performance,
i e we will compare the performance
of different skeletons assuming optimal
CS on each one. Given a fixed number
of nets, the performance of an archi
tecture which has a completely-
connected net-graph can be considered
optimal, because it can use its
resources effectively: no net need
remain idle while others are over
loaded. We will use this ability to
spread work evenly among the nets as
the criterion for comparing the perfor
mance of two architectures. Architec
tures on which the problems do not
have to wait for resources when
resources are available somewhere on
the network are superior to those on
which topological reasons force the
problems to wait. More accurate com
parisons can be made by simulation
F+nrlips (The performance is also
afflcS by the master-link structure.
However as we are designing the
skeleton 'before the
tnre it is important to assess tne
effect of the skeleton-structure on per
formance).

178

The reason that there is a multi
plicity of possible skeletons is that a
node may be a slave of more than one
net. The simplest skeleton is the one
which allows exactly one slave-link
from each node. This leads to a collec
tion of isolated nets. The nets com
municate via the additional master-
links that connect the nodes of one
net to another net. This skeleton has
some important properties that the
others do not possess:

The distribution of clauses on each
net may be different.
2. Even the number of nodes on each

net may be different.
3. It is scalable without any restric

tions, as there are no dependencies
across the nets.

One need add one net and/or one
processor to extend it.

When we allow 2 or more slave-
links from a node, the situation is
much more complex. The reason that
we want to consider this option is that
it allows increased processor sharing
idhng t6ndS t0 aVoid Pr°cessof

It is still possible to have different
distributions of clauses on different
nets However, it is extremely difficult

ide^\a insistent system with
such distributions. Also, there are no
obvious advantages to doing so Par?
diSk situations in which different
distributions are optimal may exist
but it would be very difficult to take

advantage of these in a general pur
pose system. Therefore, we assume
that all the nets have identical distri
bution of clauses.

In the following discussion, let c
be the number of slave connections
per node, n the number of nets, p the
total number of processors and t the
number of clause-groups (i.e. the
number of slave processors) on each
net. Assume that k is fixec by other
considerations (discussed in the next
section). Notice that there are k
different types of processors in the sys
tem, in the sense that they have k
different sets of clauses. We will label
each processor with a number
i,0<i<*, corresponding to its type.
We will present a few series of topolo
gies, and compare their performance
and scalability.

Figure 5

A topology of the first series is
depicted in Figure 5. Any specific
topology of this series can be easily
extended by adding 2 nets and k pro
cessors to it. The second series is 8
grid-like structure. Given n=2*m nets,
one constructs this topology by laying

Figure 6 n.= 8. k = 4

179

out the m nets as in an isolated topol
ogy, thus laying out all the processors.
The nets are numbered 0...m-l. One
then adds the remaining m nets one
by one, connecting the /th new net to
the fth node from the (i+ j mod m)'th
old net. A few example nets of this
series are shown in Figures 6,7 and 8.
Again, the minimal increment is 2 nets
and k processors. However, this series
has a better performance than serics-1.
The largest distance between two nets
(the number of nodes that have to be
visited in order to go from one to the
other) in the first series is approxi
mately n/2. In the second series, for
"$2»l, the distance is 2. In general,
it is approximately n/(2*(i-l)). It thus
seems that activation would tend to
spread more evenly among the proces
sors in a series-2 topology. To see this
point more clearly, consider the graph
°i a topology with the nets as nodes
and a path from a net through a node
to another net as an arc between
them. This arc represents shortest
communication path between two
nets. Figure 9 shows the graphs for a
topology of each series. For the graph
°> a series-2 topology, the minimal
spanning tree is much bushier than
that for a series-1 topology (with the
same number of nets). Thus, within a
given (small) number of steps, one can
reach more nets in series-2 than in
series-1.

A series-2 topology (a grid) with
"=2*i yields a regular grid. An exam-
Pie is shown in Figure 6. Notice the

Series-1 Series-2

Figure 9
labeling of node-types in the net One
could obtain the labeling by labeling
all the nodes on one net arbitrarily
(say in the order 1 to k), and then
labeling the nodes in the adjacent
parallel net in the same order but
shifted one position in one direction.
This labeling strategy is easily general
ized to higher dimensions correspond
ing to higher values of e. Ihus
spanning-bus hypercube (SBH) archi
tectures (Wittie 1981) are also
included in our class of architectures.

The dual-bus hypercube architec
ture (DBH) (Wittie 1981) provides
another interesting series of toP° ̂ leSe
The processors are arranged as lattice
ooints of a D-dimensional hypercube
fwith width k). The labeling is same
Is in SBH. But it requires only two
connections per processor, lhus it is
cheaper than the SBH. There is a pre
ferred dimension. Each node has a

Figure 7
Figure 8

•

180

connection to a bus in the preferred
direction. The other connection from
each node is to a bus in a direction
that is uniform for all the nodes in the
nyperplane containing that node The
worst-case path length between two
nets is (2*Iog„n - 1). Thus DBH seems
to have a potential for much even
spread of computation than the previ
ous series. However, the scalability is
poor The number of nodes is k° 'and
i°tkbe,mTumum increment is at least
i A L U us we see here a genuine
formance ^ SCalability a°d per-
5. Design Issues.

The brief analysis in the previous
section prepares us for tackling the
problem of designing a parallel execu-

siderSySemH Pr0l°f' We now con" desiSn choices involved.
Notice that we are not presenting
solutions to the design problems here
Rather, we are attempting to list the
^ °,lces and the issues involved in
making those choices, so as to set a
framework for future research.
5.1. Choosing k, the Number of Node,
per Net. The bandwidth of the net
puts an upper bound on how many
nodes can be put on a net. The tra-

uVh'' 'r4' in™iTO
lac tors. If the number of nodes on a
net is increased continuously a point
may be reached when a large number
of processors on the net tend tn
remain idle. Then it would k
cost effective to use fewer nodL"1^
use the extra nodes with new nets/on

net mean "dt'Jiov r"C°:'sors P"

sS'fm
htveTdeSS °f C,MS1»

tssssz ^
tion of clauses ti,^, • a^eml distnbu-

tern is meant for data-base applica
tions, there would tend to be a large
number of clauses for a single predi
cate. Then, a large number of nodes
helps retain the parallel look-up. In a
system for executing typically deter
ministic programs, there would be
fewer clauses per predicate and a very
few (typically one) of them would
succeed beyond the initial guard
literals of the clause. Then a small
number of nodes (e.g. 3 or 4) would
suffice unless more are needed because
the net tends to be engaged in solving
a large number of goals.

5.2. Choosing c, the Number of Slave-
links per Node. A processor has to
analyze every message that is broad
cast on a net of which it is a slave as
opposed to only those addressed to it
from a net of which it is a master.
Depending on the bandwidth of the
net and the cycle time of the proces
sor, one would get an upper bound on
c, assuming continuous broadcasts on
all the nets. Loading of the processor
and cost of the links are the other fac
tors limiting the value of c from
above. The fundamental choice,
though, is between c=l and c>l
(mainly 2 and 3). With e=l, we get
easy scalability and the ability to
redistribute clauses on individual nets.
We can then consider each net as an
abstract independent problem solver.
The cost, of course, is lesser utilization
of processors. This is a qualitative
choice, and at this point, it is unclear
which one would be 'better'.

5.3. Designing the Skeleton. With
c = l, the skeleton is fixed. For higher
values of c, the desif
into account the issue ui

* *- •- ' - the last

c=~l> the skeleton is fixed. For higher
* alues of c, the design should take
into account the issue of connectivity
of the topology mentioned in the last
section. We have enumerated a few
series of skeletons with c=2 and they
have their analogues with c— 3. How
ever, alternative structures with better
properties might exist and need to be
investigated.

181

6.4. Selecting the Number of Master-
Unite per Node. We have already said
that each slave link should be used as
a master link. The question, then, is
should there be additional master
links. Distributed execution of recur
sive predicates is not possible without
additional master links. A node that
has the recursive clause broadcasts the
recursive subproblem to one of the
nets of which it is a master. If it is
also a slave of that net, it will be the
only one with that clause, (because
duplication of clauses is not permit
ted! and will have to solve the sub-
problem itself. Therefore we expect
that additional master links will be
beneficial. The number of additional
inks is again limited by the cost per

hnk and the cycle time of the proces-
w. A point to note is that the master
link is much more lightly used than a
s'ave link; only the unicast messages
carrying the answers need be con
sidered by the processor. Also, with
higher number of master-links one
gets more even distribution of activity
across the network.

Designing the Interconnection
Structure of the Maeter-llnke. The
design should provide for fast and
even spread of computation across the
network. In particular, a single net
should not be overloaded (in com
parison to others) and thus cause a

0ttleneck >n the computation. This
entails that all the nets should have
about the same number of masters,
ct l ?um')er °f paths (of length 1, 2

t0-) between two nets should also be
comparable. As an example, consider

e skeleton shown in Figure 6. If the
master-links were added such that all the processors on a horizontal net
ave one master-link to the next hor-
zontal net, the activity from one net
°uld tend to cluster onto the other,
andomly connected master-links (or

carefully designed) may have more
(Oti?1711 connect'ons among the nets.

'her considerations, such as easy to
connect topology may, force one to

P'ement the first structure)

6.6. The Control Strategy. Once a
node receives a goal message from one
of its slave links, it must attempt to
unify it with the head of each relevant
clause. For each successful unification,
the control strategy (CS) has to
manage a new query consisting of the
body of the instantiated clause. It
must consider the load on each of the
nets of which it is a master and the
control information associated with
each clause that it manages. This con
trol information may be provided by
the user and/or obtained at compile
time. It includes such factors as
whether the predicates involved in the
clause are deterministic and the func
tional dependencies among the vari
ables of the predicates etc.

Using this, it must decide (a) how
to subdivide the query corresponding
to the body of the clause into sub-
problems and (b) which net to use for
each subproblem. The former involves
deciding whether to divide it in literals
or in larger chunks and also deciding
what sequencing of the subproblems is
to be implemented.

The object of the CS is to optim
ize the performance of the whole net
work. As that may depend on the
topology of the network and the CS
has access to only the local informa
tion, we are faced with two options
Fither we could have the topological
information built into the CS or we
could make it independent of the
topology (and hope that it works well
on most topologies). An option in
another dimension is either to have
the identical complete CS reside on
each node or to let the control infor
mation be compiled into the represen
tation of the clause itself (leaving ojnly
a simple executor at each node). The
latter course seems faster andRequires

require compile time analysis.

182

Another important task of the CS
in any practical implementation would
be to deal with the priorities of the
subtasks that it manages. It could dic
tate the priority of a new subquery
when it is broadcast and change it as
tne computation progresses. For
example, it may reduce the priority of
a subproblem after it has returned an
answer.
0. Conclusion

we have considered only pure-
mp°n?-S 'VS paper' Ways of imple
menting the impure features of Prolog
that are both required and useful need
investigation In particular, failure
detection schemes are necessary for
implementing not and setof. The
semantrcs of side-effects (as in write
etc.) under OR-parallelism has to be
developed. Ways of updating the pro!
gram have to be implemented. Unique
resources (such as a printer) and
be handled. °f ClaUSCS °D a Det n^ed to

In conclusion, the basir k.
fng We" apPr°ach seems Promt
problems
machine based n„ l*r on a

proposed here. The de^1^"'*8

described in thp r, choices
difficult ones ThfoT"* Section "e

Prolog proarami oo range oj
optimality over a snppifiPP°Sed to

Thus, analysis alone will notte^M'
to dictate the choices WP able

do simulation studies of f?ropos? to

models generated by different cholceT
REFERENCES
Bruynooghe, M. "The mpm
management of Prolo? imr,i y
tions", in Loaie Pr!° lmPlementa-
Clark and f.A farnS'^'r £L-
Academic Press N e w v^' t (e d s) >
1982,83-98. ' CW York> NY,

?Z7i- J'S- and KibleT D.F "AND parallelism m Loeio A^y
Proc.Sth IJCAI, 1, (Aug 1983)°^™ '

Conery, J.S., "The And/Or Process
Model for parallel Interpretation of
Logic Programs", Ph.D.Thesis,
l niversity of California, Irvine, Cali
fornia, June 1983.

£«* S.. Kohli, M. and Minker, J.,
'PRISM: A parallel inference sys

tem for problem solving", Proceed
ings of the Eighth International
Joint Conference on Artificial
Intelligence, August 1983, 541-546.
Met calf, R. and Boggs, D., "Ethernet:
Distributed packet switching for
local computer m
Comm.ACM, 19, (July 1976),
Reed, D.A., "Performance Based
Design and Analysis of Multiraicro-
computer Networks", Ph.D.Thesis,
Purdue Univ., May 1983.
P'^er, C., Bane, J. and Trigg, R-,

ZMOI3 : A Highly Parallel Multipro
cessor ', Tech.Rep.-911, Dept.of Com
puter Sc., University of Maryland,,
College Park, MD., May 1980.
Szeredi, E.S.P., "Prolog Applications
m Hungary" in Logic Programming,
1982, 19-31.

van Emden, M.H., "Programming
>Vith Resolution Logic", in Machine
Intelligence, vol.8, 1977, 266-298.
Warren, D.S., Ahamad. M., Debray,
^.K. and Kale, L.V., "Executing dis
tributed Prolog programs on a broad
cast network", Proceedings of the 198\
.°9tc Programming Symposium,

Atlantic City.

Wise, M.J., "A parallel Prolog: the
construction of a data driven
model , Proceedings of the 1982
Conference on Lisp and Functional
Programming, 1982, 56-66.

JJ?** k"' "Communication Struc-
l°r AarSe Networks of Micro-

Pliters , IEEE Transactions on
Computers, C-30, 4 (April 1981), 264-

networks",

AN ARCHITECTURE FOR PARALLEL LOGIC LANGUAGES
J.A. Crammond and C.D.F. Miller

Department of Computer Science
Heriot-Watt University

79 Grassmarket
Scotland

ABSTRACT

The outline of an architecture
to support the parallel execution
of logic languages is presented.
The implementation of a particular
language, Parlog, is considered;
attention is given to its "don't
c®re non-determinism which allows
hoth and- and or-parallel ism and
returns only one solution.

the
The main features described are

control structure and the
binding environment. The proposed
control structure uses processes
that build an and/or tree tailored
for guarded clauses. For the
hiding environment we introduce a

unification algorithm which solves
ae problems of multiple

occurences of an instance of a
variable in guards.

1' Introduoti rvn

A growing number of languages
®re being developed for specifying

® parallel execution of logic
Programs. This papier outlines an
architecture to support such
languages.

Most parallel logic languages
ar® based on sequential Prolog,

have the same or very similar
eclarative reading but different

Procedural semantics. The left to
right evaluation of subgoals
"ithin a Prolog clause may be
replaced by solving them in paral-
e ' this is known as and-

parallelism. The sequential order
in which alternative clauses are
tried in Prolog may be replaced or
augmented by the ability to try
all alternatives in parallel; this
is or-parallelism.

It is possible to execute logic
programs using or-parallelism and
limited and-parallelism without
additional language control facil
ities (Haridi and Ciepielewski
1983, Furukawa et al. 1982, and
Conery and Kibler 1981) However,
control facilities to specify some
ordering of clauses can improve
efficiency of or-parallelism by
pruning the search tree (Kasif et
al 1983). The main problems
arise with and-parallelism when
two or more goals contain terms
which share an uninstantiated
variable, since only one of these
goals should be allowed to instan
tiate it. The languages that
allow limited parallelism usually
force goals which share variables
to be executed strictly sequen
tially, hut allow goals with no
shared variables to be executed in
parallel•

Parlog (Clark and Gregory 1984)
isTH^cceeeor to their earlier
relational language (Clark

Gregory 1981). (Parlog has itself
undergone major changes since

described (Clark and Gregory
foS) It solves the problems
created by and -parallelism by
using "mode declarations to
define which goal is the producer

184

of a variable's value and which
goals are its consumers. Parlog
allows both and-parallelism and
or-parallelism to solve relations,
in which only one solution is
returned; it uses sequential-and
with ^either or-parallelism in
eager mode or sequential-or

(i.e. like Prolog) in "lazy" mode
to solve set-expressions, in which
some or all alternative solutions
are found. A comprehensive
description of the language can be
found in Clark and Gregory (1984).

In this paper we shall concen
trate on relations, leaving con
sideration of set-expressions to a
subsequent paper.

Our aim is to design a mul
tiprocessor architecture able to
support efficient implementation

features of Parlog
and also sufficiently flexible to
be able to support other languages

SdCUrreDt Pr°l0g (Sha°iro
lye?; and, perhaps, "normal"
sequential Prolog. normal

2 . Basic Underlying Machine

The basic components of th»
abstract machine are a finite set
of processors each with access to
a shared global memory and «1
<oF.ion.Uri t. ,0„ l0/.1"a..o*1~

Global memory is divided into

Sine S+eVlCUons: -3batic memory ^n
the compiled codi +Vl

program; dynamic memory contain
e various environment bindin"S

produced during oindings
process memory con+=t- execution;
ti^TfSr-^iFn F!8 xnf,°rma-Process creab^H A mg execution. created dur-

A program is executed
mg processes to even + y creat-

°~b" processors

.scheduler, running on a dedicated
processor.

The architecture ia control
driven (Treleaven et al. 1982).
Parlog offers flexibility in the
ways in which goals can be exe
cuted (e.g. mixing sequential and
parallel calls and clauses) and
this is easily catered for with a
control architecture.

.3• Control Structure

The control structure is a
hierarchy of processes represent
ing the and /or tree which
represents the search tree for
satisfying a goal.

There are two types of node in
this tree corresponding to two
types of process: and-processes
and or—processes.

An and- processes terminates
with failure if any of its child
processes fails. All of its chil
dren must succeed for it to do so.
An or-process terminates with suc
cess if any of its children
succeeds. Thus all of its chil
dren must fail for it to do so.
(A child process of some process
is one which has the given process
as parent. The child is fre
quently created by the parent, but
may be 'adopted', as described
below).

The execution of a Parlog pro
gram begins with an and-process
which executes the top level
query. a child process is created
for each goal specified in the
query. These child goal calls are
or-processes.

There may be a number of
clauses composing the relation for
each goal. a goal call will try
each alternative clause by creat
ing an and-process for each one.

Each of these and-processes
first of all attempt to unify

e arguments in the goal call

185

rith the arguments in the head of
the clause. There are three pos
sible outcomes:

!• Unification fails, causing the
process to terminate with failure.
£• Unification suspends (an
attempt was made to bind an unin-
stantiated input variable to a
non-variable term); the process
becomes input-suspended.
3. Unification succeeds; the pro
cess continues execution by trying
to satisfy the guard clauses.

tten an and-process has created
child goal calls for its guard, it
'ill suspend until they have ter
minated with success. If any of
these children fails so will this
process (since it is an and-
process) .

tihen reactivated, it will
attempt to commit the goal call to
this clause. This can have two*
outcomes:

!• Commit fails: some other candi
date clause committed first.
Hence this process terminates with
failure.
£• Commit succeeds: the process
then continues, executing the
clause body.

In case 2, the goal call is
reduced to the execution of the
°hy goals. This is reflected in

the process tree structure: the
and-process creates or-processes
°r the goals in the body which
ave the same parent as the cal

ling goal or-process (see figure

Once these body calls are
created the and -process terminates
*ith success, and hence its parent
°r-process also terminates.

* "Bounded buffers" that can
use commit to suspend (Clark and
86°ry, 1983) are "no longer in
flog.

A1 :- G1 , G2 | B1 , B2
A1 :- G3, G4 I B3, B4

T : A1, A2 .

(a) : A1 , A2

(1)
(2)

G1 G2 G3 G4

(tj) : B1, B2, A2

Figure 1 : State of control tree
(a) before a clause commits and
(b) after the clause terminates.

3 . 1 . P r o c e s s Information

~~ Each process created must carry
sufficient information to execute

0=- "a tS
This information

Sx-HTW'SS arm
following fields:

SUS-aS ("nt« "to'-onrranti.

Process poinxer. y
process.

IS£22t t recently

S^raaS^ii
xemmn »«lin8 Pr"'

previously created.
Process status.

186

A null child/sibling pointer
indicates that this process
currently has no active
children/siblings.

The process status can signal
one of three possible suspended
states or two possible runnable
states:

1- Suspended on Wait; the process
has executed a 'wait' instruc

tion. When all children have ter
minated (assuming none have ter
minated this process) the parent
will continue execution from the
instruction following the 'wait'
2. Suspended on End: the process

has executed an 'end1 instruc-
°n» i_t finished execution and is

waiting for its children to com
plete before sending a signal to
its parent and terminating.
3. Suspended on Input Variable-

the process will be woken whin
the appropriate variable becomes
instantiated and will continue
executing the same (unification)
instruction that caused it to
suspend.

4. Runnable, Queued; the process

is runnable but has not yet

I- IhssM., th.
cess is actually execut-in *

a processor. executing on

— —* Control primitives

actions for handli^ primitive
These actions requirewrite'CSSSeS'
to the process m w*1te access
therefore have 1°^ ̂ must

mechanism to avoid -TH + locking
results. ln̂ eterminate

Create creates a
containing a new ocess block
fields described above°CeSS" ^
tialised. once 1?, aPS ini"
cess becomes "*^1.

"""« '•'••Id processes

that may atill exist. Either of
the following conditions will
result in the parent being
'failed*:

1 • The parent process is an and-
process.

2. The parent is an or-process in
"Suspended on End" state and
this process is the last
remaining child.

If the parent is an or-process in
"Suspended on Wait" state and this
is the last remaining child then
the parent process is woken up.

Succeed terminates this process,
killing any remaining child
processes that may still exist.
One of the following conditions
"ill result in the parent being
'succeeded':

1 • The parent process is an or-
process.

2. The parent is an and-process is
"Suspended on End" state and
this process is the lest
remaining child.

If the parent is an and-process in
"Suspended on Wait" state and this
is the last remaining child then
the parent process is woken up.

Kill children kills all descen
dants of this process.

Notice that the action of the
child process upon success or

failure depends not on its process
type but on its parent's. ®us
and-processes can be children of
and-processes, a feature which can
be useful for optimisation. as

of a
the

— — x u x u U P X J J 1 X . U U » * - -
described below. The type
process is determined by
instruction that was used to
create it.

The above primitives are essen
tially built in to the control
instructions described in the fol
lowing section.

187

hh Control instructions

The instruction set developed
for the abstract machine is based
on Warren's PLM instructions for
Prolog (Warren 1977).

A clause of the form

H G | B

*iU be translated to code of the
fori:

unification instructions

neck instruction

guard calls

commit instruction

body calls

end instruction

Guard and body calls are exe
cuted using the same instruction:

call caddr, paddr
<argiments>

paddr:

This is interpreted as "create a
ne* or-process which will begin
execution at address caddr The

process will continue at
Following the call

tween the call and paddr) are
e call arguments.

The commit instruction
separates the guard calls from the
0 y calls in the clause. (if no
&®rd is specified then it is exe
cuted after the neck instruction).

is interpreted as "wait for
. e guard's calls to complete
\ successfully) (i.e. go "into
suspended on Wait" state) and
en attempt to commit the parent

fal to this clause; if this
ucceeds then continue to the next
ttstruction, otherwise the process
18 to terminate".

The commit instruction will
also set an 'ancestor' field in
the process control block so that
the subsequent call instructions
will attach created processes to
the grandparent of this process.

The end instruction is the last
instruction in the clause. Since
the body goals do not get linked
to this process, there are no
children to wait for so the end
instruction will cause the process
to terminate (successfully) at
once.

A process created by a call
instruction will execute instruc
tions to create and-processes to
try each alternative clause for a
goal. The format of these
instructions is:

start: try
try

try
end

C1
C2

Cn

The try instruction at "start:" is
interpreted as "create a new and—
process that will start execution
at C1 (the start of clause
instructions for the first
clause)". The new process is
always the child of the old ^pro
cess in this case. The 'old'
(parent) process continues at the
next instruction after the try.

The end instruction will put
the prociss into "Suspended on
End" state and wait for its chil
dren. If there are no children to
wait for it will cause immediate
termination (failure).

The call and tr£ instructions
are suitable for executing goals
and clauses in parallel. However
Parlog allows goals to be executed
sequentially and clauses to be
tried sequentially- This
achieved by the wait instruction.

The sequence:

188

wait
call

will call goal j>, then wait for it
land all its descendants) to ter
minate (with success) then call
goal (This atill allowg

subgoals of p to be executed in
parallel). The conducts™

pile to:
g3 & g4 , g5" will

call g1
call g2
call g3
wait
call g4
call g5
end

This will execute g1 , ~2 and
^ parallel and wait for them aU
to complete and then execute g4
and g5 in parallel. g

The wait instruction can be
used similarly when selecting
alternative clauses: meeting

C1 C2 => try
wait
try

C1

C2

+7.v flve instructions call
try, commit, wait and end arf^I
basic control instruct!^
convenience and or

can be combined to give^t/e f^
lowing instructions:
sequential call:

call 11,12 + wait => scall n -to sequential try; scall 11,12
try C1 + wait _

last goal call; y 1

las^clause^to +try<- => lastcall 11
y C1 + end => lasttry C1

introduced^for tteStrUCtions are
when only 0ne c1„ sPecial cases
goal and when IT* e2ists *>r a
exists for a claused ^ b°dy goal

onlycall C1

will, instead of creating an or-
process, change itself into an
or-process and execute the code at
C1_.

onlytry CI
will, instead of creating an and-
process, change itself into an
and-process and execute the clause
at CI.

3/.4. Processes suspended on vari
ables

When a process attempts to
unify uninatantiated input vari
ables to a non-variable term it
will become input suspended, and
must then wait for some other goal
(the prod ucer) to instantiate that
variable.

This can be implemented by set
ting the status field of the pro
cess control block to "Suspended
on Input Variable", and by having
a channel field in the block which
contains the address of the
(dereferenced) variable on which
the clause suspended.

When a process unifies that
variable with a term any process
sleeping on this variable will be
reactivated. This involves check
ing for suspended processes when a
clause commits (and thus makes its
instantiations public).

To minimise the overhead of
this checking the channel field
could be stored separately, fn

appropriately indexed" tables (or
hash tables); alternatively an

associative memory could be used.

Environinpn-t-Q
An environment consists of

frames which contain the bindings
of the variables of a clause for
its current call.

in sequential Prolog, only one
environment is accessible at any
given time during execution,
because of th seouential

189

execution. Thus only one
occurrence of an Instance of a
variable can exist at one tine.

Nben or-parallelism is intro
duced more than one occurrence of
an instance of a variable may
exist at the same time - if a goal
is called which invokes three
clauses to be tried, then there
"ill be three different instances
of the goal argument variables.

In general, for each clause
invoked in parallel a new environ
ment is required. Each of these
environments will be an (exact)
C0Py of the environment of the

call together with a local
for the value cells of the

variables in the clause.

Obviously, not all the vari-
in ancestor frames will be

effected by the results of unifi
cation of goal arguments and
clause head arguments. It could
e possible for those frames unaf-
ected by unification to be

3 ared. Once the call commits to
a clause the calling clause will
inherit fbe new environment to
replace its old one.

And-parallelism poses another
Problem in that a number of goals
®ay access the same call frame at
®e time. in particular, dif-
erent goals may update different
variables in the same frame so

other (parallel) goals can
the resulting binding,

crefore, rather than replacing
an entire frame when a goal com
mits, only the values of affected
variables are copied back into the
shared call frame.

Hence, a clause must hold
Private copies of variables which
rt alters in unification. As a
urther complication, guard goals
®rd their descendants must access
heae private copies of variables
rather than the public ones.

With the conventional unifica
tion algorithm used for Prolog
(Warren 1977, Bruynooghe 1981) and
unification of two uninstantiated
variables results in the more
recent (i.e. the clause variable)
being assigned a reference to the
older one. Subsequently, a vari
able in the call arguments of a
goal may dereference to a variable
in any ancestor goal in the
environment.

This is unsuitable for a paral
lel system. Thus we have developed
a unificiation algorithm that con
strains call arguments to derefer
ence only to variables in either
the call frame or the local frame,
with the exception of input (read
only) variables. This restriction
even applies to complex terms.

4.1. Unification

Unification has three stages:

1. Unification of call arguments
with clause head arguments.

The values of the variables used
in the call are copied from the
call frame to a (local) frame
called the output frame. These
may contain undef, terms, or
references to other variables xn
the call frame which must also be
copied. The output frame xs used
in the unification of call argu
ments with the arguments in the
clause head. The unification
rules are given below.

2 On commit, those variables in
the output frame that were

r°nrallel) goal =an Produce the

value of a shared variable in the
value ox unnecessary to
calling fra® k whether any

some other goal since a w-

190

3. When the clause body calls and
their descendants have com

pleted , the local frame can be
compacted by retaining only those
variables in the local frame
accessible in the rest of the
environment. Because of the unif
ication algorithm only those local
variables referenced by the call
frame are accessible to the rest
of the environment. This stage is
optional but considered a vital
optimisation as long chains of
references can be shortened. A
garbage collector process could do
this in parallel with the main
execution.

-ivi* Unification fiules

terlf ismathehing °f tenDS with ls the same as in condi
tional unification. The differ"
ences are in the way variables are
assigned values. The following

SXSV-1

1 • Unifying _a simple term +c an

iSl-tantiatiT^ar-I^^T2 g
this case the ^ .

"3SS.to th*

2' -1.

the other (which is i polnter to
local frame) ^ ** the

Exception: if the loci
is an innut argument
pointer c^n be then a

variable m the call^^me ^ ^

to .
naturally^tT~th'-i - t fits

structure sharing thS°heme: usiag
. Su 2,3231011

where the skeleton point® ?®lr

to the structure in the , P°lntS

(static memory) and the f"68

pointer is the local w ame

the values of any vLIm**' Where
v variables in the

term are kept.

4. Unifying ji complex term to a
local variable: this involves

extra copying to ensure the con
straint that variables can only
dereference to variables in the
local frame. The local variable
is assigned a (skeleton, subframe)
pair where the subframe ia a frame
created in the local frame to
store value cells of any variables
in the complex term. The call
variables are assigned pointers to
the variables in this subframe.

Exception: if the local argument
is an input argument then a
(skeleton,frame> pair is assigned
to the local variable where the
frame is the call frame.

Figure 2 shows an example of
the bindings resulting from this
unification.

Input variables can be exempted
from this rule because they can

Unify the call g(a,b,c,[djej),
where a' is instantiated to 5,
with the clause head
g(w.*,[x|yj,z)

call
frame

fO -> a : 5
b : undef
c : undef
d : undef
e : undef

output fO _> b : x.fl
frame c : [xiyj.fi

d : d.fla
e : e.fla

local fi _> „ . 5
frame x : undef

y : undef
z : [diej.fla

a -) d : undef
e : undef

F-gure 2 : An example using
unification rules.

191

not update ancestor frames and
thus it is 'safe' to access these
shared frames directly.

This means that a variable
shared between two or more goal s
in a clause can only be updated by
its producer; consumer goals will
dereference the variable to a term
in the frame of the producer or
one of its descendants.

This also reduces the overhead
of unifying complex terms with
iocal variables (case 4) since
most complex terms used in this
*ay are input terms. Output terms
are usually constructed by unify
ing complex terms in the local
clause with a call variable (case

The strict mode declarations of
arlog mean that the copying of

variables from call to output
names is not necessary. Input
arguments cam be accessed directly

r°ffl the call frame; output argu
ments can be assumed to be unde-

and on commit their values
copied back to the corresponding
i a referenced) variables in the
cail frame. These optimisations
are not possible in Concurrent
roiog except with read-only vari

ables.

-'!• frames.

1 clause requires access to
ree frames for unification:

** ̂ 11 frame
access input variables (this

18 read-only during unifica
tion) .

0utPut frame
to store (private) bindings of
output variables.

local frame
store all variables in this

clause.

Pointers to these frames are
®Pt in the process control block
the and-processes executing the

clause. The call instruction has
to supply the call frame pointer.

If each processor has some
local memory then the output and
local frames could be stored here
until unification succeeded. Then
the neck instruction would allo
cate environment frames in dynamic
memory in which these are stored.

If a process suspends during
unification and is removed from
its processor then the contents of
the local memory must be saved in
a 'swap' block in dynamic memory
so that any processor can reac
tivate the process. This pointer
is also stored in the process con
trol block.

An alternative to this scheme
is to precede unification instruc
tions with an init instruction to
allocate frames in dynamic memory,
replacing the neck instruction.
This has the advantage that swap
blocks are not needed but the
disadvantage that a frame must be
allocated for processes that sub
sequently fail unification and
that temporary variables (i.e.
those that only appear in the
clause head) must be stored m
this frame during unification.
For that reason and hardware con
siderations the first scheme is

preferred.
On commit the output variables

are copied back to the call frame.
Hence they become public, along
with any local variables that they
reference, to the calling clause
and its other descendants.

Tf there is no guard, i.e. the
-lauBe commits immediately after

^cessful unification then the
neck and commit instructions can
be replaced by an ncommit mstruc-
l I that writes the local output
ariables immediately to the call
frame and allocates a frame only
for local variables m dynamic

memory.

192

Because of the way in which the
control structure has been
separated from the environment
structure, the third stage of
unification cannot be done
automatically on the termination
of the clause. Instead, each
environment frame contains a count
of the number of processes access
ing this frame and a pointer to
its call frame. When the refer
ence count drops to zero (i.e. the
clause has been completed) the
frame can be merged with its call
frame. Variables in the local
frame that are referenced by call
variables are checked to see if
they have been assigned a simple
term. If so this term is assigned
Then 7riable 111 the call frame.
Then only the variables in the
local frame which are still refer
enced by the call frame need to be
saved.

To ease the compaction of a

soa+wthe variables can be stored
so that variables which can always
be removed first are stored after
the other variables i.e.:

I global variables'

j local variables j <- removed on
I in body

+ - - - - - - clause end

J other local j <_ removed on
, _ _variables j commit

temporary !
i variables
+

i <- removed on
i unification

partition(5,[3 1 7 2l x1 Cal1

relation partition'j3'defjDed asf*
mode partition (•?•?*«)

o)

u i Partition(u,x,y,z) }

fO -> x1 : [vjyj.f1'
r2: z.fl '

f1' -> v : 3
y : [vjyj.f2'
z : z.f2'

* : [1 , 7 , 2] .

f 2 ' -> v : 1
y : y.f3"
z : [vjz].f3"
u : 5
* : [7.2].-

f3" -> v : 7
y •• [vjy].f4'
z : z.f4'
u : 5
x : [2] . -

: fj::
f4' -> v : 2

y
Z

u : 5
X : [] . -

figure 3a: state of environment
after the terminating case (before
compaction).

fO -> x1: [vjyj.fi'
x2: z.fl'

«* -> v : 3
y : [vjyj.f2'
z : [vjzj.f3"
u : 5
x : [1,7,2].-

f2' -> v : 1
y : y.f4*

f3" -> v : 7

I I [].-
f4* -> v : 2

y : [J -
Figure 3b: intermediate stage ia
compaction (compacted to frame
I « J •

193

fO -> x1 : Lv j j r l . f r
x2: L v ! z j . f3"

f1 * -> v : 3
y : [v |y] . f2 '

f2" -> v : 1
y : y . f4*

f3" -> v : 7
y :
z : • -

f4' -> v : 2
y : []-

figure 3c: environment after com
paction.

Hotice that structure sharing
means that garbage collection is
n°t optimal. For example, in
frame f3"(figure because z is
the third variable in the frame, y
(which is the second) is impli
citly stored even though it is not
referred to (Bruynooghe 1982).

I- Discussion

!'!• Design issues. Separating
the control structure from the
environment structure incurs some
overhead in that two explicit
trees have to be maintained. In
Particular, the environment frames
contain explicit links between

e® (from child to parent) to
represent the environment tree,
ami the environments have to main-

arn a count of the processes
attached to them as this is can
Pot be deduced from the control
tree.

However, by removing processes
*hich are only waiting for chil-

r®n to terminate, as in the case
a committed clause waiting for

goals, we reduce the number
of suspended processes in the sys-

em> thus taking advantage of the
determinism that the commit
offers. Also when failure occurs

in some body goal, the failure is
immediately effected at the top
level of goal which it affects
(which may be a guard or a top
level query) and does not have to
be transmitted up the control
tree.

Localising unification to three
frames (call input, call output
and local) has a number of advan
tages:

a) The amount of copying done on
unification and commit is very

small, particularly since the mode
of every variable is determined at
compile time.
b) Variables can be referenced

directly by their address
(once in dynamic memory) rather
than by a <variable,frame no.>
pair where the frame number is
different for each different
instance of a variable (i.e. there
is no problem of multiple
instances of the same variable).

o) The output and local frames
can be stored in high speed

local memory during unification.
Each processor could have unifica
tion 'hardware to carry out the
unification instructions m this
memory if unification proves to
occupy a significant fraction of
the system's effort.

5.2. Current work.

~~ ~~A Parlog compiler into abstract
machine code and a simulator of
the multi-processor machine, are
being written (in C on Unix) to

iLnt all the features of Par
log This will eventually include

those ^^u^ ̂ ^Oget-expressions)
this th development of Eventually, the ^
specia p However, it would
T^rlv^e premature to embark on

prior to a detailed study of
the performance of the simulated

system.

194

It would appear from this
design that the overhead of pro
cess creation and termination and
management of environment frames
are very critical to the perfor
mance of the system. As well as
attempting to minimise these over
heads (perhaps using special
hardware) we will be studying the
effect of these overheads to
determine what degree of parallel
ism is necessary before "parallel
programs run faster on a multipro
cessor system than sequential Pro
log on a single processor.

REFERENCES

M. Bruynooghe, "Memory Management
1 qo r° °g T Implementations", pp.

3 98 m Logic Programming,
S . - A . T a r n l ^ d T 0 1 '

M. Bruynooghe, "A Note on Garbage
Collection in Prolo ^ f
preters", pp. 53.55 Proc *f

the First International Logic PrlT
jamming --2-
Caneghem, ADDP-GIA, Faculte
Sciences de Luminy, Marseille!
(September 1982).

Sonarr ^ S* Greg0ry' "A Relational Language for Parallel Pro
gramming", pp. 171_178 ^ Pro/r°
t|£ ACM Conference on Fi^tionll

Logic", Dept. of r~f ,.ln

Research Report DOC
Imperial College Tin-; - '
London (April 19S4). veraity of

1"; AC1T,»S, s,- -P«-

«*"»"" Report ROC
Imperial College lir,-; -
London (March 1983). (Vraft)* °f

"uS* •, Gonery and D.F.
Parallel Interpretation of ! '

Programs", in p of Logic
££2£- of -the ACM

Conference on Functional Program-
Ming languages and Computer Archi
tecture^(1 981T

K. Furukawa, K. Nitta, and Y.
Matsumoto, "Prolog Interpreter
Based on Concurrent Programming",
pp. 38-44 in Proc. of the First
International Logic Programming
Conference. ed. M. van Caneghem,
ADDP-GIA, Faculte des Sciences de
Luminy, Marseille. (September
1982).

S. Ha rid i and A. Ciepielevski, "An
Or-Parallel Token Machine", pp.
537-552 in Proc. of the Logic Pro
gramming Workshop '83, Nucleo de
Inteligencia Artifical, Universi-
dade Nova de Lisboa (July 1983).

S. Kasif, M. Kohli, and J. Minker,
PRISM - A Parallel Inference Sys

tem for Problem Solving", pp.
123-142 in Proc. of the Logic Pro
gramming Workshop '83, Nucleo de
Inteligencia Artifical, Universi-
dade Nova de Lisboa (July 1983)-

E. Shapiro, "A Subset of Con
current Prolog and Its Inter
preter", Report CS83-06, Dept.
Applied Mathematics, The Weizmann
Institute 0f Science, Rehovot,
Israel (February 1983).

P.C. Treleaven, D.R. Brownbridge,
and R.p. Hopkins, "Data-Driven and
Demand-Driven Computer Architec
ture , ACM Computing Surveys, Vol.
14, (1) pp. 93-143 (March 1982).

D.H.D. Warren, "Implementing Pro
log - Compiling Predicate Logic
Programs , DAI Research Report
0977) & 4°' Edinbur«h diversity

A HIGHLY PARALLEL PROLOG
INTERPRETER BASED OH THE GENERALIZED DATA PLOW MODEL

Peter Kacsuk
Institute for Co-ordination
of Computer Techniques
1015 Budapest, Dondti u 35-45.
Hungary

ABSTRACT

A generalized data flow
model and its applications for
constructing a highly parallel
Prolog interpreter is described
fa this paper. The parallel
Prolog interpreter is suited to
utilize advantages of OR-and
ABD-parallelism as well.
Transformation of the AND-OR
tree into a data flow graph
based on the Generalized Data
Plow Model is shown. Operator
types needed for parallel
evaluation of Prolog programs
are explained in detail.

1 INTRODUCTION

Recently Prolog has gained
an increasing popularity in
such areas of computer
techniques as artifical
iritelligence) expert systems,
and so 0n. Practical
applications of Prolog need an
effective implementation of the
language, including fast
e2ecutioii of programs
inherently containing a lot of
backtracking steps. Nowadays
several research projects have
started aiming at the solution
°f parallel interpretation of
Prolog programs. The majority of
these research directions
fundamentally support the so-
called AND/OR process modell
/Conery and Kibler 1981/ or
/Eisinger, Kasif and Minker
1982/. a parallel Prolog
interpreter based on this model

creates dynamically AND-
processes and OR-processes in
branching points of the AND-OR
tree and allocates these
processes to idle processors
being in the system.

Recently several data
flow models have been proposed
for parallel execution of Prolog
programs /Moto—oka and Puchi
1983/ and /Umeyama and Tamura
1983/, but these models have
been mapped into conventional
multiprocessor systems.

A new method for parallel
implementation of a Prolog
interpreter is presented in this
paper. The essence of the method
can be shortly described as
follows:

First the AND-OR tree of
Prolog program is tra^s^°^®d

into a data flow graph based
on the Generalized Data Flow
Model /Kacsuk l^a/. Jhe aex
step is to map this data flow
graph into a regular,
homogenous processor space m
which each processor can
communicate only with i*®
neighbours. In this way both
the interpreter program and the
Prolog program with its d
Use ^11 ^ distributed in the
processor space. Loa<iing
Prolog programs into une
processor space is executed
during the compilation.

196

After loading, processors can
work in parallel and they are
activated by the firing rule of
the Generalized Data Plow Model.
The data flow execution mechaiisB
of interpreter assures the
logical exploitation of inherent
AMD/OH parallelism, meanwile the
regular processor space gives
the possibility of physically
parallel execution of Prolog
programs.

Chapter 2 is a short
dascription of the Generalized
Data Plow Model - the
theoretical background of the
parallel Prolog interpretation
mechanism. Chapter 3 applies
the Generalized Data Plow Model
to realize a parallel interprets-
that exploits OH-parail elism.
Operator types playing an
important role in utilizing
OR-parallelism are thoroughly
described. In chapter 4 the
solution of realizing AND-
parallelism is carefully
investigated.

2 THE GENERALIZED DATA
FLOW MODEL /GDM/

Although the pure data
flow model is well suited for
exploiting inherent parallelism
xn functional programs, it can
not be directly applied for
parallel interpretation of Proha?
programs. The most important
reason is that operators should
have an inner state for
backtracking since the
unidirectional data flow graph
is inadequate to describe the
backtracking behaviour of Prolov
interpreter.

.. j , ?le Generalized Data Plow
Model /GDM/ originally intended
tor programming multiple
microprocessor systems can be
applied for realizing the
backtracking mechanism of Prolop
interpreter. A detailed roi°g

description of GDM can be found
in /Kacauk 1983a/. This paper
just summarizes features of GDK
inevitable for understanding
parallel interpretation of
Prolog programs:

1. Functions associated
with nodes can be unlimitedly
complicated and there is no
limitation to the number of
input and output arcs of nodes.

2. One node can be
associated with several
functions. A subset of these
functions is activated by a
firing situation. This way one
operator can simultaneously
product a lot of results and
these can be sent to different
subsets of output arcs.

3. Functions associated
with nodes are evaluated on
the basis of conventional
Neumann-style control flow
semantics, so they can contain
temporary variables /local
memories/.

4. Operators can have an
inner state playing role in:

- selecting the input arcs
on which tokens are
needed for firing,

- determining the new
inner state created by
the firing,

- selecting operator
functions to be executed
during the current
firing,

- selecting the subset of
output arcs responsible
for sending result
tokens of the current
firing.

5. Operators can preserve
Partial results from one firing
for a later one.

197

6. There are no restriction
for data structures carried by
tokens.

Mapping a data flow graph
based on GDM into a homogenous,
regular processor space /often
called cellular space/ each
operator is associated with a
cell that can be represented by
a generalived transition
function /f/:

f /state, {inp-tok} ,
(action)/ = /next-state,
{out-tok) /

"here the inner state of the
cell before firing is "state"
and after firing is "next-state".
{inp-tok} means the set of
input arcs and input tokens
taking part in the firing of
the operator, {action} means
the set of procedures to be
executed during the fire.
{out-tok} means the set 6f
output tokens produced by the
firing.

3 THE DATA PLOW SEARCH
TREE /DST/

Executing a Prolog program is

equivalent with searching in an
AHD-OR tree reflecting the
structure of the Prolog program.

an example for constructing
the AKD-OR tree consider the
following simple Prolog program:

a (X,Y) : b(X,Y), e(X),d(Y).

b (orange, apple).

b (orange, lemon).

b (plum, apple).

c (orange).

d (lemon).

fhe structure of AKD-OR tree
belonging to the above
described Prolog program is
shown in figure 1. depicting
with circles the clause-heads
/procedures/ and with

rectangles the procedure calls
/atomic goals/.

The AND-OR tree well
demonstrates the control
mechanism of the sequential
Prolog interpreter. Before
entering a procedure body a
unification step is needed.
Entering is allowed only when
unification of the actual and
formal parameters has been
successful. Variable bindings
created during unification must
be passed to atomic goals in
the clause body. The sequence of
these two actions /unification
and parameter passing/ is denoted
by dashed lines in the circles
representing rules /van Emden
1982/. Unit clauses have no body-
therefore in circles
representing unit clauses dashed
lines are missing.

Dashed arcs in the AKD-OR
tree represent the successful
return from a procedure. After
a failed unification the
interpreter activates the
backtracking mechanism. If the
current literal has another 0R-
branch right to the failed OR—
branch then the interpreter
tries a new unification
selecting the next clause.

figure 1.

198

When all the OR—branches
deriving from the current
procedure call have sent back a
failure signal, then the
interpreter backtracks along the
failed atomic goal.

After all one can say that
the AND-OR tree represents the
control flow graph of the Prolog
interpreter, where the
direction of arcs shows the
progress of the Prolog program
and the opposite direction
serves for controlling the
backtracking mechanism.

On the basis of the
Generalized Data Plow Model AND-
* + If® Can be transformed into
data flow graphs that can contain
4 types of operators:

1. UN /or UNIPY/
2. AND /or BODY/
3. OR /0r CADB/
4. UT /or UNIT/

In the data flow graph arcs
connecting nodes represent data
pathes instead of control pathes.
Accordingly between two nodes
direct,81,6 tW° 3rCS °PP°site
directions, one for passing the
actual parameters and the other
for sending back results. The

iS£ofS.f3£ldEiv-d fom the
Plow Search Tree /DST/06 DatS

.-SPSS* an -̂OR'tree into
a DSTcan be systematically

transf ?•applying

£*2 rs». u

4 OR-PARAILEIISM
DST is suitable for

realizing either the LRDP

' +°f the seGuential

on determining the functions of

operators applied in DST and
the types of tokens moving on
the arcs of DST.

First, function of
operators and types of tokens
will be determined for
utilizing the inherent 0R-
parallelism of Prolog programs.
The general structure of a
token is the following:

- token type
- context field
- data field

AND-OR TREE DST

figure 2.

199

Token types needed for OR-
parallelism are the following:
- DO : first call of a

procedure
- RSDO : repeated call of a

procedure
- SUCC .* successful return

from a procedure
- PAH : failed return from a

procedure
The context field serves

for distinguishing tokens
originating from distinct
instances of the same procedure

e.g. due to recursion. The
length of data field can be
triable, it contains the actual
Parameters in DO tokens and
nesults in SUCC tokens. The data
field is missing in REDO and
JAII tokens.

Now a short description of
operator types realizing the
control mechanism of a parallel
Prolog interpreter based on the
DST follows.
4,1 TINT PY—operator /UN/

The transition function of
UN—operator is the following:
f(idle,DO(10),UNIFY(SUCCESS))=

= (wait, DO (01))
f(idle,DO(10),UNIFY(FAILED))

=(idle,FAIL(O0))
f(wait,SUCC(II).-)=

=(idle,SUCC(00))
f (w a i t , P A I L (I I)) =

=(idle,FAIL(O0))
f(idle,REDO(10),-) =

=(wait,REDO(01))

(2)

(3)

(4)

(5)

UN
(wait)

A N D
(wait!)

A N D
(idle)

-
UT

UN
(wait)

A N D
(wait!)

A N D
(idle)

-
UT

d (lemon)

SUCC (orange, apple)

bforange, apple)

SUCC (orange, lemon)"

UT OR

(wait 2)

c (orange)

UT

bforange,lemon)
SUCC (plum, apple)

b (plum,apple)

figure 3.

UT OR UT UT
(wait2)

200

The UN-operator has two
tasks.First it makes unification
among locally stored formal
parameters and actual parameters
packed into DO token arriving
on its 10 input arc.

Secondly after a successful
unification UN passes parameters
with new variable bindings to
the clause body on its 01 output
ar?p. .In the ca3e of a failed
unification UN sends back a FAIL
token to the caller (2). After
evaluating the clause body the
result token arriving on the II
m baCi t0 the caller
f 1* ° tokei13 arriving
on the 10 arc are passed
without change to clause body

4* 2 AND-operatm-

010 "transition function of
AND-operator is the following.-
4J/-* f , V

(1)

(2)

(3)

(4)

(5)

(6)

f(idle,DO(10),-) =
"(waitl,D0(01))

f(idle,REDO(l0),_)=
=(wait2,RED0(02))

f(waitl,SUCC(Il),_)=
=(wait2,DO(02))

f(waitl,FAIL(Il),-)=
=(idle,FAIL(O0))

f(wait2,SUCC(I2),-)=
=(idle,SUCC(O0))

f(wait2,FAIL(l3,_)=
= (waitl,RED0(01))

The AND-operator accepts
actual parameters for atoSc
goals of the clause body on its
10 arc. On the effect of a DO token the AND.0perator acti°°tea
the firs atomic goal bv-

tok Pa?f®eters Packed in a DO^
en (1). After this, AND wait-?
8+rSUlt token arriving

from the first atomic goal Tf

isJS.S'SV*0 a 10
• tome go,l (3). Ua JJJM*
second atomic goal •)«. ??

a REDO token on its 0 arc, but
the activation token is of REDO
type (2). The result of the
second procedure call arrives on
the 12 arc. If this is a SUCC
token then the result is send
back to the caller operator (5) .
This result contains the
variable bindings created by the
first and second literal of the
AND-operator.

When the first atomic goal
sends back a FAIL token, then
the AND-operator immediately
sends back this FAIL token to
the caller (4). When the second
atomic goal gives back a FAIL
token a backtrack is needed.
This is executed by sending a
REDO token to the first atomic
goal (6).

4.3 0R-Operator

The transition function of
OR-operator is the following:

f(idle,DO(I0),-)„
= (wait,{DO(01),D0(02)}) a)

f (idle,REDO(I0),-) =
"(idle,FAIL(00)) (2)

f (wait,SUCC(Il),-)=
= (wait2,SUCC(O0)) (3)

f(wait,SUCC(I2),-)»
= (waitl, SUCC(O0) (4)

f (wait,FAIL(Il),-)=
"(faill g,wait,-) (5)

f(wait,FAIL(I2),-)»
= (Tail2 twait,-) (6)

i (waitl, SUCC(I1), STORE)=
"(storel,-) (7)

r(waitl,FAIL(11),-)=
"(faill,-) (8)

i (waitl ,REDO(l0),-) =
"(wait,Redo(02) (9)

f (storel ,REDO(I0) ,L0AD) =
=^it» < SUCC(LOAD)(O0),
RED0(01),RED0(02)}) (1°)

f(faill,REDO(I0),-)=
~(faill<*- wait,REDO(02)) (11)
/I Wait' SUCC(I2),-)-

fP n^00^)) (12)

wait .FAIL (12) ,-)=
= (idle,FAIL(O0)) (13)

201

The OR-operator accepts
actual parameters packed into
BO token on its 10 arc. The OR-
parallelism is realized by the
fact that the OR-operator
simultaneously passes actual
parameters to the two connected
procedures (1). These two
procedures produce result tokens
in contest with each other. The
result arrived in the firstly
received SUCC token will be sent
Back to the caller by the OR-
operator (3) or (4). The result
f tlw secondly received SUCC
°ken will he stored locally

Wthin the OR-operator by the
®RB function (7). When the
"fl-operator gets a new REDO
°ken the second result will be

retched by a LOAD function and
sent back immediately to the
jailer while REDO tokens will
e sent to the two connected

Procedures for producing new
"suits (10). if one of the
Procedures gives back a PAIL

then this operator will
be called again by REDO

j118 If both procedures
o uce PAIL token, then the

"-operator also sends a PAIL
to its caller (13).

Both the AND-and OR-
Perators can be connected in
scade and consequently there
" limit for the number of

goads and- procedures
above ^ me*k°d described

4,4 BRIT-operator (ITT 3
The transition function of

ff:^w»t°r is the following:
,D0 (10), UH1PY (SUCCESS)) =

(1)
uBle,DO(l0) .UNIFY(FAILED)) =
^,PAIL(O0)) (2)

(3)
^.KEDO(I0),_)
U<J1«,FAIL(O0))

The UT-operator unifies
Parameters packed into ..

a with the locally stored

part of the data base. If the
unification is successful
parameters with new variable
bindings are sent back in a SUCC
token to the caller by the UT-
operator (1). When the
unification failed or UT has got
a REDO token, then a PAIL token
is sent back by the UT-operator
(2) or (3).

As an example to understand
how operator types introduced
up-to-now work together let's
consider figure 2, that shows a
snapshot of tokens moving in
the DST. OR-operators are m
wait2 state waiting for results
from the second and third b
clauses. The first AND-operator
is in waitl state waiting for
result from its first atomic
goal. There are 3 tokens in the
DST, since the OR-operators
representing an OR-branch m the
AND-OR tree produces tjkenaf
each arcs of bra^;h'^>0R way all OR-branches of an AND 0
tree will be evaluated

- al results are stored
distributedly in the processor
tUcT After backtracking tokens
ulaced on the subtree belonging
? +>,» reasked atomic goal are
"shifted" one step ahead in the

In our example on the
effect of a PAIL token arriving
In the first AND—operator on
f" arc a REDO token will be

+-ri for its subtree so asr̂ sj zuFXr-as&ss'sE'- w—
further.
^ AND-PARALLELISM

in this ^utilized

when

parameters

202

chapter 4. However in many cases
programers know in advance
during writing their program
that parameters of certain
procedures can be only input or
only output parameters. For
example in DEC-10 Prolog system
programer can fix direction of
parameters by means of the mode
declaration. Por procedures
supplied with mode declaration
compiler can generate a data
dependency graph (Conery and
Kibler 1983), that shows which
atomic goals of the procedure
body can be evaluated in
parallel. Por example consider
the following procedure:

Data dependency graphs of the
procedure for two different
mode declarations are shown in
figure 4.

An atomic goal is named consumer
of an X variable, if the~arc
representing X in the data
dependency graph is the input
arc of the node representing
this atomic goal. Similarly an
atomic goal is producer of X, if
the X arc is the output arc of
the atomic goal node. A
procedure call is on the i-th
level, if every variables for
which this procedure call is a
consumer were produced on anv
°f 1 /i-1/ ^
levels. 0th level belongs to
the head of the procedure.

+r» 0n/|t^eibasis of the AND-OR
hT,! i dependency graphs
he compiler can generate DST
well suited for realizing
AMD-parallelism as well. For
this purpose DST operator types
introduced up-to-now are

a new token type
/VALID/ is introduced.

original
operators

TO
AMD
AND
OR
UT

extended
operators

PON /Par. UNITY/.
PAND /Par. AND/
SAND /Seq. AND/
POR /Par. OR/
PUT /Par. UNIT/

Extended operators except PAND
and SAND are different from
their original version only in
handling VALID tokens. PUN sends
s VALID token after having sent
a DO or REDO token on its 01 arc.
PUT and POR are able to receive
a VALID token, but they have no
action defined for a VALID token.

Pand and SAND are different from
the AND-operator in some aspects.
To understand their action
consider figure 5 showing DST of
the example procedure with two
different mode declarations.
Por constructing DST one has
to start from the data
dependency graph of the
procedure. Since atomic goals on
the same level can be evaluated
in parallel they are connected
with each other by PAND-opersbrs
in DST. On the other hand atomic
goal groups on different levels
hnist be evaluated sequentially
so they are separated from each
other by SAND-operators in DST.

To go further, an informal
description of PAND-and SAND-
operators is given. Por atomic
goals, variables are divided
into two classes: produced or
consumed by the atomic goal.
This information is given by
the compiler on the basis of
data dependency graph.

A PAND-operator is activated by
a DO token coming on 10 arc.
Actual parameters packed into
a DO token are passed
simultaneously to atomic goals
connected to the PAND-operator.
In this way procedure calls on
the same level of the data

203

/a/ mode a/+,-/ A>/ mode a/-,+/

figure 4. Data dependency graphs for
the example procedure

/a/ mode a/+,-/

/b/ mode a/—»+/

figure 5. DST for the example procedure

204

dependency graph are evaluated
in parallel. The SAND-operator
sends actual parameters only to
the first atomic goal. Therefore,
evaluation of procedure calls
in the next level of data
dependency graph is delayed.
Their action can he started
when evaluation of all atomic
goals in the previous level has
successfully finished. The SAHD-
operator is reported about this
fact by getting a VALID token.
Each PAND-operator after
receiving a VALID token on its
X9 arc and a SUCC token on its
II arc places a VALID token on
its 02 arc. The SAHD-operator
sends a DO token on its 02 arc
when it has got a SUCC token
frvTTT^S+f1irSt atomic g°al and
a VALID token from his caller.
After sending a DO token SAMD
must place on its 02 arc a
VALID token too.

The VALID token has
another role as well. Atomic
goals in the same level can
produce values for different
variables and VALID token
serves for collecting and
transporting these variable
mdings to atomic goals of the

level. For example in figure 5/a
^ pl)0<?U0ed by Pr°cedure
head /PUN/ is transported to
the SAND/2/-operator by a DO
token and value Z produced by

' 13 transP°rted to
SAND/2/ by a VALID token.
Accordingly, the SAND-operator
composes a DO token - to be
passed for the next level on

arc - from a VALID token
10 arc and from a

SUCC token coming on II arc of
the SAND-operator.

Por the effective
utilization of AND-paralleli
an intelligent back£S£ng
algorithm - iike on /pereira
and Porto 1980/ was planned in

/Kacsuk 1983b/. Shortly, the
essence of the backtracking
algorithm is the following: On
the one hand in that level where
a FAIL token appears action of
all atomic goals has to be
stopped. On the other hand in
lower levels one has to look
for the first procedure call
producing such a variable
binding that caused failure of
unification. This procedure call
has to produce a new variable
binding and atomic goals have to
retry unification with this one
on higher levels.

CONCLUSION

The proposed parallel
Prolog interpreter has the
following advantages:

1. Both the OR-and AND-
parallelism can be realized in
the model without resulting a
combinatorical information
explosion. Results of parallel
branches of AHD-0R tree are
stored distributedly among
processors realizing those
branches. Asking for a new
Matching for a given goal
causes a shifting ahead of
stored results along the
Processors. The model can
assure intelligent backtracking.

2. The model can be
adequately implemented in
regular, homogenous processor
spaces, resulting in highly
parallel interpretation of
Prolog programs.

3. The mapping of Data
flow Search Tree into processor
space can be systematically
executed by the Prolog compil®r«

4. The data base of Prolog
program can be stored in
processor space in a highly
distributed way.

205

The present model has a
significant drawback, namely
big data structures can not be
effectively handled. Since the
model is based on structure -
copying as lists become longer
and longer the effectiveness of
the parallel Prolog interpreter
rill be decreased. Later some
efforts must be made for solving
this problem.

fhe model has some further
operator and token types for
handling built-in procedures,
CUT operation, recursive
procedures and commonly used
data bases. These are described
!a /Kacsuk 1983b/. In the present
Phase of the research a simulator
based on the Generalized Data
low Model has been constructed

and used for experimentally
Justifying correctness ot this
Proposed model /Kacsuk 1983c/.

ACKNOWLEDGEMENTS

Many thanks to Peter Szeredi
sad P®ter Garami for some very
helpful discussions and
euggestioas to an early version

this paper.

REFERENCES

®°nory, j, s> and Kibler, D. P.
araliei interpretation of Logic
r°gram, ACM Conf. on Func. Lang,

and Comp. Arch., 163-170, 1981.

^°aery, J, Kibler, D. F.
a Parallelism in Logic

urograms. Proc. of the 8th Art.
latell, conf., pp. 539-543, 1983.

Kacsuk, P. Generalized Data
Plow Model for Programming
Multiple Microprocessor Systems.
Proc. of the 3th Symp. on
Microcomp. and Microproc. Appl.,
Budapest, 539-551, 1983./a/

Kacsuk, P. Parallel Prolog
Interpreter Based on the
Generalized Data Plow Model,
/in Hungarian/, Technical Report
ELL-259/83, SzKI, 1-51, 1983.A>/

Kacsuk, P. Data Plow Simulator
and its Implementation
Considerations for Multiple
Microprocessor Systems, /in
Hungarian/, PhD thesis,
University of Technology
Budapest, 1-132, 1983 /c/

Moto-oka, T. and Fuchi, K. The
architectures in the fifth
generation computers. Proc. of
IFIP'83, 589-602, 1983.

Pereira, L.M. and Porto, A.
Selective backtracking for
logic programs. 5th Conf. on
Automated Deduction, Les Arcs;
France, in Lecture N°tesin
Comp. Sci. 87, 306-317, 1980.

Umeyama, 3. and Tamura, K. A
parallel execution model of
logic programs. Proc. of 1
Int. Symp. Comp. Arch.,
349-355, 1983.

~ S " •
E: £££».
1982.

•ger, N., Kasif, S. and Eisim
Mint user, J, Logic Programming:

araUel Approach. Proc. of
„ 8-sh Int. Logic Prog. Conf.
^seille, 71-77, 1982.

UNIFICATION FOR A PROLOG DATA BASE MACHINE

G. Berger Sabbatel, W. Dang, J.C. Ianeselli, G.T. Nguyen+

IHAG/TIM3 Equips d'architecture des calculateurs
INPG - 46 av. F. Viallet - 38041 GRENOBLE CEDEX

+ IMAG - Laboratoire de gdnie infonnatique
B.P. 68 - 38402 St MARTIN D'HERES - FRANCE

ABSTRACT

This paper addresses the
problem of the unification in the
context of a Prolog database
machine based on a multiprocessor
architecture, with parallel access
to a set of disks (OPALE project) .
1 search strategy based on
Paralieiisn and set processing is
riefly exposed, and the
architecture of OPALE is outlined.

h decomposition of the
unification is proposed. A part of

(the preunification) can be
executed by a hardware operator at
t e disk transfer rate. It allows
® significant selection of the
ata< so that the whole
unification can be completed on

e on a 16 bits
^coprocessor. The hardware
architecture of the search
°Perator is presented.

During the past few years, a
j0t *°rk has been done in the
^isld 0f data base machines,
®ln9 at improving the

Performances of relationnal data
j aes' A number of tools have been
filille<i' SUCh as sequential
ar operators, parallel
etc Ure and algorithms,
S l'" 'Duucilhon, Richard and
*ho11 1981, De Witt 1979,
ardarin 1981).

requirements for data bases, such
as deduction, knowledge
processing, etc... Logical
programming (and PROLOG (Roussel
1975)) often apears as a promising
approach (Gallaire 1981, Warren

1981).

With the development of
technology (VLSI, secondary
memories), it seems interesting to
study new models for data bases
along with architectures suited
for their implementation. Hence,
the OPALE project (Berger
Sabbatel, Ianeselli and Nguyen
1983) aims at designing a data
base machine oriented toward

logical programming.

In the context of this
the unification appears

T the Kernel of the
interpretation problem. In this
1 V we Will first outline the
paP wt and give the architecture
of°the OPALE machine, based on a
° structure, and
multiproces unification
execution ° operator. We
through a hardware p ^

• n i i-hen tocub
w and give a
unification, which allows
decomposition unification of

sets oT goals with sets of clause

headers read from a disk

, D*1 the other hand, the
i Vei°poent of artificial
nteUigence have led to new

208

2. PROLOG AND DATA BASES;

2.1. Introduction:

Two ways of using PROLOG in
data bases can be considered:
interfacing it with relationnal
data bases (Chakravarthy, Minker
and Tran 1982), or use it directly
as a data base using clauses for
representing data (relations).

Every relationnal operator
can be expressed in PROLOG, and
several operators can be combined
in simple clauses. Furthermore,
PROLOG can be considered as a
superset of relationnal algebra,
as additionnal features exists,
such as manipulation of implicitly
defined relations, processing of
non atomic data, simple insertion
of semantic actions in the data
etc... '

Hence, we consider the direct
interpretation of PROLOG as the
best solution, as it allows the
use of full PROLOG capacities
without creating a new level of
translation / interpretation
between the user and the machine
Our claim is that the most
efficient tools implemented for
relationnal databases can be used
as well for the direct execution
of PROLOG database accesses.

In OPALE, the packets of
clauses will be stored as linear
lists of alternatives and accessed
through indexing and filtering
Symbols will be coded through «
dictionnary. Every data item is
prefixed by a type-byte which
allows types such as symbols,
characters, integer, reals
strings, variables, etc... For tĥ
functionnal symbols, the type win
include their arity, so tlfat the
structure of the terms can
decoded without access to tte
dictionnary. Most of data u
will the be coded on 5 ̂

type byte, and 4 data bytes.

The use of PROLOG for data
base management and the design of
a specialized architecture,
involve particular choices for the
interpretation, as there are
important differences with program
interpretation: large number of
alternatives, high fail ratio for
the unification, and in most cases
the clauses will be in secondary
memory. We assume that the
ordering of operations and the
order of the results are generaly
not meaningfull, that very few
hard-wired predicates will be
encountered in the data base, and
that the complexity of the clauses
will be relatively small.

2.2. Search strategy:

Classical left to right and
depth first sequential
interpretation, checks one
solution at a time. In a data base
environment, this can be a severe
drawback, as the optimization of
disk accesses would require to
access every alternatives of a
clause before the verification of
another predicate. Furthermore, we
intend to exploit the parallelism
in the access of several disk
units.

Hence, our search strategy
for accessing the PROLOG data base
arms at three objectives: exploit
the parallelism in PROLOG,
optimize the disk accesses, and
allow the best use of a hardware
implemented unifying operator.

The optimization of the disk
accesses lead us to a search
strategy based on sets. In effect'
each search produces sets
solutions (instantiations)
(Chakravarthy Minker and Tran
1982). These instantiations may,
in turn, produce sets of goals
which can be globally verified

209

through sequential filtering.

Example 1:

C (X,T) <- Ct (X) & C2 (X,*) .
C (X,Y) <- CI (X) & C3 (X,Y) .
C1 (a) <-.
C1 (b) <-.
C2 (b,c) <-.
C3 (a,e) <-.

In this example the search on
C1 returns two solutions: X - a.
Mi X = b, which, in turn produces
l»o goals for the first
alternative of C: C2(a,Y) and
c2(b,Y). These two goals can be
searched in a single disk access
°n 12, through sequential
filtering.

Three types of parallelism
,lU be used. The first type is an
® parallelism, in which
s ternatives having a non-empty

047 can he verified with paralell
Presses (breadth-first

rategy). in the example 1, the
request C(a,X)7 activates two
Peraliei processes which
correspond to the two alternatives °£ C.

The second type is an AND
Peralleitsm. To avoid the problem
° fnterdependancy, we treat it by
f lining the verification of

e Utterals in a clause: A
Process L is attached to every
rrtteral, it receives the
ostantiations from the previous
rtteral, generates the goals, and

TheS6S h® a search process C.
c process executes the

® oxing and disk accesses (Fig.
^ ' and return the instantiations

the L process, which passes it
0 its successor.

The disk latency time imply
at several goals may be

VaHable when the disk is ready.
eace< the third type of

Paralleiism addresses the

unification of sets of goals with
the disk data stream. This will be

the topic of the section 4.

C I (X)

i
C2 (X , Y) C(X , Y)

insj?jfnciat iohg^^ J*

search
process

search
process

DATA BASE

Figure 1•

In conclusion, the parallel
search is one of the central
issues for ^gh system

% -W- r«

additionnal (or., of
wiIl also be studied to s*Pl0-^
thi multiprocessor architecture of
the machine: distribution of

v. ^ several disk units,
s e a r c h o n , - . u i 1 9 8 1 1 •
etc..•(Conery and Kxbbl

3. KPCHTTKCTURF:

The architecture of^OPALE is

depicted on ^^erance and high
providing fau" a distributed

210

architectures which allows
parallel operations on multiple
disks. For small or medium sized
data-bases, sufficient parallelism
can be achieved through the use of
Winchester mini- disks. Another
feature is the possibility of VLSI
integration of special- purpose
operators such as filters, due to
the current progresses in silicon

(silicon compilers (Anceau
iyy3)) ,

Every disk is associated with
a processor and a hardware

(>PMl'at0r" ThS Prin,ary memories
(PM) are also associated with a
processor. They manage the sets of
environments (intermediate
solutions). The ^
elements (PE) „ Processing

(PE) control the
operations.

A verification will then be
decomposed in operations on data
flows coming from the disks,
riltered, processed by the PE and

°r^ in the primary memories.
The temporary results will then be
used by thp 'pit +- _

/ tne PE to generate new
goals (Fig. 3).

Figure 3.

(CP) set of control processors
(CP) manages the machine, receives
and compiles the user requests

connected^ thews' ^ a"
through a loca^et^

The communication between th.
various components of the machine

"HI he provided through a message
switching network: for a first
experiment, we intend to use a
multiprocessor parallel bus.

4. UNIFICATION:

4.1. Introduction:

In this section, and in the
next one, we will consider the
disk processors. They will receive
goals, and must find on the disk
the clauses whose headers unify
with these goals. In order to
achieve high performances, our
objective is to execute the
unification of clause headers with
sets of goals "on the fly" in
almost all cases, i.e. to process
data at the disk transfer rate.
When the disk is accessed, our
strategy will be to search every
clause header which unify with at
least one goal in a whole track,
in order to minimize the number of
disk accesses, and significantly
reduce the disk access time (as
the major component of access time
are the head positionning and
rotationnal delays).

We consider that for every
packet of clauses accessed on the
disk there is a set of goals, even
though the indexing can decrease
the number of goals per disk
access. We also consider that the
goals are available to the disk
processors as "flat" terms, i.e.
that the terms are fully self"
contained, without reference to
external data (substitutions).

The operation is then to
select the clauses whose headers
unify With a goal (at least), and
then transmit every couple
variable/data which describe the
instantiations generated by the
unification (substitutions) (Fig.
4) .

211

)ther processors |

Instantiations

t
goals selection

DATA BASE

Figure 4.

Some important differences

exist between the unification and

t e selection of data bases:

tte unification operates on tree

structured data, and not on

normalised relations,

furthermore, the data structure

be not statically defined,
ut defined in the data

_ themselves (typed data) .

the data base can contain

variables which may appear not

°niy in the rules headers, but

also in facts, where they can

stand for irrelevant arguments
for example.

in knowledge databases, one

^ay expect that important sets of

•« exist, so that we have to
ow all these cases to be

Processed on the fly.

On the other hand, there also
®xist important differences
etween the unification in prolog
^r°9rams and prolog databases:

9e number of alternatives for
everY clause. The average number
°f alternatives for a program is
generaly less than a tenth. For
a iata base, it can be of
several millions (facts).

" hi9h fail ratio: in PROLOG
Programs, the fail ratio can be

iu most cases of about 50% • In

databases, one must expect much

higher fail ratio, such that
9°*, or 99% at least.

These differences involve
particular choices for the
implementation of the unification.
It can be interesting to execute a
first selection of the clauses, so
that the complete unification is
executed only on a few part of the
clauses. If Cy is the cost of a
complete unification, Cs the cost
of a preselection, and Sf the
selectivity factor, the total
average cost of a unification Cj-U
should be:

ctu = cs + sf x C« , ...
As an example, with a selectivity
factor of 10%, the preselection
should be usefull if its cost is
less than 0.9 Cu. This technique
should then be very adapted to

databases.

4 .?• Preunification:

We can define the position of
a data item in a term as being the
succession of nodes to be acces^
from the root to access
element. Every node can be
identified by its rank in the
arguments of its father node so
. h t the positions of nodes i
unequal trees can be unambiguously

defined.

Example:

/ N
/!\
E X G

ti

/ \
. 1'
K X L
/ l \

In both of the above terms
• x. • ~r> of element X is

the P°sr ^he following, we will

lo^os^T) the^ P-^ of t^

^UtTirrnode- a l e a v e
mean that «
of the term T.

are unifiable,
Tf two terms ere

then the following condition is

. A P i c>(-\ ;

212

(1)V (N16T1, N2£T2 with:

pos (N1,T1) = pos (N2,T2)),
if N1 # N2 then

(N1 is a variable
or N2 is a variable).

The condition is obviously
necessary, from Robinson's

?965^Ca^°n al9°rithm (Robinson
1965). it is not sufficient:

Example:

A

.
A

/ \
A

Th®.above terms are obviously
not unifiable. Y

as the6 deflne thS £E£)Hlification
as the operation wich^^J-^

terms, checks the above condition"
and produces the list of couples
variable-value which constitutes
the disagreement of the terms. We

substitutions these couples

the PraUnlflcation °f the terms in
the above example produces the
couples: X=B, and X=C.

If two terms can
preunified, and if there £ ba

one occurence of every variable in

unified w then' they can be
the assume that this is

baLs^lf COmm0n — data bases. If several terms can h~
preunif ied and if there ^ ̂

several occurences of the

variable, then, the termf can T
unified if the e

wit-h substituted
with every occurence of a =
variable can be unified.

Example:

Z/\\
As the unifiCation^3^e?ates

on subterms of the original terms,
the problem as been simplified.
Furthermore, the preunif ication
executes in most cases a first
selection of the terms, so that
this second operation ' can be
executed by software. The
preunif ication could be used to
execute this unification, and the
process would be finite, as long
as we are concerned with finite
trees. We can then demonstrate
that the complete unification can
be executed with a finite number
of preunif ications. However, for
efficiency reasons, the execution
of the second step with a
classical algorithm would be more
advisable.

In the unification, the
substitutions are dynamically
applied to the terms, and
therefore, checked by the
unification operation itself. In
the first example, the
substitution x=B would have
produced the term t(B,B), and the
unification fails with the
comparison of B with C. It is

clear that this modification of
the terms involves either a
complex data structure to
represent the terms, or a complex
algorithm which can hardly be
implemented on a hardware
automaton to be executed on the
fly.

Our solution is then to
execute »on the fly„ the

preunif ication, through a hardware
automaton which transmits sets of
substitutions for every matched
term, and to check the consistency
° these substitutions by a
program executed on a
microprocessor.

4-3. Implementation.

A classical solution for the
ae e^tYon data in relationnal
database machines is the use of

213

hardware finite state automata
(Rohmer 1981). Due to the

possibility of variables in Prolog
database, the automata should be
non-deterministics, which

considerably increase the
complexity of the automata and
their memory requirements, and
then their compiling and loading
time. We then propose a quite
different solution for the
preunification.

If a term T can be preunified
#1th (at least) one term among a

set of goals , then, the

following condition is verified

(fwa the definition of the
Preunification).

(2)

^("6. T, where N is not variable)

13 i, so that

(3N' £ Ci so that
P°S (N1 .C^) = pos (N,T))

then N1 = N or N' is a variable.

Ihe condition is not sufficient:

jxantpie;

Goals : C1 = t (a,b),

C2 = t (c,d)
Term : T = t (a,d)

The term T meets the

condition, but is not preunifiable

"ith one of the goals.

The condition (3) is a
ne9ation of the preunification
condition:

13)

3(N£ T, N is not a variable)
C, N' is not a variable

and pos (N1 ,C) = pos (N,T)

and N* # N)

If (3) is met for a goal C

and a term T, then, the term T is
not preunifiable with the goal C.

^ verification of this condition
wi-ll allow us to eliminate a goal

from a set of goals "candidates
to be unified with a term read

from the disk.

The preunification can then

be decomposed in three operations,
which can be executed in pipe line
by three operators:
- The structure operator analyses

the structure of the terms read
from the disk. It codes the

position of every item in the
term, and transmits

substitutions when necessary,
i.e. when a variable is read, or
when the position corresponds to
a variable of a goal.

- The search operator checks the
condition 1, by checking for
every non variable item read
from the disk, if its value is
acceptable for its position,
i e. if a goal have the same

constant item or a variable for
this position. It is then a
simple search in a lis

values. .
- The third operator manages

list of goals which can pre-
unify with the term read from
the disk (condition (3)). For
every item value analysed by the
search operator, there is a set
of possible goals. The
intersection of successive sets

the set of goals which

unification fails-

214

Example:

1: t {
2: t (

I
1

a / b , X) <- goals
c ' d , x)
* + *
1 *1 1,2 1,3 <" positions

t -
Var

a
c -
Var

b
d

— > 1 ,2
— > 1 , 2
— > 1
—> 2
— > 1 , 2
— > 1
— > 2

Var — > •,

possible values sets of gQals

(*) = any value, substitutions
generated, no goal substitution.

5. DISK PROCESSORS-

5.1. General description.

The operation of the disk
processors is described in the
figure 5.

Other processors

^
goals DATA BASE

goals
1 compiler

V goals
1 compiler filter

1
1

V

1
1
substitutions J

1

(Unification completion J

Figure 5.

The goals are received from
e other processors of the

machine. The =
(software) allows the load^^
the memories of the filter. The
clauses readout from the database
are preunified by the f ilt£
(hardware), and then passed to the

program which completes the
unification, and controls the
transmission of the substitutions
to the proper process.

The architecture of the disk
processors is depicted in figure
6 •

Figure 6.

The microprocessor controls
the communication with the other
processors of the machine,
controls the filter, compiles and
loads its programs, and executes
the remaining of the unification,
t will also control the write
operations.

The filter will be composed
°h ^ PartS executing in pipe line
tbe three steps of the
preunif ication and the selection
° the substitutions (figure 7).

Disk

Figure 7.

MICROPROCESSOR

T
Other
Processors

215

5,2. Description of the operators:

5.2.1. The structure operator:

It manages the input buffer,

analyses the structure of the

terms, and the types of data

items. It uses a stack for the

structure analysis, and a finite

state automaton for the position

encoding: the input characters are
jenerated by the structure

analysis and are the transitions

to a son node, to a brother node
or to the father node in the term.
Every position which correspond to
an element of a goal can be

analysed and coded; the code is

the address of a list of values in
the search operator. When a

variable is read, or when the data
tead coresponds to a variable in

the goals, a substitution is

transmitted in the output buffer:
the substitution is composed of

the data and its position. If we

P an to recognize a maximum of 256

Positions, the memory requirements
the automaton would be very

81311: about 10K bits.

Exampie:

50als= t (a , x , b)

t (c , d , X)

father

skip term skip term

5.2.2. The search operator:

it receives from the
•ucture operator the address of
list of values and the data read
® the disk (5 bytes), and

searches the data in the list.
The index of the value will then
be transmitted to the third

operator. For a maximum of 256
values and 128 goals, a sequential
search can be executed: the memory
size will then be of 256 x 40 bits
= 10 k bits. A fast static RAM can
be used. With an access time of 40
ns, a list of 128 items can be
searched in 5.12 microsecond,
which is about the time necessary
to read 5 bytes from a 10Mhz disk.

5.2.3. The set operator:

It manages a bit array where

each column corresponds to a goal,
and every row corresponds to the
set of goals possible for anmput
value. The intersection of the
successive rows is then execute
f o r e v e r y a d d r e s s s e n t b y t h e

search operator. If the resu^ ^

list oi r-rfiC4ePr:ir^ "the

£6t Su' - "f 256 x 128

bits (32 K bits).

5.2.4. The selection operator:

it removes from the output

non preunifyitg goals.

rnnclusionj.

for the first)# of which

52 Kbits <Static memories. It is
10K must be with the VLSI
then compatibi operators on
implementation with available
a single chip ators should
technologies (th F with their

•>» "
memories)• compered
r e latively sma 'iques, such
other filter ing.^t automata. The

216

memories can be loaded through DMA
from the memory of the
microprocessor: with a 2 Mbytes/s
transfer rate, it will take about
3.25 ms. we can consider that the
minimal interval between two disk
accesses is 16.7 ms d̂ k

revolution), so that the compiling
of the goals and the loading of

Sijsrswsr —
~t °S1o"' *ht.™S

rate k transfer
th*

-"i .» .zziz zzz'Z'T'
processing,^"'" so^th't

~
time. The other mean available

normally process eve'ry^ item
and can execute at a sLwer rate

probably bearChimDiPerat0r could
2 implemented WifK slower memories ith

a truly "on £'flXp^tr for
IS interesting to see that ^
a case, sequential search " Such
5ood solution, as

sufficient performances S

simplifies the „greatly
reduces the memory sCe!^' ^

not need to be^ver^T f d°eS

«ill probably allow to f ™S

intersection in severaT"'! the
However, it will h0 • steps.
check wether^ such ."S?"9 t0
more suitable than the is

128 bits AND operator ^ °f *

Compared with other solnn
for relationnal database sill
and particularly pure finit '
automata, our solurTe finite state
powerfull, as n- " appear more
unification to be e allows full
fpy- Furthermore Pitae<J °n the
requirements are ouihe n memory

require a 256 X 256 array (64 K
bytes), if the data is analyzed
Per byte, and for 256 transitions;
hence the request can process at
most 256 bytes (transitions). In
our solution, with a tenth of the
memory, we allow 128 X 5 bytes
data items to be processed.

6. CONCLUSIONS.

Tbe on the fly execution of
e unification appears as an

important feature of the OPALE
project. A software simulation of

e operators (including the goals
compiler) is curently carrried
oup' bbe filter has been designed,
an will be realized by this year.

An important topic is the
parallel search strategy which is
anot er significant part of our
esign efforts. We are planning
°r 3 complete software simulation

the machine, including search
strategy and filtering. This „m

executed on a
*ultimicroprocessor machine. The

™,,1,lmplementation of tha filter

future alS° ̂ investi9ated i" the

lehh^0,6311 " CAPRI: A design
for ° ° 09y and a silicon compiler

altr^-^f1 circuits specified by
VLSI "3rd Caltech Conf. on vlsi, Marh 1983.

schou n!ii;on-,p- «•
-3-,,. relationnal database

.«r° /6ts "°A-h°'

Processing, june °1981

Tran -1 n t e r f ^' J' Minker' D*
languages lng Predicate logic
databases fnd relationnal
Programming int logiC

Marseilles = conference,
es, September 1982

•

217

David j. De Witt - DIRECT - A
mtiprocessor organization for
supporting relational database
management systems -IEEE Trans • on
Computers, Vol C-28. No6, june
1979

J.S. Conery, D.F. Kibler -
Parallel interpretation of logic
programs -ACM Conf. on functionnal
prog. lang. and Comp. arch.
Portsmouth, October 1981.

d. Gallaire - Impacts of logic on
data bases -VLDB 81

6. Gardarin - An introduction to
SABRE multimicroprocessor data
tase machine -6th Workshop on
comp. arch. for non numeric
processing, june 1981

Berger Sabbatel, J.C.
laneselli, Nguyen Gia Toan —A
PROLOG data base machine -In "Data
base machines", Springer Verlag,
September 1983

d-A. Robinson - A machine oriented
bogie based on the resolution
Principle -JACM. Vol. 12, No 1,
PP- 23-41, january 1965.

J* Rohmer - Associative filtering
by automata: a key operator for
data base machines -6th Workshop
011 comp. arch, for non numeric
Processing, june 1981

J' Roussel - PROLOG: manuel de
reference et d' utilisation
Kapport, Groupe d' intelligence
artificielle, Universite d'Aix
Marseille II, 1975

David H.D. Warren - Efficient
processing of interactive
relationnal database queries
ejtpressed in logic -VLDB 81

A PROLOG SYSTEM FOR THE VERIFICATION OF CONCURRENT
PROCESSES AGAINST TEMPORAL LOGIC SPECIFICATIONS

P.G. Bosco, G.GJandonato, E.Giovannetti
Centro Stud) E Laboratori Telecomunicazioni (C.S.E.L.T.)

VJa Reiss Romoll 274
10148 Turin, Italy

ABSTRACT

A system, implemented In Prolog,
the verification of dynamic

properties of concurrent processes
ls presented.

Descriptions of concurrent
processes with asyncronous
Munmicatlon can be checked
against dynamic behaviour
deifications expressed by
temporal logic formulas, under the
ypothesis that the whole

concurrent system can be modeled
y a nondeterministic

automaton.
finite

^ e show the implementation for
e basic components of the

J'trifier: the model checkers for
e chosen temporal logics, the

ho simplifier, the dynamic
semantics of the description

his paper presents a prototype,
"hi'h811 Prol°8> of a verifier
co c allows descriptions of
t f)7 r rent systems, equivalent to

11 etermlnistic finite automata,
, ^e tested for the validity of
dyaa®ic properties.

Queries are formulated in the
of anguage

ieri
the

temporal logic, which
as

universe
P rmits the classical properties in

of concurrent
'6, such as liveness,

ety> deadlock absence, etc., to

be expressed in a form that is both
concise and sufficiently close to
the intuitive concepts.

The language now used for the
description of concurrent systems
is SDL, the Specification and
Description Language defined by
C C I.T.T. (C.C.I .T .T. 1984),
whose concurrency model is based on
asynchronous communication tbroug
message queues.

We describe the implementations
of the model checkers for
linear-time and ^nching-time

inoir' we also otter a
survey of all the other components
of the verification^ystem^which

Sh°tem 11 general enough not to be
system is gen particular
dependent ^ by th

computational could
description a different

language, or eve the

- J- —" A

hardware system.

y XHE mMPUTATIONAL MODEL

At th*S Staf re interested in are
the models we^.nis t ic finite

S. «»«=
and Emerson

of our research

the nouu
automata or
system (Cla^g2) i.e.
Sifakis_ 1982)^ f in i te

consisting
states on

of a

which

1981,
models

set
a binary

220

accessibility relation r(S,S') is
defined, expressing the
reachability of the state S' from
the state S trough one of the
operations assumed as elementary in
the actual system considered.

A concurrent system where each
process can be modeled as a finite
automaton (e.g. by only
considering data types of finite
cardinality) is in turn a finite
automaton if communication is
performed through bounded
structures, like rendez-vous or
bounded buffers.

In this case the global state of
the system is the set of the local
states of the processes plus the
states of the memory elements
possibly present in the
communication structures.

The relation r among global
states is obtained by modeling
concurrency as the interleaving of
the elementary operations of the
processes.

2 TEMPORAL LOGICS

Different kinds of temporal
logics have been used to describe
concurrent system behaviour.

A major distinction is between
branching-time and linear-time
logics.

in the first case the structure on
which the logic is interpreted is
the state graph of the system; the
truth value of a formula is defined
for every state S in the graph and

function - determined by the
principal operator of the formula -
of the truth values of its

first-level subformulas in the
states of the structure which are
(immediately or by transitive
closure) accessible from S.
In the second case the

interpretation structure TS
originally a linear sequence of

states, i.e. a path in the graph;
therefore the truth value of a
formula in a state S is relative to
the chosen path starting with S,
and depends on the truth values of
the first-level subformulas in the
states of the path. However, what
one is often interested in is the
validity of a formula in a state S
(e.g. an initial state) relatively
to all paths (starting with S),
i.e. to all possible executions;
so the linear formulas are usually
intended as implicitly universally
quantified over the paths.

We do not want, in this paper,
to enter the debate linear vs.
branching; without committing
ourselves, for the time being, to
one kind of logic, we have taken as
references Clarke-Emerson's CTL
(Clarke and Emerson 1981) and
Manna-Pnueli's linear logic (Manna
and Pnueli 1982,1983), respectively
for the two points of view.

The primitive temporal
connectives of linear-time logic
are x (o), unary, and u
(until), binary; f (O) and g
(l_l) > unary, are derived
connectives, definable in terms of
the former. The primitive temporal
operators of CTL are, using a
variant of the original notation,
ex, unary and au, eu, binary; ax,

> e^« eg are derived connectives.

their We briefly recall
intuitive meanings:

x(F)

holds in a state S, on a path P
starting with S, iff in the
immediate successor of S on P P
holds.

u(Fl,F2)
holds in a state S, on a path P
starting with S, iff there is on P
a state S' where F2 holds, and in
all states of P "preceding" S F1
holds.

221

f(F) « u(true,F)
holds In a state S, on a path P
starting with S, Iff there is on P
a state S' where F holds.

8(F) • not(f(not(F)))
holds In a state S, on a path P
starting with S, iff F holds in all
states of P.

The branching-time operators are
the universal and existential
quantifications over paths of the
corresponding linear operators,
e.g.:

ag(F)
holds in a state S iff

on all paths.
g(F) holds

in S
1 in a state S iff g(F) holds
°n some path.

etc.

3 gOPEl CHECKERS

J^e have avoided, so far,
at ling the complex problem of the
Ms t ruction of a system with

active capabilities for these
hothCS' *b*cb woui(i suitably apply
v to concurrent program

and to synthesis from
fifications.
the Present concern being mainly

verification of completely
°«lbed systems, we

Preferred
have

simpler approach
on model checkers, i.e. Vision

the

the procedures which, given
iorniS?ate ®raptl °f system and a
„r_ a> determine whether the
i°rn jS':ruc'-ure is a model for the

iuJhe "core" of the Prolog
f0liementation, illustrated in the
gu owin8 paragraphs, is directly
cha8SSted by the fixed point

racterization of the temporal

af(F) * F or ax(af(F))
ag(F) = F and ax(ag(F))

These formulas are translated in

Prolog by means of a holds
predicate: so first order logic
(Prolog) plays the role of a
meta-language with respect to the
object language: the temporal

logic (Kowalski 1979).

3.1 BRANCHING-TIME LOGIC

The clauses for the operator ag

are:

holds(S,ag(F)) :- (1)
holds(S,[],ag(F)).

holds(S,H,ag(F)) :-
in(S,H),!.

holds(S,H,ag(F))
holds(S,P),
forall(r(S,S1), , ,.

holds(Si,[S|H],ag(F)).

The variable S contains the
state in which the temporal formula

ag(P) is to be proved, where F is
generic subformula.

The only use of clause (1) is to
a variable employed

^rlnc the computation to keep the
It (history) from the initial

path y; current one; so a
state up be recognized as
loop condition c game

. b.ubl. W L.». =f the

in predicate. automata, this
with finite state occurs on
situation eventually

every non-ending P

If

°Perat

components are
the state co ^ ̂

constant va ue 'mher predicate,
implemented as a represented by a
the path bei g when symbolic

list. In ^fnresent in the state
values may be P gg have to be
components, equa complex

or<s, i.e.:

222

constraints.

The forall predicate generates
all possible successors of the
state S, which are in turn to be
tested for the validity of ag(F).

forall(S.F) not forhelp(S,F).
forhelp(S.F) call(S),not(F).

i? proof of a8(F) succeeds when
F holds in every state and, for all
paths, a loop node or a terminal
node is reached. It fails as soon
as a state in which F does not hold
is encountered.

Clauses for th* af operator
(which is used, for example, to
express "liveness" properties) are-

holds(S,af(F)) (2)
holds(S, [] ,af(F)).

holds(S,H,af(F)) :-
in(S,H),! ,fail,

holds(S,H,af(F)) :-
holds(S,F),!.

holds(S,H,af(F))
r (S, S1) , ! ,

forall(r(S,S2),
holds(S2,[S|H],af(F)).

The proof succeeds when, for all
paths a state satisf ^ ^

reached; otherwise, it fails if a

loop where F is never satisfied is

found' " 3 temlnal state ^

T;»

holds(S,ef(F)) :-
holds(S,[],ef(F)>.

holds(S,H,ef(F)) :-
in(S,H),!,fail.

holds(S,H,ef(F)) :-
holds(S.F),!.

holds(S,H,ef(F))
r (S, SI) .holds (SI ,[S|H],ef(F)).

The logical operators and, or,
not can be decomposed as follows
(if we limit ourselves to a
propositional temporal logic):

holds(S,and(A,B)) :-
holds(S,A),holds(S,B).

holds(S,or(A,B)) :-
holds(S.A);holds(S, B).

holds(S,not(A)) :-
not holds(S.A).

3.2 LINEAR-TIME TEMPORAL LOGIC

The model checker for
linear-time temporal logic
primarily deals with existentially
quantified formulas like Epath(F).
This fits the existential mechanism
°f Prolog and avoids the explicit
use of the forall metaconstruct.
niversally quantified formulas
ike Vpath(F) are proved ab absurdo

as not Epath(not(F)).

A possible "brute force" method
for the linear logic could consist
o • 1) generating a complete path;
) applying on that path a set of
clauses similar to those defining

existential the branching-time
operators.
For instance:

holds([S|Path],<>(p)) :-
holds(S,P);
holds(Path,<>(p)).

major drawback of such a
met °d is that complete paths are
ui t even when the property could
be proved on a subpath. We have
then chosen to build the path
incrementally as in the original
ranc ing—time clauses taking into

account the fact that when the,

223

proof of a formula splits Into the
proofs of the subfornulas of a
conjunction (occurring In the
starting formula or generated by
the recursive decoaposltlon of
teiporal operators), all the
and-coaponents oust be tested on
the same path. So the subpath
possibly Instantiated by every
subfornula is Imposed to the
remaining subfornulas. This
behaviour Is obtained as follows:

, l _ l (F) i Pa t h ,P a t hne w)
h o l d s (S , [j , | _ | (F) , Pa t h , Pa t hnew) .

Wds (S ,H ,0 (F) ,P a th ,P a t h)
subpa th (IS1 Pa th 1 ,H) , ! .

h o l ds (S ,H , f | (F) ,
Path,Jsi IPa t h l]) t -

ho ld s (S ,F , Pa th , Nex t) ,
t b °x (S ,S l ,H ,F ,N ex t ,P a th l) .

c b o t (S , S l ,H ,F , (] , Pa th l)
r (S ,S l) ,
ho ld s (S l , [S | H) , 1_ | (F) , [] ,P a th l) .

c HS,S l ,H ,F , [S l l R] , Pa t h l) : -
ho lds (S l , [S | H] , l _ | (F) ,R ,Pa th l) .

In o rd e r t o p rove Epa t h I 1 (F)
e s t a r t by p ro v i n g F i n t he
c u r r en t s t a t e and s i nce F c ou ld i n
* J j r " b e t empora l i t m igh t
^ t an t i a t e a f u tu r e subpa t h Nex t -
u cceed lng o f F i n S enab l e s t he

t scu r s ive c a l l o f | | (F) on a n ex t
" a t e . w h i ch i s t h e f i r s t i n Nex t
1 " e x t i s no t emp ty , e l s e i t i s
de ra t ed by t h e a c c e s s ib i l i t y
r e l a t l on r .

^ o r ' b e <> ope r a to r w e have :

h o l l i s (S ,<>(F)) Pa th ,Pa th l) : -

b° ld s (S , [] , < > (F) , Pa t h ,Pa t h l) .

h o l d s (S ,H ,< > (F) ,P a th ,P a th) : -
s u bpa th ([H |Pa th] , S) , ! , f a i l .

b o l d s (S ,H ,<>(F) , Pa th ,Pa th l) : -
h °Ws(S ,F ,Pa th ,Pa th l) , ! •

o r

holds(S ,H,<>(F) ,
[S I (Pa th) , [S I IPa t h l]) : -

holds (SI , [S |H] ,0 (F) ,
Pa t h .Pa th l) .

holds(S ,H,<>(F) ,
[1 , I S I Pa t h l])

r (S ,S l) ,
ho ld sCS l , [S |H] ,<>(F) ,

[] , Pa th l) .

The l og i ca l ope ra to r s and ,
become now :

holds(S, and (A ,B) ,Pa t h Pa thnew) : -
ho ld s (S ,A ,Pa th .P a th l) ,
ho ld s (S ,B ,Pa th l ,Pa thnew) .

holds(S,or(A ,B) ,P a th Pa thnew)
holds (S ,A ,Pa th ,P a thnew) ,
holds (S ,B ,Pa t h ,Pa t h n ew) ,

Neg a t i o n
b y 3 C l t U lL fF Pa th) , because t he

« o t r o f i nd a pa th on wh ich F
f a i l u r e s a me a s f i nd ing a
ho ld s i s n ° t n o t (F) ho ld s . Th e
p a t h on b sh i f t ed , by
n 0 t ° P e r i t duaUty r u l e s , i n s ide t he

/ I - . C T? ">") P t h .P th l)
holds (S , no t (U

! ,holds (S . O (n o t (F)
Pth .F th l) .

P th .P th l) .

/ a -RVb p t h .P th l) : _

holds(S,not(or(A^))^ n o t (B))»

holds(S,not(F),Pth^Ptbl)^-

n o t ho ld s (S>F>" '

4 ATOMIC FORMUL AS

224

If we restrict ourselves to a
propositional temporal logic, the
atomic formulas are propositional
constants P»q,...; their truth
values in every state S, may be
defined by clauses of the form p(S)

q(S) which are
activated by:

holds(S,p) p(s).
holds(S,q) q(s).

• • •

or, more concisely, by:

holds(S,F) :- ^
atomic(F),X=..[F,S] , call(X).

The clause (3), where F is a
metalinguistic variable ranging on
the set of the above mentioned
propositional constants, implements
the transition from the stage
where, through the intervention of
a metalevel, written in Prolog
temporal formulas are evaluated, to
the phase in which, all temporal
constructs having been solved we
are merely in first order logic
directly handled by the Prolog
interpreter.

For an extension to the
predicative temporal logics, we
must add the handling of quantified
object-language variables.
With the constraint that the domain
of the variables is the same in
every state, an expression like
exist(x,F(x)), where F is a generic
temporal formula, holds in a state

iff there exists an individual k
in the interpretation of temporal

k°ofC;he'eC- M tndlvldual c°nstant

F(k) LiaJetVan8Uage> Such that
fqR? M (Bowen and Kowalski
982, Moore 1980). Instead of (3)
we have then: J

holds(exist(V,F))
objvar(V),

substituted,X,F,FX),holds(FX).

V and X are two metalinguistic
variables ranging respectively on
object-language variables a°d

object-language constants, which
are both individual constants in
the me ta-language. The clause
substitutes the variables x, y, ...
of the object language with a
Prolog variable X and, like (3),
effects the shift from the
metalevel to the basic Prolog
level, the proper instantiation of
the variable X being performed
directly by the Prolog interpreter.
Clauses for open formulas will be
accordingly modified:

holds(S,p(X)) p(S,X).
holds(S,q(X,Y)) q(S,X,Y).

• • •

or better:

holds(S,F) :-

openatom(F),F=..[Op|Args],
T=..[0p|[S|Args]],call(T).

5 FAIRNESS

In the model checker so far
presented, the interpretations of
some temporal expressions do not
always correspond to their

•MnaU±t"Ve meanings (e.g. the
ideas of a user interested in the

verafication of an actual
transition system),

kff \ look, for example, at the
a (F) formula, expressing the
eventuality of F and let' s try to
prove af(F) fn the simple
structure:

f ©
Since in the path [-F,-F] a loop

is recognized which never verifies
' the Pr°of of af(F) fails. It
must be noted, however, that this
answer would be right only if the
on eterministic choice between the

225

two transitions always fell on the
first and never on the second even
if both transitions are always
enabled.
Such a behaviour should be avoided
•ben dealing with actual
nondeterministic systems, where
transitions infinitely often
enabled are known to be eventually
executed, or more generally,
infinitely often reachable
predicates will eventually hold.
"e are thus interested in a "fair"
version of the af operator (in the
sense of (Quellle and Sifakis
*®)) which would validate the
formula af(F), in the previous
example,

^use (2) becomes:

holds(S,H,af(F))
ln(S,H) ,left(H,S ,Z),
«nber(X,Z),r(X,Y),not in(Y,Z),
nolds(Y ,H,ef(F)).

holds(S,H,af(F))
dn(S,H),! .fail.

"Jm entering a loop condition a
t eck fs performed, before failing,
ot the possibility of "exiting"
e loop (selected by the left

Peration) by proving ef(F), i.e.
F is reachable in at least one

Jbpath starting with a state In
th* loop.

, saf f le criterion_is applied to
J' '> and to the |_| operator in

^near logic, its model checker
based on the proof of

Xlstentially quantified formulas.

holds(s,H, |~| (F),Path,Path)
Su"Path([S |Path] ,H) ,lef t(H,S ,Z) ,
aember(X,z),r(X,Y),not in(Y,Z),
uclds(Y,H,<>(not (F)),
, [] ,Npath),
• jfail,

h°lds(s iH1 |- |(F) jpath,Path)
Subpath([S |Path] ,H) ,!.

^ese clauses for Epath. I I 0?)

"rule out" a loop, in which F is
always valid but the possibility to
"exit" toward not(F) is permanently

true.

6 DYNAMIC SEMANTICS OF THE
CONCURRENT LANGUAGE

We show in this paragraph how to
"program" the r relation in order
to reflect the dynamic semantics of
the concurrent language chosen for
the applications, assuming that
"interleaving" is a satisfactory
model for such semantics.

The language we are focusing on
is SDL (Specification and
Description Language), defined y

u r c T T T as a standard m the C.C.l.i.J--
the telecommunication field.
the purposes of this paper it is
sufficient to sketch the
features of the language, which are

to other language. designed
to describe concurrency.

A .y«» be rP"eptooS.«
fixed number 03- \ -

communicating hy
asyncronously each

" cont a in ing the input

messages for the process.^ ^ a

A basic executio for an

process is- . t^e queue;
acceptable «essag ^ operations
2) execute a s q ,ncoming message,
determined by tn in t is
"A"1 * , "S PL.e, called
reached; dura g^ opara t j lon, „y be
transition, Obvious meaning,
performed with the a process

D« ln5, ; .. message5 in the
can save rhev are, untii
leaving them able to trigger
it finds a mess^ current waiting
ao^nt?Si tTWs message is the one

actually consumed. ^ not

Messages on top point (i.e.
declared in the firing a

not "save^ *1 consumed without
transition) egg s tate.

226

As global state representation
we use a triple (Pes,Bfs,Vrs) where
Pes is a list of program counters
each one of the form p(Pname,Pc),
where Pname is the process name and
Pc its current "program counter"-

Bfs is the list of the input
queues, each represented by the
term b(Pname,[signal list]) and
VrS. *S the list of the local
variable sets, each represented by
v(Pname,[...,(Vname,Value),. . .]).

The main clause of the r
relation for the above described
concurrent system is:

r([Pes,Bfs,Vrs],

[Newpcs,Newbfs,Newvrs])
member(Mypc,Pes),
getname(Mypc,Pro),

getvar(Pro,Vrs,Myvar),

interp(Mypc,Mynewpc,Bfs,Newbfs
Myvar,Mynewva r)

substvar(Pro,Vrs,
Mynewvar,Newvr s)

subs tpc (Pes, Mypc, My newpc, Newpcs).

By means of the member predicate a
nondeterministic choice of the
process to be "continued" ls

performed;^ interp is responsible

from the ̂current Waiting poinf to

The interp predicate checks If
here is an available message i

the process queue. If s° "
corresponding transition •!
executed, provided that the m
w a s e x p e c t e d a t t h e w a i t * * *
Unawaited messages trigged fnP°lnt-
transition (4). 8 n

interp(p(pro,wpoint(S)) ,

p(Pro,Newpoint),
Bfs,Newbfs,
Myvar,Mynewvar)

rcv(Pro,wpoint(S),Bfs,Bufl Sidl
interp1(Pro.S.Newpoint,Sid ' '

Buf1,Newbfs,
Myva r,Mynewva r).

interpl (Pro.S.Newpoint, Sid,
Bfs.Newbfs,
Myvar,Mynewvar)

declared(Pro,wpoint (S),
input(Sid.N)),

trans(Pro,Bfs,Newbfs,
Myva r,My newva r,
input(Sid,N).Newpoint).

interpl (Pro,S .wpoint(S),Sid, (4)
Bfs,Bfs,Myvar,Myvar)

not declared(Pro,wpoint(S),
input(Sid.N)).

trans(Pro,Bfs,Bfs,Vrs,Vrs, (5)
wpoint(S),wpoint(S)).

t rans(Pro, Bfs, Newbf s, (6)
Myva r,Mynewva r,
ifstmnt(Expr,N),Newpoint)

eval(Expr,Value,Vrs),
simplify(Value,Result),
f ollows(Pro, if stmnt(Expr.N),

Result,Newop),
exec (Newop, Bf s, B f s 1, Vrs, Vrs 1),
trans(Pro,Bfs1,Newbfs,

Vrsl.Newvrs,
Newop,Newpoint).

trans(Pro,Bfs,Newbfs, (7)
Vrs,Newvrs,
Op,Newpoint)

follows(Pro,Op,.Newop),
exec(Newop,Bfs,Bfsl, Vrs, Vrsl),
trans(Pro,Bfsl.Newbfs,

Vrsl,Newvrs,
Newop,Newpoint).

The last three clauses deal with
the transition execution.

is used to terminate a
transition upon detecting the next
waiting point.

is an example of statement
e*ecu'i°n, namely the if—statement:
t e condition expression is first
evaluated according to the current
variable values and possibly
simplifiecj. then the branch
^.e^ted by the result is followed.
) holds for the generic operation

during a transition.

227

The send operation Is performed by
putting the signal Sid on top of
tie list (bottom of the queue)
representing the queue of the
addressed process.
rev tries to receive a signal Sid
frou the process queue and
eventually removes It.

sad(Sld,Pid,Bfs,Newbfs)
subst(Bf s, b(Pld, Que),

b(Pid,[Sld|Que] ,Newbf s).

rcv(Pro,Mypc,Bfs,Newbfs,SId)
•Mber(b(Pro,Que),Bf8),
extract (Sid, Que ,Quel),
«ot declared(Pro,Mypc,

save(Sld.N)),! ,
-ib(Pro,Que),

KPro,Quel),Newbfs).

attract predicate:

e*tract(Sid,[X|Y],[X|R])
extract(Sid,Y,R).

ettract(Sid, [Sid |Y] ,Y).

jellows the FIFO discipline. The
0jSt dement of the list Que (top

1 e queue) is extracted, and
kaA t-^e next possible

c trackings (due to the fact that
II e selected signal is to be Savoa" . , ° . ,

in the current waiting

He

Point)
Ptevious

extract repeatedly picks the

until signals in the queue,

"siting
lueue is

one acceptable in the current
point is found, or the
completely scanned.

' THE AMPLIFIER

det S ,previously said, for loop
te(,ect:^on we have to be able to
Stat8"!26 equalities between
exe SS! dn addition, during the
4Uti°n of an if-statement, we

obtain from the condition
JxPression' a result comparable with
:°®Pon branch labeling. When state

^ualit
'impi

lents are constant values this
y could be solved by a

"Pte syntactic comparison of
S' On the contrary, when

symbolic values are present
(corresponding, for instance, to
initial, not specified values for
variables), this method does not
work.
For example, the boolean expression
a, a and (a or b) are equivalent,
but not syntactically equal, and
the expression a -> (a or b) is
equivalent to "true ; if the
expression were the condition
expression in an if-statement, we
should reduce it to "true" in order
to follow the "true" branch.
The general underlying problem is
that of reducing expressions or
"proving equalities ,r°a
automatizations of the
data types (Huet and Oppen 1980).

For the time being, we have
built a toy simplifies based on
rewriting rules, at present on y
dealing with booleans (according hshtzs 2 £ S « . < R S IE Jr -r-sr
data-types.

0 p „ ™
the Problem of findi ^
axiomatizations^^.e.^.^ ^
rewriting at-t-v We have in
Church-Rosser P5°p d to use

.= of «
-Igorfth. (p.«lbly

implemented of the
Here we show th rewriting-rule
simplifier fe<j from (Bergman
activator,
and Deransart 1981

'"""'/ll'n •" t™"torS',F,l),

„ VI rul.fX.M)'1'
normalize(X,Y;

simplify^ h *
normalized,x;.

228

upto(N,I) N > 0, N1 is N-l
upto(Nl,I).
upto(N.N) N > 0.

Rewriting rules are described as
clauses like:

rule(leftside,rightside).

The simplifier works basically as
oiiows: if the term to be reduced

result tf " returned a result, otherwise, the term being
1x1, ...,xn), the simplification

reapplies to ffvl ^"^atlon
xl „ rlyl,...,yn), with
xi,...,xn previously reduced to
y • ,yn.

A sample of the rules for the

boolean data type is:

rule(not(p),if(p,faise,true)).
rule(and(p,Q),if(p,Q,faise))>
rule(if(true.X,Y),X).
rule(if(false,X,Y),Y).
rule(if(c,true,false),C).
ru (p,QjR),Lf,Ri)j

lf(P,if(Q,Lf,Ri),if(R,Lf,Ri)))>

8 CONCLUSION AND FUTURE
ENHANCEMENTS

' y ' L ™ i n " * « « .

'-'P..- of LVfSl'

For instance, generatino o
cifpi-o u seueracing a complete
state graph could speed up rht
verification of laroe 6

formulas. This can w8"8 °f
oo„„ln8 by

procedure, and asserting • r
instantiations. lts

Efficiency could be r

srj; -s- d
tne recursive

decomposition of temporal formulas,
all valid subformulas. In this
way. the proof of a temporal
operator has to "know" many times
whether a subformula holds in a
state, the validity test for such a
subformula only takes place once,
and leaves a "ground" clause in the
Prolog data base, which is rapidly
matched" the next times.

We are now extending the system
handle conditional

representations of states, deriving
from the execution of if-statements
w ere the exiting branch cannot be
eterained (because of the presence

o symbolic values). For example
in the following case:

true

.x > o:
false

if the variable x had the symbolic
va ue alfa the next global state
could be represented by the term
(alfa > 0,S1,S2), where SI and S2

^re respectively the states
eriving by the true and the false

branches.

E^°rtS '3e made to enlarge
, e set °f data types handled by

• j Amplifier and to find
in uctive rules allowing the proofs
° particular properties to be
carried out without generating the
whole state graph.

The modularity of the system,
e the clean separation of the
asic components, would hardly be

ac leved with a traditional
language; moreover the
Backtracking mechanism of Prolog
permits an easy implementation of

model ternl^n^St^C concurrency

Prolog is particularly suitable
°r 5de development of prototypes
°f this kind of tools at a stage

^ ere theoretical issues are
evai mg and the frequency of

-

conceptual rearrangement Is high.

REFERENCES

i, H.,Deransart, P. Abstract
Data Types and Rewriting Systems:
Application of the programming of
algebraic data types In Prolog.
C4AP81 Trees in Algebra and
Programming 6th Colloqlum. LNCS
'12. March 81.

'wti, K.A., Kovalski, R.A.
talgamatlng object language and
•eta language In logic programming.
Clark K.L., Tarnlund S.-A. eds. ,
Dngic Programming 153-172 Academic
Press 1982.

"•"•l.T.T. 7/XI Report of the
Paris meeting on the formal
Definition of SDL 1984.

Clarke, E.M., Emerson, E. Design
®nD Synthesis of Syncronization
leletons using Branching-time
emporal Logic. Proc. of the
orkshop on Logic of Programs.

IHCS 131 1981.

Person, i» E., Halpern, J.Y.
S»aetimes and not

te'isited:
linear

never
on branching versus

time. Proc. of 10th POPL
1-27-140 1983.

fuiila, M., Tanaka, H., Moto-oka,
' Verification with Prolog and

tenporal Logic. 6th International
ynposium on Computer Hardware
escripti0I1 Languages, Barbacci,

Ueh,— . lara eds., North-Holland 1983.

Gutti

229

Solving. North-Holland 1979.

Manna, Z., Pnueli, A. Verification
of Concurrent Programs: The
Temporal Framework. Boyer R.S.,
Moore J.S. eds., The Correctness
Problem in Computer Science.
215-273, Academic Press
1982.

Manna, Z., Pnueli, A. Prov^g

Precedence Properties. e

Temporal Way. Stanford Report
STAN-CS-83-964, 1983.

Moore, R. Reasoning about
Knowledge and Action. technical
Note 191, SRI International, 19»u.

Quellle, J.P. and Sifakis, J.
Fairness and Related Properties in
Transition Systems. A TemP°^
I oeic to Deal with Fairness. Acta
Informatics 19, 195-220, 1983.

Sifakis, J. A Unified Approach for
Studying the ProPer^^S £
Transition Systems. ICS
227-258, 1982.

taS> J.V., Horowitz, E.,
ser, D.R. Abstract Data Types

ai>d Software Validation. CACM 21,
Ko- 12, 1978.

®uet. G., Oppen, D. Equations and
e«rlte Rules: a Survey. Book R.

Languages: Perspectives and
Pen Problems. Academic Press 19

Kowalski, R.A. Logic for Problem

LOGICAL LEVELS OF PROBLEM SOLVING
Leon Sterling

Department of Applied Mathematics
Weizmann Institute of Science

Rehovot 76100, Israel

ABSTRACT

This paper demonstrates how
c'earj efficient problem solving pro
ems can be written within logic
P'ogiamming. The key point is the
consideration of levels involved, both
jo the problem solving itself and in
Je underlying lope. Three levels

knowledge necessary for intelli-
M problem solving are identified
~ a level of domain knowledge, a
^1 of methods and strategies, and
a planning level. The approach in-
roduced here relates these levels to
ae distinction between object and

®«ta languages. Two classes of pro-
are presented. Firstly, sin-

, problem solvers are intro-
uced. These are at the methods

an<* constitute a meta language
the problem domain. Finally flex-
s mnlti level problem solvers are
"ned which can be built as exten-

S!°ns of the single level programs.

1 INTRODUCTION

», There are many different pieces
knowledge needed to build pow-

r nl problem solvers. Knowledge
°ut the domain, knowledge about
e available problem solving meth-

f s nnd strategies, knowledge about
^ffiing plans from the methods,

paper claims that distinct lev-
exist for the different types

1 knowledge, and shows how to in-
°rporate this differentiation of levels

0 clear, efficient problem solving

programs.
Three levels are introduced - a

domain level, a methods Jewe/ and a
planning level. No formal definition
will be given of these and bound
aries between them are somewhat
fuzzy. However the three levels have
a hierarchic relationship, where the

SeS B3S£ SSf %e-three spaces, a strategy space,

main level introduced here.
order to discuss poWem^oW-

ing one needs ^ la here as the lan-
cate logic is cho. both the task
guage for repres^^f/^more ab-
of problem-solviTig ^ gtrategies and
stract entitle for using logic

1977) and (Moore ^ rjeasoning per-
cipal point is tha Ucitly repre-
Sed and°not hidden in fancy data
or control structure strk_

tion^8^- *+ iS mad6'

232

Logic programming has two aspects
making it ideal for problem solving -
a clear semantics as advocated in the
previous paragraph, plus a practi
cal language Prolog, for implement
ing the problem solvers. All exam
ples m this paper of problem solv
it prngr^ms Wili be given as Prolog
code. Background on the use of logic
for problem solving can be found in
(Kowalski 1979), whilst for program
ming in Prolog the reader is referred
to (Clocksm and Mellish 1981).

Choosing logic as the represen
tees fTgUage giV6S rise t0 f^ther
thV*nf n°Se+ ar,Smg from the notions of object and meta language
Trying to use the meta languSn
UsS ?nS°1Vmg Pr°grams is not new
Using the power of meta-level rel'
soning has always been a seductive
idea waiting to be exploited. Several
researchers have discussed how meta

intellkent00^ incorPorated into mr Is programs. Wevhranrh
(Weyhrauch 1980) gives a i
treatment and dLSa ™Sm
where interaction between the leveh
termed reflection, happens TW

1982lKTalsld ^Bowen and Kowalski

describing programs solving J)m'

bamlSl (BrdJ a°d Wd-
stated r̂iSTatu^Kr?
al. 1979) which aro k V dy et

tinguishing between objecTlndV?"
theories. Davis (Davis 19S ^
Stefik (Stefik 1981) dLcusstdud

S a concePts in expert systems.
This paper takes a new an

lem solving. A key idea ta the^

ciation of the methods level with a
meta language of the domain level.
More traditionally, the meta lan
guage of the problem solving domain
lSqfm0ClaFed Wi n COntrol< e g- (Da™ 198°) Even Bundy and Welham
(Bundy and Welham 1981) who es
sentially axiomatise a methods level
lor equation solving present their
work in terms of controlling search
of an object level space. Clarifying
the problem solving levels here puts
the work described above in perspec-
ive. And, as will be demonstrated,

the approach advocated here leads to
powerful, practical problem solvers.

A brief diversion is appropri
ate to relate this paper to the de
velopment of expert systems. I re-
nf F 6?Pert systems as a special case
, Problem-solving Pr°grams. Hence

ons from research in expert sys
tems are relevant for writing problem

ving problems in a logic program
ming framework and vice versa. The
innovation provided by research in
expert systems was essentially due to
he sort of problems tackled and the
PProach of achieving expert perfor-

Fdl«Cf * making Programs knowl-
hof lntensive. Expert systems have

n successful in domains where
snLlfi -r1ncu necessary is relatively

P ficial, but the domain knowl-
SoA 7 importance. Earlier
other h °J* Prob,em-solving on the
and M 1? f°r example GPS (Ernst
iijeffe11 1989), concentrated on
oowprM^1 developing and using

thJ} . 7 Davis in (Davis 1980)
!l6Xpert systems will need to be-

soning110''6 soPbist,'cated in their rea-

lows 'ayout the paper is as fol-
e next section introduces the

233

and meta levels in an infor-
. These are illustrated in

section with a simple
example, the plan-formation prob-
l« for the blocks world discussed

Iski in (Kowalski 1979) and
i 1981). The following two
discuss how problem solv-

jams should be written in
»programming as influenced by

of levels. Section 4 in-
level problem solvers,

uese are practical, efficient pro
ofs written at the methods level,
'®er ftan at the domain level, in
contrast to most expert systems. A
p'ttodology for writing such single
^programs is given in (Sterling

Section 5 shows how more
multi level problem solving

can be built in logic pro-
, J- Finally brief conclusions

Jte given.
2 OBJECT and meta levels

The aim of this section is to clar-
J the meaning of the terms 'ob-
.c and 'meta'. A language con-

. 8 °i a theory, that is a set of ax-
,,si and a proof procedure. The
Ject-level of the problem-solving

°®ain is a typical language. A
et! f Proce(Ture consists of a strat-
p tor enumerating the inferences

an!?Can ma(Te within the theory,
a computation rule for resolving

e ion-deterministic choices of the
rategy. An interpreter is needed
execute the proof procedure. A

tyCe logic program constitutes a lan-
ra8e - the Horn clauses (given their

arative reading) being the the-
iJ aQd SLD resolution (augmented
J a suitable computation rule) the

PCo°f procedure. Prolog interpreters
xecute this proof procedure using
ePth first search as the computation

"fie.

Two languages LI and L2 are in

an object-meta relationship if there
is a (partial) axiomatization of the
theory and proof procedure of lan
guage LI in the language L2. In this
case the terms object theory, object
language, meta theory and meta lan
guage have their obvious interpreta
tion. Informally the meta language
describes the relationships that hold
in the object language. Examples
will be given in the next section.

Introducing a meta theory for
an object language givesanaddr-
tional way of solving an object level
problem. Not only can the object
level proof procedure be executed di
rectly, but it can be simulated via its
representation in the meta 1
Mnre generally, a proof can contain
inferences in both the object theory
™ d m«ta theory. Crossing between
the object and meta levels be^_

terUvdintweyhraunch 1980). It is
^ twit solving problems by di-

metaUlanguageK There w 7ag)de^ebd

discussion in simulation
Sr^ecSScUext of logic

programming.

T^^w to^eh^'tbese logical^n-ssri ̂
Briefly, the most powen ̂ ,g rg_
curs when the m , ge for the
garded as a meta Jla * ible to

domain leveb - y. level as a meta
regard the• Planm^thods level, but
S°rTatio-ip remains to be ex-

blockCworld
This section consider^ a^ex

pie to illustrate the used 1S
troduced so lar. J-

234

a variant of the plan-formation prob
lem discussed in (Kowalski 1979) and
(Kowalski 1981). The problem is to
form a plan in the blocks world, that
is to specify a sequence of actions for
restacking blocks to achieve a par
ticular configuration. An approach
concentrating on the planning level
can be found in (Warren 1974) where
a general planning program is given
in Prolog capable of solving blocks
world problems.

Figure 3.1 gives the initial state
and desired final state of a blocks
world problem. The actions allowed
are moving a block from the top of
a block to a place, and moving a
block from one block to another. For
the action to succeed the top of the
moved block must be clear, and also
the place or block to which it is beine:
moved. 6

a
b 171
P q r P

Initial and final states of
a blocks "world, problem

Kowalski gives, in his own
words both a one-level and two-level
formulation. The one-level formu
lation in (Kowalski 1979) is essen
tially a domain level specification. In
(Kowalski 1981) however, he "em-
f a two-level representation us-

n6 obJect~level to describe the
individual states of the database and
usmg the metalevel to describe the
relationship between one state of the
database and a successor state."

-FigT g'Tes a Program for
solving the plan formation problem
nitio Tnf llf m the iigbt of the definitions of the previous section, com

paring it with Kowalski's versions.
No attempt has been made to im
prove the power of Kowalski's for
mulation. The only changes that
have been made are to clarify the
manifestation of levels as will be dis
cussed below. Edinburgh Prolog con
ventions are used throughout, see for
example (Clocksin and Mellish 1981).

plan form(Plan)
initial statefSl),
state_trans(Sl,S2,0,Plan),
final state(S2).

state_trans(S,S,Actions,Actions),
state trans(Sl,S2,Ac,Actions)

update(Sl,A,Ac,S),
state trans(S,S2,[A|Ac],Actions).

update(Sl,A,Ac,S2)
action(A,Sl), legaI(A,Sl),
not member(A,Ac),
transform(A,Sl,S2).

actionfto block(X,Y,Z),S)
on(X,Y,S), block(Z).

legal(to bIock(X,Y,Z),S)
clear(X,S), clear(2,S), X \== Z.

legal(to place(X,Y,Z),S)
clear(X,S), clear(Z,S), X \= Z.

initial_state([on(a,b),on(b,p),on(c,r),
clear(a),clear(q), clear(c)]).

final state(S)
member(on(a,b),S),
memberfon(b,c),S),
member(on(c,r),S).

clear(X,State)
member(clear(X),State).

«n(X,Y,State) '
member(on(X,Y),State).

bjock(a). block(b). block(c).
place(p). place(q). place(r).
Figure 3.2 : Program for the plan-
tormation problem

235

Kfj procedural are slate Iran*
ud update. The predicate
rtit(tr*oa(Sl,Sl,Ac,Plafi) ts true if

t$ t plan of actions, (Man, trans
forming date SI into state St. Note
that SI and S2 name stales. The
third argument, Ac, ia an accumu-
lator of the action* performed ao far,
Mwwsry ho avoid looping through
previous states A more powerful
problem solver would keep a list of
former stales rather than former ac
tions. This introduces the problem
of determining when two states arc
identical and is beyond the scope of
Kowalski'i program. The predicate
opdatef State .Action, Ac ,Ne wStatel
B true if State names a state, Ac
tion an action, Ac the actions per
formed so far and NcwStato names
tbr state obtained by applying Ac
tion to State. Attempting to satisfy
the update goal simulates the per
formance of the action in the blocks
world.

The names chosen here to rep
resent states are very descriptive -
jost a list of the facts which arc
true. For example the 'name' of
the initial state is lon(a,b), on(b.p),
°D(c.r), clear(a), clear(q), clear(c)|.
Such names have an advantage that
they allow easy testing whether facts
?fe true in the states being named,
'or example to know whether a par
ticular block, X say, is clear in state
'•one tests whether the fact clear(X)
is a member of the list of the name of
state S. The predicates clear and on
have been thus defined in figure 3.2.

This is slightly different from
Kowalsld's approach, who introduces
a predicate demonstrate(X,Y) (demo
for short) which for the current P'®
'sin is true if Y is true in state X. For
example, to test whether a state S is
a final state would be written as
final gtate(S)

demo^S.Gl), demo(S,G2).

where G1 and G2 name the terms
you want to be true, namely on(a,b)
and on(b,c). Kowalski also uses the
demo predicate to make explicit the
use of reflection. Using demo avoids
the need of defining separate test,
predicates for each predicate such
as clear and on, but is likely to
yield inefficient programs if all opera
tions must go via the demo predicate.
Such considerations will become less
important if work on automatic pro
gram transformation advances.

In the program of figure 3.2
changing the state of t e
is done by the procedure trans-
form(Action ,S 1 ,S2). SI is the list of
facts used to name state SI, while S2
is similarly the list of facts naming
S2 There are different ways of writ
ing it but all essentially just remove
ill facts from the list SI that are
no longer true and add the lists that
have become true to obtain the lis
co Kowalski similarly updates the
||obd dSabane via add and delete
predicates.

How do the different levels ap
pear in this example? The mamfes-
tation of logical levels has already
Sen indicated. The predicates up
date and state.trans aremherently

(tuage 'SteXe problem tt form-
fug a plan has been solved by sim
ulation in the meta language rather
than direct execution in the object
language. .

The distinction between Simula-
Lion and direct execution W
be obvious here due to th
plete axiomatijation of he ^
language proof proceau , the
blocks to change the wo^ ^

IgllJsK

236

nna all the possible actions. Here
they are just tie simple domain level
operators. In general only a partial
axiomatization might be given. The
examples of the next section have an
incomplete axiomatization of the ob
ject language proof procedure in the
meta language. This leads to effi
cient programs for solving equations
and proving theorems.

Wiere do the problem solving
levels fit in? This is not a rich ex
ample in terms of knowledge needed
to solve the problem. The meth
ods level consists of only two simple
methods, moving a block to a block
and moving a block to a place, which
are a direct translation of object level
operators (Kowalski only has one
method the extra one here is only
for illustrative purposes). A methods
level more generally would consist of
more interesting strategies not neces-
sar, y directly obtained from obS
erel operators. For the blocks wild

such methods are reversing the order
of a stack of two blocks, or build
ing a tower. These methods woufd
be axiomatized m the same way as
to block and to jilace.

Structure or knowledge related
to planning is also minimal in the
program. Further it is present im
plicitly rather than explicitly. Exam
ples of such planning knowledge aTe
structure of methods and preferred
order of methods. The methods can
aHHPeC^d. f°r examPle in terms of
add and delete lists, namely the list
of facts made true bv the mom j
and the list „,facLbio^grS
Here they are built into the trans
form predicate. The to block JtbL

Sd'^il?the to-p|ace
list nf J7 appearing first in the
list of actions. So the planning level
doesn t explicitly exist here. It fe
shown in section 5 how such implic t
levels can be made explicit P

4 SINGLE LEVEL PROBLEM
SOLVERS

In this section we consider how
these notions of levels get translated
into problem solvers. The naive
view, adopted by the early expert
systems, was to have only one level,
a domain level full of knowledge, and
a simple proof procedure to find con
sequences of that knowledge. Con
cepts of object and meta language
were not considered, and the prob
lem solving domains were such that
methods and plans were not partic
ularly necessary. Davis (Davis 1980)
claims that such an approach is fun
damentally limited.

A more promising approach,
still only using one level, is to think
in terms of methods rather than do
main knowledge. The program of the
previous section was a toy example of
such a program. When a reasonably
comprehensive set of methods can be
found for a problem solving domain,
a powerful single level problem solver
can be built. In terms of the three
problem solving levels introduced in
this paper, only the middle one, the
evel of methods and strategies, is ac

tually present. However, by incor
porating the concept of object and
meta languages one can understand
where the other levels fit in. Axiom-
atizing a meta theory rather than an
object theory to aid in problem solv
er®,,8 been described in (Bundy and
Welham 1981).

What happens to the other lev
els in such single level problem
solvers? The domain level becomes
axiomatized in the methods level,
hat is the methods level constitutes

a meta language of the problem solv
ing domain. All problem solving

en occurs via simulation in this
me a language. The power of the
problem solver then depends on this
axiomatization. In general there is

237

iwdeol belwwn efficiency gained
*rao only pvbtlly axromaluing the
jouii level iwi completeness
ie final problem solver In princi-
lit ok can attnulaie the complete
S* level proof procedure in the
i(t»lanjuaje but thin leads to inef-
foesi program*. Axiomatiung com-
plexctrntegies in terms of simple do-
nain actions lends to efficient pro-

uus.
The planning level is treated dtf-

ently. It becomes 'programmeet
«the methods level using knowl-
ge of the behaviour of the inUr-
eter for the methods level ror
•iting problem solvers in Prolog,
is means using the order of clause's
»procedure, and the order of liter-
«in the body of a clause to convey
>e planning information- k°r »u»"
tiently simple domains, this plan
ing information can be expressed
leanly. In (Sterling 1984) a method-
logy is described for building these
ingle level problem solvers.

In order to gauge the appro-
"ateness of this approach, let us
onsider some examples. A power-
il single level problem solver has
**n built for solving symbolic equa-
ions. The program, PRESS, has
»en written in Prolog and described
" (Bundy and Welham 1981) ana
[Sterling et al. 1982). PRESS re
gards the domain level as manipu
lating algebraic formulae according
to rules of algebra. Methods are ap
plications of rewrite rules to proc uc
a particular effect, for example is
lating the occurrence of a varia
on the left hand side of an equa
tion. Plans are sequences of metn
ods. Arguments establishing
vantages of using a meta language
the particular case of equation
ing have been made in other p
The benefit of using simulation at
meta level to solve symboli d,
tions has been argued in (Bundy ana

Welh»." MM).
tions are then so ve y ̂ sterling

Tte "'Wins,
i n» rli»Hcribed in (Sterling themsdves are ^ noted

ct al. 1WUJ. aUowg a new
however that hin^^g bcen done(

l^^fuTrrle/diSerenOy

here

on resolution, aXioms for a
Inference ru\e • the0rems are
theory are 8ive° • the inference
proved by app. * ^ is hard to
rules to the axio • ^ theorem
express strategic- i essive theo-

S^foJrbeek, McCharen and

WO' 1876'' ,h suggested here is
The appT,°al1evf and axioma-

to add a methods! . withm
tire the theorem what are the
this methods proving? An ex-
methods in theorem P 4 l gives
ample is >nductl° am code for imple-
a sample of Prog lt illustrates
rnenting this metho ̂ prQgr
the power of sing VlG planning mfor-
but also e^esse about the full
mation. More particular mduc-
program, and \hebe
ti°n proof P^u and Bundy 1982)

p'roveby
struct induction^^^^^ ^

^is>-fTto'scbeme)-

238

("J
prove step casefThm,Sc) •-

step_version(Thm,Sc,StepV.
ProgHyp),

neg and skol(StepV,G,Ass)
md-hyp(Thm,Sc,IndHyp),
pZfH$:Ass'ProsH™'

(iii)
pro1TnfG]^Sc^As^ProgHyP'IlldHyp) unfoMhypCProgliypPerfRecj

fold goaI(G,GPerf,GRec),
E^P1yr11?d-iiyP(GRec.IndHyp Gl)
es^hh^Mp((n,sc,Rec,G2) j'
ad/Tgoal(G2,GPerf,G3), '
estabhshstep(G3,Ass,Sc,

Perf,Rec).

Figure 4.1 : A fragment of a program
to prove theorems by induction

this (Sk?%\the,leTe,S manifest in „ms code!" the planning level is in
corporated in two ways. Firstlv bv

daus^C?! '• ^ « clauses. Clause (i) m figure 4 , , „
how to prove a theorem by induction
StJ mUSt find a suitable induction scheme, prove the base case

in„ f^Vb St65 CaSe" Before Paving the base and step cases it ;<*

j! y'"'0 order of the™teS°

^rr°¥'S th'ir preferred

n the next section in the context nf

or doS
?ns are axiomatized in tacties

W 'V'"'" lfce relationship bt

doced b? BurstalfS'ftS-

for programs expressed as first or
der recursion equations (Burstall and
Darlington 1977). Bundy adapted
it for simply recursive logic pro-
grams - the adaptation is de-
looiff (Sterling and Bundy
/u i' articular instances have
the form fold(Clause,Recurse,New),
where New is the result of folding

la use with respect to its recursive
definition, named by Recurse. At-
empting to satisfy a fold goal will re

sult in the fold transformation taking
p ace by simulation. How that is im
plemented is irrelevant to the prob-
em solver, all that is needed to know

is that a fold step has been done.
e predicate, fold_goaJ, appearing

in clause (iii) jn figure 4.1 invokes the
told tactic for example.

The structure of the code of fig-
**re,, , ® a result of polishing the

ethods of theorem proving. There
as been an organization step where
e Plan has been clarified and re

amed to such an extent that it is
adily expressible in a one level pro-

gr?.m- 't should be noted that such
polishing proceeds naturally by top-

own program development. The
i °Fr wn nature of the development

,ue f° thinking at the methods
e rather than the domain level.

lorv. ^°metimes a single level prob
ed . ^er suffices for the problem
prf,V!n® ,tas^- This occurs if a pow-
fnr +uSet, methods can be found
„ e domain. In this case, there
t_ , s ° be little point in adding ex-
nino-eVf *i° complexity, such as plan-
iMY hey are not needed in solv-
sbnw e Pr°blem. For example, it is
a nl D ^°W add fFe framework for

^mng level for equation solving
nrnie+KeXt Section- If it doesn't im-
t>ip ^ equation solving ability of
. Pr°gram there is no need to in
corporate it.

What conclusion can the builder

239

of an expert system draw from
this? How can he determine a pri
ori whether his domain will be suf
ficiently simple that a one level pro
gram will suffice? There is no ob
vious answer, but nothing is lost by
writing as if the domain were sim
ple. My experience leads to the con
jecture that the clarifications of diffi
culties in the problem solving domain
that will be raised by trying to write
a one level program will be directly
useful when writing a multi level pro
gram. Writing programs in this way
is very much in the style of structural
development (Sandewall 1978).

5 MULTI LEVEL PROBLEM
SOLVING
Single level problem solvers are

inadequate in general. The uniform
proof procedure needed to execute
them is usually too inflexible. This
inflexibility was commented on in
the early days of automatic theorem
Proving by many, for example Hayes
(Hayes 1973). He believed in control
ling logic with logic, a view agreed
with here. The problem is how to
implement it.

One approach is to add an extra
control level. The earliest proponent
(or this approach in expert systems
(s Davis (Davis 1980). He argues for
introducing 'metarules' as a way of
adding control. In terms of the lev-
sis discussed here, it means adding a
meta language to the domain level
within which one expresses control
of the domain level proof procedure.
Figure 5.1 gives a metarule used by
Davis in (Davis 1980) and suggests
its translation in logic programming.
The translation is not exact due to
the different contexts. For exam-
Pie, considering rules with uncertain
ties, important in the expert systems
studied by Davis, is not part of the
general problem solving style in logic

programming.If
[1] the age of the client is greater

than 60,
[2] there are rules which men

tion high risk,
[3] there are rules which men

tion low risk,
then it is likely (.8) that the former
should be used after the latter.

prefer(Rulel,Rule2,Context)
lowjrisk(Rulel),
high_risk(Rule2), ftft

client_age(Age,Context), Age >

Figure 5.1 : A meta rule of Davis
expressed in logic

This approach of equating the
meta level with a general control
level has been adopted into logic pro
gramming by Gallaire and Lasserre
trrilaire and Lasserre 1982). iney
have defined a set of control pruni-
tives and propose adding metres
to programs to improve performance
in the way advocated by Davis. Wri
ing an appropriate interpreter is an
other way of adding a control level.
Tn fPereira 1982) a methodology is
riven for writing interpreters m logic
for controlling logic programs.

Using the meta language as a
control language,

gerferal-purpo^e tools and techniques
rather than building an integrated,

d0mt?theTxpCertsys'tem experience

formation such as incorpo-

fcates themsid^8 rather than in gen-

240

era] purpose primitives. When devel
oping programs I find it more natural

level version. The differ f „mu'ti
of knowledge (about J forms
^d the ImiL) ean T"' meth°ds

about in distinct ways bVeafoned

Pie each knowledge level added*0''
quires its own interpreter Thel T
lem is mcornoratintr in j-«. prob-
terpreters efficiently We S?1 in"
how this can h* . discuss
considering low the Muatlon^oE''7

^ofomnTtrre^ograr''6^

»f aLrlanni„g°tSr Edition
tion solving program n Ta"
level goal of PREqq • f°P-
solve(Equation X SohiT Vrocedure
Procedure is SenHal °Hv This

Preter for the eau S '7, the ^er-
ods, and is Lecntrf V ^ngmeti"
iinterpreter. To begin at t h Pr°'°g
nmg level we simiifi tile P'an-
level procedure for tb 1need a top
which can agaL b A Pl?Dnine level
'»«. Some siSSetrfor S V Pro'
given m figure 5 2 task is

Pla"Ds°'y(E<!".X,Solution) -
choose p afe(Ew,X, Plans), choose pianiPnn or ' ns)

S^rfe-aplM.

applicable plans Predicate,
able plans f0r tC? ?Qd the s™t-

the equation. These

"valfabl^ itakeD fr°m 3 ,ibrary ol
basi ' of i? ,8' or generated on the
..i be features of the partic-
form e5Uatl0,n- SPecific planning in

flation about equations would be
Dredicat appropriate. The next
the rH choose plans, would filter
st„ p,an3 ar;«'ng from the previous
tic?^ M uelect one' Various heuris-
ofnl»n encoded as to selection
then th' T 'e predlcate, solve/4, is
levJl i! mterface to the methods
renli /!? equation is solved. It
ternr f5 r predicate solve/3 as interpreter of the methods level.

spntod°W j\ P'a? wou'd be repre-
„ aud how it would be used by
m^n ?0df ,evel wou,d yary from do-
: ? ^main. For equation solv-
i« g amS1™P e representation of plans

fficient to achieve the perfor-
nincr^ pRESS. I added a toy plan-
wprf 6 to PRESS where plans
nlanri\jepresented by the structure
StPnc^^i6' Preconditions, Method-
,n F,/' "e preconditions were used
Tbo rf j OICe °f appropriate plan.

Predicate solve was written as

solve(Equation,X,Solution,Plan)
P'f.^P'aUi^MethodSteps),
eall(MethodSteps).

sto™</n ^ac' 'be appropriate method
solot; Were ^aken directly from the
nrlrriii prpced.ure of PRESS. This
Drnvo IV p ann.InE level did not im-
of prpcc equation solving behaviour
the program^ ^ Contrary jt s,owed

, Pte knowledge oriented multi
univppi)^r°acb advocated here is not
fGallai 3 accepted. In their paper
level Passerre 1982) on meta
give a 0, r°k Gallaire and Lasserre
proacLs" oUrV^ °f different 3P"
what ti, ' w1" View 's closest to
ing ti,6^ j3 knowledge structur-

s- 1 ney disregard it after saying

241

tlx following. 'Instead of talking in
iff mi of interpreter behaviour, they
talk in terms of levels of perception
of the world (e.g. objects, assem
blies, equations, heuristics,...). As
no general agreement has yet been
reached on a world structuring lan
guage, they are led to build their own
language and interpreter."

What they imply is a flaw I
claim as a feature. The difflculty in
building problem solvers is represent
ing the relevant knowledge. In logic
programming that means axiomatia-
ing the problem domain. Coming
op with an appropriate axiomati-
ution is essentially building a lan
guage Solving problems from dif
ferent domains usually requires dif
ferent views of the world, and hence
different languages, it is also true
that in principle each domain needs
its own interpreter. But building an
interpreter in Prolog is not an ex
pensive overhead. Tioth the inter
preters, for the planning and meth
od* level described above, are Pro
log programs where the difficulty is
in understanding the domain, not in
specifying the control.

Consider another example taken
from (Silver 83) where a program,
LP, is described capable of learning
to solve equations from worked so
lutions. Given a worked example,
LP builds a schema for solving the
equation, which consists of a list of
methods to apply. To solve a new
equation the predicate schema solve
i* called, a simplified version of which
appears in figure 5.3.
schema solve(Eqn,[M|Ms],X,Ans)

apply. metnod(M ,Eqn ,X ,Newl,
schema solve(New,Ms,X,Ans).

«chema_solve(Eqn,_.X,Ans)
sol ve(Eqn ,X, Ans).

Figure 5.3: Applying a learned
schema to a new equation

The predicate 8chema_solve is at
the planning level of equation solv
ing. It decides to try to apply a
schema first, and if that is unsuccess
ful calls the usual solve procedure. In
order to apply a schema, one must
apply the methods contained in the
schema. How to apply methods, the
predicate apply.method, is again at
the planning level, where the rele
vant information can be appropri
ately expressed. Thus LP can be re
garded as a multi level extension of
PRESS.

A similar evolution is possible
from the theorem proving program
described in figure 4.1. A program is
being developed (Wallen 1983) which
expresses the fine detail of an induc
tion proof plan. The initial program
had insufficient expressive power to
control the theorem proving process,
and thus the single level program
is being expanded into a multi level
one.
6 CONCLUSIONS

We have discussed various no
tions of levels of problem solving -
arising both from the problem solv
ing task itself and the logic used to
implement it. Powerful single level
problem solvers are presented where
the relationship to the other levels
i8 made clear. Such programs are
at the methods level, and constitute
a meta theory for the domain. In
telligent, flexible problem solving re
quires inferences to be -S®T~
oral levels. It is shown how the single
level problem solvers can be embed
ded in multi level problem solvers,
where implicit knowledge is made ex-
plicit. mri

ACKNOWLEDGMENTS
I would like to thank Ehud

Shapiro for most helpful suggestions
on earlier versions of this papec The
referees were also responsible for im-

242

provements. The author is currently
tofStno^0" ̂ P°StdoC"

REF EREN C F.S
Bowen, K. and Kowalski, R.
Amalgamating language and meta-lan-
Pre^-igsT" Pr0grammin^ Academic

Bundy, A. and Sterling, L. Meta-level
inference in Algebra. Research Paper
™ i Department of Artificial Intelli-
g n6e, University of Edinburgh, 1981.
Bundy A. and Welham, B. Using meta-oiiss"

Wei inference' ProwTdingTof IJCAl"
6, pp. 1017-1027, Tokyo, 1979
Burstall, R. and Darlington, J A trans
formation system for developing r^
sive programs. J. ACM 24, 44-67 1977"

Ernst, G.W. and Newell A rps *

£sar£AS?!S?,ai'»W
Gallaire, H., and Lasserre c \a *
alevel control for IntnV ' Met-
Programming, pp ni-igf*1?*' ^ogic
Press, 1982. 17-W85, Academic

Hayes, P. Computation and deduction

»frSXST9?r-'c-™'

Suc»KtX»°!MiP'X

NoS-ttJutdTfOT0' P'0bl«m So*™*
Kowalski, R. Prol
gramming languaa-e p^f A• glc Pr°-
Congressfpis^f^p AICA

Moore, R. The role of logic in rep
resentation and commonsense reason-
info roceedings AAAI-82, pp. 428-433, 1 coj.
Overbeek, R., McCharen, E. and
Wos, L. Complexity and related en-
ijfW®Tent,s for automated theorem-
proving programs. Comp. and Maths,
with Appl. 2, 1-16,1976

I ereira, L.M. Logic control with logic.
Proceedings First International Logic
, «°?ramrn'nK Conference, pp. 9-
18, Marseille, 1982.

Sandewall, E. Programming in an in
teractive environment: the LISP expe
rience. Computing Surveys 10, 1978.
Silver, B. Learning equation solving
methods from examples. Proceedings
IJCAJ-8, pp. 429-431, Karlsruhe, 1983.

? m t 5 ? P l a n n i n g a n d m e t a - p l a n n i n g
(MOLGEN: Part 2). Artificial Intelli
gence 16, 141-170, 1981
Sterling, L. IMPRESS - Meta-level con
cepts in theorem proving. Working Pa
per 119, Deparment of Artificial Intelli
gence, University of Edinburgh, 1982.
Sterling, L. Implementing problem-
so ving strategies using the meta-level.

roceedings 4th Jerusalem Conference
on Information Technology, May 1983.
Sterfing, L., Bundy, A., Byrd, L.,

Keefe, R. and Silver, B. Solving sym
bolic equations with PRESS. Computer
Algebra, LNCS 144, pp. 109-116,
Springer-Verlag, 1982.

Sterling, L. and Bundy, A. Meta-
- e inference and program verifica-

" n: Proceedings Sixth Conference
nn i^°^ated Deduction. LNCS 138,
PP" 144"150, Springer-Verlag, 1982.
j„ B- Using proof plans to control
deductmn. Research Paper 185. De-
partment of Artificial Intelligence, Uni
versity of Edinburgh, 1983.

^ra"en' D.H.D. WARPLAN - A system
7fi gePerating plans. Research memo
p.-* department of Artificial Intelli
gence, University of Edinburgh, 1974.

thpnrJaipC^' Prolegomena to a
A riifiV• 1 rmec,^aD'zed formal reasoning.

ficial Intelligence 13, 133-170, 1980.

USING SYMMETRY FOR THE DERIVATION OF LOGIC PROGRAMS
Anna-Lena Johansson

UPMAIL
Uppsala Programming Methodology and Artificial Intelligence Laboratory

Department of Computing Science
Uppsala University

P.O. Box 2059
S - 750 02 Uppsala, Sweden

ABSTRACT

In & programming calculus the for
mal development of a Horn-clause logic
program implies a derivation of pro
gram clauses from a set of definitions,
of data structures and computable func
tions, given in full predicate logic. A
logic program is composed of a set of
program clauses. Each program clause
is derived separately from the defini
tions. Mostly the derivations differ in
structure for the different clauses. How-
over, there are cases when two program
clauses in a program are similar, ex
cept for some small difference, such that
they can be transformed into each other.
Since the derivations can be lengthy we
would like, if possible, to avoid con
structing both the derivations. There
fore, after constructing a derivation of a
program clause, we would like to be able
to answer the question whether there is
an analogous program clause, and if so,
we would like to know its appearance
and the substitution on which to base
wi application of the substitution ru e.
In the paper a way to answer this ques
tion is discussed.

1: This work is supported by the
National Swedish Board for Tec nica
Development (STU)

1 INTRODUCTION

In a Programming calculus (see for
example Hansson and Tarnlund 1979)
the formal development of a Hom-clause
logic program *, implies a de»vatl0J
program clauses from a set A of defi
nitions about data structures and com-
nutable functions, given in full predi
cat. logic (»«« Erif0"1' >
Tarnlund 1983, Hansson 1980, hlogg

1981)

A\-*-

A logic program is composed of a

tions, Si, e

Si b*l A-A*m

that is
Si b

Si b

244

In general derivations can be quite
long and there is always a good idea to
be on the lookout for shortcuts. Ana
logy is a method of exploiting past ex
perience and as such a frequently used
method in deductive reasoning. In the
area of theorem provers and derivation
editors work on the concept of ana
logy is rare (Bledsoe 1981). An excep
tion is Kling (Kling 1971), who describes
a paradigm for reasoning by analogy
used by a first-order resolution theorem
proven given a theorem E and the de
duction Di DnhE and a conjecture F
the analogy between E and F is used to
find the set of premises from which the
conjecture F is derivable. In the area of
program modification and program de-
ugging, analogy has been used both to

transform a given program into a new
program and to transform an erroneous
program into a correct program by find
ing and using an analogy between two
se s of specifications (Dershowitz 1978)

In a situation where we have con
structed a derivation of the program
clause we would like to know if we
can exploit this work to get another of

Program clauses by analogy. The
program clauses are derived from the
same set of premises. Consequently we
are looking for a substitution that trans
forms program clause 0(into a new pro
p-am clause and each definition back
to the same definition.

This paper discusses how we can
identify the above situation, and fur
thermore, find the substitution that
transforms the derivation of one pro
gram clause into a derivation of an anal
ogous program clause.

2 SUBSTITUTIONS

2.1 General definition

Let us assume that we have a
derivation of the formula E from the for
mula* A £>., i.e.

A D.h E.

We can substitute formulas for predicate
letters throughout the formulas Z>,
D* • E< respectively, giving A* Dm',
£*. Provided that the substitution is
free and all anonymous free variables of
the substituting formulas are held con
stant in the deduction, then according
to the formal substitution rule for the
predicate calculus (Kleene 1980) we have
a deduction of £• from A*, i.e.

A\...,A*(-£*.

Consequently, to convince ourselves
t at there is a deduction of £* from
A , Dn we need not, although this is
possible, construct the derivation itself;
instead we rely on the fact that there
13 a derivation of E from A A and
a transformation from Ato
A respectively. We say that
here is an analogy between Dl,...,D%}E

and A* A.MJV

2-2 Special case of substitution for
derivation of logic programs

Consider the case when we are
envmg a logic program from defini-
ions about data structures and defi-

ni ions about computable relations or
unc ions, as formulated in the introduc-
lon. he definitions correspond to the
ormu as £>,,..., dm jjj prevjous gub-

sec ion, the program clause corresponds
f e consequent E. Each program

clause is derived separately from the

245

Mostly the dwivalioo »f«
li tk dmvaUoo of » program elau**
i dim a structure from tb* dtriw
u» trsr for» derivation of anoth er pro
ps cImm *, A special £•••
tin that • is analogy between pro
ps clutM #, and •,*, it tber* » *
itktttUoe ibat transform* #« into •,*
Or problem a now to Bod tb« *ub*ti-
Ww Srnec wt war.I to u»* tb* aamt
Itblou wt want to Bod a *ubstitu-
itsmck that, wbrn it » applied to tb#
Willow, it gives back tbt definition*
adUrtd except for a reordering of con-
J*act»na, disjunctions, and renaming of
Wd nriable* Tbat a, tb* substitu
tion hu to preserve tbt itructurt of the
WtutiUonr Every traoifonned defini-
'** K' a a predicate letter formula in
tkeume predicate letter* a* tbe defini-

V Consequently, tbe substitution
b»> to transform K back to iUelf; it ba*
to be automorpbic

Two important case* where the
tb°*e propertie* can be found are

•when a relation i» *ymmetric, i.e.
for a predicate letter p we have
t-Ha»l - »>(*,•) (•« the example of
merging two li*t» in eection 3) or

- when two formula* can be ?on«i»_
tently interchanged (cl. princip
of duality in projective geometry
(Coexter l»6fl)); if we have a sub
stitution of a predicate letter r(o, M
for a predicate letter »(».«•) we also
have the simultaneos J^kstitutmn
of fis,6) for r(a,6) (see the example

of splitting a list in section 3).

By studying the definitions we ar
sble to decide if there exists a substi
tution that gives an analogous P106**™
clause and moreover to conclude a

there i* a derivation of the analogous

clause

, SYMMETRIC DEFINITIONS

Ut us look at three examples of
program derivations. The first example
' ̂program that merge, two ordered
list* into one ordered list.

The following definition of the

sssrrwtaxM
more.

Definition di«

V x V u V i l m e c f e * * \ »
V ordered _ A

ordered.list(v) A
ordered. !»*(*) *
Vo(o

^ the definition of merge

. . JS tSS- -W —
ordered.Ut^de-

list can be e ^ the ijst u.x,
empty list is or ^ element and x
where u den ^ list) ^ ordered if,
dTlK,| if 'every element on the liet »

then or is
:,?nd.hVh.'.»»''"-d

Definition St'

ordered-H'tW

VuMordered.Uti^
v»(o e x -* u -
ordered

An element • » ^"jJj^iy if,
member of the list u.x if,

246

either t> is equal to u, or o is member of
the list x.

Definition 6,:

VnVuVz(» e u.z Mt = iiV[E z)

Finally, greater than or equal is a
transitive relation.

Definition 6ti

V u V v V w f u < v A v < w — * u < to).

From the above definitions a recur
sive program clause can be derived. The
program clause asserts that the list u.z
is the result of merging the lists u.z and
v.y if u is the smallest element of all el
ements on u.z or v.y, that is, if u is less
than or equal to », u.z and v.y are both
ordered, and furthermore z has to be the
result of merging the lists * and v.y.

The program clause,
(Universal quantifiers in front of pro
gram clauses are omitted.)

merge (a, b, c). The substitution in the
program clause will consist of substitut
ing merge (tr.y, u.z, u.z) for
merge (u.z, v.y, u.z) and merge (v.y, z,z) for
merge (z, v.y, z). Performing the substitu
tion on the program clause gives

The program clause,

merge(v.y, u.z, u.z) «—

u < r A merge (u.y, z, z) A
ordered . liit(u.z) A
ordered. litt(v.y)

This clause covers the case when
the first element of the second list is the
smallest element on the two lists to be
merged and is congruent to:

merge (u.z, v.y.v.z) «-

o < u A merge (u.z, y, z) A
ordered _ liet(u.x) A
ordered, list (v.y)

merge(u.z, v.y, u.z) «—

u < v A merge (z, v.y, z) /\
ordered .litt(u.z) A
ordered, litt(v.y)

The definitions, and 6f

and the program clause are predicate
letter formulas in the predicate letters
merge (a, b, c), ordered .li,t(a), a € b, a < b. If
we study the definitions, we notice that
the definition of merge is symmetric
With respect to the first and second ar
gument,

I" VzVyVz(merffe (z, y, z)«- merge (y, z> z))

, fi ,.We can> wit̂ out affecting the
definitions, substitute merge (b,ac) for

<5j, and St and found the above substi
tution that transformed it, and lt

to themselves and *mtrg, into

If we perform the derivation of
from we can also con

clude that is a consequent of the
definitions.

That is, if Si,6j,s,,st h
then

Observe that the program clause,
also can be obtained from 4m.m

with reference to the replacement theo
rem instead of the substitution theorem
since the relation is symmetric.

Let us look at another example
related to the above, but where the

247

prxw of finding lbs analogy » lr**
ictfkilontH, ud wkwt wo ki*o '°
at ikt ubstitution iktorom

Consider » relation between
u ikaetl • ud Ikm Usta «, v.
i.wt Mteesanly ordered, ouch that « is
lit cwnkasUoo of r and «. and more-
om til fktotoU ot i in l« than or
tqul to », tod til element on • are
[rata lb to •

Definition l»t

' » » « » ! « I t » . * 1 —
li«t(xl A A *
<4rniml(«) A

€ t — o € » V » € * l A
€ « - • S •)*

V»(» € « - • > •!)

The relation 6 it already defined in
Mm lion

The definition of t lint it given re-
raithrely, to empty lint it t litt, tnd t
const ruction ».« it t litt if, tnd only if,
* is to element tnd * it t litt.

Definition V-

VsVxf lixt(u x) —
flrmcnl(u) A !»«!(*))

Prom the definition of split tnd the
tions of € tnd list t progrtm cltuse
>e derived, if the first element . on
rst list u less thtn the discrimintt-
lement » tnd the result of splitting
•est of the first list x tre the lists y
z then, . hss to be the first element
he list in the third argument plac

Program clause, tipm-

The definition of split is symmet
ric with respect to the third ^ fourth
argument if we interchange . < b and

« > »
Program clause, « •

»)*"
, > u a »p'ir(*> u, x, i/l

Let us look at yet one more exam-
„l. where the symmetry is not in the
definition at the top of the hierarchy of

ur. want to derive a pro-
d: r. i»t..»o,-
d,*"d b.oiry tr«. th« molt be,n8

an ordered binary tree.
The relation in.ert is a relation be^

^ iu thp label v inserted at to the first * with the label
the appropriate place.

Definition fci

/ofcel(o) A
ordered .binary- tree(w) A

v t V e ^ » ' = ' v t ' e B))

Tb« P,op.rty oi» £££
an empty binary tree and

a binary °dered, and all
ODly !Uthe left subtree z are less
elements on elements on the
th,» tk. root »»*>» « ttan lb„oot
right subtree y are gr
of the tree.

y, *) —
, <«A«pW(*. »•»•*>

248

Definition

ordered-binary . tree(</>)

VzVuVy(ordered, binary . tree(t(z, u, y)) «-»
label(u) A
ordered -binary _ tree(z) A
ordered - binary _ f ree({j) A

Vu(o € z —• » < u) A
V»(» € y -* v > u))

An element v is member of the bi
nary tree t(z,u,y) if, and only if, it is
equal to the root u, or is member of one
of the subtrees z and y.

Definition <5»;

VuVzVuVj/ft; € t(z, u, y)

® = u V v € z V v € y)

From the above definitions we can
derive a program clause for a leaf in
sertion program stating that the tree
t(z',u,y) is the result of inserting t> into
t(*,u,y), if v is a label and t(z,u,y) is an
ordered binary tree, and * is less than
the root u, and the result of inserting «
in the left subtree z is z'.

The derived program clause

intert(t(z, u, y), o, t(z\ u, y)) «_
K i i A
label(v) A
ordered - binary . tree{t(z, u, y)) A

insert(z, v, z')

Applications of binary trees are of-
lZ ™etrjc with respect to the left
and the right subtrees (Knuth 1975)
The membership-relation in definition L
is symmetric *

* I- V„V*VuVj,(t, et(z,u,y)~ve %> x))

If we reflect the predicates less
than and greater than into each other
the definition of ordered _ binary -tree for a
non-empty tree, is also symmetric with
respect to the left and right subtrees.
The definition of intert is given in terms
of ordered-binary-tret and €.

Instantiating the definition of
insert with non-empty ordered binary
trees gives

insert) t(z, u, y), v, t(z', u', y1)) ~

ordered- binary _free(<(z, u, j/)) A
label(v) A
ordered . binary . tree(t(z', u', y")) A

Vv'(o' e t(z',u',y') «-»
= » V v' € t(z, u, y)).

Application of the substitution of
ordered _ binary . tree(t(c, b, a)) for
ordered _ binary _tree)t(o, 6,e)) carries over
to the relation insert. We have
to substitute ineert(t(a,b,c),d,t(e,f,y)) for
iniert(t(c,b,a), d,t(g,f,e)) as well.

The transformed program clause
tinteri inserts the new label into the
right subtree.

insert) t(y, u, z), v, t(y, u, *')) —
e > UA
lobel(v) A
ordered .binary .tree{t(y, u, x)) A
in»ert(z, r, x')

From the specification of intert we
can also derive a root insertion program.

The program clause +not_{n..Tt:
insert) t(z, u, y), o, <(*', f),", u, „))) _

o < UA
label(v) A
ordered - binary - free(f(z, u, j/)) A
insert(x, c,t(z',r,x"))

249

We can obtain the dual case using
the same methods as above.

imertjljl/, u, i),v, t(f(y, u, i"), v, z')) <-
o > u A
label(v) A
ordered, binary .tree{t(y, u, x)) A
iniertfz, v, t(z", v, z"))

4 HOW TO FIND THE SUBSTI
TUTION

Let us look at the example of split
ting a list described in the previous sec
tion. Our task is to find a substitu
tion satisfying the properties mentioned
oi subsection 2.2. Our starting point
is the derivation of *fr,T,lt from the de
tritions 5,, and i,. We normalize
tte derivation (Gentzen 1934, Prawitz
'"65, Stilmarck 1983), in order to make
•ore that the candidates for substitu
tion are predicate letters. Therefore, if
the least complex formulas used in the
formalized derivation (minimum formu-
'a) contain a logical constant we add
a lew definition with the formula as
definiens and substitute throughout the
wivation. For example if g{a, b) A r(c)

18 n minimum formula then we define
VlVvV*(p(z,y,z) q(x,v) Ar(z)) and conse
quently replace g(a, 6) A r(c) with p(o, b, c).

The definitions 6,, 6t and 6» are
studied, one by one, in order to find the
"ght substitution. Let us concentrate

'he definition S5 describing the rela-
'°n >plit. We identify the predicate let-
er hi the definiens as litt(a), element(a),

a6ll> 4<i>, and a > b.

Each occurrence of a predicate let-
er ^ inserted into an equivalence class

according to the sequence of rule appli

cations that has to be performed to de
cide that the occurrence is a subformula
of the definiens.

The rules deciding that a formula
is a subformula are the following:

1. A is a subformula of A.

2. If Ai A ... A An is a subformula of A,

then so are A{, 1 <»< ».

3. If Ai v... v An is a subformula of A,

then so are Ai, 1 < » < n.

4. If b -* G is a subformula of A, then
so is B.

5. If b -* G is a subformula of A, then
so is C.

6. If B *-* G is a subformula of A, then
so are B and C.

7. if -,g is a subformula of A, then so

is B.

8. If VzB is a subformula of A, then so
is B't.

9. If 3xB is a subformula of A, then so

is B*.

From the definition of split

VzVuVyVz(«pJ»t(z>"> V , z)
list(z) A list(v) A li't(z) A
element(u) A
Vt>(» ex«->t>€yV»ex)A
Vv(v € y — v < u) A
Vv(v £ z — ® > "))

we obtain the following equivalence
classes of subformulas

1 IBst(z),liot(V),M(z),el^t(u)J from
the sequence of rule applications

2,1
2. [v e x] from the sequence 2,8,6,1

250

3. [» 6 y, v e z\ from the sequence
2,8,6,3,1

4. [d e v,v e z\ from the sequence
2,8,4,1

5. [o < u,v > uj from the sequence
2,8,5,1

To find the substitution we study
the equivalence classes one by one. All
the members in an equivalence class can
be used in the same way in a deriva
tion, they are interchangable keeping
the derivation structure. We try to
make pairs within the eqivalence class,
identify the difference in the pairs and
study the result of applying the trans
formation to the rest of the equivalence
classes and the definiens.

If we first convert the definiens into
a normal form the set of rules for de
ciding the subformula property reduces
and so does also the number of equiva
lence classes that can be obtained. If
in the definition of split the subformula
Vv(v e y - „ < u) Was formulated as

e y) v t> < «) and the rest of the
definiens unchanged, then we should not
be able to find the right substitution
with the suggested method without con
verting into a normal form. The defini
tions m this paper are presented on a
form where substitution can be found
without conversion.

Let us look at the classes above
class 2 has only one member and can
therefore be discarded, we can make no
pair there. The two equal classes 3 and 4
can be reduced to one. The difference in
the formulas m equivalence class 1 is the
argument to list. Interchanging z and
V or x and z in the classes gives a new
class instead of class 3 but interchanging
V and 2 gives back the old classes. The

change of y and z corresponds to chang
ing the third and fourth argument of the
relation split. The elements in equiva
lence class 3 differ again in y and z. The
elements in eqivalence class 5 does not
occur in any of the other classes. In
terchanging the two elements gives the
same collection of classes as before.

The substitutions then are

- split(a, b, (t c) for splitfa, b, c, d]

- a < b for a > b and a > 6 for a < 6.

Substitution in the definition of
ip/it results in a definition that is equiv
alent to itself.

VzVuVyVz(sp/it(z,u, z, y)

list(z) A list(z) A list(y) A
element(u) A

V»(t» €*«-»c62V»6l /)A
V»(» € * —> r > u) A
Vv(v € y — v < u))

The other definitions used in
the derivation of the program clause
do not contain the predicate letters
split[a, b, c, d), a < b, or a > b and are there
fore not affected.

5 CONCLUSIONS

A method for deciding if there are
analogous program clauses to be con
sidered when deriving a logic program
is proposed. The proposal is based on
the notion of symmetry and reflection
in predicates. The handling of sym
metric data structures is not straight
forward and needs further investigation.
The amount of work for deriving a logic
program when there is analogy between
the program clauses can be reduced us
ing this method.

251

ACKNOWLEDGMENT

I wish to thank Ake Hansson, who
spent much time reading drafts of this
paper and suggesting improvements.

REFERENCES

Bledsoe, W. W. Non-resolution theo
rem proving, Readings in Artificial In
telligence, ed. Webber, B. L. and Nils-
•on, N. J., Tioga Publishing Company,
Californien, 1981.

Coxeter, H. S. M. Introduction to Ge
ometry, John Wiley and Sons, second
edition, 1969.

Derahowitz, N. The Evoluation of Pro-
Pams, Ph. D. Thesis, Weizmann Insti
tute of Science, Israel, 1978.

Eriksson, A., Johansson, A-L and Tarn-
lund, S-A Towards a Derivation Ed-
itor, Logic Programming and its Ap
plications, ed D. Warren and M. van
Caneghem, 1983.

Gentzen, G. Untersuchungen fiber
das logische Schliessen, Matematische
Zeitschrift vol. 39, 1934-1935.

Hansson, A. A Formal Development of
Programs, Ph.D. Thesis, Department of
Information Processing and Computer
Science, The Royal Institute of Technol-
°Ky and The University of Stockholm,
1980.

Hansson, A. and Tarnlund, S-A. A
Natural Programming Calculus, Proc.
IJCAI-6, Tokyo Japan, 1979.

H°Bger, C. J. Derivation of Logic Pro-
Pans, JACM, Vol 28, No 2, April 1981,
PP 372-392, 1981.

Kleene, S.C. Introduction to Meta-
mathematics, North-Holland, Amster
dam, Eight reprint, 1980.

Kling, R.E. A Paradigm for Reasoning
by Analogy, Artificial Intelligence 2, p
147-178, 1971.

Knuth, D.E. The Art of Computer
Programming, Volume 1, Fundamental
Algorithms, Addison-Wesley Publishing
Company, Second Edition, 1975.

Kowalski, R. A. Logic as a Computer
Language, in Logic Programming, Aca
demic Press, 1982, eds. Clark, K.L. and
Tarnlund, S.A..
Prawitz, D. Natural Deduction. A
Proof-Theoretical Study, Ph. D. Thesis,
Almqvist and Wiksell, Stockholm, 1965.

Stilmarck, G. Strong normalization for
complete 1st order classical natural de
duction, Stockholm, 1983.

A MODEL THEORY OF LOGIC PROGRAMMING
METHODOLOGY
Huaimin Sun and Liguo Wang
Computer Science Department
Beijing Institute of Aeronautics

and Astronautics
Beijing China

ABSTRACT

A new version of the first
order language for mechanical
theorem proving is axiomatized.
It is called "Subgoal Deduction
Language"(SDL) and is used as a
metalanguage for specification
and derivation of logic programs
as well as for representation of
the knowledge necessary for pro
gram reasoning. A many sorted re
lation system is defined as the
semantic interpretation of SDL
and logic programs. An example of
an automatic derivation of a
logic program from its specifi
cation is given.

1 INTRODUCTION

In recent years many brilli
ant works in the field of deri
vation of logic programs have
been done(See references from 2
to 5, for example). In all these
works deduction has played a
central role. However, an auto-
programming system must has the
ability to derive the specifica
tions of subprocedures from the
specifications of the main pro
gram. In order to solve th l®
problem, we have axiomatized a
goal oriented deduction system
SDL and implemented it in Pro og
language on our microcompu er
BCM-3 as an experimental au o

_ 0 , r o -f-em. The scmsnxi
of SDL based

on the notations of model theory

is given. The experimental re
sults show that the SDL can
really draw the necessary speci
fications of the subprocedures.
This behaviour is illustrated by
an example in this paper.

2 MANY SORTED SEMANTICAL
SYSTEMS

A many sorted semantical
system is defined as
S = < D i , . y D t B >
where Di(l ' ii t) is the object
of the i-th sort which is a well-
founded set and can be specified
by the 3-tuples

<X,£ ,succ>
where X , •£• , succ are respective
ly the minmum element, the par
tial order and the function of
successor. R is a finite set of
g relational symbols rl,...,rg.
Each ri€ R is a mapping from Dil
XDi2X XDin to B = (true,
false}. We call (Dil,...,Din)the
type of ri. For every ri6R, there
is a set ri in I

r i = { (d i l , . . . , J i n) I r i 6 R , (D u
• • •> Din) is the type of ri, dig f-D/j

(l < d < n) , r i (d i l , . . . , d u) ; < t r u e]

Each functional symbol fj (lc j
£ h) is a mapping from Djl , . . . ,

Djm to Dj. The type of fj is re-

254

presented by (Djl,...,Djm, Dj).

Using the relational symbols,
functional symbols, constants (as
the names of the objects of Di)
together with variables, quanti
fiers and logical connectives we
can write the well-formed seman
tical formulas (swff) over £ si
milar to the wff of standard
first order predicate caculus. The
only difference between wff and
swff is that the predicate symbols
in the former is replaced by the
relational symbols in the latter.
The truth value of a swff is de
fined by rl,...,rg in £. The set
of all the true swffs over £ is
denoted by "diagf".

Now we can give a formalism of
the task of programming as follows.

Definition 2.1
Let P be a programming task

with m input variables and n-m
output variables, rl (XI,...,Xm,
Zm+1,...,zn) be the expected input
-output relation defined on the
abstract data structures Dl,...,
Dt. r2,...,rg be other known rela
tions defined on Dl,...,Dt. fl
••.,fh be known functions defined
on Dl, ...,Dt. Then the semantical
system

£ p ~ 1 , • • • > D t , { r 2 , . . . r j I r 2
• • • >rg> fl,...,fh, B> —'

is called the knowledge back
ground of P, rl the goal of p.

Let £p be a knowledge back
ground of P, then the knowledge
necessary for the programming
task can represented as a finite
subset K of diag£p. If we can
write a swff S€ diaglp satisfying

{(xl, . . . ,xm, zm+1, .. ., zn) I S (xL
. . . ,xm, zm+1,..., zn)J = {(xl, . . . >xm
zm+1, . . . ,zn) | rl (xl, . . . (Xm, . . . (znjj

then the swff S is called the

specification of P.

Example 2.1
Suppose it is required to de

sign a logic program "arrange(L,
T)" which constructs a ordered
binary tree T with all the inte
gers in a given list L as its
nodes. The knowledge background
of P is

T.p =(lNT, INT-LIST, TREE, R,le,
member, node, order, cons,

car,cdrj

where INT, INT-LIST,TREE are re
spectively the relation "less
than or equal to", "greater than".

ifi!1'1*; (1-f ••••}• gt={(2.D.
vo,4j,...j. relation member (X,L)
enotes that the integer X is an

element of the int-list L. member
-{•••, (2,(2,3,4)),...). node(X,
T) denotes that the integer X is
a node of a binary tree. node=
{(l,t(nil, l,nil)),...) . order(T)
denotes that the binary tree T is
sorted, cons, car, cdr are known
functions.

The specification of the
program can be expressed with
the following swff 6 diagEp

arrange(L,T) =
(VN) :N £ INT (*L):L£INT-LIST (3T):
T(TREE((member(N,LWnode(N,T))A
order(T)) (def-1)

Suppose that the relations
member, node, order are not the
build-in relations of the auto-
programming system, then they
need to be defined with the
swff•s.

The definition of "binary
tree" is as follows

tree(nil) (def.2.1)
(I^X^XeiNT (yTl):Tl£TREE (yT2

):T2£TREE (tree(Tl)Atree(T2)
tree(t(Tl,X,T2))) (def.2.2)

255

to offered binary
fu»4 u folio**

I roe i* de-

otferlniU (fef.J.lt
VT1):TWTW* WTJlsbffbt-tWX) :

HOT (r!H:Ji«lKT((iw»d*(X, f1

1 t ncfetx, T2h*»>XtAord«r(Tl • *
s m e r (T 2) - * o r d « r (t (T l • X , T 2) > '

(def.3.2)
*xrt node(H.T) is defined ••

M0:rarr -im>de(*,ni i)
(def.4.1)

(yxiiMlXT'VX) sXtlXTivTl) :T11
m(yt2):T2dTOEt(node()«.t(TJ ,X,
T2I «-»sa V node(X.Tl) V node(N,
121) (def.4.2)

The relation member(X,L) i«
defined is

<»X):S 6 lJ(Tie«»bcr(N.nil)
(def.5.1)

(**):*< lNT((fX):X < INT(Vk):L
(USTiaefe>er(»,X«L)-»-eH«X V member
(K,U) (def .3.2)

Thus K>((def.2),(def.3),(def.4).
(def,5)| it the representation ot
the knowledge over £p> necessary
for the programming task of ai
r»nge(L,T)".

5 THE SUBGQA1. DEDUCTION
LANGUAGE SDL

J.l Sentences

SDL consists of sentences .A
sentence is in fact a first <>r
predicate formula in the form-

Pi. .ql 9n

note Skolem functions). The com-

"• ""/"l 52 right hand side ot

arrja-K ~ ~ ire thought to be as variables
bounded by

• • • • . f i f qn) as the eq Jn a deduc_
; • can'be'transformed to

: : p - r
to q, nP respectively.

3.2

"here pi (1 £ i i «) • \ ~ edj_
n) are all literals (atomic p
cate formulas or negative o
with terms consisting of in
same way as in standard pre *
calculus (we shall use e.U?ies

case letters to denote cons-
lower case letters to den
tants and functions, lower ^
letters with subscript

3.2.1 g-deduction

inference r*1" l id consequence
may say <* *s a

of K, denoted by

K hf «* » • s
a "S-deduc-

We call such a pr
tion of <* f rom K *

in a s-deductictnathe0sentencce
^ should be fir® in ruies.
cording to the toi

U) Vagpiiial^constant
replaced by a P ^ cal led a for-
symbol xu, w t be distin-
mal constant. constant m K or

other6formal constants in-.

< 2 > T h e f r a ^
* is replace.d y Ued a Skolem
bol Fe whlCh- hli we use the up-
function variable-.^ & subscript
per case le"e I t must be dis
"6" t°shed°from any Skolem func-
tinguished xi
tion symbol m K.

256

inc sentence obtained by the
above two rules from d is called
the goal form of o< , denoted bv
"d"'. y

Note that the rule (1) is sim
ply an application of the genera
lization rule in the standard pre
dicate calculus. For if „e want to
prove (Vx):X 6 Dic<(x), all we
need to do is to prove «*(xu) for a
arbitrary chosen object name xu €

Subgoal Rules

(1)

— t(,pi
Pi (S2)'a

• • •

fi2)a-

,pm
f K
ffis a valid
unification be
tween fii' and
/»

The meaning of rule (2) is
thatsince we want to prove (3x):
X f Di(((x), we may choose any ob
ject x 6 Di to replace X. If c<(x)

is proved, so is (3X)o((X).

It is obvious that we should
have K f-j- o(iff k bj-c('

3'2'2 Valid Substitution

A valid substitution cr of a
sentence is a substitution accor
ding to the following rules

+„+- Any term Can be substi
tuted for a variable.

(2) A Skolem function or a
known function symbol can be sub
stituted for a Skolem function va-

set of CI'6" th3t th6 set of the former is a subset of
the argument set of the latter We
view a constant as a O-ary funo_

If there is a valid substitu
tion <j-which makes <*l(tl +„ \

-Jfttl' .-...tn'), then it 'is "called
the valid unification between
these two sentences.

3-2-3 Inference Rules

schema ̂ f°ll0Wing we «e the

(2)

H
to denote that under th» ,•> j •
/we have Kbj-rf'if K :°ndl"tion

(— » fi)'
(c(l—ql,...,
qm) i K
tr is a valid
unification be
tween o<i' and
dl

(tl=t2) 6 K

A sentenced =pl pm —• ql,
is a valid consequence of

(i) There is a valid unifica
tion between a sentence in K and
d o r s o m e l i t e r a l s q i q j ' (
1 - 1 ̂ j £ n).

^ A l l t h e s u b g o a l s o f d '
, ? uced by subgoal rules are va
lid consequence of K.

b. Conditional Rule

Leb * dm be
goals of <*' and <*;' include
y constants and known func

tions as its terns. If di ,...,
°*<-i > • • •, are all valid

257

WMQMCfl Of I M K| ends' **
i «ahd «#»<»«*« of X « (•>•<•} •
tbts«(' to a valid consequence of

•» |1V« • aiapla oaoopl# of
11* application of tfco inference
rale*. Th* problem it wtrotlod
froo (•).

luop.o i.l

Soppoar we aaot to prove (9 *'
happylXl froo k.{(VXXVYM employe
(l.Tt* working(Y)—ehappylX)).
ni(ployn*(X»—ehappylXl). ploy-
in|(bobl V wo filing (bob), employe
(john.bobl).

* $-d«duct«on io ae followe
Tbe o«t X include*

«mploye(X,Y), working(Y)
» happy(X) (K.l)

playing! X)—» happy t * 0 (K.2)

"1 working (bob)—* playing! bob)
(K*5'

employs! John, bob) (K.4

The goal ia happy(Xe>. J t ca"
be Batched with (K.l) according to
the Mibgoal rule (1) with a »u

atitaition < Xe/X) and thui deduce
two subgoala:

eaploys(Xe.Y)

workinglV)

(Coal 1.1)

(Coa1 1-2)

(Coal 1.1) can be e***1* ?
ved with substitution < john/xe,
bob/Y>. but then (Coal 1.2) be
comes to working(bob), whic
not be proved by K. However ,
can be easily proved by K |"
ing(bob)}. So according to tn ^
conditional rule all we ne
is to prove K upworking!®«ed
happy(Xe), which c*"^® ^ using
with substitution (bob/Xe/.
subgoal rule (1) and (K.2). (*•*'

So we know that if Bob is working.
John ie happy, otherwise Bob is
happy. Thus OX)happy(X) is
proved•

4 THE SEMANTICS OF SDL

neflnition 4.1

Site.! Let K be a finite subset
Of SUl.• A valuation A * 18 a

manning from K to Z which
(1) aaaociates an objec se

1,01 srjiStaw. rwyiwV»
p JB Dj ^gkoiem function

function or m-ary
occuring in K. value

•wJWMSjW
P-

n.finition 4.2
.» is a model of

A valuation every
K if it associates true

sentence of K.

n»finition 4.3
, cni sentence, con

LCt f Literals occuring in K .
sisting of u"r®fc< according to
A valuation jUk* ^ to Z where:

The?images of its predi-

CatCf fifTisTtemwhich oc-
(2) t 1 A yr then its

curs both in <* and *• . _
image is the same as * /*unct ion

®(3) Ift xsaSkolem^^^

with type < Dil»• • • ^.hen associates
occurs only m > unim-—
a mapping Dil X
with it-

258

or ZLlSSUme uhat 311 c°nstants functions which occur in * ai5n occur m K. also

Definition A a

be aLsmK bV SUbset of SDL andrf be a SDL sentence consisting of
iterals occuring in K. We sav o<

is a semantical conclusion of K
d e n o t e d b y " K 1 = * . . i f ° f K '
model Mtc of K there'is a w ^h"
associates * with "true". h

the • t the°remS>
this paper. * 13 omitted in

Theorem 4.1 CtLo o j (The Soundness of Va
lid Unification)

Det KI < oi be _ ~ j .
of ' be the goal f eduction and
^ a validuniffcat" u' If ther-
and a sentence s in T *' in K, then K|=<*
Theorem 4.? r. £ The Soundness of Sub-

goal Rules)

Reduction and
' " • ' filn be fhe sub™ L "d VLCt *'•

according to ! L
•5*2.3 a. If f*"S t0 uhgoal rules
there is a v2irf M
tween and „ un ification be-
then Kfe* 3 ntence Si in K>

Theorem 4.1 (Thr - , (h e S o u n d n e s s o f s
deduction)

K of if K

Theorem 4 .1 (t i , „ „ — aiuSrss.y c»-
«

°<«be subgoals of 1 ' " * *' o<(- includes onlv ™ s °f c^' and
known functions^s its te'8
we have Kf=<X if K terms. Then

I hr «t'
K V /l<X/J fj- ^ ' '+1 ' • • •' £ and

tem f° te *hat the s"deduction sys-
m is not complete. However,using

generalization role and dedu^ti<*
theorem in standard predicate cal-
ulus, any provable wff can be

whfch u int° a equivalent fort
. h can be proved by S-deduc-
tion, but we shall not discuss
this problem here.

5 AN EXAMPLE OF AUTOMATIC
DLRIVATION OF LOGIC PROGRAMS

pramW\haue written a prolog pro-
g which implemanted SDL toge-
her with a structural induction

anism as an experimental pro
gramming system. Here we give an
example to show how the system de-
prrmSpaUt°matically a 2°g ic Pro"
a j rom knowledge background
exlTClfiCati0ns given in the

p ie 2 .1 i n sec t ion 2 .

i . The specification and know-
e S^en in example 2.1 can be
lDwseSSe 2n sentences as fol-

Specificaf-i/-.„

•arr*/1 * INT~"ST, fe(l) 6 TR£Ej •arranged, fe(i)) M

N (1_» node(N,fe(l))
, , (Spec.1)

node(N,fe(l))_* N 6 1
(Spec.2)

order (fe (1)) (Spec.3)

~2^1|dge (we write ins-
"/3-w«» FW° sentences "u-fi" and

01 for covenience.)

tree(nil) (Theorem.1)

•tre^^) A tree(T1) A tree(T2)
*»X,T2)) (Theorem.2)

"Jhode (N,nil) (Theorem.3)

nodeS tf"°d^'")l/node(N,T2)
' 'T1>X,T2)) (Theorem.4)

order(nil) (Theorem.5)

259

orfcrU(T!.*.T4l) *

a4«(l,TII-*ll|X (theorem .6)
(
ao4KX.ni-** > X (Theorem. 7)
t
order! tl I (Th»on«. 6)
(
ordeKTII (theorem.*)

1(«e I It (Theorem.10)

*f X*Lee M v * • U
(Theorem.lli

let b J (theorem. I(Thco-
re*.31)| , the program satisfying
'Spec.I • to (Spec.3) car be de
rived by the following S-deduction

'if

nu t 1-enode(nu tFe(l 1)
(Coal.1)

C
node(nu,Pe(111—-• nu < 1

(Coal>2)
C
order(FeH)) (Coal .3)

ite£_i^ Derivation of induction
baae (induction on the
length of the interger
liat)

Let l-(J, <Goal.ll to (Coal.
I) can be easily proved by the vo
id unification

<r, -<nil/FeCl D>

So the following solution is
•btained.

f-arrange(I J)«nil (S.l)

Inductive inference

lystea that the gi-
t can be expressed as
i for any integer list L
than x-1. f-arrangeit:!tter function (which ts writter

> in the follows for con

venience). Thus the system ob
tains the following induction hy
potheses

L«X-1, Nfc L—• node(N,f-a(L))
(H. 1)

Ux . l . node (N . f - a (L))— N e L
(H. 2)

l,< x• 1 —* order!f-a(L)) (H.3)

The system uses K U { (H . l) .
(H.21. (H.3)} as hypotheses set
and tries to prove (Goal.l) to
(Goal.3) again, substituting x»
for 1, as follows

n u t

node(nu,Fe(x . l)) — nu^x -1)

order(Fe(x.l)) (Goal.3')

Then the system tries to prove
i m order to restrict

o.n.fon- Ucd by x ^
into subgoa T taae 2 the sys-
1 separately. ^ soiution for
tem tries to ving these sub-
the Pro^ramD ^nference rules and
goals, using , s only. If ^
induction hyP°der.vation stops,
succeeds, th ^ w-u summer-
otherwise th y bgoais as
ize those unproved^subg^.^
spec i f i c a t i on t ries to p r ove
subp ro c e du r e s a space, we
them, in or e whoie derivation
will not give . the proving
here, but on y B as an illus-
process of (G°all who are inte-
tration. ^ad^ ta iis can obtain
rested in the cords from our
the expenmenta: lproving of (Goal,
institute. Tne p ^
t .) is shown in Fig

260

(Goal.1)

nu 6 x • 1 —> node(nu,Fe(x.j))

(Goal.1.1)
nu=x—>-node (nu, Fe (x • 1))

(Goal.1.2)
nu e 1-»node(nu.t(Tl,x.T2))

nu 6 1—»• node (nu, T1) \/ nnHP (nu, T2)

(Goal.1.2.1)
nu £ l->nu fr LI V nu t L2

(Goal.1.2.2)
Ll<x-1

(Goal.1.2.3)
L2<x>1

from (Theorem.11)
N (r X- L—» N=X V N (r L
<r2=<nu/N, x/X, lu/L>,
subgoal rule (2):

matching with (Theorem.4)
N=X—* node(N, t(Tl ,X,T2))
with tr, =(nu/N, x/X,
t(Tl,x,T2T7 ")/Fe(x.l)>

from (Theorem.4)
node(N,Tl)\/ node(N,T2)
—*• node(N,t(T1 ,X,T2))
£%=<nu/N, x/X>
using subgoal rule (1):

from (H.l) with

<5-=<nu/N, f-a(Ll)/Tl,Ll/L >
g^=/nu/N, L2/L, f-a(L2)/T2>
using subgoal rule (1):

(1)

(2)

(3)

Note that the substitution a!
CTS, Ol in Fig.l are underlined, be
cause they show that the solution
of Fefx-l) may take the form

Fe(x.l)=t(Tl,x,T2)

Tl=f-a(Ll)

T2=f—a(L2)

But the solution are not complete
since there are variables LI and '
L2 occurm them. They have to be
constructed further in the proof!

The unproved subgoals (l), (2)

and (3) in Fig.l are summerized
as part of specifications of pro
cedures fle(l,x)=Ll and f2e(l,x)=
L2. In further proving process of
(Goal.2') and (Goal.31) it is
showed that the uncompleted solu
tion form is suitable and other
specifications of subprocedures
are obtained in a similiar way.
Thus the system obtains the fol
lowing intermediate solution

261

f i e (l , x)=Ll

f 2e (l , x)=L2

f -arra ng e (LI)=T1 , f - arrange (L2> .
=T2— » f -arrange (x> l)= t (T l , x , I
T2) J

(S .2)

and t he spec i f i ca t i ons o f subpro -
cedu re s are a s f o l l ows

Specification

[l , f l e (l , x) , f 2e (l , x) , e INT—
LIST.N .x INT J :

Nf UN 6 f l e (l , x) V N e
f 2 e (l , x) (Spec . 1 ')

N 6 fled,x)—> N t 1
(Spec.2 1)

N 6 f2e(l,x)—»• N f 1
(Spec.3')

N t fle(l.x)—»-N4x (Spec.4')

N 6 f2e(l,x)-^N>x (Spec.5')

fle(l,x)<x.l (Spec.6')

f2e(l,x)<x.l (Spec.7')

The specification shows that
e task of the sub-procedures is
partite the input integer list

into two lists: fle(l»x) and
e(l,x). The former includes all
ie integers in 1 which are less
ian or equal to x and the latter
•1 the integers in 1 which are

'eater than x. So we see that the
>L can deduce automatically the

deification for the desired su
cocedures in a very natural way •

After derivation of the
rocedure, the system obtains e

ollowing solution (in which we
rite "fl-partition" and
ition" instead of "fie" an , ^
o explicate the meaning of

f l - pa r t i t i on ([]>x)= [] •

f 2 -pa r t i t i on ([]»x)= [1 -

n <x ^ . f l - pa r t i t i on (n» l , x)
= n » f l -partition(l, x) .

n <x_^ f2 -pa r t i t i on (n>1 ,x)
_ f2 -pa r t i t i on (1 ,x) .

n > x_* f j . —par t i t i on i ng 1 ,x)
_fl_partition(l , x ^ .

n>x—> f 2 - pa r t i t i o n (n * l »x)
=n»f2-partition(l . x)

(S . 3)

From solution. <S;1 •

a Prolog program i
can be easily obtained.

REFERENCES

W d Technique

S S S - C o m p u t e r s V o i . 6 ,

No.6. 1983.
O

i v T Tarnlund, S.A.
12] clarkdKo^; r Theory of Data

A F i r nms Information Pro-and Programs-inr
cessing 77 IF

[3] o iCciflcation and Derivation
Spe theoretical
of, [Programs. amming

Foundations of P^g of

Methodology. Sutmner
an Internationa^^

S c h o o l . u ' n

Company•l982-

T Tarnlund, S.A.
[4] Hansson, ing Calcu-

A Natural pr°| Tokyo,
lus. Pr°°- JCA '
japan. I979-

262

[5] Hogger, C.

SS'SfTLf;JS."-™-
t6] Kowalski, R.A.

Logic for Problem Solving
North Holland Inc. 1979.

A UNIFIED TREATMENT OF RESOLUTION STRATEGIES FOR LOGIC PROGRAMS

D.A. Wolfram, M.J. Maher, J-L- Lassez
Department of Computer Science

University of Melbourne
Parkvilie, Victoria, 3052

Australia.

ABSTRACT

T h e t r e a t m e n t o f s o u n d n e s s ,
w e a l c o m p l e t e n e s s a n d s t r o n g c o m
p l e t e n e s s o f v a r i o u s l o g i c p r o
g r a m r e s o l u t i o n s t r a t e g i e s w i t h
r e s p e c t t o s u c c e s s a n d f a i l u r e i s
u n i f i e d , g e n e r a l i z e d a n d c o n
s i d e r a b L y s i m p l i f i e d . T h i s i s
l a d e p o s s i b l e b y u s i n g t h e f u l l
p o w e r o f t h e u n i f i c a t i o n t h e o r e m
w h i c h a l l o w s a r e d u c t i o n t o a
s i m p l e c a n o n i c a l c a s e . 7 h e
r e s u l t s c a n t h e n b e e s t a b l i s h e
i n a n a t u r a l a n d s t r a i g h t f o r w a r
m a n n e r . W e a l s o i n d i c a t e h o w t h e
u n i f i c a t i o n t h e o r e m c a n b e u s e ^
t o s i m p l i f y t h e p r o o f o f t h e c o m
p l e t e n e s s o f t h e n e g a t i o n a s
f a i l u r e r u l e . F i n a l l y w e n o t e
t h a t t h e t r e a t m e n t i n t r o d u c e d i n
t h i s p a p e r a p p l i e s t o o t e r
c l a u s a l f o r m s .

1 INTRODUCTION

S L D (o r L U S H) r e s o l u t i o n , o n

w h i c h m o s t P R O L O G ^ n t e r p ^ e I e l „
a r e b a s e d , i s SL- r e s o l u t i o n

(K o w a l s k i a n d K u e h n e r T
t r i c t e d t o H o r n c l a u s e l o g i c
g r a m s (K o w a l s k i 1 9 7 4) . T h % S O U " J _
n e s s a n d c o m p l e t e n e s s o h e d

r e s o l u t i o n w e r e f i r s t e s t a
i n (H i l l 1 9 7 4) . F u r t h e r r e s u l t s ,

T h i s r e s e a r c h i s p a r t i a

s u p p o r t e d b y t h e A - C . R - B -

u y

I n p a r t i c u l a r o n s t r o n g c o m
p l e t e n e s s c a n b e f o u n d i n
1 0 7 9) (A p t a n d v a n E m d e n 1 9 8 2)

ment in a tirsi p ^ ̂

^ ^ " a T s o " t h e " p r o b l e m o f n e g a -t r e a t a l s o t n a L g e b r a l c

tl0ns ^Apt and van Emden in a
means. Apt provi"
second part of their PM ^
d e d a c h a r a c t e r i z a t i o ^ ^

finite failur - 2) that

in (Lassez ^ couLd be

tMS Chrir as a form of weak
interpreted as SLD_resolution
completeness o^ failure,
with respec give a

;-u, .»—
1 9 8 2) " , v t h e p r o o f s o f

L l n f o r t u n a t e ^ y , i o n g g n d i n v o l _
t h e s e r e s u l t s ^ p r o l i f e r a t i o n
v e d , t h e y . r e ^ s a n d l e m m a s a n d
o f d e f i n i t i o n s f t f o r

t h e r e a d e r n < > t

Even though^ m o s ^ ^ ^ ^ ^

a l l , r e s U . L o r e s e n t a t i o n i s m a d e
c l e a r , t h e i r t h e p r e s e n c e o f n o n
c o m p l e x b y ^ t h e c r u c i a l
d e t e r m i n i s m . e x i s t i n g p r o o f s
p l a c e s w h e r e t h e w h e r e t h e

a r e v e r y o f a t o m s i s
o r d e r o f s e L . e r C r e l e v a n t ; t h a t i s ,
s h o w n t o b e i ; s t r a t e g i e s

264

Lead to the same answer substitu

tion. However it may be suspected

that these equivalences are a

direct consequence of an already
existlng powerful result embody

ing some kind of Church-Rosser

property (or diamond lemma), in

which case most of the proofs

would be redundant and a major
difficulty removed.

This powerful result is in
tact Robinson's fundamental uni
fication theorem (Robinson 1965)
The formalism of (Martelli and
Montanari 1982) in terms of a
system of equations has been
chosen as it is more suitable
for the purpose. A derivation
(SLD or other) corresponds to
solving equations step by steD
leading eventually to a unifica
tion of the list of all atoms of
the derivation with a list of
corresponding heads of clauses
The different resolution stra
tegies impose different orders in
the selection of the equations to

be solved. The unification

result^ States tha* the ultimate
result (a most general unifier or

ailure) is independent of the
order in which the equations are

selected. This allows the non-
deterministic aspects to be fac

tored from the treatment of

soundness and completeness

leaving a unique search space,'
the canonical tree, which

corresponds to Breadth-Fi st

resolution (BF-resolution) and

17 rSTe " 3 hi9h leveL basis
to study and-parallelism.

The definitions of success

an 1nite failure sets (van
Emden and Kowalski 1976), (Lasses
and Maher 1982) are given induc
tively and are found to

correspond very clearly to ground

versions of the inductive defini

tions for successful and failed
BF-derivations respectively The
various proofs of soundness and

completeness for BF-resolutTon

become then essentially direct

consequences of the definitions.

The analogous results for a

number of resolution strategies

are direct corollaries to those

for BF-resolution by the previous
treatment of non-determinism.

This point of view
highlights the fundamental role

played by the unification

theorem, and leads to a more gen

eral, unified and straightforward

presentation. Furthermore another

aspect of the unification theorem

allows us to simplify the proof
°T the completeness of the nega
tion as failure rule.

. J^e PaPer is organised in
the following way : after this
introduction there is a section
containing the necessary nota
tions, definitions and prelim
inary results. In the third sec
tion the equivalence between the
canonical tree and those
corresponding to other resolution
strategies is established. The

sections contain the
resu ts of soundness and com
pleteness for Breadth-First and
other resolution strategies.

t-k ,^0te : This Paper will form
, e., asi.s °f a chapter of the
T co,aing book, The Semantics

° , 7c Programs (Lassez, Maher
and Wolfram).

2 pRELIMIMap|Fc;

. , . A *ew necessary standard
definitions and results are

rie y recalled in this section,
appropriate background for

resolution can be found in (Chang
and Lee 1973) and for logic pro
gramming in (Kowalski 1979).

2-1 -lilg—Syntax nf p~~irnrrr

The sets of var iables, func-
7on symbols and predicate sym-

bots are disjoint sets.

265

A tern i s e i the r a var iab l e
or a zero -p lace fu nc t ion sym b o l
(constant symbol) or
f(t, , . . . , t) , where f i s an n -r n '
place fu n c t ion symbo l and

are t erms . I t i s i n
as sumed tha t there i s a co ns tan t
a yabo l i n t h e s e t o f func t ion
symbols.

An atom i s e i ther a z ero -
Place pred ica te s ymb o l Apropos i~
tion) or P (t . , , t) , where P i s

1 n
an n-p lace pred i ca te symbo l and

are t e rms . 1 n
T h e principal function sym-

lot o f g (t . , . . . , t) i s g , w he r e g
j i n
, s an n-p lace fu nc t ion or pred i -
M *e symbo l and t , . . . , t ar e
teres.

A fact i s P Q , where P Q i s an
atom.

A rule is

V P i p n > °>

•here P g ,P^ , . . . # p are a toms . The
l o a d o f t h e ru l e i s Pg and the
V " o f the ru l e i s P , . . . ,P n -

A f ac t or
0 f P r - - - , P n (n) 0) ,

s o m e times be abbrev ia t ed t o

r u l e
w i l l

H. « - B . .
J J

wher

be

H . = P Q a n d

] \ 5 > 0) and w i l l
J „ ' n

" a terred t o a s a clause.

A logic program i s a f in i t e
S e t o f c l au s e s .

A goal i s «- P r - . . ,P n , where
are a toms . A goa l i s

t h e emp t y goa l <o) i f n i s zero .

2 . 2 Subs t i tu t ions and Un i f i ca t i on

2 .2 .1 Subs t i tu t ions

A substitut ion 8 i s a f in i t e
set of components :

- { t 1 / x 1 , . . . , t n / x n)

where t t a re t e r ms and
" ' n

x a re d i s t inc t var iab l e s .
1 '"" ' ' n

The su bs t i tu t ion 8 i s 3

q ro u n d subs t i t u t i on i f no var ia
b l e s occur in t^ . . . ,^ . T he s ub
s t i tu t i on 8 i s a r enaming s ubs t i
tu t ion i f t t n a re d i s t inc t

. . . a n d var iab l e s
t . t X . < i = T he empty

substitution i s e = O-
The instance o f a f in i t e

s t r in g o f symbo l s E by 8 de note d
b y E8 , i s ob ta i ned by s imul
t aneous ly r e p lac ing . . . h
occurrence o f x . . l i 1 » '
E by t • - A ground i n s tance o f E
i s an in s tance in which no var ia
b l e o ccurs .

The composition o f tw o sub
s t i tu t i ons 8 - { t 1 / x 1 ' ." 'n n

XJ. « •
, 1 . . . < 4 X <»<»«" * n d

„ o f . 11
o f X ' x I t ca n be shown th a t

a n d (E 8) X = E (0 X > ,
f o r ^ a n y s u b s t i t u t i o n s 6 , X a n d S .

2 . 2 . 2 U n i f i c a t i o n

T w o f in i t e
b o I s E an d F . n c a l l e d
t h ere i s a su s s u c h t h a t
a unifier o f E andr ,
E 0 i s i d e n t i c a l t o 8 .

The un i f i e r (I
e r a l un i f i e r (/^every unifier 8
and on l y v f f o a s u b s t i tu -
o f E an d F t h er
t ion II such that 8 W

266

2.2.3 Non-Deterministic Unifi
cation

The following is a statement
of one of Martelli and
Montanari's versions (Martelli
and Montanari 1982) of the fun

damental unification algorithm
and theorem in (Robinson 1965).

(The algorithm has been slightly

reworded so that it applies to
the unification of atoms.)

Unification Algorithm

Given a set of equations
x = i i = 1 n

where t. and t' are atoms,

repeatedly perform any of the

following transformations. If no

transformation applies, stop with
success.

(a) Select any equation of the

form t = x where t is not a

variable and x is a varia
ble, and rewrite it as x =
t.

(b) Select any equation of the

form x = x where x is a
variable, and erase it.

(c) Select any equation of the

form t' = t" where t' and

t" are not variables. If

the two principal function

symbols are different, stop

with failure. If the two

principal function symbols
are constants, erase the

equation. Otherwise,

t' = t" is of the form
F(TI V = F<T' T')
and replace t' = t" by n-
t. = t' ,..,t = t'.
'I n n

(d) Select any equation of the

form x = t where x is a

variable which occurs

somewhere else in the set of

equations and where t * x.

If x occurs in t, then stop

with failure; otherwise

apply the substitution

o - {t/x} to all other equa
tions (without erasing x =

Unification Theorem

(i) The unification algorithm

terminates no matter which
choices are made.

(ii) If the unification algorithm

terminates with failure, X

has no unifier. If it ter

minates with success then

(1) the equations are in
the form x . = t,,

j = 1, ... , n where x1. isJa

variable and t. is a t^rm.

(2) every Variable which
is on the left side of an

equation occurs only there.

(3) an mgu f i f o r X is

{t1/x1' t2/x2' •" ' W

3 RESOLUTION STRATFRTFS

In SLD-resolution, at each
resolution step a single atom is

selected from the current goal,

to be unified with a head of a

clause. In Breadth-First resolu

tion (BF-resolution) the whole

list of atoms of the goal is uni

fied with a whole list of
corresponding heads. GLD-

resolution (Generalised Linear

resolution for Definite clauses)
covers these two extreme cases

and the intermediate cases : at

each step a non-empty subset of

the set of atoms of the current

goal is selected for unification.

Hence, depending on the
choice of unification strategy it
may not be possible to simulate

strictly GLD-resolution by SLD-

resolution. GLD-resolution may

serve as a basis for the study of

(partial) and-parallelism. It

therefore differs from SLD-

resolution in two respects : one

is the selection of atoms to be

unified, and the other is the
unification itself.

As with SLD-resolution, dif
ferent resolution strategies lead
to different search spaces.

267

However, B F - r e s o l u t i o n h a s a u n i -
q u e l y d e f i n e d s e a r c h s p a c e : t h e
c a n o n i c a l t r e e .

T h i s n a t u r a l d e f i n i t i o n
a l l o w s t h e p r o o f s o f t h e
e q u i v a l e n c e s b e t w e e n a l l G L D -
r e s o l u t i o n s t r a t e g i e s a n d t h e B F
m e t o b e s i m p l y f o r m u l a t e d .

T h e f o l l o w i n g d e f i n i t i o n s
j i v e t h e n e c e s s a r y p r e c i s i o n s .

3 . 1 C l b - d e r i v a t i o n s a n d G L D - t r e e s

3.1.1 GLD-derivations

A s a s t r a i g h t f o r w a r d g e n
e r a l i z a t i o n o f S L D - r e s o l u t i o n ,
• l a a i m o f a G L D - d e r i v a t i o n i s t o
f i n d a s u b s t i t u t i o n f x , c a l l e d t h e
Msuer substitution.

1 ^"'derivation f o r P U { G g } r

P i s a l o g i c p r o g r a m a n d G g
' s a g o a l , i s d e f i n e d a s f o l l o w s

let

A n (1 > 0 , n > 0)

" n - 0 , t h e G L D - d e r i v a t i o n i s a
success of length I a n d t h e
Wsyer substitution H is
Vl

n > 0 , a n d t h e r e i s a n input
' ! f o f m ^ c l a u s e s

* j f B j ' 3 < j < m ^ < n) , w h i c h

a r e a n y m ^ c l a u s e s o f P
t o w h i c h r e n a m i n g s u b s t i t u
t i o n s h a v e b e e n a p p l i e d s o
t h a t a v a r i a b l e i n o n e o f
t h e m d o e s n o t o c c u r e i t h e r i n
t h e o t h e r s , G k o r 1 ^
(0 < k < I , 0 < i < 1) , a n d

(H H) a n d a l i s t
(C l r - . . , C m) o < f m L selected

s t o m s f r o n t G . a r e u n i f i a b l e

" i t h m g u f x ^

Thai
by

' i i g c

b ^ 1 + 1 t t r e g o a l o b t a i n e d
y a P P l y i n g / / t o G l a n d r e p l a -

3 b y B (1 < j < m ^) .

O t h e r w i s e , t h e G L D - d e r i v a t i o n i s
a failure of length I.

R e m a r k . B y t h e c h o i c e o f r e n a m
i n g s u b s t i t u t i o n i n (a) .

V " 1
, fx d o n o t a f f e c t

t h a t
a n d

T h e r e f o r e ,

1 - 1
H . o r B . , s o

H , / J L e - - - M l

B i M l ^ B j M 0 M 1 " " " M l "
a t o m s o f ^ ^ + 1 C 3 n ' 3 e w r i t t e n
X / x ^ f X ^ . . w h e r e X i s t h e o r i

g i n a l a t o m , a p p e a r i n g e i t h e r i n
G o r i n t h e b o d y o f s o m e c l a u s e

u s e d f o r r e p l a c e m e n t . T h i s f a c t
w i l l b e u s e d l a t e r .

A GLD- d e r i v a t i o n i s a BF-
derivation when mL = n. A GLD-

derivation is an SLP-derivation

w h e n m ^ = 1 -

A fair GLf-der i vat ion is
e i t h e r a f a i l e d G L D - d e r i v a t i o n o r
o n e i n w h i c h a n i n s t a n t i a t e d c o p y
o f e v e r y a t o m i n a g o a l i s a
s e l e c t e d a t o m a f t e r a f i n i t e n u m
b e r o f d e r i v a t i o n s t e p s . B y

. . o v e r v B F - d e r i v a t i o n d e f i n i t i o n , e v e r y
i s f a i r .

3 . 1 . 2 G L D - t r e e s
A s i n t h e c a s e o f S L D -

o n D - t r e e r e p r 6 s e n * s

r S s e a U r c n p a a c e f o r a s u c c e s s f u l

d e r i v a t i o n .
c „ r a g i v e n s t r a t e g y o f

s e l e c t i n g . « « . . < £ « £ " ' , 1 -

^ u ' v . - . - h r i s
a n d G g i s a g r a m

a s f o l l o w s :

(1) G 0 i s
t h e r o o t o f t h e t r e e .

(2) T h e d e s c e n d a n t s o f g l a r e

t h e g o a l s w h i c h c a n b e G L D
d e r i v e d i n o n e s t e p

„ branch o r
A success G L D - t r e e

failed Branch o f

270

For any given atom in a goal
it is easy to find its introduced
version in the derived goals

until eventually it is selected
in some goal G^ and replaced by a

by B in G. and add A = H to

the set of equations at the
end of G..

l

l j i , Once this is done, G . has been
body and a corresponding equation formed 1

which appears at the end of G
„ k + 1
By the representation, there is

no ambiguity about the associa
tion of selected atoms, the

bodies that are used to replace
them and the equations.

To show that two resolution
strategies are equivalent it is

only necessary to make sure that

they select the same atoms and

replace them using the same

clauses. The following algorithm
and theorem are used in esta

blishing equivalences between

GLD-trees and therefore GLD-
resolution strategies.

Let T and T^ be GLD-trees

for P U {bQ}. The following
algorithm reconstructs a deriva

tion {G..} in from a given fair
non-failed derivation in T^.

Reconstruction Algorithm

Step i, i = 0 ,1 , . . .

For every selected atom A in G.
of T

2 "

If A appears in G then trace

the corresponding atom A of

T-j down the given derivation
until it is selected and

replaced by a body B and an
equation A = H.

Otherwise A is introduced in

some G, as part of the body
orNl . replacing some atom C. Find

the corresponding C in T

(this must have been done to

perform the replacement) and

trace down the given deriva

tion to where A is selected
and replaced by a body B and
an equation A = H.

Perform the replacement of A

The tracing of an atom down
the derivation in ^ always ter

minates since the derivation is
fair.

If the given derivation is
successful (and so finite) then

the derivation which is construc

ted must al-so be finite. It is

easy to verify that the deriva

tion in T^ and the reconstructed

derivation in T^ define the same

set of equations and therefore,

by the unification theorem, the

reconstructed derivation is suc

cessful and both derivations lead

to the same answer substitution
(mgu of the equations).

If the given derivation is
(fair) infinite then the con

structed derivation is also
infinite.

This gives :

Theorem 3.1

T1 an<* T? be GLD-trees for
p U { G q } . 2

<1) T1 has a successful
branch then so does T

^2^ T has an infinite fair
brancn then T has an infin
ite branch.

From this theorem and the
preceding discussions, the fol

lowing equivalences can be

immediately deduced. These

equivalences will allow the

treatment of soundness and com
pleteness (for success and finite
failure) for GLD-resolution to be

reduced to BF-resolution and its

271

a s s o c i a t e d c a n o n i c a l t r e e .

Corollary 3.2

T h e f o l l o w i n g s t a t e m e n t s a r e
e q u i v a l e n t :

(1) T h e c a n o n i c a l t r e e h a s a
s u c c e s s f u l b r a n c h w i t h
a n s w e r s u b s t i t u t i o n n .

(2) T h e r e i s a G L D - t r e e w i t h a
s u c c e s s f u l b r a n c h w i t h
a n s w e r s u b s t i t u t i o n / U .

(3) E v e r y G L D - t r e e h a s a s u e
c e s s f u l b r a n c h w i t h a n s w e r
s u b s t i t u t i o n / i .

T h e e q u i v a l e n c e o f f a i r
5 L D " t r e e s w i t h r e s p e c t t o f i n i t e
f a i l u r e i s s h o w n b y t h e f o l l o w i n g
t h e o r e m , w h i c h i s a c o n s e q u e n c e
° f T h e o r e m 3 . 1 .

T h e o r e m 3 . 3

L e t T1 a n d b e GLD- t r e e s
f o r p U (G 0 } . I f T 1 i s f i n i t e l y

f a i l e d a n d i s f a i r , t h e n T £ i s

f i n i t e l y f a i l e d .

P r o o f

S u p p o s e t h a t T ^ ^ a s a s u c _

c e s s f u l o r (f a i r) i n f i n i t e
b r a n c h . A s i s f a i r , m u s t

h a v e a s u c c e s s f u l o r i n f i n i t e
b r a n c h b y t h e o r e m 3 . 1 . T h i s i s a
c o n t r a d i c t i o n . H e n c e , T ^ f i n i -

t e l y f a i l e d . D

C o r o l l a r y 3 . 4

T h e f o l l o w i n g s t a t e m e n t s a r e
e q u i v a l e n t :

< 1 > T h e c a n o n i c a l t r e e i s f i n i
t e l y f a i l e d .

^ 2) T h e r e i s a f i n i t e l y f a i l e d
G L D - t r e e .

E v e r y f a i r GLD_ t r e e i s f i n i
t e l y f a i l e d .

4 S O U N D N E S S A N D C O M P L E T E N E S S

4 . 1 S u c c e s s a n d F i n i t e F a i l u r e

S e t s

T h e r e a r e a n u m b e r o f w a y s
o f g i v i n g t h e s e m a n t i c s o f l o g i c
p r o g r a m s : l e a s t m o d e l , l e a s t
f i x e d p o i n t (v a n E m d e n a n d K o w a l -
s k i 1 9 7 6) , d e n o t a t i o n a l (L a s s e z
a n d M a h e r 1 9 8 3) , o p t i m a l f ^ e d -
p o i n t (L a s s e z a n d M a h e r 1 9 8 j) ,
t r e e r e w r i t i n g s y s t e m (C o l m e r a u e r
1 9 8 2) e t c . T h e d e f i n i t i o n c h o s e n
h e r e ' f o r m a l i z e s t h e i n t u i t i v e
n o t i o n t h a t a l o g i c p r o g r a m P ,
v i e w e d a s a p r o d u c t i o n s y s t e m ,
d e f i n e s i n d u c t i v e l y a s e t o f t r u e
ground facts called the success
s e t T h e s e f a c t s a r e e i t h e r
g H v e n i n t h e p r o g r a m o r a r e
d e r i v e d b y r e p e a t e d l y a p p l y i n g

t h e r u l e s .

L e t

c = ^ S . , w h e r e
S i > 0 i '

= 0 , a n d

€ s i f a n d o n l y i f
i „ . R r (n > 0) i s

B n * B 1 ' - - ' n ,
a g r o u n d i n s t a n c e o f a
c l a u s e o f P s u c h t h a t

?= B° B } c S . . .
{ B - , , - - • ' D n ' T " 1

I t i s s t r a i g h t f o r w a r d t o

eHfy fV the least6mode?Vp

" T l m i e n a n d K o w a l s k i 1 9 7 6) ,

. x n A n n l v i f * h e a t o m s

i i s t e n t i f 3 0 f t h e g o a l
> f a g r ° U n d e (A p t a n d v a n E m d e n
; are m S <• Ape

1 9 8 2) -
. j d e f i n i t i o n i s

A n i n d u c t ^ ̂ g r o u n d
3 l s o g i v e n o t e f f e c t i v e L y b e

f a c t s w h i c h c t 0 t h e s u c -
s h o w n n o t t i s c a l l e d t h e

« » t . T h i s s e c s s s e t . T h " 1 3 I t w a s
nite failure set.

272

1982) to establish the soundness
and strong completeness for fin
ite failure of fair SLD-
resolution, and used in (Jaffar,
Lassez and Lloyd 1983) to esta
blish a completeness result for
the negation as failure rule
(Clark 1978). The definition
chosen here is slightly different
in form from the original defini
tion, as it helps to unify the
treatment of success and failure.

Let

FF " i>0 FFi' where

A € FF if and only if A i R.,
1 i

B * R0 if and only if

CQ «- C1,...,Cn (n > 0) is

a ground instance of a
clause of P such that
B = C,

0

B € R. if
1

and only if
Cg *• C^,...,Cn (n > 0) is

a ground instance of a
clause of P such that

and B = C

{C1'--"Cn} £ Ri-v

A.2 Soundness and Completeness of

BF-resolution

Throughout the remainder, P
represents a logic program and G

a goal. ^

The following lemma is a
major tool used in proving the
completeness of BF-resolution for
success, and its soundness for
finite failure. As the produc
tion of an element of S. or R. is

tantamount to a ground ^F-
derivation, by "lifting" such a
derivation to the form of a BF-
derivation, the results can be
established directly. In the
lemma, Y stands for either S or
R.

Lifting Lemma

If G„ the goal

f" A^,...,A and there is a sub

stitution ctg, such that the atoms

of SgCtg are in Y., then there is

a BF-derivation step from GQ to

• Furthermore, when (I > 0)

there is a substitution a^ such

that the atoms of are in

Yl-1 and aQf>g s 1gai' for S0IBe

substitution Pg.

Proof

By definition of Y, there
are n ground instances of clauses

of p' Vj * Vj (j = 1 n)'
where +• is a clause of P to

which a renaming substitution has
been applied and y . is a ground

substitution, such that
Aja0 ~ Hjrj and I > 0 the
atoms of B^r. are in

1-61 = and I de

the list {H. <- B U = 1,...,n}.

It can be assumed that a variable
in a clause of 1^ does not occur

^0 nor Yn an°ther clause of I.

Hence,

sol;;:"Yv° h (ai *„>vo'
there is an mgu p and a sub

stitution
1 such that

V0 = "0ai•

By the definition of BF~
srivation, there is a derivation
step from GQ to G1 with input

list Ig - I and mgu p^. Further-

™ore'_ w'1en I > 0 the atoms of

in^! Q 1^ 1 ^ 3 r e

A-2.1 Soundness and Com
pleteness for Success

the atoms of a goal G be
1n Tbese atoms are produced
from elements in S.^ which are

273

11 r«r« predwtad f'0O t«
to froo the

V{
tiw tf t, »t »t easy *•
Alt It tUitNMu"t to 0 9'Ound
9iirt«ltt«i <0* P U (<)•

Ihf problem ot lOuftdMI'
tiertfare MioM) ttoole : ft
round instances Ot the goals ot
• ̂ -derivation or# formad, tha
now in (ho tottlil goal belong
if S by tha diraet application o<
tfco dtfiftitton.

froo corollary 3.2, ,h*
•*»»*r substitution k t» a most
9W*Hl totUt ion Ot t»>0 OOuOtiOnt
indented to 0 Bf-darivatton.
TO* tot 10*109 1 boor 0# ottablishot
ttot oil ot tha oioot ot any
yound instance ot Gg»i th*

lutcott tot.

'Woroo 4.1

It P U (GQ) hot a toccottful

tf-dtrtvatlon ot longth I, thon
the (toot ot toy ground Inttonce
tjjia ot 6Q or* In l^.
Proof

Apply ua to oil tho goott ot
the derivation and apply any *°b
ititutlon to that no variable
reaoint.

By the dotIntttona of BF-
derivatton and S, 1f al^ atoms o
the ground Inttance of the goo
% "• t" Vl' then all atoot ot

the ground Inttonce of 'n-f 8re

f»V

At 6^ 1t the eopty goal, its

•toot ore In 0 s SQ.

The propotltlon follout. 0

The following completeness
theorem is a further illustra 1
that the answer substitution M
a oost general solution.

Thooroa 4.2

If there it a tubttitution

a tuch that the atoms of 6^

in S, <1 > 0), then P U (6Q)

h.. a successful BF-deriv.tion of
longth I, «uch that 6Qa0 • «qMV

for a tubttitution «^.

Proof

The atoms of tfo are in
,0 by repeated applications of
lhe lifting lemma, there are I
BF-der1 vat ion steps from GQ to ̂
end substitutions ak such t at

the atoms of -re in

V k < 0 < k '

Furthermore,
V, 8 *i«i + 1 10 < 1 < °-

Hence,

• iVWm *

Vo * '.V.-V1 " VVVA

• w D
, 2 2 soundness and Com-

J;2.;...» «•< "»"• F,,L"re ,

th. 'h;.or","B?-
w * the soundness ot

resolution 'for

Theorem 4-3

u « , < -

every " '<>

contains an atom in FF^

Pro°f oof is ̂ induction on
The proof is

Rp_derivation for

„ ,l\ eVr f5lS by length

p { 0 yyprv ground instance

Zr°G ^onta^ns an atom in FFQ.

° 0 • bv the lifting lemma,
Otherwise, by or-Herivation

274

s t e p f r o m G g .

T h e i n d u c t i o n h y p o t h e s i s i s
t h a t t h e t h e o r e m i s t r u e f o r 1 - 1 .

I f e v e r y B F - d e r i v a t i o n f o r
G g i s f a i l e d b y l e n g t h < I t h e n ,
b y t h e i n d u c t i o n h y p o t h e s i s ,
e v e r y g r o u n d i n s t a n c e o f e v e r y G ^
c o n t a i n s a n a t o m i n F F , . . . S u p
p o s e t h e r e i s a s u b s t i t u t i o n a ! g
s u c h t h a t t h e a t o m s o f G g t f g a r e
i n R ^ . T h e n b y t h e l i f t i n g l e m m a ,
t h e r e i s a B F - d e r i v a t i o n s t e p
f r o m G g t o G ^ a n d a s u b s t i t u t i o n

s u c h t h a t t h e a t o m s o f
a r e i n R ^ _ . | - T h i s i s a c o n t r a d i c
t i o n .

T h e r e f o r e e v e r y g r o u n d
i n s t a n c e o f G g c o n t a i n s a n a t o m
i n F F l - •

T h e n e x t t h e o r e m e s t a b l i s h e s
t h e c o m p l e t e n e s s o f B F - r e s o l u t i o n
f o r f i n i t e f a i l u r e .

T h e o r e m 4 . 4

I f e v e r y g r o u n d i n s t a n c e o f
G g c o n t a i n s a n a t o m i n F F ^ , t h e n
e v e r y B F - d e r i v a t i o n f o r P U { G g }
i s f a i l e d b y l e n g t h < I .

P r o o f

T h e p r o o f i s b y i n d u c t i o n o n
I .

I f e v e r y g r o u n d i n s t a n c e o f
G g c o n t a i n s a n a t o m i n F F g , t h e n
e v e r y B F - d e r i v a t i o n f o r P U { G g }
i s f a i l e d b y l e n g t h z e r o . O t h
e r w i s e , b y t h e d e f i n i t i o n s o f
B F - d e r i v a t i o n a n d R g , a g r o u n d
i n s t a n c e o f G g c o u l d b e f o u n d
w h i c h w o u l d n o t c o n t a i n a n a t o m
i n F F g .

T h e i n d u c t i o n h y p o t h e s i s i s
t h a t t h e t h e o r e m i s t r u e f o r 1 - 1 .

L e t e v e r y g r o u n d i n s t a n c e o f
G g c o n t a i n a n a t o m i n F F ^ . I f G g
h a s n o d e s c e n d a n t s , t h e n i t i s
f a i l e d b y l e n g t h < I . O t h e r w i s e ,
i f e v e r y g r o u n d i n s t a n c e o f e v e r y
d e s c e n d a n t G ^ c o n t a i n s a n a t o m i n

F F ^ _ . j t h e n , b y t h e i n d u c t i o n
h y p o t h e s i s , e v e r y G ^ i s f a i l e d b y

l e n g t h i 1 - 1 a n d t h e r e f o r e G g i s
f a i l e d b y l e n g t h < I . I f n e i t h e r
o f t h e s e c a s e s h o l d , t h e n t h e r e
i s a s u b s t i t u t i o n B s u c h t h a t t h e
a t o m s o f G ^ B a r e i n R ^ . . , . B y t h e

d e f i n i t i o n s o f B F - d e r i v a t i o n a n d
R ^ , t h e a t o m s o f a g r o u n d

i n s t a n c e o f G o ' " o ^ a r e i n R l "
T h i s i s a c o n t r a d i c t i o n .

H e n c e , e v e r y B F - d e r i v a t i o n
f o r P U { G g } i s f a i l e d b y l e n g t h
< I . 0

5 C O N C L U S I O N

T h e s o u n d n e s s a n d c o m
p l e t e n e s s o f B F - r e s o l u t i o n a n d
t h e e q u i v a l e n c e s o f G L D - t r e e s a r e
u s e d h e r e t o p r o v e s o u n d n e s s a n d
c o m p l e t e n e s s r e s u l t s f o r G L D -
r e s o l u t i o n .

T h e o r e m 5 . 1

T h e f o l l o w i n g s t a t e m e n t s a r e
e q u i v a l e n t .

(1) T h e r e i s a s u b s t i t u t i o n C l g

s u c h t h a t t h e a t o m s o f G g O ! g
a r e i n f o r s o m e I .

(2) P U { G g } i s i n c o n s i s t e n t .

(3) P U { G g } h a s a s u c c e s s f u l

G L D - d e r i v a t i o n w i t h a n s w e r
s u b s t i t u t i o n / u , a n d
Goao s VV

(4) T h e c a n o n i c a l t r e e h a s a
s u c c e s s f u l b r a n c h o f l e n g t h
I w i t h a n s w e r s u b s t i t u t i o n

a n d V o 5 W

275

6) T h e r e i s a G L D - t r e e w i t h a
s u c c e s s f u l b r a n c h w i t h
a n s w e r s u b s t i t u t i o n f i , a n d

V o s W
(1) E v e r y G L D - t r e e h a s a s u e -

c e s s f u l b r a n c h w i t h a n s w e r
s u b s t i t u t i o n J i , a n < ^

W o s W
fteorei 5.2

T h e f o l l o w i n g s t a t e m e n t s a r e
e q u i v a l e n t f o r P U { G q } -

(!) E v e r y g r o u n d i n s t a n c e o f Gq

c o n t a i n s a n a t o m i n F F .

(2) E v e r y f a i r G L D - d e r i v a t i o n i s
f i n i t e l y f a i l e d .

(3) T h e c a n o n i c a l t r e e i s f i n i
t e l y f a i l e d .

W T h e r e i s a f i n i t e l y f a i l e d
G L D - t r e e .

' 5) E v e r y f a i r G L D ~ t r e e i s f i n i
t e l y f a i l e d .

C o n s e q u e n t l y t h e U n i f i c a t i o n
T h e o r e m p l a y s a c e n t r a l r o l e i n
a l l b a s i c r e s u l t s o f s o u n d n e s s
a n d c o m p l e t e n e s s i n t h e t h e o r y o f

l o g i c p r o g r a m s .

T h e t e c h n i q u e i n t r o d u c e d i n
t h i s p a p e r i s n o t m e r e l y r e s
t r i c t e d t o G L D - r e s o l u t i o n . A s
i l l u s t r a t e d i n t h e e x a m p l e t c a n
b e e x t e n d e d t o o t h e r ; e s o L u t ^
s t r a t e g i e s s u c h a s b o t t o m - u p a n d
t h e i n t e r m e d i a t e o n e s .

I t i s a u n i v e r s a l t e c h n i q u e
i n r e s o l u t i o n b e c a u s e ^ i t a s o

p r o v i d e s a ™ e t h o r e s o U i t i o n
e q u i v a l e n c e s b a ^ * c l a u s e s ,
s t r a t e g i e s f o r a r b l ̂ y c a n o n i c a l

s t r a t e g y " w o u l d d e p e n d o n t h e f o r m
o f t h e c l a u s e s i n v o l v e d .

I n (L a s s e z , M a h e r a n d W o l
(r a n) s i m i l a r t e c h n i q u e s a r e u s e d
I ® s i m p l i f y t h e t r e a t m e n t o f t h e
s o u n d n e s s a n d c o m p l e t e n e s s o f t h e
R a t i o n a s f a i l u r e r u l e . 1 °
P a r t i c u l a r t h e e q u i v a l e n c e r e l a
t i o n I u s e d e x t e n s i v e l y i n C J a f
' a r , l a s s e z a n d L l o y d 1 9 8 3) , c a n
b e r e p l a c e d b y t h e f o l l o w i n g
r e l a t i o n :

s * t i f f 3 n : s 0 o . . 8 n 3 t 0 O ' ' 0 n

That * i s a n e q u i v a l e n c e
r e l a t i o n f o l l o w s d i r e c t l y f r o m
P r o p e r t y (2) o f t h e U n i f i c a t i o n
T h e o r e m . T h e d o m a i n t > = T / i " h s
r e p l a c e d b y t h e d o m a i n t > - T '
a r i r l t h e r e q u i r e d a x i o m s (C l a r
! 9 ? 8) a r e s a t i s f i e d t r i v i a l l y -

T h e r e i s t h e r e f o r e n o n e e d t o
i n s i d e r t h e i n v o l v e d f o r m a l i s m s

t r e e r e w r i t i n g s y s t e m s .

276

ACKNOWLEDGEMENTS

We would like to thank Lee
Naish and Rodney Topor for their
corrections and helpful criti
cisms of a first draft of this
paper.

REFERENCES

Apt, K.R. and van Emden, M.H.
Contributions to the theory of
logic programming. J ACM 29,3
841-862, 1982.

Chang, C.L. and Lee, R.C.T. Sym
bolic Logic and Mechanical
Theorem-Proving. Academic Press,
New York, 1973.

Clark, K.L. Negation as Failure,
in : Logic and Data Bases. H.
Gallaire and J. Minker Eds.,
Plenum Press, New York, 293-324
1978.

Clark, K.L. Predicate logic as a
computational formalism. Research
Report 79/59, Dept. of Computing,
Imperial College, London, 1979.

Colmerauer, A. Prolog II Manuel
de reference et modele theorique.
rapport de recherche GIA ERA CNRS
363, Universite d'Aix-MarseiIle
II, Aix-en-Provence, 1982.

Hill, R. LUSH-resolution and its
completeness. DCL Memo. 78, Dept.
of Computational Logic, Univer
sity of Edinburgh, 1974.

Jaffar, J., Lassez, J-L. and
Lloyd, J.W. Completeness of the
negation as failure rule. Proc.
Eighth IJCAI, Karlsruhe, 500-506
1983.

Kowalski, R.A. Predicate logic as
a programming language. Informa
tion Processing 74, J. Rosenfeld
Ed., North-Holland, Amsterdam
556-574, 1974.

Kowalski, R. A. Logic for
Problem-Solving, North-Holland
New York, 1979.

Kowalski, R and Kuehner, D.
Linear resolution with selection
function. Artificial Intelligence
2 227-260, 1971.

Lassez, J-L. and Maher, M.J. Clo
sures and fairness in the seman
tics of programming logic. Theor.
Comp. Sci. (to appear). Revised
version of TR/6, 1982.

Lassez, J-L. and Maher, M.J. The
denotational semantics of Horn
clauses as a production system.
Proc. of the National Conference
on Artificial Intelligence,
AAAI-83, Washington D.C., 229-
231, 1983.

Lassez, J-L. and Maher, M.J.
Optimal fixedpoints of logic pro
grams. Third International Con
ference on the Foundations of
Software Technology and Theoreti
cal Computer Science, Bangalore,
343-362, 1983.

Lassez, J-L., Maher, M.J. and
Wolfram, D.A. The Semantics of
Logic Programs. Oxford University
Press, (in preparation).

Lloyd, J.w. Foundations of logic
programming. Technical Report,
Dept. of Computer Science,
University of Melbourne, TR/7
1982. (revised 1983)

Martelli, A. and Montanari, U. An
efficient unification algorithm.
ACM TOPLAS 4,2 258-282, 1982.

Robinson, J.A. A machine-oriented
Logic based on the resolution
principle. J ACM 12,1 23-41,
1965.

van Emden, M.H. and Kowalski,
R.A. The semantics of predicate
logic as a programming language.
J ACM 24,4 733-742, 1976.

FAME: A PROLOG PROGRAM
THAT SOLVES PROBLEMS IN COMBINATORICS

Yoav Shoham
Computer Science Department

Yale University
P.O.Box 2158 Yale Station

Nnw Haven. CT 06520, USA

1 Abstract: FAME is a Prolog
program that solves problems in
combinatorics. The nature of the tas
and solution methodolgy ajre
discussed. The program and tne
algorithms involved are described in
some detail. A special emphasis is put
on the choice of Prolog as an
implementation language.

1 Overview: tank and
methodology „ _ _ .
This is a report on FAME, a Prolog

program that solves problems in
combinatorics. Combinatorics 13

difficult domain for students to soive
problems in. What are the insigh^
and inspirations that problems
combinatorics seem to require, a
that frustrate the student who was
doing just fine on integr
problems? Whatever the correct
answer may be, one hopes that 1
shed light on the nature
intelligence

The ultimate goal is f°*' .
program to have P*°^e7" tndent
capabilities similar to that of s .
who has had one course in di .
mathemat ic s . Fo r example , 1 <1
that the program should so
following problem set given
undergraduate theory course.

'This work was supported in part by the
Advanced Research Projects Agency o
Department of Defence and monitore t

the Office of Naval Research under
N00014-83-K-0281.

1 . Give a combina to r i a l
a rgument fo r the
fo l lowing equa l i t i e s :
C (N - l . R) =

(R + 1) C (N . R + 1) = (N -

R) C (N . R) .
2 . Exp la in why t he number

o f ways t o pu t N
i nd i s t inc t ob jec t s
in to K d i s t inc t boxes
i s CCN+K+l .K-1) .

3 . How many ways a re
the re to pu t
i nd i s t inc t ob jec t s
in to K d i s t inc t boxes
where eve ry box
r ece ives a t l eas t one
o f the ob jec t s? How
d o e s t h i s p rob lem
r e l a t e to the one
be fo re?

4 The fo l lowing p rob lem
i s r e l a t ed to prob lem
3 m an a r rangement

H consecu t ive
sea t s , how many ways
a r e t he re to se l ec t 4
sea t s so tha t no two

ad jacen t? E .p l . "
J O „ r answer o f coa r se .

c r i v e a c o m b i n a t o r i a l
5 " a rgument U . t

278

f rom 0 to N,C(N,I)**2)
= C(2N,N) .

(there were three more questions, but
these five provide more than enough
material for thought).

The problems to be solved by the
program are counting problems or
closely related ones. Counting
problems have the form "In how
many ways can you.." or "How many
X are there such that Y". Partition
problems are a special case of
counting problems, and have the form
In how many ways can you partition

X mto 1 such that...". I am not
interested in a program that can deal
solely, say, with proof of binomial
equalities or solely with partition
problems Thm demanding criterion
has an effect that the program must
largely imitate human problem
solving in the domain. Solutions to
special classes of problems that are
counterintuitive tend not to extend
well to the rest of the problems in the
domain On the other hand I do not
demand that the program be
complete for any class of problems it
solves. As Boyer and Moore put it [2],

It has been argued that
mechanical theorem-proving is
an impossible task because
certain theories are known to be
undecidable or super-super-
exponential in complexity. Such
metamathematical results are, of
course, no more of an
impediment to mechanical
theorem-proving than to human
theorem-proving. They only
make the task more interesting
(p.6) 5

Consider for example the class of
problems involving proof nf
combinatorial equalities, of which the
first of the above problems is an
instance. The excellent result of
Zeilberger [16] includes a procedure
for solving a ve^ wide class of those
problems, much wider than anv
student could solve. Yet thoT
procedure is not extendable to

counting problems in general and
partition ̂ problems in particular.
Indeed, Zeflberger's procedure bears
little resemblance to the method
employed by the average student.
Similar remarks apply to Gosper's
w o r k [4] ,

In contrast to that, the part of
FAAIE. which solves combinatorial
equalities closely resembles human
problem-solving in that domain. The
general structure of proving an
equality by a combinatorial argument
is to demonstrate that both are a
COrifiC^ aDswer to the same counting
problem. One typically constructs a
problem (which I call a story) by
analyzing one expression. A story
describes what is to be counted,
lypically it contains a list of sets and
their cardinalities, and a list of
rSi?tions hold between the sets."

The second step is to show that the
other expression is also a solution to
that same problem, if the counting is
done differently. Since a story has a
unique solution, this is a valid proof.

.For example, the first problem from
tne above problem set reads:
Give a combinatorial argument for
tne following equalities:
r£ dw> R) = (R + 1)*C(N.R+1) = (N-R)*C(N.R)
To prove these equalities think in how
many wavs you could choose a team
or K+l players and appoint a captain
i m among the players, from a given

class of N people. The different
expressions correspond to whether you
lrct choose the captain, the rest of

team, or the whole team. The
part of FAME which performs this
Kind of reasoning is described in
section 2.

One should note that the task is
do a purely mathematical one.

onsider the five questions presented
bove. 1 he problems 1 and 5 require

lat ^ctua"> things get more complex, and
er on stories will contain existential and

ersa quanifiere, formal sets and other
creatures.

279

s combinatorial proof. Problems 2
and 3 speak about putting objects
into boxes, and more importantly
state TEat the objects or boxes are
(in)distinct. Problem 4 speaks about
Mjaccncv. and even nints at a
relation to distinctness. How are all
these underlined concepts to be
represented so as to facilitate effective
reasoning, and hopefully reflect
human understanding of tbofj
concepts? The mathematician could
no doubt provide helpful insight into
mathematics (just as a doctor could
help in building a medical diagnosis
expert system), but the task as a
whole is a metamathematical one.

The view of mathematical problem
solving here is as a sort of planning
activity, in the sense widely used in
A1 (1ll),[13],l«l). We formulate
strategies for solving a problem,
trying them out according to certain
rules, constantly monitoring our

progress - deciding on resource
allocations and debugging solutions.
However, for any planning to take
place we need "planning material , a
structured domain. In aa

impoverished domain there is no ueed
for planning, and in a large but
structureless domain planning is not
possible. So my main concern is to
conceptualize a framework in which
the problems can be solved, and then
to verify its validity by solving them.

The criteria imposed on the
are that the representation ol tn
input and output correspond to their
representation in the real worl ,
and that the program should n
robust. For example, in solving the
first problem from the homewor
assignment I demanded that
solution should hold for all J
problems (for a more detailed
explanation see the section 2).

If the task is not a p urely
mathematical one, the work desc
here is also different from w°r'cot:(,ai

eoal is performance and robustness of
the system rather than a
psychologically valid imitation of
iuun&n problem-solving behavior
Closer in spirit is McAllester's work
f8ferthough there the stress on
robustness and depth

understand it, is to write robust and
natural problem solvers in the future
n<iine that representation.

$ ss*rsg&
problems f am forced to deal wrtb the

VtS Alk? "a to™ of I

' „ others do not fit in so neatly,
theory. ^ , strongly on the
in,P„e o a 2rr"J oumber to notion ol a u The overall

somewnere , hand,
MCrollACrSYMA [7] and SMP M on and MACS YMA be note^ that
the,t WACSYMA nor SMP can be
neither MAba nroblems which
aPPtlledted the construction of FAME motivated the co hfi g ^

set described 1. ft. W

section).
FAME actually VLessoM

called FAME ! I have
learned in c°n! fA\?E II which is
been applied to * Due to its
undergoing scope FAME
evolving state a hed out here, and
II will only be, Sn V,f it will be given
a fu" description oMt^ ̂
elsewhere. Bqt g hoice was first
in PROLOG. ,Jsbo{ a fairly obscure
made on the ^ tbe language. The
personal hkmg _ turned this vague
K& to" an ĉountable commrtmeBt,
Sdft wiU bf show, -by <$» "lways
The value of__rroiQKi

» ;« a DEC-20

• _ o

280

its non-deterministic and declarative
nature, as defined in theoretical work
such as [14] or fully applied in [12].
In the parts where it is used
declaratively it is most elegant, and
this will be demonstrated in the
paper. For other parts of the program
the natural interpretation is the
procedural one, and the combination
of declarative islands in a procedural
stream is a very convenient paradigm,
rhe factors which made Prolog such a
fortunate choice of implementation

Fffifisdtus«dSUmm"'Ze<l *'"*

2 FAME I

2.1 General description
,, f £rst c'ass °» problems to be

eJuabtii WTh Pr<?°f °J .coml>inatorial equalities. The input is a pair of
expressions, and the output is a proof
of equality. FAME I only deals wS
expressions that are integers (1 2 1
CfYvw <Ln'm-)\ have the form
Z'sW|re,C(X'Y) denotes "X ssrA' terra ft a
expressions ̂ Evolving*7 btegem
symbols and the operators + and
For example the expressions could be

°bcZZT 1

s™nnLrê Td?cn1,!dr
p.vid m.A5S£ put"Pme<?f: tl
be viewed as one of J Yl M' can

different things: the
expression x!/fv'*tx-vin algebraie
number of diff/rlnt (yJiKd sub, i thef
a given x-sized set for k jSets of
y. Fn combinatorial tixed x and
require the latter nf arguments we
reason I am n t The

former solution is not nnl t ln the

^L_Ph^fing_of__the q/estio'n^buf

4personal communication

because that kind of solution will not
extend to counting problems. Also, it
is this level of reasoning that
facilitates the clever tricks and
insights, and on which a two-line
solution can be given to problem 5
from the previous section.

The previous section outlines the
human method for "combinatorially"
proving combinatorial equalities,
which is how I started to construct
FAME I. The first step was to have
an algorithm for creating stories from
expressions. At this point I slightly
varied the method described above,
realizing that the task of matching a
given story and a given expression is
m part very similar to the story
creation task. Having already coded
up the story creation, I asked what
would happen if I created
independent stories for the two
expressions - would that be useful?
The answer turned out to be yes; all
you have to do is transform the two
stories to a certain canonical form,
and compare the canonical forms.
Those must be the same up to
isomorphism, which is what the
program checks for. The exact
procedure is described in detail in the
next section.

2.2 Algorithm and
implementation

The algorithm for testing whether
two such expressions are equal is as
follows.

Algorithm 1: Proving 4

combinatorial equality
1. 1. Create a story Story 1

for Expl, and find its
canonical form
CanStoryl.

2. 2. Create a story Story2
for Exp2, and find its
canonical form
CanStory2.

3. 3. Prove that CanStoryl
and CanStory2 are

281

isomorphic.

The story creation algorithm is non-
deterministic and rule-based. Its
input is an expression, and its output
is a story which is a tuple
<Scts,Set-lfdatione>. Sets is a set
of tuples <SetName,Cardinality>-
Set-Relations is a list of predicates
denoting set relations, each of which
has the form
>vtisetfSelNamel,SeiName2) or
portitionfList-of-Set Names, SetName)

The algorithm picks the terms of the
input expression one at a time (in a
non-deterministic order), generates a
new set name (or more than one, if
needed) and augments the story by
adding to it the new sets and
appropriate set relations.

Example 1
Suppose the input expression is
n*C(n-l,r). One behavior of the
Program could be as follows. The
expression n is known to be
symbolically equal to C(n,l). The sets
aefJ of cardinality 1 and eel2 of
cardinality n are created, and the
story at this point is
atory([(setl,l), (set2,n)].
[subset, (setl. set2)]) Which
translated into English, reads "In how
many ways can you choose a set of
^ae 1 from a set of size n?".
the next and last term is C(n-l,r).
the program creates two more set
names, sets associated with a
cardinality of n-1 and set4 associated
with a cardinality of r. It also notices
that the cardinalities of set3 and setl
sum up to the cardinality of set2, so
the final story is

story (
Uset l . l) . (se t2 .n) .
(se t3 .n- l) , (se t4 , r)] .

ipar t i t ion([se t l , se t3] , se t2) ,
subset (se t4 ,se t3)]) .

°r in English: "In how many ways can
you partition a set of size n into two
8nts of sizes 1 and n-1, and choose a
8nt of size r from the latter?".

Things get more interesting in the

remainder of the algorithm. The
canonicalization algorithm is as given
below. The input to the algorithm is a
story, and tne output is the same
story in its canonical form.

Algorithm 2: Deriving a
canonical form of a story
The algorithm has three steps.

1. Split
2. Pad
3. Flatten

Instead of writing the details of the
algorithm, it will be explained via the
following example. Note: the Flatten
phase is essentially identical to the
algorithm used in the example on
page 21 of [2], coincidentally also
called Flatten.

Example 2 Let the input to the
canonicalization algorithm be the
story " In how many way can you
choose n people from a total of m
candidates, and from those n people
construct a baseball team of r playem
and a football team of k players? A
Xver may participate in both
teams." Graphically, the story is
described by

(setO.m)

(se t l ,n)

S ' \ S

(set2,r) (set3. k)

IS t rpi notation
I Setname,Cardinality).
p=partition).

After one Split the story is

(setO.m)
s / \ s

I
(setl,n) (setll.n)
si 1 s

(cet2.r) (set3.k)

282

After the second and last split the
story is

(se tO.m) (se tOl .m)
s i I s

I I
(se t l .n) (se t l l ,n)
s I I s

(set2 ,r) (se t3 .k)

Pad changes all subsets to
partitions, and the result is is shown
in Figure 1. The final step Flatten
yields the canonical form which is
shown in Figure 2. The English form
of the f ina l s to ry i s In how many ways
can you part i t ion a se t of s ize m
into three se ts of s izes r . n-r
and m-n, and another se t of ' s ize
m into three se ts of s izes k n-k
and m-n?

Already here one can see how
Prolog is elegant and concise. For
example, the following code for Pad
is a direct encoding of the algorithm
If there exists a subset relation in

the story then replace it by a
partition and repeat, else return the
story:

pad (Sets .SR.NewSets .NevSR)
remove(
subset (Set , Set l) , SR.TapSR) . ! ,

gensym(set .Set2) .
member(CSet .X) .Sets) ,
membe r ((Set l . Y) . Sets) ,
pad([(Set2 .Y-X)I Sets] .

[part ([Set .Set2] .Set l)
ITapSR] .

NewSets ,NewSR).
pad(Sets .SR.Sets .SR) .

The last step in testing the equality
is to test for story isomorphism. Since
the canonical stories contain oniv one
sort of relation (partition), ana the
only other information is the set
cardinalities, the canonical story can
be viewed as a forest of directed
("rooted") trees with labelled nodes:
the nodes are the sets, the labels are

(s e y°- m) (se tOl . m)

P 1 ! p
[(se t l .n) . (se t4 . . -n)] [(se t l l .n) . (se tS .a-n)]

' ! ' (s«t6, n-r)]

Figure 1

P l
[(s e t 2 .r).(set6.n-r) (set4 m-nll re ' ;.v.set,4,m n'J [(set3 kl re«t7

I
[(se t3 .k) . (se t7 .n-k) . (se tS .a-

Figure 2

283

the cardinalities, and the set of a
node's 'sons* is a partition of the set
denoted by the node. Before the
explicit algorithm for testing the
isomorphism is given, the reader's
attention is first drawn to the
following logical equivalence:

r»o it-forests T(V,E) and
S(U,F) art isomorphic

i f f
there exist a a pairing P =
{<»,«>: v in V, u in U,

label(v) = label(u))
of V and U, such that

there does not exist <vi,uj>
in P such that

there exist vk and ul
such that

vk i s a son o f t s i ,
<vk,ul> is i n P, and
ul is not a son of tij

And here comes the magic - the
Prolog code is a direct encoding of the
above equivalence and is certainly
®ore readable than it (although
perhaps not in the format required in
these proceedings):

Algor i thm 3s
S to ry i somorph i sm
isomorph ic (s to ry (Se t s l .SRI) .

s to ry (Se t s2 .SR2)) : _

natchpa i rs(
Sets l .Sets2 .Pair l i s t) ,

no t ((me tnber ((X.Y) .Pa i r l i s t) .
member (pa r t i t ion (A .X) .SRI) .
member (pa r t i t ion (B .Y) ,SR2) .

m e m b e r (S e t l . A) .
member((Set l .Set2) .Pa i r l i s t) .
not (member(Set2 .B)))) -

matchpa i rs([] . (] , (]) •
matchpairs (

[(Set l . N) IRest l] ,
Sets2 ,
[(Set l . Set2) I Restpa i r s]) : -

member ((Set2 .M) ,Sets2) .
equaIsymb(N,M) .
r emove((Se t2 ,M) ,Se t s2 ,Res t2) ,
ma tchpa i r s (Res t l ,Res t2 ,

Restpairs) .

Note : member, equalsymb (which
t e s t s fo r symbol i c e c l \ i a j ^ .
r^moue a re p red ica tes inc luded in the

t i i t v l i b ra ry and used ex tens ive ly
u t i l i t y h Note tha t ne i the r

con ta in on ly " f l a t t ened t r ee .

debugged on the

o r ig ina l p rob lem

(R+1)*C(N .R+1) = (N-R)*C (N .R)

rt St S"V° SSnT ot?he JS, Mi » "» *bove
prob lem.

| ?- prove_equaI (
I ' (r +l)*c (n , r+1) .
| (n- r)*c (n . r)) •

The express ions a re equa l ,

rr-ssr. f-
FIRST STORY:

li};" Name ' : s e t ? . C a r d i n a l i t y : i
'For the sake of brevity I wiU r a i l such a N a m e ; s e t 8 , Card ina i

'orest a <U-J or est.

284

Se t r e l a t ions :
subse t (se t8 , se t9)
subse t (se t7 , se t8)

AND ITS CANONICAL FORM:

Se t s :
Name: s e t l l . Card ina l i ty : r+1-1
Name: s e t lO . Card ina l i ty : n - (r+ l)
Name: s e t9 . Card ina l i ty : n
Name: s e t7 . Card ina l i ty : 1

Se t r e l a t ions :
pa r t i t i on (

[se t7 . se t l l . s e t lO] , se t9)

SECOND STORY:

Se t s :
Name: s e t l4 , Card ina l i ty : n
Name: s e t l5 . Card ina l i ty : r
Name: s e t l2 , Card ina l i ty : 1
Name: s e t !3 . Card ina l i ty : n - r

Se t r e l a t ions :
pa r t i t i on ([se t l5 , se t l3] . se t l4)
subse t (se t l2 , se t l3)

AND ITS CANONICAL FORM:

Se t s :
Name: s e t l6 , Card ina l i ty : n - r -1
Name: s e t l4 . Card ina l i ty : n

Name: s e t l5 , Card ina l i ty : r
Name: s e t l2 . Card i na I i t y 1

Se t r e l a t ions :
pa r t i t i on (
[se t l2 , se t l6 , se t l5] , se t l4)

F AME° U t a n ^ | . u r t he r debugging
equalities: Pr°Ved the

(R + 1)*C(N ,R+1) = N* (N— 1 R)
(N-R)*C(N ,R) = N* CN-1 i R)

C(R+R.R) «C(N.R«R) =
= C(N,N -R)»C (H , I I)

CCR+R. RX(N . R+R) =
= C(N ,R)»C(N -R .R)

N»C (N - l . R— 1) = C(N .R)*R
C(N .K)*C(N -K .R-K) =

= C(N , R)*C (R , K)

It also did not mistakenly prove
any of a number of wrong equalities
given to it as input. In fact, it
straightforward to prove that fame is
sound for all domains of expressions
which are of interest. On tne other
hand FAME I is not complete for
those domains. First, FAME I was
not developed to the point where it
could reason by case analysis, i.e.
create stories for expressions that
include operators otner than '•
Consequently, the program will fail to
prove an equality like C(4,l) =
C(2,1J*C(2,1). So if X or Y in C(X,Y)
are allowed to be strictly numerical,
FAME I is not complete. However, if
such X and Y are disallowed, the
question of FAME I's completeness
remains open for now, though my
guess is that it is.

2.4 Conclusions and further
research .

On the face of it, it looks as if'
could be happy with the program.
Having solved one class of problems 1
could now extend the program to
handle equal i t i e s o f express ions tha t
are not only a simple product of
terms. For example, it wouldn't be
too hard to allow some expressions
that contain simple sums such as

C (2 n , 2) = 2* C (n,2)+n**2 or some
express ions invo lv ing summat ion such
a s e . g . SIGMA[i f rom 0 to r .
C (n . i)**2] = C(2n .n) (a l though the
l a t t e r p rob lem a l ready adds
s ign i f i can t d i f f i cu l ty in ex tend ing the
p rogram) .

The real problem begins when you
try to extend the program to deal
with the partition problems m
particular, or counting problems in

285

general. It was in doing so that 1
realized that FAME 1 had a wrong
level of knowledge. The correct
procedure for story construction
should have been to analyze an
existing knowledge of counting, and
based on that knowledge devise a
counting problem appropriate to the
given expression. Tnis knowledge is
only implicit in FAME 1, nnd
therefore cannot be applied differently
thin it is. In particular there is no
natural way to extend F AME 1 to
solve problems 2, 3 and 4.

This was the background fo r l ay ing
FAME I to re s t and s t a r t ing wor
FAME D FAME H was and i s bmng
h id l t s o as to embody d i r e c t *y
S o ») « d g c . . 1 n

stand a t the . o f C O U n t ing
; ° r °obUms cu r ren t ly so lved b , FAwf i

n.

t o r , ([(peop l e .100) , C teaa . 11) . (cap ta in 1) . (go« ' ' (c a p t a j „ . t eam)]) •
[subset(t eam.peop le) , subse t (go

team of 11 ° u h
or in Eng l i sh : In ho* many ways can you e (- h o c o u i d be t he
1 0 0 c a n d i d a t e s , a n d n o m i n a t e a c a p t a i n
pe r son)? .

stor,([(man .n) . (women . r) . (god 1)>1 . . d e r)D) .
ex i s t (gender . t«en ,women] . [subse t lg

a man o r a woman , and the re
o r i n Eng l i sh : I f god i s * """ peop le cou ld i t be?
are n men and r women , how many

stor, ([(swee t s , n) , s se t (l i t t l e k , d S ' ^ !^°^° t t l ek ids . swee t s)]) •
[subset(po i soned , swee t s) . pe r 1

t o a l t e rna t ion
comment: FAME I I t r ans fo rms the pa r t i t ion p ro
o f quan t i f i e r s ove r the s to r i e s .

s se t (s se t2 ,m)] • f co t .3 s e t l) , s u b s e t (fo rmse t ,

s to r j{ [(s« t l . 6) . scb2] . [subs« t (se t2 . se t l) l> -
« t2 i s no t spec i f i ed .

comment : no t i ce tha t the ca rd ina l i ty

Figure 3

286

3 Why Prolog
Conciseness of programming

languages has been praised in the
literature. The high "idea/symbol
ratio" enhances the conceptualizing
power of the language. Contrary to
APL, however, Prolog achieves the
conciseness not through a rich library
of system primitives but through a
conceptually powerful interpreter.
Whatever the correct reason may be,
it remains empirically true that
Prolog code is short. Although I do
P^jh&ve aLISP program similar, say,
to FAME I for a comparison, it is a
safe guess that if such a program were

^ would be longer than
FAME I's length of less than 200
lines.

One reason for the conciseness of
the program is the logic programming
aspect of Prolog. The dl-forest
isomorphism algorithm given in the
previous section is a demonstration of
that. Another example is the
following code for finding the topseta
of a story (unfortunately, the format
of these proceedings makes the code
less presentable):

topsets (Sets ,SR.Topsets) : -
f i nda I I (

X,
(member((X,_) .Sets) ,
not (
(member(part i t ion(Y,_) ,SR) ,
member(X.Y))) ,
not (member(subset (X,_) ,SR)))

Topsets) .

Note: My findall predicate behaves
like bagof, only it does not keep the
bindings of the variables between
different answers. For more details see

pJw l0gic Pro5rapn)ing aspect of
Prolog is valuable beyond
contributing to the conciseness of the
code. It was mentioned at the
beginning that problem solving shares
many features with planning
including self monitoring an! making
decisions about resource allocation It

was also mentioned that planning
depends on a structured domain. In
both FAME I and FAME 0 the
planning aspect is at times finessed
until the representation is well
worked out. In those parts Prolog
serves as a default control structure.
To use Kowalski's terminology [6j,
Prolog frees me to work out the logic
of the task before fully dealing with
the control. Psychologists and AI
people talk about declarative versus
procedural knowledge. It is much
easier to convert the former to the
latter than vice-versa, and to a large
extent Prolog facilitates this
conversion. For some of the code the
declarative interpretation is an
artificial one, for indeed it was
written with the procedural one in
mind. Like in examples given by
Gelernter [3], sometimes it is easier to
specify the procedure than to specify
the outcome. However, these
procedures call upon islands of
declarative knowledge, which indeed
is the case with the way human
thinking seems to operate.

For a language to fully qualify as a
logic programming language, it should
be souna and complete for all first
°'<ier theories. Prolog clearly does not
qualify, since it diverges on even some
straightforward theories. In the case
of FAME I, for example, the two
arguments of the predicate
create story/2 are an expression and
a story, such that the expression is a
solution to the story. FAME I uses
tne former as input and the latter as
output, but in a true LP environment
tne roles would be reversible and
create story would actually be a
procedure for solving counting
problems. The simple minded depth
iirst search algorithm of the Prolog
interpreter of course does not provide
inis luxury, but the user can
compensate for this deficiency.

ometimes one can combine the
procedural interpretation of the
program with the declarative. Most
P red teat e® are not *safely reversible",

in the example of the predicate
remove defined by

•

287

re»o»t(X. [X|Y] ,Y).
r«»ov»(X, [YIZ]. [YIW])
rtio««(X.Z.W).

The goal remove* 1,X,Y) diverges
without generating all correct
answers. Yet sometimes if a
particular predicate at a particular
point in the code will always have a
particular argument instantiated, this
otherwise diverging predicate becomes
"complete", to misuse the
terminology. I term this anchoring the
occurrence of a predicate"! This is the
case with remove: if the last argument
is guaranteed to be instantiated, the
backtracking will uncover all
solutions. Thus one conceptually
builds mini-theories for code
fragments, for which he can safelv
pretend that Prolog is complete. Such
is the case in several modules of
FAME I. including the predicate
whose coae is given in this paper: PaA
isomorphic and topsets. All
occurrences of member and remove in
them are anchored, and the predicate
equalsymb is itself reversible.

To summarize, some problem-
solving is actually done by the
interpreter, in the true spirit of logic
programming. In others parts, the
interpreter only serves as a default
control structure, until a better one is
worked out. Finally, at times the
interpreter performs a task no
different from that of a Llbr
interpreter, when the control is
explicitly and rigidly specified by the
programmer. All three uses of Prolog
are acceptable, and it is their
combination that makes it a powerfu
and flexible tool.

Acknowledgements This w.or^
was closely supervised by my advisor
Drew McDermott. Thanks go to him
and Tom Dean for comments on
earlier versions of the paper.

References
1. John R Anderson,

Games G. Greeno, Paul
J. Kline, David M. Neves.
Acquision of problem-
solving skill. In John
R. Anderson (ed.),
Cognitive skills and
their acquisition,
Lawrence Erlbaum
Associates, 1981,191-230.

2. Robert S* Boyer,
J. Strother Moore. A
Computational Logic.
Academic Press, 1979.

3. David Gelernter. A note
on systems programming
in concurrent Prolog.
Proc. of the 1984 Intl.
Symp. on

Programming lto

appear).

4. R. Wm. GosPf "
Decision procedure for
indefinite hypergeometnc
summation.
Review, »», it
(1979).

5. Elaine Kant and Allen
Newell. An automatic
algorithm designer' An
initial implementation.
Proc AAAI(83),177-182.

6. Robert K°"*lsk;
Algorithm = Lo^,c

Control. ,
Communications o
ACM, July i°79> Vo1 22'

#7-
7. MACSYMA reference

manual, Version 10,
1983. The Mathlab

288

Group, Laboratory of
Computer Science, MIT.

8. David A. McAllester, The
theory and practice of
mathematical ontology:
A proposal. PhD thesis,
AI laboratory, MIT. (in
preparation).

9. Drew V. McDermott.
Planning and acting.
Cognitive Science 2(2),
1978.

10. Fernando Pereira. Set of
again.... A note to the
ARPANET Prolog
Digest, Vol.1: Issue 45.

11. Earl D. Sacerdoti A
structure for plans and
behavior TR-191, SRI AI
center, 1980.

12. Ehud Y. Shapiro.
Algorithmic program
debugging. ACM
distinguished dissertation
1982, MIT Press.

13. Gerald J. Sussman, A
computer model of skill
acquisition AI TR-297
AI laboratory, MIT, 1973'

14. M. H. Van Emden, R. A.
Kowalski.
semantics of predicate
logic as a programming
language. JACM, 23141
1976, pp. 733-742.

15. Stephen Wolfram. SMP
reference monua/

16

Academy Qf
(1982).

A NYCIN-LIKB EXPERT SYSTEM IN PROLOG

Alan Littleford
Prime Computer Inc.

500, Old Connecticut Path
Framingham, MA 01701

ABSTRACT 1 Backgound

A large expert system,
based on an extended Myc in-like
rule set and interpreter, has
been constructed using Prolog.
The expert system diagnoses
computer system crashes in a
customer/field engineering en
vironment.

We describe the way in
which the expert system is
constructed and compare its im
plementation to other schemes
for implementing Myc in-like
systems in Prolog. While Prolog
itself may be regarded as a
Production rule system, we
still find it necessary to add
ss extra level of interpreta
tion to satisfy some of our
needs.

The system described is in
engineering test at Prime Com
puter, Inc.

Doc is an expert system

which determines the cause of
a computer system crash by
static analysis of the memory
and registers in the system at
the time of the crash. Cur
rently this data is held on
magnetic tape. The usual proce
dure has been to let a team of
hardware /software experts ex
amine the tape using a simple
pretty printer. The analysts
would then attempt to determine
the cause of the crash and

recommend fixes.

Problems handled in this
are usually transient

hardware or software problems
which are not amenable to con
ventional diagnostic tec

niques.
Doc.s goal to suMtan-

tially reduce the turnaround
time for many of these tapes

by performing the analy^
_ „ oocifihancef a

290

to make fix recommendations
wherever possible.

2 Nature of the Proble
Domain

An intermittent system
crash can be due to many
causes - subtle design errors
in system code, errant
peripherals, environmental con
ditions, chip failures and con
figuration errors to name but a
few. Often the hardest ques
tion to answer about a crash
is whether the problem is
caused by hardware, software
or both.

There are two basic
classes of diagnostic expert
systems (see Stefik et al. 1982
for a taxonomy of expert
systems). The first class in
cludes those systems which are
given a description of the
structure and correct function
of the system, and, reasoning
from first principles, deduce
the cause of failure (e.g.
Genesereth 1982, Davis et al.
1982). The second class of ex-
Pert systems rely on large
numbers of rules causally lin
ing syndromes with probable
suits (Shortliffe 1976,

Hartley 1984 e.g.).

Those systems which
reason from first principles
require complete functional
descriptions of the system un
der test. Further, they often
need results from dynamically
determined tests which are ap
plied as the analysis con
tinues. To give a complete
functional description of the
hardware and software of a
large scale computer system
currently is impractical. Fur
ther, since we only have the
memory image of the crashed
system, we are unable to per"
form experiments to aid diag
nosis.

Using syndrome/fault rules
seemed promising. The Customer

Service group at Prime C°®"
puter have, collectively/ a

large body of rules that are
used every day. Another body
of knowledge is contained in
the manufacturing organisation
which is responsible for bring
ing the system up for the first

time and yet another source of
expertise is to be found with
the design engineers who debug
Prototype systems.

291

proach appear when one con
siders linkage of specific
hardware or software knowledge
to specific implmentations of
the Prime architecture or
specific releases of the
operating system. This linkage
is inevitable and its con
sideration led to some design
choices in the implementation
of the expert system. We had to
be able to highlight facts or
knowledge specific to certain
hardware/software configura
tions, and we had to produce a
"language" usable by a diverse
collection of knowledge en
gineers which at the same time
would allow those skilled in
dividuals any expressive power

they required.

We chose t*16

syndrome/fault approach as a
basis for Doc. Specifically we
studied the Mycin program
(Shortliffe 1976) which diag
noses a class of infectious
diseases given the results of
clinical tests and other data.
We chose Prolog as an in
Plementation language for Doc
since many of the features
which are built into Mycin are
already in the Prolog language
(pattern matching and search

for example). For reasons dis
cussed below, we actually added
a rule interpreter on top of

Prolog.

3 Backward Chaining

Mycin is an example of a
backwarding chaining system. At
any given time the system as
sumes some hypothesis
(expressed as an assertio
about the contents of a
database) and uses a rule in-

4-^ cjplect IF-THEN terpreter to select
rules which would confirm or
deny the hypothesis. The
parts of the rules are usually
conjunctions of other asser
tions, which, recursively might
call upon the rule interprete

to prove or disprove them.

If all the conjunctions of

the IF bee°
the assertion^ contained ^
the THEN P." are added to th

. adds a numen database. Mycin adds
• 4= factor (a measure oi

cal belief factor \ . . .

- t t u t h o £ a the derived Oc .

t09eth" Jt combining beiief
mechanism for ten to
factors, permits th _ These

• vn +-Vip evidence •
,weigh the viard-coded

292

into the rules as part of the
expertise supplied by the
knowledge engineer in his
representation of a human
expert's problem solving skills
in the domain in question.

Belief factors may be
viewed as a crutch to be used
in the absence of total
knowledge of a situation. We
have found them to be only
partially useful in our
specific application and future
versions of Doc may discard
them.

4 Backward Chaining in Prolog

Excluding for the moment
the issue of belief factors, it
is clear that Prolog is a good
choice for representing back
ward chaining systems. Indeed
Prolog itself is an example of
a production rule system using
Horn clauses as rules. The
rule interpreter is nothing
other than the depth-first,
left-to-right exploration of
the search tree adopted by
standard Prolog. This obser
vation has been made by others
(Clarke and McCabe 1982).

Nonetheless we discovered

that this simple approach has
some problems when scaled up
to what has since become a
very large system :
i. Cost of Computation Our sys
tem, like many others, required
access to an external database
(in our case the crash dump
tap>e). This access is very
costly in terms of time, and
should be minimised. Thus any
conclusions reached from the
external facts, or perhaps the
facts themselves, need to be
cached where possible.

Access to the crash dump tape
is characterised by compara
tively few (tens to a few
hundred) non-localised reads.
Given that the tape contains
several megabytes of data, we
did not think it effective to
have the whole tape resident in
the Prolog database.

^ fact may be required several
times during diagnosis. If it
is not deduceable the first
time it is required then we
should make a note so the rule
interpreter does not try to
deduce it the next time it is
required.

11" "aintainability. Our sys
tem requires updating as new

293

releases of the operating sys
tem or hardware enter the field
or when new error syndromes
are discovered. The system
maintainers are unlikely to be
Prolog programmers, and since
there are likely to be several
simultaneous maintainers we
felt the need to insulate the
underlying Prolog dependencies
on clause ordering and back
tracking from them.

iii. Multiple Conclusions.
Many of the rules we developed
contain multiple conclusions.
The strategies described else
where (Clarke and McCabe 1982)
do not lend themselves well do
this end, the obvious approach
being to have multiple clauses
with the same body but dif
ferent heads :

. , i n .

. , i n .
f l : - i l , i 2 , i 3 , .
f 2 s - i l , i 2 , i 3 , .

% ' i f (i l a n d i2 a n d . . . i n)
% t h e n (f l a n d f 2) . '

This was rejected since it vio
lates the principle of ac-
curately encoding the knowledge
- the knowledge to be encoded
includes the fact that fl and
f2 are implied by the same set
of circumstances; splitting it
up into two rules loses this
information. Further, it can be

the cause of redundant expen
sive computations. Another op
tion, encoding fl and f2 in one
head, impedes use of Prolog in
terpreter pattern matching to
select clauses.

iv. Tracing. Our system does
not require interactive tracing
by a user using 'how' and 'why'
questions (Davis, Buchanan and
Shortliffe 1977). However we
did require the execution of
Doc be easily reconstructed at
any time after a run (so we
could analyse why Doc failed to
make a correct diagnosis at
our leisure). Thus we require
data to be logged concerning
why a rule was invoked, the
fact it succeeded or why it
failed. Using simple Prolog
clauses would require each rule
take the responsibility of log
ging its progress and usage,
thereby complicating the rule

encoding process.
Considering all of

above, we decided to formalise
the inference rules by imposing
constraints on their form, and
interpreting them in an inte
prefer which would support all

• re functions and provide logging function
f n r e x t e n d e d c o n t r o l mechanisms for extenu

of execution if required.

294

5 Implementation

5.1 Pact Language

Rules are used to assert
facts in a database. We chose
to represent facts deducable by
rules as Prolog ternary terms
of the form

f_(Object,Value,Weight).

Object and Value may be ar
bitrary Prolog tenns> and

Weight is an integer between
-10 and 10. objects are used
to represent named state or
data structures in the target
machine, in which case Value is
a representation for the data
value of the Objects. Addition
ally, Object may represent a

state in the diagnostic process

itself, or even an assertion
about the current state of the
rule interpreter.

Weight is used tn „ uoea to convey
the faCt°r' W6 f°llow

Mycin approach except our
weights are integers between
10 (corresponding to certain

refutation that object has

ue) to +io (corresponding to
ertain confirmation that ob-

Dect has Value). P0r example:
f _ (h a l t _ a d d r , k n o w n , 1 0)

"It is definite that the
halt address of the machine is
known."

f-(pb_value(N), [4 , 305),9)

"It is almost certain that
the pb (instruction address) of
process number N is segment 4
word 305."

(tr_(halt_addr),true, 10)

"The rule interpreter has
already tried to find a value
for the halt address."

In practice, it turns out
that almost any knowledge which
needs to be represented admits
a fairly simple representation
in this form. What is more, the
valued object representation
blends well with a rule-
encoder's view of the diagnos
tic process.

5.2 Rules

We retain the IF-THEN
form of Mycin rules. We do not
allow backtracking between the
various IF parts of the rules*
but we allow bactracking within
an IF part.

Rules are binary terms
with principal (infix) functor
rule'. Tjje first argument is

295

an atom labelling the rule, and
the second is a term of the
form

(goall,goal2,.... ,goaln)

The goals are passed by the
rule interpreter as goals to
the Prolog interpreter, so if
any of the goals are themselves
conjunctions of predicates,
backtracking will take place
within them. The rule inter
preter either sucessfully ex
ecutes all of the goals or one
fails, in which case the rule
is aborted. The goal
- then (Obj, Value, Weight) - is
used to construct facts in the
system's database. It always
succeeds.

Example:

is.pb.consistent rule (
defis(pb.value(N), Pb) ,
(lies_in(Pb, Area) ,

executable(Area)

then(state(N, pb) ,
consistent, 8)

) .

N is a process number.

The rule attempts to find
whether the program counter
(Pb) for the process is consis
tent by seeing whether it lies
in an area of memory contain
ing executeable code. Note that
backtracking is used to advan

tage in the second goal (there
may be many overlapping 'areas'
that the code belongs to, one
of which is marked
'executeable').

5.3 Interpreter

The rule interpreter is
invoked by use of predicates
defis(0,V), mightbe(0,V),
defisnot(0,V) etc. These call
upon the traced, predicate with
bounds checking on the Weight.

Procedurally, traced,

looks first for an appropriate

fact in the database. If none
is found but appropriate rules

have been tried then fail.
Otherwise find all rules whose
then parts contain an Object

which can be unified with the

Object in question. For each
rule, unify the corresponding

Objects with the goal and then
execute the rule as described
above. Once all appropriate

rules have been executed com

bine the obtained weights on
per value basis (Objects may

be multi-valued) and assert e

resulting f- into the

database.

traced (Obj,Val,Wt) •
" H o S j , V a l , W t) ,

296

t r a c e d _ (O b j , V a l , W t) : -
f _ (t r _ (O b j
! , f a i l .

t r a c e d _ (O b j , V a l , W t) : -
t r i g g e r (O b j , V a l _ w t _ l i s t) ,
a d d u p (O b j , V a l _ w t _ l i s t) ,
a s s e r t a ((f _ (t r _ (O b j) ,

t r u e , 1 0)) ,
f _ (0 b j , V a l , w t) .

t r i g g e r (O b j , W t l) : -
s e t o f (R , d e d u c e s (R , O b j) ,

R u l e s) ,
e v a l u a t e (R u l e s , W t l) .

The use of Prolog unifica
tion during the search for ap
propriate rules (Unifying the
Object in question with the Ob
ject in the then part of the
rule) allows use of parameters
in the rules. This is very use
ful in our case where a lot of
the rules are of the form "find
which process (number) was ac
tive. for the active process
determine". An example ig

given in the rule displayed
above.

The facts
f - (t r _ (o b j) , j

are examples of facts asserted
bY the execution of the rule
interpreter. Thase and olhet

facts permit a ^ q£

the diagnostic: run to be per-
ormed. since Prolog unl£iea

Object »lth a p.ttlcul>c ,n_
stantiation (e.g. a Pt°CeSS ln ^ f

above), the system ensures that
the rule will always be fired
for different Objects but will
return the value in the
database (or the fact that no
fact can be deduced) once an
Object has been used for the
first time

(Note: since we have a
total history of the execution
of rules during a diagnostic
run, as well as the rules them
selves, it is interesting to
postulate the existence of an
expert system which would
regard this database as its
dump tape and analyse the
'failure' - lack of adequate
diagnosis).

The execution
deduces (R, Object) is improved
by "precompiling" the Doc rules
as they are loaded into the
system. For every rule of the
form

example rule (
i f l ,
i f 2 ,
• • •
if n,
t h e n (O b j l , V a l l , W l) ,
t h e n (O b j 2 , V a l 2 , w 2) ,

)
t h e n (O b j m , V a l m , W m)

f a c t s o f t h e f o r m

f _ (t r a c e (O b j i) ,

297

example,10).
f_(tr_(trace(Obji)) ,

true,10).

are asserted into the
database.

This is analaqous to the
property-list implementation of
the updated-by function in the
original Mycin. However in Doc
this meta-knowledge is ex
pressed explicitly in the base
rule language and is available
to the knowledge engineer for
exploitation.

5.4 Scripts

It turns out that much of
the analyst's knowledge is
clumped into procedural
"scripts". In these procedures
the analyst has a set course of
action he takes regardless of
the consequences (success or
failure) of each individual
step. A minor variant of the
rule interpreter supports a
Prolog script, where each goal
is executed regardless of the
outcome of previous goals in
the script. Much of the top
level procedural control in our
system is due to the use of
scripts :

(def is(s top_type,hal t) ,
d e f is (hl t_addr ,known),
def is(known_hal t ,

Diag)) ,

(def is(s top_type, hal t) ,
d e f is (hl t_addr ,unknown),
def is(unknown_hal t ,

Diag)) ,

(d e f isnot(s top_type,
hal t) ,

d e f is (hang_diag, Diag)) ,

recite(summary_script)
%% scripts are recited.

) •

6 interface to the Crash Tape

Rules, scripts and the in

terpreter implement the diag
nostic logic of the system, but
they need to be interfaced to

the pretty printer so they can
actually get ({data}} about the

specific crash.

The pretty printer used by

the analysts performs many

funct ions ^
table lookup, vir tual to Pas
cal address mappins e tc .
cause of implementat ion t ime

. ts We did not want to
Pret ty pr inter ,

: J uses terminal i /o and a

"eland lan... J —

rift ~~ — decided t pretty

top_level script (

298

printer program. Evaluable

predicates were added to the

Prolog interpreter to support

inter-process communication at

the keyboard I/O level. Thus

the expert system could "see"

and "type" data at the pretty

printer keyboard. Strings

returned by the pretty printer

are parsed using a Definite

Clause Grammar (Pereira and

Warren 1982), and strings are

generated for transmission by

the same method. The result is

a compact efficient communica

tions medium between the expert

system and the crash tape.

7 Some Statistics

A feasibility demonstra

tion prototype was developed in

about two man-months. This sys

tem did not communicate

directly with the crash tape

and only addressed a few

symptoms of a crash. Succesful

demonstration of this prototype

led to funding for a production

system which has been in

development for about twelve

months (two people). The sys

tem has shown itself capable of

diagnosing crashes in five to

fifteen minutes (interpreted

Prolog, time-sharing one Mip

machine). This compares very

favorably against human ex

perts.

An analysis of the execu

tion profile shows that much of

the execution time is being

spent accessing the dump tape

and parsing the data returned

from the pretty printer. Each

Doc rule call takes about 10-20

logical Prolog inferences.

We currently have ap

proximately three hundred

rules, many of which concern

detailed architectural

knowledge of the machine. Of

these rules, several are in*

voked many times during a run

with different values in Object

parameters. Thus there may

be more than three hundred

rule invocations during °ne

diagnostic session. The actual

number of Doc rules invoked

varies widely from dump t0

dump.

The main segments of

Prolog code are the rule and

script interpreter (about 30

Prolog clauses), a supp°rt

Package for address computa

tions and other utilities

clauses), and the various

299

Definite Clause Grammars.

Doc is due to be shipped

to the Customer Service group

in Prime during May 1984. There

it will be used for internal

evaluation.

! Summary

Prolog lends itself very

'ell to the development of ex

pert systems of the Mycin type,

fhe Prolog language bears much

of the complexity burden

usually involved in the im

plementation of such systems,

freeing the developer to con

centrate on the problem domain.

Unmodifed Prolog is a produc

tion rule system, but it was

found to be insufficient for

our needs. Our approach has

retained the procedural flavour

of Mycin whilst still enabling

the full power of Prolog to be

exploited as needed.

We have found this to

Provide a very good balance

functionally and from the point

of view of maintaining a large

rule-set.

9 References

K.L. Clarke, F.G. McCabe.

PROLOG: a language for im

plementing expert systems,

Machine Intelligence 10, J.E.

Hayes, D. Michie, Y.H Pao

(eds), Ellis Harwood, 1982.

Randall Davis, Bruce

Buchanan and Edward Shortliffe.

Production rules as a represen

tation for a knowledge-based

consultation program, Artifical

Intelligence 8, 15-45, 1977.

Randall Davis et al. Diag

nosis based on structure and

function, Proceedings of Nat.

Conf. on AI, 137-142, 1982.

Michael Genesereth. Diag

nosis using hierarchical

models, Proceedings of Nat.

Conf. on AI, 278-283, 1982.

Roger T. Hartley. Crib:

Computer Fault Finding through

Knowledge Engineering, IEEE

Computer, 76-83, March 1984.

Fernando Pereira and

David Warren. Definite clause

grammars for language analysis

! A survey of the formalism

and a comparison with aug-

mented transition _networks, Ar-

300

231-278, 1980.

E.H. Shortliffe. Computer

based medical consultation:

Mycin. New York, Elsevier,
1976.

Mark Stefik et al. The or

ganisation of expert systems, a

tutorial, Artificial Intel

ligence, 18, 135-173, 1982.

PARLOG FOR DISCRETE EVENT SIMULATION

Krysla Broda and Steve Gregory

Department of Computing, College
v <;u7 2BZ. England

ABSTRACT

In the process interaction
method of simulation, entities in
the real world are modelled by
processes which interact when
events occur. In particular, a
system can be simulated by a net
work of parallel processes commu
nicating by messages. In this
paper we consider the use of
PARLOG to program such simulation
models, in which real time must be
replaced by a central simulated
clock.

1 INTRODUCTION

1.1 Thp communicating prPCg33£g-
approach, t" simulation

Many kinds of system can be
modelled by a collection of pro
cesses running in parallel and
communicating by sending messages
to each other through dedicated
channels. Each process models
some entity in the system being
simulated.

The architecture through
which messages pass does not con
cern us here. However, we 1

useful to make some assumption
concerning its operation. e

This research was supported (in
part) by the SERC under gran
number GR/B/97 97 3 •

first is that messages from one
process to another are processed
bv the receiver in the same order
* they were sent. Secondly, we

infinite buffering capacity
aSSfhe message channels. Finally,
°n hall assume that communication
M m e s are so small compared with
otivity times that an approxima-activity pi can be obtained

o — t i . « .

. our

"nl'mS of such networks of pro-
w m %^at is, we will be using
cesses. systems working
tW, v The effects of communi-
SmMon difficulties can be Intro-cation dii11 , , if desired,
duced into t s;es to delay
by adding n v ^ third ass-
°r i°on allows us to ignore the umption all t_mes when we oome

trsss p.™* <*•

~ ~strSenuSss=ot-
tetween tr,v.l only
ional, i*e Communication
in one dire°it direction can take
in the °Ppo£"; the form of replies
place only in several channels
to ®essaf®Sint0 a single channel

carrying gfySbe"automatically

302

1.1.1 Centralized time

If one is interested in
assessing overall system behav
iour, then the details of local
activities can be ignored; it is
the interaction of processes in
the system which is important.
The timing of the activities can
be controlled by a single clock
process which receives request
messages for alarms to be sent to
processes at future times. Pro
cesses sending these messages are
which176 W^le awaitln« replies, which are the alarm signals.

The periods of local activity
of an entity in the real system
thus eomcide with the inactivity
ty LPfar6SS ?°dellin« the enti-

V- as the global system
effect is concerned, such a pro
cess is inactive since it is not
sending messages.

1.1.2 Simulated time

There are likely to be ner
iods when all processes are i^T"
tionVi; tH6 °an 3Chieve a reduc-by skipping LVSlo°dVheCdel

"'sri-n -
alarm reply signal 3Ue of

ally updates the current ti^1?""
he that at which the ne^t
signal has to be sent p
to be done it i <a " r ^is
the time opening that

preserved. 8 eVents is

This means that all
of sending an alarn,rePercus-

fflust be finished and Signal

settled down to an Jn^M SySteB

again before the clocT! State

the time and issue th« "Pdate
signal. The clock ^ ala™
active at exactly tho 0633 is thus

he inactive. forced to

The result of this alteration
Is a discrete event process inter
action model. It uses the "comiu-
nleating processes* approach as
opposed to, for example, the co
routining approach of SDCLA
(Birtwistle et al. 1973). In
section 3 Me shall consider how to
program such models in PARLOG.

1 . 2 T y p e s o f s i m u l a t i o n a o d e l

Simulation models can be of
two main types, continuous and
discrete, depending on whether the
simulated time la changing cont
inuously or in discrete Jueps.
One kind of discrete siaulation is
the fixed time increment, or tiae
advance, approach. The other kind
is the discrete event, or event
advance, method. See (toahoff and
Slsson 1970) for an introduction
to simulation modelling.

In discrete event simulation
(Fishman 1978), the simulated tiae
is updated, and hence the systea
state changed, when an event
occurs. One change often causes a
chain of events to occur, the tiae
difference between events being
negligible. In a discrete event
simulation all events in such a
chain are considered to occur
simul taneously.

There are several approach5

to discrete event siaulation. ®e

one we take is process interact
ion, in which the events occur at
those times when processes inter-
sot. Processes nay correspond
either to activities or to objects
In the real system.

Process interaction modelSi
especially using the communicating
processes approach (in which pr®"
cesses interact by messages), ^
he described graphically. This^
advantage is exploited when writ
ing a corresponding PARLOG pr°"
gram. Processes are modelled bj

303

PARLOG relations, communication
channels by PARLOG streams.

Languages usually employed in
uriting process Interaction models
include SIMULA, SIMSCRIPT and
GPSS, which are all described In
(Fishaan 1978). Smalltalk (Gold
berg and Robson 1983) has also
been useo for the same purpose.
These are all procedural languages
and require expertise from the
programmer to design the final
program since the Interactions
between processes must be expli
cit. In the PARLUG approach, the
interactions between processes are
implicit and result from the
sending of messages. (Although
Smalltalk uses message passing,
the Smalltalk method of simulation
is more similar to that of SIMULA
than to the PARLOG method desc
ribed here.)

1.3 Example: mr uaah 1 mil 1 fAtlgP-

Consider the problem of mod
elling a car wash which employs
three workers who are all conti
nuously available for work. It
takes one worker to wash each car,
so the car wash can service up to
three cars at a time. Cars arrive
at random intervals and enter a
line where they wait. As soon as
there are workers available, cars
are removed from the line on a
first-in first-out basis and a
mitted to the car wash. Afte£ a

car has been washed (which ta es
10 minutes) it leaves the syst®®l
Customers of the car wash are n
prepared to wait indefinite y
service, so after waiting for s
minutes in the line a car wi
"give up" and leave the system.

Our first step in constrU°^"
ing a communicating Proa®S!®|w the
el for this problem is to d ^
graph in Figure 1. Ea°h n°omnWni-
process and each arc i stream
cation channel, carrying

of messages in fine, direction as
indicated by the arrow. There is
no limit to the number of messages
that can build up on a channel.

geargen is a process gener
ating a stream of CAR messages on
the arrive channel from which they
are "consumed" by escapeline. A
CAR message being consumed by the
escapeline process models a car
entering the line. When a car
gives up and exits from the line,
?he corresponding CAR message is
generated on channel depart2.
deDart2 is merged with departl,
ST^eam of cars leaving the car
wash, into depart which leads to
the outside world. The depart
channel contains the same CAR
messages as arrive though not
necessarily in the same order.

The dearwash (meaning "demand
oaruash") process models the car
ZIt represents an activity

lln which both cars and workers are

-.«»•-
Z finished^ The enter channel
W Stream of CAR messages repre-
13nfing c^s entering the car wash senting ca ^ ^ tfae

fr°m on this'channel points in
arr°W nns^e direction from the the opposit arrow
flow of cars infac ^
indicates th ^ car wash

roethSe line and cars are sent back
in reply-

The remaining processes in
Z merge, random and the graph, me g , sses.

clock, are.^^aterleaves its two
merge in time dependent

•ssz Sis:-"*1-«•«

304

clock. Any processes which need
to delay for a period of simulated
time send HOLD messages to the
clock and wait for an ALARM reply.

The graph in Figure 1 itself
could comprise part of a program
to perform the simulation. To
complete the program we need to
define each of the processes in
the graph. As we shall see in
section 3, PARLOG can be used to
define the graph and its constit
uent processes. This is because
PARLOG programs have a natural
interpretation in terms of net
works of communicating processes.

2 OVERVIEW OF PART .nr.

iosniP^RL°G ^Clark and Gregory
984) is a parallel logic program

ming language featuring both and-
and or-parallelism. For the exam-
Pies in this paper we need to use
only the and-parallel subset of

PARLOG, which we shall briefly
outline in this section. This
language, based on Horn clauses,
differs from PROLOG in two crucial
respects: "don't care non-determi
nism" and the use of "modes".
These features make possible the
concurrent evaluation of conjoined
relation calls, i.e. and-parallel-
ism, with stream communication
between the calls. Each relation
call is evaluated as a process,
shared variables act as one-way
communication channels along which
messages are sent by incremental
binding to lists.

The techniques described in
this paper could also be applied
to Concurrent PROLOG (Shapiro
1983). Concurrent PROLOG uses
"read-only" variables instead of
modes, so programs do not necessa
rily have a direct graphical
interpretation.

workers l^/ORKER (3)
^W0RK£R(£)
•WORKeRCO

.Eigurei * 9 car wash simulation

305

2.1 Don't ear* non-det.ernlnlaa

A PARLOG clause consists of a
head atom, a guard conjunction and
a body conjunction:

G1,... ,Gn | (1)

The | separates the guard from the
body and is omitted if m=0. The ,
is a parallel "and". I is also
read as "and".

In the evaluation of a rela
tion call r(t1,...,tk), all of the
clauses for relation r will -be
searched in parallel for a candid
ate clause. (1) is a candidate
clause if the head H matches the
call r(t1,...,tk) an! the guard
G1,...,Qi succeeds, otherwise it
is a non-candidate. If all clau
ses are non-candidates the call
fails, otherwise one of the candi
dates is selected and the call is
reduced to the substitution ins
tance of its body B1,...,Bn.
There is no backtracking on the
choice of candidate clause. We
"don't care" which candidate
clause is selected. In practice,
the first one (chronologically) to
be found is chosen.

2.2 Modes

Every PARLOG relation defini
tion is preceded by a mode decla
ration which states whether each
argument is input (?) or output
C). For example, the relation
merge(x,y,z) in the mode to merge
lists x and y to list z (lower
case identifiers are variables):

mode merge(?,?,").
merge([uix],y,[u|z]) :-

merge(x,y,z).
merge(x,tv|y],[v!z]) :~

merge(x,y,z).
merge([],y,y).
merge(x,[],x).

Concurrently evaluating rela

tion calls communicate via shared
variables; the modes impose a
direction on this communication.
In matching a relation call with
the head of a clause, there might
be an attempt to bind an input
variable, i.e. a variable in an
input argument of the call. In
this case, the attempt to select
that clause as a candidate will
suspend until some producer fur
ther instantiates the variable,
eventually becoming either a can -
idate or a non-candidate. If all
clauses for a call are suspended,
the call suspends.

3 QTpni,/>TTON TN PARIQS

3.1 fiygpinle

Let us consider a simplified
version of the car "ash problem
described in section 1.3- Car
arrive in the system at random

>°°^

workers^" We wish to simulate the
system for 100 minutes.

This time the line of cars
waiting to enter the car wash is a
waiting , d FIF0 queue.
simple th.s. charac-

sssvsr-" 2-
relation , interpreting
ables respect^Iie ^ as a channel,
& SharoduIer is the output argu-the producer i Input
ment where v appears.

306

arguments in which v appears are
consumers. Figure 2 is equivalent
to the PARLOG query

: eargen(arrive,random, clockl)
carwash(arrive,

[WORKER(1),W0RKER(2),
WORKER(3)'workers],

depart,workers,c!ock2).
outside(depart),
random(random),
•erge(clockl, clock2,clock)
clock(clock).

The types of the variables in
this query are shown in Table 1.
. annotation marks variables

which will be instantiated by the
consumer, so that the type inc
ludes the direction of communica
tion. Each variable in the above
query is a list of terms: the
messages sent along the channel.
The —annotated variables in Table
1 are the replies. For examDle
random is a list of- examPle, wetpvt./' -Llst of messages
NEGEXP(a,rn) where rn is a vari
able to be bound to a number by

the consumer of the message. This
number will be drawn from a nega
tive exponential distribution with
parameter a.

workers: list of WOKHKid)
arrive, depart: list of Ctf(id)
random: Hat of *BGEIP(a,rn?)
clockl, clook2, dock:

list of B0L0(delay,alarm?)
alarm: ALARH(tine)
a, rn, delay, time: mmber

Table 1

We have already said tbat
simulation processes send HOLD
messages to the clock process in
order to delay for a period of
time. These messages are terns of
the form HOLD (delay, alarm) in
which delay is the length of the
required delay in minutes, alara
is a variable which will be bound
by the clock, after the required
time has elapsed, to the tern
ALARM(time) where time is the
current time. The sending process

workers
tV0RK5R(3)

>W0RKER(|)

carwash,

/\
arri ve

d-Cpar-t. >—

ocKZ

careen
ran don]

307

simply waits for the alar* vari
able to be instantiated.

The car gen definition illus
trates the use of time delay. Its
use as a process is to generate a
list of CAB messages beginning at
time 0 and continuing at random
length Intervals until 100 minutes
has elapsed. Each time it gene
rates a CAB message, it also 3ends
a HOLD message to the clock and a
request for a random number. It
then suspends until the ALARM
reply arrives. The communication
pattern is depicted in Figure 3 •
The dotted lines show the communi
cation from clock to car gen and
from random to clock.

The definition of cargen
follows. The first part of the
definition acts as initialization.

mode cargen(
car gen(arrive, random,

[HOLD(0,alarm) Iclock])
cargenl (1 .alarm, arrive, random,

clock).

mode cargenl(?,?, , ,)•
cargenl (c, ALARM(time),

[CAR(c)Iarrive],
[NEGEXP(0.09,rn)irandom],
[HQLD(rn,alarm)iclock]) :-

les3eq(time,100) !
cargenl (c+1,alarm,arrive,

random,clock).
cargenl (c, ALARM(time),[]»C],(])

less(100,time) I.

We can think of the car wash
described earlier as comprising up
to three concurrent "washing act
ivities, each involving a car and
a worker. This is modelled by the
carwash process which matches
arriving cars with idle workers
and starts a new wash process for
each CAB, WORKER pair:

mode carwash(?,?» > >)•
carwash([CAR(x) iarrive],

[WORKER(y)iinw],depart,
outw,clock) :-

wash(CARCx) ,W0RKER(y) .departl,
outwl,elockl) ,

carwash (arrive, inw, depart2,
outw2,clock2),

merge(departl ,depart2,depart),
merge (outwl, outw2, outw) ,
meree(clock1 ,clock2, clock) .

308

The wash process starts by
delaying for 10 minutes. When
this period has elapsed, the part
icipating WORKER is sent back to
the pool and the CAR is allowed to
depart:

mode wash(?,?,*,",").
wash(CAH(x) .WORKER(y) .depart, outw

[HOLD(10,alarm)]) :_
washl (CAR(x),WORKER(y),alarm,

depart,outw).

mode washl(?,?,?,",").
washl(CAR(x),W0RKER(y),

ALARM(time),[CAR(x)],
[WORKER(y)]) .

3 - 2 Example

We now return to the problem
described in section 1.3, in which
waiting cars leave the line after
^ttlnBrl°r 3 certain Period of
time. The following PARLOG query

S E S 7 " e r a p h 8 1 v «
: gcargen(arrive,random, clock 1)

dcarwa3h(enter, '
[WORKER(1)tWORKER(2)
WORKER(3)'workers]
departl,workers,clock?1

escapeline(arrive,enter, '
depart2),

merge (departl, departs, depart)
outside(depart),
randon(random),
merge (cloekl, clock2, clock)
elock(clock). '

The types are as follows,
where different from those in
Table 1:

arrive, depart!,
depart?, depart:
enter:
car:
giveup:

list of car
list of car?

CAR(<id,glTeup>)
GIYHIP

In the preceding example, a
car was a passive object in the
simulation and so could be repre
sented by a message which was a
ground term. In some cases, how
ever, we need to simulate objects
which have some "intelligence".
In the present example a car Is no
longer passive: it has to decide
when to give up and exit from the
line. To model this decision
making ability, we now represent
each car by a message
CAR(<c,giveup>) together with a
process which has a channel giveup
into the message, see Figure 1.

The car process represents
the "intelligence" of a car. It
has a patience parameter: the
maximum length of time it will
wait in the line. At the end of
this time it will instantiate its
giveup argument to the term
GIVEOP.

/^<*rriVe

CAR(< 1 ,5 lveuf \ >)

iveup2

309

•ode oar(?,*,*).
car(pa tience, giveup,

[HOLD(patience,alar*)])
car 1(al arm, giveup).

•ode car1(?,*).
carl (ALABM(time) ,GITHJP) •

Logically, the relation
dcarvaah is Identical to carwash.
The difference is that the first
argument becomes output instead of
Input (but it still has the same
type: a list of CABs). Behaviour-
ally, the dcarvaah process gene
rates a list of variables on the
enter channel. Each time it
generates a variable message, it
then waits for the variable to be
instantiated to a CAB term by
escapeline.

mode dcarwash()•
dcarwash([car! enter],

[WORKEH(y) |inw],depart,
outw,clock) •—

dcarwashl (car,WORKR(y),enter,
inv, depart, outw, clock).

A A A
mode dcarwashl(?,?» ,'« » » "
dcarwashl (CAH(x) ,W0RKER(y) 'er*®r,._

inw,depart,outw,clock) --
wash(CAR(x) ,W0RKKR(y) ,depart! ,

outwl,clockl),
dcarwashl (enter, inw, depart2,

outw2,clock2),
merge(departl ,depart2,depart),
merge (outwl, outw2, outw) ,
merge (clockl, clock2.doc)•

dcarwashl(EHD,worker,[],inw,LJ,t »
[])•

The escapeline process has to
luffer the incoming cars in or

>f arrival while allowing any 01
;he waiting cars to escape w

Its giveup channel is ins an
ated. escapeline must not only
respond to the arrival o oaVe
and the demand for a car °
but must also monitor the g
channel of gyery. waiting car.

situations, we propose the use of
"intelligent data structures"
(IDSs, see (Gregory 1980)). By an
IDS we mean a dynamic network of
processes in which each member of
the data structure is held by a
separate process, which we shall
call a "slot". IDSs are particu
larly useful for data structures
whose behaviour depends on chang
ing properties of their contents,
as in the present example.

We illustrate escapeline by
the sequence of graphs in Figure
c A slot process is created for
each CAR message entering the line
and exists until the car leave®
,-ho line There are two ways for

to leave, corresponding to a car to j.eav<=,
the two clauses for slot. If the

instant depart channel.

- f •
»o« f Z 0„ s r ^ r s r - -

effect and will be ignored.

The PARLOG definition of
escapeline follows, along with
slot and endslot.

—"-Ear"• u
escapelinev lj,

endslot(enter).

"ft r Sic',,enter,enter,
slot(CAHv » „TOTnBvni. SlOtlr^(<c:GIVE0P»]). ^

[]) s-
car = CAH(x).

To handle this and similar

310

mode endslot(?).
endslot([ear ,'enter])

car = END.

The clauses for slot and
endslot assign a reply value to
the input variable ear by a call
of the form ear = END. if this
value were to appear in place of
car in the clause head, the clause
would suspend indefinitely waiting
for the variable to be instantiat
ed by another process, because it
appears in an input argument.

4 THE CI.OCK- ppnrfloc.

As we have seen, the clock
process is responsible for cont
rolling the timing of the simula
tion processes, it has two tasks-
to accept HOLD messages from pro-
cesses, and to issue ALARM replies
at appropriate times. Let us see
how the clock process might be
implemented in PARLOG.

Since we shall be simulating
time, we shall keep the current
simulated time as a local argument
of the clock process. Another
local argument is the chronologic
ally ordered list of alarm signals
to be sent. This list is analog
ous to the event list in languages
such as SIMULA. We shall imple
ment it as a list of pairs
<eventtime,alarm> in which alars
is a variable which is to be bound
to the term ALASM(eventtime) when
the current (simulated) time
reaches eventtime.

Our first attempt at defining
clock is as follows:

•ode clock(7).
clock(clock) :-

clock1(0,[],clock).

311

•ode dock1(7,?,7)«
cl OCk1(ti*B,l],[))•
elock1(ti»e, events,

[BOLD(delay, alar*) I clock J)
plua(ti»e,delay,eventtime),
ordlnaert(<eventtl*e ,&lar*>,

events,evental),
clock 1 (tl*e,eventsl .clock) .

clock1(ti*e, ,
(<eventti»e, alarm> 1 events J,
clock) :-

alar* = ALARM(eventti*e),
clock 1 (eventtiae .events, clock) .

The second clause for clockl
accepts and stores a new HOLD
message, while the third updates
the tine to the time of the next
event and sends the alarm signa
The problem with this is that
there is no restriction on the use
of the third clause. As e*P*ai

in section 1, the clock shoul'3

only update the time when al
ulation processes are suspended,
waiting for messages.

We can solve this problem by
assuming a primitive PARLOG r® a .
tion deadlock. A call to deadlock
will suspend until all simu a

processes (i.e. processes o
than the clock) are suspended,
when it will succeed. We °h^g

the third clause for clockl

clock1(time, 1
[<eventtime, alar*>events j,

clock)
deadlock ! .
alarm = ALARM(eventtime),
clockl (event time, events, elocx .

We shall say more about
deadlock primitive in section b-

5 ""fl "PTwr- REMARKS.

5.1 r.r anhical _ajjaulaUas.
programs

Previous sections have out
lined the PARLOG approach to
process interaction simulatio

modelling. The aim has been to
show how a network of communicat
ingTprocesses can be used to model
a system by process interactio ^
and how that graph can easily b
realized as a PARLOG program.

We intend to develop a gra-
.tiJfuSr Wt.rr.oe to PARLOO.
This would allow the user to
develop a program ®"aphically an

automatically transffVhhe vra-
PARLOG program. In program
phical program ia a

using a differe , straight-

SSSTSS graphical front end
would be useful in simulation
programming, as we have seen.

There are some special pur-
simulation systems to which

P°Se, ^ user interfaces have
graphical Qften based

.ShSng where the
o n , f t h e g r a p h r e p r e s e n t a c t -

Sfuef or

e.6 tranel̂ tion Prooess to torn the
graph into . real proAra..

5 > 2 s i a l i s i i i i s - a a £ L - t E a s i a £

For simplicity we have ig
nored these two important aspects
of simulation programs.

Stati3of°oneaorbmore1Socess-
by the use various data and up-
63 Whif„Sn informed of events by
date i often, the updating
messages- J^o'include the cur-
messages nee ^ ̂ cl k

rent time. current simulat-
process know messages must
ed time, all P h the clock or
either P^^oLss which then
t0 some otb®^kPfor the current
asks the clo » Either way,
time (by a message). fco be

the clock pr extra message
heavily ^alternative is to
keep the current time as a global

312

assertion which can be accessed by
the statistics process but updated
only by the clock.

Tracing can be done similar
ly! by a process which displays
messages informing of events.

5 *3 Implementing the

In section 4 we showed how
the clock process could easily be
implemented in PARLOG provided we
have a primitive to detect when
all simulation processes are sus
pended. In general, the provision
of such a primitive is not easy:
it implies having some meta-know-
ledge about the computation, if a
PARLOG program is running on a
parallel architecture, it is not
clear how any one process can know
whether all other processes are
suspended.

In a centralized implementa
tion of PARLOG, however, it is a
simple matter to detect deadlock
since the state of the whole
evaluation is accessible (see

e.g. the PROLOG implementation of
Concurrent PROLOG given in

(Shapiro 1983)). A deadlock pri
mitive (actually a variant there
of) is provided in a PARLOG system
which we have implemented in
PROLOG (Gregory 1983). This sys
tem has been used to test the
simulation examples in this paper.

5'^ .Compari snna

An alternative approach to
discrete event simulation in logic

}Q8?)SCrTHed " (FUt° and Szeredi
1982). This is T-PROLOG, an ext
ension of PROLOG to include faci
lities similar to those found in
conventions! simulation languages.
The attraction of this approach is
the use of backtracking to auto
matically modify the model until
the simulation exhibits some
desired behaviour.

REFERENCES

Birtwistle G.M. , Dahl O.-J.,

Myhrhaug B. and Nygaard K., SIMUI.A
-begin. Petrocelli/Char ter, 1973.

Clark K.L. and Gregory S., PARLOG:
parallel programming in logic.
Research report DOC 84/4, Dept. of
Computing, Imperial College,
London, 1984.

Emshoff J.R. and Sisson R.L.,
.Design aqd. use of computer
simulation models. Macmillan,
1970.

Fishman G.S., Principles of
discrete .event simulation. John
Wiley, 1 9 7 8 .

Futo I. and Szeredi J., A discrete
simulation system based on
arbificial intelligence methods.
In Discrete simulation and related
fields., ed. A. Javor, North-
Holland, 1982.

Goldberg A. and Robson D.,

.Smalltal k-fln; .the language and its
•implementation Addison-Wesley,
1 983 .

Gregory S., Towards the
compilation of annotated logic
Programs. Research report DOC
0/16, Dept. of Computing,

Imperial College, London, 1980.

S*' GettinS started with
PARLOG. Manual DOC 83/28, Dept.
of Computing, Imperial College,
London. Also Technical
memorandum, ICOT, Tokyo, 1 9 8 3 .

Shapiro E.Y., a subset of
Concurrent PROLOG and its
interpreter. Technical report
TR-003, ICOT, Tokyo, 1983.

Logic Programming by Completion

Nachum Dershowitz** N. Alan Josephson

Department of Computer Science
University of Illinois
Urbana,IL 61801

ABSTRACT
Term-rewriting systems provide » para

digm of computation with particularly simple
syntax and semantics. Rewrite systems may
also be used to compute straightforwardly by
simplifying terms. We show how the Knuth-
Betdix completion procedure may be used to
interpret logic programs written as a set of
sspivalence-preserving rewrite rules. We dis
cus an implementation of the system and
potential advantages of our approach.

1. INTRODUCTION
Term-rewriting systems have been widely

fed for computation in formula-manipulation
and theorem-proving systems. Such a system
may be used as a simple nondeterministic
language possessing convenient mathematical
Properties (Hoffman and O'Donnell [1982]).
Programs are easy to understand, as they have
'ery simple syntax and semantics, based on
equalities, with no explicit control.

In this paper we show how term-
rewriting systems may be used to compute in
more general settings. The completion pro
cedure (Knuth and Bendix [1970]) was intro
duced as a means of deriving canonical term-
rewriting systems to serve as decision pro
cedures for given equational theories. The pro
cedure generates new rewrite rules to resolve
ambiguities resulting from existing rules 'Bat
overlap. We show how that procedure may be
used to interpret topic programs (Kowalski
11974]) written as a set of equivalence-
preserving rewrite rules. Prolog (Clocksin an

» Tkii work was tupporled in part by the Nations
Science Foundation under grnnt MCS 81-00831.

•• While on leave at
Department of Mathematics & Computer Science
Bar-Ilan Univeraity
Rimat-Gan 52100
brad

Mellish [1981]) is one successful attempt to
combine the generality of predicate calculus
with the efficiency of programming languages
and heuristic approaches to problem solving.
Unlike Prolog, our method is not restricted to
Horn clauses and allows one to incorporate
equality between terms in a natural way.1 We
show how rewrite-rule methods may be
extended to reason about programs in the gen
eral first order predicate calculus (a convenient
and natural formalism for knowledge represen
tation), using specifications and domain
knowledge, themselves expressed as rewrite

rules.
In the next section, we describe rewrite

systems and discuss computation by
simplification. The main section, Section 3
shows how to use the completion procedure for
computing in a rewrite-rule programming
language. Section 4 describes some implemen
tation issues. We conclude with a discussion
of how the procedure may also be used to ver
ify and synthesize recursive programs in that
language.

2. FUNCTIONAL PROGRAMMING
A t e rm-rewriting (rewrite) system R over

a set of terms T is a finite J oj-n^niles,
each of the form *[^J ' k ,. c^b a
are terms in T containing vianab esT. Suich a
rule may be appbed - a term f^mj if a ..

corresponding rig terms for vari-
after the same su s i of which ru]e

ables has been m • eterministically

we write

non-Horn lopo

mminir srheme.

314

t = ^ > t ' to indicate that a term t ' in T is
derivable from the term f in T by a single
a p p l i c a t i o n o f s o m e r u l e i n R .

For example, the following system
differentiates an expression:2

D x x
D x a

D x (u + u)

D x (u - v)

D x (- x i)

D x (u v)

D A ~)
V

Z)j(lnu)

D x (u ')

1
0
D x u + D x v
D x u - D x v
- D x u

v D x u + u D x v

LD x U . j lD x V

V v '

— D x u

v u " ~ 1 D x u + u"(lnu) D X v

where u and v are variables of the rewrite sys
tem and match any term, x is the symbol with
respect to which an expression is
differentiated, and a is any atomic symbol
o t h e r t h a n x .

Thus, to find the second derivative of —
2

we use the above rules along with rules
axiomatizing subtraction, addition, and

exponentiation to reduce the term D X (D X ~) .
x

Applying the rule for terms of the form —
1 1 v

yields D x (D x 1 — D x x) . (The numerals
1 x

used are just abbreviations for their unary
representation as sums of ones, e.g. 2 is short
for 1+1.) Rewriting Dx 1 to 0 and succes
sively applying the rules u*0-»0 and
0-u—1•-« (here unary - and subtraction are
distinguished) yields the term Dx(——). Con-

• • *<>.
tinuing to reduce, we finally get , which

2s '
can be rewritten by no other rule. In this
manner, rewrite rules have long been used as
functional programs' for ad hoc computation

in symbol manipulation systems (e.g. Hearn
[1971]). We note that rewrite systems have
the full computational power of Turing
machines (Huet and Lankford [1978]).

2.1. Termination

A system R is said to t e r m i n a t e for a set
of terms T if there is no infinite derivation
t1^>t2^>t3=^> - of terms f,- in T. The

standard method of demonstrating termination
is to use monotonic well-founded orderings on
terms. A survey of orderings useful for prov
ing termination may be found in Dersbowitz
[1983],

2.2. Superposition
Let /[ffj-»r[fr] and /'be two

(not ne c essarily different) rules in R whose
variables ti and V have been renamed, if
necessary, so that they are distinct. We say
that / overlaps /', if /[c] contains a (nonvari-
able) subterm s embedded in some context
' t° indicate this we write
'1®"] = 'MI0*)—such that there is a (most
general) substitution W for the variables u and
IT for which s[u\ = /'[*]. If / overlaps /',
then the overlapped term /[<y] can be rewritten
to either r [a] or t [r'][oj. These two possibili
ties form a critical pair. During the comple
tion algorithm such pairs become new rules,
oriented with respect to ordering >.

2.3. Associativity and Commutativity
Associativity and commutativity of func

tions cannot be handled by including axioms
for those properties as rules. Instead, special
unification algorithms are used to take associa
tivity and commutativity into account.

As an example, consider the following
canonical rewrite system for Boolean algebra:3

tiVv
ti Dv
true

w A false
tiA u

ti ® false
ti © u

(t i 0 u)A w

ti © true
tiA v© u © v
tiA t; © ti © true
ti
false
ti
u
false
uA w © v A t v

where ~ is 'not', A is 'and', V is 'inclusive-
°r » © is 'exclusive-or', and is 'implies'.
Both A and © are implicitly associative and
commutative. That means, for example, that
t h e r u l e t i A t i — a p p l i e d t o (p A q) A p

yields p\q. Since these functions are associa
tive, there is no significance to the parenthesi-
zation, and accordingly terms are 'flattened'
by removing embeddings of associative func
tions symbols, e.g. (pAq)Ap is written
P A q A p .

2Knuth [1988], p. 337.
'Watts and Cohen [1980], Hsiang [1982].

315

Hu iko system » sound (» « frm* are
millet oulv to equal Wf«») '°Uowt ,roro ,
set tkxl each ml* •» » pwpoMtloMl
wsskact ud A »«d © «* «• '«l

fee ltd commutative The termination of
Iki system cm be shown by »«n»M methods
described is Dershowiu. et *1 (19831.

Whtt, at ia thil exxmpl*. some of the
tactions on the left-hand sides t or I are
associative tod commutative. then an
asocial ive-commut at i*e unification
(Liraey tad Stekmaan \lV!t\. Slickel \\WU,
Fii»II984l) is used to Bod * such that
ud I'lff) overlap The definitiou of 'overlap
most also be extended U> include cases in
thick two rules have overlapping subterms of
the same tssociative-commutative aym o
(Lukford tnd BaUantyne (Aug. 19771, Peter-
sos tod Slickel 11981|). To do this paeudo-
rules /(!,«')-/('.«') considered for
each role whose left-hand side » has an
associative-commutative outermost symbo J
All such critical pairs must reduce to the same
term up to permutation of arguments o
associative-commutative symbols.

3. LOGIC PROGRAMS

Rewrite systems may be used as 'l°R'«
ptograms' (Kowlaski (19741), in ad ition
their straightforward use for computation y
rewriting. For example, the following
Prolog-like rewrite program for appending

: w = app(z U ,v
u = opp(nil,tt
i' —app(t',niT lLL

ut = app(
true
true

u,u)|

le completion procedure, given this pTO%r:i™_
e ^ true for equality, and the

ial rule

> = «pp(«-lb lc nnll,d l* nill) -

roeratcs the computation
m = app(6-[c nil],d-[e nil]) —* <*n'(a

uj = app(c-nil,d [e nil]) -

w=app (nil, d -[e -nUJ) -
w=d \e nil] -• ans(o [6"[c ifll)

a„.(a l6 lc ld-le nilllll) - true"

The programming P^'^ogtamming
ow yields a Pr0'0*"1 being that
guage, the main differenc
vrite rule, are equivalences rather ^ ̂
plications in Horn-clause form, an

Knuth-Bendix 119701 completion procedure

Hoeeer |198ll suggested the use

e q u i v D C " jJj^^ution)'theorem-trover for
(stmight-'lne) computation w. suggested by
Green [19691 and Waldinger 11969).

Consider the following program for com
puting the quotient and remainder of two

integers:

d i v (u + V + 1 . " + 1 ' ? +

div(u ,v+ 1 »9>r)
d i v(v,u+ tp+l.O.u) - true

div(U+ «+ 1." + 11 '1 '0
div(u ,« + 1,0,0

di'v(v+ 1,«+1,9+ 1'0
</,V(0,p+ 1,9,0 v

. j_ 1 1 rl —• dlP(0,P+ 1,0,r)

' ' \ 1 + 1 0 - M « . 1 . 9 ' 0

fit Vlf - <M0,1,9,0
A£(V,1,1.0 - ffM

'* (tl ,tl+ lyOy11) ^
where + » associativ^and^commu^ ^

first rule is the m*m . the third simplifies
ia the main base ' special cases. To
sums; the remainder remainder of two

"T m ahLdqU6 with this system, the rule
numbers a ana o

div(a,b,q,r) - <»»(?>O
• .w a are r are the answer

: r% .»•

J) - «"•' ,, „

the answer values c and d for 9
containing the answe
and r, respectively-

To compute with general, the

procedure gets as inputa * and a program to

a finite set E of ^"^.founded ordering
compute a ^^utain any setofsound
>. Initially, H may d critical pairs
reductions, all of whose "*1^^ critical
are in the input set E . (̂ Qf which have input set E l of which have

rvUut'it p"i ™

St"-'®"" (S-1

316

for details.)

If the completion procedure terminates
without failure (i.e. it was able to orient each
newly formed rule), then it returns as output a
canonical system R for E. Furthermore, it
may be that a particular choice of well-
founded ordering > precludes finding a canon
ical system. (This separation between axioms
and ordering corresponds to the
competence/performance dichotomy in pro
gramming advocated by Pratt (1977) and oth
ers.) The procedure may also go on generating
an infinite number of new rules without ever
finding a canonical system or aborting In that
case, we say that the procedure loop,.

Theorem 1 (Huet (1981|) . An equa-
Hon M—N is valid in an equational
theory E, if and only if the completion
procedure—given the equations E —
eventually will have generated enough
rules for M and N to reduce to the
ident,col term. This, provided that
tne procedure does not abort.

We assume that this result also applies

(FSa°g'̂ 84̂

use the extensions of the KnutT-Bend''

andUreB^l^Utapaer (^kford

pmrr AT Stickel (1981J). ' • Pe'erson and

3.2. Computing

the form p[T,f\-+ani (-r\ »? rU ar* °*
ling term containingZSt F " <h' ^
«ble ground terms) x and !"*S ' ' '"edn-

representing operations as tuucT"31 af>Proach-
mg the rule x=x T ors and includ-
ment. We define a reu^Ue * efcet ass'Kn-

reu"nle program to be a

[USS].411" " aiD t0 th« literal- of Gree,

finite set of rewrite rules for which the comple
tion procedure may be applied hnenWy. That
is. the goal rule and rules derived from it are
only overlapped with the rules of the program.
Derived rules are never overlapped with them
selves. nor are program rules overlapped with
themselves.

Let P (T,T) be a predicate on ground
terms T and T. A rewrite program R with
calling sequence p [r.rj b said to cemptlr the
output predicate P(T,T). if, gives a goal
p[T,F]-»nn#(F) for ground terms J". the com
pletion procedure will generate a rule
ane(f)—-true^ such that P(r.O holds (pro
viding such a t exists), without aborting The
ordering supplied to the procedure should
make true less than ana terms and tru
terms less than any other term

The following theorem provides a
sufficient, but not necessary, condition for a
rewrite system to act as a program ia the
above sense.

Theorem 2 . A reurite prsgrem R
computes an output predicate P if R
it correct with reesert to true p«"'
input terms p(r.f| and the «*»<««'
true.

What thin theorem means b that if the rewnte
system evaluates grosod terms of lb' 'OTnl

p [r , r j t o t r u e w h e n e v e r P{T, t)
ndding a goal rule p(r.rj-»ani(f1 «® *•
where T are the input values and T arc vari
ables, and completing b guaranteed to gen
erate a rule of the form «na(i)-troes

that P(r,t). if such a I exists
The division program computes correctly

since it reduces grouud calling terms of lb'
form dir(u,e+ l.q.r) to true whenevrr the
numerals q and r are the quotient »
remainder, respectively, of the Minerals u »n

(the nontero) r+ I. For example, to romp"1'
the quotient and remainder of 7 and 3 t c
rule

A'r(7,3,f,r) —» nni(f.f)

is added. Completion generates

dtr(<4,3,f,r) -» eiu(f+l.f)

by overlapping the goal rule with the if* P'0-

gram rule

dir(u + e+ l,e+ l,f+ Lr) "*
*>(«,»+

05111 g the same program rule once more gi,t5

317

4iv(l,3,9,r) —• aru(g+ 2,r);

overlapping this with the second program rule
&>(«,« + tn + 1,0,u)—»true and applying
the simplification x+0—»z yields the answer
rale

ana(2,1) -• true.

The same program may be used to com
pote other arguments of div. For example, to
compote the product of 3 and 2, one adds the
goal

<fit'(u ,3,2,0) -» aru(u).

Completion generates

dt'v(u ,3,1,0) —» ans
ifii'ju ,3,0,0) -» ana

an«(6) —• true.

Although any Prolog statement may be
directly translated to a single rewrite rule, the
converse is not the case. In general, a Prolog
statement of the form

A . . . f B n

(meaning that A is implied by B j through
Bn) corresponds to the rule

MB,A • • • A B, - B,A • •• ABn.

Prolog axioms A «— correspond to A —•true
and goals «— B to B—'false. It is not difficult
to see that the linear completion procedure
will not abort for any program that consists of
rules with only conjunctions of literals (or
true/false) on both sides.

The following rewrite-program specifies
an insertion sort:

t o r t (nil) —» nil
sorf(znil) —• z-nil

r = s o r f (z - u) A y = « < " ' ' (u) A z = i n t (z , y)
— • z = i n t (z , y) A y = i o r t (u)

ine(z,nil) —* z-nil
z-[yz]=inz(z,y-z)Az<y z l—y,

yz=irw(z,y u)A y A z=m«(z,u)
«<zA z = i'ns(z,»)

The function inj(y,z) returns the list result-
ing from insertion of y in its proper p ace 1

sorted list z with respect to the primi lve
predicate can be defined by t e ru
ti<ti —• true and u<u + v * rue

The goal rule

z=«orf(3-[l-[2nil]]) - a n t (z)

overlaps with the third rule to produce

s = ins(3,y)A y = sorf(l-(2 nil]) —*

onz(z)A z—int(3,y)A y=Jorf(l-[2nil]).

The left-hand side of this rule does not unify
with the left-hand side of any of the program
rules. When we consider the extension

z = sorf(zu)Ay=«orf(u)Az = ins(*,y)Auj

_• y = 3 OF <(u)Az=i'r™(z>y)AtP

of the third rule, however, we get the overlap

z = ins(3,y)A y=ins(l,to)A «®=*or '(2-nil)

— ans (z)A z=ins (3,y)A y=ins (l,to)A
y=«orf(l[2nil])Au'=zorf(2nil).

Continuing in this fashion, superposing pro
gram rules with the goal rule, we get

ans(l[2[3nil]]) — true.

That is, l-[2 [3 nil]] is the sorted version of
3-[l -[2-nil]]-

3.3. Combining Programming Modes
The two uses of rewrite systems, for

straightforward computation by simplification
and for computation by completion, may be
combined in a single program If we consider
the differentiation programi of the^section 2 we
see that it can also be used to integrate. Thus,
to compute the integral of z , we add the rule

z 2 = D x y - » a n s (y) ,

along with rules for -, exponentiation, *, and
+ (The last two are associative-commutative
operators and need the related unification
algorithm.) Completion generates

! « = (£ » , « + D z v) - o n s (u + «)

x l = D x u — ans(u+ o)

z * = (j , D x z + z D x y) - o n t (y z + «)

z * = c D x z - * a n s (c z + a)

x * = c ((v + l)u * D X » + u " + 1 \ n u D x (v + 1)+ D

<ms(c«"+1+«)

x 2 = c ((k + 1) « * £ > , «) — a"«(co + " >

z«=c(Jfc+l)z* - °)

318

ans(1 + 1
k + 1

+ a

ans(— z5+ a) —• true.

By performing simplifications whenever possi
ble, the number of new superpositions is
greatly reduced.

*• IMPLEMENTATION
TeRSe (Hsiang and Josephson [1983]) is

a rewrite rule theorem prover that uses the
Boolean algebra system of section 2.3 as the
basis for a complete refutational strategy for
first order theory. We have implemented the
rewrite program paradigm within TeRSe for
rules containing only A (this includes all
Horn-clauses). We have tailored the control
mechanism to linear completion and are using
the following improvements to gain efficiency
within the system.

4.1. Program Control

Since Horn clauses give rise to rules of
the form

AAB,A • • • A Bn -» Bx/\ - - • A Bn

we always want to unify the literal A (other
wise, we get a trivial rule containing the
answer predicate on both sides). There are
other constraints on which arguments to A eet
unified which lead to similar speedups.

4.2. Redundant Rewriting

Rewriting can be made more efficient by
keeping trade of which rules haye been applied
at which levels. Since the effect of a rewrite
only changes a local portion of the term bv
maintaining a list of occurences, redundant
unifications can be eliminated.5 Control of this
sort corresponds to the tight 'inner-loop' of
Prolog. y

4.3. Assertions about Equality

Unification is not an optimal way for
dealing with arithmetic operators. For exam
ple, in trying to bind the term 2+3 (reallv

fiP-iiVl)fWit!l 4 (1+ 1+ 1+ !)' the result
. will be found only after invocation of the

associative-commutative unification for the
operator + . To take advantage of the seman-
tic meaning of the symbol + requires having

sCf. methods in Nelson and Oppen (lOSOl for
congruence closure. 1 '

nunt) aooui equality z
feld [1983J. Thus, knowing that
x+ a=b O z=b-a, where - is interpreted
in the natural sense, obviates the need for
unification at the symbol + .

5. DISCUSSION
We have illustrated how rewrite rules are

used for general-purpose computation. Each
rule is an equality between terms or
equivalence between formulas. The result is a
nondeterministic programming language that
has all the advantages of logic programs,
including clean syntax, well-understood seman
tics, and the ability to use the same language
(and not just Horn-clauses) for both
specification and computation. Rewrite pro
grams have the additional advantage of allow
ing rules expressing equality between terms to
e incorporated. We have described how the

TeRSe environment is being used to acheive
an efficient implementation of the program
ming methodology.

Furthermore, the full completion pro
cedure may be used to "compile" a complete
program given a partial definition. More gen-
eraHy, completion—like other theorem -proving
methods can be applied to the t«~-: of
automatic rewrite-program synthesis from
specifications. The completion procedure itself

oes the folding' (that is, the introduction of
recursive calls) based upon the axiomatization
o the problem domain. Specifications are
expressed in the same language as programs,
with the Boolean algebra system providi-j the
necessary logical capability. (Compare the
methodologies 0f Burstall and Darlington
[1977
[1979
[1981

Clark and Tarnlund [1977J, Kowalski
Manna and Waldinger [1980], Clark
and Hogger (1981).) If the completion

procedure is given the right ordering then it
wi nd a program, if a program exists, that
oes not require auxiliary definitions. When

auxi lary functions are needed, their definition
may be supplied by the user.

Assume that we wish to synthesize a pro
gram for some predicate P(T,T), and are
given an axiomatization E of the problem
omam and a set H of equations specifying

the required properties of P. We can start the
completion procedure off with E and H and
run it until a program R is generated that
computes the specification P. The monotonic
we - ounded ordering supplied to the comple-
lon procedure should ensure that terms

319

tauuiii 'specification' symbols are I""*'
this corresponding terms containing 1 '
drisrd toil symbol. which in torn should be
jmter Uii true The particular choice of
admit **. of course, aflect the program
derived Give# so appropriate ordering, me
compleiton procedure will find » program
meeting the specifications, unless it aborts. n
> similar manner, the completion procr ure
msy be used to eerily program correctors# fsee
Dmkowiu |Dec. 19821).

REFERENCES

R.M. Burst ill ind J Darlington [Jan.
19771, "A transformation »y8t*m *?!
developing recursive programs.' J- ALM,
vol. 24, no. 1, pp. 44-67. e VI. *1, hv. i s y r' "
K.L. Clark (Sept. 19811, "The synthesis
and verification of logic programs,
Research report DOC 81/36, Dept_ of
Computing. Imperial College,
England. DU^IdUU .
K.L. Clark and S.-A. Tarnlund 11977^
"A first order theory of data an pro
grams," 1977 IFIP Cong. Proc., PP
939-944.

W.F. Clocksin and C.S. Mellish
Programming in Prolog, Springer-Verlag,
Berlin.
N. Dershowitx (Dec. 19821, "Applications
of the Knuth-Bendix completion pr
cedure," Proc. Scminairc d Informs q
Thcorctiqve, Univ. Paris VII, Paris,
appear.
N. Dershowitx 119831, "Termination,'in
Systems oj Reductions (A.M. Balla
and M. Richter, eds.), to appear.
N. Dershowitx, et. al. (August 19 j;
"Associative-Commutative
198S IJCAI Proc., vol.2, PP- 940-944.

F. F„„ IM». 1««|. „"«{£?*£
Commutative Unification,
Colloq. on Trees in Algebra and W
gramming, Bordeaux, France, to app

C.C. Green (June 196j,J^Zmring,

). A. Hansson, S. Haridi, • ^ Logic
(19821, "Some Aspects program-
Machine Prototype, in Tarnlund,
ming (K.L. Clark and S.-A.

eds.), Academic Press, London, PP- 267-

280.
,, a C Hearn 119711, "REDUCE 2-A sys-
" urn and 1 anguage for algebraic man.pu-

Urion " Proc. end ACM Symp. on Sym
bolic 'and Algebraic Manipulation, Los
Angeles, CA, PP- 128-133.

,o r M Hoffman and M.J. O'DonnelUJan.
198°1 "Programming with equations
SS. on Programming Languages and

Systems, vol. 4, no. 1, PP- 83-112.

logic programs, J-
pp. 372-392.

w - »«•»• u'b»-

u • a N A Josephson, [19831,
15 j. Hsiang, — Rewriting Theorem

plover" Proceedings of Rewrite Rule
Workshop, G.E., Schnectady, N.Y.

tt , I1Q811 "A complete proof
16. G. Huet [198 \, h.Bendix comple-

COneCroenthm ' ^-^(er and SySUm t,on algorithm, pf> u.2l.

SC""C"' " , D s LMkfo,d pOTSj. "O.

-S.ff.d-- ,
H DC Oppen [19801, "Equa-

18. G. Huet an • rules. A survey, m
tions and rewn , perspectives
Formal l^Lms R Book, ed.),
^/^PrrrS Yirk, PP-349-405.
AC Tth 119681 The Art of Computer

19 D. E. Knuth lly°o|, p ..Fundamental
Programming, ™ 3on.Wesley, Reading,
Algorithms,

20 TE-

*• <u >• -

514-519. "Predicate logic as
22. R.A. K°wal®k\language," ^oc'

P^Trth-Holland, Amsterdam.

320

K.A. Kowalski [1979], Logic for Poblem
Solving, North-Holland, New York DD
204-206. ' 34.

24.

25.

26.

27

28.

29.

30.

31.

32.

33.

D.s Lankford [Aug. 1981J, "A simple
explanation of inductionless induction "
Memo MTP-14, Dept. of Mathematics
Louisiana Tech Univ., Ruston, LA.

D.S. Lankford and A.M. Ballantyne
[Mar. 1977], "Decision procedures for
simple equational theories with commu
tative axioms: Complete sets of commu
tative reductions," Memo ATP-35 Dept
of Mathematics and Computer Sciences'
Univ. of Texas, Austin, TX.

US" L,a°^0rd and AM- Ballantyne
[Aug 1977], "Decision procedures for
simple equational theories with
commutative-associative axioms: Com
plete sets of commutative-associative
reductions," Memo ATP-39, Dept. of
Mathematics and Computer Sciences
Univ. of Texas, Austin, TX.

M. Livesey and J. Siekmann [19761
Unification of A+ C-terms (bags) and

; mS (sets)' Intern- Ber. Nr.
/76, Inst, fur Informatik, Univ

Karlsruhe, Karlsruhe, W. Germany.

J"? R J' Wal<Bnger [Jan.
1980), A deductive approach to pro
gram synthesis," ACM Trans, on Pro
gramming Languages and Systems, vol 2
no. 1, pp. 92-121.

G. Nelson and D C. Oppen, [19801 "Fast
Decision Procedures Based' on

Congruence Closure," /. ACM S7 S
(April 1980), pp. 356-364.

mil PeprSOn, aDd ME" StickeI (Apr. 1981), Complete sets of reductions for
some equational theories," J ACM vol
28, no. 2, pp. 233-264.

V.R. Pratt [Jan. 1977I ..The

competence/performance dichotomy in
programming," Proc. 4th ACM Symp. on
Principles of Programming Languages
Santa Monica, CA.

M.E. StickeI [July 1981], "A unification
algorithm for associative-commutative
functions, J.ACA/, voL 28, no. 3, pp.

R.J. Waldinger [May 1969), "Construct
ing programs automatically usine
theorem proving," Ph.D. thesis, Dept of
Computer Science, Carnegie-Mellon

Univ., Pittsburgh, PA.

D.E. Watts and J.K. Cohen [Aug. 1980),
"Computer implemented set theory,"
American Math. Monthly, vol. 87 no 7
PP. 557-560.

ASSOC 1 AT IVK CONCURRENT EVALUATION OF IX*IC PROGRAMS

Katsuhiko Nakamura

School of Science and Engineering

Tokyo Denki University 350_03 Japan
Hatoyama-machi, Saitama- t

ABSTRACT

A general evaluation method
for logic programs is discussed
based on the use of hash or asso
ciative memories for the binding
environment and the database.
The method is extension of that
employed in H-Prolog system.
Applications of the method are
discussed both for serial depth-
first evaluation and for heuristic
(best-first) concurrent evalua
tion. In the heuristic evaluation,
the processes share the common
memories for the environments an
the database. The serial heuris
tic evaluation is implemented to
examine the usefulness of the
method. Systems employing this
method require no garbage collec
tion cycle for the working memo
ries and the databases, and can
dynamically distinguish local
variables from global variables
economize the memory usage.

1 INTRODUCTION

In this paper we present a
general evaluation method for
logic programs based on the us ̂
either hash technique or associ
five (or content-addressable: CM
memories. The method is concerne

with the design both of en^ f

ments to represent the sta
variables and of the data a
which contains the clauses

in addition to nondeterminism

.. in oth.r

features of logic program execu
tion make the environments mor

complicated.

(2) The memory space occupied

by some ̂ ^JlLmeTaitlr deter

ministic application of a clause.

Furthermore^we require mul

tiple en^r°" e evaluation by
evaluation, • t_£irst) search,
heuristic (heuristic evalua-
including or
tion as we evaluation. A clas-
AND-parallei program

eva^uati®*1 shown in ***. -

evaluation, mos J working

multiple stacK 982r Mellish
data [Bruynooghe Qn the other
1981, warren 197 W ̂ & bagic

hand, the8 multiple environ-
mean to realitouristic and/or
ments for the " is nGt

parallel evaluatio^ ̂ ̂

difficult for Y data to rea
ls the main enVironments by
lize the m

utt^t " The asso-

"association 1 ;ver< require
ciation lists,

322

serial inefficient accesses and
garbage collection to reclaim the
garbage list cells.

A simple method to realize
the multiple environments is to
copy an environment at each new
branch of the evaluation process.
A drawback of this method is its
inefficiency in memory usage and
computation time due to copy ope
rations. Another drawback is that
the common variables cannot be
used as a mean for communication
between the AND—parallel concur
rent processes as described in
[Clark and Gregory 1981, Shapiro
1983].

Our method is extension of
that employed in H-Prolog system
[Nakamura 1983] we are developing.
The H-Prolog system uses two hash
memories, one of which is the
working storage for the bindings
based on structure sharing [Boyer
and Moore 1972], The other hash
memory stores a part of data in
the database for efficient compa
rison and access of the data: the
clauses are represented by Lisp
like lists and every sublist with
out variables is stored in a hash
memory as a "monocopy list"
introduced by Goto [Goto 1974],

The hash memory also contains the
indices of the clause heads for
efficient selection of applicable
clauses to goals.

2 A GENERAL MODEL OF LOGIC
PROGRAM EVALUATION

Informally, an evaluation is
a process to derive the empty goal
list from an initial goal list
(i.e., a question) and a program
by linear input resolution [Kowal-
ski 1979]. A pr pgr am is a sequen
ce of clauses of the form either

A.
A :- B1,...,Bn.,

where A and B's are predicate
terms, A goal list is a list of
predicate terms, and represents a
clause of negative literals.

2-1 Resolution

For a goal list L and a set
(called an environment) E of
bindings, let L:E represent the
instance of L which is obtained by
substituting its variables accor
ding to E. By resolution (or
reduction) for a goal list L =
<Gl'..-'Gn) on a program P, a new
goal list

depth-first serial
(standard Prolog)

heuristic
(best-first)

serial (generally, OR-parallel)

OR-parallel

parallel

AND-parallel

Figure 1. A Classification of Logic
Program Evaluation

323

I G . , . . . , G , « A ^ #

«!•! Gn'

lied a reaolvent of L In P t*
rived, if unification of o goal

in L succeeds with a head of a
lause G «- Aj,...#A in P and
merates a set E of bindings-
f the clause is a unit clause,
tie subsequence Aj«.,*«An i®
egarded as empty.) Note that
he variables in the clause should
e renamed before each
nification.

t.2 Join Operation forANP-
Parallel Evaluation

Two or more goal lists are
said to be AMD-branching, if they
are derived from a goal list L by
the resolutions applied to dif e

rent goals in h. It is necessary
for AND-paral lei evaluation to
rejoin the AND-branching goal
lists and generate a new goal ^
list, if they are "consistent .
More formally, two AND-branching
9oal lists

Wi
3i+l'

<Gi-l'Al'*"",Am' I- \ . T .,Gn):E

Gj+1'*""'Gn^ sF*

: j) , c a n b e j o i n e d i n t o t h e

processors.

2.3 computation Graphs

We represent an evaluation of
initial goal list (a question)

T £ - directed graph called a

imputation araph such that:

(D ̂ ery node has a label,

which is a goal list-
of the root is LQ.

If two or more edges enter
2m the" represent the join

3 erft'ion Otherwise, an edge
represents a unification.

v v. vias no leaving edge
A node which terminal
is called a tHgnal- ̂ label is
is a succes failure node,
an empty llSt' &n e^I^tTon has
otherwise. computation
no j°in °pe"ee ' In this case
graph is a he root to a

sequence.

. „ computation graphs for
Example coinp finding common
evaluations of are shown

elements 1 d 3 The program is

^redefinition of membership

relation:

(G1,...,Gi_1,A1»
n .fi . . .E

,Plm'

Gi+1 ••'
Gj-l'Bl'*"'Bk'

Gj+1' 'Gn> E O F ,

oth E and F do not contain
ings for a common variab
, non-unif iable value ter
; operation can easily e
inded to the operatio ,lsts.
n two AND-branching g°a ̂

ause the number o s large,
nching goal lists may be
is essential in the assign a
rallel evaluation to

m(X,[xl_n-

m(x,[y|Ll)

3 coNTESiHEHSHSi

va section we discuss
in this se the

the working data based

structure sharing.

3.1 contexts

Our method uses ̂values

"J j, tw

324

fb.cj)

t b{X, |b,cj)

Figure 2.

Evaluation^" Finer ^ " Serial or OR-Paralle
°f Flnd*n9 Common Elements

m(X'[a'bJ) & m(x,[b,c])

inconsistent

Mb, fbj)

OR-branching

m(X,(a,b]) &
n>(X,(c])

join operation

m(b, [])
fail

0
success(X->b)

m(a,[])
fail

m(b, [c])

m (b, [])
fail

m(X,[bJ) &
m(X,[J)
fail

3- \G„ph
° Finding Common Elements AND_Parallel Evaluation

325

beginning of each resolution. A
context is used as a label not
only of a resolution but also of
the clause whose application
begins with the resolution.
Every variable in the clause is
referred to with the context of
the clause.

Let (s,t) denote the reso
lution of a goal with the context
s and the clause with the context
t, which is generated by this
resolution. An application of a
clause A with a con
text t to a goal with the context
s consists of the resolutions

(s . t) , (t , i 1) , (t , i 2) , . . . , (t , i m) .

The application is deterministic,
if there is no other candidate
clause in all the resolutions
except (s,t) of the application.

The contexts are partially
ordered: we write i j, if and
only if either i = j or the reso
lution labelled i is followed by
the resolution labelled j in a
path of the computation graph.
For any context c, we have 0 <_ c,
where 0 is the initial context.

3.2 Bindings

We represent a binding by

vi ">k tj'

where i, j, and k are contexts
with i < k and j <_ k. This means
that by a resolution labelled k a
variable V with context i is
instantiated to a source subterm
(or a source sub list) t whose
variables have a context j. The
represents a renamed variable, and
the t • an instance of t by struc
ture sharing. Practically, V and
t are the pointers to the variable
and the source term, respectively.

3.3 Storage for the Contexts
and Bindings

We assign one of the four
states in Table 1 to each context.
The states change as shown in
Figure 4. The state R is assigned
to a context when all the evalua
tion paths following the goal list
with this context are found to
have the failure terminals. The
state N changes to D when the cut
operator is encountered in a
serial application of a clause.

The system holds the state
information in an array or a hash
or CA memory called the context
table. In the case the hash or CA
memory is used, it only contains
context-state pairs with the state
either D, N, or T and deletes the
pair when the state changes to R.

Every binding Vi~>k tj is
stored in the hash or CA memory
and accessed by its keys V andI i.
The system considers the variable
V• to be uninstantiated, if there
is no binding for V and i in the
memory or the context k in its
binding is in the state R. If the
system employs the CA memory and
can access the binding by the
context k, it can delete the bin
ding when the application labelled
k fails. The system employing the
hash memory can detect the unused
binding in the hashing or re
hashing process and reuse its
place for storing a new binding.

3.4 Links

In either serial or OR-
parallel systems in which the
left-most goals in goal lists are
evaluated first, a goal list can
be represented by a set of source
sublists of goals and linkage
information, as the instances of
terms by source terms and the

326

G t- with a context i is
applied to G^ in a goal list
(Glf...,Gn) with a context j. We
represent the linkage information
by the data of the form

Oi ->i ̂ G2' 'Gn*j'

where (G2,...,Gn) denotes the
pointer to the sublist. We call
these data the links.

4 LOCAL AND GLOBAL VARIABLES

Suppose that a binding Vi ->k
tj with i £ j and i ̂ j has been
generated. We say that a variable

with a context is global, if it
occurs in t• or its binding is
used to construct the instance of
tj. The variable is local if it is
not global. (Note that this defi
nition is different from those in
[Warren 1978, and Mellish 1980],
in which local and global variab
les are determined statically.)

After deterministic applica
tion of a clause with a context j
is terminated, i.e. the state T
has been assigned to the context
j, the system does not refer to
the bindings for the local variab
les with the context j. Therefore

state of ^context application of the clause

D deterministic, in progress

N n°ndeterministic

T deterministic, terminated

R proved to be failure

Table 1. states of the Contexts

Figure 4. Possible State Changes

327

the places of these bindings in
the memory can be reused to store
another working data for economy
of the memory, as those of bin
dings with the reset contexts.

To separate the local variab
les from the global variables, we
attach one-bit information to each
binding for indicating whether its
variable is local or global.
Because variables in a term which
is instantiated to a global varia
ble later are also global, unin-
stantiated global variables are
also required to have this infor
mation. Therefore, we store
special "bindings" of the form

V. ->^ uninstantiated.

for every uninstantiated global
variable V^

The links are treated as the
bindings for local variables.

SERIAL DEPTH-FIRST EVALUATION

Most Prolog systems employ
serial depth-first search to fin
successful evaluation sequen
These systems backtrack to t e
ancestor node whenever they
that a goal list is failure The
state R (reset) is assigned to a
context c, when the effect of
application of the clausewith
context c is deleted in the ba ic
tracking. The system can store
the bindings and the lin s
hash memory, and refer to a
ding or a link by its keys.

In the depth-first is

tion, the ordering of contexts is
necessary only to determine whe_
ther a variable is local or gl°
bal. We can simply assign the^
integer n to an n-th co"^^
the ordering, sin=e two con-
only tests the °rd®r sequence,
texts in an evaluati

HEURISTIC EVALUATION

Our model of the heuristic
evaluation is illustrated in
Figure 5. The processes or pro
cessors share the common associa
tive memories for the environ
ments, the database, and the con
text table, to execute the reso
lution and the join operations.
The control unit maintains the set
of goal lists to be evaluated, and
allocates the operations to the

processors•

In the heuristic, either
serial or parallel evaluation, the
system may store more than one
binding (or link, in the case of
serial or OR-parallel evaluation)
with the same keys. A binding o
i cnk is valid only in the evalua-
tioi paths-leaving the resolution
which generates it. More
formally, a binding

->,. t k "j

is valid in a resolution with a

l abe 1 h, if and only - a • label n' illustrated in
(This relation is ^ ̂
Figure 6)- T t<> test the

some efficie ^ ̂ the

relation — , . ^ £0r given X,
valid binding or link for g

i, and k.

A method to determine the
."order is to assign binary

P K and H called "position
vectors K and H^ ̂ respectively,
vectors to that
for any contexts k and^ ̂

k £ h, if an o bitwise implica-
the operator ̂ illuBtrates an

tion. Fl<fre he position vectors
assignmen ^ AND-parallel
to the contexts i
computation grap

328

xgure 5. a Model of the Concurrent Evaluation

J*
<*» vi->k

Ol Vi->. \

A
Figure 6.

Bind^iUŜ r̂ t̂ °n °f Relation such that the Binding (a, is Valid at the

000000

000001
001000

000101 001 om -
001001 000110 001010

011°01 101001

Figure 7 *

to an axT^!In̂ "t °f the Position Vectors
an AND—OR-oar;,! re"u" Parallel computation graph

329

oo
/\

10

/\
/\
01 11

010 110 Oil 111

Fioure 8 An Assignment of the Binary Strings Figure 8. An As computation graph

In serial heuristic evalua
tion and OR-parallel evaluation,
we can employ another method. For
any contexts k and h, we assign
binary strings K and H to k and h,
respectively, such that k £ h i£
and only if K is a rightmost sub
string of H. An assignment of the
binary strings to an OR-parallel
computation graph is shown in
Figure 8.

(1) The system written in the C
language implicitly uses only one
stack. This makes the program
considerably simple.

(2) Local variables are dynami
cally distinguished from global
variables. Hence, no garbage col
lection cycle is required for the
memory storing binding
information.

If we can use an appropriate
associative memory, the valid bin
ding or link X, ->k is deter
mined for X, i, and h in a single

A. £ N KU

(3) Tail recursion (last call)
optimization [Warren 1980 and
Bruynooghe 1982] is easily

or small number of, operations by
using the above method. On the
other hand, the system using a
hash memory requires to search t e
binding with k h for a set o
bindings or links with the same
keys X and i.

IMPLEMENTATION

The serial depth-first
evaluation method is implemente
in the H-Prolog interpreter
[Nakamura 1983]. The H-Prolog
system has been instal led on se
ral machines including large sc^_
and micro computers. Some a va
tages of our method compared to
systems employing the multip e
stacks are:

The serial heuristic evalua-
,h.j is implemented in C

tirHmprolog to examine the use-
, /of the method. The system

fU ntains a Jueue of goal lists
m3rh their contexts to be eva-

A gince each goal list is
1Ua /of the source goal lists
composed o ^ links> the actual
by means of ^ are the
elements * ^ the first
P3irS Lai lists and their con
source goal i in the queue

According to an estima-
are Of the goal lists, Which

order of the contexts.

/

330

THE HASH MEMORY FOR THE
DATABASE

We use another hash memory in
the H-Prolog system to store the
monocopy lists which represent the
subterms without variables. A
monocopy list is the binary list
structure in which the location of
each cell (or atom header) is
determined by the contents of the
cell (or the print name of the
atom), and two pointers in a cell
link to monocopy lists. Figure 9
illustrates the data structure of
terms in the H-Prolog. Some advan
tages of this methods are:

U) In the unification, equali
ty of two subterms without a
variable can be determined in a
single step.

store SyStem can efficiently
store a large quantity of data
provided that they can be '
represented as lists in which
identical sublists occur frequen-

sentence's ParSe<^ nat^al language

ctions.and subprograms to the

(4) The monocopy lists can be
used as the indices which repre
sent the patterns of the clause
heads to efficiently select the
applicable clauses to goals.

We implemented the capability
to reclaim garbage cells of the
monocopy lists in the H-Prolog
system by means of the reference
counter method (Knuth 1968). This
garbage collection method is
suitable for our system because
used cells can be detected in the
hashing or re-hashing processes as
in the working memory. The
system returns the garbage cells
in the heap to the list of free
cells whenever they change to be
unused. Therefore the H-Prolog
system requires no garbage collec
tion cycle for its database as
well as the working storage.

9 CONCLUDING REMARKS

We have described memory
managements for the environments
and the database in logic program
evaluation systems based on the
use of hash or content-addressable
memories. It is clarified that ve
can realise a simple and efficient
system for heuristic concurrent

f(X,b,c)

9(Y,a,b,c)

Heap
Hash Memory

Figure 9. Data Structure of T*
(The numbers in the cell! ̂ th® Database

J-S are the reference counters.)

331

evaluation by the use of the
content-addressable memories.

Efficiency of the H-Prolog
system is discussed briefly in
(Nakamura 19831- Some timing data
show that computation time of
serial depth-first evaluation by
the system is comparable to other
Prolog systems employing multiple
stacks. More detailed descrip
tions of the parallel execution
method and efficiency of our
methods will be appear in subse
quent reports.

ACKNOWLEDGEMENT

The author would like to thank
Professor Donald Michie of the
Machine Intelligence Research Uni
of the Edinburgh University, where
he began this work. He acknow e
dges Isamu Shioya, and Masayuki
Shimoji for helpful discussions
and their assistance in the
implementation.

REFERENCES

Boyer, R.S. and Moore, J.S. The
sharing of structure in theorem
proving programs, in Machine n
lligence 7 (eds. Melzer, B. an

Michie, DO, Edinburgh Universi y

Press 1972.

Bruynooghe, M. The memory manag
ment of Prolog implementation.
Logic programming (eds. dar , •
L. and TArnlund, S. A.), Aca

Press 1982.

Clark, K. L. and Gregory' Rprog-
tiona! Language for Para^lel ̂
ramming, Research Report DOC81/1

Imperial College 1981.

Goto, E. Monocopy and ̂ ^p1,3 Tech-
algorithms in extended LISP,
nical Report of ̂ ^matio^Sci^
ce Laboratory, Universi y

1974.

Kowalski, R. A. Logic for Problem
Solving, Elsevier North Holland

1979.

Knuth, D. E. The Art of Computer
Programming 2. Fundamental Algo
rithms, Addison-Wesley 1968.

Mellish, C. S. An alternative to
structure sharing in the Implemen
tation of Prolog Programs, Dept.
of Artificial Intelligence Re-

of Edinburgh 1981.

Nakamura, K. Associative Evalua
tion of PROLOG Programs, Intelli
gent System research
TDU—ISRG—83-04, Tokyo Denki Uni
versity 1983, also to be appear
Implementation of PROLOG (ed.
Campbe 11, C. A.), Ellis Horwood.

Nakamura, K. H-Prolog

"ZoDenki D»iv.k.i«

1983.

v.- J A. A machine oriented
based'on resolution princip-
"1c» 12. PP-23-" »«•

. E Y A subset of Concu-
S hent prolog and Its Interpreter,
SSicl «P°« ™-003. ICOT

1983.

n H. D. Implementing

PROLOG - C0»Pil^-e^e0f
Logic ssrs. sr—«v -
burgh 1977.

D H D. An improved Pro-
Warren, D.» which optimises
log impleme proceedings of
tail recurS1° • g workshop, PP-
Logic programming

i-ll 1980.

A UNIFICATION ALGORITHM FOR
CONCURRENT PROLOG

Jacob Levy
Department of Applied Mathematics
The Weismann Institute of Science

Rehovot 76100, Israel

Extended Abstract

ABSTRACT

A new unification algorithm for
Concurrent Prolog is presented. A
previous implementation, written in
Prolog, was extremely inefficient and
incorrect in a central aspect. It
did not solve the problems associated
with true or-parallelism. The algo
rithm discussed in this paper forms
the core of a new implementation of
Concurrent Prolog in C, currently
under development.

1 INTRODUCTION

Concurrent Prolog (Shapiro
1983), a variant of Prolog, sup-
ports concurrent programming and
parallel execution. It combines a
dataflow-like synchronisation mech
anism, guarded-command indetermi
nancy and a commitment metho
similar to nested transactions to cre
ate a powerful tool for parallel pro
gramming.

This paper reports our work on
the analysis of unification in Con
current Prolog. Previous descrip
tions of the language relied on uni
cation being performed by the un er
lying Prolog system. These efforts
did not allow correct implemen a
tion of or-parallelism (Shapiro 1983,

p. 48). Therefore essential problems
facing the implementation of unifica
tion were not addressed. The cur
rent paper presents these problems
and proposes solutions.

The unification algorithm pro-
nosed here is intended to be executed
on a uniprocessor. However, we con
jecture that it can be extended to
perform correctly in a multiproces

sor system.
Section 2 describes Concurrent

Prolog's syntax and defines its com
putation model. Section 3 discusses
some of the special characteristics of
a unification algorithm to. Concur
rent Prolog. Section 4 presents an
algorithm that implements the re
quired properties as described in Sec-
tions 2 and 3. In section 5 a discus
sion of the algorithm is presented.

2 sYOTAXAIffi_COItffIJTAriON

MODEL

2.1 Syntax
The syntax of Concurrent Pro-

, +ne same as that of Prolog
Clocksin and Mellish 1981), with the
L"of two new constructs sc. .
o n l y annotation of variables, e.g.

334

A . , a n d t h e commit operator
Both control the order in which a
computation is performed and which
clauses can be used.

A Concurrent Prolog program is
a finite set of universally quantified
guarded clauses of the general form

H : - G i , G 2 , . . . , G n |
B i , B 2) . . . t B m

m , n > 0 .
S is the clause's head. The G's are
the guard, and the B's are the ele
m e n t s o f t h e c l a u s e ' s b o d u . H t h e
B's and G's are atomic formulae
possibly containing variables, as in
Prolog.

2.2 The Computation Model

goal
At all times, there is a current

QhQ'Z, • • • ,Qk k > 0

that contains all individual goals
hat must still be solved. Initially

the current goal contains the con'
junction entered by the user. In each
cycle, the model chooses a goal O
* > < > 1, and works on it Qu

Given a goal a, all clauses in the
program that are potentially unifi-
able with the goal are selected (see
Figure 1). The unification of the goal
«th ,he head „r each clause
tempted.

If the goal a contains variables
that may be instantiated through
unification with the head of a clause
or by the computation of the guard

Ap Gn | Bn

Figure 1

of a clause, copies of these yariables
are created. The local copies are
then used instead of the variables ap
pearing in the goal.

There are three possible out
comes of unification:

1. It may fail, in which case this
clause is rejected.

2. Unification may succeed, and then
the guard of the clause is created
and associated with the goal (see
Figure 2).

3. Unification may suspend because
instantiation of a read-only occur
rence of a variable to a nonvari-
able is attempted. The unification
is delayed until the value of the
variable becomes known, at which
time it is retried.

If unification causes a variable
to unify with an occurrence of an
other variable marked read-only,
occurrences of the first variable be-

335

tome read-only. Later attempts to
instantiate this variable to a nonva-
riable must suspend.

When the computation of a
guard terminates, the clause in
which this guard appears, tries to
commit. Two actions then take
place. First, the computations of
guards of all other clauses associated
with the goal are discarded. Then
the local copies of all variables made
for this clause are unified with their
counterparts in the goal. If the value
of the local copy of a variable is
not unifiable with the value of t e

corresponding variable in the goa ,
the commitment fails. In this way,
if commitment succeeds, the values
computed by the guard are exporte
to the variables in the goal and t e
goal becomes committed to these va

ues.

If the unification of the local
copies of variables with those in the
goal requires instantiation of a rea
only occurrence of a variable to
nonvariable, a suspension occurs.

Only one clause may attempt to
commit for a given goal. If the com
mitment fails, other clauses are n
allowed to attempt commitment ot
this goal at a later time.
mitment fails the computation o
goal also fails. This causes the sys
tem in which the goal appears
fail too, and the computations o
the other goals in the guard are d
carded. If commitment succeed ,
goal succeeds and is replaced in the
guard by the body of the clause that

committed.

A guard terminates successfully
when all its subgoals succeed and
are reduced to empty bodies. When
some goal fails, the whole guard fails

and is discarded.

A goal may thus fail for three
reasons. It may be that the head of
no clause in the program is unifiable
with the goal. Another possibility is
that all guards of unifiable clauses
fail and thus no clause commits. It
is also possible that commitment fails
because the value of the local copy of
a variable and the value of the corre
sponding variable in the goal are not

unifiable.
There are two possible outcomes

from a computation: success and
failure. The computation haU.

current goal is empty, and it the
outcome is — the instantiated
variables of the original goal are con
sidered to be the output.

The occurrence of an infinite

computation ma

tvr^-rriono,the
model is not well defined.

o rHARACTEBISTICS_OFUNt
il^IONJNCONCURiENT

PROLOG

3,1
p-oiog different paths to a

solution are tried

b^tr^rriXtiations for
tency ot curre Iq Concur-

is not Possible to rely

336

cause the guards of all clauses that
were unifiable with a given goal are
computed in parallel. The computa
tion of each clause is independent of
the computations of all other clauses
and should not be affected by the in
stantiations they make. Therefore
local copies of all variables that ap
pear in the goal must be made for
each guard. Computation of the
guard may then freely instantiate
hese local copies, without affecting

the computation of other guards.

When a commitment occurs, the

withtV l0Cal C°pieS are unified
withthevaiuesofthevariabiesinthe
goal. This may fail if some brother of
this goal instantiated these variables

alues that are incompatible with
those computed in the guard.

when^ SC^m6 CaUS6S Problems when a term that appears in the goal
has some variables in it. Examole l
shows one type of difficulty.
Exnmplej.

G°al-g(f(l)))Ivariable

C ause - g(A) _ ,
Clause - £(f(3)).

Therefore / wiH K A alIocated.
when the clause £(}(%]tantlated to 3
Stead "ten the c aL ,tS' ""
commits. Thus T ; 7 9[> • • •

With the efllc, th fated

ence with othpr mterfer-
sible. ^ mPttations is pos.

A different kind of difficulty oc
curs precisely because the computa
tions of all guards are independent,
and so variables appearing in the
goal are not instantiated to values
from the guard until a commitment
occurs. Example 2 presents a case
where this causes a problem.

Example 2

Goal - a(X,X), X variable
Clause - a(b,C) g(C), ... |...

The variable X should not be
instantiated to b before commitment
occurs, but C should be instantiated.
However, in a naive implementation,
because of the desire to keep guard
computations independent, C would
not be instantiated to b before com
mitment. This may cause problems
if the result of <7(C) depends on the
v a l u e o f C .

3-2 Read-Only Variables

In Section 2 it was mentioned
that instantiation of a variable to
an occurrence of another variable
marked read-only causes all occur
rences of the first variable to become
read-only also. Therefore, further
attempts to instantiate it to a non-
variable must suspend.

The following example illu8"
trates this point:-

Example 3

Goal - g(X?), X variable
C l a u s e - g (Y) : - Y = 3 4 , . . . ! • • • •

The goal Y = 34 must suspend un
til X becomes instantiated. At that

337

time the unification of Y with 34 is
retried. This may fail, if the value of
X is not 34.

Using a read-only annotation on
an occurrence of a variable in a goal
has the effect that the value is prop
agated into the guard as soon as
it is needed by some computation
and is available. For variables with
out read-only annotation the propa
gation is made, and the consistency
check of the local and global copies is
delayed until a commitment occurs.

Using a read-only annotation in
the head of a clause is only effective
if the variable will be instantiated to
another variable in the goal. If the
unification causes its instantiation to
a nonvariable, a suspension will oc
cur.

3.3 Propagation of Values

Consider a guard system

p(X),r(X) X variable.

If p commits and instantiates X to
some value, there are two possibili
ties. Either the computations of all
guards under r are informed imme
diately of the value X was instanti
ated to, or the propagation is delaye
until some clause commits for r. In
the first scheme, it is possible that
some guards will fail immediately it
the value of X is not unifiable with
their local copy. However, in the sec
ond scheme, such guards may re uce
successfully and reach commitmen .
The original definition of Concurrent
Prolog (Shapiro 1983) does not spec

ify which of the two methods should
be used.

4 ALGORITHM

4.1 Main Characteristics

The following points form the
core of the algorithm.

(1) Suspension. The handling of
suspension of unification consists
of first undoing all instantiations
done so far in this call and then
saving the suspended process in
a special queue allocated for each
variable. When the variable be
comes instantiated the processes
in this special queue are restored
to the current goal. Thus they
are reactivated after the value of
the variable becomes known.

(2) Demand Drrren^opying. The
algorithm is intended for a struc
ture-copying implementation. To
minimize copying so that only the
needed information is copied, the
notion of demand driven copying
is introduced. Whenever a struc
ture is copied, only the top-leve
functor is copied, and its argu
ments are initialized by specia
references to the original term
called get-pointers. Only w e
a process requests access
object referenced throng a 0 "
pointer, copying actuaUy take*
place. Thus, only the ™for^
tion that is actually accessed is
copied. In the current presen
tation, an implicit —on js
that clauses are copied entirely
whenever they are used in a com-

338

putation. It is thus not necessary
explicitly to allocate local copies
of variables since each clause has
its own copies. Demand copying
can also be applied to the copy
ing of clauses and copying can be
combined with the actual unifica
tion.

(3) Propagation by Request. The
original definition of Concurrent
Prolog does not specify how val
ues of variables should be propa
gated into the computation tree.
The current algorithm chooses
the simpler scheme, that of prop
agating values only to those pro
cesses suspended on variables, i.e.
propagation by request. The val
ues of other variables are propa
gated only when commitment oc
curs.

4.2 Dereferencing

When one variable becomes uni
fied with another, a chain of vari
ables is formed. The unified vari
ables are chained together with a ref-
pointer. When the value of some ob
ject is desired, these chains must be
traversed to retrieve the final value
at the end of the chain.

The final value of a chain can
be one of two types: a variable or
a nonvariable. The possible combi
nations of entities that can appear
in a chain are shown in Figure 3.
The final results of dereferencing are
summarized in Table 1. As can be
seen, these results depend on the or
der of appearance of the different en
tities in the chain as well as on the
final value of the chain. In case 3 of
Figure 3 dereferencing stops as soon
as a jef-pointer appears. In case 4
a read-only annotation occurs before
any jef-pointers and so dereferencing
continues through them. Dereferenc
ing can be described as a finite-state
machine, as is shown in Table 2.One
or two results are returned, in Rl
and R2. R2 is used for enqueing of
suspended processes.

(!) (VAR or TERM)
(2) - - RO - - (VAR or TERM)
(3) GET
(4) - RO - - GET-{RO,GET or -}

- (VAR or TERM)
normal reference

RO' read-only annotation
GET' get-pointer.

Figure 3

End of Chain Case 1 Case 2 Case 3 Case 4
Variable

Li
Variable Last RO

Variable
1st GET Last RO

Variable
Structure ' *

111

Structure Structure 1st GET 1st GET

Table!: Results of dereferencing (cases as in Figure 3).

339

4 3 Demand Copying

The algorithm of demand copy
ing it shown by the following two
Pascal-like functions. Note that the
exit code returned by dereferencing
is used to determine the action.

function copy(Thing. * CP.Object):
* CP.Object;

var ExitCode: Codes; Rl, R2:
* CP.Object;

^ i X
deref(Thing,Rl ,R2 .ExitCode);
case(ExitCode) of
VAR:

Rl := RKF(Thing);
Thing := VAR(.);
return Thing;

RO.
Rl := GET(R2);

return RO(Rl);
TERM: return copyterm(Rl);
GET: return copy(copy(Rl))',

end;

function copyterm(Term).
- CP Object;

var Tmp: * CP.Object; i: integer,

bCgTmp •= allocate(arity(Term));
forT •= 1 ... arity(Term) do
arg(i Tmp) := GET(arg(i,Term));
functor(Tmp) := functor(Term),

return Tmp;
end;

REF, VAR, GET and RO are
procedure that return a ret.rence a
new variable, a get-pointer and

1 State
Registers

Rl : R2

qO 0 : 0

qi 0:0

q2 1 -i 0 :~i 0

REF

pass
• > q °

pass

-> qi

GET

ltf^r

RO

GET -> q1

pass
-> q2

pass
-> q2

Rl
pass

-> ql

VAR TERM

RT^TT
" VAR

-ET^T"
- TERM

R2 := R
- RO

Rl := r

- TERM

R2 := R
* RO

Rl := R2
- GET

•T _ The current element.
-> ql - Transition to state 'q •

;r: t;;
t Me 1 are returned in Rl and R2.

Results as per Table 1 ar
, . - . dereferencing objects.

Table 2: Finite-state machine

340

only term respectively. The refer
ences created by REF in copy are
saved and undone at the end of each
unification.

4.4 Unification

The unification algorithm is
summarized in Table 3. Unify terms
recursively unifies two structures or
atoms. Suspend saves the current
goal in the queue of the variable,
undoes all instantiations, and ter
minates this unification. FAIL un
does all instantiations in this call and
terminates this unification with fail
ure. The procedure u recursively
calls unification on the result of copy.

Unification has two modes. The
normal mode is used when the head
of a clause is unified with a goal.
All references created by REF dur
ing unification are saved and undone
when it endS; regardless of the result
When commitment occurs, unifica
tion of the local copies of variables
is attempted with their counterparts
m the goal; then, unification does not
undo the references created by REF
but leaves them intact. Also, get-

pointers created by unify in normal
mode and not yet copied through,
are modified to references.

Since the arguments to unify are
dereferenced before the unification
actually begins, the exit code of deref
can be used to proceed directly to the
correct entry in Table 3.

5 DISCUSSION

Several properties of the algo
rithm are worth noting:-

(I) The algorithm cleanly imple
ments the requirement that sub
stitutions in the goal be post
poned until a commitment oc
curs. Global variables that be
come instantiated are propagated
to a goal upon request, whereas
variables instantiated in a guard
do not propagate their value to
outside it prior to a commitment.

(2) The algorithm provides an ele
gant solution to the problem of
maintaining or-parallel environ
ments in the form of demand
driven copying. Only informa
tion that is used is copied.

341

(3) The implementation of unifica
tion can make use of informa
tion gathered in the process of
dereferencing to choose its ac
tions. Thus excessive tests at
runtime can be avoided. All cases
of Table 3 except unify terms can
be compiled to simple macro in
structions similar to those pro
posed by Warren (1980, 1983).

ACKNOWLKDGMKNTS

This work was carried out
jointly with my advisor, Ehud
Shapiro. The author wishes to thank
Nir Friedman for many useful dis
cussions and criticism. This work
was supported by IBM Poughkeepsie,
Data Systems Division.

REFERENCES

Shapiro, E.Y. A Subset of Con
current Prolog and Its Interpreter.
Technical Report TR-003. ICOT —
Institute for New Generation Com
puter Technology, Tokio, February
1983.
Clocksin, W.F. and Mellish, C.S.
Programming in Prolog. Springer-
Verlag, 1981.
Warren, D.H. An Improved Pro
log Implementation Which Opti
mizes Tail Recursion. DAI Research
Paper, No. 141, Dept. of Artifi
cial Intelligence, University of Edin
burgh, July 1980.
Warren, D.H. An Abstract Prolog In
struction Set. Technical Note 309,
SRI International, Stanford, Octo
ber 1983.

A MEMORY MANAGEMENT MACHINE FOR PROLOG INTERPRETERS
Y. Bekkers. B. Cane.. 0. Rldoux. L. Ungaro
I • I e A — I.N.R.I-A-
Campus Unlversltaire de Beaulieu
Avenue du general Leclerc
35042 Rennes - Cedex
CranPA

ABSTRACT

Indetermlnism Is one ol the
original aspects of logic programming.
On a mono-processor. Indetermlnism
Is solved using a simple shedullng
policy called -backtracking". Such
policy Implies that there Is 8°'Tie

means. usually called -trailing
Information-, for retrieving the state
of suspended goal statements,
use of the trail Is well known for
backtracking Unfortunatly Its use in
the design of garbage collection
mecanlsms has been Ignored so ar.
We suggest to take advantage of
to get the exact state of suspen
goal statements while performIng
marking process of a ®arh
collector. A more complete gar g
collection Is therefore obtained.
Intermediate machine wihich

proposed in this paper takes
concepts Into account. A p
Implementation of the 9ar

collector Is also discussed.
Introduction

Memory allocation is an I^POj'
problem In the design 1977)
interpreters. Warren barren, 197 7)
has done a first original steP r)s,
a solution for this Proble."1f;„rBntiation
static crlterlum for the dl Memsh
of the life time of variably MeWsh
(Melllsh 1980) and Bruyn B Q

(Bruynooghe 1980) AV ^ CQPY
presented solutions inc'u0dre9 dynamic
method which uses IQRO) has
Criterium. «»*
studdled a dynamic metnoo

optimizes tall recursion, ^"ally.gWe
owe to Bruynooghe (Bruynoog
the recommendation to^start

marking ,r°^|s was the first step

®ow^snaS'specific, weli mted. Prolog
oriented, garbage collector.

The marking algorithm which is
.j ln this paper starts the <r, «

sshrris:
Unnecessary information (Bekkers et
al. 1983).

m the following, a Prolog
tnterpreter is .=duoed as a -ean
for extracting minimum
th® drt^fen machine. supporting
Intermediate and handling
Prolog interp A realisation of
memory manage ^ jp terms
this machine is thentg ^ ^ {Qr

of two paralle P ^ garbage

resolution, the
collection.

The marking algorithm jnd*.

garbage col,ectorc*n ' be classified
this machine classification
according t0 «S|nale-sized cells
(Cohen 1999) fa 3 Jing* ^ ̂
marking algor conector using two
a -parallel garbage co ^ since

hits per cell • On top

344

we have no need for compaction, the
algorithm does not perform
information moves (Bakers 1978).

1. A PROLOG interpreter

The PROLOG interpreter,
detailed in figure 1, is a
straighforward transcription of the
resolution principle. Goal statements
are objectively manipulated as binary
terms.

A goal statement is either nil.

In which case It is the empty goal
statement, or a construct «t.fl2).

where Ri is a non-empty goal
statement and «2 Is a goal statement.
A non-empty goal statement Is either
a goal (L.arg). where L is an atom
Identifying a predicate and «/-j is a
binary term standing as the argument
of the goal, or a construct ttn.fftt).
where ftn and Ri2 are non-empty goal
statements.

initialize

1 «-»arg).R2 | (RO.RD.R2

C := 1st clause
for predicate L R := RO.CR1.R2)

start

Head,Body := new
instance of C

< Unify L^arg with Head \
success j tall /

Z
I let s be the substitution which 1 | R

L unties L.arg with Head

1 rewr'tlr>Q the current goal statement

345

Figure 1. shows the cyclic
rewriting of the current goal
statement The need to "create
variables* appears In (1). "terms
construction", "sub-terms selection"
and "variables substitution" are
needed in (2) and (3). Figure 2
shows the management of
Indeterminlsm using backtracking. The
need to "save* goal statements
appears In (4) and the need to
"retrieve" them appears In (5). These
basic operations have been
implemented on an intermediate
machine used by the PROLOG
Interpreter, hencefoward called "the
user*.

initialize

— 1
R :* question

Store :» empty

1

Save (L.arg).R2
and NC In Store

(4)

Store is empty
no i y®s

* „ M | stop
Retrelve (L.arg).R2

(5)

and C from Store

5H
2 management of Indeterminlsm

2. The Intermediate machine

The Intermediate machine has
a state composed of a "top-level",
which allows the user to signify
sub-terms of the current goal
statement by means of "names", and
a "store", which is an ordered set of
terms, each of them being a saved
goal statement. The machine keeps
the correspondance between names
and terms.

2.1. Commands

The user invokes commands,
bv means of which it exchanges
names with the machine. The user
initially knows no names but those o
atoms, it gets other names by means
of commands. The commands
connected with memory management

are

constructor) ,rn: name) name
create_yariable :name
su bstltu te (vn. tn: name)
save (n: name)
retrieve :name
reduce (/>: name).

r ."T, L~TS v,
"uT*.rm= « Up r.,pec,«,

^ifiori bv the names m and rn. f'flnLlIP the machine has some
rrlands not described here, to

SET"; pompon.",, o, P».r,

terms.

The remaining commands are
i PROLOG'S concepts of

r6lfSe ind indeterminlsm. The result variable ana "'u ngme for a

of create var substitute command
new variable. ^ ,0p-level signify
makes names . after the
m°re Jnd^Sy name signifies the
command, eve y where the
term signified fey

variable signif'®^ y The sav0

the term signified by

346

command pushes the term signified
by n in the store, the top-level
remaining unaffected. The result of
retrieve is a name for the term
popped from the store. This
significance becomes the top-level.

After the reduce command,
the top-level is reduced to the
significance of n. Invoking this
command allows the machine to
collect every cell which does not
participate to the representation of
either the term signified by n or the
saved terms. The collected ceils are
rendered available for future use.
Instructing the machine about the
user's accesses is a more flexible
technique than using a fixed number
of access registers known by the
machine: the user can store
temporarily in its own memory an
unlimited number of names which are
accesses in the top-level, for example
during unification.

reference = {null_ref}u{1..maxref)
data = { Omaxdata}

name = structure
I Indicator :{a.c.v}
I information : reference or data
construct = structure
I left :name
I right name
variable = structure
I status :{free.uncertain}
I level : reference
I binding name
guardian = structure
I nature :{llve.dead}
I lower_level : reference
I name :name

In the following. 'r#f denotes
the access to the cell referenced by
rat. and a-.drta. c:rat and vtrer denote
the various kinds of names.

• "'MtoinofHaiion

The implementation of the
Zlr D"r°rtS tW° Presses: the
user process" which invokes

commands. and nv0*es
"garbage-collector process" JhTrh

rv p * r * i i e i "«««£«
I—c

3.1 Terms

Term representation is as
follows:

- The name a.data Is the direct
name of the atom data.

.3- The representation

machine has 1 ^ name The «W-: HIT ~
guardian. v«nable 0r

- The name c.rat. where ret is
the reference of a construct c®
which holds a name for # in i,s 16

field and a name for rt in its rig
field, is the direct name of the ,0rn1

Of./*).

- The name v.ret is either t ^
direct name of a variable if "
references a free variable cell. °r 8

indirect name for the term w if *
references a bound variable c

which holds a name for w in 1

347

binding Held. The iree or bound state
ot a variable cell la determined
differently, whether It la conaldered
from the top-level or from a saved
term.

3 2 The top-level bindings

Conaldered from the top-level,
a variable cell la free either if its
status field holds free or If the nature
field of the guardian referenced by Its
level field holds dead When a cell Is
allocated tor a new variable. Its status
field la Initialized free After variable
substitution, the variable's status field
holds uncertain and Its level field
holds the reference of a live guardian.
This makes the variable bound. The
variable remains bound until a retrieve
command alters Its guardian by
storing dead In Its nature field, which
makes the variable free again. e
guardians play the role of the trail
PROLOG interpreters.

3.3. The saved terms bindings

The live guardians are
ordered in a list defined by *be 'r

iower_ievei field. Each 9uarH!a„
defines a "level". The lowest guardian
defines level 0 and holds null_re n
its lower.level field. A saved term s
always associated to a level a"
signified by the name field o
corresponding guardian. This
results from an Interpretation <of th
binding state of variables whl^ ,
the level into account: a variab^
is free in the representation o
saved term ot level * eit er
status field holds free or
guardian referenced by its ev
holds dead in its nature field or has
a level greater than *•

This binding '" terPr® ,a , '°n

used by the 9arba9e_c°"®sses to
order to find accurate rea |
cells and determine the
usefulness. Most of existing sy

derived from those implemented for
LISP, do not take into account the new
dimension introduced by
Indeterminism and interpret the
bindings of variables independently of
the level of the observed goal
statement. This amounts to consider
over-instanciated goal statements, and
leads to retain more cells than
necessary.

4. The user process

The userjevel register
contains the reference of the guardian
at the highest level. Each command
has a corresponding procedure. The
sea rch_d I rect_name procedure goes
through variables bindings to yield the
direct name equivalent to a given
name. This induces shorter chains of
bound variables and increases the
opportunities of loss of access to
variables.

The substitute command
subscripts the binding of a variable
with the reference of the guardian
the highest level. The effect is to
validate this binding in the top-level,
as long as the guardian remalns a^
Therefore, the top-level is always
associated with the highest level. The
save command saves a given term by
sformg its name in the guardian at
the highest level and creates a higher
e®el guardian which will be used as
Sscf.pt for the

causes the death of the
_• h«i level. This undoes the

variable bindings according to tne

oTnTand

: ' 'm»*rMoe^rrc:n.ti,:rK9oni; SRSS*TJSJS!
°' "2, the collector. and defines
,P"e root of »e accesses <"» 10 ">*M

terms.

348

5. The garbage-collector process

The garbage-collector works
cycllcaly. Each cycle is called a
"batch" and consists of a marking
phase followed by a collecting phase.

The marklng_level register
references the guardian which defines
the level currently under marking. The
marfcing_name register contains the
name which Is the root access to the
cells representing the saved term to
be walked through.

user_level : reference

procedure create_variable name
I ref_v:=cell_allocation
I t ref_v.status:=free
I result v,ref_v
procedure construct(left_n.right_n:name> name
I ref_cons:=cell_allocatlon
| tref_c°ns.left:=search_direct_name<left_n)

r«f7tC°nS r'9ht=Search-direc,-name(ri9h« "> 1 result c.ref_cons
procedure substitute(nv.nt:name)

I = tea^Ch_dlreC,-name(nv) '"formation
I hinrt i"'d'n9=search-d'rect_name(nt) I bind_variable(ref_v)
procedure save(n:name)

! ^XXSnearCh-d'reC,-name(n)

1 J ref_g.iower_level:=user_level
Tref_g. nature.-live

' user_ievel:=ref_g
H££edure retrieve name
i re_adjust_level
I unbind_variables

^2£§dure reduce(n:name)
start_batch(n)

^!|e "n.indicator=v

349

marklng_name name ; markingjevel reference

process garbage_collector
I block marklng_phase
I I loop while marking_level/null_ref
I I I mark_term(marklng_name); down_one_level
I block collec«lng_phase
I I ref_cel:=0
I I loop while ref_cel<maxref
I I I ref_cel:=ref_cel+1
I I I make_cell_available(ref_cel)
I walt_next_batch
procedure mark_term(n:name)
I ref:=n Information
I if n.indicatoi/a and test_mark(ref)=unmarked then
I I case n.Indicator ,_ht,

i : rm
I I cell_marklng(reO

procedure blnd_varlab.e<ref_v:reference) excl^a
I tref_v.level:=user_level: t re f_v.status:-uncertain
procedure unblnd_varlables exclusion bindings

I fuser_level.nature:=dead • ffree.bound} exclusion bindings

I If t ref_v status=free then result free
I else
I I ref_g:= t ref_v level
I I case test_mark(ref_g>
I I marked then result free
I I unmarked then status:=free: result free
I I I If tref_g nature=dead then t ref_v.siaius
I I I else result bound

procedure down_one_level exclusion position

LcSTrel'IdTusUlevel ex^^n position
I H marking_level=user_level l£en
I I suspend garbage_collecto
I I decrement_level
I I restart garbage_collector
procedure decrement_levei
I cell_marklng(marklng leve |evel
I rnark.ng_leve.:= t marking level lo _
I if marklngjevel/null i name
I I marking_name.-t'narKlr «_

350

5.1. Marking levels in decreasing
order

The marking phase proceeds
level by level in decreasing order.
This yields the Important property that
the marking visits each usefull cell
exactly once, when marking the
highest level which has access to this
cell. This can be Intormaly justified as
follows. Let / and /' be two levels, with
/<j. Any construct cell yields the same
immediate accesses for these two
levels. Any variable cell yields at level
/ an immediate access either empty
or identical to the access It yields at
level /. because a variable bound at
a given level remains identically
bound for any higher level. Therefore,
the set of cells accessed via a given
cell at level / is included in the set
accessed via this cell at level /.

This property is Illustrated on figure
3- The sets of cells SI and SO
respectively represent the terms of
levels 1 and 0. kept in association
with the guardians C11 and C13. While
marking level 0. it Is not necessary
to go through the cells beyond cell
C5. already visited at level 1. because
ail the cells this would lead to are
already marked.

Not taking the levels Into
account would lead to wrongly
consider cells C3 and C4 useful.

After a level has been marked,
the procedure down_one_level marks
the corresponding guardian. Thus,
comparing the level of the bindings
with the level under marking simply
amounts to test the allocation mark
of the guardians.

v»u« • Dm utiic n
garbage_collector_idle : {true.false}
procedure walt_next_batch exclusion batet>aa
I Oarbage_collector_idle:=true; suspend garbage collector
Procedure start_batch(n:name) exclusion batcZ, "
I if garbage_collector_idle then

I current_batch:= <current_batch+1) mod 2
marking_ievel:=user_level. markfng_name:=n
garbage_collector_Jdle:=false; restart garbage_col lector

procedure cell_marking(ref:reference)
I status_alloc [ref] :=current_batch
£E2£Mj^e test_mark(ref:reference) :{ marked.unmarked}

1 us—* oc[ref] =current_batch then result marked
1 else result unmarked

available_cells reference

Ŝ ĉeF̂ ô aHmo7er̂ {° 1availabl«}
1 < ~~ reference exclusion allocation

CeM marklnn?8 ^ nu"~ref ^ wait c
1 ibrrB aVa e-CellSl: ^ available_cells avaiiable_cells:= t available cells nnrt

^^®-ce,l-ava,lab,e(ref:reference) exclusion allocation

•! srssr"1-" —

351

s? incidence parallelism on
marklnQ

The execution ot retrieve by
me user process may
logical destruction of «he
currently under marking. In this ca»®_
me marking la aborted and the
garbage-collector starts to mark the
level below Aborting a marktng la
possible H cells already marked by the
collector do not give access to
unmarked cel.. To insure h£
condition, the cells get marked from
the leaves to the root.

The parallel execution of the
user process does not affect the

•rr«rc"'«»• -5='-
allocation time, or accessed
, which case^hey can^ ^ ^

«rab9ee_CmSr when'0 encountered
during the walk from this root.

352

6. Cell allocation, batches

The array alloc_status keeps
a current allocation status for every
cell. There are three status
possibilities: available, qualifying an
avaiiabie ceil, and the two batch
indices 0 and 1, qualifying an
allocated cell. The current_batch
register contains the indice of the
current batch. This indice is used to
mark the cells at the time they are
allocated, or when they are
encountered by the collector in its
marking phase.

Batches

Batches are introduced in the
memory management to cope for
parallelism between the user and the
garbage-collector. At the beginning of
the /-th batch, the allocation status
of all non-available cells contains /
mod 2. The /-th batch is associated
with the indice 0+1) mod 2. During
a batch, its indice is written in the
allocation status of all cells
undergoing allocation or encountered
during the marking phase of the
garbage-collector . After the marking
phase, the ceils which still have
allocation status / mod 2 of the
previous batch can be made available
This is done by the collecting phase
after^which a new balch

.^—Extensions

original aspects 0f
garbage-collector taking advantaon nt
he memory usage strmifSn^due

to indeterminism. In the real u
(Bekkers et al. 1984) ,he ™achln*
» ' • , „ a r , h i 9 o r . " B m

garbage-collector. he

A simulator of the intermediate
machine and a PROLOG interpreter
using it are currently under
development. A hardware realisation
with two processors is under study.
One of them will be microprogrammed
to support the major part of the
intermediate machine.

REFERENCES

H.G. Baker. List Processing In Real
Time on a Serial Computer
Communications of the ACM. Vol. 21
No. 4. p. 280-294. April 1978.

Y. Bekkers. B. Canet. 0. Ridoux. L.
Ungaro. A Short Note on Garbage
Collection In Prolog Interpreters, Logic
Programming Newsletter, no 5. Winter
83/84.

Y. Bekkers. B. Canet. O. Ridoux. L
Ungaro. Specification d'une machine
de gestlon memolre pour les
interpreteurs des langages de la
iogiques - Version 1. publication
Interne IRISA No 222. University de
Rennes. ddpartement Informatique.
Janvier 1984.

M. Bruynooghe. The memory
management of PROLOG
implementations Proc. of the Logic
Programming Workshop. Debrecen,
Hungary. july 1980. in logic
programming, eds Tarnlund and Clark,
Academic press 1981.

M. Bruynooghe. a note on garbage
collection In PROLOG interpreters,
proceedings of the first International
logic programming conference,
Marseille. Sept. 14-17th 1982.

J- Cohen. Garbage Collection of
Linked Data Structures, ACM
Computing Surveys. Volume 13

Number 3 1981. p. 341-367.

E.W. Dljkstra. L. Lamport. A.J. Martin.
C.S. Scholten and E.F.M. Steffens,
On-the-Fly Garbage Collection: An
Exercise In Cooperation.
Communications of the ACM. Vol. 21
No. 11 966-975. Nov. 1978.

C.S. Melllsh. An alternative to
structure—sharing In the
Implementation of a PROLOG
interpreter. Proc. of the Logic
Programming Workshop. Debrecen,
Hungary. July 1980. Logic
Programming. K.L. Clarck and S.A.
Taernlund (eds>. Academic Press.
1981. also in: Research Paper no 150.
Departement of Artificial Intelligence
- University of Edinburgh.

D.H.D. Warren. Implementing Prolog
- compiling logic programs. D.A.I.
Research Report. No. 39 and 40.
University of Edinburgh. 1977.

D.H.D. Warren. An improved prolog
Implementation which optimises tail
recurtion. Proc. of the Logic
Programming Workshop. Debrecen.
Hungary. July 1980.

AUTHOR INDEX
Abramson, H. 77
Bekkers, Y. 345
Bergcr Sabbatel, G. 207
Bosco, P.G. 219
Broda. K. 301
Canet, B. 345
Chikayama, T. 1, 89
Crammond, J.A. 183
Dahl. V. 77
Dang. W. 207
Dcrshowitz, N. 315
van Emden, M.H. 35
Eriksson, L-H. 101
Furukawa, K. 89
Giandonato, G. 219
Giovanetti, E. 219
Goguen, J. 115
Gregory, S. 301
Hattori, T. 1
Hirakawa, H. 89
Janeselli, J.C. 207
Johansson, A-L 243
Josephson, N-A 315
Kacsuk, P. 195
Kale, L.V. 171
Kurokawa, T. 1
Lassez, J-L. 263
Levy, J. 335
Lindstrom, G. 159
Littleford, A. 289

Lloyd, J.W. 35
Maher, M.H. 263
McCord, M. 65
Meseguer, J. 115
Miller, C.D.F. 183
Nakamura, K. 323
Nguyen, G.T. 207
Nilsson, M. 13
Pique, J.F. 23
Plaisted, D.A. 151
Rayner, M. 101
Ridoux, O. 345
Sakai, K. 1
Sato, T. 127
Shoham, Y. 277
Sintzoff, M. 139
§t6pankov4, O. 53
$t£panek, P. 53
Sterling, L. 231
Sun,H. 253
Szots, M. 41
Takagi, S. 1
Tamaki, H. 127
Tsuji, J. 1
Uchida, S. 1
Ungaro, L. 345
Wang, L. 253
Warren, D.S. 171
Wolfram, D.A. 263
Yokoi, T. 1

Program Committer

K.A. Bowrit. S>nictt»r llhtnUj. ISA
M. Brmnooghe. Feu*en lniver*it>. Belgium

K. Fuchi. ICOT, Japan
11. (iallairr. Ijibocalorie* dr Marcouvis. Irancr

K.M. Kahn. I pp*ala UehrenH), Sweden
P. Ko*e%. S/.KI. Hungar>

F.G. Mct'abr. Imperial Calcff. I'K
F. I'rrrira. SRI. I'SA

1..M. Perrira. I'nberMdade Nova de l.bboa. Portugal
J.A. Robinson. Syracuse I nbersil*. I SA

|r Shapiro. \A ci/mann Institute. Israel
S..A. larnlund. I ppsala l«iv««Rv. Sweden. t hair man

M. »an C aneghem. I niversll* of Marseille. France

