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OVERALL DESIGN OF SIMP OS 
(Sequential Inference Machine Programming and Operating System) 

Shigeyuki Takagi, Toshio Yokoi, Shunichi Uchida, Toshiaki Kurokawa 
Takashi Hattori, Takashi Chikayama, K5 Sakai, Junichiro Tsuji 

ICOT 
(Institute for New Generation Computer Technology) 

Mita Kokusai Building, 21F. 
4-28, Mita 1-Chome, Minato-ku, Tokyo 108 JAPAN 

ABSTRACT 
As the first major product of Japanese 

FGCS (Fifth G»n«r*tlon Computer Syitemi) pro
ject, Personal Sequential Inference Machine 
(PSI or tp) is under development. Here we 
describe the design of the rp's programming 
system and operating system SIMPDS, its 
major language ESP (Extended Self-contained 
Prolog), and the development tools. 

The major research theme of i> is to 
develop a logic programming based pro
gramming environment including system 
programs. 

The basic design philosophy of SIMPOS 
it to build a super personal computer with 
database features and Japanese natural lan
guage processing under a uniform frame
work (logic programming) based system 
design. 

At the end of March 1985, we will be able 
to show that the logic programming based 
operating/programming system is working 
well and has a good human interface. 

1 Preface 
As the first major product of Japanese 

FGCS project, tp it under development. Here 
we describe the overall design of rp't Pro" 
gramming System and Operating System 
called SIMPOS, its major language ESP, and 
some development tools. 

The major rp research themes are to de
velop: 
0 System programs in logic programming, 

o A programming environment for logic 

programming. 
ip is the pilot model of the FGCS soft

ware development. It is a high-performance 
personal machine and will be used as the 
research tool for the FGCS project. 

The hardware and firmware design of tp 
was completed at ICGT, and the first pilot 
model has already been manufactured. Its 
firmware debugging has been finished in 
March 1984. Installation of SIMPOS was 
started in February. 

SIMPOS has 5 basic design principles. 
They are: 
o Uniform framework-based system design 

A single uniform PROLOG-like logic pro
gramming based framework covers all 
of the machine architecture, language 
system, operating system, and pro
gramming system, 

o Personal interactive system 
We hope tp will be one kind of per
sonal and very highly interactive com
puters similar to many super personal 
computers, 

o Database features 
PROLOG has database facilities that can 
easily conform to relational database 
systems. We hope to construct a new 
programming system and a new operat
ing system that fully uses the database 
features, 

o Window features 
In order to facilitate high level inter
action, V "ses a bitmapped display and 
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a pointing device, 
o Japanese language processing 

All computers until now have been 
based on Western cultures. This is a 
major disadvantage for peoples of other 
cultures when they want to use com
puters. Everyone should be able to use 
computers in his own tongue. So, the 
Japanese should be able to use com
puters in Japanese. 

SIMPOS consists of a programming sys
tem (PS) and an operating system (OS). OS 
consists of a kernel, a supervisor, and I/O 
media subsystems PS consists of subsys
tems called experts. PS subsystems are con
trolled by users, but there is a need to coor
dinate the subsystems or processes. This 
task is accomplished by the coordinator 
subsystem. 

All the other subsystems are: 
Window (os), 
File (os), 
Network (os), 
Debugger/Interpreter (PS), 
Editor/Transducer (PS), 
Library (PS). 

2 ESP 

2.1 Overview 
SLMPOS is described in a user pro

gramming language called ESP. Programs 
written in ESP are compiled into KLO. KLO is 
the machine language of x/> and is a PROLOG-
like logic based language with several ex
tensions. 

As based on a PROLOG-like execution 
mechanism, ESP naturally has many of 
the features available in PROLOG. The im
portant ones among them are the use of 
unification in parameter passing and a tree-
search mechanism based on backtracking. 

The main features of the ESP language, 
except for those in common with PROLOG-
like languages, are: 
o Objects with states, 
o Object classes and inheritance mecha-

nisms, and 

o Macro expansion 
The assertion and atom name database 

features (assert, name, etc ) are not directly 
available, though lower level features (srrsy 
access, string manipulation, etc ) for imple
menting them are provided 

2.2 Objects and Classes 
The control structure of ESP IS basically 

that of PROLOG AND-on tree search by back
tracking. However, from another point of 
view, an ESP program U constructed in an 
object oriented manner 

An object in ESP represents an axiom 
set, which is basically the same concept 
as world* in some PROLOG systems (M VU 
Csn»»htm isea) The same predicate call 
may have different semantics when applied 
in different axiom sets. The axiom set to 
be used in a call is specified by pasting an 
object as the first argument of a call and 
prefixing the call with a colon (:). 

An object may have lime dependent state 
variables called object slots Values of slots 
can be examined by certain predicates using 
their names In other words, the slot values 
define a part of the axiom set The slot 
values can also be changed by certain pred
icate calls. This corresponds to altering tbe 
axiom set represented by the object Tins 
it similar to assert and retract of OEC-D 
PROLOG, but the way of alteration it limited 

It seemed to be difficult to us, if not im
possible, to describe an entire operating sys
tem in pure logic without any built-in no
tion of time dependency As many of lb* 
currently available ideas for the building 
blocks of an operating system are bated on 
the notion of state, much more investiga
tion is required before starting to writ* 
an entire operating system in pur* logic 
(this approach it being tried by Shapiro (* 
Shapiro less)). This it why object oriented 
features with side effects are introduced into 
ESP. 

An ESP program consists of one or more 
class definitions. An object class, or simply 
a class, defines the characteristics common 
in a group of timilar objects, i.e., objects 
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which differ only in their slot values (only 
values; slot names are common to the ob
jects belonging to the same class). An ob
ject belonging to a class is said to be an 
instance of that class. A class itself is an 
object which represents a certain axiom set. 

2.3 Inheritance Mechanism 
A multiple inheritance mechanism similar 

to that of the Flavor system (D. Wetnreb and 
D. Moon 1981), rather than the single in
heritance seen in Smalltalk-80 (A. Goldberg 
and D. Robaon 198S), is provided in ESP. A 
class definition can have a nature definition, 
which defines one or more super classes. 
When a class is a super class of another 
class, all the axioms in the axiom set of 
the former class are also introduced into the 
axiom set of the latter class, as well as the 
original axioms given in the definition of the 
latter class. By this inheritance mechanism, 
classes form a network of is-a hierarchy. 

Some of the super classes and the sub
class which inherits them may have axioms 
for the same predicate name. Since basi
cally the axiom sets of the super classes 
are simply merged, such axioms are ORed 
together. Though the order in the ORed 
axioms has no significance as long as pure 
logic is concerned, it can be specified in EBP 
for hand optimisation and to control cuts 
and side effects. 

Clauses called demon clauses define de
mon predicates, which are ANDed, rather 
than ORed, either before or after, as 
specified, the disjunction of usual axioms 
They are used to add non-monotonic 
axioms. For example, a door with o lock has 
a demon for the predicate open for making 
sure it is already unlocked. In this way, a 
class wtth_aJoek can be defined separately 
from the class door as a class that contains 
non-monotonic knowledge. 

Par t - o f  hierarchy can also be imple
mented using the i$-a hierarchy and object 
slots. Assume that we want to make in
stances of class A to be a part of an instance 
of class B. First, the definition of A should 
be given. Then, a class with_A should be 

defined so that instances of the class wlth_A 
has a slot which holds an instance of class 
with_A. Finally, class B is defined to be a 
subclass of wlth_A; in other words, the class 
B it-a class with_A. 

2.4 Macros 
Macros are for writing meta programs 

which specify that programs with so and 
so structures should be translated into such 
and such programs. Macros can be defined 
in the form of an esp program, fully utiliz
ing the pattern matching and logical infer
ence capability of the logic programming 
language. 

In various languages with macro ex
pansion capability, a macro invocation is 
simply replaced by its expanded form. 
Though this simple macro expansion mech
anism may be powerful enough for LlSP-like 
functional languages, it is never enough for 
a PROLOG-like logic based language. For ex
ample, a macro which expands 

p (a , f (X  + Y ) )  

to a sequence 
a dd ( X ,Y ,Z ) ,  p (a ,  f (Z ) )  

cannot be defined with a simple expansion 
mechanism. 

Macros of ESP are not only expanded at 
the place of the macro invocation. Certain 
additional goals can be spliced in before or 
after the goal in which the macro invocation 
is given. If the macro is invoked in the head, 
these goals will be added at the top or the 
end of the body. 

The same macro definition: 
X+Y = >  Z  when add ( X ,Y ,Z )  

can be used in two ways. The clause 
"addl(M, M + 1)." is expanded into 
t he  c l ause  "add l (M,  N ) : - add ( M,  1 ,  N ) . " ,  
while the body goal °p(M + l)" is expanded 
in to  a  goa l  s equence  "add (M,  l ,N ) , p (M)" .  

2.5 Implementation 
Currently (in March 1984), a cross com

piler of ESP into klo is available. 
The implementation of the object oriented 

calling mechanism is rather straightforward: 
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each object has a slot containing a database 
of codes corresponding to the axiom set as
sociated with the object. 

The current implementation uses slot 
name atoms for accessing object slots. Such 
access has been found to be very fast thanks 
to the built-in hashing mechanism of KLO 
Certain other firmware supports for ac
celerating the execution are also planned. 

3 Operating System 
The operating system part of SIMPOS con

sists of 3 layers; kernel, supervisor, and I/O 
media subsystems. 

3.1 Kernel 
The kernel manages the hardware re

sources and fills a gap between the i> hard
ware and the supervisor. It includes the 
processor manager which realises multiple 
process environments, the memory manager 
which allocates and deallocates memory 
space and performs garbage collection, and 
the I/O device manager which controls the 
input/output devices. 

3.2 Supervisor 

The supervisor provides the basic facilities 
useful for program execution, such as ob
ject storages, inter process interactions, and 
execution environments. For details, refer 
to (Yokoi and Hattori 1883). Note that a user 
may extend and modify these facilities as 
he chooses. 

A pool is a container, which is also an 
object, of objects of any class. A list and 
an array are examples of pools. An object 
can be put into or taken from a pool. 

A directory is a pool of objects which are 
associated with a name. An object can be 
bound and retrieved with a name in a direc-
tory SinCe a directory can contain another 

7 *S Wel1' a tree of directories is sran °bject is id-'fied "th 

flow 8 A?mKiS a.pip' thrOUgh which object, flow. An object which is put into one end 

end Smm' Wl1 K6 retrieved at the other 
When no object i, in the stream, a 

used for synchronisation and commutes 
lion between processes 

A channel is defined on the top of i 
stream to allow message rommuucsUx be
tween two processes A port u s setup 
box for two-way communication, connected 
to other ports A message sent throsgk the 
port will arrive at these connected pom 
and a message sent from one of these pom 
will arrive at this port 

A process executes a given program 
which U an instance of a program dsn 
The main goal of the program is define! 
as an instance predicate, and the slots of t 
prog*am instance hold objects local to iht 
program 

A process has several environments s 
program, a library, n world, and a uaivent 
They can be referred to at any point of 
the program A world It n sequence cf 
directories held by n process as its ssorbat 
world A universe is a system directory trie 
held in a class slot of class directory 

3.3 I/O Media S u b s y s t e m s  

I/O media subsystems manage the inter
faces with the outer worlds This sobsystea 
consists of 3 subsystems window, file, and 
network. 

3.3.1 Window Subsystem 
The window subsystem is the main part 

of high level man-machine interface of 1 
(Ksroksw. at u ies<) It supplies muKipts 
logical displays for processes in tp on a singt* 
physical display. The Lisp Machine devel
oped at MIT also supplies such an environ
ment. The Lisp Mnchine window subsys
tem manages the mnjor part of the man-
machine interface. But our window subsys
tem manages only the pnmitiee functions 
Other functions like echoing are done by 
other subsystems, transducer, coordinator, 
etc^ This concept increases the modularity 
o t e whole system, and make each sub-
system simpler. 

For each process, one window is dedi-
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cated for its own display and it need not 
mind other windows. In the window sub
system, each window is defined as an in
stance of the window class and each predi
cate for the window is written as methods of 
the class. So the window manager need not 
consider the interaction among the windows 
and each process can consider its window as 
its own display. Each window is a rectan
gular area which is a part of the physical 
screen, and is the communication channel 
to the process. 

In the window subsystem, windows con
struct a hierarchy. The most superior win
dow is the logical screen, and normal win
dows (editor window, etc.) are inferior 
windows of the logical screen. Each win
dow may hare inferior windows (called sub-
windows) within it, and each inferior win
dow can haTe its own inferior windows. For 
example, an editor window hat command 
subwindow, text sub-window, etc. Sub-
windows can neither have a site that ex
ceeds their superior window's sise, nor go 
out from the superior window. They must 
be inside of the superior window. 

Each window may have one of the follow
ing 5 states: 
selected: Connected to the keyboard. Only 

one window cam have this status at a 
time. 

shown: Completely displayed on the physi
cal screen, and the mouse button click in 
this window is interpreted using the key-
command definition of this window, 

exposed: Completely displayed on its su
perior window. However, when the su
perior window does not have the shown 
status, even if the window is completely 
displayed on the screen, it docs not have 
shown status, but exposed status. 

overlapped: Partly or completely hidden by 
its superior window. This window is hid
den by another inferior window of its su
perior window, 

deactivated: Not managed by the window 
subsystem. Windows in this status will 
never be shown on the physical screen un-

Table 3-1. Window Status 

Status KB mouse output 
Selected done done done 
Shown wait done done 

Exposed wait wait wait 
Deexposed wait wait wait 
Deactivated fail fail fail 

til activated. However, its memory image 
is not destroyed. 
These states are managed by the window 

manager. The I/O function is determined 
by these states. The relation between the 
window states and the I/O functions are 
shown in table 3-1. 

Whenever there is a keyboard input, the 
window subsystem has to decide which win
dow the input should be sent to. The win
dow manager has the instance slot seleeted_ 
window which keeps the selected window. 
As another input device, V bas a point
ing device mouse. The mouse can move 
anywhere on the display screen, and the 
window manager can recognize the window, 
which the mouse click is sent to, by the 
position of the mouse. The mouse click is 
treated by the window's definition in only 
the shown window. It is because if the 
mouse click changes the window's output 
image, the user may not see it since he can
not see the whole of the not shown window, 
and the window manager cannot recognize 
which part of the window is hidden. 

3.3.J File Subsystem 
The file subsystem provides permanent 

storage both for data and objects. 
A permanent storage of data (records) is 

a file. Three types of files are available; bi
nary files, table (fixed length record) files, 
and heap (variable length record) files. A 
record is identified with its stored position 
and/or its associated key through an in
dex file. A binder mechanism will be sup
ported so that a user can define a virtual 
file with many data and index files. A rela
tional database management may be built 
on these facilities. 
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A permanent storage of objects is an in
stance file. It is tbe main feature of the file 
subsystem not provided by other machines' 
ordinary file systems. 

A directory file is a file which associates 
an instance record with a name. A per
manent directory is a directory which has 
a directory file as its permanent storage. 
When included in a permanent directory, 
a permanent object is stored as an instance 
record in an instance file and included in the 
directory file with a pathname. Therefore, 
it can be restored even after the system is 
rebooted. 

3.3.3 Network Subsystem 
The network subsystem provides three 

types of interfaces to communicate with 
other machines. 

Inter-machine communication is sup
ported to connect one ip with another i> 
or other different machines. The network 
subsystem defines the classes node, socket, 
cable, and plug to implement the com
munication. 

Inter-process communication allows two 
processes on different rt> nodes to communi
cate with each other, just as if they ex
ist on the same node. A remote channel 
is defined to represent an original channel 
on the other node. A process can send a 
message to the remote channel and another 
process on the remote node can receive it 
from the corresponding original channel. 

The introduction of remote objects is a 
main feature of the network subsystem. A 
remote object represents an object in a 
remote node. It can be manipulated just 
as an ordinary object. 

4 Programming System 
The programming system of SIMPOS is 

a collection of expert processes. An ex
pert process is a process which has an in
dependent communication window (called 
e_window) with the user. It performs the 
special action upon the user's request. 

This view is different from the views such 
that the programming system is a collec

tion of dumb software tools, nor is it t 
collection of programs to support the pro
gram production. Our view frees us from 
the overhead of the controlling process to 
manage the available tools or the informa
tion between the programs 

From the user's viewpoint, he can invoke, 
control, and terminate any expert through 
the expert's e window. He need not 
navigate the complicated process invocation 
tree to accomplish his task He need not 
bother about the unexpected destruction of 
his work through wrong navigation 

4.1 Coordinator 
In SIMPOS, there is no explicit supervising 

process such as srwti in urt« However, 
there is a work-behind process named 
Coordinator. Coordinator itself is not an 
expert process but a process that manages 
the set of experts. 

As noted above, tbe user may think that 
he controls tbe expert directly through the 
window, but actually, coordinator helps the 
user's control via the window interface that 
is the associated key command table of the 
window. 

The principal functions of coordinator 
are as follows: 
o Send a user's key command through the 

window to an expert, 
o Create, delete, and activate an expert via 

system.menu, 
° Get and process special commands from 

an expert, and 
o Help communications between experts 

via the whiteboard. 
The whiteboard it just like a blackboard 

where an expert puts a message to another 
expert, who in turn picks up the message 
by the user's instruction. 

The other way to solve this communica
tion problem it to set a communication 
channel with another expert But, in this 
case, the channel should be set between 
the experts before the user decides the 
partner of the expert It is not easy to tell 
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•who talks to who before communication be
comes necessary. 

The ultimate solution in this line would 
be to set a communication channel between 
any two experts, even though the cost be
comes very high as the number of experts 
grows. And still, a few problems remain. 
The user may change the partner after he 
ordered the expert to put the message. It 
may difficult to denote both the partner and 
the message using only the mouse click. 

Using the whiteboard, we can set vir
tually complete communication channels 
between experts. The user can select any 
expert after he has ordered one to put the 
message. This operation will be realised 
with one mouse click. 

Each user has a directory to create ex
perts. It contains the experts' names and 
the program names to create experts. The 
user can change the directory and the com
mand table as he likes. 

A user has his own directory which is 
inherited from the system's common direc
tory, i.e., the standard set of experts. 

An expert has its own set of key com
mand table associated with its window. 
However, Coordinator permits the user to 
change the key command table of the win
dow only when that window accepts the 
change keg command table command from 
the user. 

This freedom is achieved at the least cost 
of execution. This minimum overhead and 
the maximum provision of user control is 
the main theme of Coordinator. 

4.2 Debugger/Interpreter 
This subsystem interprets programs and 

provides information concerning the control 
flow of the programs. The basic facilities 
of the Debugger/Interpreter subsystem is 
similar to the debugging facility of dec-io 
prolog (D. L. Bowen .t »L 1981). New features 
are: 
o Procedure and clause box control flow 

model, 
o Calls between interpretive and compiled 

codes, and 
o Multi-window user interface. 

DEC-lO PROLOG uses Box Control Flow 
Model for its debugger. It considers that 
each predicate is the debugging unit. In 
this view, each clause looks like a black-box 
and cannot be traced whether the unifica
tion of its head or body fails. The predicate 
call simply fails in both cases. However, 
it is often the case that the clause head is 
correctly selected, but the definition of the 
body is erroneous. When the Procedure and 
Claute Box Control Flow Model is used, it 
is possible to check whether unification of 
the head or that of the body fails (see fig. 
4-1). 

In i>, it is possible for interpretive and 
compiled codes to mutually call each other. 
However, Debugger cannot trace in the 
compiled code. Debugger treats the invo
cation of compiled codes just like a simple 
built-in predicate invocation. If interpretive 
codes are invoked from compiled codes, 

procedure 

Call 

FaU 

clause 
head body 

Unify Pirlr F.xit Unify 
-> 

Misa Redo Next Misa Redo 

Unify Pick Frit Unify 

"f 

Pick 
-> 

<-
Redo Next MISS Redo 

Unify Pick F.xit Unify Pick 

1 j 
<-

Redo Next MlSf Redo 

Exit 

Redo 

Fig. 4-1. Procedure and Clause 
Box Control Flow Model 

for interpretive code 
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there is no way to pass the trace infor
mation to the interpretive codes. In such 
a case, Debugger restarts tracing with no 
trace information. 

}/> has a bitmapped display screen. 
Debugger uses the window subsystem that 
offers a multi-window user interface with 
the mouse. A user can select one of the con
trol options at break points, look at ances
tors or spy points, check the values of slots, 
or see the class definitions using the library 
subsystem. This information is shown in 
sub-windows of Debugger and all the selec
tions can be done using the mouse click. 

4.3 Editor 
An editor is a typical component of a 

programming system and an indispensable 
software tool in using a computer system. 
Though there can be editors to manipu
late abstract structures completely different 
from texts, here we limit our discussion to 
the editors which edit texts or data ex
pressed in texts. 

Even text expressions usually have nested 
structures. So the editor for V (called Edipo) 
is designed to be a general structure-editor. 
But we do not believe that there can be a 
general purpose editor which is convenient 
for every structure. A good general editor is 
one that is convenient for a specific purpose 
and can be used for general purposes even 
if less powerful. Under this criterion, Edipn 
is designed to be especially convenient for 
editing ESP programs and can manipulate 
other structures. In addition, Edip« has the 
following features: 
o Customization with macro definition, 
Q A small number of commands easy to 

memorize, and 

° Failsoft with many recovery environ
ments. 

To make Edipa general, we allow users to 
define the syntax. Though other general 
structure-editors usually use BNF, we do 
not adopt it because usual editing opera
tions are neither to trim a branch of 
the syntax tree nor to traverse the tree. 

Editing operations are more closely re-
lated to the text expression of edited data 
So we adopted an operator precedence 
grammar with user definable parentheses 
An operator precedence grammar it more 
simple and has better correspondence to the 
text expression. 

Every token in the text expression of 
edited data is classified into 6 categories: 

o Atom, 
o Prefix operator, 
o Infix operator, 

o Postfix operator, 
o Left parenthesis, and 
o Right parenthesis. 

Each operator has a precedence. For edit
ing purpose, however, too many precedence 
levels should not be adopted, because prec
edence introduces structures without direct 
correspondence to the text structure As 
for an ESP editor, 2 or 3 levels are necessary 
and sufficient. They are for: 
o logical symbols such as 

• 
•" I * I $ 

o function symbols such as 

V-
If necessary, 

o predicate symbols such as 
*<", •>•, •=* 

will be added. 

As explained above, the operator prec
edence grammar is very simple, but has 
enough expressive power to define the syn
tax of almost all structured programming 
languages. 

It is desirable that the parser and the 
pretty printer for the grammar can be used 
by other programming tools such as com-
piler, interpreter and debugger So, those 
tools are made as separate utilities from the 
editor Ed.pe consists of the editor kernel 
and those utilities which are also used by 
other tools. 
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4.4 Library 

The library subsystem manages all the 
classes and predicates on tp. It controls 
the registration of classes, loading program 
files, compiling, and building class objects 
by the analysis of inheritance. 

Each class has a class source file, a class 
template file, and a class object file on some 
secondary storage. Class templates and 
class objects exist only in the main stor
age, but are saved to and restored from the 
secondary storage. 

Class source files are text files coded by 
the users. A class source file can have 
just one class definition. Like source files, 
template files and object files also have just 
one class information in each. 

A class template is built from a single 
source file. It holds all the information 
of that class except those from inheritance 
analysis. The predicates of that class 
are kept as interpretive codes when the 
template is built. They are compiled when 
the user requests. After the compilation, 
both interpretive and compiled codes are 
kept. Templates can be saved or restored 
before compiling the predicates. 

Class objects are built from some class 
templates. In a class object, all the in
heritances are analysed and solved. It is 
an executable image of an object oriented 
program. 

Another feature of the library subsystem 
is to manage predicates. It contains the 
features of referring to one predicate of a 
class, i.e., object oriented invocation, and 
the invocation from compiled codes to inter
pretive codes or the converse. This mecha
nism is implemented by indirect references. 
All the invocation of predicates are done via 
indirect references. When some interpretive 
codes are invoked, that indirect word points 
the entry of the interpreter. This mecha
nism causes a uniform invocation scheme 
even if both the interpretive and compiled 
codes are mixed. 

For object oriented invocation, it is neces
sary to find which method should be in

voked during the execution time. Here, the 
library has to distinguish those predicates 
that have the same predicate name but are 
defined in different classes. In the com
piled codes, all the references are processed 
and changed to the direct invocation of the 
specific predicate, but in the interpretive 
codes, the library has to search the pred
icates during the execution time. 

The compiler is simply a subroutine of 
the library subsystem. It compiles a single 
predicate from interpretive codes. This 
process is done only in main storage. After 
the compilation, library holds both inter
pretive and compiled codes. The user can 
specify which code should be used for build
ing up a new class object. The template file 
is automatically rebuilt after the compila
tion. 

5 Development Tools 
Almost all of the os/PS programs are 

written in ESP. Since they were designed 
and coded before the rp machine becomes 
available, we need a cross system of ESP for 
software development 

Most of the programs are written in 
PROLOG. The programs are: 
o ESP cross simulator, 
o KLO cross compiler, 

o KLO cross assembler, 
o ip microprogram cross assembler, 

o Cross linkage editor for both KLO and 
microprogram, 

o Table generator for the microprogram. 
Some programs, the execution speed of 

which is critical for debugging (micropro
gram simulator, etc.) are developed in 
PASCAL. 

One of the powerful support tools is Cus-
tomisable Assembler (S. Takagi 1983). It 
is the kernel of both the KLO assembler 
and the tp microprogram assembler. Only 
the machine-dependent parts such as the 
length of the object word, field definitions, 
mnemonic definitions, and checking con
ditions are changed. Machine-dependent 



10 

parts are pre-processed and are compiled 
with the assembler kernel into a machine-
dependent assembler. 

The definition of KLO is about 500 lines 
while the definition of the V microprogram 
is approximately 1100 lines. About 80% of 
them are conversion tables from mnemonics 
to field values. The kernel part is about 
900 lines of PROLOG program. Compared 
with many so-called generalized assemblers 
or universal assemblers, this assembler has 
only 1/5 to 1/10 as many codes. Its assem
bly speed is, however, approximately com
parable. 

Using PROLOG'S unification and back
tracking mechanism, it is possible to write 
a sophisticated error-checking routine. If 
one field overlaps another, the unification 
fails and the next alternative value setting 
is tried. Setup conditions are processed in 
the same way. If an assembler variable 
X is unified to the value ease_l while one 
field is processed, the process for any other 
field cannot unify ease_2 for X. So, the 
unification fails and the process backtracks. 
Finally, when all of the unification is suc
cessfully completed, the object bit-pattern 
is generated and written out to the object 
file. 

6 Conclusion 
A logic programming based inference ma

chine (V1) and its Programming/Operating 
System (SIMPOS) is now under development. 
The first pilot hardware has already been 
manufactured and firmware debugging was 
finished. Installation of SIMPOS was started 
in February. 

The first release of rj> and SIMPOS for 
FGCS research and development will be at 
the end of March 1985. We will continue 
its improvements and enhancements. At 
that time we will be able to show that the 
logic programming based Operating/Pro
gramming system is working well and has 
a good human interface. 

Many investigations and researches are 
necessary for building logic programming 
based programming and operating systems. 

We hope this work will contribute to such 
researches. 
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1. Abstract 

The unification procedure is a cen
tral part of every Prolog implemen
tation. A Prolog interpreter spends 
roughly half of its time unifying data 
structures. Therefore, it is important 
to speed up unification as much as pos
sible. 

How can we generate a speed opti
mal unifier program? Is there a signifi
cant speed difference between the best 
and the worst unifiers? In order to an
swer these questions a method for find
ing speed optimal unifiers is developed. 
The unifiers are generated by a Prolog 
program which is a declarative partial 
description of the unifier. This method 
has been applied to an experimental 
interpreter, for which some data are 
given. 

Keywords: Unification, Optimiza
tion, Prolog. 

2. Introduction 

The derivation of efficient unifi
cation algorithms from specifications 
has been studied by a number of re
searchers, e.g. (Eriksson 83). 

However, it seems that few peo
ple have studied the problems of find
ing the most efficient implementations 
of unification algorithms, although it 

was noted early that Prolog inter
preters rely heavily on efficient unifiers 
(Warren 77). 

Some interesting questions are: 
How can we generate a speed optimal 
unifier program? Is there a significant 
speed difference between the best and 
the worst unifiers? This paper is an 
attempt to clarify the situation some
what. We shall describe a method to 
find speed optimal unifiers. The uni
fiers are generated by a Prolog program 
which is a declarative partial descrip
tion of the unifier. 

The organization of this paper is 
as follows: The section after this in
troduction describes a general way of 
specifying programs. The third section 
describes some primitives for a class of 
unifier programs. The specification is 
specialized to unifiers in section four. 
This specification is translated to a 
Prolog program, which in section five 
is modified to find an optimal unifier. 
In the last two sections some experi
mental results are discussed. 

3. A class of programs 

Two different languages are used in 
this article. One is the specification 
language, which is First Order Logic. 
The specified unifier programs are writ
ten in a second language, the program
ming language. Programs in this lan-
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guage are ground terms in the specifi
cation language. 

First, we shall describe how pro
grams in the second language can be 
specified. Henceforth, if we talk about 
programs, and the language is implicit, 
we mean programs in this second lan
guage. 

A program can be seen as a (possi
bly degenerate) binary tree. An execu
tion follows a path from the root node 
to a leaf. At every node during execu
tion, the program has a state, on which 
some primitive operation is performed. 
The state is held in a set of state vari
ables, implemented as memory cells in 
the physical program. 

A program can be constructed from 
three kinds of operations: tests, trans
formations, and terminals. A test node 
has two successor nodes. It does not 
change the state variables, but merely 
directs execution to either the right 
or the left successor depending on the 
current state. A transformation has 
only one successor, but may change the 
state. A terminal has no successor. It 
is responsible for returning some out
put from the entire program. 

Syntactically, programs are lin
earized as ground terms. A program 
can be a terminal. Another possibility 
is SEQUENCER, y), where z is a trans
formation and y is a program. The 
meaning of this is that z is executed be
fore y. A program can also be IF(z, y, z), 
where z is a test and y is a program (the 
then-branch") and z is a program (the 

"else-branch"). 

In other words, p is a program 
with respect to a set of possible in
put states si iff p satisfies program(ii.p), 
where program is defined as 

Vti.p (program(ti.p) —• 
correctttatetct(ti) A Sop.p,. PJ. to,. zoj( 

terminal) »i.p) 
v p = SEQUENCE)op,pt) 

A trans format ion)ti, op. #o) 
A program(to.p,) 

V p =» IF[op.Pi.Pi) 
A tett(ti. op. to,. to,) 
A pr<vram(«0|,pi) 
A program(to,.p,))) 

The to variables are output lets of 
states, i.e. states that come out of oper
ations. The predicates terminal, trans
formation, and test are supposed to be 
false whenever their second argument 
is not an operation name 

Suppose that TTiM denotes a typi
cal terminal operation in our program. 
TTiM could be specified by 

Vti.to (terminat)si.T/i M) — 
precondition)ti. TTiM)) 

if the set of possible input states <• is 
specified by the precondition 

Likewise, suppose that TUNS is a 
transformation operation. The relation 
between ti and the set of corresponding 
output states to is specified by a post-
condition: 

Vsi, to (transformational, TUNS, to) ~ 
precondition)ti, TliNS) 
A poitcondition(ii. to.TRNS)) 

A typical test operation, say TFT, 
tests if the input state satisfies some 
condition: 

V«i, to,, tot (tesffei, TST, to,.to,) 
precondition) ti, TST) 
A postcondition,(si, to,, TST) 
A postcondition,(ti. to,. TST)) 

The output set of states ««i would 
be the subset of «i where the condition 
is satisfied, while to, would be the sub
set where it is not. 
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Every primitive operation requires 
satisfaction of some precondition on 
the set of possible input states. The 
precondition on the input checks that 
the operation is always applicable. 
There are also postconditions on the 
output states. A postcondition speci
fies the set of output states for a given 
set of input states. Postconditions for 
test operations should also check that 
the operation is nontrivial: Both sets 
of output states should be nonempty. 

Some observations can be made 
here: No program can generate a run
time error, since the applicability of 
each operation is guaranteed by the 
operation's precondition. Every pro
gram can be insured to be partially cor
rect by having a correctness criterion 
as a precondition of every terminal. All 
programs will also be totally correct, if 
it can be proved that every primitive 
operation requires a finite amount of 
execution time. 

4. Unifier building blocks 

Since we are going to specialize 
our programs to unifier programs, we 
shall describe primitive operations for 
a reasonable class of unifiers. Although 
we shall have to make some assump
tions about implementational details, 
the principles should apply to other 
kinds of unifiers as well. 

The unifier is assumed to opejate 
on data structures which are Prolog 
terms represented as binary trees. This 
is how terms are implemented in, for 
instance, FOOLOG (Nilsson 83) and 
HORNE (Frisch, Allen, Giuliano 83/84). 
A term is either a pair of terms, a con-
eta nt, or a variable. A variable ex
ists in one of four states: It can ei
ther be unbound, or ultimately bound 
to an unbound variable, to a constant, 
or to a pair. When we say "ultimately 

bound", we mean bound through a 
chain of variable bindings. 

A unifier program normally takes 
two input parameters z0 and y0, which 
are two terms to unify. If unifica
tion is successful, the program updates 
the variable bindings and returns the 
Boolean value true. If unification fails, 
the program returns false. 

We assume that a possible state 
representation for such a program 
would be a pair of state variables z and 
I/, initially set to z0 and y0. 

We have chosen the following prim
itive operations as a relevant selection: 

Terminals: 
FAIL. Returns from the program with 
the value false. This operation may 
only be applied to a state if z is a pair 
and y a constant, or vice versa. 
EQUAL: Returns true if * = y, else 
false, z and y must both be constants. 
BINDXY: Binds z to y, unless z is iden
tical to y. z must be an unbound vari
able. y must not be a bound variable. 
Returns true. Note that the binding 
process is internal to this primitive. 
How internal things like trailing etc. 
are handled inside the operations does 
not affect the specification. 
BINDYX: Similar. 
RECURSE: Calls the unifier program 
recursively on the right and left sub
trees of z and y. Returns true if both 
of the recursive calls do. z and y must 
both be pairs. 

An additional precondition (the cor
rectness criterion) for all terminals is 
that the state variables z and y must 
have either their initial values, or their 
initial values dereferenced. I.e. if the 
initial value z0 is a variable, z0 derefer
enced is what this variable ultimately 
is bound to. 



16 

Transformations: 
DEREFX: Dereference the variable x .  
x must be a bound variable. 
DEREFY: Similar. 

Tests: 
UNBOUNDX: Chooses the left succes
sor if x is unbound, else the right one. 
x must be a variable. 
UNBOUNDY: Similar. 
CONSTX: Chooses the left successor 
if x is a constant, else the right one. 
CONSTY: Similar. 
NOTVARX: Chooses the left successor 
if x isn't a variable, else the right one. 
x must not be a constant. 
NOTVARY: Similar. 

5. Generating all unifiers 

We shall first simplify the specifica
tion of the primitive operations. Then 
we shall translate the specification to a 
Prolog program that generates all uni
fier programs. 

The correctness criterion requires 
the state variables not to be changed 
from their initial values, except that 
they may be dereferenced. The state 
variables can only be changed by trans
formation operations. Since the only 
transformations available dereference 
the state variables, this criterion is al
ways satisfied, and need not be checked 
in the Prolog program. 

Since we use two state variables x 
and y, the program's state is a tuple 
(x,y). We shall divide the set of pos
sible states in subclasses to simplify 
the specification of pre- and postcondi
tions. Let us recall that x and v rep
resent memory cells in the program. 
These cells contain some data struc
tures. They could belong to, for in
stance, the set of constants. We de
note this set Se. The structures could 
also belong to the set of unbound vari

ables, which we denote by 5.; or the 
set of all pairs, S„ the set of all vari
ables ultimately bound to constants, 
Sci the set of all variables ultimately 
bound to pairs S>; or, finally, the set 
of all variables ultimately bound to un
bound variables, Sv. For convenience, 
let S» be the set of all variables that are 
bound to something, even if it is an un
bound variable, S» — 5cU^rU^v- The 
set S = S,US.US.US» then conUl,u 

all possible data structures The set of 
possible program states is S x 5: 

V«i (correctitatciet(ii) - «'C Sxi| 

There is an important observation 
that simplifies the Prolog program con
siderably: All preconditions care only 
about which types of data structures 
(constants, variables bound to pairs, 
etc.) the state variables hold There
fore, any details in the postconditions 
beyond those specifying the classifica
tion of the output state, are unneces
sary. 

The simplified logical specification 
of operations will then be 

V«i (terminal(ii, FAIL) — 
si + $ A •iC(S,xS,|U(S,xS,|| 

V«i (rrrminoi(«i. EQUAL) — 
si jt • A ii C 5, x S,) 

Vji (tcrminaHii. lilNDXY) ~ 
A «£S.x|5\Si|| 

V«« (terminalfii, BINDYX) —• 
«i • A li C (5 \ S») x 5.) 

V«i (terminaJ(ii, RECUTtSE) — 
*>*=» A li CS|X Sp) 

V«», to (tr ant f ormation) ti. DEREFX.tt) -
•o = (*xS)n«i A si*#) 

V«i, to (tram formation)ri. DEREFY. #•) -
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10 = (5 x S(,)n «• a ti 0) 

Yti, to,, to, (te«<(«i, UNBOUNDX, JOi, «Oj) «-» 
«iC(S»|JS,)xS A 
»o, = (5, x S)D« A «oi 0 A 
to, = (Si x S)(~|" A «oj?fc0) 

Yti,to,,tO} (<e#t(«i, UNBOUNDY, to,,to2) «-> 
iiC5x(5»U5.) A 
to, =(S xS.lfl" A «0i jfc 0 A 
40, = (5 x S»)n«» A «oiyfc0) 

V«i, to,, 10} [tett(ii, CONSTX,iO|,to2)«-» 
«oi = (Se x 5)0" A to, jfc 0 A 
,o,=((S\5,:)xS)ri»« A «o, *0) 

Vii,l«i,iO| (tr<((ii. CONSTY, «0|, «0j) «-» 
«o, = (S x Se)0" A to, 0 A 
• oj = (S x (5\5c))n«« A toj 1= 0) 

V«i,«0i,<0t (te«t(«»\ NOTVARX,to,, toi) «-• 
ti C (5\SC) x S A 
to, =((5,U5»)xS)n«> A to, ,M A 
to, = (S, x 5)f|'» A to t  0) 

Vti.to,,tO} [teif(ti, NOTVARY,to,,tO}) «-» 
«»CSx (S \ Se) A 
to, =(Sx (5.US»))n«» Al»ut0A 
»o, = (S x 5,)n« A tO} 0) 

When we translate the specification 
to Prolog, the following statements will 
be taken care of by the negation-as-
failure rule: 
V«i, op (-> tcrminal(ii, op) — 

op t  [RAIL, EQUAL, BINDXY, 
B1NDYX,RECURSE}) 

Vti.to.op (-> traniformation(ti, op, to) — 

op( {DEREFX, DEREFY}) 

Vii, op. to,,tO} (-» teit(ii, op, to,,tO}) — 
op t [UNBOUNDX.UNBOUNDY, 

CONSTX, CONSTY, 
NOTVARX, NOTVARY}) 

Every test and transformation op
eration deals with one state variable 

only. This suggests a compact Pro
log encoding of the sets of states: Let 
the Prolog lists of constants {6}, {«}, 
{c}, and {p} denote the sets Sb, S„ Sc, 
and Sp. Unions and intersections corre
spond straightforwardly to lists. E.g., 
5cUsp i3 encoded as {c,p}. A Carte
sian product of sets is encoded as a tu
ple of lists: Sc x (Sc U Sp) corresponds to 
(M,{c,p}). 

The program-predicate can now 
easily be translated to Prolog (upper 
case symbols are Prolog variables): 

program(Sl, OP) «— terminal(SI, OP). 
program(SI, tequence[OP, PI)) «— 

tram formation(SI, OP, SO) A 
program(SO, PI). 

program(SI, if [OP, PI, P2)) «— 
teit(Sl, OP, SOI, S02) A 
program(SO 1, PI) A 
program(S02, P2). 

The Prolog specification for the FAIL 
operation looks like: 

terminal([{p}, (c}),/ai7). 
terminal[({c}, {p}), foil). 

The first of these clauses says that the 
FAIL operation accepts an input state 
[x, y) e Sp X Se. Specifications for the 
other operations are similar: 

termina/(({c), {c}), equal). 
terminal(((v},Y),bindzy) <-

intereection(Y, (6), {}). 
terminal((X, {»}),bindyz) «-

intertedion[X, (6), {})• 
teTminal(({p), [p}),recurte). 

frontformation[[{b}, Y), derefz,[[v,c,p},Y)). 
trantformation((X, {6}), derefy, [X, {», e,p})). 

te«t(({6, »}, y), unboundz, ({»}, y), ({6}, y)). 
fetf[(X, (6,»}), Unboundy, (X, {»}), (X, {6})). 
tett([X, Y), conetz, (XI, Y), (X2, Y)) «-

inter tection(X, {c}, XI) A XI 0 A 
intertection(X, {6, o, p},X2) A X2 0. 
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teit((X,Y), consty, (X, Y1), (X, Y2)) — 
inter,ection(Y, {c},Xl) A Yl *= 0 A 
intersection^, {b,v,p},Y2) t^Y2 ^ 0. 

te»t((X, Y), notvarz, (X1, Y), (X2, Y)) «-
»nier«ect«on(X, {c}, {}) A 
inter«ection(X, {6, «}, X1) A X1 ?«= 0 A 
infer«ec<»on(X, {p}, X2) A X2 0. 

te«t((X, X), notvary, (X, XI), (X, X2)) «-
inter,ection(Y, {c}, {}) A 
inter,ection(Y, {6, »},X1) A XI ¥= 0 A 
inter,ection(Y, {p},X2)AX2?fe 0. 

Consider the sample Prolog call 

program(({c, p}, {c, p}), P) 

The Prolog program will instantiate 
p to different unifier programs on the 
premise that x<> an(l Vo are constants 
or pairs. Two possible programs P are 
generated: 

if (con,tx,if (consty, equal, fail), 
if (consty, fail, recur, e)) 

and 

if(con,ty,if(con,tz, equal, fail), 
if(con,tz, fail, recur,e)) 

The call 

program(({b, v, c,p), {6, v, c,p}),P) 

will generate all different unifier pro
grams. If we assume that all primitive 
operations require only a finite amount 
of time, the generated programs will be 
correct. 

6. Finding an optimal unifier 

The Prolog program from the pre
vious section can now be modified so 
that a statistically expected cost - here, 
the execution time — is estimated along 
the generation of the unifiers. To do 
this, we introduce cost parameters and 
frequency tables in the parameter lists 
of the predicates. 

A frequency table is a list of 36 
numbers They are the frequencies of 
the 6 x 6 = 36 different combinations 
of types of state variables: * belongs 
to one of Sv, Sci Sr• 
similarly for p. At every node, the cur
rent frequency table is summed up, and 
multiplied with the execution tune of 
this node's operation, in order to com
pute the expected cost. The primi
tive operations affect the table: For in
stance, a DEREFX operation changes 
all (Sc x S,)-states to (5, x S,(-states 
The frequency of the former kind of 
state will be sero after the operation 
has been performed. The frequency of 
the latter kind will increase with the 
same amount as the frequency of the 
former decreased. Another example is 
a test operation, which splits the fre
quency table into two new tables: one 
for the left successor and one for the 
right successor. 

The COST parameter holds the ac
cumulated expected cost. The predi
cate sum adds up the total number of 
different cases in the frequency table. 

The FRBQ parameter holds the "in
put" frequency table, and the FREQl 
and FREQ2 parameters hold the "out
put" tables. 

program(Sl, OP, HiEQ. COST) — 
terminal(Sl. OP. HiEQ) A 
co«t(OP, C) A 
,um(FREQ. N) A 
COST it C • N. 

program(Sl, ,cquence(OP, PI), 
FREQ. COST) — 

tran,formation(SI, OP, SO. 
FREQ, FREQl) A 

program(SO, PI, FREQl,COSTl) A 
co*t(OP, C) A 
tum(FREQ, N) A 
COST is C • N + COSTl. 
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program(SI,if(OP ,P1,P2), 

FREQ, COST) — 
teit(Sl, 0P,SOl,SO2, 

FfiSQ, FREQl, FREQ2) A 

proyram(S01, Pi, FREQ I, CO ST I) A 

propram(S02, P2, F/?£<J2, COST2) A 

co«t(OP, C) A 

<um(FREQ, N) A 
COST it C • N + COST 1 + COST2. 

There should be one clause cott(OP,C) 
for every operation OP. C is the re
quired execution time for OP. The call 
tum[FREQ.N) binds N to the sum of all 
numbers in the table FREQ. 

We assume that an operation re
quires constant time, regardless of the 
state it operates upon. (This has shown 
to be a reasonable approximation for 
our test implementation of the primi
tive operations.) There is one excep
tion to this: The RECURSE operation. 
However, if N is the number of calls to 
the unifier, and T is the expected exe
cution time of executing one step of the 
unifier without recursion, the expected 
cost of the complete unification will be 
NT. 

Suppose that we have generated 
two unifier programs Pi and Pj for 
some set of input states. Suppose also 
that the execution of Pi ends with a 
BIND (i.e. BINDXY or DINDYX) opera
tion, given some particular input state. 
Then the execution of P, must also end 
with a BIND operation for the same in
put. Likewise, if Pi ends with FAIL, I'i 
also ends with FAIL. The same thing 
holds for the EQUAL and RECURSE op
erations as well. That is to say, if Pi 

spends an expected time T0 executing 
terminal operations, then Pj will also 
spend the expected time To at terminal 
operations. 

For the program Pi, our unifier gen
erator will compute Tt — To, where 7\ is 
the expected time of one step of the 

unifier without recursion. If T, — T0 is 
the value computed for P2, the relation 
between these two values provides us 
with an upper hound on the speed dif
ference. Without restriction, assume 
that P, is faster than P, (Ti > Tj): 

Ti-To _T, (T,/T, — 1) NT. 

Tt-To~ Tt T, — T0 NT, 

Here are some examples of what 
the unifier generator looks like. We do 
not list all the clauses for all operations 
since the rest of the program does not 
contain anything essential beyond what 
is given here. 

The Prolog specification for the 
FAIL operation looks like this: 

terminaf(({p}, {e}), foil, FREQ). 
termina/(({c}, {p}), foil, FREQ). 

The FREQ variable is just a dummy in 
terminal clauses. In tr ant formation and 
test clauses, however, is passes the fre
quency table, which is in the following 
format: 

{FW, FVC, FVP, FVv,FVc, FVp, 
FCV, FCC,FCP,FCv,FCc,FCp, 
FW, FPC,FPP,FPv,FPc,FPp, 
FvV, FvC, FvP, Fvv, Fvc, Fvp, 
FcV, FcC, FcP, Fcv, Fee, Fcp, 
FpV, FpC, FpP, F)pv, Fpc, Fpp) 

The element Fij is the frequency of the 
states (z,y) e S, x Sj. Example: FPc is 
the frequency of the state where z holds 
a variable that is bound to a pair, and 
y holds a constant. 

The specification for DEREFX is 

tr ant formation{{{b), T), derefz, ({», c,p}, T), 
{FW,FVC,FVP,FVV,FVC, FVp, 
FCV, FCC,FCP,FCv,FCC, FCp, 
FW, FPC, FPP, FPv,FPc, FPp, 

0, 0, 0, 0, 0, 0, 
0, 0, o, 0, 0, 0, 
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o, 
{0, 
0, 
0, 

o, 
0, 
o, 
0, 

0, 
o, 
0, 
o, 

0, 0, 0}, 
0, 0, 0, 
0, 0, 0, 
0, 0, 0, 

FW, FVC,FVP,FVv,FVc, FVp, 
FCV, FCC ,FCP,FCv,FCc, FCp, 
FPV, FPC, FPP, FPv, FPc.FPp]). 

For CON STY, it looks like this: 

test((X, r), consty, (X, Y1), (X, ̂ 2), 
{FW ,FVC,FVP,FVv,FVc, FVp, 
FCV, FCC,FCP,FCv,FCc, FCp, 
FPV, FPC, FPP, FPu,FPc, FPp, 
FvV, FvC, FvP, Fvti, Fvc, Fvp, 
FcV, FcC, FcP, Fcv, Fee, Fcp, 
FpV, FpC,FpP,Fpv,Fpc, Fpp), 
{0. 0, 0, 0, FVc, 0, 
0, 0, o, o, FCc, 0, 
0, o, 0, 0, FPc, 0, 
0, 0, 0, 0, Fvc, 0, 
o, o, 0, 0, Fee, 0, 
o, o, 0, 0, Fpc, 0}. 

{FW,FVC,FVP,FVv, 0, FVp, 
FCV, FCC ,FCP,FCv, 0, FCp, 
FPV, FPC,FPP,FPv, 0, FPp, 
FvV, FvC, FvP, Fvv, 0, Fvp, 
FcV, FcC, FcP, Fcv, 0, Fcp, 
FpV, FpC,FpP,Fpv, 0, Fpp}) — 

intersection{Y,{c},Yl) A Y I f*= 0 A 

intersection^, {6, v,p},Y2) A Y2 jfc 0 

7. Results 

We have made a simple test imple
mentation of the primitive operations 
to try out the optimization method. 

The na ive - r eve r se  benchmark is a 
common way to measure the efficiency 
of Prolog systems (Warren 77). It was 
used to compute frequencies of differ
ent types of parameters to unify: 

I* 

V c P • e  r 

V 0 0 0 0 0 0 
c 0 0 0 0 0 0 
P 1 0 0 10 0 0 
V 0 436 841 30 60 60 
e  0 31 464 1 406 1 
P 20 31 464 406 0 1064 

The execution times of the trans
formation and the test primitives were 
approximately 

operation cost (a*) 

DEREFX, DEREFY 75 
CONSTX, CONSTY 4 
UNROUNDX, UNUOUNDY 40 
NOTVAliX, NOTVAIVY & 

When the Prolog call 

proffrom(({6, v,c.p). {6, n.e.p}),/', 
FREQ, COST) 

was executed with FREQ instantiated 
according to the frequency table above, 
the difference between tht maximum 
COST and the minimum COST, was 
about 2%. If FREQ was instantiated 
to a table of uniform frequencies the 
difference was 4.5%. If the costs of the 
transformations and tests were all set 
to one, and FREQ instantiated accord
ing to the frequency table, the differ
ence was around 8%. With uniform 
frequencies the difference was 2%. 

No significant difference could be 
measured between actual implementa
tions of a worst case and a best case 
uni f ie r  p rogram when the  no tve - r t v t r t t  
benchmark was run. 
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8. Discussion 

The differences in speed between 
the best and the worst unifiers will be 
smaller than the values computed in 
the previous section, since the execu
tion time of the terminal operations is 
excluded. The speed differences of Pro
log interpreters using those unifiers will 
be even less. 

Even in such a case as natwe-
reverse, with a very non-symmetric 
distribution of types of arguments, it 
seems to matter very little what the 
order of the unifier's primitive opera
tions are. However, it should be re
membered that the situation might be 
different for a unifier with other prim
itive operations. Maybe the most se
vere restriction of our set of primitives 
is that no "multi-way conditional" ex
ists. Such an operation can be used to 
dispatch very efficiently on data type 
tags, and will increase the speed of the 
unifier substantially. 

One of the anonymous referees of 
this paper suggested that our method 
could be used in a compiler for finding 
fast unification code. A typical situa
tion for a Prolog compiler which tries 
to opencode unification is that some
thing is known about the types of the 
terms to be unified. The compiler s 
task is to use that knowledge to find 
the fastest and smallest sequences of 
instructions which perform the unifica
tion. 

The method described in this paper 
seems to be useful for optimizing other 
kinds of small programs, too. However, 
a hard problem is that the set of gen
erated programs easily grows far too 
large. It becomes impossible to find the 
optimal programs by pure depth-first 
search. An approach that might prove 
to be valuable in the future would be 
to use a best-first search based on the 

accumulated cost. 
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DRAWING TREES AND THEIR EQUATIONS IN PROLOG 
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ABSTRACT 

This paper describes in 
detail how to compute efficiently 
a drawing of Prolog trees with the 
smallest number of nodes. This is 
done using a system of equations 
as in Colmerauer (1982). We give 
examples with finite and infinite 
trees in different domains. 

1.0 INTRODUCTION 

When handling complex trees, 
the usual functional notation is 
really a maze, and is a major 
cause of mistakes. When creating 
natural language front ends in 
Prolog, I have regretted the lack 
of a more visual representation of 
trees which is the main difficulty 
in grammar debugging. This was 
the original motivation for 
building the tools described here. 
Colmerauer's modification (Colme
rauer 1982) of the theoretical 
model of Prolog, while adding the 
complexity of infinite trees, 
introduces powerful ideas for tree 
representation optimisation: 

mainly, to define a tree with a 
system of equations with the 
smallest number of symbols. This 
point is described in detail in 
the second chapter. 

Of all the possible represen
tations (functional, indentation, 
...) of terms, the graphical 
representation of the arborescence 
is by far the clearest and the 
most pleasant, although the most 
difficult to manage. A convenient 
algorithm to draw finite trees in 
a compact manner is described in 
the third chapter. 

In what follows are given 
examples in three different 
domains. The first one (Fig. 1) 
demonstrate the semantic tree 
(Pique 1982) obtained in the 
analysis of the sentence: 

"A guard is standing at each 
gate of the town where the 
mayor was killed" 

>draw-tree(the(y,and(town(y),the(z,mayor(z),was killed in(z,y)) 
),each(r,gate-of(r,y),an(s,guard(s),stand at(s,r)))>), 

the 
i 

i r -i 

y and e£|ch 

i  1  1  r — 1  

town the r gate-of an 

I i i 1 ' . 
y z mayor was-killed-in r y s guard stand at 

rH I ^ 
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NOTE ON PROLOG II SYNTAX 

Before continuing, some 
remark on the Prolog II syntax is 
worth noting: constant symbols 
begin with two letters, while 
variable symbols begin with only 
one letter eventually followed by 
digits and single quotes. An 
hyphen may appear inside a symbol. 
A semicolon ends a rule. Lists 
are written with infix dot 
notation. Terms may be written as 
functions e.g. ff(al,...,an) or 
as tuples e.g. <ff,al,...,an>. 
These two notations are 
equivalent, however the first one 
is only allowed when the first 
element of the tuple is an 
identifier. With the tuple 
representation one can do very 
fast and easy term composition and 
decompostion. 

The next example shows the 
output of a compiler for a 
structured language like Pascal. 
This compiler compiles loops into 
infinite trees of code instruc
tions . Each structured instruc
tion has only one entry point "e" 
and one exit point "x". The same 
is true for the generated code, 
except for the conditional branch 
which has two exit points: the 
left one is the true condition 
exit point, the right one is the 
false condition exit point. As an 
example, for the structured 
instruction "while", we get: 

e 
I 

while cond do cond 
begin -> 

ins ins x 
end 

cond 
/ \ 

ins x 
I 

cond 
/ \ 

x 

Compiling is nothing but the 
connection of code instruction 
trees: 

compile!WHILE(C,i),e,x> -> 
compile-test!c,e,xl,x2 ) 
compiled.e" ,x") 
equal(xl,e') 
equal(x',e> 
equal(x2,x); 

compile!REPEATUNTIL!l,C>,e,x> -> 
compiled,e,x') 
compile-test!c,e",xl,x2> 
equal(x*,e') 
equal<x2,e) 
equaltxl,x); 

compile(IF(c,il,i2),e,x) -> 
compile-test(c,e,xl,x2 > 
compile*il,el,x) 
compile!12,e2,x) 
equal(xl,el> 
equal(x2,e2>; 

compile*INS(i),e,x> -> 
equal<e,<i,x>>; 

compile<nil,e,x> -> 
equal(e,x); 

compiled.l,e,x) -> 
compiled,e,x") 
compile!l,e',x) 
equal< x',e'); 

compile-test!N0T(c),e,xl,x2) -> 
compile-test(c,e,x2,xl); 

compile-test(c,e,xl,x2) -> 
atomic(c) 
equal(e,<c,xl,x2>>; 

equal!y,y) ->; 

Consider now a fragment of a 
classical program to parse an 
expression "term {• term}" with 
one character lookahead: 

next token; 
term ; 
while token'"*' do 
begin 
nexttoken; 
term 

end; 
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It is interesting to compile and 
then draw the solution: 

>compile 
( iNS(call-nexttoken) 

.INS(call-term) 
,WHILE(is-token-PLUS 

, INS(call-nexttoken) 
.INS(call-term) 
.nil ) 

.nil 
, e 
. x ) 

draw-equ( e ); 
e = call-nexttoken 

I 
call-term 

I 
token-is-PLUS 

r-Ln 
e x 

As one can see, the solution 
is very simple, exhibiting a 
minimum code sequence. We can 
also compare with the alternate 
"repeat" solution in structured 
programming: 

nexttoken; 
term ; 
if token='+' then 
repeat 
nexttoken; 
term 

until not (token='+*); 

which, when compiled, leads to the 
same infinite tree: 

draw-equ( e ); 
e = call-nexttoken 

I 
call-term 

I 
token-is-PLUS 

Hi 
e x 

The third example defines the 
transition diagram of a three 
state switch. Each state is 
described by a list of pairs 
(transition, new state), nil 
meaning no transition. The 
initial state is "x": 

z y x 
o o o 

/ 
o 

switch(x) -> 
equal(x,<left,y>.nil) 
equal(y,<left,z>.<right,x>.nil) 
equal(z,<right,y>.nil); 

>switch(x) draw-equ(x); 

x = . y = 

1—' ! ' ' 
left nil left 

right nil 

right nil x 
I 
y 

>compile 
( INS(call-nexttoken) 
•INS(call-term) 
. IPCis-token-PLUS 

, REPEATUNTIL 
( INS(call-nexttoken) 

.INS(call-term) 

.nil 
, NOT(is-token-PLUS) ) 

, nil ) 
.nil 
, e 
. x ) 

2.0 COMPUTING A MINIMAL SYSTEM 
OF EQUATIONS 

A Prolog program manipulates 
rational trees, finite or even 
infinite as in the Marseille 
extension (Colmerauer and al 
1981) . These trees are defined in 
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the new theoretical model by a 
system of equations, hence comes 
the idea to compute from the tree 
a pleasant representation of a 
system defining it. Colmerauer 
has given in his paper (Colmerauer 
82) a program to do this. I 
describe in detail here an 
efficient program which computes a 
system built from the functional 
symbols of the tree and a set of 
variables. A good looking system 
is one fulfilling the following 
conditions: 

The number of symbols of the teres 
of a system is then the sum of the 
numbers from each equation. The 
system is however not minimal if 
all symbols of the equation are 
counted as can be seen from the 
following two equivalent systems : 

{x=f(y,y), y«g(a>) 

{x=f<g<a),g<a>)} 

As an example, 
tree defined by 
Prolog program: 

consider the 
the followin? 

A minimum number of equations 

No duplication of non atomic 
terms. 

The second condition enhances 
the ability to identify identical 
complex terms. It can be proved 
that, among the equivalent 
systems, it is minimal in the 
number of symbols of FuV occuring 
in the right member of the 
equations. This is interesting 
because each term symbol will 
correspond to a node in the 
drawing. 

More precisely, we define the 
number of symbols of a term in an 
equation "vi=ti", where "vi" is a 
variable and "ti" a term, as: 

1. If "ti" is a constant or a 
variable : one. 

^^ ti is of the form 
fn(tl,...,tn)", where "fn" is a 
member of Fn, and "tl,...,tn" are 
terms : one plus the sum of the 
number of symbols of the terms 
"tl,...,tn" . 

tree( x > -> 
equal( x, ff<u,y,z> ) 
equal( y, gg<a) ) 
equal( z, gg(b) > 
equali b, gg(a) ) 
equal( a, gg(b) ) 
equal( u, ff(ff<x,z,a>,a,b> 

equal< x, x ) -> ; 

is a member Of the set 
assertions: 

ff 
/ 1 \ 

ff 99 99 
/ 1 \ 1 1 

ff 99 99 99 99 
/ 1 \ 1 1 1 1 

ff gg gg 99 99 99 99 

of 

/ I \ I I I I I 

A system of equations 
defining this tree and satisfying 
our criterions (it is also Biniaal 
with the second definition) is for 
example: 

{x=ff(x,y,y), y>gg(y)} 

Since terms in the equation 
are finite, they can be drawn as 
arbor escences, enhancing further 
readability. As a consequence of 
minimality, even finite trees »ay 
gain a plus from this represents" 
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tion. First consider completely 
specified trees (i.e. with no 
variables). We will assume that 
the first equation in the system 
defines the root of the tree. 

The algorithm consists in 
building a basic system with one 
equation per subtree, and then 
reducing it. Remember that Prolog 
programs can only define rational 
trees (i.e. trees with a finite 
set of subtrees), so this basic 
system always has a finite number 
of equations. To build this basic 
system, first pair each different 
subtree with a different variable 
symbol of the system. Then the 
system is easily constructed as 
follows: For each different 
subtree add to the system the 
equation "v=f(vl,...,vn)" where 
"v" is the variable symbol paired 
with the subtree, "f" is the 
functional symbol of the subtree, 
and "vl,...,vn" are the variable 
symbols paired with the sons of 
the subtree. 

For example, the preceding 
tree has two subtrees: itself, 
and the tree "gg(gg(...)}". If we 
pair them with the symbol 
variables "x" and "y" respecti
vely, we obtain the system already 
seen: 

{x=ff(x,y,y), y=gg(y)} 

In case of an uncompletely 
specified tree (i.e. a tree 
containing variables) we must 
define the exact meaning of 
"different subtrees". We say that 
two uncompletely specified sub
trees are different if there 
exists a tree assignment such that 
they are different, which is what 
formal inequality involves. We 
may thus consider tree variables 
as constants different from those 
of the tree, and formally 
represented by variable symbols 
not occurring in the system. 
Different variables are different 

constants paired with different 
variable symbols. 

Now, to reduce the system S, 
we consider every equation "vi=ti" 
of the system except the first 
one. There are two reduction 
conditions: 

1. If "ti" has only one symbol, 
remove the equation and replace 
each occurrence of "vi" in S by an 
occurrence of "ti". 

2. If "ti" has more than one 
symbol, "vi" has no occurrence in 
"ti", and there is only one 
occurrence of "vi" in the system 
when the equation is removed, 
remove the equation, and replace 
this occurrence by an occurrence 
of "ti". 

For example the tree 

ff 
/ \ 

gg hh 
I / I \ 
gg gg x ff 
II / \ 
aa aa gg 

I 
gg 

I 
aa 

has six subtrees: 

x 
aa 
gg(aa) 
gg(gg(aa)) 
hh(gg(aa),x,ff(—)) 
ff(gg(gg(aa)),hh(...)) 

We get the basic system: 

{ xO = ff(xl,x4), 
xl = gg(x2), 
x2 = gg(x3), 
x3 = aa, 
x4 = hh(x2,x5,x0) } 

after reduction: 
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{ xO = ff(gg(x2),hh(x2,x5,xl)), 
x2 = gg(aa) } 

using our program to draw the 
system, we get: 

y = gg 

I 
aa 

In our program we use Prolog 
variables as system variable 
symbols. This allow very fast 
reduction because replacement of 
occurrences can be done by 
unification. While computing each 
subtree, we also pair a new 
variable symbol, create the 
corresponding equation and carry 

out the fxrst type of reduction. 
Subtrees with multiple occurrences 
are also flagged, so that the 
final reduction stage is straight 
forward. Each equation is 
represented by a 2-uple "<v,t>" 
where "v" is a variable and "t" a 
term. The system is represented 
as a list of equations, the first 
one being the last in the list. 
Rational trees are denoted *r", 
"st" is a triplet tsubtree, 
equation, number of subtree 
occurences as immediate son of a 
subtree), "pair-subtrees" take a 
pair "(v,r)" and add the nee 
subtrees in it to the list of 
subtrees. Lists variables begin 
with "1-". e.g. "1-st" is a 
variable standing for a list of 
subtree triplets. 

y y z x 

equations( r, <v,r>.nil ) -> constant! r ) ; 
equations( r, 1-e ) -> 
specified( r ) 
term-representation( r, t, 1-son-pairs 
pair-subtrees( 1-son-pairs, St(r,<v,t>,1i.ni1, 1-st > 
reduce( 1-st, 1-e ) ; 

term—representation( <rl>, <vl>, pair(vl,rl).nil ) —> • 
term-representation( <rl,r2>, <vl,v2> 

, pair(vl,rl).pair(v2,r2).nil ) -> ; 

pair-subtrees( nil, 1-st, 1-st ) -> ; 
pair-subtrees( p.l-p, 1-st, 1-st' ) -> 

subtrees( p, 1-st, 1-stl ) 
pair-subtrees( 1-p, 1-stl,1-st" ) ; 

subtrees( pair(v,r), 1-st, 1-st ) -> 
constant( r ) 
substitute( v, r ) ; 

subtrees( pair(v,r), 1-st, 1-st' ) -> 
specified( r ) 
in-list( r, l-st, c, 1-stl ) 
add subtree( c, pair(v,r), 1-stl, 1-Sf ) ; 



29 

in-list( r, nil, not-in, nil ) -> ; 
in-list( r, st(r',<v,t>,n).1-st, named(v) 

, st(r',<v,t>,add(l,n)).1-st ) -> 
formally-equal( r, r' ) ; 

in-list( r, s.l-st, c, s.l-st' ) -> 
eg( s, st(r',e,n) ) 
formally-inequal( r, r' ) 
in-list( r, 1-st, c, 1-st' ) ; 

add-subtree( not-in, pair(v,r), 1-st, 1-st' ) -> 
term-representation( r, t, 1-p ) 
pair-subtrees( 1-p, st(r,<v,t>,1) .1-st, 1-st' ) ; 

add-subtree( named(vl), pair(v,r), 1-st, 1-st ) -> 
substitute( v, vl ) ; 

reduce( st(r,e,n).nil, e.nil ) -> ; 
reduce( st(r,e,add(l,n)).1-st, e.l-e ) -> reduce( 1-st, 1-e ) ; 
reduce( st(r,<v,t>,1).1-st, 1-e ) -> 
substitute( v, t ) 
reduce( 1-st, 1-e ) ; 

formally-inequal( r, r' ) -> dif( r, r' ) ; 
formally-equal( r, r* ) -> not( dif(r,r') ) ; 

substitute( v, t ) -> variable( v ) eg( v, t ) ; 

constant( r ) -> ident ( r ) ; 
constant( r ) -> string( r ) ; 
constant( r ) -> variable( r ) ; 

specified( r ) -> not( variable(r) ) ; 
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3.0 DRAWING OF A FINITE TREE 

We must first examine some 
conditions on the way we want 
things to work. First, we do not 
want to set any bounds on the 
depth of the drawn trees. Second, 
we need as much independance as 
possible from the kind of hardware 
on hand (paper teletype, 
video,..), although we want to be 
allowed to benefit from graphic 
features when these exist. Third 
and last, we want to represent the 
tree with as much compactness as 
is compatible with good readabi
lity. The first two conditions 
imply to output the tree line by 
line, starting from the root. To 
fulfil the third one, the 
bidimensional optimisation of the 
nodes' placement was rejected, 
because it is too complex and 
costly. We prefer to place each 
node with the same depth level on 
the same line, as close as 
possible not to overlap their 
arborescences. A subsidiary 
advantage is that the ramification 
symbols are kept apart on the same 
line, allowing the use of 
semi-graphical possibilities when 
present (the program which made 
the drawings in this paper has a 
data base defined for the DEC 
VT100 terminal and an Epson FX80 
hardcopy). 

A survey of the problem sets 
up an interesting dilemma : how 
do we do determine the position 
of, say, the root? This position 
will depend on the other node 
positions, but they too will each 
depend on others (every node 
ramification may arbitrarily 
extend to the left or to the 
right), giving an appearance of 
circularity in which, as with the 
egg and the hen, one does not know 
where to start. 

The solution is to keep 
separate the problem of the 
absolute position of the nodes. 

from that of their relative 
horizontal distance. Then, the 
distance between two nodes will be 
the minimum one such that there is 
no overlap of their branches. 
Knowing the relative distance 
between all the sons of a node, we 
can compute their relative 
distance from this node, we thus 
have a bottom up process which, 
starting from the leaves, allows 
for each node the computation of 
its deviation from the father. 

dl 2 

gll_l :» dll 12/2 
gl_0 dl 2 / 2 

The key point is therefore to 
determine the non overlapping 
condition. To do this, we compute 
for each node, a list of the 
maximum width of its subtrees at 
each depth level. These lists can 
be computed during the same bottom 
up process: knowing the relative 
widths for each son of a node, we 
get the node width by merging the 
lists from the sons, with the 
necessary shift. Once we know all 
widths from the root, we can 
compute its position with regard 
to the margins, and then that of 
every node. In the program, each 
son deviation is relative to the 
position of the first son. The 
computation of their absolute 
position is coroutined on the 
evaluation of the first son 
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position which in turn is 
coroutined on the evaluation of 
the position of the father. So, 
all absolute position computations 
are delayed until the position of 
the root is determined from the 
tree width in the "margin" rule. 
The tree is then drawn top down 
breadthfirst. To do that, each 
time a slice of nodes is printed, 
the list of sons' descriptions are 
concatenated. This can be fast 
when using difference lists (for 
information on d-lists see: Clark 
K.L. an Tarnlund S.A. 1977) Her® 
is an outline of the program. g 
(left) and "r" (right) denote the 

extreme deviations of an 
arborescence at a given level, "d" 
is the deviation of a node from 
his leftmost brother, "x" the 
absolute position of a node, "t" a 
tree and "t"' the description of 
his drawing, "o" is the printing 
sequence of a node symbol and ' s 
his size. Lists variables begin 
with an "1", so "1-t" is a 
variable representing a list of 
trees. Difference list variables 
are denoted "d-1", and "<l,q>" 
denotes a d-list starting at "1" 
ending at "q". "1-w" is the list 
of extreme deviations (i.e. pair 
"(g.r)") of a subtree until 
maximum depth level. 

draw-finite-tree( t ) -> 
node-positions( t, x, t , 1-w ) 
margin( x, 1-w ) 
by-slice( t'.nil ) ; 

node-positions( t, x, node(x,<o,g>), (g.r).nil ) -> 

atom( t, o, s ) 
center-node( s, g, r ) ; 

node-positions( t, x, node(x,<o,g,n,d 1>), (9-
specified( t ) 
tree-split( t, o, s, n, 1-sons ) 
center-node( s,g,r) ,  .  ,  .  
son-positions( 1-sons, xl, nil, d- , w, 
value( dl, sub(0,div(d-max,2)) ) 
shift( 1-w, dl, 1-w' ) 
freeze-on( x, value( xl, add(dl,x) ) ) , 

center-node( s, g, r ) -> 
value( r, div(s,2) ) 
value( g, sub(add(r,1),s) ) J 

son-positions( t.nil, xl, 1-w, <t .q,q>, 1 w , d ) 
node-positions( t, x, t', 1-nw ) 
min-distance( 1-w, 1-nw, 0, d ) 
merge( 1-w, shift(l-nw,d), 1-w' > 
freeze-on( xl, value( x, add(xl.d) ) ) , d-max )-> 

son-positions( t.l-t, xl, 1-w, <f.l-f,q>, 1-w , d max ) > 

dif( 1-t, nil ) 
node-positions( t, x, t', 1-nw ) 
min-distance( 1-w, 1-nw, 0, d ) 

merge( 1-w, . f q>, 1-w', d-max ) 
son-positions( 1-t, xl# 1 wi» # 

freeze-on( xl, value( x, add(xl,d) > 

min-distance( nil, 1-w, d, d ) > , 
min-distance( 1-w, nil, d, d ) -> , 
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min-distance( (gl.rl).ll, (g2.r2).12, d, d' ) -> 
no-overlap( rl, g2, d, dl ) 
min-distance( 11, 12, dl, d' ) ; 

no-overlap( rl, g2, d, d' ) -> 
value( d', if( inf(add(r1,1),g2) 

, d 
, sub(add(rl,2),g2) ) ) ; 

merge( 1-w, shift(nil,d), 1-w ) -> ; 
merge( nil, shift((g2.r2>.12,d), (g.r).l ) -> 
value( g, add(g2,d) ) 
value( r, add(r2,d) ) 
merge( nil, shift(12,d), 1 ) ; 

merge( (gl.rl).ll, shift((g2.r2).12,d), (gl.r).l ) -> 
value( r, add(r2,d) ) 
merge( 11, 12, 1 ) ; 

atom( t, ex(t), s ) -> ident( t ) lengthf t, s ) ; 

tree-split( tl.t2, exm("."), 1, 2, tl.t2.nil ) -> ; 
tree-split( <tl,t2>, ex(tl), s, 1, t2.nil ) -> 
ident( tl ) 
length( tl, s ) ; 

margin( x, (g.r).l-w ) -> 
left-most( 1-w, g, x ) ; 

left-most( nil, g, g ) -> ; 
left-most( (gO.rO).l-w, g, g'• ) -> 
value( g', if( inf(gO,g>, gO, g ) ) 
left-most( 1-w, g', g'1 ) ; 

by-slice( nil ) -> ; 
by-slice( 1 ) -> 
dif( 1, nil ) 
print-slice( 1, <1-next-slice,nil> ) 
new-line 
print-ramifications-of( 1 ) 
new-line 
by-slice( 1-next-slice ) ; 

print-slice( nil, <q,q> ) ->; 
print-slice( n.l-n, <l,q> ) -> 
print-node( n, <l,li> ) 
print-slice( 1-n, <11,q> ) ; 

print-node( node(x,<o,g>), <q,q> ) -> 
blanks-until( sub(x,g) ) 
o ; 

Pr^t-,n0de( node(x'<0'9.n,d-l>), d-1 ) -> 
blanks-until( sub(x,g) ) 
o ; 
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print-ramifications-of( 1 ) -> 
{ terminal dependant } 

valuei v, f ) -> val( f, v ) ; 

4.0 CONCLUSION 

If symbolic representation is 
the key for mental concept 
expression in A.I., graphical 
images are far easier to analyse 
for people. We have described 
some way to help to bridge the 
gap. The tools we have described 
will be included with the new 
Prolog II Marseille interpreter. 
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.ABSTRACT 

Colmcrauer has proposed a 
theoretical model for Prolog II 
based on tree rewriting rather 
than logic. In this paper, we show 
that Prolog II can be regarded as a 
logic programming language. 

1. Introduction 
We take the view that a logic pro

gramming language is one in which a pro
gram is a first-order theory and computed 
answers are correct with respect to this 
theory (Clark 1979, Lloyd 1983). 

One can then pose the question: is 
Prolog II (Colmerauer 1982a, Colmerauer 
1982b) a logic programming language 
and, if so, in what sense is it? This ques
tion naturally arises from Colmerauer s 
account of his theoretical model for Pro
log II. There, all explicit connection with 
first order logic has been severed. 
Instead, Prolog II is regarded as a system 
for rewriting possibly infinite trees. Unifi
cation is replaced by transformations on 
sets of equations. 

Most Prolog implementations unify 
without occur check. This lack may lead 
to incorrect answers; hence it must be 
regarded as a shortcoming to be accepted 
for compelling reasons of execution effi
ciency. Prolog II also lacks the occur 
check. But Colmerauer considers this 
lack an essential feature of the language, 
accounting for it in his tree-rewriting 

model. Keeping in mind that the lack of 
occur check may lead to incorrect 
answers in ordinary Prolog, one may well 
ask whether Prolog II is a logic program
ming language. 

We show that the answer to this 
question lies in making explicit Prolog IPs 
theory of equality. Once that is done, it 
is easy to demonstrate that answers com
puted by Prolog II are correct with 
respect to a first-order theory consisting 
of (essentially) the program plus the 
equality theory. 

Section 2 contains a brief account of 
Prolog II. In section 3, we introduce the 
idea of the"general procedure", which is 
an SLD-resolution proof procedure under
lying both Prolog and Prolog II. In sec
tion 4 we show that Prolog is essentially 
the general procedure plus the equality 
theory {z = z}. (The meaning of "Prolog" 
here excludes any form of negation.) In 
section 5 Prolog II is shown to be essen
tially the general procedure plus a rather 
more complicated equality theory. What 
distinguishes Prolog from Prolog II then is 
the different way they handle equality. 
Section 6 contains some concluding 
remarks. 

Throughout, P denotes a Horn-
clause logic program not containing the 
predicate " = ". Similarly, G will always 
denote a goal which does not contain the 
predicate " = ". 
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2. Prolog II 
The following brief description of 

Prolog II is taken from (Colmerauer 
1982). 

Definition An equation is an expression 
of the form = t2 where t, and t2 are 
terms. 
Definition A set of equations is in sub
stitution form if it is 
{ * i  =  < i ,  = t . } ,  w h e r e  z „  . . . , z .  
are distinct variables and none of 
<j,. . . ,tn is a variable. 
Definition A set {z, = {„ .. . >x% = 
of equations in substitution form has a 
loop if for some k = l,...,n, tk has an 
occurrence of xk or if such an occurrence 
of xk can appear after possibly repeated 
substitutions in tk using equations of the 
set. 

In Prolog II, the solution of a set of 
equations is a substitution of trees for 
variables that makes both sides of each 
equation the same tree. A set of equa
tions in substitution form is obviously 
solvable over the domain of rational trees. 
A set of equations in substitution form 
without a loop is obviously solvable over 
the domain of finite trees. Thus, equa
tions can be solved by reducing them to 
substitution form by applying solution-
preserving transformations. 

Consider the following transformations 
(Colmerauer 1982): 
Compaction: 

Eliminate any equation of the form 
x = x. 

Variable Anteposition 

If, f V variable and t is not a vari
able, then replace t = x by z = t. 

Splitting 

y s i  • • • ' « »  =  
Confrontation 

If * is a variable and tv t2 are not 
variables and the size of t, is not 

greater than the site of l2, then 
replace z - I,. z - t, b; 
z - t „ l ,  -  l t .  

Variable Elimination 
If z and g are distinct variables, 
r*» is in the system and x has 
other occurrences in that system, 
then replace these other occurrences 
of z by y. 

He asserts that for any finite set of equa
tions, application of the transformations 
in any order is only possible a finite 
number of times. Then either a set is 
obtained which is io substitution form or 
the set contains an equation of the form 
<t™l2 where I, and 12 have different 
outermost functions symbols. In the 
latter case the set has no solution over 
the domain of rational trees. 

In Prolog II the clauses of a program 
are regarded as rules for rewriting a tret 
to a possibly empty sequence of trees. A 
query consists of a sequence of trees and 
a set of equations. A query is rewritten 
to another according to 

< (A|P..^—i-A, .A, •j,...^4>|. E > • 

< M i  nm. 

^ +i« • • •» ^»|. E' > 

if there is a rule 

B «B|,Bm (m i 0) 

in the program, if E U {B - A,} can be 
transformed to substitution form and if 
E' is such a form. 

The final query in a derivation has 
an empty sequence of trees. The 
corresponding set of equations is the 
answer. 

Now that we have given a brief over
view of Prolog II, we are in a position to 
explain in what sense it is possible to give 
a logical reconstruction of Prolog II. 

The domain of interest for Prolog II 
is the set of infinite trees. What we have 
to do is find a first-order theory for which 
the intended interpretation is a model 
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and also for which every answer com
puted by Prolog II is correct with respect 
to this theory. Naturally, the main part 
of this theory is the program itself. The 
remainder is simply a theory of equality. 
We have to find an equality theory so 
that each of the transformations 
employed by Prolog 11 (compaction, etc.) 
can be justified because they always pro
duce a set of equations that is a logical 
consequence of the parent set of equa
tions plus the equality theory. 

3. The General Procedure 
Definition The homogeneous form of a 
clause p((|> • • •> (s) ~ Bt, Bm is 

p(x,,.... x«) 

- = '«• ®1» • • • t Bm 

where x,,. .., x. are distinct variables 
not appearing in the original clause. 

Definition Let P be a program. The 
homogeneous form P* of P is the collec
tion of homogeneous forms of each of its 
clauses. 
Definition An atomic formula, whose 
predicate symbol is " ** is called an 
equation. 

We now describe the general pro
cedure. We call it "general" because, 
depending on the theory of equality 
invoked after it, we get Prolog, Prolog II 
or other specialized languages. 

The general procedure uses the 
homogeneous form P* of a program P and 
produces an SLD-derivation (Kowalski 
1974, van Emden 1977). It consists of 
constructing, from some initial goal G, an 
SLD-derivation using input clauses from 
P", while never selecting an equation. The 
general procedure terminates if a goal 
consisting solely of equations is reached. 
Note that because of the homogeneous 
form of P* the general procedure never 
constructs bindings for the variables in 
the initial goal. 

For a particular language, the gen
eral procedure needs to be supplemented 
by a theory E of equality. E is used to 
prove the equations resulting from the 
general procedure. During the proving of 
the equations, substitutions for the vari
ables in the initial goal are produced. If 
the equation-solving process is successful 
(that is, the empty goal is eventually pro
duced), then these substitutions for the 
variables in the initial goal are output as 
the answer. 

The equation-solving process would 
normally be done by resolving goal 
clauses with clauses from the equality 
theory. However, other methods are pos
sible. For example, the last step in the 
equation solving process for Prolog II is 
not a resolution step. 

The introduction of the general pro
cedure is purely a didactic device to 
explain which parts of Prolog and Prolog 
II are the same. Obviously, it would be 
very inefficient in practice since unsocia
bility of a set of equations is not detected 
until near the end of a computation. A 
practical system must perform some 
equation solving throughout a computa
tion and, of course, this is what both Pro
log and Prolog II do. 

4. Equality theory for Prolog 
Proposition 1. Let P be a program, G a 
goal and P' the homogeneous form of P. 
Then P U {G} is unsatisfiable iff 
pi (j {z = x) U (G) is unsatisfiable. 

Proof We first prove that P is a logical 
consequence of P' U (x = x). Let M be a 
model for P' U {x = x}. We have to show 
M is a model for P. Take in P any clause 
P(tt - Bv..., Bm with vari
ables y, Vi- Suppose that for some 
assignment of these variables 
n • • B is true in A/. Consider the o j m 
homogeneous form 

p ( x j ,  • • • , * » )  
-  z ,  =  t j ,  .  •  • ,  x H  =  t „ ,  B v  •  .  • ,  B m  
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of this clause in P. Let x, be the element 
assigned to t, for the above assignments 
of the y^'s, for i = 1,..., n. By the axiom 
x = z and the assumption that 
Bx ••• Bm is true in Af, we have that 
p(zv , xn) is true in Af. That is, 
p(tv , in) is true in Af. Consequent ly, 
Af is a model for P and so P is a logical 
c onse que nc e  o f  P '  U { z  =  x} .  

It follows from this that if P  U {<?} 
is unsatisfiable, then so is 
P '  U {x  =  x}  U  {G} .  

Conversely, suppose 
P '  U { z  =  z }  U  {G}  is unsatisfiable. Let 
Af be a model for P.  Then we can 
extend Af to a model AP for f U {z = z) 
by assigning the identity relation to 

• Thus G is false in AP and hence in 
A/. (Note that G contains no occurrence 
of " = ".) Hence P  U {£?} is unsatisfiable. 
• 

Proposition 1 shows that the 
equality theory for Prolog is the single 
ax iom V x  x  =  x .  

5. Equality theory for Prolog II 
The equality theory E for Prolog II 

is rather more complex than the one for 
Prolog and consists of the following 
axioms: 

1. V x  x  =  x  

2 -  V r V j  x  =  y  .  y  =  2  

3 -  V x V y V x  x = y  y  =  ,  „  ,  

4 Vx, .. Vx, Vy, .. Vy^ 

(zi = ' ' ' (*. = Vn) 

-  I ( X  X J  =  

for all function symbols /. 

5- 3 », • • • 3x. 3 y, . . . 3 yt 

<x l  = «!) • • (x, = t n ) ,  

where the x. 's are distinct variables, 
he f.'s are terms and 

In" ' vf"' " " ' ' is the set of 
all variables in the formula. 

Note that axioms 4 and S are actu
ally axiom schemas. The first task is to 
show that all the above axioms are true 
for the intended interpretation of " • " 
as the identity relation on the domain of 
infinite trees. Axioms I to 4 are the 
usual axioms for " • " and are certainly 
true in the intended interpretation. 
Axiom S is true by Colmeraner's 
solvable-form theorem (Colmeraner 1982). 
This theorem states that a system of 
equations {*, - I, - t,) has a 
solution in the domain of infinite trees, 
provided the r,"s are distinct variables. 

Now we are in a position to pro re 
our main result, which amounts to the 
soundness of Prolog II. lotnitively, it 
states that every answer computed bj 
Prolog II is correct with respect to the 
first order theory consisting of the homo
geneous form of the program plus the 
eq u a l i t y  t heo ry  E .  

Proposition 2. let P be a program. P 
i t s  homoge ne ous  f o rm .  G  a  goa l  and  E 
the above equality theory for Prolog II. If 
Prolog II solves the goal G, then 
P1 U E U (C) is unsatisfiable. 

Proof Since the general procedure uses 
resolution, it produces intermediate goals 
all of which are a logical consequence of 
P1 U {G}. We now verify that each of the 
five transformations of Prolog II can be 
justified on the basis of resolution steps 
u s ing  t he  equa l i t y  t h eo ry  E .  

Compaction 

Consider a goal - y - e„ ..., ct, 
where e,, . . ., ek are equations. Elimina
tion of y = y is justified by resolving the 
goal with the equality axiom Vx * - *-
Thus «- , .. ., et is a logical conse
quence of { • y = y, e, q)U £. 

Variable Antepoaition 

This is justified in a similar way to 
compaction, but using axiom 2. 
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Splitting 
Resolve with axiom 4. 

Confrontation 
It suffices to show that 

-x = t, = tj is a logical consequence 
of |»r = l,,i =I2}U£. Indeed we 
have the following derivation: 

- x  =  t , . x  -  t 2  

- X = 1„ X - t,, t, = t 2  

(resolving with an instance of axiom 3) 

- x  -  t 2  

Variable elimination 
We let «|x/y| denote the result of 

replacing in t all occurrences of x (if any) 
by y. The following lemma will be useful. 

Lemma 

x = y  - i  -  «|x/y| 

and z " y — '\z!y\ ™ a 

are logical consequences of E .  

The proof is by repeated applications 
of axioms 1 and 4, plus an application of 
axiom 2. 

To justify variable elimination, it 
suffices to show that 

-x = y ,  i \ z l y \  - «|x/y| 

is a logical consequence of 

( • X > | , l > l } U E  

Indeed we have the following derivation: 

- x = y ,  t  = t  

- x « y ,  i  * «|x/y], a|x/y] = ' (axiom 3) 

• x m y, x m y, a|x/y] m ' (lemma) 

- x • y, «|x/y| *» t  

-  z  = y, a|x/y| = t|x/y|. t [ z / y |  =  t  

(axiom 3) 

— z  =  y ,  «|x/y] = t[x/y], x  —  y  (lemma) 

- x = y, s|x/y] = t \ x ! y \ .  

Finally, the last step in a Prolog II 
computation is the application of the 
solvable form theorem. From a logical 
point of view, this is equivalent to an 
application of axiom 5 above. 

This completes the proof of the pro
position. • 

8. Concluding Remarks 
In (Colmerauer 1982) the theoretical 

model of Prolog II is extended to cope 
with inequalities. We have not attempted 
to deal with these. 

Note that the general procedure can 
be followed by the use of any theory of 
equality. We have given two useful 
theories in this paper. It should be 
interesting to consider other equality 
theories. We are particularly interested 
in theories suggested by two existing sys
tems related to Prolog. The first is 
DLOG (Goebel 1984) logic-based database 
management system which uses two dif
ferent equality theories: one for equality 
of descriptions and the other for heuristic 
evaluation of queries. The second is a 
version of Prolog (Kornfeld 1983) with an 
extended unification. 
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ABSTRACT 

Two logic programming languges, 
the well known PROLOG and the new 
LOBO are compared. LOBO is defined. 
Two examples dealing with planar 
covering problems are analyzed. It 
is shown that both languages are 
able to realize the same algorithms. 
However LOBO is nearer to tradition
al languages: it does not use pat
tern matching, it can be complied 
easily, and it is able to use tra
ditional features of programming. 

INTRODUCTION 

A cotnparision of two logic 
programming languages, namely 
PROLOG and LOBO (defined here) is 
presented. The two languages stu
died here are equivalent in the 
sense that both are suitable to 
define every partial recursive 
functions. In this sense both can 
be considered universal. The ques
tion is, what class of algorithms 
can be realised in them. Here theo
retical comparison is not presented, 
a forthcoming paper will do it, but 
a case study is analyzed. Programs 
are introduced dealing with planar 
covering problem, namely how a rec
tangle can be covered by given ele
ments. 

DEFINITION OF LOBO 

All formulas we write down be
long to the language of arithmetics 
of integers, that is they belong to 
the language whose similarity type 
includes the numerals as constants, 

function symbols +,-,•,div,rem, 
and so on, relation symbols <,£, 
and so on. Let I denote the stan
dard model of integers, and let Ax 
be an axiom system of integer 
arithmetics. Clearly, I is the on
ly Herbrand interpretation in 

Mod (Ax). 

Two sets of formulas are defi

ned : 

$={Ti<y4T2:T1 and i ̂ are term 

free of y}U 
{x=y:T is a term free of y} 

$ ={r<y:r is a term free of y} 
q 

In the following formulas belonging 
to $ and $ are used to bound the 

q 
domain of bound variables. Quanti
fiers in the form Vy(qj(y)-><|,(y)), 
if <p(y) belongs to 3>, and 
3y(<p(y)A<p(y)), if <p(y) belongs to 
$ or $ , are called bounded quan-

q 
tifiers. We define a language, 
where all quantifiers are bounded. 

Definition 1 

C is said to be the set of 
cuttable formulas and is defined 
inductively as follows: 

(i) quantifier-free formulas 
belong to C; 

(ii) if <|>. and ij>2 belong to C, 

then formulas jA4>2» V4»2 

also belong to C» 
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(iii) if (|> belongs to C, then, 
formula kJ" also belongs to 
C; 

(iv) if q>(y)*$, and <J» belongs to 
C, then y((p(y)-*^) also be
longs to C; 

(v) if p(y)e$, and C belongs to 
C, then y(<p(y)A<(.) also be
longs to C; 

(vi) only formulas obtained by 
the above rules belong to 
C. 

Definition 2 

Cq is said to the set of quasi-
cut table formulas and is defined 
inductively as follows: 

(i) quantifier-free formulas 
belong to C 

V 

V*2 

(ii) if (pj and belong to Q 

then formulas <J> ^ A< 

also belong to C 

(111) if <J, belongs to C then for
mula nj, belongs to C • 

q * 
(iv) if qj(y)4$ and ^ belongs to 

Cq, then*y((p(y)^,) also be_ 
longs to Cq; 

Table 

(v) if t(y) i t u t  and 4 belongs 

C^, then I y(»(y)A4) alto 
belongs to C : 

9 
(vi) only formulas obtained by 

the above rules belong to 

V 
Definition 3 

The languages <C ,(I),b»> is 
9 

called the Language of Quasi cut-
table Formulas (LQF). 

Every cuttable or quasi-cuttab-
le formula has a well defined 
truthvalue in I. A calculus is pre
sented to determine this truthvalie. 

We give this rules in the fori 
of algol-like programs. Let p de
note a function with C as domain, 

9 
and the set of algol like prograas 
as range. If q,. (x) is a quasicut-

table formula, p(q.) is a procedu

re to compute the truthvalue of 
d»j(a), where a is an evaluation of 

x, as an input for procedure p(dj). 
1 .  

+i pCtbj) 

quantifier-free 
formula of type t. 

2- — d>.: 1 yl1 

2. . V 4, 
J K p(d- j )  

— zj tben z£ true else 
begin P(Tk) zi*\i end; 
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4-i  pC^) 

1.  ^y((T ]<y i<x2)-4'j)  (y i» z i )  -  (T , ,  true);  
while z^A(y<t„) do 

begin 
y.  -  y.+l;  j  i  J  x  i  
p(4j)  
z .  z  . ;  

end; 1  J  

2 -  3Y I ( (X ,<Y i<T 2 )A4 . J )  (y i ,Zi)  — ( t , ,  false);  
while I 2 .A(y<r,)  do 

begin 
y.  — y.+l;  
p(4j)  
z  .  *• z  .  ;  

end; 1  J  

3.  3 y.(y.-x)A4,j  y .  -  T;  

p(4j)  
z .  — z  .  l  j  

4.  3 y i(t<y i)A4.j  (v. .z .)  -  (T ,  false);  
while iz ,  do 

begin 
y.  -  yj+J; 
p(4j)  
z .  — z . ;  

end; 1  J  

5.  R(T 0 . - -*»T n_|> call  R (T q  Tn-1'  Z i^'  

6« <t - J(y i)ty i /F ( T O , . . .  

or 
3 y i (yi"F ( T 0  Vi ) A  

Mjtyj)  

cal l  F (T q  Tn-1'  y i '  ZF^ '  
i f  zF  then 

begin 
P(4.j)  
z i  Zj  '  

pnd else z.  ~~ false;  

Table 2.  
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Boolean variable in pid^) Eets 

the truthvalue. 

The definition of mapping p for 
quasi—cuttable formulas can be 
found in Table 1 and in rows 1-4 of 
Table 2. The calculus consisting 
of these rules let be denoted by K. 

Theorem 1 

Let 4(xq xn-l^ be a quasi-
-cuttable formula with free variab
les x 

Xn-l)Cao'" 

Kn_l • If  It=<l>(xo 

.,an_j3, then 

KH*Cxo /ao Vl /an-lL 

In the following we deal with 
definitions rather then theorems. 
Let R and F be relation and func
tion symbols not occuring in the 
similarity type in question. Defi-
nitions of relation R and function 
F respectively are formulas 

R(x 

F(x 

y •  •  •  y X  n -
p ( x  , . .  .  ,  X  o  n -

j  •  •  •  ,  X  n— , ) « y  -

"O
 

/-
N

 
X

 
o

 

• 'V i  

) and 

If the new symbol occurs in formu
la p (defining formula), the defi
nition is called implicit, if not, 
I ? explicit. In the case 

of definition of a function, let 
X o  V l>  b e  a  qua s i - c u t  t ab l e  

formula having variable y as an 
existentiaily bound variable. If 
9(x) is equivalent with 3yp(x v) 
<P(x) is considered as the quasi-' 
cuttable definition of F(x) and it 
is denoted by F(x)§„(x). The most 
important properties r>f • • 

theorems. 7 f°llowing 

Theorem 2 

Every partial recursive func
tion* can be defined by quasi-
cuttable formula*. 

Theorem 3 

Definition with quati-
cutcable defining fonwla hat ef
fectively computable least fix 
point. 

The question, we are interes
ted in, is whether a given n-tulpc 
belongs to a relation defined by s 
quasi-cuttable formula. The case 
of explicit definition* it covered 
by Theorem I. To handle implicit 
definitions new inference rules 
are introduced. The corresponding 
program segments can be teen in 
the rows 5,6 of Table 2. Calculus 
K completed with the new rules it 
d e n o t e d  b y  K . .  a 

Definition 4 

The pair <LQF,Kd» is called 

the LOgic of Bounded quantifiers 
(LOBO). 

Theorem 4 

Calculus K. is s complete csl* a 
cuius for unfolding quasi-cuttsbl' 
definitions that is, if <* ,.••• 

belongs to the least fit 
point of the definition 

'1 ' ,'v.]wo then o(x)Cx /,_ 
o o > . *  

be proved in K 
d* 

LOBO can be considered ss » 
logic programning language. Quasi-
cuttable formulas are programs, 
with free variables as input va
riables, and existentiaily bound 
variables as output ones. A proT 
ram realising function p computes 
a program written in a traditional 
programning language from any 
quasi-cuttable formula. 
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Here we only outlined the most 
important facts, for further details 
see CI3,C23,C33. 

THE EXAMPLES 

Two problems are presented, 
both dealing with covering a rec
tangle with given elements. The 
first problem is a special task 
coming from architectural CAD, the 
second one can be considered gene
ral. 

1. The special problem 

A rectangle is given with edges 
of length X,Y respectively. It has 
to be covered by rectangular ele
ments of given measurements. Ele
ments of unlimited numbers can be 
used from each type. However, the 
covering has to meet the following 
requirements: 

(i) the same element must be 
applied in all 4 corners; 

(ii) apart from the corner ele
ments, the same element 
must be applied along the 
edges in the x-direction; 

(iii) apart from the corner ele
ments, the same element must 
be applied along the edges 
in the y-direction; 

(iv) apart from the corner and 
edge elements, the same ele
ment must be applied 
troughout the remainder of 
the rectangle. 

Let us see first the PROLOG 
program. 

A remark: the MPROLOG syntax is 
used (see C43), but MPROLOG pecula— 
rities are avoided. Constants are 
written with lower, and variables 
with upper case letters. 

The types of elements are rep
resented in facts of the form ele-
ment(P,Xl ,Y1), where P is an iden
tifier of the type, XI and Y1 are 
the length of edges in x and y di

rection respectively. The rule des
cribing the possible coverings can 
be formularized in one clause: 

covering(X,Y,Pl,P2,P3,P4) — 
element(PI,X1,Y1), 
element(P2,X2,Y1), 
rem(X-2»Xl,X2,0), 
element(P3,Xl,Y2), 
rem(Y-2-Yl,Y2,0), 
element(P4,X2,Y2). (PP1) 

Let us complete the above 
clause with facts: 

element(first,4,2). (PP2) 

element(second,3,2) . (PP3) 

element(third,2,2). (PP4) 

element(fourth,2,1) . (PP5) 

and with goal statement — covering 
(13,8,P1,P2,P3,P4). 
The search tree and the solution 
is shown on Figure 1. 

In LOBO programs the bounding 
formulas are written as upper in-
deces of the corresponding quanti
fier, and the corresponding connec
tive (A or —) is omitted. 

The LOBO program to solve our 
problem can be seen in Figure 2. 

Here N is the numer of types 
of elements, and the measurements 
of the i-th type are stored in 
the i-th row of in a two dimensi
onal array ELEMENT. In the same 
concrete case as above, N is 4 and 
array ELEMENT is: 

ELEMENT(1,1)=4, ELEMENT(1,2)=2 
ELEMENT(2,1)=3, ELEMENT(2,2)=2 
ELEMENT(3,1)=2, ELEMENT(3,2)=2 
ELEMENT(4, 1) =2, ELEMENTS,2) = 1 

The and/or tree representing 
the proof search of the formula 
can be seen on Figure 3. Clearly 
the search tree of the PROLOG 
and the LOBO program is basically 
the same. 
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* rem(.,.)=0 is false 

Figure 1. 

Figure 3. 



2. The general problem 

The rectangle to be covered is 
supplied with a mesh, whose para-
lels are at equal distance. So the 
rectangle can be considered con
sisting of elementary squares. The 
elements, which can be used in co
vering, are also considered being 
constructed from such elementary 
squares. The elements cannot be 
rotated or reflected. We keep on 
supposing that from each type there 
is an unlimited supply. 

First let us see the LOBO prog
ram. There are KK types. These ty
pes are represnted by two arrays. 
Array E is of three dimensions. 
Values E(i,.,.) describe the i-th 
type by giving the characteristic 
function of the element: E(i,jl, 
j2) is different from {5 iff the 
elementary square with coordinates 
j1,j2 is covered by the i-th ele
ment. Every element can be covered 
by a rectangle, the length of its 
edges are in ME(i,l) and ME(i,2). 
The foregoing conditions are il
lustrated on Figure A. 

2 * 

E(i,l,2),E(i,2,l),E(i 

E(i,2,3), E(i,3,2) 

are not 0, other E(i 

values are 0 

Figure 4. 

. d covering(X,Y,ELEMENT,N) = 
3p)0<PUN3p20<P2<N 

{(ELEMENT(P1,2)"ELEMENT(P2,2)A 
rem(X-2*ELEMENT(Pl,1).ELEMENT(P2,1))=0)A 

3p30<P3* N 

{(ELEMENT(P1,1)"ELEMENT(P3,1)A 
rem(X-2-ELEMENT(PI,2),ELEMENT(P3,2))=0) A 
3p40<P4.<N 

(ELEMENT(P2,1)"ELEMENT(P4,I) 
ELEMENT(P2,2)-ELEMENT(P4,2))}} 

Figure 2. 
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The LOBO program, displayed on 
Figure 5, consists of the defini
tion of three relation. Relation 
full shows, whether an elementary 

square of coordinates x,y is cove
red or not; and relation "fits" is 
true iff the K—th element can be 
placed at coordinates X,Y without 
conflict with the squares covered 
yet. Relation "coverable" is true 
iff a rectangle of measurements 
XX, YY can be covered. The numbers 
of copies of elements used for co
vering is JJ, and their data is 
expressed by function RESULT as 
follows. 

RESULT(I,1) is the serial num
ber of the I-th covering element; 

RESULT (I, 2), and RESULT<I,3) 
show its position (see Figure 6). 

Note that formulas Vi3id,m 
and 3fVi(+(j)Ci/f(i)3) are equi
valent. The only "dirty" trick in 
the program is that variable sym
bol j is substituted by f(j), _ that 
IS NEWRESULTCJJ,!), and ̂  _ 
and this expression is not hand
led as a term but as a variable 
However this notation helps to 
repress this function by an array 

sr1 ""•* — 
.y-b.l (NEWRESULT) wL""ei"™,""," 

4-t__ a nrooram 
the same array idem-i*-f • i_ ' 

for and NEWRESULT. 

To interpret variables X Y n r 

" e formula of reU-
proPerly, «. 

" figure '*«'• 
tion of the partirePresenta-
tangle also ecu s ̂  i reC" 
for each m m -  "rs "sing facts: 

=r-Tr"°""f>'pr 

not. 

1 

e (cross, 3,3,<l ,2>,<2, l>. 
<2,2>.<2,3>.<3,2>.nill). 

Figure 7. 

The program: 

coverable (XX, YY)*-cover(XX,YY). 
cove rab 1 e (XX, YY)-cove red. 

cover(XX, YY)*-empty(X,Y), 
e(K,N,M,LIST), at(LIST,H,I), 
XI is X-H, Yl is T-I, 
XI+N<XX, YI+MtYY, 
fits (K,LIST,XI,Yl), 
cover(XX.YY). 

at(<H,I>.LIST,H,I). 
at(<G,F>.LIST,H,I)-at(LIST,H,I). 

fits(K,nill,x,Y), 
fits(K,<C,F>.LIST,X,Y) -

XI is X+G.YI is Y+F, 
empty(K,XI,Yl), modify(K,XI,YI), 
fits(K,LIST,X,Y). 

modify(K,Xl,Y1)-
fsupclause (empty (XI, Yl)), 
assclause(full(K,Xl,YI)). 

covered - not(empty(XI,Yl)). 

Here fsupclause and assclause 
are uilt-in predicates, the first 
f etes, the second creates a 

c ause. Both are backtrackable. 

foliN°te ^hat the prOLOG program 
lows the structure of the LOBO 

Lf3"1, Sl8nificant difference is 
y m representation of the par-



coverable (XX, YY,E, ME, KK.JJ, RESULT)! 
HX0<Xj;XX3Y0<Y«YY ^ ful l(Etjj>RESULT>x,Y)A 

r3  k0<K<KK3 h0<H^ME (K, 1 )3 j0<HME (K, 2) 

((X-H+ME(KE,1))<XX)A(Y-I+ME(K,2)^YY))A 

fits(E,JJ,RESUTL,X-H,Y-I)A 

VL0<uj^N0<U33NEWRESULT(L,N)newresul t ( l 'n)=resul t ( l 'n)  

9NEWRESULT(JJ+.,.)newresul t ( j j+1)=k 

3  NEWRESULT(JJ+. >2)NEWRESULT(JJ+2)=X-H 

3newresult(JJ+I,3)newresul t ( j j+1 '3)"y-1 

coverable(XX,YY,E,ME,KK,JJ+1, NEWRESULT)33V 

[Vx*WG^#<Y<YY ful l(E>jj>RESULT,X,Y): 

full(E,JJ, RESULT ,X,Y) = 

3J0<J<JJCj)<X-RESULT(J,2)<ME(RESULT(J,l),l)A 

0<Y-RESULT(J,3)<ME(RESULT(J,1),2)A 

E(RESULT(J,I),X-RESULT(J,2),Y-RESULT(J,3))^3 

fits(K,E,ME,JJ,RESULT,X,Y) = 
vh0<H<ME(K,I)¥iO<I<ME(K,2) 

E(K,H,I) - nfuXl(E,J,RESULT,X+H,i+I) 

Figure 6. 
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tially covered rectangle. 

COMPARISON 

The two examples presented 
above show that the algorithms 
which can be described by the two 
languages may be the same. The ana
lysis of equivalences and diffe
rences will show that this experi
ence can be generalized. There are 
few essential differences beetwen 
the two languages in spite of the 
different syntax and calculi. 

(1) The basic difference 
beetwen the two languages is that 
PROLOG is based on a strict normal 
form making superflous most con
nectives, while in LOBO one uses 
all the logical connectives and 
quantifiers. In the case of con
nectives it is not an important 
difference. MPROLOG syntax allows 
to use connective "or" in the an-
tecendent of a clause. As an 
example, the partition "coverable" 
may be written as: 

coverable(XX,YY)-cover(XX,YY); 
covered. 

where reads V. The usual in
terpretation of "not" in PROLOG 
does not differ essentially from 
the usage of negation in LOBO. 

(2) The difference is more im
portant in the case of quantifiers. 
In PROLOG rules all variables are 
free (universally quantified) ones. 
Their equivalents in LOBO are the 
existentially quantified variables. 
^TS^ is.n0t contradiction, because 
PROLOG is based on a refutation 
proof procedure, while LOBO is 
based on a direct one. 

The most evident difference is 
6 unlversal quantifier in LOBO 

If connective "not" can be used in 
the PROLOG version in question, 
sometimes "Vx"_can be substi tu 'ed 

y 13xt , as it was done in the 

definition of "covered". Other
wise the partition corresponding 
to a subformula begining with 
universal quantifier has to be 
progransned on a roundabout way. 

(3) The interesting point is 
that the almost identical search 
trees of PROLOG and of LOBO prog
rams are organized by different 
tools. In the case of LOBO, loops 
running on the bounded variables 
are explicitly expressed by the 
bounding formulas. In the case of 
PROLOG, the search strategy cont
rols loops on the different 
clauses in the same partition, 
using first of all the pattern 
matching mechanism. It is a bar
gain: LOBO looses the possibili
ties provided by the pattern 
matching mechanism, - that is the 
role of input and output variables 
are fixed, and equality has to be 
stated explicitly. However, LOBO 
gaines the possibility of simple 
implementation, moreover of simple 
compilation. Note that this basic 
difference is difference in the 
calculi. The difference is the 
syntax occurs, because syntax in 
both cases follow the demands of 
calculi. 

(A) The search trees that is 
the executions of the programs may 
be almost identical at the top le
vel, but at the bottom there is a 
distinct difference. The data of 
elements usable in covering are 
expressed by facts in PROLOG, and 
by arrays in LOBO in both examples. 
The usage of arrays is not compul
sory: any data type can be used. 
The important point is that a LOBO 
program can use in a quantifier 
free subformula any programming 
feature, availahl p at the computer 
system in question. In PROLOG the 
built-in predicates correspond 
to this feature, but they are 
provided in a limited supply. 
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The importance of this factor 
can be seen in the second example. 
While the LOBO program is expres
sed in "pure logic", the PROLOG 
one is based on such metalogical 
features as the built-in predi
cates rewriting the formula itself. 
Without this possibility the equi
valent of array RESULT has to be a 
list structure overburdening the 
program by handling lists. 

SHORT SUMMARY 

PROLOG and LOBO seem to be 
basicly equivalent logic program
ming languages. The most important 
differences: 

(i) LOBO does not use pattern 
matching, loosing so some program
ming facilities, and gaining the 
possibility of simple compilation. 

(ii) LOBO can use any progam-
ming feature of the computer sys
tem. 

These differences makes us 
claim that LOBO is nearer to tra
ditional programming. However we 
think that it can play an important 
role in developing fifth generation 
computer systems. In CI 3 a simple 
non-von-Neumann architecture is 
suggested to execute LOBO programs. 
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ABSTRACT 

We shall introduce new con
cept of computation trees of log
ic programs and we shall use it 
in reasoning about programs. We 
shall describe three types of 
transformations improving the 
structure of logic programs. The
re are two natural measures of 
ccrplexity suggested by computat
ion trees, namely, the number of 
nodes called by recursion and the 
maxinal number of AND/OR altern
ations on a branch. We shall show 
that both measures collapse, more 
precisely, we shall shew that eve
ry logic program can be transform
ed to a program computing the same 
function the computation tree of 
which has at most one called node 
and at most two alternations on 
every branch. We shall discuss so
me conclusions related to this 
Normal Form Theorem. 

0 INTRODUCTION 

Problem reduction based on 
deconposition of goals to several 
subgoals is a prominent feature of 
the procedural interpretation of 
Horn Logic used in Logic programm
ing. It is well-known that problem 
reduction can be naturally depict
ed by AND/OR graphs with altern
ating and- and or-nodes. D. Har-
el /1980a, 1980b/ described a sim
ple tree-like programming specif
ication language of so called AND/ 
OP-schemes which allow to capture 
the logical structure of programs 

developed by the stepwise syn
thesis in the discipline of stru
ctured programming. It was shown 
in /Stepinkovi et al. 1983/ that 
AND/OR schemes are naturally emb
edded in the class of logic prog
rams, namely, that to every AND/ 
OR-scheme corresponds a logic 
program computing the same relat
ion. There are logic programs, 
however, vdiich cannot be describ
ed by an AND/OR-scheme. 

In this paper, we shall in
troduce a new concept of comput
ation trees for logic programs 
extending the definition of a 
computation tree frcm /Sebelik et 
al. 1982/. The extension is mot
ivated by AND/OR-schemes. 

We shall describe three typ
es of transformations of comput
ation trees which allow us 

— to avoid recursion calls 
frcm one branch of the tree to 
another 

— to move the nodes called 
by clean recursion closer to the 
root 

— to push upwards the nodes 
of OR-branching 

These transformations have 
many interesting implications to 
logic programs. One of them is 
the existence of a Normal Form of 
Logic Programs. This generalizes 
a similar result due to /Harel, 
1980b/ concerning AND/OR-schemes. 
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The computation tree of every prog
ram ±n normal form has the follow
ing properties 

/i/ there are at most two 
alternations of AND- and OR-
nodes on every branch 

/ii/ there is exactly one no
de to which refers every recursion 
call 

We suppose that the reader 
is familiar with the operational 
and least fixed-point semantics of 
logic programs introduced in /van 
Emden and Kowalski 1976/. 

1 COMPUTATION TFRPS 

We shall use the standard 
graph-theoretic concepts like no
de, edge, leaf, root and branch. 
If we describe a tree, we usually 
put the root on top, the branches 
grcwing dcwn. Hence the only par
ent node is above and all the suc
cessors of a node are below it we 
speak about the depth of a node 
instead of its height, we call a 
node internal if it is not a leaf. 

Let L be a first-order 
language and R be a predicate in 
L. An AND/OR-tree T is called 
a corputation tree for p provid_ 

A/ the root of T is an 

OR-node labelled by 
where v,,...,v is an appraprlb 
tuple or distinct variables. Even 
OR-node of T is labelled by jr. 
atomic formula of L and the lab
els of internal QR-nodes consist 
of a predicate symbol and a topic 
of distinct variables. 

/ii/ If n is an OR-node 
with the label A , all its sw-
oessors are AND-ncdes labelled is 
Horn clauses the head of which 
contains the sane predicate such 
as A . Every edge oonnectinc s 
with its successor n' is label is' 
by a substitution which unifies i 
with the head of the label of n". 

/ill/ To avoid nultiplicity t 
defining predicates, the labels c£ 
different internal OR-nodes have 
different predicate symbols. 

/iv/ If n is an NOtae 
labelled by the clause 

B * t • • • 
then for every i*k, there Is J 
successor OR-node n, of n the 
label of which oantains the sat 
predicate symbol as A,. 

Moreover, if n. is a If 
af, its label is A.1 . If Oj a 
internal and A. is of the " 
Q/t., where 
are terms, the label 
Q/Ul,... ,1^/ , where " 416 

distinct new variables and there 
are other mtrrmutnr leaves of c 

labelled by the eoualities 0js 

for j « m. If a tens t^ 

FKCT(  x , ,y )  

JKTh.1.])- FiCT(i,).TmBM.v.J> 

- FKCT(i.y) TlMtS(w.v . y )  

figure i 
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is a variable, we can use it in
stead of u. and leave out the 
successor labelled u^ = t ̂. 

/v/ Every AND-node labelled 
by an unconditional statement B 
is a list. 

Example 1. Let L be the langu
age of arithmetic containing two 
constants 0 , 1 denoting zero 
and one and a binary function + 
for addition of natural numbers. 
The computation tree for the fac
torial of x is on Figure 1. 

we distinguish two types of 
OR-leaves according to the attach
ed predicate symbols. We call the 
loaf primitive if its predicate 
syntol is different from every 
predicate attached to an internal 
OR-node, otherwise we say that it 
is a call-leaf. Since the predica
te symbols attached to internal 
OR-nodes are different, the predi
cate symbol attached to a call-le
af 1 coincides with the predica
te symbol of exatly one internal 
OR-node, vAich is a called node 
/called by 1/. Note that the com
putation tree frcm Figure 1 cont
ains only one call leaf and one 

called node. They are connected 
by a dashed bow. 

It follows from the defin
ition that the set of all clauses 
labelling the AND-nodes of a com
putation tree for the predicate 
R is a logic program computing R. 
On the other hand, if P is a 
logic program computing R , it 
is not difficult to construct a 
computation tree for R which 
corresponds to the program CP 
If there is a recursion in P , 
there might be several OR-nodes 
with the same attached predicate 
symbol. Thus we have to decide 
which of these nodes will be int
ernal, the remaining ones being 
leaves. Hence there may be finite
ly many computation trees for a 
predicate R corresponding to a 
given program P . 

2 COMPUTATION TREES AND TIDY 
PROGRAMS 

Let A, IB be logic prog
rams. We say that /A extends E 
iff the denotation /see van Emden 
and Kowalski 1976/ of any predica
te P of B in /A is the sa
ne as that in B , i.e. 

$QlEG(n.m,lO 

**•, PU/S(if,m.n) 

nuswiSu> piusMu) liusM,n> muitmov 

[ MULTU.p.u) PWS(*.u,z) 

u•> 

Figure 2a SQI£G/n,m,k/ iff k -(n + m)(n - m) 
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{  :  A i -

I B  P ( t ^ , . . . ,  t ^ ) }  

Vfe say that a computation tree is 
tidy iff every call leaf 1 has 
its called node on the paths from 
the root to 1 . 

Note that the computation 
tree on Figure 1 is tidy but that 
on Figure 2a is not. 

A logic program A is tidy 
for a predicate P iff A ha«, 
tidy computation tree for P 

let T be a computation 
tree of A for P . Suppose T 
is not tidy. We say that a cai 
node is bad provided that one of 
its calls causes untideness of T 
/bad call/ - e.g. the node referr
ed to by call /l/  ̂Figure 2a 
is bad. Namely, a node v of T 
is bad iff there exists a i<̂ f 
referring to v which is on a 
different branch than v 

The untideness of t can 
be characterized by a pair/a,, a S 
of natural numbers, denoted 2 ( v / m \  ^r utdiKjuea 

I T ) ,  s u c h  t h a t  a  i s  t h e  n a x -

iQLEG(n,m,k) 

imal depth of all bad nodes of T, 
«• 2 is the nurber of all ba3 no
des of T of the depth a j . 

This characterization allow 
to identify tidy trees, since T 
is tidy iff ofT Wo, 0> . We 
shall use the lexicographic well-
ordering of pairs of natural 
numbers. 

Lenma A Let A be an un
tidy conputation tree of a logic 
program A for P . Then there 
is a transformation of A to a 
program A' with a conputation 
tree A' for P such that 

/i/ A" extends A 
/Li/ x(A "  )  *. a ( A )  •  

Corollary Given a predicate 
P . every logic program A can 

llary 
logic ,—,— -

be transformed to a program B 
which extends A and is tidy 
for p . 

Proof of the corollary: The 
transformation frem. Lenma A pro
duces a program A * which extends 

" PLdS(n,rr,.jt) 

iĝ o-PiuS(n.m,). nust̂ o).rimu.» 

PLUS(n.S t Su)- PL US(n.C,u ) 

PLUSfn.i'.u.) 

NUlTfa., ,) 

PtW(nO,n)«-
/' MULTk£">'MOlTfcp.u), nuiTfxO.w-

ptusau p.u) 
/ | /V Aw ' 

twu.D.*)' 

PMOUy,*) 

Figure 2b 
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A with a carputation tree A', 
the K -characteristics of which 
is smaller than that of /K . Sin
ce ' is a well-ordering and the 
extension property of programs is 
transitive, it is clear that the 
iteration of this transformation 
gives a tidy program B extend
ing /Pi after a finitely many 
steps. 

Sketch of the proof of Lem
ma A : Let a.(A )-<or1, <X2>/<0,0>. 

n be one of the bad nodes 
with the maximal depth .. 

be all call 
to n , the 

Denote 

Let 
of A 
Let 
leaves 
calls of which are bad. 
the  parent  nodes  o f  1 . , . . . ,  L  by  

respectively. Denote by 

i* * • • • # li, 
s referring 

the 
/s 

'subtree of A 
Figure 3a/. 

rooted in 

fer from the labels of: 
- all leaves of B ref-

ferring to nodes outside of B, 
- primitive leaves of B. 

Let A' be obtained from A hy 
- attaching the tree B tc 

every node 1. and cancelling 
the call frcm 1. to n 

- replacing the occurence 
of Q/a./ in the label of rm 
corresponding to the node 1^ 
by Qi/ai/ 

- adding the successor 
z = a. to the AND-node m. /this 
step1can be avoided by proper re
naming of variables in B when
ever a. is a variable/ for 
every 1 i^ k /see Figure 3b/. 

A • 

ft' 

4 <*0 
"A/ 

Figure 3a 
Let us assume for sinplicity that 
the root of B is labelled by a 
unary predicate Q . 
Ifit B be obtained frcm B by 
renaming of variables in such a 
way that the label of the root 
of B° is Q/z/ , where, z does 
not occur in A . Let B be a 
tree obtained from B by attach
ing an index i to all occurenc
es of those predicates which dif— 

Figure 3b 

This construction is illustrated 
on the program frcm Figure 2a, 2b. 
It is easy to see that A has 
all the properties stated in lem
ma A . 

3 PUSHING UP A CALLED NODE 

The number of called nodes 
seems to be one of natural measu
res of the complexity of tidy 
logic programs. We shall show 
that this measure can be collaps
ed to 1 . We shall use a method 
similar to that of Section 2 . 

Let n be the root of the 
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minimal subtree of T , which 
contains all called nodes of T 
and has an OR-node as a root. We 
call any OR-node between n and 
a called node of T supercalled 
node . 

We characterize any tidy com
putation tree T by a triple 

ft/T/ 
1' a  2 > 

of natural numbers, where /3>0 
is the number of all supercalled 
nodes of T (3 .  
depth of all its 
and (i. 
called 

Obviously, 
node iff n> = o 

is the maximal 
called nodes 

is the number of all its 
nodes of the depth (I l. 
T has a single called 

1 . 

Lemma. B Let A be a tidy 
computation tree for P of a 
logic program A with several 
called nodes. 
Then there is a transformation of 
A to a program A' with a com
putation tree A' for P such 
that 

/i/ /A' extends A, 
/ii/ (ft /A / x, (ft / a 

Corollary Let A be a ti
dy logic program for p . Then 
A can be transformed to a loqic 
program B , which extends , 
and has a computation tree for 
with a single called node. 

This corollary follows from 
lemma B in the same way as S?e 
frSSaV™ S fclk" 

Sketch of the proof of Tern-
is : Let 

A 

P 

-T\ 

ma 

^/a/  =  </3o, n> v  

Let n be one of and ft > i 
the ° î  oiie or 
ft called nodes with depth 
1 .• l̂y- if > 1 thS 

, too. Let m ° be the ft: > i 1 J- , jj, -
first OR-node above n ietn m 
Le labelled by n/x/ snH* Z/ / 
respectively */£%££ _ 

Figure 4a 

Let Aj be a program obtained 
from A as follows 

- the predicate R/y/ Is 
replaced everywhere by a new bi
nary predicate Ttyy,F/ , where F 
is a boolean constant. 

- the clause R/y,T/ «- Q/y/ 
is added, where T is again a 
boolean constant. 

- the occurence of Q/t/ 
in the body of any clause free. A 
is replaced by "R/t,T/ /see Fi
gure 4b/. -> 

• •  •  7X 

b . r  //K. 

> 'r, . . %\ \ 

Figure 4b 
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It is not difficult to realize 
than Aj extends /A . Let 

be a program which is a tidy ext
ension of /A obtained by remov
ing the only bad call /l/ from 
the computation tree of A /see 
Figure 4b/ by the method of lem
ma A . Let be its computat
ion tree. 
Now the proof is complete provided 
that m is not the root of A . 
In the other case, the predicate 
P coincides with R . Then we 
have to add the clause 

R/y/ *- R/y,F/ 

to A, to obtain /A' . It is ob
vious that A' extends A . The 
tree A* is obtained again from 

Aj . 

The proof of the fact that 
fi/A'/ *. (I / A /  i s  a  m e r e  
technicality. 

Remark The assumption about 
tidyness of the program subjected 
to the transformation can be drop
ped. But then no claim can be made 
on the ft -characterization of the 
resulting program. 

4 PISHING UP PR-BRANCHING 
Vfe have just seen that the 

number of called nodes of a prog
ram does not reflect the complex
ity of the relations the program 
expresses. Our present interest 
will be in the minimization of the 
maximal number of alternations of 
AND- and OR-nodes on a branch 
of a computation tree. We shall 
prove that even this measure can 
be collapsed to 2 . 
First, we shall prove that branch
ing in an OR-node, which is not 
a called node, can be pushed clos
er to the root. Then we notice 
that non-called OR-nodes with a 
single successor can be avoided. 

The idea is illustrated by 
the self-explanatory example /see 
Figures 5a, 5b and 5c/. The pre
dicate MCOUSIN/x,y/ describes 
the relation "y is a cousin of x 
frcm x mother's side". The 
branching in the node labelled by 
the predicate PARENT can be 
pushed up to the root by appropri
ate combination of two different 
copies of the contoured subtree 
/compare Figures 5a, 5b/. Unfortu
nately, this method does not lead 
to the decrease of the number of 
OR-nodes with multiple successors 
That is why we are forced to in
troduce a rather complicated meas-

HCOUSltlU.j) 

HtOUSW (*.*)«• t>Mt[HT(pg>.$IBLIilC(m,p) 

SIBLm&tm.p) NU») 

PM£NT(P.,KF(M) PIRtNT(pi)-M(p.j> 

I I 
SlBUNC(nr),p>- M(l,">\M(i,p), WKnn,p) 

PlF/m, p) Mk'm) H(l,p) 

SlEimC(m,p)«- Ru,m),F(u,p), J>IF(m,p) 

Hufi) 

Figure 5a 

PlF(m,p) 
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sure § on the nodes of the oorrp-
utation trees. Its purpose is to 
characterize the complexity of the 
path frcm the root to the given 
node in terms of intervening OR-
nodes with several successors. 

Let T be a computation 
tree, the single called node of 
which is the root. We say that 
there is multiple branching below 
an OR-node v of T iff there 
is an OR-node with multiple 
branching in the subtree of T 
rooted in v . It allows us to 
define valuation > on every edge 
e of T . Vfe proceed as follows 

- if the upper node of e is 
an OR-node, we set v/e/ = 1 when

ever this node has several succes
sors, we set v/e/ » 0 otherwise 

- if the lower node of e 
is an OR-node and if there is no 
ml tiple branching below this no
de then v/e/ - O , otherwise v/e/ 
is the nurber of all these irradi
ate successors of the upper node 
of e bellow which there is a 
multiple branching. 

The weight J/v/ of a node 
v of T is the sun of the we
ights of all the edges on the path 
from the root to v . 

The branching of a captat
ion tree T , where the root is 
the only called node, can be cha
racterized by the pair j/T/ 

Mtowinu.)) 

MK*} MK 

PhRi(p.y) * •  F ( p , y )  

F ( p , y )  
Wf-sr) 

Figure 5b 

I 
Ufa) 

Figure 5c 
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natural nutters / , . whe-
^ is the maximal weight^/v/ 

1̂ 

of natural numbers 
re 
of a node v of T and is 
the ranter of all nodes n such 
that §/n/ ~ f and §>/m/<?/n/ 
for every node m above n. 

Lama C Let A be a ccmp-
utation tree for P of a program 
A , such that its root is the only 
called node. Then A can be 
transformed to a program A with 
a confutation tree A' for P 
such that 

/i/ A' extends /A 
/ii/ ^/A'/ /t ^/ A/ 

corollary Let A satisfy 
the assinptions of Lenta C. Then 
A can be transformed to a prog
ram B extending A with a 
ccnputaticri tree B for P 
such that no OR-node different 
fron the root is called as well as 
no such node has more than one 
successor. 

Sketch of the construction 
for lemma C : Let m be such a 
node of A that one of its sons 
n has the maximal weight and 

§>/n/=(£/A/> (p Mq/ . In such 

a case m must be an OR-node 
with several successors. Generally 
mQ may have a sibling with 

several successors, too. /see Fi
gure 6a/. The transition of Fig
ure 6a to 6b demonstrates the 
basic steps of the process of push
ing up the branching of mQ to 
the node k labelled by E . 
We proceed as follows 

1. we tear off the subtree 
starting in the edge li 

2. we make a new copy of the 
contoured subtree and we attach to 
it appropriately the subtree cut 
off at the step 1. 

3. the subtree frcm the step 
2. is attached to the node k . 

be the resulting 
tree /Figure 6b/. 

It is obvious that Â  extends A. 
The weights of those edges which 
are changing during the process 
are indicated on Figures 6a, 6b. 
Obviously //A-,/  ̂ / A/ • T̂ ie 

nore complex cases are treated 
similarly. 

Let 
computation 

Eh.,)/ 

£ B fv.Su), D(u,y) 

*/L< 

Cl( BflW)*- Cbt*) 

CI (v) C b(*) 

Figure 6a 
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Lemma D Let A be a logic 
program such that its computation 
tree A for P has a single 
called node and a single OR-node 
with several successors - both 
are the root of A . 

Then there is a program B 
such that 

- the maximal depth of 
the computation tree for B and 
P is two 

- P has the same denotat
ion in B and A . 

Proof : The non—called nodes 
without multiple branching can be 
avoided similarly as the node n 
in Figure 5b /see Figure 5c/. 

4 NOEMAL FORM THEOREM AND ITS 
APPLICATIONS 

By the combination of the 
above methods, we can prove 

Theorem Let be _ — logic 
program ccnputing the relation P. 
Then there is a program B ccnp
uting the same relation P with 
a tidy computation tree B , 
vhich has at most one called node 
and at most two alternations of 
AND- and OR-nodes on one branch. 

The extensive use of capit
ation trees in Sections 2 - 4 de
monstrates that graphical descrip
tion of logic programs provides 
deep insight into their structure. 
For exanple, the binary programs 
/see Tarnlund 1977/ , stratifiab-
le programs /see Sebellk and St£-
pinek 1982/ or recursion-free pro
grams have certain characteristic 
types of confutation trees. Many 
structural properties of logic 
programs are easily recognizable 
in computation trees, which help 
to detect those parts of programs 
calling for special attention or 
optimization. Oonputation trees 
clearly visualize the dependencies 
between predicates of a given pro
gram and thus make it possible to 
recognize those subgoals which can 
be solved concurrently. 

We have suggested several 
methods how to modify oonputation 
trees to obtain better organized 
programs computing the same relat
ion. In a subsequent paper /Ste-
pdnek and St£pinkov3/, we will 
use them to prove that the synt
actical restrictions of the lang
uage PRIMLOG /Markusz and Kapo
si 1982/ do not impose any sig-

EKv.yk- BIMid.DKu.y) 

B1 M- u. D1fcjT>-S 

*7 
&1kSn)-C1(v),C26) 

EG»,y)- &26.Sh).D2(U.J) 

C1M C2(0 
CiU)  

Figure 6b 
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nificant restrictions on the class 
of carpu table functions. 
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SEMANTIC INTERPRETATION FOR THE EPISTLE SYSTEM 
Michael C. McCord 
IBM Thomas J. Watson Research Center 
P.O. Box 218 
Yorktown Heights, NY 10598 

ABSTRACT 

EPISTLE is a natural language 
processing system being developed 
at IBM Research, with current 
application to text-critiquing: 
criticism of grammar and style in 
documents. The EPISTLE grammar, 
with a very broad coverage, can be 
considered purely syntactic. This 
paper describes a semantic inter
pretation component, SEM, written 
in PROLOG, which will be useful in 
further developments for the 
system. SEM is based partly on 
previous work by the author, but 
the present system is different in 
that it translates surface parses 
to logical forms in a single stage, 
in which there is interleaving of 
the processes of sense selection, 
slot filling, other types of 
modification, movement of nodes, 
and exercising of semantic 
constraints. Furthermore, the 
constraints used are not simple 
type-checks, but involve inference 
with world knowledge. 

1 INTRODUCTION 

EPISTLE (Miller, Heidorn and 
Jensen, 1981, Heidorn et al., 1982) 
is a natural language processing 
system applied currently to text 
critiquing: Authors preparing a 
document will be able to use EPIS
TLE to get corrections and criti
cism of grammar, spelling, and 
style in the text. Other applica
tions to document analysis and 
generation are planned for the 
system. EPISTLE uses a grammar 
(Jensen and Heidorn, 1983) written 

in the NLP rule language (Heidorn, 
1972) and a lexical/morphological 
component (Byrd, 1983) which 
together give the system a very 
broad coverage of English. The 
grammar can be considered to be 
purely syntactic, using no semantic 
constraints and producing purely 
syntactic analyses of sentences. 

This paper describes a semantic 
interpretation component, SEM, 
written in PROLOG, which takes the 
output of the syntactic component 
and produces logical forms for 
sentences. SEM will be useful for 
refinements of the text-critiquing 
application, and will be crucial 
for certain planned applications, 
such as document indexing and 
expert systems associated with text 
analysis. 

SEM has some elements in common 
with previous semantic interpreta
tion systems of the author (McCord, 
1982, 1981). The logical language 
used' as the target of interpreta
tion is much like that in (McCord 
1981), including focalizers. Scop
ing problems are dealt with. 
However, the present system is 
different in that it is organized 
into a single stage in which there 
is interleaving of the processes of 
sense selection, slot filling and 
other types of modification, move
ment of nodes, and exercising of 
semantic constraints. In many 
natural language systems, the 
semantic constraints used are 
simple type-checks in a hierarchy 
of types. It is argued in this 
paper that this is not adequate 
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generally, and that general infer
ence with world knowledge is needed 
during semantic interpretation. 
Such a mechanism is used in SEM. 

2 NATURE OF THE INPUT TO SEM 

In the interests of modularity 
and broad coverage, the approach of 
the EPISTLE grammar is to be as 
independent of semantics as possi
ble, and to produce syntactic 
analyses which in themselves often 
have enough information for useful 
text critiquing. When semantics 
(and pragmatics) are ignored in a 
natural language system, sentences 
can be extremely ambiguous. For 
avoiding multiple analyses, the 
design of the EPISTLE granwnar 
i nc ludes  t he  i dea  o f  t he  approxi
mate surface parse. For most 
sentences, a single, "approximate" 
syntactic analysis is produced 
Achieving this involves, mainly, 
two decisions. 

One decision is that modifiers 
are attached in canonical ways. 
For example, postmodifying preposi-

ri phrases are normally 
attached to the next higher node 
u ^ ̂  3 VSrb phrase °r clause. 
With this decision, the following 
example has only one analysis. 

John saw the man in the park with 
the telescope. 

in mostb'cast01^ £ ^ 
o f  " d e l e t e d "  '  o r W d " "  
Thus, in m°Ved l tems-

Which horse did you want to win? 

no indication ic 
subject or object of "win" ° a ^ 
fact, no "trace" u ' * ln  

for "which horse" To " 311 

this sentence Is" „• Conse(lueatly, 
analysis. Similarly, £ * °ne 

John was killed by the river. 

there is only one analysis, with no 
indication of the logical subject 
of "killed" ("by tha river" is 
siaiply a prepositional phrase post-
Modifying "killed"). 

Interestingly, the idea of the 
approximate surface parse is rather 
similar to F. Pereira's right-most 
normal form (Pereira 1983), which 
was designed for the saee purpose 
(reducing ambiguities in syntax). 
These ideas were arrived at inde
pendently. Pereira's analyses do 
contain more information pertinent 
for semantics, for instance the 
indication of traces, produced by 
use of an extraposition graoisr 
(Pereira 1981). 

For SEN, an interface froe NLP 
to PROLOG produces, for each 
syntactic analysis, a PROWG ten 
of the form 

syn (Features, Marker, 
Head, Daughters) 

which we call a syntactic itw. 
Here Features is a list of tens 
representing the syntactic features 
of the sentence (or phrase) being 
analyzed. Marker is a variable 
which relates the item to copies of 
it made by SEM, through unified0® 
with the markers of the copies (SEH 
can make copies for handling 
deleted and moved phrases). 1° ^ 
input to SEM, no two markers are 
unified. Head is (the root fors 

of) the head word of the phrase 
(The grammar has the flavor of a 

dependency grammar and every phrase 
has a head word.) MorphologicS 

features of Head are included in 
Features. Daughters is a list of 
syns representing the modifiers ° 
the head word (its daughters in 
analysis tree). The position of 
the head is indicated in this list' 

3 OUTPUT OF SEM 

SEM takes syntactic items and 
produces logical forms representing 
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the meanings of sentences. These 
forms are built up from variables, 
constants, and compound terms 
consisting of a predicate (usually 
a sense of some word appearing in 
the sentence) with its arguments, 
or a conjunction of forms. Some 
predicates can have logical forms 
as arguments. This is the case for 
(senses of) verbs like "believe . 
Quantifiers, like "each" and 
"many", and other focalizers (cf. 
McCord 1981), like "only" and 
"even", are also considered high
er-order predicates in the system 
which happen to take (two) logical 
forms as arguments. 

As an example, the logical form 
produced by SEM for the sentence 

Who does Mary believe that every 
man likes? 

is 
wh(X,person(X)& 

believe(El.rnary, 
every(man (Y) , 1ike(E2,Y,X)))) 

The first argument of every noun or 
verb sense, such as X for "person 
and El for "believe", is called the 
entity argument, and stands for 
the event, state of affairs, or 
individual referred to by the pred
ication. Any free variables (such 
as El and E2) in a logical form are 
considered to be existentially 
quantified. 

Other examples of logical forms 
will be given below. For more 
discussion of the logical language 
being used here, see (McCord 1981). 

4 SEMANTIC ITEMS 

In barest outline, the main 
procedure of SEM converts each node 
of a syn tree to a logical form 
(representing a sense of the head 
of the node), and combines these 
forms to make a logical form for 
the whole sentence. 

However, in doing the combining, 
richer structures, called semantic 
items, are actually manipulated. A 
semantic item is of the form 

sem( Features .Connector, 
Marker, LogicalForm). 

Here, Features and Marker are as 
in syntactic items, with the addi
tional condition that for noun 
phrases and clauses, the Marker is 
unified with the entity variable 
for the head predication in the 
LogicalForm. In the initial 
semantic item created for a node, 
the LogicalForm is normally a 
simple predication (corresponding 
to a sense of the head word); but, 
after modification by (combination 
with) other semantic items, this 
field becomes ever more complex. 

The Connector is a term which, 
roughly, determines how the seman
tic item can combine with other 
semantic items in the process of 
modification. The procedure mod, 
described below, which allows one 
semantic item to modify (or combine 
with) another to produce a third, 
keys mainly off the connectors of 
the first two items. Typically, a 
connector term contains variables 
which are (unified with) argument 
variables of the head predication 
in the semantic item; and the 
structure of the connector term (as 
interpreted by mod) determines how 
these arguments get filled. A 
special case of a connector is a 
slot frame, and slot filling for 
verbs and nouns is handled in SEM 

by mod. 

Examples of semantic items are 

sem(quant:..,Q/P,nil,each(P,Q)) • 

s em (quant: . . ,/^Q,nil, 
each(man(X),Q))• 

sem(vp:..,nil-(subj:X)-(obj:Y), 
E,see(E,X,Y)). 
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sem(vp:..,nil-(subj:Y)-(pobj(by):X) , 
E,see(E,X,Y)). 

In the first item, the connector 
Q/P is such that modification by 
the item results in (1) unifying P 
with the logical form of the modi-
ficand, and (2) creating a new item 
like the second item above. This 
second item has a new connector %Q 
which can "cause" unification of Q 
with a further modified logical 
form. The third and fourth items 
have connectors which are slot 
frames. (The format for these is 
slightly simplified.) In the 
fourth one, the slot frame has 
undergone a transformation which 
would be appropriate for a passive 
VP. 

In (McCord 1981), semantic items 
were terms with slightly less 
information, containing only the 
Connector and LogicalForm fields 
Connectors were called operators. 
The new name is more appropriate 
especially in the new system, where 
connectors can be slot frames 
because mod can use the connectors 
of both a modifier and its modifi-
cand: The control is more symmet-
ric. 

PRO 

in T t h T  i n t  f O U r  maln in«redients the interpretation procedure-
sform ietaction' modification, fram
ing Th"*' ^ know|edge-check-
semantl „ procedure (called 
nod̂ s of as™ 11?"™}* 0" the 
four of th • 311 uses all 
level 6 lnSre<fients at every 

Sense selection is done bv call 

£ « 

get filtered out by the other three 
ingredients named above. Sense 
selection is discussed further in 
Section 6. 

Modification, residing in the 
procedure mod, is the heart of the 
interpretation process. As indi
cated in the preceding section, 
mod allows one semantic itea to 
modify (or combine with) a second 
to produce a third. As for vhich 
pairs of items are combined by 
modification, the basic, sisplified 
idea is that all the daughters of s 
node modify the node (with the 
leftmost acting as outermost eodi-
fier), after the daughters then-
selves have been interpreted and a 
sense for the given node is chosen. 
Modification is discussed further 
in Section 7. 

Transformations are needed in 
this scheme because the structure 
of the syntactic analysis tree say 
need "correcting" in order to sake 
the straightforward process of 
modification work correctly, there 
are two sources of this need for 
correction. 

One source is that quantifiers 
(and several other types of oodifi* 
ers) may have intended scopes in 
logical form which do not corre
spond to their positions in the 
syntactic structure. This probles 
was discussed extensively hi 
(McCord, 1982, 1981) and was dealt 
with there by a type of tree trans
formation called reshaping. I® 
these previous systems, reshaping 
was done in a whole separate stage 
(on the whole tree), before any 
modification was done. In the 

present system, the steps of 
reshaping are interleaved with all 
the other steps of interpretation, 
so that there is only one stage of 
interpretation. This is done so 
that there can be more "immediate 
feedback" and filtering for the 
choices of reshaping from the other 
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steps of interpretation, especially 
knowledge-checking. 

The other source of the need for 
correction is the fact that the 
syntactic analysis tree is an 
approximate surface parse, so that 
modifiers may need to be moved, 
created, or identified in some way. 

Transformations appear in 
several different ways in SEM. 
There are some (though very few) 
like ordinary transformations of 
transformational grammar, operating 
on whole syn trees. The others 
are more implicit. In the (reshap
ing) transformations dealing with 
scoping, semantic items correspond
ing to original tree nodes are 
moved, but their positions are kept 
track of in arguments of PROLOG 
procedures. Still another type of 
transformation is of slot frames, 
handled by the procedure sense. 
These various types will be 
discussed below where they are 
pertinent. 

Knowledge-checking is a gener
alization of semantic type-check
ing, in which the reasonableness of 
a logical form is checked, with 
inference, against knowledge about 
the use of the predicates in the 
form. At every level of call to 
semant, the logical form of the 
semantic item produced at that 
level is checked with the procedure 
kcheck, which is discussed in 
Section 8. 

Now let us look at the defi
nition of the main procedure 
semant. 

semant (Syn, Sem, Sisters) <-
transform(Syn.Synl) & 
semant(Synl,Sem,Sisters). 

semant(syn(Features , E ,Head,Daus) , 
Sem,Sisters) <-

semantlist(Daus.Mods) & 
reorder(Mods.Modsl) & 
sense(Features,E ,Head, SemO) & 

mod1ist(Mods1,SemO, 
Sem,Sisters) & 

satisfied(Sem) & 
kcheck(Sem). 

The top-level use of semant is 
to take a syntactic item Syn and 
produce a semantic item Sem. 
However there is an additional 
output, Sisters, which is important 
for lower-level calls. Interpreta
tion of a node Syn can produce new 
(left) sisters for it because of 
the operation of raising. This is 
a type of transformation involved 
in reshaping (to handle scoping 
problems). For example, the quan
tifier node "each" in the noun 
phrase "each man" is raised to 
become a sister of the noun phrase. 
Raising is handled by mod and will 
be discussed further in Section 7. 
In the top-level call to semant, 
the Sisters list is required to be 
nil. 

The first clause defining 
semant calls the procedure trans
form to perform a tree transforma
tion on Syn, and then calls semant 
again on the output. (Thus another 
transformation could apply, and so 

on. ) 

Some of these transformations 
are like the transformations of 
transformational grammar, although 
SEM needs only a very few. The 
only transformations of this type 
in the current version of SEM are 
wh-movement for wh-questions and 
relative clauses. However, coordi
nation (with ellipsis) will proba
bly be treated in SEM by use of 
transformations. (This will there
fore be an alternative to the meta-
erammatical, parsing approach to 
coordination in (Dahl and McCord, 
to appear).) 

Other transformations performed 
by transform have the purpose of 
trying out corrections to the 
approximate surface parse. For 
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example, postmodifying preposi
tional phrases can be reattached. 
The non-determinism of PROLOG 
allows wrong reattachments to be 
blocked by other ingredients of 
interpretation. 

The various transformations of 
these two sorts are defined simply 
by PROLOG clauses for transform, 
one clause per transformation. 

Now let us look at the second 
clause for semant. The call to 
semantlist does the recursive 
^ rP re t® t ion on the daughters 
( u s ) .  o f  t h e  s y n t a c t i c  i t e m ,  
pro ucing a list Mods of semantic 
items which are to be the (seman
tic) modifiers of the node. This 
procedure just calls semant itself 
on each member of the list Daus 
and any sisters produced are blend
ed into the list Mods during the 
process. ® ne 

^e procedure reorder is a 
reshaping procedure (dealing with 
scoping). i t  performs a  

tron.of th* "ods list according to 
scoping heuristics (see Mrf ^ 
1982 i qo i \ A ^see  McCord rvss* ingredients. y other 

selects if lca ted above, sense 

representing TTen'e of^th (Sem0) 

being worked on. node 

can"™ ^ £°±*"  ̂
Modsl. This ic A i. m°difiers 
modlist, which jhe ca l1  to  

member of Modsi f° r  each 

items act on Semo' these  

the outermost modified this^ " 
procedurally that means 
actually modifies Semn , r ightD,ost  

next-to-rightmost m°. f l rs t, the 
result, and so  Qn ®°difies the 

satish4daSLdW°tor°kCS^ek C311S' to 

« »>• sk„ If th«| 

» - uuc 
blocks Sen if the connector of Sea 
is a slot frame containing 
(unfilled) obligatory slots. The 
procedure kchmck is discussed in 
Section 8. 

6 SENSE SELECTION 

In the call 

sense(Features.E,Head,Sea), 

the list Features, the marker E, 
and the head word Head are used as 
input, and the output is the sesan-
tic item Sea representing a sense 
of Head as head word of a phrase of 
type Features with aarker E. 
Another way of saying it is that 
Sem is an initial semantic itea for 
the given phrase-with-head before 
anything has BK>dified it. The 
logical form of Sem is a predi
cation whose predicate is one of 
the senses of Head (for the given 
Features); and the connector, 
depending also on Features, 
controls how the arguments of this 
predication get filled in. For a 
given word sense, different connec
tors can be produced by sense, 
because the connector can depend on 
non-lexical features of the phrase. 
For example, a passive VP syn gets 
a different sem from an active 
one. 

Currently, sense produces ten 
different types of connectors. 
Examples of three different types 
were given in Section 4. These 
will not be described systemat
ically in this paper, because most 
o them are like connectors already 
described in (McCord 1981). Howev-
er, slot frames were not used as 
connectors in (McCord 1981), and 

ese are worth describing here, 
especially because sense has to do 
a work to produce them. 

A slot frame is of the form 

frame (Type, Slots). 
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Here, Slots is a list of slots, 
each of which is a pair (as in 
(McCord 1982)) Slotname: Marker. 
Because of the way the procedure 
mod is applied, slots get filled 
right-to-left. So for convenience 
in displaying slot lists, these 
lists are formed with the left-as
sociative operator ' Thus, 
examples of slot lists are 

nil-(subj :X)-(obj :Y)- (pobj (to): Z) 

nil-(subj :X)-(iobj :Z)-(obj : Y) 

Each of these could get associated 
with a predication like 
give(E,X,Y,Z) for a ditransitive 
verb. 

The Type field for a slot frame 
is either nil or is of the form 
adjunct(X). The latter type is 
used when the semantic item comes 
from a phrase like a prepositional 
phrase, a participial clause, or a 
relative clause, where there is a 
"topic" X (the first argument of 
the preposition, the missing 
subject in the participial clause, 
the topic of the relative clause) 
which will be unified with the 
marker of the modificand when this 
semantic item acts as an adjunct 
modifier. 

For phrases whose head is a 
verb, sense does the following 
things to find a corresponding 
sem. 

First a transitivity type (tran
sitive, ditransitive, etc.) is 
obtained from the features. (This 
is actually non-deterministic, 
because some verbs can have more 
than one transitivity feature.) 
The voice (active, passive) is also 
determined from the features. For 
the given transitivity type and 
verb, a predication Pred corre
sponding to a sense of the verb, 

a canonical slot list Slots, 

are made up (assuming an active 
clause environment for the verb). 

Then a procedure slotrans looks 
at the canonical slot list Slots 
and the voice, and produces a 
transformed slot list Slots 1 (which 
could be left the same as Slots 
itself). For example, in the 
passive case, the slot list 

nil-(subj:X)-(obj:Y) 

is transformed to 

nil-(subj:Y)-(pobj(by):X). 

This operation is non-determinis
tic; e. g., for ditransitive verbs 
more than one result is possible. 

Finally, a procedure mkframe 
looks at the phrase category and 
Slotsl, and makes the frame that 
will be the connector for the 
desired sem. In the case of 
participial clauses, mkframe 
deletes the subject slot from 
Slotsl, so that in this clause no 
overt subject is sought. The mark
er X associated with this deleted 
subject slot is, however, stored in 
the type, adjunct(X), of the frame. 
In the case of imperative clauses, 
mkframe also deletes the subject 
slot, but unifies its marker vari

able with "you". 

As an example, for the partici
pial clause "given me by my aunt , 
the successful choices would be the 
following. The predication is 
give(E,X,Y,Z), and the canonical 

slot list is 

nil-(subj:X)-(obj:Y)-(pobj(to):Z) . 

This is transformed by slotrans to 

nil-(subj:Y)-(iobj:Z)-(pobj(by) :X) . 

Then mkframe produces the frame 

frame(adjunct(Y), 
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nil-(iobj:Z)-(pobj(by):X)) , 

and the sem produced by sense is 

sem(ptprtcl: . . , 
frame(adj unct(Y), 
nil-(iobj: Z) -(pobj(by):X)), 
E, give(E,X,Y,Z) ). 

7 MODIFICATION 

The procedure mod handles the 
interaction between a semantic item 
Sem and a semantic item SemO which 
has been made (implicitly) a daugh
ter of Sem by semant, so that SemO 
is a candidate to modify Sem. 
There are actually three types of 
interactions: 

(1) The daughter SemO can simply 
modify the mother Sem, producing a 
new (modified) version Semi of the 
mother. In this case, the daughter 
goes away (no longer is used in 
the interpretation). This is the 
case, for example, when the daugh
ter fills a slot in the mother, or 
is an adjunct modifier such as a 
relative clause. 

(2) The daughter SemO is simply 
raised to become a (left) sister of 
the mother Sem, and no real modifi
cation takes place. This happens, 
for example, within the processing 
of the grades of each student" 
where the quantifier "each" (after 
already having modified "student") 
gets raised to a • nt > 

and the mother ra daughter 

the new version o8fetrnhanged' 3"d 
Sets promoted to be 

the the moth«, This happens" "hen 

"student^in^thi "eaCh" modifies 
student". The ra°UnaPhraSe "e3Ch 

the daughter Ls " lo^"^ °f 
each (student (X) Q) form 

J > M )  a n d  a  co n n e c t o r  

«Q so that it is ready to modify 
its new mother (by unifying Q), or 
to be raised even further, as in 
(2). The "student" node still 
needs to be there for slot filling. 
It has a slightly different connec
tor, so that it does only slot 
filling for its mother. (If there 
had been no determiner, the 
original noun phrase would modify 
its mother both by slot filling and 
by left-conjoining.) 

The procedure mod manages these 
three types of interactions by 
having the calling form: 

mod (SemO, Sem. Semi, Sisters, Sistersl). 

Here SemO is the daughter, Ses is 
its mother, and Semi is the new 
version of the mother. The last 
two arguments are treated as a 
difference list (for convenience of 
the calling procedure modlist) 
which contains the raised daughter 
in cases (2) and (3) above ana is 
empty in case (1). Case (2) is 
handled by calling a procedure 
above which is like the procedure 
of that name in (HcCord 1981)-
Everything else is handled by a 
series of clauses for mod which 
look mainly at the connectors of 
SemO and Sem (especially Se«0). 
These are like clauses for trans in 
(McCord 1982, 1981), except that 
they now handle slot filling and 
raising, as well. 

A sample clause of this type, 
which illustrates case (3) above, 
is 

mod(sem(FeasO,P/Q,XO,LFO), 
sem(Feas,*,X,Q), 
setn(Feas ,nil,X,Q), 
S, sem(FeasO,»P,X0,LF0):S )• 

Here, the logical form LFO in t'ie 

daughter could be each(Q,P). 
the logical form in the moth" 
could be student(X), so that Q gets 

unified with student(X). 
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One of the clauses for mod 
calls a procedure filler, which 
handles slot filling. This proce
dure expects the connector of the 
mother node to be a slot frame. 
From the slot list, a slot is 
chosen, looking from the right 
(since modifiers do their work 
right-to-left). This choice is 
non-deterministic. Slots can be 
passed over, but only if they are 
not declared to be obligatory. Any 
slots passed over, plus the chosen 
slot itself, are discarded from the 
slot list (in the sense that the 
new version of the mother has a 
slot frame with these slots 
removed). The marker of the chosen 
slot is unified with the marker of 
the modifier. (This is the main 
point of slot filling.) Then, to 
check on the correctness of this 
filling, filler calls a procedure 
fill, which looks at the name of the 
chosen slot and knows what specific 
slots require of their fillers. 
For example, the slot pobj(by). 
would require a prepositional 
phrase whose preposition is by . 

The action of fill can also unify 
other marker variables. For exam
ple, in the clause 

John was asked to see Bill. 

the main verb gets a predication 
ask(E,X,Y,Z) (read "X asks Y to 
Z"), and the associated slot list 
is 

nil-(subj :Y)-(pobj (by) :X)-
(infcomp(Y):Z). 

At the time of filling the 
infcomp(Y) slot, the infinitive 
complement "to see Bill" has been 
interpreted and has semantic item 
of the form: 

sem(infcl:..., 
frame(adjunct(U) ,nil), El> 
see(El,U,bil1)). 

The procedure fill knows to unify U 
with the variable Y in the slot 
infcomp(Y). After the subj:Y slot 
for "ask" is filled by "john", the 
resulting logical form for the 
whole sentence (neglecting tense) 
is 

ask(E,X,john,see(El,john,bill)) . 

In (McCord 1982, 1981), slot 
filling was done during parsing. 
In some ways, that is more natural. 
Indeed, it would be attractive to 
have only one pass (parsing) in 
which complete logical forms are 
produced, as has been done in the 
earliest logic grammars (see Dahl 
1981). But there are strong argu
ments for having a second pass in 
which one can look at the whole 
parse tree. A good treatment of 
scoping is easier on a second pass, 
and coordination is probably easier 
to treat on a second pass (with 
transformations which duplicate 
elided material). The first-pass 
treatments of coordination in (Dahl 
and McCord, to appear) and (Woods 
1973) involve looking at parse 
histories, which can be difficult 
to manage. A second-pass treatment 
of coordination would go hand-in-
hand with slot filling on the 
second pass. The system of 
(Pereira 1983) is akin to SEM in 
that slot filling is done there on 
a second pass. However, in 
(Pereira 1983) there is a third 
pass, where scoping is treated and 
the final logical form is produced. 
It seems advantageous to have only 
one pass after parsing, in which 
all the steps are interleaved, so 
that logical forms get built up in 
the cycle and can serve as input at 
every level to checks like know
ledge-checking. (An early version 
of SEM actually had three passes: 
slot filling, reshaping, and 
modification. No systematic 
comparisons of efficiency have been 
made, but it seems likely that 
immediate feedback from constraints 
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will produce greater efficiency. 
In addition, the current version is 
simpler is design.) 

8 KNOWLEDGE CHECKING 

In producing semantic interpre
tations, many choices can be made 
(selection of word senses, place
ment and action of modifiers, 
etc.). Some sort of guidance or 
filtering is needed. In manv 
natural language systems, semantic 
type-checking is used for filter
ing: Senses of words (especially 
verbs) have a semantic type associ
ated with each slot in their slot 
frames. Thus a sense seel(E,X,Y) 
of "see" might have the slot list 

nil-(subj:X:animal)-(obj:Y:physobj) . 

Slot fillers are required to have 
types which match the slot type, 
perhaps after moving about in a 
hierarchy of types. 

In logic grammars, the matching 
of types within a hierarchy can be 
implemented in a particularly 
powerful way by using unification 
° b°glc terms representing 

iglm r£peclfied types (see Dahl 
(Types can be represented 

as lists like tl:t2:t3:*, where tl 
is a supertype of t2, t2 is a 

theTT- °f and the ta*l 
taeeof Variable"> An advan-
tage of this unification approach 

cL be" type."matchin8 requirements 
can be exercised in a top-down way 
durmg parsing (by PROLOG, for a 

andT Cl3USe Srammar (Pereira and Warren 1980)). 

Semantic type-checking may 

.pPrr 
c™u.r «£ 

U9M): °""d 

The pen is in the box. 

The box is in the pen 

be 
it 
in 

Let us just consider two senses of 
tl tl It • , H pen : writing pen am 
"an taa 1 pen". Most people would 
get the "writingpen" interpreta
tion in the first sentence and the 
"animal pen" interpretation in the 
second. The dissanbigustion can be 
made by requirements of the 
"conta ined_ in" sense of "in", 
together with knowledge about 
(normal) sises of writing pens, 
animal pens, and boxes. For 
simplicity, we could say that the 
precondition for 

contained in(X,Y) 

is 

smaller(X.Y). 

A frame with semantic types like 

X:small, Y: large 

will not do, because the require
ment on X and Y is relative^ Of 
course, in a limited domain, with a 
small number of types of objects, 
one could suitably enumerate the 
required pairs. But, in general, 
this cannot be done, and we nust 
make a computation (an inference 
not based simply on finite look-up 
In fact, the two noun phrases in s 

sentence of the form 

The ... is in the ... • 

as in 

The object weighing 800 pounds 
is in the pen. 

could be very complex, and al» °* 
the information could be used 
determine smaller(X.Y). 

So, instead of doing 
type-checking, we need to do know 
ledge-checking, where M1''' 
forms are checked for reasonably 
ness by doing more general *n^c' 
ence with real-world knowledge-
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present in SEM, knowledge-checking 
is implemented in the following 
(approximate) way. 

Recall that semant makes the 
call 

kcheck(Sem) 

at every level. There is a 
(partial) logical form LF in Sem, 
which is to be checked. As an 
example, if we are looking at the 
top level of 

Each box is in a pen. 

the logical form LF (with the 
"animal_pen" sense of '  pen ) is 
essentially 

each(box(X) ,animal_pen(Y)& 
contained_in(X,Y)). 

The next step (to make the know
ledge-check easier to handle) is to 
strip LF of quantification, forming 
a conjunction of the remaining 
bases, as well as to remove any 
qualification in these bases. For 
the example, the stripped form is 

box(X)&animal_pen(Y)& 
cont a ined_ in (X, Y ) 

where, as usual, the free variables 
are considered to be existentially 
quantified. Finally, we replace 
the head predication by its 
precondition (given by a unit 
clause for the predicate precond). 
This results in the form 

box(X)&animal_pen(Y)& 
smaller(X,Y). 

Finally, we pass this form to 
PROLOG to try to prove it, i. e., 
to find a case of a box X and an 
animal pen Y where X is smaller 
than Y. With this method, SEM does 
succeed in getting the reasonable 
disambiguations of "The pen is in 

the box" and "The box is in the 
I t  pen . 

This method of doing kcheck can 
be seen to be a true generalization 
of type-checking in a hierarchy of 
types. To illustrate the mapping, 
if the predication seel(E,X,Y) has 
the type requirements 

X:animal, Y:physobj, 

then we can give it the precondi
tion 

animal(X)&physobj(Y). 

Given the sentence "John saw a 
star", kcheck will try to prove 

star(Y)&animal(john)&physobj (Y) . 

Given clauses 

man(john). 
star(si). 
physobj(X) <- star(X). 
animal(X) <- human(X). 
human(X) <- man(X). 

this proof will succeed. Condi
tional clauses of the sort given 
correspond to type-hierarchy 
relationships. 

But this method of defining 
kcheck is probably only an approx
imation to what is needed. Working 
with the stripped logical forms is 
not sufficient. And perhaps 
instead of looking merely at prec
onditions, one should in general be 
testing for consistency of the 
logical form with the current know
ledge base. There may be no clear 
distinction one could make between 
the requirements of preconditions 
and the general requirements of 
consistency, although one must be 
concerned with efficiency. (For a 
discussion of the role of consist
ency in information systems, see 
Kowalski 1979). This point of view 
for SEM will be investigated. 
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ABSTRACT 

A Gapping Grammar (GG) has rewrit
ing rules of the form: 

«*I, fO/>(*l)> «!. •••• 

a_„ f»p(*.-i). <>. — 0 
<*,' vr 

G — { }ap{i t). f ap(r?), .... yarfz^t) } 

*. t Vr 

01 nu Vtu
0

'  

where Vr and V,v are the terminal and non
terminal vocabularies of the Gapping Gram
mar. Intuitively, a GG rule allows one to 
deal with unspecified strings of terminal sym
bols called yapt, represented by Zi.Za—>*s-i> 
in a given context of specified terminals and 
non-terminals, represented by 1®«> 
and then to distribute them in the right hand 
side d in any order. GG's are a gencralita-
tion of Fernando Pereira's Ezlrapoeition 
Grammari where rules have the form (using 
our notation): 

ah ;ap(z,), o2, pap(i2),...,pop(x»-i).o« 

0, yap(z l), yapizj), .... pap(*»-i) 

i.e., gaps are rewritten in their sequential 
order in the rightmost positions of the rewrit
ing rule. In this paper we motivate GG s by 
presenting grammatical examples where XGs 
are not adequate and we describe and discuss 
alternative implementations of GGs in logic. 

X. Introduction 
A grammar is a finite way of specifying 

a language which may consist of an infinite 
number of "sentences". A logic grammar has 
rules that can be represented as Horn clauses. 
Such logic grammars can conveniently be 
implemented by the logic programming 
language Prolog: grammar rules are 
translated into Prolog rules which can then 
be executed for either recognition of sen
tences of the language specified, or (with 
some care) for generating sentences of the 
language specified. 

Since the development of the first logic 
grammar formalism by A. Colmerauer in 
1975 (Colmerauer,1975), and of the first size
able application of logic grammars by V. 
Dahl in 1977 (Dahl,1977), several variants of 
logic grammars have been proposed, some
times motivated by ease of implementation 
(Definite Clause Grammars, DCGs, 
[Pereira&Warren, 1980]), sometimes by a need 
for more general rules with more expressive 
power (Extraposition Grammars, XGs, 
|Pereira,198l]), sometimes with a view 
towards a general treatment of some 
language processing problem such as coordi
nation (Modifier Structure Grammars, MSGs, 
[Dahl&McCord.to appear]), or of automating 
some part of the grammar writing process, 
such as the automatic construction of parse 
trees and internal representations (MSGs, 

op.cit; Definite Clause Translation Gram
mars, DCTGs, [Abramson, 1984]). Generality 
and expressive power seem to have been the 
main concerns underlying all these efforts. 

In this paper we present another logic 
grammar formalism called Gapping Gram
mars, GGs, which we believe to be the most 
general to date. We examine three possible 
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implementations, and discuss the adequacy of 
GGs for certain language processing problems 
that cannot be expressed as easily in any 
other formalism. 

GG rules can be considered as meta
rules which represent a set (possibly infinite) 
of ordinary grammar rules. They permit one 
to indicate where intermediate, unspecified 
substrings can be skipped, left unanalysed 
during one part of the parse and possibly 
reordered by the rule's application for later 
analysis by other rules. For instance, the GG 
rule: 

A, gap(X), B, gap( Y), C -» 

gap( Y), C, B, gap(X) 

can be applied successfully to either of the 
following strings: 

A, E, F, B, D, C 

with gaps X = E F and Y = D, and 

A, B, D, E, F, C 

With gaps X= [] and Y = D E F. Applica
tion of the rule yields 

and 
D  C  B E F  

D EF CB 

respectively. We can therefore think of the 
above GG rule as a shorthand for, among 
others, the two rules: 

A, E, F, B, D, C — D, C, B, E, F 

A, B, D, E, F, C —• D, E, F, C, B 

The idea of gapping grammars, as well 
as of the compiler implementation scheme 

iSbv V0nMSeCtiOn 31 Was d^'°P"d i" 
H p ' * 3S a result of examining Fer-

r; ° P/n7aSHWOrk °n Extraposition Gram
mars and finding the formalism limited 
mainly w.th respect to the problem of treat' 

oecause the formalism itself has 

some rather interesting aspects. 
Gapping grammars are iaterrstiug in 

the first place because each mela-rule. some 
what like a restricted version of 
VanWijngarden's two-level grammars shirk 
were used in the definition of Algol 68 
(Van Wijngardrn.1975). represents infinitely 
many specific rules: each gap can be satisfied 
by many strings of terminals: to specify each 
of these unstructured substrings might 
require infinitely many grammar roles in 
other formalisms. Gapping grammars there 
fore cover a wide variety of rewriting situa
tions using very few rules 

Secondly, there seems to be some 
psychological basis to the idea of focusing on 
the next relevant substring during analysis 
and leaving an intermediate one suspended in 
the background of consciousness, to be 
brought bark into the focus of attention 
later, possibly repositioned with other more 
closely related substrings When parsing 
discontinuous constituents, for instance as in 
the course and colloquial sentences "Desmond 
knocked the girl with green eyes down a' 
opposed to "Desmond knocked the girl with 
green eyes up", the human hearer will prob
ably suspend his attention from the inter
mediate string "the girl with green eyes 
until the completing substring to 'Desmond 
knocked", i.e., "down" or "up", is beard, 
repositioned, and comprehended within if® 
interrupted context. 

A third argument for sometimes not 
specifying which constituents should be inter
mediate between two substrings is the fac' 
that there is some empirical linguistic evi
dence in support of the existence of categories 
intermediate between lexical and phrasal 
categories (Radford.I98l|. While these aren 1 

clearly captured as traditional categories in 
linguistic theory, it is possible to compac
tion ally account for them simply by perceiv
ing and naming them as gaps. 

2- Background, Motivation, *D<' 
Definition of Gapping Grammars. 

Logic grammars originated with A-
Colmerauer's Prolog implementation of 
Metamorphosis Grammars as an alternative 
notation for logic programs. They consist of 
rewriting rules where the non-terminal sym-
bols miv K-ax-« J i_ -rxnlira-
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lion may therefor? involve unification. For 
instance, a rule such as: 

np(.Y) -» name(Aj 

can be applied to the strings np(4) and 
np(unnc) yielding, respectively. name(4) and 
nam^annr) but cannot be applied to either 
of the strings nj> or np(x.y). The left hand 
side of a normaliied Metamorphosis Gram
mar rule must start with a non-terminal sym
bol, but may be followed by a sequence of 
terminals (terminal symbols are written 
between / and J), whereas the right hand side 
may contain any sequence of terminals and 
non-terminals, as in: 

MH. M - IM. •• I«i 

(Unnormalized Metamorphosis Grammars 
may contain rules beginning with a terminal, 
followed possibly by other terminals and 
non-terminals; there is no loss of generality, 
however, in restricting oneself to normalized 
MGs. See |Colmerauer.l978|.) Definite Clause 
Grammars. DCGs, are a simplification of 
MGs in that rules are allowed only a single 
non-terminal on the left hand side, as in: 

verb_phrate(X) —• t>erh(.Y, V), object^)') 

Extraposition Grammars (XGs) allow 
the interspersing of gaps in the left hand 
side,and these are routinely rewritten in their 
sequential order at the rightmost end of the 
rule, as in: 

rtl_marktr, gap{X). trace —• 

rel_pronoun, ja/^X)1 (') 

In an XG rule, symbols on the left hand side 
following gaps represent left-extraposed ele
ments (e.g., "trace* above marks the position 
out of which the "noun_pbrase" category is 
being moved in the relativization process). 

Let us briefly examine the step-by-step 
rewriting of a sentence with a relative clause 
to understand how the gapping rule above 
works. Our complete grammar is: 

sentence -> np, vp 

np -> proper_name 

lWe we oar aouuoa tor eoaioteacy Perora'r no-
tUiot (or fip(X) is written " * in the left band 
ride and simply left implicit on the right. 

np -> det, noun, relative 
np -> trace 

vp -> verb, np 
vp -> verb 

relative -> [) 
relative -> rel_marker, sentence 

rel_marker,gap(X),trace -> 
rel_pronoun,gap(X) 

det -> (the) 

noun -> [house] 

rel_pronoun -> [that] 

proper_name -> [jack] 

verb -> [built] 

Applying these rules as graphed below, we 
analyse "the house that jack built" from np: 

np 

det—noun—relative 

I ! 1 1 
the house reljnarker sentence 

I ^ 

|P rh 
proper_name verb np 

jack built trace 

re l_pronoun jack built 

that 

where the gap is "jack built". Notice that by 
adding appropriate symbol arguments to the 
rules, we can carry the antecedent's represen
tation all the way to the constituent from 
which it was moved. Also notice that the 
same grammar, but with a larger lexicon, 
serves to analyse, for example, the sentence 
"the women who built the house , this time 
with an empty gap, and with the trace 
derived from the first np in the relative sen-

tence. 
Thus, XGs allow us to describe left-

extraposition phenomena powerfully and con
cisely, and to arrange for the desired 
representations to be carried on to the posi
tions from which something has been extra-

posed. 
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2.1. Motivation. 

2.1.1. Left extraposition with more 
than one gap. 

While XGs have the expressive power 
just shown, the restriction on how gaps are 
rearranged poses some expressive constraints 
even within the framework of left-
extraposition. Consider for instance the noun 
phrase: 

the man with whose mother john left 

We can consider this noun phrase as the 
result of left-extraposing two substrings from: 

the man [ john left with [the] mother lof 
the man]] 1 

where "of the man" is left-extraposed before 
the and subsumed with it into "whose" 

t*6 ,W,h0u °0mplement is extraposed to 
the left of john left". 

If we wanted to capture these move
ments in a s.ngle rule (which seems a practi
cal way, since they are all related), we might 
express ,t through the somewhat simplftic 
but illustrative rule: ""pusitc 

•»(*). W(J% prep, del, gap{Z), prep(of), np(X)  

- np(X), prep, [whose], gap(Z), gap{ y) 

where X stands for the internal representa 
t.on that is built up from the noun phr^ 
being analysed. A derivation graoh for 
example would look roughly like: 

sentence 

unifies the internal representation X for 'th 
man* with the representation W of the rgkt 
most complement The result of oae partial 
analysis thus spreads to cover all imphcit 
occurrences of the same substring 

preferred gapping 2.1.2. Equivalent, 
formulations. 

I ernando Pereira gives the following 
XG for the language {i*»V}. 

2.1.2.1. Grammar 1. 
'•> «. ba. cs. 

« - >  0 -
*>• gap|X). xb -> |a). as. gap(X) 

bs-> o. 
»>*. xe -> xb. |b|. bs. gap(X) 

cs -> ||. 
•> XC. |c|. cs. 

Other formulations of grammars which use 
gaps are conceivable, however, and it should 
be up to the grammar writer to choose a for
mulation unconstrained by fixed reordering 
rules. The following GG. for example-
describes the same language: 

2.1.2.2. Grammar 2. 
s as, bs, cs. 

as-> (J. 
as -> xa, (a), as. 

bs -> (). 

*a. gap(X), bs -> gap(X). |b|. bs. xb 

cs -> (j. 

*b gap(X), cs -> gap(X). |c|. cs. 

In Grammar I, symbols such as zh can he 
considered as marks for i's which arc being 

extraposed. In Grammar 2, such maris 
can e seen as right-extraposed. Whereas in 

ls particular example our choice may just 
e a matter of personal preference, there are 

,, PS ,'n wb'cb movement is more naturally 
ought of in terms of right rather than left-

toldaP°S"IOD ^ ID ^he man is here that I 
effirie >OU alx>ut")- There also may be 
extran"0^ reasons to prefer a right-
ment °S'ns formulation: in the first imple-
works /°n °r GGSl Gramm" 2 above 

WOrks than Grammar 1. 
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2.1.3. Interaction between different 
gapping rules. 

Consider the language {o"i*c"d™} 
which can be described by the following GG: 

s •> as, bs, cs, ds. 

as-> 0. 
as, gap(X), xc -> |a|, as, gap(X). 

bs -> (|. 
bs. gap(X), xd -> |b|, bs, gap(X)., 
cs -> D-
cs -> xc, |c|, cs. 

ds -> ||. 
ds -> xd, |d], ds. 

This is a perfectly good GG. XGs cannot, 
however, be used in this situation because of 
the XG constraint on the nesting of gaps: two 
gaps mnst either be independent, or one gap 
must lie entirely within the other. 

3. Implementations of GGs. 

3.1. A Compiler: beautiful but dumb. 
Typically. logic grammars are 

translated into Prolog programs by augment
ing each non-terminal symbol with two argu
ments: one argument X which represents the 
input string yet to be parsed, and the other 
argument )' which represents what is left of 
the input string after the rule being applied 
has consumed some of it. We then say that 
the siring .V- Y (read as 'X minus F) can be 
recognired as belonging to the category 
denoted by the non-terminal. Thus, a rule 
such as: 

sentence —• name, verb. 

is translated into a Prolog clause: 

senlence(.Y|,X'J) «— 

namr(Xi,X2), eert(X2,Xj) (a) 

meaning roughly: "there is a sentence in the 
string Afj - Xt if there is an initial substring 
Yj - Xj that can be parsed as a name and is 
followed by a substring A'2 - X3 that can be 
parsed as a verb". 

Terminal symbols do not give rise to 
Prolog predicates, but become instead 
involved in the specification of the input and 
output strings being manipulated by the 
non-terminals. For instance, the rules 

name —*• [mary], 

verb —» [laughs], 

can be translated into the unit clauses: 

name([mar\\X],X) <— (b) 

verb([laughs\X],X) «— (c) 

where (ft) means roughly: "a name is recog
nized in any input string which begins with 
'mary', yielding an output string which is the 
remainder of the input string after consuming 
'mary'". 

Thus, with respect to rules (a), (ft), and 
(c), a query such as: 

sentence([mary, laughs], [[) 

will unify X, with [mary,laughs] and X3 with 
[], proceed to consume a name from X,, yield
ing X2 = [laughs], and then consuming a 
verb from X2, yielding X3 = []. The string 
X! - Xs, i.e., [mary,laughs]- [], has been 
recognized as a sentence. 

Let us now consider a graphical 
representation of this translation process, 
where non-terminals are viewed as labeled 
arcs connecting nodes representing phrase 
boundaries. Rules (a), (ft), and (c) above can 
then be represented as follows: 

j tarae V 

f  mary f  lai  aughs 

[mary!Xl f laughs | x ]  X  

Normalized MG rules accept a sequence 
of terminals after the single non-terminal 
head on the left hand side (since more than 
one non-terminal would result in a non-Horn 
clause). The translation of such a rule to 
Prolog may be represented graphically by 
adding more arcs to the upper part of the 
graph. The rule 

A, [b], [c]-r D, [e], F 

would translate as indicated by: 
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rb.c|X3l b [c|Xjl 

which is the Prolog clause: 

MXi.MXJ) - Wi.[e\XJ), f\X2,Xs). 

Let us now consider a rule with gaps 
and how it should be represented graphically 

as, gap(G), xb -» [a], as, gap(G) 

We can think of a gap C simply as a sub
string of the input that is skipped unanalyzed 
and appended elsewhere in the output string 
Thus, if we denote the appending of G to a 
S "T V5/'"*1' WC CaD rePrese"' this rule graphically by: 

gap(H) v 

The symboI gap{G) jn fact can ^ ^ 

of as a version of append. When fnnd • 
rules into clauses, gap(G) becomes the predf 
cate call gap(G,X„X0), which can be spec fied 
as the appending of G to X0 yielding V In 
other words, the input string X® J, 
doetrdTthed,;;rar L ̂  
expressed in Prolog 2 thUS be 

- a^X,), 

9ap(G,X1,X2), gap(G,X,Xs), zb(X„X2) 
or alternatively as: 

asi/alx0J,X) - as(X0,X1), aPPend(G,X2^), 

oppendf G,XS,X), xb(Xt,X2) 

S C V d l e f t  
body, and We7hereLe °' ^ C'aUSess 

Horn clause subset of fi /ema,D Within the 

too, that this t'^slLlT °fF '0g,r Notice 

tioo of terminals. aon-terminals, ud mi 
Prolog calls ran be exprewed as context 

The compiler shown belo» produces lb 
corresponding Prolog clauses from gapping 
grammar rales by first constrnctuig no 
pseudo-rales. From a rale sack is 

A .  B - C  

where A  is Ike non-terminal head symbol, 
and wkere B is Ike remainder of Ike Ml hand 
side of the rule, and C is Ike right band side, 
it constructs clauses corresponding lo lb 
pseudo-rules 

e_n»nltrm — C 

i_nonlrrm -• B 

where e-nonterm and h_n«n/rrm are pseudo-
non-terminals. In doing so. it also binds lb 
output strings corresponding to both pseodo-
non-terminals. In our example, the clauses 
generated are: 

c_nonltrni/a\XJ.Z) — mf-Vo-A',). 

b_nonterm(X.Z) — g df< (7. A". A',). rl<A'j,/) 

Next it constructs the head of the desired 
clause by using and retrieving the input slid 
output strings from Ike input strings of 
c_nonterm and b_nonterm. In our example 
this yields 

•4HXJ.X) 

The desired clause's body is constructed by 
appending the two bodies of ihc pseodo-
clauses 

"HHXrJ.X) - ur^A,). 

S"riG.X\,X2), gap<«.-V..Y,).ri(.Y|.A':) 

The compiler's full listing is shown below. In 
addition to accepting purrlv syntactic gap-
ping grammar rules, it also accepts gappini 
grammar rules with a superadded rwtsnhn 
component to specify a translation The gen
eral form of such a rule is: 

A, B — C<:>5em 

where Sem consists of one or more Horn 
clauses which specify how semantic attributes 
of the head symbol .4 are computed in terms 
of semantic attributes of C and possibly even 
°f B. The Horn clauses in Sem govern 
traversal of the derivation or parse tree which 
is constructed automatically |Abram' 
son, 1984], Gapping grammar rules which are 
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purely syntactic have the trivial semantic 
unit clause (rue attached to them. The 
predicate form_nodt below creates the deriva
tion tree for the head symbol A by con
catenating the trees for the pseudo-clauses 
corresponding to B and C. 

svnal((A,B -> C<:>Sem),Clause) 
expand_term( 

(c_nonterm- > C<: > Sem),CClause), 
expand_term((b_nonterm->B),BCIause), 
clauseparts(CCIause,CHead,CBody), 
clauseparts(BCIause,BHead,BBody), 
Cllead = .. [c_nonterm,CTree,X,Z), 
Bllead = .. |b_nonterm,BTree,Y,Z), 
A =.. |Pred|Args|, 
form_nod e( CTree, BTree.Pred.ATree), 
concatenf Args,|AT ree,X,Y) ,New Args), 
NewA =.. |Pred|NewArgs|, 
combine) CBody ,BBody ,Body), 
formclause(N'ewA,Body .Clause). 

synal((A,B -> C),Clause) !, 
synal((A,B-> C<:>true),Clause). 

clauseparts((lle3d Body),Head,Body) I. 
clauseparts(llead,Head,true). 

formclause(llead,true,Head) !. 
formclause)Head,Body,(Head Body)). 

combine(true,B,B)!. 
combine(A,true,A) !. 
combine(A3,(A,B)). 

form_node(node(_,Nl,Sem), 
node(_,N2,_), 
Pred,node(Pred,N,Sem)) 
node(Pred,N,Sem)) 

concaten(Nl,N2,N). 

n-
gap(|Word|List|)-> [Word), gap(List). 

concaten([),X,X). 
concaten(|X|L|,M,|X|N]) concaten(L,M,N). 

The beauty of the compiler resides in 
its simplicity and conciseness. The compiler 
is dumb, however, in that the gap predicate 
successively consumes substrings of length 
0, 1, 2,... with no further control than simple 
backtracking as to what should be in the gap. 
Thus, even on simple languages, such as 
{u'i'c*} with relatively low values of n, say 
" = 5, it is very slow. Some more informal 
'ion needs to be incorporated in the gap 
predicate, but this seems to involve dynamic 
information about the state of the computa

tion, and such information is accessible only 
in some Prolog implementations. Another 
alternative which we are considering is to use 
concurrency in parsing; we sketch this idea 
below and are planning a future detailed arti
cle on the subject. 

Although the ideas on compiling GGs 
are due to V. Dahl, credit is due to Michael 
McCord for the actual writing of the compiler 
in terms of pseudo-clauses. 

3.2. Another Compiler: Efficient but 
not general. 

In this section we introduce a class of 
Gapping Grammars which can be imple
mented in Prolog efficiently. This class con
sists of those Gapping Grammars in which 
each gapping rule is of the form: 

a, gap(X), [term]-* 7, gap(X) (A) 

That is, there is only one gap which is rewrit
ten to the rightmost position of the right 
hand side, and on the left there is a single 
(pseudo-)terminal following the gap. This 
class of grammars includes a subclass of 
Pereira's Extraposition Grammars, but also, 
depending on the definition of the gap and fill 
predicates, may include grammars which can
not be handled by Extraposition Grammars, 
such as, for example, a grammar for the 
language {a"bmc"dm}, with m,n>0. 

This class may be viewed as a generali
zation of normalized Metamorphosis Gram
mars. A normalized Metamorphosis Gram
mar rule is of the form: 

a, P -* 7 (B) 

or 
a -* 7 (C) 

where 

a e VN 

/»£ Vi

and 

7 £ V'T (J VN 

The notation gap(X), [term] therefore 
represents a large set of MG rules. 

The implementation technique is based 
on message passing during parsing and rests 
on the following considerations. The terminal 
symbols which occur on the left hand side of 
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XG rules and to the immediate right of a gap 
may be said to be pseudo-symbols in that 
they are generally not expected to occur in 
input strings to be parsed, but are generated 
during parsing to act as signals of some sort 
and are absorbed later in the parse Con
sider, for example, in the XG grammar for 
the language {o"A"c"} the rule: 

as, gap(X), xb -> /a/, at, gap(X) 

The xb is generated to mark the end of the 
gap and to count an occurrence of an /a/ The 
xh u then absorbed by a matching fbj in the 

gap(X), xc - xb, [b] be 

Similarly in the XG for a small subset of 
English, the rule (1) in Section 2 generates 
trace to mark the point from which a noun 
phrase has been left-extraposed, and the rule 

np —*• trace 

absorbs the trace. The introduction of such 
pseudo-symbols, moreover, produces a sliuht 
theoretical problem in that they may occur in 
some sentential forms of fh. 

>.,-<• J",:wz\r'y,v * ~ "*• 
"terminal" .th'S gap 18 followed by a 
ing. ' W<? Wnte inst-d °f -4 the follow-

«, 9ap(X), [term] —• 7 (D) 

and read this: an a in n,„ 
which is terminated by ah4!°a??Xt °f 3 g3f> 

rewritten to a 7 fo,|0wed bbp 

is implicit on the rieht h a ,g P' The 8aP 
Thus our signal Inn, d S'de °f the rul* 
the form (B), (C) or "J?8 are °f 

Signal which closes snrh sending of a 
the predicate 3 83p ,S lnd'cated by 

fil!{ter m) 

which generates (accents) it, 
°ur version of the „ emPty string. 
{«"*"«'} is as fonowirammar fW thp laaSuagge 

s->as,bs,cs. 

aa:;g>ap(X,,[xb]->[aU. 

bsS:>fj(X)''XCj">fi1I(xb)'[b),bs. 

cs-'->fiil(xc),[cJ,cs. 

«->0-
la implemeattng (hit form of GG *e specnl-
i" tfnat predicate at follows: 

»y nal((( A ,gap(\ame).|Snaal) ».>C< :>Sm| 
Clause) :• I, 

expaad_tertn( 
(c_nontcrm-^ 

(C.gap(Signal.\ame))<>Sem), 
CCIause), 

clauseparl»(CClatts*.CHeid.C8od.v|. 
Cllead «•.. jc_aoaterm.CO.Ga.CTree,X.Z|, 
A —|Pred|Arg»|. 
CTree •— aode{gap.|!>ignal.NainrJ.trar). 
f°fm_node{CTree.CTree ,Pred.ATr*e|. 
»Ppend(Args.|GO.Gn.ATfee.X.V|..Vw.tfjs|, 
New A —[Pred|NewArgtJ. 
combinefCBody. 

*ap{.Signal. Name. CTree, Y,Z), 
Body). 

formclaose(.\ew A .Body .Clause). 

«yoal(((A.gap(.\ame).|Sigaal|) -> C|, 
Clause) :- !, 

synal( 
((A.gapfName),[Signal|) -> C<:>M 
Clause). 

In the goal czpani_lerm the Si fail is added 
to the named gap which is placed at tit 
right end of the syntactic portion of the rule, 
since the only context of a rule is of the form 
gap{Name), [Signal], we dispense with 
BClaute and construct the clause for d 
directly; other changes in [orm_noie involve 
the formation of a "tree" to record the con
tents of the gap as a difference list (see 
below), eynal compiles, for example, the rule 

gap(Name), [xc] - /i/frl), [»|, If-
to: 

bs(SO, 
S3, 
node(bs, 

(FillTree, 
b, 
BsTree, 
GapTree, 
node(gap,[xc,Name|,true)|, 

true), 
X, 
Y) :-

fi"(xb,SO,Sl,FillTree.X,Xl), 
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c(Xl,b,X2), 
bs(Sl,S2.BsTree.X2,X3), 
gap(xc,Name,S2,S3,GapTree,X3,Z), 
gap(xc,Name,node(gap,[xc,Name], true), Y,Z). 

The reader will notice that in addition to the 
pair of arguments for the "input* and "out
put" strings (.V,A1,.Y2,X3I Y,Z), and the argu
ment for the parse tree, there is another pair 
of arguments - the "input message stream" 
and the "output message stream" - which has 
been added to all the non-terminals except 
the rightmost instance of gap. These are 53, 
51, 52, and 53, and are added to non
terminal symbols only by the predicate 
lrantlatt_rulc (not shown here, but called by 
tipanijerm. see |Abramson,1984[) which 
processes non-gapping rules. Note that non-
gapping rules are normalized metamorphosis 
grammar rules and are translated as outlined 
in Section 3.1. The ordinary non-terminals, 
such as hi, will neither add messages to the 
input stream nor delete messages from the 
input stream in order to produce a new out
put stream, the input stream will be passed 
to whatever is called, and a possibly new out
put stream will be formed as a result of the 
call. Messages are inserted by gap and 
removed by fiil. Let us examine the definition 
of gap and fill to see how these streams are 
manipulated: 

gap(Symbol, 
Gap, 
nodefgap,[Symbol,Gap] .true), 
StartGap, 
EndGap) :-

Gap = StartGap - EndGap. 

gap(Symbol, 
Gap, 
StackIn, 
[]Symbol,Gap||Stackln], 
node(gap, [Symbol, Gap] .true), 
StartGap, 
EndGap) :-

Gap = StartGap - EndGap. 

fi'USymbol, 
[|Symbol, Gap]|StackOut|, 
StackOnt, 
node(fill, [Symbol, Gap], true), 
EndGap, 
EndGap) :-
Gap = StartGap - EndGap. 

When gap is called with a pair of stream 
arguments, the start of a gap is known. Gap 
is instantiated to the difference list 
StartGap - EndGap, with EndGap uninstan-
tiated. The pair [Symbol,Gap] is added to the 
input message stream to form a new output 
message stream. The Symbol is the signal 
which will indicate the end of a gap. When 
gap is called without the stream arguments, 
as in the last call to gap in the compiled ver
sion of bs, the context is merely being 
checked (please refer to the discussion of 
synal in the previous section) and the input 
and output strings, StartGap and EndGap, 
respectively, verify the extent of the gap. 
EndGap will still be uninstantiated. 

When fill is called, the end of a gap 
with the signal Symbol has been found. There 
must be a pair of the form [Symbol,Gap] at 
the front of the input message stream. 
EndGap is instantiated at this point, and the 
pair is removed from the input message 
stream to yield a new output message stream. 
When EndGap is instantiated, the "trees" of 
the gap and fill predicates, which have been 
made to look like ordinary non-terminals, are 
also instantiated. The trees for both gap and 
fill contain a record of the signal Symbol and 
the gap itself as the difference list to which 
Gap is instantiated. The message streams act 
as a stacking mechanism for unfilled gaps. 
Note that fill accepts the empty string. 

A string is parsed with this grammar by 

a call to: 

s(Source) :-
sfO.fl.Tree.Source,!]). 

which indicates that Source is an s, with no 
input left, and that no messages are left in 
the streams, ie, the stack of messages, ini
tially empty, is empty at the end of parsing. 
A parse tree Tree records the derivation. 
(See [Abramson ,1984]). 

With this definition of gap and fill we 
have a new implementation of a subset of 
XGs- it contains rules with only one gap fol
lowed by a terminal. The compiler for this 
subset, synal above, is somewhat simpler than 
the general processor of Pereira. 

By changing the definition of gap and 
fill however, we can process grammars which 
cannot be handled by XGs. Here is our sig
nalling GG for the language {a b c a ). 
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s->as,bs,cs,ds. 

as.gap(X),[xc]->[a),as. 
as ->[]. 

bs,gap(X),[xd)->[bj,bs. 
bs->[J. 

cs->BII(xc),[cj,cs. 
cs->[j. 

ds->fill(xd),[dl,ds. 
ds->[J. 

We redefine g a p  and fill so tbat Ihe input and 
output message streams manipulate a pair of 
stacks, one to handle ic signals and the 
other to handle zd signals. The gaps can now 
be dealt with independently of one another 
gap(Symbol, 

Gap, 

node(gap,[Symbol,Gapl,true) 
StartGap, 
End Gap) > 

Gap = StartGap - EndGap. 
gap(xc, 

Gap, 
[StackC.StackDJ, 
[[[xc,Gap]|StackCJ,StackD| 
node(gap,[xc,Gap),true) 
StartGap, 
EndGap) 

Gap = StartGap - EndGap. 
gapfxd, 

Gap, 
[StackC.StackDj 
[Stackc,[[xd,GapJ)Stack 

EndGap) 

Gap = StartGap - EndGap 
aiif.xc, 

ifSic1£rDl,0,'SMD|' 
EndGap) > 
Gap = StartGap . EndGap 

fi!I(xd, 

teasr"—* 
EndGap) 

Gap — StartGap • EadCnp 

The general GG nnpletnealitni is ttn 
powerful and taefiriral. this unplerociiiira 
although not general. is more rfirirnt: u<jit 
at the cost of some programming of the /i, 
and fill predicates by the grammar writer, 
extendable to classes of granatin sit) 
independent gapping systems which cannot 
be handled by XGs It is interesting that 
subclasses of GGs caa be paramrteriinj bt 
data structures one may think of trxing to 
characterise the subclass of GGs with a queer 
(deque, tree) implerneotation of |if and fH 
for example. 

A complete tisliag of these Prolog 
implementations is available from II Abtim-
son or V. Dahl 

3-3. Toward* a concurrent Implementa
tion of gapping grammars. 

The beautiful but dumb compiler is 
inefficient because of the w*y it tries to 
establish what is coo lataed ia a gap. It ami-
lates the n on-deterministic breaking op of the 
input string into the contents of the gap and 
the unconsumed output siring by trying one 
solution of npprnd)Gtp,Output,Input), back
tracking to the next solution if the first is no! 
suitable, and so on. A concurrent implemen
tation might, however, proceed as folio*-'. 
^or each solutioa 
apptndfGap, Output.Input) a copy of the pro
cess which represents the state of the parse so 
ar is created. Each of these processes is a 

clone of the original process up to the call of 
!aP- Each process continues, however, with 1 

d,fferfnt solution *> 
aPpmd(Gap, Output,Input). Those processes 
w ich have not been given a solution which 

Perm't the parse to continue will eveutu-
a y die. Those processes which have been 
given a solution which allows the parse to 
complete will each be left suspended at the 

with a derivation tree representing the 
uceessful parse. (Note that this notion of 

Process is similar to the notion of process 
Used ,n ''•e Unix operating system.) 

to h Strau?sy to work, it will be necessary 
aer a% P a mcta-logical predicate which gives 
Thi«SS.'° ")e state °' a Prolog computation, 
p . rateg> utilizes independent sequential 

ba„dLPr0TSSe5 " ,he pars,n«' "cept Wk° 
dentK « gap' Proceeds by top-down, 

r®1 search with backtracking. An 
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alternative strategy would be to develop an 
entirely concurrent implementation of gram
mars. 

The authors plan to investigate whether 
Concurrent Prolog [Shapiro, 1983], the distri
buted logic of |Monteiro,1982], or Epilog 
[Percira,1982j, [Porto,1982) could easily 
specify such implementations of Gapping 
Grammars. 

4. Discussion, work In progress. 

4.1. Advsntsges of gapping grammars. 
GGs, although theoretically no more 

powerful than MGs - which have the compu
tational power of a Turing machine - have 
more expressive power than MGs in that they 
permit the specification of rewriting transfor
mations involving components of a string 
separated by arbitrary strings. The expres
sive power lakes the form of conciseness: one 
does not have to give a rule or rules for the 
generation of the intervening string, but 
rather a single meta-rule involving gaps 
replaces a possibly infinite set of non-gapping 
rules. 

One aspect of GG expressiveness has 
not yet been fully explored. GGs, like MGs 
and XGs, allow Prolog calls in the right hand 
side of a rule, but unlike them, GGs allow 
Prolog calls in the left hand side of a rule 
(refer to rynal above to see why this is so). It 
is possible therefore to write GGs which can 
establish context checks dynamically during 
parsing. 

The compiler for GGs - our second 
implementation - provides an alternative 
implementation of a restricted class of extra
position grammars, but also, depending on 
the definition of gap and fill, provides the 
grammar writer with a mechanism for writing 
rules which go beyond the nesting constraints 
of the XG formalism. Our example above 
shows bow to deal with two independent gap
ping systems: the extension to the general 
case is obvious. Another possibility is to 
parameterize classes of grammars by the data 
structures used to implement the gap and fill 
predicates, for example, by queues instead of 
stacks, etc. Another extension lies in permit
ting the signal to be parameterized, i.e., 
instead of having rules of the form (D) with 
'erm a functor of zero arity, term might be a 

functor of positive arity. This would permit 
more sophisticated gap handling by the gap 
and fill predicates. 

4.2. Limitations. 
In some cases GGs may prove, however, 

to be too powerful. Consider, for instance, 
the following grammar which one naively 
might think suitable for checking that input 
strings are balanced with respect to ( and ): 

left, gap(X), [')'] -> ['(']. gaPPO-

s -> left, [')'], gap(X), s. 
s - >  [ ] •  

With this grammar, strings such as 
(a + ( b + c)) and ((a + 4) - (c * d)) / / are 
recognized as balanced, but also a string such 
as (a + b is recognized as balanced. The rea
son for this error is that nothing in the gram
mar precludes the gaps from containing 
parentheses, so that unbalanced parentheses 
will be absorbed into gaps. The grammar 
can, of course, be modified so that only those 
strings which are balanced with respect to 
parentheses are accepted, but it seems 
appropriate for the grammar formalism to 
provide the user with a convenient means for 
constraining the gaps. It would be interest
ing to determine how much of an extension 
along these lines could be usefully provided 
without falling into the trap of describing the 
complement of a language. 

Another approach to be investigated 
with respect to too general a notion of gaps is 
allowing strings not in the language to be 
generated, these strings to be subsequently 
filtered out by another process. Primitives 
for describing filters would then be necessary. 
In natural language applications, a mixture of 
both approaches may be needed. Both con
straints and filters have already been pro
posed in Chomsky's Extended Standard 
Theory (see references in [Radford,1982]), 
and it would be interesting to study ways of 
constraining and filtering GG rules in the 
light of this theory. 

4.3. Work In progress. 
We have only tentatively sketched a 

concurrent implementation of GGs. Details of 
this strategy have to be worked out and 
specified in Prolog, Concurrent Prolog 
[Shapiro, 1983], the distributed logic of [Mon-
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teiro,1982), or Epilog [Pereira. 19821 
[Porto,1982). Ideally, a parallel architects 
should support a concurrent GG system. 

Another implementation of GGs which 
we are exploring is an interpreter which 
works with derivations directly rather than 

Bv !hfs ft,'?* ^ DOD^rm,naJ Procedures 
By this method, we would for a rule such as 

8  b f ,  C B  

r:::r:r: t ibe° **• tht° 
a list of goals which would represent a sen
tential form. The original list of goal, , 
wo» d be repl3ced by a )ist of goafa 

Context sensitive rules would involve m>„; 

sPee if°Dso!nthe Sfnt",ial r̂m to" 

derive the desired coZxt.^ 

.» G"G;" "i-
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ABSTRACT 

Logic programming languages 
have inherent possibility for 
AND-parallel and OR-parallel ex
ecutions. Concurrent Prolog de
signed by E.Shapiro introduces an 
AND-parallel ism and an limited 
OP-parallelism, i.e, a don't-
care-nondeterminism. The other 
aspect of OR-parallel execution, 
i.e, don't-know-nondeterminlsm is 
formalized as an ' eager_enumerate' 
operation on a set expression. 
This paper describes a computa
tional model which provides the 
eager enumerate function to Con
current Prolog and shows its im
plementation in Concurrent Prolog 
itself. This paper also shows a 
lazy enumerate function can be im
plemented easily by introducing a 
bounded buffer communication tech
nique to the eager enumerator. 

1. INTRODUCTION 

A growing area of research in 
highly parallel processing covers 
computer architectures, program
ming languages and computational 
models. One of the best cand
idates for a high level machine 
language for highly parallel pro
cessors is a logic programming 
language which represents AND and 
OR relations between predicates. 
Logic programming languages pos
sess inherent potential for paral
lel processing, that is, AND-
parallel and OR-parallel execu
tion. 

Based on this concept, several 
parallel programming languages 
have been proposed: such as KL1 
(Furukawa et al. 84), Concurrent 
Prolog (Shapiro 83), PARLOG (Clark 
and Gregory 83) and Bagel machine 
language (Shapiro 84). Researches 
in parallel programming are being 
conducted using these languages. 
In these languages, AND-paral
lel ism is used for the description 
of parallel processes, which is 
based on the process interpreta
tion of logic (Emden 82). 0R-
parallelism has two aspects, the 
so-called don't-care-nondeter-
minism and don't-know-nondeter-
minism (Kowalski 79). The don't-
care-nondeterminism is adopted in 
all the languages mentioned above. 
However, the don't-know-nondeter-
minism is introduced only in 
PARLOG and KL1 where it is used to 
find multiple solutions for a 
query. PARLOG and KL1 use a "set 
expression" as the interface 
between AND-parallelism and 0R-
parallelism (don't-know-nondeter-
minism). 

In this paper we regard the 
OR-parallelism for finding all 
solutions as enumerating elements 
of a set in the same way as in 
KL1. This paper describes the 
•enumeration' in Concurrent Pro
log, which the implementation of 
the OR-parallel execution in the 
AND-parallel execution. An 
advantage of this approach is that 
both AND-parallel and OR-parallel 
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execution can be achieved within a 
small basic framework of Concur
rent Prolog. This implies a dec
rease in the complexity of the ar
chitecture and in the amount of 
hardware required in the parallel 
machine. 

Various models for parallel 
processing of logic programs are 
proposed from the computational 
model viewpoints. Nitta and 
Conery described parallel inter
pretation methods based on an 
AND/OB process model (Nitta et 

83)' CConery 83). Haridi 
proposed a language based on 
natural deduction, which covers a 
wider class of statements than 
Horn Logic (Haridi and Sahlin 83). 
iodel^h Pr°P°Sed 3 conPutational 
model based on multi-processing 
and graph reduction mechanism 
(Hirakawa et al. 83). In "h^ 
paper, a computational model for 

and °n multi-Processing 
and message communication betweeA 

j. * 

Based on this model w 
implemented a Pure PrAt « Ve 

Preter in DEC-20 fnn 8 inter~ 
(3h.„lro 83, ® ssLT;Lpr°loE 

ssr: J1™""" •»»»«.bivT 

communicatio^portion used in^h" 
interpreter with K 5 n the 

communication imni 0 ed. buffer 
by adding Bom„ ementation and 
lazy interpreter wh^ changes» 
accordance with d W°rks 

easily obtained^ 

a 
in 
be 

Section 2 of th.-,. 
Plains the ? paper ex-
meration-. s J°n°ept 'enu-
fche computational°nmod describes 
implementation in 

log. Section A describes Use toi-
lflcatlon of the interpreter fnx 
the eager version to the laiy one. 

2. EMUHERAT TOMS 

An Interface between AND-paral-
lellaa and OR-pa rail el isa (a 
don't-know-nondetereinise) is ifr 
troduced using set expressions it 
PARLOG and ELI. A set expression 
has the syntax such as: 

CX IT| where X is a ten am) 
T is a goal sequence 

In ELI f the basic operation on 
a set is an 'enuaerate' operation. 
In this paper the same expression 
is introduced in Concurrent Prolog 
as in ELI. 'Enumerate* is sialic 
to the 'bagof' operation in DEC-10 
Prolog (Warren 81). 

Prolog : bagof(X.I,Collection) 
Concurrent Prolog : 

enuaera te( {XlT),Streaa) 

The meaning of the 'bagof 
literal above is "Collection is 
the collection of terns of the 
Torm x, which satisfy the goal 
sequence T". in Concurrent 
log, 'Stream' in the 'enumerate' 
clause is the same as 'Collection' 
in 'bagof' logically, but it is 3 

stream of terms rather than a 
simple collection. This is 3 

natural interface to an AND-paral-
lei process. 

There are two types of streams. 
°ne is an uncontrolled stream and 
the other is a controlled stream. 
'Uncontrolled' means that once 
'enumerate' is called, its output 
stream is never stopped until all 
the solutions are generated. 
the other hand, 'controlled' means 
that the generation of the solu
tions is invoked by a demand of 3 

Process outside of 'enumerate'-
The former type of enumeration is 
called 'eager enumeration' and the 
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latter 'lazy enumeration'. The 
eager enumeration is used for 
finding all solutions to a data
base query and generally requires 
many computation resources, while 
lazy enumeration is used for find
ing a part of the solutions which 
satisfy some requirements of other 
processes. The eager and lazy 
computation mode for the 'collec
tion' is introdeced as primitives 
for the control of logic program
ming (Kahn 81). The following are 
simple examples of lazy and eager 
enumerations. 

Eager enumeration s "display all 
countries with a population of 
more than one hundred million" 

Goal: eager_enumerate( 
(Nam |country( Nan, Capl, Pop), 

Pop>100),Str), 
display_stream(Str?). 

Lazy enumeration : "display three 
countries with a population of 
more than one hundred million" 

Goal: lazy_enumerate( 
{Nam|country(Nam,Cap, Pop), 

Pop>100),Str?), 
display(Str,3). 

In the above examples, 'enu
merate' and 'display' run in 
parallel (concurrently). In the 
former example, 'eager_enumerate' 
produces a stream of country names 
and 'display_stream' displays them 
in turn. In the latter example, 
'display' sends three demands for 
solutions to ' lazy_enumerate' and 
'lazy_enumerate' produces them. 

3- EAGER RNHMFBATTfiM 

The eager enumeration is pro
vided by a Prolog interpreter 
which computes subgoals serially 
and clauses in parallel. In this 
section, a computational model for 
an eager interpreter and its im
plementation in Concurrent Prolog 

are described. 

3.1 Computational Model 

3.1.1 Components 

The computational model for the 
eager interpreter consists of 
three components: processes, 
channels and a Horn Clause 
Database (HDB). 

A process plays a key role in a 
computation. An arbitrary number 
of processes can be generated in a 
system. A process corresponds to 
a clause being computed, such as 
H< G1,G2. There are two types of 
processes, that is, active and 
waiting. The waiting process 
waits until it receives data from 
another process. 

A channel is a communication 
path between processes and is 
dynamically generated during the 
computation. Data transferred 
through a channel is called a mes
sage. A message is passed from a 
process called a "generator" to 
processes named "consumers". The 
distinction between a generator 
and a consumer is relative, and a 
single process can simultaneously 
play both roles. One generator 
process can simultaneously send a 
message to multiple consumer pro
cesses via a channel. Similarly, 
one consumer process can be con
nected to multiple generators. 

The Horn Database (HDB) is a 
set of Pure Prolog clauses. A 
process can fetch a set of clauses 
which have heads unifiable with a 
certain term. A fetching opera
tion about term P is called a 
"P-related fetch". 

2.1.2 Process Operation 

In the computational model 
given here, computation progresses 
while multiple processes are ex-
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changing messages. This subsec
tion provides a more detailed 
description of the process, shows 
a simple example, and presents the 
execution mechanism of the com
putational model. 

A process is defined by five 
components: Status, Head, Goals, 
Input-Channel, and Output-Channel, 
as shown in the following format: 

process(Status,Head,Goals,IC,OC) 

'Status' indicates the state of 
a process and is either 'active' 
or 'waiting'. -Head' is a predi
cate (term) and represents what 
the process must eventually com
pute. 'Goals' is either null, 
true* or a sequence of predicates 

and indicates the predicates to be 
computed to compute the Head. For 
example if the HpB includes 

a<--b,c , there may be the 
iollowing process: 

process(Status,a,(b,c),IC,OC) 

ias^h^n0"' if the Plicate b has been computed, there may be a 
process as follows: 

proeess(Status,a,(c),IC,OC) 

A 'channel' is used t t 

po — Process sppcsrs 
~i ror "• 
generator for itr/outn'f"3 38 3 
(OC). output channel 

tion of' a^rocess^6^ine th6 °Pera" 

(A) Active process 

pro2L°pj~t;!s.r* °r 

termination Tr reduction or 
tbe lefSSt ^uCTor0: re' 
is expanded usinp ?nrl clause 
in HDB; the 1 renCe rule= active process is 

maintained after the reduction is 
completed. By contrast, tenis-
tlon means that Inference reaches 
'true' or the application of u 
Inference rule falla; in bote 
cases, the process la imnediatel; 
deleted. 

flBfiTAtlan ln.rcgiisUon wit 
Assume process(acti*e,H,G,I,0). 

If G is neither null nor 'true' 
and G is in the fora of either P 
or (P,...) where P is a predicate 
defined in the HDB, then the pro
cess performs a P-related fetch to 
the HDB to obtain a clause set, S, 
generates active processes for all 
the components of S, and connects 
each process with itself through 
Channel I (each process functions 
as a producer). It also changes 
Its status to 'waiting'. 

Operation in f.fpupation aodf 
There are two types of ter

minations: success or failure. ' 
success termination occurs 
reduction reaches true, 1 

failure termination occurs when t 
fetch operation fails. The fell" 
ure termination corresponds tc 

Prolog's 'fail'. 

Success tfnrinaUP" 
When G is either null or true, 
the process sends H via cbanne 

Failure tent! na tier 
The process deletes itself-

(B) Waiting process 

uessage 

ing 
of 

Having received a 
(term) M via channel I, a waitiW 
process generates G', a copy 
its Goals G, in the format P' 0 

(p,t P1,...), and unifies the he« 
element P' with M (transfer of » 
computation results) Then, it eJ* 
tablishes NewG, which is G' W1 

its head element re*^-
However, when G' contains only ' ' 
NewG will be true. Then, tn 
"siting process generates tr' 
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following active process: 

process(active, H, NewG, X', 0) 
Where I* is a new channel. 

The waiting process will be 
maintained in the original form. 

The entire computation ter
minates, when all the processes 
are deleted. 

3.1.3 Computation Example 

This subsection presents a 
simple example to show the way the 
computational model is executed. 
In the following figures, the ac
tive process p, the waiting pro
cess q and the channel c are 
denoted by r )d. I la and 

<—c—, respectively (p, q and c 
may be omitted). The Head H and 
Goals G are shown as H<—G. 

Assume that the HDB is given as 
follows: 

{ ap( [),X,X). 
ap([U|X],Y,[U|Z])<--ap(X,Y,Z) ) 

To compute [X,Y] that satisfies 
a goal ap(X,Y,[a])f the following 
process is generated as the ini
tial process: 

, c0 <[X,Y]<-ap(X,Y.[a])) pO 

A message output through eO is 
ie solution. Since pO is an 
:tive process, it performs a 
itch operation and generates new 
•ocesses, pi and p2, and then 
langes its status from active to 
liting. 

cO 
pO 

[X,Y]<—ep(X,YJa]) 
p1 

-Cap(n.[a1.[»])<-true) 
P2 

—f ap([»|X],Y,[a])<—ap(X,Y,LJ)J) 

There are two active processes. 
Each process runs simultaneously. 
As p1 has a terminated clause, it 
sends the head of the clause and 
deletes itself; pO receives mes
sage 'ap([],[a],[a])' and creates 
a new process p3; p2 performs a 
reduction mode operation and 
produces a new process ph. 

An active process pi sends the 
message ' ap( [],[],[ 1)' to P2 anc^ 
deletes itself. Receiving the 
message, p2 creates a new process 
p5 and deletes itself because it 
has no child process; p3 sends 
•[[],[a]]• (the first solution) to 
cO and deletes itself. 

pO 
[X,Y]<—ap(X,Y ,[a]) 

p5 
-fap(ra],[].[a])< true) 

P5 sends the message 
*ap( [a],[ ] , [a])' to pO and deletes 
itself. PO produces p6 and 
deletes itself. 

<-^-Crral,ri1<--true)p6 

P6 sends message '[[a],[]]' 
(the second solution) to cO and , 
finally, deletes itself. 
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3.2 Eager Interpreter 
Implementation 

3.2.1 Eager Interpreter 
in Concurrent Prolog 

Concurrent Prolog adopts AND-
parallelism to describe concurrent 
processes and OR-parallelism to 
describe nondeterministie actions 
of processes (don»t-care-nondeter-
minism). In Concurrent Prolog, 
once a clause is selected, the 
choice of other clauses is 
ignored. Concurrent Prolog pro
vides interprocess communication 
mechanism (shared-variable) and 
process synchronization mechanism 
(read-only-annotation). 

With the computational model 
implemented in Concurrent Prolog 
a process is expressed by the 
following term: 

process(Status,OutputChannel, 
InputChannel,Clause) 

A generation of a process is 
performed by parallel AND's such 
and 'r°C?SS:-Proc^1,process2., 
and a deletion of a process is ex-
oe®® , tericinati°n of the pro
cess, 'process:-true' A i 
is implemented by shared variables 
and process synchronization is 
t2n a^ read-°nl* annota-

Although not shown in this 

paper, our system constructs the 
KDB using a Beta representation, 
'ax(Horn clause)', in the internal 
database of Concurrent Prolog. 
Flg.1 shows the program of the 
eager interpreter. 

(pi) to (p3) define the behav
ior of active processes, while 
(p4) and (p5) define that of a 
waiting process. 

(p1) performs reduction. The 
predicate 'reduce' checks whether 
or not the first element of the 
subgoals in 'Cls' Is defined in 
the HDB. When the first eleaent 
is not found In HDB, the predicate 
•reduce' fails. When the guard 
portion of (pi) succeeds, two 
predicates in the goal portion, 
'process' and 'process_fork', are 
executed in parallel. 'process' 
is the original process in waiting 
mode, and '?• is attached to the 
variable ' IC'. • proeess_fork' 
generates a new active process for 
each newly fetched clause, 
'merge' predicate is used for con-
structlng a channel between a 
parent process and its child pre-

cesses. Note that this merger 
deletes itself, when one input 
channel is closed. 

(p2) corresponds to a proces-
in a termination aode. The predi-
cate 'terminate' checks that 'Cls 

P1) process(active,OC,Cis) reduce(Cls NxGll . 
Pr'ocessfwait or tro m \ lst"*Gl) j 

P  '  P r c , c ess(active,[Messl rn*5 'Pr°cess_fork( IC,NxGl). 
P3 process(active, [ 1 da? • IZ terminate( Cls,Mess) ! true. 
P4) process(wait,OC, [Mess'C11 ^h3rvi3e 1 true-

Process(wait,OCl :T newclau«(Cl3 tMeSS,NewC) ! 
Process(active QCP 'l *3) 'Berge(oc1?.°C2?,0C), 

Pr°cess(wait,[],[].Cls? * 
process_fork(0C Goalh . 
forks([ ],[]). ' clauses( Goal, Clses) | f or ks(Clses,OC). 
forks([Clause!R],0C) •-

,UC) ,forks(R,0C2). 
J^^^^tnterpreter Prograffl 
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is in the format 'X<—true'. The 
second argunent '[Mess]' specifies 
that the message is sent to 'OC' 
and the active process is ter
minated. Then, the process 
deletes itself. 

(p3) shows the operation of 
active processes in which further 
reduction has become impossible. 
(p3) deletes itself closing the 
output channel. 

In (pi), the Input-Channel is a 
read-only variable; when a value 
is instantiated to the variable 
(i.e, when a message is received), 
the process starts operating. The 
predicate 'newclause' generates a 
copy 'NewC' from the original 
clause 'Cls' according to the 
waiting process operation defini
tion mentioned in 3-1-2. The goal 
portion of the program specifies a 
new process generation with the 
new clause and the original pro
cess to remain as it was. The 
output channels of these two pro
cess ('0C1' and 'OC2') are merged 
into the original output channel 
'OC'. 

(p5) is for a waiting process 
with a closed message stream, 
which means that all the child 
processes have completed their 
Jobs. The waiting process deletes 
itself closing its output channel. 

Using this Interpreter, the 
eager enumeration can be con
structed as follows: 

eager_enumerate({XjY) ,Str) :-
process( active,Str, (X<—Y)) • 

As described above, a computa
tional model can be written in 
Concurrent Prolog very easily, 
because of its high descriptive 
capability. This also shows that 
OR-parallel ism can be implemented 
by AND-parallelism. 

3.2.2 The Refined Version of 
The Eager Interpreter 

The eager interpreter described 
above is the direct implementation 
of the computational model in sec
tion 3.1. This implementation 
utilizes a 'merge' network for 
message communication. The merge 
predicate merges two streams non-
deterministically to provide a 
characteristic of a channel where 
every child process can send a 
message to its parent independent 
of other child processes. 
However, the merge network has two 
drawbacks: it consumes a certain 
amount of the resources since a 
'merge' is also a Concurrent Pro
log process, and the message 
transfer takes relatively much 
time because the message is sent 
via more than one merger. By 
eliminating the nondeterminacy of 
the message transfer, we can con
struct a more efficient eager 
interpreter without the merge net
work. 

The basic idea of the new ver
sion is to use D-li3t and linear
ize the channel. In this version, 
an input channel of a parent pro
cess is the concatenation of the 
output channels of its child pro
cesses. To achieve this feature, 
a reduction of an active process 
is changed as follows: 

pr(active,OCs,OCe,(m< a)) :-
pr(wait,OCs,OCe,IC1?,IC,(m<--a)), 

pr(active,IC1,IC2,(a<—b1)), 
pr(active,IC2,IC3»(a<—b2)), 

pr(active, ICn, IC, (a<~bn)). 

The first goal of the above 
clause specifies the parent pro
cess and the rest specifies its 
child processes. Each active pro
cess has both the output channel 
of its own (second argument) and 
its successor's output^ channel 
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clause is selected, eacb child 
process computes its solutions to 
attach them to its output channel. 
Fig.2 shows the situation that the 
child_process1 produced two solu
tions, child_process2 produced one 
and the parent_process has re-
ceived one solution 'solll'. When 
a child process puts all the solu
tions into its output channel, it 
concatenates its output channel 
and its successor's channel. The 
parent process receives messages 
the h

exrutes lt£ 
°Peration until 

the head pointer reaches the tail 
pointer of its inn„t u 
When it fcerminatls, a parent^prol 
cess concatenates its output chan-
bê ausT tE" °f itS 3UC~"-

Socessr°CeThi?re^e ^^"hparent 
the ordering of sorSSnf^'^J 
as OR-parallel execution. 
4* LAZY 

Lazy^interpreter ^ 
fication of the' S? " 3 nc,di-
scribed in sectLc^^*' de" 

functironr°VldeS thS l3Zy enumerate 

solution^LTglvefgLr0^068 3 

according to the d ®oal sequence 
the othei dnmand frOE °ne 

Processes. Then the^inf ProloS 
suspends the interpreter 
receives the next d Until ifc 

the interpreter re deoand- When 
demand, it should re^se 3 "kil1" 
sources and terminafcsa the^re-

regardless of Its computational 
state. To Implement the deaacd 
driven aechaniaa, the way of 
deaand transfer and execution sus
pension control should be estab
lished. These ere achieved by 
bounded buffer coouunicatioo 
aethod in Concurrent Prolog 
(Takeuchl and Purukawa 83). 

*•1 Bounded Buffer 

The Interprocess communication 
Is provided by the shared vari
ables in Concurrent Prolog. Send
ing a aessage Is instantiating a 
shared variable to the aessage. 
Since one instantiation corre
sponds to one aessage transfer, a 
r*w shared variable aust be 
generated to continue the COMU-
nication. According to Talceuchi, 
unbounded and bounded buffer coe-
ounications can be supported in 
Concurrent Prolog. 

The bounded buffer cooounica-
tion is achieved when the aessage 
receiver generates new shared 
variables. The followiig is a 
simple example of the bounded buf
fer communication with buffer 
length 2. 

G°al :: integers(0,[X,T|N?])i 
outstream( [X, T'N]\H) 

integers(X,[X!MJ) 
T := X+1 | integers(I,H)-

outstream([X!H]\[P|R?]) 
wait(X)4write(X) I 

outstrean(M\R). 

Integers' generates an integer 

Parent-process 

Child-pro 1 Child-pro2 Ohi.d 
fsom ^ \ \ 53-,ld^ro3 Child-pron 
[soli 1,sol12,X] [sol21^V] \ ̂  \ 

'i « O mv 
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stream. ' Outstream' outputs the 
elements of the stream. The 
symbol '\' is an infix operator 
which is used to write a head and 
a tail of D-list in one term. The 
call of 'integers' contains vari
ables 'X,Y' which specify a buffer 
length of two. Process 'integers' 
can instantiate 'X' and 'Y' to 0 
and 1 respectively, but cannot 
bind 2 to the variable 'N' because 
of its read only annotation. This 
process waits until the variable 
*N' is bound. On the other' hand, 
process 'outstream' waits until 
the 'integers' process binds the 
value because of the predicate 
'wait(X)'. When the variable is 
bound to 0, 'outstream' writes the 
value and enters the recursive 
call. At this moment, a new vari
able ' P' is attached to the end of 
the communication channel because 
the tall of the channel (variable) 
is bound to ' [P JR?]' in the head 
of 'outstream' definition. This 
instantiation enables the 
'integers' process to continue the 
processing. 

enables the receiver process to 
control the sender process. At
taching an uninstantiated variable 
to the tail of the communication 
channel corresponds to the demand 
transfer from a receiver process 
to a sender process. Lazy enu
merator communicates with other 
Concurrent Prolog processes via a 
bounded buffer as follows: 

Goal lazy_enumerate({X!Y},[UIV?]), 
receiver([UiV]\V) 

A 'kill' demand to an enumera
tor is to close the communication 
channel by binding '[]' to the 
tail of a channel. 

H.2 l.azv Interpreter 
Tmnl ementation 

Lazy Pure Prolog interpreter is 
obtained by changing the charac
teristics of the eager one as 

follows: 

1) Replacing each communication 
channel from an unbounded buf
fer to a bounded buffer. 

The bounded buffer technique 2) Using a linearized channel in-

p1) process(active,[ ],[ ] ,Cls). 
P2) process(active,OPs,OPe,Cls) :- reduce(Cls,NxGl) , 

process(wait,OPs,OPe,[B jN]\N,Cls), 
process_fork( NxGl, [B |N?] ) • 

P3) process(active,[Mess!R],R,Cls) :- terminate(Cls,Mess) , true, 
pt) process (active, OPs, OPs, Cls) :- otherwise I true. 

P5) process(wait,[ ],[]#[] \—»—..., m-• ̂pndi' ! true* 
P6) process(wait,OPs,OPs,[M|_]\_,Cis) wait(M) A M- $end$ , 

P7) process (wait, OPs, OPe 1 ,[Mess |C1 ] \R, Cls) .-
wait(Mess) 4 newclause(Cls,Mess,NewC) i 

process(active,OPs,OPe,NewC) 4 
transfer_demand(OPe?,R,S) 4 

I rorks(Clses,OPs). 

f 1) forks(_,[]). 
f2) forks([],[ '$end$' !_])• 

transfer_demand( [_!_),[P|S7] ,S) . 
transf er_demand( [],_,[])• 

Fig.3 Lazy Interpreter Program 
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stead of a merge network. 
3) Adding process operations for a 

kill demand. 

Fig. 3 shows the program 
lazy interpreter. of the 

(p1) to (p4) define the behav
ior of active processes. The 
second argument of an active pro-
thfn/8 ltS °UtpUt channel and the 
third argument is its successor', 
output channel which is needed for 
linearazing a channel as mentioned 
in 3.2.2. When an active process 
is generated, its output channel 
is bound to '[BIN?]' or 

manipulation lr r°r 

whion apacifi.a tfl, ter„lratj;^ 
active process. (p2) to 

correspond to the defi^ti^s P^ 
interPneter. (p2) 

in 
spec-

mode where"new"childPeduce 

generated an?t U c ^T563 are 

oranges its status to 'wam^f binding '[B|R?T ° waiting-
channel. This hind- d inPut 

«. SlVS. * ' 
shows a demand transf^ Trt 
Parent process to its ohn/ 3 

cess. Predicate f hild Pfo-
executes 'clauses' PI"andSS~f°rk' 
'forks' which is t- calls 
Processes. ^ generate child 
«»n in «onSu.dPr~»" f 

r mechanl» at/, e bounded buffer mechanism (tbf b°URded 

«•« or .rSa" sS!nd "*«-
generation of second 

[X|V?] 
(^active-pr ocess^i 

u 
^ [X|Y?1 

u 
^ [X|Y?1 

waiting-process 
j [B|N?]^ 

child-process 
F'g-4 The demand transfer 

second 
is 

postponed until the next demand Is 
detected, (fl) specifies the be-
hsvior of 'forks' when * desaod is 
to kill one. The serial-AM ii 
(f3) specifies that a recursite 
'forks' caill should be tried after 
one process terminates. This is 
for only the efficient iapleaenta-
tlon in DEC-20 Concurrent Prolog 
which doesn't have a non-busy-wit 
mechanism. 

(p3) and (p4) define that an 
active process terminates con
catenating its output channel and 
its successor's (a unification of 
the second argument and the third 
one). 

(P5) to (p7) defines the opera
tion of waiting processes. (p5) 
which specifies a process termina
tion is for a kill desand. W>et 
the message sent via its input 
channel is 'lend*', a waiting pro
cess concatenates its output chan
cel and its successor's and ter
minates itself. The aessage 
'*end|' means that all child pro
cesses of a waiting process are 
terminated. (P7) specifies a 
waiting process operation when it 
has received a solution. Fig-5 
shows the configuration of an out-
Put channel of a waiting process 
and that of a new active process. 
Output channel 'OPe' will be at
tached to the tail of the output 
channel of 'new process' when it 
terminates. Predicate 'trans-
fer—demand' in (P7) transfers a 

. t* IV?] , , 
I waitlng-proc«ss | 

[solution (N?l 
1 - child-processes 

new process *) / ^^e J v waiting-process 

child-processes 



99 

demand, for example, the waiting 
process in the above figure in
stantiates 'N« to ' [ B' |N'?] ' or 
'[]' according to a demand it 
receives. 

Osing the lazy interpreter, 
'lazy_enumerate' i3 defined as 
follows: 

lazy_enumerate( (X (Goals) ,OPs) :-
process(active,OPs,OPe, 

(X<—Goals)) 4 
sendend(OPe?). 

sendend( [end_of_solution |_]). 
sendend([]). 

'Sendend' sends message 
'emLof_solution' when a demand 
number exceeds the total number of 
the solutions. The demand-sender 
process receives 'end_of_solution' 
instead of a solution when it has 
received all solutions. 

The interface between 
'lazy_enumerate' and other Concur
rent Prolog process is a bounded 
buffer. 

5. PiscnssmN 

To realize don't-know-nondeter-
minism, an environment of variable 
bindings must be maintained for 
oultiple solutions. The inter
preter described in this paper 
retains the environment by copying 
a clause, that is, a waiting pro
cesses copies its clause when it 
receives a message. A simple 
copying method has drawbacks on 
both space and time efficiencies. 

The space problem is that a 
simple method produces a whole 
copy of a given term which con
tains non-variable portions which 
can be shared. This problem is 
avoided by introducing a 'rename' 
Predicate which produces a copy of 
a term sharing ground term por
tions with its original term. 

The time problem is that a copy 
operation should search the whole 
part of a given term. This will 
increase a computation time of a 
waiting process according to the 
size of the terms it contains. 
One of the possible optimization 
methods for this problem is to 
determine the portion to be shared 
in compile time (either automati
cally or by giving declarations). 
The development of an efficient 
renaming method is one of the 
important topics for implementa
tion of the don't-know-nondeter-
rainism. 

6. COHCLUSION 

This paper described an 0R-
parailel execution model for Pure 
Prolog and the implementation of 
an enumerate function in Concur
rent Prolog based on the model. 

The computational model is 
based on multi-processing and 
interprocess communications. The 
model provides an eager Pure Pro
log interpreter implemented in 
Concurrent Prolog. Also a lazy 
interpreter can be obtained easily 
by introducing a bounded buffer 
communication mechanism to the 
eager interpreter. The eager 
Interpreter and the lazy inter
preter provides eager and lazy 
enumerate functions to Concurrent 
Prolog, which are very important 
functions for parallel logic prog
ramming. 

This approach shows that both 
OR-parallel and AND-parallel 
execution of a logic program is 
achieved only by AND-parallel 
execution. This feature is very 
important because it decreases the 
complexity of the computer archi
tecture and the amount of required 
hardware of a highly parallel 
machine. 
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I. Abstract 

Logical terms are the only com
pound data structures in logic pro
gramming languages such as Prolog. 
Terms are sufficiently general that no 
other data structures are needed. Re
stricted uses of terms correspond to the 
bits, character strings, arrays, records, 
etc. of other programming languages. 
The computational overhead, however, 
of using a very general data structure 
in specialised situations can be very 
high Side-effects cannot be performed 
upon logical terms and the alternative 
of constructing new terms which dif
fer slightly from the old can be very 
costly. We propose to alleviate these 
short-comings of terms, without losing 
their logical clarity and purity. 

We have introduced into LM-
Prolog, a Prolog dialect running upon 
Lisp Machines, predicates for creating 
and manipulating arrays. These pred
icates could have been written com
pletely as Horn clauses without the use 
of any primitives. They are imple
mented in terms of physical arrays and 
"virtual arrays" in a manner that is 
transparent to the user. For some uses 
of these predicates, it is possible for a 
compiler to produce code performing 
array references and updates that is as 
good as that produced by compilers for 
traditional programming languages. 

2. Motivation 

The goal of this research is to 
significantly improve the efficiency of 
some logic programs without sacrific
ing their logical purity. First we will 
consider where the use of arrays can 
improve performance and then address 
the question of whether a complex im
plementation just to maintain logical 
purity is worthwhile. 

There is a growing interest in at
tempting to extend the domain of logic 
programming to systems program
ming. The Japanese fifth generation 
project exemplifies this [Chikayama 
1983]. It is difficult to imagine an 
efficient file system or editor which 
does not do side-effects upon compound 
structures. We believe that logical ar
rays as described in this paper pro
vide a viable alternative to non-logical 
primitives which perform such side-
effects. 

There are many existing Prolog 
programs whose performance could be 
enhanced by using logical arrays. A 
chess or go program can represent the 
board as a two-dimensional array. A 
program using association lists could 
instead use hash tables. A text prc^ 
cessing program that deals with text as 
lists of character codes can be replaced 
by one using character arrays. And so 
on. 
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One may question our insistence 
that arrays be incorporated into logic 
programming in a logical fashion. Pro
log already has non-logical predicates 
for i/o and changing the database why 
not add a few more for dealing with 
arrays? Admittedly the implementa
tion of such predicates would be sim
pler than the one we describe later 
The reasons why we want the imple
mentation to remain within logic are 
both theoretical and pragmatic. If we 
can maintain a simple semantics for ex
tensions to Prolog then the job of veri
fying synthesizing, analyzing, optimis
ing, debugging or understanding logic 
prop-ams will be easier. Pragmatically 

array into Prolog in a 
logical fashion we maintain the gener
ality of the logic programs. A Prolog 
predicate that, for example, works for 
any instantiation pattern and that uses 
to." can often be made more effective 

er JSv '5 jrrayS Tith0Ut loss gen-erahty. Logical arrays show promise 
of being well-suited for implements 
ions up°n p lleJ processorsPby a«£ 

with side-effects. Programs 

3. Semantics 

using pure Prolno- j Pnmitives 
with ar-

3.1 Array processing primitives 

cates to deafwitTarrays™14^6 PFedi" 

is_array(Array,N) 

This predLate^used both f elements-
and type check-inn- j  r creation 
instantiation of the argument^ °D 

nrray .element^ Array,Index,Vsht) 

The value of the element corre
sponding to the index Index of the ar
ray Array is Value. This is the prim
itive for accessing arrsy elements 

ar ray. upda te( Old -array Jndei, 
Value, New .array) 

The array New_array is the same 
as array Old-array, except that the 
value of the element corresponding to 
the index Index in New_array is 
Value. This is the primitive for up
dating arrays. 

3.2 Horn Clause Definitions 

In the sequel, we will sssume that 
the semantics of the array processing 
primitives are as if they were defined 
by the following Horn clauses, array is 
a reserved functor symbol that cannot 
be used anywhere else. 

laarray(array(irrayjlat) .Elsa) :* 
langth (Array Jiat.Slsa). 

*rr*7-alaaaat (array (Irraj-llat), 
Iadax.Val) 

•th-alaaaat (Intyllat, Iidax. Vil) 

•rrayapdata (array(Old) . Iidax, 
Val, array (lav))) .— 

•pdatajl»B«at(01d, Iidax, Val,I«) 

/* lixlliapy pradlcatas •/ 
l a n g t h ( 0 , 0 ) .  
laBsth(qLlet],Laa) 

tan>0. Laal la L«a-1, 
lanfth(Llat.Laal). 

"th^l.aaat( 0Sl«a|J ,o,Elaa) . 
"th.aiaBant(C/Liat] .Poa.Elaa) 

Po,>0. Po.l i. po,-^ 
atk^laa.at (Llat. Po.l .Elm). 

"Pdata.aloaaBt (CjLiat] .O.Iavjalas, 
CSav.alaa|Li»t]). 
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apdata.alaaant ( [SOB».»1»«|0Id .11 at] , 
Poa .Sawjalaa, 
[SOAAjl«a|Ha*Jlat] ) 

Poa>0, Poll la Poa-1, 
opdata-alaaant (Old-liat, Poal, 

Sawjalaa, HaaJiat). 

4. Implementation 

The Horn clauses describing the se
mantics of the array predicates can be 
executed by a Prolog system. There 
are, however, two sources of ineffi
ciency. The use of lists precludes 
any random accessing. This is not 
a serious problem since terms can be 
used as described in section 5.2. The 
serious problem is the copying that 
update.element does. Our imple
mentation avoids both of these prob
lems by using arrays. We manage to 
do this in a way that the semantics 
of the predicates is not violated. An 
array used by these predicates is im
plemented as a real array and a data 
structure which masks the values of 
some of the array elements. Both the 
old and new versions of an array being 
updated share the same real array. 

This chapter will describe the prin
ciples of the implementation of muta
ble arrays and the primitive operations 
on them. The implementation requires 
that certain arguments to the primi
tives are instantiated when the prim
itives are called. If they are not, our 
implementation cannot handle the case 
in other ways than signalling an error, 
freeiing [Colmerauer 1982] the subgoal 
until enough arguments are instanti
ated, or possibly successively binding 
(by backtracking) an index argument 
to all possible indices. 

Mutable arrays are represented in
ternally by a chain of value blocks, ter
minated with an physical array. In the 

rest of this chapter, the term "array" 
will refer to the entire mutable array. 
When the underlying physical array is 
referred to, the term real array will be 
used. There should not be any way for 
a logic program to look at the internal 
structure of a mutable array. 

The terms old and neu; (or updated) 
array will be used to refer to the muta
ble array to be updated and the muta
ble array created as a result of the up
date (in a procedural sense). Note that 
even though the values of the elements 
stored in the old array are unchanged 
by an update (since pure logic pro
gramming is side-effect free), the struc
ture of the old array might change. 
Thus we will refer to the old array be
fore and after the update. Since this 
chapter describes the actual implemen
tation of mutable arrays, this procedu
ral view of Prolog will be used through
out. 

Each value block - except the last 
one in a chain - contains an index-value 
pair. The value of a certain element of 
the mutable array is the value stored in 
the real array, unless one of the value 
blocks in the chain has that index. In 
the latter case, the value of the ele
ment in question is the value stored in 
the first value block with that index 
instead. Two mutable arrays which 
differ only in the values of a few el
ements, sometimes share the real ar
ray, the differences being handled by 
the value block chains. 

Aside from the index and value, a 
value block contains a pointer to the 
next value block in the chain, or to the 
real array, should this be the last value 
block of the chain. If the value block is 
the last one in the chain, it will not ac
tually contain a valid index-value pair. 
This can be represented by a flag bit, 
by some special code in the index or 
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value fields or simply by the fact that 
the value block points to a real array. 

The new-real scheme update algo
rithm (see below) requires that the real 
array is never pointed to by more than 
one value block at a time. The sole pur
pose of this last value block is to fulfill 
this requirement and still provide for 
different mutable arrays to have differ
ent value block chains pointing to the 
real array. All the chains simpfy share 
the same last block 

4.1 is_array 

SZZZZf* 
When the call is made with th„ A 

ray argument uninstantiated a mutl" 
ble array will be created T 
the mutable array a real create 
located for it pi I , array « al-
real array Vnit?fC\element of the 
variables^(or possiblv so UDb°Und 

A single value-index bloTk 
Pointing to the re" ar" 
index block is flan- j r he value-
i»g a vJd " »»' c°ntain-
erence to the vit ° J? PVf A ref" 
turned as the referen +6X u 13 re" 
table array. The C<i Dew mu" 
Pointed to directly. aFray " never 

OT-r~t Umpty value D , -1 ' 
block tteal array 

A newly created array 
4.2 array .element 

b" "f„pThe 

value of an element of the mutable ar
ray ia done by comparing the index ol 
the element to be looked up to the in
dex in each value block in turn (except 
for the final value block which does 
not contain a valid index-value pair). 
Should a block with a matching index 
be found, the corresponding value is 
the one looked for. If no such value 
block is found, the real array is in
dexed in the ordinary manner. When 
the value is found, it is unified with the 
Value argument to arrayjelement 

4.3 array.update 

All arguments to array.update, 
except possibly the New^rray argu
ment, should be instantiated. If the 
New_array is instantiated, but the 
O'd-array argument is not, it is still 
possible to handle the call by using the 
fact that 

•rrayapS.tsCoidarray.Iadsx. 
VaXit.ln array) 

can be replaced by 

arr*7-*l«ant(Vwwarray,Iadax,ralu). 
•"•y-apdata (law array, ladax,., Oliarray) 

which switches the old and new arrays 

When an element of a mutable ar
ray is updated, a copy of the array is 
actually made to preserve the value of 
1 e array. This copying is done in 
such a Way that the real array is & 
ways shared with the old array. In ed
ition, the internal structure of the old 

,array might be changed by the updat-
mg- This change is, of course, done in 
such a way that is does not alter the 

ue any of the elements of the old 
array. 

Updating can be done using two 
different schemes, called the old-real 
th '"I I  and nevj-real tchemt. I" 

old-real scheme, the value blocks 
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&re used to keep a history of all changes 
made to the array. In the new-
real scheme, the real array is actually 
changed and the value blocks are used 
to keep a history of the old values be
fore the updates, for the benefit of the 
old array. 

In most cases the programmer can 
specify, as control information, which 
of the methods he wants to use (both 
schemes are semantically equivalent); 
however the new-real scheme fails in 
a few cases, in which cases the sys
tem should do an old-real update in
stead. In both cases, the update 
concludes by unifying the new ar
ray with the New_array argument to 
array .update. 

The names refer to whether the old 
or the new array will consist of only the 
real array and the compulsory value 
block without a value, when a freshly 
created array is updated. 

The old-real scheme 

This scheme is the simplest one. 
The new array is simply a new value 
block, containing the index and value 
of the updated element, pointing to the 
old array. In this scheme the structure 
of the old array is not changed at all, 
but the new array has an index block 
chain one element longer. If the old-
real scheme is used several times in 
succession, a long chain of value blocks 
will be built up, increasing the time 
needed to access the array. 

NEW OLD 

mttn W: 1 r T -
The situation after the third 

element of the old array has been 
set to Y (previous value X), using 
the old-real scheme. 

The new-real scheme 

The idea of this scheme is to up
date the real array and add a value 
block containing the previous value to 
the value block chain of the old array 
to mask the change. In this way, access 
to the new array will be as efficient as 
access to the old array was before the 
update took place. Instead, access to 
the old array will be slowed down by 
the addition of a value block. 

An update using the new-real 
scheme takes place in a number of 
steps: 

1. The new array is created by copy
ing the value block chain of the 
old array, omitting any value 
block whose index is the same as 
the index of the element being up
dated. 

2. The index of the element being 
updated together with its current 
value in the real array is stored 
into the (hitherto unused) last 
block in the old value block chain. 

3. The pointer in that value block is 
set to point to the last value block 
in the copied chain, rather than to 
the real array. 

4. The new value of the element to 
be updated is stored into the real 
array. 

Note that the values of all elements 
of the old array are unchanged by this 
operation, since the storing of the old 
value in step (2) masks the update of 
the real array in step (4). We know that 
all mutable arrays using this real ar
ray will point to the real array through 
the value block used in step (2), so the 
masking applies equally well to other 
arrays than the old array of this par
ticular update. The new array, on the 
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other hand, is identical to the old ar
ray, except for the updated element, 
since that element was changed in the 
real array in step (4) and any value 
blocks that could have masked the 
changed was omitted when the chain 
was copied in step (1). The reason this 
copy was necessary was both to omit 
any blocks that could have masked the 
change as well as preventing the new 
value block from masking the change 
from the new mutable array. 

The motivation for step (3) is to en
sure that there is still only one value 
block that points to the real array, 
so that step (2) in later updates will 
work. Step (3) also increases the length 
of the old value chain by one value 
block. When the old array is not re
ferred to any more (which probably 
happens soon after the update), its 
value block chain could be garbage col
lected. Since the new value block chain 
is not longer (but possibly shorter) than 
the old chain, programs that don't use 
old arrays after they have been up
dated will run using constant space. 

This procedure can be simplified if 
the value block chain contains a block 
for the element to be updated, already 
containing the new value, or if the real 
array element already contains the new 
rtU? h H 2 thf the °ld value could still be different.) In the former case 
he copying in step (1) is only done up 

to, but not including the value block in 
question. In the latter case the copying 
* done up to but not including the last 
value block if the real array contained 
the desired value. The last block in 

PlaceTthe* u",16* P°mtmS to the Place in the old chain where the CODV 
ing stopped. and step, 2.4 „e tkt " 

-ma wa-cn.-
Situation before... 

OLD 
CCME 

...and after the third element 
of the old array has been set to 
Y (previous value X), using the 
new-real scheme. 

L 
In order to undo the side-effects 

performed on the old array in steps 2-4 
on backtracking, the pointer fields and 
real array elements need to be trailed 
(Warren 1077). Prolog trailing com
monly only involves just recording 'he 
address of the location that was set, as 
only unbound variables can be change 
in Prolog. Tb reset these variables to 
an unbound status, only their address 
need be known. This simple trailing13 

not sufficient here. Rather, the pre*1 

ous contents of the changed cell mil" 
be trailed along with the address of t e 
cell. This requires that the trail has 
space to store the old contents, or tha 
two trails, one with and one withon 
previous values, are used. 

If the elements of a real array have 

fewer bits than are normally require 
to store information in the particu ar 
Prolog system (e.g. a character arr»f> 
where all elements are eight bits wi e,< 
it is possible that some information re
quires more bits (e.g. logical variables, 
that ordinarily requires a full poin'eu 
and thus cannot be stored in the re 
array in step (4). If an attempt is 
to update an array element with ' i 
information, the new-real scheme ess 
not be used, since it always updates t 
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real array The old-real scheme must 
be used instead. 

Comparison 

In the old-real scheme the value 
block chain of the updated array will 
be one block longer that that of the old 
array, while in the new-real scheme it 
will have the same length. This means 
that if several updates in succession are 
done on successive versions of an array, 
the site of the value block chain (and 
thus the time needed to access the ar
ray) will be constant for the new-real 
scheme, but linearly increasing for the 
old new scheme. On the other hand, 
the time to access the earliest version of 
the array will increase linearly as new 
versions get updated. 

In most cases, the updated array is 
probably going to be used more than 
the old array, so the new-real scheme 
will usually be advantageous. If the 
old array will continue to be used ex
tensively, the old-real scheme might be 
more efficient as the old array is not 
affected in any way by the updating. 

Another factor to the disadvantage 
of the new-real scheme, is that it has 
to copy the value block chain of the 
old array Should this chain be long, 
the copying could take substantial time 
and memory. 

4.4 Unifying arrays 

The unification mechanism of Pro
log must be extended to deal with ar
rays. In accordance with our Horn 
clause definition, we define two arrays 
to be unifiable iff they have the same 
dimensionality and corresponding ele
ments unify. The occur check is as 
much (or little) applicable here as when 
standard terms are unified. Since the 
Horn clause definitions use a reserved 
functor to represent arrays, an array 
oan never unify with something that is 

not another array. 
4.6 Realization in LM-Prolog 

The LM-Prolog implementation of 
the array predicates is generalized 
somewhat. The index and dimension 
are replaced by indices and dimen
sions which are lists which can have 
up to seven elements. This extension 
could clearly be written in pure Hom 
clauses. Is .array takes an extra argu
ment which is a list of options. The 
options can be used to declare whether 
the elements of the underlying real ar
ray should be full words, 16 bits, 8 bits, 
4 bits, 2 bits, or single bits. This op
tion has no affect upon the semantics 
of the primitives and can be viewed as 
user-provided control information. An
other option specifies how, if at all, the 
array should be initialized. This too 
could easily be written in pure Prolog. 

The development and implemen
tation of logical arrays and experi
mentation with various optimization 
was greatly facilitated by the extent 
to which LM-Prolog is designed to be 
extensible by users ([Kahn 1984] and 
[Carlsson 1983]). The entire array 
package was written in Lisp and Pro
log without making any changes to 
the underlying implementation of LM-
Prolog. Unification in LM-Prolog is 
extensible by using the Lisp Machine's 
Flavor message passing facility [Moon 
1983]. Logical arrays are implemented 
as flavor instances that receive mes
sages to unify with others, to lookup 
elements, to perform updates, to copy 
themselves, etc. Another important 
facility is the ability to "trail" arbi
trary computation. In the normal ex
ecution of Prolog programs a trail of 
cells which upon backtrackmg need to 
be re-set to unbound is kept. In LM-
Prolog, the trail consists of both such 
cells and Lisp forms to be executed. 
In order to implement backtracking 
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when the underlying implementation 
performs side-effects upon arrays, it 
was necessary to trail array locations 
and their previous values. Another fac
tor which facilitated the implementa
tion of logical arrays in LM-Prolog is 
the smooth interface to the facilities of 
the underlying Lisp system. Lisp Ma
chine Lisp has an excellent array facil
ity which supports various byte sizes, 
array dimensions, and overlaying. 

5. Optimizations 

Programs using logical arrays are 
often substantially more efficient than 
programs built upon the existing al
ternatives in logic programming lan
guages. If, however, logic program
ming is to compete with Lisp or Pas
cal then we must consider carefully the 
overhead involved in supporting logical 
arrays. In general, the overhead is nec
essary, but there are commonly occur
ring uses of logical arrays that could be 
significantly optimized. 

Our attitude towards optimiza-

below ^ Summa"*ed Deiow. it is based upon a distinr 

th":~ S"br that th" Myogram ulfills certain properties. If a declara 
ion is incorrect then the executTonof 

the program may also be. In descenH 
mg order of desirability we cWr 
timizations as follows: classify op-

Automatically detected and perform 
ed optimizations. E g tail i 
optimizations. g' recursion 

the "oie 
array usage iWi i- °g and the 
below. IdeaUv tii OIj de3cnbed 

eaUy these declarations 

should be verified either by the sys
tem or the user. Failing that the 
system should optionally do run-time 
checking. 

There are three kinds of control ad
vice one can give the LM-Prolog imple
mentation of arrays. One is what the 
byte size of the underlying real array 
should be. If, for example, one declares 
the size to be a single bit, then the ar
ray can efficiently hold only 0 or 1. Any 
other value, including an unbound vari
able, is captured in a value block which 
costs a few words of memory and slows 
down array accesses. If, however, the 
vast majority of values in an array are 
limited to 0 or 1, LM-Prolog can pack 
32 values into each machine word. 

Another type of control advice is 
when an array should be copied. IfM 

array with a long chain of value blocks 
is used frequently, either directly or n< 
its ancestors, then it may be worth
while re-representing it as a real array 
This real array's contents are the same 
as those of the old logical array Thr 
operation takes time and memory but -fwotiuu lasca tunc »uu LUIU— I 
can be critical for sufficiently fast tie-
ment access. Logically, this copying is 
just advice to the system and does not 
change the semantics of the programs 
involved. 

One can consider the choice be-
tween old-real and new-real updates as 
control advice. If older versions are 
used more frequently than newer one 
then one should advise the system '' 
use old-real updates. 

The usage declarations that LM 
Prolog accepts describe whether th 
array will be used in a determinis'1' 
manner, whether only the most recen 
version of an array will be accessed 
whether the array indices in a lookup 
or update will always be ground, an| 
if a byte array is being used that 
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of its values will fit. If an array's us
age is declared to be deterministic from 
its creation to its last update, then no 
trailing is performed. The idea is that 
if the system backtracks to the last up
date, then it will backtrack all the way 
back to the creation of the array, so it 
does not matter if its elements are in
consistent. 

It is quite common to use an array 
in a linear fashion so that after an ar
ray is updated, the old version is never 
used. This is the way arrays are used 
in traditional programming languages. 
If an array is declared to be used in 
this fashion then an update can simply 
perform side-effects upon the real array 
of the old array reference since the old 
array won't be used anymore. 

The logical implementation of ar
rays must be prepared to find that the 
array indices in a lookup or update are 
only partially instantiated. The cost 
of checking first if they are ground is 
small but can be optimized away if the 
array is declared to be used only with 
ground indices. Similarly, byte arrays 
must check that the value is an integer 
in the proper range and this check can 
he declared away. 

If the usage of an array is declared 
as deterministic, recent version only, 
ground indices and proper values for 
hyte arrays then the efficiency of the 
current implementation is about one-
half of that of Lisp. This is because, 
in addition to the array reference or up
date, a message must be sent. With a 
little micro-code support for arrays this 
overhead could become insignificant. A 
micro-coded primitive could if passed a 
real array do the ordinary array refer
ee or update, otherwise send a mes-
8age to the flavor instance. 

In order to verify a logic pro
gram containing array usage declara
tions, the declarations must be shown 
to be correct. The verification of usage 
declarations is an important area for 
future research. The implementation 
does allow one to declare that a decla
ration be checked at run-time and that 
an error be signaled if it is violated. 

6. Element-wise Alternative 

Under certain circumstances, the 
implementations discussed above may 
become inefficient. Suppose that the 
array is large; that is to say, that it 
will be a very expensive operation to 
copy it. Suppose moreover that a large 
number of updates will be carried out 
on it, and that it will be necessary to 
access not only the most recent, but 
also old states. Such a situation could 
easily arise, for example, if the array is 
being used to represent the state of a 
large dynamic system, and the object is 
to collect states which fulfill some con
dition, in order to compare them later. 
The problem here is that every array 
access will have to "go through" all up
dates between the version in question 
and the most recent version; however, 
in general each individual element will 
only have been updated a small number 
in times compared to the total num
ber. It is thus apparent that a very sub
stantial optimization can be performed 
if we "localize" update information to 
the element affected. How this could 
be done is now discussed. 

The basic scheme is similar to 
that used by Conniver [McDermott 
1974]; an array is a triple consisting 
of a real-array, a version-identifier tree 
and a version-identifier. The version-
identifier is unique for each version of 
an array, and consists of a list of in
tegers. The version-identifier tree is 
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a tree which contains all the version-
identifiers current for the array in 
question, partially ordered by the re
lation older than. One can reason
ably think of the version-identifier as 
a "Dewey decimal" number; then the 
version-identifier tree is a catalog of all 
the versions of the array that have been 
created. 

The relationship older-than we de-
fine as follows: it and „ are Iwo ver-

• a'° " °ld"lh" -

tb. t'"" *°mlt,al °< 

for thVf ̂  liStS arC identic^ except for the last elements, and the last 

tn w ™rP',Trsth;hr:i »°-
e«h pi, containing ^ value ai^ 
sion identifier To find th i a ver" 
element for an arrav ' tl^f °f an 

a and version identifier an"ay 

the a-list until we find the " i g° d°™ 
with the first ver*i J Paired 
older than ot Sua? t that " 
to update the array we first ^6'?13"' 
new version identifier „< in the f .7 ' a 

way: rf it does not al™ J hefoll°wing 
form the identifier that is a' We 

as v except for the l a same list 
» incremented by i, 1?""' 
the list with a 1 otherwise, it is 
"' is then inserted fnfofht '° ̂  eDd' 
Place in the version-id ^ecaPProPnate 
a pair composed of tree> and 

hard to estimate^sin'ce^^H SC^eme 13 

"veral independent X " ?,epeads on 
most ^Portant of th?1"3' The 

f these » the way 

in which the arrays are updated; i 
this is done "linearly", so that the 
version-identifier tree only has i sin
gle branch, the version identifiers ire 
all single-element lists and both updit-
ing and referencing are fairly efficient. 
In general, the "bushier* the version-
identifier tree the worse the method 
will perform, since the lists represent
ing the version identifiers will become 
longer and the overhead in process
ing them correspondingly greater An
other important question is how evenly 
the updates are spread through the 
array; clearly, if they are concen
trated on a small proportion of the el
ements the method is correspondingly 
worse. One definite disadvantage of 
this scheme compared to those above is 
that garbage collection would be very 
expensive, but since it is only intended 
to be used in cases where old values 
are of interest this is perhaps not seri
ous. Also, it is impossible to implement 
byte-arrays, since each element in 'he 

real array must be sble to hold an ar
bitrary value. 

Dec 10 Prolog Alternative 

Many Prolog implementations haw 
the predicates functor and srg *hicl1 

can be used to define efficient versions 
of the array predicates ([Pereira l^i 
[Clocksin 1981)). Prolog terms can be 
used as pure arrays using these pri®1 

tives. 

The difficulty with this approach i3 

the lack of an efficient way to dnp'^ 
ment array .update under the new-
r e a l  s c h e m e .  R e c a l l  t h a t  t h e  c o s t  o f »  
lookup of an array updated under the 
old-real scheme is proportional to t e 

number of times that array has been 
updated. Under the new-real sche®« 
one needs to perform side-effects up1® 
the real array. Since such side-effects 
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are not possible on terms, one is forced 
to consider other unattractive alter
natives such as adding and removing 
clauses from the Prolog database to im
plement the side-effects. 

8. Concurrent Prolog Alternative 

Another way to obtain the advantages 
of mutable arrays and yet remain log
ical is to use the Concurrent Prolog 
technique of defining processes which 
accept messages [Shapiro 1983a). Mu
table arrays can be implemented this 
way by having each array element cor
respond to an argument to the "array" 
process. The process accepts message 
to "look up" values and to "update". 
A schema for writing such processes is 
given below. 

*"**«( Clooksp (1, Element, )|Mor«M»g«] , 
Elaaaati Elaaaat.) 

array.(NoraMtfa?, 
Elaaaati.....Elaaaat.). 

vray,([apdata(l.IavValaa)|Mor*Naga], 
Elaaaati.... .Elaaaat.) 

array,(MoraMagaT, 
lasValaa Elaaaat.). 

The practicality of such an implemen
tation of mutable arrays depends upon 
sophisticated argument passing and 
tail-recursion optimizations. An awk
wardness is the need to define different 
processes for each array size. One way 
around this is to define one or a few 
standard size arrays, and build larger 
ones as arrays of arrays. The complex
ity of a lookup or update would then be 
0('oj.(n)) where » is size of a standard 
array and n the size of the array be
ing accessed. It can be easily seen that 

this implementation of arrays will not 
work in Prologs based upon depth-first 
search. 

0. Arrays as Impure Predicates 

An alternative way to provide arrays in 
Prolog is to implement each array as a 
separate predicate. Given the appro
priate indexing advice, a Prolog system 
could use an array for indexing. Ar
ray updates would be realized by data
base updates. Such an implementa
tion of arrays is similar to what tradi
tional programming languages provide. 
Older versions of the array are not ac
cessible, there is no backtracking, and 
programs become more sensitive to the 
order in which its parts are executed. 
The semantics of such arrays becomes 
the semantics of database updates. 

10. Other Alternatives 

Recently, two other schemes for rep
resenting arrays in Prolog have been 
suggested. The idea described in [Co
hen 1984] is extremely ingenious, but 
appears to suffer from some serious 
problems; access time in the general 
case is proportional to the total num
ber of updates, and garbage collection 
is very difficult. Also, if a virtual 
array is replaced by a concrete one, 
the change leaves versions logically de
pendant on the changed version unaf
fected. This makes optimization by 
"concretization" very inefficient. 

[Pereira 1984] gives a representation of 
arrays as trees, with access in loga
rithmic time and update logarithmic in 
both time and space. One attractive 
feature is that it is possible to post
pone allocating space to an entry until 
it is updated for the first time. This 
makes the idea very suitable for sparse 
arrays, but in the general case it is not 
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clear that the overhead is acceptable 
for a large array size. 

11. Applications 

The use of mutable arrays on conven
tional hardware can easily be defended 
in terms of efficiency. Even in the 
areas where Prolog is usually applied, 
symbolic processing and databases, ar
rays can be important. Hash tables, 
for example, implemented using arrays 
are often used in symbolic processing. 
While all serious Prolog implementa
tions use hash tables, a Prolog user has 
no access to the hash table routines and 
is forced to use less efficient alterna
tives. 

Graphics is another area where arrays 
seem appropriate. Typically changes 
are made to some small part of a model 
Lorir 7° °r three dimens'°nal space 
Logical arrays provide the exciting pos-
sibffity °f exploring the idea of doing 
computer animation where the entirf 
history of the display needs to be com
puted. Considering the millions of bits 

Two applications are currently h,in 

PTATO? by ,he Aft ft As™ ft °° A 
i»g] represents the J""1™®-
&rr&vs TKio m i with mutable 
ciSSrvS:sbr,in"seo,th"p-
mally interested in exam," °De D°r" 
number of positions ^ ,lng a larSe 

fer slightly from th*. ODly dif-
other profect ^tJ U"ent °ne' Ad
vance K -c » m°re dir<*t rele-
ural deduction-basfd^T " a Dat~ 
the type described in JHaridHLfls™ A 

problem that arises is that it is nec
essary to keep several different bind
ing environments simultaneously; this 
occurs in a large variety of "paral
lel" logic programming systems. Im
plementing environments as a-lists ii 
clearly too expensive, but by regard
ing variables as offsets into an "envi
ronment array" it is possible to use the 
methods described here to provide an 
efficient solution inside pure logic. This 
will be discussed more fully in a later 
paper. 

12. Discussion 

On top of logical arrays one can, within 
LM-Prolog, provide strings, hash ta
bles, general record structures and the 
like. There are two questions here 
that warrant more research. Is this» 
good way of providing such capabili
ties? Should such facilities be built on 
top of arrays or should they be pro
vided in a manner analogous to how 
arrays are implemented? 

The latter question is rather system de
pendent. Since the Lisp Machines pro
vide well-designed hash-tables, record 
structures, and strings with significant 
micro-code support it would seem sen
sible to take advantage of them and im
plement the "logical" versions of them 
in Lisp rather than Prolog. 

The question about whether this is 'fie 
right way to introduce, say, strings 
into Prolog is less dear. A disad
vantage of logical arrays is that they 
are awkward to compute in compaf'' 
»°n to lists. Unification of lists pro
vides a very succinct and clear way of 
expressing something that may require 
a series of calls to arrayjelement and 
array .update. Perhaps strings should 
be introduced into logic programming 
as terms that one can perform string 
unification upon. Or perhaps they 
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should remain as lists of characters as 
they are in many Prolog implementa
tions and effort should, instead, be put 
into packing several characters to a 
word [Shapiro 1083bj. Another alter
native is to implement strings as logi
cal arrays and put effort into extending 
unification to enable one to deal more 
comfortably with both strings and ar-
rayi. 

We presented the "old-real" and "new-
real" schemes which can co-exist side-
by-side. We also discussed an alter
native element-wise scheme which for 
some uses of arrays was ideal. An inter
esting avenue of future research is how 
to let the system choose the appropri
ate underlying representation depend
ing upon how the arrays are used. 

We have only begun to consider the de
sign of generally useful utilities for ma
nipulating arrays. We expect that the 
ability to perform some operation upon 
each element of an array, to create ar
rays that are pieces of other arrays, and 
the like to be desirable. APL [Iverson 
1962], for example, is successful not be
cause it provides array referencing and 
updating, but because it provides a rich 
md powerful set cf tools built upon 
those primitives. One primitive that 
we are exploring is array-differences 
where depending upon how its used can 
perform parallel operations upon an ar
ray or find differences between two ar
rays. 

One motivation for providing mutable 
arrays in a pure fashion is that the re
sulting techniques and algorithms ap
ply equally well in the context of func
tional programming. Our introduction 
of virtual or logical arrays to logic pro
gramming applies equally well to func
tional programming. Virtual arrays 
may also be useful in Lisp and mes-
•age passing systems. The LM-Prolog 

implementation is really in two layers. 
First, virtual arrays are implemented 
as actors (flavor instances) and then in
terfaced into LM-Prolog. 

An interesting area for further research 
is to consider logical arrays in the con
text of parallel processing. Clearly the 
old-real update works well in the face 
of concurrency since there are no side-
effects. The new-real implementation 
has side-effects that are completely hid
den from the user. Could the problems 
of simultaneous updates also be han
dled by the implementation in a trans
parent manner? 

We have began to work on manipulat
ing Prolog databases in a manner anal
ogous to mutable arrays. Both the old-
real and new-real schemes have data
base analogs. The three array primi
tives are replaced by primitives to cre
ate, query, and modify databases. An 
awkwardness of this scheme is that one 
must explicitly provide a database ar
gument to the calls of Prolog predi
cates using mutable databases. The 
advantages of maintaining a pure se
mantics typically outweigh this clum
siness. Perhaps a syntactic sugar for 
defaulting database arguments is feasi
ble. 
In summary, the introduction of logical 
arrays into Logic Programming is very 
promising. The range of programs that 
can be effectively run in logic has been 
expanded. The unique ability to use 
old versions of arrays supports many 
new applications. In the long run, ex
perience with using logical arrays will 
decide how useful they really are. 
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1 Introduction 
Thr origisil vision of Logic Programming called 
for using predicate logic as a programming 
litgmge [via Linden k Kowalski 76|. Prolog 
only partially rvalues this vision, since it has 
muy features with no corresponding feature in 
first order predicate logic, and also fails to 
realue every feature of predicate logic. Perhaps 
the mini benefit of the system suggested in this 
paper, hereafter railed Fqlog, is the way it 
combines the technology of Prolog (its efficient 
implementation with unification and 
backtracing) with functional programming (in an 
efficient first order rewrite rule implementation) 
•« yield more than just their sum: logical 
variables can be included in equations, giving the 
ability to find general solutions to equations over 
user defined abstract data types (ADTs); this 
new power is provided in a uniform and rigorous 
"ay by using 'narrowing* from the theory of 
rewrite rules to get a complete implementation 
of equality; it can be seen as a special kind of 
resolution. In addition, user definable ADTs and 
generic (i.e., parameterized) modules become 
available with a rigorous logical foundation; 
Eqlog ako has a subvert facility that greatly 
increases its expressive power. Since our 
approach to generic modules and ADTs relies on 
general results from the theories of specification 
languages and rewrite rules, it applies to 
ordinary unsorted Prolog, and should also apply 
toother logic programming languages such as 
Concurrent Prolog. 

Many other authors have synthesized logic and 
functional programming For example, [Kornfeld 
"I gives several interesting examples (some of 
*nich inspired examples given here), but gives no 
theoretical justification for his implementation of 
equality; in fact, it is not complete (i.e., it can 

'Supported is part by Office of Naval Research 
Contract No. NOOOI4-WOOZJZ, by National Science 
foundation Grant No. MCS8201S80. and by a gift from 

Syitem Development Foundation to the Center for 
* ' Study of Language and Information »t Stanford 
Unhrerrity. 

sometimes fail to find the right answer when one 
does exist). Moreover, the ADT and object 
oriented facilities are less general than might be 
desired, since neither modularity nor strong 
typing are provided, and functions are not 
carefully distinguished from predicates. The 
Funlog "language of [Subrahmanyam & You 84] 
also has infinite data structures, lazy eva uation, 
and non-determinism; however, uo formal logic is 
given for these features, either model theoretic 
or proof theoretic, and Funlog's 'semantic 
unification' algorithm is also incomplete 
in «on Haridi & Tarnlund 82] suggest a 

structures by , semantic theory for the 
not aware of any forma ^ ^ & Leyi 82) 

!fDgU heeFPL a logL programming notation for 

2 The Underlying Logic 
Horn clause logic without equality First order Horn i cllau 8 ^ there are many 

underlies ordi y which seem to have distinct 
other logics, som or<j(.r logic with equality 
advantages. Thus, nr ^ many.50rted 
supports user typing. Pure equational logic 
log'0 TeS:vS'rrise to programming languages, 
can also gj [Q0guen, Meseguer & 
°ne such languag & Tardo 7Q] whose 

Plaisted 82, Gogu j terprets equations as 

ADTs. -

w~- °r 

wiu'ev^ly produce the result that the log.c 

Tays it should. 
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We now briefly review many-sorted Horn clause 
logic with equality. Here, one has a set S of 
sorts, plus signatures /7 and E which give the 
predicate and function symbols, respectively. 
Each predicate symbol Q has an arlty which is a 
string of sorts that serves to indicate the number 
and sort of arguments that it can take; thus, 
arity SJSJSJ indicates that Q takes three 
arguments, of which the first and third must be 
of sort Sj, and the second of sort s2. Similarly, 
each function symbol has a rank consisting of a 
sort s (its value sort) and a string w of sorts (for 
the sorts of its arguments). Equality enters as a 
distinguished binary predicate symbol =s for 
each sort s, which we will write with infix 
notation, usually without the subscript. 
Sentences are Horn clauses in the usual sense, 
but may involve the distinguished equality 
predicate; that is, they are of the form 

P P1 Pn' 
where each P and is a positive atomic formula 
of the form Q(tj,... , ta), and each is a term 
of sort Sj when s,...sn=w is the arity of Q; these 
terms may include variables, which will of course 
be "logical variables"; also P and/or any Pi can 
be equations, since it may use an equality 
predicate. P is called the head of the clause, 
and Pt PB constitute its tall. 

A simple Eqlog3 program for calculating the 
population density of countries is 

density (C) = pop(C) / area(C) . 
In ordinary Prolog, this would be given by the 
clause 

density(C.D) pop(C,P), area(C,A), D 
is P / A. 
using the impure is feature, which is a weak 
analog of Lisp's eval function. Also, we can add 
facts to the database with assertions like 

pop(china) = 800. 
(in millions!) instead of the more awkward 

pop(china,800). 
Similarly, we can compute the temperature in 
Fahrenheit from that in Centigrade by the usual 
formula, 

f(C) = (9 / 5)* C + 32. 
where f is a rational (abbreviated rat) valued 
function and C is a rat sorted variable 
(assuming these are available; or, one could use 
floating point numbers)4. However, we can still 
write the query f (C) = 77. and get the right 
answer C = 25 (but unless a suitable output 
simplifier is provided, one is liable to get large 
unreduced fractions). 

3We use the convention that variables names begin 
with a capital letter, while both function and predicate 
names are all lower case. 

^Compare this with [Kornfeld 83], which uses functions 
like Stilts having bizarre definitions that seem to 
involve putting arbitrary Lisp functions inside clauses 

We now indicate how to get the rationals from 
the integers by using equality. In fact, one can 
define equality of rational numbers just as usual 
in mathematics, 

x / r = z / • r • z = x *» 
where / is a rat-valued function symbol 
denoting division (the denominator must be 
nonzero), and X, Y, Z. I are variables of sort 
lnt (i.e., integer). The above clause (with a little 
syntactic sugar for declarations, as shown in 
Section 5) will enable an Eqlog user to define the 
rationals; by contrast. [Kornfeld 83] uses logical 
variables in a non-obvious way. 

Logical precision requires specifying the intended 
models. For first order many-sorted logic with 
equality, these have one set for each sort s, 
together with a predicate among those sets for 
each predicate symbol, having arguments of the 
sorts in its arity; similarly, with a function 
among those sets corresponding to each function 
symbol, such that the argument and values 
match those of the sorts in its rank. It is also 
assumed that equality predicates are always 
interpreted as actual equalities in the models. In 
addition, there may be a number of sorts and 
associated function and predicate symbols that 
have a fixed interpretation. For example, it is 
desirable to build in the integers for reasons of 
efficiency. 

A model M satisfies a clause of the form 
P P, P.. 

iff for every assignment a of values in the model 
M to variables in the clause (such that sort 
restrictions are satisfied), aP holds in M 
whenever aPj holds in M for all i. A model M 

satisfies a set C of clauses iff it satisfies every 
clause in C. However, we are not really 
interested in all models satisfying all the clauses 
in C; on the contrary, we are only interested m 
the "standard" model of C, which we now 
explain. Given signatures E and /7of function 
and predicate symbols (respectively) and a set 
of Horn clauses (with equations), the standard 
model, denoted T£/7£, has as its elements 

equivalence classes of ground terms under the 
equivalence relation 

t=t' iff C |- t=st', 
where [— is the provability relation for many-
sorted first-order logic with equality. Let [t] 
denote the equivalence class of t under this 
relation. Then function symbols are interpreted 
in the usual way, and predicate symbols are 
interpreted by: P([tj] [tj) is true in TrAC 

^ I- P('(i—.t„); and is false otherwise. Tjyj,C 
is like the Herbrand universe, except that it 
consists of equivalence classes of terms instead ot 
individual terms. 
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The basic facts m this situation ore given by: 
Theorem It Let C be a set of Horn clause# 
with equality, using function and predicate 
symbols from the signature* E and 77 
respectively. Then: 

I T £ n C  **li*fie* C ;  
2. if M is any other model satisfying C ,  then 

there is a unique i.\/7-bomomorphism b: 

T£jj£-»M (where a JT./f-homomorphism 
is a many-sorted function preserving the 
function and predicate symbols in the 
signatures), i.e., Tr n £ is an Initial 

I,//-model satisfying C; 
3. any model initial among those satisfying C  

is isomorphic to Tj- nQ\ 
4. two r-terms denote the same element of 

TZ.n.C ® 'hey can be proved equal using 
the clause* in C; and 

5- for P a predicate symbol and *,terms 
in variable* Y, Ym, one has 

C h ( 3 Y ,  YJP(t, t.) 
iff there is a substitution o sending the Y; 

to ground terms such that 
P(WliH W.H) » troe '» Tr.l7.C' 

n 
AM thu is just another way of stating the so-
called 'Closed World* assumption for the initial 
m<xlelTJ-/J£. This model has *no junk* in the 
®cnse that that every element of the model can 

denoted by a term using tbe given function 
symbols, and *no confusion* in that a predicate 
holds of some elements ifT it can be proved to 
hold using tbe axioms; in particular, two 
elements are identified iff they can be proved 
equal using the given axioms. In fact, these two 
conditions together are equivalent to initiality. 
• ote that full first order predicate calculus does 
'ot always have initial models in this sense. 

3 Solving Equations over Built-
in Sorts 

Assume that we are given a signature E  of 
function symbols and a reachable -L-model A. 

°* 'el E be a set of iT-equations over a set X 
°!variables. Then a ground solution of E in A 
B an assignment a from the variables in X to 
values in A such that o(E) is satisfied in A. Now 
letting T^Y) denote the r-terms with variables 
'torn Y, we define a solution of E in A to be an 

Til! means thu every element of A is denoted by 
»me r-jrooaj term 

assignment o from X to terms in T^Y) such 
that cr(cr(E)) is satisfied in A for every 
assignment a from Y to A. A complete 
solution of E in A is a set L of solutions such 
that every solution of E in A is a substitution 
instance of one in L; i.e., such that for any 
solution T (from variables X to T^Y.)) there is a 
solution o  in L and a substitution p  from the 
variables in Y to T^Y) such that T=p(a). (Note 
that these definitions do not require most general 
substitutions.) 

For example, let N be the natural numbers with 
only the function +, so that E contains elements 
of N as constants and +. Let us consider just 
linear equations, regarding 3X as an abbreviation 
for (X + X + X). Thus, the equations 

3X + Y + 2Z = 1 
X - 2Y = 3 

has a ground solution <R(X)=7, <R(Y)=2, <R(Z)= 
-11 and has a complete solution given by 
(7jX)=3+4V, <R(Y)=2V, <t(Z)= -4 -7V where V 
is a parameter variable. It is a general theorem 
that any set of linear equations over the integers 
has either no solution, or else a complete solution 
consisting of just one substitution. 

Complete solutions do not necessarily exist; also, 
just because a complete solution exists does not 
mean that it is recursively enumerable, i.e., that 
there is an algorithm that will produce all the 
substitutions in it. Moreover even if a 
recursively enumerable complete solution exists, 
the algorithm can still fail to terminate when 
faced with a case for which no solution exists. 
L* US say that we have a totally complete 
solution in case there is an algorithm that will 
explicitly fail if there IS n0 solutl°n- an° .. 
otherwise will enumerate a complete solution. 
Similarly let us say we have a r.e. complete 
solution'in case there is an algorithm that will 
enumerate a complete solution when there is one, 
- awe have a finite solution if we have a 

totally complete solution that is always finite. 
More algorithmically, we will assume that 
SOLN(E) produces substitutions in the solution 
of E, if any exist, one at a time on request until 
there are no more. 

A further desirable property of a solution L of E 

sense'tha ̂ fo'r any^olution subset" titm'<7,"there 

essential y . ompiete solutions exist, but 
n^mo^t general solution exists. The classical 
"° is lhere the model is the set of terms over 

cifjnature E ,  and the functions are just 
Skme n r Then unification gives a finite 
solution (totally complete, with just one most 

orol unifier). 
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4 Computing in Horn Clause 
Logic with Equality 

This section considers sublogics of Horn clause 
logic with equality within which equations over 
user definable ADTs can often be solved. We 
begin with a basic logic and then extend it; most 
logic programming applications seem to be 
included. The basic sublogic assumes all clauses 
are of two types, either a pure equation, or else a 
clause whose head is not an equation. Let £ 
denote the set of equations and P the set of Horn 
clauses whose head clause is not an equation; 
thus, C=£ U P. To unify two positive atomic 
formulae, say Q,(t,,...,tn) and Q2(u, uj, we 
must of course have that Q, is Q2, the arity w 
of Qj is the arity w2 of Q2 so that n=m and the 
sort of t; equals that of Uj, and we must also 
solve the system 

tj=ui, ..., tn=un 

of simultaneous equations modulo the equations 
given in £; this is called (f-unlflcatlon. Because 
of our assumptions about the structure of 
clauses, those in />can have no influence on 
c-unifiers. 

The computation algorithm of ordinary Prolog 
has been described clearly but informally 
by [Warren 80]: "To execute a goal, the system 
searches for the first clause whose head matches 
or unifies with the goal. The unification 
process finds the most general common instance 
of the two terms, which is unique if it exists If 
a match is found, the matching clause Instance is 
then activated by executing in turn, from left to 
right, each of the goals of the body (if any) If 
at any time the system fails to find a match for 
a goal ,t backtracks, i.e., it rejects the most 
recently activated clause, undoing any 
substitutions made by the match with the head 
of the clause. Next it reconsiders the original 
goal which activated the rejected clause and 
tries to find a subsequent clause which also 
matches the goal." IS0 

SOLN(E)getsdTJ 
procedure and may not'halt* buTwhen SOLN 
r e. complete, then our alnnrith™ • b(->L.\ is 
Say that a predicate P (Xh mav hT'P ete)" 
equality = ) dlrectlv rW .. y be an 

4 y ) aireetly depends on another Q if 

f'Zt: ¥^7J'z;'r°" 
evaluation algorithm wnrk1 ture that °ur 
predicate depends on itself Fn" e1ua|ity 
reasonable to define - f examP'e. it is -rit in terms of = since 

there is no dependence of (be clauses defining lot 
on those defining rat. 

5 User Defined Abstract Data 
Types 

There is much work on providing user defined 
ADTs in programming languages (see Clu and 
Ada) and on the foundations in ecjuational logic 
(e.g., [Meseguer & Goguen 84, Goguen, Thatcher 
6 Wagner 78]). The essential idea is that users 
introduce modules that define new sorts and 
associated functions. A purely syntactic notion 
of module has been given for Mprolog 
by (Domolki & Sieredi 83]. 

Let us now give a complete definition for the 
data type rat in proper Eqlog syntax. Eqlog 
keywords are underlined, and module names are 
in capitals (built-in types come in modules; the 
module IKT has sort lnt with subsort mint of 
nonzero integers). "Attributes" can be given for 
operators; for example, assoc. coil, and idp 
indicate that a binary operator is associative, 
commutative, and idempotent, respectively; and 
id: e indicates that it has « as its identity. The 
associative and commutative properties of 
functions can be built into unification 
algorithms. Eqlog "mix-fix" notation permits 
any desired ordering of keywords and arguments 
for operators; this is declared by giving a 
syntactic "form" consisting of a string of 
keywords and underbar characters (_J, followed 
by a •. • followed by the arity as a string of 
sorts, followed by followed by the value 
sort of the function; if there are no underbars, 
then the usual parentheses with comma notation 
must be used. Similar conventions are used for 
predicates. An expression is considered "well-
formed" in this scheme iff it has exactly one 
parse; the parser can interactively help the user 
to satisfy this condition* 

®°dule BASICRAT using IHT is 
sorts rat 
subsorts lnt < rat 
fns 

—/_ : Int.nzlnt -> rat 
—: rat,rat -> rat (assoc COM 0 

: rat, rat -> rat (assoc COM JJ: '' 
X-Y.Z.W.N : lnt 

axioms 
» = » / ! .  

,, The parstr is greatly helped if spaces always sep" 
e keywords declared in the form of a function, and 
per ° otws that convention throughout; but since 

are *lso delimiters, they do need not to 1 
thnc™ r spaces- These syntactic conventions fo 
those of OBJ [Goguen, Meseguer t Plaisted 82l. 
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x / r  =  z /  f : - x * w  =  r » z .  
K / T)»(Z /•) = «• Z)/(T • W). 
(X / TWZ / I) = 

((X • •) • (Z • T))/(T • I). 
eafood BASICRAT 

Here the keyword using indicates that the sorts, 
subsorls, predicates, functions, and axioms of the 
listed modules should be imported to the module 
being defined We will refer to the relationship 
between modules being defined and being used as 
tbe using hierarchy We now enrich BASICRAT 
to define division and the subsorl of nonzero 
rationals 

nodule RAT using RATO Is 
sorts nsrat 
subsorts nsrat < rat 
fns 

J_ : rat,nsrat -> rat 
!»rsX,T.Z.» : lnt 
sxioss 

nzrat(X / Y) nzint(X). 
(X / T)/(Z / 1) = (X • »)/(Y • Z). 

endsod RAT 

We have already noted that the sorts and 
subsorts currently defined form an acyclic graph 
jtbus supporting so-called 'multiple 
inheritance'). This motif is repeated at the 
module level, with another acyclic graph under 
the using hierarchy. In fact, the subsort 
hierarchy and the using hierarchy interact, since 
subsorts are declared inside of modules: At a 
given node M of the using hierarchy, the set of 
curently defined sorts is the union of those 
declared in M with all those declared io nodes 
below M in the using hierarchy (i.e., all those 
related to M by the transitive extension of the 
H'hng relation); similarly, the subsort relation 
nttree at M is the union of the subsort 
declarations in M with those from modules below 
M. Thus, the subsort graph of a lower level 
module is a subgraph of that of a higher level 
module (AH this has already been implemented 
m OBJ and has been found very natural and 
helpful.) 

' Generic Modules 
^Usability is a major goal of modern software 
"gineering. In order to achieve this goal, it is 
Pessary that software be broken into 
omponents that are as reusable as possible; 
arameterization is a technique that can greatly 
zbance the reusability of components [Goguen 

i for example, bag-of and set-of, which 
ayc caused considerable controversy in the 
Toioj Digtit, can easily be defined as generic 
wtract data types, and then automatically 
"Plernented using rewrite rules. Generic 

modules also greatly ameliorate the otherwise 
odious need for defining abstractions whenever 
they are used. 

Before giving details, we consider how to specify 
a parameterized module's interface, especially 
the requirements that an actual parameter 
should satisfy for the instantiation to make 
sense, expressed in the form of a theory, that is, 
a set of axioms, that the actual must satisfy. 
Such a theory may include sort, subsort, 
predicate and function declarations, saying what 
the actual parameter must provide to the 
parameterized module, as well as axioms saying 
what properties must be satisfied. For example, 
a generic sorting module might have the theory 
of quasi-ordered sets as its requirement theory; 
this means that an actual must provide a 
designated sort and a binary relation on it that 
is transitive and reflexive. In Eqlog, this theory 
is given as follows: 

theory QUOSET is 
sorts elt 
preds _=<_ : elt,elt 
vars A,B,C : elt 
axioms 

A =< A. 
A =< C A =< B, B -< C. 

endth QUOSET 

Theories are not intended to be used for 
computation, but only for declaring the 
properties of interfaces. The idea is that before 
an instantiation of a generic can be certified, it 
must be shown that the actual parameter does in 
fact have the properties required by the theory. 
Because computations do not use the axioms 
given in theories, there is no reason to restrict 
the form of the axioms in theories, and in fact 
we allow arbitrary first order axioms. Difficulty 
only arises when one has to prove that the 
axioms hold of some particular module; then one 
needs a first order theorem prover. Here is an 
even simpler theory, the one that is actually 
used for the generic SET example. 

theory TRIV is 
sorts elt 

endth TRIV 
This theory requires nothing except that a 
LrUcular sort be designated. We now give a 

IR RA^ICSET module, providing only 
genemetric difference, Ia), and intersection; later 
Sy v^U define the rest of the set functions from 
*e W1" the name of the module comes a 
LfTsquare bracket, indicating that ^at follows •s TJZX srssrrii; 
required to satisfy; the formal parameter part is 
[hen closed by a right square bracket. 

nodule BASICSET[ELT :: TRIV] is 
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sorts set 
fns 
0.J7 : set 
{_> : elt -> set 
_b_ : set,set -> set (assoc coma id: 0) 
_P_ : set,set -> set (assoc coma idD 

id: n) 
vars S.S'.S" : set, elt,elt' : elt 
axioms 
S W S = 0. 
{ elt > D { elt' > = 0 elt 0 elt' 
S n 0 = 0. 

S IKS' b S") = (S U sOwcs U S") . 
endaod BASICSET 

This way of defining finite sets follows [Hsiang 
81]'s approach to the propositional calculus- Q is 
the "universal" set, i.e., the set of all things' of 
sort elt. The attribute id: should be taken as 
an abbreviation for the identity equation In 
many cases, this definition will execute faster 
than more conventional axiomatizations. It 
should be noted that the BASICSET module 
provides not only all finite subsets of the set 
given as actual parameter, but also all cofinite 
sets (i.e., sets whose complement is finite) The 
inequality in the axiom 

,-C elt > n { elt' > = 0 elt + elt, 
violates the purity of the language only in 
appearance, since Section 7 shows how to reduce 
the semantics of inequality to that of equality. 

To instantiate a generic module, one must 
provide an actual parameter A; but more than 
this is needed. Since both modules and theories 
can involve more than one sort, we need to sav 
thoseWH1C? S°itS 1D,the actual correspond to 
those declared in the requirement theory T of 
the generic; similarly, we need to say which 
functions and predicates in an actual A 
correspond to those required by the theory 
Following [Goguen 83) and ideas from Clear this 
correspondence is given by a view wh^h consists of: w- wnicb 

1. a function from the sorts of the theory T 
to those of A; 

2. a function from the functions of T to those 

3. «Junction from the predicates of T to 
those of A, 

such that 
• the subsort relation is preserved-

*:tre^irtionsandpred'---
• the translations of the axioms in T to 

axioms about A are in fact true of the 

initial model of A.7 

In the language of |Goguen k Burstall 84], a 
view is a "theory morpbism.' 

In many rases, it is obvious bow to construct a 
view of A as T; this is formaliied by the notion 
of a default view in [Goguen S3]. In other 
cases, there is only one appropriate view in the 
current environment, and of course that is the 
one to apply. In such cases, it is not necessary 
to indicate what view is intended, one can just 
write the name of the actual. For example, in 
order to construct SET-OF-INT. we just say 

nake SET-OF-INT is SETtINT] endnate 
since there is a default view of IHT as a THIV. In 
other cases, it may be necessary to include a 
view in the make statement. For example, 

•ake SORTING-OF-INT-DIV is SORTIHG[IHT-
AS-DIV-QUOSET] endnaks 
instantiates a generic SORTING module with the 
quoset of integers ordered by the divisibility 
relation. When it is not necessary to give the 
instantiated module a name, we can just write, 
e.g., SET[INT]. 

We now enrich the generic BASICSET module 
given earlier (recall that it provided symmetric 
difference and intersection) to provide union, 
difference and cardinality functions, plus some of 
the usual predicates. 

nodule SET[X :: TRIV] using HAT, 
BASICSET[X] is 

fns 
_U_ : set.set -> set 

•' set,set -> set 
*_ : net -> nat 

preds 
_G_ '• elt,set 
empty : set 
JL : elt,set 

"ers X : elt. S.S'.S" : set 
axioms 

s u s' = (s n sOy s w s*. 
s - s* = s n(s y sO. 
empty(S) S = 0. 
N 6 S : - { K > U S  =  S .  
N 6 S : - { H > n s  =  0 .  
#0 = 0 .  

*({ X > u S) = succ(# S) :- X 0 S. 
#({ X > tj s) = # s :- X 6 S. 

endmod SET 

Although # does not yield the answer oo for 
infinite sets, it does work reasonably. For 
example in the case of SET [INT], # 0 is Just 1 

7 
seni" rar *ri1 llrke scale programming, one may 

e or less than a formal proof of this; for exam 
informal proof might be acceptable. 
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again, a reduced term rather than a non-
terminatiog computation. Also, •({ 14 > U 17) 
evaluates to f CI again. 

We can also enrich a module without giving the 
enrichment an explicit name; this can be useful if 
some constants are being defined for a single 
query or example Another feature illustrated by 
the following module is that when the 
requirement theory is TRIV, a view can be 
determined just by giving a sort name (provided 
that the sort only occurs in one module in the 
current environment). If the sort name does not 
occur in any module in the current environment, 
then it serves to declare a new sort and apply 
the generic to it; we shall call this a declaration 
•on the fly.' 

Views also provide an elegant form of 
declaration at the module level. In ordinary 
sequential programming, •assertions' can be 
inserted after a statement to indicate that the 
program's state is supposed to satisfy some 
property after the execution of that statement. 
In logic programming with modules, a view from 
a theory to a module serves to indicate that the 
module (i.e., its sorts, functions and predicates) 
satisfies certain axioms. It should be noted that 
one can also compose generics. For example, one 
can form BAG (SET (I ITT J J. 

Of course, there is nothing special about the 
details of the features and syntax described here 
'or Eqlog modules and generics; what is special is 
the underlying semantic ideas. Unfortunately, 
there is not room in this paper for a full 
exposition of this semantics, which is based on 
jdeas from the Clear specification 
language [Burstall k Goguen 80|. The ideas are 
not really difficult, but they use some 
comparatively advanced mathematics. Some 
discussion of the issues iovolved is given in 

'on 7. The application of these ideas to the 
equational logic programming language OBJ is 
described in (Goguen 83|. 

^ Logical Foundations 
This section discusses in more detail four issues 
regarding the foundations of Eqlog: subsorts, 
institutions, narrowing, and inequality. 

T-l Subsorts and Institutions 
Mtay of our examples use subsorts and subsort 
P'e I'ares We now explain why this is not an 
mpure feature, but rather an expressive 
orthand for a specification in standard Horn 
uses logic with equality. We also describe 

°o itions that insure valid use of the equality 
rt 1Cite; these conditions could be enforced 

syntactically. Although more permissive uses of 
subsort predicates are possible and certainly 
worth exploring, the one presented here is 
already very general. 

Whenever a subsort s < s' is declared, a 
corresponding unary predicate s(_) of sort s' 
also becomes available; intuitively, this predicate 
is true of a term iff that term lies in the subsort. 
Users can give axioms involving the subsort 
predicate; but these should only assert that 
certain functions restrict (and constants belong) 
to the subsort. For example, the subsort pos < 
lnt of positive integers can be characterized as 
containing 1 = succ(O) and being closed under 
the successor function, by the two clauses 

pos(l). 
pos (succ(X)) pos(X). 

Our reconstruction of subsorts within Horn 
clause logic with equality involves giving 
ordinary signatures L and 77, and a set C of 
Horn clauses, such that the initial model T£ £ 
is isomorphic to the model intended for the 
subsort declarations and their corresponding 
predicates. The first step is to introduce a new 
ordinary sort for each subsort. We then force 
that in all models, the new sort a is identified 
with a subset of the sort a' whenever a < a' by 
introducing a new function symbol j : a -> a' 
that is made to play the role of an inclusion by 
satisfying the axiom 

j (x) = j CY) X = Y. 
Similarly, we can express the fact that certain 
functions or constants restrict to a subsort by 
introducing new function symbols for these 
functions and constants such that their value 
sort is the subsort; equations are then given to 
insure their relationship to the functions and 
constants in the supersort. 

The module, theory, view and instantiation 
features of Eqlog support generic (i.e., 
oarameterized) programming, a form of 
programming-in-the-large that seems to permit 
an unusually high degree of reusability. All 
these features can be defined for any logica 
system satisfying some very simple and 
reasonable axioms that make^lt ani 
institution [Goguen & Burstall 84]. In 
Darticular, it has been shown that the logic o 
Horn clauses with equality is an institution so 
the general machinery can be applied directly to 
this rase giving a semantics for the 
^'rasterization features in Eqlog. There is not 
P »,.re for the details of this approach, which 
r°.°« on category theoretic concepts like colimit. 
T rth remarking that the subsystem of 
u 15 "nluse logic with equality consisting of pure 
equations plus Horn clauses whose heads are not 
equations, is also an institution. 



122 

7.2 Unification in an Equatlonal Theory 

An equational theory is given by a pair (E,T) 
where £ is an S-sorted signature of function 
symbols and T is a set of E-equations. The 
rules of many-sorted equational 
deduction [Goguen & Meseguer 81] define an 
equivalence relation =T between E-terms with 
variables, namely that of being provably equal 
using the equations in T. If X denotes an S-
sorted set containing an infinite supply of 
variables of each sort, and if T^X) stands for 

the E-algebra of terms with variables in X, then 
a substitution is an S-sorted function a: X-> 

TV(X); such a function extends to a unique 
Ediomomorphism from T^X) to itself that we 
also denote by a. A substitution a is said to 
have domain Y={YJ when Ys={xeX | 
a(x)=jtx}; we then write Y=dom(a). The set of 
variables introduced by a is the S-sorted 
int(o)s=U{vars(a(x)) | xedom(a)8}, where 
vars(t) denotes the set of variables occurring in a 
term t. Given an S-sorted set of variables YCX 
and substitutions a and we write [Y] iff 
a(x)=T/9(x) for each x in Y. Similarly, w^ write 
<*<T0 [Y] iff there is a substitution 7 such that 

£=T7°a [Y], A T-unifier of two terms t and t' 
is a substitution a such that a(t)=Ta(t'). Given 

terms t and t' with Y=vars(t)Uvars(t'), a set L 
of T-umfters of t and t' is called a complete set 
of t h °ft aDd ''iff for each T-unirier 7 

and t there is an a in L with a<T7 [Y] 
(This was called a most general complete 
solution in Section 3.) Without loss of generalitv 
we may assume, for technical reasons that 
dom(o)CY and mt(a)nY=0 for each'a in L. 

Given an equational theory T, a complete 
^unification algorithm SOLN is an 
algorithm such that if started with any two 
terms t and t', SOLN generates a complete set of 
T-unifiers for t and t'- SOLN is flow r • 

rules, a unification ,i_ •.. s K 0' rewrite 
has been given by [Fay "gUnd''"8 narrowin8 
order to give a twlin ^ improved in 
80]. Then 0 °" Cnterion b* [HuUot 

n\ ' . erms one has t= t' iff 

The one step narrowing relation is defined as 
follows: Let I be a term: by renaming of 
variables (or some other convention) we can 
always assume that the variables occurring in t 
do not occur io any of the rules. Let t,, be a 
nonvariable subterm of t that unifies (in the 
ordinary sense) with the left hand side t, of a 

rule t, =tj in ft. with a the most general unifier. 

Let l' be the term obtained by replacing in ojt) 
the subterm a(t0)»a(t,| by «(tj) Then we say 

that t' is a one utep narrowing of t, and we 
write t^t'. The narrowing relation is the 
reflexive and transitive closure of one step 
narrowing, and contains the rewriting relation as 
a subset. The following algorithm then provides 
a complete set of T-unifiers. 

Theorem 2t [Fay 79. Hullol 80|. Let T=^ be 
a confluent and terminating set of rewrite rules. 
Given a pair t,t' of terms, introduce a new 
function symbol8 r and consider all the 
narrowing chains that begin with rft.t'). If such 
a chain ends with a term of the form r(tD,'',,) 

such that t_ and t' are unifiable by a 
substitution a, then compos* a with the 
substitutions obtained at the previous narrowing 
steps in the chain, and add this composition to 
the set of unifiers already generated. The set so 
obtained is a complete set of T-unifiers for t an 
tf. Q 

This algorithm has been extended to handle the 
more general situation when the equations in 

can be partitioned into a set of rewrite rules 

and a set of equations t in such a way that IS 

terminating and confluent 'modulo S' Many 
common examples fall into this category- A 
general answer is given by [Jouannaud, Kite 
& Kirchner 83], who generalize Theorem - 1 
showing that if there is a finite ^-unification 
algorithm, then narrowing modulo £ still 

provides a complete T=JEu£-unification 
algorithm. The idea, in this case, is to have pa 
of the T-unification work done by a built-in 

^-unification algorithm, and the rest by 
if-narrowing. Both [Hullot 80] and [Jouannaud, 
Kirchner & Kirchner 83] give sufficient 
conditions for termination of their algorithms-

Now a simple example showing how a query 
involving an equation is evaluated by narrow 
for illustrative purposes, this example does n 
use the built-in natural number type, hut ra 

The reader may find it helpful to construe 
symbol as a formal equality symbol. 

this 
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provides its own, of sort natl, with successor 
function succ; also, notice there is no nil list 
here. 

nodule LIST[ELT :: TRIV] in 
sorts elt, list, natl 
subsorts elt < lint 
Ins 

0 : natl 
succ : natl -> natl 

: lint,elt -> lint 
length : Hit -> natl 

vers Ela : elt. Lnt : lint 
sxicss 

length (Ela) = succ(O). 
length (Lot • Ela) = succ (length (Lnt)). 

eniaod LIST 

The sort elt is a parameter, and is empty in the 
Herbrand universe; however this causes no 
problem if a suitable modification of the rules of 
deduction is used (see (Goguen & Meseguer 81] 
for the equations! case). The query 

length(Lst') = succ (succ (nucc(O))) . 
evaluates to 

length ((Ela" • Els') • Ela) = 
succ (succ (succ (0))) 

b)' accumulating the substitutions associated 
*itb the narrowings from the root length (Lnt') 
10 'lie expression succ (succ (succ (0))). 

acc (nee Uace (0) ) ) 

Fl|vr* ii Narrcmiog on lb* Lenftb Fuoelioo 

'•3 Equality and Inequality 
TL 

e use °' negation for arbitrary predicates 
es rise to difficulties. However, perhaps 

n '"lsi|1gly, it is not so difficult to treat the 
"Wjon 0f equality. For example, the BASICSET 

u e of Section 6 contains the axiom 
whit1' } ^ ( elt' > = 0 elt t elt', 
clau fpp*ars t0 lie outside the realm of Horn 
an - f lc *'"• equality. However, this is only 
inenfrarance' ,5ecau5e the semantics of 
Th* T can be reduced to that of equality, 
be Rational part of any Eqlog module should 

a computable abstract data type. This is 

implicit in our requirement that the equations 
form a confluent and terminating set of rewrite 
rules (perhaps modulo some decidable equations 
such as associativity, commutativity, etc.) since 
is has been shown that any computable data 
type can be presented that way. Equality and 
inequality of ground terms is then built in, since 
one can just compute the canonical forms of the 
terms in question and see whether or not they 
are equal. Moreover, as shown in [Meseguer & 
Goguen 84], a data type is computable if and 
only if its equality is finitely axiomatizable by 
equations. This means that we can always 
axiomatize equality for each sort a as a function 

= : a,a -> bool, by means of a finite set of 
equations, bool is a new sort having two 
constants, true and false, such that for any 
two ground terms t,t' we have t=t' (in the data 
type) iff (t=t')=true (in the equational equality 
enrichment) and similarly, t=^=t' (in the data 
type) iff (t=t')=false (in the equational 
equality enrichment). In this way, inequality is 
reduced to equality. 

Given an inequality t =jt t', the Eqlog system will 
then: 

1. compute it by rewriting if both t and t are 
ground terms; and 

2. otherwise, requiring the existence of an 
equationally defined equality, =, for the 
sort in question, translate the inequality 
into the equation (t=t') = false, and 
then solve this equation using narrowing. 

8 The Missionaries and 
Cannibals Problem 

To illustrate the power of Eqlog, we show how 
to use some standard generics, plus subsorts, 
functions and predicates, for a general 
Missionaries and Cannibals problem (hereaf.ter' 
MAC); once the parameters are instantiated, 
Eqlog solves MAC by (f-narrowing, for t a set of 
equations including associativity and 
commutativity equations for the set operations. 
We begin with a theory MACTH of the 
preconditions for MAC: there are two disjoint 
sets of persons, nO of missionanes and cO of 
cannibals. Later we instantiate MACTH to tne 
usual case of three missionaries and three 
cannibals. MACTH uses a generic SET module to 

f difference union, and cardinality. By 
convenUan'a module with a •principal- sort has 
the same name as that sort_ (unlessexphcilb y 
indicated otherwise); e.g., the sort of PSET 
paet. 
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theory MACTH[PERSON :: TRIVJ using SET 
PSET = SET[PERSON] is 

fns 

aO : pset 
cO : pset 

axioms 
mO n cO = 0. 

endth MACTH 

The MAC module also uses a generic LIST module 
that provides the empty list nil, the length 
function #, and concatenation «. The new sort 
trip is introduced -on the fly" (see Section 6) in 
the submodule TRIPLIST. We now briefly 
discuss the intuition behind this specification. A 
solution is a list of trips having certain 'good" 
properties, where a trip is a boat containing a set 
of persons; odd numbered trips go from the left 
bank to the right, and even trips go from the 
right to the left. Missionaries and cannibals are 
persons. The predicate boatok indicates that a 
boat has an ok number of persons; the predicate 
good is true if a list of trips never allows there to 
be more cannibals than missionaries on a bank 
the predicate solve indicates that a trip list is a 
solution to the problem. The functions lb'and 
rb give the sets of persons on the left and right 
banks, respectively, and the functions mset and 
cset extract the subsets of missionaries and 
cannibals (respectively) from a set of persons. 

S°dule MAC[T :: MACTH] using NAT 
TRIPLIST = LIST [trip] is 

preds — 

boatok : trip 
solve,good : tripllst 

fns 

boat : pset -> trip 
lb.rb : triplist -> pget 
mset,cset : pset -> pset 

IHS PS pset, L : triplist, 
P : person, T : trip 

axioms 

boatok(boat(PS)) # 
boatok(boat(PS)) # 
lb (nil) = mo ucO. 

mset(PS) = PS n mO 
cset (PS) = PS n cO. 
rb(nil) = 0 

lb(L * boat (PS)) = ib(L) 
e v e n  #  L .  

rb(L * "oat(PS)) = rb(L) y  
even # L ' 

rbtt. b»t<PS)) . ,b(L) . ps 

I ' O .  .  l l ( u  y  P S  

PS = 1 .  
PS = 2. 

PS 

good(L • T) » cs«t(lb(L » I)) =< 
• •••t(lb(L • T)), 
• cset(rb(L • T)) =< 
• mset(rb(L • T)), good(L), 
boatok(T). 

good(nil). 
solve(L) good(L), lb(L) =0 

endaod MAC 

Now (he constants to instantiate MAC to the 
usual case. 

•oduls EX1 using SET[ID] is 
axioms 

aO = { taylor, hslen. tilliu }. 
cO = { uaugu. nzsats. taoc ). 

sndmoduls EX1 

The notation {a, b, c) is shorthand for { a ) 
U(b)u(c). We can now instantiate MAC 
and ask Eqlog to solve the resulting problem 
with 
make MAC[EX1] endmake 
solve (L.) 
using the default view of EX1 as MACTH, and no 
bothering to give the resulting module a name 
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ABSTRACT 

The unfold/fold transforma
tion method is formulated for 
logic programs in such a way that 
the transformation always pre
serves the equivalence of programs 
as defined by the least model 
semantics. A detailed proof for 
the basic system is presented 
first. Then some augmenting rules 
are Introduced and the conditions 
of their safe application within 
the unfold/fold system are clari
fied. There are useful special 
cases of those rules whose appli
cation is always safe. 

1 INTRODUCTION 

The unfold/fold program 
transformation method was devel
oped by Burstall and Darlington 
(Burstall & Darlington 1977) in 
the context of their recursive 
equation language. The idea was 
generalized and applied to logic 
program synthesis (Clark & Sickel 
1977) (Hogger 1981), where the 
authors naturally formulated the 
unfold and fold transformations as 
just special cases of logical 
deduction. Thus each clause in 
the synthesized program is a 
theorem deduced from the specifi
cation axioms. This ensures the 
partial correctness of the synthe
sized program because every result 
of computation (atomic theorem 
deduced from the program) is 
derivable directly from the speci
fication as well. Total correct

ness, however, is not guaranteed 
in general and should be proved 
separately(Clark 1979) . 

They applied this deductive 
approach to logic program trans
formation taking the initial pro
gram, viewed as if-and-only-if 
definitions, to be the specifi
cation. But what is ensured in 
general is again just partial 
correctness: the relations 
computed by the transformed pro
gram are narrower or equal to 
those computed by the original 
one. In other words the least 
Herbrand model(Van Emden & 
Kowalski 1976) of the transformed 
program is included in that of 
the initial one. If we want 
exact equivalence, the inverse 
inclusion should be proved for 
individual cases. 

As an alternative to the 
deductive approach, we have 
formulated an unfold/fold trans
formation system for logic pro
grams (Tamaki & Sato 1983) in such 
a way that the transformation 
always preserves the equivalence 
of programs as defined by the 
least model semantics. Though we 
have to sacrifice the generality 
of the deductive approach, the 
guaranteed equivalence should 
worth the cost. 

This paper augments the 

basic unfold/fold system with 
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some other transformation rules. 
Though the rules themselves are 
obviously equivalence preserving, 
their interaction with unfold/fold 
transformation needs careful study. 
The condition for the application 
of the rules to be safe will be 
clarified. 

Section 2 describes the basic 
unfold/fold system and proves 
that it preserves the equivalence 
of programs. The proof is simpler 
than the one given in (Tamaki & 
Sato 1983) and more suitable for 
our purpose. Section 3 and 4 
introduce and study augmenting 
rules. 

The readers are assumed to be 
familiar with the standard notions 
and notations of logic programs 
(Kowalski 1974). Note that our 
target language is a pure one 
rather than a practical implemen
tation such as existing Prologs. 
Thus a program is a set (not an 
ordered list) of definite clauseg 
A definite clause is a pair of a 
goal (atomic formula), called a 
head, and a multi-set (again not 

u.o o t  e o a lf .  

2 MSIQNFOLD/FOLT) .SVCTVW 
2 •1 Pggcrietion of the sv.t^ 

The transformation process 
proceeds as follows. 

Transformation 
begin PQ := the initial program; 

D0 := O; /* the set of 
definitions of 

mark o nSW Predicates */ 
mark every clause in P 
foldable'; 0 

for i ._ i t0 arbitrary N 
^PPly any of the trans
lation rules to ob-

In this section we are only con
cerned with the three basic rules, 
namely, definition, unfolding and 
folding, each of which are 
described in the sequel. 

Example (initial program) 

PQ : CI. subseq([],X) 

C2. subseq ([A|X], [A|Y]) 
*• subseq (X,Y) 

C3. subseq (X, [A | Y]) 
• subseq (X,Y) 

We use this example to illus
trate the process and rules of 
transformation. The upper case 
letters are variables, [] denotes 
an empty list and [A|X] a list 
with head A and tail X. Thus the 
predicate subseq(X,Y) is intended 
to mean that X is a subsequence 
of Y. 

Rule 1. definition 

Let C  be a clause of the 
form p(xr...,xn) - Ax V 

where 
1. p is an arbitrary p re d i c a t e  not 

appearing in P.  ,  or V.  ,« l—l 
9x are distinct vari-n • • 

ables, and 
A. 

end 

. " co c tarn Pi and D from 

i-1 

• .  ,A  are goals whose m 6 

predicates all appear in Pq• 

Then let be P^ U {C} and D-
be Di-1 U {<?>• 
Do not mark C  'foldable'. 

The predicates introduced by the 
definition rule are called new 
predicates while those in PQ are 

called old. Those variables 
occurring in A A other than 

1 777 
—,xt are called internal 

variables of C. 

(continued) 
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We define C4, motivated by 
some need for a common subsequence 
relation. 

C4. csub(X,Y,Z) «- subseq(X.Y), 
subseq(X,Z) 

Then • {C1,C2,C3,C4}, £^-{04}. 
Underline Indicates 'foldable' 
clauses. We are going to optimize 
this predicate 'csub'. 

Rule 2. Unfolding 

Let C be a clause in A 

a goal in its body and Cy ... ,  

be all the clauses in P. , whose 
t-1 

heads are unlflable with A. Let 
be the result of 

resolving C with C\ upon A. 
Then let P. be (P. . - {C}) U {<7. v I" 1 X 
•••,C '} and D. be P. ,. 

n i i-l 

Mark each C'foldable' unless 
it is already in 

Example (continued) 

We unfold C4 at its first 
goal to obtain ?2 = {CI,C2,C3,C5, 

£>2 = {C4} where the clauses 

C5,C6 and C7 are listed below. 

C5. csub([] ,Y,Z) - subseq([ ] ,Z) 
C6. csub((A|X],(A|Y),Z) 

• subseq (X, Y) , subseq ( [ A| X ]  , Z )  
"• C8ub(X, [A| Y] ,Z) +• subseq(X.Y) , 

subseq(X,Z) 

Then C5 is unfolded into 

C5\ csub([],Y,Z) 

and we get P- {CI,02,02,02' ,02, 
—} and P3 . {C4}. 

The folding rule in our 
system is not just the inverse of 

the unfolding rule as it is in the 
Burs tall and Darlington's system. 
To fold a goal set into a goal, we 
allow only a clause in to be 

used as the folder. 

Rule 3. folding 

Let C be a clause in P. , of l-l 
the form A *• 4 , ... ,A^ and be a 

clause in P. , of the form B *• B^, •p-1 i 
...B . Suppose there is a subst-
' m 

itution 0 and a subset {A. .... 
U1 

,A. } of the body of C such that 

the following conditions hold. 

1. A. =5.0 for ,7=1, — ,m, 
3 

2. 6 substitutes distinct vari
ables for the internal variables 
of Cy and moreover those vari

ables do not occur in A or {Ay — 

,A } - {A. ,...,A. }, and 
n hn 

3. C is marked 'foldable' or 
m <n. 

Then let P^ be (P^_1 - {5}) U {C} 
and D. be D. . where C' is a 

/ A 
clause with head A and body {{Ay . 

..,A } - (A, » U{50}. 
' n t-i ^m 

Let C' inherit the mark of C. 

Example (continued) 

Folding the whole body of C7 
by C4, we obtain P^ = {C1,C2,C3, 

C5',C6,C8> and D4={C4} where C8 

is 

C8. csub(X, [A| Y) ,Z) csub (X,Y,Z) . 

To see the need for the con
dition 2, suppose we fold the 
clause p( X ) - q ( X,Y) r(Y) using a 
definition s(U) *• q(U,V) into the 
clause p(X)-s(X),r(Y). Then the 
equivalence is destroyed because 
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the result clause would correspond 
to a clause p(X) q(X,Yl) ,r(Y) but 
not to the original one. 

The condition 3 prevents for 
example immediate folding of a 
definition by itself. Without the 
condition we fold C4, in PQ of our 

example, by itself to end in P ' 

={C1,C2,C3,C4'} where C4' is 

csub(X,Y,Z) -i- csub(X,Y,Z) . 

To complete our example, we 
need one more new predicate. 

Example (continued) 

Motivated by the failure to 
fold the body of C6, we introduce 
an auxiliary predicate 'csubl' and 
define 

C9. csubl(A,X,Y,Z) •*- subseq(X,Y) , 
subseq([A|X],Z) ' 

to obtain *5-{C1,C2,C3,C5\C6>C8. 
C9^» d5 ={C4,C9}. 

By unfolding C9 at its second 
goal, we get P& = {C1.C2,C3,C5•,C6, 

C8,C10,C11} and z?6 = {C4,C9} where 

CIO and Cll are 

CIO. csubl(A,X,Y,[A|z]) 

subseq(X,Y) , subseq (X,Z) 

Cll. csubl(A,X,Y,[B |z]) 

" subse9(X,Y) , subseq ( [A |x] ,Z). 

Folding C6, CIO and m 

the p, - tliJLS"1" 
C5',C6',C8,C10',C11'} and D = {C4 

S 
independently fr„ 

C5'. csub([],Y,z) 

C6>. csub([A|X],[A|Y],Z) 
csubl(A,X,Y,Z) 

C8. csub(X,(A|Yj,Z) «-csub(X,Y,Z) 

CIO', csubl(A,X,Y,[A|Z]) 
*csub(X,Y,Z) 

Cll'. csubl (A,X,Y, [B |Z]) 
• csubl(A,X,V,Z) 

When used for generating common 
subsequences of two given lists, 
the final program is far more 
deterministic than the original 
one because a selection of an 
element in the first list is 
immediately checked against the 
second one. (Of course we are 
assuming here the fixed order 
control under which the original 
program behaves as a typical 
generare-and-test program.) 

The point is that P^ is 

equivalent (in the least model 
semantics) to P^ U D^ and that 

this is generally true for any 
transformation sequence obeying 
the rules. The rest of this 
section is devoted to the proof of 
this fact. 

2.2 Correctness of the Basic 
System 

First we characterize the 
least model semantics by means of 
proof trees. We assume a fixed 
Herbrand universe and a fixed set 
of predicates so that the set of 
ground goals is fixed. 

Definition. proof tree 

Let S be a program. A tree 
T, whose nodes are labelled with 
ground goals, is called a proof 
tree, or simply a proof, in $ ̂  
the following conditions hold. 

f * Let A be the root label of 
2"i(,n>_0) its immediate 

subtrees and A,,...,A their root 
1* ' n 

1'' ..x, 
labels. Then A 

•L " 

instance of some clause C in 
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2. Each Immediate subtree T .  (1<_i  
<«) is a proof in S. t — 

We say that T is a proof of A in 5 
and that 4 is provable (by 2") in 
S .  We also say that the clause C 
is used at the root of the proof T 
and that T,,..,T are immediate 1 n 
subproofs of T. 

In the following, we often 
argue by induction on the struc
ture of proofs and omit the base 
case, which is usually subsumed by 
the induction step as the special 
casen=0, as in the above defini
tion. 

The meaning, M(S), of the 
program S is now defined as the 
set of all ground goals provable 
in S. This M(S) is nothing but 
the least Herbrand model of 5 
(Van Emden 76). 

For a transformation sequence 
Vo1 tfrV' we define 
a sequence SQ,...,SN called 
virtual transformation sequence, 
by 

WW-
in particular SQ -PQU Dn and 

In the following discus
sion we will always deal with 
""irtual transformation sequences, 
ihis amounts to pretending that 
the definitions of all new predi
abetes are given at the beginning. 
"e set of definitions D„ will be 

a 
ixed and referred to as D 
nroughout. Since the definition 
nansformation is an identity 
tansformation in the virtual 
tansformation sequence, it will 
e ignored. 

THEOREM 

Let S.,...,SN be the trans

formation sequence. Then 

= Af(50). 

To prove the theorem we need some 
definitions. 

Definition, rank of a ground goal 

Let A be a goal in M(S Q )  and 

r ' ( .A )  be the size of the smallest 
proof of A in SQ. Then r(.A), the 

rank of A,  is r ' (A )  if A has an 

old predicate and r ' ( A ) - l  if A has 
a new predicate. 

Definition, rank consistent proof 

Let S .  be a program in the 
% 

transformation sequence. Let T 
be a proof in C the clause 

used at its root, (nl°) 

its immediate subproofs, and A,  
A A their root labels. Then 
1 ' "  n  .  

T is said to be rank-consistent 
if 

1. r(4) >rW1)+..«'<V with 

equality holding only when C is 
not marked 'foldable', and 

0 m n> axe. rank consistent. 
L' ' n 

Now the proof of the theorem 
consists of showing that the 
following invariants hold for each 

1  (0f _ i ± N ) -

11. M i S j  = M { S q)  

12. F°r each 8oaI ̂  in ' 

there is a rank-consistent 
proof of A in S  

. T 1 trivially 
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holds for x = 0. As for 12, for 
any goal A in W(5Q) , the smallest 

proof of A  is obviously rank-con
sistent. (Remember SQ = PQ U D and 

the clauses in PQ are marked 

'foldable' while those in D  are 
not.) 

The preservation of the 
invariants is proved in the three 
lemmas b elow. 

LEMMA 1 

If II holds for Sthen 

Proof. 

Let A be a ground goal in 
and T its proof in S. 

T T  "  We construct a proof T '  of A  in 
Sl by induction on the structure 
of T. 

Let C  be the clause used at 
t h e  r o o t  o f  T ,  a n d  2 ^ , . . , 2 ^  ( n  > 0 )  

the immediate subproofs of T  Bv 
the induction hypothesis we can 
c o n s t r u c t  p r o o f s  2 ^ ' , . .  y  r  i n  

Si+1 Wlth each Tj' corresponding 
to 2\. if c is in we can 

immediately construct 2" from r  
and the proofs ». If c 

is the result of unfolding, we can 
construct T '  from T  '  %  >  ?  

1 ' n usin8 
the two clauses in S .  of which C  
is the resolvent. 

Now suppose C is the resoTr 
of folding. Then for some f 

_n) , the root label A  .  o f  T  
is an instance of the f„la a J' 
in the body of C u °lded Soal 

— v ' l s  f - 1 -
V- " i. auo pra,abl<! ^ ̂  

the invariant II. So there should 
be a ground instance A^ 

o f  some clause in D  such that 
,.. ,Bm are provable in Pg. 

Again by II, are provable 
1 "1 

in 5.. Let C '  be the clause inS. 
x  1  

of which C  is the folded result. 
Owing to the condition 2 of fold
ing, we can combine the proofs of 

and proofs i n ?  L  n  

with C '  to obtain J", the proof of 
A  in Si. [] 

LEMMA 2 

If the invariants II and 12 
hold for , then 

Proof. 

Let A be a ground goal in 
M(SA). Then by the invariant 

there is a rank-consistent proof 
T  of A  in S . .  We construct a 

x  
proof T '  of A  in S£+1 by induc

tion on the well-founded ordering 
» defined on M(S^) ( as 

A  »  B  iff 

f(A) >r(S) or 
r(A) =r(B) and A  has a new and 
B has an old predicate. 

The base case where r ( A )  =  2 a n < ^  
has an old predicate obviously 
holds because then A should be 
ground instance of some unit 
clause in PQ which should be in 

both S .  and S.^,. x i+l 
Let C  be the clause in S -

_ f  
used at the top of T ,  and T n  

the immediate subproofs 0 

T- By the invariant 12, f°r ea 

root label A .  of T A  »  h  
x  x  

holds. So by the induction 2 
pothesis there are proofs 
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V'"'V of Al'"'An in si+1' 
If C Is in S... the construction t+1 
of 2" is immediate. 

Suppose C is unfolded into 
C,,..,C in S... and assume that 1 ' m t+1 
the root label of 2"^ is the 
instance of the goal at which C is 
unfolded. Let T,,,..T, be the 11* lp 
immediate subproofs of 2^, and 

^ll'"*^lp their root labels. 
Then again by 12 and the induction 
hypothesis, there are proofs 
Tn''"'Tip' ot Aii'"'Aip ln 

Combining the proofs 
Tll'.--,rip', T2',..,Tn' With some 
(l£fe<m) we get a proof 2" of 

A in S. .. 
t+1 

Now suppose C is folded into 
C' in Assume that the root 
labels Av..,Ak of Tv--,Tk (k <n) 
are the instances of the folded 
goals in C. Let B be a goal such 
that B •dj,.. ,Ak is a ground 
instance of the clause in D used 
in the folding. By definition, 
rM1)+.. .+r(A?{) > r(B) . By the 
condition 3 of folding, either C 
is marked 'foldable', which means 
pU) >r(i41)+. ..+r(i4fe), or k<n. 

In either cases, r(j4) >r(B) holds. 
Moreover, by the equivalence of 

^t to ^oJ ® *8 Provable in ̂  • 
Therefore by the induction hy
pothesis, B has a proof T^ in 

"t+1* Combining the proofs 

V Tk+l''"'Tn' with the clause 

C> we obtain the proof 2" of A 
in S. 

£+1* 

LEMMA 3 

If the invariant II and 12 
holds for S\, 12 holds for 

Proof. 

We first note that in the 
proof of lemma 2, T' is con
structed in such a way that it is 
rank-consistent. Thus every goal 
in M(S.) has a rank-consistent 

proof in S^+1- Because A?(£^+1) 
c by lemma 1, 12 holds 

for Si+1. [] 

This completes the proof of 
the theorem. 

3 MAL REPLACEMENT 

The unfold/fold system 
becomes more powerful when com
bined with goal replacement 
rules. 

3.1 General Principle 

Let 5 be a program and 
3xBx&..&Bn be an existentially 

quantified conjunction of goals 
without free variables. (By x 
we represent a vector of vari
ables.) We say the formula is 
provable in S and write 
3xB &Bn if there is some 

around instantiation 9 of x such 
that every B A <1<*±«> " prov-
able in S. 

Now let C be a clause in S 
of the form 

A '' 'Bm 

and C be a clause (not in S) of 
the form 

,pt x\u~\ be variables occurring Let XLi/J , B t] and not 
in B, , • •>'->Dn 1 
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in A, A1,..,A]< and [B.^ 

..,B ]. 
m 

Suppose for every ground 
instantiation 0 of A, A^,..,Ak it 

holds that 

S-{C}|- 3x(Bl(S. .&B )0 
' 1 m 

iff S-{C} \-3y(B1'&..&Bn')Q. 

Then we can transform S into 
B' = (S-{C}) U{C'}. 

It is rather obvious that the 
transformation itself preserves 
the least model. But when we use 
this rule within the unfold/fold 
system, we must be careful so that 
the second invariant 12 of the 
transformation process is pre
served. Consider the following 
transformation sequence. 

P0: q(s(X)) -s-q(X) 
q(o) 
r(s(X)) «-r(X) 
r (0) 

Define. 
pl(X,Y) •*- q(X) ,r (Y) 
p2(X,Y) •*- q(X) ,r (y) 

Unfold q in (5) . 
pl(0,y) -f-r(Y) 
pl(s (X) ,Y) •*- q(x) ,r (Y) 

Replace r(Y) by r(s(Y)>. 
pl(s(X) ,Y) •*-q(x) ,r(s(y) ) 

Unfold r in (6) . 
p2(X,0) •*- q(X) 
p2 (X, s (Y) ) q(X) ,r (Y) 

Replace q(X) by q(s(X)). 

Fold )̂(X'S(Y))̂ <l(s(X))^(Y) 

Fold gg5X)'T)*P2<*.s(*)) 

p2 (X, s (Y) ) pi (s (x) 5 Y) 

(D 
(2) 
(3) 
(4) 

(5) 
(6) 

(7) 
(8) 

(9) 

(10) 
(H) 

(12) 

(13) 

(14) 

Though each step of goal replace
ment is valid by itself, the 
resulting program contains infi-

lent to the original one. This 
is because the goal replacement 
steps destroyed the invariant 12. 

The general condition to 
preserve the invariant 12 is that 
for every ground instantiation 6 
of At 

r(3x(Sid..iSjB)0) 

> r(3j/(B, 'S..SB')B) (*) 
— "1 n 

holds, where by r(3aS^i..tBj we 

represent the minimum of f(B^o)+ 

. .r*(B? a) for every ground instan

tiation O of s. 

Under this condition, a 
rank-consistent proof in S can be 
converted into a rank-consistent 
proof in S'. There are many 
special cases where this con
dition unconditionally holds. 

3.2 Special Cases 

goal deletion 

Let C be a clause of the 
form A -<-B,,.. ,B . If for every 

1* * n 
ground instantiation 0 of the 
clause, S-{C) |- (Bjd.. 
implies S-{C) I- B 0, then B can i ye ' 
be deleted. 

Considering this as the replace 
ment of B^..^ by B^...#,^' 

the condition (*) is obviously 
satisfied. 

goal merging 

We can merge identical goals 
in a body into one goal. The 
condition (*) is also satisfied-

function merging 

Suppose there are two g°als 
P(tj, . and p(£jj*-»*«-l' 
y) ill the body of the clause. 
Assume further that a ground g°a 

p(V--*V in ls unique 

UP to s . ,s , . (The relati°n 
1 71—1 
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denoted by p is actually a func
tion.) Then we can merge the two 
goals applying the substitution 
{y/x) to the rest of the clause. 
The condition (*) is satisfied. 

goal addition 
This is the inverse of goal 

deletion. The following example 
shows the utility of this seeming
ly pessioising transformation. 

Example (sorting by permutation 
and order check) 

P.: perm( [).[]) 
perm([A|x) ,Y) * perm(X,Z) , 

ins(A,Z,Y) 
ins(A,X,[A|X1) 
ias(A,[B|Xj,(B|Y]) *• lns(A,X,Y) 
ord([)) 
ord([A)) 
ord([A,B|X)) «-A < B,ord((B|X]) 

Define . 
sort(X.Y) • perm(X,Y) ,ord(Y) 

Unfold perm . 
80"([).Y) *ord((]) 
sort([A|X],Y) «-

perm(X,Z),ins(A,Z,Y) ,ord(Y) 
Add ord(Z) in the body because for 
any ground terms and ty 
PQ |-in8(tltt2tt3)dord(t3) implies 
P0|-ord(t2). 

aort( [A|X J ,Y) +• perm(X,Z) , 
ord(Z) ,ins(A, Z, Y) ,ord(Y) 

fold the first two goals. 
sort([A|X],Y) • 

sort(X.Y) ,ins(A,Z,Y) ,ord(Y) 

bhus this technique is a vital 
"ep from the 0(n!) sorting pro-
gram to an 0(n ) insertion sort 

2V program. To obtain an 0(n ) pro
gram, however, we need the idea of 
context (Wegbreit 76), which is 
beyond the scope of this paper. 

Though goal insertion clear-
by violates condition (*), the 

above transformation sequence does 
preserve equivalence. A technique 
to get around the difficulty will 
be presented in section 3.3. 

laws of primitives 

There are various laws for 
primitive predicates, such as 
associativity of the predicate 
'append' defined by 

P : append([],X,X) 
aP append([A|X],Y,[A,Z]) 

+- append(X,Y,Z) . 

We can prove by induction that 

p |-3X append(t. ,t ,X) & 
ap ' 1 z 

append 

iff P l-3^ append(t. ,Y,t.) & 
ap 1 -1- \ 

append(t2»t3 Y) 

for any ground terms So 

we can apply the associativity of 
append in any program incorpo 
rating Pap. 

The condition (*) holds if 
we use the associativity in one 
direction (the left hand side of 
iff to the right hand side), but 
does not hold in the other direc

tion. 

3,3 Weakening the Condition 

We have seen that in many 
cases the goal replacement rule 
can be used with the unfold/fold 
transformation unconditionally. 
But we have also seen interesting 
cases where the condition ( ) 
does not hold, ^r such cases we 
can weaken the condition (*) into 
the following, (though at the 
cost of additional bookkeeping of 
folding conditions.) 

For every such 0 as in (*),f 
there is a partition of lBj_ 

o '1 «uch that for each part 
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' 'j  • • *B . "} of the partition, 

. &Sm>9) >_r(3y(B1 ' . 

SB .' ')0) holds. 
<7 

In the sorting example, we 
replaced the goals {ins(A,Z,Y>, 
ord(Y)} by {ord(Z),ins(A,Z,Y) , 
ord(Y)}. This is now justified 
because 2>(ord(t2)) <r(ins(t ;L,t , 

+^(ord(t^)) for any ground 

terms and for which the 

goals are provable. But we have 
to put labels on the introduced 
goals as 

sort([A|X],Y) - perm(X,Z), 
o£d(Z),ins(A.Z.Y).ord(Y) 

1 . 1  1 . 2  1 . 2  

Inheriting these labels through 
transformation and prohibiting 
folding of goals of label 1.1 and 
of label 1.2 together, we can make 
the induction in the proof of 
lemma 2 valid. 

To prove the correctness of 
this technique, the condition 1 
m the definition of rank-con
sistency should be changed: 

I ' "  w  . * * ( 4 .  }  f o r  
1  m  

any subset { A  A  } Qf { A  
i-m 1J  • • * 

V such that  two goals in the 
subset have imcompatible labels 
With equality holding only when' 
C is marked 'foldable'. 

The detail of the modified proof 
IS omitted. proot 

Note that the folding of ri, 
first two goals in the the 

lause does not violate the ] ah i 

example^of'sorting''^ 
The reverse direction ofSthfle<3' 
ass o c i a t i v i t y  o f  ' a ™  j .  y °t append' can 

also be handled in this manner. 

4 CLAUSE ADDITION/DELETION 

clause addition 

Let C  be a clause not in S .  
If for every ground Instance 
A *A1,..,An of C, S |- 4^.44, 

implies 5 |- A ,  we can add C  to S .  

clause deletion 

Let C  be a clause in 5. If 
for every ground instance A*~A^,. 

. , A n  of C ,  S -  { £ }  | -  ^4..^ 

implies 5- {C } |- A ,  we can 
delete C from 5. 

The correctness of these 
transformations themselves is 
again obvious. When combined 
with the unfold/fold transforms" 
tion, clause addition causes no 
problem. Clause deletion can in 
general destroy the invariant 12 
of the transformation process. 
As in the case of goal replace
ment, there are important special 
cases. 

Let C  and C '  be clauses in 
S of the forms A *Ay .. ,A^ and 

B  * - B . 3 . .  B  such that A  is an 
i  r n  

instance B o  of B .  Let x [ y ]  b e  
the sequence of variables in 
A  . . 3 A  I B - 3 . . , B  ] but not in 

r l  i  m  
4[B]. If for every ground 
instantiation 0 of A ,  S - { C )  ! "  

. A A ^ )  0 implies S  -  I" 
3 y ( B  & . . S B  )c0, then C  can be J- 777 

deleted. In this special case 
of goal deletion, the condition 

r ( B x ( A . & . . & A  )0) > 

r(ax(S,&..&B )CT0) for every » 
-L 777 

guarantees the preservation of 
the invariant 12. In particular. 
i f  • .  , B m o }  c  { A v . . , A n ) ,  
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which means syntactic subsumption, 
the condition is trivially satis
fied. 

Finally, it should be remark
ed that clause addition/deletion, 
unlike goal replacement, are 
often used apart from the unfold/ 
fold system. In such cases we 
need not worry about the invar
iant. 

5 CONCLUDING REMARKS 

We have proved the correct
ness of the basic unfold/fold 
system and then examined the 
interaction of the augmenting 
transformation rules with the 
correctness property. We have 
stated a sufficient condition for 
their application to be safe. To 
ensure the equivalence of the 
result of some transformation 
sequence with the Initial program, 
we need only to check the con
dition for each application of 
those rules. As we have seen, in 
nany useful special cases this 
involves only a simple syntactic 
checking. In other cases, proving 
the condition can be a difficult 
task. However, we can still claim 
the advantage over the usual 
separate equivalence proof ap
proach because we have the choice 
°i either keeping the conditions 
through transformation sequence 
°r proving separately the equiv
alence of the result with the 
original program. 

Though one might expect that 
the unfold/fold system preserves 
stronger properties like comple
tion or finite failure(Clark 1978) 
tApt and Van Emden 1982) , this is 
"°t the case for these properties. 

ere are easy counter examples. 

The practical power of the 
system depends on the heuristics 
We emPl°y: we have a large 
search space generated by the 

choice of applicable transforma
tion rules. We are currently 
investigating this strategic 
aspect with some experimental 
implementations. 
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ABSTRACT 

The paper deals with the control 
of search in logic programming 
(Horn clause inference) by the ad
dition of restrictive predicates 
to rules so as to cut off all 
blind-alleys without loosing pos
sible results. Criteria are pro
posed to ensure that additional 
preaises in clauses allow to es
tablish results without trials-
and-errors. These criteria require 
neither the introduction of spe
cial well-orderings nor the induc
tion of limits of predicates. They 
take into account structural pro
perties of bounded-length composi
tions of the original clauses, and 
consequently are only sufficient. 

•1- IHTRonnrTjf)fi 

Exhaustive search, or backtrack-
ln9> remains a fundamental 
stuabling-block on the way to 
economic use of programs based on 
inference techniques, such as 
canonical Post productions, defin
ite Horn clauses, elementary for-

systems (Smullyan 1961), or 
van Wijngaarden two-level gram-
*ats- To overcome that obstacle, 
°ui lines of work have been ex-

P °red, and continue to be so. 
ustly, various non-von-Neumann 

computer architectures are 
esigned in order to permit high 

concurrency in the parallel ex-
P oration of alternative computa-
10" paths. Secondly, refined 
valuation regimes are introduced 

so as to abandon unsuccessful 
paths earlier, thanks to an 
analysis of previous failures; 
typical techniques are the alpha-
beta heuristics and the intelli
gent backtracking (Bruynooghe 
1978). Thirdly, lower-level state
ments are made available for the 
explicit programming of more effi
cient control-flow and data-flow; 
simple illustrations are the 
sequentialization of clauses and 
the cut-operator in Prolog. 
Fourthly, inference programs can 
be specialized by adding in 
clauses selective premises which 
eliminate blind alleys; this is 
known as the "logic control by 
logic" (Pereira 1982) and can be 
seen as an instance of efficiency 
improvement by program transforma
tions; successful and important 
examples of this approach in other 
formal systems are the generation 
of parsers for context-free 
languages and the Knuth-Bendix 
technique. 

The work reported here focuses 
on the derivation of deterministic 
programs from nondeterministic 
specifications by bounded-depth 
transformations. Thus it follows 
the fourth, transformational 
method. A major problem proves to 
be the lack of elementary means 
for ensuring the adequacy of add* 
tional, selective premises. On the 
one hand, these should remove all 
deadends! On the other hand, they 
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should not remove too much, viz. 
they should preserve the possibil
ity of deriving each result com
putable by the original program. 
As a rule, in order to deduce 
selective premises correctly, or 
simply to validate these, termina
tion functions are introduced. 
But then the problem is to discov
er appropriate orderings; this is 
typically the case for methods 
based on the Knuth-Bendix comple
tion procedure (Dershowitz 1982). 
The present work explores an al
ternative technique, namely the 
use of straightforward criteria 
for ensuring the adequacy of 
selective premises; whenever these 
criteria are verified and yield 
deterministic programs, it is 
guaranteed that all blind-alleys 
are cut off and that no possible 
result is lost. These criteria 
directly use structural properties 
of the original inference clauses 
including their commutativity' 
equivalence, or idempotence They 
do not require the introduction of 
intelligent orderings, the perspi
cacious induction of exact limits 
of iterations on predicates, or 
the construction of insightful 
proofs in logic. However, these 
criteria are only sufficient, not 
necessarys they take into account 
bounded-length compositions of 
inference steps. For this reason 
they are called "bounded-horizon"! 

trSucesrSt °f the paper introduces inference proqramc" 
which are Horn clauses (van EmdL 
and Kowalski 1970 Emden 
hierarchically and expresser!,^ 
canonical form. Auxiliarv * 

• -

this simplifies the t kUS6S: 
developments ana technical SteS.r"KPOMa nteria have been 

found out. The generalization to 
non-linear inference prograis is 
introduced afterwards. 

Only the validity of the pro
posed criteria is proved in detail 
since they constitute the sain 
contribution. The other, subser
vient results should be clear 
enough, and are aerely presented. 
References (Shoenfield 1967, van 
Emden and Kowalski 1976, Dijkstra 
1976) provide a useful background 
for predicate calculus, Horn 
clauses, and weakest precondi
tions, respectively. 

Notations: 

A <-B1,...,Bn : Horn clause 
v, &, =>, * : or, and, then, not 
7A : a thesis predicate 

T.i stands for T3 when i=3 
Si:T.i stands for T1 + T2 + ••• 

2. INFERENCE PROGRAMS 

An inference program T c0,pJis®f 
a basic clause TO and a set Tr 
inductive clauses T.i (i>0); th® 
identifier Tr suggests "the recur 
sive part of T": 

T = TO + Tr '2,1) 

Tr = $i:T.i 
= T1 + T2 + ... + Tn 

The basis clause TO has the for® 

P(x) <- pO(x) (2'2) 

where p is the principal pie&iS&tS 
^ffibei, and pO is the 
predict? symbol . Each 
clause T.i has the form 

P(x) <- r.i(x.y), p(y) (2'3) 

where r.i denotes a known relati011 

between the tuples x and y• 

A ̂ op-down computation consist® 
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in an iterative application of 
•odus tollens using the inductive 
and basis clauses. A basis compu
tation step is 

?p( t )  p(x)  <-  pO(x)  
(2.4) 

?pO(z) 

in inductive computation step is 

?P(t) 
P(x) <- r.i(x.y), p(y) 

r . i (x ,w)  5 .  ?p (w)  
(2.5) 

The preimaae of a predicate Q(x) 
through an inductive clause T.i is 

T.i(Q) (2.6) 
• }y= r.i(x.y) E< Q(y) 

For  Tr=($i -.T. i ) ,  the  pre image i s  

Tr(Q) = T1 (Q) v...v Tn(Q) (2.7) 

The "success domain" or relation 
Rel(T) defined by an inductive 
EI2am T = TO + Tr is the set of 
tuples which can be proved to ver
ify P by using (2 .4-5): 

Rel(T) = least solution (2.8) 
of [X = pO v Tr(X)] 

hs usual, this least solution can 
be computed iteratively: 

Rel(t) = Jn: H.n (n20) 

"here HO = pO (2.9) 
H.(n+1) = pO v Tr(H.n) 

= H.n v Tr(H.n) 

The formulae (2.8-9) are valid be
cause Tr is continuous, hence 
•onotonic; indeed, 

Tr(}n:Q.n) 
= ii;}y :  [r.i(x.y) f> }n:Q.n(y)] 
= J";}i:}y: r.i(x,y) 6 Q.n(y) 
= Tr(Q.n) 

I n  Par t icular ,  

Tr(Q1 v Q2) 
= Tr(Q1) v Tr(Q2) (2.10) 

Note that, in general, we only 
have 

Tr(Q1 6, Q2) 
=> Tr(Q1) & Tr(Q2) ( 2 . 1 1 )  

The reverse implication holds pro
vided each r.i(x,y) is functional 
w.r.t. x. In this case, 

T1(Q1) 6. T1(Q2) 
= }y,z: r1 (x,y) Ec Q1 (y) 

6c r1 (x,z) 6c Q2(z) 
= > Jy: r 1 (x,y) 6. Q1(y) 6c Q2(y) 
= > T1(Q1 6c Q2) 

The relation r.i(x,y) in an in
ductive clause (2.3) may embody 
syntactical as well as semantical 
constraints, corresponding to un
ifications and to auxiliary prem
ises respectively. A thesis takes 
the form 

3x=(x',x"): (x' =e) 6c ?P(X) 

where the expression e is known; 
this means that x' and x" are the 
known and unknown parts of the tu
ple x, respectively. A top-down 
computation "succeeds" if it 
rewrites the thesis into a predi
cate which does not contain the 
principal predicate symbol p 
anymore and which yields true 
thanks to successful proofs of all 
the subtheses depending on auxili
ary predicates pO and r.i. Given a 
successful computation, the con
junction of the definitions of the 
successive new variables such as w 
• (25), corresponds to an 
• a n s w e r 'substitution" or a "recur
sion stack". Top-down computa
tions as defined here reduce con
junctions of positive atoms to 
true- this is isomorphic to the 
reduction to false of disjunctions 
of negative atoms, as is customary 
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with the resolution principle. 

Example of inference program: 

An append program can be written 
as follows; x and y are triples, 
and app((x1, x2, x3)) stands for 
"to append x1 to x2 yields x3": 

TO: app(x) <- pO(x) 
T1: app(x) <- r1(x,y), app(y) 

The auxiliary predicates pO and r1 
are defined by 

pO((x1, nil, x1)) <- true 
r1((x1, a.x2, a.x3), (x1, x2, x3)) 

<- true 

Consider then the thesis 

3x: (x1=1.nil) & (x2=2.nil) 
Sc ?app(x) 

By (2.5), this is rewritten as 

}x: (x1=1.nil) & (x2=2.nil) 
& [}w: r1(x,w) 6c ?app(w)] 

which can be simplified to 

}x,w: (x3=2.w3) 
& ?app((1.nil, nil, w3)) 

By (2.4), the latter becomes 

3x3,w3: (x3=2.w3) 
Sc ?p0( (1 .nil, nil, W3)) 

for The last atom is true 
w3-1.nil. Thus we proved 

3x: (x1  =  1  .nil) 5, (x2=2.nil) 
Sc (x3=2.1.nil) Sc app(x) 

V I Z .  '  

app((1.nil, 2.nil, 2.1.nil)). 

!• RESTRICTION OF PROOR/MMjc 

To restrict an inference program 

SS2. S. " 

predicate C.i is such that 

VQ: S.i(Q) » C.i & T.i(Q) (3.1) 

Namely, 
T.i :  p(x) <- r . i (x,y )i ply) 
S.i: p(x) <- r'.i(x,y), p(y) 

for r'.i(x,y) * C.i(x) 8. r.i(x,y). 

The restriction S flf an infold 
program T by predicates C.i's is 
the result of restricting each in
ductive clause T.i by C.i, accord
ing to (3.1). Clearly, 

VQ: Sr(Q) => Tr(Q) (3-2) 
where Sr = ($i:S.i). 

Hence, by (2.9), Rel(S) => Rel(T). 
Accordingly, the restricted pro
gram S does not permit the suc
cessful computation of a thesis 
for which no computation by T 
succeeds. 

The restriction of T into S is 
success-complete if Rel(S) equals 
Rel(T): no tuple valid for T is 
lost by S. 

The restricted program S is 
determinjs^ir- if the selective 
premises C.i are mutually ex" 
elusive and depend only on known 
values in all computation steps: 

C.i 8< C. j = false, for i#3» 
and, for all i, 

C.i 6, pO = false 
C.i(x', x") = C'.i(x') 

where x' and x" respectively 
represent the known and unknown 
parts of the tuple x. Thus, r" 
any computation step, at most one 
clause can be applied successful" 
ly, and the choice of that clause 
can be made using the available 
information, without delay. 

If the restricted program S is  

deterministic and success-compleie 

w • r. t. T, then the top-down compu 
tations by s from all the theses 
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coiputable by T do succeed neces
sarily, without trials-and-errors. 
Indeed, because of completeness, 
for each thesis acceptable by T 
there sust exist a successful 
top-down computation by S: the 
property 

Va'.a': [(a',a') e Rel(T) 
•> (a',a') e Rel(S)] 

entails 

v»':[ [}«•: (a' ,a") € Rel(T)] 
=> [}a«: (a-,a*) e Rel(S)]] 

Moreover, determinism prevents 
backtracking: since there must ex
ist a successful path for each ac
ceptable thesis, and since there 
«ay exist at most one path, no 
blind-alley may be entered. 

Consequently, it is most useful 
to transform an inference program 
1 into a deterministic, success-
c°»plete equivalent. This is pos
sible under the following assump-

using the notations 
hereabove: for all valid input x', 
there exist a unique output x" 
s«ch that (x',x") belongs to 

EMT). Otherwise, we should weak-
en as follows the definition of 
success-completeness: for each in-

if Rel(T) contains some 
x 'x ), then Rel(S) must contain 

COIM '*'* alternatively, we 
relax the constraint of 

aeterminisn. 

The remainder of the paper 
velops sufficient criteria for 
e success-completeness of given 

testrictive premises. 

1 IFISIASIFIB RELATION 

*e Propose a simple way of tel-
in'5 k*1611 cfauses are "included 
Uar° tfl6t ones- * couple of auxi-
duckl properties first intro-

• Using (x=z) for Q(x) in 
yields 

T.i(x=z) = Jy: r.i(x,y) & (y=z) 
= r.i(x,z) (4.1) 

By (4.1), definitions (2.6) and 
(2.7) entail 

T.i(Q)= Jy; T.i(x=y) & Q(y) 
Tr(Q) = §y: Tr(x=y) & Q(y) (4.2) 

Similarly, in general, 

Tr(Sr(Q)) = (4.3) 
5y. Tr (Sr (x=y)) & Q(y) 

The inclusion relation between two 
inductive clauses T1 and T2 is de
fined by 

VQ: T1(Q) => T2(Q) (4.4b) 

This is entailed by 

Vy: T1(x=y) => T2(x=y) (4.4a) 

Indeed, by (4.2,4.4a), 

T1(Q) ( % 
= Jy: T1(x=y) & Q(Y) 
=> Jy: T2(x=y) & Q(y) 
=> T2(Q) 

Thanks to (4.4a), the inclusion 
relation between clauses can be 
checked without considering all 
possible predicates Q. 

This can be generalized as fol
lows; Tr is a set of inductive 
clauses; T. j ,  T .i, T.k are induc
tive clauses; the range of k 
left understood: 

IF Vy:[ T . j(T.i(x=y)) (4.5a) 
=> (x=y) v Tr(x=y) 

v 5k: T.k(Tr(x=y)) ] 

THEN VQ:[ T.j(T-i(Q)) 
=> Q v Tr(Q) 

V 5k: T.k(Tr(Q)) ] 

Indeed, by (4.3,4.5a,4.2), 

(4.5b) 



144 

=> }y: [(x=y) V Tr(x=y) 
v 0k:T.k(Tr(x=y))] & Q(y) 

=> Q v Tr (Q) v }k: T. k (Tr (Q)) 

5. BOUNDED-HORIZON CRITERIA 

. G^Yen (2.9), Rel(T) = Rel(S) is 
implied by the following, for n>0: 

where H1 
K1 

H.(n+1) 
K.(n+1) 

Vn: H.n = K.n 

= Tr(pO) 
= Sr(pO) 
= H.n v Tr(H.n) 
= K.n v Sr(K.n) 

(5.1) 

(5.2) 

e look for simple criteria which 
merely ensure the existence of a 
proof of (5.1), without requiring 

S c?hlT«ct such a proof KS? 
induction that £ the 

useful structural properties*^ 
amilies of actual proofs by in-

tural10"' ̂  t0 USe these struc
tural properties as criteria Tr. 

start with, we consider the set of 
Proofs by induction with lenth 
two: it is a typical case, neithS 
too trivial nor too eUbora£d 

corresponding criteria = 
called "bounded-horizon criter^6 

Program n°ted 

of T- P0 is +h rrtriCtlon (3.1) 
(2.2); i is aj1S predicate 
inductive clauses j£j.8et °f the 

Bounded horizon criteria BH[2]: 

Tr(P0) => Sr(p0) ^ ̂ 

Tr(Sr(P0)) 

=> Tr(pO) v Sr(Tr(pO))5'4) 

VJcI: }jej; Viei: 

t [ T.j(c.i) (5.5) 

=> Tr(pO) v Tr(Tr(pO)) 

v T.j(T.i(xIyJ;ej: c-i ] 
=> (x=y) v Tr(x=y) 

V }kGlW: T.k(Tr(x=y))]] 

The criteria (5.3) and (5.4) en
sure the two basis steps, and 
(5.5) guarantees the induction 
step, for an induction of depth 
two. 

Theorem Let the inference pro
gram S be the restriction of a 
program T by selective premises 
C.i's. if the criteria (5.3-5) 
are verified, then S is success-
complete w.r.t. T. 

Proof. Let us show that the cri
teria (5.3-5) do ensure that a 
proof of (5.1) by induction on n 
exists. 

Base n=1: (5.3) expresses H1=>K1, 
and (3.2) entails K1=>H1. 

Base n=2: Given H1=K1, we say 
rewrite (5.4) as HI v Tr(B1) => *1 
v Sr(K1). This expresses H2=>K2; 
(3.2) entails K2=>H2. 

Induction step n>1: the induction 
hypotheses are 

H. (n-1) = K. (n-1) (5-6) 

H.n « K.n 

The induction thesis is 

H.(n+1) = K.(n+1) 

By (5.2,5.6,3.2), this induction 
thesis is reduced to 

Tr (K.n) => H2 V H.n v Sr(H.n) 

We unfold K.n and H.n by (5.2): 

Tr (K. (n-1)) v Tr(Sr(K. (n-1))) 
-> H2 v H.(n-1) v Tr(H. (n-D) 
v Sr (H. (n-1)) v Sr(Tr(H. (n-1))' 

We observe Sr(H.(n-1)) 
r(H. (n-1)) because of (3.2), an(* 

use (5.6) again; the induction 
thesis becomes 

Tr(Sr(H.(n-1)) (5.7) 
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=> H2 v  H.  (n-1)  v  Tr  (H.  (n-1) )  
v  Sr(Tr(H.  (n-1) ) )  

On the  o ther  hand,  (5 .2)  and (5 .6)  
i ip ly  the  fo l lowing property:  

H .(n - 1 )  v Tr(H.(n-1) )  
= H. (n-1)  v  Sr(H.(n-1) )  

(5 .8)  

*e  thus  have  to  show the  ex is tence  
of  a  proof  o f  (5 .7)  on  the  bas is  
of  (5 .8) ,  v iz .  a  proof  o f  (5 .0)  | -
( 5 . 7 ) .  He do  i t  for  a  vers ion  ob
tained by  abstract ing  from 
B.(n-1) ,  v iz .  by  subst i tut ing  an 
indeterminate  predicate  Q for  
B. (n-I ) :  

V Q: Q v  Tr(Q)  »  Q V Sr(Q)  (5 .9)  
I" Tr(Sr(Q))  

=> B2 v  Q v  Tr(Q)  v  Sr(Tr(Q))  

I t  reaains  to  prove  (5 .9)  on the  
bas is  o f  the  cr i ter ion  (5 .5) .  We 
f irs t  note  that  the  antecedent  in  
• 5 -5)  enta i l s  T.k(QvTr(Q))  =  
T -k(QvSr(Q))  for  any k  ranging  
o v er  some subset  o f  I ,  say  I \J .  
Hence ,  apply ing  (2 .10)  and adding  
i j6j ;T. j (Q)  on  both  s ides ,  we nay  
assume 

T r <Q) v  jk:T.k(Tr(Q))  (5 .10)  
= Tr(Q)  v  jk:T.k(Sr(Q))  

Let us  recal l  the  ident i ty  

Uie i :  D. i )  

e -9  • (D1 vD2)  = 

'  }Jf i I :  (VjSJ:  D. j )  
& (Vkei\J :  *D.k) 

(D1S."D2)  v  (D2&~D1)  
v  (D1&D2)  

use  th is  ident i ty  for  the  term 
r(Sr(Q))  =  (J ie i ;  Ti (Sr  (Q)) ]  .  The  

consequent  o f  (5 .9)  then becomes  

HJf i l :  (Vjej ;  D. j )  
6 (Vkei\J: *D.k)] 

* >  H 2  V  Q  V  Tr ( Q )  v  Sr(Tr ( Q ) )  

each D.h  s tands  for  
h(Sr(Q>) .  W e  B O V e  t j , e  quant i f -

i^ r  o n  7 to  the  front  of  the  whole  
Plication and the one on k 

within  the  conclus ion,  and we use  
(5 .10)  for  weakening  Sr  into  Tr 
wi th in  the  k- terms:  

Vj£ l :  [VjGJ:  T . j (Sr(Q))  (5 .11)  
=> H2 v  Q v  Tr(Q)  

v  Sr(Tr(Q))  
v  JkGI\J:  T .k(Tr(Q)) ]  

We may wri te  Sr(Tr(Q))  as  

Sr(Tr(Q))  
=  JjGJ:  C. j  & T. j (Tr(Q))  
v  }kGI\J:  C.k  St  T ,k(Tr(Q))  

Each j - term in  Sr(Tr(Q))  can be  
s impl i f ied  to  C. j  because  the  an
tecedent  of  (5 .11)  conta ins  each 
T j (Sr(Q)) ,  and because  Sr(Q)  => 
Tr(Q)  by  (3 .2) .  Each k- term in  
Sr(Tr(Q))  can be  removed a l togeth
er  s ince  i t  i s  inc luded in  the  k-
terms a lready present  in  the  con
c lus ion  of  (5 .11) .  Thus  the  
thes i s  (5 .11)  can be  wri t ten  as  
fo l lows ,  a f ter  moving  the  quant i f  
i er  on j  to  the  front:  

Vj£ l :  3jGJ:  
r  T . j (Sr(Q))  

=> H2 v  Q v  Tr(Q)  v  } ;J6J : C . : j  
v  3kGI\J:  T .k(Tr(Q))  ]  

We unfo ld  Sr(Q)  into  [J iGI:  C. i  S .  
T i  (Q)  ]  and use  T . j (C. i  S <  T. l (Q))  
=  > T  j (C. i )  S t  T .  j  (T.  i  (Q))  < 9 iven  
/2  11) -  a  thes i s  A=>C can be  re  
p laced'by  a  thes i s  B=>C when A - > B .  
We move  the  quant i f ier  on  l  tothe  
front  and apply  the  ident i ty  ( A S t B  
=  > cI d )  < = >  ( A=>C)  v  ( B = > D ) ;  hence  
the  new thes i s :  

ujc l •  } jGJ= v i e l :  ?, , 1 2 )  

[T. j (C. i )  => H2 v  3 je j :C. 3 ]  
v  [T. j (T. i (Q))  
V 1 J = > Q v Tr(Q)  

v  JkGI\J:  T .k(Tr(Q)) ]  

Now by  assumption,  the  cr i ter ion  
(55)  ver i f ied;  because  of  
( 4 * 5 ) ,  i t  e n t a i l s  
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VJcI: }jeJ: ViGI: (5.13) 
[  [T . j (C. i )  =>  H2 v } je j ;  C. j ]  
V VQ: [T.j(T.i(Q)) 

=> Q v Tr(Q) 
v }kei\J: T.k(Tr(Q))]] 

Formula (5.13) does imply (5.12), 
because [A v VQ:B] => VQ:[A v B] 
and }jVQ:Z => VQ}j:Z. QED 

gxample of. use of the criteria: 

The greatest common divisor 
f(x1,x2) can be defined by 

f(x1,x1) = x1, f(x1,x2) = f(x2,x1) 
f(x1,x1+x2) = f(x1,x2) 

The relation gcd((x1,x2,x3)) <=> 
(f(x1,x2)=x3) can thus be defined 
by 

TO: gcd(x) <- pO(x) 
H: gcd(x) <- r1(x,y), gcd(y) 
T2: gcd(x) <- r2(x,y), gcd(y) 

plus the auxiliary clauses 

pO((x1,x1,x1)) <- true 
r  1  ( ( x 1 , x 2 , x 3 ) , ( x 2 , x 1 , x 3 ) )  

<- true 
r 2 ( ( x 1 , x 2 , x 3 ) , ( x 1 , y 2 , x 3 ) )  

<- (x2=x1+y2) 

The program T0,T1,T2, permits in
finite computation paths because 
of the permutating clause T1 in 
order to eliminate the unsuccess
ful paths without loosing solu
tions, it is proposed (aha") to 
restrict T and T2 by using t£ 
two selective premises 

C1 = (x1>x2), C2 = (x2>x1) 

The program thereby obtained is 
deterministic. To show " 
success-complete w r t T 
Ply the criteria BH[2] ' rL aP~ 
"fixation of (5.3) and (5 5) "-I 
immediate. For (5 ; 
the central stejs. )r Sketch 

The case JM1). i=1. ^ 

cause T1(T1(x=y)) = (x=y); T1 is 
idempotent, and thus it is of no 
use to apply T1 twice. The case 
J*(1), i«2, holds because T1 
transforms C2 into CI, viz. T1(C2) 
= > C1: the domain from which T1 
establishes C2 is contained in C1. 

For J-(2), i-1, we must check 

[ T2(C1) -> H2 v C2 ] 
V Vy: [ T2(T1(x=y)) 

=> (x»y) v Tr(x=y) 
v T1(Tr(x=y)) ] 

where Tr=T1+T2. The Part 

T2(C1 ) = >C2 amounts to (x1+x1>x2 => 
x2>x1), i.e. (x1<x2). The ters 
T2(T1(x=y)) amounts to (x2-x1, x1, 
x3)=y which is false when x1 2 *2. 
Hence we do have [x1<x2] v Vy: 
[T2(T1(x=y)) «> ... ]. 

For J=(2), i*2, we verify T2(C2) 
= > C2 viz. (x2>x1+x1 => x2>x1). 

Finally, all the cases J=(1,2lr 
for any j and i, yield true be
cause H2 v C1 v C2 is identically 
true: indeed, H2 contains x2=x 
since pO implies x1=x2 and T1 ex 

changes x1 and x2. 

This simple example illustrates 
how the proposed criteria (5.3-5 
directly benefit from structural 
properties of the original infer" 
ence clauses: the more such Pr° 
perties are available, the less 
constraints on the selective pre®' 
ises must be verified. This is 
be contrasted with the Krmth" 
Bendix approach, where property 
such as idempotence, commutatiw 
ty, associativity, require addi
tional work, viz. special *e'-1 

orderings. 

£• GENERAT, INFERENCE PROGRAMS 

The adaptation of the previ°u® 
developments to the non-linea 

case is straightforward. 
with the quadratic case. The in 
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duc t ive  c l ause  T . i  (2 .3 )  t akes  the  
fo r i  

P (x )  < -  r . i (* ,y ,y ' ) ,  (6 .1 )  
p (y ) ,  P (y ' )  

The  i nduc t ive  computa t ion  s t ep  
(2 .5 )  becomes  

Tp( t )  T . i  (6 .2 )  

r . i (S |M,W' )  & p (w)Sq>(w ' )  

The  preimage o f  two  p red ica tes  Q 
and  Q '  i s  

T i (Q,Q ' )  (6 .3 )  
=  i y ,y ' :  r . i (x ,y ,y*)  

6 .  Q(y)  & Q(y ' )  

Accordingly, (2 .7 -9 )  r e spec t ive ly  
becoae 

T r (Q .Q")  =  } i :  T . i (Q .Q ' )  (6 .4 )  

Ael (T)  =  l eas t  so lu t ion  (6 .5 )  
o f  [X  =  pO v  Tr (X,X) ]  

=  Jn :  H .n  (6 .6 )  
xhere  HO =  pO 

Mn+1)  -  H.n  v  Tr (H.n ,  H .n )  

Ihe  gene ra l i za t ions  o f  (2 .10)  and  
(2 .11)  a r e  c l ea r ,  v i z .  

T r <Q1 v  Q2 ,  Q1  •  v  Q2*)  
*  Tr (Ql  , q i  • )  v  Tr(Q1  ,Q2 ' )  
v  Tr(02 ,QD v  Tr (Q2 ,Q2 ' )  

s « i l a r ly ,  

T - i (*=z ,  x=z 1 )  
*  Jy .y ' :  r . i (x ,y ,y ' )  

St  ( y=z)  s .  ( y '=z ' )  
a  r . i (* , z , t ' )  (6 .7 )  

* h e  r e s t r i c t ion  (3 .1 )  o f  an  induc-
1 V e  c lause  i s  now de f ined  us ing  

r ' - i (* .y ,y ' )  ( 6 . 8 )  
•  C. i (x )  s ,  r . i (x ,y ,y ' )  

inc lus ion  r e l a t ion  be tween  
j n " l inea r  c l auses  has  two  fo rms .  

In  the  f i r s t  case ,  t he  p red ica tes  
Q,  Q '  used  a s  pa ramete r s  a re  in 
dependen t :  

IF  Vy ,y 1 :  (6 .9a )  
T1(x=y ,x=y ' )  =>  T2(x=y ,x=y ' )  

THEN VQ,Q ' :  (6 .9b)  
T1  (Q ,Q '  )  =>  T2 , (Q,Q ' )  

Indeed ,  by  (6 .7 ,6 .9a ,6 .3 ) ,  

T1(Q,Q ' )  
=  3y .y" :  T1(x=y ,  x=y 1 )  

s .  Q(y)  Sc  Q '  ( y ' )  
=>  3y .y ' :  T2(x=y ,  x=y ' )  

s .  Q ( y )  &  Q '  ( y ' )  
=>  T2(Q,Q ' )  

In  the  second  case ,  t he  same  
p red ica te  Q i s  used  fo r  bo th  
pa ramete r s :  

IF Vy,y1: ^•10a' 
T1(x=y ,  x=y 1 )  
=>  T2(x=y  ,x=y)  v  T2(x=y  ,x=y ' )  

v  T2(x=y ' ,x=y)  v  T2(x=y ' ,x=y ' )  

THEN VQ:  (6 .10b)  
T1(Q,Q)  =>  T2(Q,Q)  

Indeed ,  by  (6 .7 ,6 .10a ,  6 .3 ) ,  

T1(Q,Q) 
_  ly^  y 1  •  

T1(x=y ,  x=y ' )  & Q(y)  &  Q(y ' )  
=>  3y .y '  <z <z ' '• ,  ,  , .  

( Z = y  v  z=y")  &  ( z ' =y  V  z  =y  )  
S ,  T2(x=z ,  x=z ' )  & Q(y)  Sc  Q(y ' )  

_y l Z f Z « .  
T2(x=z ,  x=z '  )  S t  Q(z )  St  Q(z  )  

=>  T2(Q,Q)  

The  case  (6 .10)  wi th  iden t i ca l  
pa ramete r s  i s  the  one  used  
he rea f t e r ,  because  o f  t he  fo rm o f  
t he  equa t ions  in  (6 .5 -6 ) .  
sha l l  abbrev ia te  (6 .10a )  in to  

Vv .y ' :  3 Z * Z '  — y»y  :  I X  T1(x=y ,  x=y ' )  =>  T2(x=z ,  x=z  )  

The inclusion property (4.5) is 
generalized similarly: 
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IF Vy1...y4:  (6.11a) 
3z1...z4 £ yl...y4: 
[ T.j(T.i1(x=y1, x=y2), 

T.i2(x=y3, x = y4)) 
-> (x=z1) v Tr(x=z1, x*z2) 

v }k: T.k(Tr(x=z1, x»z2), 
Tr(x=z3, x=z4)) ] 

THEN • (6.11b) 
[T.3(T.l1(Q,Q), T.i2(Q,Q)) 
=> Q v Tr(Q,Q) 
v }k: T.k(Tr(Q,Q),Tr(Q,Q)) ] 

The bounded-horizon criteria of 
hav£ f°r thC quadratic case 
rt i C, same structure as 
in* J °ne. Berely replaces the 

linear compositions by their qua-
0d a  ~ generalizations. The proof 

f the theorem of section 5 is ob-
callv reMmilarly: °ne systematically replaces Tr (Y) by Tr(Y Y> 
and Sr(Y) by SrfY v> lY,Y) ,  1  a r i i f i j ,  f o r  a n y  Y  
and as long as possible; for in
stance, Sr(Tr(H.(n—1))) becomes 

Sr(Tr(H.(n- 1 ) ,  H.(n-I)), 
Tr(H.(n-1), H.(n-1))) 

One can check that the 

t of lo(5"ir s* 

T3(n1tLUQ,Q)' C2&T2(Q,Q)) => T3(C1,C2) 
& T3CT1CQ,Q), T2(Q,Q)) 

The difference between v-h* i • 
case in section 5 and fh* near 

ic case essentially am 1uadrat-
difference betweei! lin* S t0 the 

tions of computation <-C°mposi~ 
quadratic compositions ®teps and 

extended°Vtoginferencati0n Ca" be 

any degree i"e Programs of 

program is in homogeneous fori of 
degree n if all its inductive 
clauses have exactly n premises 
which use the principal predicate 
symbol. Such an homogeneous fori 
can always be obtained by adding 
redundant premises in clauses. 
For instance, p(y) is equivalent 
to p(y) & p(y*) & (yy'l. 

1. DISCUSSION 

The research on methods of 
transforming formal systems for 
the complete elimination of back
tracking without any loss of solu
tions, is as practically important 
as technically hard. Note this 
only tackles a restricted problem, 
in comparison to more general 
methods for the formal derivation 
of efficient inference programs; 
these may demand 'genuinely deep 
theorems requiring mathematically 
challenging proofs' (Hogger 1981)' 

Two major classes of transforma
tion methods for backtrack-
elimination are well established. 
The first one concerns the genera 
tion of deterministic parsers f°r 

context-free production systems, 
which correspond to a very res" 
tricted form of inference Pr0" 
grams. The methods in the second 
class transform eguational systems 
into confluent systems of rewrit 
ing rules (Knuth and Bendix 1970): 
since equational systems are com 
parable in power and structure t° 
inference programs, it is possible 
to use these methods for H°r" - an(j clauses also (Barbuti, Degano 
Levi 1982). The fundamental 
difference between the Knuth 
Bendix approach and the method ex
plored here is that the latter 
does not depend on the definiti°n 

of ad-hoc well-orderings and actu
ally benefits from properties such 
as idempotence or commutativity rr 

original program clauses; but 
this does not imply that the 

Present method is any better i® 
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practice, especially in view of 
systems such as REVE (Lescanne 
1983). 

The first results of the present 
approach appeared in (Sintzoff 
1976): ideas based on bounded-
context parsing methods were 
developed for computations by 
"transition* programs or by infer
ence ones. Transition programs 
are sets of condition-action 
pairs, where boolean expressions 
and substitutions respectively 
stand for conditions and actions; 
Wiey correspond to restricted 
guarded-command loops, without 
nesting. The inference programs 
uere expressed by two-level gram
mars similar to Horn clauses. The 
criteria in (Sintzoff 1976) prove 
quite limited, and apply if the 
initially given programs permit at 
most one successful computation 
path for each input; this restric
tion originates from the fact that 
Parsing methods assume the 
context-free grammars are not am
biguous. in (van Lamsweerde and 
Sintzoff 1979), parallel programs 
are studied in the form of transi
tion programs, and specialization 
techniques are given to eliminate 
deadlock and starvation; these 
techniques demand the actual in-
"ction of greatest and least fix-

Points, and thus are general but 
difficult to use. A first version 

bounded-horizon criteria is 
developed in (Sintzoff 1978), for 
tansition programs only; a weaker 

*"iant is studied in (Sintzoff 
83) to prevent failures after 

inite paths, but without cutting 
0 i infinite blind-alleys. 

The present work pursues these 
investigations and applies the 
Jesults to inference programs. 

ch more work clearly is needed. 
JJ ly constructive ways of using 

criteria BH[2] must be 
eveloped; to use bounded-horizon 

Ctiteria for proving or improving 

programs, even mechanically, ap
pears promising: any set of selec
tive premises C.i's solving 
(5.3-5) is acceptable, not just 
extremal solutions. Generaliza
tions and variants should be in
vestigated, e.g. by allowing for 
bounded horizons of rank greater 
than two, by permitting nondeter-
ministic selective premises, by 
not giving priority to shorter 
compositions of computation steps 
over longer ones, or by ensuring 
specific data-flows in the 
clauses. Last but not least, the 
practical applicability of the 
proposed technique must be ex
plored. 

To the cost of appearing foolish 
and presumptuous, we venture some 
personal views on the relationship 
between the present work and ar
tificial intelligence. See (Rich 
1983) for a presentation of the 
relevant technical concepts. 

Instead of weak search implemen
tations, we look for strong ones, 
e.g. transformations which yield 
absolutely deadend-free production 
systems. In particular, we want to 
derive conditional and iterative 
plans for parametrized goals and 
by use of an homogeneous design 
strategy. 

Incompleteness is inescapable in 
a bounded world. Here, it concerns 
only the bounded-horizon transfor 
nation process: this one may well 
fail but whenever it succeeds, it 
yields a program which is 
guaranteed to be success-complete. 
The transformation is weak whereas 
the result, if any, is strong It 
is at the program design level 
that the spirit of heuristics 
reigns. 

The term "bounded-horizon" 
refers also to the burning issue 
of the horizon effect. We try to 
tackle this problem statically , 



150 

by analyzing specific composition 
properties of rules, before 
searching w.r.t. singular goal 
states. To use bounded-horizon 
criteria of rank two for "remote 
horizons" may seem as naive as ap
proximating pi by 22/7, but could 
prove as attractive as the LR[2] 
parsing techniques for context-
free grammars; who knows? 

Naive systems, built on basic 
knowledge and inference compila
tion, must complement expert sys
tems made of knowledge bases and 
inference engines. 
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ABSTRACT 

We present an efficient algo
rithm for locating bugs in Prolog. 
This algorithm is based on the method 
of (Shapiro 1983), and can be applied 
to any high level programming 
language. The method is optimal to 
within a constant factor for space, 
time, and number of queries to the 
user. This significantly improves the 
performance of Shapiro's method, 
which is not optimal for space or time 
and for which the number of queries 
depends on the branching factor of 
the computation. Since no current 
Programming environment uses this 
method, it should be a significant aid 
to programmers in debugging 
software. 

1 INTRODUCTION 

Probably millions of dollars of 
computer time are spent each day by 
Programmers tracing their programs 
to locate errors and understand their 
Programs better. This often requires 
repeated execution of parts of the pro
gram in order to locate a bug. Typi
cally the programmer will execute a 

Tbia rettirch wu sopported in P»rt by the Na-
l|oul Science Foundation nnder grantj MCS-81-09831 
"d MCS-83-07755 

top-level procedure to find which sub-
procedure returns incorrect values; 
he or she will then execute the sub-
procedure to find which of its subpro-
cedures return incorrect values; and 
this process continues until the error 
is found. This process can be quite 
time consuming for programs with 
large execution times, so much so that 
much of this tracing is probably not 
done because of the excessive cost, 
and other methods are used to debug 
programs. 

Ideally, programs should prob
ably be written using some kind of 
program transformation scheme or 
program verifier to help insure their 
correctness; however, in practice, pro
gram testing and debugging is the 
main programming methodology used. 
Current programming environments 
such as INTERLISP permit a pro
grammer to examine the stack when a 
run time error occurs. This is often 
not sufficient because the error may 
not be in a procedure invocation 
currently on the stack. Another alter
native is to insert trace statements in 
the program. This is also not satisfac
tory for long executions, since there 
may be thousands of lines of output 
to examine. 

It would be a significant aid to 
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program debugging if a more efficient 
method of searching computation 
trees were available. This would save 
not only programmer time and com
puter time, but would also make prac
tical certain kinds of tracing that are 
currently prohibitive in cost. It turns 
out that there is such an efficient 
method for searching computation 
trees; the basic idea is that the 
results of selected subcomputations 
are remembered so that those sub-
computations need not be repeated. 
These subcomputations are carefully 
chosen and the manner of examining 
the tree is carefully structured so that 
the increase in computation time to 
search the tree can be made arbi
trarily small. The method may be 
viewed as a generalization of binarv 
search to trees. 

I fa. •ShT„r°, haS siven one method 
(Shapiro 1983) of searching the com-
putation tree. Our method is similar 

X <!1n nd qUery" method but has the following advantages: 1 The 
number of queries does not depend on 
the branching factor. This can be 
significant if the branching factor is 
arge say, a thousand, which is con

stat ln % Pr°gram with iterative 

progrL Thre<imred by the °riginal 

method, in^vhlch *the s^orage^required 

required 'b^e * W, that 

siSSc?** ^„elhecomp^^,„ 

made arbitrarily small in our method. 
That is, if the original program execu
tion took say an hour, then it will be 
possible to find the bug in an extra 5 
minutes of computation time using 
our method, with an appropriate 
number of intermediate results saved. 
However, in Shapiro's method, it may 
be necessary to run the whole pro
gram again, to learn its execution 
time, and then run it a third time to 
find the bug. The third execution 
may take as long as the first, so the 
total execution time can be increased 
by a factor of 3. It is not difficult to 
modify Shapiro's method to eliminate 
the second execution to determine the 
execution time, but even with such a 
modification, there is still a factor of 2 
in execution time required. 

Our method may be used for 
Prolog or for other high-level pro
gramming languages, but there may 
be difficulties for languages with 
pointers. Also, if there are arrays, the 
storage requirement can be large-
Shapiro also mentions a "top down 
query strategy which requires little 
extra storage, but which may square 
the execution time. This "top down" 
method can be made more time 
efficient, at the expense of a possibly 
large amount of storage. We do not 
consider the problem of nontermina-
tion; this may be approached by 
related methods, as Shapiro mentions 
(Shapiro 1983). Another approach to 
oracles is given in (Edman and Tarn-
lund 1983) where methods for semi-
automating the construction of aD 

oracle are given. They are concerned 
with the problem of guaranteeing the 
correctness of the oracle, and show 
how a correct oracle may be con
structed from program specifications-
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We may consider the program 
execution as a tree, where a procedure 
invocation P that calls subprocedures 
Pt, , Pt corresponds to a node in 
the tree labeled P with sons labeled 
Pv • • •, Pt. The object is to find a 
procedure invocation such that the 
procedure P returned a wrong result 
but all subprocedures executed 
correctly; this procedure then con
tains a bug. To find this erroneous 
invocation, queries are given to the 
user asking if a procedure invocation 
with specified input and output is 
correct. If the program as a whole 
contains a bug, one can show (Shapiro 
1883) that there must be some pro
cedure invocation that is erroneous in 
the above sense. Our method is essen
tially a fast method of examining com
putations of programs, with little 
overhead in storage or time; it appears 
that no current system (such as 
INTERLISP) contains a comparable 
method. 

2 REDUCING THE BRANCH
ING FACTOR 

We first give a method for 
transforming the execution tree to 
reduce the branching factor to two. 
The branching factor is the maximum 
number of sons of any node in the 
treel the method in (Shapiro 1983) is 
sensitive to the branching factor. 
Suppose a procedure invocation P 
n a i l s  p r o c e d u r e s  P v  •  •  • ,  P f  W e  
ullow queries of the form, "If pro
cedure P was called with such and 
such inputs, then should it be possible 
to reach a state after P, returns in 
which the variables accessible to P 
bave such and such values?" Thus we 
can determine if an error has occured 
before the end of the j'k procedure 
call, using a single query. 

Note that if j—k then this is 
equivalent to asking if P itself 
returned with correct values. (For 
languages having global variables, 
these must also be included in the 
values used and returned by P since P 
may use and change them.) This has 
the effect of transforming a subtree of 
the form 

to a subtree of the form 

/% 
* / X 

* ./ , 
/ \ 

3. CHOOSING I/O PAIRS 

The method works as follows: 
A program is run. During the run of 
this program, certain procedure invo
cations are chosen and the inputs and 
outputs to these are stored. If the 
urogram terminates with a correct 
answer then nothing need be done. 
Suppose the program terminates with 
a wrong answer. Then some of the 
selected i/o pairs are used to query 
the user about the correctness of the 
corresponding procedure invocations. 
Based on the results of these queries, 
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either the incorrect invocation is 
found or else a smaller subcomputa-
tion is found which contains the bug; 
the method is then applied recursively 
to this subcomputation. Note that no 
recomputation is necessary until all 
relevant queries based on stored i/o 
pairs have been made. 

The i/o pairs are chosen as fol
lows: A procedure invocation is called 
a A cutoff if there exists an integer n 
such that the procedure takes time 
greater than or equal to nA, but no 
called procedure takes time greater 
than or equal to nA, where time is 
measured by numbers of procedure 
calls. One can show the following: 

Proposition 3. 1 .  For any A  
the 4 cutoffs form an upper semi-
lattice. That is, if p and q are two 
invocations which are A cutoffs, and s 
is the minimal subtree containing D 

and q ,  then  the  root  o f  s  i s  a l so  a  A  
cutoff. 

size t P™P°Siti0n 3-2- For a tree of 
size t, there are at most 2n-i invoca
tions which are A cutoffs, for Atz-L. 

n  

Proposition 3 . 3 .  Suppose a 
procedure invocation p takes t time 
u n i t s ,  a n d  ^ 2 a >  a n d  > T ™  

ofTsLrth Vt°Cati°n q iD the Subtree 

talrL f- q is a 4 cutoff and q 
time tq for ast s2a. (We are 

-=)theb^hing facto! ist^ 

tially Jet'yVotTn'owHLow0fcng Z 
program is going to run. We have L 

»h»ru?hep'redore c"is» 
stored invocationswrn' o r m a S  o  

cutoffs for small enough A. We show 
how to do this in the next section. 

3.1. Storing i/o pairs 

Suppose that at some time, all 
8 cutoffs have been stored, and 8 is 
about —, where the execution time is 

f t  

t. Then only the 28 cutoffs are saved, 
and only 28 cutoffs are stored until the 
execution time is about 2t. This pro
cess is then repeated (i. e. only the 48 
cutoffs are stored until time about ti) 
until the execution ends. At any time, 
A  cutoffs are stored for —s4^2-. n » 
This requires the storing of at most 
2n-i i/o pairs, by proposition 3.2. 
During the execution, it is necessary 
to keep a counter with each procedure 
call telling the time at which it 
occurred, so that when the procedure 
returns we may know how long it took 
and whether it is a A cutoff. Also, it 
is necessary to save the inputs to each 
procedure until it exits. In languages 
such as Prolog, this is no problem, 
since the backtracking mechanism 
requires that this information he 
saved. In other languages, such values 
may need to be explicitly saved, cost
ing possibly some extra storage. If the 
procedure changes global variables, 
their original values will also have to 
be saved. 

4 QUERYING THE USER 

Suppose all A  cutoffs have been 
stored, for As±. This may require 

storing 4n-i i/o pairs during the exe
cution of the program, by above rea 
soning. Then the user is queried by ® 
kind of "binary search". The firs 

query is some A cutoff p such that the 
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time t f  taken by p is between — and 
3 

2 i  j, where t is the execution time of 

the program. Such a cutoff p exists 
by proposition 3.3. If p is correct, 

then a subtree of size at least — is 
3 

known not to contain the bug; if p is 
incorrect, a subtree of size at most — 

3 
is known to contain the bug. In either 

case, at least j of the tree is elim

inated from consideration by this 
query. 

Such queries are continued on 
the relevant subtree, possibly with 
certain of its subtrees known to be 
correct. In a constant times log(n) 
queries, the user will have located a 
cutoff q which is incorrect but such 
that all cutoffs in the subtree rooted 
a' 1 are correct. In fact, by proposi
tion 3.1, there will be at most two 
maximal cutoffs f, and q2 below q 
which are known to be correct. 

erefore Ibis series of queries has 
reduced the size of the region in which 

the bug may occur to at most 2—. 

The method is then continued on this 
reduced region, with and q2 con-
sidered to be eliminated from the sub-
ree This is possible since their i/o 

Pa'rs have been stored, and any 
^computations need not repeat the 
c°mputations below f, or q r  

PAIRSELIMINATING OLD 1/0 

The above method can be 
^t • 'D storage, since the q, need to 

e stored, and they can accumulate 
uring each pass of the method. To 

around this problem, we give a 
e °d that insures that the number 

of such old i/o pairs is never more 
than two. The idea is to save extra 
i/o pairs during the next pass of the 
method, which when queried will nar
row the search for the bug down to a 
subtree in which at most one such old 
i/o pair exists. 

For example, if there are two 
such old i/o pairs r, and r2, let T be 
the minimal tree containing both of 
them. Then during the next pass of 
the algorithm, we save the i/o pair for 
the root of T, as well as the i/o pairs 
for its two sons. Then we query the 
user whether the root of T is correct. 
If so, the entire subtree can be elim
inated and we only have to store the 
i/o pair for the root of T instead of 
both r,. Suppose the root is incorrect. 
Then we query for the sons. If both 
are correct, then the bug has been 
found; it is at the root of T. If one 
son is incorrect, then attention may 
be restricted to that subtree, which 
contains only one old i/o pair. 

6. COST OF THE METHOD 

Each phase of the method 
reduces the size of the computation 
tree from t to —- Therefore the 
part of the computation must be 
repeated, and so on, leading to a com-

,  , , 2 1 . 4 1  ,  . . .  
put at ion time of <+—+"^"+ 

or For n large enough, the 

extra computation time can be made 
very small. 

The number of i/o pairs that 
must be stored is 4n-l, since extra 
pairs need to be stored to account for 
the fact that the total execution time 
of the program may not be known in 
oHvance. Also, possibly 3 I/o pairs 
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may be needed for the extra queries to 
eliminate the buildup of old i/o pairs, 
and at most one old i/o pair needs to 
be stored. Thus we may need 4n+3 
i/o pairs. The number of queries to 
the user will be 0(log<). For the 
method to work, n must be at least 3, 
so 15 i/o pairs may be needed. Prob
ably this can be reduced significantly; 
if arrays need to be kept with each i/o 
pair, even 15 pairs may be excessive. 

7. BACKTRACKING 

In the above discussion we have 
assumed that no backtracking occurs. 
If backtracking does occur, the 
method can be modified to deal with 
it. A procedure call may fail, in which 
case the calling procedure must try to 
find an alternative procedure call or 
sequence of calls, or else must itself 
fail. Each state in the sequence of 
calls may be considered a possible 
query, of the form "If procedure P is 
called with such and such input 
values, is it possible to reach a state in 
which Pi • - • , Pj have returned 

successfully and the values of the vari
ables accessible to P are such and 
such. Note that calls which fail may 
lead to bugs, smce possibly they 
should have succeeded. 

8- VARIATIONS 

If the desired i/o relation of a 
then T I 1S given Procedurally 
then instead of querying the user it is' 

*:• 

if a fast, complicated program 

is equivalent to a slow, simple pro
gram, the slow program may be used 
as an automatic query answerer for 
the fast program, but it is best not to 
query the slow program very often. 
Shapiro has observed that answers to 
previous queries can be remembered, 
to further reduce the number of 
queries. 

Another variation of the 
method is to query the user during 
the first execution of the program, 
even before the user knows that it 
contains a bug. That is, as each i/o 
pair as in section 3.1 is stored, it is 
also used as a query to the user. It is 
easy to show that the total number of 
queries is increased at most by a con
stant factor by this method. How
ever, if the program is unreliable, then 
it probably will give wrong results 
early in the computation, and this can 
be detected early. Also, if each i/o 
pair is used as a query as soon as it is 
stored, then fewer i/o pairs need to be 
stored. For example, suppose p and q 
are i/o pairs which are stored, and q is 
in the subtree of p (that is, q is an 
invocation of a procedure during the 
computation of p). If p is correct, 
then it is not necessary to save q-
Thus fewer pairs need to be saved. 
On the average this reduces the 
number of i/o pairs stored at any 
given time to be proportional to the 
log of the number required otherwise. 
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ABSTRACT 1. BACKGROUND 

In a previous paper we introduced an 
abstract model for OR-parallel logic program 
execution, oriented toward applicative 
architectures Central to this method is 
pipelined processing of streams of 
substitution data objects. We now address 
two implementation issues associated with 
tbis approach: 

1 The efficient representation of 
substitution data objects, and 

2 A parallel unification algorithm 
compatible with this representation. 

Our approach to the first issue involves a 
compact vectorized representation permitting 
indexed access of local variable bindings, 

esults on the second issue exploit a 
ormulation of unification as a write once 
atabase update problem, which can be 

e lc'en"y implemented by a particular 
combination ol applicative and imperative 
architectural features. 

This research was supported in part by 
a'onal Science Foundation Grant MCS 

'915255. 

llnivi 
Currently 

ersity of Utah 
on sabbatical leave from the 

1.1 OR- vs. AND-Parallelism 

Efforts to exploit parallelism in the execution 
of logic programs may be categorized into 
two domains (Conery and Kibler 1981): 

OR-parallelism, where multiple clauses 
unifiable with a goal literal are attempted 
concurrently, and 

AND-parallelism, where multiple literals 
within a clause body are attempted 
concurrently. 

OR-parallelism is jmplementationally 
simpler, since the alternative clauses under 
consideration are logically independent 
(Haridi and Ciepielewski 1983, Furukawa et al. 
1982. Umeyama and Tamura 1982, Warren 
1984) However, control of eagerness in OR-
parallelism is known to be a problem. 

In contrast, the concurrent goals pursued 
under AND-parallelism are not logically 
independent, since they are generally 
'cooperatively' seeking to bind one or more 
shared variables. This cooperation provides a 
basis for concurrency control, if read/write 
disciplines are placed on the shared variable 
occurrences within a clause. Some semantic 
and implementational complexities are 
incurred, but the net effect is a more familiar 
•process oriented' view of the computation. 
Two principal approaches to AND-parallelism 
through shared variable c°ntrol ha^ 
appeared (Clark and Gregory 1983, Shapiro 
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We believe that a blend of OR- and AND-
parallelism will prove most effective in the 
long run, but that the best such combination 
will depend on the underlying architecture 
employed. For this reason, we are 
investigating parallel logic programming on a 
particular applicative architecture named 
Rediflow (Keller et al. 1984), with the strategy 
of first understanding the implications of OR-
parallelism. AND-parallelism will be 
subsequently introduced, when our 
implementation understanding has grown and 
(perhaps) a consensus has arisen at large on 
what forms of AND parallelism are most 
desirable. 

1.2 Issues in Implementing OR-Parallelism 

Given that we wish to develop an OR-
parallel logic programming implementation on 
an applicative architecture, two general 
issues arise: 

1. Multiple environments: Under sequential 
logic programming implementations, e.g. 
Warren's Prolog compiler for the 
DECSystem-10 (Warren 1977), there is only 
one binding environment in existence at a 
time. The others are 'hidden', and are 
restored as necessary under backtracking. 
For this reason, variable binding by 
destructive writes into unique locations can 
be utilized (assuming that references to the 
changed variables are retained, e.g. on a 
trail list, so that the bindings can be later 
undone if necessary). The result is a 
shallow binding' effect, similar to that used 
in interpretive Lisp systems, but with the 
simplification that values to be restored are 
uniformly the pseudo-value unbound, which 
we denote by the atom Q, representing the 
lack of a binding. 

In contrast, several instances of a given 
goal can be concurrently active under OR-
parallelism. Hence multiple logical 
environments must exist logically, though 
complete physical separation is potently 

2. Parallel unification: A unification 
algorithm is needed which: 

a) is compatible with the multiple 
environment requirement (i.e. will bind 
variables such that they are 'shared' within 
a clause instance, but 'non-shared' among 
OR-siblings of that instance), and 

b) exploits well the potential concurrency 
in typical unification invocations. 

In a previous paper (Lindstrom and 
Panagaden 1984) we presented a model for 
an OR-parallel execution method based on 
compositions of substitution data objects. 
Since that paper's completion, we have 
refined the method to deal with the two 
important problems just cited. We now 
describe these refinements. 

2. REVIEW OF BASIC APPROACH 

2.1 Kev Features 

Our previously reported approach is based 
on the following ideas: 

1. a stream-based analog of the 'standard' 
backtracking execution model (in particular, 
left-to-right pursuit of goals within clause 
bodies); 

2. OR parallelism, with a particular form of 
induced AND-parallelism (eager passing of 
subsolutions to AND siblings): 

3. an applicative formulation, except for 
indeterminate stream merging (we will 
weaken this a bit further); 

4. concurrent processing of several top-
level goals, if desired, and 

5. a pure code' utilization of program 
clauses, with all instantiation done via 
composition of substitution records. 

2-2 Binding Operatinng 

Central to our method is the use of 
substitution objects as the sole means of 
representing environments. For a detailed 
treatment of the associated mechanics, the 
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reader Is directed to the previous paper. 
However, we summarize here the essential 
ideas necessary to understand the issues of 
immediate interest. 

Initially, we will assume the substitutions are 
represented symbolically (i.e. as sets of 
assignments on identifiers). The major 
operations on substitutions are the following: 

I.Goa/ instantiation: Let be a goal 
literal appeanng m a clause Cc and J, be a 
substitution on HCQ). the set of variables 
appeanng in C0 (the native' name space of 
Co) Then 5' m 9g • denotes the 
instantiation of this goal by (a 'goal 
instance'). We term f an instantiation 
substitution, and stipulate that range(3J C 
domain)^), where domain(f) (resp. range) 
ls the set of variables appearing on the left 
tep, right) of assignments in a substitution 
'• THus instantiation substitutions: 

a) Have domain and range in the same 
name space, and 

b) permit the important effect of binding 
"scaping, whereby chains of bindings are 
established (e.g. X«a. Y). Y : - g(Z, b), 
eta-). This possibility, as we shall see, is a 
natural consequence of unification, where 
brndings can be incrementally refined. 

2 Subgoal unification. Now suppose we 
:w,sh ,0 attempt unification of tf ' with literal 

v 'He head of a target clause C|. We 
present the success of this unification by 

Jta substitution pair |J?. jy. such that CJQ' ° 
sV '' * h ,erm a unification 
• -'tufior jg 0( course an instantiation 

th ,S'ltl"'0n- Playing the same role for 1 ^ 
"•'i does for (f 

m r s'5ecia' condition, we require that S2 

unbound variables in ?0' into terms 
a the name space of C, (possibly 

smented to accomplish this). Thus we 

/N 
CJ ° f 

O f  o  f  o  f  
J0 1 2 

uninstantiated literal 

instances of 

no ' fan0e(J2) C domam{l3). There is 
>aliv!aSCatJ'n® of bindings in unification 
^"SHtutions. 

specializations of 
T0 ° f, by unification 

cj .j oj «r solutions to 
0 -^-3 VV*2 

Fig. 1 • Multiple environments under 
substitution application. 

3 Solution restatement: By our method, 
each solution to «F, • ?3 will be represented 
as a refinement $3 of T3, so domain(f3) C 
domain(*,'). (The domain of *3 may include 
an expansion to accommodate new 
unbound variables contained in the solution 
o( ? of; this will be clarified later.) 
Moreover, since range($2) C domam(f3),the 
solution conveyed by f3 may be restated in 
terms of n%) by the composition f= X, 
f of', f ' is then used to instantiate the 
right AND-sibling of 90, or, if % is the 
rightmost literal in its clause, for solution 
restatement in terms of the name space of 

the parent goal of 

The data structures presented in our 
previous account provide a meettanism for 
matching a solution subshtution fi.e. ^ 
„s associated goal mstance.asremappedDy 
, occnriated unification substitution (i.e. 
' f T This s done by packaging instantiation 

inconsequential here. 
.ont tn note that the functional 

It is important to no jts re|iance 
nature of this tec n< jjon) ensures the 
s°|e|y on substitu mn^ion requjred 
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under ORparallelism. Each substitution 
application produces a distinct object, with 
new bindings automatically separated from 
any existing substitutions. Fig. 1 summarizes 
how multiple environments arise under our 
approach. 

3. REPRESENTING SUBSTITUTIONS 

3.1 Vectorized Substitutions 

We now address the need for a 'compiled' 
substitution representation. The symbolic 
representation we have used hereto'— •-
two significant drawbacks: 

1. binding lookup is associative, 
identifier keys, and 

r" I io uail 

arise upon variable importation. 

We adopt the following efficiency criteria for 
our new representation: 

1. direct access of bindings without 
searching; 

2. control of physical copying costs, and 

3. compactness, whereby an instantiation 
substitution ^ should have a physical size 
on the order of \domain(?J\. 

Our solution is of course 
representation, with local 
into serial indices. We 
indices as 'V1', 'V2', 
variable with index 1'. 

vectorized substitutions 
portions: 

to use a vectorized 
variables compiled 
will denote such 

meaning 'the local 
index 2', etc. Our 
will include two 

an initial portion, equal in length to the 
number of local variables in the clause 
involved, and 

an extension, required to represent 
bindings of variables 'imported' by 
instantiation. y 

Sample clause 

P(X. Y) :• q(X. f(Z)). r(Z. Y. c). 

Compiled lorm: 

p(V1. V2): q(V1. f(V3)|. r(V3. V2, c). 

Sample instantiating substitution 
(symbolic): 

[X := b, Y: = g(a.W).Z:» Z,W:= W] 

Sample instantiating substitution 
(vectorized): 

b g(a, V4) Q Q 

by 
V1 

by 
V1 V2 V3 V4 
(X) (Y) (Z) (W) 

Fig. 2. Vectorized substitution representation. 

The variable importation effect is a special 
requirement of our technique for representing 
environments by substitutions. We require 
that every unbound variable appearing in a 
goal instance be mapped by unification onto a 
term in the target clause name space. This 
may be seen in fig. 2, for example, where the 
variable W is introduced into the clauses 
name space. Hence every variable as yet 
unbound in a goal instantiation has a local 
instance in the resulting substitution. This is 
the essense of our technique for representing 
environments by substitution data objects. 

3-2 Applying Substitution^ 

We now indicate how substitutions can 
efficiently be applied to literals using our 
selected representation. There are two 
occasions where such applications occur. 

During unification: A unification attempt 
involves an instantiated goal literal (e.g-^o ° 
*,) and the uninstantiated head literal (e g-
9^) of a target clause. If successful, this 
produces a substitution pair [if2, T3], 33 
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FUNCTION app ly21 [s  1 1  s2 ] | t  •  
IF 1sva r : t  
THEN IF  eq : [ t se lec t :  [ t ,  s i ] ,  

unbound ]  
THEN t se1ec t : [ t .  s2 ]  
ELSE app l y2 | [ s l .  s2 ] |  

( t se lec t : [ t ,  s i ] )  
ELSE IF  a tom. - t  

THEN t  
ELSE app  1y21 [s  1 .  s2 ]  | |  t .  

FUNCTION res ta te : [ s l ,  s2 ,  s3 ]  •  
{$3b  *  b1ndsubs t : s3 ,  

FUNCTION f :  1  .  
IF  eq : [ t se lec t : [ 1 .  s i ] ,  

unbound ]  
THEN t se lec t : [  

t se lec t : [  1 ,  s2 ] ,  
s3b ]  

ELSE t se lec t : [ 1 ,  s i ] ] .  

RESULT make:['tuple, 
tlength: s l ,  f ] > ,  

FUNCTION b1ndsub$ t : s  •  
{ s b  *  b lnd te rm 11  s .  

FUNCTION b l nd te  rm :  t  •  
IF  1 s v a r : t  
THEN t seTec t : [ t ,  sb ]  
ELSE IF  a tom: t  

THEN t  
ELSE b l nd te rm | |  t ,  

RESULT sb) 

9' 3. Substitution application functions 
Svar detects variable occurrences). 

Sep  t h S e d  previ°usly In  section 4 .1  we will 
** that f » 
seg ^ " »"wusiy. in section 4.1 we win 

.. 2 is dually constructed prior to 
j J^,l0n 01 T, to 9 so the image of 
ThK K 9 unification is 9. ° f. ° f.. 
Represented by ° 1 

,i] m ,o 

'epreserrtJ > 12 * f0 = 90 in ,up,e 

sh0wn|f|^' and «Pply2 is defined as 

During solution restatement: Here we wish 
to compute ^ ° 32 ° ;f3'. This is 
accomplished by 

res ta te : [ s l ,  s2 ,  s3 ]  
whe re  s i  =  s2  =  f f 2 ,  s3  
restate is defined as shown in fig. 3. 

Tg', and 

The auxiliary function b tndsubs t  is used 
to decascade $3', i.e. apply Tg' to itself 
exhaustively. This is done in a particularly 
efficient manner, exploiting a form of 
definitional circularity discussed in (Keller 
and  L inds t rom 1981 ) .  

The functions in fig. 3 are expressed in the 
Function Equation Language FEL (Keller 
1982 ) ,  wh i ch  resemb les  ISWIM (Bu rge  1975 )  
in many ways. The following comments 
should help clarify the notation: 

Block expressions are denoted 
{equations RESULT expression} 

where the equations define locally bound 
names, generally used within the result 
expression. Static scoping rules apply. In 

addition, 

1. Right associative function application is 
deno ted  by  an  in f i x  co lon ,  i . e .  f : x : y  

f : ( x : y )  

2  " I "  d e n o t e s  l e f t  a s s o c i a t i v e  f u n c t i o n  
.  r i v i u  -  ( f  •  x ) :  y -  W h e n  ' C u r r y i n g ,  i . e .  f | x | y  -  { > • * /  *  

used in a function heading, e.g. 
app1y2 | [ s 1 ,  s2 ] | t  

a Curried or 'multi-tiered' function is 
de f i ned .  Hence  appTy2  may  be  invoked  i n  

expressions of the form 
(appTy2 : [ s l >  s2 ] ) . t ,  

o rs imp ly  app l y2 | [ s l .  s2 ] | t .  

„ m i i " jn FEL denotes tuplewise 

application ('appiy-toa"'l> £ '"I"'-
xk ]  =  L r - X 1  

4 Selection of the i-th component of a  
,upi® •« it;:oU"' 

' * ob,ained "y 

t l e n g t h : t .  
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5. In addition to direct creation by 
'displays' of the form [vl, .... vie], 
tuples may be created indirectly by via the 
u t i l i t y  f u n c t i o n  m a k e : [ ' t u p l e ,  k ,  f ] ,  
which yields the tuple [f: 1, f: 2 
f:k]. Tuples of writeable cells may be 
crea ted  v ia  makece l  I s .  

3.3 A Special Prohiem 

There is a flaw in the res ta te  function 
given in fig. 3, in the case where solutions 
contain unbound variables. An example is the 
unit clause C: 

contemporaries(fatherof(V1), motherof(Vl)) 
unified with the goal instance 

contemporaries(V1, V2) 
under the instantiating substitution 3 = [Q, 
Q], Unification produces [T2, y ] = 1 

[[V2, V3], [fi, fatherof(VI), motherof(Vl)]]. 
The  resu l t i ng  y  = y  a n c j  by  t h e  restate  
function defined above we obtain the 
malformed substitution 

y = [fatherof(fi), motherof(Q)] 
due to accesses of the unbound variable V1 in 
y. Under our vectorized approach, treating 
this effect correctly requires relocating the 
indexed representation for V1 and extending 
J. Oflf* mmnnnont -r-. . . ip , • ^AicilUIIIU 
i one component position. That is we 

should instead obtain 

Tj = [fatherof(V3), motherof(V3), 0], 

Since this difficulty is comparable to the 
variable importation problem durinq 
unification, we defer discussion of correcting 
restate until section 4.5, after our 
unification technique is presented. 

4- PARALI FL UNIFICATION! 

We now consider the issue of efficient 
unification within this framework. From 0 

>S2" 01 cooc"""» pmotw 

2. exploitation of that concurrency through 
straightforward use of applicative 
implementation techniques; 

3. appropriate synchronization controls to 
ensure consistent binding of shared 
variables, and 

4. compatibility 
approach. 

with our vectorized 

Unification has of course been intensely 
studied as a sequential algonthm; the recent 
algorithm of (Martelli and Montanari 1982) is 
representative of the current state of the art. 
Indeed, recent results indicate that in certain 
pathological cases, unification is inherently 
sequential in nature (Dwork et al. 1983). 
However, it is clear that in typical unification 
applications considerable potential for 
parallelism can arise nevertheless. For 
example, when variable occurrences are 
unique within the terms to be unified, 
concurrency on the order of the arity of the 
terms is clearly possible. 

Our approach will seek to exploit such 
typically available concurrency, while 
observing necessary synchronization controls 
when multiple bindings of a given variable are 
attempted. This will be achieved by: 

viewing unification as a special 'write 
once database update problem, and by 

utilizing a particular combination of 
applicative and imperative language 
features. 

Note our objective here is the smooth 
integration of unification into our overall 
evaluation method, in which concurrency 
arises primarily through OR-parallelism. By 
exploiting whatever concurrency is available 
(albeit limited) within each unification attempt 
two benefits result on an architecture such as 
Rediflow: 

1 • greater activity breadth (i.e. enabled 
instructions') within each processing 
element (PE), thereby reducing the chance 
of PE idleness due to memory latency, and 
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2 speedier determination ol tailing 
unification attempts 

4.1 Unification as a Database Problem 

To begin, we simplify our unification 
problem to a more familiar form in which 
bindings are collected in a single substitution, 
rather than in the \1r *3) pair suggested 
above We accomplish this by constructing ?2 

prior to actual commencement of the 
unification algorithm, as follows Suppose 
* 90 • J, is to be unified with tf the head of 
a clause Cy Let n be MC,)!- Then for 13 we 
create a (nonwnteable) tuple with length(J2) 
• lengthf^), as follows: 

If J,[i] « Q. then JJi] - V(n • UB(i, J,)), 
whereUB{i, J) - |{k(k £ i and flK] « Q)|. 

Otherwise, the value of ffjii) is undefined, 
and no accesses will be made through it. 

The result is a mapping of ?Q' by 13 into the 
name space of C., as extended by the 
importation of images of all unbound 
variables in 9n'. Since simply serves a 
variable relocation' function, it can be fixed 
at unification set up time Then all bindings 
during the actual unification process are done 
via assignments to ?3 

Now, let us consider parallel unification as a 
classical' database update problem within an 
applicative framework, e g as formulated in 
(Keller and Lindstrom 1982) Here: 

The database' is the vector initialized 
to uniformly ft values. 

The database system consists ol a stream 
of transactions applied to a stream of 
database versions. Each transaction 
involves an indivisible access and bind 
operation, which reads a variable s binding, 
ond, if equal to ft, binds it. The response 
generated for the transaction indicates 
whether the binding was adopted, or, if not, 
what binding is already in effect for that 
variable. 

The execution of each transaction yields 
in addition an updated database version ((f3 

vector), which is then fed back in a cyclic 
fashion, to be paired with the next 
transaction arriving. An overall transaction 
serialization effect thereby results. 

This approach is quite clean functionally, 
relying on a single pseudo functional 
operator, viz. the stream merge used to 
collect transactions for application against 
the database. However, from a pragmatic 
viewpoint, this approach is suboptimal, for the 
following reasons: 

1. All accesses of the database are made 
mutually exclusively, when in fact 
serialization on a per-variable basis is 
sufficient. 

2. Moreover, unsynchronized reads of the 
database can be permitted, as follows. By 
the special nature of the unification 
algorithm, each variable is bound (written ) 
at most once. That means: 

a) Whenever a binding is read, if the 
value returned is other than ft, that value is 
necessarily correct and final. 

b) However, if the variable is seen to be 
unbound, any attempt to bind it must be 
done through a serializer which performs 
the required access and bind operation, 
but with serialization on a per variable 

basis. 

c) In short, the liberalized access policy 
permitted by this special 'write once' 
property is 'read freely, queue to bind . 

3. Finally, the recirculating database 
version method can be criticized for 
excessive tuple copying as the stream o 
intermediate ff3 representations is produced. 

4.2 A lutnre Liboral Solution 

Suppose we seek to unify S0 0 ^ ° *2 ^ 
«F the head clause of a target clause C,. Th» 
vJrile once' idea described above can be 
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FUNCTION un1fy:[tl. t2. k2] • 

{s3  =  makece11s : [ ' t up le .  k2 ,  
a l l ub ] ,  

FUNCTION a11ub:1 * unbound. 

FUNCTION 
IF 
THEN 
ELSE 
IF 
THEN 
ELSE 
IF 
THEN 

ELSE 

te rmun l fy : [ t l ,  t 2 ]  -
1svar : t l  
t r yb lnd : [ t l ,  t 2 ]  
( *  t l  1s  a  func t ion  • )  
1svar : t2  
t r yb1nd : [ t2 .  t l ]  
( *  two  non  va r iab les  • )  
eq : [head : t l ,  head : t2 ]  
a rgun1 fy : [ t l ,  t 2 ,  2 ,  

t l eng th : t l ]  
fa l se ,  

FUNCTION tryblnd:[var, newblnd] • 
IF  eq : [ t se lec t : [ van ,  s3 ] ,  

unbound ]  
THEN ( •  b id  to  b ind  var  • )  
{o ldb lnd  =  ab : [ va r ,  newb lnd ] ,  
RESULT J 

IF  eq : [o ldb1nd ,  [ ] ]  
THEN ( •  b ind ing  OK • )  

t rue  
ELSE ( •  recur  • )  

te rmun l fy ; [newb lnd ,  
o ldb lnd ] }  

ELSE ( •  a l ready  bound  • )  
te rmun l fy : [ t se lec t :  

[ va r ,  s3 ] ,  
newb lnd ] ,  

RESULT [ te rmun l fy : [ t l ,  t 2] ,  S 3]>  

Fig. 4. Unification functions. 

We create J, as a tuple of writeable cells 
equal in number to 1^)1 + UB(length(f )' 
j), i.e. the number of native variables in C 

Plus the number of variables imported into 
this instantiation of C,. All entries in y are 
initialized to Q. 3 are 

The cells in f3 are read freely during 
unification, and, when seen to be equal to 0. 
attempts to bind them are made as required. 

A serializer procedure (pseudo functional) 
is created for each variable to service 
access and bind requests in the sense 
described above. Mutual exclusion within 
serializers is achieved by the mutex 
resource control construct described in 
(Jayaraman and Keller 1980). 

Fig. 4 gives the basic functions involved in 
our unification approach. Note: 

1. Literals are represented as nested 
tuples, with constants denoted as Oary 
functions. Hence the representation for the 
compiled clause in fig. 2 would be: 
[p. V1, V2] :• (q, VI. [f. V3J], [r, V3, V2, (c]J. 

The top-level invocation is 
un i f y : [ t l .  t2 .  k2 ]  

where 11 = 'J() • o J tZ =1,. and k2 is 
the length of the desired if, substitution 
tuple. The result is [irue. f3] # A16 

unification succeeds, and liaise, undel] 
otherwise. 

The internal function is termunlfy 
performs most of the required case analysis 
II tl and t2 are nonatomic. the auxiliary 
function argun1fy:[tl, t2, a, b] (not 
shown) attempts pairwise unification of 
{tselect: [ 1, tl], tselect:[1. t2]}. 
for i € {a,.... b}. This is done in parallel, on 
a divide and conquer' basis, with eager 
failure reporting. We assume unique arities 
for each functor symbol. 

2 .  t r yb l  nd  does  unsynchron ized  reads  o f  
variable occurrences. If a variable is found 
to be already bound, or appears to ^ 
unbound but fails a binding attempt, 
termunlfy is called on the value retrieved 
and the rejected new binding. 
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s3m « make:['tuple, k2, allmut], 

FUNCTION allmut:1 * gmutex:[], 

FUNCTION ab:[var, newblnd] -
(* access and bind serlaHzer •) 

wa11:[tse 1 ect: [var, s3m], 
IF eq:[tseTect:[var, s3], 

unbound] 
THEN (• free to bind now •) 

seq:[trepTace:[var, s3, 
newblnd], 

[ ] ]  
ELSE (• too Tate •) 

tseTect:[var, s3]] 

Fig. 5. Unification synchronizer (nested in 
unify). 

V 
vv 

V 

*1 = 

p(X, a, U, V) 

P(X, a, f(Z), Y) 

P(Z. X, Y, g(X)) 

a f(V4) n fl 

V1 V2 V3 V4 
(X) (U) (Y) (Z) 

V4 undel V5 V6 

V1 V2 V3 V4 
(X) 

f3 = 

(U) (Y) (Z) 

V4 a f(V6) fi g(V2) n 

V1 V2 V3 V4 V5 V6 
U) (X) (Y) (X') (Y) (Z) 

4.3 Synchronization Control 

The function tryblnd in fig. 4 relies on 
ab:[var, newblnd] ('access and bind') to 
manage the writeable cells representing Y3. 
Applications of ab return a null tuple [] if the 
requested binding was adopted; otherwise, 
the existing binding is returned. Fig. 5 
provides the code for ab. 

The following comments will be helpful in 
understanding fig. 5: 

The tuple s3 is parallelled by a tuple s3m 
of mutex data objects (each created by the 
primitive gmutex:[]). The FEL construct 
wa1t:[m, exp] ensures that at most one 
exp within a wait on a mutex m will be 
executed at a time. Hence a critical 
section' type effect is obtained. 

The operation trepTace:[1, t, v] is 
the write analog of tseTect: [1, t]. 

The pseudofunction seq:[a, b] causes 
the sequential evaluation of a and b, 
generally for their side effects, and then 
returns the value of b. 

A sample application of unify is shown in 

fig. 6. 

4.4 Parallelism Obtained 

We claim, without rigorous proof, that the 
unification approach just outlined exploits as 
much concurrency as is possible within a 
straightforward manner. Observe in 

particular: 

Argumentwise concurrency is attempted 
whenever two nonatomic terms are to be 

unified. 

Since mutexes are implemented on 
Rediflow with individual server processes, 
no delays are experienced on wait 
operations unless two involve the same 
mutex (here, when two bindings of the same 
variable are attempted simultaneousyl 
These delays seem inherent 

^'9.6. Sample unification execution. 
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4.5 Variable Exportation 

We now return to the question of 
exportation of unbound variables in solution 
substitutions. The problem is comparable to 
that of variable importation during unification 
accomplished by T2, and a similar relocation 
technique suffices. 

Suppose we are to compute f '  = f  • }  < >  
f3 . Let n = UB(length(lf3'), d3'), the number 
of variables left unbound in f3'. If n = 0, we 
have no variable exportation problem. 
Otherwise, we define a vector s3rel, where 
s3rel[i] = Vflength^) + UB(i, ^)), and 
extend ^ to include n new variables, all 
unbound. Then when references to unbound 
variables are detected in blndterm, they are 
relocated through s3rel. 

4.6 Economic Issues 

We now offer a brief economic analysis of 
this technique for representing binding 
environments. Two questions naturally arise 
when this method is considered for large 
scale logic programming applications: 

1.Will variable importation cause 
substitution vectors to become 
unreasonably large, and 

2. Will the repeated use of composition 
functions eventually degrade the speed of 
producing each subgoal solution? 

We believe the answer to each question is 
no, but do not as yet have conclusive 
empirical evidence for support. However, we 
offer the following informal arguments. 

Question V. The size of each substitution 
vector is equal to the number of native 
variables in its associated clause, plus the 
number of unbound variables imported into 
its environment. If an imported variable 
does appear in a term bound to a native 
variable, that variable importation is 
necessary and useful under our technique 
for management of multiple environments 
The wasteful case is when a variable is 
imported, but is in fact unreachable. Note 

such variables could be detected by 
complete traversal of the goal terms 
undergoing unification, but we |udge this 
test to be unacceptably slow in practice 

Instead, we offer the following simple 
optimization Each imported variable Vj in 
an instantiation substitution 13 will be the 
image of some Vi in the matching unification 
substitution If Vj is unreachable, it will 
surely be still unbound when restatement of 
a solution 13 takes place Hence Vj can be 
mapped by s3rel back to Vi. rather than to a 
new Vj". The net effect is that the number of 
potentially unreachable imported variables 
in a goal environment is proportional to the 
path length from that goal to the root query 
in the overall AND/OR tree (i.e. the number 
of 'parent goals'). Thus unreachable 
imported variables do not accumulate as we 
move left to right in the AND/OR tree. 

Question 2: In examining the code of fig, 3, 
we see recursive traversal of terms in 
apply2 and restate While it is true that 
such traversals do cascade as we move to 
the right (and upward) in the AND/OR tree, 
we also point out that 

a) such traversals are done only as 
genuinely required, given Rediflows 
underlying lazy evaluation method, and 

b) once such a traversal is done, its 
result is recorded in a substitution vector, 
thereby saving OR-siblings from the same 
effort. 

5-CONCLUSIONS 

We have presented a vectorized 
representation for substitution data objects as 
an efficient technique for environment 
representation when doing OR-parallel login 
programming on applicative architectures. 
Procedures for maintaining these 
representations were outlined in the b"° 
situations of most interest: concurrent 
unification, and solution reporting. 



169 

This work has similar intent as do most 
storage management techniques within OR-
parallel logic programming implementations. 
Of particular relevance is the work in 
(Ciepielewski and Haridi 1983a, Ciepielewski 
and Haridi 1983b). However, our work 
contrasts with theirs in the following respects: 

1. Environment separation is 
accomplished incrementally as a preface to 
unification, rather than as bindings are 
performed. 

2. All variables pertinent to a goal are 
collected in a single vector, which we 
believe will have locality advantages on 
distributed architectures. 

3. No 'directory' or 'context' structures are 
used; vectorized substitutions suffice for all 
environment representations. 

4. The method is integrated with a 
concurrent unification algorithm. 

5. Finally, solution reporting (to AND-
siblings or a parent goal) is done by a 
substitution composition technique which is 
both efficient and purely applicative, thereby 
facilitating additional concurrency in its 
execution. 
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ABSTRACT 

This paper presents a view of the 
computation of Prolog programs that 
is suitable for expressing parallelism. 
We develop an idealized architecture 
consistent with this view which allows 
for exploiting most types of parallel-
™s; The architecture is based on an 
efficient broadcast link. The idealised 
architecture requires infinite resources, 
and so we consider various ways of 
mapping it onto practical topologies, 
fypes of parallelism that should be 
retained while making this approxima
tion are discussed, and a class of 
architectures is developed that 
approximates the ideal. The parame
ters of this class are defined and cri-
ena for evaluating them are given. 

L Introduction. 
Prolog is becoming widely 

accepted as a powerful programming 
anguage. Its non-procedural formula-
1Qn (van Emden 1976) and clean 

semantics (of pure Prolog at least) 
make it an executable specification 
anpage. A large number of AI appli-

, ions were programmed in a rela-
've'y short time in Prolog (Szeredi 

°2). The increased availability and 
ow cost of hardware along with the 
'Dcreased demand for computational 
Power makes it important to attempt 
harcf'3ee<^ fr0'0® using parallel 

, Prolog has certain properties that 
ake it an attractive language for 

exploiting parallelism. The expression 
parallelism is natural in Prolog. 

•Multiple clauses for a single predicate 
allow for expressing OR-parallelism. 

The body of a clause consists of a con
junction of literals, and this allows for 
AND-parallelism. Although most Pro
log implementations impose a left-to-
right sequencing, for pure Prolog it 
can be considered as an optimization, 
implemented because in most cases 
(when variables are shared between 
literals), sequential execution is more 
efficient than independent execution of 
subgoals. Besides, in the absence of 
parallel hardware, there is little 
motivation for not imposing sequenc
ing. 

The criteria that we stipulate for 
an implementation of parallel Prolog 
are: (1) it should be realizable with 
current or foreseeable hardware. (2) it 
must be scalable, i.e., one should be 
able to add extra processing power to 
the system and get a gain in perfor
mance without a significant redesign 
of the system. Implementations based 
on shared global memory are not 
acceptable, because shared access to a 
common memory will take more time 
as the number of processors increases. 

Several attempts have been made 
towards this goal. The AND-OR process 
model of (Conery and Kibler 1983, 
Conery 1983) concentrates on how to 
decompose a problem into its subprob-
lems when there are dependencies 
across the subproblems. It is a 
process-based model of computation, 
questions of assigning processes to pro
cessors and the structure of communi
cation links between the processors are 
postponed to a later stage. 

The EPILOG system of (Wise 
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1982) deals mainly with the changes 
that need to be made to the language 
Prolog to make it a suitable candidate 
for implementation on a data-flow 
machine. Since Prolog as it stands 
now has constructs that are useful 
only in a sequential implementation, 
making changes in the language is cer
tainly an important issue. We believe 
that the architectures for a Prolog 
machine could be investigated con
currently. An architecture should 
implement at least pure Prolog and 
should be flexible enough to incor
porate extensions as needed. 

, ?^e,PRISM sy.stem (Kasif, Kohli 
and Minker, 1983) implements Proloe 
on a special architecture called ZMOB 
(Kieger, Bane and Trigg, 1980) Thev 
have a set of problem-solving 
machines and an additional set of pro? 
eessors to store clauses. Thus each 
unification requires two messages 
the processors communicate via a tin
gle fast conveyer belt'. So the com
munication delays increase linearly 

R„FTH« SOŜ °' T>ROCTSSO'S' 

pa^er devel°Ps an approach 
that does not assume shared memory 
and deals with issues starting from the 
available hardware level through 
architectures execution methods and 
contro strategies. The next section 
presents a general view of Prolog com 
putation that is suitable for parallel 
interpretation. I„ Section 3 "e 

develop and optimize an idealized 

RSRWAR RR * 

of the class of arch.W Parameters 
erated and examine the issuesthat**' 
i n v o l v e d  i n  s e l e c t i o n  o f  e a c h  o f t h " ®  
parameters. or these 
2. A View of the Computation. 

TION L2DIBS*FEDPRI°6 C°MP»"-
VIEWED AS AN AND-OR 

tree (Bruynooghe 1982) with the AND 
arcs corresponding to each literal of 
the query and the OR arcs correspond
ing to the possible clauses for each 
literal. Although elegant in some 
respects, this picture of computation 
hides its complexity in the require
ment that all the substitutions must 
be consistent across the tree. Ability 
to view the subproblems indepen
dently is crucial to developing models 
that will execute them in parallel. 
Therefore we constrain our tree 
models so that each node represents a 
completely described subproblem that 
is solved without any reference to the 
nodes in the tree above it. We make 
the constraint more concrete by asso
ciating a partial solution-set (PSS) with 
each node in the tree. This set con
sists of substitutions for variables that 
make the subgoal represented by the 
node true, and is to be computed 
using only information from other 
nodes in the tree below it. 

The tree, then, should represent 
the subproblem reduction process via 
the AND-arcs and exploration of alter
native solutions via theOR-arcs. How
ever, in a large number of cases, the 
AND-OR tree does not represent the 
subproblem reduction process faith
fully. Consider an AND-node with the 
query: 'p(X),q(X,Y)\ In most practical 
implementations (parallel or sequen
tial), this problem would be solved by 
solving one of the literals (say, p(X)j 
farst, and solving the other literal with 
the values for X provided by the first. 
Thus, if Xj,x2 .. x. are the values for X 
returned by p(X), the true subprob
lems of the problem, i.e. those that 
must be solved to solve the original 
problem are: 'p(X)\ 'q(x„Y)\ VlM)' 
•• q(x»>Y). (assuming q(x„,y) was the 
only q to succeed). This sub-division 
cannot be represented in the AND-OR 
tree, it has just one node for the 
literal q(X,Y). Given our constraint 
that a problem must be solved using 
only information from below it, the 
AND-OR tree dictates that the two 
problems, p(X) and q(X,Y) should be 
solved independently; the solution sets 
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would then be joined to get a con
sistent solution. 

We therefore introduce a some
what different picture of a Prolog 
computation. The computation is 
represented by a REDUCE-OR tree, 
similar to an AND-OR tree. The root 
corresponds to the query, and is a 
REDUCE node. Except the root, each 
REOt'CE-node corresponds to one 
clause of the program. The sub-nodes 

a REDUCE node are OR-nodes. 
They correspond to a set of subprob-
lems that can help solve the problem 
that the REDUCE node represents. 
There mav be multiple ways of reduc
ing a problem to subproblems. How-
aver, the arcs correspond to one par
ticular way chosen by the control stra
tegy (CS). Thus, for example, if 
PlX'l.qlX.Y)' is the query, a possible 

structure for the root of the tree is as 
shown in Figure l.a. A dot on top of 
a variable indicates that the literal 
containing the dotted occurrence is 
the generator of that variable. The 
values of that variable used in the 
subproblems for other literals are 
those that satisfy the generator literal. 
The generators are chosen by the CS. 
The cs might have dictated the struc
ture shown in Figure l.b, or another 
(Figure l.c), where the parent node 
oomputes the join. 

Each OR node corresponds to a 
single literal. The multiple arcs from 
't correspond to potential solutions to 
'his literal. To make the picture more 
uniform, we will consider each clause 
°f the program as a potential way of 

solving any  literal. (As opposed to 
only those clauses that have the goal 
predicate as their head literal). All 
OR-nodes now have the same struc
ture. Each has exactly N children, 
where N is the number of clauses of 
the program. 

The computation can be viewed 
as a process of developing this tree. 
Starting with the main query as the 
sole REDUCE node in the tree with an 
empty PSS, one extends the tree in any 
of the following ways: 
(1) Corresponding to any literal of an 
active REDUCE node E, one may add 
an arc from R to a new OR node O 
representing an instance of the literal, 
provided the generator literals for 
those variables that are not generated 
by this literal have already been 
attached to R. Then O is instantiated 
with a consistent composition of the 
substitutions, one from each of the PSS 
of the generator literals. 
(2) To any OR-node that is a leaf of 
the tree, one may add N arcs to 
REDUCE nodes, one corresponding to 
each clause of the program. Each 
REDUCE node with a clause whose 
head unifies with the literal of its 
pa ren t  node  i s  cons ide red  an  ad tve  
node The root is defined as an active 
node. The instantiated body of the 
clause becomes the goal of the new 
REDUCE node (say R)- If the body is 
empty (the clause is a fact), the PSS 
associated with R becomes a singleton 
set with the unifying substitution as 
its only member. 
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(3) Any entry from the PSS of a 
REDUCE node can be added to the PSS 
of its parent node. A substitution can 
be added to the PSS of a REDUCE node 
R (representing a composite goal G) if 
it is a consistent composition of the 
substitutions, one for each of the 
literals of G, from the PSS's of the OR 
nodes below R. 

3. An Idealised Architecture. 
We will develop an architecture 

for implementing an execution scheme 
based on the REDUCE-OR tree. Our 
first approximation is isomorphic to 
the tree itself, with a processor 
corresponding to each node and a phy
sical communication link correspond
ing to each arc. In this section, we 
optimize this architecture step by 
step, and show how it can support 
various kinds of parallelisms. 

First, let us describe the execu
tion method and its properties on this 
architecture. The top level node gets 
the query and decides on the grouping 
and sequencing of the subproblems. It 
then sends the appropriate subprob
lems to the OR-nodes just below it in 
a sequence consistent with the control 
strategy and the tree-development 
rules stipulated above. Note that we 
assume an arbitrarily large number of 
OR-nodes available to each REDUCE 
node. Each OR-node transmits the 
literal it received to all the REDUCF 
nodes that are its children. A REDUCR 
node sends any answer that it con
structs either by matching a fact or 
sentTo TStS01 >bnS °f subPr°blems sent to it to its parent OR-node 
which sends them to its D a r e n /  
REDUCE-node. Since the onlyTom 
mun,cation needed is between a chUd 
and !ts parent, and th h M 
cal hnk between them, no costlyr0ut_ 
ing of messages is necessary. 

the (naturerStof°PttKm'Zati0n concerns 

its children nodes t >• 
» identical message ^ 

links, it would be more economical if 
the message is broadcast to all the suc
cessor nodes at once. So let us replace 
the links from the OR node with a sin
gle link to an efficient broadcast chan
nel to all the subnodes. For brevity, 
we will call such a channel a net. An 
ethernet (Metcalf and Boggs 1976) is 
an example of an efficient broadcast 
link. As this link is used to pose the 
problem to the net and to collect the 
answers back from it, we will call it 
the master link to the net. The inter
connection structure around an OR 
node now looks as shown in Figure 2. 

od n CO- ,\od(^ 

OR-Node 

^ The Net 

i ^—i r~^) r̂ n 

Figure 2 

Let us now examine the work 
that an OR-node needs to do. It gets (a 
message corresponding to) a goal 
literal from its parent node and broad-
c.^sts that onto its net. It_ then 
watches for any solutions appearing on 
the net and sends them back to the 
parent. It really acts as a front-end to 

Master-link 

Slave-link 

Figure 3 
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the REDUCE node. We therefore elim
inate the OR-nodes altogether. The 
modified structure is shown in Figure 
3. 

Now we have only one type of 
nodes in the tree. Each node nas a 
single clause. It receives a literal to be 
solved from the net and tries to use its 
clause to solve it. If the head of its 
clause unifies with the literal, it 
becomes the manager of the (possibly 
empty) sub-query consisting of the 
right hand side of the instantiated 
clause. It then invokes the control 
strategy to decide the grouping and 
sequencing of the subproblems. Using 
this, it communicates the subproblems 
in appropriate order to different nets 
via its master-links. For each solution 
to the subproblem obtained from a 
subnet, it either starts new subprob
lems that were waiting for the value of 
i variable provided by this solution, or 
combines the answers of subproblems 
to form a solution to the original 
problem. It sends each solution so 
obtained to its parent node. 

Our next optimization is really a 
generalization to allow more flexibility 
tor the control strategy. It concerns 
communication needs across the sub-
problems. Consider the query: 
P(X,Y),q(X).'. Let p be the generator 

of X and q a filter of X. In our 
current version, the two problems will 
be solved on different nets as shown in 
r rgure 4. 

Figure 1 

Consider the communication 
between nets Nj and N2. After the 

pair (Xl>yi) is found, a message 
S°es from N, to the parent node, 
^jdch sends another message to N2. 
these two messages could be avoided 

if Nj and N2 were the same net and 
were given the joint problem. 
'p(X,Y),q(X)\ An algorithm for exe
cuting such problems on a single net is 
described in (Warren et al. 1984) . 
Note, however, that this groups 
together the functions of all the N,'s, 
thus potentially reducing the parallel
ism between solutions of the q(x,)'s: all 
the q(x,)'s have to be solved on the 
same net now. As it is not always 
beneficial to solve the composite query 
on a single net, it should be the prero
gative of the control strategy to pose 
either a composite multi-literal prob
lem or a single literal one to a net. 
3.1. Opportunities for exploiting paral
lelism. 

We now examine how different 
kinds of parallelisms can be exploited 
on this architecture. The discussion 
here will help our search for practical 
implementations of the architecture in 
the next section: they should try to 
retain as much of this parallelism as 
possible. 

The AND parallelism involves 
evaluating two or more literals of a 
composite goal simultaneously. As a 
node has master links to an arbitrarily 
large number of nets, this parallelism 
can be easily implemented on our 
architecture. When the literals share 
variables, it is not always efficient to 
compute them in parallel. So it is left 
to the control strategy (OS) to choose 
whether to execute the literals in 
parallel or not. 

The OR parallelism at the literal 
level involves exploring all the solu
tions to a given literal simultaneously 
As the literal is broadcast on a net 
and all the nodes start working on it 
at once, this parallelism is inherent in 
our architecture. 

The OR parallelism at the query 
level is the OR-parallelism across 
ifterals which iS exhlb.ted by cot,-
deterministic predicates. Given two 
literals with common variables, it 
involves starting execution, in parallel 
IS ,«.<«»««' 'HrTti To 
for every solution of the first. 
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f^mple, if the query is 
P(X,Y),q(Y,Z)' and p has multiple 

solutions then we can start exploring 
c QifuZ) &s soon as p returns a new 
Y^Jue U)- Although in our idealized 

architecture it is always beneficial to 
do so, m practical models, where the 
nets and the nodes need to be shared 
it may not be so. In such models, the 
usefulness depends on features of the 
problem (program and query) and the 
specific topology of the architecture 
which are best handled by the CS. .As' 
the solutions are always sent to thp 
P»'„. node, (which .i th" ̂  
litoln Process for the next 
literal), this parallelism is implement 
able on this architecture, although the 
decisions to do so is left to the CS. 

i u Th° L°PKUP parallelism involves 
in' M. Tht"eS°^'h§da.'*^« 
between this and the OR nar«M I™ °D 

the literal level.^There onf f, ? 
to start parallel processes corrp Dee^s 

mg to different matchtaTcCsSV' haviner lookpH NN ° I after 
database (program Tn SeS JD the 

th.; dhuCTJliJ;»rS;.» 
nodes of a net and all nf tb • 
the literal to be solved simuhL^T 
(via a broadcast) ,slmuJtaneously 
automatically done i'n paralleh P ^ 

IogliPPrOXlmat,0nS and Practl"l Topo. 

ted ldc"-

assumes;resources- ^ particular,"^ 

%d"o,"3 °rber « 
clause); Det (one f°r each 

master-links^from^ number of 
the nets, one for *^1. D°de to 

(3) an arbitrarily large n.,rr,k nets fa* ®e number of 
could be arbitrarU™lParge)i0n ^ 

nodSfnets an^lhe^Iuf^0^68' the 
shared. llnks have to be 

Firstly, we have to limit the 
number of nodes on a net to a fixed 
number. Thus, we must allow a single 
node to have more than one clause. 
Some of the advantages of parallel 
lookup are reduced by doing this, but 
with a careful distribution of clauses it 
can (in most cases) be brought at the 
same level as before. It has a further 
advantage of effective resource utiliza
tion: the idle time of a node is reduced 
because a set of nodes will remain 
unused in the original model if the 
predicate that they represent does not 
figure in the computation. With multi
ple clauses at each node, the chances 
are better that some clause on any 
given node will be used in the compu
tation. 

Secondly, we limit the number of 
master-links coming out of a node to 
some fixed number. Now, more than 
one subproblem may have to be sent 
via the same master-link onto the 
same net. The nets may have to solve 
more than one goal concurrently. The 
answers coming back on the net from 
individual nodes have to be labeled so 
that the master can recognize them as 
answers to a particular query. The 
control strategy (CS) at each node 
must take into account the fact that 
the nets it subcontracts may already 
b® working on some other problems. 
Thus it must keep track of the tasks 
that it has assigned to each of the 
sub-nets, and load-factors of the nets. 
It could use this information to choose 
the link on which to send a new sub-
problem. 

So far we have bounded the 
branching factor of the tree architec
ture. The depth, and hence the 
number of resources, still remains 
unbounded. To limit that, we have to 
allow multiple master-links to the 
nets. With such links a net is responsi
ble not just for multiple subproblems 
from the same master-node, but multi
ple subproblems from multiple master 
• *tS" Tbis allows for cyclic structures 
m the topology, and thus sharing of 
nets for different goals. It also brings 
our architecture into the domain of 
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the physically implementable. This is 
the step in which we map the (infinite) 
tree architecture onto a finite inter
connection network. As we shall see 
later, this mapping can be done in a 
variety of ways, leading to a variety of 
architectures. 

Before proceeding to discuss some 
of the specific architectures with the 
above properties, let us examine the 
essential features of this class of 
models. The network consists of a 
number of nets and processors. There 
are two kinds of connections between 
a processor and a net: master-link, 
through which a node poses a problem 
to a net, and slave-link, through which 
a node gets a literal to be solved. The 
set of clauses on all the slaves of a net 
are exactly the clauses of the program, 
without any duplication, i.e. a net is a 
complete problem-solver. 

We can make further simplifying 
assumptions and optimizations which 
will help us categorize the possible 
networks. Firstly, we assume that 
each node has the same number of 
slave-links. Secondly, the same physi
cal link may be used as both a 
master-link and a slave-link to a node. 
However, there is an important asym
metry here. A node may have a 
master-link to any net whereas it may 
nave slave-links to only those nets 
that do not have slave-links to 
pother node with the same clauses as 
't has. Thus, a slave-link can be used 
ns a master-link without any problem, 
hut a master-link, if used as a slave-
'mk, may cause duplication of clauses 
among the slaves. We henceforth 
assume that every slave-link is also a 
master-link. 

As the master-links can be 
added/removed without restriction, 
whereas the slave-links are subject to 
ki ah°ve restriction, it seems reason-

a le to categorize the possible topolo-
Pes according to the slave-links first. 
A diagram of a topology depicts all 
the nodes, each labeled with a number 
denoting its set of clauses, all the nets 

and all the master and slave-links 
between them. A skeleton is a 
diagram without the master-links. 
The skeleton shows how the problem 
solvers (the nets) of a topology share 
the resources (the processors). The 
diagram shows how they can commun
icate with each other. 

4.1. Topology of the Slave-llnksi the 
Skeleton. 

We now examine the different 
kinds of structures of skeletons possi
ble. Each of them gives rise to a series 
of topologies. The skeleton-structure 
decides the scalability and strongly 
affects the performance. By scalability 
we mean the ease with which the net
work can be expanded. Following 
(Reed 1983), we will measure the sca
lability in terms of the minimum 
increment of processers needed to 
move to the next bigger topology in 
the series. For the purposes of this 
section we will ignore the effect of 
control strategy (CS) on performance, 
i e we will compare the performance 
of different skeletons assuming optimal 
CS on each one. Given a fixed number 
of nets, the performance of an archi
tecture which has a completely-
connected net-graph can be considered 
optimal, because it can use its 
resources effectively: no net need 
remain idle while others are over
loaded. We will use this ability to 
spread work evenly among the nets as 
the criterion for comparing the perfor
mance of two architectures. Architec
tures on which the problems do not 
have to wait for resources when 
resources are available somewhere on 
the network are superior to those on 
which topological reasons force the 
problems to wait. More accurate com
parisons can be made by simulation 
F+nrlips (The performance is also 
afflcS by the master-link structure. 
However as we are designing the 
skeleton 'before the 
tnre it is important to assess tne 
effect of the skeleton-structure on per
formance). 
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The reason that there is a multi
plicity of possible skeletons is that a 
node may be a slave of more than one 
net. The simplest skeleton is the one 
which allows exactly one slave-link 
from each node. This leads to a collec
tion of isolated nets. The nets com
municate via the additional master-
links that connect the nodes of one 
net to another net. This skeleton has 
some important properties that the 
others do not possess: 

The distribution of clauses on each 
net may be different. 
2. Even the number of nodes on each 

net may be different. 
3. It is scalable without any restric

tions, as there are no dependencies 
across the nets. 

One need add one net and/or one 
processor to extend it. 

When we allow 2 or more slave-
links from a node, the situation is 
much more complex. The reason that 
we want to consider this option is that 
it allows increased processor sharing 
idhng t6ndS t0 aVoid Pr°cessof 

It is still possible to have different 
distributions of clauses on different 
nets However, it is extremely difficult 

ide^\a insistent system with 
such distributions. Also, there are no 
obvious advantages to doing so Par? 
diSk situations in which different 
distributions are optimal may exist 
but it would be very difficult to take 

advantage of these in a general pur
pose system. Therefore, we assume 
that all the nets have identical distri
bution of clauses. 

In the following discussion, let c 
be the number of slave connections 
per node, n the number of nets, p the 
total number of processors and t the 
number of clause-groups (i.e. the 
number of slave processors) on each 
net. Assume that k is fixec by other 
considerations (discussed in the next 
section). Notice that there are k 
different types of processors in the sys
tem, in the sense that they have k 
different sets of clauses. We will label 
each processor with a number 
i,0<i<*, corresponding to its type. 
We will present a few series of topolo
gies, and compare their performance 
and scalability. 

Figure 5 

A topology of the first series is 
depicted in Figure 5. Any specific 
topology of this series can be easily 
extended by adding 2 nets and k pro
cessors to it. The second series is 8 
grid-like structure. Given n=2*m nets, 
one constructs this topology by laying 

Figure 6 n.= 8. k = 4 
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out the m nets as in an isolated topol
ogy, thus laying out all the processors. 
The nets are numbered 0...m-l. One 
then adds the remaining m nets one 
by one, connecting the /th new net to 
the fth node from the (i+ j mod m)'th 
old net. A few example nets of this 
series are shown in Figures 6,7 and 8. 
Again, the minimal increment is 2 nets 
and k processors. However, this series 
has a better performance than serics-1. 
The largest distance between two nets 
(the number of nodes that have to be 
visited in order to go from one to the 
other) in the first series is approxi
mately n/2. In the second series, for 
"$2»l, the distance is 2. In general, 
it is approximately n/(2*(i-l)). It thus 
seems that activation would tend to 
spread more evenly among the proces
sors in a series-2 topology. To see this 
point more clearly, consider the graph 
°i a topology with the nets as nodes 
and a path from a net through a node 
to another net as an arc between 
them. This arc represents shortest 
communication path between two 
nets. Figure 9 shows the graphs for a 
topology of each series. For the graph 
°> a series-2 topology, the minimal 
spanning tree is much bushier than 
that for a series-1 topology (with the 
same number of nets). Thus, within a 
given (small) number of steps, one can 
reach more nets in series-2 than in 
series-1. 

A series-2 topology (a grid) with 
"=2*i yields a regular grid. An exam-
Pie is shown in Figure 6. Notice the 

Series-1 Series-2 

Figure 9 
labeling of node-types in the net One 
could obtain the labeling by labeling 
all the nodes on one net arbitrarily 
(say in the order 1 to k), and then 
labeling the nodes in the adjacent 
parallel net in the same order but 
shifted one position in one direction. 
This labeling strategy is easily general
ized to higher dimensions correspond
ing to higher values of e. Ihus 
spanning-bus hypercube (SBH) archi
tectures (Wittie 1981) are also 
included in our class of architectures. 

The dual-bus hypercube architec
ture (DBH) (Wittie 1981) provides 
another interesting series of toP° ̂ leSe 
The processors are arranged as lattice 
ooints of a D-dimensional hypercube 
fwith width k). The labeling is same 
Is in SBH. But it requires only two 
connections per processor, lhus it is 
cheaper than the SBH. There is a pre
ferred dimension. Each node has a 

Figure 7 
Figure 8 
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connection to a bus in the preferred 
direction. The other connection from 
each node is to a bus in a direction 
that is uniform for all the nodes in the 
nyperplane containing that node The 
worst-case path length between two 
nets is (2*Iog„n - 1). Thus DBH seems 
to have a potential for much even 
spread of computation than the previ
ous series. However, the scalability is 
poor The number of nodes is k° 'and 
i°tkbe,mTumum increment is at least 
i A L U us we see here a genuine 
formance ^ SCalability a°d per-
5. Design Issues. 

The brief analysis in the previous 
section prepares us for tackling the 
problem of designing a parallel execu-

siderSySemH Pr0l°f' We now con" desiSn choices involved. 
Notice that we are not presenting 
solutions to the design problems here 
Rather, we are attempting to list the 
^ °,lces and the issues involved in 
making those choices, so as to set a 
framework for future research. 
5.1. Choosing k, the Number of Node, 
per Net. The bandwidth of the net 
puts an upper bound on how many 
nodes can be put on a net. The tra-

uVh'' 'r4' in™iTO 
lac tors. If the number of nodes on a 
net is increased continuously a point 
may be reached when a large number 
of processors on the net tend tn 
remain idle. Then it would k 
cost effective to use fewer nodL"1^ 
use the extra nodes with new nets/on 

net mean "dt'Jiov r"C°:'sors P" 

sS'fm 
htveTdeSS °f C,MS1» 

tssssz ^ 
tion of clauses ti,^, • a^eml distnbu-

tern is meant for data-base applica
tions, there would tend to be a large 
number of clauses for a single predi
cate. Then, a large number of nodes 
helps retain the parallel look-up. In a 
system for executing typically deter
ministic programs, there would be 
fewer clauses per predicate and a very 
few (typically one) of them would 
succeed beyond the initial guard 
literals of the clause. Then a small 
number of nodes (e.g. 3 or 4) would 
suffice unless more are needed because 
the net tends to be engaged in solving 
a large number of goals. 

5.2. Choosing c, the Number of Slave-
links per Node. A processor has to 
analyze every message that is broad
cast on a net of which it is a slave as 
opposed to only those addressed to it 
from a net of which it is a master. 
Depending on the bandwidth of the 
net and the cycle time of the proces
sor, one would get an upper bound on 
c, assuming continuous broadcasts on 
all the nets. Loading of the processor 
and cost of the links are the other fac
tors limiting the value of c from 
above. The fundamental choice, 
though, is between c=l and c>l 
(mainly 2 and 3). With e=l, we get 
easy scalability and the ability to 
redistribute clauses on individual nets. 
We can then consider each net as an 
abstract independent problem solver. 
The cost, of course, is lesser utilization 
of processors. This is a qualitative 
choice, and at this point, it is unclear 
which one would be 'better'. 

5.3. Designing the Skeleton. With 
c = l, the skeleton is fixed. For higher 
values of c, the desif 
into account the issue ui 

* *- •- ' - the last 

c=~l> the skeleton is fixed. For higher 
* alues of c, the design should take 
into account the issue of connectivity 
of the topology mentioned in the last 
section. We have enumerated a few 
series of skeletons with c=2 and they 
have their analogues with c— 3. How
ever, alternative structures with better 
properties might exist and need to be 
investigated. 
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6.4. Selecting the Number of Master-
Unite per Node. We have already said 
that each slave link should be used as 
a master link. The question, then, is 
should there be additional master 
links. Distributed execution of recur
sive predicates is not possible without 
additional master links. A node that 
has the recursive clause broadcasts the 
recursive subproblem to one of the 
nets of which it is a master. If it is 
also a slave of that net, it will be the 
only one with that clause, (because 
duplication of clauses is not permit
ted! and will have to solve the sub-
problem itself. Therefore we expect 
that additional master links will be 
beneficial. The number of additional 
inks is again limited by the cost per 

hnk and the cycle time of the proces-
w. A point to note is that the master 
link is much more lightly used than a 
s'ave link; only the unicast messages 
carrying the answers need be con
sidered by the processor. Also, with 
higher number of master-links one 
gets more even distribution of activity 
across the network. 

Designing the Interconnection 
Structure of the Maeter-llnke. The 
design should provide for fast and 
even spread of computation across the 
network. In particular, a single net 
should not be overloaded (in com
parison to others) and thus cause a 

0ttleneck >n the computation. This 
entails that all the nets should have 
about the same number of masters, 
ct l ?um')er °f paths (of length 1, 2 

t0-) between two nets should also be 
comparable. As an example, consider 

e skeleton shown in Figure 6. If the 
master-links were added such that all the processors on a horizontal net 
ave one master-link to the next hor-
zontal net, the activity from one net 
°uld tend to cluster onto the other, 
andomly connected master-links (or 

carefully designed) may have more 
(Oti?1711 connect'ons among the nets. 

'her considerations, such as easy to 
connect topology may, force one to 

P'ement the first structure) 

6.6. The Control Strategy. Once a 
node receives a goal message from one 
of its slave links, it must attempt to 
unify it with the head of each relevant 
clause. For each successful unification, 
the control strategy (CS) has to 
manage a new query consisting of the 
body of the instantiated clause. It 
must consider the load on each of the 
nets of which it is a master and the 
control information associated with 
each clause that it manages. This con
trol information may be provided by 
the user and/or obtained at compile 
time. It includes such factors as 
whether the predicates involved in the 
clause are deterministic and the func
tional dependencies among the vari
ables of the predicates etc. 

Using this, it must decide (a) how 
to subdivide the query corresponding 
to the body of the clause into sub-
problems and (b) which net to use for 
each subproblem. The former involves 
deciding whether to divide it in literals 
or in larger chunks and also deciding 
what sequencing of the subproblems is 
to be implemented. 

The object of the CS is to optim
ize the performance of the whole net
work. As that may depend on the 
topology of the network and the CS 
has access to only the local informa
tion, we are faced with two options 
Fither we could have the topological 
information built into the CS or we 
could make it independent of the 
topology (and hope that it works well 
on most topologies). An option in 
another dimension is either to have 
the identical complete CS reside on 
each node or to let the control infor
mation be compiled into the represen
tation of the clause itself (leaving ojnly 
a simple executor at each node). The 
latter course seems faster andRequires 

require compile time analysis. 
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Another important task of the CS 
in any practical implementation would 
be to deal with the priorities of the 
subtasks that it manages. It could dic
tate the priority of a new subquery 
when it is broadcast and change it as 
tne computation progresses. For 
example, it may reduce the priority of 
a subproblem after it has returned an 
answer. 
0. Conclusion 

we have considered only pure-
mp°n?-S 'VS paper' Ways of imple
menting the impure features of Prolog 
that are both required and useful need 
investigation In particular, failure 
detection schemes are necessary for 
implementing not and setof. The 
semantrcs of side-effects (as in write 
etc.) under OR-parallelism has to be 
developed. Ways of updating the pro! 
gram have to be implemented. Unique 
resources (such as a printer) and 
be handled. °f ClaUSCS °D a Det n^ed to 

In conclusion, the basir k. 
fng We" apPr°ach seems Promt 
problems 
machine based n„ l*r on a 

proposed here. The de^1^"'*8 

described in thp r, choices 
difficult ones ThfoT"* Section "e 

Prolog proarami oo range oj 
optimality over a snppifiPP°Sed to 

Thus, analysis alone will notte^M' 
to dictate the choices WP able 

do simulation studies of f?ropos? to 

models generated by different cholceT 
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ABSTRACT 

The outline of an architecture 
to support the parallel execution 
of logic languages is presented. 
The implementation of a particular 
language, Parlog, is considered; 
attention is given to its "don't 
c®re non-determinism which allows 
hoth and- and or-parallel ism and 
returns only one solution. 

the 
The main features described are 

control structure and the 
binding environment. The proposed 
control structure uses processes 
that build an and/or tree tailored 
for guarded clauses. For the 
hiding environment we introduce a 

unification algorithm which solves 
ae problems of multiple 

occurences of an instance of a 
variable in guards. 

1' Introduoti rvn 

A growing number of languages 
®re being developed for specifying 

® parallel execution of logic 
Programs. This papier outlines an 
architecture to support such 
languages. 

Most parallel logic languages 
ar® based on sequential Prolog, 

have the same or very similar 
eclarative reading but different 

Procedural semantics. The left to 
right evaluation of subgoals 
"ithin a Prolog clause may be 
replaced by solving them in paral-
e ' this is known as and-

parallelism. The sequential order 
in which alternative clauses are 
tried in Prolog may be replaced or 
augmented by the ability to try 
all alternatives in parallel; this 
is or-parallelism. 

It is possible to execute logic 
programs using or-parallelism and 
limited and-parallelism without 
additional language control facil
ities (Haridi and Ciepielewski 
1983, Furukawa et al. 1982, and 
Conery and Kibler 1981) However, 
control facilities to specify some 
ordering of clauses can improve 
efficiency of or-parallelism by 
pruning the search tree (Kasif et 
al 1983). The main problems 
arise with and-parallelism when 
two or more goals contain terms 
which share an uninstantiated 
variable, since only one of these 
goals should be allowed to instan
tiate it. The languages that 
allow limited parallelism usually 
force goals which share variables 
to be executed strictly sequen 
tially, hut allow goals with no 
shared variables to be executed in 
parallel• 

Parlog (Clark and Gregory 1984) 
isTH^cceeeor to their earlier 
relational language (Clark 

Gregory 1981). (Parlog has itself 
undergone major changes since 

described (Clark and Gregory 
foS) It solves the problems 
created by and -parallelism by 
using "mode declarations to 
define which goal is the producer 
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of a variable's value and which 
goals are its consumers. Parlog 
allows both and-parallelism and 
or-parallelism to solve relations, 
in which only one solution is 
returned; it uses sequential-and 
with ^either or-parallelism in 
eager mode or sequential-or 

(i.e. like Prolog) in "lazy" mode 
to solve set-expressions, in which 
some or all alternative solutions 
are found. A comprehensive 
description of the language can be 
found in Clark and Gregory (1984). 

In this paper we shall concen
trate on relations, leaving con
sideration of set-expressions to a 
subsequent paper. 

Our aim is to design a mul
tiprocessor architecture able to 
support efficient implementation 

features of Parlog 
and also sufficiently flexible to 
be able to support other languages 

SdCUrreDt Pr°l0g (Sha°iro 
lye?; and, perhaps, "normal" 
sequential Prolog. normal 

2 .  Basic Underlying Machine 

The basic components of th» 
abstract machine are a finite set 
of processors each with access to 
a shared global memory and «1 
<oF.ion.Uri t. ,0„ l0/.1"a..o*1~ 

Global memory is divided into 

Sine S+eVlCUons: -3batic memory ^n 
the compiled codi +Vl 

program; dynamic memory contain 
e various environment bindin"S 

produced during oindings 
process memory con+=t- execution; 
ti^TfSr-^iFn F!8 xnf,°rma-Process creab^H A mg execution. created dur-

A program is executed 
mg processes to even + y creat-

°~b" processors 

.scheduler, running on a dedicated 
processor. 

The architecture ia control 
driven (Treleaven et al. 1982). 
Parlog offers flexibility in the 
ways in which goals can be exe
cuted (e.g. mixing sequential and 
parallel calls and clauses) and 
this is easily catered for with a 
control architecture. 

.3• Control Structure 

The control structure is a 
hierarchy of processes represent
ing the and /or tree which 
represents the search tree for 
satisfying a goal. 

There are two types of node in 
this tree corresponding to two 
types of process: and-processes 
and or—processes. 

An and- processes terminates 
with failure if any of its child 
processes fails. All of its chil
dren must succeed for it to do so. 
An or-process terminates with suc
cess if any of its children 
succeeds. Thus all of its chil
dren must fail for it to do so. 
(A child process of some process 
is one which has the given process 
as parent. The child is fre
quently created by the parent, but 
may be 'adopted', as described 
below). 

The execution of a Parlog pro
gram begins with an and-process 
which executes the top level 
query. a child process is created 
for each goal specified in the 
query. These child goal calls are 
or-processes. 

There may be a number of 
clauses composing the relation for 
each goal. a goal call will try 
each alternative clause by creat
ing an and-process for each one. 

Each of these and-processes 
first of all attempt to unify 

e arguments in the goal call 
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rith the arguments in the head of 
the clause. There are three pos
sible outcomes: 

!• Unification fails, causing the 
process to terminate with failure. 
£• Unification suspends (an 
attempt was made to bind an unin-
stantiated input variable to a 
non-variable term); the process 
becomes input-suspended. 
3. Unification succeeds; the pro
cess continues execution by trying 
to satisfy the guard clauses. 

tten an and-process has created 
child goal calls for its guard, it 
'ill suspend until they have ter
minated with success. If any of 
these children fails so will this 
process (since it is an and-
process) . 

tihen reactivated, it will 
attempt to commit the goal call to 
this clause. This can have two* 
outcomes: 

!• Commit fails: some other candi
date clause committed first. 
Hence this process terminates with 
failure. 
£• Commit succeeds: the process 
then continues, executing the 
clause body. 

In case 2, the goal call is 
reduced to the execution of the 
°hy goals. This is reflected in 

the process tree structure: the 
and-process creates or-processes 
°r the goals in the body which 
ave the same parent as the cal

ling goal or-process (see figure 

Once these body calls are 
created the and -process terminates 
*ith success, and hence its parent 
°r-process also terminates. 

* "Bounded buffers" that can 
use commit to suspend (Clark and 
86°ry, 1983) are "no longer in 
flog. 

A1 :- G1 , G2 | B1 , B2 
A1 :- G3, G4 I B3, B4 

T : A1, A2 . 

(a) : A1 , A2 

( 1 )  
( 2 )  

G1 G2 G3 G4 

(tj) : B1, B2, A2 

Figure 1 : State of control tree 
(a) before a clause commits and 
( b )  after the clause terminates. 

3 . 1 .  P r o c e s s  Information 

~~ Each process created must carry 
sufficient information to execute 

0=- "a tS 
This information 

Sx-HTW'SS arm 
following fields: 

SUS-aS ("nt« "to'-onrranti. 

Process poinxer. y 
process. 

IS£22t t recently 

S^raaS^ii 
xemmn »«lin8 Pr"' 

previously created. 
Process status. 
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A null child/sibling pointer 
indicates that this process 
currently has no active 
children/siblings. 

The process status can signal 
one of three possible suspended 
states or two possible runnable 
states: 

1- Suspended on Wait; the process 
has executed a 'wait' instruc

tion. When all children have ter
minated (assuming none have ter
minated this process) the parent 
will continue execution from the 
instruction following the 'wait' 
2. Suspended on End: the process 

has executed an 'end1 instruc-
°n» i_t finished execution and is 

waiting for its children to com
plete before sending a signal to 
its parent and terminating. 
3. Suspended on Input Variable-

the process will be woken whin 
the appropriate variable becomes 
instantiated and will continue 
executing the same (unification) 
instruction that caused it to 
suspend. 

4. Runnable, Queued; the process 

is runnable but has not yet 

I- IhssM., th. 
cess is actually execut-in * 

a processor. executing on 

— —* Control primitives 

actions for handli^ primitive 
These actions requirewrite'CSSSeS' 
to the process m w*1te access 
therefore have 1°^ ̂  must 

mechanism to avoid -TH + locking 
results. ln̂ eterminate 

Create creates a 
containing a new ocess block 
fields described above°CeSS" ^ 
tialised. once 1?, aPS ini" 
cess becomes "*^1. 

"""« '•'••Id processes 

that may atill exist. Either of 
the following conditions will 
result in the parent being 
'failed*: 

1 • The parent process is an and-
process. 

2. The parent is an or-process in 
"Suspended on End" state and 
this process is the last 
remaining child. 

If the parent is an or-process in 
"Suspended on Wait" state and this 
is the last remaining child then 
the parent process is woken up. 

Succeed terminates this process, 
killing any remaining child 
processes that may still exist. 
One of the following conditions 
"ill result in the parent being 
'succeeded': 

1 • The parent process is an or-
process. 

2. The parent is an and-process is 
"Suspended on End" state and 
this process is the lest 
remaining child. 

If the parent is an and-process in 
"Suspended on Wait" state and this 
is the last remaining child then 
the parent process is woken up. 

Kill children kills all descen
dants of this process. 

Notice that the action of the 
child process upon success or 

failure depends not on its process 
type but on its parent's. ®us 
and-processes can be children of 
and-processes, a feature which can 
be useful for optimisation. as 

of a 
the 

—  — x u x  u  U  P X J J 1 X . U U  » * - -
described below. The type 
process is determined by 
instruction that was used to 
create it. 

The above primitives are essen
tially built in to the control 
instructions described in the fol
lowing section. 
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hh Control instructions 

The instruction set developed 
for the abstract machine is based 
on Warren's PLM instructions for 
Prolog (Warren 1977). 

A clause of the form 

H G | B 

*iU be translated to code of the 
fori: 

unification instructions 

neck instruction 

guard calls 

commit instruction 

body calls 

end instruction 

Guard and body calls are exe
cuted using the same instruction: 

call caddr, paddr 
<argiments> 

paddr: 

This is interpreted as "create a 
ne* or-process which will begin 
execution at address caddr The 

process will continue at 
Following the call 

tween the call and paddr) are 
e call arguments. 

The commit instruction 
separates the guard calls from the 
0 y calls in the clause. (if no 
&®rd is specified then it is exe
cuted after the neck instruction). 

is interpreted as "wait for 
. e guard's calls to complete 
\ successfully) (i.e. go "into 
suspended on Wait" state) and 
en attempt to commit the parent 

fal to this clause; if this 
ucceeds then continue to the next 
ttstruction, otherwise the process 
18 to terminate". 

The commit instruction will 
also set an 'ancestor' field in 
the process control block so that 
the subsequent call instructions 
will attach created processes to 
the grandparent of this process. 

The end instruction is the last 
instruction in the clause. Since 
the body goals do not get linked 
to this process, there are no 
children to wait for so the end 
instruction will cause the process 
to terminate (successfully) at 
once. 

A process created by a call 
instruction will execute instruc
tions to create and-processes to 
try each alternative clause for a 
goal. The format of these 
instructions is: 

start: try 
try 

try 
end 

C1 
C2 

Cn 

The try instruction at "start:" is 
interpreted as "create a new and— 
process that will start execution 
at C1 (the start of clause 
instructions for the first 
clause)". The new process is 
always the child of the old ^pro
cess in this case. The 'old' 
(parent) process continues at the 
next instruction after the try. 

The end instruction will put 
the prociss into "Suspended on 
End" state and wait for its chil
dren. If there are no children to 
wait for it will cause immediate 
termination (failure). 

The call and tr£ instructions 
are suitable for executing goals 
and clauses in parallel. However 
Parlog allows goals to be executed 
sequentially and clauses to be 
tried sequentially- This 
achieved by the wait instruction. 

The sequence: 
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wait 
call 

will call goal j>, then wait for it 
land all its descendants) to ter
minate (with success) then call 
goal (This atill allowg 

subgoals of p to be executed in 
parallel). The conducts™ 

pile to: 
g3 & g4 , g5" will 

call g1 
call g2 
call g3 
wait 
call g4 
call g5 
end 

This will execute g1 , ~2 and 
^ parallel and wait for them aU 
to complete and then execute g4 
and g5 in parallel. g 

The wait instruction can be 
used similarly when selecting 
alternative clauses: meeting 

C1 C2 => try 
wait 
try 

C1 

C2 

+7.v flve instructions call 
try, commit, wait and end arf^I 
basic control instruct!^ 
convenience and or 

can be combined to give^t/e f^ 
lowing instructions: 
sequential call: 

call 11,12 + wait => scall n -to sequential try; scall 11,12 
try C1 + wait _ 

last goal call; y 1 

las^clause^to +try<- => lastcall 11 
y C1 + end => lasttry C1 

introduced^for tteStrUCtions are 
when only 0ne c1„ sPecial cases 
goal and when IT* e2ists *>r a 
exists for a claused ^ b°dy goal 

onlycall C1 

will, instead of creating an or-
process, change itself into an 
or-process and execute the code at 
C1_. 

onlytry CI 
will, instead of creating an and-
process, change itself into an 
and-process and execute the clause 
at CI. 

3/.4. Processes suspended on vari
ables 

When a process attempts to 
unify uninatantiated input vari
ables to a non-variable term it 
will become input suspended, and 
must then wait for some other goal 
(the prod ucer) to instantiate that 
variable. 

This can be implemented by set
ting the status field of the pro
cess control block to "Suspended 
on Input Variable", and by having 
a channel field in the block which 
contains the address of the 
(dereferenced) variable on which 
the clause suspended. 

When a process unifies that 
variable with a term any process 
sleeping on this variable will be 
reactivated. This involves check
ing for suspended processes when a 
clause commits (and thus makes its 
instantiations public). 

To minimise the overhead of 
this checking the channel field 
could be stored separately, fn 

appropriately indexed" tables (or 
hash tables); alternatively an 

associative memory could be used. 

Environinpn-t-Q 
An environment consists of 

frames which contain the bindings 
of the variables of a clause for 
its current call. 

in sequential Prolog, only one 
environment is accessible at any 
given time during execution, 
because of th seouential 
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execution. Thus only one 
occurrence of an Instance of a 
variable can exist at one tine. 

Nben or-parallelism is intro
duced more than one occurrence of 
an instance of a variable may 
exist at the same time - if a goal 
is called which invokes three 
clauses to be tried, then there 
"ill be three different instances 
of the goal argument variables. 

In general, for each clause 
invoked in parallel a new environ
ment is required. Each of these 
environments will be an (exact) 
C0Py of the environment of the 

call together with a local 
for the value cells of the 

variables in the clause. 

Obviously, not all the vari-
in ancestor frames will be 

effected by the results of unifi
cation of goal arguments and 
clause head arguments. It could 
e possible for those frames unaf-
ected by unification to be 

3 ared. Once the call commits to 
a clause the calling clause will 
inherit fbe new environment to 
replace its old one. 

And-parallelism poses another 
Problem in that a number of goals 
®ay access the same call frame at 
®e time. in particular, dif-
erent goals may update different 
variables in the same frame so 

other (parallel) goals can 
the resulting binding, 

crefore, rather than replacing 
an entire frame when a goal com
mits, only the values of affected 
variables are copied back into the 
shared call frame. 

Hence, a clause must hold 
Private copies of variables which 
rt alters in unification. As a 
urther complication, guard goals 
®rd their descendants must access 
heae private copies of variables 
rather than the public ones. 

With the conventional unifica
tion algorithm used for Prolog 
(Warren 1977, Bruynooghe 1981 ) and 
unification of two uninstantiated 
variables results in the more 
recent (i.e. the clause variable) 
being assigned a reference to the 
older one. Subsequently, a vari
able in the call arguments of a 
goal may dereference to a variable 
in any ancestor goal in the 
environment. 

This is unsuitable for a paral
lel system. Thus we have developed 
a unificiation algorithm that con
strains call arguments to derefer
ence only to variables in either 
the call frame or the local frame, 
with the exception of input (read 
only) variables. This restriction 
even applies to complex terms. 

4.1. Unification 

Unification has three stages: 

1. Unification of call arguments 
with clause head arguments. 

The values of the variables used 
in the call are copied from the 
call frame to a (local) frame 
called the output frame. These 
may contain undef, terms, or 
references to other variables xn 
the call frame which must also be 
copied. The output frame xs used 
in the unification of call argu
ments with the arguments in the 
clause head. The unification 
rules are given below. 

2 On commit, those variables in 
the output frame that were 

r°nrallel) goal =an Produce the 

value of a shared variable in the 
value ox unnecessary to 
calling fra® k whether any 

some other goal since a w-
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3. When the clause body calls and 
their descendants have com

pleted , the local frame can be 
compacted by retaining only those 
variables in the local frame 
accessible in the rest of the 
environment. Because of the unif
ication algorithm only those local 
variables referenced by the call 
frame are accessible to the rest 
of the environment. This stage is 
optional but considered a vital 
optimisation as long chains of 
references can be shortened. A 
garbage collector process could do 
this in parallel with the main 
execution. 

-ivi* Unification fiules 

terlf ismathehing °f tenDS with ls the same as in condi
tional unification. The differ" 
ences are in the way variables are 
assigned values. The following 

SXSV-1 

1 • Unifying _a simple term +c an 

iSl-tantiatiT^ar-I^^T2 g 
this case the ^ . 

"3SS.to th* 

2' -1. 

the other (which is i polnter to 
local frame) ^ ** the 

Exception: if the loci 
is an innut argument 
pointer c^n be then a 

variable m the call^^me ^ ^ 

to . 
naturally^tT~th'-i - t fits 

structure sharing thS°heme: usiag 
. Su 2,3231011 

where the skeleton point® ?®lr 

to the structure in the , P°lntS 

(static memory) and the f"68 

pointer is the local w ame 

the values of any vLIm**' Where 
v variables in the 

term are kept. 

4. Unifying ji complex term to a 
local variable: this involves 

extra copying to ensure the con
straint that variables can only 
dereference to variables in the 
local frame. The local variable 
is assigned a (skeleton, subframe) 
pair where the subframe ia a frame 
created in the local frame to 
store value cells of any variables 
in the complex term. The call 
variables are assigned pointers to 
the variables in this subframe. 

Exception: if the local argument 
is an input argument then a 
(skeleton,frame> pair is assigned 
to the local variable where the 
frame is the call frame. 

Figure 2 shows an example of 
the bindings resulting from this 
unification. 

Input variables can be exempted 
from this rule because they can 

Unify the call g(a,b,c,[djej), 
where a' is instantiated to 5, 
with the clause head 
g(w.*,[x|yj,z) 

call 
frame 

fO -> a : 5 
b : undef 
c : undef 
d : undef 
e : undef 

output fO _> b : x.fl 
frame c : [xiyj.fi 

d : d.fla 
e : e.fla 

local fi _> „ . 5 
frame x : undef 

y : undef 
z : [diej.fla 

a -) d : undef 
e : undef 

F-gure 2 :  An example using 
unification rules. 
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not update ancestor frames and 
thus it is 'safe' to access these 
shared frames directly. 

This means that a variable 
shared between two or more goal s 
in a clause can only be updated by 
its producer; consumer goals will 
dereference the variable to a term 
in the frame of the producer or 
one of its descendants. 

This also reduces the overhead 
of unifying complex terms with 
iocal variables (case 4) since 
most complex terms used in this 
*ay are input terms. Output terms 
are usually constructed by unify
ing complex terms in the local 
clause with a call variable (case 

The strict mode declarations of 
arlog mean that the copying of 

variables from call to output 
names is not necessary. Input 
arguments cam be accessed directly 

r°ffl the call frame; output argu
ments can be assumed to be unde-

and on commit their values 
copied back to the corresponding 
i a referenced) variables in the 
cail frame. These optimisations 
are not possible in Concurrent 
roiog except with read-only vari

ables. 

-'!• frames. 

1 clause requires access to 
ree frames for unification: 

** ̂ 11 frame 
access input variables (this 

18 read-only during unifica
tion) . 

0utPut frame 
to store (private) bindings of 
output variables. 

local frame 
store all variables in this 

clause. 

Pointers to these frames are 
®Pt in the process control block 
the and-processes executing the 

clause. The call instruction has 
to supply the call frame pointer. 

If each processor has some 
local memory then the output and 
local frames could be stored here 
until unification succeeded. Then 
the neck instruction would allo
cate environment frames in dynamic 
memory in which these are stored. 

If a process suspends during 
unification and is removed from 
its processor then the contents of 
the local memory must be saved in 
a 'swap' block in dynamic memory 
so that any processor can reac
tivate the process. This pointer 
is also stored in the process con
trol block. 

An alternative to this scheme 
is to precede unification instruc
tions with an init instruction to 
allocate frames in dynamic memory, 
replacing the neck instruction. 
This has the advantage that swap 
blocks are not needed but the 
disadvantage that a frame must be 
allocated for processes that sub
sequently fail unification and 
that temporary variables (i.e. 
those that only appear in the 
clause head) must be stored m 
this frame during unification. 
For that reason and hardware con
siderations the first scheme is 

preferred. 
On commit the output variables 

are copied back to the call frame. 
Hence they become public, along 
with any local variables that they 
reference, to the calling clause 
and its other descendants. 

Tf there is no guard, i.e. the 
-lauBe commits immediately after 

^cessful unification then the 
neck and commit instructions can 
be replaced by an ncommit mstruc-
l I that writes the local output 
ariables immediately to the call 
frame and allocates a frame only 
for local variables m dynamic 

memory. 
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Because of the way in which the 
control structure has been 
separated from the environment 
structure, the third stage of 
unification cannot be done 
automatically on the termination 
of the clause. Instead, each 
environment frame contains a count 
of the number of processes access
ing this frame and a pointer to 
its call frame. When the refer
ence count drops to zero (i.e. the 
clause has been completed) the 
frame can be merged with its call 
frame. Variables in the local 
frame that are referenced by call 
variables are checked to see if 
they have been assigned a simple 
term. If so this term is assigned 
Then 7riable 111 the call frame. 
Then only the variables in the 
local frame which are still refer
enced by the call frame need to be 
saved. 

To ease the compaction of a 

soa+wthe variables can be stored 
so that variables which can always 
be removed first are stored after 
the other variables i.e.: 

I global variables' 

j local variables j <- removed on 
I in body 

+  - - - - -  - clause end 

J other local j <_ removed on 
, _ _variables j commit 

temporary ! 
i variables 
+ 

i <- removed on 
i unification 

partition(5,[3 1 7 2l x1 Cal1 

relation partition'j3'defjDed asf* 
mode partition (•?•?*«) 

o) 

u i Partition(u,x,y,z) } 

fO ->  x1 :  [vjyj.f1' 
r2: z.fl ' 

f1' -> v : 3 
y  :  [vjyj.f2' 
z : z.f2' 

*  :  [ 1 , 7 , 2 ] .  

f 2 '  -> v : 1 
y : y.f3" 
z : [vjz].f3" 
u : 5 
* : [7.2].-

f3" -> v : 7 
y •• [vjy].f4' 
z : z.f4' 
u : 5 
x  :  [2 ] . -

: fj:: 
f4' -> v : 2 

y 
Z 

u : 5 
X  :  [ ] . -

figure 3a: state of environment 
after the terminating case (before 
compaction). 

fO -> x1: [vjyj.fi' 
x2: z.fl' 

«* -> v : 3 
y : [vjyj.f2' 
z : [vjzj.f3" 
u : 5 
x : [1,7,2].-

f2' -> v : 1 
y : y.f4* 

f3" -> v : 7 

I I [].-
f4* -> v : 2 

y  :  [ J -
Figure 3b: intermediate stage ia 
compaction (compacted to frame 
I « J  • 
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fO -> x1 : Lv j j r l . f r  
x2: L v !  z j . f3"  

f1 * -> v  :  3  
y  :  [v |y ] . f2 '  

f2" -> v  :  1  
y  :  y . f4*  

f3" -> v  :  7 
y  :  
z  :  • -

f4' -> v  :  2 
y  :  []-

figure 3c: environment after com
paction. 

Hotice that structure sharing 
means that garbage collection is 
n°t optimal. For example, in 
frame f3"( figure because z is 
the third variable in the frame, y 
(which is the second) is impli
citly stored even though it is not 
referred to (Bruynooghe 1982). 

I- Discussion 

!'!• Design issues. Separating 
the control structure from the 
environment structure incurs some 
overhead in that two explicit 
trees have to be maintained. In 
Particular, the environment frames 
contain explicit links between 

e® (from child to parent) to 
represent the environment tree, 
ami the environments have to main-

arn a count of the processes 
attached to them as this is can 
Pot be deduced from the control 
tree. 

However, by removing processes 
*hich are only waiting for chil-

r®n to terminate, as in the case 
a committed clause waiting for 

goals, we reduce the number 
of suspended processes in the sys-

em> thus taking advantage of the 
determinism that the commit 
offers. Also when failure occurs 

in some body goal, the failure is 
immediately effected at the top 
level of goal which it affects 
(which may be a guard or a top 
level query) and does not have to 
be transmitted up the control 
tree. 

Localising unification to three 
frames (call input, call output 
and local) has a number of advan
tages: 

a) The amount of copying done on 
unification and commit is very 

small, particularly since the mode 
of every variable is determined at 
compile time. 
b) Variables can be referenced 

directly by their address 
(once in dynamic memory) rather 
than by a <variable,frame no.> 
pair where the frame number is 
different for each different 
instance of a variable (i.e. there 
is no problem of multiple 
instances of the same variable). 

o) The output and local frames 
can be stored in high speed 

local memory during unification. 
Each processor could have unifica
tion 'hardware to carry out the 
unification instructions m this 
memory if unification proves to 
occupy a significant fraction of 
the system's effort. 

5.2. Current work. 

~~ ~~A Parlog compiler into abstract 
machine code and a simulator of 
the multi-processor machine, are 
being written (in C on Unix) to 

iLnt all the features of Par
log This will eventually include 

those ^^u^ ̂ ^Oget-expressions) 
this th development of Eventually, the ^ 
specia p However, it would 
T^rlv^e premature to embark on 

prior to a detailed study of 
the performance of the simulated 

system. 
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It would appear from this 
design that the overhead of pro
cess creation and termination and 
management of environment frames 
are very critical to the perfor
mance of the system. As well as 
attempting to minimise these over
heads (perhaps using special 
hardware) we will be studying the 
effect of these overheads to 
determine what degree of parallel
ism is necessary before "parallel 
programs run faster on a multipro
cessor system than sequential Pro
log on a single processor. 
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ABSTRACT 

A generalized data flow 
model and its applications for 
constructing a highly parallel 
Prolog interpreter is described 
fa this paper. The parallel 
Prolog interpreter is suited to 
utilize advantages of OR-and 
ABD-parallelism as well. 
Transformation of the AND-OR 
tree into a data flow graph 
based on the Generalized Data 
Plow Model is shown. Operator 
types needed for parallel 
evaluation of Prolog programs 
are explained in detail. 

1 INTRODUCTION 

Recently Prolog has gained 
an increasing popularity in 
such areas of computer 
techniques as artifical 
iritelligence) expert systems, 
and so 0n. Practical 
applications of Prolog need an 
effective implementation of the 
language, including fast 
e2ecutioii of programs 
inherently containing a lot of 
backtracking steps. Nowadays 
several research projects have 
started aiming at the solution 
°f parallel interpretation of 
Prolog programs. The majority of 
these research directions 
fundamentally support the so-
called AND/OR process modell 
/Conery and Kibler 1981/ or 
/Eisinger, Kasif and Minker 
1982/. a parallel Prolog 
interpreter based on this model 

creates dynamically AND-
processes and OR-processes in 
branching points of the AND-OR 
tree and allocates these 
processes to idle processors 
being in the system. 

Recently several data 
flow models have been proposed 
for parallel execution of Prolog 
programs /Moto—oka and Puchi 
1983/ and /Umeyama and Tamura 
1983/, but these models have 
been mapped into conventional 
multiprocessor systems. 

A new method for parallel 
implementation of a Prolog 
interpreter is presented in this 
paper. The essence of the method 
can be shortly described as 
follows: 

First the AND-OR tree of 
Prolog program is tra^s^°^®d 

into a data flow graph based 
on the Generalized Data Flow 
Model /Kacsuk l^a/. Jhe aex 
step is to map this data flow 
graph into a regular, 
homogenous processor space m 
which each processor can 
communicate only with i*® 
neighbours. In this way both 
the interpreter program and the 
Prolog program with its d 
Use ^11 ^ distributed in the 
processor space. Loa<iing 
Prolog programs into une 
processor space is executed 
during the compilation. 
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After loading, processors can 
work in parallel and they are 
activated by the firing rule of 
the Generalized Data Plow Model. 
The data flow execution mechaiisB 
of interpreter assures the 
logical exploitation of inherent 
AMD/OH parallelism, meanwile the 
regular processor space gives 
the possibility of physically 
parallel execution of Prolog 
programs. 

Chapter 2 is a short 
dascription of the Generalized 
Data Plow Model - the 
theoretical background of the 
parallel Prolog interpretation 
mechanism. Chapter 3 applies 
the Generalized Data Plow Model 
to realize a parallel interprets-
that exploits OH-parail elism. 
Operator types playing an 
important role in utilizing 
OR-parallelism are thoroughly 
described. In chapter 4 the 
solution of realizing AND-
parallelism is carefully 
investigated. 

2 THE GENERALIZED DATA 
FLOW MODEL /GDM/ 

Although the pure data 
flow model is well suited for 
exploiting inherent parallelism 
xn functional programs, it can 
not be directly applied for 
parallel interpretation of Proha? 
programs. The most important 
reason is that operators should 
have an inner state for 
backtracking since the 
unidirectional data flow graph 
is inadequate to describe the 
backtracking behaviour of Prolov 
interpreter. 

.. j , ?le Generalized Data Plow 
Model /GDM/ originally intended 
tor programming multiple 
microprocessor systems can be 
applied for realizing the 
backtracking mechanism of Prolop 
interpreter. A detailed roi°g 

description of GDM can be found 
in /Kacauk 1983a/. This paper 
just summarizes features of GDK 
inevitable for understanding 
parallel interpretation of 
Prolog programs: 

1. Functions associated 
with nodes can be unlimitedly 
complicated and there is no 
limitation to the number of 
input and output arcs of nodes. 

2. One node can be 
associated with several 
functions. A subset of these 
functions is activated by a 
firing situation. This way one 
operator can simultaneously 
product a lot of results and 
these can be sent to different 
subsets of output arcs. 

3. Functions associated 
with nodes are evaluated on 
the basis of conventional 
Neumann-style control flow 
semantics, so they can contain 
temporary variables /local 
memories/. 

4. Operators can have an 
inner state playing role in: 

- selecting the input arcs 
on which tokens are 
needed for firing, 

- determining the new 
inner state created by 
the firing, 

- selecting operator 
functions to be executed 
during the current 
firing, 

- selecting the subset of 
output arcs responsible 
for sending result 
tokens of the current 
firing. 

5. Operators can preserve 
Partial results from one firing 
for a later one. 
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6. There are no restriction 
for data structures carried by 
tokens. 

Mapping a data flow graph 
based on GDM into a homogenous, 
regular processor space /often 
called cellular space/ each 
operator is associated with a 
cell that can be represented by 
a generalived transition 
function /f/: 

f /state, {inp-tok} , 
(action)/ = /next-state, 
{out-tok) / 

"here the inner state of the 
cell before firing is "state" 
and after firing is "next-state". 
{inp-tok} means the set of 
input arcs and input tokens 
taking part in the firing of 
the operator, {action} means 
the set of procedures to be 
executed during the fire. 
{out-tok} means the set 6f 
output tokens produced by the 
firing. 

3 THE DATA PLOW SEARCH 
TREE /DST/ 

Executing a Prolog program is 

equivalent with searching in an 
AHD-OR tree reflecting the 
structure of the Prolog program. 

an example for constructing 
the AKD-OR tree consider the 
following simple Prolog program: 

a (X,Y) : b(X,Y), e(X),d(Y ). 

b (orange, apple). 

b (orange, lemon). 

b (plum, apple). 

c (orange). 

d (lemon). 

fhe structure of AKD-OR tree 
belonging to the above 
described Prolog program is 
shown in figure 1. depicting 
with circles the clause-heads 
/procedures/ and with 

rectangles the procedure calls 
/atomic goals/. 

The AND-OR tree well 
demonstrates the control 
mechanism of the sequential 
Prolog interpreter. Before 
entering a procedure body a 
unification step is needed. 
Entering is allowed only when 
unification of the actual and 
formal parameters has been 
successful. Variable bindings 
created during unification must 
be passed to atomic goals in 
the clause body. The sequence of 
these two actions /unification 
and parameter passing/ is denoted 
by dashed lines in the circles 
representing rules /van Emden 
1982/. Unit clauses have no body-
therefore in circles 
representing unit clauses dashed 
lines are missing. 

Dashed arcs in the AKD-OR 
tree represent the successful 
return from a procedure. After 
a failed unification the 
interpreter activates the 
backtracking mechanism. If the 
current literal has another 0R-
branch right to the failed OR— 
branch then the interpreter 
tries a new unification 
selecting the next clause. 

figure 1. 
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When all the OR—branches 
deriving from the current 
procedure call have sent back a 
failure signal, then the 
interpreter backtracks along the 
failed atomic goal. 

After all one can say that 
the AND-OR tree represents the 
control flow graph of the Prolog 
interpreter, where the 
direction of arcs shows the 
progress of the Prolog program 
and the opposite direction 
serves for controlling the 
backtracking mechanism. 

On the basis of the 
Generalized Data Plow Model AND-
* + If® Can be transformed into 
data flow graphs that can contain 
4 types of operators: 

1. UN /or UNIPY/ 
2. AND /or BODY/ 
3. OR /0r CADB/ 
4. UT /or UNIT/ 

In the data flow graph arcs 
connecting nodes represent data 
pathes instead of control pathes. 
Accordingly between two nodes 
direct,81,6 tW° 3rCS °PP°site 
directions, one for passing the 
actual parameters and the other 
for sending back results. The 

iS£ofS.f3£ldEiv-d fom the 
Plow Search Tree /DST/06 DatS 

.-SPSS* an -̂OR'tree into 
a DSTcan be systematically 

transf ?•applying 

£*2 rs». u 

4 OR-PARAILEIISM 
DST is suitable for 

realizing either the LRDP 

' +°f the seGuential 

on determining the functions of 

operators applied in DST and 
the types of tokens moving on 
the arcs of DST. 

First, function of 
operators and types of tokens 
will be determined for 
utilizing the inherent 0R-
parallelism of Prolog programs. 
The general structure of a 
token is the following: 

- token type 
- context field 
- data field 

AND-OR TREE DST 

figure 2. 
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Token types needed for OR-
parallelism are the following: 
- DO : first call of a 

procedure 
- RSDO : repeated call of a 

procedure 
- SUCC .* successful return 

from a procedure 
- PAH : failed return from a 

procedure 
The context field serves 

for distinguishing tokens 
originating from distinct 
instances of the same procedure 

e.g. due to recursion. The 
length of data field can be 
triable, it contains the actual 
Parameters in DO tokens and 
nesults in SUCC tokens. The data 
field is missing in REDO and 
JAII tokens. 

Now a short description of 
operator types realizing the 
control mechanism of a parallel 
Prolog interpreter based on the 
DST follows. 
4,1 TINT PY—operator /UN/ 

The transition function of 
UN—operator is the following: 
f(idle,DO(10),UNIFY(SUCCESS))= 

= (wait, DO (01)) 
f(idle,DO(10),UNIFY(FAILED)) 

=(idle,FAIL(O0)) 
f(wait,SUCC(II).-)= 

=(idle,SUCC(00)) 
f ( w a i t , P A I L ( I I ) )  =  

=(idle,FAIL(O0)) 
f(idle,REDO(10),-) = 

=(wait,REDO(01)) 

( 2 )  

(3) 

(4) 

(5) 

UN 
(wait) 

A N D  
(wait!) 

A N D  
(idle) 

-
UT 

UN 
(wait) 

A N D  
(wait!) 

A N D  
(idle) 

-
UT 

d (lemon) 

SUCC (orange, apple) 

bforange, apple) 

SUCC (orange, lemon)" 

UT OR 

(wait 2) 

c (orange) 

UT 

bforange,lemon) 
SUCC (plum, apple) 

b (plum,apple) 

figure 3. 

UT OR UT UT 
(wait2) 
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The UN-operator has two 
tasks.First it makes unification 
among locally stored formal 
parameters and actual parameters 
packed into DO token arriving 
on its 10 input arc. 

Secondly after a successful 
unification UN passes parameters 
with new variable bindings to 
the clause body on its 01 output 
ar?p. .In the ca3e of a failed 
unification UN sends back a FAIL 
token to the caller (2). After 
evaluating the clause body the 
result token arriving on the II 
m baCi t0 the caller 
f 1* ° tokei13 arriving 
on the 10 arc are passed 
without change to clause body 

4* 2 AND-operatm-

010 "transition function of 
AND-operator is the following.-
4J/-* f , V 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

f(idle,DO(10),-) = 
"(waitl,D0(01)) 

f(idle,REDO(l0),_)= 
=(wait2,RED0(02)) 

f(waitl,SUCC(Il),_)= 
=(wait2,DO(02)) 

f(waitl,FAIL(Il),-)= 
=(idle,FAIL(O0)) 

f(wait2,SUCC(I2),-)= 
=(idle,SUCC(O0)) 

f(wait2,FAIL(l3,_)= 
= (waitl,RED0(01)) 

The AND-operator accepts 
actual parameters for atoSc 
goals of the clause body on its 
10 arc. On the effect of a DO token the AND.0perator acti°°tea 
the firs atomic goal bv-

tok Pa?f®eters Packed in a DO^ 
en (1). After this, AND wait-? 
8+rSUlt token arriving 

from the first atomic goal Tf 

isJS.S'SV*0 a 10 
• tome go,l (3). Ua JJJM* 
second atomic goal •)«. ?? 

a REDO token on its 0 arc, but 
the activation token is of REDO 
type (2). The result of the 
second procedure call arrives on 
the 12 arc. If this is a SUCC 
token then the result is send 
back to the caller operator (5) .  
This result contains the 
variable bindings created by the 
first and second literal of the 
AND-operator. 

When the first atomic goal 
sends back a FAIL token, then 
the AND-operator immediately 
sends back this FAIL token to 
the caller (4). When the second 
atomic goal gives back a FAIL 
token a backtrack is needed. 
This is executed by sending a 
REDO token to the first atomic 
goal (6). 

4.3 0R-Operator 

The transition function of 
OR-operator is the following: 

f(idle,DO(I0),-)„ 
= (wait,{DO(01),D0(02)}) a) 

f (idle,REDO(I0),-) = 
"(idle,FAIL(00)) (2) 

f (wait,SUCC(Il),-)= 
= (wait2,SUCC(O0)) (3) 

f(wait,SUCC(I2),-)» 
= (waitl, SUCC(O0) (4) 

f (wait,FAIL(Il),-)= 
"(faill g,wait,-) (5) 

f(wait,FAIL(I2),-)» 
= (Tail2 twait,-) (6) 

i (waitl, SUCC(I1), STORE)= 
"(storel,-) (7) 

r(waitl,FAIL(11),-)= 
"(faill,-) (8) 

i (waitl ,REDO(l0),-) = 
"(wait,Redo(02) (9) 

f (storel ,REDO(I0) ,L0AD) = 
=^it» < SUCC(LOAD)(O0), 
RED0(01),RED0(02)}) (1°) 

f(faill,REDO(I0),-)= 
~(faill<*- wait,REDO(02)) (11) 
/I Wait' SUCC(I2),-)-

fP n^00^)) (12) 

wait .FAIL (12) ,-)= 
= (idle,FAIL(O0)) (13) 
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The OR-operator accepts 
actual parameters packed into 
BO token on its 10 arc. The OR-
parallelism is realized by the 
fact that the OR-operator 
simultaneously passes actual 
parameters to the two connected 
procedures (1). These two 
procedures produce result tokens 
in contest with each other. The 
result arrived in the firstly 
received SUCC token will be sent 
Back to the caller by the OR-
operator (3) or (4). The result 
f tlw secondly received SUCC 
°ken will he stored locally 

Wthin the OR-operator by the 
®RB function (7). When the 
"fl-operator gets a new REDO 
°ken the second result will be 

retched by a LOAD function and 
sent back immediately to the 
jailer while REDO tokens will 
e sent to the two connected 

Procedures for producing new 
"suits (10). if one of the 
Procedures gives back a PAIL 

then this operator will 
be called again by REDO 

j118 If both procedures 
o uce PAIL token, then the 

"-operator also sends a PAIL 
to its caller (13). 

Both the AND-and OR-
Perators can be connected in 
scade and consequently there 
" limit for the number of 

goads and- procedures 
above ^ me*k°d described 

4,4 BRIT-operator (ITT 3 
The transition function of 

ff:^w»t°r is the following: 
,D0 (10), UH1PY (SUCCESS) ) = 

(1) 
uBle,DO(l0) .UNIFY(FAILED) ) = 
*^*,PAIL(O0)) (2) 

(3) 
^.KEDO(I0),_) 
U<J1«,FAIL(O0)) 

The UT-operator unifies 
Parameters packed into .. 

a with the locally stored 

part of the data base. If the 
unification is successful 
parameters with new variable 
bindings are sent back in a SUCC 
token to the caller by the UT-
operator (1). When the 
unification failed or UT has got 
a REDO token, then a PAIL token 
is sent back by the UT-operator 
(2) or (3). 

As an example to understand 
how operator types introduced 
up-to-now work together let's 
consider figure 2, that shows a 
snapshot of tokens moving in 
the DST. OR-operators are m 
wait2 state waiting for results 
from the second and third b 
clauses. The first AND-operator 
is in waitl state waiting for 
result from its first atomic 
goal. There are 3 tokens in the 
DST, since the OR-operators 
representing an OR-branch m the 
AND-OR tree produces tjkenaf 
each arcs of bra^;h'^>0R way all OR-branches of an AND 0 
tree will be evaluated 

- al results are stored 
distributedly in the processor 
tUcT After backtracking tokens 
ulaced on the subtree belonging 
? +>,» reasked atomic goal are 
"shifted" one step ahead in the 

In our example on the 
effect of a PAIL token arriving 
In the first AND—operator on 
f" arc a REDO token will be 

+-ri for its subtree so asr̂ sj zuFXr-as&ss'sE'- w— 
further. 
^ AND-PARALLELISM 

in this ^utilized 

when 

parameters 
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chapter 4. However in many cases 
programers know in advance 
during writing their program 
that parameters of certain 
procedures can be only input or 
only output parameters. For 
example in DEC-10 Prolog system 
programer can fix direction of 
parameters by means of the mode 
declaration. Por procedures 
supplied with mode declaration 
compiler can generate a data 
dependency graph (Conery and 
Kibler 1983), that shows which 
atomic goals of the procedure 
body can be evaluated in 
parallel. Por example consider 
the following procedure: 

Data dependency graphs of the 
procedure for two different 
mode declarations are shown in 
figure 4. 

An atomic goal is named consumer 
of an X variable, if the~arc 
representing X in the data 
dependency graph is the input 
arc of the node representing 
this atomic goal. Similarly an 
atomic goal is producer of X, if 
the X arc is the output arc of 
the atomic goal node. A 
procedure call is on the i-th 
level, if every variables for 
which this procedure call is a 
consumer were produced on anv 
°f 1 /i-1/ ^ 
levels. 0th level belongs to 
the head of the procedure. 

+r» 0n/|t^eibasis of the AND-OR 
hT,! i dependency graphs 
he compiler can generate DST 
well suited for realizing 
AMD-parallelism as well. For 
this purpose DST operator types 
introduced up-to-now are 

a new token type 
/VALID/ is introduced. 

original 
operators 

TO 
AMD 
AND 
OR 
UT 

extended 
operators 

PON /Par. UNITY/. 
PAND /Par. AND/ 
SAND /Seq. AND/ 
POR /Par. OR/ 
PUT /Par. UNIT/ 

Extended operators except PAND 
and SAND are different from 
their original version only in 
handling VALID tokens. PUN sends 
s VALID token after having sent 
a DO or REDO token on its 01 arc. 
PUT and POR are able to receive 
a VALID token, but they have no 
action defined for a VALID token. 

Pand and SAND are different from 
the AND-operator in some aspects. 
To understand their action 
consider figure 5 showing DST of 
the example procedure with two 
different mode declarations. 
Por constructing DST one has 
to start from the data 
dependency graph of the 
procedure. Since atomic goals on 
the same level can be evaluated 
in parallel they are connected 
with each other by PAND-opersbrs 
in DST. On the other hand atomic 
goal groups on different levels 
hnist be evaluated sequentially 
so they are separated from each 
other by SAND-operators in DST. 

To go further, an informal 
description of PAND-and SAND-
operators is given. Por atomic 
goals, variables are divided 
into two classes: produced or 
consumed by the atomic goal. 
This information is given by 
the compiler on the basis of 
data dependency graph. 

A PAND-operator is activated by 
a DO token coming on 10 arc. 
Actual parameters packed into 
a DO token are passed 
simultaneously to atomic goals 
connected to the PAND-operator. 
In this way procedure calls on 
the same level of the data 
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/a/ mode a/+,-/ A>/ mode a/-,+/ 

figure 4. Data dependency graphs for 
the example procedure 

/a/ mode a/+,-/ 

/b/ mode a/—»+/ 

figure 5. DST for the example procedure 
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dependency graph are evaluated 
in parallel. The SAND-operator 
sends actual parameters only to 
the first atomic goal. Therefore, 
evaluation of procedure calls 
in the next level of data 
dependency graph is delayed. 
Their action can he started 
when evaluation of all atomic 
goals in the previous level has 
successfully finished. The SAHD-
operator is reported about this 
fact by getting a VALID token. 
Each PAND-operator after 
receiving a VALID token on its 
X9 arc and a SUCC token on its 
II arc places a VALID token on 
its 02 arc. The SAHD-operator 
sends a DO token on its 02 arc 
when it has got a SUCC token 
frvTTT^S+f1irSt atomic g°al and 
a VALID token from his caller. 
After sending a DO token SAMD 
must place on its 02 arc a 
VALID token too. 

The VALID token has 
another role as well. Atomic 
goals in the same level can 
produce values for different 
variables and VALID token 
serves for collecting and 
transporting these variable 
mdings to atomic goals of the 

level. For example in figure 5/a 
^ pl)0<?U0ed by Pr°cedure 
head /PUN/ is transported to 
the SAND/2/-operator by a DO 
token and value Z produced by 

' 13 transP°rted to 
SAND/2/ by a VALID token. 
Accordingly, the SAND-operator 
composes a DO token - to be 
passed for the next level on 

arc - from a VALID token 
10 arc and from a 

SUCC token coming on II arc of 
the SAND-operator. 

Por the effective 
utilization of AND-paralleli 
an intelligent back£S£ng 
algorithm - iike on /pereira 
and Porto 1980/ was planned in 

/Kacsuk 1983b/. Shortly, the 
essence of the backtracking 
algorithm is the following: On 
the one hand in that level where 
a FAIL token appears action of 
all atomic goals has to be 
stopped. On the other hand in 
lower levels one has to look 
for the first procedure call 
producing such a variable 
binding that caused failure of 
unification. This procedure call 
has to produce a new variable 
binding and atomic goals have to 
retry unification with this one 
on higher levels. 

CONCLUSION 

The proposed parallel 
Prolog interpreter has the 
following advantages: 

1. Both the OR-and AND-
parallelism can be realized in 
the model without resulting a 
combinatorical information 
explosion. Results of parallel 
branches of AHD-0R tree are 
stored distributedly among 
processors realizing those 
branches. Asking for a new 
Matching for a given goal 
causes a shifting ahead of 
stored results along the 
Processors. The model can 
assure intelligent backtracking. 

2. The model can be 
adequately implemented in 
regular, homogenous processor 
spaces, resulting in highly 
parallel interpretation of 
Prolog programs. 

3. The mapping of Data 
flow Search Tree into processor 
space can be systematically 
executed by the Prolog compil®r« 

4. The data base of Prolog 
program can be stored in 
processor space in a highly 
distributed way. 
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The present model has a 
significant drawback, namely 
big data structures can not be 
effectively handled. Since the 
model is based on structure -
copying as lists become longer 
and longer the effectiveness of 
the parallel Prolog interpreter 
rill be decreased. Later some 
efforts must be made for solving 
this problem. 

fhe model has some further 
operator and token types for 
handling built-in procedures, 
CUT operation, recursive 
procedures and commonly used 
data bases. These are described 
!a /Kacsuk 1983b/. In the present 
Phase of the research a simulator 
based on the Generalized Data 
low Model has been constructed 

and used for experimentally 
Justifying correctness ot this 
Proposed model /Kacsuk 1983c/. 
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ABSTRACT 

This paper addresses the 
problem of the unification in the 
context of a Prolog database 
machine based on a multiprocessor 
architecture, with parallel access 
to a set of disks (OPALE project) . 
1 search strategy based on 
Paralieiisn and set processing is 
riefly exposed, and the 
architecture of OPALE is outlined. 

h decomposition of the 
unification is proposed. A part of 

(the preunification) can be 
executed by a hardware operator at 
t e disk transfer rate. It allows 
® significant selection of the 
ata< so that the whole 
unification can be completed on 

e on a 16 bits 
^coprocessor. The hardware 
architecture of the search 
°Perator is presented. 

During the past few years, a 
j0t *°rk has been done in the 
^isld 0f data base machines, 
®ln9 at improving the 

Performances of relationnal data 
j aes' A number of tools have been 
filille<i' SUCh as sequential 
ar operators, parallel 
etc Ure and algorithms, 
S l'" 'Duucilhon, Richard and 
*ho11 1981, De Witt 1979, 
ardarin 1981). 

requirements for data bases, such 
as deduction, knowledge 
processing, etc... Logical 
programming (and PROLOG (Roussel 
1975)) often apears as a promising 
approach (Gallaire 1981, Warren 

1981). 

With the development of 
technology (VLSI, secondary 
memories), it seems interesting to 
study new models for data bases 
along with architectures suited 
for their implementation. Hence, 
the OPALE project (Berger 
Sabbatel, Ianeselli and Nguyen 
1983) aims at designing a data 
base machine oriented toward 

logical programming. 

In the context of this 
the unification appears 

T the Kernel of the 
interpretation problem. In this 
1 V we Will first outline the 
paP wt and give the architecture 
of°the OPALE machine, based on a 
° structure, and 
multiproces unification 
execution ° operator. We 
through a hardware p ^ 

• n i i-hen tocub 
w and give a 
unification, which allows 
decomposition unification of 

sets oT goals with sets of clause 

headers read from a disk 

, D*1 the other hand, the 
i Vei°poent of artificial 
nteUigence have led to new 
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2. PROLOG AND DATA BASES; 

2.1. Introduction: 

Two ways of using PROLOG in 
data bases can be considered: 
interfacing it with relationnal 
data bases (Chakravarthy, Minker 
and Tran 1982), or use it directly 
as a data base using clauses for 
representing data (relations). 

Every relationnal operator 
can be expressed in PROLOG, and 
several operators can be combined 
in simple clauses. Furthermore, 
PROLOG can be considered as a 
superset of relationnal algebra, 
as additionnal features exists, 
such as manipulation of implicitly 
defined relations, processing of 
non atomic data, simple insertion 
of semantic actions in the data 
etc... ' 

Hence, we consider the direct 
interpretation of PROLOG as the 
best solution, as it allows the 
use of full PROLOG capacities 
without creating a new level of 
translation / interpretation 
between the user and the machine 
Our claim is that the most 
efficient tools implemented for 
relationnal databases can be used 
as well for the direct execution 
of PROLOG database accesses. 

In OPALE, the packets of 
clauses will be stored as linear 
lists of alternatives and accessed 
through indexing and filtering 
Symbols will be coded through « 
dictionnary. Every data item is 
prefixed by a type-byte which 
allows types such as symbols, 
characters, integer, reals 
strings, variables, etc... For tĥ  
functionnal symbols, the type win 
include their arity, so tlfat the 
structure of the terms can 
decoded without access to tte 
dictionnary. Most of data u 
will the be coded on 5 ̂  

type byte, and 4 data bytes. 

The use of PROLOG for data 
base management and the design of 
a specialized architecture, 
involve particular choices for the 
interpretation, as there are 
important differences with program 
interpretation: large number of 
alternatives, high fail ratio for 
the unification, and in most cases 
the clauses will be in secondary 
memory. We assume that the 
ordering of operations and the 
order of the results are generaly 
not meaningfull, that very few 
hard-wired predicates will be 
encountered in the data base, and 
that the complexity of the clauses 
will be relatively small. 

2.2. Search strategy: 

Classical left to right and 
depth first sequential 
interpretation, checks one 
solution at a time. In a data base 
environment, this can be a severe 
drawback, as the optimization of 
disk accesses would require to 
access every alternatives of a 
clause before the verification of 
another predicate. Furthermore, we 
intend to exploit the parallelism 
in the access of several disk 
units. 

Hence, our search strategy 
for accessing the PROLOG data base 
arms at three objectives: exploit 
the parallelism in PROLOG, 
optimize the disk accesses, and 
allow the best use of a hardware 
implemented unifying operator. 

The optimization of the disk 
accesses lead us to a search 
strategy based on sets. In effect' 
each search produces sets 
solutions (instantiations) 
(Chakravarthy Minker and Tran 
1982). These instantiations may, 
in turn, produce sets of goals 
which can be globally verified 
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through sequential filtering. 

Example 1: 

C (X,T) <- Ct (X) & C2 (X,*) . 
C (X,Y) <- CI (X) & C3 (X,Y) . 
C1 (a) <-. 
C1 (b) <-. 
C2 (b,c) <-. 
C3 (a,e) <-. 

In this example the search on 
C1 returns two solutions: X - a. 
Mi X = b, which, in turn produces 
l»o goals for the first 
alternative of C: C2(a,Y) and 
c2(b,Y). These two goals can be 
searched in a single disk access 
°n 12, through sequential 
filtering. 

Three types of parallelism 
,lU be used. The first type is an 
® parallelism, in which 
s ternatives having a non-empty 

047 can he verified with paralell 
Presses (breadth-first 

rategy). in the example 1, the 
request C(a,X)7 activates two 
Peraliei processes which 
correspond to the two alternatives °£ C. 

The second type is an AND 
Peralleitsm. To avoid the problem 
° fnterdependancy, we treat it by 
f lining the verification of 

e Utterals in a clause: A 
Process L is attached to every 
rrtteral, it receives the 
ostantiations from the previous 
rtteral, generates the goals, and 

TheS6S h® a search process C. 
c process executes the 

® oxing and disk accesses (Fig. 
^ ' and return the instantiations 

the L process, which passes it 
0 its successor. 

The disk latency time imply 
at several goals may be 

VaHable when the disk is ready. 
eace< the third type of 

Paralleiism addresses the 

unification of sets of goals with 
the disk data stream. This will be 

the topic of the section 4. 

C I  ( X )  

i 
C2 (X , Y) C(X , Y) 

insj?jfnciat iohg^^ J* 

search 
process 

search 
process 

DATA BASE 

Figure 1• 

In conclusion, the parallel 
search is one of the central 
issues for ^gh system 

% -W- r« 

additionnal (or., of 
wiIl also be studied to s*Pl0-^ 
thi multiprocessor architecture of 
the machine: distribution of 

v. ^ several disk units, 
s e a r c h  o n  , - . u i 1 9 8 1 1 •  
etc..•(Conery and Kxbbl 

3. KPCHTTKCTURF: 

The architecture of^OPALE is 

depicted on ^^erance and high 
providing fau" a distributed 
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architectures which allows 
parallel operations on multiple 
disks. For small or medium sized 
data-bases, sufficient parallelism 
can be achieved through the use of 
Winchester mini- disks. Another 
feature is the possibility of VLSI 
integration of special- purpose 
operators such as filters, due to 
the current progresses in silicon 

(silicon compilers (Anceau 
iyy3)) , 

Every disk is associated with 
a processor and a hardware 

(>PMl'at0r" ThS Prin,ary memories 
(PM) are also associated with a 
processor. They manage the sets of 
environments (intermediate 
solutions). The ^ 
elements (PE) „ Processing 

(PE) control the 
operations. 

A verification will then be 
decomposed in operations on data 
flows coming from the disks, 
riltered, processed by the PE and 

°r^ in the primary memories. 
The temporary results will then be 
used by thp 'pit +- _ 

/ tne PE to generate new 
goals (Fig. 3). 

Figure 3. 

(CP) set of control processors 
(CP) manages the machine, receives 
and compiles the user requests 

connected^ thews' ^ a" 
through a loca^et^ 

The communication between th. 
various components of the machine 

"HI he provided through a message 
switching network: for a first 
experiment, we intend to use a 
multiprocessor parallel bus. 

4. UNIFICATION: 

4.1. Introduction: 

In this section, and in the 
next one, we will consider the 
disk processors. They will receive 
goals, and must find on the disk 
the clauses whose headers unify 
with these goals. In order to 
achieve high performances, our 
objective is to execute the 
unification of clause headers with 
sets of goals "on the fly" in 
almost all cases, i.e. to process 
data at the disk transfer rate. 
When the disk is accessed, our 
strategy will be to search every 
clause header which unify with at 
least one goal in a whole track, 
in order to minimize the number of 
disk accesses, and significantly 
reduce the disk access time (as 
the major component of access time 
are the head positionning and 
rotationnal delays). 

We consider that for every 
packet of clauses accessed on the 
disk there is a set of goals, even 
though the indexing can decrease 
the number of goals per disk 
access. We also consider that the 
goals are available to the disk 
processors as "flat" terms, i.e. 
that the terms are fully self" 
contained, without reference to 
external data (substitutions). 

The operation is then to 
select the clauses whose headers 
unify With a goal (at least), and 
then transmit every couple 
variable/data which describe the 
instantiations generated by the 
unification (substitutions) (Fig. 
4) . 
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)ther processors | 

Instantiations 

t 
goals selection 

DATA BASE 

Figure 4. 

Some important differences 

exist between the unification and 

t e selection of data bases: 

tte unification operates on tree 

structured data, and not on 

normalised relations, 

furthermore, the data structure 

be not statically defined, 
ut defined in the data 

_ themselves (typed data) . 

the data base can contain 

variables which may appear not 

°niy in the rules headers, but 

also in facts, where they can 

stand for irrelevant arguments 
for example. 

in knowledge databases, one 

^ay expect that important sets of 

•« exist, so that we have to 
ow all these cases to be 

Processed on the fly. 

On the other hand, there also 
®xist important differences 
etween the unification in prolog 
^r°9rams and prolog databases: 

9e number of alternatives for 
everY clause. The average number 
°f alternatives for a program is 
generaly less than a tenth. For 
a iata base, it can be of 
several millions (facts). 

" hi9h fail ratio: in PROLOG 
Programs, the fail ratio can be 

iu most cases of about 50% • In 

databases, one must expect much 

higher fail ratio, such that 
9°*, or 99% at least. 

These differences involve 
particular choices for the 
implementation of the unification. 
It can be interesting to execute a 
first selection of the clauses, so 
that the complete unification is 
executed only on a few part of the 
clauses. If Cy is the cost of a 
complete unification, Cs the cost 
of a preselection, and Sf the 
selectivity factor, the total 
average cost of a unification Cj-U 
should be: 

ctu = cs + sf x C« , ... 
As an example, with a selectivity 
factor of 10%, the preselection 
should be usefull if its cost is 
less than 0.9 Cu. This technique 
should then be very adapted to 

databases. 

4 .?• Preunification: 

We can define the position of 
a data item in a term as being the 
succession of nodes to be acces^ 
from the root to access 
element. Every node can be 
identified by its rank in the 
arguments of its father node so 
. h t the positions of nodes i 
unequal trees can be unambiguously 

defined. 

Example: 

/ N  
/!\ 
E X G 

ti 

/ \ 
. 1' 
K X L 
/ l \  

In both of the above terms 
• x. • ~r> of element X is 

the P°sr ^he following, we will 

lo^os^T) the^ P-^ of t^ 

^UtTirrnode- a l e a v e  
mean that « 
of the term T. 

are unifiable, 
Tf two terms ere 

then the following condition is 

. A P i c>(-\ ; 
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(1)V (N16T1, N2£T2 with: 

pos (N1,T1) = pos (N2,T2)), 
if N1 # N2 then 

(N1 is a variable 
or N2 is a variable). 

The condition is obviously 
necessary, from Robinson's 

?965^Ca^°n al9°rithm (Robinson 
1965). it is not sufficient: 

Example: 

A 

. 
A 

/ \ 
A 

Th®.above terms are obviously 
not unifiable. Y 

as the6 deflne thS £E£)Hlification 
as the operation wich^^J-^ 

terms, checks the above condition" 
and produces the list of couples 
variable-value which constitutes 
the disagreement of the terms. We 

substitutions these couples 

the PraUnlflcation °f the terms in 
the above example produces the 
couples: X=B, and X=C. 

If two terms can 
preunified, and if there £ ba 

one occurence of every variable in 

unified w then' they can be 
the assume that this is 

baLs^lf COmm0n — data bases. If several terms can h~ 
preunif ied and if there ^ ̂  

several occurences of the 

variable, then, the termf can T 
unified if the e 

wit-h substituted 
with every occurence of a = 
variable can be unified. 

Example: 

Z/\\ 
As the unifiCation^3^e?ates 

on subterms of the original terms, 
the problem as been simplified. 
Furthermore, the preunif ication 
executes in most cases a first 
selection of the terms, so that 
this second operation ' can be 
executed by software. The 
preunif ication could be used to 
execute this unification, and the 
process would be finite, as long 
as we are concerned with finite 
trees. We can then demonstrate 
that the complete unification can 
be executed with a finite number 
of preunif ications. However, for 
efficiency reasons, the execution 
of the second step with a 
classical algorithm would be more 
advisable. 

In the unification, the 
substitutions are dynamically 
applied to the terms, and 
therefore, checked by the 
unification operation itself. In 
the first example, the 
substitution x=B would have 
produced the term t(B,B), and the 
unification fails with the 
comparison of B with C. It is 

clear that this modification of 
the terms involves either a 
complex data structure to 
represent the terms, or a complex 
algorithm which can hardly be 
implemented on a hardware 
automaton to be executed on the 
fly. 

Our solution is then to 
execute »on the fly„ the 

preunif ication, through a hardware 
automaton which transmits sets of 
substitutions for every matched 
term, and to check the consistency 
° these substitutions by a 
program executed on a 
microprocessor. 

4-3. Implementation. 

A classical solution for the 
ae e^tYon data in relationnal 
database machines is the use of 
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hardware finite state automata 
(Rohmer 1981). Due to the 

possibility of variables in Prolog 
database, the automata should be 
non-deterministics, which 

considerably increase the 
complexity of the automata and 
their memory requirements, and 
then their compiling and loading 
time. We then propose a quite 
different solution for the 
preunification. 

If a term T can be preunified 
#1th (at least) one term among a 

set of goals , then, the 

following condition is verified 

(fwa the definition of the 
Preunification). 

(2) 

^("6. T, where N is not variable) 

13 i, so that 

(3N' £ Ci so that 
P°S (N1 .C^) = pos (N,T) ) 

then N1 = N or N' is a variable. 

Ihe condition is not sufficient: 

jxantpie; 

Goals : C1 = t (a,b), 

C2 = t (c,d) 
Term : T = t (a,d) 

The term T meets the 

condition, but is not preunifiable 

"ith one of the goals. 

The condition (3) is a 
ne9ation of the preunification 
condition: 

13) 

3(N£ T, N is not a variable) 
C, N' is not a variable 

and pos (N1 ,C) = pos (N,T) 

and N* # N) 

If (3) is met for a goal C 

and a term T, then, the term T is 
not preunifiable with the goal C. 

^ verification of this condition 
wi-ll allow us to eliminate a goal 

from a set of goals "candidates 
to be unified with a term read 

from the disk. 

The preunification can then 

be decomposed in three operations, 
which can be executed in pipe line 
by three operators: 
- The structure operator analyses 

the structure of the terms read 
from the disk. It codes the 

position of every item in the 
term, and transmits 

substitutions when necessary, 
i.e. when a variable is read, or 
when the position corresponds to 
a variable of a goal. 

- The search operator checks the 
condition 1, by checking for 
every non variable item read 
from the disk, if its value is 
acceptable for its position, 
i e. if a goal have the same 

constant item or a variable for 
this position. It is then a 
simple search in a lis 

values. . 
- The third operator manages 

list of goals which can pre-
unify with the term read from 
the disk (condition (3)). For 
every item value analysed by the 
search operator, there is a set 
of possible goals. The 
intersection of successive sets 

the set of goals which 

unification fails-
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Example: 

1: t { 
2: t ( 

I 
1 

a / b , X ) <- goals 
c ' d , x ) 
* + * 
1 *1 1,2 1,3 <" positions 

t -
Var 

a 
c -
Var 

b 
d 

— > 1 ,2  
— >  1 , 2  
— > 1 
—> 2 
— >  1 , 2  
— >  1  
— > 2 

Var — > •, 

possible values sets of gQals 

(*) = any value, substitutions 
generated, no goal substitution. 

5. DISK PROCESSORS-

5.1. General description. 

The operation of the disk 
processors is described in the 
figure 5. 

Other processors 

^ 
goals DATA BASE 

goals 
1 compiler 

V goals 
1 compiler filter 

1 
1 

V 

1 
1 
substitutions J 

1 

(Unification completion J 

Figure 5. 

The goals are received from 
e other processors of the 

machine. The = 
(software) allows the load^^ 
the memories of the filter. The 
clauses readout from the database 
are preunified by the f ilt£ 
(hardware), and then passed to the 

program which completes the 
unification, and controls the 
transmission of the substitutions 
to the proper process. 

The architecture of the disk 
processors is depicted in figure 
6 • 

Figure 6. 

The microprocessor controls 
the communication with the other 
processors of the machine, 
controls the filter, compiles and 
loads its programs, and executes 
the remaining of the unification, 
t will also control the write 
operations. 

The filter will be composed 
°h ^ PartS executing in pipe line 
tbe three steps of the 
preunif ication and the selection 
° the substitutions (figure 7). 

Disk 

Figure 7. 

MICROPROCESSOR 

T 
Other 
Processors 



215 

5,2. Description of the operators: 

5.2.1. The structure operator: 

It manages the input buffer, 

analyses the structure of the 

terms, and the types of data 

items. It uses a stack for the 

structure analysis, and a finite 

state automaton for the position 

encoding: the input characters are 
jenerated by the structure 

analysis and are the transitions 

to a son node, to a brother node 
or to the father node in the term. 
Every position which correspond to 
an element of a goal can be 

analysed and coded; the code is 

the address of a list of values in 
the search operator. When a 

variable is read, or when the data 
tead coresponds to a variable in 

the goals, a substitution is 

transmitted in the output buffer: 
the substitution is composed of 

the data and its position. If we 

P an to recognize a maximum of 256 

Positions, the memory requirements 
the automaton would be very 

81311: about 10K bits. 

Exampie: 

50als= t (a , x , b) 

t (c , d , X) 

father 

skip term skip term 

5.2.2. The search operator: 

it receives from the 
•ucture operator the address of 
list of values and the data read 
® the disk (5 bytes), and 

searches the data in the list. 
The index of the value will then 
be transmitted to the third 

operator. For a maximum of 256 
values and 128 goals, a sequential 
search can be executed: the memory 
size will then be of 256 x 40 bits 
= 10 k bits. A fast static RAM can 
be used. With an access time of 40 
ns, a list of 128 items can be 
searched in 5.12 microsecond, 
which is about the time necessary 
to read 5 bytes from a 10Mhz disk. 

5.2.3. The set operator: 

It manages a bit array where 

each column corresponds to a goal, 
and every row corresponds to the 
set of goals possible for anmput 
value. The intersection of the 
successive rows is then execute 
f o r  e v e r y  a d d r e s s  s e n t  b y t h e  

search operator. If the resu^ ^ 

list oi r-rfiC4ePr:ir^ "the 

£6t Su' - "f 256 x 128 

bits (32 K bits). 

5.2.4. The selection operator: 

it removes from the output 

non preunifyitg goals. 

rnnclusionj. 

for the first )# of which 

52 Kbits <Static memories. It is 
10K must be with the VLSI 
then compatibi operators on 
implementation with available 
a single chip ators should 
technologies (th F with their 

•>» " 
memories)• compered 
r e latively sma 'iques, such 
other filter ing.^t automata. The 
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memories can be loaded through DMA 
from the memory of the 
microprocessor: with a 2 Mbytes/s 
transfer rate, it will take about 
3.25 ms. we can consider that the 
minimal interval between two disk 
accesses is 16.7 ms d̂ k 

revolution), so that the compiling 
of the goals and the loading of 

Sijsrswsr — 
~t °S1o"' *ht.™S 

rate k transfer 
th* 

-"i .» .zziz zzz'Z'T' 
processing,^"'" so^th't 

~ 
time. The other mean available 

normally process eve'ry^ item 
and can execute at a sLwer rate 

probably bearChimDiPerat0r could 
2 implemented WifK slower memories ith 

a truly "on £'flXp^tr for 
IS interesting to see that ^ 
a case, sequential search " Such 
5ood solution, as 

sufficient performances S 

simplifies the „greatly 
reduces the memory sCe!^' ^ 

not need to be^ver^T f d°eS 

«ill probably allow to f ™S 

intersection in severaT"'! the 
However, it will h0 • steps. 
check wether^ such ."S?"9 t0 
more suitable than the is 

128 bits AND operator ^ °f * 

Compared with other solnn 
for relationnal database sill 
and particularly pure finit ' 
automata, our solurTe finite state 
powerfull, as n- " appear more 
unification to be e allows full 
fpy- Furthermore Pitae<J °n the 
requirements are ouihe n memory 

require a 256 X 256 array (64 K 
bytes), if the data is analyzed 
Per byte, and for 256 transitions; 
hence the request can process at 
most 256 bytes (transitions). In 
our solution, with a tenth of the 
memory, we allow 128 X 5 bytes 
data items to be processed. 

6. CONCLUSIONS. 

Tbe on the fly execution of 
e unification appears as an 

important feature of the OPALE 
project. A software simulation of 

e operators (including the goals 
compiler) is curently carrried 
oup' bbe filter has been designed, 
an will be realized by this year. 

An important topic is the 
parallel search strategy which is 
anot er significant part of our 
esign efforts. We are planning 
°r 3 complete software simulation 

the machine, including search 
strategy and filtering. This „m 

executed on a 
*ultimicroprocessor machine. The 

™,,1,lmplementation of tha filter 

future alS° ̂  investi9ated i" the 

lehh^0,6311 " CAPRI: A design 
for ° ° 09y and a silicon compiler 

altr^-^f1 circuits specified by 
VLSI "3rd Caltech Conf. on vlsi, Marh 1983. 

schou n!ii;on-,p- «• 
-3-,,. relationnal database 

.«r° /6ts "°A-h°' 

Processing, june °1981 

Tran -1 n t e r f ^' J' Minker' D* 
languages lng Predicate logic 
databases fnd relationnal 
Programming int logiC 

Marseilles = conference, 
es, September 1982 
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ABSTRACT 

A system, implemented In Prolog, 
the verification of dynamic 

properties of concurrent processes 
ls presented. 

Descriptions of concurrent 
processes with asyncronous 
Munmicatlon can be checked 
against dynamic behaviour 
deifications expressed by 
temporal logic formulas, under the 
ypothesis that the whole 

concurrent system can be modeled 
y a nondeterministic 

automaton. 
finite 

^ e show the implementation for 
e basic components of the 

J'trifier: the model checkers for 
e chosen temporal logics, the 

ho simplifier, the dynamic 
semantics of the description 

his paper presents a prototype, 
"hi'h811 Prol°8> of a verifier 
co c  allows descriptions of 
t f )7 r rent systems, equivalent to 

11 etermlnistic finite automata, 
, ^e tested for the validity of 
dyaa®ic properties. 

Queries are formulated in the 
of anguage 

ieri 
the 

temporal logic, which 
as 

universe 
P rmits the classical properties in 

of concurrent 
'6, such as liveness, 

ety> deadlock absence, etc., to 

be expressed in a form that is both 
concise and sufficiently close to 
the intuitive concepts. 

The language now used for the 
description of concurrent systems 
is SDL, the Specification and 
Description Language defined by 
C C I.T.T. (C.C.I .T .T. 1984), 
whose concurrency model is based on 
asynchronous communication tbroug 
message queues. 

We describe the implementations 
of  the  model checkers for 
linear-time and ^nching-time 

inoir' we also otter a 
survey of all the other components 
of the verification^ystem^which 

Sh°tem 11 general enough not to be 
system is gen particular 
dependent ^ by th  

computational could 
description a different 

language, or eve the  

- J- —" A 

hardware system. 

y XHE mMPUTATIONAL MODEL 

At th*S Staf re  interested in are 
the models we^.nis t ic  finite 

S. «»«= 
and Emerson 

of our research 

the nouu 
automata or 
system (Cla^g2)  i.e. 
Sifakis_ 1982)^ f in i te  

consisting 
states on 

of a 

which 

1981, 
models 

set 
a binary 
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accessibility relation r(S,S') is 
defined, expressing the 
reachability of the state S' from 
the state S trough one of the 
operations assumed as elementary in 
the actual system considered. 

A concurrent system where each 
process can be modeled as a finite 
automaton (e.g. by only 
considering data types of finite 
cardinality) is in turn a finite 
automaton if communication is 
performed through bounded 
structures, like rendez-vous or 
bounded buffers. 

In this case the global state of 
the system is the set of the local 
states of the processes plus the 
states of the memory elements 
possibly present in the 
communication structures. 

The relation r among global 
states is obtained by modeling 
concurrency as the interleaving of 
the elementary operations of the 
processes. 

2 TEMPORAL LOGICS 

Different kinds of temporal 
logics have been used to describe 
concurrent system behaviour. 

A major distinction is between 
branching-time and linear-time 
logics. 

in the first case the structure on 
which the logic is interpreted is 
the state graph of the system; the 
truth value of a formula is defined 
for every state S in the graph and 

function - determined by the 
principal operator of the formula -
of the truth values of its 

first-level subformulas in the 
states of the structure which are 
(immediately or by transitive 
closure) accessible from S. 
In the second case the 

interpretation structure TS 
originally a linear sequence of 

states, i.e. a path in the graph; 
therefore the truth value of a 
formula in a state S is relative to 
the chosen path starting with S, 
and depends on the truth values of 
the first-level subformulas in the 
states of the path. However, what 
one is often interested in is the 
validity of a formula in a state S 
(e.g. an initial state) relatively 
to all paths (starting with S), 
i.e. to all possible executions; 
so the linear formulas are usually 
intended as implicitly universally 
quantified over the paths. 

We do not want, in this paper, 
to enter the debate linear vs. 
branching; without committing 
ourselves, for the time being, to 
one kind of logic, we have taken as 
references Clarke-Emerson's CTL 
(Clarke and Emerson 1981) and 
Manna-Pnueli's linear logic (Manna 
and Pnueli 1982,1983), respectively 
for the two points of view. 

The primitive temporal 
connectives of linear-time logic 
are x (o), unary, and u 
(until), binary; f (O) and g 
( l_l) > unary, are derived 
connectives, definable in terms of 
the former. The primitive temporal 
operators of CTL are, using a 
variant of the original notation, 
ex, unary and au, eu, binary; ax, 

> e^« eg are derived connectives. 

their We briefly recall 
intuitive meanings: 

x(F) 

holds in a state S, on a path P 
starting with S, iff in the 
immediate successor of S on P P 
holds. 

u(Fl,F2) 
holds in a state S, on a path P 
starting with S, iff there is on P 
a state S' where F2 holds, and in 
all states of P "preceding" S F1 
holds. 
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f(F) « u(true,F) 
holds In a state S, on a path P 
starting with S, Iff there is on P 
a state S' where F holds. 

8(F) • not(f(not(F))) 
holds In a state S, on a path P 
starting with S, iff F holds in all 
states of P. 

The branching-time operators are 
the universal and existential 
quantifications over paths of the 
corresponding linear operators, 
e.g.: 

ag(F) 
holds in a state S iff 

on all paths. 
g(F) holds 

in S 
1 in a state S iff g(F) holds 
°n some path. 

etc. 

3 gOPEl CHECKERS 

J^e have avoided, so far, 
at ling the complex problem of the 
Ms t ruction of a system with 

active capabilities for these 
hothCS' *b*cb woui(i suitably apply 
v to concurrent program 

and to synthesis from 
fifications. 
the Present concern being mainly 

verification of completely 
°«lbed systems, we 

Preferred 
have 

simpler approach 
on model checkers, i.e. Vision 

the 

the procedures which, given 
iorniS?ate ®raptl °f system and a 
„r_ a> determine whether the 
i°rn jS':ruc'-ure is a model for the 

iuJhe "core" of the Prolog 
f0liementation, illustrated in the 
gu owin8 paragraphs, is directly 
cha8SSted by the fixed point 

racterization of the temporal 

af(F) * F or ax(af(F)) 
ag(F) = F and ax(ag(F)) 

These formulas are translated in 

Prolog by means of a holds 
predicate: so first order logic 
(Prolog) plays the role of a 
meta-language with respect to the 
object language: the temporal 

logic (Kowalski 1979). 

3.1 BRANCHING-TIME LOGIC 

The clauses for the operator ag 

are: 

holds(S,ag(F)) :- (1) 
holds(S,[],ag(F)). 

holds(S,H,ag(F)) :-
in(S,H),!. 

holds(S,H,ag(F)) 
holds(S,P), 
forall(r(S,S1), , ,. 

holds(Si,[S|H],ag(F)). 

The variable S contains the 
state in which the temporal formula 

ag(P) is to be proved, where F is 
generic subformula. 

The only use of clause (1) is to 
a variable employed 

^rlnc the computation to keep the 
It (history) from the initial 

path y; current one; so a 
state up be recognized as 
loop condition c game 

. b.ubl. W L.». =f the 

in predicate. automata, this 
with finite state occurs on 
situation eventually 

every non-ending P 

If 

°Perat 

components are 
the state co ^ ̂ 

constant va ue 'mher predicate, 
implemented as a represented by a 
the path bei g when symbolic 

list. In ^fnresent in the state 
values may be P gg have to be 
components, equa complex 

or<s, i.e.: 
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constraints. 

The forall predicate generates 
all possible successors of the 
state S, which are in turn to be 
tested for the validity of ag(F). 

forall(S.F) not forhelp(S,F). 
forhelp(S.F) call(S),not(F). 

i? proof of a8(F) succeeds when 
F holds in every state and, for all 
paths, a loop node or a terminal 
node is reached. It fails as soon 
as a state in which F does not hold 
is encountered. 

Clauses for th* af operator 
(which is used, for example, to 
express "liveness" properties) are-

holds(S,af(F)) (2) 
holds(S, [ ] ,af(F)). 

holds(S,H,af(F)) :-
in(S,H),! ,fail, 

holds(S,H,af(F)) :-
holds(S,F),!. 

holds(S,H,af(F)) 
r ( S, S1) , ! , 

forall(r(S,S2), 
holds(S2,[S|H],af(F)). 

The proof succeeds when, for all 
paths a state satisf ^ ^ 

reached; otherwise, it fails if a 

loop where F is never satisfied is 

found' " 3 temlnal state ^ 

T;» 

holds(S,ef(F)) :-
holds(S,[],ef(F)>. 

holds(S,H,ef(F)) :-
in(S,H),!,fail. 

holds(S,H,ef(F)) :-
holds(S.F),!. 

holds(S,H,ef(F)) 
r (S, SI) .holds (SI ,[S|H],ef(F)). 

The logical operators and, or, 
not can be decomposed as follows 
(if we limit ourselves to a 
propositional temporal logic): 

holds(S,and(A,B)) :-
holds(S,A),holds(S,B). 

holds(S,or(A,B)) :-
holds(S.A);holds(S, B). 

holds(S,not(A)) :-
not holds(S.A). 

3.2 LINEAR-TIME TEMPORAL LOGIC 

The model checker for 
linear-time temporal logic 
primarily deals with existentially 
quantified formulas like Epath(F). 
This fits the existential mechanism 
°f Prolog and avoids the explicit 
use of the forall metaconstruct. 
niversally quantified formulas 
ike Vpath(F) are proved ab absurdo 

as not Epath(not(F)). 

A possible "brute force" method 
for the linear logic could consist 
o • 1) generating a complete path; 
) applying on that path a set of 
clauses similar to those defining 

existential the branching-time 
operators. 
For instance: 

holds([S|Path],<>(p)) :-
holds(S,P); 
holds(Path,<>(p)). 

major drawback of such a 
met °d is that complete paths are 
ui t even when the property could 
be proved on a subpath. We have 
then chosen to build the path 
incrementally as in the original 
ranc ing—time clauses taking into 

account the fact that when the, 
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proof of a formula splits Into the 
proofs of the subfornulas of a 
conjunction (occurring In the 
starting formula or generated by 
the recursive decoaposltlon of 
teiporal operators), all the 
and-coaponents oust be tested on 
the same path. So the subpath 
possibly Instantiated by every 
subfornula is Imposed to the 
remaining subfornulas. This 
behaviour Is obtained as follows: 

, l _ l (F ) i Pa t h ,P a t hne w )  
h o l d s ( S , [  j ,  | _ |  (F )  , Pa t h , Pa t hnew) .  

Wds (S ,H ,0 (F ) ,P a th ,P a t h )  
subpa th ( IS1  Pa th  1  ,H )  , ! .  

h o l ds (S ,H , f | (F ) ,  
Path,Jsi IPa t h l ] )  t -

ho ld s (S ,F ,  Pa th ,  Nex t ) ,  
t b °x (S ,S l ,H ,F ,N ex t ,P a th l ) .  

c b o t ( S , S l ,H ,F , (  ]  , Pa th l )  
r (S ,S l ) ,  
ho ld s (S l ,  [S  |  H) ,  1_ |  (F ) , [ ] ,P a th l ) .  

c HS,S l ,H ,F , [S l l R ] , Pa t h l )  : -
ho lds ( S l , [ S | H] ,  l _ | (F ) ,R ,Pa th l ) .  

In  o rd e r  t o  p rove  Epa t h  I  1 (F )  
# e  s t a r t  by  p ro v i n g  F  i n  t he  
c u r r en t  s t a t e  and  s i nce  F  c ou ld  i n  
* J j r "  b e  t empora l  i t  m igh t  
^ t an t i a t e  a  f u tu r e  subpa t h  Nex t -
u cceed lng  o f  F  i n  S  enab l e s  t he  

t scu r s ive  c a l l  o f  |  | (F )  on  a  n ex t  
" a t e .  w h i ch  i s  t h e  f i r s t  i n  Nex t  
1  " e x t  i s  no t  emp ty ,  e l s e  i t  i s  
de ra t ed  by  t h e  a c c e s s ib i l i t y  
r e l a t l on  r .  

^ o r  ' b e  <>  ope r a to r  w e  have :  

h o l l i s (S ,<>(F ) ) Pa th ,Pa th l ) : -

b° ld s ( S , [  ]  , < > (F )  , Pa t h ,Pa t h l ) .  

h o l d s (S ,H ,< > (F ) ,P a th ,P a th )  : -
s u bpa th ( [H |Pa th ]  , S ) , !  , f a i l .  

b o l d s (S ,H ,<>(F )  , Pa th ,Pa th l  )  : -
h °Ws( S ,F ,Pa th ,Pa th l ) ,  ! •  

o r  

holds(S ,H,<>(F) ,  
[S I (Pa th ) , [S I IPa t h l ] )  : -

holds  (SI ,  [S  |H]  ,0 (F)  ,  
Pa t h .Pa th l ) .  

holds(S ,H,<>(F) ,  
[  1 ,  I S I Pa t h l ] )  

r (S ,S l ) ,  
ho ld sCS l , [S |H] ,<>(F ) ,  

[ ]  , Pa th l ) .  

The  l og i ca l  ope ra to r s  and ,  
become  now :  

holds(S, and (A ,B) ,Pa t h  Pa thnew)  : -
ho ld s (S ,A ,Pa th .P a th l ) ,  
ho ld s (S ,B ,Pa th l ,Pa thnew) .  

holds(S,or(A ,B) ,P a th  Pa thnew)  
holds (S ,A ,Pa th ,P a thnew) ,  
holds (S ,B ,Pa t h ,Pa t h n ew ) ,  

Neg a t i o n  
b y  3  C l t U lL fF  Pa th ) ,  because  t he  

« o t  r o  f  i nd  a  pa th  on  wh ich  F  
f a i l u r e  s a me a s  f i nd ing  a  
ho ld s  i s  n ° t  n o t (F )  ho ld s .  Th e  
p a t h  on  b  sh i f t ed ,  by  
n 0 t  ° P e r i t duaUty  r u l e s ,  i n s ide  t he  

/ I - .  C T?  ">" )  P t h .P th l )  
holds (S ,  no t  (  U  

! ,holds ( S . O  ( n o t  ( F )  
Pth .F th l ) .  

P th .P th l ) .  

/ a  -RVb  p t h .P th l )  : _  

holds(S,not(or(A^))^ n o t (B))» 

holds(S,not(F),Pth^Ptbl)^-

n o t  ho ld s ( S>F>"  '  

4  ATOMIC FORMUL AS 
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If we restrict ourselves to a 
propositional temporal logic, the 
atomic formulas are propositional 
constants P»q,...; their truth 
values in every state S, may be 
defined by clauses of the form p(S) 

q(S) which are 
activated by: 

holds(S,p) p(s). 
holds(S,q) q(s). 

• • • 

or, more concisely, by: 

holds(S,F) :- ^ 
atomic(F),X=..[F,S] , call(X). 

The clause (3), where F is a 
metalinguistic variable ranging on 
the set of the above mentioned 
propositional constants, implements 
the transition from the stage 
where, through the intervention of 
a metalevel, written in Prolog 
temporal formulas are evaluated, to 
the phase in which, all temporal 
constructs having been solved we 
are merely in first order logic 
directly handled by the Prolog 
interpreter. 

For an extension to the 
predicative temporal logics, we 
must add the handling of quantified 
object-language variables. 
With the constraint that the domain 
of the variables is the same in 
every state, an expression like 
exist(x,F(x)), where F is a generic 
temporal formula, holds in a state 

iff there exists an individual k 
in the interpretation of temporal 

k°ofC;he'eC- M tndlvldual c°nstant 

F(k) LiaJetVan8Uage> Such that 
fqR? M (Bowen and Kowalski 
982, Moore 1980). Instead of (3) 
we have then: J 

holds(exist(V,F)) 
objvar(V), 

substituted,X,F,FX),holds(FX). 

V and X are two metalinguistic 
variables ranging respectively on 
object-language variables a°d 

object-language constants, which 
are both individual constants in 
the me ta-language. The clause 
substitutes the variables x, y, ... 
of the object language with a 
Prolog variable X and, like (3), 
effects the shift from the 
metalevel to the basic Prolog 
level, the proper instantiation of 
the variable X being performed 
directly by the Prolog interpreter. 
Clauses for open formulas will be 
accordingly modified: 

holds(S,p(X)) p(S,X). 
holds(S,q(X,Y)) q(S,X,Y). 

• • • 

or better: 

holds(S,F) :-

openatom(F),F=..[Op|Args ], 
T=..[0p|[S|Args]],call(T). 

5 FAIRNESS 

In the model checker so far 
presented, the interpretations of 
some temporal expressions do not 
always correspond to their 

•MnaU±t"Ve meanings (e.g. the 
ideas of a user interested in the 

verafication of an actual 
transition system), 

kff \ look, for example, at the 
a (F) formula, expressing the 
eventuality of F and let' s try to 
prove af(F) fn the simple 
structure: 

f ©  
Since in the path [-F,-F] a loop 

is recognized which never verifies 
' the Pr°of of af(F) fails. It 
must be noted, however, that this 
answer would be right only if the 
on eterministic choice between the 
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two transitions always fell on the 
first and never on the second even 
if both transitions are always 
enabled. 
Such a behaviour should be avoided 
•ben dealing with actual 
nondeterministic systems, where 
transitions infinitely often 
enabled are known to be eventually 
executed, or more generally, 
infinitely often reachable 
predicates will eventually hold. 
"e are thus interested in a "fair" 
version of the af operator (in the 
sense of (Quellle and Sifakis 
*®)) which would validate the 
formula af(F), in the previous 
example, 

^use (2) becomes: 

holds(S,H,af(F)) 
ln(S,H) ,left(H,S ,Z), 
«nber(X,Z),r(X,Y),not in(Y,Z), 
nolds(Y ,H,ef(F)). 

holds(S,H,af(F)) 
dn(S,H),! .fail. 

"Jm entering a loop condition a 
t eck fs performed, before failing, 
ot the possibility of "exiting" 
e  loop (selected by the left 

Peration) by proving ef(F), i.e. 
F is reachable in at least one 

Jbpath starting with a state In 
th* loop. 

, saf f le criterion_is applied to 
J' '> and to the |_| operator in 

^near logic, its model checker 
based on the proof of 

Xlstentially quantified formulas. 

holds(s,H, |~| (F),Path,Path) 
Su"Path([S |Path] ,H) ,lef t(H,S ,Z) , 
aember(X,z),r(X,Y),not in(Y,Z), 
uclds(Y,H,<>(not (F) ), 
, [] ,Npath), 
• jfail, 

h°lds(s iH1 |- |(F) jpath,Path) 
Subpath( [S |Path] ,H) ,!. 

^ese  clauses for Epath. I I 0?) 

"rule out" a loop, in which F is 
always valid but the possibility to 
"exit" toward not(F) is permanently 

true. 

6 DYNAMIC SEMANTICS OF THE 
CONCURRENT LANGUAGE 

We show in this paragraph how to 
"program" the r relation in order 
to reflect the dynamic semantics of 
the concurrent language chosen for 
the applications, assuming that 
"interleaving" is a satisfactory 
model for such semantics. 

The language we are focusing on 
is SDL (Specification and 
Description Language), defined y 

u r c T T T as a  standard m the C.C.l.i.J--
the telecommunication field. 
the purposes of this paper it is 
sufficient to sketch the 
features of the language, which are 

to other language. designed 
to describe concurrency. 

A .y«» be rP"eptooS.« 
fixed number 03- \ -

communicating hy 
asyncronously each 

" cont a in ing the input 

messages for the process.^ ^ a  

A basic executio for  an  

process is- . t^e  queue; 
acceptable «essag ^ operations 
2) execute a s q ,ncoming message, 
determined by tn in t  is 
"A"1 * ,  "S PL.e, called 
reached; dura g^ opara t j lon, „y be 
transition, Obvious meaning, 
performed with the a  process  

D« ln5, ;  .. message5 in the 
can save rhev are, untii 
leaving them able  to  trigger 
it finds a mess^ current waiting 
ao^nt?Si tTWs message is the one 

actually consumed. ^ not  

Messages on top point (i.e. 
declared in the firing a  

not "save^ *1 consumed without 
transition) egg s tate. 
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As global state representation 
we use a triple (Pes,Bfs,Vrs) where 
Pes is a list of program counters 
each one of the form p(Pname,Pc), 
where Pname is the process name and 
Pc its current "program counter"-

Bfs is the list of the input 
queues, each represented by the 
term b(Pname,[ signal list ]) and 
VrS. *S the list of the local 
variable sets, each represented by 
v(Pname,[...,(Vname,Value),. . .]). 

The main clause of the r 
relation for the above described 
concurrent system is: 

r([Pes,Bfs,Vrs], 

[Newpcs,Newbfs,Newvrs]) 
member(Mypc,Pes), 
getname(Mypc,Pro), 

getvar(Pro,Vrs,Myvar), 

interp(Mypc,Mynewpc,Bfs,Newbfs 
Myvar,Mynewva r) 

substvar(Pro,Vrs, 
Mynewvar,Newvr s) 

subs tpc (Pes, Mypc, My newpc, Newpcs). 

By means of the member predicate a 
nondeterministic choice of the 
process to be "continued" ls 

performed;^ interp is responsible 

from the ̂current Waiting poinf to 

The interp predicate checks If 
here is an available message i 

the process queue. If s° " 
corresponding transition •! 
executed, provided that the m 
w a s  e x p e c t e d  a t  t h e  w a i t * * *  
Unawaited messages trigged fnP°lnt-
transition (4). 8 n 

interp(p(pro,wpoint(S)) , 

p(Pro,Newpoint), 
Bfs,Newbfs, 
Myvar,Mynewvar) 

rcv(Pro,wpoint(S),Bfs,Bufl Sidl 
interp1(Pro.S.Newpoint,Sid ' ' 

Buf1,Newbfs, 
Myva r,Mynewva r). 

interpl (Pro.S.Newpoint, Sid, 
Bfs.Newbfs, 
Myvar,Mynewvar) 

declared(Pro,wpoint (S), 
input(Sid.N)), 

trans(Pro,Bfs,Newbfs, 
Myva r,My newva r, 
input(Sid,N).Newpoint). 

interpl (Pro,S .wpoint(S),Sid, (4) 
Bfs,Bfs,Myvar,Myvar) 

not declared(Pro,wpoint(S), 
input(Sid.N)). 

trans(Pro,Bfs,Bfs,Vrs,Vrs, (5) 
wpoint(S),wpoint(S)). 

t rans( Pro, Bfs, Newbf s, (6) 
Myva r,Mynewva r, 
ifstmnt(Expr,N),Newpoint) 

eval(Expr,Value,Vrs), 
simplify(Value,Result), 
f ollows(Pro, if stmnt(Expr.N), 

Result,Newop), 
exec ( Newop, Bf s, B f s 1, Vrs, Vrs 1), 
trans(Pro,Bfs1,Newbfs, 

Vrsl.Newvrs, 
Newop,Newpoint). 

trans(Pro,Bfs,Newbfs, (7) 
Vrs,Newvrs, 
Op,Newpoint) 

follows(Pro,Op,.Newop), 
exec(Newop,Bfs,Bfsl, Vrs, Vrsl), 
trans(Pro,Bfsl.Newbfs, 

Vrsl,Newvrs, 
Newop,Newpoint). 

The last three clauses deal with 
the transition execution. 

is used to terminate a 
transition upon detecting the next 
waiting point. 

is an example of statement 
e*ecu'i°n, namely the if—statement: 
t e condition expression is first 
evaluated according to the current 
variable values and possibly 
simplifiecj. then the branch 
^.e^ted by the result is followed. 
) holds for the generic operation 

during a transition. 
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The send operation Is performed by 
putting the signal Sid on top of 
tie list (bottom of the queue) 
representing the queue of the 
addressed process. 
rev tries to receive a signal Sid 
frou the process queue and 
eventually removes It. 

sad(Sld,Pid,Bfs,Newbfs) 
subst(Bf s, b(Pld, Que), 

b(Pid,[Sld|Que] ,Newbf s). 

rcv(Pro,Mypc,Bfs,Newbfs,SId) 
•Mber(b(Pro,Que),Bf8), 
extract (Sid, Que ,Quel), 
«ot declared(Pro,Mypc, 

save(Sld.N)),! , 
-ib(Pro,Que), 

KPro,Quel),Newbfs). 

attract predicate: 

e*tract(Sid,[X|Y],[X|R]) 
extract(Sid,Y,R). 

ettract(Sid, [Sid |Y ] ,Y). 

jellows the FIFO discipline. The 
0jSt dement of the list Que (top 

1 e queue) is extracted, and 
kaA t-^e next possible 

c trackings (due to the fact that 
II e selected signal is to be Savoa" . , ° . , 

in the current waiting 

He 

Point) 
Ptevious 

extract repeatedly picks the 

until signals in the queue, 

"siting 
lueue is 

one acceptable in the current 
point is found, or the 
completely scanned. 

' THE AMPLIFIER 

det S ,previously said, for loop 
te(,ect:^on we have to be able to 
Stat8"!26 equalities between 
exe SS! dn addition, during the 
4Uti°n of an if-statement, we 

obtain from the condition 
JxPression' a result comparable with 
:°®Pon branch labeling. When state 

^ualit 
'impi 

lents are constant values this 
y could be solved by a 

"Pte syntactic comparison of 
S' On the contrary, when 

symbolic values are present 
(corresponding, for instance, to 
initial, not specified values for 
variables), this method does not 
work. 
For example, the boolean expression 
a, a and (a or b) are equivalent, 
but not syntactically equal, and 
the expression a -> (a or b) is 
equivalent to "true ; if the 
expression were the condition 
expression in an if-statement, we 
should reduce it to "true" in order 
to follow the "true" branch. 
The general underlying problem is 
that of reducing expressions or 
"proving equalities ,r°a 
automatizations of the 
data types (Huet and Oppen 1980). 

For the time being, we have 
built a toy simplifies based on 
rewriting rules, at present on y 
dealing with booleans (according hshtzs 2 £ S « . <  R  S  IE Jr -r-sr 
data-types. 

0 p  „ ™ 
the Problem of findi ^ 
axiomatizations^^.e.^.^ ^ 
rewriting at-t-v We have in 
Church-Rosser P5°p d to use 

.= of « 
-Igorfth. (p.«lbly 

implemented of the 
Here we show th rewriting-rule 
simplifier fe<j from (Bergman 
activator, 
and Deransart 1981 

'"""'/ll'n •" t™"torS',F,l), 

„ VI rul.fX.M)'1' 
normalize(X,Y; 

simplify^ h * 
normalized,x;. 
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upto(N,I) N > 0, N1 is N-l 
upto(Nl,I). 
upto(N.N) N > 0. 

Rewriting rules are described as 
clauses like: 

rule(leftside,rightside). 

The simplifier works basically as 
oiiows: if the term to be reduced 

result tf " returned a result, otherwise, the term being 
1x1, ...,xn), the simplification 

reapplies to ffvl ^"^atlon 
xl „ rlyl,...,yn), with 
xi,...,xn previously reduced to 
y • ,yn. 

A sample of the rules for the 

boolean data type is: 

rule(not(p),if(p,faise,true)). 
rule(and(p,Q),if(p,Q,faise))> 
rule(if(true.X,Y),X). 
rule(if(false,X,Y),Y). 
rule(if(c,true,false),C). 
ru (p,QjR),Lf,Ri)j 

lf(P,if(Q,Lf,Ri),if(R,Lf,Ri)))> 

8 CONCLUSION AND FUTURE 
ENHANCEMENTS 

' y ' L ™ i n " * « « .  

'-'P..- of LVfSl' 

For instance, generatino o 
cifpi-o u seueracing a complete 
state graph could speed up rht 
verification of laroe 6 

formulas. This can w8"8 °f 
oo„„ln8 by 

procedure, and asserting • r 
instantiations. lts 

Efficiency could be r 

srj; -s- d 
tne recursive 

decomposition of temporal formulas, 
all valid subformulas. In this 
way. the proof of a temporal 
operator has to "know" many times 
whether a subformula holds in a 
state, the validity test for such a 
subformula only takes place once, 
and leaves a "ground" clause in the 
Prolog data base, which is rapidly 
matched" the next times. 

We are now extending the system 
handle conditional 

representations of states, deriving 
from the execution of if-statements 
w ere the exiting branch cannot be 
eterained (because of the presence 

o symbolic values). For example 
in the following case: 

true 

.x > o: 
false 

if the variable x had the symbolic 
va ue alfa the next global state 
could be represented by the term 
(alfa > 0,S1,S2), where SI and S2 

^re respectively the states 
eriving by the true and the false 

branches. 

E^°rtS '3e made to enlarge 
, e set °f data types handled by 

• j Amplifier and to find 
in uctive rules allowing the proofs 
° particular properties to be 
carried out without generating the 
whole state graph. 

The modularity of the system, 
*e* the clean separation of the 
asic components, would hardly be 

ac leved with a traditional 
language; moreover the 
Backtracking mechanism of Prolog 
permits an easy implementation of 

model ternl^n^St^C concurrency 

Prolog is particularly suitable 
°r 5de development of prototypes 
°f this kind of tools at a stage 

^ ere theoretical issues are 
evai mg and the frequency of 
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conceptual rearrangement Is high. 
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ABSTRACT 

This paper demonstrates how 
c'earj efficient problem solving pro
ems can be written within logic 
P'ogiamming. The key point is the 
consideration of levels involved, both 
jo the problem solving itself and in 
Je underlying lope. Three levels 

knowledge necessary for intelli-
M problem solving are identified 
~ a level of domain knowledge, a 
^1 of methods and strategies, and 
a planning level. The approach in-
roduced here relates these levels to 
ae distinction between object and 

®«ta languages. Two classes of pro-
are presented. Firstly, sin-

, problem solvers are intro-
uced. These are at the methods 

an<* constitute a meta language 
the problem domain. Finally flex-
s mnlti level problem solvers are 
"ned which can be built as exten-

S!°ns of the single level programs. 

1 INTRODUCTION 

», There are many different pieces 
knowledge needed to build pow-

r nl problem solvers. Knowledge 
°ut the domain, knowledge about 
e available problem solving meth-

f s nnd strategies, knowledge about 
^ffiing plans from the methods, 

paper claims that distinct lev-
exist for the different types 

1 knowledge, and shows how to in-
°rporate this differentiation of levels 

0 clear, efficient problem solving 

programs. 
Three levels are introduced - a 

domain level, a methods Jewe/ and a 
planning level. No formal definition 
will be given of these and bound
aries between them are somewhat 
fuzzy. However the three levels have 
a hierarchic relationship, where the 

SeS B3S£ SSf %e-three spaces, a strategy space, 

main level introduced here. 
order to discuss poWem^oW-

ing one needs ^ la here as the lan-
cate logic is cho. both the task 
guage for repres^^f/^more ab-
of problem-solviTig ^ gtrategies and 
stract entitle for using logic 

1977) and (Moore ^ rjeasoning per-
cipal point is tha Ucitly repre-
Sed and°not hidden in fancy data 
or control structure strk_ 

tion^8^- *+ iS mad6' 



232 

Logic programming has two aspects 
making it ideal for problem solving -
a clear semantics as advocated in the 
previous paragraph, plus a practi
cal language Prolog, for implement
ing the problem solvers. All exam
ples m this paper of problem solv
it prngr^ms Wili be given as Prolog 
code. Background on the use of logic 
for problem solving can be found in 
(Kowalski 1979), whilst for program
ming in Prolog the reader is referred 
to (Clocksm and Mellish 1981). 

Choosing logic as the represen
tees fTgUage giV6S rise t0 f^ther 
thV*nf n°Se+ ar,Smg from the notions of object and meta language 
Trying to use the meta languSn 
UsS ?nS°1Vmg Pr°grams is not new 
Using the power of meta-level rel' 
soning has always been a seductive 
idea waiting to be exploited. Several 
researchers have discussed how meta 

intellkent00^ incorPorated into mr Is programs. Wevhranrh 
(Weyhrauch 1980) gives a i 
treatment and dLSa ™Sm 
where interaction between the leveh 
termed reflection, happens TW 

1982lKTalsld ^Bowen and Kowalski 

describing programs solving J)m' 

bamlSl (BrdJ a°d Wd-
stated r̂iSTatu^Kr? 
al. 1979) which aro k V dy et 

tinguishing between objecTlndV?" 
theories. Davis (Davis 19S ^ 
Stefik (Stefik 1981) dLcusstdud 

S a concePts in expert systems. 
This paper takes a new an 

lem solving. A key idea ta the^ 

ciation of the methods level with a 
meta language of the domain level. 
More traditionally, the meta lan
guage of the problem solving domain 
lSqfm0ClaFed Wi n COntrol< e g- (Da™ 198°) Even Bundy and Welham 
(Bundy and Welham 1981) who es
sentially axiomatise a methods level 
lor equation solving present their 
work in terms of controlling search 
of an object level space. Clarifying 
the problem solving levels here puts 
the work described above in perspec-
ive. And, as will be demonstrated, 

the approach advocated here leads to 
powerful, practical problem solvers. 

A brief diversion is appropri
ate to relate this paper to the de
velopment of expert systems. I re-
nf F 6?Pert systems as a special case 
, Problem-solving Pr°grams. Hence 

ons from research in expert sys
tems are relevant for writing problem 

ving problems in a logic program
ming framework and vice versa. The 
innovation provided by research in 
expert systems was essentially due to 
he sort of problems tackled and the 
PProach of achieving expert perfor-

Fdl«Cf * making Programs knowl-
hof lntensive. Expert systems have 

n successful in domains where 
snLlfi -r1ncu necessary is relatively 

P ficial, but the domain knowl-
SoA 7 importance. Earlier 
other h °J* Prob,em-solving on the 
and M 1? f°r example GPS (Ernst 
iijeffe11 1989), concentrated on 
oowprM^1 developing and using 

thJ} . 7 Davis in (Davis 1980) 
!l6Xpert systems will need to be-

soning110''6 soPbist,'cated in their rea-

lows 'ayout the paper is as fol-
e next section introduces the 
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and meta levels in an infor-
. These are illustrated in 

section with a simple 
example, the plan-formation prob-
l« for the blocks world discussed 

Iski in (Kowalski 1979) and 
i 1981). The following two 
discuss how problem solv-

jams should be written in 
»programming as influenced by 

of levels. Section 4 in-
level problem solvers, 

uese are practical, efficient pro
ofs written at the methods level, 
'®er ftan at the domain level, in 
contrast to most expert systems. A 
p'ttodology for writing such single 
^programs is given in (Sterling 

Section 5 shows how more 
multi level problem solving 

can be built in logic pro-
, J- Finally brief conclusions 

Jte given. 
2 OBJECT and meta levels 

The aim of this section is to clar-
J the meaning of the terms 'ob-
.c and 'meta'. A language con-

. 8 °i a theory, that is a set of ax-
,,si and a proof procedure. The 
Ject-level of the problem-solving 

°®ain is a typical language. A 
et! f Proce(Ture consists of a strat-
p tor enumerating the inferences 

an!?Can ma(Te within the theory, 
a computation rule for resolving 

e ion-deterministic choices of the 
rategy. An interpreter is needed 
execute the proof procedure. A 

tyCe logic program constitutes a lan-
ra8e - the Horn clauses (given their 

arative reading) being the the-
iJ aQd SLD resolution (augmented 
J a suitable computation rule) the 

PCo°f procedure. Prolog interpreters 
xecute this proof procedure using 
ePth first search as the computation 

"fie. 

Two languages LI and L2 are in 

an object-meta relationship if there 
is a (partial) axiomatization of the 
theory and proof procedure of lan
guage LI in the language L2. In this 
case the terms object theory, object 
language, meta theory and meta lan 
guage have their obvious interpreta
tion. Informally the meta language 
describes the relationships that hold 
in the object language. Examples 
will be given in the next section. 

Introducing a meta theory for 
an object language givesanaddr-
tional way of solving an object level 
problem. Not only can the object 
level proof procedure be executed di
rectly, but it can be simulated via its 
representation in the meta 1 
Mnre generally, a proof can contain 
inferences in both the object theory 
™ d m«ta theory. Crossing between 
the object and meta levels be^_ 

terUvdintweyhraunch 1980). It is 
^ twit solving problems by di-

metaUlanguageK There w 7ag)de^ebd 

discussion in simulation 
Sr^ecSScUext of logic 

programming. 

T^^w to^eh^'tbese logical^n-ssri ̂  
Briefly, the most powen ̂  ,g rg_ 
curs when the m , ge for the 
garded as a meta Jla * ible to 

domain leveb - y. level as a meta 
regard the• Planm^thods level, but 
S°rTatio-ip remains to be ex-

blockCworld 
This section consider^ a^ex 

pie to illustrate the used 1S 
troduced so lar. J-
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a variant of the plan-formation prob
lem discussed in (Kowalski 1979) and 
(Kowalski 1981). The problem is to 
form a plan in the blocks world, that 
is to specify a sequence of actions for 
restacking blocks to achieve a par
ticular configuration. An approach 
concentrating on the planning level 
can be found in (Warren 1974) where 
a general planning program is given 
in Prolog capable of solving blocks 
world problems. 

Figure 3.1 gives the initial state 
and desired final state of a blocks 
world problem. The actions allowed 
are moving a block from the top of 
a block to a place, and moving a 
block from one block to another. For 
the action to succeed the top of the 
moved block must be clear, and also 
the place or block to which it is beine: 
moved. 6 

a 
b 171 
P q r P 

Initial and final states of 
a blocks "world, problem 

Kowalski gives, in his own 
words both a one-level and two-level 
formulation. The one-level formu
lation in (Kowalski 1979) is essen
tially a domain level specification. In 
(Kowalski 1981) however, he "em-
f a two-level representation us-

n6 obJect~level to describe the 
individual states of the database and 
usmg the metalevel to describe the 
relationship between one state of the 
database and a successor state." 

-FigT g'Tes a Program for 
solving the plan formation problem 
nitio Tnf llf m the iigbt of the definitions of the previous section, com

paring it with Kowalski's versions. 
No attempt has been made to im
prove the power of Kowalski's for
mulation. The only changes that 
have been made are to clarify the 
manifestation of levels as will be dis
cussed below. Edinburgh Prolog con
ventions are used throughout, see for 
example (Clocksin and Mellish 1981). 

plan form(Plan) 
initial statefSl), 
state_trans(Sl,S2,0,Plan), 
final state(S2). 

state_trans(S,S,Actions,Actions), 
state trans(Sl,S2,Ac,Actions) 

update(Sl,A,Ac,S), 
state trans(S,S2,[A|Ac],Actions). 

update(Sl,A,Ac,S2) 
action(A,Sl), legaI(A,Sl), 
not member(A,Ac), 
transform(A,Sl,S2). 

actionfto block(X,Y,Z),S) 
on(X,Y,S), block(Z). 

legal(to bIock(X,Y,Z),S) 
clear(X,S), clear(2,S), X \== Z. 

legal(to place(X,Y,Z),S) 
clear(X,S), clear(Z,S), X \= Z. 

initial_state([on(a,b),on(b,p),on(c,r), 
clear(a),clear(q), clear(c)]). 

final state(S) 
member(on(a,b),S), 
memberfon(b,c),S), 
member(on(c,r),S). 

clear(X,State) 
member(clear(X),State). 

«n(X,Y,State) ' 
member(on(X,Y),State). 

bjock(a). block(b). block(c). 
place(p). place(q). place(r). 
Figure 3.2 : Program for the plan-
tormation problem 
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Kfj procedural are slate Iran* 
ud update. The predicate 
rtit(tr*oa(Sl,Sl,Ac,Plafi) ts true if 

t$ t plan of actions, (Man, trans
forming date SI into state St. Note 
that SI and S2 name stales. The 
third argument, Ac, ia an accumu-
lator of the action* performed ao far, 
Mwwsry ho avoid looping through 
previous states A more powerful 
problem solver would keep a list of 
former stales rather than former ac
tions. This introduces the problem 
of determining when two states arc 
identical and is beyond the scope of 
Kowalski'i program. The predicate 
opdatef State .Action, Ac ,Ne wStatel 
B true if State names a state, Ac
tion an action, Ac the actions per
formed so far and NcwStato names 
tbr state obtained by applying Ac
tion to State. Attempting to satisfy 
the update goal simulates the per
formance of the action in the blocks 
world. 

The names chosen here to rep
resent states are very descriptive -
jost a list of the facts which arc 
true. For example the 'name' of 
the initial state is lon(a,b), on(b.p), 
°D(c.r), clear(a), clear(q), clear(c)|. 
Such names have an advantage that 
they allow easy testing whether facts 
?fe true in the states being named, 
'or example to know whether a par
ticular block, X say, is clear in state 
'•one tests whether the fact clear(X) 
is a member of the list of the name of 
state S. The predicates clear and on 
have been thus defined in figure 3.2. 

This is slightly different from 
Kowalsld's approach, who introduces 
a predicate demonstrate(X,Y) (demo 
for short) which for the current P'® 
'sin is true if Y is true in state X. For 
example, to test whether a state S is 
a final state would be written as 
final gtate(S) 

demo^S.Gl), demo(S,G2). 

where G1 and G2 name the terms 
you want to be true, namely on(a,b) 
and on(b,c). Kowalski also uses the 
demo predicate to make explicit the 
use of reflection. Using demo avoids 
the need of defining separate test, 
predicates for each predicate such 
as clear and on, but is likely to 
yield inefficient programs if all opera
tions must go via the demo predicate. 
Such considerations will become less 
important if work on automatic pro
gram transformation advances. 

In the program of figure 3.2 
changing the state of t e 
is done by the procedure trans-
form(Action ,S 1 ,S2). SI is the list of 
facts used to name state SI, while S2 
is similarly the list of facts naming 
S2 There are different ways of writ
ing it but all essentially just remove 
ill facts from the list SI that are 
no longer true and add the lists that 
have become true to obtain the lis 
co Kowalski similarly updates the 
||obd dSabane via add and delete 
predicates. 

How do the different levels ap
pear in this example? The mamfes-
tation of logical levels has already 
Sen indicated. The predicates up
date and state.trans aremherently 

(tuage 'SteXe problem tt form-
fug a plan has been solved by sim
ulation in the meta language rather 
than direct execution in the object 
language. . 

The distinction between Simula-
Lion and direct execution W 
be obvious here due to th 
plete axiomatijation of he ^ 
language proof proceau , the 
blocks to change the wo^ ^ 

IgllJsK 
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nna all the possible actions. Here 
they are just tie simple domain level 
operators. In general only a partial 
axiomatization might be given. The 
examples of the next section have an 
incomplete axiomatization of the ob
ject language proof procedure in the 
meta language. This leads to effi
cient programs for solving equations 
and proving theorems. 

Wiere do the problem solving 
levels fit in? This is not a rich ex
ample in terms of knowledge needed 
to solve the problem. The meth
ods level consists of only two simple 
methods, moving a block to a block 
and moving a block to a place, which 
are a direct translation of object level 
operators (Kowalski only has one 
method the extra one here is only 
for illustrative purposes). A methods 
level more generally would consist of 
more interesting strategies not neces-
sar, y directly obtained from obS 
erel operators. For the blocks wild 

such methods are reversing the order 
of a stack of two blocks, or build
ing a tower. These methods woufd 
be axiomatized m the same way as 
to block and to jilace. 

Structure or knowledge related 
to planning is also minimal in the 
program. Further it is present im
plicitly rather than explicitly. Exam
ples of such planning knowledge aTe 
structure of methods and preferred 
order of methods. The methods can 
aHHPeC^d. f°r examPle in terms of 
add and delete lists, namely the list 
of facts made true bv the mom j 
and the list „,facLbio^grS 
Here they are built into the trans 
form predicate. The to block JtbL 

Sd'^il?the to-p|ace 
list nf J7 appearing first in the 
list of actions. So the planning level 
doesn t explicitly exist here. It fe 
shown in section 5 how such implic t 
levels can be made explicit P 

4 SINGLE LEVEL PROBLEM 
SOLVERS 

In this section we consider how 
these notions of levels get translated 
into problem solvers. The naive 
view, adopted by the early expert 
systems, was to have only one level, 
a domain level full of knowledge, and 
a simple proof procedure to find con
sequences of that knowledge. Con
cepts of object and meta language 
were not considered, and the prob
lem solving domains were such that 
methods and plans were not partic
ularly necessary. Davis (Davis 1980) 
claims that such an approach is fun
damentally limited. 

A more promising approach, 
still only using one level, is to think 
in terms of methods rather than do
main knowledge. The program of the 
previous section was a toy example of 
such a program. When a reasonably 
comprehensive set of methods can be 
found for a problem solving domain, 
a powerful single level problem solver 
can be built. In terms of the three 
problem solving levels introduced in 
this paper, only the middle one, the 
evel of methods and strategies, is ac

tually present. However, by incor
porating the concept of object and 
meta languages one can understand 
where the other levels fit in. Axiom-
atizing a meta theory rather than an 
object theory to aid in problem solv
er®,,8 been described in (Bundy and 
Welham 1981). 

What happens to the other lev
els in such single level problem 
solvers? The domain level becomes 
axiomatized in the methods level, 
hat is the methods level constitutes 

a meta language of the problem solv
ing domain. All problem solving 

en occurs via simulation in this 
me a language. The power of the 
problem solver then depends on this 
axiomatization. In general there is 
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iwdeol belwwn efficiency gained 
*rao only pvbtlly axromaluing the 
jouii level iwi completeness 
ie final problem solver In princi-
lit ok can attnulaie the complete 
S* level proof procedure in the 
i(t»lanjuaje but thin leads to inef-
foesi program*. Axiomatiung com-
plexctrntegies in terms of simple do-
nain actions lends to efficient pro-

uus. 
The planning level is treated dtf-

ently. It becomes 'programmeet 
«the methods level using knowl-
ge of the behaviour of the inUr-
eter for the methods level ror 
•iting problem solvers in Prolog, 
is means using the order of clause's 
»procedure, and the order of liter-
«in the body of a clause to convey 
>e planning information- k°r »u»" 
tiently simple domains, this plan
ing information can be expressed 
leanly. In (Sterling 1984) a method-
logy is described for building these 
ingle level problem solvers. 

In order to gauge the appro-
"ateness of this approach, let us 
onsider some examples. A power-
il single level problem solver has 
**n built for solving symbolic equa-
ions. The program, PRESS, has 
»en written in Prolog and described 
" (Bundy and Welham 1981) ana 
[Sterling et al. 1982). PRESS re
gards the domain level as manipu
lating algebraic formulae according 
to rules of algebra. Methods are ap
plications of rewrite rules to proc uc 
a particular effect, for example is 
lating the occurrence of a varia 
on the left hand side of an equa
tion. Plans are sequences of metn 
ods. Arguments establishing 
vantages of using a meta language 
the particular case of equation 
ing have been made in other p 
The benefit of using simulation at 
meta level to solve symboli d, 
tions has been argued in (Bundy ana 

Welh»." MM). 
tions are then so ve y ̂  sterling 

Tte "'Wins, 
i n» rli»Hcribed in (Sterling themsdves are ^ noted 

ct al. 1WUJ. aUowg a new 
however that hin^^g bcen done( 

l^^fuTrrle/diSerenOy 

here 

on resolution, aXioms for a 
Inference ru\e • the0rems are 
theory are 8ive° • the inference 
proved by app. * ^ is hard to 
rules to the axio • ^ theorem 
express strategic- i essive theo-

S^foJrbeek, McCharen and 

WO' 1876'' ,h suggested here is 
The appT,°al1evf and axioma-

to add a methods! . withm 
tire the theorem what are the 
this methods proving? An ex-
methods in theorem P 4 l gives 
ample is >nductl° am code for imple-
a sample of Prog lt illustrates 
rnenting this metho ̂  prQgr 
the power of sing VlG planning mfor-
but also e^esse about the full 
mation. More particular mduc-
program, and \hebe 
ti°n proof P^u and Bundy 1982) 

p'roveby 
struct induction^^^^^ ^ 

^is>-fTto'scbeme)-
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("J 
prove step casefThm,Sc) •-

step_version(Thm,Sc,StepV. 
ProgHyp), 

neg and skol(StepV,G,Ass) 
md-hyp(Thm,Sc,IndHyp), 
pZfH$:Ass'ProsH™' 

(iii) 
pro1TnfG]^Sc^As^ProgHyP'IlldHyp) unfoMhypCProgliypPerfRecj 

fold goaI(G,GPerf,GRec), 
E^P1yr11?d-iiyP(GRec.IndHyp Gl) 
es^hh^Mp((n,sc,Rec,G2) j' 
ad/Tgoal(G2,GPerf,G3), ' 
estabhshstep(G3,Ass,Sc, 

Perf,Rec). 

Figure 4.1 : A fragment of a program 
to prove theorems by induction 

this (Sk?%\the,leTe,S manifest in „ms code!" the planning level is in
corporated in two ways. Firstlv bv 

daus^C?! '• ^ « clauses. Clause (i) m figure 4 , , „ 
how to prove a theorem by induction 
StJ mUSt find a suitable induction scheme, prove the base case 

in„ f^Vb St65 CaSe" Before Paving the base and step cases it ;<* 

j! y'"'0 order of the™teS° 

^rr°¥'S th'ir preferred 

n the next section in the context nf 

or doS 
?ns are axiomatized in tacties 

W 'V'"'" lfce relationship bt 

doced b? BurstalfS'ftS-

for programs expressed as first or
der recursion equations (Burstall and 
Darlington 1977). Bundy adapted 
it for simply recursive logic pro-
grams - the adaptation is de-
looiff (Sterling and Bundy 
/u i' articular instances have 
the form fold(Clause,Recurse,New), 
where New is the result of folding 

la use with respect to its recursive 
definition, named by Recurse. At-
empting to satisfy a fold goal will re

sult in the fold transformation taking 
p ace by simulation. How that is im
plemented is irrelevant to the prob-
em solver, all that is needed to know 

is that a fold step has been done. 
e predicate, fold_goaJ, appearing 

in clause (iii) jn figure 4.1 invokes the 
told tactic for example. 

The structure of the code of fig-
**re,, , ® a result of polishing the 

ethods of theorem proving. There 
as been an organization step where 
e Plan has been clarified and re

amed to such an extent that it is 
adily expressible in a one level pro-

gr?.m- 't should be noted that such 
polishing proceeds naturally by top-

own program development. The 
i °Fr wn nature of the development 

,ue f° thinking at the methods 
e rather than the domain level. 

lorv. ^°metimes a single level prob
ed . ^er suffices for the problem 
prf,V!n® ,tas^- This occurs if a pow-
fnr +uSet, methods can be found 
„ e domain. In this case, there 
t_ , s ° be little point in adding ex-
nino-eVf *i° complexity, such as plan-
iMY hey are not needed in solv-
sbnw e Pr°blem. For example, it is 
a nl D ^°W add fFe framework for 

^mng level for equation solving 
nrnie+KeXt Section- If it doesn't im-
t>ip ^ equation solving ability of 
. Pr°gram there is no need to in
corporate it. 

What conclusion can the builder 
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of an expert system draw from 
this? How can he determine a pri
ori whether his domain will be suf
ficiently simple that a one level pro
gram will suffice? There is no ob
vious answer, but nothing is lost by 
writing as if the domain were sim
ple. My experience leads to the con
jecture that the clarifications of diffi
culties in the problem solving domain 
that will be raised by trying to write 
a one level program will be directly 
useful when writing a multi level pro
gram. Writing programs in this way 
is very much in the style of structural 
development (Sandewall 1978). 

5 MULTI LEVEL PROBLEM 
SOLVING 
Single level problem solvers are 

inadequate in general. The uniform 
proof procedure needed to execute 
them is usually too inflexible. This 
inflexibility was commented on in 
the early days of automatic theorem 
Proving by many, for example Hayes 
(Hayes 1973). He believed in control
ling logic with logic, a view agreed 
with here. The problem is how to 
implement it. 

One approach is to add an extra 
control level. The earliest proponent 
(or this approach in expert systems 
(s Davis (Davis 1980). He argues for 
introducing 'metarules' as a way of 
adding control. In terms of the lev-
sis discussed here, it means adding a 
meta language to the domain level 
within which one expresses control 
of the domain level proof procedure. 
Figure 5.1 gives a metarule used by 
Davis in (Davis 1980) and suggests 
its translation in logic programming. 
The translation is not exact due to 
the different contexts. For exam-
Pie, considering rules with uncertain
ties, important in the expert systems 
studied by Davis, is not part of the 
general problem solving style in logic 

programming.If 
[1] the age of the client is greater 

than 60, 
[2] there are rules which men

tion high risk, 
[3] there are rules which men

tion low risk, 
then it is likely (.8) that the former 
should be used after the latter. 

prefer(Rulel,Rule2,Context) 
lowjrisk(Rulel), 
high_risk(Rule2), ftft 

client_age(Age,Context), Age > 

Figure 5.1 : A meta rule of Davis 
expressed in logic 

This approach of equating the 
meta level with a general control 
level has been adopted into logic pro
gramming by Gallaire and Lasserre 
trrilaire and Lasserre 1982). iney 
have defined a set of control pruni-
tives and propose adding metres 
to programs to improve performance 
in the way advocated by Davis. Wri 
ing an appropriate interpreter is an
other way of adding a control level. 
Tn fPereira 1982) a methodology is 
riven for writing interpreters m logic 
for controlling logic programs. 

Using the meta language as a 
control language, 

gerferal-purpo^e tools and techniques 
rather than building an integrated, 

d0mt?theTxpCertsys'tem experience 

formation such as incorpo-

fcates themsid^8 rather than in gen-
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era] purpose primitives. When devel 
oping programs I find it more natural 

level version. The differ f „mu'ti 
of knowledge (about J forms 
^d the ImiL) ean T"' meth°ds 

about in distinct ways bVeafoned 

Pie each knowledge level added*0'' 
quires its own interpreter Thel T 
lem is mcornoratintr in j-«. prob-
terpreters efficiently We S?1 in" 
how this can h* . discuss 
considering low the Muatlon^oE''7 

^ofomnTtrre^ograr''6^ 

»f aLrlanni„g°tSr Edition 
tion solving program n Ta" 
level goal of PREqq • f°P-
solve(Equation X SohiT Vrocedure 
Procedure is SenHal °Hv This 

Preter for the eau S '7, the ^er-
ods, and is Lecntrf V ^ngmeti" 
iinterpreter. To begin at t h Pr°'°g 
nmg level we simiifi tile P'an-
level procedure for tb 1need a top 
which can agaL b A Pl?Dnine level 
'»«. Some siSSetrfor S V Pro' 
given m figure 5 2 task is 

Pla"Ds°'y(E<!".X,Solution) -
choose p afe(Ew,X, Plans), choose pianiPnn or ' ns) 

S^rfe-aplM. 

applicable plans Predicate, 
able plans f0r tC? ?Qd the s™t-

the equation. These 

"valfabl^ itakeD fr°m 3 ,ibrary ol 
basi ' of i? ,8' or generated on the 
..i be features of the partic-
form e5Uatl0,n- SPecific planning in

flation about equations would be 
Dredicat appropriate. The next 
the rH choose plans, would filter 
st„ p,an3 ar;«'ng from the previous 
tic?^ M uelect one' Various heuris-
ofnl»n encoded as to selection 
then th' T 'e predlcate, solve/4, is 
levJl i! mterface to the methods 
renli /!? equation is solved. It 
ternr f5 r predicate solve/3 as interpreter of the methods level. 

spntod°W j\ P'a? wou'd be repre-
„ aud how it would be used by 
m^n ?0df ,evel wou,d yary from do-
: ? ^main. For equation solv-
i« g amS1™P e representation of plans 

fficient to achieve the perfor-
nincr^ pRESS. I added a toy plan-
wprf 6 to PRESS where plans 
nlanri\jepresented by the structure 
StPnc^^i6' Preconditions, Method-
,n F,/' "e preconditions were used 
Tbo rf j OICe °f appropriate plan. 

Predicate solve was written as 

solve(Equation,X,Solution,Plan) 
P'f.^P'aUi^MethodSteps), 
eall(MethodSteps). 

sto™</n ^ac' 'be appropriate method 
solot; Were ^aken directly from the 
nrlrriii prpced.ure of PRESS. This 
Drnvo IV p ann.InE level did not im-
of prpcc equation solving behaviour 
the program^ ^ Contrary jt s,owed 

, Pte knowledge oriented multi 
univppi)^r°acb advocated here is not 
fGallai 3 accepted. In their paper 
level Passerre 1982) on meta 
give a 0, r°k Gallaire and Lasserre 
proacLs" oUrV^ °f different 3P" 
what ti, ' w1" View 's closest to 
ing ti,6^ j3 knowledge structur-

s- 1 ney disregard it after saying 
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tlx following. 'Instead of talking in 
iff mi of interpreter behaviour, they 
talk in terms of levels of perception 
of the world (e.g. objects, assem
blies, equations, heuristics,...). As 
no general agreement has yet been 
reached on a world structuring lan
guage, they are led to build their own 
language and interpreter." 

What they imply is a flaw I 
claim as a feature. The difflculty in 
building problem solvers is represent
ing the relevant knowledge. In logic 
programming that means axiomatia-
ing the problem domain. Coming 
op with an appropriate axiomati-
ution is essentially building a lan
guage Solving problems from dif
ferent domains usually requires dif
ferent views of the world, and hence 
different languages, it is also true 
that in principle each domain needs 
its own interpreter. But building an 
interpreter in Prolog is not an ex
pensive overhead. Tioth the inter
preters, for the planning and meth
od* level described above, are Pro
log programs where the difficulty is 
in understanding the domain, not in 
specifying the control. 

Consider another example taken 
from (Silver 83) where a program, 
LP, is described capable of learning 
to solve equations from worked so
lutions. Given a worked example, 
LP builds a schema for solving the 
equation, which consists of a list of 
methods to apply. To solve a new 
equation the predicate schema solve 
i* called, a simplified version of which 
appears in figure 5.3. 
schema solve(Eqn,[M|Ms],X,Ans) 

apply. metnod( M ,Eqn ,X ,Newl, 
schema solve(New,Ms,X,Ans). 

«chema_solve(Eqn,_.X,Ans) 
sol ve(Eqn ,X, Ans). 

Figure 5.3: Applying a learned 
schema to a new equation 

The predicate 8chema_solve is at 
the planning level of equation solv
ing. It decides to try to apply a 
schema first, and if that is unsuccess
ful calls the usual solve procedure. In 
order to apply a schema, one must 
apply the methods contained in the 
schema. How to apply methods, the 
predicate apply.method, is again at 
the planning level, where the rele
vant information can be appropri
ately expressed. Thus LP can be re
garded as a multi level extension of 
PRESS. 

A similar evolution is possible 
from the theorem proving program 
described in figure 4.1. A program is 
being developed (Wallen 1983) which 
expresses the fine detail of an induc
tion proof plan. The initial program 
had insufficient expressive power to 
control the theorem proving process, 
and thus the single level program 
is being expanded into a multi level 
one. 
6 CONCLUSIONS 

We have discussed various no
tions of levels of problem solving -
arising both from the problem solv
ing task itself and the logic used to 
implement it. Powerful single level 
problem solvers are presented where 
the relationship to the other levels 
i8 made clear. Such programs are 
at the methods level, and constitute 
a meta theory for the domain. In
telligent, flexible problem solving re
quires inferences to be -S®T~ 
oral levels. It is shown how the single 
level problem solvers can be embed
ded in multi level problem solvers, 
where implicit knowledge is made ex-
plicit. mri 
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ABSTRACT 

In & programming calculus the for
mal development of a Horn-clause logic 
program implies a derivation of pro
gram clauses from a set of definitions, 
of data structures and computable func
tions, given in full predicate logic. A 
logic program is composed of a set of 
program clauses. Each program clause 
is derived separately from the defini
tions. Mostly the derivations differ in 
structure for the different clauses. How-
over, there are cases when two program 
clauses in a program are similar, ex
cept for some small difference, such that 
they can be transformed into each other. 
Since the derivations can be lengthy we 
would like, if possible, to avoid con
structing both the derivations. There
fore, after constructing a derivation of a 
program clause, we would like to be able 
to answer the question whether there is 
an analogous program clause, and if so, 
we would like to know its appearance 
and the substitution on which to base 
wi application of the substitution ru e. 
In the paper a way to answer this ques 
tion is discussed. 

1: This work is supported by the 
National Swedish Board for Tec nica 
Development (STU) 

1 INTRODUCTION 

In a Programming calculus (see for 
example Hansson and Tarnlund 1979) 
the formal development of a Hom-clause 
logic program *, implies a de»vatl0J 
program clauses from a set A of defi 
nitions about data structures and com-
nutable functions, given in full predi 
cat. logic (»«« Erif0"1' > 
Tarnlund 1983, Hansson 1980, hlogg 

1981) 

A\-*-

A logic program is composed of a 

tions, Si, e 

Si b*l A-A*m 

that is 
Si b 

Si b 
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In general derivations can be quite 
long and there is always a good idea to 
be on the lookout for shortcuts. Ana
logy is a method of exploiting past ex
perience and as such a frequently used 
method in deductive reasoning. In the 
area of theorem provers and derivation 
editors work on the concept of ana
logy is rare (Bledsoe 1981). An excep
tion is Kling (Kling 1971), who describes 
a paradigm for reasoning by analogy 
used by a first-order resolution theorem 
proven given a theorem E and the de
duction Di DnhE and a conjecture F 
the analogy between E and F is used to 
find the set of premises from which the 
conjecture F is derivable. In the area of 
program modification and program de-
ugging, analogy has been used both to 

transform a given program into a new 
program and to transform an erroneous 
program into a correct program by find
ing and using an analogy between two 
se s of specifications (Dershowitz 1978) 

In a situation where we have con
structed a derivation of the program 
clause we would like to know if we 
can exploit this work to get another of 

Program clauses by analogy. The 
program clauses are derived from the 
same set of premises. Consequently we 
are looking for a substitution that trans
forms program clause 0( into a new pro
p-am clause and each definition back 
to the same definition. 

This paper discusses how we can 
identify the above situation, and fur
thermore, find the substitution that 
transforms the derivation of one pro
gram clause into a derivation of an anal
ogous program clause. 

2 SUBSTITUTIONS 

2.1 General definition 

Let us assume that we have a 
derivation of the formula E from the for
mula* A £>., i.e. 

A D.h E. 

We can substitute formulas for predicate 
letters throughout the formulas Z>, 
D* • E< respectively, giving A* Dm', 
£*. Provided that the substitution is 
free and all anonymous free variables of 
the substituting formulas are held con
stant in the deduction, then according 
to the formal substitution rule for the 
predicate calculus (Kleene 1980) we have 
a deduction of £• from A*, i.e. 

A\...,A*(-£*. 

Consequently, to convince ourselves 
t at there is a deduction of £* from 
A , Dn we need not, although this is 
possible, construct the derivation itself; 
instead we rely on the fact that there 
13 a derivation of E from A A and 
a transformation from Ato 
A respectively. We say that 
here is an analogy between Dl,...,D%}E 

and A* A.MJV 

2-2 Special case of substitution for 
derivation of logic programs 

Consider the case when we are 
envmg a logic program from defini-
ions about data structures and defi-

ni ions about computable relations or 
unc ions, as formulated in the introduc-
lon. he definitions correspond to the 
ormu as £>,,..., dm jjj prevjous gub-

sec ion, the program clause corresponds 
f e consequent E. Each program 

clause is derived separately from the 
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Mostly the dwivalioo »f« 
li tk dmvaUoo of » program elau** 
i dim a structure from tb* dtriw 
u» trsr for» derivation of anoth er pro
ps cImm *, A special £••• 
tin that • is analogy between pro
ps clutM #, and •,*, it tber* » * 
itktttUoe ibat transform* #« into •,* 
Or problem a now to Bod tb« *ub*ti-
Ww Srnec wt war.I to u»* tb* aamt 
Itblou wt want to Bod a *ubstitu-
itsmck that, wbrn it » applied to tb# 
Willow, it gives back tbt definition* 
adUrtd except for a reordering of con-
J*act»na, disjunctions, and renaming of 
Wd nriable* Tbat a, tb* substitu
tion hu to preserve tbt itructurt of the 
WtutiUonr Every traoifonned defini-
'** K' a a predicate letter formula in 
tkeume predicate letter* a* tbe defini-

V Consequently, tbe substitution 
b»> to transform K back to iUelf; it ba* 
to be automorpbic 

Two important case* where the 
tb°*e propertie* can be found are 

•when a relation i» *ymmetric, i.e. 
for a predicate letter p we have 
t-Ha»l - »>(*,•) (•« the example of 
merging two li*t» in eection 3) or 

- when two formula* can be ?on«i»_ 
tently interchanged (cl. princip 
of duality in projective geometry 
(Coexter l»6fl)); if we have a sub
stitution of a predicate letter r(o, M 
for a predicate letter »(».«•) we also 
have the simultaneos J^kstitutmn 
of fis,6) for r(a,6) (see the example 

of splitting a list in section 3). 

By studying the definitions we ar 
sble to decide if there exists a substi
tution that gives an analogous P106**™ 
clause and moreover to conclude a 

there i* a derivation of the analogous 

clause 

, SYMMETRIC DEFINITIONS 

Ut us look at three examples of 
program derivations. The first example 
' ̂program that merge, two ordered 
list* into one ordered list. 

The following definition of the 

sssrrwtaxM 
more. 

Definition di« 

V x V u V i l m e c f e * *  \  »  
V ordered _ A 

ordered.list(v) A 
ordered. !»*(*) * 
Vo(o 

^ the definition of merge 

. . JS tSS-  -W — 
ordered.Ut^de-

list can be e ^ the ijst u.x, 
empty list is or ^ element and x 
where u den ^ list) ^ ordered if, 
dTlK,| if 'every element on the liet » 

then or is 
:,?nd.hVh.'.»»''"-d 

Definition St' 

ordered-H'tW 

VuMordered.Uti^ 
v»(o e x -* u -
ordered 

An element • » ^"jJj^iy if, 
member of the list u.x if, 
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either t> is equal to u, or o is member of 
the list x. 

Definition 6,: 

VnVuVz(» e u.z Mt = iiV[E z) 

Finally, greater than or equal is a 
transitive relation. 

Definition 6ti 

V u V v V w f u  < v A v < w — * u <  to). 

From the above definitions a recur
sive program clause can be derived. The 
program clause asserts that the list u.z 
is the result of merging the lists u.z and 
v.y if u is the smallest element of all el
ements on u.z or v.y, that is, if u is less 
than or equal to », u.z and v.y are both 
ordered, and furthermore z has to be the 
result of merging the lists * and v.y. 

The program clause, 
(Universal quantifiers in front of pro
gram clauses are omitted.) 

merge (a, b, c). The substitution in the 
program clause will consist of substitut
ing merge (tr.y, u.z, u.z) for 
merge (u.z, v.y, u.z) and merge (v.y, z,z) for 
merge (z, v.y, z). Performing the substitu
tion on the program clause gives 

The program clause, 

merge(v.y, u.z, u.z) «— 

u < r A merge (u.y, z, z) A 
ordered . liit(u.z) A 
ordered. litt(v.y) 

This clause covers the case when 
the first element of the second list is the 
smallest element on the two lists to be 
merged and is congruent to: 

merge (u.z, v.y.v.z) «-

o < u A merge (u.z, y, z) A 
ordered _ liet(u.x) A 
ordered, list (v.y) 

merge(u.z, v.y, u.z) «— 

u < v A merge (z, v.y, z) /\ 
ordered .litt(u.z) A 
ordered, litt(v.y) 

The definitions, and 6f 

and the program clause are predicate 
letter formulas in the predicate letters 
merge (a, b, c), ordered .li,t(a), a € b, a < b. If 
we study the definitions, we notice that 
the definition of merge is symmetric 
With respect to the first and second ar
gument, 

I" VzVyVz(merffe (z, y, z)«- merge (y, z> z)) 

, fi ,.We can> wit̂ out affecting the 
definitions, substitute merge (b,ac) for 

<5j, and St and found the above substi
tution that transformed it, and lt 

to themselves and *mtrg, into 

If we perform the derivation of 
from we can also con

clude that is a consequent of the 
definitions. 

That is, if Si,6j,s,,st h 
then 

Observe that the program clause, 
also can be obtained from 4m.m 

with reference to the replacement theo
rem instead of the substitution theorem 
since the relation is symmetric. 

Let us look at another example 
related to the above, but where the 
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prxw of finding lbs analogy » lr** 
ictfkilontH, ud wkwt wo ki*o '° 
at ikt ubstitution iktorom 

Consider » relation between 
u ikaetl • ud Ikm Usta «, v. 
i.wt Mteesanly ordered, ouch that « is 
lit cwnkasUoo of r and «. and more-
om til fktotoU ot i in l« than or 
tqul to », tod til element on • are 
[rata lb to • 

Definition l»t 

' » » « » ! « I t » .  * 1  —  
li«t(xl A A * 
<4rniml(«) A 

€ t  —  o € » V » € * l A  
€ « - • S •)* 

V»(» € « - • > •!) 

The relation 6 it already defined in 
Mm lion 

The definition of t lint it given re-
raithrely, to empty lint it t litt, tnd t 
const ruction ».« it t litt if, tnd only if, 
* is to element tnd * it t litt. 

Definition V-

VsVxf lixt(u x) — 
flrmcnl(u) A !»«!(*)) 

Prom the definition of split tnd the 
tions of € tnd list t progrtm cltuse 
>e derived, if the first element . on 
rst list u less thtn the discrimintt-
lement » tnd the result of splitting 
•est of the first list x tre the lists y 
z then, . hss to be the first element 
he list in the third argument plac 

Program clause, tipm-

The definition of split is symmet
ric with respect to the third ^ fourth 
argument if we interchange . < b and 

« > »  
Program clause, « • 

»)*" 
, > u a »p'ir(*> u, x, i/l 

Let us look at yet one more exam-
„l. where the symmetry is not in the 
definition at the top of the hierarchy of 

ur. want to derive a pro-
d: r. i»t..»o,-
d,*"d b.oiry tr«. th« molt be,n8 

an ordered binary tree. 
The relation in.ert is a relation be^ 

^ iu thp label v inserted at to the first * with the label 
the appropriate place. 

Definition fci 

/ofcel(o) A 
ordered .binary- tree(w ) A 

v t V e ^ » '  =  ' v t ' e B ) )  

Tb« P,op.rty oi» £££ 
an empty binary tree and 

a binary °dered, and all 
ODly !Uthe left subtree z are less 
elements on elements on the 
th,» tk. root »»*>» « ttan lb„oot 
right subtree y are gr 
of the tree. 

y, *) — 
, <«A«pW(*. »•»•*> 
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Definition 

ordered-binary . tree(</>) 

VzVuVy( ordered, binary . tree(t(z, u, y)) «-» 
label(u) A 
ordered -binary _ tree(z) A 
ordered - binary _ f ree({j) A 

Vu(o € z —• » < u) A 
V»(» € y -* v > u)) 

An element v  is member of the bi
nary tree t(z,u,y) if, and only if, it is 
equal to the root u, or is member of one 
of the subtrees z and y. 

Definition <5»; 

VuVzVuVj/ft; € t(z, u, y) 

® = u V v  €  z  V  v  €  y )  

From the above definitions we can 
derive a program clause for a leaf in
sertion program stating that the tree 
t(z',u,y) is the result of inserting t> into 
t(*,u,y), if v is a label and t(z,u,y) is an 
ordered binary tree, and * is less than 
the root u, and the result of inserting « 
in the left subtree z is z'. 

The derived program clause 

intert( t(z, u, y), o, t(z\ u, y)) «_ 
K i i A  
label(v) A 
ordered - binary . tree{t(z, u, y)) A 

insert(z, v, z') 

Applications of binary trees are of-
lZ ™etrjc with respect to the left 
and the right subtrees (Knuth 1975) 
The membership-relation in definition L 
is symmetric * 

* I- V„V*VuVj,(t, et(z,u,y)~ve %> x)) 

If we reflect the predicates less 
than and greater than into each other 
the definition of ordered _ binary -tree for a 
non-empty tree, is also symmetric with 
respect to the left and right subtrees. 
The definition of intert is given in terms 
of ordered-binary-tret and €. 

Instantiating the definition of 
insert with non-empty ordered binary 
trees gives 

insert) t(z, u, y), v, t(z', u', y1)) ~ 

ordered- binary _free(<(z, u, j/)) A 
label(v) A 
ordered . binary . tree(t(z', u', y")) A 

Vv'(o' e t(z',u',y') «-» 
= » V v' € t(z, u, y)). 

Application of the substitution of 
ordered _ binary . tree(t(c, b, a)) for 
ordered _ binary _tree)t(o, 6,e)) carries over 
to the relation insert. We have 
to substitute ineert(t(a,b,c),d,t(e,f,y)) for 
iniert(t(c,b,a), d,t(g,f,e)) as well. 

The transformed program clause 
tinteri inserts the new label into the 
right subtree. 

insert) t(y, u, z), v, t(y, u, *')) — 
e > UA 
lobel(v) A 
ordered .binary .tree{t(y, u, x)) A 
in»ert(z, r, x') 

From the specification of intert we 
can also derive a root insertion program. 

The program clause +not_{n..Tt: 
insert) t(z, u, y), o, <(*', f),", u, „))) _ 

o < UA 
label(v) A 
ordered - binary - free(f(z, u, j/)) A 
insert(x, c,t(z',r,x")) 
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We can obtain the dual case using 
the same methods as above. 

imertjljl/, u, i),v, t(f(y, u, i"), v, z')) <-
o > u A 
label(v) A 
ordered, binary .tree{t(y, u, x)) A 
iniertfz, v, t(z", v, z")) 

4 HOW TO FIND THE SUBSTI
TUTION 

Let us look at the example of split
ting a list described in the previous sec
tion. Our task is to find a substitu
tion satisfying the properties mentioned 
oi subsection 2.2. Our starting point 
is the derivation of *fr,T,lt from the de
tritions 5,, and i,. We normalize 
tte derivation (Gentzen 1934, Prawitz 
'"65, Stilmarck 1983), in order to make 
•ore that the candidates for substitu
tion are predicate letters. Therefore, if 
the least complex formulas used in the 
formalized derivation (minimum formu-
'a) contain a logical constant we add 
a lew definition with the formula as 
definiens and substitute throughout the 
wivation. For example if g{a, b) A r(c) 

18 n minimum formula then we define 
VlVvV*(p(z,y,z) q(x,v) Ar(z)) and conse
quently replace g(a, 6) A r(c) with p(o, b, c). 

The definitions 6,, 6t and 6» are 
studied, one by one, in order to find the 
"ght substitution. Let us concentrate 

'he definition S5 describing the rela-
'°n >plit. We identify the predicate let-
er hi the definiens as litt(a), element(a), 

a6ll> 4<i>, and a > b. 

Each occurrence of a predicate let-
er ^ inserted into an equivalence class 

according to the sequence of rule appli

cations that has to be performed to de
cide that the occurrence is a subformula 
of the definiens. 

The rules deciding that a formula 
is a subformula are the following: 

1. A is a subformula of A. 

2. If Ai A ... A An is a subformula of A, 

then so are A{, 1 <»< ». 

3. If Ai v... v An is a subformula of A, 

then so are Ai, 1 < » < n. 

4. If b -* G is a subformula of A, then 
so is B. 

5. If b -* G is a subformula of A, then 
so is C. 

6. If B *-* G is a subformula of A, then 
so are B and C. 

7. if -,g is a subformula of A, then so 

is B. 

8. If VzB is a subformula of A, then so 
is B't. 

9. If 3xB is a subformula of A, then so 

is B*. 

From the definition of split 

VzVuVyVz(«pJ»t(z>"> V ,  z )  
list(z) A list(v) A li't(z) A 
element(u) A 
Vt>(» ex«->t>€yV»ex)A 
Vv(v € y — v < u) A 
Vv(v £ z — ® > ")) 

we obtain the following equivalence 
classes of subformulas 

1 IBst(z),liot(V),M(z),el^t(u)J from 
the sequence of rule applications 

2,1 
2. [v e x] from the sequence 2,8,6,1 
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3. [» 6 y, v e z\ from the sequence 
2,8,6,3,1 

4. [d e v,v e z\ from the sequence 
2,8,4,1 

5. [o < u,v > uj from the sequence 
2,8,5,1 

To find the substitution we study 
the equivalence classes one by one. All 
the members in an equivalence class can 
be used in the same way in a deriva
tion, they are interchangable keeping 
the derivation structure. We try to 
make pairs within the eqivalence class, 
identify the difference in the pairs and 
study the result of applying the trans
formation to the rest of the equivalence 
classes and the definiens. 

If we first convert the definiens into 
a normal form the set of rules for de
ciding the subformula property reduces 
and so does also the number of equiva
lence classes that can be obtained. If 
in the definition of split the subformula 
Vv(v e y - „ < u) Was formulated as 

e y) v t> < «) and the rest of the 
definiens unchanged, then we should not 
be able to find the right substitution 
with the suggested method without con
verting into a normal form. The defini
tions m this paper are presented on a 
form where substitution can be found 
without conversion. 

Let us look at the classes above 
class 2 has only one member and can 
therefore be discarded, we can make no 
pair there. The two equal classes 3 and 4 
can be reduced to one. The difference in 
the formulas m equivalence class 1 is the 
argument to list. Interchanging z and 
V or x and z in the classes gives a new 
class instead of class 3 but interchanging 
V and 2 gives back the old classes. The 

change of y and z corresponds to chang
ing the third and fourth argument of the 
relation split. The elements in equiva
lence class 3 differ again in y and z. The 
elements in eqivalence class 5 does not 
occur in any of the other classes. In
terchanging the two elements gives the 
same collection of classes as before. 

The substitutions then are 

- split(a, b, (t c) for splitfa, b, c, d] 

- a < b for a > b and a > 6 for a < 6. 

Substitution in the definition of 
ip/it results in a definition that is equiv
alent to itself. 

VzVuVyVz(sp/it(z,u, z, y) 

list(z) A list(z) A list(y) A 
element(u) A 

V»(t»  €*«-»c62V»6l / )A  
V»(» € * —> r > u) A 
Vv(v € y — v < u)) 

The other definitions used in 
the derivation of the program clause 
do not contain the predicate letters 
split[a, b, c, d), a < b, or a > b and are there
fore not affected. 

5 CONCLUSIONS 

A method for deciding if there are 
analogous program clauses to be con
sidered when deriving a logic program 
is proposed. The proposal is based on 
the notion of symmetry and reflection 
in predicates. The handling of sym
metric data structures is not straight
forward and needs further investigation. 
The amount of work for deriving a logic 
program when there is analogy between 
the program clauses can be reduced us
ing this method. 
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ABSTRACT 

A new version of the first 
order language for mechanical 
theorem proving is axiomatized. 
It is called "Subgoal Deduction 
Language"(SDL) and is used as a 
metalanguage for specification 
and derivation of logic programs 
as well as for representation of 
the knowledge necessary for pro
gram reasoning. A many sorted re
lation system is defined as the 
semantic interpretation of SDL 
and logic programs. An example of 
an automatic derivation of a 
logic program from its specifi
cation is given. 

1 INTRODUCTION 

In recent years many brilli
ant works in the field of deri
vation of logic programs have 
been done(See references from 2 
to 5, for example). In all these 
works deduction has played a 
central role. However, an auto-
programming system must has the 
ability to derive the specifica
tions of subprocedures from the 
specifications of the main pro
gram. In order to solve th l® 
problem, we have axiomatized a 
goal oriented deduction system 
SDL and implemented it in Pro og 
language on our microcompu er 
BCM-3 as an experimental au o 

_  0 , r o -f-em. The scmsnxi 
of SDL based 

on the notations of model theory 

is given. The experimental re
sults show that the SDL can 
really draw the necessary speci
fications of the subprocedures. 
This behaviour is illustrated by 
an example in this paper. 

2 MANY SORTED SEMANTICAL 
SYSTEMS 

A many sorted semantical 
system is defined as 
S = < D i , . y D t B >  
where Di(l '  ii t) is the object 
of the i-th sort which is a well-
founded set and can be specified 
by the 3-tuples 

<X,£ ,succ> 
where X , •£• ,  succ are respective
ly the minmum element, the par
tial order and the function of 
successor. R is a finite set of 
g relational symbols rl,...,rg. 
Each ri€ R is a mapping from Dil 
XDi2X XDin to B = (true, 
false}. We call ( Dil,...,Din)the 
type of ri. For every ri6R, there 
is a set ri in I 

r i  =  { ( d i l , . . . ,  J i n )  I  r i 6 R , ( D u  
•  • •> Din) is the type of ri, dig f-D/j 

( l <  d <  n ) ,  r i ( d i l , . . . , d u )  ; <  t r u e ]  

Each functional symbol fj (lc j 
£ h) is a mapping from Djl , . . . , 

Djm to Dj. The type of fj is re-
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presented by (Djl,...,Djm, Dj). 

Using the relational symbols, 
functional symbols, constants (as 
the names of the objects of Di) 
together with variables, quanti
fiers and logical connectives we 
can write the well-formed seman
tical formulas (swff) over £ si
milar to the wff of standard 
first order predicate caculus. The 
only difference between wff and 
swff is that the predicate symbols 
in the former is replaced by the 
relational symbols in the latter. 
The truth value of a swff is de
fined by rl,...,rg in £. The set 
of all the true swffs over £ is 
denoted by "diagf". 

Now we can give a formalism of 
the task of programming as follows. 

Definition 2.1 
Let P be a programming task 

with m input variables and n-m 
output variables, rl (XI,...,Xm, 
Zm+1,...,zn) be the expected input 
-output relation defined on the 
abstract data structures Dl,..., 
Dt. r2,...,rg be other known rela
tions defined on Dl,...,Dt. fl 
••.,fh be known functions defined 
on Dl, ...,Dt. Then the semantical 
system 

£ p ~ 1 , • • • >  D t ,  { r 2 ,  . .  .  r j  I  r 2  
• • • >rg> fl,...,fh, B> —' 

is called the knowledge back
ground of P, rl the goal of p. 

Let £p be a knowledge back
ground of P, then the knowledge 
necessary for the programming 
task can represented as a finite 
subset K of diag£p. If we can 
write a swff S€ diaglp satisfying 

{(xl, . . . ,xm, zm+1, .. ., zn) I S (xL 
. . . ,xm, zm+1,..., zn)J = {(xl, . . . >xm 
zm+1, . . . ,zn) | rl (xl, . . . (Xm, . . . ( znjj 

then the swff S is called the 

specification of P. 

Example 2.1 
Suppose it is required to de

sign a logic program "arrange(L, 
T)" which constructs a ordered 
binary tree T with all the inte
gers in a given list L as its 
nodes. The knowledge background 
of P is 

T.p =(lNT, INT-LIST, TREE, R,le, 
member, node, order, cons, 

car,cdrj 

where INT, INT-LIST,TREE are re
spectively the relation "less 
than or equal to", "greater than". 

ifi!1'1*; (1-f ••••}• gt={(2.D. 
vo,4j,...j. relation member (X,L) 
enotes that the integer X is an 

element of the int-list L. member 
-{•••, (2,(2,3,4)),...). node(X, 
T) denotes that the integer X is 
a node of a binary tree. node= 
{(l,t(nil, l,nil)),...) . order(T) 
denotes that the binary tree T is 
sorted, cons, car, cdr are known 
functions. 

The specification of the 
program can be expressed with 
the following swff 6 diagEp 

arrange(L,T) = 
(VN) :N £ INT (*L):L£INT-LIST (3T): 
T(TREE( (member(N,LWnode(N,T))A 
order(T)) (def-1) 

Suppose that the relations 
member, node, order are not the 
build-in relations of the auto-
programming system, then they 
need to be defined with the 
swff•s. 

The definition of "binary 
tree" is as follows 

tree(nil) (def.2.1) 
(I^X^XeiNT (yTl):Tl£TREE (yT2 

):T2£TREE (tree(Tl)Atree(T2) 
tree(t(Tl,X,T2))) (def.2.2) 
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to offered binary 
fu»4 u folio** 

I roe i* de-

otferlniU (fef.J.lt 
VT1):TWTW* WTJlsbffbt-tWX) : 

HOT (r!H:Ji«lKT((iw»d*(X, f1 

1 t ncfetx, T2h*»>XtAord«r(Tl • * 
s m e r ( T 2 ) - * o r d « r ( t ( T l •  X ,  T 2 ) > '  

(def.3.2) 
*xrt node(H.T) is defined •• 

M0:rarr -im>de(*,ni i) 
(def.4.1) 

(yxiiMlXT'VX) sXtlXTivTl) :T11 
m(yt2):T2dTOEt(node()«.t(TJ ,X, 
T2I «-»sa V node(X.Tl) V node(N, 
121) (def.4.2) 

The relation member(X,L) i« 
defined is 

<»X):S 6 lJ(Tie«»bcr(N.nil) 
(def.5.1) 

(**):*< lNT((fX):X < INT(Vk):L 
(USTiaefe>er(»,X«L)-»-eH«X V member 
(K,U) (def .3.2) 

Thus K>((def.2),(def.3),(def.4). 
(def,5)| it the representation ot 
the knowledge over £p> necessary 
for the programming task of ai 
r»nge(L,T)". 

5 THE SUBGQA1. DEDUCTION 
LANGUAGE SDL 

J.l Sentences 

SDL consists of sentences .A 
sentence is in fact a first <>r 
predicate formula in the form-

Pi. .ql 9n 

note Skolem functions). The com-

"• ""/"l 52 right hand side ot 

arrja-K ~ ~ ire thought to be as variables 
bounded by 

• • • • .  f  i f  qn) as the eq Jn a deduc_ 
; • can'be'transformed to 

: : p - r  
to q, nP respectively. 

3.2 

"here pi (1 £ i i «) • \ ~ edj_ 
n) are all literals (atomic p 
cate formulas or negative o 
with terms consisting of in 
same way as in standard pre * 
calculus (we shall use e.U?ies  

case letters to denote cons-
lower case letters to den 
tants and functions, lower ^ 
letters with subscript 

3.2.1 g-deduction 

inference r*1" l id  consequence 
may say <* *s  a  

of K, denoted by 

K hf «* » • s 
a "S-deduc-

We call such a pr 
tion of <* f rom K * 

in a s-deductictnathe0sentencce 
^ should be fir® in  ruies. 
cording to the toi 

U) Vagpiiial^constant 
replaced by a P ^ cal led a for-
symbol  xu, w t  be distin-
mal constant. constant m K or 

other6formal constants in-. 

< 2 >  T h e  f r a  ^  
* is replace.d y  Ued a Skolem 
bol Fe whlCh- hli we use the up-
function variable-.^ & subscript 
per case le"e I t  must be dis 
"6" t°shed°from any Skolem func-
tinguished xi 
tion symbol m K. 
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inc sentence obtained by the 
above two rules from d is called 
the goal form of o< , denoted bv 
"d"'. y 

Note that the rule (1) is sim
ply an application of the genera
lization rule in the standard pre
dicate calculus. For if „e want to 
prove (Vx):X 6 Dic<(x), all we 
need to do is to prove «*(xu) for a 
arbitrary chosen object name xu € 

Subgoal Rules 

(1) 

— t(,pi 
Pi (S2)'a 

• • • 

fi2)a-

,pm 
f K 
ffis a valid 
unification be
tween fii' and 
/» 

The meaning of rule (2) is 
thatsince we want to prove (3x): 
X f Di(((x), we may choose any ob
ject x 6 Di to replace X. If c<(x) 

is proved, so is (3X)o((X). 

It is obvious that we should 
have K f-j- o( iff k bj-c(' 

3'2'2 Valid Substitution 

A valid substitution cr of a 
sentence is a substitution accor
ding to the following rules 

+„+- Any term Can be substi
tuted for a variable. 

(2) A Skolem function or a 
known function symbol can be sub
stituted for a Skolem function va-

set of CI'6" th3t th6 set of the former is a subset of 
the argument set of the latter We 
view a constant as a O-ary funo_ 

If there is a valid substitu
tion <j-which makes <*l(tl +„ \ 

-Jfttl' .-...tn'), then it 'is "called 
the valid unification between 
these two sentences. 

3-2-3 Inference Rules 

schema ̂  f°ll0Wing we «e the 

(2) 

H 
to denote that under th» ,•> j • 
/we have Kbj-rf'if K :°ndl"tion 

( — »  fi)' 
(c(l—ql,..., 
qm) i K 
tr is a valid 
unification be
tween o<i' and 
dl 

(tl=t2) 6 K 

A sentenced =pl pm —• ql, 
is a valid consequence of 

(i) There is a valid unifica
tion between a sentence in K and 
d  o r  s o m e  l i t e r a l s  q i q j ' (  
1 - 1 ̂  j £ n). 

^ A l l  t h e  s u b g o a l s  o f  d '  
, ? uced by subgoal rules are va
lid consequence of K. 

b. Conditional Rule 

Leb * dm be 
goals of <*' and <*;' include 
y constants and known func

tions as its terns. If di ,..., 
°*<-i > • • •, are all valid 
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WMQMCfl Of I M K| ends' ** 
i «ahd «#»<»«*« of X « (•>•<•} • 
tbts«(' to a valid consequence of 

•» |1V« • aiapla oaoopl# of 
11* application of tfco inference 
rale*. Th* problem it wtrotlod 
froo (•). 

luop.o i.l 

Soppoar we aaot to prove (9 *' 
happylXl froo k.{(VXXVYM employe 
(l.Tt* working(Y)—ehappylX)). 
ni(ployn*(X»—ehappylXl). ploy-
in|(bobl V wo filing (bob), employe 
(john.bobl). 

* $-d«duct«on io ae followe 
Tbe o«t X include* 

«mploye(X,Y), working(Y) 
» happy(X) (K.l) 

playing! X)—» happy t * 0 (K.2) 

"1 working (bob)—* playing! bob) 
(K*5' 

employs! John, bob) (K.4 

The goal ia happy(Xe>. J t  ca" 
be Batched with (K.l) according to 
the Mibgoal rule (1) with a »u 

atitaition < Xe/X ) and thui deduce 
two subgoala: 

eaploys(Xe.Y) 

workinglV) 

(Coal 1.1) 

(Coa1 1-2) 

(Coal 1.1) can be e***1* ? 
ved with substitution < john/xe, 
bob/Y>. but then (Coal 1.2) be
comes to working(bob), whic 
not be proved by K. However , 
can be easily proved by K |" 
ing(bob)}. So according to tn ^ 
conditional rule all we ne 
is to prove K upworking!®«ed 
happy(Xe), which c*"^® ^ using 
with substitution (bob/Xe/. 
subgoal rule (1) and (K.2). (*•*' 

So we know that if Bob is working. 
John ie happy, otherwise Bob is 
happy. Thus OX)happy(X) is 
proved• 

4 THE SEMANTICS OF SDL 

neflnition 4.1 

Site.! Let K be a finite subset 
Of SUl.• A valuation A * 18 a  

manning from K to Z which 
(1) aaaociates an objec se 

1,01 srjiStaw. rwyiwV» 
p JB Dj ^gkoiem function 

function or m-ary 
occuring in K. value 

•wJWMSjW 
P-

n.finition 4.2 
.» is a model of 

A valuation every 
K if it associates true 

sentence of K. 

n»finition 4.3 
, cni sentence, con 

LCt f Literals occuring in K .  
sisting of u"r®fc< according to 
A valuation jUk* ^ to Z where: 

The?images of its predi-

CatCf fifTisTtemwhich oc-
(2) t  1  A yr then its 

curs both in <* and *• . _ 
image is the same as * /*unct ion 

®(3) Ift xsaSkolem^^^ 

with type < Dil»• • • ^.hen associates 
occurs only m > unim-— 
a mapping Dil X 
with it-
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or ZLlSSUme uhat 311 c°nstants functions which occur in * ai5n occur m K. also 

Definition A a 

be aLsmK bV SUbset  of  SDL andrf be a SDL sentence consisting of 
iterals occuring in K. We sav o< 

is a semantical conclusion of K 
d e n o t e d  b y  " K 1 =  *  . .  i f  ° f  K '  
model Mtc of K there'is a w ^h" 
associates * with "true". h 

the • t the°remS> 
this paper. * 13 omitted in 

Theorem 4.1 CtLo o j (The Soundness of Va
lid Unification) 

Det KI < oi be _ ~  j  . 
of ' be the goal f eduction and 
^ a validuniffcat" u' If ther-
and a sentence s in T *' in K, then K|=<* 
Theorem 4.? r. £ The Soundness of Sub-

goal Rules) 

Reduction and 
' " • ' filn be fhe sub™ L "d VLCt *'• 

according to ! L 
•5*2.3 a. If f*"S t0 uhgoal rules 
there is a v2irf M 
tween and „ un ification be-
then Kfe* 3 ntence Si in K> 

Theorem 4.1 (Thr - , ( h e  S o u n d n e s s  o f  s  
deduction) 

K of if K 

Theorem 4 .1  ( t i , „  „  — aiuSrss.y c»-
« 

°<«be subgoals of 1 ' " * *' o<(- includes onlv ™ s °f c^' and 
known functions^s its te'8 
we have Kf=<X if  K terms. Then 

I hr «t' 
K V /l<X/J fj- ^ ' '+1 ' • • •' £ and 

tem f° te *hat the s"deduction sys-
m is not complete. However,using 

generalization role and dedu^ti<* 
theorem in standard predicate cal-
ulus, any provable wff can be 

whfch u int° a equivalent fort 
. h can be proved by S-deduc-
tion, but we shall not discuss 
this problem here. 

5 AN EXAMPLE OF AUTOMATIC 
DLRIVATION OF LOGIC PROGRAMS 

pramW\haue written a prolog pro-
g which implemanted SDL toge-
her with a structural induction 

anism as an experimental pro
gramming system. Here we give an 
example to show how the system de-
prrmSpaUt°matically a 2°g ic Pro" 
a j rom knowledge background 
exlTClfiCati0ns given in the 

p ie  2 .1  i n  sec t ion  2 .  

i . The specification and know-
e S^en in example 2.1 can be 
lDwseSSe 2n sentences as fol-

Specificaf-i/-.„ 

•arr*/1 * INT~"ST, fe(l) 6 TR£Ej •arranged, fe(i)) M 

N ( 1_» node(N,fe(l)) 
, , (Spec.1) 

node(N,fe( l ) )_* N  6  1 
(Spec.2) 

order (fe (1)) (Spec.3) 

~2^1|dge (we write ins-
"/3-w«» FW° sentences "u-fi" and 

01 for covenience.) 

tree(nil) (Theorem.1) 

•tre^^) A tree(T1) A tree(T2) 
*»X,T2)) (Theorem.2) 

"Jhode (N,nil) (Theorem.3) 

nodeS tf"°d^'")l/node(N,T2) 
' 'T1>X,T2)) (Theorem.4) 

order(nil) (Theorem.5) 
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orfcrU(T!.*.T4l) * 

a4«(l,TII-*ll|X (theorem .6) 
( 
ao4KX.ni-** > X (Theorem. 7) 
t 
order! tl I (Th»on«. 6) 
( 
ordeKTII (theorem.*) 

1(«e I It (Theorem.10) 

*f X*Lee M v * • U 
(Theorem.lli 

let b J (theorem. I(Thco-
re*.31)| , the program satisfying 
'Spec.I • to (Spec.3) car be de
rived by the following S-deduction 

'if 

nu t 1-enode(nu tFe(l 1) 
(Coal.1) 

C 
node(nu,Pe( 111—-• nu < 1 

(Coal>2) 
C 
order(FeH)) (Coal .3) 

ite£_i^ Derivation of induction 
baae (induction on the 
length of the interger 
liat) 

Let l-( J, <Goal.ll to (Coal. 
I) can be easily proved by the vo
id unification 

<r, -<nil/FeCl D> 

So the following solution is 
•btained. 

f-arrange(I J)«nil (S.l) 

Inductive inference 

lystea that the gi-
t can be expressed as 
i for any integer list L 
than x-1. f-arrangeit:!tter function (which ts writter 

> in the follows for con 

venience). Thus the system ob
tains the following induction hy
potheses 

L«X-1, Nfc L—• node(N,f-a(L)) 
(H. 1) 

Ux . l . node (N . f - a (L ) )— N  e  L  
(H. 2) 

l,< x• 1 —* order!f-a(L)) (H.3) 

The system uses K U  {  ( H . l ) .  
(H.21. (H.3)} as hypotheses set 
and tries to prove (Goal.l) to 
(Goal.3) again, substituting x» 
for 1, as follows 

n u t  

node(nu,Fe( x . l ) )  — nu^x -1 )  

order(Fe(x.l)) (Goal.3') 

Then the system tries to prove 
i m order to restrict 

o.n.fon- Ucd by x ^ 
into subgoa T taae 2 the sys-
1 separately. ^ soiution for 
tem tries to ving these sub-
the Pro^ramD ^nference rules and 
goals, using , s  only. If ^ 
induction hyP°der.vation stops, 
succeeds, th ^ w-u summer-
otherwise th y bgoais  as 
ize those unproved^subg^.^ 
spec i f i c a t i on  t ries to p r ove  
subp ro c e du r e s  a  space, we 
them, in or e whoie derivation 
will not give . the proving 
here, but on y B as an illus-
process of (G°all who are inte-
tration. ^ad^ ta iis  can obtain 
rested in the cords from our 
the expenmenta: lproving of (Goal, 
institute. Tne p ^ 
t . )  is shown in Fig 
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(Goal.1) 

nu 6 x • 1 —> node(nu,Fe(x.j)) 

(Goal.1.1) 
nu=x—>-node (nu, Fe (x • 1) ) 

(Goal.1.2) 
nu e 1-»node(nu.t(Tl,x.T2)) 

nu 6 1—»• node (nu, T1) \/ nnHP (nu, T2) 

(Goal.1.2.1) 
nu £ l->nu fr LI V nu t L2 

(Goal.1.2.2) 
Ll<x-1 

(Goal.1.2.3) 
L2<x>1 

from (Theorem.11) 
N (r X- L—» N=X V N (r L 
<r2=<nu/N, x/X, lu/L>, 
subgoal rule (2): 

matching with (Theorem.4) 
N=X—* node(N, t(Tl ,X,T2)) 
with tr, =(nu/N, x/X, 
t(Tl,x,T2T7 " )/Fe(x.l)> 

from (Theorem.4) 
node(N,Tl)\/ node(N,T2) 
—*• node(N,t(T1 ,X,T2)) 
£%=<nu/N, x/X> 
using subgoal rule (1): 

from (H.l) with 

<5-=<nu/N, f-a(Ll)/Tl,Ll/L > 
g^=/nu/N, L2/L, f-a(L2)/T2> 
using subgoal rule (1): 

( 1 )  

(2) 

(3) 

Note that the substitution a! 
CTS, Ol in Fig.l are underlined, be
cause they show that the solution 
of Fefx-l) may take the form 

Fe(x.l)=t(Tl,x,T2) 

Tl=f-a(Ll) 

T2=f—a(L2) 

But the solution are not complete 
since there are variables LI and ' 
L2 occurm them. They have to be 
constructed further in the proof! 

The unproved subgoals (l), (2) 

and (3) in Fig.l are summerized 
as part of specifications of pro
cedures fle(l,x)=Ll and f2e(l,x)= 
L2. In further proving process of 
(Goal.2') and (Goal.31) it is 
showed that the uncompleted solu
tion form is suitable and other 
specifications of subprocedures 
are obtained in a similiar way. 
Thus the system obtains the fol
lowing intermediate solution 
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f i e ( l , x )=Ll  

f 2e ( l , x )=L2  

f -arra ng e ( LI  )=T1 ,  f - arrange  (L2> .  
=T2— » f -arrange (x> l )= t (T l  , x ,  I  
T2) J 

(S .2 )  

and  t he  spec i f i ca t i ons  o f  subpro -
cedu re s  are  a s  f o l l ows  

Specification 

[ l , f l e ( l , x ) , f 2e ( l , x ) , e  INT— 
LIST.N .x  INT J :  

Nf UN 6 f l e ( l , x )  V N  e  
f 2 e ( l , x )  ( Spec .  1 '  )  

N 6 fled,x)—> N t 1 
(Spec.2 1 ) 

N 6 f2e(l,x)—»• N f 1 
(Spec.3' ) 

N t fle(l.x)—»-N4x (Spec.4') 

N 6 f2e(l,x)-^N>x (Spec.5') 

fle(l,x)<x.l (Spec.6') 

f2e(l,x)<x.l (Spec.7') 

The specification shows that 
e task of the sub-procedures is 
partite the input integer list 

into two lists: fle(l»x) and 
e(l,x). The former includes all 
ie integers in 1 which are less 
ian or equal to x and the latter 
•1 the integers in 1 which are  

'eater than x. So we see that the 
>L can deduce automatically the  

deification for the desired su 
cocedures in a very natural way • 

After derivation of the 
rocedure, the system obtains e 

ollowing solution (in which we 
rite "fl-partition" and 
ition" instead of "fie" an , ^ 
o explicate the meaning of 

f l - pa r t i t i on ( [  ]>x )= [  ] •  

f 2 -pa r t i t i on ( [  ]»x )= [  1 -

n <x  ^ . f l - pa r t i t i on (n» l , x )  
= n » f l -partition(l, x ) .  

n <x_^  f2 -pa r t i t i on (n>1 ,x )  
_ f2 -pa r t i t i on (1 ,x ) .  

n > x_*  f j .  —par t i t i on i ng  1  ,x )  
_fl_partition( l , x ^  .  

n>x—> f 2 - pa r t i t i o n (n * l  »x )  
=n»f2-partition( l . x )  

(S . 3) 

From solution. <S;1 • 

a Prolog program i 
can be easily obtained. 
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ABSTRACT 

T h e  t r e a t m e n t  o f  s o u n d n e s s ,  
w e a l  c o m p l e t e n e s s  a n d  s t r o n g  c o m  
p l e t e n e s s  o f  v a r i o u s  l o g i c  p r o  
g r a m  r e s o l u t i o n  s t r a t e g i e s  w i t h  
r e s p e c t  t o  s u c c e s s  a n d  f a i l u r e  i s  
u n i f i e d ,  g e n e r a l i z e d  a n d  c o n  
s i d e r a b L y  s i m p l i f i e d .  T h i s  i s  
l a d e  p o s s i b l e  b y  u s i n g  t h e  f u l l  
p o w e r  o f  t h e  u n i f i c a t i o n  t h e o r e m  
w h i c h  a l l o w s  a  r e d u c t i o n  t o  a  
s i m p l e  c a n o n i c a l  c a s e .  7 h e  
r e s u l t s  c a n  t h e n  b e  e s t a b l i s h e  
i n  a  n a t u r a l  a n d  s t r a i g h t f o r w a r  
m a n n e r .  W e  a l s o  i n d i c a t e  h o w  t h e  
u n i f i c a t i o n  t h e o r e m  c a n  b e  u s e ^  
t o  s i m p l i f y  t h e  p r o o f  o f  t h e  c o m  
p l e t e n e s s  o f  t h e  n e g a t i o n  a s  
f a i l u r e  r u l e .  F i n a l l y  w e  n o t e  
t h a t  t h e  t r e a t m e n t  i n t r o d u c e d  i n  
t h i s  p a p e r  a p p l i e s  t o  o t  e r  
c l a u s a l  f o r m s .  

1 INTRODUCTION 

S L D  ( o r  L U S H )  r e s o l u t i o n ,  o n  

w h i c h  m o s t  P R O L O G  ^ n t e r p ^ e I e l „  
a r e  b a s e d ,  i s  SL- r e s o l u t i o n  

( K o w a l s k i  a n d  K u e h n e r  T  
t r i c t e d  t o  H o r n  c l a u s e  l o g i c  
g r a m s  ( K o w a l s k i  1 9 7 4 ) .  T h % S O U " J _  
n e s s  a n d  c o m p l e t e n e s s  o  h e d  

r e s o l u t i o n  w e r e  f i r s t  e s t a  
i n  ( H i l l  1 9 7 4 ) .  F u r t h e r  r e s u l t s ,  

T h i s  r e s e a r c h  i s  p a r t i a  

s u p p o r t e d  b y  t h e  A - C . R - B -

u y  

I n  p a r t i c u l a r  o n  s t r o n g  c o m 
p l e t e n e s s  c a n  b e  f o u n d  i n  
1 0 7 9 )  ( A p t  a n d  v a n  E m d e n  1 9 8 2 )  

ment in a tirsi p ^ ̂  

^ ^ " a T s o  " t h e "  p r o b l e m  o f  n e g a -t r e a t  a l s o  t n  a L g e b r a l c  

tl0ns ^Apt and van Emden in a 
means. Apt provi" 
second part of their PM ^ 
d e d  a  c h a r a c t e r i z a t i o ^ ^  

finite failur - 2) that 

in (Lassez ^ couLd be 

tMS Chrir as a form of weak 
interpreted as SLD_resolution 
completeness o^ failure, 
with respec give a 

;-u, .»— 
1 9 8 2 ) "  , v  t h e  p r o o f s  o f  

L l n f  o r  t u n a t e ^ y , i o n g  g n d  i n v o l _  
t h e s e  r e s u l t s  ^  p r o l i f e r a t i o n  
v e d ,  t h e y . r e ^ s  a n d  l e m m a s  a n d  
o f  d e f i n i t i o n s  f t  f o r  

t h e  r e a d e r  n < > t  

Even though^ m o s ^ ^ ^ ^ ^  

a l l ,  r e s U . L  o r e s e n t a t i o n  i s  m a d e  
c l e a r ,  t h e i r t h e  p r e s e n c e  o f  n o n  
c o m p l e x  b y  ^  t h e  c r u c i a l  
d e t e r m i n i s m .  e x i s t i n g  p r o o f s  
p l a c e s  w h e r e  t h e  w h e r e  t h e  

a r e  v e r y  o f  a t o m s  i s  
o r d e r  o f  s e L . e r C r e l e v a n t ;  t h a t  i s ,  
s h o w n  t o  b e  i ;  s t r a t e g i e s  
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Lead to the same answer substitu

tion. However it may be suspected 

that these equivalences are a 

direct consequence of an already 
existlng powerful result embody

ing some kind of Church-Rosser 

property (or diamond lemma), in 

which case most of the proofs 

would be redundant and a major 
difficulty removed. 

This powerful result is in 
tact Robinson's fundamental uni
fication theorem (Robinson 1965) 
The formalism of (Martelli and 
Montanari 1982) in terms of a 
system of equations has been 
chosen as it is more suitable 
for the purpose. A derivation 
(SLD or other) corresponds to 
solving equations step by steD 
leading eventually to a unifica
tion of the list of all atoms of 
the derivation with a list of 
corresponding heads of clauses 
The different resolution stra
tegies impose different orders in 
the selection of the equations to 

be solved. The unification 

result^ States tha* the ultimate 
result (a most general unifier or 

ailure) is independent of the 
order in which the equations are 

selected. This allows the non-
deterministic aspects to be fac

tored from the treatment of 

soundness and completeness 

leaving a unique search space,' 
the canonical tree, which 

corresponds to Breadth-Fi st 

resolution (BF-resolution) and 

17 rSTe " 3 hi9h leveL basis 
to study and-parallelism. 

The definitions of success 

an 1nite failure sets (van 
Emden and Kowalski 1976), (Lasses 
and Maher 1982) are given induc
tively and are found to 

correspond very clearly to ground 

versions of the inductive defini

tions for successful and failed 
BF-derivations respectively The 
various proofs of soundness and 

completeness for BF-resolutTon 

become then essentially direct 

consequences of the definitions. 

The analogous results for a 

number of resolution strategies 

are direct corollaries to those 

for BF-resolution by the previous 
treatment of non-determinism. 

This point of view 
highlights the fundamental role 

played by the unification 

theorem, and leads to a more gen

eral, unified and straightforward 

presentation. Furthermore another 

aspect of the unification theorem 

allows us to simplify the proof 
°T the completeness of the nega
tion as failure rule. 

. J^e PaPer is organised in 
the following way : after this 
introduction there is a section 
containing the necessary nota
tions, definitions and prelim
inary results. In the third sec
tion the equivalence between the 
canonical tree and those 
corresponding to other resolution 
strategies is established. The 

sections contain the 
resu ts of soundness and com
pleteness for Breadth-First and 
other resolution strategies. 

t-k ,^0te : This Paper will form 
, e., asi.s °f a chapter of the 
T co,aing book, The Semantics 

° , 7c Programs (Lassez, Maher 
and Wolfram). 

2 pRELIMIMap|Fc; 

. , . A *ew necessary standard 
definitions and results are 

rie y recalled in this section, 
appropriate background for 

resolution can be found in (Chang 
and Lee 1973) and for logic pro
gramming in (Kowalski 1979). 

2-1 -lilg—Syntax nf p~~irnrrr 

The sets of var iables, func-
7on symbols and predicate sym-

bots are disjoint sets. 
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A tern i s  e i the r  a  var iab l e  
or a zero -p lace  fu nc t ion  sym b o l  
(constant symbol) or  
f(t, , . . . , t  ) ,  where  f  i s  an  n -r  n  '  
place fu n c t ion  symbo l  and  

are  t erms .  I t  i s  i n  
as sumed  tha t  there  i s  a  co ns tan t  
a yabo l  i n  t h e  s e t  o f  func t ion  
symbols. 

An atom i s  e i ther  a  z ero -
Place pred ica te  s ymb o l  Apropos i~ 
tion) or  P ( t . ,  , t  ) ,  where  P  i s  

1  n  
an n-p lace  pred i ca te  symbo l  and  

are  t e rms .  1  n  
T h e  principal function sym-

lot o f  g ( t . , . . . , t  )  i s  g ,  w he r e  g  
j  i  n  
, s  an n-p lace  fu nc t ion  or  pred i -
M *e  symbo l  and  t  , . . . , t  ar e  
teres. 

A fact i s  P Q ,  where  P Q  i s  an  
atom. 

A  rule is 

V P i  p n  >  °>  

•here P g ,P^ , . . . # p  are  a toms .  The  
l o a d  o f  t h e  ru l e  i s  Pg  and  the  
V " o f  the  ru l e  i s  P  , . . . ,P n -

A f ac t  or  
0  f  P r - - - , P n  ( n  )  0 ) ,  

s o m e times  be  abbrev ia t ed  t o  

r u l e  
w i l l  

H.  « -  B . .  
J  J  

wher  

be 

H .  =  P Q  a n d  

] \  5  >  0 )  and  w i l l  
J  „  '  n  

" a terred  t o  a s  a  clause. 

A  logic program i s  a  f in i t e  
S e t  o f  c l au s e s .  

A  goal i s  «-  P r - . . ,P n ,  where  
are  a toms .  A goa l  i s  

t h e  emp t y  goa l  <o )  i f  n  i s  zero .  

2 . 2  Subs t i tu t ions  and  Un i f i ca t i on  

2 .2 .1  Subs t i tu t ions  

A substitut ion 8 i s  a  f in i t e  
set of components : 

-  { t 1 / x 1 , . . . , t n / x n )  

where  t  t  a re  t e r ms  and  
" '  n  

x  a re  d i s t inc t  var iab l e s .  
1 '"" ' '  n  

The  su bs t i tu t ion  8 i s  3  

q ro u n d  subs t i t u t i on  i f  no  var ia 
b l e s  occur  in  t^ . . . ,^ .  T he  s ub  
s t i tu t i on  8  i s  a  r enaming  s ubs t i 
tu t ion  i f  t  t n  a re  d i s t inc t  

. . .  a n d  var iab l e s  
t .  t X .  < i  =  T he  empty 

substitution i s  e  =  O-
The  instance o f  a  f in i t e  

s t r in g  o f  symbo l s  E  by  8  de note d  
b y  E8 ,  i s  ob ta i ned  by  s imul  
t aneous ly  r e p lac ing  . . . h  
occurrence  o f  x . .  l i  1 »  '  
E by  t  • -  A  ground  i n s tance  o f  E  
i s  an  in s tance  in  which  no  var ia 
b l e  o ccurs .  

The  composition o f  tw o  sub
s t i tu t i ons  8  -  { t 1  / x 1 ' ." 'n  n 

XJ.  « •  
, 1 . . .  < 4 X  <»<»«"  * n d  

„  o f  . 11  
o f  X '  x  I t  ca n  be  shown  th a t  

a n d  ( E 8 ) X  =  E ( 0 X > ,  
f o r ^ a n y  s u b s t i t u t i o n s  6 ,  X  a n d  S .  

2 . 2 . 2  U n i f i c a t i o n  

T w o  f in i t e  
b o  I s  E  an d  F  . n  c a l l e d  
t h ere  i s  a  su  s  s u c h  t h a t  
a  unifier o f  E  andr ,  
E 0  i s  i d e n t i c a l  t o  8 .  

The  un i f i e r  ( I  
e r a l  un i f i e r  ( /^every unifier 8 
and  on l y  v f  f o  a  s u b s t i tu -
o f  E  an d  F  t h er  
t ion II such that 8 W 
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2.2.3 Non-Deterministic Unifi
cation 

The following is a statement 
of one of Martelli and 
Montanari's versions (Martelli 
and Montanari 1982) of the fun

damental unification algorithm 
and theorem in (Robinson 1965). 

(The algorithm has been slightly 

reworded so that it applies to 
the unification of atoms.) 

Unification Algorithm 

Given a set of equations 
x = i i = 1 n 

where t. and t' are atoms, 

repeatedly perform any of the 

following transformations. If no 

transformation applies, stop with 
success. 

(a) Select any equation of the 

form t = x where t is not a 

variable and x is a varia
ble, and rewrite it as x = 
t. 

(b) Select any equation of the 

form x = x where x is a 
variable, and erase it. 

(c) Select any equation of the 

form t' = t" where t' and 

t" are not variables. If 

the two principal function 

symbols are different, stop 

with failure. If the two 

principal function symbols 
are constants, erase the 

equation. Otherwise, 

t' = t" is of the form 
F(TI V = F<T' T') 
and replace t' = t" by n-
t. = t' ,..,t = t'. 
'I n n 

(d) Select any equation of the 

form x = t where x is a 

variable which occurs 

somewhere else in the set of 

equations and where t * x. 

If x occurs in t, then stop 

with failure; otherwise 

apply the substitution 

o - {t/x} to all other equa
tions (without erasing x = 

Unification Theorem 

(i) The unification algorithm 

terminates no matter which 
choices are made. 

(ii) If the unification algorithm 

terminates with failure, X 

has no unifier. If it ter

minates with success then 

(1) the equations are in 
the form x . = t,, 

j = 1, ... , n where x1. isJa 

variable and t. is a t^rm. 

(2) every Variable which 
is on the left side of an 

equation occurs only there. 

(3) an mgu f i  f o r  X is 

{t1/x1' t2/x2' •" ' W 

3 RESOLUTION STRATFRTFS 

In SLD-resolution, at each 
resolution step a single atom is 

selected from the current goal, 

to be unified with a head of a 

clause. In Breadth-First resolu

tion (BF-resolution) the whole 

list of atoms of the goal is uni

fied with a whole list of 
corresponding heads. GLD-

resolution (Generalised Linear 

resolution for Definite clauses) 
covers these two extreme cases 

and the intermediate cases : at 

each step a non-empty subset of 

the set of atoms of the current 

goal is selected for unification. 

Hence, depending on the 
choice of unification strategy it 
may not be possible to simulate 

strictly GLD-resolution by SLD-

resolution. GLD-resolution may 

serve as a basis for the study of 

(partial) and-parallelism. It 

therefore differs from SLD-

resolution in two respects : one 

is the selection of atoms to be 

unified, and the other is the 
unification itself. 

As with SLD-resolution, dif
ferent resolution strategies lead 
to different search spaces. 
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However, B F - r e s o l u t i o n  h a s  a  u n i -
q u e l y  d e f i n e d  s e a r c h  s p a c e  :  t h e  
c a n o n i c a l  t r e e .  

T h i s  n a t u r a l  d e f i n i t i o n  
a l l o w s  t h e  p r o o f s  o f  t h e  
e q u i v a l e n c e s  b e t w e e n  a l l  G L D -
r e s o l u t i o n  s t r a t e g i e s  a n d  t h e  B F  
m e  t o  b e  s i m p l y  f o r m u l a t e d .  

T h e  f o l l o w i n g  d e f i n i t i o n s  
j i v e  t h e  n e c e s s a r y  p r e c i s i o n s .  

3 . 1  C l b - d e r i v a t i o n s  a n d  G L D - t r e e s  

3.1.1 GLD-derivations 

A s  a  s t r a i g h t f o r w a r d  g e n 
e r a l i z a t i o n  o f  S L D - r e s o l u t i o n ,  
• l a  a i m  o f  a  G L D - d e r i v a t i o n  i s  t o  
f i n d  a  s u b s t i t u t i o n  f x ,  c a l l e d  t h e  
Msuer substitution. 

1 ^"'derivation f o r  P  U  { G g } r  

P  i s  a  l o g i c  p r o g r a m  a n d  G g  
' s  a  g o a l ,  i s  d e f i n e d  a s  f o l l o w s  

let 

A n  ( 1  >  0 ,  n  >  0 )  

"  n  -  0 ,  t h e  G L D - d e r i v a t i o n  i s  a  
success of length I a n d  t h e  
Wsyer substitution H is 
Vl 

n  >  0 ,  a n d  t h e r e  i s  a n  input 
' ! f  o f  m ^  c l a u s e s  

* j  f  B j  ' 3  <  j  <  m ^  <  n ) ,  w h i c h  

a r e  a n y  m ^  c l a u s e s  o f  P  
t o  w h i c h  r e n a m i n g  s u b s t i t u 
t i o n s  h a v e  b e e n  a p p l i e d  s o  
t h a t  a  v a r i a b l e  i n  o n e  o f  
t h e m  d o e s  n o t  o c c u r  e i t h e r  i n  
t h e  o t h e r s ,  G k  o r  1 ^  
( 0 < k <  I ,  0  <  i  <  1 ) ,  a n d  

( H  H  )  a n d  a  l i s t  
( C l r - . . , C m  )  o < f  m L  selected 

s t o m s  f r o n t  G .  a r e  u n i f i a b l e  

" i t h  m g u  f x ^  

Thai 
by 

' i i g  c  

b  ^ 1 + 1  t t r e  g o a l  o b t a i n e d  
y  a P P l y i n g  / /  t o  G l  a n d  r e p l a -

3  b y  B  ( 1  <  j  <  m ^ ) .  

O t h e r w i s e ,  t h e  G L D - d e r i v a t i o n  i s  
a failure of length I. 

R e m a r k .  B y  t h e  c h o i c e  o f  r e n a m 
i n g  s u b s t i t u t i o n  i n  ( a ) .  

V  " 1  
, fx d o  n o t  a f f e c t  

t h a t  
a n d  

T h e r e f o r e ,  

1 - 1  
H .  o r  B . ,  s o  

H  , / J L  e  -  -  - M l  

B i M l  ^  B  j M 0 M 1  " "  " M l "  
a t o m s  o f  ^ ^  +  1  C 3 n  ' 3 e  w r i t t e n  
X / x ^ f X ^ . . w h e r e  X  i s  t h e  o r i 

g i n a l  a t o m ,  a p p e a r i n g  e i t h e r  i n  
G  o r  i n  t h e  b o d y  o f  s o m e  c l a u s e  

u s e d  f o r  r e p l a c e m e n t .  T h i s  f a c t  
w i l l  b e  u s e d  l a t e r .  

A  GLD- d e r i v a t i o n  i s  a  BF-
derivation when mL = n. A GLD-

derivation is an SLP-derivation 

w h e n  m ^  =  1 -

A fair GLf-der i vat ion is 
e i t h e r  a  f a i l e d  G L D - d e r i v a t i o n  o r  
o n e  i n  w h i c h  a n  i n s t a n t i a t e d  c o p y  
o f  e v e r y  a t o m  i n  a  g o a l  i s  a  
s e l e c t e d  a t o m  a f t e r  a  f i n i t e  n u m 
b e r  o f  d e r i v a t i o n  s t e p s .  B y  

.  .  o v e r v  B F - d e r i v a t i o n  d e f i n i t i o n ,  e v e r y  
i s  f a i r .  

3 . 1 . 2  G L D - t r e e s  
A s  i n  t h e  c a s e  o f  S L D -

o  n  D - t r e e  r e p r 6 s e n * s  

r S s e a U r c n p a a c e  f o r  a  s u c c e s s f u l  

d e r i v a t i o n .  
c „ r  a  g i v e n  s t r a t e g y  o f  

s e l e c t i n g  . « « . .  < £  « £ " ' , 1 -

^ u ' v . - . - h r i s  
a n d  G g  i s  a  g r a m  

a s  f o l l o w s  :  

(1 )  G 0  i s  
t h e  r o o t  o f  t h e  t r e e .  

( 2 )  T h e  d e s c e n d a n t s  o f  g l  a r e  

t h e  g o a l s  w h i c h  c a n  b e  G L D  
d e r i v e d  i n  o n e  s t e p  

„ branch o r  
A  success G L D - t r e e  

failed Branch o f  
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For any given atom in a goal 
it is easy to find its introduced 
version in the derived goals 

until eventually it is selected 
in some goal G^ and replaced by a 

by B in G. and add A = H to 

the set of equations at the 
end of G.. 

l 

l j i , Once this is done, G . has been 
body and a corresponding equation formed 1 

which appears at the end of G 
„ k + 1 
By the representation, there is 

no ambiguity about the associa
tion of selected atoms, the 

bodies that are used to replace 
them and the equations. 

To show that two resolution 
strategies are equivalent it is 

only necessary to make sure that 

they select the same atoms and 

replace them using the same 

clauses. The following algorithm 
and theorem are used in esta

blishing equivalences between 

GLD-trees and therefore GLD-
resolution strategies. 

Let T and T^ be GLD-trees 

for P U {bQ}. The following 
algorithm reconstructs a deriva

tion {G..} in from a given fair 
non-failed derivation in T^. 

Reconstruction Algorithm 

Step i, i = 0 ,1 , . . .  

For every selected atom A in G. 
of T 

2 " 

If A appears in G then trace 

the corresponding atom A of 

T-j down the given derivation 
until it is selected and 

replaced by a body B and an 
equation A = H. 

Otherwise A is introduced in 

some G, as part of the body 
orNl . replacing some atom C. Find 

the corresponding C in T 

(this must have been done to 

perform the replacement) and 

trace down the given deriva

tion to where A is selected 
and replaced by a body B and 
an equation A = H. 

Perform the replacement of A 

The tracing of an atom down 
the derivation in ^ always ter

minates since the derivation is 
fair. 

If the given derivation is 
successful (and so finite) then 

the derivation which is construc

ted must al-so be finite. It is 

easy to verify that the deriva

tion in T^ and the reconstructed 

derivation in T^ define the same 

set of equations and therefore, 

by the unification theorem, the 

reconstructed derivation is suc

cessful and both derivations lead 

to the same answer substitution 
(mgu of the equations). 

If the given derivation is 
(fair) infinite then the con

structed derivation is also 
infinite. 

This gives : 

Theorem 3.1 

T1 an<* T? be GLD-trees for 
p U { G q } . 2 

<1) T1 has a successful 
branch then so does T 

^2^ T has an infinite fair 
brancn then T has an infin
ite branch. 

From this theorem and the 
preceding discussions, the fol

lowing equivalences can be 

immediately deduced. These 

equivalences will allow the 

treatment of soundness and com
pleteness (for success and finite 
failure) for GLD-resolution to be 

reduced to BF-resolution and its 
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a s s o c i a t e d  c a n o n i c a l  t r e e .  

Corollary 3.2 

T h e  f o l l o w i n g  s t a t e m e n t s  a r e  
e q u i v a l e n t  :  

( 1 )  T h e  c a n o n i c a l  t r e e  h a s  a  
s u c c e s s f u l  b r a n c h  w i t h  
a n s w e r  s u b s t i t u t i o n  n .  

( 2 )  T h e r e  i s  a  G L D - t r e e  w i t h  a  
s u c c e s s f u l  b r a n c h  w i t h  
a n s w e r  s u b s t i t u t i o n  / U .  

( 3 )  E v e r y  G L D - t r e e  h a s  a  s u e  
c e s s f u l  b r a n c h  w i t h  a n s w e r  
s u b s t i t u t i o n  / i .  

T h e  e q u i v a l e n c e  o f  f a i r  
5 L D " t r e e s  w i t h  r e s p e c t  t o  f i n i t e  
f a i l u r e  i s  s h o w n  b y  t h e  f o l l o w i n g  
t h e o r e m ,  w h i c h  i s  a  c o n s e q u e n c e  
° f  T h e o r e m  3 . 1 .  

T h e o r e m  3 . 3  

L e t  T1  a n d  b e  GLD- t r e e s  
f o r  p  U  ( G 0 } .  I f  T 1  i s  f i n i t e l y  

f a i l e d  a n d  i s  f a i r ,  t h e n  T £  i s  

f i n i t e l y  f a i l e d .  

P r o o f  

S u p p o s e  t h a t  T ^  ^ a s  a  s u c _  

c e s s f u l  o r  ( f a i r )  i n f i n i t e  
b r a n c h .  A s  i s  f a i r ,  m u s t  

h a v e  a  s u c c e s s f u l  o r  i n f i n i t e  
b r a n c h  b y  t h e o r e m  3 . 1 .  T h i s  i s  a  
c o n t r a d i c t i o n .  H e n c e ,  T ^  f i n i -

t e l y  f a i l e d .  D  

C o r o l l a r y  3 . 4  

T h e  f o l l o w i n g  s t a t e m e n t s  a r e  
e q u i v a l e n t  :  

< 1 >  T h e  c a n o n i c a l  t r e e  i s  f i n i  
t e l y  f a i l e d .  

^ 2 )  T h e r e  i s  a  f i n i t e l y  f a i l e d  
G L D - t r e e .  

E v e r y  f a i r  GLD_ t r e e  i s  f i n i  
t e l y  f a i l e d .  

4  S O U N D N E S S  A N D  C O M P L E T E N E S S  

4 . 1  S u c c e s s  a n d  F i n i t e  F a i l u r e  

S e t s  

T h e r e  a r e  a  n u m b e r  o f  w a y s  
o f  g i v i n g  t h e  s e m a n t i c s  o f  l o g i c  
p r o g r a m s  :  l e a s t  m o d e l ,  l e a s t  
f i x e d p o i n t  ( v a n  E m d e n  a n d  K o w a l -
s k i  1 9 7 6 ) ,  d e n o t a t i o n a l  ( L a s s e z  
a n d  M a h e r  1 9 8 3 ) ,  o p t i m a l  f ^ e d -
p o i n t  ( L a s s e z  a n d  M a h e r  1 9 8 j ) ,  
t r e e  r e w r i t i n g  s y s t e m  ( C o l m e r a u e r  
1 9 8 2 )  e t c .  T h e  d e f i n i t i o n  c h o s e n  
h e r e  '  f o r m a l i z e s  t h e  i n t u i t i v e  
n o t i o n  t h a t  a  l o g i c  p r o g r a m  P ,  
v i e w e d  a s  a  p r o d u c t i o n  s y s t e m ,  
d e f i n e s  i n d u c t i v e l y  a  s e t  o f  t r u e  
ground facts called the success 
s e t  T h e s e  f a c t s  a r e  e i t h e r  
g H v e n  i n  t h e  p r o g r a m  o r  a r e  
d e r i v e d  b y  r e p e a t e d l y  a p p l y i n g  

t h e  r u l e s .  

L e t  

c  =  ^  S . ,  w h e r e  
S  i > 0  i '  

=  0 ,  a n d  

€  s  i f  a n d  o n l y  i f  
i  „  .  R  r ( n  >  0 )  i s  

B n  *  B 1 ' - -  '  n  ,  
a  g r o u n d  i n s t a n c e  o f  a  
c l a u s e  o f  P  s u c h  t h a t  

?= B° B }  c  S .  . .  
{ B - , , -  -  •  ' D n '  T " 1  

I t  i s  s t r a i g h t f o r w a r d  t o  

eHfy fV the least6mode?Vp 

" T l m i e n  a n d  K o w a l s k i  1 9 7 6 ) ,  

.  x  n A  n n l v  i f  * h e  a t o m s  

i i s t e n t  i f  3  0 f  t h e  g o a l  
> f  a  g r ° U n d e  ( A p t  a n d  v a n  E m d e n  
; are m S <• Ape 

1 9 8 2 )  -
.  j  d e f i n i t i o n  i s  

A n  i n d u c t  ^  ̂  g r o u n d  
3 l s o  g i v e n  o t  e f f e c t i v e L y  b e  

f a c t s  w h i c h  c  t 0  t h e  s u c -
s h o w n  n o t  t  i s  c a l l e d  t h e  

« » t .  T h i s  s e c  s s  s e t .  T h " 1 3  I t  w a s  
nite failure set. 
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1982) to establish the soundness 
and strong completeness for fin
ite failure of fair SLD-
resolution, and used in (Jaffar, 
Lassez and Lloyd 1983) to esta
blish a completeness result for 
the negation as failure rule 
(Clark 1978). The definition 
chosen here is slightly different 
in form from the original defini
tion, as it helps to unify the 
treatment of success and failure. 

Let 

FF " i>0 FFi' where 

A € FF if and only if A i R., 
1 i 

B * R0 if and only if 

CQ «- C1,...,Cn (n > 0) is 

a ground instance of a 
clause of P such that 
B = C, 

0 

B € R. if 
1 

and only if 
Cg *• C^,...,Cn (n > 0) is 

a ground instance of a 
clause of P such that 

and B = C 

{C1'--"Cn} £ Ri-v 

A.2 Soundness and Completeness of 

BF-resolution 

Throughout the remainder, P 
represents a logic program and G 

a goal. ^ 

The following lemma is a 
major tool used in proving the 
completeness of BF-resolution for 
success, and its soundness for 
finite failure. As the produc
tion of an element of S. or R. is 

tantamount to a ground ^F-
derivation, by "lifting" such a 
derivation to the form of a BF-
derivation, the results can be 
established directly. In the 
lemma, Y stands for either S or 
R. 

Lifting Lemma 

If G„ the goal 

f" A^,...,A and there is a sub

stitution ctg, such that the atoms 

of SgCtg are in Y., then there is 

a BF-derivation step from GQ to 

• Furthermore, when (I > 0) 

there is a substitution a^ such 

that the atoms of are in 

Yl-1 and aQf>g s 1gai' for S0IBe 

substitution Pg. 

Proof 

By definition of Y, there 
are n ground instances of clauses 

of p' Vj * Vj (j = 1 n)' 
where +• is a clause of P to 

which a renaming substitution has 
been applied and y . is a ground 

substitution, such that 
Aja0 ~ Hjrj and I > 0 the 
atoms of B^r. are in 

1-61 = and I de 

the list {H. <- B U = 1,...,n}. 

It can be assumed that a variable 
in a clause of 1^ does not occur 

^0 nor Yn an°ther clause of I. 

Hence, 

sol;;:"Yv° h (ai *„>vo' 
there is an mgu p and a sub

stitution 
1 such that 

V0 = "0ai• 

By the definition of BF~ 
srivation, there is a derivation 
step from GQ to G1 with input 

list Ig - I and mgu p^. Further-

™ore'_ w'1en I > 0 the atoms of 

in^! Q 1^ 1  ^ 3 r e  

A-2.1 Soundness and Com
pleteness for Success 

the atoms of a goal G be 
1n Tbese atoms are produced 
from elements in S.^ which are 
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11 r«r« predwtad f'0O t« 
to froo the 

V{ 
tiw tf t, »t »t easy *• 
Alt It tUitNMu"t to 0 9'Ound 
9iirt«ltt«i <0* P U (<)• 

Ihf problem ot lOuftdMI' 
tiertfare MioM) ttoole : ft 
round instances Ot the goals ot 
• ̂ -derivation or# formad, tha 
now in (ho tottlil goal belong 
if S by tha diraet application o< 
tfco dtfiftitton. 

froo corollary 3.2, ,h* 
•*»»*r substitution k t» a most 
9W*Hl totUt ion Ot t»>0 OOuOtiOnt 
indented to 0 Bf-darivatton. 
TO* tot 10*109 1 boor 0# ottablishot 
ttot oil ot tha oioot ot any 
yound instance ot Gg»i th* 

lutcott tot. 

'Woroo 4.1 

It P U (GQ) hot a toccottful 

tf-dtrtvatlon ot longth I, thon 
the (toot ot toy ground Inttonce 
tjjia ot 6Q or* In l^. 
Proof 

Apply ua to oil tho goott ot 
the derivation and apply any *°b 
ititutlon to that no variable 
reaoint. 

By the dotIntttona of BF-
derivatton and S, 1f al^ atoms o 
the ground Inttance of the goo 
% "• t" Vl' then all atoot ot 

the ground Inttonce of 'n-f 8re 

f»V 

At 6^ 1t the eopty goal, its 

•toot ore In 0 s SQ. 

The propotltlon follout. 0 

The following completeness 
theorem is a further illustra 1 
that the answer substitution M 
a oost general solution. 

Thooroa 4.2 

If there it a tubttitution 

a tuch that the atoms of 6^ 

in S, <1 > 0), then P U (6Q) 

h.. a successful BF-deriv.tion of 
longth I, «uch that 6Qa0 • «qMV 

for a tubttitution «^. 

Proof 

The atoms of tfo are in 
,0 by repeated applications of 
lhe lifting lemma, there are I 
BF-der1 vat ion steps from GQ to ̂  
end substitutions ak such t at 

the atoms of -re in 

V k  < 0  < k '  

Furthermore, 
V, 8 *i«i + 1 10 < 1 < °-

Hence, 

• iVWm * 

Vo * '.V.-V1 " VVVA 

• w D 
, 2 2 soundness and Com-

J;2.;...» «•< "»"• F,,L"re , 

th. 'h;.or","B?-
w * the soundness ot 

resolution 'for 

Theorem 4-3 

u « ,  <  -

every " '<> 

contains an atom in FF^ 

Pro°f oof is ̂  induction on 
The proof is 

Rp_derivation for 

„ ,l\ eVr f5lS by length 

p { 0 yyprv ground instance 

Zr°G ^onta^ns an atom in FFQ. 

° 0 • bv the lifting lemma, 
Otherwise, by or-Herivation 
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s t e p  f r o m  G g .  

T h e  i n d u c t i o n  h y p o t h e s i s  i s  
t h a t  t h e  t h e o r e m  i s  t r u e  f o r  1 - 1 .  

I f  e v e r y  B F - d e r i v a t i o n  f o r  
G g  i s  f a i l e d  b y  l e n g t h  <  I  t h e n ,  
b y  t h e  i n d u c t i o n  h y p o t h e s i s ,  
e v e r y  g r o u n d  i n s t a n c e  o f  e v e r y  G ^  
c o n t a i n s  a n  a t o m  i n  F F ,  . . .  S u p 
p o s e  t h e r e  i s  a  s u b s t i t u t i o n  a ! g  
s u c h  t h a t  t h e  a t o m s  o f  G g t f g  a r e  
i n  R ^ .  T h e n  b y  t h e  l i f t i n g  l e m m a ,  
t h e r e  i s  a  B F - d e r i v a t i o n  s t e p  
f r o m  G g  t o  G ^  a n d  a  s u b s t i t u t i o n  

s u c h  t h a t  t h e  a t o m s  o f  
a r e  i n  R ^ _ . | -  T h i s  i s  a  c o n t r a d i c 
t i o n .  

T h e r e f o r e  e v e r y  g r o u n d  
i n s t a n c e  o f  G g  c o n t a i n s  a n  a t o m  
i n  F F l -  •  

T h e  n e x t  t h e o r e m  e s t a b l i s h e s  
t h e  c o m p l e t e n e s s  o f  B F - r e s o l u t i o n  
f o r  f i n i t e  f a i l u r e .  

T h e o r e m  4 . 4  

I f  e v e r y  g r o u n d  i n s t a n c e  o f  
G g  c o n t a i n s  a n  a t o m  i n  F F ^ ,  t h e n  
e v e r y  B F - d e r i v a t i o n  f o r  P  U  { G g }  
i s  f a i l e d  b y  l e n g t h  <  I .  

P r o o f  

T h e  p r o o f  i s  b y  i n d u c t i o n  o n  
I .  

I f  e v e r y  g r o u n d  i n s t a n c e  o f  
G g  c o n t a i n s  a n  a t o m  i n  F F g ,  t h e n  
e v e r y  B F - d e r i v a t i o n  f o r  P  U  { G g }  
i s  f a i l e d  b y  l e n g t h  z e r o .  O t h 
e r w i s e ,  b y  t h e  d e f i n i t i o n s  o f  
B F - d e r i v a t i o n  a n d  R g ,  a  g r o u n d  
i n s t a n c e  o f  G g  c o u l d  b e  f o u n d  
w h i c h  w o u l d  n o t  c o n t a i n  a n  a t o m  
i n  F F g .  

T h e  i n d u c t i o n  h y p o t h e s i s  i s  
t h a t  t h e  t h e o r e m  i s  t r u e  f o r  1 - 1 .  

L e t  e v e r y  g r o u n d  i n s t a n c e  o f  
G g  c o n t a i n  a n  a t o m  i n  F F ^ .  I f  G g  
h a s  n o  d e s c e n d a n t s ,  t h e n  i t  i s  
f a i l e d  b y  l e n g t h  <  I .  O t h e r w i s e ,  
i f  e v e r y  g r o u n d  i n s t a n c e  o f  e v e r y  
d e s c e n d a n t  G ^  c o n t a i n s  a n  a t o m  i n  

F F ^ _ . j  t h e n ,  b y  t h e  i n d u c t i o n  
h y p o t h e s i s ,  e v e r y  G ^  i s  f a i l e d  b y  

l e n g t h  i  1 - 1  a n d  t h e r e f o r e  G g  i s  
f a i l e d  b y  l e n g t h  <  I .  I f  n e i t h e r  
o f  t h e s e  c a s e s  h o l d ,  t h e n  t h e r e  
i s  a  s u b s t i t u t i o n  B s u c h  t h a t  t h e  
a t o m s  o f  G ^ B  a r e  i n  R ^ . . , .  B y  t h e  

d e f i n i t i o n s  o f  B F - d e r i v a t i o n  a n d  
R ^ ,  t h e  a t o m s  o f  a  g r o u n d  

i n s t a n c e  o f  G o ' " o ^  a r e  i n  R l "  
T h i s  i s  a  c o n t r a d i c t i o n .  

H e n c e ,  e v e r y  B F - d e r i v a t i o n  
f o r  P  U  { G g }  i s  f a i l e d  b y  l e n g t h  
<  I .  0  

5  C O N C L U S I O N  

T h e  s o u n d n e s s  a n d  c o m 
p l e t e n e s s  o f  B F - r e s o l u t i o n  a n d  
t h e  e q u i v a l e n c e s  o f  G L D - t r e e s  a r e  
u s e d  h e r e  t o  p r o v e  s o u n d n e s s  a n d  
c o m p l e t e n e s s  r e s u l t s  f o r  G L D -
r e s o l u t i o n .  

T h e o r e m  5 . 1  

T h e  f o l l o w i n g  s t a t e m e n t s  a r e  
e q u i v a l e n t .  

( 1 )  T h e r e  i s  a  s u b s t i t u t i o n  C l g  

s u c h  t h a t  t h e  a t o m s  o f  G g O ! g  
a r e  i n  f o r  s o m e  I .  

( 2 )  P  U  { G g }  i s  i n c o n s i s t e n t .  

( 3 )  P  U  { G g }  h a s  a  s u c c e s s f u l  

G L D - d e r i v a t i o n  w i t h  a n s w e r  
s u b s t i t u t i o n  / u ,  a n d  
Goao s VV 

( 4 )  T h e  c a n o n i c a l  t r e e  h a s  a  
s u c c e s s f u l  b r a n c h  o f  l e n g t h  
I  w i t h  a n s w e r  s u b s t i t u t i o n  

a n d  V o  5  W 
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6 )  T h e r e  i s  a  G L D - t r e e  w i t h  a  
s u c c e s s f u l  b r a n c h  w i t h  
a n s w e r  s u b s t i t u t i o n  f i ,  a n d  

V o s  W  
( 1 )  E v e r y  G L D - t r e e  h a s  a  s u e -

c e s s f u l  b r a n c h  w i t h  a n s w e r  
s u b s t i t u t i o n  J i ,  a n < ^  

W o s  W  
fteorei 5.2 

T h e  f o l l o w i n g  s t a t e m e n t s  a r e  
e q u i v a l e n t  f o r  P  U  { G q } -

( ! )  E v e r y  g r o u n d  i n s t a n c e  o f  Gq  

c o n t a i n s  a n  a t o m  i n  F F .  

(2) E v e r y  f a i r  G L D - d e r i v a t i o n  i s  
f i n i t e l y  f a i l e d .  

(3) T h e  c a n o n i c a l  t r e e  i s  f i n i 
t e l y  f a i l e d .  

W  T h e r e  i s  a  f i n i t e l y  f a i l e d  
G L D - t r e e .  

' 5 )  E v e r y  f a i r  G L D ~ t r e e  i s  f i n i 
t e l y  f a i l e d .  

C o n s e q u e n t l y  t h e  U n i f i c a t i o n  
T h e o r e m  p l a y s  a  c e n t r a l  r o l e  i n  
a l l  b a s i c  r e s u l t s  o f  s o u n d n e s s  
a n d  c o m p l e t e n e s s  i n  t h e  t h e o r y  o f  

l o g i c  p r o g r a m s .  

T h e  t e c h n i q u e  i n t r o d u c e d  i n  
t h i s  p a p e r  i s  n o t  m e r e l y  r e s 
t r i c t e d  t o  G L D - r e s o l u t i o n .  A s  
i l l u s t r a t e d  i n  t h e  e x a m p l e  t  c a n  
b e  e x t e n d e d  t o  o t h e r  ; e s o L u t ^  
s t r a t e g i e s  s u c h  a s  b o t t o m - u p  a n d  
t h e  i n t e r m e d i a t e  o n e s .  

I t  i s  a  u n i v e r s a l  t e c h n i q u e  
i n  r e s o l u t i o n  b e c a u s e ^ i t  a  s o  

p r o v i d e s  a  ™ e t h o  r e s o U i t i o n  
e q u i v a l e n c e s  b a ^ *  c l a u s e s ,  
s t r a t e g i e s  f o r  a r b l  ̂  y  c a n o n i  c a l  

s t r a t e g y " w o u l d  d e p e n d  o n  t h e  f o r m  
o f  t h e  c l a u s e s  i n v o l v e d .  

I n  ( L a s s e z ,  M a h e r  a n d  W o l  
( r a n )  s i m i l a r  t e c h n i q u e s  a r e  u s e d  
I ®  s i m p l i f y  t h e  t r e a t m e n t  o f  t h e  
s o u n d n e s s  a n d  c o m p l e t e n e s s  o f  t h e  
R a t i o n  a s  f a i l u r e  r u l e .  1 °  
P a r t i c u l a r  t h e  e q u i v a l e n c e  r e l a  
t i o n  I  u s e d  e x t e n s i v e l y  i n  C J a f  
' a r ,  l a s s e z  a n d  L l o y d  1 9 8 3 ) ,  c a n  
b e  r e p l a c e d  b y  t h e  f o l l o w i n g  
r e l a t i o n  :  

s  *  t  i f f  3 n  :  s 0 o . . 8 n  3  t 0 O '  ' 0 n  

That *  i s  a n  e q u i v a l e n c e  
r e l a t i o n  f o l l o w s  d i r e c t l y  f r o m  
P r o p e r t y  ( 2 )  o f  t h e  U n i f i c a t i o n  
T h e o r e m .  T h e  d o m a i n  t >  =  T / i "  h s  
r e p l a c e d  b y  t h e  d o m a i n  t >  -  T '  
a r i r l  t h e  r e q u i r e d  a x i o m s  ( C l a r  
! 9 ? 8 )  a r e  s a t i s f i e d  t r i v i a l l y -

T h e r e  i s  t h e r e f o r e  n o  n e e d  t o  
i n s i d e r  t h e  i n v o l v e d  f o r m a l i s m s  

t r e e  r e w r i t i n g  s y s t e m s .  
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FAME: A PROLOG PROGRAM 
THAT SOLVES PROBLEMS IN COMBINATORICS 

Yoav Shoham 
Computer Science Department 

Yale University 
P.O.Box 2158 Yale Station 

Nnw Haven. CT 06520, USA 

1 Abstract: FAME is a Prolog 
program that solves problems in 
combinatorics. The nature of the tas 
and solution methodolgy ajre 
discussed. The program and tne 
algorithms involved are described in 
some detail. A special emphasis is put 
on the choice of Prolog as an 
implementation language. 

1 Overview: tank and 
methodology „ _ _ . 
This is a report on FAME, a Prolog 

program that solves problems in 
combinatorics. Combinatorics 13 

difficult domain for students to soive 
problems in. What are the insigh^ 
and inspirations that problems 
combinatorics seem to require, a 
that frustrate the student who was 
doing just fine on integr 
problems? Whatever the correct 
answer may be, one hopes that 1 
shed light on the nature 
intelligence 

The ultimate goal is f°*' . 
program to have P*°^e7" tndent 
capabilities similar to that of s . 
who has had one course in di . 
mathemat ic s .  Fo r  example ,  1  <1 
that the program should so 
following problem set given 
undergraduate theory course. 

'This work was supported in part by the 
Advanced Research Projects Agency o 
Department of Defence and monitore t 

the Office of Naval Research under 
N00014-83-K-0281. 

1 .  Give  a  combina to r i a l  
a rgument  fo r  the  
fo l lowing  equa l i t i e s :  
C ( N - l . R )  =  

( R + 1 ) C ( N . R + 1 )  =  ( N -

R ) C ( N . R ) .  
2 .  Exp la in  why  t he  number  

o f  ways  t o  pu t  N 
i nd i s t inc t  ob jec t s  
in to  K d i s t inc t  boxes  
i s  CCN+K+l .K-1) .  

3 .  How many  ways  a re  
the re  to  pu t  
i nd i s t inc t  ob jec t s  
in to  K d i s t inc t  boxes  
where  eve ry  box  
r ece ives  a t  l eas t  one  
o f  the  ob jec t s?  How 
d o e s  t h i s  p rob lem 
r e l a t e  to  the  one  
be fo re?  

4 The  fo l lowing  p rob lem 
i s  r e l a t ed  to  prob lem 
3  m an  a r rangement  

H  consecu t ive  
sea t s ,  how many  ways  
a r e  t he re  to  se l ec t  4  
sea t s  so  tha t  no  two  

ad jacen t?  E .p l . "  
J O „ r  answer  o f  coa r se .  

c  r i v e  a  c o m b i n a t o r i a l  
5 "  a rgument  U . t  
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f rom 0  to  N,C(N,I )**2)  
=  C(2N,N) .  

(there were three more questions, but 
these five provide more than enough 
material for thought). 

The problems to be solved by the 
program are counting problems or 
closely related ones. Counting 
problems have the form "In how 
many ways can you.." or "How many 
X are there such that Y". Partition 
problems are a special case of 
counting problems, and have the form 
In how many ways can you partition 

X mto 1 such that...". I am not 
interested in a program that can deal 
solely, say, with proof of binomial 
equalities or solely with partition 
problems Thm demanding criterion 
has an effect that the program must 
largely imitate human problem 
solving in the domain. Solutions to 
special classes of problems that are 
counterintuitive tend not to extend 
well to the rest of the problems in the 
domain On the other hand I do not 
demand that the program be 
complete for any class of problems it 
solves. As Boyer and Moore put it [2], 

It has been argued that 
mechanical theorem-proving is 
an impossible task because 
certain theories are known to be 
undecidable or super-super-
exponential in complexity. Such 
metamathematical results are, of 
course, no more of an 
impediment to mechanical 
theorem-proving than to human 
theorem-proving. They only 
make the task more interesting 
(p.6) 5 

Consider for example the class of 
problems involving proof nf 
combinatorial equalities, of which the 
first of the above problems is an 
instance. The excellent result of 
Zeilberger [16] includes a procedure 
for solving a ve^ wide class of those 
problems, much wider than anv 
student could solve. Yet thoT 
procedure is not extendable to 

counting problems in general and 
partition ̂  problems in particular. 
Indeed, Zeflberger's procedure bears 
little resemblance to the method 
employed by the average student. 
Similar remarks apply to Gosper's 
w o r k  [ 4 ] ,  

In contrast to that, the part of 
FAAIE. which solves combinatorial 
equalities closely resembles human 
problem-solving in that domain. The 
general structure of proving an 
equality by a combinatorial argument 
is to demonstrate that both are a 
COrifiC^ aDswer to the same counting 
problem. One typically constructs a 
problem (which I call a story) by 
analyzing one expression. A story 
describes what is to be counted, 
lypically it contains a list of sets and 
their cardinalities, and a list of 
rSi?tions hold between the sets." 

The second step is to show that the 
other expression is also a solution to 
that same problem, if the counting is 
done differently. Since a story has a 
unique solution, this is a valid proof. 

.For example, the first problem from 
tne above problem set reads: 
Give a combinatorial argument for 
tne following equalities: 
r£  dw> R )  =  (R + 1)*C(N.R+1)  =  (N-R)*C(N.R)  
To prove these equalities think in how 
many wavs you could choose a team 
or K+l players and appoint a captain 
i m among the players, from a given 

class of N people. The different 
expressions correspond to whether you 
lrct choose the captain, the rest of 

team, or the whole team. The 
part of FAME which performs this 
Kind of reasoning is described in 
section 2. 

One should note that the task is 
do a purely mathematical one. 

onsider the five questions presented 
bove. 1 he problems 1 and 5 require 

lat ^ctua"> things get more complex, and 
er on stories will contain existential and 

ersa quanifiere, formal sets and other 
creatures. 
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s combinatorial proof. Problems 2 
and 3 speak about putting objects 
into boxes, and more importantly 
state TEat the objects or boxes are 
(in)distinct. Problem 4 speaks about 
Mjaccncv. and even nints at a 
relation to distinctness. How are all 
these underlined concepts to be 
represented so as to facilitate effective 
reasoning, and hopefully reflect 
human understanding of tbofj 
concepts? The mathematician could 
no doubt provide helpful insight into 
mathematics (just as a doctor could 
help in building a medical diagnosis 
expert system), but the task as a 
whole is a metamathematical one. 

The view of mathematical problem 
solving here is as a sort of planning 
activity, in the sense widely used in 
A1 (1ll),[13],l«l). We formulate 
strategies for solving a problem, 
trying them out according to certain 
rules, constantly monitoring our 

progress - deciding on resource 
allocations and debugging solutions. 
However, for any planning to take 
place we need "planning material , a 
structured domain. In aa 

impoverished domain there is no ueed 
for planning, and in a large but 
structureless domain planning is not 
possible. So my main concern is to 
conceptualize a framework in which 
the problems can be solved, and then 
to verify its validity by solving them. 

The criteria imposed on the 
are that the representation ol tn 
input and output correspond to their 
representation in the real worl , 
and that the program should n 
robust. For example, in solving the 
first problem from the homewor 
assignment I demanded that 
solution should hold for all J 
problems (for a more detailed 
explanation see the section 2). 

If the task is not a p urely 
mathematical one, the work desc 
here is also different from w°r'cot:(,ai 

eoal is performance and robustness of 
the system rather than a 
psychologically valid imitation of 
iuun&n problem-solving behavior 
Closer in spirit is McAllester's work 
f8ferthough there the stress on 
robustness and depth 

understand it, is to write robust and 
natural problem solvers in the future 
n<iine that representation. 

$ ss*rsg& 
problems f am forced to deal wrtb the 

VtS Alk? "a to™ of I 

' „ others do not fit in so neatly, 
theory. ^ , strongly on the 
in,P„e o a 2rr"J oumber to notion ol a u The overall 

somewnere , hand, 
MCrollACrSYMA [7] and SMP M on and MACS YMA be note^ that 
the,t WACSYMA nor SMP can be 
neither MAba nroblems which 
aPPtlledted the construction of FAME motivated the co hfi g ^ 

set described 1. ft. W 

section). 
FAME actually VLessoM 

called FAME ! I have 
learned in c°n! fA\?E II which is 
been applied to * Due to its 
undergoing scope FAME 
evolving state a hed out here, and 
II will only be, Sn V,f it will be given 
a fu" description oMt^ ̂  
elsewhere. Bqt g hoice was first 
in PROLOG. ,Jsbo{ a fairly obscure 
made on the ^ tbe language. The 
personal hkmg _ turned this vague 
K& to" an ĉountable commrtmeBt, 
Sdft wiU bf show, -by <$» "lways 
The value of__rroiQKi 

» ;« a DEC-20 

• _ o 
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its non-deterministic and declarative 
nature, as defined in theoretical work 
such as [14] or fully applied in [12]. 
In the parts where it is used 
declaratively it is most elegant, and 
this will be demonstrated in the 
paper. For other parts of the program 
the natural interpretation is the 
procedural one, and the combination 
of declarative islands in a procedural 
stream is a very convenient paradigm, 
rhe factors which made Prolog such a 
fortunate choice of implementation 

Fffifisdtus«dSUmm"'Ze<l *'"* 

2 FAME I 

2.1 General description 
,, f £rst c'ass °» problems to be 

eJuabtii WTh Pr<?°f °J .coml>inatorial equalities. The input is a pair of 
expressions, and the output is a proof 
of equality. FAME I only deals wS 
expressions that are integers (1 2 1 
CfYvw <Ln'm-)\ have the form 
Z'sW|re,C(X'Y) denotes "X ssrA' terra ft a 
expressions ̂  Evolving*7 btegem 
symbols and the operators + and 
For example the expressions could be 

°bcZZT 1 

s™nnLrê Td?cn1,!dr 
p.vid m.A5S£ put"Pme<?f: tl 
be viewed as one of J Yl M' can 

different things: the 
expression x!/fv'*tx-vin algebraie 
number of diff/rlnt (yJiKd sub, i thef 
a given x-sized set for k jSets of 
y. Fn combinatorial tixed x and 
require the latter nf arguments we 
reason I am n t The 

former solution is not nnl t ln the 

^L_Ph^fing_of__the q/estio'n^buf 

4personal communication 

because that kind of solution will not 
extend to counting problems. Also, it 
is this level of reasoning that 
facilitates the clever tricks and 
insights, and on which a two-line 
solution can be given to problem 5 
from the previous section. 

The previous section outlines the 
human method for "combinatorially" 
proving combinatorial equalities, 
which is how I started to construct 
FAME I. The first step was to have 
an algorithm for creating stories from 
expressions. At this point I slightly 
varied the method described above, 
realizing that the task of matching a 
given story and a given expression is 
m part very similar to the story 
creation task. Having already coded 
up the story creation, I asked what 
would happen if I created 
independent stories for the two 
expressions - would that be useful? 
The answer turned out to be yes; all 
you have to do is transform the two 
stories to a certain canonical form, 
and compare the canonical forms. 
Those must be the same up to 
isomorphism, which is what the 
program checks for. The exact 
procedure is described in detail in the 
next section. 

2.2 Algorithm and 
implementation 

The algorithm for testing whether 
two such expressions are equal is as 
follows. 

Algorithm 1: Proving 4 

combinatorial equality 
1. 1. Create a story Story 1 

for Expl, and find its 
canonical form 
CanStoryl. 

2. 2. Create a story Story2 
for Exp2, and find its 
canonical form 
CanStory2. 

3. 3. Prove that CanStoryl 
and CanStory2 are 
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isomorphic. 

The story creation algorithm is non-
deterministic and rule-based. Its 
input is an expression, and its output 
is a story which is a tuple 
<Scts,Set-lfdatione>. Sets is a set 
of tuples <SetName,Cardinality>-
Set-Relations is a list of predicates 
denoting set relations, each of which 
has the form 
>vtisetfSelNamel,SeiName2) or 
portitionfList-of-Set Names, SetName) 

The algorithm picks the terms of the 
input expression one at a time (in a 
non-deterministic order), generates a 
new set name (or more than one, if 
needed) and augments the story by 
adding to it the new sets and 
appropriate set relations. 

Example 1 
Suppose the input expression is 
n*C(n-l,r). One behavior of the 
Program could be as follows. The 
expression n is known to be 
symbolically equal to C(n,l). The sets 
aefJ of cardinality 1 and eel2 of 
cardinality n are created, and the 
story at this point is 
atory([(setl,l), (set2,n)]. 
[subset, (setl. set2)]) Which 
translated into English, reads "In how 
many ways can you choose a set of 
^ae 1 from a set of size n?". 
the next and last term is C(n-l,r). 
the program creates two more set 
names, sets associated with a 
cardinality of n-1 and set4 associated 
with a cardinality of r. It also notices 
that the cardinalities of set3 and setl 
sum up to the cardinality of set2, so 
the final story is 

story ( 
Uset l . l ) .  ( se t2 .n) .  
(se t3 .n- l ) ,  ( se t4 ,  r ) ] .  

ipar t i t ion(  [ se t l  , se t3]  , se t2)  ,  
subset (se t4 ,se t3)] ) .  

°r in English: "In how many ways can 
you partition a set of size n into two 
8nts of sizes 1 and n-1, and choose a 
8nt of size r from the latter?". 

Things get more interesting in the 

remainder of the algorithm. The 
canonicalization algorithm is as given 
below. The input to the algorithm is a 
story, and tne output is the same 
story in its canonical form. 

Algorithm 2: Deriving a 
canonical form of a story 
The algorithm has three steps. 

1. Split 
2. Pad 
3. Flatten 

Instead of writing the details of the 
algorithm, it will be explained via the 
following example. Note: the Flatten 
phase is essentially identical to the 
algorithm used in the example on 
page 21 of [2], coincidentally also 
called Flatten. 

Example 2 Let the input to the 
canonicalization algorithm be the 
story " In how many way can you 
choose n people from a total of m 
candidates, and from those n people 
construct a baseball team of r playem 
and a football team of k players? A 
Xver may participate in both 
teams." Graphically, the story is 
described by 

(setO.m) 

(se t l ,n)  

S ' \ S 

(set2,r) (set3. k )  

IS t rpi notation 
I Setname,Cardinality). 
p=partition). 

After one Split the story is 

(setO.m) 
s  /  \  s  

I 
(setl,n) (setll.n) 
si 1 s 

(cet2.r) (set3.k) 
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After the second and last split the 
story is 

( se tO.m)  ( se tOl .m)  
s i  I s  

I I  
( se t l .n)  ( se t l l ,n)  
s  I I s  

(set2 ,r )  ( se t3 .k)  

Pad changes all subsets to 
partitions, and the result is is shown 
in Figure 1. The final step Flatten 
yields the canonical form which is 
shown in Figure 2. The English form 
of  the  f ina l  s to ry  i s  In  how many ways  
can you part i t ion  a  se t  of  s ize  m 
into  three  se ts  of  s izes  r .  n-r  
and m-n,  and another  se t  of '  s ize  
m into  three  se ts  of  s izes  k n-k  
and m-n? 

Already here one can see how 
Prolog is elegant and concise. For 
example, the following code for Pad 
is a direct encoding of the algorithm 
If there exists a subset relation in 

the story then replace it by a 
partition and repeat, else return the 
story: 

pad (Sets .SR.NewSets .NevSR)  
remove(  
subset  (Set ,  Set l )  ,  SR.TapSR) . ! ,  

gensym(set .Set2) .  
member(CSet .X) .Sets ) ,  
membe r (  (Set l .  Y) .  Sets ) ,  
pad([ (Set2 .Y-X)I  Sets ] .  

[part ( [Set .Set2]  .Set l )  
ITapSR] .  

NewSets ,NewSR).  
pad(Sets .SR.Sets .SR) .  

The last step in testing the equality 
is to test for story isomorphism. Since 
the canonical stories contain oniv one 
sort of relation (partition), ana the 
only other information is the set 
cardinalities, the canonical story can 
be viewed as a forest of directed 
("rooted") trees with labelled nodes: 
the nodes are the sets, the labels are 

( s e y°- m )  ( se tOl . m )  

P 1  ! p  
[ ( se t l .n) .  ( se t4 . . -n) ]  [ ( se t l l .n) .  ( se tS .a-n) ]  

'  ! '  (s«t6, n-r)] 

Figure 1 

P l  
[ ( s e t 2 .r).(set6.n-r) (set4 m-nll re ' ;.v.set,4,m n'J [(set3 kl re«t7 

I  
[ ( se t3 .k) .  ( se t7 .n-k) .  ( se tS .a-

Figure 2 
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the cardinalities, and the set of a 
node's 'sons* is a partition of the set 
denoted by the node. Before the 
explicit algorithm for testing the 
isomorphism is given, the reader's 
attention is first drawn to the 
following logical equivalence: 

r»o it-forests T(V,E) and 
S(U,F) art isomorphic 

i f f  
there exist a a pairing P = 
{<»,«>: v in V, u in U, 

label(v) = label(u)) 
of V and U, such that 

there does not exist <vi,uj> 
in P such that 

there exist vk and ul 
such that 

vk  i s  a  son  o f  t s i ,  
<vk,ul> is i n  P, and 
ul is not a son of tij 

And here comes the magic - the 
Prolog code is a direct encoding of the 
above equivalence and is certainly 
®ore readable than it (although 
perhaps not in the format required in 
these proceedings): 

Algor i thm 3s  
S to ry  i somorph i sm 
isomorph ic  ( s to ry  (Se t s l  .SRI )  .  

s to ry (Se t s2 .SR2) )  : _  

natchpa i rs( 
Sets l .Sets2 .Pair l i s t ) ,  

no t ( (me tnber ( (X.Y)  .Pa i  r l  i s t )  .  
member (pa r t i t ion ( A .X) .SRI )  .  
member (pa r t i t ion (B .Y) ,SR2) .  

m e m b e r ( S e t l . A ) .  
member((Set l .Set2)  .Pa i  r l  i s t )  .  
not (member(Set2 .B) ) ) )  -

matchpa i rs(  [ ] . ( ] , ( ] )  • 
matchpairs (  

[ (Set l . N ) IRest l ] ,  
Sets2 ,  
[  (Set l .  Set2)  I Restpa  i  r s ] ) :  -

member ( (Set2 .M) ,Sets2) .  
equaIsymb(N,M) .  
r emove( (Se t2 ,M) ,Se t s2 ,Res t2 ) ,  
ma tchpa i r s (Res t l ,Res t2 ,  

Restpairs ) .  

Note :  member, equalsymb (which  
t e s t s  fo r  symbol i c  e c l \ i a j ^ .  
r^moue  a re  p red ica tes  inc luded  in  the  

t  i i t v  l i b ra ry  and  used  ex tens ive ly  
u t i l i t y  h  Note  tha t  ne i the r  

con ta in  on ly  " f l a t t ened  t r ee .  

debugged  on  the  

o r ig ina l  p rob lem 

(R+1)*C( N .R+1)  =  (N-R)*C ( N .R)  

rt St S"V° SSnT ot?he JS, Mi » "» *bove 
prob lem.  

|  ?-  prove_equaI (  
I  '  ( r +l )*c (n , r+1)  .  
|  (n- r )*c (n .  r ) )  •  

The  express ions  a re  equa l ,  

rr-ssr. f-
FIRST STORY:  

li};" Name ' :  s e t ? .  C a r d i n a l i t y :  i  
'For the sake of brevity I wiU r a i l  such a N a m e ;  s e t 8 ,  Card ina  i  

'orest a <U-J or est. 
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Se t  r e l a t ions :  
subse t  ( se t8 , se t9 )  
subse t ( se t7 , se t8 )  

AND ITS  CANONICAL FORM:  

Se t s :  
Name:  s e t l l .  Card ina l i ty :  r+1-1  
Name:  s e t lO .  Card ina l i ty :  n - ( r+ l )  
Name:  s e t9 .  Card ina l i ty :  n  
Name:  s e t7 .  Card ina l i ty :  1  

Se t  r e l a t ions :  
pa r t i t i on (  

[ se t7 . se t l l . s e t lO] , se t9 )  

SECOND STORY:  

Se t s :  
Name:  s e t l4 ,  Card ina l i ty :  n  
Name:  s e t l5 .  Card ina l i ty :  r  
Name:  s e t l2 ,  Card ina l i ty :  1  
Name:  s e t !3 .  Card ina l i ty :  n - r  

Se t  r e l a t ions :  
pa r t i t i on ( [ se t l5 , se t l3 ] . se t l4 )  
subse t ( se t l2 , se t l3 )  

AND ITS  CANONICAL FORM:  

Se t s :  
Name:  s e t l6 ,  Card ina l i ty :  n - r -1  
Name:  s e t l4 .  Card ina l i ty :  n  

Name:  s e t l5 ,  Card ina l i ty :  r  
Name:  s e t l2 .  Card  i  na  I i  t y  1 

Se t  r e l a t ions :  
pa r t i t i on (  
[ se t l2 , se t l6 , se t l5 ] , se t l4 )  

F AME° U t  a n ^  | . u r t he r  debugging 
equalities: Pr°Ved the 

(R + 1)*C(N ,R+1)  =  N* (N— 1  R )  
(N-R)*C(N ,R )  = N* CN-1  i  R)  

C( R+R.R) «C( N.R«R)  =  
= C(N,N -R)»C (H , I I )  

CCR+R. RX(N . R+R)  =  
= C(N ,R)»C(N -R .R)  

N»C (N - l .  R— 1 )  = C(N .R )*R  
C(N .K)*C(N -K .R-K)  =  

= C(N , R)*C (R , K)  

It also did not mistakenly prove 
any of a number of wrong equalities 
given to it as input. In fact, it 
straightforward to prove that fame is 
sound for all domains of expressions 
which are of interest. On tne other 
hand FAME I is not complete for 
those domains. First, FAME I was 
not developed to the point where it 
could reason by case analysis, i.e. 
create stories for expressions that 
include operators otner than '• 
Consequently, the program will fail to 
prove an equality like C(4,l) = 
C(2,1J*C(2,1). So if X or Y in C(X,Y) 
are allowed to be strictly numerical, 
FAME I is not complete. However, if 
such X and Y are disallowed, the 
question of FAME I's completeness 
remains open for now, though my 
guess is that it is. 

2.4 Conclusions and further 
research . 

On the face of it, it looks as if' 
could be happy with the program. 
Having solved one class of problems 1 
could now extend the program to 
handle  equal i t i e s  o f  express ions  tha t  
are not only a simple product of 
terms. For example, it wouldn't be 
too hard to allow some expressions 
that contain simple sums such as 

C ( 2 n , 2 )  =  2* C (n,2)+n**2 or some 
express ions  invo lv ing  summat ion  such  
a s  e . g .  SIGMA[i  f rom 0  to  r .  
C (n .  i )**2]  =  C(2n .n )  (a l though  the  
l a t t e r  p rob lem a l ready  adds  
s ign i f i can t  d i f f i cu l ty  in  ex tend ing  the  
p rogram) .  

The real problem begins when you 
try to extend the program to deal 
with the partition problems m 
particular, or counting problems in 
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general. It was in doing so that 1 
realized that FAME 1 had a wrong 
level of knowledge. The correct 
procedure for story construction 
should have been to analyze an 
existing knowledge of counting, and 
based on that knowledge devise a 
counting problem appropriate to the 
given expression. Tnis knowledge is 
only implicit in FAME 1, nnd 
therefore cannot be applied differently 
thin it is. In particular there is no 
natural way to extend F AME 1 to 
solve problems 2, 3 and 4. 

This  was  the  background  fo r  l ay ing  
FAME I  to  re s t  and  s t a r t ing  wor  
FAME D FAME H was  and  i s  bmng  
h id l t  s o  as  to  embody  d i r e c t *y  
S o » ) « d g c .  . 1 n  

stand  a t  the  .  o f  C O U n t ing  
; ° r °obUms cu r ren t ly  so lved  b ,  FAwf i  

n. 

t o r ,  ( [  (peop  l e .100) ,  C teaa .  11 )  .  ( cap ta in  1 )  .  (go«  '  ' ( c a p t a  j  „ .  t eam)]  )  •  
[subset( t eam.peop le )  , subse t (go  

team of  11  ° u h  
or in  Eng l i sh :  In  ho*  many  ways  can  you e  ( - h o  c o u i d  be  t he  
1 0 0  c a n d i d a t e s ,  a n d  n o m i n a t e  a  c a p t a i n  
pe r son)? .  

stor,([(man .n ) .  (women  .  r )  .  (god  1)>1 . .  d e r )D) .  
ex i s t (gender .  t«en ,women]  .  [ subse t lg  

a  man  o r  a  woman ,  and  the re  
o r  i n  Eng l i sh :  I f  god  i s  * """  peop le  cou ld  i t  be?  
are n  men  and  r  women ,  how many  

stor, ( [ ( swee t s ,  n ) , s se t ( l i t t l  e k  , d S ' ^  !^°^° t t l  ek  ids . swee t s ) ] )  •  
[subset(po i soned , swee t s )  . pe r  1  

t o  a l t e rna t ion  
comment: FAME I I  t r ans fo rms  the  pa r t i t ion  p ro  
o f  quan t i f i e r s  ove r  the  s to r i e s .  

s se t ( s se t2 ,m) ]  •  f co t .3  s e t l )  , s u b s e t ( fo rmse t ,  

s to r j{ [ ( s« t l . 6 ) . scb2] . [ subs« t ( se t2 . se t l ) l> -
« t2  i s  no t  spec i f i ed .  

comment :  no t i ce  tha t  the  ca rd ina l i ty  

Figure 3 
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3 Why Prolog 
Conciseness of programming 

languages has been praised in the 
literature. The high "idea/symbol 
ratio" enhances the conceptualizing 
power of the language. Contrary to 
APL, however, Prolog achieves the 
conciseness not through a rich library 
of system primitives but through a 
conceptually powerful interpreter. 
Whatever the correct reason may be, 
it remains empirically true that 
Prolog code is short. Although I do 
P^jh&ve aLISP program similar, say, 
to FAME I for a comparison, it is a 
safe guess that if such a program were 

^ would be longer than 
FAME I's length of less than 200 
lines. 

One reason for the conciseness of 
the program is the logic programming 
aspect of Prolog. The dl-forest 
isomorphism algorithm given in the 
previous section is a demonstration of 
that. Another example is the 
following code for finding the topseta 
of a story (unfortunately, the format 
of these proceedings makes the code 
less presentable): 

topsets (Sets ,SR.Topsets )  : -
f  i nda  I I  (  

X, 
(member((X,_) .Sets ) ,  
not (  
(member(part  i t  ion(Y,_) ,SR) ,  
member(X.Y)) ) ,  
not (member(subset (X,_)  ,SR)) )  

Topsets ) .  

Note: My findall predicate behaves 
like bagof, only it does not keep the 
bindings of the variables between 
different answers. For more details see 

pJw l0gic Pro5rapn)ing aspect of 
Prolog is valuable beyond 
contributing to the conciseness of the 
code. It was mentioned at the 
beginning that problem solving shares 
many features with planning 
including self monitoring an! making 
decisions about resource allocation It 

was also mentioned that planning 
depends on a structured domain. In 
both FAME I and FAME 0 the 
planning aspect is at times finessed 
until the representation is well 
worked out. In those parts Prolog 
serves as a default control structure. 
To use Kowalski's terminology [6j, 
Prolog frees me to work out the logic 
of the task before fully dealing with 
the control. Psychologists and AI 
people talk about declarative versus 
procedural knowledge. It is much 
easier to convert the former to the 
latter than vice-versa, and to a large 
extent Prolog facilitates this 
conversion. For some of the code the 
declarative interpretation is an 
artificial one, for indeed it was 
written with the procedural one in 
mind. Like in examples given by 
Gelernter [3], sometimes it is easier to 
specify the procedure than to specify 
the outcome. However, these 
procedures call upon islands of 
declarative knowledge, which indeed 
is the case with the way human 
thinking seems to operate. 

For a language to fully qualify as a 
logic programming language, it should 
be souna and complete for all first 
°'<ier theories. Prolog clearly does not 
qualify, since it diverges on even some 
straightforward theories. In the case 
of FAME I, for example, the two 
arguments of the predicate 
create story/2 are an expression and 
a story, such that the expression is a 
solution to the story. FAME I uses 
tne former as input and the latter as 
output, but in a true LP environment 
tne roles would be reversible and 
create story would actually be a 
procedure for solving counting 
problems. The simple minded depth 
iirst search algorithm of the Prolog 
interpreter of course does not provide 
inis luxury, but the user can 
compensate for this deficiency. 

ometimes one can combine the 
procedural interpretation of the 
program with the declarative. Most 
P red teat e® are not *safely reversible", 

in the example of the predicate 
remove defined by 
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re»o»t(X. [X|Y] ,Y). 
r«»ov»(X, [YIZ]. [YIW]) 
rtio««(X.Z.W). 

The goal remove* 1,X,Y) diverges 
without generating all correct 
answers. Yet sometimes if a 
particular predicate at a particular 
point in the code will always have a 
particular argument instantiated, this 
otherwise diverging predicate becomes 
"complete", to misuse the 
terminology. I term this anchoring the 
occurrence of a predicate"! This is the 
case with remove: if the last argument 
is guaranteed to be instantiated, the 
backtracking will uncover all 
solutions. Thus one conceptually 
builds mini-theories for code 
fragments, for which he can safelv 
pretend that Prolog is complete. Such 
is the case in several modules of 
FAME I. including the predicate 
whose coae is given in this paper: PaA 
isomorphic and topsets. All 
occurrences of member and remove in 
them are anchored, and the predicate 
equalsymb is itself reversible. 

To summarize, some problem-
solving is actually done by the 
interpreter, in the true spirit of logic 
programming. In others parts, the 
interpreter only serves as a default 
control structure, until a better one is 
worked out. Finally, at times the 
interpreter performs a task no 
different from that of a Llbr 
interpreter, when the control is 
explicitly and rigidly specified by the 
programmer. All three uses of Prolog 
are acceptable, and it is their 
combination that makes it a powerfu 
and flexible tool. 
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A NYCIN-LIKB EXPERT SYSTEM IN PROLOG 

Alan Littleford 
Prime Computer Inc. 
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Framingham, MA 01701 

ABSTRACT 1 Backgound 

A large expert system, 
based on an extended Myc in-like 
rule set and interpreter, has 
been constructed using Prolog. 
The expert system diagnoses 
computer system crashes in a 
customer/field engineering en
vironment. 

We describe the way in 
which the expert system is 
constructed and compare its im
plementation to other schemes 
for implementing Myc in-like 
systems in Prolog. While Prolog 
itself may be regarded as a 
Production rule system, we 
still find it necessary to add 
ss extra level of interpreta
tion to satisfy some of our 
needs. 

The system described is in 
engineering test at Prime Com
puter, Inc. 

Doc is an expert system 

which determines the cause of 
a computer system crash by 
static analysis of the memory 
and registers in the system at 
the time of the crash. Cur
rently this data is held on 
magnetic tape. The usual proce
dure has been to let a team of 
hardware /software experts ex 
amine the tape using a simple 
pretty printer. The analysts 
would then attempt to determine 
the cause of the crash and 

recommend fixes. 

Problems handled in this 
are usually transient 

hardware or software problems 
which are not amenable to con
ventional diagnostic tec 

niques. 
Doc.s goal to suMtan-

tially reduce the turnaround 
time for many of these tapes 

by performing the analy^ 
_ „ oocifihancef a 
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to make fix recommendations 
wherever possible. 

2 Nature of the Proble 
Domain 

An intermittent system 
crash can be due to many 
causes - subtle design errors 
in system code, errant 
peripherals, environmental con
ditions, chip failures and con
figuration errors to name but a 
few. Often the hardest ques
tion to answer about a crash 
is whether the problem is 
caused by hardware, software 
or both. 

There are two basic 
classes of diagnostic expert 
systems (see Stefik et al. 1982 
for a taxonomy of expert 
systems). The first class in
cludes those systems which are 
given a description of the 
structure and correct function 
of the system, and, reasoning 
from first principles, deduce 
the cause of failure (e.g. 
Genesereth 1982, Davis et al. 
1982). The second class of ex-
Pert systems rely on large 
numbers of rules causally lin
ing syndromes with probable 
suits ( Shortliffe 1976, 

Hartley 1984 e.g.). 

Those systems which 
reason from first principles 
require complete functional 
descriptions of the system un
der test. Further, they often 
need results from dynamically 
determined tests which are ap
plied as the analysis con
tinues. To give a complete 
functional description of the 
hardware and software of a 
large scale computer system 
currently is impractical. Fur
ther, since we only have the 
memory image of the crashed 
system, we are unable to per" 
form experiments to aid diag
nosis. 

Using syndrome/fault rules 
seemed promising. The Customer 

Service group at Prime C°®" 
puter have, collectively/ a 

large body of rules that are 
used every day. Another body 
of knowledge is contained in 
the manufacturing organisation 
which is responsible for bring 
ing the system up for the first 

time and yet another source of 
expertise is to be found with 
the design engineers who debug 
Prototype systems. 
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proach appear when one con
siders linkage of specific 
hardware or software knowledge 
to specific implmentations of 
the Prime architecture or 
specific releases of the 
operating system. This linkage 
is inevitable and its con
sideration led to some design 
choices in the implementation 
of the expert system. We had to 
be able to highlight facts or 
knowledge specific to certain 
hardware/software configura
tions, and we had to produce a 
"language" usable by a diverse 
collection of knowledge en
gineers which at the same time 
would allow those skilled in
dividuals any expressive power 

they required. 

We chose t*16 

syndrome/fault approach as a 
basis for Doc. Specifically we 
studied the Mycin program 
(Shortliffe 1976) which diag
noses a class of infectious 
diseases given the results of 
clinical tests and other data. 
We chose Prolog as an in 
Plementation language for Doc 
since many of the features 
which are built into Mycin are 
already in the Prolog language 
(pattern matching and search 

for example). For reasons dis
cussed below, we actually added 
a rule interpreter on top of 

Prolog. 

3 Backward Chaining 

Mycin is an example of a 
backwarding chaining system. At 
any given time the system as
sumes some hypothesis 
(expressed as an assertio 
about the contents of a 
database) and uses a rule in-

4-^ cjplect IF-THEN terpreter to select 
rules which would confirm or 
deny the hypothesis. The 
parts of the rules are usually 
conjunctions of other asser
tions, which, recursively might 
call upon the rule interprete 

to prove or disprove them. 

If all the conjunctions of 

the IF bee° 
the assertion^ contained ^ 
the THEN P." are added to th 

. adds a numen database. Mycin adds 
• 4= factor (a measure oi 

cal belief factor \ . . . 

- t t u t h  o £ a  the derived Oc . 

t09eth" Jt combining beiief 
mechanism for ten to 
factors, permits th _ These 

• vn +-Vip evidence • 
,weigh the viard-coded 
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into the rules as part of the 
expertise supplied by the 
knowledge engineer in his 
representation of a human 
expert's problem solving skills 
in the domain in question. 

Belief factors may be 
viewed as a crutch to be used 
in the absence of total 
knowledge of a situation. We 
have found them to be only 
partially useful in our 
specific application and future 
versions of Doc may discard 
them. 

4 Backward Chaining in Prolog 

Excluding for the moment 
the issue of belief factors, it 
is clear that Prolog is a good 
choice for representing back
ward chaining systems. Indeed 
Prolog itself is an example of 
a production rule system using 
Horn clauses as rules. The 
rule interpreter is nothing 
other than the depth-first, 
left-to-right exploration of 
the search tree adopted by 
standard Prolog. This obser
vation has been made by others 
(Clarke and McCabe 1982). 

Nonetheless we discovered 

that this simple approach has 
some problems when scaled up 
to what has since become a 
very large system : 
i. Cost of Computation Our sys
tem, like many others, required 
access to an external database 
(in our case the crash dump 
tap>e). This access is very 
costly in terms of time, and 
should be minimised. Thus any 
conclusions reached from the 
external facts, or perhaps the 
facts themselves, need to be 
cached where possible. 

Access to the crash dump tape 
is characterised by compara
tively few (tens to a few 
hundred) non-localised reads. 
Given that the tape contains 
several megabytes of data, we 
did not think it effective to 
have the whole tape resident in 
the Prolog database. 

^ fact may be required several 
times during diagnosis. If it 
is not deduceable the first 
time it is required then we 
should make a note so the rule 
interpreter does not try to 
deduce it the next time it is 
required. 

11" "aintainability. Our sys
tem requires updating as new 
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releases of the operating sys
tem or hardware enter the field 
or when new error syndromes 
are discovered. The system 
maintainers are unlikely to be 
Prolog programmers, and since 
there are likely to be several 
simultaneous maintainers we 
felt the need to insulate the 
underlying Prolog dependencies 
on clause ordering and back
tracking from them. 

iii. Multiple Conclusions. 
Many of the rules we developed 
contain multiple conclusions. 
The strategies described else
where (Clarke and McCabe 1982) 
do not lend themselves well do 
this end, the obvious approach 
being to have multiple clauses 
with the same body but dif
ferent heads : 

. ,  i n .  

. ,  i n .  
f l  : -  i l ,  i 2 ,  i 3 ,  .  
f 2  s -  i l ,  i 2 ,  i 3 ,  .  

%  ' i f  ( i l  a n d  i2 a n d  . . .  i n )  
%  t h e n  ( f l  a n d  f 2 )  .  '  

This was rejected since it vio
lates the principle of ac-
curately encoding the knowledge 
- the knowledge to be encoded 
includes the fact that fl and 
f2 are implied by the same set 
of circumstances; splitting it 
up into two rules loses this 
information. Further, it can be 

the cause of redundant expen
sive computations. Another op
tion, encoding fl and f2 in one 
head, impedes use of Prolog in
terpreter pattern matching to 
select clauses. 

iv. Tracing. Our system does 
not require interactive tracing 
by a user using 'how' and 'why' 
questions (Davis, Buchanan and 
Shortliffe 1977). However we 
did require the execution of 
Doc be easily reconstructed at 
any time after a run (so we 
could analyse why Doc failed to 
make a correct diagnosis at 
our leisure). Thus we require 
data to be logged concerning 
why a rule was invoked, the 
fact it succeeded or why it 
failed. Using simple Prolog 
clauses would require each rule 
take the responsibility of log
ging its progress and usage, 
thereby complicating the rule 

encoding process. 
Considering all of 

above, we decided to formalise 
the inference rules by imposing 
constraints on their form, and 
interpreting them in an inte 
prefer which would support all 

• re functions and provide logging function 
f n r  e x t e n d e d  c o n t r o l  mechanisms for extenu 

of execution if required. 
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5 Implementation 

5.1 Pact Language 

Rules are used to assert 
facts in a database. We chose 
to represent facts deducable by 
rules as Prolog ternary terms 
of the form 

f_( Object,Value,Weight). 

Object and Value may be ar
bitrary Prolog tenns> and 

Weight is an integer between 
-10 and 10. objects are used 
to represent named state or 
data structures in the target 
machine, in which case Value is 
a representation for the data 
value of the Objects. Addition
ally, Object may represent a 

state in the diagnostic process 

itself, or even an assertion 
about the current state of the 
rule interpreter. 

Weight is used tn „ uoea to convey 
the faCt°r' W6 f°llow 

Mycin approach except our 
weights are integers between 
10 (corresponding to certain 

refutation that object has 

ue) to +io (corresponding to 
ertain confirmation that ob-

Dect has Value). P0r example: 
f _ ( h a l t _ a d d r , k n o w n , 1 0 )  

"It is definite that the 
halt address of the machine is 
known." 

f-(pb_value(N), [ 4 , 305),9) 

"It is almost certain that 
the pb (instruction address) of 
process number N is segment 4 
word 305." 

(tr_(halt_addr),true, 10) 

"The rule interpreter has 
already tried to find a value 
for the halt address." 

In practice, it turns out 
that almost any knowledge which 
needs to be represented admits 
a fairly simple representation 
in this form. What is more, the 
valued object representation 
blends well with a rule-
encoder's view of the diagnos
tic process. 

5.2 Rules 

We retain the IF-THEN 
form of Mycin rules. We do not 
allow backtracking between the 
various IF parts of the rules* 
but we allow bactracking within 
an IF part. 

Rules are binary terms 
with principal (infix) functor 
rule'. Tjje first argument is 
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an atom labelling the rule, and 
the second is a term of the 
form 

(goall,goal2,.... ,goaln) 

The goals are passed by the 
rule interpreter as goals to 
the Prolog interpreter, so if 
any of the goals are themselves 
conjunctions of predicates, 
backtracking will take place 
within them. The rule inter
preter either sucessfully ex
ecutes all of the goals or one 
fails, in which case the rule 
is aborted. The goal 
- then (Obj, Value, Weight) - is 
used to construct facts in the 
system's database. It always 
succeeds. 

Example: 

is.pb.consistent rule ( 
defis(pb.value(N), Pb) , 
(lies_in(Pb, Area) , 

executable(Area) 

then(state(N, pb) , 
consistent, 8) 

) .  

N is a process number. 

The rule attempts to find 
whether the program counter 
(Pb) for the process is consis
tent by seeing whether it lies 
in an area of memory contain
ing executeable code. Note that 
backtracking is used to advan 

tage in the second goal (there 
may be many overlapping 'areas' 
that the code belongs to, one 
of which is marked 
'executeable'). 

5.3 Interpreter 

The rule interpreter is 
invoked by use of predicates 
defis(0,V), mightbe(0,V), 
defisnot(0,V) etc. These call 
upon the traced, predicate with 
bounds checking on the Weight. 

Procedurally, traced, 

looks first for an appropriate 

fact in the database. If none 
is found but appropriate rules 

have been tried then fail. 
Otherwise find all rules whose 
then parts contain an Object 

which can be unified with the 

Object in question. For each 
rule, unify the corresponding 

Objects with the goal and then 
execute the rule as described 
above. Once all appropriate 

rules have been executed com

bine the obtained weights on 
per value basis ( Objects may 

be multi-valued) and assert e 

resulting f- into the 

database. 

traced (Obj,Val,Wt) • 
" H o S j ,  V a l ,  W t ) ,  
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t r a c e d _ ( O b j ,  V a l ,  W t )  : -
f _ ( t r _ ( O b j  
! ,  f a i l .  

t r a c e d _ ( O b j , V a l ,  W t )  : -
t r i g g e r ( O b j , V a l _ w t _ l i s t ) ,  
a d d u p ( O b j , V a l _ w t _ l i s t ) ,  
a s s e r t a ( ( f _ ( t r _ ( O b j ) ,  

t r u e , 1 0 ) ) ,  
f _ ( 0 b j ,  V a l ,  w t ) .  

t r i g g e r ( O b j ,  W t l )  : -
s e t o f ( R , d e d u c e s ( R , O b j ) ,  

R u l e s ) ,  
e v a l u a t e (  R u l e s ,  W t l ) .  

The use of Prolog unifica
tion during the search for ap
propriate rules (Unifying the 
Object in question with the Ob
ject in the then part of the 
rule) allows use of parameters 
in the rules. This is very use
ful in our case where a lot of 
the rules are of the form "find 
which process (number) was ac
tive. for the active process 
determine ....". An example ig 

given in the rule displayed 
above. 

The facts 
f - (  t r _ (  o b j ) ,  . . . . j  

are examples of facts asserted 
bY the execution of the rule 
interpreter. Thase and olhet 

facts permit a ^ q£ 

the diagnostic: run to be per-
ormed. since Prolog unl£iea 

Object »lth a p.ttlcul>c ,n_ 
stantiation (e.g. a Pt°CeSS ln ^ f 

above), the system ensures that 
the rule will always be fired 
for different Objects but will 
return the value in the 
database (or the fact that no 
fact can be deduced) once an 
Object has been used for the 
first time 

(Note: since we have a 
total history of the execution 
of rules during a diagnostic 
run, as well as the rules them
selves, it is interesting to 
postulate the existence of an 
expert system which would 
regard this database as its 
dump tape and analyse the 
'failure' - lack of adequate 
diagnosis). 

The execution 
deduces (R, Object) is improved 
by "precompiling" the Doc rules 
as they are loaded into the 
system. For every rule of the 
form 

example rule ( 
i f l ,  
i f  2 ,  
• • • 
if n, 
t h e n ( O b j l , V a l l , W l ) ,  
t h e n ( O b j 2 , V a l 2 , w 2 ) ,  

) 
t h e n ( O b j m , V a l m , W m )  

f a c t s  o f  t h e  f o r m  

f _ ( t r a c e ( O b j i ) ,  
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example,10). 
f_(tr_(trace(Obji)) , 

true,10). 

are asserted into the 
database. 

This is analaqous to the 
property-list implementation of 
the updated-by function in the 
original Mycin. However in Doc 
this meta-knowledge is ex
pressed explicitly in the base 
rule language and is available 
to the knowledge engineer for 
exploitation. 

5.4 Scripts 

It turns out that much of 
the analyst's knowledge is 
clumped into procedural 
"scripts". In these procedures 
the analyst has a set course of 
action he takes regardless of 
the consequences (success or 
failure) of each individual 
step. A minor variant of the 
rule interpreter supports a 
Prolog script, where each goal 
is executed regardless of the 
outcome of previous goals in 
the script. Much of the top 
level procedural control in our 
system is due to the use of 
scripts : 

(def is(s top_type,hal t )  ,  
d e f is (hl t_addr ,known),  
def is(known_hal t ,  

Diag)) ,  

(def is(s top_type,  hal t ) ,  
d e f is (hl t_addr ,unknown),  
def is(unknown_hal t ,  

Diag)) ,  

( d e f isnot(s top_type,  
hal t ) ,  

d e f is (hang_diag,  Diag)) ,  

recite(summary_script) 
%% scripts are recited. 

) • 

6 interface to the Crash Tape 

Rules, scripts and the in

terpreter implement the diag
nostic logic of the system, but 
they need to be interfaced to 

the pretty printer so they can 
actually get ({data}} about the 

specific crash. 

The pretty printer used by 

the analysts performs many 

funct ions ^  
table lookup,  vir tual  to  Pas 
cal  address  mappins e tc .  
cause of  implementat ion t ime 

. ts  We did not want to 
Pret ty  pr inter ,  

:  J  uses terminal  i /o  and a  

"eland lan... J — 

rift ~~ — decided t pretty 

top_level script ( 
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printer program. Evaluable 

predicates were added to the 

Prolog interpreter to support 

inter-process communication at 

the keyboard I/O level. Thus 

the expert system could "see" 

and "type" data at the pretty 

printer keyboard. Strings 

returned by the pretty printer 

are parsed using a Definite 

Clause Grammar (Pereira and 

Warren 1982), and strings are 

generated for transmission by 

the same method. The result is 

a compact efficient communica

tions medium between the expert 

system and the crash tape. 

7 Some Statistics 

A feasibility demonstra

tion prototype was developed in 

about two man-months. This sys

tem did not communicate 

directly with the crash tape 

and only addressed a few 

symptoms of a crash. Succesful 

demonstration of this prototype 

led to funding for a production 

system which has been in 

development for about twelve 

months (two people). The sys

tem has shown itself capable of 

diagnosing crashes in five to 

fifteen minutes (interpreted 

Prolog, time-sharing one Mip 

machine). This compares very 

favorably against human ex

perts. 

An analysis of the execu

tion profile shows that much of 

the execution time is being 

spent accessing the dump tape 

and parsing the data returned 

from the pretty printer. Each 

Doc rule call takes about 10-20 

logical Prolog inferences. 

We currently have ap

proximately three hundred 

rules, many of which concern 

detailed architectural 

knowledge of the machine. Of 

these rules, several are in* 

voked many times during a run 

with different values in Object 

parameters. Thus there may 

be more than three hundred 

rule invocations during °ne 

diagnostic session. The actual 

number of Doc rules invoked 

varies widely from dump t0 

dump. 

The main segments of 

Prolog code are the rule and 

script interpreter (about 30 

Prolog clauses), a supp°rt 

Package for address computa

tions and other utilities 

clauses), and the various 
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Definite Clause Grammars. 

Doc is due to be shipped 

to the Customer Service group 

in Prime during May 1984. There 

it will be used for internal 

evaluation. 

! Summary 

Prolog lends itself very 

'ell to the development of ex

pert systems of the Mycin type, 

fhe Prolog language bears much 

of the complexity burden 

usually involved in the im

plementation of such systems, 

freeing the developer to con

centrate on the problem domain. 

Unmodifed Prolog is a produc

tion rule system, but it was 

found to be insufficient for 

our needs. Our approach has 

retained the procedural flavour 

of Mycin whilst still enabling 

the full power of Prolog to be 

exploited as needed. 

We have found this to 

Provide a very good balance 

functionally and from the point 

of view of maintaining a large 

rule-set. 
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PARLOG FOR DISCRETE EVENT SIMULATION 

Krysla Broda and Steve Gregory 
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v <;u7 2BZ. England 

ABSTRACT 

In the process interaction 
method of simulation, entities in 
the real world are modelled by 
processes which interact when 
events occur. In particular, a 
system can be simulated by a net
work of parallel processes commu
nicating by messages. In this 
paper we consider the use of 
PARLOG to program such simulation 
models, in which real time must be 
replaced by a central simulated 
clock. 

1 INTRODUCTION 

1.1 Thp communicating prPCg33£g-
approach, t" simulation 

Many kinds of system can be 
modelled by a collection of pro
cesses running in parallel and 
communicating by sending messages 
to each other through dedicated 
channels. Each process models 
some entity in the system being 
simulated. 

The architecture through 
which messages pass does not con 
cern us here. However, we 1 

useful to make some assumption 
concerning its operation. e 

This research was supported (in 
part) by the SERC under gran 
number GR/B/97 97 3 • 

first is that messages from one 
process to another are processed 
bv the receiver in the same order 
* they were sent. Secondly, we 

infinite buffering capacity 
aSSfhe message channels. Finally, 
°n hall assume that communication 
M m e s  are so small compared with 
otivity times that an approxima-activity pi can be obtained 

o — t i . « .  

. our 

"nl'mS of such networks of pro-
w m %^at is, we will be using 
cesses. systems working 
tW, v The effects of communi-
SmMon difficulties can be Intro-cation dii11 , , if desired, 
duced into t s;es to delay 
by adding n v ^ third ass-
°r i°on allows us to ignore the umption all t_mes when we oome 

trsss p.™* <*• 

~ ~strSenuSss=ot-
tetween tr,v.l only 
ional, i*e Communication 
in one dire°it direction can take 
in the °Ppo£"; the form of replies 
place only in several channels 
to ®essaf®Sint0 a single channel 

carrying gfySbe"automatically 
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1.1.1 Centralized time 

If one is interested in 
assessing overall system behav
iour, then the details of local 
activities can be ignored; it is 
the interaction of processes in 
the system which is important. 
The timing of the activities can 
be controlled by a single clock 
process which receives request 
messages for alarms to be sent to 
processes at future times. Pro
cesses sending these messages are 
which176 W^le awaitln« replies, which are the alarm signals. 

The periods of local activity 
of an entity in the real system 
thus eomcide with the inactivity 
ty LPfar6SS ?°dellin« the enti-

V- as the global system 
effect is concerned, such a pro
cess is inactive since it is not 
sending messages. 

1.1.2 Simulated time 

There are likely to be ner 
iods when all processes are i^T" 
tionVi; tH6 °an 3Chieve a reduc-by skipping LVSlo°dVheCdel 

"'sri-n -
alarm reply signal 3Ue of 

ally updates the current ti^1?"" 
he that at which the ne^t 
signal has to be sent p 
to be done it i <a " r ^is 
the time opening that 

preserved. 8 eVents is 

This means that all 
of sending an alarn,rePercus-

fflust be finished and Signal 

settled down to an Jn^M SySteB 

again before the clocT! State 

the time and issue th« "Pdate 
signal. The clock ^ ala™ 
active at exactly tho 0633 is thus 

he inactive. forced to 

The result of this alteration 
Is a discrete event process inter
action model. It uses the "comiu-
nleating processes* approach as 
opposed to, for example, the co
routining approach of SDCLA 
(Birtwistle et al. 1973). In 
section 3 Me shall consider how to 
program such models in PARLOG. 

1 . 2  T y p e s  o f  s i m u l a t i o n  a o d e l  

Simulation models can be of 
two main types, continuous and 
discrete, depending on whether the 
simulated time la changing cont
inuously or in discrete Jueps. 
One kind of discrete siaulation is 
the fixed time increment, or tiae 
advance, approach. The other kind 
is the discrete event, or event 
advance, method. See (toahoff and 
Slsson 1970) for an introduction 
to simulation modelling. 

In discrete event simulation 
(Fishman 1978), the simulated tiae 
is updated, and hence the systea 
state changed, when an event 
occurs. One change often causes a 
chain of events to occur, the tiae 
difference between events being 
negligible. In a discrete event 
simulation all events in such a 
chain are considered to occur 
simul taneously. 

There are several approach5 

to discrete event siaulation. ®e 

one we take is process interact
ion, in which the events occur at 
those times when processes inter-
sot. Processes nay correspond 
either to activities or to objects 
In the real system. 

Process interaction modelSi 
especially using the communicating 
processes approach (in which pr®" 
cesses interact by messages), ^ 
he described graphically. This^ 
advantage is exploited when writ
ing a corresponding PARLOG pr°" 
gram. Processes are modelled bj 
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PARLOG relations, communication 
channels by PARLOG streams. 

Languages usually employed in 
uriting process Interaction models 
include SIMULA, SIMSCRIPT and 
GPSS, which are all described In 
(Fishaan 1978). Smalltalk (Gold
berg and Robson 1983) has also 
been useo for the same purpose. 
These are all procedural languages 
and require expertise from the 
programmer to design the final 
program since the Interactions 
between processes must be expli
cit. In the PARLUG approach, the 
interactions between processes are 
implicit and result from the 
sending of messages. (Although 
Smalltalk uses message passing, 
the Smalltalk method of simulation 
is more similar to that of SIMULA 
than to the PARLOG method desc
ribed here.) 

1.3 Example: mr uaah 1 mil 1 fAtlgP-

Consider the problem of mod
elling a car wash which employs 
three workers who are all conti
nuously available for work. It 
takes one worker to wash each car, 
so the car wash can service up to 
three cars at a time. Cars arrive 
at random intervals and enter a 
line where they wait. As soon as 
there are workers available, cars 
are removed from the line on a 
first-in first-out basis and a 
mitted to the car wash. Afte£ a 

car has been washed (which ta es 
10 minutes) it leaves the syst®®l 
Customers of the car wash are n 
prepared to wait indefinite y 
service, so after waiting for s 
minutes in the line a car wi 
"give up" and leave the system. 

Our first step in constrU°^" 
ing a communicating Proa®S!®|w the 
el for this problem is to d ^ 
graph in Figure 1. Ea°h n°omnWni-
process and each arc i stream 
cation channel, carrying 

of messages in fine, direction as 
indicated by the arrow. There is 
no limit to the number of messages 
that can build up on a channel. 

geargen is a process gener
ating a stream of CAR messages on 
the arrive channel from which they 
are "consumed" by escapeline. A 
CAR message being consumed by the 
escapeline process models a car 
entering the line. When a car 
gives up and exits from the line, 
?he corresponding CAR message is 
generated on channel depart2. 
deDart2 is merged with departl, 
ST^eam of cars leaving the car 
wash, into depart which leads to 
the outside world. The depart 
channel contains the same CAR 
messages as arrive though not 
necessarily in the same order. 

The dearwash (meaning "demand 
oaruash") process models the car 
ZIt represents an activity 

lln which both cars and workers are 

-.«»•-
Z finished^ The enter channel 
W Stream of CAR messages repre-
13nfing c^s entering the car wash senting ca ^ ^ tfae 

fr°m on this'channel points in 
arr°W nns^e direction from the the opposit arrow 
flow of cars infac ^ 
indicates th ^ car wash 

roethSe line and cars are sent back 
in reply-

The remaining processes in 
Z merge, random and the graph, me g , sses. 

clock, are.^^aterleaves its two 
merge in time dependent 

•ssz Sis:-"*1-«•« 
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clock. Any processes which need 
to delay for a period of simulated 
time send HOLD messages to the 
clock and wait for an ALARM reply. 

The graph in Figure 1 itself 
could comprise part of a program 
to perform the simulation. To 
complete the program we need to 
define each of the processes in 
the graph. As we shall see in 
section 3, PARLOG can be used to 
define the graph and its constit
uent processes. This is because 
PARLOG programs have a natural 
interpretation in terms of net
works of communicating processes. 

2 OVERVIEW OF PART .nr. 

iosniP^RL°G ^Clark and Gregory 
984) is a parallel logic program

ming language featuring both and-
and or-parallelism. For the exam-
Pies in this paper we need to use 
only the and-parallel subset of 

PARLOG, which we shall briefly 
outline in this section. This 
language, based on Horn clauses, 
differs from PROLOG in two crucial 
respects: "don't care non-determi
nism" and the use of "modes". 
These features make possible the 
concurrent evaluation of conjoined 
relation calls, i.e. and-parallel-
ism, with stream communication 
between the calls. Each relation 
call is evaluated as a process, 
shared variables act as one-way 
communication channels along which 
messages are sent by incremental 
binding to lists. 

The techniques described in 
this paper could also be applied 
to Concurrent PROLOG (Shapiro 
1983). Concurrent PROLOG uses 
"read-only" variables instead of 
modes, so programs do not necessa
rily have a direct graphical 
interpretation. 

workers l^/ORKER (3) 
^W0RK£R(£) 
•WORKeRCO 

.Eigurei * 9 car wash simulation 
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2.1 Don't ear* non-det.ernlnlaa 

A PARLOG clause consists of a 
head atom, a guard conjunction and 
a body conjunction: 

G1,... ,Gn | ( 1 )  

The | separates the guard from the 
body and is omitted if m=0. The , 
is a parallel "and". I is also 
read as "and". 

In the evaluation of a rela
tion call r(t1,...,tk), all of the 
clauses for relation r will -be 
searched in parallel for a candid
ate clause. (1) is a candidate 
clause if the head H matches the 
call r(t1,...,tk) an! the guard 
G1,...,Qi succeeds, otherwise it 
is a non-candidate. If all clau
ses are non-candidates the call 
fails, otherwise one of the candi
dates is selected and the call is 
reduced to the substitution ins
tance of its body B1,...,Bn. 
There is no backtracking on the 
choice of candidate clause. We 
"don't care" which candidate 
clause is selected. In practice, 
the first one (chronologically) to 
be found is chosen. 

2.2 Modes 

Every PARLOG relation defini
tion is preceded by a mode decla
ration which states whether each 
argument is input (?) or output 
C). For example, the relation 
merge(x,y,z) in the mode to merge 
lists x and y to list z (lower 
case identifiers are variables): 

mode merge(?,?,"). 
merge([uix],y,[u|z]) :-

merge(x,y,z). 
merge(x,tv|y],[v!z]) :~ 

merge(x,y,z). 
merge([],y,y). 
merge(x,[],x). 

Concurrently evaluating rela 

tion calls communicate via shared 
variables; the modes impose a 
direction on this communication. 
In matching a relation call with 
the head of a clause, there might 
be an attempt to bind an input 
variable, i.e. a variable in an 
input argument of the call. In 
this case, the attempt to select 
that clause as a candidate will 
suspend until some producer fur
ther instantiates the variable, 
eventually becoming either a can -
idate or a non-candidate. If all 
clauses for a call are suspended, 
the call suspends. 

3 QTpni,/>TTON TN PARIQS 

3.1 fiygpinle 

Let us consider a simplified 
version of the car "ash problem 
described in section 1.3- Car 
arrive in the system at random 

>°°^ 

workers^" We wish to simulate the 
system for 100 minutes. 

This time the line of cars 
waiting to enter the car wash is a 
waiting , d FIF0 queue. 
simple th.s. charac-

sssvsr-" 2-
relation , interpreting 
ables respect^Iie ^ as a channel, 
& SharoduIer is the output argu-the producer i Input 
ment where v appears. 
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arguments in which v appears are 
consumers. Figure 2 is equivalent 
to the PARLOG query 

: eargen(arrive,random, clockl) 
carwash(arrive, 

[WORKER(1),W0RKER(2), 
WORKER(3)'workers], 

depart,workers,c!ock2). 
outside(depart), 
random(random), 
•erge(clockl, clock2,clock) 
clock(clock). 

The types of the variables in 
this query are shown in Table 1. 
. annotation marks variables 

which will be instantiated by the 
consumer, so that the type inc
ludes the direction of communica
tion. Each variable in the above 
query is a list of terms: the 
messages sent along the channel. 
The —annotated variables in Table 
1 are the replies. For examDle 
random is a list of- examPle, wetpvt./' -Llst of messages 
NEGEXP(a,rn) where rn is a vari
able to be bound to a number by 

the consumer of the message. This 
number will be drawn from a nega
tive exponential distribution with 
parameter a. 

workers: list of WOKHKid) 
arrive, depart: list of Ctf(id) 
random: Hat of *BGEIP(a,rn?) 
clockl, clook2, dock: 

list of B0L0(delay,alarm?) 
alarm: ALARH(tine) 
a, rn, delay, time: mmber 

Table 1 

We have already said tbat 
simulation processes send HOLD 
messages to the clock process in 
order to delay for a period of 
time. These messages are terns of 
the form HOLD (delay, alarm) in 
which delay is the length of the 
required delay in minutes, alara 
is a variable which will be bound 
by the clock, after the required 
time has elapsed, to the tern 
ALARM(time) where time is the 
current time. The sending process 

workers 
tV0RK5R(3) 

>W0RKER(|) 

carwash, 

/\ 
arri ve 

d-Cpar-t. >— 

ocKZ 

careen 
ran don] 
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simply waits for the alar* vari
able to be instantiated. 

The car gen definition illus
trates the use of time delay. Its 
use as a process is to generate a 
list of CAB messages beginning at 
time 0 and continuing at random 
length Intervals until 100 minutes 
has elapsed. Each time it gene
rates a CAB message, it also 3ends 
a HOLD message to the clock and a 
request for a random number. It 
then suspends until the ALARM 
reply arrives. The communication 
pattern is depicted in Figure 3 • 
The dotted lines show the communi
cation from clock to car gen and 
from random to clock. 

The definition of cargen 
follows. The first part of the 
definition acts as initialization. 

mode cargen( 
car gen( arrive, random, 

[HOLD(0,alarm) Iclock] ) 
cargenl (1 .alarm, arrive, random, 

clock). 

mode cargenl(?,?, , , )• 
cargenl (c, ALARM(time), 

[CAR(c)Iarrive], 
[NEGEXP(0.09,rn)irandom], 
[HQLD(rn,alarm)iclock]) :-

les3eq(time,100) ! 
cargenl (c+1,alarm,arrive, 

random,clock). 
cargenl (c, ALARM( time),[]»C ],(]) 

less(100,time) I. 

We can think of the car wash 
described earlier as comprising up 
to three concurrent "washing act
ivities, each involving a car and 
a worker. This is modelled by the 
carwash process which matches 
arriving cars with idle workers 
and starts a new wash process for 
each CAB, WORKER pair: 

mode carwash(?,?» > > )• 
carwash([CAR(x) iarrive], 

[WORKER(y)iinw],depart, 
outw,clock) :-

wash(CARCx) ,W0RKER(y) .departl, 
outwl,elockl) , 

carwash (arrive, inw, depart2, 
outw2,clock2), 

merge(departl ,depart2,depart), 
merge (outwl, outw2, outw) , 
meree(clock1 ,clock2, clock) . 
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The wash process starts by 
delaying for 10 minutes. When 
this period has elapsed, the part
icipating WORKER is sent back to 
the pool and the CAR is allowed to 
depart: 

mode wash(?,?,*,","). 
wash(CAH(x) .WORKER(y) .depart, outw 

[HOLD(10,alarm)]) :_ 
washl (CAR(x),WORKER(y),alarm, 

depart,outw). 

mode washl(?,?,?,","). 
washl(CAR(x),W0RKER(y), 

ALARM(time),[CAR(x)], 
[WORKER(y)]) . 

3 - 2  Example 

We now return to the problem 
described in section 1.3, in which 
waiting cars leave the line after 
^ttlnBrl°r 3 certain Period of 
time. The following PARLOG query 

S E S 7 " e r a p h  8 1 v «  
: gcargen(arrive,random, clock 1) 

dcarwa3h(enter, ' 
[WORKER(1)tWORKER(2) 
WORKER(3)'workers] 
departl,workers,clock?1 

escapeline(arrive,enter, ' 
depart2), 

merge (departl, departs, depart) 
outside(depart), 
randon(random), 
merge (cloekl, clock2, clock) 
elock(clock). ' 

The types are as follows, 
where different from those in 
Table 1: 

arrive, depart!, 
depart?, depart: 
enter: 
car: 
giveup: 

list of car 
list of car? 

CAR(<id,glTeup>) 
GIYHIP 

In the preceding example, a 
car was a passive object in the 
simulation and so could be repre
sented by a message which was a 
ground term. In some cases, how
ever, we need to simulate objects 
which have some "intelligence". 
In the present example a car Is no 
longer passive: it has to decide 
when to give up and exit from the 
line. To model this decision
making ability, we now represent 
each car by a message 
CAR(<c,giveup>) together with a 
process which has a channel giveup 
into the message, see Figure 1. 

The car process represents 
the "intelligence" of a car. It 
has a patience parameter: the 
maximum length of time it will 
wait in the line. At the end of 
this time it will instantiate its 
giveup argument to the term 
GIVEOP. 

/^<*rriVe 

CAR(< 1 ,5 lveuf \  > )  

iveup2 
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•ode oar(?,*,*). 
car( pa tience, giveup, 

[HOLD(patience,alar*)]) 
car 1(al arm, giveup). 

•ode car1(?,*). 
carl (ALABM( time) ,GITHJP) • 

Logically, the relation 
dcarvaah is Identical to carwash. 
The difference is that the first 
argument becomes output instead of 
Input (but it still has the same 
type: a list of CABs). Behaviour-
ally, the dcarvaah process gene
rates a list of variables on the 
enter channel. Each time it 
generates a variable message, it 
then waits for the variable to be 
instantiated to a CAB term by 
escapeline. 

mode dcarwash()• 
dcarwash( [ car! enter ], 

[WORKEH(y) |inw],depart, 
outw,clock) •— 

dcarwashl (car,WORKR(y),enter, 
inv, depart, outw, clock). 

A A A 
mode dcarwashl(?,?» ,'« » » " 
dcarwashl (CAH(x) ,W0RKER(y) 'er*®r,._ 

inw,depart,outw,clock) --
wash(CAR(x) ,W0RKKR(y) ,depart! , 

outwl,clockl), 
dcarwashl (enter, inw, depart2, 

outw2,clock2), 
merge(departl ,depart2,depart), 
merge (outwl, outw2, outw) , 
merge (clockl, clock2.doc )• 

dcarwashl(EHD,worker,[],inw,LJ,t » 
[])• 

The escapeline process has to 
luffer the incoming cars in or 

>f arrival while allowing any 01 
;he waiting cars to escape w 

Its giveup channel is ins an 
ated. escapeline must not only 
respond to the arrival o oaVe 
and the demand for a car ° 
but must also monitor the g 
channel of gyery. waiting car. 

situations, we propose the use of 
"intelligent data structures" 
(IDSs, see (Gregory 1980)). By an 
IDS we mean a dynamic network of 
processes in which each member of 
the data structure is held by a 
separate process, which we shall 
call a "slot". IDSs are particu
larly useful for data structures 
whose behaviour depends on chang
ing properties of their contents, 
as in the present example. 

We illustrate escapeline by 
the sequence of graphs in Figure 
c A slot process is created for 
each CAR message entering the line 
and exists until the car leave® 
,-ho line There are two ways for 

to leave, corresponding to a car to j.eav<=, 
the two clauses for slot. If the 

instant depart channel. 

- f • 
»o« f Z 0„ s r ^ r s r -  -

effect and will be ignored. 

The PARLOG definition of 
escapeline follows, along with 
slot and endslot. 

—"-Ear"• u 
escapelinev lj, 

endslot(enter). 

"ft r Sic',,enter,enter, 
slot(CAHv » „TOTnBvni. SlOtlr^(<c:GIVE0P»]). ^ 

[]) s-
car = CAH(x). 

To handle this and similar 
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mode endslot(?). 
endslot([ear ,'enter]) 

car = END. 

The clauses for slot and 
endslot assign a reply value to 
the input variable ear by a call 
of the form ear = END. if this 
value were to appear in place of 
car in the clause head, the clause 
would suspend indefinitely waiting 
for the variable to be instantiat
ed by another process, because it 
appears in an input argument. 

4 THE CI.OCK- ppnrfloc. 

As we have seen, the clock 
process is responsible for cont
rolling the timing of the simula
tion processes, it has two tasks-
to accept HOLD messages from pro-
cesses, and to issue ALARM replies 
at appropriate times. Let us see 
how the clock process might be 
implemented in PARLOG. 

Since we shall be simulating 
time, we shall keep the current 
simulated time as a local argument 
of the clock process. Another 
local argument is the chronologic
ally ordered list of alarm signals 
to be sent. This list is analog
ous to the event list in languages 
such as SIMULA. We shall imple
ment it as a list of pairs 
<eventtime,alarm> in which alars 
is a variable which is to be bound 
to the term ALASM(eventtime) when 
the current (simulated) time 
reaches eventtime. 

Our first attempt at defining 
clock is as follows: 

•ode clock(7). 
clock(clock) :-

clock1(0,[],clock). 
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•ode dock1(7,?,7)« 
cl OCk1(ti*B,l ],[))• 
elock1(ti»e, events, 

[ BOLD(delay, alar*) I clock J) 
plua(ti»e,delay,eventtime), 
ordlnaert(<eventtl*e ,&lar*>, 

events,evental), 
clock 1 (tl*e,eventsl .clock) . 

clock1(ti*e, , 
(<eventti»e, alarm> 1 events J, 
clock) :-

alar* = ALARM(eventti*e), 
clock 1 (eventtiae .events, clock ) . 

The second clause for clockl 
accepts and stores a new HOLD 
message, while the third updates 
the tine to the time of the next 
event and sends the alarm signa 
The problem with this is that 
there is no restriction on the use 
of the third clause. As e*P*ai 

in section 1, the clock shoul'3 

only update the time when al 
ulation processes are suspended, 
waiting for messages. 

We can solve this problem by 
assuming a primitive PARLOG r® a . 
tion deadlock. A call to deadlock 
will suspend until all simu a 

processes (i.e. processes o 
than the clock) are suspended, 
when it will succeed. We °h^g 

the third clause for clockl 

clock1(time, 1 
[ <eventtime, alar*>events j, 

clock) 
deadlock ! . 
alarm = ALARM(eventtime), 
clockl ( event time, events, elocx . 

We shall say more about 
deadlock primitive in section b-

5 ""fl "PTwr- REMARKS. 

5.1 r.r anhical _ajjaulaUas. 
programs 

Previous sections have out
lined the PARLOG approach to 
process interaction simulatio 

modelling. The aim has been to 
show how a network of communicat 
ingTprocesses can be used to model 
a system by process interactio ^ 
and how that graph can easily b 
realized as a PARLOG program. 

We intend to develop a gra-
.tiJfuSr Wt.rr.oe to PARLOO. 
This would allow the user to 
develop a program ®"aphically an 

automatically transffVhhe vra-
PARLOG program. In program 
phical program ia a 

using a differe , straight-

SSSTSS graphical front end 
would be useful in simulation 
programming, as we have seen. 

There are some special pur-
simulation systems to which 

P°Se, ^ user interfaces have 
graphical Qften based 

.ShSng where the 
o n ,  f  t h e  g r a p h  r e p r e s e n t  a c t -

Sfuef or 

e.6 tranel̂ tion Prooess to torn the 
graph into . real proAra.. 

5 > 2  s i a l i s i i i i s - a a £ L - t E a s i a £  

For simplicity we have ig
nored these two important aspects 
of simulation programs. 

Stati3of°oneaorbmore1Socess-
by the use various data and up-
63 Whif„Sn informed of events by 
date i often, the updating 
messages- J^o'include the cur-
messages nee ^ ̂  cl k 

rent time. current simulat-
process know messages must 
ed time, all P h the clock or 
either P^^oLss which then 
t0 some otb®^kPfor the current 
asks the clo » Either way, 
time (by a message). fco be 

the clock pr extra message 
heavily ^alternative is to 
keep the current time as a global 
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assertion which can be accessed by 
the statistics process but updated 
only by the clock. 

Tracing can be done similar
ly! by a process which displays 
messages informing of events. 

5 *3 Implementing the 

In section 4 we showed how 
the clock process could easily be 
implemented in PARLOG provided we 
have a primitive to detect when 
all simulation processes are sus
pended. In general, the provision 
of such a primitive is not easy: 
it implies having some meta-know-
ledge about the computation, if a 
PARLOG program is running on a 
parallel architecture, it is not 
clear how any one process can know 
whether all other processes are 
suspended. 

In a centralized implementa
tion of PARLOG, however, it is a 
simple matter to detect deadlock 
since the state of the whole 
evaluation is accessible (see 

e.g. the PROLOG implementation of 
Concurrent PROLOG given in 

(Shapiro 1983)). A deadlock pri
mitive (actually a variant there
of) is provided in a PARLOG system 
which we have implemented in 
PROLOG (Gregory 1983). This sys
tem has been used to test the 
simulation examples in this paper. 

5'^ .Compari snna 

An alternative approach to 
discrete event simulation in logic 

}Q8?)SCrTHed " (FUt° and Szeredi 
1982). This is T-PROLOG, an ext
ension of PROLOG to include faci
lities similar to those found in 
conventions! simulation languages. 
The attraction of this approach is 
the use of backtracking to auto
matically modify the model until 
the simulation exhibits some 
desired behaviour. 
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ABSTRACT 
Term-rewriting systems provide » para

digm of computation with particularly simple 
syntax and semantics. Rewrite systems may 
also be used to compute straightforwardly by 
simplifying terms. We show how the Knuth-
Betdix completion procedure may be used to 
interpret logic programs written as a set of 
sspivalence-preserving rewrite rules. We dis
cus an implementation of the system and 
potential advantages of our approach. 

1. INTRODUCTION 
Term-rewriting systems have been widely 

fed for computation in formula-manipulation 
and theorem-proving systems. Such a system 
may be used as a simple nondeterministic 
language possessing convenient mathematical 
Properties (Hoffman and O'Donnell [1982]). 
Programs are easy to understand, as they have 
'ery simple syntax and semantics, based on 
equalities, with no explicit control. 

In this paper we show how term-
rewriting systems may be used to compute in 
more general settings. The completion pro
cedure (Knuth and Bendix [1970]) was intro
duced as a means of deriving canonical term-
rewriting systems to serve as decision pro
cedures for given equational theories. The pro
cedure generates new rewrite rules to resolve 
ambiguities resulting from existing rules 'Bat 
overlap. We show how that procedure may be 
used to interpret topic programs (Kowalski 
11974]) written as a set of equivalence-
preserving rewrite rules. Prolog (Clocksin an 

» Tkii work was tupporled in part by the Nations 
Science Foundation under grnnt MCS 81-00831. 

•• While on leave at 
Department of Mathematics & Computer Science 
Bar-Ilan Univeraity 
Rimat-Gan 52100 
brad 

Mellish [1981]) is one successful attempt to 
combine the generality of predicate calculus 
with the efficiency of programming languages 
and heuristic approaches to problem solving. 
Unlike Prolog, our method is not restricted to 
Horn clauses and allows one to incorporate 
equality between terms in a natural way.1 We 
show how rewrite-rule methods may be 
extended to reason about programs in the gen
eral first order predicate calculus (a convenient 
and natural formalism for knowledge represen
tation), using specifications and domain 
knowledge, themselves expressed as rewrite 

rules. 
In the next section, we describe rewrite 

systems and discuss computation by 
simplification. The main section, Section 3 
shows how to use the completion procedure for 
computing in a rewrite-rule programming 
language. Section 4 describes some implemen
tation issues. We conclude with a discussion 
of how the procedure may also be used to ver
ify and synthesize recursive programs in that 
language. 

2. FUNCTIONAL PROGRAMMING 
A t e rm-rewriting (rewrite) system R over 

a set of terms T is a finite J oj-n^niles, 
each of the form *[^J ' k ,. c^b a 
are terms in T containing vianab esT. Suich a 
rule may be appbed - a term f^mj if a .. 

corresponding rig terms for vari-
after the same su s i of which ru]e 

ables has been m • eterministically 

we write 

non-Horn lopo 

mminir srheme. 
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t = ^ > t '  to indicate that a term t '  in T  is 
derivable from the term f in T by a single 
a p p l i c a t i o n  o f  s o m e  r u l e  i n  R  .  

For example, the following system 
differentiates an expression:2 

D x x  
D x a  

D x ( u +  u )  

D x ( u - v )  

D x ( - x i )  

D x ( u v )  

D A ~ )  
V  

Z)j(lnu) 

D x (u ' )  

1 
0 
D x u  +  D x v  
D x u - D x v  
- D x u  

v D x  u  +  u D x  v  

LD x U . j lD x V  

V  v '  

— D x  u  

v u " ~ 1 D x u +  u"(lnu ) D X  v  

where u and v  are variables of the rewrite sys
tem and match any term, x is the symbol with 
respect to which an expression is 
differentiated, and a is any atomic symbol 
o t h e r  t h a n  x .  

Thus, to find the second derivative of — 
2 

we use the above rules along with rules 
axiomatizing subtraction, addition, and 

exponentiation to reduce the term D X ( D X ~ ) .  
x  

Applying the rule for terms of the form — 
1 1 v 

yields D x (  D x  1  — D x x ) .  (The numerals 
1  x  

used are just abbreviations for their unary 
representation as sums of ones, e.g. 2 is short 
for 1+1.) Rewriting Dx 1 to 0 and succes
sively applying the rules u*0-»0 and 
0-u—1•-« (here unary - and subtraction are 
distinguished) yields the term Dx(——). Con-

• • *<>. 
tinuing to reduce, we finally get , which 

2s ' 
can be rewritten by no other rule. In this 
manner, rewrite rules have long been used as 
functional programs' for ad hoc computation 

in symbol manipulation systems (e.g. Hearn 
[1971]). We note that rewrite systems have 
the full computational power of Turing 
machines (Huet and Lankford [1978]). 

2.1. Termination 

A system R  is said to t e r m i n a t e  for a set 
of terms T if there is no infinite derivation 
t1^>t2^>t3=^> - of terms f,- in T. The 

standard method of demonstrating termination 
is to use monotonic well-founded orderings on 
terms. A survey of orderings useful for prov
ing termination may be found in Dersbowitz 
[1983], 

2.2. Superposition 
Let /[ffj-»r[fr] and /'be two 

(not ne c essarily different) rules in R whose 
variables ti and V have been renamed, if 
necessary, so that they are distinct. We say 
that / overlaps /', if /[c] contains a (nonvari-
able) subterm s embedded in some context 
' t° indicate this we write 
'1®"] = 'MI0*)—such that there is a (most 
general) substitution W for the variables u and 
IT for which s[u\ = /'[*]. If / overlaps /', 
then the overlapped term /[<y] can be rewritten 
to either r [a] or t [r' ][oj. These two possibili
ties form a critical pair. During the comple
tion algorithm such pairs become new rules, 
oriented with respect to ordering >. 

2.3. Associativity and Commutativity 
Associativity and commutativity of func

tions cannot be handled by including axioms 
for those properties as rules. Instead, special 
unification algorithms are used to take associa
tivity and commutativity into account. 

As an example, consider the following 
canonical rewrite system for Boolean algebra:3 

tiVv 
ti Dv 
true 

w A false 
tiA u 

ti ® false 
ti © u 

( t i  0 u)A w  

ti © true 
tiA v© u © v  
tiA t; © ti © true 
ti 
false 
ti 
u 
false 
uA w  ©  v  A t v  

where ~ is 'not', A is 'and', V is 'inclusive-
°r » © is 'exclusive-or', and is 'implies'. 
Both A and © are implicitly associative and 
commutative. That means, for example, that 
t h e  r u l e  t i A t i — a p p l i e d  t o  ( p A q ) A p  

yields p\q. Since these functions are associa
tive, there is no significance to the parenthesi-
zation, and accordingly terms are 'flattened' 
by removing embeddings of associative func
tions symbols, e.g. (pAq)Ap is written 
P A  q A p .  

2Knuth [1988], p. 337. 
'Watts and Cohen [1980], Hsiang [1982]. 
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Hu iko system » sound (» « frm* are 
millet oulv to equal Wf«») '°Uowt ,roro , 
set tkxl each ml* •» » pwpoMtloMl 
wsskact ud A »«d © «* «• '«l 

fee ltd commutative The termination of 
Iki system cm be shown by »«n»M methods 
described is Dershowiu. et *1 (19831. 

Whtt, at ia thil exxmpl*. some of the 
tactions on the left-hand sides t or I are 
associative tod commutative. then an 
asocial ive-commut at i*e unification 
(Liraey tad Stekmaan \lV!t\. Slickel \\WU, 
Fii»II984l) is used to Bod * such that 
ud I'lff) overlap The definitiou of 'overlap 
most also be extended U> include cases in 
thick two rules have overlapping subterms of 
the same tssociative-commutative aym o 
(Lukford tnd BaUantyne (Aug. 19771, Peter-
sos tod Slickel 11981|). To do this paeudo-
rules /(!,«')-/('.«') considered for 
each role whose left-hand side » has an 
associative-commutative outermost symbo J 
All such critical pairs must reduce to the same 
term up to permutation of arguments o 
associative-commutative symbols. 

3. LOGIC PROGRAMS 

Rewrite systems may be used as 'l°R'« 
ptograms' (Kowlaski (19741), in ad ition 
their straightforward use for computation y 
rewriting. For example, the following 
Prolog-like rewrite program for appending 

: w = app(z U ,v 
u = opp(nil,tt 
i' —app( t',niT lLL 

ut = app( 
true 
true 

u,u)| 

le completion procedure, given this pTO%r:i™_ 
e ^ true for equality, and the 

ial rule 

> = «pp(«-lb lc nnll,d l* nill) -

roeratcs the computation 
m = app(6-[c nil],d-[e nil]) —* <*n'(a 

uj = app(c-nil,d [e nil]) -

w=app (nil, d -[e -nUJ) -
w=d \e nil] -• ans(o [6"[c ifll) 

a„.(a l6 lc ld-le nilllll) - true" 

The programming P^'^ogtamming 
ow yields a Pr0'0*"1 being that 
guage, the main differenc 
vrite rule, are equivalences rather ^ ̂  
plications in Horn-clause form, an 

Knuth-Bendix 119701 completion procedure 

Hoeeer |198ll suggested the use 

e q u i v D C "  jJj^^ution)'theorem-trover for 
(stmight-'lne) computation w. suggested by 
Green [19691 and Waldinger 11969). 

Consider the following program for com
puting the quotient and remainder of two 

integers: 

d i v ( u +  V +  1 . " +  1 ' ? +  

div(u ,v+ 1 »9>r) 
d i v(v,u+ tp+l.O.u) - true 

div( U+ «+ 1." + 11 '1 '0 
div(u ,« + 1,0,0 

di'v(v+ 1,«+1,9+ 1'0 
</,V(0,p+ 1,9,0 v 

. j_ 1 1 rl —• dlP(0,P+ 1,0,r) 

' ' \  1 + 1  0  -  M « . 1 . 9 ' 0  

fit Vlf - <M0,1,9,0 
A£(V,1,1.0 - ffM 

'* (tl ,tl+ lyOy11) ^ 
where + » associativ^and^commu^ ^ 

first rule is the m*m . the third simplifies 
ia the main base ' special cases. To 
sums; the remainder remainder of two 

"T m ahLdqU6 with this system, the rule 
numbers a ana o 

div(a,b,q,r) - <»»(?>O 
• .w a are r are the answer 

: r% .»• 

J) - «"•' ,, „ 

the answer values c and d for 9 
containing the answe 
and r, respectively-

To compute with general, the 

procedure gets as inputa * and a program to 

a finite set E of ^"^.founded ordering 
compute a ^^utain any setofsound 
>. Initially, H may d critical pairs 
reductions, all of whose "*1^^ critical 
are in the input set E . (  ̂  Qf which have input set E l of which have 

rvUut'it p"i ™ 

St"-'®"" (S-1 
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for details.) 

If the completion procedure terminates 
without failure (i.e. it was able to orient each 
newly formed rule), then it returns as output a 
canonical system R for E. Furthermore, it 
may be that a particular choice of well-
founded ordering > precludes finding a canon
ical system. (This separation between axioms 
and ordering corresponds to the 
competence/performance dichotomy in pro
gramming advocated by Pratt (1977) and oth
ers.) The procedure may also go on generating 
an infinite number of new rules without ever 
finding a canonical system or aborting In that 
case, we say that the procedure loop,. 

Theorem 1 (Huet (1981|) . An equa-
Hon M—N is valid in an equational 
theory E, if and only if the completion 
procedure—given the equations E — 
eventually will have generated enough 
rules for M and N to reduce to the 
ident,col term. This, provided that 
tne procedure does not abort. 

We assume that this result also applies 

(FSa°g'̂ 84̂  

use the extensions of the KnutT-Bend'' 

andUreB^l^Utapaer (^kford 

pmrr AT Stickel (1981J). ' •  Pe'erson and 

3.2. Computing 

the form p[T,f\-+ani (-r\ »? rU ar* °* 
ling term containingZSt F " <h' ^ 
«ble ground terms) x and !"*S ' ' '"edn-

representing operations as tuucT"31 af>Proach-
mg the rule x=x T ors and includ-
ment. We define a reu^Ue * efcet ass'Kn-

reu"nle program to be a 

[USS].411" " aiD t0 th« literal- of Gree, 

finite set of rewrite rules for which the comple
tion procedure may be applied hnenWy. That 
is. the goal rule and rules derived from it are 
only overlapped with the rules of the program. 
Derived rules are never overlapped with them
selves. nor are program rules overlapped with 
themselves. 

Let P (T,T) be a predicate on ground 
terms T and T. A rewrite program R with 
calling sequence p [r.rj b said to cemptlr the 
output predicate P(T,T). if, gives a goal 
p[T,F]-»nn#(F) for ground terms J". the com
pletion procedure will generate a rule 
ane(f)—-true^ such that P(r.O holds (pro
viding such a t exists), without aborting The 
ordering supplied to the procedure should 
make true less than ana terms and tru 
terms less than any other term 

The following theorem provides a 
sufficient, but not necessary, condition for a 
rewrite system to act as a program ia the 
above sense. 

Theorem 2 . A reurite prsgrem R 
computes an output predicate P if R 
it correct with reesert to true p«"' 
input terms p(r.f| and the «*»<««' 
true. 

What thin theorem means b that if the rewnte 
system evaluates grosod terms of lb' 'OTnl 

p [ r , r j  t o  t r u e  w h e n e v e r  P{T, t )  
ndding a goal rule p(r.rj-»ani(f1 «® *• 
where T are the input values and T arc vari
ables, and completing b guaranteed to gen
erate a rule of the form «na(i)-troes 

that P(r,t). if such a I exists 
The division program computes correctly 

since it reduces grouud calling terms of lb' 
form dir(u,e+ l.q.r) to true whenevrr the 
numerals q and r are the quotient » 
remainder, respectively, of the Minerals u »n 

(the nontero) r+ I. For example, to romp"1' 
the quotient and remainder of 7 and 3 t c 
rule 

A'r(7,3,f,r) —» nni(f.f) 

is added. Completion generates 

dtr(<4,3,f,r) -» eiu(f+l.f) 

by overlapping the goal rule with the if* P'0-

gram rule 

dir(u + e+ l,e+ l,f+ Lr) "* 
*>(«,»+ 

05111 g the same program rule once more gi,t5 
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4iv(l,3,9,r) —• aru(g+ 2,r); 

overlapping this with the second program rule 
&>(«,« + tn + 1,0,u)—»true and applying 
the simplification x+0—»z yields the answer 
rale 

ana(2,1) -• true. 

The same program may be used to com
pote other arguments of div. For example, to 
compote the product of 3 and 2, one adds the 
goal 

<fit'(u ,3,2,0) -» aru(u). 

Completion generates 

dt'v( u ,3,1,0) —» ans 
ifii'ju ,3,0,0) -» ana 

an«(6) —• true. 

Although any Prolog statement may be 
directly translated to a single rewrite rule, the 
converse is not the case. In general, a Prolog 
statement of the form 

A  .  .  .  f  B n  

(meaning that A  is implied by B j through 
Bn) corresponds to the rule 

MB,A • • • A B, - B,A • •• ABn. 

Prolog axioms A «— correspond to A  —•true 
and goals «— B to B—'false. It is not difficult 
to see that the linear completion procedure 
will not abort for any program that consists of 
rules with only conjunctions of literals (or 
true/false) on both sides. 

The following rewrite-program specifies 
an insertion sort: 

t o r t  (nil) —» nil 
sorf(znil) —• z-nil 

r = s o r f ( z - u ) A y = « < " ' ' ( u ) A  z  =  i n t ( z , y )  
— •  z = i n t  ( z , y ) A  y = i o r t ( u  )  

ine(z,nil) —* z-nil 
z-[yz]=inz(z,y-z)Az<y z l—y, 

yz=irw(z,y u)A y A z=m«(z,u) 
«<zA z = i'ns(z,») 

The function inj(y,z) returns the list result-
ing from insertion of y in its proper p ace 1 

sorted list z with respect to the primi lve 
predicate can be defined by t e ru 
ti<ti —• true and u<u + v  * rue 

The goal rule 

z=«orf(3-[l-[2nil]]) -  a n t ( z )  

overlaps with the third rule to produce 

s = ins(3,y)A y = sorf(l-(2 nil]) —* 

onz(z)A z—int(3,y)A y=Jorf(l-[2nil]). 

The left-hand side of this rule does not unify 
with the left-hand side of any of the program 
rules. When we consider the extension 

z = sorf(zu)Ay=«orf(u)Az = ins(*,y)Auj 

_• y = 3 OF <(u)Az=i'r™(z>y)AtP 

of the third rule, however, we get the overlap 

z = ins(3,y)A y=ins(l,to)A «®=*or '(2-nil) 

— ans (z)A z=ins (3,y)A y=ins (l,to)A 
y=«orf(l[2nil])Au'=zorf(2nil). 

Continuing in this fashion, superposing pro
gram rules with the goal rule, we get 

ans(l[2[3nil]]) — true. 

That is, l-[2 [3 nil]] is the sorted version of 
3-[l -[2-nil]]-

3.3. Combining Programming Modes 
The two uses of rewrite systems, for 

straightforward computation by simplification 
and for computation by completion, may be 
combined in a single program If we consider 
the differentiation programi of the^section 2 we 
see that it can also be used to integrate. Thus, 
to compute the integral of z , we add the rule 

z 2 = D x y  - »  a n s ( y ) ,  

along with rules for -, exponentiation, *, and 
+ (The last two are associative-commutative 
operators and need the related unification 
algorithm.) Completion generates 

! « = ( £ » , « +  D z v )  -  o n s ( u + « )  

x l = D x u  — ans(u+ o) 

z * = ( j , D x z  +  z D x y )  -  o n t ( y z +  « )  

z * = c D x z  - *  a n s ( c z +  a )  

x * = c ( ( v +  l)u * D X » +  u " + 1 \ n u D x ( v +  1)+ D 

<ms(c«"+1+«) 

x 2 = c ( ( k +  1 ) « * £ > , « )  —  a"«(co  +  " >  

z«=c(Jfc+l)z* - °) 
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ans( 1 + 1 
k +  1  

+ a 

ans(— z5+ a) —• true. 

By performing simplifications whenever possi
ble, the number of new superpositions is 
greatly reduced. 

*• IMPLEMENTATION 
TeRSe (Hsiang and Josephson [1983]) is 

a rewrite rule theorem prover that uses the 
Boolean algebra system of section 2.3 as the 
basis for a complete refutational strategy for 
first order theory. We have implemented the 
rewrite program paradigm within TeRSe for 
rules containing only A (this includes all 
Horn-clauses). We have tailored the control 
mechanism to linear completion and are using 
the following improvements to gain efficiency 
within the system. 

4.1. Program Control 

Since Horn clauses give rise to rules of 
the form 

AAB,A • • • A Bn -» Bx/\ - - • A Bn 

we always want to unify the literal A (other
wise, we get a trivial rule containing the 
answer predicate on both sides). There are 
other constraints on which arguments to A eet 
unified which lead to similar speedups. 

4.2. Redundant Rewriting 

Rewriting can be made more efficient by 
keeping trade of which rules haye been applied 
at which levels. Since the effect of a rewrite 
only changes a local portion of the term bv 
maintaining a list of occurences, redundant 
unifications can be eliminated.5 Control of this 
sort corresponds to the tight 'inner-loop' of 
Prolog. y 

4.3. Assertions about Equality 

Unification is not an optimal way for 
dealing with arithmetic operators. For exam
ple, in trying to bind the term 2+3 (reallv 

fiP-iiVl)fWit!l 4 (1+ 1+ 1+ !)' the result 
. will be found only after invocation of the 

associative-commutative unification for the 
operator + . To take advantage of the seman-
tic meaning of the symbol + requires having 

sCf. methods in Nelson and Oppen (lOSOl for 
congruence closure. 1 ' 

nunt) aooui equality z 
feld [1983J. Thus, knowing that 
x+ a=b O z=b-a, where - is interpreted 
in the natural sense, obviates the need for 
unification at the symbol + . 

5. DISCUSSION 
We have illustrated how rewrite rules are 

used for general-purpose computation. Each 
rule is an equality between terms or 
equivalence between formulas. The result is a 
nondeterministic programming language that 
has all the advantages of logic programs, 
including clean syntax, well-understood seman
tics, and the ability to use the same language 
(and not just Horn-clauses) for both 
specification and computation. Rewrite pro
grams have the additional advantage of allow
ing rules expressing equality between terms to 
e incorporated. We have described how the 

TeRSe environment is being used to acheive 
an efficient implementation of the program
ming methodology. 

Furthermore, the full completion pro
cedure may be used to "compile" a complete 
program given a partial definition. More gen-
eraHy, completion—like other theorem -proving 
methods can be applied to the t«~-: of 
automatic rewrite-program synthesis from 
specifications. The completion procedure itself 

oes the folding' (that is, the introduction of 
recursive calls) based upon the axiomatization 
o the problem domain. Specifications are 
expressed in the same language as programs, 
with the Boolean algebra system providi-j the 
necessary logical capability. (Compare the 
methodologies 0f Burstall and Darlington 
[1977 
[1979 
[1981 

Clark and Tarnlund [1977J, Kowalski 
Manna and Waldinger [1980], Clark 
and Hogger (1981).) If the completion 

procedure is given the right ordering then it 
wi nd a program, if a program exists, that 
oes not require auxiliary definitions. When 

auxi lary functions are needed, their definition 
may be supplied by the user. 

Assume that we wish to synthesize a pro
gram for some predicate P(T,T), and are 
given an axiomatization E of the problem 
omam and a set H of equations specifying 

the required properties of P. We can start the 
completion procedure off with E and H and 
run it until a program R is generated that 
computes the specification P. The monotonic 
we - ounded ordering supplied to the comple-
lon procedure should ensure that terms 
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tauuiii 'specification' symbols are I""*' 
this corresponding terms containing 1 ' 
drisrd toil symbol. which in torn should be 
jmter Uii true The particular choice of 
admit **. of course, aflect the program 
derived Give# so appropriate ordering, me 
compleiton procedure will find » program 
meeting the specifications, unless it aborts. n 
> similar manner, the completion procr ure 
msy be used to eerily program correctors# fsee 
Dmkowiu |Dec. 19821). 
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ABSTRACT 

A general evaluation method 
for logic programs is discussed 
based on the use of hash or asso
ciative memories for the binding 
environment and the database. 
The method is extension of that 
employed in H-Prolog system. 
Applications of the method are 
discussed both for serial depth-
first evaluation and for heuristic 
(best-first) concurrent evalua
tion. In the heuristic evaluation, 
the processes share the common 
memories for the environments an 
the database. The serial heuris
tic evaluation is implemented to 
examine the usefulness of the 
method. Systems employing this 
method require no garbage collec 
tion cycle for the working memo 
ries and the databases, and can 
dynamically distinguish local 
variables from global variables 
economize the memory usage. 

1 INTRODUCTION 

In this paper we present a 
general evaluation method for 
logic programs based on the us ̂  
either hash technique or associ 
five (or content-addressable: CM 
memories. The method is concerne 

with the design both of en^ f 

ments to represent the sta 
variables and of the data a 
which contains the clauses 

in addition to nondeterminism 

.. in oth.r 

features of logic program execu 
tion make the environments mor 

complicated. 

(2) The memory space occupied 

by some ̂ ^JlLmeTaitlr deter

ministic application of a clause. 

Furthermore^we require mul

tiple en^r°" e evaluation by 
evaluation, • t_£irst) search, 
heuristic ( heuristic evalua-
including or 
tion as we evaluation. A clas-
AND-parallei program 

eva^uati®*1 shown in ***. -

evaluation, mos J working 

multiple stacK 982r Mellish 
data [Bruynooghe Qn the other 
1981, warren 197 W ̂  & bagic 

hand, the8 multiple environ-
mean to realitouristic and/or 
ments for the " is nGt 

parallel evaluatio^ ̂  ̂ 

difficult for Y data to rea
ls the main enVironments by 
lize the m

utt^t " The asso-

"association 1 ;ver< require 
ciation lists, 
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serial inefficient accesses and 
garbage collection to reclaim the 
garbage list cells. 

A simple method to realize 
the multiple environments is to 
copy an environment at each new 
branch of the evaluation process. 
A drawback of this method is its 
inefficiency in memory usage and 
computation time due to copy ope
rations. Another drawback is that 
the common variables cannot be 
used as a mean for communication 
between the AND—parallel concur
rent processes as described in 
[Clark and Gregory 1981, Shapiro 
1983]. 

Our method is extension of 
that employed in H-Prolog system 
[Nakamura 1983] we are developing. 
The H-Prolog system uses two hash 
memories, one of which is the 
working storage for the bindings 
based on structure sharing [Boyer 
and Moore 1972], The other hash 
memory stores a part of data in 
the database for efficient compa
rison and access of the data: the 
clauses are represented by Lisp
like lists and every sublist with
out variables is stored in a hash 
memory as a "monocopy list" 
introduced by Goto [Goto 1974], 

The hash memory also contains the 
indices of the clause heads for 
efficient selection of applicable 
clauses to goals. 

2 A GENERAL MODEL OF LOGIC 
PROGRAM EVALUATION 

Informally, an evaluation is 
a process to derive the empty goal 
list from an initial goal list 
(i.e., a question) and a program 
by linear input resolution [Kowal-
ski 1979]. A pr pgr am is a sequen
ce of clauses of the form either 

A. 
A :- B1,...,Bn., 

where A and B's are predicate 
terms, A goal list is a list of 
predicate terms, and represents a 
clause of negative literals. 

2-1 Resolution 

For a goal list L and a set 
(called an environment) E of 
bindings, let L:E represent the 
instance of L which is obtained by 
substituting its variables accor
ding to E. By resolution (or 
reduction) for a goal list L = 
<Gl'..-'Gn) on a program P, a new 
goal list 

depth-first serial 
(standard Prolog) 

heuristic 
(best-first) 

serial (generally, OR-parallel) 

OR-parallel 

parallel 

AND-parallel 

Figure 1. A Classification of Logic 
Program Evaluation 
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I G . , . . . , G ,  « A ^ #  

«!•! Gn' 

lied a reaolvent of L In P t* 
rived, if unification of o goal 

in L succeeds with a head of a 
lause G «- Aj,...#A in P and 
merates a set E of bindings-
f the clause is a unit clause, 
tie subsequence Aj«.,*«An i® 
egarded as empty.) Note that 
he variables in the clause should 
e renamed before each 
nification. 

t.2 Join Operation forANP-
Parallel Evaluation 

Two or more goal lists are 
said to be AMD-branching, if they 
are derived from a goal list L by 
the resolutions applied to dif e 

rent goals in h. It is necessary 
for AND-paral lei evaluation to 
rejoin the AND-branching goal 
lists and generate a new goal ^ 
list, if they are "consistent . 
More formally, two AND-branching 
9oal lists 

Wi 
3i+l' 

<Gi-l'Al'*"",Am' I- \ . T .,Gn):E 

Gj+1'*""'Gn^ sF* 

:  j ) ,  c a n  b e  j o i n e d  i n t o  t h e  

processors. 

2.3 computation Graphs 

We represent an evaluation of 
initial goal list (a question) 

T £ - directed graph called a 

imputation araph such that: 

(D ̂ ery node has a label, 

which is a goal list-
of the root is LQ. 

If two or more edges enter 
2m the" represent the join 

3 erft'ion Otherwise, an edge 
represents a unification. 

v v. vias no leaving edge 
A node which terminal 
is called a tHgnal- ̂  label is 
is a succes failure node, 
an empty llSt' &n e^I^tTon has 
otherwise. computation 
no j°in °pe"ee ' In this case 
graph is a he root to a 

sequence. 

. „ computation graphs for 
Example coinp finding common 
evaluations of are shown 

elements 1 d 3 The program is 

^redefinition of membership 

relation: 

(G1,...,Gi_1,A1» 
n .fi . . .E 

,Plm' 

Gi+1 ••'
Gj-l'Bl'*"'Bk' 

Gj+1' 'Gn> E O F ,  

oth E and F do not contain 
ings for a common variab 
, non-unif iable value ter 
; operation can easily e 
inded to the operatio ,lsts. 
n two AND-branching g°a ̂  

ause the number o s large, 
nching goal lists may be 
is essential in the assign a 
rallel evaluation to 

m(X,[xl_n-

m(x,[y|Ll) 

3 coNTESiHEHSHSi 

va section we discuss 
in this se the 

the working data based 

structure sharing. 

3.1 contexts 

Our method uses ̂values 

"J j, tw 
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fb.cj) 

t b{X, |b,cj) 

Figure 2. 

Evaluation^" Finer ^ " Serial or OR-Paralle 
°f Flnd*n9 Common Elements 

m(X'[a'bJ) & m(x,[b,c]) 

inconsistent 

Mb, fbj) 

OR-branching 

m(X,(a,b]) & 
n>(X,(c]) 

join operation 

m(b, []) 
fail 

0 
success(X->b) 

m(a,[]) 
fail 

m(b, [c]) 

m (b, [ ]) 
fail 

m(X,[bJ) & 
m(X,[J) 
fail 

3- \G„ph 
° Finding Common Elements AND_Parallel Evaluation 
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beginning of each resolution. A 
context is used as a label not 
only of a resolution but also of 
the clause whose application 
begins with the resolution. 
Every variable in the clause is 
referred to with the context of 
the clause. 

Let (s,t) denote the reso
lution of a goal with the context 
s and the clause with the context 
t, which is generated by this 
resolution. An application of a 
clause A with a con
text t to a goal with the context 
s consists of the resolutions 

( s . t ) , ( t , i 1 ) , ( t , i 2 ) , . . . , ( t , i m )  .  

The application is deterministic, 
if there is no other candidate 
clause in all the resolutions 
except (s,t) of the application. 

The contexts are partially 
ordered: we write i j, if and 
only if either i = j or the reso
lution labelled i is followed by 
the resolution labelled j in a 
path of the computation graph. 
For any context c, we have 0 <_ c, 
where 0 is the initial context. 

3.2 Bindings 

We represent a binding by 

vi ">k tj' 

where i, j, and k are contexts 
with i < k and j <_ k. This means 
that by a resolution labelled k a 
variable V with context i is 
instantiated to a source subterm 
(or a source sub list) t whose 
variables have a context j. The 
represents a renamed variable, and 
the t • an instance of t by struc
ture sharing. Practically, V and 
t are the pointers to the variable 
and the source term, respectively. 

3.3 Storage for the Contexts 
and Bindings 

We assign one of the four 
states in Table 1 to each context. 
The states change as shown in 
Figure 4. The state R is assigned 
to a context when all the evalua
tion paths following the goal list 
with this context are found to 
have the failure terminals. The 
state N changes to D when the cut 
operator is encountered in a 
serial application of a clause. 

The system holds the state 
information in an array or a hash 
or CA memory called the context 
table. In the case the hash or CA 
memory is used, it only contains 
context-state pairs with the state 
either D, N, or T and deletes the 
pair when the state changes to R. 

Every binding Vi~>k tj is 
stored in the hash or CA memory 
and accessed by its keys V andI i. 
The system considers the variable 
V• to be uninstantiated, if there 
is no binding for V and i in the 
memory or the context k in its 
binding is in the state R. If the 
system employs the CA memory and 
can access the binding by the 
context k, it can delete the bin
ding when the application labelled 
k fails. The system employing the 
hash memory can detect the unused 
binding in the hashing or re
hashing process and reuse its 
place for storing a new binding. 

3.4 Links 

In either serial or OR-
parallel systems in which the 
left-most goals in goal lists are 
evaluated first, a goal list can 
be represented by a set of source 
sublists of goals and linkage 
information, as the instances of 
terms by source terms and the 
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G t- with a context i is 
applied to G^ in a goal list 
(Glf...,Gn) with a context j. We 
represent the linkage information 
by the data of the form 

Oi ->i ̂ G2' 'Gn*j' 

where (G2,...,Gn) denotes the 
pointer to the sublist. We call 
these data the links. 

4 LOCAL AND GLOBAL VARIABLES 

Suppose that a binding Vi ->k 
tj with i £ j and i ̂  j has been 
generated. We say that a variable 

with a context is global, if it 
occurs in t• or its binding is 
used to construct the instance of 
tj. The variable is local if it is 
not global. (Note that this defi
nition is different from those in 
[Warren 1978, and Mellish 1980], 
in which local and global variab
les are determined statically.) 

After deterministic applica
tion of a clause with a context j 
is terminated, i.e. the state T 
has been assigned to the context 
j, the system does not refer to 
the bindings for the local variab
les with the context j. Therefore 

state of ^context application of the clause 

D deterministic, in progress 

N n°ndeterministic 

T deterministic, terminated 

R proved to be failure 

Table 1. states of the Contexts 

Figure 4. Possible State Changes 
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the places of these bindings in 
the memory can be reused to store 
another working data for economy 
of the memory, as those of bin
dings with the reset contexts. 

To separate the local variab
les from the global variables, we 
attach one-bit information to each 
binding for indicating whether its 
variable is local or global. 
Because variables in a term which 
is instantiated to a global varia
ble later are also global, unin-
stantiated global variables are 
also required to have this infor
mation. Therefore, we store 
special "bindings" of the form 

V. ->^ uninstantiated. 

for every uninstantiated global 
variable V^ 

The links are treated as the 
bindings for local variables. 

SERIAL DEPTH-FIRST EVALUATION 

Most Prolog systems employ 
serial depth-first search to fin 
successful evaluation sequen 
These systems backtrack to t e 
ancestor node whenever they 
that a goal list is failure The 
state R (reset) is assigned to a 
context c, when the effect of 
application of the clausewith 
context c is deleted in the ba ic 
tracking. The system can store 
the bindings and the lin s 
hash memory, and refer to a 
ding or a link by its keys. 

In the depth-first is 

tion, the ordering of contexts is 
necessary only to determine whe_ 
ther a variable is local or gl° 
bal. We can simply assign the^ 
integer n to an n-th co"^^ 
the ordering, sin=e two con-
only tests the °rd®r sequence, 
texts in an evaluati 

HEURISTIC EVALUATION 

Our model of the heuristic 
evaluation is illustrated in 
Figure 5. The processes or pro
cessors share the common associa
tive memories for the environ
ments, the database, and the con
text table, to execute the reso 
lution and the join operations. 
The control unit maintains the set 
of goal lists to be evaluated, and 
allocates the operations to the 

processors• 

In the heuristic, either 
serial or parallel evaluation, the 
system may store more than one 
binding (or link, in the case of 
serial or OR-parallel evaluation) 
with the same keys. A binding o 
i cnk is valid only in the evalua-
tioi paths-leaving the resolution 
which generates it. More 
formally, a binding 

->,. t k "j 

is valid in a resolution with a 

l abe 1 h, if and only - a • label n' illustrated in 
(This relation is ^ ̂  
Figure 6)- T t<> test the 

some efficie ^ ̂ the 

relation — , . ^ £0r given X, 
valid binding or link for g 

i, and k. 

A method to determine the 
."order is to assign binary 

P K and H called "position 
vectors K and H^ ̂  respectively, 
vectors to that 
for any contexts k and^ ̂  

k £ h, if an o bitwise implica-
the operator ̂  illuBtrates an 

tion. Fl<fre he position vectors 
assignmen ^ AND-parallel 
to the contexts i 
computation grap 
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xgure 5. a Model of the Concurrent Evaluation 

J* 
<*» vi->k 

Ol Vi->. \ 

A 
Figure 6. 

Bind^iUŜ r̂ t̂ °n °f Relation such that the Binding (a, is Valid at the 
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001000 

000101 001 om -
001001 000110 001010 

011°01 101001 

Figure 7 * 

to an axT^!In̂ "t °f the Position Vectors 
an AND—OR-oar;,! re"u" Parallel computation graph 
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Fioure 8 An Assignment of the Binary Strings Figure 8. An As computation graph 

In serial heuristic evalua
tion and OR-parallel evaluation, 
we can employ another method. For 
any contexts k and h, we assign 
binary strings K and H to k and h, 
respectively, such that k £ h i£ 
and only if K is a rightmost sub
string of H. An assignment of the 
binary strings to an OR-parallel 
computation graph is shown in 
Figure 8. 

(1) The system written in the C 
language implicitly uses only one 
stack. This makes the program 
considerably simple. 

(2) Local variables are dynami 
cally distinguished from global 
variables. Hence, no garbage col 
lection cycle is required for the 
memory storing binding 
information. 

If we can use an appropriate 
associative memory, the valid bin 
ding or link X, ->k is deter
mined for X, i, and h in a single 

A. £ N KU 

(3) Tail recursion (last call) 
optimization [Warren 1980 and 
Bruynooghe 1982] is easily 

or small number of, operations by 
using the above method. On the 
other hand, the system using a 
hash memory requires to search t e 
binding with k h for a set o 
bindings or links with the same 
keys X and i. 

IMPLEMENTATION 

The serial depth-first 
evaluation method is implemente 
in the H-Prolog interpreter 
[Nakamura 1983]. The H-Prolog 
system has been instal led on se 
ral machines including large sc^_ 
and micro computers. Some a va 
tages of our method compared to 
systems employing the multip e 
stacks are: 

The serial heuristic evalua-
,h.j is implemented in C 

tirHmprolog to examine the use-
, /of the method. The system 

fU ntains a Jueue of goal lists 
m3rh their contexts to be eva-

A gince each goal list is 
1Ua /of the source goal lists 
composed o ^ links> the actual 
by means of ^ are the 
elements * ^ the first 
P3irS Lai lists and their con
source goal i in the queue 

According to an estima-
are Of the goal lists, Which 

order of the contexts. 

/ 
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THE HASH MEMORY FOR THE 
DATABASE 

We use another hash memory in 
the H-Prolog system to store the 
monocopy lists which represent the 
subterms without variables. A 
monocopy list is the binary list 
structure in which the location of 
each cell (or atom header) is 
determined by the contents of the 
cell (or the print name of the 
atom), and two pointers in a cell 
link to monocopy lists. Figure 9 
illustrates the data structure of 
terms in the H-Prolog. Some advan
tages of this methods are: 

U) In the unification, equali
ty of two subterms without a 
variable can be determined in a 
single step. 

store SyStem can efficiently 
store a large quantity of data 
provided that they can be ' 
represented as lists in which 
identical sublists occur frequen-

sentence's ParSe<^ nat^al language 

ctions.and subprograms to the 

(4) The monocopy lists can be 
used as the indices which repre
sent the patterns of the clause 
heads to efficiently select the 
applicable clauses to goals. 

We implemented the capability 
to reclaim garbage cells of the 
monocopy lists in the H-Prolog 
system by means of the reference 
counter method (Knuth 1968). This 
garbage collection method is 
suitable for our system because 
used cells can be detected in the 
hashing or re-hashing processes as 
in the working memory. The 
system returns the garbage cells 
in the heap to the list of free 
cells whenever they change to be 
unused. Therefore the H-Prolog 
system requires no garbage collec
tion cycle for its database as 
well as the working storage. 

9 CONCLUDING REMARKS 

We have described memory 
managements for the environments 
and the database in logic program 
evaluation systems based on the 
use of hash or content-addressable 
memories. It is clarified that ve 
can realise a simple and efficient 
system for heuristic concurrent 

f(X,b,c) 

9(Y,a,b,c) 

Heap 
Hash Memory 

Figure 9. Data Structure of T* 
(The numbers in the cell! ̂  th® Database 

J-S are the reference counters.) 



331 

evaluation by the use of the 
content-addressable memories. 

Efficiency of the H-Prolog 
system is discussed briefly in 
(Nakamura 19831- Some timing data 
show that computation time of 
serial depth-first evaluation by 
the system is comparable to other 
Prolog systems employing multiple 
stacks. More detailed descrip
tions of the parallel execution 
method and efficiency of our 
methods will be appear in subse
quent reports. 

ACKNOWLEDGEMENT 

The author would like to thank 
Professor Donald Michie of the 
Machine Intelligence Research Uni 
of the Edinburgh University, where 
he began this work. He acknow e 
dges Isamu Shioya, and Masayuki 
Shimoji for helpful discussions 
and their assistance in the 
implementation. 

REFERENCES 

Boyer, R.S. and Moore, J.S. The 
sharing of structure in theorem 
proving programs, in Machine n 
lligence 7 (eds. Melzer, B. an 

Michie, DO, Edinburgh Universi y 

Press 1972. 

Bruynooghe, M. The memory manag 
ment of Prolog implementation. 
Logic programming (eds. dar , • 
L. and TArnlund, S. A.), Aca 

Press 1982. 

Clark, K. L. and Gregory' Rprog-
tiona! Language for Para^lel ̂  
ramming, Research Report DOC81/1 

Imperial College 1981. 

Goto, E. Monocopy and ̂ ^p1,3 Tech-
algorithms in extended LISP, 
nical Report of ̂  ^matio^Sci^ 
ce Laboratory, Universi y 

1974. 

Kowalski, R. A. Logic for Problem 
Solving, Elsevier North Holland 

1979. 

Knuth, D. E. The Art of Computer 
Programming 2. Fundamental Algo 
rithms, Addison-Wesley 1968. 

Mellish, C. S. An alternative to 
structure sharing in the Implemen 
tation of Prolog Programs, Dept. 
of Artificial Intelligence Re-

of Edinburgh 1981. 

Nakamura, K. Associative Evalua
tion of PROLOG Programs, Intelli 
gent System research 
TDU—ISRG—83-04, Tokyo Denki Uni 
versity 1983, also to be appear 
Implementation of PROLOG (ed. 
Campbe 11, C. A.), Ellis Horwood. 

Nakamura, K. H-Prolog 

"ZoDenki D»iv.k.i« 

1983. 

v.- J A. A machine oriented 
based'on resolution princip-
"1c» 12. PP-23-" »«• 

. E Y A subset of Concu-
S hent prolog and Its Interpreter, 
SSicl «P°« ™-003. ICOT 

1983. 

n H. D. Implementing 

PROLOG - C0»Pil^-e^e0f 
Logic ssrs. sr—«v -
burgh 1977. 

D H D. An improved Pro-
Warren, D.» which optimises 
log impleme proceedings of 
tail recurS1° • g workshop, PP-
Logic programming 

i-ll 1980. 
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Extended Abstract 

ABSTRACT 

A new unification algorithm for 
Concurrent Prolog is presented. A 
previous implementation, written in 
Prolog, was extremely inefficient and 
incorrect in a central aspect. It 
did not solve the problems associated 
with true or-parallelism. The algo
rithm discussed in this paper forms 
the core of a new implementation of 
Concurrent Prolog in C, currently 
under development. 

1 INTRODUCTION 

Concurrent Prolog (Shapiro 
1983), a variant of Prolog, sup-
ports concurrent programming and 
parallel execution. It combines a 
dataflow-like synchronisation mech 
anism, guarded-command indetermi 
nancy and a commitment metho 
similar to nested transactions to cre
ate a powerful tool for parallel pro 
gramming. 

This paper reports our work on 
the analysis of unification in Con 
current Prolog. Previous descrip
tions of the language relied on uni 
cation being performed by the un er 
lying Prolog system. These efforts 
did not allow correct implemen a 
tion of or-parallelism (Shapiro 1983, 

p. 48). Therefore essential problems 
facing the implementation of unifica
tion were not addressed. The cur 
rent paper presents these problems 
and proposes solutions. 

The unification algorithm pro-
nosed here is intended to be executed 
on a uniprocessor. However, we con
jecture that it can be extended to 
perform correctly in a multiproces

sor system. 
Section 2 describes Concurrent 

Prolog's syntax and defines its com
putation model. Section 3 discusses 
some of the special characteristics of 
a unification algorithm to. Concur
rent Prolog. Section 4 presents an 
algorithm that implements the re
quired properties as described in Sec-
tions 2 and 3. In section 5 a discus 
sion of the algorithm is presented. 

2 sYOTAXAIffi_COItffIJTAriON 

MODEL 

2.1 Syntax 
The syntax of Concurrent Pro-

, +ne same as that of Prolog 
Clocksin and Mellish 1981), with the 
L"of two new constructs sc. . 
o n l y  annotation of variables, e.g. 



334 

A . ,  a n d  t h e  commit operator 
Both control the order in which a 
computation is performed and which 
clauses can be used. 

A Concurrent Prolog program is 
a finite set of universally quantified 
guarded clauses of the general form 

H  :  -  G i , G 2 , . . . , G n  |  
B i  , B 2 ) . . . t B m  

m , n  >  0 .  
S is the clause's head. The G's are 
the guard, and the B's are the ele
m e n t s  o f  t h e  c l a u s e ' s  b o d u .  H  t h e  
B's and G's are atomic formulae 
possibly containing variables, as in 
Prolog. 

2.2 The Computation Model 

goal 
At all times, there is a current 

QhQ'Z, • • • ,Qk k > 0 

that contains all individual goals 
hat must still be solved. Initially 

the current goal contains the con' 
junction entered by the user. In each 
cycle, the model chooses a goal O 
* > < > 1, and works on it Qu 

Given a goal a, all clauses in the 
program that are potentially unifi-
able with the goal are selected (see 
Figure 1). The unification of the goal 
«th ,he head „r each clause 
tempted. 

If the goal a contains variables 
that may be instantiated through 
unification with the head of a clause 
or by the computation of the guard 

Ap Gn | Bn 

Figure 1 

of a clause, copies of these yariables 
are created. The local copies are 
then used instead of the variables ap
pearing in the goal. 

There are three possible out
comes of unification: 

1. It may fail, in which case this 
clause is rejected. 

2. Unification may succeed, and then 
the guard of the clause is created 
and associated with the goal (see 
Figure 2). 

3. Unification may suspend because 
instantiation of a read-only occur
rence of a variable to a nonvari-
able is attempted. The unification 
is delayed until the value of the 
variable becomes known, at which 
time it is retried. 

If unification causes a variable 
to unify with an occurrence of an
other variable marked read-only, 
occurrences of the first variable be-
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tome read-only. Later attempts to 
instantiate this variable to a nonva-
riable must suspend. 

When the computation of a 
guard terminates, the clause in 
which this guard appears, tries to 
commit. Two actions then take 
place. First, the computations of 
guards of all other clauses associated 
with the goal are discarded. Then 
the local copies of all variables made 
for this clause are unified with their 
counterparts in the goal. If the value 
of the local copy of a variable is 
not unifiable with the value of t e 

corresponding variable in the goa , 
the commitment fails. In this way, 
if commitment succeeds, the values 
computed by the guard are exporte 
to the variables in the goal and t e 
goal becomes committed to these va 

ues. 

If the unification of the local 
copies of variables with those in the 
goal requires instantiation of a rea 
only occurrence of a variable to 
nonvariable, a suspension occurs. 

Only one clause may attempt to 
commit for a given goal. If the com
mitment fails, other clauses are n 
allowed to attempt commitment ot 
this goal at a later time. 
mitment fails the computation o 
goal also fails. This causes the sys
tem in which the goal appears 
fail too, and the computations o 
the other goals in the guard are d 
carded. If commitment succeed , 
goal succeeds and is replaced in the 
guard by the body of the clause that 

committed. 

A guard terminates successfully 
when all its subgoals succeed and 
are reduced to empty bodies. When 
some goal fails, the whole guard fails 

and is discarded. 

A goal may thus fail for three 
reasons. It may be that the head of 
no clause in the program is unifiable 
with the goal. Another possibility is 
that all guards of unifiable clauses 
fail and thus no clause commits. It 
is also possible that commitment fails 
because the value of the local copy of 
a variable and the value of the corre
sponding variable in the goal are not 

unifiable. 
There are two possible outcomes 

from a computation: success and 
failure. The computation haU. 

current goal is empty, and it the 
outcome is — the instantiated 
variables of the original goal are con 
sidered to be the output. 

The occurrence of an infinite 

computation ma 

tvr^-rriono,the 
model is not well defined. 

o rHARACTEBISTICS_OFUNt 
il^IONJNCONCURiENT 

PROLOG 

3,1 
p-oiog different paths to a 

solution are tried 

b^tr^rriXtiations for 
tency ot curre Iq Concur-

is not Possible to rely 
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cause the guards of all clauses that 
were unifiable with a given goal are 
computed in parallel. The computa
tion of each clause is independent of 
the computations of all other clauses 
and should not be affected by the in
stantiations they make. Therefore 
local copies of all variables that ap
pear in the goal must be made for 
each guard. Computation of the 
guard may then freely instantiate 
hese local copies, without affecting 

the computation of other guards. 

When a commitment occurs, the 

withtV l0Cal C°pieS are unified 
withthevaiuesofthevariabiesinthe 
goal. This may fail if some brother of 
this goal instantiated these variables 

alues that are incompatible with 
those computed in the guard. 

when^ SC^m6 CaUS6S Problems when a term that appears in the goal 
has some variables in it. Examole l 
shows one type of difficulty. 
Exnmplej. 

G°al-g(f(l)))Ivariable 

C ause - g(A) _ , 
Clause - £(f(3)). 

Therefore / wiH K A alIocated. 
when the clause £(}(%]tantlated to 3 
Stead "ten the c aL ,tS' "" 
commits. Thus T ; 7 9[ > • • • 

With the efllc, th fated 

ence with othpr mterfer-
sible. ^ mPttations is pos. 

A different kind of difficulty oc
curs precisely because the computa
tions of all guards are independent, 
and so variables appearing in the 
goal are not instantiated to values 
from the guard until a commitment 
occurs. Example 2 presents a case 
where this causes a problem. 

Example 2 

Goal - a(X,X), X variable 
Clause - a(b,C) g(C), ... |... 

The variable X  should not be 
instantiated to b before commitment 
occurs, but C should be instantiated. 
However, in a naive implementation, 
because of the desire to keep guard 
computations independent, C would 
not be instantiated to b before com
mitment. This may cause problems 
if the result of <7(C) depends on the 
v a l u e  o f  C .  

3-2 Read-Only Variables 

In Section 2 it was mentioned 
that instantiation of a variable to 
an occurrence of another variable 
marked read-only causes all occur
rences of the first variable to become 
read-only also. Therefore, further 
attempts to instantiate it to a non-
variable must suspend. 

The following example illu8" 
trates this point:-

Example 3 

Goal - g(X?), X variable 
C l a u s e - g ( Y ) : - Y  =  3 4 , . . .  ! • • • •  

The goal Y  =  34 must suspend un
til X becomes instantiated. At that 
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time the unification of Y with 34 is 
retried. This may fail, if the value of 
X is not 34. 

Using a read-only annotation on 
an occurrence of a variable in a goal 
has the effect that the value is prop
agated into the guard as soon as 
it is needed by some computation 
and is available. For variables with
out read-only annotation the propa
gation is made, and the consistency 
check of the local and global copies is 
delayed until a commitment occurs. 

Using a read-only annotation in 
the head of a clause is only effective 
if the variable will be instantiated to 
another variable in the goal. If the 
unification causes its instantiation to 
a nonvariable, a suspension will oc
cur. 

3.3 Propagation of Values 

Consider a guard system 

p(X),r(X) X variable. 

If p commits and instantiates X to 
some value, there are two possibili
ties. Either the computations of all 
guards under r are informed imme 
diately of the value X was instanti
ated to, or the propagation is delaye 
until some clause commits for r. In 
the first scheme, it is possible that 
some guards will fail immediately it 
the value of X is not unifiable with 
their local copy. However, in the sec
ond scheme, such guards may re uce 
successfully and reach commitmen . 
The original definition of Concurrent 
Prolog (Shapiro 1983) does not spec

ify which of the two methods should 
be used. 

4 ALGORITHM 

4.1 Main Characteristics 

The following points form the 
core of the algorithm. 

(1) Suspension. The handling of 
suspension of unification consists 
of first undoing all instantiations 
done so far in this call and then 
saving the suspended process in 
a special queue allocated for each 
variable. When the variable be
comes instantiated the processes 
in this special queue are restored 
to the current goal. Thus they 
are reactivated after the value of 
the variable becomes known. 

(2) Demand Drrren^opying. The 
algorithm is intended for a struc
ture-copying implementation. To 
minimize copying so that only the 
needed information is copied, the 
notion of demand driven copying 
is introduced. Whenever a struc
ture is copied, only the top-leve 
functor is copied, and its argu
ments are initialized by specia 
references to the original term 
called get-pointers. Only w e 
a process requests access 
object referenced throng a 0 " 
pointer, copying actuaUy take* 
place. Thus, only the ™for^ 
tion that is actually accessed is 
copied. In the current presen
tation, an implicit —on js 
that clauses are copied entirely 
whenever they are used in a com-
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putation. It is thus not necessary 
explicitly to allocate local copies 
of variables since each clause has 
its own copies. Demand copying 
can also be applied to the copy
ing of clauses and copying can be 
combined with the actual unifica
tion. 

(3) Propagation by Request. The 
original definition of Concurrent 
Prolog does not specify how val
ues of variables should be propa
gated into the computation tree. 
The current algorithm chooses 
the simpler scheme, that of prop
agating values only to those pro
cesses suspended on variables, i.e. 
propagation by request. The val
ues of other variables are propa
gated only when commitment oc
curs. 

4.2 Dereferencing 

When one variable becomes uni
fied with another, a chain of vari
ables is formed. The unified vari
ables are chained together with a ref-
pointer. When the value of some ob
ject is desired, these chains must be 
traversed to retrieve the final value 
at the end of the chain. 

The final value of a chain can 
be one of two types: a variable or 
a nonvariable. The possible combi
nations of entities that can appear 
in a chain are shown in Figure 3. 
The final results of dereferencing are 
summarized in Table 1. As can be 
seen, these results depend on the or
der of appearance of the different en
tities in the chain as well as on the 
final value of the chain. In case 3 of 
Figure 3 dereferencing stops as soon 
as a jef-pointer appears. In case 4 
a read-only annotation occurs before 
any jef-pointers and so dereferencing 
continues through them. Dereferenc
ing can be described as a finite-state 
machine, as is shown in Table 2.One 
or two results are returned, in Rl 
and R2. R2 is used for enqueing of 
suspended processes. 

(!) (VAR or TERM) 
(2) - - RO - - (VAR or TERM) 
(3 ) GET 
(4) - RO - - GET-{RO,GET or -} 

- (VAR or TERM) 
normal reference 

RO' read-only annotation 
GET' get-pointer. 

Figure 3 

End of Chain Case 1 Case 2 Case 3 Case 4 
Variable 

Li 
Variable Last RO 

Variable 
1st GET Last RO 

Variable 
Structure ' * 

111 

Structure Structure 1st GET 1st GET 

Table!: Results of dereferencing (cases as in Figure 3). 
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4 3 Demand Copying 

The algorithm of demand copy
ing it shown by the following two 
Pascal-like functions. Note that the 
exit code returned by dereferencing 
is used to determine the action. 

function copy(Thing. * CP.Object): 
* CP.Object; 

var ExitCode: Codes; Rl, R2: 
* CP.Object; 

^ i X 
deref(Thing,Rl ,R2 .ExitCode); 
case(ExitCode) of 
VAR: 

Rl := RKF(Thing); 
Thing := VAR(.); 
return Thing; 

RO. 
Rl := GET(R2); 

return RO(Rl); 
TERM: return copyterm(Rl); 
GET: return copy(copy(Rl))', 

end; 

function copyterm(Term). 
- CP Object; 

var Tmp: * CP.Object; i: integer, 

bCgTmp •= allocate(arity(Term)); 
forT •= 1 ... arity(Term) do 
arg(i Tmp) := GET(arg(i,Term)); 
functor(Tmp) := functor(Term), 

return Tmp; 
end; 

REF, VAR, GET and RO are 
procedure that return a ret.rence a 
new variable, a get-pointer and 

1 State 
Registers 

Rl : R2 

qO 0 : 0 

qi 0:0 

q2 1 -i 0 :~i 0 

REF 

pass 
•  > q °  

pass 

-> qi 

GET 

ltf^r 

RO 

GET -> q1 

pass 
-> q2 

pass 
-> q2 

Rl 
pass 

-> ql 

VAR TERM 

RT^TT 
" VAR 

-ET^T" 
- TERM 

R2 := R 
- RO 

Rl := r 

- TERM 

R2 := R 
* RO 

Rl := R2 
- GET 

•T _ The current element. 
-> ql - Transition to state 'q • 

;r: t;; 
t Me 1 are returned in Rl and R2. 

Results as per Table 1 ar 
, . - . dereferencing objects. 

Table 2: Finite-state machine 
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only term respectively. The refer
ences created by REF in copy are 
saved and undone at the end of each 
unification. 

4.4 Unification 

The unification algorithm is 
summarized in Table 3. Unify terms 
recursively unifies two structures or 
atoms. Suspend saves the current 
goal in the queue of the variable, 
undoes all instantiations, and ter
minates this unification. FAIL un
does all instantiations in this call and 
terminates this unification with fail
ure. The procedure u recursively 
calls unification on the result of copy. 

Unification has two modes. The 
normal mode is used when the head 
of a clause is unified with a goal. 
All references created by REF dur
ing unification are saved and undone 
when it endS; regardless of the result 
When commitment occurs, unifica
tion of the local copies of variables 
is attempted with their counterparts 
m the goal; then, unification does not 
undo the references created by REF 
but leaves them intact. Also, get-

pointers created by unify in normal 
mode and not yet copied through, 
are modified to references. 

Since the arguments to unify are 
dereferenced before the unification 
actually begins, the exit code of deref 
can be used to proceed directly to the 
correct entry in Table 3. 

5 DISCUSSION 

Several properties of the algo
rithm are worth noting:-

(I) The algorithm cleanly imple
ments the requirement that sub
stitutions in the goal be post
poned until a commitment oc
curs. Global variables that be
come instantiated are propagated 
to a goal upon request, whereas 
variables instantiated in a guard 
do not propagate their value to 
outside it prior to a commitment. 

(2) The algorithm provides an ele
gant solution to the problem of 
maintaining or-parallel environ
ments in the form of demand 
driven copying. Only informa
tion that is used is copied. 
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(3) The implementation of unifica
tion can make use of informa
tion gathered in the process of 
dereferencing to choose its ac
tions. Thus excessive tests at 
runtime can be avoided. All cases 
of Table 3 except unify terms can 
be compiled to simple macro in
structions similar to those pro
posed by Warren (1980, 1983). 
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ABSTRACT 

Indetermlnism Is one ol the 
original aspects of logic programming. 
On a mono-processor. Indetermlnism 
Is solved using a simple shedullng 
policy called -backtracking". Such 
policy Implies that there Is 8°'Tie 

means. usually called -trailing 
Information-, for retrieving the state 
of suspended goal statements, 
use of the trail Is well known for 
backtracking Unfortunatly Its use in 
the design of garbage collection 
mecanlsms has been Ignored so ar. 
We suggest to take advantage of 
to get the exact state of suspen 
goal statements while performIng 
marking process of a ®arh 
collector. A more complete gar g 
collection Is therefore obtained. 
Intermediate machine wihich 

proposed in this paper takes 
concepts Into account. A p 
Implementation of the 9ar 

collector Is also discussed. 
Introduction 

Memory allocation is an I^POj' 
problem In the design 1977) 
interpreters. Warren barren, 197 7) 
has done a first original steP r)s, 
a solution for this Proble."1f;„rBntiation 
static crlterlum for the dl Memsh 
of the life time of variably MeWsh 
(Melllsh 1980) and Bruyn B Q 

(Bruynooghe 1980) AV ^ CQPY 
presented solutions inc'u0dre9 dynamic 
method which uses IQRO) has 
Criterium. «»* 
studdled a dynamic metnoo 

optimizes tall recursion, ^"ally.gWe 
owe to Bruynooghe (Bruynoog 
the recommendation to^start 

marking ,r°^|s was the first step 

®ow^snaS'specific, weli mted. Prolog 
oriented, garbage collector. 

The marking algorithm which is 
.j ln this paper starts the <r, « 

sshrris: 
Unnecessary information (Bekkers et 
al. 1983). 

m the following, a Prolog 
tnterpreter is .=duoed as a -ean 
for extracting minimum 
th® drt^fen machine. supporting 
Intermediate and handling 
Prolog interp A realisation of 
memory manage ^ jp terms 
this machine is thentg ^ ^ {Qr 

of two paralle P ^ garbage 

resolution, the 
collection. 

The marking algorithm jnd*. 

garbage col,ectorc*n ' be classified 
this machine classification 
according t0 «S|nale-sized cells 
(Cohen 1999) fa 3 Jing* ^ ̂ 
marking algor conector using two 
a -parallel garbage co ^ since 

hits per cell • On top 
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we have no need for compaction, the 
algorithm does not perform 
information moves (Bakers 1978). 

1. A PROLOG interpreter 

The PROLOG interpreter, 
detailed in figure 1, is a 
straighforward transcription of the 
resolution principle. Goal statements 
are objectively manipulated as binary 
terms. 

A goal statement is either nil. 

In which case It is the empty goal 
statement, or a construct «t.fl2). 

where Ri is a non-empty goal 
statement and «2 Is a goal statement. 
A non-empty goal statement Is either 
a goal (L.arg). where L is an atom 
Identifying a predicate and «/-j is a 
binary term standing as the argument 
of the goal, or a construct ttn.fftt). 
where ftn and Ri2 are non-empty goal 
statements. 

initialize 

1 «-»arg).R2 | (RO.RD.R2 

C := 1st clause 
for predicate L R := RO.CR1.R2) 

start 

Head,Body := new 
instance of C 

< Unify L^arg with Head \ 
success j tall / 

Z 
I let s be the substitution which 1 | R 

L unties L.arg with Head 

1 rewr'tlr>Q the current goal statement 
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Figure 1. shows the cyclic 
rewriting of the current goal 
statement The need to "create 
variables* appears In (1). "terms 
construction", "sub-terms selection" 
and "variables substitution" are 
needed in (2) and (3). Figure 2 
shows the management of 
Indeterminlsm using backtracking. The 
need to "save* goal statements 
appears In (4) and the need to 
"retrieve" them appears In (5). These 
basic operations have been 
implemented on an intermediate 
machine used by the PROLOG 
Interpreter, hencefoward called "the 
user*. 

initialize 

— 1 
R :* question 

Store :» empty 

1 

Save (L.arg).R2 
and NC In Store 

(4) 

Store is empty 
no i y®s 

* „ M | stop 
Retrelve (L.arg).R2 

(5) 

and C from Store 

5H 
2 management of Indeterminlsm 

2. The Intermediate machine 

The Intermediate machine has 
a state composed of a "top-level", 
which allows the user to signify 
sub-terms of the current goal 
statement by means of "names", and 
a "store", which is an ordered set of 
terms, each of them being a saved 
goal statement. The machine keeps 
the correspondance between names 
and terms. 

2.1. Commands 

The user invokes commands, 
bv means of which it exchanges 
names with the machine. The user 
initially knows no names but those o 
atoms, it gets other names by means 
of commands. The commands 
connected with memory management 

are 

constructor) ,rn: name) name 
create_yariable :name 
su bstltu te (vn. tn: name) 
save (n: name) 
retrieve :name 
reduce (/>: name). 

r ."T, L~TS v, 
"uT*.rm= « Up r.,pec,«, 

^ifiori bv the names m and rn. f'flnLlIP the machine has some 
rrlands not described here, to 

SET"; pompon.",, o, P».r, 

terms. 

The remaining commands are 
i PROLOG'S concepts of 

r6lfSe ind indeterminlsm. The result variable ana "'u ngme for a 

of create var substitute command 
new variable. ^ ,0p-level signify 
makes names . after the 
m°re Jnd^Sy name signifies the 
command, eve y where the 
term signified fey 

variable signif'®^ y The sav0 

the term signified by 
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command pushes the term signified 
by n in the store, the top-level 
remaining unaffected. The result of 
retrieve is a name for the term 
popped from the store. This 
significance becomes the top-level. 

After the reduce command, 
the top-level is reduced to the 
significance of n. Invoking this 
command allows the machine to 
collect every cell which does not 
participate to the representation of 
either the term signified by n or the 
saved terms. The collected ceils are 
rendered available for future use. 
Instructing the machine about the 
user's accesses is a more flexible 
technique than using a fixed number 
of access registers known by the 
machine: the user can store 
temporarily in its own memory an 
unlimited number of names which are 
accesses in the top-level, for example 
during unification. 

reference = {null_ref}u{1..maxref) 
data = { Omaxdata} 

name = structure 
I Indicator :{a.c.v} 
I information : reference or data 
construct = structure 
I left :name 
I right name 
variable = structure 
I status :{free.uncertain} 
I level : reference 
I binding name 
guardian = structure 
I nature :{llve.dead} 
I lower_level : reference 
I name :name 

In the following. 'r#f denotes 
the access to the cell referenced by 
rat. and a-.drta. c:rat and vtrer denote 
the various kinds of names. 

• "'MtoinofHaiion 

The implementation of the 
Zlr D"r°rtS tW° Presses: the 
user process" which invokes 

commands. and nv0*es 
"garbage-collector process" JhTrh 

rv  p * r * i i e i "«««£«  
I—c 

3.1 Terms 

Term representation is as 
follows: 

- The name a.data Is the direct 
name of the atom data. 

.3- The representation 

machine has 1 ^ name The «W-: HIT ~ 
guardian. v«nable 0r 

- The name c.rat. where ret is 
the reference of a construct c® 
which holds a name for # in i,s 16 

field and a name for rt in its rig 
field, is the direct name of the ,0rn1 

Of./*). 

- The name v.ret is either t ^ 
direct name of a variable if " 
references a free variable cell. °r 8 

indirect name for the term w if * 
references a bound variable c 

which holds a name for w in 1 
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binding Held. The iree or bound state 
ot a variable cell la determined 
differently, whether It la conaldered 
from the top-level or from a saved 
term. 

3 2 The top-level bindings 

Conaldered from the top-level, 
a variable cell la free either if its 
status field holds free or If the nature 
field of the guardian referenced by Its 
level field holds dead When a cell Is 
allocated tor a new variable. Its status 
field la Initialized free After variable 
substitution, the variable's status field 
holds uncertain and Its level field 
holds the reference of a live guardian. 
This makes the variable bound. The 
variable remains bound until a retrieve 
command alters Its guardian by 
storing dead In Its nature field, which 
makes the variable free again. e 
guardians play the role of the trail 
PROLOG interpreters. 

3.3. The saved terms bindings 

The live guardians are 
ordered in a list defined by *be 'r  

iower_ievei field. Each 9uarH!a„ 
defines a "level". The lowest guardian 
defines level 0 and holds null_re n 
its lower.level field. A saved term s 
always associated to a level a" 
signified by the name field o 
corresponding guardian. This 
results from an Interpretation <of th 
binding state of variables whl^ , 
the level into account: a variab^ 
is free in the representation o 
saved term ot level * eit er 
status field holds free or 
guardian referenced by its ev 
holds dead in its nature field or has 
a level greater than *• 

This binding '" terPr® ,a , '°n 

used by the 9arba9e_c°"®sses to 
order to find accurate rea | 
cells and determine the 
usefulness. Most of existing sy 

derived from those implemented for 
LISP, do not take into account the new 
dimension introduced by 
Indeterminism and interpret the 
bindings of variables independently of 
the level of the observed goal 
statement. This amounts to consider 
over-instanciated goal statements, and 
leads to retain more cells than 
necessary. 

4. The user process 

The userjevel register 
contains the reference of the guardian 
at the highest level. Each command 
has a corresponding procedure. The 
sea rch_d I rect_name procedure goes 
through variables bindings to yield the 
direct name equivalent to a given 
name. This induces shorter chains of 
bound variables and increases the 
opportunities of loss of access to 
variables. 

The substitute command 
subscripts the binding of a variable 
with the reference of the guardian 
the highest level. The effect is to 
validate this binding in the top-level, 
as long as the guardian remalns a^ 
Therefore, the top-level is always 
associated with the highest level. The 
save command saves a given term by 
sformg its name in the guardian at 
the highest level and creates a higher 
e®el guardian which will be used as 
Sscf.pt for the 

causes the death of the 
_• h«i level. This undoes the 

variable bindings according to tne 

oTnTand 

: ' 'm»*rMoe^rrc:n.ti,:rK9oni; SRSS*TJSJS! 
°' "2, the collector. and defines 
,P"e root of »e accesses <"» 10 ">*M 

terms. 
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5. The garbage-collector process 

The garbage-collector works 
cycllcaly. Each cycle is called a 
"batch" and consists of a marking 
phase followed by a collecting phase. 

The marklng_level register 
references the guardian which defines 
the level currently under marking. The 
marfcing_name register contains the 
name which Is the root access to the 
cells representing the saved term to 
be walked through. 

user_level : reference 

procedure create_variable name 
I ref_v:=cell_allocation 
I t ref_v.status:=free 
I result v,ref_v 
procedure construct(left_n.right_n:name> name 
I ref_cons:=cell_allocatlon 
| tref_c°ns.left:=search_direct_name<left_n) 

r«f7tC°nS r'9ht=Search-direc,-name(ri9h« "> 1 result c.ref_cons 
procedure substitute(nv.nt:name) 

I = tea^Ch_dlreC,-name(nv) '"formation 
I hinrt i"'d'n9=search-d'rect_name(nt) I bind_variable(ref_v) 
procedure save(n:name) 

! ^XXSnearCh-d'reC,-name(n) 

1 J ref_g.iower_level:=user_level 
Tref_g. nature.-live 

' user_ievel:=ref_g 
H££edure retrieve name 
i re_adjust_level 
I unbind_variables 

^2£§dure reduce(n:name) 
start_batch(n) 

^!|e "n.indicator=v 
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marklng_name name ; markingjevel reference 

process garbage_collector 
I block marklng_phase 
I I loop while marking_level/null_ref 
I I I mark_term(marklng_name); down_one_level 
I block collec«lng_phase 
I I ref_cel:=0 
I I loop while ref_cel<maxref 
I I I ref_cel:=ref_cel+1 
I I I make_cell_available(ref_cel) 
I walt_next_batch 
procedure mark_term(n:name) 
I ref:=n Information 
I if n.indicatoi/a and test_mark(ref)=unmarked then 
I I case n.Indicator ,_ht, 

i :  rm 
I I cell_marklng(reO 

procedure blnd_varlab.e<ref_v:reference) excl^a 
I tref_v.level:=user_level: t re f_v.status:-uncertain 
procedure unblnd_varlables exclusion bindings 

I fuser_level.nature:=dead • ffree.bound} exclusion bindings 

I If t ref_v status=free then result free 
I else 
I I ref_g:= t ref_v level 
I I case test_mark(ref_g> 
I I marked then result free 
I I unmarked then status:=free: result free 
I I I If tref_g nature=dead then t ref_v.siaius 
I I I else result bound 

procedure down_one_level exclusion position 

LcSTrel'IdTusUlevel ex^^n position 
I H marking_level=user_level l£en 
I I suspend garbage_collecto 
I I decrement_level 
I I restart garbage_collector 
procedure decrement_levei 
I cell_marklng(marklng leve |evel 
I rnark.ng_leve.:= t marking level lo _ 
I if marklngjevel/null i name 
I I marking_name.-t'narKlr «_ 
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5.1. Marking levels in decreasing 
order 

The marking phase proceeds 
level by level in decreasing order. 
This yields the Important property that 
the marking visits each usefull cell 
exactly once, when marking the 
highest level which has access to this 
cell. This can be Intormaly justified as 
follows. Let / and /' be two levels, with 
/<j. Any construct cell yields the same 
immediate accesses for these two 
levels. Any variable cell yields at level 
/ an immediate access either empty 
or identical to the access It yields at 
level /. because a variable bound at 
a given level remains identically 
bound for any higher level. Therefore, 
the set of cells accessed via a given 
cell at level / is included in the set 
accessed via this cell at level /. 

This property is Illustrated on figure 
3- The sets of cells SI and SO 
respectively represent the terms of 
levels 1 and 0. kept in association 
with the guardians C11 and C13. While 
marking level 0. it Is not necessary 
to go through the cells beyond cell 
C5. already visited at level 1. because 
ail the cells this would lead to are 
already marked. 

Not taking the levels Into 
account would lead to wrongly 
consider cells C3 and C4 useful. 

After a level has been marked, 
the procedure down_one_level marks 
the corresponding guardian. Thus, 
comparing the level of the bindings 
with the level under marking simply 
amounts to test the allocation mark 
of the guardians. 

v»u« • Dm utiic n 
garbage_collector_idle : {true.false} 
procedure walt_next_batch exclusion batet>aa 
I Oarbage_collector_idle:=true; suspend garbage collector 
Procedure start_batch(n:name) exclusion batcZ, " 
I if garbage_collector_idle then 

I current_batch:= <current_batch+1) mod 2 
marking_ievel:=user_level. markfng_name:=n 
garbage_collector_Jdle:=false; restart garbage_col lector 

procedure cell_marking(ref:reference) 
I status_alloc [ ref ] :=current_batch 
£E2£Mj^e test_mark(ref:reference) :{ marked.unmarked} 

1 us—* oc[ref] =current_batch then result marked 
1 else result unmarked 

available_cells reference 

Ŝ ĉeF̂ ô aHmo7er̂  {° 1availabl«} 
1 < ~~ reference exclusion allocation 

CeM marklnn?8 ^ nu"~ref ^ wait c 
1 ibrrB aVa e-CellSl: ^ available_cells avaiiable_cells:= t available cells nnrt 

^^®-ce,l-ava,lab,e(ref:reference) exclusion allocation 

•! srssr"1-" — 
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s? incidence parallelism on 
marklnQ 

The execution ot retrieve by 
me user process may 
logical destruction of «he 
currently under marking. In this ca»®_ 
me marking la aborted and the 
garbage-collector starts to mark the 
level below Aborting a marktng la 
possible H cells already marked by the 
collector do not give access to 
unmarked cel.. To insure h£ 
condition, the cells get marked from 
the leaves to the root. 

The parallel execution of the 
user process does not affect the 

•rr«rc"'«»• -5='-
allocation time, or accessed 
, which case^hey can^ ^ ^ 

«rab9ee_CmSr when'0 encountered 
during the walk from this root. 
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6. Cell allocation, batches 

The array alloc_status keeps 
a current allocation status for every 
cell. There are three status 
possibilities: available, qualifying an 
avaiiabie ceil, and the two batch 
indices 0 and 1, qualifying an 
allocated cell. The current_batch 
register contains the indice of the 
current batch. This indice is used to 
mark the cells at the time they are 
allocated, or when they are 
encountered by the collector in its 
marking phase. 

Batches 

Batches are introduced in the 
memory management to cope for 
parallelism between the user and the 
garbage-collector. At the beginning of 
the /-th batch, the allocation status 
of all non-available cells contains / 
mod 2. The /-th batch is associated 
with the indice 0+1) mod 2. During 
a batch, its indice is written in the 
allocation status of all cells 
undergoing allocation or encountered 
during the marking phase of the 
garbage-collector . After the marking 
phase, the ceils which still have 
allocation status / mod 2 of the 
previous batch can be made available 
This is done by the collecting phase 
after^which a new balch 

.^—Extensions 

original aspects 0f 
garbage-collector taking advantaon nt 
he memory usage strmifSn^due 

to indeterminism. In the real u 
(Bekkers et al. 1984) ,he ™achln* 
» ' • , „ a r , h i 9 o r . " B m  

garbage-collector. he 

A simulator of the intermediate 
machine and a PROLOG interpreter 
using it are currently under 
development. A hardware realisation 
with two processors is under study. 
One of them will be microprogrammed 
to support the major part of the 
intermediate machine. 
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