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FOREWORD

This is the proceedings of the biennial second international logic programming confer-
ence. It gives us a view on the research and progress of Logic Programming and also
informs the participants about technical content and details, some of which have to be
omitted in the presentations.

Around 100 papers from more than 20 countries and including all continents but
Africa were submitted to the conference, they were refereed for their clarity, originality
and significance by three members of the program committee.

It is a pleasure to thank all authors who responded to our Call for Papers, unfortu-
nately, restrictions on the size of the conference unabled us to include all fine papers.

{ also wish to thank the program committee, special thanks are due to those members
who attended the busy meeting in Atlantic City. It is most appropriate to thank Doug
DeGroot for his support during this meeting and Alan Robinson and his office for their
valuable help.

I should also thank Marianne Ahrne, Elisabeth Askebro and Ingrid Fagerstrom for
their good work in our group for local arrangements.

Finally, 1 thank our sponsors for their support.

Sten-Ake Tarnlund
Program Chairman
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the Swedish ministry of education.







OVERALL DESIGN OF SIMPOS
(Sequential Inference Machine Programming and Operating System)

Shigeyuki Takagi, Toshio Yokoi, Shunichi Uchida, Toshiaki Kurokawa
Takashi Hattori, Takashi Chikayama, K& Sakai, Junichiro Tsuji

ICOT

(Institute for New Generation Computer Technology)
Mita Kokusal Building, 21F.
4-28, Mita 1-Chome, Minato-ku, Tokyo 108 JAPAN

ABSTRACT

As the first major product of Japanese
FGCS (Fifth Generation Computer Systems) pro-
ject, Personal Sequential Inference Machine
(pst or ¢) is under development. Here we
describe the design of the ¢'s programming
system and operating system SIMPOS, its
major language ESP (Extended Self-contained
Prolog), and the development tools,

The major research theme of ¢ is to
develop a logic programming based pro-
gramming environment including system
programs.

The basic design philosophy of simMPOS
is to build a super personal computer with
database features and Japanese natural lan-
guage processing under a uniform frame-
work (logic programming) based system
design.

At the end of March 1985, we will be able
to show that the logic programming based
operating/programming system is working
well and has a good human interface.

1 Preface

As the first major product of Japanese
FGCS project, ¢ is under development. Here
we describe the overall design of ¢'s Pro-
gramming System and Operating System
called SIMPOS, its major language ESP, and
some development tools.

The major ¢ research themes are to de-
velop:
0 System programs in logic programming,
0 A programming environment for logic

programming.

¢ is the pilot model of the FGCS soft-
ware development. It is a high-performance
personal machine and will be used as the
research tool for the FGCS project.

The hardware and firmware design of ¢
was completed at icoT, and the first pilot
model has already been manufactured. Its
firmware debugging has been finished in
March 1984. Installation of SIMPOS was
started in February.

siMPos has 5 basic design principles.
They are:

o Uniform framework-based system design
A single uniform PROLOG-like logic pro-
gramming based framework covers all
of the machine architecture, language
system, operating system, and pro-
gramming system.

o Personal interactive system
We hope ¢ will be one kind of per-
sonal and very highly interactive com-
puters similar to many super personal
computers.

o Database features
pROLOG has database facilities that can
easily conform to relational database
systems. We hope to construct a new
programming system and a new operat-
ing system that fully uses the database
features.

o Window features
In order to facilitate high level inter-
action, ¢ uses a bitmapped display and
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a pointing device.
o Japanese language processing

All computers until now have been
based on Western cultures. This is a
major disadvantage for peoples of other
cultures when they want to use com-
puters. Everyone should be able to use
computers in his own tongue. So, the
Japanese should be able to use com-
puters in Japanese.

SIMPOS consists of a programming sys-
tem (PS) and an operating system (os). os
consists of a kernel, a supervisor, and 1/0
media subsystems. PS consists of subsys-
tems called experts. PS subsystems are con-
trolled by users, but there is a need to coor-
dinate the subsystems or processes. This
task is accomplished by the coordinator
subsystem.

All the other subsystems are:
Window (0S),
File (0s),
Network (0S),
Debugger/Interpreter (PS),
Editor/Transducer (PS),

Library (PS).
2 ESP
2.1 Overview

SIMPOS is described in a user pro-
gramming language called EsP. Programs
written in ESP are compiled into KLO. KLO is
the machine language of ¢ and is a PROLOG-
like logic based language with several ex-
tensions.

As based on a PROLOG-like execution
mechanism, ESP naturally has many of
the features available in PROLOG. The im-
pox_'tant ones among them are the use of
unification in parameter passing and a tree-
search mechanism based on backtracking.

The main features of the esp langu
e,
e.xcept. for those in common with mal'i}
like languages, are:
© Objects with states,

0 Object classes and inherit
e i itance mecha-

o Macro expansion.

The assertion and atom name database
features (assert, name, etc.) are not directly
available, though lower level features (array
access, string manipulation, etc.) for imple-
menting them are provided

2.2 Objects and Classes

The control structure of ESP is basically
that of PROLOG: AND-OR tree search by back-
tracking. However, from another poist of
view, an ESP program is constructed in aa
object oriented manner

An object in ESP represents an anom
set, which is basically the same concepl
as worlds in some PROLOG systems (M. Via
Caseghem 1982). The same predicate call
may bave different semantics when applied
in different axiom sets. The axiom set to
be used in a call is specified by passiasg as
object as the first argument of a call and
prefixing the call with a colon ()

An object may have time dependent state
variables called object slots. Values of tiots
can be examined by certain predicates using
their names. In other words, the slot valoes
define a part of the axiom set. The slot
values can also be changed by certain pred-
icate calls. This corresponds to altering the
axiom set represented by the object. This
is similar to assert and retract of DEC-©
PROLODG, but the way of alteration is limited

It seemed to be difficult to us, if not im-
possible, to describe an entire operating sy»
tem in pure logic without any built-in no-
tion of time dependency. As many of the
currently available ideas for the building
blocks of an operating system are based on
the notion of state, much more investigs
tion is required before starting to write
an entire operating system in pure logic
(this approach is being tried by Shapiro (E
Shaptro 1984)). This is why object oriented

features with side effects are introduced into
ESP.

An ESP program consists of one or more
class definitions. An object class, or simply
'lcllll, defines the characteristics common
in a group of similar objects, i.e, objects




which differ only in their slot values (only
values; slot names are common to the ob-
jects belonging to the same class). An ob-
ject belonging to a class is said to be an
instance of that class. A class itself is an
object which represents a certain axiom set.

2.3 Inheritance Mechanism

A multiple inheritance mechanism similar
to that of the Flavor system (D. Welnreb and
D. Moon 1981), rather than the single in-
heritance seen in Smalltalk-80 (A. Goldberg
azd D. Robson 1983), is provided in ESP. A
class definition can have a nature definition,
which defines one or more super classes.
When a class is a super class of another
class, all the axioms in the axiom set of
the former class are also introduced into the
axiom set of the latter class, as well as the
original axioms given in the definition of the
latter class. By this inheritance mechanism,
classes form a network of is-a hierarchy.

Some of the super classes and the sub-
class which inherits them may have axioms
for the same predicate name. Since basi-
cally the axiom sets of the super classes
are simply merged, such axioms are ored
together. Though the order in the oRed
axioms has no significance as long as pure
logic is concerned, it can be specified in ESP
for hand optimization and to control cuts
and side effects.

Clauses called demon clauses define de-
mon predicates, which are anDed, rather
than ORed, either before or after, as
specified, the disjunction of usual axioms
They are used to add non-monotonic
axioms. For example, a door with a lock has
a demon for the predicate open for making
sure it is already unlocked. In this way, a
class with_a_lock can be defined separately
from the class door as a class that contains
non-monotonic knowledge.

Part-of hierarchy can also be imple-
mented using the is-g hierarchy and object
slots. Assume that we want to make in-
stances of class A to be a part of an instance
of class B. First, the definition of A should
be given. Then, a class with_A should be

defined so that instances of the class with_A
has a slot which holds an instance of class
with_A. Finally, class B is defined to be a
subclass of with_A; in other words, the class
B is-a class with_A.

2.4 Macros

Macros are for writing meta programs
which specify that programs with so and
so structures should be translated into such
and such programs. Macros can be defined
in the form of an ESP program, fully utiliz-
ing the pattern matching and logical infer-
ence capability of the logic programming
language.

In various languages with macro ex-
pansion capability, a macro invocation is
simply replaced by its expanded form.
Though this simple macro expansion mech-
anism may be powerful enough for LisP-like
functional languages, it is never enough for
a PROLOG-like logic based language. For ex-
ample, a macro which expands

ple, (X +Y))
to a sequence
add(X,Y,Z2), p(a,1(Z))

cannot be defined with a simple expansion
mechanism.

Macros of ESP are not only expanded at
the place of the macro invocation. Certain
additional goals can be spliced in before or
after the goal in which the macro invocation
is given. If the macro is invoked in the head,
these goals will be added at the top or the
end of the body.

The same macro definition:

X +Y =>2Z when add(X,Y,Z)
can be used in two ways. The clause
“add1(M,M -+ 1) is expanded into
the clause *addl(M,N)-add(M,1,N)",
while the body goal “p( M +1)" is expanded
into a goal sequence “add(M, 1, N),p(M)".

2.5 Implementation

Currently (in March 1984), a cross com-
piler of ESP into KLO is available.

The implementation of the object oriented
calling mechanism is rather straightforward:



each object has a slot containing 3 database
of codes corresponding to the axiom set as-
sociated with the object.

The current implementation uses siot
name atoms for accessing object slots. Such
access has been found to be very fast thanks
to the built-in hashing mechanism of xLO
Certain other firmware supports for ac-
celerating the execution are also planned.

3 Operating System

The operating system part of SIMPOS con-
sists of 3 layers; kernel, supervisor, and 1/O
media subsystems.

3.1 Kernel

The kernel manages the hardware re-
sources and fills a gap between the ¢ hard-
ware and the supervisor. It includes the
processor manager which realizes multiple
process environments, the memory manager
which allocates and deallocates memory
space and performs garbage collection, and
the I/O device manager which controls the
input/output devices.

3.2 Supervisor

The supervisor provides the basic facilities
useful for program execution, such as ob-
ject storages, inter process interactions, and
execution environments. For details, refer
to (Yokol and Hattori 1083). Note that a user
may extend and modify these facilities as
he chooses.

A pool is a container, which is also an
object, of objects of any class. A list and
an array are examples of pools. An object
can be put into or taken from a pool.

A directory is a pool of objects which are
associated with a name. An object can be
bound and retrieved with a name in a direc-
t.c_:ry. Since a directory can contain another
directory as well, a tree of directories is
formed, where an object is identified with
a pathname.

A stream is a pipe through which objects
flow. An object which is Put into one end
of a stream, will be retrieved at the other
end. When no object is in the stream, a

retrieve operation is suspesded watil mmy
object is put into the stream. A straan
used for synchronisation asd commusicy
tion between processes

A channel is deflaed on the t0p of s
stream to allow message communicstion be
tweoen two processes. A port it & Demap
box for two-way communication, consectal
to other ports. A message sent throagh the
port will arrive at these consected porty
and a message sent from one of these ports
will arrive at this port

A process execules & gives progra
which is an instance of & program clan
The main goal of the program Is defiaed
as an instance predicate, and the slots of s
prog=am instance bold objects local 1o e
program

A process has several enviroamesis
program, a library, a world, and » univers.
They can be referred to at any poist o
the program. A world is a sequence of
directories held by a process as its workisg
world. A universe is a system directory tree
held in a class slot of class directory.

3.3 1/O Media Subsystems

1/0 media subsystems manage the inter
faces with the outer worlds. This subsysten
consists of 3 subsystems: window, file, aad
network.

3.3.1 Window Subsystem

The window subsystem is the main part
of high level man-machine interface of ¥
(Kurokawa et al. 1084). It supplies multiple
logical displays for processes in ¢ on a singh
physical display. The Lisp Machine devel-
oped at MIT also supplies such an enviros-
ment. The Lisp Machine window subsys
tem manages the major part of the man
machine interface. But our window subsys
tem manages only the primitive functions
Other functions like echoing are dove by
other subsystems, transducer, coordinator,
etc. This concept increases the modulanty
of the whole system, and make each ssb
system simpler,

For each process, one window is dedi-




cated for its own display and it need not
mind other windows. In the window sub-
system, each window is defined as an in-
stance of the window class and each predi-
cate for the window is written as methods of
the class. So the window manager need not
consider the interaction among the windows
and each process can consider its window as
its own display. Each window is a rectan-
gular area which is a part of the physical
screen, and is the communication channel
to the process.

In the window subsystem, windows con-
struct a hierarchy. The most superior win-
dow is the logical screen, and normal win-
dows (editor window, etc.) are inferior
windows of the logical screen. Each win-
dow may have inferior windows (called sub-
windows) within it, and each inferior win-
dow can have its own inferior windows. For
example, an editor window has command
sub-window, text sub-window, etc. Sub-
windows can neither have a size that ex-
ceeds their superior window’s size, nor go
out from the superior window. They must
be inside of the superior window.

Each window may have one of the follow-

ing 5 states:

selected: Connected to the keyboard. Only
one window can have this status at a
time.

shown: Completely displayed on the physi-
cal screen, and the mouse button click in
this window is interpreted using the key-
command definition of this window.

exposed: Completely displayed on its su-
perior window. However, when the su-
perior window does not have the shown
status, even if the window is completely
displayed on the screen, it docs not have
shown status, but exposed status.

overlapped: Partly or completely hidden by
its superior window. This window is hid-
den by another inferior window of its su-
perior window.

deactivated: Not managed by the window
subsystem. Windows in this status will
never be shown on the physical screen un-

Table 3-1. Window Status
Status KB | mouse |output
Selected done done | dome
Shown wait done done

Exposed wait wait wait

Deexposed wait wait wait

Deactivated fail fail fail

til activated. However, its memory image
is not destroyed.

These states are managed by the window
manager. The 1/O function is determined
by these states. The relation between the
window states and the I/O functions are
shown in table 3-1.

Whenever there is a keyboard input, the
window subsystem has to decide which win-
dow the input should be sent to. The win-
dow manager has the instance slot selected
window which keeps the selected window.
As another input device, ¥ has a point-
ing device mouse. The mouse can move
anywhere on the display screen, and the
window manager can recognize the window,
which the mouse click is sent to, by the
position of the mouse. The mouse click is
treated by the window’s definition in only
the shown window. It is because if the
mouse click changes the window's output
image, the user may not see it since he can-
not see the whole of the not shown window,
and the window manager cannot recognize
which part of the window is hidden.

3.3.2 File Subsystem

The file subsystem provides permanent
storage both for data and objects.

A permanent storage of data (records) is
a file. Three types of files are available; bi-
nary files, table (fixed length record) files,
and heap (variable length record) files. A
record is identified with its stored position
and/or its associated key through an in-
dex file. A binder mechanism will be sup-
ported so that a user can define a virtual
file with many data and index files. A rela-
tional database management may be built
on these facilities.

e




A permanent storage of objects is an in-
stance file. It is the main feature of the file
subsystem not provided by other machines’
ordinary file systems.

A directory file is a file which associates
an instance record with a name. A per-
manent directory is a directory which has
a directory file as its permanent storage.
When included in a permanent directory,
a permanent object is stored as an instance
record in an instance file and included in the
directory file with a pathname. Therefore,
it can be restored even after the system is
rebooted.

3.3.3 Network Subsystem

The network subsystem provides three
types of interfaces to communicate with
other machines.

Inter-machine communication is sup-
ported to connect one ¢ with another ¢
or other different machines. The network
subsystem defines the classes node, socket,
cable, and plug to implement the com-
munication.

Inter-process communication allows two
processes on different ¢ nodes to communi-
cate with each other, just as if they ex-
ist on the same node. A remote channel
is defined to represent an original channel
on the other node. A process can send a
message to the remote channel and another
process on the remote node can receive it
from the corresponding original channel.

The introduction of remote objects is a
main feature of the network subsystem. A
remote object represents an object in a

remote node. It can be manipulated Jjust
as an ordinary object.

4 Programming System

The programming system of SiMPOS is
a collection of expert processes. An ex-
pert process is a process which has an in-
dependent communication window (called
e_window) with the user. It performs the
special action upon the user’s request.

This view is different from the views such
that the programming system is a collec-

tion of dumb software tools, por is it &
collection of programs to support the pro-
gram production. Our view frees us from
the overhead of the controlling process to
manage the available tools or the informa
tion between the programs

From the user's viewpoint, he can invoke,
control, and terminate any expert through
the expert's e_window He need not
navigate the complicated process invocation
tree to accomplish his task He peed not
bother about the unexpected destruction of
his work through wrong navigation.

4.1 Coordinator

In s1iMPOS, there is no explicit supervising
process such as Sheil in Unx. However,
there is a work-behind process named
Coordinator. Coordinator itselfl is not a2
expert process but a process that manages
the set of experts.

As noted above, the user may think that
he controls the expert directly through the
window, but actually, coordinator helps the
user’s control via the window interface that
is the associated key command table of the
window.

The principal functions of coordinator
are as follows

O Send a user's key command through the
window to an expert,

© Create, delete, and activate an expert via
system_menu,

© Get and process special commands from
an expert, and

© Help communications between experts
via the whiteboard.

The whiteboard is just like a blackboard
where an expert puts a message o another
expert, who in turn picks up the message
by the user’s instruction

The other way to solve this communica-
tion problem is to set a communication
channel with another expert. But, in this
case, the channel should be set between
the experts before the user decides the
partner of the expert. It is not easy to tell




who talks to who before communication be-
comes necessary.

The ultimate solution in this line would
be to set a communication channel between
any two experts, even though the cost be-
comes very high as the number of experts
grows. And still, a few problems remain.
The user may change the partner after he
ordered the expert to put the message. It
may difficult to denote both the partner and
the message using only the mouse click.

Using the whiteboard, we can set vir-
tually complete communication channels
between experts. The user can select any
expert after he has ordered one to put the
message. This operation will be realized
with one mouse click.

Each user has a directory to create ex-
perts. It contains the experts’ names and
the program names to create experts. The
user can change the directory and the com-
mand table as he likes.

A user has his own directory which is
inherited from the system’s common direc-
tory, i.e., the standard set of experts.

An expert has its own set of key com-
mand table associated with its window.
However, Coordinator permits the user to
change the key command table of the win-
dow only when that window accepts the
change key command table command from
the user.

This freedom is achieved at the least cost
of execution. This minimum overhead and
the maximum provision of user control is
the main theme of Coordinator.

4.2 Debugger/Interpreter

This subsystem interprets programs and
provides information concerning the control
flow of the programs. The basic facilities
of the Debugger/Interpreter subsystem is
similar to the debugging facility of DEC-10
PROLOG (D. L. Bowen et al. 1081). New features
are:

o Procedure and clause box control flow
model,

o Calls between interpretive and compiled

codes, and
o Multi-window user interface.

DEC-10 PROLOG uses Boz Control Flow
Model for its debugger. It considers that
each predicate is the debugging unit. In
this view, each clause looks like a black-box
and cannot be traced whether the unifica-
tion of its head or body fails. The predicate
call simply fails in both cases. However,
it is often the case that the clause head is
correctly selected, but the definition of the
body is erroneous. When the Procedure and
Clause Boz Control Flow Model is used, it
is possible to check whether unification of
the head or that of the body fails (see fig.
4-1).

In ¢, it is possible for interpretive and
compiled codes to mutually call each other.
However, Debugger cannot trace in the
compiled code. Debugger treats the invo-
cation of compiled codes just like a simple
built-in predicate invocation. If interpretive
codes are invoked from compiled codes,

procedure
clause
head body
Unify — Pick o Exit
Sl o i POV <
call Next Miss Redo | poge
— —>
Unify — Pick e Exit
< < <—
<— <—
<€— | Next Miss Redo |€—
Fall Redo
Unify Pick Exit
— T — I; —
il ol <
Next Miss Redo

Fig. 4-1. Procedure and Clause
Box Control Flow Model
for interpretive code



there is no way to pass the trace infor-
mation to the interpretive codes. In such
a case, Debugger restarts tracing with no
trace information.

¢ has a bitmapped display screen.
Debugger uses the window subsystem that
offers a multi-window user interface with
the mouse. A user can select one of the con-
trol options at break points, look at ances-
tors or spy points, check the values of slots,
or see the class definitions using the library
subsystem. This information is shown in
sub-windows of Debugger and all the selec-
tions can be done using the mouse click.

4.3 Editor

An editor is a typical component of a
programming system and an indispensable
software tool in using a computer system.
Though there can be editors to manipu-
late abstract structures completely different
from texts, here we limit our discussion to
the editors which edit texts or data ex-
pressed in texts.

Even text expressions usually have nested
structures. So the editor for ¢ (called Edips)
is designed to be a general structure-editor.
But we do not believe that there can be a
general purpose editor which is convenient
for every structure. A good general editor is
one that is convenient for a specific purpose
and can be used for general purposes even
if less powerful. Under this criterion, Edips
is designed to be especially convenient for
editing ESP programs and can manipulate
other structures. In addition, Edips has the
following features:

© Customization with macro definition,

0 A small number of commands easy to
memorize, and

o Failsoft with many recovery environ-
ments.

To make Edipa general, we allow users to
define the syntax. Though other general
structure-editors usually use BNF, we do
n'ot adopt it because usual editing opera-
tions are neither to trim a branch of
the syntax tree nor to traverse the tree.

Editing operations are more closely re
lated to the text expression of edited data
So we adopted an operator precedence \
grammar with user definable parentheses. ‘
An operator precedence grammar is more |
simple and has better correspondence to the {
text expression.

Every token in the text expression of
edited data is classified into 6 categories:

© Atom,

o Prefix operator,

o Infix operator,

0 Postfix operator,

© Left parenthesis, and
© Right parenthesis.

Each operator has a precedence. For edit-
ing purpose, however, too many precedence
levels should not be adopted, because prec-
edence introduces structures without direct
correspondence to the text structure. As
for an ESP editor, 2 or 3 levels are necessary
and sufficient. They are for:

0 logical symbols such as

- r e e
8.0, 009

© function symbols such as
e e we e

If necessary,

O predicate symbols such as
et A e

will be added.

As explained above, the operator prec-
edence grammar is very simple, but has
enough expressive power to define the syn-
tax of almost all structured programming
languages.

It is desirable that the parser and the
pretty printer for the grammar can be used
by other pProgramming tools such as com-
piler, interpreter and debugger. So, those
tot?ls are made as separate utilities from the
editor. Edips consists of the editor kernel

and those utilities which are also used by
other tools.

e i SR L .




4.4 Library

The library subsystem manages all the
classes and predicates on ¢. It controls
the registration of classes, loading program
files, compiling, and building class objects
by the analysis of inheritance.

Each class has a class source file, a class
template file, and a class object file on some
secondary storage. Class templates and
class objects exist only in the main stor-
age, but are saved to and restored from the
secondary storage.

Class source files are text files coded by
the users. A class source flle can have
just one class definition. Like source files,
template files and object files also have just
one class information in each.

A class template is built from a single
source file. It holds all the information
of that class except those from inheritance
analysis. The predicates of that class
are kept as interpretive codes when the
template is built, They are compiled when
the user requests. After the compilation,
both interpretive and compiled codes are
kept. Templates can be saved or restored
before compiling the predicates.

Class objects are built from some class
templates. In a class object, all the in-
heritances are analyzed and solved. It is
an executable image of an object oriented
program.

Another feature of the library subsystem
is to manage predicates. It contains the
features of referring to one predicate of a
class, i.e.,, object oriented invocation, and
the invocation from compiled codes to inter-
pretive codes or the converse. This mecha-
nism is implemented by indirect references.
All the invocation of predicates are done via
indirect references. When some interpretive
codes are invoked, that indirect word points
the entry of the interpreter. This mecha-
nism causes a uniform invocation scheme
even if both the interpretive and compiled
codes are mixed.

For object oriented invocation, it is neces-
sary to find which method should be in-

voked during the execution time. Here, the
library has to distinguish those predicates
that have the same predicate name but are
defined in different classes. In the com-
piled codes, all the references are processed
and changed to the direct invocation of the
specific predicate, but in the interpretive
codes, the library has to search the pred-
icates during the execution time.

The compiler is simply a subroutine of
the library subsystem. It compiles a single
predicate from interpretive codes. This
process is done only in main storage. After
the compilation, library holds both inter-
pretive and compiled codes. The user can
specify which code should be used for build-
ing up a new class object. The template file
is automatically rebuilt after the compila-
tion.

5 Development Tools

Almost all of the 0S/PS programs are
written in ESP. Since they were designed
and coded before the ¥ machine becomes
available, we need a cross system of ESP for
software development.

Most of the programs are written in
PROLOG. The programs are:
© gSP cross simulator,

O KLO cross compiler,

O KLO cross assembler,

0 ¢ microprogram cross assembler,

o Cross linkage editor for both kLO and
microprogram,

o Table generator for the microprogram.

Some programs, the execution speed of
which is critical for debugging (micropro-
gram simulator, etc.) are developed in
PASCAL.

One of the powerful support tools is Cus-
tomizable Assembler (S. Takagi 1083). It
is the kernel of both the KLO assembler
and the ¢ microprogram assembler. Only
the machine-dependent parts such as the
length of the object word, field definitions,
mnemonic definitions, and checking con-
ditions are changed. Machine-dependent



parts are pre-processed and are comp.iled
with the assembler kernel into a machine-
dependent assembler.

The definition of KLO is about 500 lines
while the definition of the ¢ microprogram
is approximately 1100 lines. About 80%.01
them are conversion tables from mnemonics
to field values. The kernel part is about
900 lines of PROLOG program. Compared
with many so-called generalized assemblers
or unsversal assemblers, this assembler has
only 1/5 to 1/10 as many codes. Its assem-
bly speed is, however, approximately com-
parable.

Using PROLOG’s unification and back-
tracking mechanism, it is possible to write
a sophisticated error-checking routine. If
one field overlaps another, the unification
fails and the next alternative value setting
is tried. Setup conditions are processed in
the same way. If an assembler variable
X is unified to the value case_1 while one
field is processed, the process for any other
field cannot unify case_2 for X. So, the
unification fails and the process backtracks.
Finally, when all of the unification is suc-
cessfully completed, the object bit-pattern
is generated and written out to the object
file.

6 Conclusion

A logic programming based inference ma-
chine (¢) and its Programming/Operating
System (SIMPOS) is now under development.
The first pilot hardware has already been
manufactured and firmware debugging was
finished. Installation of SIMPOS was started
in February.

The first release of ¥ and simPos for
FGCS research and development will be at
the end of March 1985. We will continue
its improvements and enhancements. At
that time we will be able to show that the
logic p.rogramming based Operating/Pro-
gramming system is working well and has
a good human interface.

Many investigations and researches are
necessary for building logic programming
based programming and operating systems,

We hope this work will contribute 10 such
researches
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APPENDIX I

Inference -=> Logic -=> Parallel ===-+
Functions Programming inference |
Model |
|
High-speed --> Parallel =--> Dataflow =--=-+
Computation and and |
(Symbol Pipeline Reduction +=> Parallel -+
Manipulation) Machines | Inference |
| Machine |
Modular -=> Abstract -+ | |
Programming Data Type, | Multiple-SIM | |
Capability +-> System for --+ H
| Parallel Soft- |
Distributed --> Concurrent-+ ware Development |
Processing Processing, based on KL1 +==> FGCS
Message | Proto-
Passing | | type
| | System
A large --> Relational ==> RDBM ====)===+ |
Capacity Database (Delta) | | |
Knowledge Base | +=> Knowledge~-+
| | Base |
| | Machine |
Software -=> Personal =--=> Sequential---+ |
Development Computer, Inference |
Tool Local Machine ===+ Super =====- )=> 1 chip
Network for KLO +-> Personal | Inference
(PSI, SIM) | Computer | Machine
| |
Intelligent --> Speech I/0,--> Special =---+ |
Man-machine Picture 1/0 Purpose H
Interface Processors +
VLSI -=> VLSI-CAD, =---> Development ========c=c== > Intelligent
Technology Architecture Support, VLSI CAD
Design DB Hardware System
Description

Fig. I-1 An Approach to the Fifth Generation Computer
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1. Abstract

The unification procedure is a cen-
tral part of every Prolog implemen-
tation. A Prolog interpreter spends
roughly half of its time unifying data
structures. Therefore, it is important
to speed up unification as much as pos-
sible.

How can we generate a speed opti-
mal unifier program? Is there a signifi-
cant speed difference between the best
and the worst unifiers? In order to an-
swer these questions a method for find-
ing speed optimal unifiers is developed.
The unifiers are generated by a Prolog
program which is a declarative partial
description of the unifier. This method
has been applied to an experimental
interpreter, for which some data are
given.

Keywords: Unification, Optimiza-
tion, Prolog.

2. Introduction

The derivation of efficient unifi-
cation algorithms from specifications
has been studied by a number of re-
searchers, e.g. (Eriksson 83).

However, it seems that few peo-
ple have studied the problems of find-
ing the most efficient implementations
of unification algorithms, although it

was noted early that Prolog inter-
preters rely heavily on efficient unifiers
(Warren 77).

Some interesting questions are:
How can we generate a speed optimal
unifier program? Is there a significant
speed difference between the best and
the worst unifiers? This paper is an
attempt to clarify the situation some-
what. We shall describe a method to
find speed optimal unifiers. The uni-
fiers are generated by a Prolog program
which is a declarative partial descrip-
tion of the unifier.

The organization of this paper is
as follows: The section after this in-
troduction describes a general way of
specifying programs. The third section
describes some primitives for a class of
unifier programs. The specification is
specialized to unifiers in section four.
This specification is translated to a
Prolog program, which in section five
is modified to find an optimal unifier.
In the last two sections some experi-
mental results are discussed.

3. A class of programs

Two different languages are used in
this article. One is the specification
language, which is First Order Logic.
The specified unifier programs are writ-
ten in a second language, the program-
ming language. Programs in this lan-



guage are ground terms in the specifi-
cation language.

First, we shall describe how pro-
grams in the second language can be
specified. Henceforth, if we talk aboyt
programs, and the language is implicit,
we mean programs in this second lan-
guage.

A program can be seen as a (possi-
bly degenerate) binary tree. An execu-
tion follows a path from the root node
to a leaf. At every node during execu-
tion, the program has a state, on which
some primitive operation is performed.
The state is held in a set of state vari-
ables, implemented as memory cells in
the physical program.

A program can be constructed from
three kinds of operations: fests, trans-
formations, and termsnals. A test node
has two successor nodes. It does not
change the state variables, but merely
directs execution to either the right
or the left successor depending on the
current state. A transformation has
only one successor, but may change the
state. A ferminal has no successor. It
is responsible for returning some out-
put from the entire program.

Syntactically, programs are lin-
earized as ground terms. A program
can be a terminal. Another possibility
18 SEQUENCE(z,y), where z is a trans-
formation and y is a program. The
meaning of this is that z is executed be
fore y. A program can also be IF(z,y, 2),
where zis a test and yis a program (the
“then-branch”) and z is a program (the
“else-branch”).

) In other words, p is a program
with respect to a set of possible in-
put states si iff p satisfies program(ei, p)
where program is defined as '

Vai,p (program(ei, p) ~
correctatatesct{ei) A 3op,py, Py, 20, 004
terminallsi, p)
Vv p = SEQUENCE|ep,.p1) !
A transformation|es, op, e0) l
A programi{so, py)
v p = IF(op,p1.ps3)
A teat{ei, op, 00y, 003)
A programl(soy,ps)
A program{eoy, p3)))

The «o0 variables are output sets of
states, i.e. states that come out of oper-
ations. The predicates terminal, frans-
Jormation, and test are supposed to be
false whenever their second argument
is not an operation name

Suppose that TRAM denotes a typi
cal terminal operation in our program.
TRM could be specified by

Vai, 20 (terminal{ei, TRM) »=
precondition(si, TRM))

if the set of possible input states i i
specified by the precondition

Likewise, suppose that TRNS is a
transformation operation. The relation
between «i and the set of corresponding
output states s0 is specified by a post-
condition:

Vai, a0 (trans formation{ei, TRNS, se) =~
precondition(si, TRNS)
A postcondition|ei, 20, TRNS))

A typical test operation, say 75T,
tests if the input state satisfies some
condition:

Vai, 00y, 405 (teat{si, TST, 004, 00y) =~
precondition(es, TST)
A postcondition,(sai, a0, TST)
A postconditiony(ei, a0y, TST))

The output set of states s, would
_be the subset of «i where the condition
1s satisfied, while 40, would be the sub-
set where it is not.




Every primitive operation requires
satisfaction of some precondition on
the set of possible input states. The
precondition on the input checks that
the operation is always applicable.
There are also postconditions on the
output states. A postcondition speci-
fies the set of output states for a given
set of input states. Postconditions for
test operations should also check that
the operation is nontrivial: Both sets
of output states should be nonempty.

Some observations can be made
here: No program can generate a run-
time error, since the applicability of
each operation is guaranteed by the
operation’s precondition. Every pro-
gram can be insured to be partially cor-
rect by having a correctness criterion
as a precondition of every terminal. All
programs will also be totally correct, if
it can be proved that every primitive
operation requires a finite amount of
execution time.

4. Unifler building blocks

Since we are going to specialize
our programs to unifier programs, we
shall describe primitive operations for
a reasonable class of unifiers. Although
we shall have to make some assump-
tions about implementational details,
the principles should apply to other
kinds of unifiers as well.

The unifier is assumed to opegate
on data structures which are Prolog
terms represented as binary trees. This
is how terms are implemented in, for
instance, FOOLOG (Nilsson 83) and
HORNE (Frisch, Allen, Giuliano 83/84).
A term is either a pasr of terms, a con-
stant, or a variable. A variable ex-
ists in one of four states: It can ei-
ther be unbound, or ultimately bound
to an unbound variable, to a constant,
or to a pair. When we say “ultimately

bound”, we mean bound through a
chain of variable bindings.

A unifier program normally takes
two input parameters z, and y,, which
are two terms to unify. If unifica-
tion is successful, the program updates
the variable bindings and returns the
Boolean value true. If unification fails,
the program returns false.

We assume that a possible state
representation for such a program
would be a pair of state variables z and
v, initially set to z, and yo.

We have chosen the following prim-
itive operations as a relevant selection:

Terminals:

FAIL: Returns from the program with
the value false. This operation may
only be applied to a state if z is a pair
and y a constant, or vice versa.
EQUAL: Returns true if z = y, else
false. z and y must both be constants.
BINDXY : Binds z to y, unless z is iden-
tical to y. z must be an unbound vari-
able. y must not be a bound variable.
Returns true. Note that the binding
process is internal to this primitive.
How internal things like trailing etc.
are handled inside the operations does
not affect the specification.

BINDYX: Similar.

RECURSE: Calls the unifier program
recursively on the right and left sub-
trees of z and y. Returns true if both
of the recursive calls do. z and y must
both be pairs.

An additional precondition (the cor-
rectness criterion) for all terminals is
that the state variables z and y must
have either their initial values, or their
initial values dereferenced. lLe. if the
initial value z, is a variable, z, derefer-
enced is what this variable ultimately
is bound to.
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Transformations:

DEREFX : Dereference the variable z.
£ must be a bound variable.

DEREFY : Similar.

Tests:

UNBOUNDX : Chooses the left succes-
gor if z is unbound, else the right one.
z must be a variable.

UNBOUNDY : Similar.

CONSTX: Chooses the left successor
if z is a constant, else the right one.
CONSTY : Similar.

NOTVARX : Chooses the left successor
if z isn’t a variable, else the right one.
z must not be a constant.

NOTVARY : Similar.

5. Generating all unifiers

We shall first simplify the specifica~
tion of the primitive operations. Then
we shall translate the specification to a
Prolog program that generates all uni-
fier programs.

The correctness criterion requires
the state variables not to be changed
from their initial values, except that
they may be dereferenced. The state
variables can only be changed by trans-
formation operations. Since the only
transformations available dereference
the state variables, this criterion is al-
ways satisfied, and need not be checked
in the Prolog program.

Since we use two state variables z
and y, the program’s state is a tuple
(z,y). We shall divide the set of pos-
sible states in subclasses to simplify
the specification of pre- and postcondi-
tions. Let us recall that z and y rep-
resent memory cells in the program.
These cells contain some data struc-
tures. They could belong to, for in-
stance, the set of constants. We de-
note this set S.. The structures could
also belong to the set of unbound vari-

I N

ables, which we denote by §,; or the
set of all pairs, S,; the set of all vari-
ables ultimately bound to constants,
Se; the set of all variables ultimately
bound to pairs Sp; or, finally, the set
of all variables ultimately bound to un-
bound variables, Sy. For convenience,
let S, be the set of all variables that are
bound to something, even if it is an un-
bound variable, S, = ScUSpUSyv. The
set § = S,US.US.US: then contains
all possible data structures. The set of
possible program states is 5 x §:

Yai (correctatatesct(ai) «+ 1 C S x §)

There is an important observation
that simplifies the Prolog program con-
siderably: All preconditions care only
about which types of data structures
(constants, variables bound to pairn,
etc.) the state variables hold. There
fore, any details in the postconditions
beyond those specifying the classifica-
tion of the output state, are unneces
sary,

The simplified logical specification
of operations will then be

Vai (terminal(as, FAIL) ~+
sig=0 A aiC (5 xS,)ULS, xS))

Vai (terminal(ei, EQUAL)
sige® A siC S, . x8,)

Veai (terminal(ei, BINDXY )
gD A MCS x(S\S5)

Vai (terminal(ai, BINDYX ) +
sigEP A C(S\S)xS,)

Vai (terminal(ai, RECURSE)
aFEd A 6nCS,xS§,)

Vai e0 (transformation(ei, DEREFX , s0) »
0= (S xS)Nei A it

Vai, 80 (tranaformation(ei, DEREFY , 00) ~




so=(SxS)Nei A siz9)

Vai, 00y, 003 (test(si, UNBOUNDX , 40y, 403) ~
#HC(SUS)xS A
00y = (S, X S)Nei A 20, =0 A
003 = (Sy x S)N#i A e0; #0)

Vai, 80y, 403 (teat(si, UNBOUNDY , 40y, 803) +~
nCSx(SUS) A
0oy = (S xS, )Nai A w0y #0 A
20y = (S x S)Nei A 403 #0)

Vai,40;, 403 (test{si, CONSTX ,80;,803) ~
00y = (S. x S)Nei A 20, =0 A
203 = ((S\ S:) x S)Nei A 203 % 8)

Yai, 00,, 405 (test{ai, CONSTY ,80,803) —
40, = (S x S.)Nei A a0y =0 A
4oy = (Sx (S\S))Nai A 403 #9)

Vai, 40y, 403 (teat(ai, NOTVARX 40y, 003) ~
sC(S\S)xS A
00y = ((S,US) x S)Nai A a0y %0 A
003 = (Sy x S)ai A #0; #0)

Vai, 00y, 405 (test(si, NOTVARY 40y, 803) ~
#wCSx (S\S:) A
w0y = (S x (S,US))Nai A a0, %0 A
4oy = (S x S,)Nei A a0z #9)

When we translate the specification
to Prolog, the following statements will
be taken care of by the negation-as-
failure rule:

Vai,op (- terminal(si, op) —
op € |FAIL, EQUAL, BINDXY,
BINDYX , RECURSEY)

Yai, 00, op (~ trans formation(ss, op, #0) —
op ¢ {DEREFX, DEREFY })

Yai,0p, 00y, 403 (— teat(ed, op, 80,803) —
op € (UNBOUNDX, UNBOUNDY ,
CONSTX,CONSTY,
NOTVARX , NOTVARY })

Every test and transformation op-
eration deals with one state variable
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only. This suggests a compact Pro-
log encoding of the sets of states: Let
the Prolog lists of constants {b}, {v},
{c}, and {p} denote the sets S;, S,, S,
and S,. Unions and intersections corre-
spond straightforwardly to lists. E.g.,
S.US, is encoded as {c,p}). A Carte-
sian product of sets is encoded as a tu-
ple of lists: S.x(S.US,) corresponds to

({c},(c,p}).

The program-predicate can now
easily be translated to Prolog (upper
case symbols are Prolog variables):

program(SI, OP) «— terminal(SI, OP).

program(SI, sequence{OP, P1)) «—
tranaformation(SI,OP, SO) A
program(SO, P1).

program(SI,if(OP, P1, P2)) —
test(SI, OP,SO1, SO2) A
program(SO1, P1) A
program(SO2, P2).

The Prolog specification for the FAIL
operation looks like:

terminal(({p}, {c}), Jail).
terminal(({c}, {p}), fail).

The first of these clauses says that the
FAIL operation accepts an input state
(z,y) € S; x S.. Specifications for the
other operations are similar:

terminal(({c}, {¢c}), equal).
terminal(({v},Y), bindzy) —
intersection(Y, {b}, {})-
terminal((X, {v}), bindyz) —
interaection(X, (b}, {})-
terminal(({p}, {p}), recurse).

tranaformation(({b},Y), derefz, ({v,c,p}, Y)).
transformation((X, (b}), derefy, (X, {v,c,p})).

teat(({b,v),Y), unboundz, ({v},Y), ({6},Y)).

teat((X, {b, v}), unboundy, (X, {v}), (X, {b})).

test((X.Y), conatz, (X1,Y),(X2,Y)) ~
intersection(X, {c}, X1)A X1 £ BA
interaection(X, {b,v,p}, X2) A X2 # 0.
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teat((X,Y), conaty, (X, Y1),(X,Y2) ~
intersection(Y, {c}, Y1) AY1 # oA
intersection(Y, {b,v,p}, Y2)AY2 # 0.

test((X, Y ), notvarz, (X 1,Y ), (X2,Y)) =
intersection(X, {c}, {} A
intersection(X, {b,v}, X1) A X1 # 8A
intersection(X, {p}, X2) A X2 # 0.

teat((X, Y), notvary, (X, Y1), (X,Y2))
intersection(Y, {c}, {}) A
intersection(Y, {b,v},Y1)A Y1 # 8
intersection(Y, {p}, Y2)AY2# 0.

Consider the sample Prolog call

program{({c,p}, {c.P}), P)

The Prolog program will instantiate
P to different unifier programs on the
premise that z, and yo are constants
or pairs. Two possible programs P are
generated:

if(conatz,if(conaty, equal, fail),
if(consty, fail, recurse))

and

if(conaty,if(constz, equal, fail),
if(constz, fail, recurac))

The call

program(({b, v, ¢, p}, {b,v,¢,p}), P)

will generate all different unifier pro-
grams. If we assume that all primitive
operations require only a finite amount
of time, the generated programs will be
correct.

6. Finding an optimal unifier

. The Prolog program from the pre-
vious section can now be modified so
that a statistically expected cost — here
the execution time - is estimated a.long'
the generation of the unifiers. To do
this, we introduce cost parameters and

frequency tables in the parameter li
of the predicates. - mie e

—_-—_-ﬁ

A frequency table is a list of 36
pumbers. They are the frequencies of
the 6 x 6 = 38 different combinations
of types of state variables: z belongs
to one of Sy, Sc, Sr, Se, Su Sy and
similarly for y. At every node, the cur-
rent frequency table is summed up, and
multiplied with the execution time of
this node’s operation, in order to com-
pute the expected cost. The prim:-
tive operations affect the table: For in-
stance, a DEREFX operation changes
all (Sc x S,)states to (S, x S,)states
The frequency of the former kind of
state will be zero after the operation
has been performed. The frequency of
the latter kind will increase with the
same amount as the frequency of the
former decreased. Another example is
a test operation, which splits the fre
quency table into two new tables: one
for the left successor and one for the
right successor.

The COST parameter holds the ac-
cumulated expected cost. The pred:
cate sum adds up the total number of
different cases in the frequency table

The FREQ parameter holds the “in-
put” frequency table, and the FREQ!
and FREQ2? parameters hold the “out-
put” tables,

program(SI, OP, FREQ, COST)
terminal(SI, OP, FREQ) A
cost|OP,C) A
sum({FREQ, N) A
COST sa Ce N.

program(SI, sequence{OF, P1),
FREQ, COST) ~
trans formation|SI, OP, SO,
FREQ, FREQ1) A
program{SO, P1, FREQ1,COST1)A
cost{OP,C) A
sum(FREQ,N) A
COST ia Ce N 4+ COST)L.




program(S1, if(OP,P1, P2),

FREQ, COST) ~—
test{SI, 0P, SO1,S02,

FREQ, FREQL, FREQ2) A
program(SO1, P1, FREQ1,COST1) A
program(S02, P2, FREQ2,COST2) A
cost{OP,C) A
sum(FREQ, N) A
COST is C+ N + COST1 + COST2.

There should be one clause cost(OP,C)
for every operation OP. C is the re-
quired execution time for OP. The call
swum(FREQ, N) binds N to the sum of all
pumbers in the table FREQ.

We assume that an operation re-
quires constant time, regardless of the
state it operates upon. (This has shown
to be a reasonable approximation for
our test implementation of the primi-
tive operations.) There is one excep-
tion to this: The RECURSE operation.
However, if N is the number of calls to
the unifier, and 7 is the expected exe-
cution time of executing one step of the
unifier without recursion, the expected
cost of the complete unification will be
NT.

Suppose that we have generated
two unifier programs F; and Py for
some set of input states. Suppose also
that the execution of P, ends with a
BIND (i.e. BINDXY or BINDYX) opera-
tion, given some particular input state.
Then the execution of P; must also end
with a BIND operation for the same in-
put. Likewise, if P, ends with FAIL, P;
also ends with FA/L. The same thing
holds for the EQUAL and RECURSE op-
erations as well. That is to say, if P,
spends an expected time To executing
terminal operations, then P; will also
spend the expected time 7, at terminal
operations.

For the program P, our unifier gen-
erator will compute T; — T, where 7, is
the expected time of one step of the
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unifier without recursion. If 73 - Ty is
the value computed for Pz, the relation
between these two values provides us
with an upper bound on the speed dif-
ference. Without restriction, assume
that P, is faster than Ps (Tl > T,):

Ti=To _Ti (/T2 =1) NI
Aeh Lt - NGO

Here are some examples of what
the unifier generator looks like. We do
not list all the clauses for all operations
since the rest of the program does not
contain anything essential beyond what
is given here.

The Prolog specification for the
FAIL operation looks like this:

terminal(({p)}, {c}), Jail, FREQ).
terminal(({c}, {p}), fail, FREQ).

The FREQ variable is just a dummy in
terminal clauses. In tranasformation and
test clauses, however, is passes the fre-
quency table, which is in the following
format:

{FVV ,FVC,FVP,FVv,FVe, FVp,
FCV, FCC,FCP,FCv FCc,FCp,
FPV, FPC,FPP,FPv,FPc,FPp,
FoV, FvC, FoP, Fuv, Fue, Fup,
FeV, FeC, FeP, Fev, Fec, Fep,
FpV, FpC, FpP, Fpv, Fpc, Fpp)

The element Fij is the frequency of the
states (z,y) € S; x S;. Example: FFPe is
the frequency of the state where z holds
a variable that is bound to a pair, and
y holds a constant.

The specification for DEREFX is

trana formation(({b},Y), derefz, ({v,c,p},Y),
(FVV.FVC,FVP.FVO,WC, Fvp,
FCV, FCC ,FCP,FCv,FCe, FCp,
FPV, FPC,FPP,FPv,FFe, FPp,
e, ©0 ©O0 O 0 O
o0 o0 ©O0 ©O O O
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FVV, FVC,FVP ,FVv,FVc, FVp,

FCV, FCC ,FCP,FCv,FCe, FCp,

FPV, FPC,FPP,FPv, FPec,FFp)).
For CONSTY, it looks like this:

test((X,Y), conaty, (X, Y1),(X,Y2),

{FVV ,FVC,FVP,FVv,FVe, FVp,
FCV, FCC ,FCP,FCv,FCe, FCp,
FPV, FPC,FPP,FPv,FPe, FFp,
vV, FuC, FvP, Fov, Foe, Fup,
FeV, FeC, FcP, Fev, Fee, Fep,
FpV, FpC, FpP, Fpv, Fpc, Fpp},
{o, o, o, 0 Fve 0,
0, 0, 0, 0, FCe O,
0, 0, 0, 0, FPe, O
0, 0, 0, 0, Fue, 0,
0, 0, 0, 0, Fee, 0,
0, 0, 0, 0, Fpe, 0},
{FVV ,FVC,FVP,FVv, 0, FVp,
FCV,FCC,FCP,FCv, 0, FCp,
FPV, FPC,FPP,FPv, 0, FPp,
oV, FuC, FoP, Fov, 0, Fup,
FeV, FeC, FcP, Fev, 0, Fep,
FpV, FpC, FpP, Fpu, 0, Fpp}) ~—

intersection(Y, {c}, Y1) A Y1# @ A
intersection(Y, {b,v,p},Y2) A Y2 #& @

7. Results

We have made a simple test imple-
mentation of the primitive operations
to try out the optimization method.

The nasve-reverse benchmark is a
common way to measure the efficiency
of Prolog systems (Warren 77). It was
used to compute frequencies of differ-
ent types of parameters to unify:

¥‘—_J

1)

v P ¢ ‘s P

Vv @ @ 9. TINErNg

C 0 0 0 o 0o o

20 P 1 9" 9N Tree
v 0 435 841 30 W

¢ 0 31 484 1 498 1

P 20 31 464 408 01954

The execution times of the trans
formation and the test primitives were
approximately

operation cout (pe)
DEREFX, DEREFY 75
CONSTX, CONSTY 4
UNBOUNDX, UNBOUNDY 40
NOTVARX, NOTVARY 5

When the Prolog call

program(({b, v, c.p), (b, v, c.p)) P,
FREQ, COST)

was executed with FREQ instantiated
according to the frequency table above,
the difference between the maximum
COST and the minimum COST, was
about 2%. If FREQ was instantiated
to a table of uniform frequencies the
difference was 4.5%. If the costs of the
transformations and tests were all set
to one, and FREQ instantiated accord-
ing to the frequency table, the differ-
ence was around 8%. With uniform
frequencies the difference was 2%.

No significant difference could be
measured between actual implementa-
tions of a worst case and a best case

unifier program when the naive-reverse
benchmark was run.




8. Discussion

The differences in speed between
the best and the worst unifiers will be
smaller than the values computed in
the previous section, since the execu-
tion time of the terminal operations is
excluded. The speed differences of Pro-
log interpreters using those unifiers will
be even less.

Even in such a case as natve-
reverse, with a very non-symmetric
distribution of types of arguments, it
seems to matter very little what the
order of the unifier’s primitive opera-
tions are. However, it should be re-
membered that the situation might be
different for a unifier with other prim-
itive operations. Maybe the most se-
vere restriction of our set of primitives
is that no “multi-way conditional” ex-
ists. Such an operation can be used to
dispatch very efficiently on data type
tags, and will increase the speed of the
unifier substantially.

One of the anonymous referees of
this paper suggested that our method
could be used in a compiler for finding
fast unification code. A typical situa-
tion for a Prolog compiler which tries
to opencode unification is that some-
thing is known about the types of the
terms to be unified. The compiler’s
task is to use that knowledge to find
the fastest and smallest sequences of
instructions which perform the unifica-
tion.

The method described in this paper
seems to be useful for optimizing other
kinds of small programs, too. However,
a hard problem is that the set of gen-
erated programs easily grows far too
large. It becomes impossible to find the
optimal programs by pure depth-first
search. An approach that might prove
to be valuable in the future would be
to use a best-first search based on the
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accumulated cost.
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ABSTRACT

This paper describes 1in mainly, to define a tree with a
detail how to compute efficiently system of equations with the
a drawing of Prolog trees with the smallest number of symbols. This
smallest number of nodes. This is point is described in detail in
done using a system of equations the second chapter.
as in Colmerauer (1982). We give
examples with finite and infinite Of all the possible represen-
trees in different domains. tations (functional, indentation,
1.0 INTRODUCTION +es) oOf terms, the graphical

representation of the arborescence

When handling complex trees, is by far the clearest and the
the usual functional notation is most pleasant, although the most
really a maze, and is a major difficult to manage. A convenient
cause of mistakes. When creating algorithm to draw finite trees in
natural language front ends in a compact manner is described in
Prolog, I have regretted the lack the third chapter.
of a more visual representation of
trees which is the main difficulty In what follows are given
in grammar debugging. This was examples in three different
the original motivation for domains. The first one (Fig. 1)
building the tools described here. demonstrate the semant;c tree
Colmerauer's modification (Colme- (Pique 1982) obtained in the
raver 1982) of the theoretical analysis of the sentence:

model of Prolog, while adding the

complexity of infinite trees, “A guard is standing at each
introduces powerful ideas for tree gate of the town where the
representation optimisation: mayor was killed

>draw-tree(thely,and(town(y),the(z,mayor(z),was-killed—in(z,y))
),each(r,gate-ot(r,y),an(s,guard(s),stand-at(s,r)))));

the
i
T ) 1
y and each
—
town the r gate-of an
| — N 5
Y 2z mayor was-killed-in ry S guard stand-at
ri | ™

z zYy s s




NOTE ON PROLOG II SYNTAX

Before continuing, some
remark on the Prolog II syntax 1is
worth noting: constant symbols

begin with two letters, while
variable symbols begin with only
one letter eventually followed by

digits and single quotes. An
hyphen may appear inside a symbol.
A semicolon ends a rule. Lists

are written with infix dot
notation. Terms may be written as
functions e.qg. ff(al,...,an) or
as tuples e.q. <ff,al,...,an>.
These two notations are
equivalent, however the first one
is only allowed when the first
element of the tuple is an
identifier. With the tuple
representation one can do very
fast and easy term composition and
decompostion.

The next example shows the
output of a compiler for a
structured language 1like Pascal.
This compiler compiles loops into
infinite trees of code instruc-
tions. Each structured instruc-
tion has only one entry point "e"
and one exit point "x". The same
is true for the generated code,
except for the conditional branch
which has two exit points: the
left one is the true condition
exit point, the right one is the
false condition exit point. As an
gxample, for the structured
instruction "while", we get:

=
|
while cond do cond
begin -> 7 (G
ins ins X
end |
cond
A B
ins %
|
cond
7 "\
. X

Compiling is nothing but the

connection of
trees:

code

instruction

compile(WHILE(c,1),e,x) ->
compile-testi(c,e,xl, x2)

compile(i,e’',x")

equal(xl,e’)
equali(x’',e)
equal(x2,x);

compile(REPEATUNTIL(L,c),e,x) =

compile(i,e,x")

compile-testic,e’',xl,x2)

equal(x',e’)
equal(x2,e)
equal(xl,x);

compile(IF(c,11,12),e,x) ->
compile-test(c,e,xl, x2)

compile(il,el,x)
compile(i2,e2,x)

equali(xl,el)
equal(x2,e2);

compile( INS(1),e,x)

equall(e,<i, x>);
compile(nil,e,x)
equal(e,x);
compile(i.l,e,x)
compile(i,e,x")
compile(l,e',x)
equali(x',e');

-

-

->

compile~test (NOT(c),e,xl,x2) ->
compile-test(c,e,x2,x1);
compile-testi(c,e,xl,x2) ->

atomic(c)

equal(e,<c,xl,x2>);

equal(y,y) ->;

Consider now a fragment of a

classical program
expression “term (+ term)” with

to

parse an

e

one character lookahead:

nexttoken;

term ;

while token=

begin
nexttoken;
term

end;

.

do

Q




It is interesting to compile and
then draw the solution:

>compile
( INS(call-nexttoken)

.INS(call-term)
LWHILE(is-token-PLUS
, INS(call-nexttoken)
.INS(call-term)
.nil )
nil
PR
¢ X))
draw-equ( e );
e = call-nexttoken
|
call-term
|
token-1s-PLUS

=

e X

As one can see, the solution
is very simple, exhibiting a
minimum code Sequence. We can
also compare with the alternate
“repeat” solution in structured
programming:

nexttoken;

term ;
if token='+' then
repeat
nexttoken;
term

until not (token='+");

which, when compiled, leads to the
same infinite tree:

>compile
{ INS(call-nexttoken)
.INS(call-term)
JAF(is-token-PLUS
+ REPEATUNTIL
{ INS(call-nexttoken)
.INS(call-term)
nil
, NOT(is-token-PLUS) )
« il
.nil
s 8
v X )

S
N

draw-equ( e );
e = call-nexttoken

call-term

token-is-PLUS

e

e x

The third example defines the
transition diagram of a three
state switch. Each state is
described by a list of pairs
(transition, new state), nil
meaning no transition. The

initial state is "x":
\ o S
o ©

o

z
o}

switch(x) ->
equal(x,<left,y>.nil)
equal(y,<left,z>.<right,x>.nil)
equal(z,<right,y>.nil);

>switch(x) draw-equ(x);

g, y= .
] e
left nil left 3
| | =
Y . right nil

I—L—‘ l
right nil x

I

Y

2.0 COMPUTING A MINIMAL SYSTEM

OF EQUATIONS

A Prolog program manipulates
rational trees, finite or even
infinite as 1in the Marseille
extension (Colmerauer and al
1981). These trees are defined in




the new theoretical model by a
system of equations, hence comes
the idea to compute from the tree
a pleasant representation of a
system defining it. Colmerauer
has given in his paper (Colmerauer
82) a program to do this. I
describe in detail here an
efficient program which computes a
system built from the functional
symbols of the tree and a set of
variables. A good locking system
is one fulfilling the following
conditions:

- A minimum number of eguations

-~ No duplication of non atomic
terms.

The second condition enhances
the ability to identify identical
complex terms. It can be proved
that, among the equivalent
systems, it is minimal in the
number of symbols of FuV occuring
in the right member of the
equations. This is interesting
because each term symbol will
correspond to a node in the
drawing.

More precisely, we define the
number of symbols of a term in an
equation "vi=ti", where "vi" is a
variable and "ti" a term, as:

1. If "ti" is a constant or a
variable : one.

2 IR e M Mt of the form
"fn(tl,...,tn)", where "fn" is a
member of Fn, and "ot are
terms : one plus the sum of the

?umbet of symbols of the terms
B et e

The number of symbols of the terss
of a system is then the sum of the
numbers from each equation. The
system 1s however not minimal if
all symbols of the equation are
counted as can be seen from the
following two equivalent systems :

(x=L(y.¥). y=9(a)}
(x={‘91a;,q‘_a.»}

As an example, consider the
tree defined by the (following
Prolog program:

tree( x ) ->
equal( x, ff(u,y,2) )
equal( y, g9(a) )
equal( z, g9i(b) )
equal( b, ggta) )
equal( a, gg9(b) )
equal( u, ff(ff(x,z,a),a,b) );

equal( x, x ) -> ;
which says that the following tree

is a member of the set of
assertions:

£t
/ |\
44 99 99
7 | \ l ‘
44 99 99 99 99

PN | =l )}
ff 99 99 99 99 99 99
Sl il Tl RS B 1ol

A system of equations
defining this tree and satisf{yind
our criterions (it is also minimal
with the second definition) is for
example:

(x=tt'x,y,yx, y:qg,-{w}

Since terms in the equation
are finite, they can be drawn as
arborescences, enhancing furthef
readability. As a consequence of
minimality, even finite trees may
gain a plus from this representa”




tion. First consider completely
specified trees (i.e. with no
variables). We will assume that
the first equation in the system
defines the root of the tree.

The algorithm consists in
building a basic system with one
equation per subtree, and then
reducing it. Remember that Prolog
programs can only define rational
trees (i.e. trees with a finite
set of subtrees), so this basic
system always has a finite number
of equations. To build this basic
system, first pair each different
subtree with a different variable
symbol of the system. Then the
system is easily constructed as
follows: For each different
subtree add to the system the
equation “v=f(vl,...,vn)" where
“v" is the variable symbol paired
with the subtree, "f" is the
functional symbol of the subtree,
and "vl,...,vn" are the variable
symbols paired with the sons of
the subtree.

For example, the preceding
tree has two subtrees: itself,
and the tree "gg(gg(...))". If we
pair them with the symbol
variables "x" and "y" respecti-
vely, we obtain the system already
seen:

(x=££(x,y.¥), Y=99(y))

In case of an uncompletely
specified tree (i.e. a tree
containing wvariables) we must
define the exact meaning of
"different subtrees”. We say that
two uncompletely specified sub-
trees are different if there
exists a tree assignment such that
they are different, which is what
formal inequality involves. We
may thus consider tree variables
as constants different from those
of the tree, and formally
represented by variable symbols
not occurring in the system.
Different variables are different
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constants paired with different
variable symbols.

Now, to reduce the system S,
we consider every equation "vi=ti"
of the system except the first
one. There are two reduction
conditions:

1. If "ti" has only one symbol,
remove the equation and replace
each occurrence of "vi" in S by an
occurrence of "ti".

2., If "ti" has more than one
symbol, "vi" has no occurrence in
"ti", and there is only one
occurrence of "vi" in the system
when the equation is removed,
remove the equation, and replace
this occurrence by an occurrence
or “ti",

For example the tree

£f
LiX

99 hh

| Lt N

g3 gg x ff

7

aa aa ?g .
99 .
|
aa

has six subtrees:

X
aa

gg(aa)

gg(gg(aa))
hh(gg(aa),x,ff(...))
ff(gg(gg(aa)),hh(...))

We get the basic system:

{ %0 = ££(x1,x4),
x1l = gg(x2),
x2 = gg(x3),
%3 = aa,
x4 = hh(x2,x5,x0) }

after reduction:




ff(gg(x2),hh(x2,x5,x1)),
gg(aa) }

{ %0

X2 =
our program to draw
we get:

using
system,

x = ff
== |
99 hh
|

Yy

Z X

e

In our program we use Prolog
variables as system variable
symbols. This allow very fast
reduction because replacement of
occurrences can be done by
unification. While computing each
subtree, we also pair a new
variable symbol, create the
corresponding equation and carry

first type of reduction.
Subtrees with multiple occurrences

out the

are also flagged, SO that the
final reduction stage 1s straight
forward. Each equation 1is
represented by a 2-uple "<, D°
where "v" is a variable and "t" a
term. The system is represented

as a list of equations, the first
one being the last in the list,
Rational trees are denoted "r",
=7 e § a triplet ( subtree,
equation, number of subtree
occurences as ismediate son of a
subtree), “pair-subtrees” takea
pair “(v,r)" and add the 0w
subtrees in it to the listof
subtrees. Lists wvariables Degin
with "1-", @.9. "1-st" is a
variable standing for a list of

subtree triplets.

equations( r, <v,r>.nil )
equations( r, l-e ) ->
specified( r )

=> constanti

A

term-representation( r, t, l-son-pairs
pair-subtrees( l-son-pairs, st(r,<v,t>,1).nil, l-st )
reduce( l-st, l-e ) ;
term-representation( <rl>, <vl>, pair(vl,rl).nil ) => 3
term-representation( <rl,r2>, <vl,v2> )

. Palf‘Vlnfll-palrnvz,er,nxl )

pair-subtrees( nil, 1-st, l-st ) -»>
pair-subtrees( p.l-p, 1-st, l-st'
subtrees( p, 1-st, l-stl )
pair-subtrees( 1-p, 1-stl,1-st"*
subtrees( pair(v,r), 1-st, 1-st )
constant( r )
substitute( v, r ) 3
Subtrees( pair(v,r), 1l-st, 1-st' )
specified( r )

in-list( r, l-st, ¢, 1-st1

)
add-subtree( ¢, pair(v,r),

l1-st1,

—

«D>

1-st' )




in-list( r, nil, not-in,

in-list( r,

formally-equal( r, r'
in-list( r, s.l1-st, c,
eg( s, st(r',e,n) )
formally-inequal( r, r' )

in-list( r, 1l-st, c, 1-st' )

0

$.1-8%"

add-subtree( not-in,
term-representation( r, t,

nil )
st(r',<v,t>,n).l-st,
, stir',<v,t>,add(1,n)).1-st )

pair(v,r),
1-p
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->
named(v)

=

-2

=gt A=-st' s>
)

pair-subtrees( l-p, st(r,<v,t>,1).1l-st, ot -y 2l) T
add-subtree( named(vl), pair(v,r), l-st, l-st ) =>
substitute( v, vl ) ;
reduce( st(r,e,n).nil, e.nil ) =-> ;
reduce( st(r,e,add(1l,n)).l-st, e.l-e ) -> reduce( 1l-st, 1-e ) ;
reduce( st(r,<v,t>,1).1-st, l-e ) =>
substitute( v, t )
reduce( l-st, l-e ) ;
formally-inequal( r, r' ) —> dif( r, r' ) ;
formally-equal( r, r' ) -> not( aif (o)) 3
substitute( v, t ) -> variable( v ) eg( v, L ) ;
constant( r ) -> ident ( r ) ;
constant( r ) -> string( r ) ;
constant( r ) -> variable( r )
specified( r ) -> not( variable(r) )
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3.0 DRAWING OF A FINITE TREE

We must first examine some
conditions on the way we want
things to work. First, we do not
want to set any bounds on the
depth of the drawn trees. Second,
we need as much independance as
possible from the kind of hardware
on hand (paper teletype,
video, ..), although we want to be
allowed to benefit from graphic
features when these exist. Third
and last, we want to represent the
tree with as much compactness as
is compatible with good readabi-
lity. The first two conditions
imply to output the tree line by
line, starting from the root. To
fulfil the third one, the
bidimensional optimisation of the
nodes' placement was rejected,
because it is too complex and
costly. We prefer to place each
node with the same depth level on

the same line, as close as
possible not to overlap their
arborescences. A subsidiary

advantage is that the ramification
symbols are kept apart on the same
line, allowing the use ot
semi-graphical possibilities when
present (the program which made
the drawings in this paper has a
data base defined for the DEC
VT100 terminal and an Epson FX80
hardcopy) .

A survey of the problem sets
up an interesting dilemma : how
do we do determine the position
of, say, the root? This position
will depend on the other node
positions, but they too will each
depend on others (every node
ramification may arbitrarily
extend to the left or to the
r?ght), giving an appearance of
circularity in which, as with the

egg and the hen, one does not know
where to start.

The solution is t
o kee
separate the problem of thi
absolute position of the nodes
'

from that of their relative
horizontal distance. Then, the
distance between two nodes will be
the minimum one such that there i3
no overlap of their branches,
Knowing the relative distance
between all the sons of a node, w
can compute their relative
distance from this node. We thus
have a bottom up process which,
starting from the leaves, allows
for each node the computation of
its deviation from the father.

gll_1 := d11 12 / 2
gl 0 :=d1.2 /2

The key point is therefore t0
determine the non overlapping
condition. To do this, we cospute
for each node, a list of the
maximum width of its subtrees at
each depth level. These lists can
be computed during the same bottos
Up process: knowing the relative
widths for each son of a node,
get the node width by merging the
lists from the sons, with the
necessary shift. Once we know all
widths from the root, we a8
compute its position with regard
to the margins, and then that of
every node. In the program, each
son deviation is relative to the
position of the (first son. The
computation of their absolute
position is coroutined on the
evaluation of the first o0




position which in turn is
coroutined on the evaluation of
the position of the father. So,

all absolute position computations
are delayed until the position of
the root is determined
tree width
The tree is then drawn
breadthfirst.
time a slice of nodes 1is
the list of sons' descriptions are
concatenated.
when using difference lists (for
information on d-lists see:
K.L.
is an outline of the program. “g
(left)

from the
in the "margin" rule.
top down
that, each
printed,

To do

This can be fast
Clark

1977) Here

an Tarnlund S.A.

and "r" (right) denote the

draw-finite-tree( t ) ->
node-positions( t, x, t',
margin( x, 1-w )
by-slice( t'.nil ) ;

1-w )

node-positions( t, X, node(x,<0,9>),
atom( t, o, S )

center-node( s, 9, £ ) i

node-positions( t, X, node(x,<o0,q9,n,d-1>),

specified( t )
tree-split( t, o, s, N
center-node( s, 9, r )
son-positions( l-sons, x1, nil,
value( dl, sub(0,div(d-max,2)) )

1-sons )

shift( 1-w, d1, 1-w')
freeze-on( x, value( x1, add(dl,x)
center-node( s, 9, r ) ~>

value( r, div(s,2) )
value( g, sub(add(r,1),s) ) i

son-positions( t.nil, xl, 1-w, <t'.q,9>,

node-positions( t, X, £y i )
min-distance( 1-w, 1-nw, O, d )
merge({ l-w, shift(l-nw,d), 1-w')

freeze-on( x1, value( X, add(x1,d) ) ) i
t.1-t, x1, l-w, <t'.l-t',q>,

son-positions(
dif( 1-t, nil )
node-positions( t, X, t', 1-nw )
min-distance( 1-w, 1-nw, O, d)
merge( l-w, shift(l-nw,d), 1-wl )
son-positions( 1-t, x1, 1-wl,
freeze-on( x1, value( x,

min-distance( nil, l1-w, d, d ) —>
min-distance( 1-w, nil, d, d ) —>

.
’
.
'
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extreme deviations of an
arborescence at a given level, "d"
is the deviation of a node from
his leftmost brother, "x" the
absolute position of a node, "t" a
tree and "t'" the description of
his drawing, "o" is the printing
sequence of a node symbol and "s"
his size. Lists variables begin
with an LA SRCTTE od nd U I
variable representing a list of
trees. pDifference list variables
are denoted "d-1", and "<1,g>"
denotes a d-list starting at "1"
ending at "g". "l-w" is the list
of extreme deviations (i.e. pair
*(g.r)") of a subtree until
maximum depth level.

(g.r).nil ) ->

(gip)1-w' O =>

d-1, l-w, d-max )

) )

1-w', d ) —>

1-w', d-max )—>

<1-t',q>, l-w', d-max )
add(x1,d) ) ) i




min-distance( (gl.rl).ll1l, (g2.r2).12,
no-overlap( rl, g2, d, dl )
min-distance( 11, 12, 41, 4' ) ;

no-overlap( rl, g2, d, d' ) ->
value( d4', if( inf(add(rl,l),92)
i
, Subl(add(rl,2),92)

merge( l-w, shift(nil,d), 1-w -> 3
merge( nil, shift((g2.r2).12,d), (g.r).l ->
value( g, add(g2,d) )
value( r, add(r2,d) )
merge( nil, shift(l2,d), 1 ) ;
merge( (gl.rl).1ll1l, shift((g2.r2).12,d), gl.r
value( r, add(r2,d) )
merge( 11, 12, 1 ) ;
atom( t, ex(t), s ) -> ident( t ) length( t,
tree-split( tl.t2, exm("."), 1, 2, tl.t2.nil
tree-split( <tl,t2>, ex(tl), s, 1, t2.nil )

ident( tl )
length( t1, s ) ;

margin( x, (g.r).l-w ) ->
left-most( 1-w, g, x ) ;

left-most( nil, g, g ) -> ;

left-most( (g0.r0).l1-w, g, g'' ) ->

value( g', if( inf(g0,g), g0, g ) )
left-most( 1-w, g', g'' ) ;

by-slice( nil ) ->
by-slice( 1 ) ->
dif( 1, nil )
print-slice( 1, <l-next-slice,nil>
new-line
print-ramifications-of( 1 )
new-line
by-slice( l-next-slice )

?

'

print-slice( nil, <q,q> ) ->;
print-slice( n.1l-n, <l,q> ) ->
print-node( n, <1,11> )

print-slice( 1-n, <ll,9> ) ;

Print-node( node(x,<o0,g>), <q,q> ) ->
blanks-until( sub(x,qg) )
o ;

Print-node( node(x,<o,g,n,d-1>‘, d-1
blanks-until( sub(x,qg) )
o ;

) =>




print-ramifications-of( 1 ) ->
{ terminal dependant }

value( v, £ ) -> val( £, v ) ;

4.0 CONCLUSION

If symbolic representation is
the key for mental concept
expression 1in A.I., graphical
images are far easier to analyse
for people. We have described
some way to help to bridge the
gap. The tools we have described
will be included with the new
Prolog II Marseille interpreter.

5.0 ACKNOWLEDGEMENT

I am indebted to A.
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A Logical Reconstruction of Prolog Il
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ABSTRACT

Colmerauer has proposed a
theoretical model for Prolog 1l
based on tree rewriting rather
than logic. In this paper, we show
that Prolog Il can be regarded as a
logic programming language.

1. Introduction

We take the view that a logic pro-
gramming language is one in which a pro-
gram is a first-order theory and computed
answers are correct with respect to this
theory (Clark 1979, Lloyd 1983).

One can then pose the question: is
Prolog 1l (Colmerauer 1982a, Colmerauer
1982b) a logic programming language
and, if so, in what sense is it! This ques-
tion npaturally arises from Colmerauer's
account of his theoretical model for Pro-
log Il. There, all explicit connection with
first order logic has been severed.
Instead, Prolog Il is regarded as a system
for rewriting possibly infinite trees. Unifi-
cation is replaced by transformations on
sets of equations.

Most Prolog implementations unify
without occur check. This lack may lead
to incorrect amswers; hence it must be
regarded as a shortcoming to be accepted
for compelling reasons of execution effi-
ciency. Prolog Il also lacks the occur
chck. But Colmerauer considers this
lack an essential feature of the language,
accounting for it in his tree-rewriting

model. Keeping in mind that the lack of
occur check may lead to incorrect
answers in ordinary Prolog, one may well
ask whether Prolog Il is a logic program-
ming language.

We show that the answer to this
question lies in making explicit Prolog II's
theory of equality. Once that is done, it
is easy to demonstrate that answers com-
puted by Prolog Il are correct with
respect to a first-order theory consisting
of (essentially) the program plus the
equality theory.

Section 2 contains a brief account of
Prolog II. In section 3, we introduce the
idea of the*general procedure”, which is
an SLD-resolution proof procedure under-
lying both Prolog and Prolog 1I. In sec-
tion 4 we show that Prolog is essentially
the general procedure plus the equality
theory {z = z}. (The meaning of “Prolog”
here excludes any form of negation.) In
section 5 Prolog Il is shown to be essen-
tially the general procedure plus a rather
more complicated equality theory. What
distinguishes Prolog from Prolog 11 then is
the different way they handle equality.
Section 6 contains some concluding
remarks.

Throughout, P denotes a Horn-
clause logic program not containing the
predicate ** = . Similarly, G will always
denote a goal which does not contain the
predicate " = "".



2. Prolog I
The following brief description of
Prolog Il is taken from (Colmerauer

1982).

Definition An equation is an expression
of the form ¢, = t, where t, and ¢, are

terms.
Definition A set of equations is in eub-

stitution form if it is
{zy=1t,...,z, =t,}, where A A
are distinct variables and none of
ty,...,t, is a variable.

Definition A set {z, = Birvssaliy =}
of equations in substitution form has a
loop if for some k =1,..n,t, has an
occurrence of z; or if such an occurrence
of z; can appear after possibly repeated
substitutions in ¢; using equations of the
set.

In Prolog II, the solution of a set of
equations is a substitution of trees for
variables that makes both sides of each
equation the same tree. A set of equa-
tions in substitution form is obviously
solvable over the domain of rational trees.
A set of equations in substitution form
without a loop is obviously solvable over
the domain of finite trees. Thus, equa-
tions can be solved by reducing them to
substitution form by applying solution-
preserving transformations.

Consider the following transformations
(Colmerauer 1982):

Compaction:
Eliminate any equation of the form

zr =z,
Variable Anteposition
If z is a variable and t is not a vari-
able, then replace t = » byz =¢.
Splitting
Replace o iy )= [y, ... )
by s, = by ag =1,
Confrontation

If z is a variable and ty, ty are not
variables and the size of ¢, is not

greater than the site of ty, thes

replace z=t 2=, by

=ty -,
Variable Elimination

If = and y are distinct variables

z =y is in the system and 2 by

other occurrences in that system,

then replace these other occurrences

of = by y.

He asserts that for any finite set of equs
tions, application of the transformations
in any order is only possible a finite
number of times. Then either a set is
obtained which is in substitution form or
the set contains an equation of the forn
t; =t, where t, and t, have different
outermost functions symbols. In the
latter case the set has no solution over
the domain of rational trees.

In Prolog Il the clauses of a program
are regarded as rules for rewriting a tree
to a possibly empty sequence of trees. A
query consists of a sequence of trees and
a set of equations. A query is rewrittes
to another according to

< Ay g i Ay A B > =
|7 Y VO —_—
Aivp-- ALE'S

if there is a rule
B-B,...,B, (m=0)

in the program, if £ U {B = A} can l"
transformed to substitution form and if
E'is such a form.

The final query in a derivation has
an empty sequence of trees. The
corresponding set of equations is the
answer.

Now that we have given a briefl over-
view of Prolog II, we are in a position to
explain in what sense it is possible to give
a logical reconstruction of Prolog I1.

. The domain of interest for Prolog Il
is the set of infinite trees. What we have
to do is find a first-order theory for which
the intended interpretation is a model




and also for which every answer com-
puted by Prolog Il is correct with respect
to this theory. Naturally, the main part
of this theory is the program itself. The
remainder is simply a theory of equality.
We have to find an equality theory so
that each of the transformations
employed by Prolog Il (compaction, etc.)
can be justified because they always pro-
duce a set of equations that is a logical
consequence of the parent set of equa-
tions plus the equality theory.

3. The General Procedure
Definition The homogencous form of a

clause p(ty, ..., t,) = By, ..., By is
Php ey By

-z =0,..., 2, =8,,By...,By
where z,,..., z, are distinct variables

not appearing in the original clause.

Definition Let P be a program. The
homogencous form P' of P is the collec-
tion of homogeneous forms of each of its
clauses.

Definition An atomic formula, whose
predicate symbol is * =", is called an

equation.

We now describe the general pro-
cedure. We call it ‘‘general” because,
depending on the theory of equality
invoked after it, we get Prolog, Prolog Il
or other specialized languages.

The general procedure uses the
bomogeneous form P’ of a program P and
produces an SLD-derivation (Kowalski
1974, van Emden 1977). It consists of
constructing, from some initial goal G, an
SLD-derivation using input clauses from
P, while never selecting an equation. The
general procedure terminates if a goal
consisting solely of equations is reached.
Note that because of the homogeneous
form of P' the general procedure never
constructs bindings for the variables in
the initial goal.
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For a particular language, the gen-
eral procedure needs to be supplemented
by a theory E of equality. E is used to
prove the equations resulting from the
general procedure. During the proving of
the equations, substitutions for the vari-
ables in the initial goal are produced. If
the equation-solving process is successful
(that is, the empty goal is eventually pro-
duced), then these substitutions for the
variables in the initial goal are output as
the answer.

The equation-solving process would
normally be done by resolving goal
clauses with clauses from the equality
theory. However, other methods are pos-
sible. For example, the last step in the
equation solving process for Prolog I is
not a resolution step.

The introduction of the general pro-
cedure is purely a didactic device to
explain which parts of Prolog and Prolog
Il are the same. Obviously, it would be
very inefficient in practice since unsolva-
bility of a set of equations is not detected
until near the end of a computation. A
practical system must perform some
equation solving throughout a computa-
tion and, of course, this is what both Pro-
log and Prolog 11 do.

4. Equality theory for Prolog

Proposition 1. Let P be a program, G a
goal and P’ the homogeneous form of P.
Then P U{G} is unsatisfiable iff
P'U{z =z} U{G}is unsatisfiable.

Proof We first prove that P is a logical
consequence of P'U {z = z}. Let M be a
model for P' U {z = z}. We have to show
M is a model for P. Take in P any clause

plty s ta) = Byovos B,, with vari-
ables yy,...yg- Suppose that for some
assignment of these variables
B, -+ B, is true in M. Consider the
homogencous form

plzg - z,)

-z -!l,...,:. -‘I'Bl""'Bm
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of this clause in 7. Let z, be the element
assigned to ¢, for the above assignments
of the yi's, for i = 1,.., n. By the axiom
z=z and the assumption that

By --- B, is true in M, we have that
plzy, ..., z,) is true in M. That is,
plty, ..., t,) is true in M. Consequently,

M is a model for P and so P is a logical
consequence of P/ U {z = z}.

It follows from this that if P U {G

is unsatisfiable, then s0 is
P'U{z =z} U {G).
Conversely, suppose

P'U{z = z} U {G} is unsatisfiable. Let
M be a model for P. Then we can
extend M to a model M’ for P' U {z =z}
by assigning the identity relation to
“ =" Thus G is false in M’ and hence in
M. (Note that G contains no occurrence
of “= ") Hence P U {G} is unsatisfiable.
n]

Proposition 1 shows that the
equality theory for Prolog is the single
axiomV r z = r,

5. Equality theory for Prolog I

The equality theory E for Prolog 11
is rather more complex than the one for
Prolog and consists of the following
axioms:

1. Vz z =2

)

Vsz Iaycyﬂz
Vszszﬂy Y=2 wz=
Vz, --- ¥z, Vy, - vy,

e )

(zy=y,) (s = v,)
- f(zlr-'-o’-)=f(lllr-~-ﬂ.)'
for all function symbols f.

I R Sz, Jy, --- Iy

(z, = ‘l) oisis (r. = ‘.)'

where the z,'s are distinct variables,
the t;'s are terms and
T Tnr Y1 - ., 3} is the set of

all variables in the formula.

Note that axioms 4 and 5 are sete
ally axiom schemas. The first task is to
show that all the above axioms are true
for the intended interpretation of ="
as the identity relation on the domain of
infinite trees. Axioms 1 to 4 are the
usual axioms for ** = ™ and are certainly
true in the intended interpretation.
Axiom 5§ is true by Colmeravers
solvable-form theorem (Colmeraver 1982).
This theorem states that a system of
equations {z, = ¢, y 2 =t} bas a
solution in the domain of infinite trees,
provided the z,'s are distinct variables.

Now we are in a position to prove
our main result, which amounts to the
soundness of Prolog II. Intuitively, it
states that every answer computed by
Prolog Il is correct with respect to the
first order theory consisting of the homo-
gencous form of the program plus the
equality theory E.

Proposition 2. Let P be a program, P
its homogencous form, G a goal and E
the above equality theory for Prolog II. If
Prolog Il solves the goal G, thes
P'U E U {G} is unsatisfiable.

Proof Since the general procedure uses
resolution, it produces intermediate goals
all of which are a logical consequence of
P'U{G}). We now verify that each of the
five transformations of Prolog Il can be
justified on the basis of resolution steps
using the equality theory E.

Compaction
Consider a goal ~y = 4, € -on iy
where ¢,, .. _, ¢ are equations. Elimins

tionof y = y is justified by resolving the
goal with the equality axiom Vz z = =.

Thus - €p---, ¢ is a logical conse
qnenceof{-y-y.el ,,,,, qlUE.
Variable Anteposition

This is justified in a similar way to
compaction, but using axiom 2.




Splitting
Resolve with axiom 4.

Confrontation

It  suffices to show  that
~zr =1, t, =t,is a logical consequence
of {ez=t, 2=t} UE. Indeed we
have the following derivation:

-z=l,z2={,

sz=l,z=, 0 =1,

(resolving with an instance of axiom 3)
—r =gt =0,

Variable elimination
We let #|z/y| denote the result of

replacing in & all occurrences of z (if any)
by y. The following lemma will be useful.
Lemma

=y = a=alzly

and =y = alz/y| =2

are logical consequences of E.

The proof is by repeated applications
of axioms 1 and 4, plus an application of
axiom 2.

To justify variable elimination, it
suffices to show that

-z =y alzly] = t|zly)

is a logical consequence of
{«2=35,0=t}UE

Indeed we have the following derivation:
-z=my s=¢

-z2=y, a=alzly) slz/y] =t (axiom 3)
~-zx=y z=yalzlyl =t (lemma)
~z=y alzly] =t

-z=y alzly] = t|zly], tlz/y] =t

(axiom 3)
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-z =y, glz/yl = t[z/y], z=y (lemma)
-z =y, slzly] = t[z/y].

Finally, the last step in a Prolog Il
computation is the application of the
solvable form theorem. From a logical
point of view, this is equivalent to an
application of axiom 5 above.

This completes the proof of the pro-
position. O

8. Concluding Remarks

In (Colmerauer 1982) the theoretical
model of Prolog Il is extended to cope
with inequalities. We have not attempted
to deal with these.

Note that the general procedure can
be followed by the use of any theory of
equality. We have given two useful
theories in this paper. It should be
interesting to consider other equality
theories. We are particularly interested
in theories suggested by two existing sys-
tems related to Prolog. The first is
DLOG (Goebel 1984) logic-based database
management system which uses two dif-
ferent equality theories: one for equality
of descriptions and the other for heuristic
evaluation of queries. The second is a
version of Prolog (Kornfeld 1983) with an
extended unification.
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A COMPARISION OF TWO LOGIC PROGRAMMING LANGUAGES: A CASE STUDY
Sz4ts Miklds
Research Institute of Applied Computer Science
P.0.Box 146 Budapest 112
H 1502 Hungary

ABSTRACT

Two logic programming languges,
the well known PROLOG and the new
LOBO are compared. LOBO is defined.
Two examples dealing with planar
covering problems are analyzed. It
is shown that both languages are
able to realize the same algorithms.
However LOBO is nearer to tradition-
al languages: it does not use pat-
tern matching, it can be complied
easily, and it is able to use tra-
ditional features of programming.

INTRODUCT ION

A comparision of two logic
programming languages, namely
PROLOG and LOBO (defined here) is
presented, The two languages stu-
died here are equivalent in the
sense that both are suitable to
define every partial recursive
functions. In this sense both can
be considered universal, The ques-
tion is, what class of algorithms
can be realised in them. Here theo-
retical comparison is not presented,
a forthcoming paper will do it, but
a case study is analyzed. Programs
are introduced dealing with planar
covering problem, namely how a rec-
tangle can be covered by given ele-
ments,

DEFINITION OF LOBO

All formulas we write down be-
long to the language of arithmetics
of integers, that is they belong to
the language whose similarity type
includes the numerals as constants,

function symbols +,-,+,div,rem,
and so on, relation symbols <,¢&,
and so on. Let | denote the stan-—
dard model of integers, and let Ax
be an axiom system of integer
arithmetics, Clearly, I is the on-
ly Herbrand interpretation in

Mod (Ax).

Two sets of formulas are defi-
ned:

¢-(1|<y<12:1'| and T, are term
free of y}U

{t=y:1 is a term free of y}
0q-(r<y:1 is a term free of y}

In the following formulas belonging
to ¢ and °q are used to bound the

domain of bound variables. Quanti-
fiers in the form ¥Yy(o(y)~4(y)),
if g(y) belongs to %, and
Iy(e(y)N(y)), if 9(y) belongs to
¢ or & , are called bounded quan-

tifiers. We define a language,
where all quantifiers are bounded.

pefinition 1

C is said to be the set of
cuttable formulas and is defined
inductively as follows:

(i) quantifier—free formulas

belong to C;
(ii) if ¢y and wz belong to C,

then formulas *1"*2' ¢]V¢2
also belong to C;




if ¢ belongs to C, then,
formula ¢ also belongs to
C;
if 9(y)e®, and ¢ belongs to
C, then y(g(y)=¢) also
longs to C;
if p(y)ed, and C belongs to
C, then y(9(y)A$) also be-
longs to C;
only formulas obtained by
the above rules belong to
C.
Definition 2

Cq is said to the set of quasi-

cuttable formulas and is defined
inductively as follows:

(iii)
(iv)
be-

(v)

(vi)

(i) quantifier-free formulas
belong to Cq;

(ii) if ¢, and ¢, belong to Cq
then formulas ‘,l/\;w, ;l'.,7

also belong to C -

(iii) if ¢ belongs to C then for-
mula ¢ belongs to .3

(iv) if ¢(y)e? and ¢ belongs to
Cq’ then?y(9(y)=¢) also be-

longs to Cq;

(v) 1f o(y)&® VS and ¢ belons
S

C', then ¥ y(o(y)AS) also

C;
Q

.

belongs to

formulas obtained by

only
the above rules belong te

(vi)

q
Definition 3
i =
LJE

The languages 'C‘,‘I
-

] cut-

called the Language of Quasicut
table Formulas (LQF).

Every cuttable or quasi-cutis-
le formula has a well defined
truthvalue in I, A
sented to determine

calculus is pre-
this truthvale,

We give this rules in the forn
of algol~-like programs. Let p de-

note a function with C as domain,
ke prograss

is a quasicut

and the set of a

"
,
a4s range, If ¢.(x

table formula, ;v(,k" is a procedu-

compute the truthvalue of

(a), vhere & is an evaluation

X, as an input for procedure p($.).
i

Table 1,
d 4
$; p(d.)
1. quantifier—free Z. - ¢,
formula of type t, » :
i
2o . Vy !
‘LJ by p('.j)
if z. then z. = true else
—— S e B g " S
begin P(Yk\ ;:i""x;
1) v = 48 ik
3. _j/\.k p(rj)
if z. then
25 3 ———a
begin p(¥,) 2. « z, ; end
k i k —
else gz, -+ false;
Llse i L L
4. 1?’J.
P(Y.) =z. <




$.
1

p(wi)
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« ¥y((ryeyierd=s)

(y;+2;) = (1, true);

while Zi/\(y<12) do

3y; (1) <y;67)A8)

(Yinzi) - (TI, false);

while 1Zi/\(y<12) d_O

begin
y. = y.+1;
Yi £
(¢.
p ¢J)
z, ~ 2.3
end ;
3. Y:\¥y.* y . A e .
a'l('l T)AV) ,Vl TS
%.)
p wJ
By &,
1 A
4 3yi(11yi)A:j (yi'zi) ~ (t, false);
while 1% do
begin
Yi - yi*l;
(¢.)
o] wJ
£, « ¥
end; - J
P('O.....?n_l) call R(To,...,Tn_l, zi);
6. call F (ro,...,Tn_l, Yi» zF);

i£ zp then
begin
p(¢j)

Z.
1

end else z, + false;
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Boolean variable zi in p(¢i) gets

the truthvalue.

The definition of mapping p for
quasi-cuttable formulas can be
found in Table 1 and in rows 1-4 of
Table 2, The calculus consisting
of these rules let be denoted by K.

Theorem |

Let ¢(xo,...,xn_l) be a quasi-

-cuttable formula with free variab-
les XopeensX o 1f n=-¢(xo'....

xn_l)an,...,an_l], then

K)—Mxo/ao,....xn_l/a 1 I

n~-1

In the following we deal with
definitions rather then theorems.
Let R and F be relation and func-
tion symbols not occuring in the
similarity type in question, Defi-
nitions of relation R and function
F respectively are formulas
) o

R(xo,...,xn_l

CICTP «»X ;) and

F(xo’""xn—l)’y .-

D(xo,...,xn_],y).

If the new symbol occurs in formu-
1§ P (defining formula), the defi-
nition is called implicit, if not,
1t 1s called explicit, In the case
of definition of a function, let

@(xo,...,xn_l) be a quasi-cuttable

fot.'mula having variable y as an
existgntially bound variable, If
9(X) is equivalent with 3yp(X,y)
?(x) is considered as the qua;i-'
cuttable definition of F(X), and it

is denoted by F(x)gm(x). The most

11Pportant.properties of definitions
with quasi-cuttable defining formu-

las are stateq by the i
il y followlng

Theorem 2

Every partial recursive fue-
tions can be defined by quasi-
cuttable formulas,

Theorem 3

Definition with quasi-
cuttable defining formula has of-
fectively computable least fix
point.

The question, we are interes
ted in, is wvhether a given n-tulp
belongs to a relation defined by
quasi-cuttable forsula. The case
of explicit definitions is covered
by Theorem |, To handle isplicit
definitions new inference rulcf
are introduced, The corresponding
program segments can be seen iz
the rows 5,6 of Table 2, Calculs
K completed with the new rules is
denoted by ’:d'

Definition 4

The pair «1.qr,xd~ is called
the LOgic of BOunded quantifiers
(LOBO).

Theorem 4
———

Calculus Ky, ina complete cal-

culus for unfolding quasi-cuttsdls
definitions that is, if <a_,.eu

..'an-l) belongs to the least fis

point of the definition R(X)~s(¥

h =y / N~
then o(x)\xo/do.----'n_[ o=l

be proved in Ild.

LOBO can be considered as 3
logic programming language. Quasi®
cuttable formulas are prograss,
with free variables as input V&~
riables, and existentially bousd
variables as output ones. A profF
ram realizing function p computes
3 program written in a traditioss
Programming language from any
quasi-cuttable formula.




Here we only outlined the most
important facts, for further details
see 13,023,031,

THE EXAMPLES

Two problems are presented,
both dealing with covering a rec-
tangle with given elements., The
first problem is a special task
coming from architectural CAD, the
second one can be considered gene-
ral,

1. The special problem

A rectangle is given with edges
of length X,Y respectively. It has
to be covered by rectangular ele-
ments of given measurements. Ele-
ments of unlimited numbers can be
used from each type. However, the
covering has to meet the following
requirements:

(i) the same element must be
applied in all 4 corners;

(ii) apart from the cormer ele-
ments, the same element
must be applied along the
edges in the x-direction;

(iii) apart from the corner ele-
ments, the same element must
be applied along the edges
in the y-direction;

(iv) apart from the corner and
edge elements, the same ele~
ment must be applied
troughout the remainder of
the rectangle.

Let us see first the PROLOG
program,

A remark: the MPROLOG syntax is
used (see [47), but MPROLOG pecula-
rities are avoided. Constants are
vritten with lower, and variables
vith upper case letters.

The types of elements are rep~
resented in facts of the form ele-
ment (P,X1,Y1), where P is an iden-
tifier of the type, X1 and Yl are
the length of edges in x and ¥ di-
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rection respectively. The rule des-
cribing the possible coverings can
be formularized in one clause:

covering(X,Y,P1,P2,P3,P4) =
element (P1,X1,Y1),
element (P2,X2,Y1),
rem(X-2+X1,X2,0),
element (P3,X1,Y2),
rem(Y-2+Y1,Y2,8),
element (P4,X2,Y2). (PP1)

Let us complete the above
clause with facts:

element (first,4,2). (PP2)
element (second,3,2). (PP3)
element (third,2,2). (PP4)
element (fourth,2,1). (PP5)

and with goal statement < covering
(13,8,P1,P2,P3,P4).

The search tree and the solution
is shown on Figure 1.

In LOBO programs the bounding
formulas are written as upper in-
deces of the corresponding quanti-
fier, and the corresponding connec-
tive (A or =) is omitted.

The LOBO program to solve our
problem can be seen in Figure 2,

Here N is the numer of types
of elements, and the measurements
of the i-th type are stored in
the i-th row of in a two dimensi-
onal array ELEMENT, In the same
concrete case as above, N is 4 and
array ELEMENT is:

ELEMENT(1,1)=4, ELEMENT(1,2)=2,
ELEMENT(2,1)=3, ELEMENT(2,2)=2,
ELEMENT (3, 1)=2, ELEMENT(3,2)=2,
ELEMENT (4, 1)=2, ELEMENT(4,2)=1.

The and/or tree representing
the proof search of the formula
can be seen on Figure 3. Clearly
the search tree of the PROLOG
and the LOBO program is basically
the same.



& rem(.,.)=¢

o unsuccesfull unification

is false

third

second

third

second
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2, The general problem

The rectangle to be covered is E 8 viels
supplied with a mesh, whose para- .

lels are at equal distance., So the

rectangle can be considered con- —o ME({)=

sisting of elemrntary squares. The \\‘ 3
3.t}

elements, which can be used in co-
vering, are also considered being
constructed from such elementary
squares. The elements cannot be
rotated or reflected, We keep on ME(1,2)=3 —>
supposing that from each type there T
is an unlimited supply.

First let us see the LOBO prog-
ram. There are KK types. These ty-
pes are represnted by two arrays. E(i,1,2),E(,2,1),E(@,2,2),
Array E is of three dimensions. 4
Values E(i,.,.) describe the i-th E(i,2,3), E(,3,2)
type by giving the characteristic
function of the element: E(i,jl, are not @, other E(i,k,%)
j2) is different from § iff the
elementary square with coordinates
j1,i2 is covered by the i-th ele-
ment, Every element can be covered
by a rectangle, the length of its
edges are in ME(i,1) and ME(i,2).
The foregoing conditions are il-
lustrated on Figure 4.

-
—

values are @

Figure 4.

covering.;()(.Y,!'Zl.!'l.\ﬁN'l'.N)gl
3 P,ﬁ‘?l‘" 3 on‘PZ‘N

{ (ELEMENT(P1,2 =ELEMENT (P2, 2)A

rem(X-2*ELEMENT(P1,1) ,ELEMENT (P2, 1))=0)A

3 ”0'93( N

{ (ELEMENT(P1, 1)=ELEMENT (P3,1)A
rem(X-2 -ELEMENT (P1,2) ,ELEMENT (P3,2))=$)A

3 P40<Phsﬂ

(ELEMENT (P2, )=ELEMENT (P4, 1)
ELEMEN'I'(PZ,Z)-ELEMENT(P&,Z))}}

Figure 2.
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The LOBO program, displayed on
Figure 5, consists of the defini-
tion of three relation. Relation
"full" shows, whether an elementary
square of coordinates x,y is cove-
red or not; and relation "fits" is
true iff the K-th element can be
placed at coordinates X,Y without
conflict with the squares covered
yet. Relation "coverable" is true
iff a rectangle of measurements
XX, YY can be covered. The numbers
of copies of elements used for co-
vering is JJ, and their data is
expressed by function RESULT as
follows,

RESULT(I,1) is the serial num-
ber of the I-th covering element;

RESULT (I, 2), and RESULT(I, 3)
show its position (see Figure 6).

Note that formulas Yidje(j)
and I£¥i(¢(§)Ci/£(§)I) are equi-
valent. The only "dirty" trick in
the program is that variable sym-
bol j is substituted by £(j), - that
is NEWRESULT(JJ.I), and so on, -
and this expression 18 not hand-
led as a term but ag a variable,
However this notation helps to
represent this function by an array
in the program. Logical purity ma-
kes us to use a different function
symbol (NEWRESULT) when new values
are defined, However when the for-
mula is transformed to a nrooram,
the same array identifier can be
used for RESULT and NEWRESULT,

. To interpret variables X,Y,H, 1
in the defining formula of rela-

tions coverable Properly, see
Figure 6.

Using PROLOG, the types of ele-
uent§ are characterized by facts,
as Figure 7 shows. The representa-
tion of the Partially covered rec—

empty(X,Y), depending whether the
corresponding square is covered or

—J

not.

e(cross,3,3,<1,2>,¢2, 1>,
<2,25,<2,3>,<3,2,0ill),

Figure 7.

The program:

coverable (XX, YY)=cover(XX, YY),
coverable (XX, YY)=covered.

cover (XX, YY)=empty(X,Y),
e(K,N,M,LIST), at(LIST,H,I),
Xl is X-H, YI is Y-I,
XI+NCXX, YI+MgYY,
fits (K,LIST,X1,Y1),
cover(XX,YY).

at(<H, I>,LIST,H,1).
at(<G,F>.LIST,H, I)=at(LIST,H,1).

fits(K.nill,x,Y).

fits(K,<G,F>,LIST,X,Y) =
X1 is X+G,Y! is Y+F,
empty(K,X1,Y1), modify(K,XI,Y!),
fits(K,LIST,X.Y).

modi £y (K, X1,¥1 )~
faupclause(empty(xl,Yl)).
assclausc(full(K,XI,Yl))-

covered'»not(empty(Xl.Yl)).

Here fsupclause and assclause
are built-ip predicates, the first
deletes. the second creates a
clause, Both are backtrackable.

Note that the PROLOG program
follows the Structure of the LOBO
Program. Significant difference is
only in representation of the par-




coverable (XX, YY,E,ME,KK, JJ, RESULT) S

g PREXK DVEYY o111 (E,JT,RESULT, X, Y)A

axﬁfxcxxiuo<u<rm(x,1);I¢<l<rm(x,2
((X=-H+ME (KE, 1) )< XX)A(Y-I+ME(K, 2) YY) )A

fits(E,JJ,RESUTL,X-H,Y-T)A
w1 1T L 01630 o ee o o, ) NEWRESULT (L, N) =RESULT(L, N)
3NEWRESULT(JJ+1, 1) NEWRESULT (JJ+1)=K

J =Y-
3 NEWRESULT (JJ+ 1, 2) VEWRESULT (JJ+2) =X-H

axtwRESULT(JJ.,'3)NLwR£5ULT(JJ+1,3)-Y—1
coverable (XX, YY,E,ME,KK,JJ+1, NEWRESULT)11V

¢ P XK, DY ¢ 11 (E,J3,RESULT, X, ¥) 3

fuII(E.JJ,RESFLT,X,Y)q

3,%9¢3 4 % RESULT (J, 2)<ME (RESULT(J, 1), 1A
@<Y-RESULT(J, 3)<ME(RESULT(J,1),2)A
E(RESULT(J, 1), X-RESULT(J, 2) ,Y-RESULT(J, 3) ) #0]

fiuﬂX,E,Hx.JJ,RESELT,K,Y)é
VHe4unm(h,1%10fl‘HE(k.2)

E(K,H,1) = yfull(E,J,RESULT,X+H, :+1)

Figure 5.

X

Lt

Figure 6.
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tially covered rectangle.
COMPARISON

The two examples presented
above show that the algorithms
which can be described by the two
languages may be the same. The ana-
lysis of equivalences and diffe—
rences will show that this experi-
ence can be generalized. There are
few essential differences beetwen
the two languages in spite of the
different syntax and calculi,

(1) The basic difference
beetwen the two languages is that
PROLOG is based on a strict normal
form making superflous most con-
nectives, while in LOBO one uses
all the logical connectives and
quantifiers, In the case of con-
nectives it is not an important
difference. MPROLOG syntax allows
to use connective "or" in the an-
tecendent of a clause, As an
example, the partition "coverable"
may be written as:

coverable (XX, YY)=cover (XX, YY) ;
covered.

where ";" reads V., The usual in-
terpretation of "not" in PROLOG
does not differ essentially from
the usage of negation in LOBO.

(2) The difference is more im-
portant in the case of quantifiers,
In PROLOG rules all variables are
free (universally quantified) ones.
Their equivalents in LOBO are the
ex%stgntially quantified variables,
This is not contradiction, because
PROLOG is based on a refutation
proof procedure, while LOBO is
based on a direct one,

The most evident difference is

the universal guﬂt_ifier in LOBO.
If connective "mot" EAan. be used in
the Pl_{OLOG version in question
sometimes "¥x" can be substituzed

" -
by "293xa . as it wag done in the

definition of "covered". Other-
wise the partition corresponding
to a subformula begining with
universal quantifier has to be
programmed on a roundabout way,

(3) The interesting point is
that the almost identical search
trees of PROLOG and of LOBO prog-
rams are organized by different
tools. In the case of LOBO, loops
running on the bounded variables
are explicitly expressed by the
bounding formulas. In the case of
PROLOG, the search strategy cont-
rols loops on the different
clauses in the same partition,
using first of all the pattemn
matching mechanism, It is a bar-
gain: LOBO looses the possibili-
ties provided by the pattern
matching mechanism, - that is the
role of input and output variables
are fixed, and equality has to be
m-Txplicitly. However, LOBO
gaines the possibility of simple
implementation, moreover of simple
compilation. Note that this basic
Tx?gTrme_is difference in the
calculi, The difference is the
syntax occurs, because syntax in
both cases follow the demands of
calculi,

(4) The search trees that is
the executions of the programs may
be almost identical at the top le-
vel, but at the bottom there is 3
distinct difference. The data of
elements usable in covering are
expressed by facts in PROLOG, and
by arrays in LOBO in both examples.
The usage of arrays is not compul-
Sory: any data type can be used.
The important point is that a L030
pProgram can use in a quantifier
free subformula any programmin
feature,available at the computer
system in question., In PROLOG the
built-in predicates correspond
to this feature, but they are
provided in a limited supply.
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The importance of this factor Science 137 Springer Verlag
can be seen in the second example. 1982,
While the LOBO program is expres-
sed in "pure logic", the PROLOG 41 "MPROLOG language reference
one is based on such metalogical manual" SZKI, Budapest 1982,

features as the built-in predi-
cates rewriting the formula itself,
Without this possibility the equi-
valent of array RESULT has to be a
list structure overburdening the
program by handling lists.

SHORT SUMMARY

PROLOG and LOBO seem to be
basicly equivalent logic program-
ming languages. The most important
differences:

(i) LOBO does not use pattern
matching, loosing so some program-
ming facilities, and gaining the
possibility of simple compilation.

(ii) LOBO can use any progam-
ming feature of the computer sys-—
tem,

These differences makes us
claim that LOBO is nearer to tra-=
ditional programming. However we
think that it can play an important
role in developing fifth generation
computer systems, In (1] a simple
non-von-Neumann architecture is
suggested to execute LOBO programs.
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OOMPUTATION TREES AND TRANSFORMATIONS OF LOGIC PROGRAMS

Olga Stépdnkovd
Institute for Camputation
Techniques, CVUT
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Czechoslovakia

ABSTRACT

wWe shall introduce new con—
cept of camputation trees of log-
ic programs and we shall use it
in reasoning about programs. We
shall describe three types of
transformations improving the
structure of logic programs. The-
re are two natural measures of
camplexity suggested by camputat-
ion trees, namely, the number of
nodes called by recursion and the
maximal number of AND/OR altern—
ations on a branch. We shall show
that both measures collapse, more
precisely, we shall show that eve-
ry logic program can be transform-
ed to a program camputing the same
function the camputation tree of
which has at most one called node
and at most two alternations oOn
every branch. We shall discuss SO~
me conclusions related to this
Normal Form Theorem.

0 INTRODUCTION

Problem reduction based on
deconposition of goals to several
subgoals is a praminent feature of
the procedural interpretation of
Horn Logic used in Logic programm—
ing. It is well-known that problem
reduction can be naturally depict-
ed by AND/OR graphs with altern—
ating and- and or-nodes. D. Har—
el /1980a, 1980b/ described a sim~
ple tree-like programming specif-
ication language of so called AND/
OR-schemes which allow to capture
the logical structure of programs

Petr Stépdnek
Charles University
Malostranské ndméstf 25
118 0O Praha 1
Czechoslovakia

developed by the stepwise syn—
thesis in the discipline of stxru-
ctured programming. It was shown
in /Stépdnkovd et al. 1983/ that
AND/OR schemes are naturally emb~
edded in the class of logic prog-
rams, namely, that to every AND/
OR-scheme corresponds a logic
program camputing the same relat-
ion. There are logic programs,
however, which cannot be describ~
ed by an AND/OR-scheme.

ation trees for logic programs
extending the definition of a
computation tree from /Sebelik et
al. 1982/. The extension is mot-
ivated by AND/OR-schemes.

we shall describe three typ-
es of transformations of camput-
ation trees which allow us

- to avoid recursion calls
fram one branch of the tree to

another
- to move the nodes called

by clean recursion closer to the

- to push upwards the nodes
of OR-branching

These transformations have
many interesting implications to
logic programs. One of them is
the existence of a Normal Form of
Logic Programs. This generalizes
a similar result due to /Harel,
1980b/ concerning AND/OR-schemes.




The camputation tree of every prog-
ram in normal form has the follow-

ing properties

/i/ there are at most two
alternations of AND- and OR-
nodes on every branch

/ii/ there is exactly one no-
de to which refers every recursion
call

We suppose that the reader
is familiar with the operational
and least fixed-point semantics of
logic programs introduced in /van
Emden and Kowalski 1976/.

1 COMPUTATION TREES

We shall use the standard
graph-theoretic concepts like no-
de, edge, leaf, root and branch.
If we describe a tree, we usually
put the root on top, the branches
growing down. Hence the only par-
entnodeisaboveardalldmea)c—
cessors of a node are below it. We
gpeak about the depth of a node
mstead of its height. We call a
node internal if it is not a leaf.

Iet L bea first-order

language and R be a predica
te in
L. An AND/OR-tree T is called

:d %njgttil:;_lm tree for R provid-

following

perties i
/i/ the root of T is an

-

’,,-"FACT(X._Y)
T ey x[2+4

\ FACT(0.1)«

"=----FACT(2 v)

Figure 1

TIMES(w v y)

oR-node labelled by RAVjse.V/
where v, ,...,v, is an

tuple ot aistifict variables, Beeny
OR-node of T is labellaed by =
atanic formula of L and the 1
els of intermal OR-nodes oonsist
of a predicate sybol and 3 tipis
of distinct variables,

/i1/ If n is an ORnoe
with the label A , all itsac
cessors are ANND-nodes labellsd iy
Horn clauses the head of which
contains the same predicate smsic
as A . Bvery edge commectis
with its successor n’ is laell |
by a substitution which umnifies )
with the head of the label of 2.

/411/ To avoid multiplicity &
defining predicates, the labeisc
different internal OR-nodes hae
different predicate sysbols, \

/iv/ If n is an RD-noe
labelled by the clause

B ~ Al.o.-'
then for every iék, therels 5
SUCCLS8Or nof b
label of which contaifls the swe
predicate symbol as A,. ‘

Moreover, if n, isa ¥
af, its label is Al T
internal and A is of the *
o/tl"..’ 5 where {1,.....
are” terms,” the label of n ¥
O/Ul:---:\*ﬁ/ ’ “{Q u‘ -

distinct new variables and “:m.
are other successor leaves &
labelled by the equalities &%

for < m. If a temm &°

FACT(2+1.y)« FACT(z v) TIMES (a+1.vy)

ezl




is a variable, we can use it in-
stead of u; and leave out the
swczssorﬂbelled u.-tj.

/v/ Every AND-node labelled
by an unconditional statement B
is a list.

Bample 1. Let L be the langu-
aqeofariﬂnet.iccmtaining two
constants O , 1 denoting zero
and one and a binary function +
for addition of natural numbers.
The camputation tree for the fac-
torial of x 4is on Figure 1.

We distinguish two types of
OR-leaves according to the attach-
ed predicate symbols. We call the
leaf primitive if its predicate
Sy is erent fram every
predicate attached to an internal
OR-node, otherwise we say that it
is a call-leaf. Since the predica-
te symbols attached to internal
OR-nodes are different, the predi-
cate symbol attached to a call-le-
af 1 coincides with the predica-
te symbol of exatly one internal
OR-node, which is a called node
/called by 1/. Note that the cam
putation tree from Figure 1 cont-
ains only one call leaf and one

SOLEG (nm k)
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called node. They are connected
by a dashed bow.

It follows fram the defin-
ition that the set of all clauses
labelling the AND-nodes of a com
putation tree for the predicate
R is a logic program computing R.
On the other hand, if P is a
logic program camputing R , it
is not difficult to construct a
camputation tree for R which
corresponds to the program [P
If there is a recursion in P ,
there might be several OR-nodes
with the same attached predicate
symbol. Thus we have to decide
which of these nodes will be int-
ernal, the remaining ones being
leaves. Hence there may be finite-
ly many camputation trees for a

predicate R corresponding to a

Let A, B be logic prog-
rams. We say that A extends B
iff the denotation /see van Enden
and Kowalski 1976/ of any predica-
te P of B in A 1is the sa-
me as that in B , i.e.

SQLEG(n,m k) + PLUS(nm.x) PLUS(ymn) HULT Gy,

‘,";-,::.'PLUS(n,m.l)" """ e HUS(’,mn) ‘,'NUH(X;.Y.I)
/s 3’7\/ %\
e ]

L MU (a8 Su)+ PUSInLu) PLUSED,m> 7 MULTGeSp 2> MULT(epu), HULT 0.0
b PUS (.2

(MUTopw)  PWSGuD)

" I‘\ PUS(nLu)

Figqure 2a SQLEG/n,m,k/ iff k =(n + m)(n = m)
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- imal depth of all bad nodes of 1,

(..t A"P(tl'“"tk)] ;;3 is the mumber of all bad o
2 [CPRRS R X TS | of Tof the depth Ky,

X This characterization allos

We say that a camputation tree is to identify tidy trees, since 7
tidy iff every call leaf 1 has is tidy iff a(T)-{0, 0) . W

its called node on the paths from shall use the lexicographic well-
the root to 1 . ordering 4 of pairs of natural

Note that the camputation
tree on Figure 1 is tidy but that

nurbers

on Figure 2a is not. ILema A Let A be anur-

A logic am A is tidy camputation tree of a logic
fora&catepﬁfmﬁ%a program A for P . Then there
tidy camputation tree for p . is a transformationof A toz

Iet T be a computation program A"~ with a computation
treeof A for P. Suppose T tree A" for P such that
ismttidy.Wesaythatacalled -
node is bad provided that cne of /4/ A" extends A
its calls causes untideness of T /41 ®x(A”) <« a(A).
/badcall/-e.g. the node referr-
& to by call /1/ in Figure 2a Coro Given a predicate
is bad. Namely, anode v of T P , every logic program A o
is bad iff there exists a leaf be transformed to a program B ,
referring to v which is on a which extends A and is tidy
different branch than \ A 0O PE

The untideness of T can
bedxaracterizedbyapair(a,a\ Proof of the corollary: The
of natural , denoted 1’ 2 transformation from Lenma A pro
a(T), such that @, is the max- duces a program A~ which extenis

SQLEC (n,m, k)

SUEC(m k) = PLUS (03, PLUS(y.mn), MULTCe,y &)
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= :l“Slqm,;) PLUSLy,m n) = WUk y 2)
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|
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A with a camputation tree A7,
the & -characteristics of which
is smaller than that of A . Sin-
ce « is a well-ordering and the
extension property of programs is
transitive, it is clear that the
iteration of this transformation
gives a tidy program B extend-
ing A after a finitely many
steps.

Sketch of the proof of Lem-
m A: Let a(A)={ux,, ou.)ﬂo,O).

Iet n be one of the bad ncdes
of A with the maximal depth &
I8t AL ., be all call
leaves}efen'u!bto n , the
calls of which are bad. Denote
the parent nodes of 1.,...,1, by
My yeeny respectively. Denote by
B® the "subtree of A rooted in
n /see Figure 3a/.

1°

/'. N

’, .o ‘

A e AN

4, ) &5 ayp)
Figure 3a

Let us assume for simplicity that
the root of B is labelled by a

W!ygredlcate Q.

Iet B” be cbtained fram B by
renaming of variables in such a
“ayothatthelabeloft.hemot

of B is 0/z/ , where; z does
ot occur in A.besB be a
tree cbtained from B by attach-

ingan index i to all occurenc-
es of those predicates which dif-
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fer fram the labels of:
- all leaves of B ref-
ferring to nodes ocutside of B,
- primitive leaves of B.

Let A~ be obtained from A by

- attaching the tree B® t«
every node li and cancelling
the call fram 1, to n

—replacin&theoccuxexwe
of Q/a./ in the label of my
COrr to the node 11
by Q;/a;/

- adding the successor
z=a to the AND-node m, /this
step can be avoided by re-
naming of variables in B~ when-
ever a; is a variable/ for
every i « k /see Figure 3b/.

P

~

)

G e £
ARONA

Figure 3b

This construction is illustrated
on the program fram Figure 2a, 2b.
Tt is easy to see that A~ has
all the properties stated in ler—
ma A .

%%

3 PUSHING UP A CALLED NODE

The number of called nodes
seems to be one of natural measu-
resofthecauplexityofm

1cpu:ograns.Weshall
gtthisneasm’ecanbecollaps'
ed to 1 . We shall use a method
similar to that of Section 2 .

let n be the root of the
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minimal subtree of T , which
contains all called nodes of T
and has an OR-node as a root. We
call any OR-node between n and

a called node of T supercalled
node .

We characterize any tidy cam-
putation tree T by a triple

B/ =L By By, B>
of natural mumbers, where /3,
is the number of all supercallec
nodes of T , (31 is the maximal
depth of all its ~ called nodes
and Bz is the number of all its
called nodes of the depth 3 1

Obviously, T has a single called
node iff f.’:°= i

Iemma B Iet A be a tidy
camputation tree for P of a
logic program A with several
called nodes.

Then there is a transformation of
A toaprogram A~ with a camr
putation tree A~ for P such
that

/i/ A" extends A,

/A1) B/A7) &« R/ .

Corol Iet A be a ti-
dy logic program for P . Then
A can be transformed to a logic
program B , which extends A
and has a camputation tree for P
withasinglecallednode.

Thlias inorollary follows from

=’ A
-, “I, !
" !
A ,Qq)
4 !’
‘-_4’
Figure 4a
Let A be a program cbtained
from A as follows

- the predicate RfYy/ is
replaced everywhere by a new bi-
nary predicate W/y P/ , where?
is a boolean constant.

- the clause R/fy,T/« O/
is added, where T is again &
boolean constant.

- the ococcurence of Y/

in the body of any clause from A
is replaced by WR/t,T/ /seeFi
gure 4b/, P
Ny A
f\_b.?
e @ e
% ('U) brr M)f(,b) ‘\
G fo &ir
)
~ -
\\ '. - !
\\\ ~m -0 I
- VEPRgEL
S .. ,/
L g




It is not difficult to realize
t.hanAl extends A . Let /A2

be a program which is a tidy ext-
exsicncf/A1 cbtained by remov-
ing the only bad call /1/ fram
the conputation tree of A, /see
Figure 4b/ by the method of  lem-
mA. Let A2 be its camputat-
ion tree.

Now the proof is camplete provided
that m is not the root of A .
In the other case, the predicate
P coincides with R . Then we
have to add the clause

Rly/ « R/y,F/

e to cbtain A~ . It is ob-
vious t A  extends A . The
tree A" is obtained again fram
A2'

The proof of the fact that

R/ « /A 1is a mere
technicality.

Femark The assumption about
tidyness of the program subjected
to the transformation can be drop-
ped, But then no claim can be made
on the B-characterization of the

resulting program.

4  PUSHING UP OR-BRANCHING
We have just seen that the

MCOUSIN 2,y)
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number of called nodes of a prog-
ram does not reflect the camplex-
ity of the relations the program
expresses. Our present interest
will be in the minimization of the
maximal number of alternations of
AND- and OR-nodes on a branch
of a camputation tree. We shall
prove that even this measure can
be collapsed to 2 .

First, we shall prove that branch-
ing in an OR-node, which is not
a called node, can be pushed clos-
er to the root. Then we notice
that non-called OR-nodes with a
single successor can be avoided.

The idea is illustrated by
the self-explanatory example /see
Figures 5a, 5b and 5¢/. The pre-
dicate MOOUSIN/x,y/ describes
the relation "y is a cousin of x
fran x mother s side". The
branching in the node labelled by
the predicate PARENT can be
pushed up to the root by appropri-
ate cambination of two different
copies of the contoured subtree
/campare Figures 5a, 5b/. Unfortu-
nately, this method does not lead
to the decrease of the number of
OR-nodes with multiple successors.
That ismyweareforcedtoi_n-
troduce a rather camplicated meas—

NEOUUN (&, y)« Mim,2), PARCHT(py), SIBLING(m,p)

Mme)  PARENT(ay)
ANy Flpy)  PARENTGay)= Hlpy)
Flay) Hipy)

SIBLING(m,p)

SIBUNG(m,pd+ M(a m), H(a,p), DIF(m, p)

Hiem) MG.p) DiF(m,p)

SBUNCLmp) < F,m), Flup), DIF (m,p)

Flam)

Figure 5a

Flup) DiF(m,p)




sure ¢ on the nodes of the conmp~
utation trees. Its is to
characterize the camplexity of the
path fram the root to the given
node in terms of intervening OR-
nodes with several successors.

Iet T be a camputation
tree, the single called node of
which is the root. We say that
there is multiple branching below
an OR-node v of T iff there
is an OR-node with multiple
branching in the subtree of -y
rooted in v . It allows us to
define valuation ¥ on every edge
e of T . We proceed as follows

- if the upper node of e is
an OR-node, we set v/e/ = 1 when-

MCousin (x.y)

MEDUSI (z,y) + Mim, ¢, PARA () 81 mp)

ever this node has several suoces-
mﬁ,wmtv/a/-o othervise

- if the lower node of &
is an OR-node and if there is
multiple branching below this no-
de then v/e/ = O , othervise v/e/
is the number of all those imedi-
ate successors of the upper node
of e bellow which there is 2
maltiple branching.

The weight §/v/ of a md
v of T is the sum of the w-
ights of all the edges on the peth
fran the root to v.

The branching of a computat-
ion tree T , where the root Is
the only called node, can be ch-
racterized by the pair »/7/

REOUSIN [y )~ Wm 0) PARZ(py) S2(mp)

Hims)  PARYpy S m SIR1(m,p) Mim, =) MR2Un g S8 mp)
PRRA(py) = Flpy) PARL (py)= Mipy)
Flpy)
by W) M) Dimpy Y ’&-)/5\5
fam)  Flog) DiF(m,p) fam)  Tigp) Diffenp)
Figure 5bp
NLOUSIN(I.,y)
H{m, c) Flp,<) (IRt (m ) " ‘)/’Z:\S'w")
f(mm&v) %) " /?\
, (6m)  DiF(mgp)
TR Tm) g Wimg) M Mp) Meimp)
Figure 5¢
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of natural mmbers 2 , whe—
re » is the maxim3l wﬁlghtg/v/
ofa node vof T and 1 is
the mmber of all nodes n such
that 9/n/=g and @/m/< §/n/
for every node m above n.

lema C let A be a camp-
utation tree for P of a program
A , suich that its root is the only
called node. Then A can
transformed to a program A~ with
a computation tree A~ for P
such that

/i/ & extends A

/u/f/A/»t,/A/

Coro. let A satisfy
ﬂﬁaﬁﬁsdmc.m

fram the root is called as well as
no such node has more than one
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@ /m/=g /A > @ /m/ . In such

a case m_ must be an OR-node
with several successors. Generally

m, may have a sibling my with

several successors, too. /see Fi-
gure 6a/. The transition of Fig-
ure 6a to 6b demonstrates the
basic steps of the process of push-
ing up the branching of m to
the node k labelled by E .
We proceed as follows

1. we tear off the subtree
starting in the edge 14

2. we make a new copy of the
contoured subtree and we attach to
it appropriately the subtree cut
off at the step 1.

3. the subtree fram the step
2. is attached to the node k .

Let Al be the resulting
camputation tree /Figure 6b/.
It is obvious that & extends A.

The weights of those &dges which

successor.
are changing during the process
Sketch of the construction are indicated on Figures 6a, 6b.
forlema C ; lLet m_ be such a cx:viously)*/Al/Aa"/A/.'me
node of A that one C of its sons more complex cases are treated
n has the maximal weight and similarly.
ﬂp\
E(l..y) g
LISv’,
Blvw) "‘.( Dluy) - m, 0\ L
N S.)% (
o ’C’v
( )CZ(V) B(OI‘)._CRW)
(1(v) A
(26 (3(w)

Figure 6a




D Let A be a logic
program such that its camputation
tree A for P has a single
called node and a single OR-node
are the root of A .

Then there is a progran B
such that
- the maximal depth of
the canputation tree for 8 and
P is two
- P has the same denotat-
ionin B and A .

Proof : The non—called nodes
without multiple branching can be
avoided similarly as the node n
in Figure 5b /see Figure 5c/.

4 NORMAL, FORM THEOREM AND ITS
APPLICATIONS

By the cambination of the
abovexrethodxs,Vavt-:‘'fJanP!‘We

Theorem Let A be a logic
program camputing the relation P.
Then there is a program B
uting the same relation P with
a tidy camputation tree B
which has at most one called node
and at most two alternations of
AND- and OR-nodes on one branch.

The extensive use of compu-
2-4de
monstrates that graphical descrip-

tion of logic programs provides
deep insight into their structure.

/see Tarnlund 1977/ , stratifis-
le programs /see Sebelfk and St
pdnek 1982/ or recursionfree po-
types of camputation trees. May

between predicates of a given pro-
gram and thus make it possible %
recognize those subgoals which can
be solved concurrently.

We have suggested several
methods how to modify computation
trees to cbtain better organized
mmmwmﬁmﬁ?
ion. In a subsequent paper
pdnek and Stépdnkovd/, we will
use them to prove that the synt-
actical restrictions of the lang-
uage PRIMLOG /Markusz and Kapo-
si 1982/ do not impose any 5ig-

Ev )= Bi(v.50), D'(u.,)
Bllve) - Dilky) w-Su
u, - R2G,w)
A
"I"‘/ vio ’f
o

BA(v, S« (16,),€2()

sy C3te)

Figure 6b

E(Soy)e B0 S0), D2 u )

BL(0,6)«5(«)
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nificant restrictions on the class
of camputable functions.
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SEMANTIC INTERPRETATION FOR THE EPISTLE SYSTEM

Michael C. McCord
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ABSTRACT

EPISTLE is a natural language
processing system being developed
at IBM Research, with current
application to text-critiquing:
criticism of grammar and style in
documents . The EPISTLE grammar,
with a very broad coverage, can be
considered purely syntactic. This
paper describes & semantic inter-
pretation component, SEM, written
in PROLOG, which will be useful in
further developments for the
system. SEM is based partly on
previous work by the author, but
the present system is different in
that it translates surface parses
to logical forms in a single stage,
in which there is interleaving of
the processes of sense selection,
slot filling, other types of
sodification, movement of nodes,
and  exercising of semantic
constraints. Furthermore, the
constraints used are not simple
type-checks, but involve inference
with world knowledge.

I INTRODUCTION

EPISTLE (Miller, Heidorn and
Jensen, 1981, Heidorn et al., 1982)
is a natural language processing
system applied currently to text
critiquing: Authors preparing a
docusent will be able to use EPIS-
TIE to get corrections and criti-
ciss of grammar, spelling, and
style in the text. Other applica-
tions to document analysis and
generation are planned for the
system. EPISTLE uses a grammar
(Jensen and Heidorn, 1983) written

in the NLP rule language (Heidorn,
1972) and a lexical/morphological
component (Byrd, 1983)  which
together give the system a very
broad coverage of English. The
grammar can be considered to be
purely syntactic, using no semantic
constraints and producing purely
syntactic analyses of sentences.

This paper describes a semantic
interpretation component, SEM,
written in PROLOG, which takes the
output of the syntactic component
and produces logical forms for
sentences. SEM will be useful for
refinements of the text-critiquing
application, and will be crucial
for certain planned applications,
such as document indexing and
expert systems associated with text
analysis.

SEM has some elements in common
with previous semantic interpreta-
tion systems of the author (McCord,
1982, 1981). The logical language
used as the target of interpreta-
tion is much like that in (McCord
1981), including focalizers. Scop-
ing problems are dealt with.
However, the present system is
different in that it is organized
into a single stage in which there
is interleaving of the processes of
sense selection, slot filling and
other types of modification, move-
ment of nodes, and exercising of
semantic constraints. In many
natural language systems, the
semantic constraints used are
simple type-checks in a hierarchy
of types. It is argued in this
paper that this is not adequate




generally, and that general infer-
ence with world knowledge is needed
during semantic interpretation.
Such a mechanism is used in SEM.

2 NATURE OF THE INPUT TO SEM

In the interests of modularity
and broad coverage, the approach of
the EPISTLE grammar is to be as
independent of semantics as possi-
ble, and to produce syntactic
analyses which in themselves often
have enough information for useful
text critiquing. When semantics
(and pragmatics) are ignored in a
natural language system, sentences
can be extremely ambiguous. For
avoiding multiple analyses, the
design of the EPISTLE grammar
includes the idea of the approxi-
mate surface parse. For most
sentences, a single, "approximate"
syntactic analysis is produced.
Achieving this involves, mainly,
two decisions.

One decision is that modifiers
are attached in canonical ways.
For example, postmodifying preposi-
tional phrases are normally
attached to the next higher node
which is a verb phrase or clause.
With this decision, the following
example has only one analysis.

John saw the man in the park with
the telescope.

Another decision js to ignore,

itfl m?'fit : cas:'f: s, the identification
o elete or "moved" it
Thus, in g

Which horse dig you want to win?

no indication is made
subject or object of "win"
fact, no "trace" n
for "which horse" Co

- nsequent
this sentence is given :?:ly o:;
analysis, Similarly, in

of the
and, in
is shown at all

John was killed by the river,

there is only one analysis, with
indication of the logical subjet
of "killed" ("by the river" &
simply a prepositional phrase post-
modifying "killed").

Interestingly, the idea of ti
approximate surface parse is rathe
similar to F. Pereira's right-most
normal form (Pereira 1983), whic
was designed for the same purpost
(reducing ambiguities in syntum)
These ideas were arrived at inde
pendently. Pereira's analyses &
contain more information pertinest
for semantics, for instance the
indication of traces, produced b
use of an extraposition gram
(Pereira 1981).

For SEM, an interface f’“‘“{
to PROLOG produces, for e
syntactic analysis, a PROLOG tem
of the form

syn(Features, Marker,
Head, Daughters)

which we call a syntactic item.
Here Features is a list of ter™
representing the syntsctic festur®
of the sentence (or phrase) b‘“}“
analyzed. Marker is a vnrub:
which relates the ites to copies &
it made by SEM, through unificsti®
with the markers of the copies (3

can make copies for hmdhit
deleted and moved phrases). Int

input to SEM, no two markers &%
unified. Head is (the root foF
of) the head word of the phr”';
(The grammar has the flavor of ¢
dependency grammar and every phrést
has a head word.) Morphologicd
features of Head are included “;
Features. Daughters is s }is‘ 9
SYNS representing the modifiers :e
the head word (its daughters in*® :
analysis tree). The position ®
the head is indicated in this 1is%

3 OUTPUT OF SEM

2

3 d
SEM takes syntactic itess &°
Produces logical forms representifs




the meanings of sentences. These
forms are built up from variables,
constants, and compound terms
consisting of a predicate (usually
s sense of some word appearing in
the sentence) with its arguments,
or a conjunction of forms. Some
predicates can have logical forms
as arguments. This is the case for
(senses of) verbs like "believe".
Quantifiers, like "each" and
"many”, and other focalizers (cf.
McCord 1981), 1like "only" and
"even", are also considered high-
er-order predicates in the system
which happen to take (two) logical
forms as arguments.

As an example, the logical form
produced by SEM for the sentence

Who does Mary believe that every
man likes?

is
wh(X,person(X)&
believe(El,mary,
every(man(Y),like(E2,Y,X))))

The first argument of every noun or
verb sense, such as X for "person"
and E1 for "believe”, is called the
entity argument, and stands for
the event, state of affairs, oOr
individual referred to by the pred-
ication. Any free variables (such
as El and E2) in a logical form are
considered to be existentially
quantified.

Other examples of logical forms
will be given below. For more
discussion of the logical language
being used here, see (McCord 1981).

& SEMANTIC ITEMS

In barest outline, the main
procedure of SEM converts each node
of a2 syn tree to a logical form
(representing a sense of the head
of the node), and combines these
forss to make a logical form for
the whole sentence.
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However, in doing the combining,
richer structures, called semantic
items, are actually manipulated. A
semantic item is of the form

sem( Features,Connector,
Marker, LogicalForm) .

Here, Features and Marker are as
in syntactic items, with the addi-
tional condition that for noun
phrases and clauses, the Marker is
unified with the entity variable
for the head predication in the
LogicalForm. In the initial
semantic item created for a node,
the LogicalForm is normally a
simple predication (corresponding
to a sense of the head word); but,
after modification by (combination
with) other semantic items, this
field becomes ever more complex.

The Connector is a term which,
roughly, determines how the seman-
tiec item can combine with other
semantic items in the process of
modification. The procedure mod,
described below, which allows one
semantic item to modify (or combine
with) another to produce a third,
keys mainly off the connectors of
the first two items. Typically, a
connector term contains variables
which are (unified with) argument
variables of the head predication
in the semantic item; and the
structure of the connector term (as
interpreted by mod) determines how
these arguments get filled. A
special case of a connector is a
slot frame, and slot filling for
verbs and nouns is handled in SEM

by mod.
Examples of semantic items are
sem(quant:.. ,Q/P,nil ,each(P,Q)).

sem(quant:..,%Q,nil,
each(man(X),Q)) -

sem(vp:.. ,nil-(subj:X)-(obj:Y),
E,see(E,X,Y)).




sem(vp:..,nil-(subj:Y)-(pobj(by):X),
E,see(E,X,Y)).

In the first item, the connector
Q/P is such that modification by
the item results in (1) unifying P
with the logical form of the modi~-
ficand, and (2) creating a new item
like the second item above. This
second item has a new connector *Q
which can "cause" unification of Q
with a further modified logical
form. The third and fourth items
have connectors which are slot
frames. (The format for these is
slightly simplified.) In the
fourth one, the slot frame has
undergone a transformation which
would be appropriate for a passive
VP.

In (McCord 1981), semantic items
were terms with slightly less
information, containing only the
Connector and LogicalForm fields.
Connectors were called operators.
The new name is more appropriate,
especially in the new system, where
connectors can be slot frames,
because mod can use the connectors
of both a modifier and its modifi-

cand: The control is more symmet-
ric,

S OVERVIEW OF THE INTERPRETATION
PROCEDURE

There are four main ingredients
in the interpretation Procedure:
sense selection, modification, tran-
sformations, ang knowledge-check-
ing. The main Procedure (called
semant), acts recursively on the
nodes of a Syn tree, and uses all

four of these ingredients at every
level.

) Sense selection is done by call-
ing a procedure sense, which takes
the features, marker, and head of
Fhe SYN node, ang returns anp

The choice made by sense is non-
rleterministic. Wrong choices may

A

get filtered out by the other three
ingredients named above. Sense
selection is discussed further fn
Section 6.

Modification, residing in the
procedure mod, is the heart of the
interpretation process. As indi-
cated in the preceding section,
mod allows one semantic ites to
modify (or combine with) a second
to produce a third. As for vhich
pairs of items are combined .by
modification, the basic, simplified
idea is that all the daughters of &
node modify the node (with :§0
leftmost acting as outermost sodi-
fier), after the daughters thes
selves have been interpreted and ¢
sense for the given node is choses.
Modification is discussed further
in Section 7.

Transformations are needed in
this scheme because the structure
of the syntactic analysis tree say
need "correcting” in order to meke
the straightforward process of
modification work correctly. There
are two sources of this need for
correction.

One source is that qumtifx:{’s
(and several other types of modific
ers) may have intended scopes if
logical form which do not corre
spond to their positions in the
syntactic structure. This Pmblf'
was  discussed extensively I8
(McCord, 1982, 1981) and was dt‘lf
with there by a type of tree trans
formation called reshaping. _“
these previous systems, reshapins
was done in a whole separate stag®
(on the whole tree), before 1Y
modification was done. In ‘h;
pPresent system, the steps ©
reshaping are interleaved with &l!
the other steps of interpretatios,
S0 that there is only one stage ©
interpretation. This is done $0
that there can be more "immediate
feedback” and filtering for b
choices of reshaping from the other




steps of interpretation, especially
knowledge-checking.

The other source of the need for
correction is the fact that the
syntactic analysis tree is an
approximate surface parse, so that
modifiers may need to be moved,
created, or identified in some way.

Transformations appear in
several different ways in SEM.
There are some (though very few)
like ordinary transformations of
transformational grammar, operating
on whole sSyn trees. The others
are more implicit. In the (reshap-
ing) transformations dealing with
scoping, semantic items correspond-
ing to original tree nodes are
moved, but their positions are kept
track of in arguments of PROLOG
procedures, Still another type of
transformation is of slot frames,
handled by the procedure sense.
These various types will Dbe
discussed below where they are
pertinent,

Knowledge-checking is a gener-
alization of semantic type-check-
ing, in which the reasonableness of
@ logical form is checked, with
inference, against knowledge about
the use of the predicates in the
form. At every level of call to
semant, the logical form of the
semantic item produced at that
level is checked with the procedure
kcheck, which is discussed in
Section 8.

Now let us look at the defi-
nition of the main procedure
semant.

semant (Syn,Sem,Sisters) <-
transform(Syn,Synl) &
semant (Synl,Sem,Sisters).

semant (syn(Features ,E ,Head, Daus),
Sem,Sisters) <-
semant list (Daus ,Mods) &
reorder (Mods ,Modsl) &
sense(Features ,E,Head,Sem0) &
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modlist(Modsl,Sem0,
Sem,Sisters) &

satisfied(Sem) &

kcheck(Sem).

The top-level use of semant is
to take a syntactic item Syn and
produce a semantic item Sem.
However there is an additional
output, Sisters, which is important
for lower-level calls. Interpreta-
tion of a node Syn can produce new
(left) sisters for it because of
the operation of raising. This is
a type of transformation involved
in reshaping (to handle scoping
problems). For example, the quan-
tifier node '"each" in the noun
phrase "each man" is raised to
become a sister of the noun phrase.
Raising is handled by mod and will
be discussed further in Section 7.
In the top-level call to semant,
the Sisters list is required to be
nil.

The first clause defining
semant calls the procedure trans-
form to perform a tree transforma-
tion on Syn, and then calls semant
again on the output. (Thus another
transformation could apply, and so
on.)

Some of these transformations
are like the transformations of
transformational grammar, although
SEM needs only a very few. The
only transformations of this type
in the current version of SEM are
wh-movement for wh-questions and
relative clauses. However, coordi-
nation (with ellipsis) will proba-
bly be treated in SEM by use of
transformations. (This will there-
fore be an alternative to the meta-
grammatical, parsing approach to
coordination in (Dahl and McCord,

to appear).)

Other transformations performed
by transform have the purpose of
trying out corrections to the
approximate surface parse. For
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example, postmodifying preposi -
tional phrases can be reattached.
The non-determinism of PROLOG
allows wrong reattachments to be
blocked by other ingredients of
interpretation.

The various transformations of
these two sorts are defined simply
by PROLOG clauses for transform,
one clause per transformation.

Now let us look at the second
clause for semant. The call to
semantlist does the recursive
interpretation on the daughters
(Daus) of the syntactic item,
producing a list Mods of semantic
items which are to be the (seman-
tic) modifiers of the node. This
Procedure just calls semant itself
on each member of the list Daus,
and any sisters produced are blend-
ed into the 1list Mods during the
process.

The procedure reorder is 4
reshaping pProcedure (dealing with
scoping). It performs a permuta-
tion of the Mods list according to
scoping heuristics (see McCord
1982, 1981). Again, wrong choices
could get filtered out by other
ingredients.

As indicated above, sense
selects g Semantic jtepm (Sem0)
Tepresenting g sense of the node
being worked on.

Now the sense Sem0 for the node
can be modified by its modifiers
Mods!. This is done by the call to
modlist, which calls mod for each
member of Mods1l, so that these
items act on Sem0. The leftmost is
the Outermost modifier; this means
Procedurally that the rightmost
actually modifies Semo first, the
next-to~tightmost modifies the
result, and so on.

:I’hg last tyo Procedure calls, to
s?tlsﬂed and to kcheck, act as
filters op the result Sem of the

|

interpretation. The first o
blocks Sem if the connector of Se
is a slot frame containin
(unfilled) obligatory slots. The
procedure kcheck i{s discussed is
Section 8.

6 SENSE SELECTION
In the call
sense(Features ,E Head,Ses),

the list Features, the marker I,
and the head word Head are used ss
input, and the output is the sess
tic item Sem representing a senss
of Head as head word of a phrase of
type Features with wmarker [
Another way of saying it is that
Sem is an initial semantic ites for
the given phrase-with-head before
anything has modified It. The
logical form of Sem is & predi-
cation whose predicate is one of
the senses of Head (for the gives
Features); and the connector,
depending also on Features,
controls how the arguments of this
predication get filled in. For2
given word sense, different connec:
tors can be produced by sense,
because the connector can depend o2
non-lexical features of the phrase.
For example, a passive VP syn gets
8 different sem from an active
one.

Currently, sense produces ted
different types of connectors.
Examples of three different types
were given in Sectionm 4. These
will not be described S)’“”‘::
ically in this paper, because ®ost
of them are like connectors alresdy
described in (McCord 1981). Howev"
er, slot frames were not used &
connectors in (McCord 1981), and
these are worth describing here,
especially because sense has to 40
a bit of work to produce them.

A slot frame is of the form

frame(Typo,SOots)-




Here, Slots is a list of slots,
each of which is a pair (as in
(McCord 1982)) Slotname:Marker.
Because of the way the procedure
mod is applied, slots get filled
right-to-left. So for convenience
in displaying slot 1lists, these
lists are formed with the left-as-
sociative operator '='. Thus,
examples of slot lists are

nil-(subj:X)=(obj:Y)-(pobj(to):Z)
nil-(subj:X)-(iobj:2)~(obj:Y)

Each of these could get associated
with a predication like
give(E,X,Y,2) for a ditransitive
verb.

The Type field for a slot frame
is either nil or is of the form
adjunct(X). The latter type is
used when the semantic item comes
from a phrase like a prepositional
phrase, a participial clause, or a
relative clause, where there is a
"topic" X (the first argument of
the preposition, the missing
subject in the participial clause,
the topic of the relative clause)
which will be unified with the
sarker of the modificand when this
semantic item acts as an adjunct
sodifier.

For phrases whose head is a
verb, sense does the following
things to find a corresponding
sem,

First a transitivity type (tran<
sitive, ditransitive, etc.) is
obtained from the features. (This
is actually non-deterministic,
because some verbs can have more
than one tramsitivity feature.)
The voice (active, passive) is also
determined from the features. For
the given tramsitivity type and
verb, a predication Pred corre-
sponding to & sense of the verb,
and a canonical slot list Slots,
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are made up (assuming an active
clause environment for the verb).

Then a procedure slotrans looks
at the canonical slot list Slots
and the voice, and produces a
transformed slot list Slotsl (which
could be left the same as Slots
itself). For example, in the
passive case, the slot list

nil-(subj:X)-(obj:Y)
is transformed to
nil-(subj:Y)-(pobj(by):X).

This operation is non-determinis-
tic; e. g., for ditransitive verbs
more than one result is possible.

Finally, a procedure mkframe
looks at the phrase category and
Slotsl, and makes the frame that
will be the connector for the
desired sem. In the case of
participial clauses, mkframe
deletes the subject slot from
Slotsl, so that in this clause no
overt subject is sought. The mark-
er X associated with this deleted
subject slot is, however, stored in
the type, adjunct(X), of the frame.
In the case of imperative clauses,
mkframe also deletes the subject
slot, but unifies its marker vari-
able with "you".

As an example, for the particli-
pial clause "given me by my aunt"',
the successful choices would be the
following. The predication is
give(E,X,Y,2), and the canonical
slot list is

nil-(subj:X)-(obj:Y)-(pobj (to):2).

This is transformed by slotrans to

nil-(subj:Y)-(iobj:Z)-(pobj(by):X).
Then mkframe produces the frame

frame (adjunct(Y),
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nil-(iobj:Z)-(pobj(by):X)),

and the sem produced by sense is

sem(ptprtcl:..,

frame (adjunct(Y),
nil-(iobj:2)-(pobj(by):X)),
E, give(E,X,Y,2) ).

7 MODIFICATION

The procedure mod handles the

interaction between a semantic item
Sem and a semantic item Sem0 which
has been made (implicitly) a daugh-
ter of Sem by semant, so that Sem0

is

a candidate to modify Sem.

There are actually three types of

int

modify the mother Sem,

eractions:

(1) The daughter Sem0 can simply
producing a

new (modified) version Seml of the

mot

"goes away"

the
cas

her. In this case, the daughter
(no longer is used in
interpretation). This is the

e, for example, when the daugh-

ter fills a slot in the mother, or

is
rel

rai

an adjunct modifier such as a
ative clause.

(2) The daughter Sem0 is simply
sed to become a (left) sister of

the mother Sem, and no real modifi-

cat
for
of

whe

already having modi fied

get
"th

ion takes place. This happens,
"example, within the Processing
the grades of each student",
re the quantifier "each" (after
"student")
a left sister of
(so that it has wider

S raised to
e grades"

scope) .

of
the

"Student"
student",

the

a
each(student (X),Q) an

A

the mother. This happens when
quantifier "agcp" modifies
in the noun phrase "each
The raised version of
daughter has logical form
d a connector

*Q so that it is ready to modify
its new mother (by unifying Q), o
to be raised even further, & i
(2). The “student” node still
needs to be there for slot filling.
It has a slightly different comse
tor, so that it does oanly siat
filling for its wother. (If then
had been no determiner, th
original noun phrase would sodify
its mother both by slot filling ad
by left-conjoining.)

The procedure mod manages these
three types of interactions by
having the calling form:

mod (Sem0 , Sem, Sem1,Sisters,Sistersl)

Here Sem0 is the daughter, Ses i
its mother, and Seml is the n&
version of the mother. The last
two arguments are treated “:
difference list (for convenience :-
the calling procedure modlist)
which contains the raised daughter
in cases (2) and (3) above and ::
empty in case (1). Case (2) :
handled by calling & procedss
above which is like the procedure
of that name in (McCord 1981).
Everything else is handled UY‘;
series of clauses for mod “M(
look mainly at the connectors ©
Sem0 and Sem (especially 5"0)_'
These are like clauses for t""‘”:
(McCord 1982, 1981), except the
they now handle slot filling
raising, as well.

A sample clause of this m?'-
which illustrates case (3) above
is

mod (sem(Feas0,P/Q,X0,LF0),
sem(Feas ,* X, Q),
sem(Feas,nil, X,Q),
S, sem(Feas0,%P,X0,LF0):5 )-

Here, the logical form LFO in o
daughter could be each(Q,P),
the logical form in the mother
could be student(X), so that Q 8¢t
unified with student(X).

a



One of the clauses for mod
calls a procedure filler, which
handles slot filling. This proce-
dure expects the connector of the
mother node to be a slot frame.
From the slot list, a slot is
chosen, looking from the right
(since modifiers do their work
right-to-left). This choice is
non~-deterministic. Slots can be
passed over, but only if they are
not declared to be obligatory. Any
slots passed over, plus the chosen
slot itself, are discarded from the
slot list (in the sense that the
new version of the mother has a
slot frame with these slots
removed). The marker of the chosen
slot i{s unified with the marker of
the modifier. (This is the main
point of slot filling.) Then, to
check on the correctness of this
filling, filler calls a procedure
fill, which looks at the name of the
chosen slot and knows what specific
slots require of their fillers.
For example, the slot pobj(by).
would require a prepositional
phrase whose preposition is "by".

The action of fill can also unify
other marker variables. For exam-
ple, in the clause

John was asked to see Bill.

the main verb gets a predication
ask(E,X,Y,Z2) (read "X asks Y to

z"), and the associated slot list
is

nil-(subj:Y)=(pobj(by):X)-
(infcomp(Y):2).

At the time of filling the
infcomp(Y) slot, the infinitive
complement "to see Bill" has been
interpreted and has semantic item
of the form:

sem(infecl:...,
frame(adjunct (U),nil), El,
see(E1,U,bill)).
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The procedure fill knows to unify U
with the variable Y in the slot
infcomp(Y). After the subj:Y slot
for "ask" is filled by "john", the
resulting logical form for the
whole sentence (neglecting tense)
is

ask(E,X, john,see(El, john,bill)).

In (McCord 1982, 1981), slot
filling was done during parsing.
In some ways, that is more natural.
Indeed, it would be attractive to
have only one pass (parsing) in
which complete logical forms are
produced, as has been done in the
earliest logic grammars (see Dahl
1981). But there are strong argu-
ments for having a second pass in
which one can look at the whole
parse tree. A good treatment of
scoping is easier on a second pass,
and coordination is probably easier
to treat on a second pass (with
transformations which duplicate
elided material). The first-pass
treatments of coordination in (Dahl
and McCord, to appear) and (Woods
1973) involve looking at parse
histories, which can be difficult
to manage. A second-pass treatment
of coordination would go hand-in-
hand with slot filling on the
second pass. The system of
(Pereira 1983) is akin to SEM in
that slot filling is done there on
a second pass. However, in
(Pereira 1983) there dis a third
pass, where scoping is treated and
the final logical form is produced.
It seems advantageous to have only
one pass after parsing, in which
all the steps are interleaved, so
that logical forms get built up in
the cycle and can serve as input at
every level to checks 1like know-
ledge-checking. (An early version
of SEM actually had three passes:
slot filling, reshaping, and
modification. No systematic

comparisons of efficiency have been
made, but it seems likely that
immediate feedback from constraints
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will produce greater efficiency.

In addition, the current version is '[:0! us just ::onﬂ;l:r m.nmu::
simpler is design.) Jpen: , VEitingpea ’
animal _pen”. Most _po:lc woald
CIN et the "writing pen terprets:
e :ton in the first seatence ndx:n
In producing semantic interpre- "animal_pen" interpretation in tM
tationsp, many fhoices can be made second. The dhﬂlmtmtwg
(selection of word senses, place- made by t:quir.uu of
ment and action of modifiers, “"contained_in sense of i,
etc.). Some sort of guidance or together with  knowledge sbost
filtering is needed. In many (normal) sizes of writing P!‘i
natural language systems, semantic animal pens, and boxes. :;
type-checking is used for filter- simplicity, we could say that
ing: Senses of words (especially precondition for
verbs) have a semantic type associ-
ated with each slot in their slot contained in(X,Y)
frames. Thus a sense seel(E,X,Y)
of "see" might have the slot list is
nil-(subj:X:anima])-(obj:Y:physobj). smaller(X,Y).
Slot fillers are required to have A frame with semantic types like
types which match the slot type,
perhaps after moving about in a X:small, Y:large

hierarchy of types. .
will not do, because the requirt

In logic grammars, the matching ment on X and Y {s relative. -
of types within a hierarchy can be course, in a limited domain, with®
implemented in g particularly small number of types of &’.cfs' “
powerful way by using unification one could suitably enuserate ¢
of logic  terms representing required pairs. But, in gesert:
partially specified types (see Dahl this cannot be done, and we =%
1981). (Types can be represented make a computation (an inferesct

as lists like t1:t2:t3:%, yhere tl
is a Supertype of t2, t2 is a
supertype of t3, and the tail of
the list is a variable.) An advan-
tage of this unification approach The
is that type-matching requirements
can be exercised ip 4 top-down way
during Parsing (by PROLOG, for a

definite clause 8rammar (Perei =
800
and Warren 1980)). e Th:so!:ie::;.v::hiu i

not based simply on finite 1“‘;‘
In fact, the two noun phrases
sentence of the form

is in the ... -

as in

Semantic type-checkin
L g may be
adequate in small domains, bu{ it
8ppears not to be adequate ip
general. Consider sentences of the

of
could be very complex, and ‘:}! t0
the information could be uS
determine smaller(X,Y).

?;;;4)_discussed by Bar-Hillel So, instead of doing simlt
't::e-checking, we need to “lk:iz;_
The ge-checking, where Sk
Pen s in‘the box. forms are checked for reawﬂ‘t;::.

The box is in the pen. ness by doing more general in ‘

ence with real-world knowledge-

—f B



present in SEM, knowledge-checking
is implemented in the following
(approximate) way.

Recall that semant makes the
call

kcheck(Sem)
at every level. There is a
(partial) logical form LF in Sem,
which is to be checked. As an

example, if we are looking at the
top level of

Each box is in a pen.

the logical form LF (with the
"animal_pen" sense of 'pen") is
essentially

each(box(X),animal_pen(Y)&
contained_in(X,Y)).

The next step (to make the know-
ledge-check easier to handle) is to
strip LF of quantification, forming
8 conjunction of the remaining
bases, as well as to remove any
qualification in these bases. For
the example, the stripped form is

box(X)&animal pen(Y)&
contained in(X,Y)

where, as usual, the free variables
are considered to be existentially
quantified. Finally, we replace
the head predication by its
precondition (given by a unit
clause for the predicate precond).
This results in the form

box(X)&animal pen(Y)&
smaller(X,Y).

Finally, we pass this form to
PROLOG to try to prove it, i. e.,
to find a case of a box X and an
animal pen Y where X is smaller
than Y. With this method, SEM does
succeed in getting the reasonable
disambiguations of "The pen is in
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r.he' box" and "The box is in the
pen".

This method of doing kcheck can
be seen to be a true generalization
of type-checking in a hierarchy of
types. To illustrate the mapping,
if the predication seel(E,X,Y) has
the type requirements

X:animal, Y:physobj,

then we can give it the precondi-
tion

animal (X)&physobj(Y).

Given the sentence '"John saw a
star", kcheck will try to prove

star(Y)&animal (john)&physobj(Y).
Given clauses

man( john).

star(sl).

physobj(X) <- star(X).
animal(X) <- human(X).
human(X) <- man(X).

this proof will succeed. Condi~-
tional clauses of the sort given
correspond to type-hierarchy
relationships.

But this method of defining
kcheck is probably only an approx-
imation to what is needed. Working
with the stripped logical forms is
not sufficient. And perhaps
instead of looking merely at prec-
onditions, one should in general be
testing for consistency of the
logical form with the current know-
ledge base. There may be no clear
distinction one could make between
the requirements of preconditions
and the general requirements of
consistency, although one must be
concerned with efficiency. (For a
discussion of the role of consist-
ency in information systems, see
Kowalski 1979). This point of view
for SEM will be investigated.
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ABSTRACT

A Gapping Grammar (GG) has rewrit-
ing rules of the form:

ay, gop(z;), as, gap{2), -

agy gop(2,4), @ — B

a, t VNU Ve
G = ( gap(z), gap(2z), ..., gop(Za1) }
z,¢ VY

Be R-U 153 UG‘

whete Vy and V,, are the terminal and non-
terminal vocabularies of the Gapping Gram-
mar. lntuitively, a GG rule allows one to
deal with unspecified strings of terminal sym-
bols called gaps, represented by 2,7, %u1s
in 3 given context of specified terminals and
non-terminals, represented by a0,y
and then to distribute them in the right hand
side 4 in any order. GG's are a generaliza-
tion of Fernando Pereira's Eztraposition
Grammars where rules have the form (using
our notation ):

ay, gap(z)), oz gepl(2),....90p(2es). 00 =
8, gaplz,). gop(zs). - 90P(Zs1)

ie, gaps are rewritten in their sequential
order in the rightmost positions of the rewrit-
ing rule. In this paper we motivate GG's by
presenting grammatical examples where XGs
are not adequate and we describe and discuss
alternative implementations of GGs in logic.

Dep?nment of Computer Science
University of British Columbia
Vancouver, B.C. Canada

1. Introduction

A grammar is a finite way of specifying
a language which may consist of an infinite
number of "sentences”. A logic grammar has
rules that can be represented as Horn clauses.
Such logic grammars can conveniently be
implemented by the logic programming
language Prolog: grammar rules are
translated into Prolog rules which can then
be executed for either recognition of sen-
tences of the language specified, or (with
some care) for generating sentences of the
language specified.

Since the development of the first logic
grammar formalism by A. Colmerauer in
1975 (Colmerauer,1975), and of the first size-
able application of logic grammars by V.
Dahl in 1977 (Dahl,1977), several variants of
logic grammars have been proposed, some-
times motivated by ease of implementation
(Definite Clause Grammars, DCGs,
[Pcteira&Warrcn,lQSU]). sometimes by a need
for more general rules with more expressive
power  (Extraposition Grammars, XGs,
[Pcrcira,l%l]), sometimes with a view
towards a general treatment of some
language processing probler such as coordi-
nation (Modifier Structure Grammars, MSGs,
[Dah1&McCord,to appear]), or of automating
some part of the grammar writing process,
such as the automatic construction of parse
trees and internal representations (MSGs,

op.cit; Definite Clause Translation Gram-
mars, DCTGs, [Abramson,1984]). Generality
and expressive power seem to have been the
main concerns underlying all these efforts.

In this paper we present another logic
grammar formalism called Gapping Gram-
mars, GGs, which we believe to be the most
general to date. We examine three possible
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interesting aspects

implementations, and discuss lhc'adequary of some n!iﬂ e e
GGs for certain language processing pt'obleml Gapping b.:c E—— hm.m
that cannot be expressed as easily in any the first place - mvm #
other formalism. what lahd": ‘»:’f‘:‘ =l

GG rules can be considered as meta- Vll“'l::;'u » dohm:md W. =
rules which represent a set (possibly iu_ﬁmu-) '\;"\\?'nwﬂJW&I. o inboih
of ordinary grammar rules. They permit one [Van ‘ll o exh"m’.“m. g3
to indicate where intermediate, unspecified many l‘t‘:"i."I of Saveningie o oty ek
substrings can be skipped, left unudxnd by m:l! e g v =
during one part of the parse and possibly of these Ryt s s
reordered by the rule's application for lau-f re:mre’“l:“l“m ot mgman s
anlal)-sis by other rules. For instance, the GG ::""m"r R wide vactay sl madie S
rule:

tions using very few rules

A, gap(X), B, gap(Y), C — Secondly, there seems (o be some

ing o8
gap(Y), C, B, gap(X) p,,d,,;o‘,c,: b”:, .ot:::‘::.,:’:lﬂi‘«::“
i i the next relevant su
:alllx bf_- aprl.ned successfully to either of the 500 harist o Srlormubioi Sk e N
ollowing strings:

the background of consciousness, :ﬂ:

A EF.BDC brought back into the l«xn"dm::' i

i (= EFand Y= D, and later, possibly npmntn,rd with o
e i) ' closely related substrings. Whes p

4BDEFC discontinuous constituents, for instance ”‘:
i 0 i the course and colloquial sentences “Desmon
Y".h el l= /'ll;nd L0 S hemlees knocked the girl with green eyes dmln":
tion of the rule yields e ve
DCBEF

green eyes up”, the human hearer ‘ln:'::
4 ably suspend his attention from the s
= mediate string “the girl with green €

. d
DEFcCB until the completing substring ‘o m
i ke Tl “down™ or “up”, ¥ ¥
tively. We can therefore think of the knocked”, ie., his it
;?;p:: GGy rule as a shorthand for, among repositioned, and comprehended Wi
others, the two rules: interrupted context -
A EF, B D C— D, CB E F A third argument for sometimes

specifying which constituents should be "":l
mediate between two substrings B_lb" .
that there is some empirical linguist :”
dence in support of the existeace of catego #
intermediate between lexical and phrasa

A BDEF C-DEF,CcCB

The idea of 8apping grammars, as well
as of the compiler implementation scheme
shown below in Section 3.1 was developed in

[

categories [Radford,1981]. While these .’m“
1981 by V. Dahl as a result of examining Fer- clearly captured as traditional categorics “
nando Pereira’s work on Extraposition Gram- linguistic theory, it is possible to compst ‘
mars, and finding the formalism limited, tionally account for them simply by pereei®
mainly with respect to the problem of treat- ing and naming them as gaps.
ing coordinated constructs. During a 1982
visit to the University of Kentucky by V. and
Dahl, these ideas were tested in joint work 2.  Background, Motlv:;‘:::
with  Michael McCord, but were  later Definition of Gapping Gram

suspended in favoyr of a

= A
more promising Logic grammars originated with
approach to the coordinatj

on problem (see Colmerauer's Prolog  implementation

¢
[Dahl&McCord,to appear]). We (Dahl & Metamorphosis Grammars as an ﬂ.,@::nd
Abramson) now resume this research, no notation for logic programs. They fom"; =
longer with a view towards treating coordina- rewriting rules where the non-terminal 9

tion, but because the formalism itself has bols may have arguments, and rule applic>

—J




tion may therefore involve unification. For
instance, a rule such as:

np{X) — nemd X)

can be applied to the strings np(4) and
nplanne) yielding, respectively, name(4) and
namdanne) but cannot be applied to either
of the strings np or np(z,y). The left hand
side of 3 normalized Metamorphosis Gram-
mar rule must start with a non-terminal sym-
bol, but may be followed by a sequence of
terminals (terminal symbols are written
between [and [), whereas the right hand side
may contain any sequence of terminals and
non-terminals, as in:

o [8.1d = [H. o |d

(Unnormalized  Metamorphosis  Grammars
may contain rules beginning with a terminal,
followed possibly by other terminals and
pon-terminals; there is no loss of generality,
bowever, in restricting onesell to normalized
MGs. See [Colmerauer,1978].) Definite Clause
Grammars, DCGs, are a simplification of
MGs in that rules are allowed only a single
non-terminal on the left hand side, as in:

verb_phrasel X) — ver®{ X, Y), object(Y)

Extraposition Grammars (XGs) allow
the interspersing of gaps in the left hand
side.and these are routinely rewritten in their
sequential order at the rightmost end of the
rule, as in:

rel_marker, gop(X), trace =
rel_pronoun, gap(X)! (1)

In an XG rule, symbols on the left hand side
following gaps represent left-extraposed cle-
ments (e.g., "trace” above marks the position
ot of which the "noun_phrase™ category is
being moved in the relativization process).

Let us briefly examine the step-by-step
rewriting of a sentence with a relative clause
to understand how the gapping rule above
works. Our complete grammar is:

seatence -> np, Vp

np -> proper_name

'We use our notation for consisteacy. Pereina's no-
taties for gap/X) i wrttes *. " in the left band
ride and mmply left impliot on the nght
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op -> det, noun, relative
np -> trace

vp -> verb, np
vp -> verb

relative -> ||
relative -> rel_marker, sentence

rel_marker gap(X),trace ->
rel_pronoun,gap(X)

det -> [the]

noun -> |house]
rel_pronoun -> [that|
proper_name -> [jack]
verb -> [built]

Applying these rules as graphed below, we
analyse "the house that jack built” from np:

np

det—noun—relative
|

the house rel marker sentence
np v

proper_name verb np

jack built trace

rel pronoun jack built

that

where the gap is "jack built”. Notice that by
adding appropriate symbol arguments to the
rules, we can carry the antecedent’s represen-
tation all the way to the constituent from
which it was moved. Also notice that the
same grammar, but with a larger lexicon,
serves to analyse, for example, the sentence
=the women who built the house”, this time
with an empty gap, and with the trace
derived from the first np in the relative sen-
tence.

Thus, XGs allow us to describe left-
extraposition phenomena powerfully and con-
cisely, and to arrange for the desired
representations to be carried on to the posi-
tions from which something has been extra-

posed.
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2.1. Motlvation.

2.1.1. Left extraposition with more

than one gap.

While XGs have the expressive power
just shown, the restriction on how gaps are
rearranged poses some expressive constraints
even within the framework of left-
extraposition. Consider for instance the noun
phrase:

the man with whose mother john left

We can consider this noun phrase as the
result of left-extraposing two substrings from:

the man | john left with [the] mother [of
the man|)

where "of the man” is left-extraposed before
"the”, and subsumed with it into "whose”,
and the whole complement is extraposed to
the left of "john left”.

If we wanted to capture these move-
ments in a single rule (which seems a practi-
cal way, since they are all related), we might
express it through the somewhat simplistic
but illustrative ryle:

np(X), gap(Y), prep, det, 997 2), prep(of),
= np(X), prep, [whose), 28p(Z), gap( 1)

where X stands for the internal representa-
tion that is built up from the noun phrase
being analysed. A derivation graph for this
example would look roughly like:

Sentence

np(X) Sentence

comp

Prep np
[
d.

et noun comp

np!!x) prfp whose mOther VDZH lr:r

the' man th

np(X)

Notice that the gapping rele’s applicatin
unifies the internal representation X for e
man” with the representation W of the right.
most complement. The result of ose partil
analysis thus spreads to cover all imphen
occurrences of the same substring.

2.1.2. Equlvalent, preferred gappisg
formulations.

Fernando Pereira gives the following
XG for the language {o"4"¢");

2.1.2.1. Grammar 1.

$=>as by es

as-> ||

as, gap(X). xb <> [a], as, gap(X)

bs > ). ,

bs, gap(X), xc -> xb, [b], bs, gap(X)

es-> )

€8 <> xc, [e], es
Other formulations of grammars which we
BAps are conceivable, however, and it should
be up to the grammar writer to choose 3 for
mulation unconstrained by fixed reorderiag
rules. The following GG, for example
describes the same language

2.1.2.2, Grammar 2.
$-> as, bs, es

as-> ||

as -> xa, [a), as

bs-> ]

X2, gap(X), bs -> gap(X), [b], bs, xb
es-> ||

xb, gap(X), es -> £ap(X), fe]. es

In Grammar 1. symbols such as =§ can be
considered as marks for b's which are being
left-extraposed. In Grammar 2, such marks
can be seen as right-extraposed “'b"""? -
this particylar example our choice may just
be a matter of personal preference, there are
cases in which movement is more naturally
thought of in terms of right rather than left-
€Xtraposition (as in "The man is here that |
told you about®). There also may be
efliciency  reasons o prefer a right
eXtraposing formulation: in the first imple
mentation below of GGs, Grammar 2 above
works faster than Grammar 1.

4



2.1.3. Interaction between different
gapplng rules.

Consider the language {a"d™c"d™}
which can be described by the following GG:

s-> a8, bs, cs, ds

0>
as, gap(X), xe -> [a], as, gap(X).

bs-> ).

bs, gap(X), xd -> [b], bs, gap(X).
es-> ||

8-> xe, [¢], s

ds-> ||
ds -> xd. [d], ds.

This is a perfectly good GG. XGs cannot,
bowever, be used in this situation because of
the XG constraint on the nesting of gaps: two
gaps must either be independent, or one gap
must lie entirely within the other.

3. Implementations of GGs.

3.1. A Compiler: beautiful but dumb.

Typically, logic grammars  are
translated into Prolog programs by augment-
ing each non-terminal symbol with two argu-
ments: one argument X which represents the
input string yet to be parsed, and the other
argument Y which represents what is left of
the input string after the rule being applied
has consumed some of it. We then say that
the siting X' - Y (read as "X minus Y) can be
recognized as belonging to the category
denoted by the non-terminal. Thus, a rule
such as

sentence — name, verb.
s translated into a Prolog clause:
rentence| X, X3) ~—
name{ X;, Xy), verd( X3, X3) (a)

meaning roughly: “there is a sentence in the
string X, - Xy if there is an initial substring
X, - X; that can be parsed as 3 name and is
followed by a substring Xz - X3 that can be
parsed as a verd”.

Terminal symbols do not give rise to
Prolog predicates, but become instead
imvolved in the specification of the input and
output strings being manipulated by the
son-terminals. For instance, the rules
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name — [mary].
verb — [laughs).
can be translated into the unit clauses:
name( [mary X/, X) «— (b)
verb{laughs X X) — (c)

where (b) means roughly: "a name is recog-
nized in any input string which begins with
'mary’, yielding an output string which is the
remainder of the input string after consuming
'mary

"

Thus, with respect to rules (a), (), and
(¢), a query such as:

sentence( [mary,laughs],[])

will unify X; with [mary,laughs/ and X with
[]. proceed to consume a name from X, yield-
ing X, = [laughs/, and then consuming a
verb from X, yielding Xy = [ The string
X; - Xa, ie., [maryloughs/— [, has been
recognized as a sentence.

Let us now consider a graphical
representation of this translation process,
where non-terminals are viewed as labeled
ares connecting nodes representing phrase
boundaries. Rules (a), (8), and (c) above can
then be represented as follows:

sentence.
K name | verh

\‘ Y: ‘;
SLame. verb
/ru n\d Aug x

[mary|X] X [1aughs|X] X

Normalized MG rules accept a sequence
of terminals after the single non-terminal
head on the left hand side (since more than
one non-terminal would result in a non-Horn
clause). The translation of such a rule to
Prolog may be represented graphically by
adding more arcs to the upper part of the
graph. The rule

A, [b), [e] = D, [e], F

would translate as indicated by:
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tion of terminals, noo-terminals, 2d oa
Prolog calls can be expressed as context
The compiler shown below produces the
corresponding Prolog clauses from Eappe
grammar rules by fist coastructing tw
pseudo-rules. From a rule such as

i Bzl ‘ AB-C
where A is the non-terminal head gymbd
and where B is the remainder of the ket bud
which is the Prolog clause: side of the rule, and C is the right hasd ":
: 1
A(X;, /b, ¢ Xy)) ~ DXy, [e| Xof), FLX2,Xs). it constructs clauses corresponding
pseudo-rules:
Let us now consider a rule with gaps S
and how it should be represented graphically: . 3
08, gap(G), 25 — [a], as, 9ap(G) b_nenterm —
ni are P"“’
We can think of a gap G simply as a sub- where o f"”‘"l'" :l'od ‘-:o' n":ho binds the
string of the input that is skipped unanalyzed non-terminals. In doing '.. s
and appended elsewhere in the output string, output strings correspond ‘;’* m"m
Thus, if we denote the appending of G to a non-terminals. In our ex .
string z as G'#z, we can represent this rule generated are: 3
graphically by: c_nonterm{[e| XoJ. 2) — e X X)), perG.X;
6*Xy gap(8) %

a b_nonterm{X,Z) « gap{G.X.Xy), N
/ Next it constructs the head of the ‘:’::
oY : ‘xo = -?:-,’ - clause by using and retrieving the inpy

X s
2 output strings from the input striogs ol
c_nonterm and b_monferm. In our exam

The symbol 9ap(G), in fact, can be thought this yields

of as a version of append. When translating :
rules into clauses, gap( G) becomes the predi. on{ /e XJ.X)
cate call gap(G,X,X,), which can be specified The desired clause’s body is constructed b

as the appending of G to X, yielding X, In : bodies of the peesde
other words, the input string X, is non- appending the two

deterministically divided into two substrings clauses .

G and Xo. The rule above can thus be e [a| X/, X) « e X X))

expressed in Prolog as: 9 G.X,,Xa), gap{ G XX} oMY XD
psis X X), The compiler’s full listing is shown below h

99p( G, X,, X,), 99p(G. X Xy), zH( Xy, Xy) addition to accepting purely syntactic ':;
or alternatively as: Ping grammar rules, it alo accepts £P -
4L grammar rules with a superadded “m:r
/ol Xe),X) — as(X;, X;), append(G,X, y ), component to specify a translation. The §
. eral form of such a rule is:
append( G,X,,X), zb( Xy, Xz) -
; — C<:>Sem
Notice that the remainde A B — C<:>5e

B T of the ryle’s left
hand side becomes a part of the °h“8e:'s where Sem consists of one or more Hor®

ibutes
body, and we therefore remain within the clauses which specify how semantic attribe

Horn clause subset of first order logic. Notice of the head symbol A are computed in l:'v":
too, that this translation scheme allows the of semantic attributes of € and possibly R
left hand side of 3 ryje to be nearly as unres. of B. The Horn clauses in Sem £

yhich
side: though the traversal of the derivation or parse tree ‘:;_
inal, any combing. is  constructed  automatically I‘bi ot
son.1984]. Gapping grammar rules whic

;i




purely syntactic have the trivial semantic
unit clause f(rue attached to them. The
predicate form_node below creates the deriva-
tion tree for the head symbol A by con-
catenating the trees for the pseudo-clauses
corresponding to B and C.

synal{(AB -> C<:>Sem),Clause) - !,
expand_term|(

(c_nonterm-> C < :> Sem),CClause),
expand_term((b_nonterm->B),BClause),
clauseparts(CClause, CHead, CBody),
clauseparts(BClause BHead BBody),
CHead =.. [c_nonterm,CTree,X,Z],
BHead =_. [b_nonterm BTree,Y,Z|,

A = [Pred|Args],

form_node{CTree BTree Pred, ATree),
concaten(Args, [ATree X, Y] NewArgs),
NewA = [Pred|NewArgs],
combine{CBody BBody,Body),
formelause(NewA Body ,Clause).

syoal{(A.B -> C),Clause) =- !,
synal((AB -> C<:>true),Clause).

clauseparts{(Head = Body) Head Body) - !.
clagseparts{Head Head true).

formelause{Head true Head) - !.
formeclause{Head Body,(Head :- Body)).

combine{true B.B) - !,
combine(A true A) - !,
combine(A B (A B)).

form_node{node(_,N1,Sem),
node{ _N2,_),
Pred node{Pred N,Sem)) :-
node(Pred N Sem)) :-
concaten(N1,N2 N).

sap([]) -> ).
83p(|Word|List]) -> |Word), gap(List).

concaten([] X.X).
concaten([X|L], M.IX]N]) - concaten(L,M.,N).
The beauty of the compiler resides in
its simplicity and conciseness. The compiler
i dumb, however, in that the gap predicate
successively consumes substrings of length
0,1,2,. with no further control than simple
backtracking as to what should be in the gap.
Thus, even on simple languages, such as
{&°5°¢") with relatively low values of n, say
n=13 it is very slow. Some more informa-
lion peeds to be incorporated in the gap
predicate, but this seems to involve dynamic
information about the state of the computa-
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tion, and such information is accessible only
in some Prolog implementations. Another
alternative which we are considering is to use
concurrency in parsing; we sketch this idea
below and are planning a future detailed arti-
cle on the subject.

Although the ideas on compiling GGs
are due to V. Dahl, credit is due to Michael
McCord for the actual writing of the compiler
in terms of pseudo-clauses.

3.2. Another Compller: Efficlent but
not general.

In this section we introduce a class of
Gapping Grammars which can be imple-
mented in Prolog efficiently. This class con-
sists of those Gapping Grammars in which
each gapping rule is of the form:

a, gap(X), fterm]— v, gap(X) (A)

That is, there is only one gap which is rewrit-
ten to the rightmost position of the right
hand side, and on the left there is a single
(pseudo-)terminal following the gap. This
class of grammars includes a subclass of
Pereira’s Extraposition Grammars, but also,
depending on the definition of the gap and fill
predicates, may include grammars which can-
not be handled by Extraposition Grammars,
such as, for example, a grammar for the
language {a"b™c"d™}, with m,n=>0.

This class may be viewed as a generali-
zation of normalized Metamorphosis Gram-
mars. A normalized Metamorphosis Gram-
mar rule is of the form:

a, p—+1 (B)
or

] (©)
where

aeVy

BeVr
and

Te ViU Vo

The notation  gap(X), [term]  therefore
represents a large set of MG rules.

The implementation technique is based
on message passing during parsing and rests
on the following considerations. The terminal
symbols which occur on the left hand side of




XG rules and to the immediate right of a gap
may be said to be pseudo-symbols in that

they are generally not expected to occur in
input strings to be parsed, but are generated
during parsing to act as signals of some sort
and are absorbed later in the parse. Con-
sider, for example, in the XG grammar for
the language {4"8""} the rule:

as, gap(X), zb — [a]. as, gap(X)

The zb is generated to mark the end of the
gap and to count an occurrence of an [a]. The
zb is then absorbed by 3 matching /3/ in the
rule:

bs, gap(X), zc — 2, [4], ba

Similarly, in the XG for a small subset of
English, the rule (1) in Section 2 generates
{race to mark the point from which a noun
phrase has been left-extraposed, and the rule

np — lrace

absorbs the frace The introduction of such
pseudo-symbols, moreover, produces a slight
theoretical problem in that they may occur in
Some sentential forms of the grammar, but
not in the terminal sentential forms

Since there is only one B3P 1n our res.
tricted rules, and this gap is followed by a
“terminal”, we write instead of A the follow-
ing:

@, 9ap(X), fterm] — - (D)
and read this: ap @, in the context of a gap
which is lerminated by 5 signal ferm may be
rewritten to 3 Y followed by the g8ap. The gap
is implicit on the right hand side of the ryle
Thus our signal 83apping grammar rules are of
the form (B), (C) or (D). The sending of a

signal which closes sych 5 8ap is indicated by
the predicate

JSill term)

which generates (nrccpts) the empty string.
Our version of the grammar for the l.'mgu:lgr
{a"0"c"™} is as follows:

8-> as,bs, cs.

3s,8ap(X),[xb}-> [a],as.
)

bs,gap(.\'),[xc]—) ﬁll(xb).[b].bs.
bs-> [].

¢s=>fill(xc),[¢] cs.

e ||

In implementing this form of GG we ens
12e the rynal predicate as follows

synal{((A gap(Name) [Sigaall > C< >im
Clause) - !
expand_term|
(c_nonterm->
(C.gap(Signal Name))< > Sem)
CClause)
clauseparts{ CClause, CHead ( l‘--f'- -
CHead « [e_monterm GO,Ga, CTree )
A w_. [Pred|Argsl
GTree == pode{gap, [Signal Name] tree
form_node{CTree GTree Pred \..1».'"‘
append(Args, [GO,Ga \Irrr. X Y] Newhrp
NewA = [Pred|NewArgs
combine{CBody ,
gap({Signal Name GTree Y 2)
Body)

formelause(NewA Body Clause)

synal{((A gap(Name) [Signall) -> ¢
(.L'\u-r) - !
synal(
((A.gap(Name) [Signal]) -> C< >
Clause)

: ided
In the goal ezpand term the Signsl ‘x e
to the named gap which is ;vh""b
right end of the syntactic portion "!.(l""
since the only context of a rule is of the |

as wild
gap{Name), [Signal], we dispense :
' ’ e - fop

BCisuse and construct the clau 4
form node MY

directly; other changes in | T
the formation of a “tree” to record .

tents of the gap as a difference lis
below) ynal compiles, for example, th

be, gap(Name), [rc] — fill z})

yoy

bs(S0.

%

node(bs
[FillTree
b
BsTree
f;:w'l‘rw
m-!t'l;::np {xe,Name) true)|
true),

)
Bll(xb,S0,51 Fill Tree X X1)




e(X1,b,X2),

bs(S1,52,BsTree, X2,X3),

gap(xc,Name 52,53 ”.I})Tf(‘f,X.".Z),

gap(xe, Name node(gap, [xe, Name] true),Y,Z).

The reader will notice that in addition to the
pair of arguments for the “input™ and "out-
put” strings (X, X1,X2, X3, Y, 2), and the argu-
ment for the parse tree, there is another pair
of arguments - the "input message stream”
and the "output message stream” - which has
been added to all the non-terminals except
the nghtmost instance of gap. These are S0,
S1, 82, and 83, and are added to non-
terminal symbols only by the predicate
translste_rule (not shown here, but called by
ezpand_term: see [Abramson,1984)) which
processes non-gapping rules. Note that non-
gapping rules are pormalized metamorphosis
grammar rules and are translated as outlined
in Section 3.1. The ordinary non-terminals,
such as bs, will neither add messages to the
mput streamm nor delete messages from the
mput streamn in order to produce a new out-
put stream: the input stream will be passed
to whatever is called, and a possibly new out-
pet stream will be formed as a result of the
call. Messages are inserted by gap and
removed by fill. Let us examine the definition
of gap and fill to see how these streams are
manipulated

&

£ap(Symbol
Gap
node{gap [Symbol Gap) true),
StartGap
EnadGap) -
Gap = StartGap - EndGap.

Eap(Symbol
Gap
Stackln
[[Symbol Gap]|Stackln],
sode(gap [Symbol Gap) true),
StartGap
EndGap) -
Gap = StartGap - EndGap

81Symbal
([Symbol Gap]|StackOut],
MarkOut
node{fill, [Symbol,Gap| true),
!.M(.:.p
!.h'".;p, -
Gap = StartGap - EndGap

When gap is called with a pair of stream
arguments, the start of a gap is known. Gap
is instantiated to the difference list
StartGap - EndGap, with EndGap uninstan-
tiated. The pair [Symbol,Gap] is added to the
input message stream to form a new output
message stream. The Symbol is the signal
which will indicate the end of a gap. When
gap is called without the stream arguments,
as in the last call to gap in the compiled ver-
sion of bs, the context is merely being
checked (please refer to the discussion of
synal in the previous section) and the input
and output strings, StartGap and EndGap,
respectively, verify the extent of the gap.
EndGap will still be uninstantiated.

When fill is called, the end of a gap
with the signal Symbol has been found. There
must be a pair of the form /Symbol,(.'ap/ at
the front of the input message stream.
EndGap is instantiated at this point, and the
pair is removed from the input message
stream to yield a new output message stream.
When EndGap is instantiated, the “trees” of
the gap and fill predicates, which have been
made to look like ordinary non-terminals, are
also instantiated. The trees for both gap and
fill contain a record of the signal Symbol and
the gap itself as the difference list to which
Gap is instantiated. The message streams act
as a stacking mechanism for unfilled gaps.
Note that fill accepts the empty string.

A string is parsed with this grammar by

a call to:

s{Source) -

s(“.[].'["rev,.&'ourrv.[]).
which indicates that Source is an 8, with no
input left, and that no messages are Ioft. i.n
the streams, ie, the stack of messages, ini-
tially empty, is empty at the end of parsing.
A parse tree Tree records the derivation.
(See [:\hrmnson,l‘)&i]).

With this definition of gap and fill we
have a new implementation of a subset of
XGs: it contains rules with only one gap fol-
lowed by a terminal. The compiler for this
subset, synal above, is somewhat simpler than
the general processor of Pereira.

By changing the definition of gap and
fill, however, we can process gramlr}ars whi'ch
cannot be handled by XGs. Here is our sig-
nalling GG for the language {a"b™c"d"}:




5->as bs,cs,ds
as,gap(X),[xc]-> [a] as
:L»—>“.
bs,gap(X),[xd]->[b], bs
bs-> ]

es->fill(xc), [c],cs
cs->|].

ds—>ﬁ”(xd].ld],ds

ds->[].

We redefine gap and fill so that the input and
output message streams manipulate a pair of
stacks, one to handle ¢ signals, and the
other to handle zd signals. The gaps can now
be dealt with independently of one another

gap(Symbol,

Gap,
n(xiv(g:\p,[s_vmbul,(::\p],(rur).
StartGap,
EndGap) --

Gap = StartGap - EndGap

gap(xc,

Gap,
[Smck(‘,S'tarkD],
”[xc_Gap}[Slnck(‘],ﬁlackm,
nodo(gap,[‘(c,(,‘ap],truc].
StartGap,
EndGap) -

Gap = StartGap - EndGap.

gap(xd,

Gap,
[Stack('.StarkI)].
[Smck(f.”xd.G:\p”StnckD”.
nodo(gap.[.\'d,Gap].truc),
StartGap,
EndGap) .-

Gap = StartGap - EndGap

fill(xc,

[”xc,(x‘ap”Sl:ka‘],Stackl)’.
[Stack(T,S‘tm‘kD],
node(ﬁll.[xc.(;ap],lrue),
EndGap,

EndGap) -

Gap = StartGap - I:‘ndGap.

fill(xd,

[StackC',”xd,(.‘:\p”StackD”,
[StackC,S!a.ckD j
node(ﬁll.[xd.(z‘ap],true),
“ndGap,

EndGap) -

Gap = StartGap - EadGap

The general GG implementation u vwn
powerful and ineflicient. this tmplemeatatiy
although not general, is more efficiest al;
at the cost of some programmiag of the jo
and fill predicates by the grammas writ
extendable to classes of grammans wil
independent gapping systems which ca
be handled by XGs. It is interesting ibs
subclasses of GGs can be parameterized |
data structures: one may thiok of tryiag ¢
characterise the subelas of GGs with 3 e
(deque, tree) implementation of jap asd i
for example

A complete listing of these Proy
implementations is available from H Abns
son or V. Dahl

3.3. Towards a concurrent Implemests
tion of Eapplng grammars.

The beautiful but dumb compilet 3
ineflicient because of the way it tnes §
establish what is contained in a gap. It sime
lates the non-deterministic breaking ep of the
Input string into the contents of the gap 22d
the unconsumed output string by trying ose
solution of append Gap, Outpul, Inpst), back-
tracking to the next solution if the first i 2l
suitable, and so on A concurreat implemes-
tation might however, proceed as foll ‘“V
For each solution ’
append(Gap Qutput, Input) 3 copy of the pro-
cess which represents the state of the parse 8
far is created. Each of these processes 3
clone of the original process up to the eall of
98p. Each process continues, however, with 3
different solatioa U
af"""“ﬂ("‘lr,()u.’ru( Input). Those processs
“bl(‘h have not [,,.,.n given a solution which
will permit the parse to continue will events
ally die Those processes which bave beet
8iven a solution which allows the parse «
complete will each be left suspended at th
ad with a derivation tree representing ‘h',
Successful parse (Note that this notioa o
Process s similar to the notion of process
which is used in the Upnix operating system.)
For this Strategy to work, it will be necessay
to have a meta-logical predicate which gives
access to the state of a Prolog “.m;.unn-n‘
This strategy utilizes independent sequentia!
Prolog processes . the parsing, except when
bandlins 3 8ap, proceeds by top-dows
depth-firsg search  with backtracking. A®




alternative strategy would be to develop an
entirely concurrent implementation of gram-
mars

The authors plan to investigate whether
Concurrent Prolog [Shapiro,1983], the distri-
buted logic of [Monteiro,1982], or Epilog
[Pereira, 1982], [Porto,1982] could easily
specify such implementations of Gapping
Grammars

4. Discussion, work In progress.

4.1. Advantages of gapping grammars.

GGs, although theoretically no more
powerful than MGs - which have the compu-
tational power of a Turing machine - have
mote expressive power than MGs in that they
permit the specification of rewriting transfor-
mations involving components of a string
separated by arbitrary strings. The expres-
sive power takes the form of conciseness: one
does not have to give a rule or rules for the
generation of the intervening string, but
rather a single meta-rule involving gaps
replaces a possibly infinite set of non-gapping
rules

One aspect of GG expressiveness has
pot yet been fully explored. GGs, like MGs
and XGs, allow Prolog calls in the right hand
side of a rule, but unlike them, GGs allow
Prolog calls in the left hand side of a rule
(refer to synal above to see why this is so). It
i possible therefore to write GGs which can
establish context checks dynamically during
parsing

The compiler for GGs - our second
implementation - provides an alternative
mplementation of a restricted class of extra-
position grammars, but also, depending on
the definition of gap and fill, provides the
grammar writer with a mechanism for writing
rules which go beyond the nesting constraints
of the XG formalism. Our example above
shows how to deal with two independent gap-
ping systems: the extension to the general
faw u obvious. Another possibility is to
parameterize classes of grammars by the data
structares used to implement the gap and Jill
predicates, for example, by queues instead of
stxks, ete. Another extension lies in permit-
ting the signal to be parameterized, i.c.,
instead of having rules of the form (D) with
ferm a functor of zero arity, term might be a
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functor of positive arity. This would permit
more sophisticated gap handling by the gap
and fill predicates.

4.2. Limitations.

In some cases GGs may prove, however,
to be too powerful. Consider, for instance,
the following grammar which one naively
might think suitable for checking that input
strings are balanced with respect to ( and ):

left, gap(X), [')] -> ['('], gap(X).

s -> left, [')]. gap(X), s.

s-> ||

With this grammar, strings such as
(a+(b+¢) and ((a+ b) - (c #d) /[ are
recognized as balanced, but also a string such
as (a + b is recognized as balanced. The rea-
son for this error is that nothing in the gram-
mar precludes the gaps from containing
parentheses, so that unbalanced parentheses
will be absorbed into gaps. The grammar
can. of course, be modified so that only those
strings which are balanced with respect to
parentheses are accepted, but it seems
appropriate for the grammar formalism to
provide the user with a convenient means for
constraining the gaps. It would be interest-
ing to determine how much of an extension
along these lines could be usefully provided
without falling into the trap of describing the
complement of a language.

Another approach to be investigated
with respect to too general a notion of gaps is
allowing strings not in the language to be
generated, these strings to be subsequently
filtered out by another process. Primitives
for describing filters would then be necessary.
In natural language applications, a mixture of
both approaches may be needed. Both con-
straints and filters have already been pro-
posed in Chomsky's Extended Standard
Theory (see references in |l(adford.l$)82]),
and, it would be interesting to study ways of
constraining and filtering GG rules in the

light of this theory.

4.3. Work in progress.

We have only tentatively sketched a
concurrent implementation of GGs. Details of
this strategy have to be worked out and
specified in Prolog, Concurrent Prolog
[Shapiro,l‘)&’%], the distributed logic of [Mon-
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. el
teiro,1982], or Epilog [Pereira, 1982
[Porto,1982]. Ideally, a parallel architecture
should support a concurrent GG system

Another implementation of GCs which
we are exploring is an nterpreter which
works with derivations directly rather than
with Prolog calls of hon-terminal procedures
By this method, we would for a rule such as

&~ g2, bs, co

rather than call as, then bs, then ce, maintain
a list of goals which would represent a sen-
tential form. The original list of goals »
would be replaced by a list of goals as, bs ca
Context sensitive rules would involye manij-
pulation of the goals in the sentential form to
see if some of them could appropriately
derive the desired context,

These extensions, as well as the addi-
tion of constraints and filters to GGs, are the
object of future research by the authors

5. Acknowledgementl.

This work was Supported by the
National Science and linglnﬂ-rmg Research
Council of Canada. Michael McCord’s contri-
bution, mentioned in Section 3.1, js gratefully
acknowledged. A referee’s suggestion that we
expand on oyr comments aboyt right extrapo-
sition will be treated in a later Paper: length
constraints prevent such expansion here.

8. References,

Abramson, H., Definite Clause Translation
Grammars Procoodmgs IEEE Logic Program.
ming Symposium, 6-9 l-‘obru:u'y 1984, Atlan.
tic City, New Joisey,

Colmerayer, A, Mctanwrphosis Grammars,
in Natura] Lnnguage (‘ommunication with
Computers, Lecture Notes ip Computer Sci-
ence 63, Springer, 1978.

Dahl, v. Tmnslating Spanish inte logie
t!]rough logic, American Journal of Computa-

Tmating Coordina-
tion in Logic Grammaxs, to appear in Ameri-
can Journal of Computalion:d Linguisties.

Montoim, L., A Horn clause-]ike logic for

s;?ecil'ying concurrency, Proeeodings of the
First lnternational Logic
Conference, Pp. 1-8, 1989

aposition Grammats,
Omputationa) Linguis-

Programming

Pereira, F.C.N., Extr
American Journa) of C,

tics, vol. 7 no. 4, 1981, pp. 243285
Pereira, LM, Logic costrol with i
Proceedings of the First ln'.rru:mflu;:
Programmiag Coaference PP 'i-liZUt.
Pereira, FCN. & Warres. DHD L"?!"
Clause Grammars for Laaguage \:.M:
Artificial Intelligence, vol. 13, pp 2178
1980
Porto, A. Epilog - a lu;up‘(‘v"‘;.:b:
programming ia logic l'rr-rM-‘lll‘ -
First  International Logic Prognasiy
Conference, pp. 3137, 1982 .
Radford, A., Trassformational Systax Cin
bridge University Press, 1981 o
Shapiro, EY., A subset of (’uacurrmr,"’.
and its interpreter, ICOT Techaical iy
TR-003, 1983 )
\"xn Wijngarden, A. et al, Revised rep ;“
the algorithmic language .\l:'_‘l' 68 A
Informatica, vol & pp. 1-236, 1975




Eager and Lazy Enumerations in Concurrent Prolog

Hideki Hirakawa, Takashi Chikayama, Koichi Furukawa

ICOT Research Center
Institute for New Generation Computer Technology,
Mita Kokusai Bldg. 21F, 4 - 28 Mita 1-chome,
Minato-ku, Tokyo 108

ABSTRACT

logic progranming languages
have inherent possibility for
AND-parallel and OR-parallel ex-
ecutions, Concurrent Prolog de-
signed by E.Shapiro introduces an
AND-parallelism and an limited
OR-parallelism, i.e, a don't-
care-nondeterminism. The other
aspect of OR-parallel execution,
i.e, don't-know-nondeterminism is
formalized as an 'eager_enumerate'
Operation on a set expression.
This paper describes a computa-
tional model which provides the
eager enumerate function to Con-
current Prolog and shows its im-
plementation in Concurrent Prolog
itself. This paper also shows a
lazy enumerate function can be im-
plemented easily by introducing a
bounded buffer communication tech-
nique to the eager enumerator.

1. INTRODUCTION

A growing area of research in
highly parallel processing covers
computer architectures, program-
sing languages and computational
models. One of the best cand-
idates for a high level machine
languzge for highly parallel pro-
cessors is a logic programming
language which represents AND and
OR relations between predicates.
Logic programming languages pos-
sess inherent potential for paral-
lel processing, that 4s, AND-
parallel and OR-parzllel execu-
tion.

Based on this concept, several
parallel programming languages
have been proposed: such as KL1
(Furukawa et al. 84), Concurrent
Prolog (Shapiro 83), PARLOG (Clark
and Gregory 83) and Bagel machine
language (Shapiro 84). Researches
in parallel programming are being
conducted using these languages.
In these languages, AND-paral-
lelism is used for the description
of parallel processes, which is
based on the process interpreta-
tion of 1logic (Emden 82). OR-
parallelism has two aspects, the
so-called don't-care-nondeter-
minism and don't-know-nondeter-
minism (Kowalski 79). The don't-
care-nondeterminism is adopted in
all the languages mentioned above.
However, the don't-know-nondeter-
minism is introduced only in
PARLOG and KL1 where it is used to
find multiple solutions for a
query. PARLOG and KL1 use a "set
expression” as the interface
between AND-parallelism and OR-
parallelism (don't-know-nondeter-

minism).

In this paper we regard the
OR-parallelism for finding all
solutions as enumerating elements
of a set in the same way as in
KL1. This paper describes the
'enumeration' in Concurrent Pro-
log, which the implementation of
the OR-parallel execution in the
AND-parallel execution. An
advantage of this approach is that
both AND-parallel and OR-parallel



execution can be achieved within a
small basic framework of Conocur-
rent Prolog. This implies a dec-
rease in the complexity of the ar-
chitecture and in the amount of
hardware required in the parallel
machine,

Various models for parallel
processing of logic programs are
proposed from the computational
model viewpoints. Nitta and
Conery described parallel inter-
pretation methods based on an
AND/OR process model (Nitta et
al. 83), (Conery 83). Haridi
proposed a language based on
natural deduction, which covers a
wider class of statements than
Horn Logic (Haridi and Sahlin 83).
Hirakawa proposed a computational
model based on multi-processing
and graph reduction mechanism
(Hirakawa et al. 83). In this
paper, a computational model for
Pure Prolog is introduced with the
model based on multi-processing
and message communication between
Processes. 1In this model, goals
are computed Serially from left to
right, and clauses are computed in
parallel.

Based on this model, we have
implemented a Pupre Prolog inter-
preter in DEC-20 Concurrent Prolog
(Shapiro 83) to realize the 'epy.

Communication implementation and
by adding sope sSmall changes, a
lazy interpretep which works in
accordance with demands can be
easily obtained,

Section 2 of this a -
pPlains the Concept poge r'e::-
meration', Section 3 describes
the computationa] model angd its
implementation in Concurrent Pro-

log. Section § describes the mé-
ification of the interpreter fra
the eager version to the lasy o,

2. ENUMERATIONS

An interface between LID-M-
lelise and OR-paralleliss (2
don't-know-nondetersiniss) is iz
troduced using set expreasions it
PARLOG and KL1. A set expression
has the syntax such as:

{(xiy) where X {5 a term and
Y i3 a goal sequence

In KL1, the basic operation of
a set is an 'enumerate’ operation.
In this paper the same GXW"””{‘
is introduced in Concurrent ml“
as in KL1. ‘'Enumerate' is 331:
to the 'bagofr' operation in DEC-1V
Prolog (Warren 81).

Prolog : bagof(X,Y,Collection)
Concurrent Prolog : y
enumerate((X|Y},Streas/

af!
The meaning of the "."“:‘
literal above is 'Coll““onz:;
the collection of terms of "
form X, which satisfy the g0
Sequence Y™, In Concurrent P::‘j
log, ‘'Stream' in the 'enusers o
clause is the same as ,c°11¢c11°'l
in ‘'bagof' logically, but it “a
stream of terms rather ‘“3: .
Simple collection. This i‘_._
natural interface to an AND-parél
lel process.

There are two types of stresss:
One 1is an uncontrolled stress &
the other is a controlled ’"ea:;
'Uncontrolled’ means that f’nul
'enumerate' is called, its °"'ill
Stream is never stopped until o
the solutions are generated. 2
the other hand, 'controlled' ‘“u_
that the generation of the 50!

tions is irvoked by a demand or'a
pProcess outside of ’em""atei;
The former type of enumeration ;
called 'eager enumeration' and th




latter 'lazy enumeration’'. The
eager enumeration 1is used for
finding all solutions to a data-
base query and generally requires
many computation resources, while
lazy enumeration is used for find-
ing a part of the solutions which
satisfy some requirements of other
processes. The eager and lazy
computation mode for the 'collec~
tion' 4s introdeced as primitives
for the control of logic program-
ging (Kahn 84). The following are
simple examples of lazy and eager
enuzerations.

Eager enumeration : "“display all
countries with a population of
more than one hundred million"

Goal: eager_enumerate(
{Nam}country(Nam,Capl,Pop),
Pop>100} ,Str),
display_stream(Str?).

Lazy enumeration : "display three
countries with a population of
more than one hundred million"

Goal: lazy_enumerate(
{Nam}country(Nam,Cap, Pop),
Pop>100},5tr?),
display(Str,3).

In the above examples, 'enu-
merate' and ‘'display' run in
parallel (concurrently). In the
forser example, 'eager_enumerate’
produces a stream of country names
and ‘display_stream' displays them
in turn. In the latter example,
'display' sends three demands for
solutions to 'lazy_enumerate' and
'lazy_enumerate' produces them.

3. EAGER ENUMERATION

The eager enumeration is pro-
vided by a Prolog interpreter
which computes subgoals serially
and clauses in parallel. In this
section, a computational model for
2N eager interpreter and its im-
Plesentation in Concurrent Prolog

are described.

3.1 Computational Model
3.1.1 Components

The computational model for the
eager interpreter consists of
three components: processes,
channels and a Horn Clause
Database (HDB).

A process plays a key role in a
computation. An arbitrary number
of processes can be generated in a
system. A process corresponds to
a clause being computed, such as
H<¢=--G1,G2. There are two types of
processes, that is, active and
waiting. The waiting process
waits until it receives data from
another process.

A channel is a communication
path between processes and is
dynamically generated during the
computation. Data transferred
through a channel is called a mes-
sage. A message is passed from a
process called a "generator" to
processes named n"consumers”. The
distinction between a generator
and a consumer is relative, and a
single process can simul taneously
play both roles. One generator
process can simultaneously send 2
message to multiple consumer pro-
cesses via a channel. Similarly,
one consumer process can be con-
nected to multiple generators.

The Horn Database (HDB) is a
set of Pure Prolog clauses. A
process can fetch a set of clauses
which have heads unifiable with a
certain term. A fetching opera-
tion about term P is called a
np-prelated fetch".

3.1.2 Process Operation

In the computational model
given here, computation progresses
while multiple processes are ex-




changing messages. This subsec-
tion provides a more detailed
description of the process, shows
a simple example, and presents the
execution mechanism of the com-
putational model.

A process is defined by five
components: Status, Head, Goals,
Input-Channel, and Output-Channel,
as shown in the following format:

process(Status,Head,Goals »IC,0C)

'Status' indicates the state of
2 process and is either 'active'
or 'waiting'. 'Head' is a predi-
cate (term) and represents what
the process must eventually com-
pute. 'Goals' is either null,
'true' or a Sequence of predicates
and indicates the Predicates to be
computed to compute the Head. For
example, ir the HDB includes
'al--b,c', there may be the
following process:

process(status.a,(b,c) +IC,0C)

In addition, if the Predicate »p
has been computed, there may be a
pProcess as follows:

Process(Status,a,(¢) »IC,0C)

A 'channel' jig used to transfer
messages among Processes as de-
Scribed above, 3 Process appears

Here, we will define the opera-
tion of 2z Process,

(4) Active Process

The obPeration mode of an active
Erociss is €ither reduction or
€rmination, In reduction
the leftmost s
is expandeq using inference rules
in HDB; the active Process js

saintained after the reduction i

completed. By contrast, terin
tion mseans that inference reache
'true' or the applicationcl
inference rule fails; in ac:a
cases, the process is imsediste]
deleted,

Assume proceu(aeuvc.ﬂ.G.I.O::
If G 1is neither mull mr'tm.
and G is in the fore of ow:er.r
or (P,...) where P is a predicait
defined in the HDB, then the N’f‘
cess performs a Perelated m&:
the HDB to obtain a clause sei, 2
generates active processes for i::
the components of S, and connetss
each process with itself tnm&:
Channel I (each process {umtiof-’
as a producer). It also chan®
its status to 'waiting'.

Operation in termination mode

There are two types of w;
minations: success or failure. €
Success termination ocours ﬂ;
reduction reaches true, ‘mm:
failure termination ocours 'be:p.
fetch operation fails. The falr
ure termination corresponds
Prolog's 'fail'.

Success terminatiop °,
When G is either mull “ch:;g:
the process sends H via

The process deletes itsell:

(B) Waiting process

€
Having received 2 'S:?sm
(term) M via channel I, 2 W of
Process generates G', 2 cop;' or
its Coals G, in the forsst? &
(P') P1,...), and unifies the B0
element P' with M (transfer i
computation results) Then, fuiw
tablishes NewG, which is G' V'
its head element  re=C

P
However, when G' contains only .
NewG will be true. Then
waiting

th
process generzted




following active process:

process(active, H, NewG, I', 0)
Where I' is a new channel.

The waiting process will be
paintained in the original form.

The entire computation ter-
minates, when all the processes
are deleted.

3.1.3 Computation Example

This subsection presents a
simple example to show the way the
computational model is executed.
In the following figures, the ac-
tive process p, the waiting pro-
cess q and the channel ¢ are
denoted by C__p, C_——Jq and
¢—=0—, prespectively (p, q and ¢
may be omitted). The Head H and
Goals G are shown as H<--G.

Assume that the HDB is given as
follows:

{ ap([],X,X).
ap([UiX],Y,[U}2]))<~-ap(X,Y,2Z) }

To compute [X,Y] that satisfies
a goal ap(X,Y,[a]), the following
process is generated as the ini-
tial process:

<0 [X,YX--ap(X,Y,[2])) pO

A message output through cO is
the solution. Since p0 is an
active process, it performs 2
feteh operation and generates new
processes, p1 and p2, and then
changes its status from active to
waiting.

p0

0
DLV I—ep00Y )]
p1
———ap([{s][a])¢-true)
p2

L(ap([21X].Y.[a]){——2p(X,Y.[])

There are two active processes.
Each process runs simultaneously.
As p1 has a terminated clause, it
sends the head of the clause and
deletes itself; pO receives mes-
sage ‘'ap([],[al,[a])' and creates
a new process p3; p2 performs a
reduction mode operation and
produces a new process ph.

pO
[X,YX--ap(X.Y,[a]) |

p2
l—{ ap([alX],Y,[a])<--2ap(X.Y,[]) |

p4

ap([1,[1,.[])<-~true
[[).[a])¢-~true)p3

An active process p4 sends the
message ‘'ap([1,[]1,[])' to p2 and
deletes itself. Receiving the
message, p2 creates a new process
p5 and deletes itself because it
has no child process; p3 sends
'([]1,[al]' (the first solution) to
0 and deletes itself.

c0

pO

<0 X ¥=—ap(X.Y.[2] ]

p5
L———( ap([a),[].[2])<--true)

P5 sends the message
vap([al,[],[a])' to pO and deletes
itself. p0  produces p6 and
deletes itself.

0 (fral[lK-—true) pb

P6 sends message '[[al,[1]’
(the second solution) to c¢0 and ,
finally, deletes itself.
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3.2 [Eager Interpreter

Implementation

3.2.1 Eager Interpreter
in Concurrent Prolog

Concurrent Prolog adopts AND-
parallelism to describe concurrent
processes and OR-parallelism to
describe nondeterministic actions
of processes (don't-care-nondeter-
minism). In Concurrent Prolog,
once a clause is selected, the
choice of other clauses is
ignored. Concurrent Prolog pro-
vides interprocess communication
mechanism (shared-variable) and
process synchronization mechanism
(read-only-annotation) "

With the computational model
implemented in Concurrent Prolog,
& process is expressed by the
following term:

process(Status, OutputChannel ’
InputChannel,Clause )

A generation of 2 process is
performed by parallel AND's such
as 'process:-procesa1,procesaZ',
and a deletion of a Process is ex-
pressed by termination of the pro-
cess, 'process:-true’. A channel
is implemented by shared variables
and process Synchronization is
achieved with read-only annota-
tion. Although not shown in this

paper, our system constructs th
HDB wusing a meta representatio,
‘ax(Horn clause)', in the intern!
database of Concurrent Proly.
Fig.1 shows the progras of th
eager interpreter.

(p1) to (p3) define the Dbehr-
ior of active processes, wiile
(p8) and (pS) define that of :
wvaiting process.

(p1) performs reduction. T
prodfoat.e *reduce’ checks vhether
or not the first element of i
subgoals in 'Cla' 4is defineis
the HDB. When the first elesen
is not found in HDB, the predicate
‘reduce' fails. When the gurt
portion of (p1) succeeds, W
predicates in the goal pa"tw'
'process' and 'process fork', it
executed in parallel. 'F‘W:’
is the original process in waiti®
mode, and '?' is attached to ih¢

variable ‘'IC'. 'proeou_fﬂr‘:r
generates a new active proeulm
each newly fetched  clavse

'merge' predicate is used for &
structing a channel between

parent process and its child pro;
cesses. Note that this "“:1
deletes itself, when one iop

channel is closed.

procest

(p2) corresponds to 2 precic

in a termination mode. The vcls'
cate 'terminate' checks that

p1)
p2)

proeess(aotive.OC,Cla)

Process(active
merge(0C1?,0C2

Fig.1 Eager Interpreter Program

»0C1 »—sClause),
?,00C) »forks(R,0C2) .

reduce(Cls,NxGl) |
procesa(wait.oc. IC?,C1s)

yProcess_fork(IC,NxGl). ‘

Process(active,[Mess] Cls) :. Cembs |
p3) process(active:[].(:ls; i- othe:::::':t:l('g:?.mu) s
p4) process(wait,oc.[ﬂeaalcﬂ,cu) = newclause(Cls,Mess,NewC) |
proceas(wait.OC'l.C1?,Cla).lor;e(OC‘l?.OC2?.°c"
Process( active,0cC2, NewC),
p5) process(wait.,[],[].Cla).
Process_fork(0C,Goal) :.. Goal v
forks([],[])f : ) clauses( +Clses) | forks(Clses \
forks([ClauselR],OC) -




is in the format 'X<--true'. The
second argument '[Meas]' specifies
that the message is sent to '0C'
and the active proceas is ter-
minated, Then, the process
deletes itself.

(p3) shows the operation of
active processes in which further
reduction has become impossible.
(p3) deletes itself closing the
output channel.

In (p4), the Input-Channel is a
read-only variable; when a value
is instantiated to the variable
(i.e, when a message is received),
the process starts operating. The
predicate ‘'newclause' generates a
copy 'NewC' from the original
clause 'Cls' according to the
waiting process operation defini-
tion mentioned in 3.1.2. The goal
portion of the program specifies a
new process generation with the
new clause and the original pro-
cess to remain as it was. The
output channels of these two pro-
cess ('0C1' and '0C2') are merged
fato the original output channel
oc'.

(p5) is for a waiting process
with a closed message stream,
which means that all the child
processes have completed their
Jobs. The waiting process deletes
itself closing its output channel.

Using this interpreter, the
eager enumeration can be con-
structed as follows:

eager_enumerate({X|{Y},Str) :-
process(active,Str, (X<=-Y)).

As described above, a computa-
tional model can be written in
Concurrent Prolog very easily,
because of 4its high descriptive
capability, This also shows that
OP-parallelism can be implemented
by AND-paralleliss.
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3.2.2 The Refined Version of
The Eager Interpreter

The eager interpreter described
above is the direct implementation
of the computational model in sec-
tion 3.1. This implementation
utilizes a ‘'merge' network for
message communication. The merge
predicate merges two streams non-
deterministically tc provide a
characteristic of a channel where
every child process can send a
message to its parent independent
of other child processes.
However, the merge network has two
drawbacks: it consumes a certain
amount of the resources since a
‘merge' is also a Concurrent Pro-
log process, and the message
transfer takes relatively much
time because the message is sent
via more than one merger. By
eliminating the nondeterminacy of
the message transfer, we can con-
struct a more efficient eager
interpreter without the merge net-

work.

The basic idea of the new ver-
sion is to use D-list and linear-
jze the channel. In this version,
an input channel of a parent pro-
cess is the concatenation of the
output channels of its child pro-
cesses. To achieve this feature,
a reduction of an active process
is changed as follows:

pr(active,0Cs, 0Ce,(m<-=a)) :i=
pr(wait..OCs,OCe. 1¢1?2,IC,(m<-=a)),
pr(active,IC1, 1c2,(a<--b1)),
pr(active,IC2,IC3, (a<==b2)),

pr(active,ICn,IC. (a<==bn)).

The first goal of the above
oclause specifies the parent pro-
cess and the rest specifies its
child processes. Each active pro-
cess has both the output channel
of 4its own (second argument) and
its successor's output channel
(third argument). After this

S
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clause is selected, each child regardless of i{ts computation!
pProcess computes its solutions to state. To isplesent the desss
attach them to its output channel. driven sechanisa, the wy o
Fig.2 shows the situation that the demand transfer and execution me
child_processi produced two solu- pension control should be esti-
tions, child_process? produced one lished. These are achieved Yy
and the parent_process has re- bounded buffer coasunicatio
ceived one solution 'sol11', When method in  Concurrent Proly
a child process puts all the solu- (Takeuchi and Furukawa 83).

tions into its output channel, it
concatenates its output channel 5.1 Bounded Buffer Comsunicatios

and its successor's channel. The

parent process receives messages The interprocess comsunicatios
and executes its operation unti) is provided by the shared varl-
the head pointer reaches the tail ables in Concurrent Prolog. Senk
pointer of its jnput channe] , ing a wmessage is instantisting
When it terminates, a parent pro- shared variable to the pessat.
CesSs concatenates its output chan- Since one instantiation corre
nel and that of its Successor sponds to one message transfer, @
because the parent process is a new shared variable must %
child process of the grandparent generated to continue the oommv~
Process. This method guarantees nication. According to Takeuchi,
the ordering of Solutions as wel} unbounded and bounded buffer oo
as OR-parallel execution, munications ocan be supported it

» Concurrent Prolog.

The bounded buffer cossunics

This section introduces the tion is achieved when the messag
lazy interpret:er, which is a modi- receiver generates new shared
fication of the interpreter de- variables. The following 18 ¥
Scribed in section 3. This inter- Simple example of the bounded buf-
preter provides the lazy enumerate fer communication with buffer
function. length 2.

The lazy interpretep Produces a G - X, YiN?l),
solution fop 2 given goal Sequence s i:::f:::-(?('iv;"”“)
a:co:ging :: the demang rom one
o e other Concurrent Prolo -
Processes. Thep the interpretef Xntegersgxgixxl:l‘])'.mtes‘u“'m'
Suspends the computation untiy it outstream([X|MJ\[P|R?)) :-

- When wait(X)&write(X) '\R)
M .
demand, it shoy)q release the pe- e

'Integers' generates an intege’
—1

Parent-proc.ss

Child-pro1 Child-pro2 Child-proa Child-pron

= e
[sol11,sol12]X] \[sol21lY] \ICG/ \/ \IC

Fig2 The linearization of the ¢
i) ommunication channe] 4____J




streanm. 'Outstream' outputs the
elements of the stream. The
symbol '\' is an infix operator

which is used to write a head and
2 tail of D-list in one term. The
call of 'integers' contains vari-
ables 'X,Y' which specify a buffer
length of two. Process 'integers'

can instantiate 'X' and 'Y' to O
and 1 respectively, but cannot
bind 2 to the variable 'N' because

of its read only annotation. This
process waits until the v,riable
'N' is bound. On the other. hand,
process ‘'outstream' waits until
the 'integers' process binds the
value because of the predicate
'wait(X)'. When the variable is
bound to 0, 'outstream' writes the
value and enters the recursive
call, At this moment, a new vari-
able 'P' is attached to the end of
the communication channel because
the tail of the channel (variable)

is bound to '[P|R?])' in the head
of 'outstream' definition. This
instantiation enables the

'integers' process to continue the
processing.

The bounded buffer technique
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enables the receiver process to
control the sender process. At-
taching an uninstantiated variable
to the tail of the communication
channel corresponds to the demand
transfer from a receiver  process
to a sender process. Lazy enu-
merator communicates with other
Concurrent Prolog processes via a
bounded buffer as follows:

Goal lazy_enumerate({X|Y},[U|V?]),
receiver([U}VI\V)

A 'kill' demand to an enumera-
tor is to close the communication
channel by binding '[]' to the
tail of a channel.

4.2 Lazy Interpreter
Implementation

Lazy Pure Prolog interpreter is
obtained by changing the charac-
teristics of the eager one as
follows:

1) Replacing each communication
channel from an unbounded buf-
fer to a bounded buffer.

2) Using a linearized channel in-

process(active,[],[],Cls).
process(active,OPs,0Pe,Cls)
process(wait,OPs,OPe, [

p1)
p2)

p3) proceas(active,[Mess|R],R,Cls) :
p4)
p5)
p6)

pT)

process(wait,[],[],[]1\_, ).
process(wait,OPs,0Ps,[MI_]\_,

process(act

transfer_demand(OPe?,

process(wait,(OPe
process_fork(Goal,0Ps) :- ¢
forks(_,(]).
forks([],[*$end$'i_1).

1)
3)

transfer_demand([_1_),[PiS?],S).
transfer_demand([],_,[]1).

Fig.3 Lazy Interpreter Program
—\

process(active,OPs,0Ps,Cls) :- otherw
Cls) :- wait(M) & M='$end$' | true.

Proceas(wau.OPa,OPe'l,[Healeﬂ\ﬂ.Cl
wait(Mess) & newclause(Cls,Mess,

1ve,OPs,OPe.Newc) &

R,S) &

forks([Cls|R],0Ps) :- wait(OPs) |
Pmeu(active,OPs,ON,Cls) &

.~ peduce(Cls,NxGl) |

BIN]\N,Cls),

process_fork(NxGl,[BIN?]).

- terminate(Cls,Mess) | true.
ise | true.

s)
NewC) |

OPe1,C1\S Cls).
:;::ses(éoal,élses) | forks(Clses,OPs).

forks(R,0Pe?).




stead of a merge network.

3) Adding process operations for a

kill demand.

Fig.3 shows the Program of the
lazy interpreter.

(p1) to (p4) define the behav-
ior of active processes. The

Second argument of an active pro-
cess is its output channel and the
third argument is its Successor's
output channel which is needed for
linearizing a channel as mentioned
in"3.2.2, When an active process
is generated, its output channel
is bound to '[BIN?]* op "W).

(p1) is a definition for
manipulation of a kill demand,
which specifies the termination of
an active process, (p2) to (p4)
correspond to the definitions in
the eager interpreter, (p2) spec-

binding
channel,
for its child Process.,
Shows a demand

Parent process to
cess. Predicate
€Xecutes
'forks!

Fig.y
transfer from a
its chilg pro-
L Process_fopk!

and

[Xiv?)

[BIN?]

Fig.d The demand transfer

[XIv?)

poatponed until the next desasd i

detected. (1) specifies the b«
havior of 'forks' when a dessnd it
to kill one. The serial-AD &
(f3) specifies that a recursin
'forks' call should be tried after
one process terminates. Mhisi:
for only the efficient isplesents
tion in DEC-20 Concurrent PNIOG
which doesn't have a non-busy-wit
mechaniam,

(p3) and (p¥) define that
active process terminates cor
catenating its output channel a
its successor's (a unification of
the second argument and the thin
one).

(pS) to (p7) defines the #f';
tion of waiting processes. (5
which specifies a process termin:-
tion 13 for a kill desand. Whe
the message sent via its imet
channel is '$end$', a waiting pro
cess concatenates its output cher

nel and its successor's and ter
minates itself. The messa®
'$end$' means that all child pre

cesses of a waiting process ":
terminated. (p7)  specifies it
waiting process operation when 5
has received a solution. “5;.
shows the configuration of an N”
Put channel of a waiting proce
and that of a new active PW“S:_'
Output channel 'Ope' will be “
tached to the tail of the wtp;‘.
channel of ‘'pew process' when it
terminates, Predicate 'mr-ﬁ;
fer_demand! (p7) transfers

in

[Xiy7)

N?
L chid-processes




demand, for example, the waiting
process in the above figure in-
stantiates 'N' to '[B'[N'?]' or
'[]' according to a demand it
receives,

interpreter,
is defined as

Using the lazy
'lazy_enumerate'
follows:

lazy_enumerate((X|Goals},0Ps) :-
process(active,OPs,OPe,
(X<-=Goals)) &
sendend(OPe?).

sendend([end_of_solution]_]).
sendend([]).

'Sendend’ sends message
'end_of_solution' when a demand
number exceeds the total number of
the solutions. The demand-sender
process receives 'end_of_solution'
instead of a solution when it has
received all solutions.

The interface between
'lazy_enumerate' and other Concur-
rent Prolog process is a bounded
buffer.

5. DISCUSSION

To realize don't-know-nondeter-
miniss, an enviromment of variable
bindings must be maintained for
Bultiple solutions. The inter-
preter described in this paper
retains the environment by copying
a clause, that is, a waiting pro-
Cesses copies its clause when it
receives a message. n simple
copying method has drawbacks on
both space and time efficiencies.

The space problem 4is that a
simple method produces a whole
Copy of a given term which con-
tains non-variable portions which
can be shared, This problem is
2voided by introducing a 'rename’
predicate which produces a copy of
2 term sharing ground term por-
tions with its original term.

T |

The time problem is that a copy
operation should search the whole
part of a given term. This will
increase a computation time of a
waiting process according to the
size of the terms it contains.
One of the possible optimization
methods for this problem is to
determine the portion to be shared
in compile time (either automati-
cally or by giving declarations).
The development of an efficient
renaming method is one of the
important topics for implementa-
tion of the don't-know-nondeter-
minism,

6. CONCLUSION

This paper described an OR-
parallel execution model for Pure
Prolog and the implementation of
an enumerate function in Concur-
rent Prolog based on the model.

The computational model is
based on multi-processing and
interprocess communications. The
model provides an eager Pure Pro-
log interpreter implemented in
Concurrent Prolog. Also a lazy
interpreter can be obtained easily
by dintroducing a bounded buffer
communication mechanism to the
eager interpreter. The eager
interpreter and the lazy inter-
preter provides eager and lazy
enumerate functions to Concurrent
Prolog, which are very important
functions for parallel logic prog-

ramming.

This approach shows that both
OR-parallel and AND-parallel
execution of a logic program is
achieved only by AND-parallel
execution. This feature is very
important because it decreases the
complexity of the computer archi-
tecture and the amount of required
hardware of a highly parallel

machine.
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1. Abstract

Logical terms are the only com-
pound data structures in logic pro-
gramming languages such as Prolog.
Terms are sufficiently general that no
other data structures are needed. Re-
stricted uses of terms correspond to the
bits, character strings, arrays, records,
etc. of other programming languages.
The computational overhead, however,
of using a very general data structure
in specialized situations can be very
high. Side-effects cannot be performed
upon logical terms and the alternative
of constructing new terms which dif-
fer slightly from the old can be very
costly. We propose to alleviate these
short-comings of terms, without losing
their logical clarity and purity.

We have introduced into LM-
Prolog, a Prolog dialect running upon
Lisp Machines, predicates for creating
and manipulating arrays. These pred-
icates could have been written com-
pletely as Horn clauses without the use
of any primitives, They are imple-
mented in terms of physical arrays and
“virtual arrays” in a manner that is
transparent to the user. For some uses
of these predicates, it is possible for a
compiler to produce code performing
array references and updates that is as
good as that produced by compilers for
traditional programming languages.

2. Motivation

The goal of this research is to
significantly improve the efficiency of
some logic programs without sacrific-
ing their logical purity. First we will
consider where the use of arrays can
improve performance and then address
the question of whether a complex im-
plementation just to maintain logical
purity is worthwhile.

There is a growing interest in at-
tempting to extend the domain of logic
programming to systems program-
ming. The Japanese fifth generation
project exemplifies this [Chikayama
1983]. It is difficult to imagine an
efficient file system or editor which
does not do side-effects upon compound
structures. We believe that logical ar-
rays as described in this paper pro-
vide a viable alternative to non-logical
primitives which perform such side-
effects.

There are many existing Prolog
programs whose performance could be
enhanced by using logical arrays. A
chess or go program can represent the
board as a two-dimensional array. A
program using association lists could
instead use hash tables. A text pro-
cessing program that deals with text as
lists of character codes can be replaced
by one using character arrays. And so

on.




One may question our insistence
that arrays be incorporated into logic
programming in a logical fashion. Pro-
log already has non-logical predicates
for i/o and changing the database why
not add a few more for dealing with
arrays? Admittedly the implementa-
tion of such predicates would be sim-
pler than the one we describe later.
The reasons why we want the imple-
mentation to remain within logic are
both theoretical and pragmatic. If we
can maintain a simple semantics for ex-
tensions to Prolog then the Jjob of veri-
fying, synthesizing, analyzing, optimis-
ing, debugging or understanding logic
programs will be easier. Pragmatically,
by introducing arrays into Prolog in a
logical fashion we maintain the gener-
ality of the logic programs. A Prolog
predicate that, for example, works for
any instantiation pattern and that uses
lists can often be made more effective
by using arrays without any loss of gen-
erality. Logical arrays show promise
of being well-suited for implementa-
'tions upon parallel processors by avoid-
ing the usual synchronization problems
associated with concurrent Programs
with side-effects,

3. Semantiecs

3.1 Array Processing Primitives

We define three rimiti g
cates to deal with arra‘;n: S s <

ls.array(Array,N )

.Array is an array with N elements.
This predicate 18 used both for creation
and type checking, depending on the
Instantiation of the arguments.

array element(Array,Index,Valu)

The value of the elemest come
sponding to the index Index clthe_»
ray Array is Value. This is the priz-
itive for accessing array elements

array_update(Old_array,Index,
Value,New_arrsy)

The array New.array is the am
as array Old_array, except that the
value of the element corresponding 1
the index Index in New.array &
Value. This is the primitive for v
dating arrays.

3.2 Horn Clause Definitions

In the sequel, we will assume that
the semantics of the array processisg
primitives are as if they were defise
by the following Horn clauses. array
a reserved functor symbol that cannot
be used anywhere else.

isarray(array(irraylist), Size) -
leagth(Arrayliet, Size).

arrayslezent (array(Arraylist),
Index,Val) :-
athelement (Arraylist, Index,Val).

trrayspdate(array(014), Index,
Val array(iev))) :-
Spdateslenent (014, Index,Val Fov).

/* Auxiliary predicates ¢/

length([,0).

length([|List],Laa) :-
Len>0, Lent is Lex-1,
ln‘tl(unt.l.nl).

nthelezent( [Elex|],0,Elex).

Bthalezent([|List] ,Pos, Eles) :-
Pos>0, Post is Pos-1,
Bthelexent(List,Post ,Elexn).

Pdate.slezent ([jList],0, Nevalen,
Diew.eleaList]).




spdateslenent ([Somesle=|01d 1iat],
Pos Nevaelen,
[Sozmeslex|Newlist]) :-
Pos>0, Posi is Pos-1,
spéateslenent (01d1ist Posl,
Newsalen Newlist).

4. Implementation

The Horn clauses describing the se-
mantics of the array predicates can be
executed by a Prolog system. There
are, however, two sources of ineffi-
ciency. The use of lists precludes
any random accessing. This is not
a serious problem since terms can be
used as described in section 5.2. The
serious problem is the copying that
update_element does. Our imple
mentation avoids both of these prob-
lems by using arrays. We manage to
do this in a way that the semantics
of the predicates is not violated. An
array used by these predicates is im-
plemented as a real array and a data
structure which masks the values of
some of the array elements. Both the
old and new versions of an array being
updated share the same real array.

~ This chapter will describe the prin-

ciples of the implementation of muta-
ble arrays and the primitive operations
on them. The implementation requires
that certain arguments to the primi-
tives are instantiated when the prim-
Wives are called. If they are not, our
implementation cannot handle the case
in other ways than signalling an error,
freezing [Colmerauer 1982] the subgoal
until enough arguments are instanti-
ated, or possibly successively binding
(by backtracking) an index argument
% all possible indices.

Mutable arrays are represented in-
ternally by a chain of value blocks, ter-
minated with an physical array. In the

rest of this chapter, the term “array”
will refer to the entire mutable array.
When the underlying physical array is
referred to, the term real array will be
used. There should not be any way for
a logic program to look at the internal
structure of a mutable array.

The terms old and new (or updated)
array will be used to refer to the muta-
ble array to be updated and the muta-
ble array created as a result of the up-
date (in a procedural sense). Note that
even though the values of the elements
stored in the old array are unchanged
by an update (since pure logic pro-
gramming is side-effect free), the struc-
ture of the old array might change.
Thus we will refer to the old array be-
fore and after the update. Since this
chapter describes the actual implemen-
tation of mutable arrays, this procedu-
ral view of Prolog will be used through-

out.

Each value block - except the last
one in a chain - contains an sndez-value
pair. The value of a certain element of
the mutable array is the value stored in
the real array, unless one of the value
blocks in the chain has that index. In
the latter case, the value of the ele-
ment in question is the value stored in
the first value block with that index
instead. Two mutable arrays which
differ only in the values of a few el-
ements, sometimes share the real ar-
ray, the differences being handled by
the value block chains.

Aside from the index and value, a
value block contains a posnter to the
next value block in the chain, or to the
real array, should this be the last value
block of the chain. If the value block is
the last one in the chain, it will not ac-
tually contain a valid index-value pair.
This can be represented by a flag bit,
by some special code in the index or




value fields or simply by the fact that
the value block points to a real array.

The new-real scheme update algo-
rithm (see below) requires that the real
array is never pointed to by more than
one value block at a time. The sole pur-
Pose of this last value block is to fulfill
this requirement and still provide for
different mutable arrays to have differ-
ent value block chains pointing to the
real array. All the chains simply share
the same last block.

4.1 is_array

The predicate is_array requires
that at least one of its arguments is in-
stantiated,

When is_array is called with the
Array argument instantiated, its di-
mension is unified with the dimension-
ality argument.

When the cal] is made with the Ap.
Fay argument uninstantiated, a muta-
ble array wil be created. To create
the mutable array, a real array is al-
located for jt. Each element of the
rea! array is initialized with unboungd

table array. The rea] array is
; nev:
pointed to directly. o E

|
P e e

Empty valye A ‘
block Real £

A Dewly Created array
4.2 array_element

The Array ang Index argym
4 ents
must be Instantiated. Lookings‘:xp the

value of an element of the mutabl o
ray is done by comparing the inder o
the element to be looked up o theix
dex in each value block in turn (except
for the final value block which doa
mot contain a valid index-value pai)
Should a block with a matching mdq
be found, the corresponding value i
the one looked for. If no such walue
block is found, the real array s i
dexed in the ordinary manner. Whe
the value is found, it is unified with the
Value argument to array_element

4.3 array_update

All arguments to array.update
except possibly the New.array argv
ment, should be instantiated. If tht
New._array is instantiated, but the
Old. array argument is not, it i st
possible to handle the call by using th
fact that

Arrayapdate(0ldarray, Index,
Valse Nevarray)

can be replaced by

frrayslezent(Newarray, Index,Valse), )
Arrayapdate(Newarray, Index,. 014arrt]

which switches the old and new aray*

When an element of a mutable s
ray is updated, a copy of the ‘m";
actually made to preserve the value?
the old array. This copying is done It
such a way that the real array i “
ways shared with the old array. In 1
dition, the internal structure of the °"
array might be changed by the upds
ing. This change is, of course, done I8
such a Way that is does not alter “l';
value of any of the elements of the 0
array.

Updating can be done using "3
different schemes, called the old-rt
scheme and the mew-real scheme.
the old-rea] scheme, the value blocks




are used to keep a history of all changes
made to the array. In the new-
real scheme, the real array is actually
changed and the value blocks are used
to keep a history of the old values be-
fore the updates, for the benefit of the
old array.

In most cases the programmer can
specify, as control information, which
of the methods he wants to use (both
schemes are semantically equivalent);
however the new-real scheme fails in
a few cases, in which cases the sys-
tem should do an old-real update in-
stead. In both cases, the update
concludes by unifying the new ar-
ray with the New_array argument to
array_update.

The names refer to whether the old
or the new array will consist of only the
real array and the compulsory value
block without a value, when a freshly
created array is updated.

The old-real scheme

This scheme is the simplest one.
The new array is simply a new value
block, containing the index and value
of the updated element, pointing to the
old array. In this scheme the structure
of the old array is not changed at all,
but the new array has an index block
chain one element longer. If the old-
real scheme is used several times in
Succession, a long chain of value blocks
will be built up, increasing the time
Deeded 1o access the array.

NEW OLD '

Y] N1-<1x |

The situation after the third
element of the old array has been
et Lo Y (previous value X), using
the old-real scheme.
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The new-real scheme

The idea of this scheme is to up-
date the real array and add a value
block containing the previous value to
the value block chain of the old array
to mask the change. In this way, access
to the new array will be as efficient as
access to the old array was before the
update took place. Instead, access to
the old array will be slowed down by
the addition of a value block.

An update using the new-real
scheme takes place in a number of

steps:

1. The new array is created by copy-
ing the value block chain of the
old array, omitting any value
block whose index is the same as
the index of the element being up-
dated.

2. The index of the element being
updated together with its current
value in the real array is stored
into the (hitherto unused) last
block in the old value block chain.

3. The pointer in that value block is
set to point to the last value block
in the copied chain, rather than to
the real array.

4. The new value of the element to
be updated is stored into the real

array.

Note that the values of all elements
of the old array are unchanged by this
operation, since the storing of the old
value in step (2) masks the update of
the real array in step (4). We know that
all mutable arrays using this real ar-
ray will point to the real array through
the value block used in step (2), so the
masking applies equally well to other
arrays than the old array of this par-
ticular update. The new array, on the
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other hand, is identical to the old ar-
ray, except for the updated element,
since that element was changed in the
real array in step (4) and any value
blocks that could have masked the
changed was omitted when the chain
was copied in step (1). The reason this
copy was necessary was both to omit
any blocks that could have masked the
change as well as preventing the new
value block from masking the change
from the new mutable array.

The motivation for step (3) is to en-
sure that there is still only one value
block that points to the real array,
so that step (2) in later updates will
work. Step (3) also increases the length
of the old value chain by one value
block. When the old array is not re-
ferred to any more (which probably
happens soon after the update), its
value block chain could be garbage col-
lected. Since the new value block chain
is not longer (but possibly shorter) than
the old chain, programs that don’t use
old arrays after they have been up-
dated will run using constant space.

This procedure can be simplified if
the value block chain contains a block
for the element to be updated, already
containing the new value, or if the real
array element already contains the new
value. (Note that the old value could
still be different.) In the former case,
the copying in step (1) is only done up
to, but not including the valye block in
question. In the latter case the copying
is done up to but not including the last
value block if the real array contained
the desired valye, The last block in
the new chain is Jef pointing to the
?lace in the old chain where the copy-
Ing stopped, and steps 2-4 are skipped.

[
| (1T AT
Situation before...
OLD et
‘ i

ilIi--BIX-\. MLl
{1 {5
...and after the third element
of the old array has been set 0
Y (previous value X), using tbe
new-real scheme. o
In order to undo the.sidﬂ‘“_‘:
performed on the old array in steps? y
on backtracking, the pointer fields 32
real array elements need to be traled
[Warren 1977). Prolog trailing °°:|’;
monly only involves just recording :
address of the location that was s¢!,
only unbound variables can befh G
in Prolog. To reset these n.mblza
an unbound status, only their ad .
need be known. This simple traili*
not sufficient here. Rather, the P“u:
ous contents of the changed cell ';‘ \he
be trailed along with the address 0 e
cell. This requires that the Uﬂlm‘
space to store the old contents, o "
two trails, one with and one Wit
previous values, are used.

If the elements of a real array 5"
fewer bits than are normally red st
to store information in the part
Prolog system (e.g. a character :"i;z)’
where all elements are eight bits’ rc',
it is possible that some infl.u’l!-'l‘“_"“leh
quires more bits (e.g. logical "",’bw)
that ordinarily requires a full po®
and thus cannot be stored in tb
array in step (4). If an attempt that
to update an array element with 4
information, the new-real scheme A
not be used, since it always updates




real array. The old-real scheme must
be used instead.

Comparison

In the old-real scheme the value
block chain of the updated array will
be one block longer that that of the old
array, while in the new-real scheme it
will have the same length. This means
that if several updates in succession are
done on successive versions of an array,
the size of the value block chain (and
thus the time needed to access the ar-
ray) will be constant for the new-real
scheme, but linearly increasing for the
old new scheme. On the other hand,
the time to access the earliest version of
the array will increase linearly as new
versions get updated.

In most cases, the updated array is
probably going to be used more than
the old array, so the new-real scheme
will usually be advantageous. If the
old array will continue to be used ex-
tensively, the old-real scheme might be
more efficient as the old array is not
affected in any way by the updating.

Another factor to the disadvantage
of the new-real scheme, is that it has
to copy the value block chain of the
old array. Should this chain be long,
the copying could take substantial time
and memory.

4.4 Unifying arrays

The unification mechanism of Pro-
log must be extended to deal with ar-
r3ys. In accordance with our Horn
clause definition, we define two arrays
% be unifiable iff they have the same

nsionality and corresponding ele-
ments unify, The occur check is as
much (or little) applicable here as when
#tandard terms are unified. Since the
Horn clause definitions use a reserved
functor to represent arrays, an array
tan never unify with something that is
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not another array.
4.6 Realization in LM-Prolog

The LM-Prolog implementation of
the array predicates is generalized
somewhat. The index and dimension
are replaced by indices and dimen-
sions which are lists which can have
up to seven elements. This extension
could clearly be written in pure Horn
clauses. Is_array takes an extra argu-
ment which is a list of options. The
options can be used to declare whether
the elements of the underlying real ar-
ray should be full words, 16 bits, 8 bits,
4 bits, 2 bits, or single bits. This op-
tion has no affect upon the semantics
of the primitives and can be viewed as
user-provided control information. An-
other option specifies how, if at all, the
array should be initialized. This too
could easily be written in pure Prolog.

The development and implemen-
tation of logical arrays and experi-
mentation with various optimization
was greatly facilitated by the extent
to which LM-Prolog is designed to be
extensible by users ([Kahn 1984] and
[Carlsson 1983]). The entire array
package was written in Lisp and Pro-
log without making any changes to
the underlying implementation of LM-
Prolog. Unification in LM-Prolog is
extensible by using the Lisp Machine’s
Flavor message passing facility [Moon
1983]. Logical arrays are implemented
as flavor instances that receive mes-
sages to unify with others, to lookup
elements, to perform updates, to copy
themselves, etc. Another important
facility is the ability to “trail” arbi-
trary computation. In the norma.l- ex-
ecution of Prolog programs a trail of
cells which upon backtracking need to
be re-set to unbound is kept. In LM-
Prolog, the trail consists of both such
cells and Lisp forms to be executed.
In order to implement backtracking
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when the underlying implementation
performs side-effects upon arrays, it
was necessary to trail array locations
and their previous values. Another fac-
tor which facilitated the implementa-
tion of logical arrays in LM-Prolog is
the smooth interface to the facilities of
the underlying Lisp system. Lisp Ma-
chine Lisp has an excellent array facil-
ity which supports various byte sizes,
array dimensions, and overlaying.

5. Optimizations

Programs using logical arrays are
often substantially more efficient than
programs built upon the existing al-
ternatives in logic pProgramming lan-
guages. If, however, logic program-
ming is to compete with Lisp or Pas-
cal then we must consider carefully the
overhead involved in supporting logical
arrays. In general, the overhead is nec-
essary, but there are commonly occur-
ring uses of logical arrays that could be
significantly optimized.

_ Our attitude towards optimiza-
tions of logic Programs is summarized
b.elow. It is based upon a distine-
tion between contro) advice that cap-
not change the logic of a Program and
declarations that state that a pProgram
fulﬁlls certain properties. If a declara-
tion is incorrect then the execution of

o ;&dutox:x_atgcally detected and perform-
OPUmizations. Eg taj i
optimizations. g A

. C?ntrol advice. Eg. that th
lying array be a byte array. i

e User def:larations. Eg. the mode

should be verified either by the sy»
tem or the user. Failing that e
system should optionally do run-time
checking.

There are three kinds of controlad:
vice one can give the LM-Prolog imple
mentation of arrays. One is what the
byte size of the underlying real amy
should be. If, for example, one declares
the size to be a single bit, then thear
ray can efficiently hold onlyOorl. An;
other value, including an unbound vrr
able, is captured in a value block which
costs a few words of memory and slows
down array accesses. If, however, tbe
vast majority of values in an array a
limited to 0 or 1, LM-Prolog can pst
32 values into each machine word.

Another type of control advict 3
when an array should be copied. I 2
array with a long chain of value block®
is used frequently, either directly or #
its ancestors, then it may be worl
while re-representing it as a real arm.
This real array’s contents are the a2¢
as those of the old logical amsy. 53
operation takes time and memory d“
can be critical for sufficiently fast ;
ment access. Logically, this copysé :
just advice to the system and does 2°
change the semantics of the progra™
involved.

One can consider the choice b:
tween old-real and new-real updstes
control advice. If older versions ";
used more frequently than newer °°w
then one should advise the syste®
use old-real updates.

The usage declarations that Lx;
Prolog accepts describe whether i
array will be used in a det i
manner, whether only the most ¢
version of an array will be l“"h’
Wwhether the array indices in 3 100K
or update will always be grousd, “‘.u
if a byte array is being used ths!




of its values will fit. If an array’s us-
age is declared to be deterministic from
its creation to its last update, then no
trailing is performed. The idea is that
if the system backtracks to the last up-
date, then it will backtrack all the way
back to the creation of the array, so it
does not matter if its elements are in-
consistent.

It is quite common to use an array
in a linear fashion so that after an ar-
ray is updated, the old version is never
used. This is the way arrays are used
in traditional programming languages.
If an array is declared to be used in
this fashion then an update can simply
perform side-effects upon the real array
of the old array reference since the old
array won't be used anymore.

The logical implementation of ar-
rays must be prepared to find that the
array indices in a lookup or update are
only partially instantiated. The cost
of checking first if they are ground is
small but can be optimized away if the
array is declared to be used only with
ground indices. Similarly, byte arrays
must check that the value is an integer
in the proper range and this check can
be declared away.

If the usage of an array is declared
as deterministic, recent version only,
ground indices and proper values for
byte arrays then the efficiency of the
current implementation is about one-
half of that of Lisp. This is because,
I addition to the array reference or up-
date, a message must be sent. With a
little micro-code support for arrays this
overbead could become insignificant. A
micro-coded primitive could if passed a
real array do the ordinary array refer-
ence or update, otherwise send a mes-
t2ge to the flavor instance.
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In order to verify a logic pro-
gram containing array usage declara-
tions, the declarations must be shown
to be correct. The verification of usage
declarations is an important area for
future research. The implementation
does allow one to declare that a decla-
ration be checked at run-time and that
an error be signaled if it is violated.

6. Element-wise Alternative

Under certain circumstances, the
implementations discussed above may
become inefficient. Suppose that the
array is large; that is to say, that it
will be a very expensive operation to
copy it. Suppose moreover that a large
number of updates will be carried out
on it, and that it will be necessary to
access not only the most recent, but
also old states. Such a situation could
easily arise, for example, if the array is
being used to represent the state of a
large dynamic system, and the object is
to collect states which fulfill some con-
dition, in order to compare them later.
The problem here is that every array
access will have to “go through” all up-
dates between the version in question
and the most recent version; however,
in general each individual element will
only have been updated a small number
in times compared to the total num-
ber. It is thus apparent that a very sub-
stantial optimization can be performed
if we “localize” update information to
the element affected. How this could
be done is now discussed.

The basic scheme is similar to
that used by Conniver [McDermott
1974); an array is a triple consisting
of a real-array, a version-identifier iree
and a version-identifier. The version-
identifier is unique for each version of
an array, and consists of a list of ix;-
tegers. The version-identifier tree is




a tree which contains all the version-
identifiers current for the array in
question, partially ordered by the re-
lation older than. One can reason-
ably think of the version-identifier as
a “Dewey decimal” number; then the
version-identifier tree is a catalog of all
the versions of the array that have been
created.

The relationship older-than we de-
fine as follows: if v; and v; are two ver-
sion identifiers, then v, is older than vy
iff either

1) the list v, is an initial segment of
the list v,, or

2) the two lists are identical except
for the last elements, and the last ele-
ment of v, is less than the last element
of U3,

) Each element ip the real array con-
tains a list of Pairs, the local a-list,
each Pair containing a valye and a ver-

& and version identifier » we go down
the a-list unti] we find the valye paired
with the first version identifier that is
older than or equal to o, Conversely
to update the array we first generate a'
Dew version identifier , in the following

The efficj . X
hard to estimency of this scheme is

8everal Independent i
- variab]
most important of t %

in which the arrays are updated
this is done “linearly”, » thn_h
version-identifier tree only ha e |
gle branch, the version identifiens i
all single-element lists and both up
ing and referencing are fairly eficest
In general, the “bushier” the vemox
identifier tree the ;onl;“ th:'::f
will perform, since the

ing t't,xe version identifiers will becont
longer and the overhead in proces
ing them correspondingly greater. Ar
other important question is how g
the updates are spread through
array; clearly, if they are wnﬁ:
trated on a small proportion p(:a!n the
ements the method is corres
worse. One definite diudm“(":
this scheme compared to those sbove
that garbage collection would be':g
expensive, but since it is only lll':‘hu
to be used in cases where old ni
are of interest this is perhaps DO““;
ous. Also, it is impaw‘hlewunplfm::e
byte-arrays, since each element it =
real array must be able to hold 2
bitrary value.

7. Dec 10 Prolog Alternative

Many Prolog implementations i::;
the predicates functor and arg '-on,
can be used to define efficient "‘;;791
of the array predicates ([Pereirs be
[Clocksin 1981]). Prolog terms jori
used as pure arrays using these P
tives.

The difficulty with this spprosch
the lack of an efficient way 1 g
ment array _update under the © 2
real scheme. Recall that the cost the
lookup of an array updated un erm
old-real scheme is proportional ¥
Dumber of times that array bss om?
Updated. Under the new-real xhpoﬂ
one needs to perform side-effects uecu
the real array. Since such sid




are not possible on terms, one is forced
to consider other unattractive alter-
natives such as adding and removing
clauses from the Prolog database to im-
plement the side-effects.

8. Concurrent Prolog Alternative

Another way to obtain the advantages
of mutable arrays and yet remain log-
ical is to use the Concurrent Prolog
technique of defining processes which
accept messages [Shapiro 1983a]. Mu-
table arrays can be implemented this
way by having each array element cor-
respond to an argument to the “array”
process. The process accepts message
to “look up” values and to “update”.
A schema for writing such processes is
given below.

array, ([lookup(1,Element, ) [MoreNsgs] ,

Elezent,,... Elenent,) :-
array, (NoreMegs?,
Elezent,,...,Elezent,).

wrray, ([spdate (1, NewValue) [NoreNsgs],

Elezent;, ... ,Element,) :-
array, (NoreMsgs?,
¥ewValue,... Elezent,).

The practicality of such an implemen-
tation of mutable arrays depends upon
lophisticated argument passing and
tall-recursion optimizations. An awk-
wardness is the need to define different
processes for each array size. One way
around this is to define one or a few
standard size arrays, and build larger
ones as arrays of arrays. The complex-
ity of a lookup or update would then be
Ollog,(n)) where « is size of a standard
array and n the size of the array be
Ing accessed. It can be easily seen that
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this implementation of arrays will not
work in Prologs based upon depth-first
search.

9. Arrays as Impure Predicates

An alternative way to provide arrays in
Prolog is to implement each array as a
separate predicate. Given the appro-
priate indexing advice, a Prolog system
could use an array for indexing. Ar-
ray updates would be realized by data-
base updates. Such an implementa-
tion of arrays is similar to what tradi-
tional programming languages provide.
Older versions of the array are not ac-
cessible, there is no backtracking, and
programs become more sensitive to the
order in which its parts are executed.
The semantics of such arrays becomes
the semantics of database updates.

10. Other Alternatives

Recently, two other schemes for rep-
resenting arrays in Prolog have been
suggested. The idea described in [Co-
hen 1984] is extremely ingenious, but
appears to suffer from some serious
problems; access time in the general
case is proportional to the total num-
ber of updates, and garbage collection
is very difficult. Also, if 2 virtual
array is replaced by a concrete one,
the change leaves versions logically de-
pendant on the changed version unaf-
fected. This makes optimization by
“concretization” very inefficient.

[Pereira 1984] gives a representation of
arrays as trees, with access In loga-

rithmic time and update logarithmic in
both time and space. One attractive
feature is that it is possible to post-
pone allocating space to an entry until
it is updated for the first time. This
makes the idea very suitable for sparse
arrays, but in the general case it is not
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clear that the overhead is acceptable
for a large array size.

11. Applications

The use of mutable arrays on conven-
tional hardware can easily be defended
in terms of efficiency. Even in the
areas where Prolog is usually applied,
symbolic processing and databases, ar-
rays can be important. Hash tables,
for example, implemented using arrays
are often used in symbolic processing.
While all serious Prolog implementa-
tions use hash tables, a Prolog user has
Do access to the hash table routines and
is forced to use Jess efficient alterna-
tives.

Graphics is another area where arrays
seem appropriate. Typically changes
are made to some small part of a mode]
of a two or three dimensional space.
Logical arrays provide the exciting pos-
sibility of exploring the idea of doing
computer animation where the entire
history of the display needs to be com-
puted. Considering the millions of bits
each frame needs ang the more thap a
thousand frames needed each minute,
one needs something like logical arrays
to store the different versions.

:I'wo applications are currently being
Implemented by the authors of this pa-
per. A Go program based on the prin-
ciples described ip [Rayner forthcom-
ing| represents the board with mutable
arrays. This makes good use of the spe-

y interested in €Xamining
numb-er of positions which only dif-
fer slightly from the current ope. An-
other project with a more direct rele-
vance to logic Programming is a pat
ural deduction-based Proof system of
the type describeq in [Haridi 1983]. A

problem that arises is that it is e
essary to keep several different bind:
ing environments limu!tmmln thy
occurs in a large variety of ‘pant
lel” logic programming systems -
plementing environments as a-lists
clearly too expensive, but by re.prd-
ing variables as offsets into an ‘av
ronment array” it is possible to use the
methods described here to provide u
efficient solution inside pure logic. Thi
will be discussed more fully in a laler
paper.

12. Discussion

On top of logical arrays one can, "‘h:
LM-Prolog, provide strings, hash .
bles, general record structures and ii¢
like. There are two questions bert
that warrant more research. Is ‘:: 11:
good way of providing such cap 4
ties? Should such facilities be built 0
top of arrays or should they be l;::
vided in a manner analogous %

arrays are implemented?

e e de-
The latter question is rather system
pendent. Since the Lisp Machines P’;’d'
vide well-designed hash-tables, rec ;
structures, and strings with significs®
micro-code support it would Smd’.w
sible to take advantage of them an hz
Plement the “logical” versions of ¢
in Lisp rather than Prolog.

The question about whether this ,,'the
right way to introduce, say, ‘“‘n"
into Prolog is less clear. A =
vantage of logical arrays is that t2¢)
are awkward to compute in comps™
son to lists. Unification of lists pr:
vides a very succinct and clear “’ire
eXpressing something that may requ

a series of calls to array_element luln "
array_update. Perhaps strings sho!
be introduced into logic programmifé
as terms that one can perform '";“
unification upon. Or perhaps th¢f




should remain as lists of characters as
they are in many Prolog implementa-
tions and effort should, instead, be put
into packing several characters to a
word [Shapiro 1083b]. Another alter-
native is to implement strings as logi-
cal arrays and put effort into extending
unification to enable one to deal more
comfortably with both strings and ar-
rays.

We presented the “old-real” and “new-
real” schemes which can co-exist side-
by-side. We also discussed an alter-
native element-wise scheme which for
some uses of arrays was ideal. An inter-
esting avenue of future research is how
to let the system choose the appropri-
ate underlying representation depend-
ing upon how the arrays are used.

We have only begun to consider the de-
sign of generally useful utilities for ma-
nipulating arrays. We expect that the
ability to perform some operation upon
each element of an array, to create ar-
rays that are pieces of other arrays, and
the like to be desirable. APL [Iverson
1062}, for example, is successful not be-
cause it provides array referencing and
updating, but because it provides a rich
and powerful set of tools built upon
those primitives. One primitive that
Wwe are exploring is array differences
where depending upon how its used can
perform parallel operations upon an ar-
12y or find differences between two ar-
rays,

One motivation for providing mutable
&1Tays in a pure fashion is that the re-
sulting techniques and algorithms ap-
Ply equally well in the context of func-
tional programming. Our introduction
of virtual or logical arrays to logic pro-
gramming applies equally well to func-

programming. Virtual arrays
may also be useful in Lisp and mes-
$age passing systems. The LM-Prolog
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implementation is really in two layers.
First, virtual arrays are implemented
as actors (flavor instances) and then in-
terfaced into LM-Prolog.

An interesting area for further research
is to consider logical arrays in the con-
text of parallel processing. Clearly the
old-real update works well in the face
of concurrency since there are no side-
effects. The new-real implementation
has side-effects that are completely hid-
den from the user. Could the problems
of simultaneous updates also be han-
dled by the implementation in a trans-
parent manner?

We have began to work on manipulat-
ing Prolog databases in a manner anal-
ogous to mutable arrays. Both the old-
real and new-real schemes have data-
base analogs. The three array primi-
tives are replaced by primitives to cre-
ate, query, and modify databases. An
awkwardness of this scheme is that one
must explicitly provide a database ar-
gument to the calls of Prolog predi-
cates using mutable databases. The
advantages of maintaining a pure se-
mantics typically outweigh this clum-
siness. Perhaps a syntactic sugar for
defaulting database arguments is feasi-

ble.

In summary, the introduction of logical
arrays into Logic Programming is very
promising. The range of programs that
can be effectively run in logic has been
expanded. The unique ability to use
old versions of arrays supports many
new applications. In the long run, ex-
perience with using logical arrays will
decide how useful they really are.
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1 Introduction

T': original vision of Logic Programming called
using Ftdnrm logic as & programming
:ub-m, an Emden & Kowalski 76]. Prolog
."P:“‘M! realizes this vision, since it has
fm’(ﬁq“ with no corresponding feature in
e B
ure icate logic. Perhaps
the main benefit of the system suggested in this
:::"M:'ﬂnﬂﬂ called Eqglog, is the way it
\ the technology of Prolog (its efficient
Mwmm.’ “:1'& -qun:io- and
unctional programming (in an
gr‘""‘ first order rewrite rule impkmenution)
{0 ield more than just their sum: logical
Mm}bhwcn be included in equations, giving the
_ L{ find general solutions to equations over
o ined abstract data types (ADTs); this
- ';‘"! is provided in a uniform and rigorous
m,riu using *narrowing® from the theory of
ph m"h to get a complete implementation
ru::' ¥ it can be seen as 3 special kind of
‘m‘”! In addition, user definable ADTs and
e fi+. parameterized) modules become
WM&'M a rigorous logical foundation;
oy has 3 subsort facility that greatly
Wo“"" expressive power. Since our
it to generic modules and ADTs relies on
results from the theories of specification
w’:‘l" and rewrite rules, it applies to
" o‘:g ‘:::";:d Prolog. and should also apply
r
Coacurrent P ‘: amming languages such as

?::",::" authors have synthesized logic and
the programming. For example, Kornfeld
which in several interesting examples (some of
wmtzmd examples given here), but gives no
equality - Justification for his implementation of
¥.in fact, it is not complete (ie., it can
B

1
c“smd i part by Office of Naval Research
Potndatios G NO0OI4-82-C-6333, by National Science
the System rast No. MCS#201380, and by » gift from
Development Foundation to the Center for

the
Ums::z",d Laaguage and Information st Stanford

sometimes fail to find the right answer when one
does exist). Moreover, the ADT and object
oriented facilities are less general than might be
desired, since neither modularity nor strong
typing are provided, and functions are not
carefully distinguished from predicates. The
Funlog language of [Subrahmanyam & You 84]
also has infinite data structures, lazy evaluation,
and non-determinism; however, no formal logic is
given for these features, either model theoretic
or proof theoretic, and Funlog's "semantic
unification® algorithm is also incomplete®.
Hansson, Haridi & Tarnlund 82| suggest a
natural deduction technology to implement a
superset of Horn clause logic wit[n equality that
includes negation and explicit universal
quantifiers; the system also handles infinite data
structures by lazy evaluation; however, we are
not aware of any formal semantic theory for the
language. Finally, [Belli3, Degano & Levi 82
describe FPL, 3 logic programming notation for
what is essentially 3 functional programming
language; 3 rigorous scmantjca is given, but it
does not support logical vangbles, or solve
systems of equations containing them.

2 The Underlying Logic

First order Horn clause logic without equality
i di Prolog. But there are many
sl whisch seem to have distinct

logics, some of to hz 0
::I‘::nu‘;es. Thus, first order logic with equality

rts user definable ADTs; and many-sorte
:::igogives strong typing. Pure equatxonal logic
can also give rise to programming languages.
One such language is OBJ [Goguen, Meseguer &
Plaisted 82, Goguen & Tardo 79], whose
opentionnl semantics interprets equations as
rewrite rules; this also supports user definable

ADTs.

2 f the algorithm underlying & logic
Completeness O

prognmming Janguage guarantees that what 3 l:ml: :
writes will eventuslly produce the result that the logic
says it should.
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We now briefly review many-sorted Horn clause
logic with equality. Here, one has a set S of
sorts, plus signatures /7 and L which give the
predicate and function symbols, respectively.
Each predicate symbol Q has an arlty which is a
string of sorts that serves to indicate the number
and sort of arguments that it can take; thus,
arity s,s,s, indicates that Q takes three
arguments, of which the first and third must be
of sort s,, and the second of sort s,. Similarly,

each function symbol has a rank consisting of a
sort s (its value sort) and a string w of sorts (for
the sorts of its arguments). Equality enters as a
distinguished binary predicate symbol =_for
each sort s, which we will write with infix
notation, usually without the subscript.
Sentences are Horn clauses in the usual sense,
but may involve the distinguished equality
predicate; that is, they are of the form

P :=Py,. <o, Py.
where each P and P, is a positive atomic formula
of the form Qt,, ... .t,), and each t, is a term
of sort s; when 8;---8,=Ww is the arity of Q; these

terms may include variables, which will of course
be *logical variables®; also P and/or any Py can
be equations, since it may use an equality
predicate. P is called the head of the clause,
and P,, ... P, constitute its tall.

A simple Eqlog® program for calculating the
population density of countries is
density(C) = pop(C) / area(C).
In ordinary Prolog, this would be given by the
clause
density(C,D) :- pop(C,P), area(C,A), D
is'P. /K.
using the impure is feature, which is a weak
analog of Lisp’s eval function. Also, we can add
facts to the database with assertions like
pop(china) = 800.
(in millions!) instead of the more awkward
pop(china,800) .
Similarly, we can compute the temperature in
Fahrenheit from that in Centigrade by the usual
formula,
1(C) = (9 / B)* C + 32.
where f is a rational (abbreviated rat) valued
function and C is a rat sorted variable
(assuming thése are available; or, one could use
floating point numbers)!. However, we can still
write the query £(C) = 77. and get the right
answer C = 26 (but unless a suitable output
simplifier is provided, one is liable to get large

unreduced fractions).

3We use the convention that variables names begin
with a capital letter, while both function and predicate
names are all lower case.

Compare this with [Kornfeld 83), which uses functions
like ¥times having bizarre definitions that seem to
involve putting arbitrary Lisp functions inside clauses.

We now indicate how to get ﬂehmmtb" from
the integers by using equality. In fact, one caa
define e:nalily of rational numbers just as usul
in mathematics,

X/Y=2Z/W:-YeZ=Xsl
where / is a rat-valued function symbol
denoting division (the denominator must be
uontemi and X, Y, Z, Vare umbla.olsoﬂ*
Int (i.e., integer). The above clause (with 3 li
syntactic sugar for declarations, as shown ia
Section 5) will enable an Eqlog user to define the
rationals; by contrast, [Kornfeld 83| uses logica
variables in a non-obvious way.

Logical precision requires specifying the inteaded
models. For first order many-sorted logic with
equality, these have one set for each sort "'
together with a predicate among those sets °‘;
each predicate symbol, having arguments of the
sorts in its arity; similarly, with a function
among those sets corresponding to each functios
symbol, such that the argument and values
match those of the sorts in its rank. It is ko
assumed that equality predicates are l‘"’; s
interpreted as actual equalities in the mod:'d
addition, there may be a number of sorts et
associated function and predicate symbols th3
bave a fixed interpretation. For example, it &
desirable to build in the integers for reasons
efficiency.

A model M satisfles a clause of the form
P Py,....P, odel
iff for every assignment a of values in the ™
M to variables in the clause (such that sort
restrictions are satisfied), aP holds in M M
whenever aP; holds in M for all i. A model

satisfles a set C of clauses iff it satisfies ever)
clause in C. However, we are not really
interested in all models satisfying all the clauset
in C; on the contrary, we are only interested it
the *standard® model of C, which we now
explain. Given signatures L and I7 of funct
and predicate symbols (respectively) and 3 &
of Horn clauses (with equations), the stan
model, denoted T.!:,ll,C' has as its elements

equivalence classes of ground terms under the
equivalence relation

t=t'iff C | t=t'
where |— is the provability relation for m”r
sorted first-order logic with equality. L"’.l"
denote the equivalence class of t under this
relation. Then function symbols are interpre!
in the usual way, and predicate symbols are
interpreted by: P([t,],... [t ]) is true in Tgn(C

CH P(ty,...t.); and is false otherwise. TgnC

is like the Herbrand universe, except that it of
consists of equivalence classes of terms inste
individual terms.

ion

tC




The basic facts in this situation are given by:
Theorem 1: Let C be a set of Horn clauses
with equality, using function and predicate
symbols from the signatures L and /7
respectively. Then:

1. Ty C satisfies C;

2 i M is any other model satisfying C, then
there is 3 unique L J1-homomorphism h:
TenC—M (where 2 L J1-bomomorphism
is 3 many-sorted function preserving the
(uttiu and predicate symbols in the
m.m), i.'-. TI.”.C s an h‘M
L Il-model satistying C;

3 a2y model initial among those satisfying C
i somorphic to Ty, 0

4. two L-terms denote the same element of
T iff th be ed equal usi

cnl ey can be proved equal using
the clsuses in C; and

5. 'ov P a predicate symbol and t,,....t, terms
i variables Y,,.Y_, one has
' CHQY,,..Y,) Plt,.t,)
iff there is a substitution o sending the Y,
10 ground terms such that

: Pty )], loft,)]) is troe in Ty C-

uc:h:'- is just another way of stating the so-
— Closed World* assumption for the initial
Ty C- This model bas *no junk® in the
;“' that that every element of the model can
iy by a term using the given function
bolds , and *no confusion® in that a predicate
of some elements iff it can be proved to
using the axioms; in particular, two
::: s are identified iff they can be proved
ot the given axioms. In fact, these two
xou"::: together are equivalent to initiality.
o full first order predicate calculus does
always bave initial models in this sense.

3 Solving Equations over Built-
in Sorts

A’“lﬂt that we are given a signature L of

fusction symbols and 3 reachable L-model A.®

3t kL E be 3 set of L-equations over a set X

o iables. Then a ground solution of Ein A
"::;‘"llmcll a from the variables in X to

e in A such that ofE) is satisfied in A. Now
: ting T,{Y) denote the L-terms with vari

1om Y, we define 3 solution of E in A to be an

S T

1 means ;
s “lln every element of A is denoted by
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assignment ¢ from X to terms in T {Y) such

that a(o(E)) is satisfied in A for every
assignment a from Y to A. A complete
solution of E in A is a set L of solutions such
that every solution of E in A is a substitution
instance of one in L; i.e., such that for any
solution 7 (from variables X to T ,{Y)) there is a

solution ¢ in L and a substitution p from the
variables in Y to Tg{Y) such that 7=p(0). (Note

that these definitions do not require most general
substitutions.)

For example, let N be the natural numbers with
only the function +, so that X' contains elements
of N as constants and +. Let us consider just
linear equations, regarding 3X as an abbreviation
for (X + X + X). Thus, the equations

AX+Y+20=1

X-2Y =3
has a ground solution o(X)=7, o(Y)=2, o(Z)=
-11, and has a complete solution given by
a(X)=3+4V, o(Y)=2V, o(Z)= -4 -7V, where V
is a parameter variable. Itisa general theorem
that any set of linear equations over the integers
has either no solution, or else a complete solution

consisting of just one substitution.

Complete solutions do not necessarily exist; also,
just because a complete solution exists does not
mean that it is recursively enumerable, i.e., that
there is an algorithm that will produce all the
substitutions in it. Moreover, even ifa
recursively enumerable complete solution exists,
the algorithm can still fail to terminate when
faced with a case for which no solution exists.
Let us say that we have a totally complete
solution in case there is an algorithm that will
explicitly fail if there is no solution, and
otherwise will enumerate a complete solution.
Similarly, let us say we have a r.e. completq
solutlon in case there is an algorithm that_wll]
enumerate 3 complete solution wheq there is one,
and say we have a finite solution if we have a
totally complete solution that is always finite.
More algorithmically, we will assume that
SOLN(E) produces substitutions in the solution
of E, if any exist, one at 3 time on request until

there are no more.

able property of a solution L of E
|d be most general, in the
sense that for any solution substitut_ion o, there
is a unique member 7 of L and a unique
substitution g such that por=0. It can be shown
that any two most general solutions are
essentially the same. Unfonunate!y, ther_e are
cases where totally complete solutions exist, but
no most general solution exists. The classical
case is where the model is the set of terms over
some signature L, and the functions are just
those in £. Then unification gives a finite
solution (totally complete, with just one most

general unifier).

A further desir
in A is that it shou
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4 Computing in Horn Clause there is no dependence of the clauses defining Int
Logic with Equality on those defining rat.

This section considers sublogics of Horn clause

logic with equality within which equations over

user definable ADTs can often be solved. We 5 User Defined Abstract Data

begin with a basic logic and then extend it; most Typec

logic programming applications seem to be { - -

included. The basic sublogic assumes all clauses There is much work on providing MMM

are of two types, either a pure equation, or else a ADTs in programming languages (see Clu g

clause whose head is not an equation. Let £ (Adl) 'l:‘d on the &’Oa::llb:‘ in % &
; e.8., [Meseguer uen 84, Goguen,

denote the set of equations and P the set of Horn & Wagner 78]). The essential idea is that wer

clauses whose head clause is not an uation; :

thus, C=€ U P. To unify two pociteiec atomic m:;‘;‘;‘::;’;‘,:h‘iﬁ':f,ﬁgﬁmu
formulae, say Q,(t,,....t ) and Qquy,....u, ), we of module has bees "i". for Mprolog

must of course have that Q, is Q,, the arity w, by [Domolki & Szeredi 83].

of Q, is the arity w, of Qg 50 that n=m and the Let us now give a complete definition for the
sort of t; equals that of u;, and we must also data type ':g in proper Eqlog syntax. Eqlog

keywords are underlined, and module pames :'
in capitals (built-in types come in modules; &

: : ; st
of simultaneous equations modulo the equations module INT has sort Int with subsort sl en fot
given in £; this is called E-unlfication. Because ~ DOMI€TO my et Al st 0
of our assumptions about the structure of in;:’ei“ur:.htzr.c;:np ;)pento'r is associalive,
clauses, those in P can have no influence on commutative, and :zmpokll. respectively; 34
id: e indicates that it has e as its ideatity. T

solve the system
tl=ul, s tn=un

-unifiers.
. . “‘OC' i i ' l d
The computation algorithm of ordinary Prolog funcg;::'::: g:::‘i:,:;:"u:ifrsdol
ll:asnlzleen desé:‘;]lbed _Iglearly but informally algorithms. Eqlog *mix-fix* notation permils
Y [Warren 80]: "To ezecute a goal, the system o : and argumesté
search;g for t‘l':he gmt c:uu:-r I‘:rhose head matches 'a:ry o?):srl;::l’:'?;:sm: 3:ckl:l"e‘;ol:;l'gi'inl 3
or unifies with the goal. The unification syntactic *form® isting of a string
process finds the most general common instance kyeywa:r:; .?J".:..ﬁ:’:‘::&;n (), fo
of the two terms, which is unique if it exists. If by a *:* followed by the arity as a striag of
:h::’a:.xcclz .ma:ogn;l, the m:uh!ns clause instance is sorts, followed by *->*, followed by the vale
I tvated by executing in turn, from left to sort of th ion: if ¢ are no underbars,
Sy el o i i 1080 e i
t M 1alls to find a match for imi 1

a goal, it backtracks, i.e., it rejects the most ::,:;t,cl;em A enitak Fon;e:;l:‘!’;“”; swelk
recently activated clause, undoing any formed* in thi: ::-‘l': res:n:; it has exactly one
substitutions made by the match with the head parse; the parser c:,,minurulively belp the vt

of the clause. Next it reconsiders the origi
gqal whirghdactiv%ted the rejected clause lil:::] to satisfy this condition®
ries to find a B e
matches the g ::l.fmuent clause which also .::+z1: BA;SIG!AT using INT is
—i28 ra

When unification is attempted, Eqlog must also subsorts Int < rat

call SOLN, .in a way that permits backtracking fns

glg{l ;:' félr. in that every §ubstitu!.ion in ~/— ¢ Int.nsint -> rat : 0
(E) gets tried (this s a semidecision —— : rat.rat -> rat (assoc com i&

procedure and may not halt; but when SOLN is —'— : rat.rat -> rat (assoc com i :

r.e. complete, then our algorithm js complete), ars X,Y,Z,w,N : int

Say that a predicate P (which may be an uio-s. i

equah.ty =,) directly depends on another Qir N=N/1

there is a clause with P as the predicate of its ‘

head and Q as a predicate in jts tail; let

depends be the transitive closure of direct s 1

dependence. Then we conjecture th The parser is greatly helped if spaces always 7 0,

evaluation algorithm work ST suak Ui e govords declared in the form of  functios, 134 2

predicate depends on -tseus Provided no equality paper follows that convention throughout; but sisce

reasonable to define =l in aol' example, it is parentheses are also delimiters, they do need 8ot 10 llow

rat rms of =in¢ Since separated by spaces. These syntactic conventions fo

those of OBJ [Goguen, Meseguer & Plaisted 82|
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X/Y=2/W:-XeW=Ye2
X/NeEZ /W = (XeD/YeW.
X/NeE/W =

(XoW) + (2o MY oW,
eadsod BASICRAT

Here the keyword using indicates that the sorts,
subsorts, predicates, functions, and axioms of the
listed modules should be imported to the module
being defined. We will refer to the relationship
between modules being defined and being used as
the using hlerarchy. We now enrich BASICRAT
to define division and the subsort of nonzero

1

2odule RAT using RATO is
sorts narat
subsorts nsrat < rat

l-s
-

/_ : rat nzrat -> rat
nars X,Y,Z,¥ : Int
axions
nzrat(X / Y) :- nzint(X).
X/N/EZ/w=XesW/(Ys2).
endaod RAT

We have already noted that the sorts and
subsorts currently defined form an acyclic graph
(thus supporting so-called *multiple
mberitance®). This motif is repeated at the
::d'l' level, with another acyclic graph under
using hierarchy. In fact, the subsort
by and the using hierarchy interact, since
tubsorts are declared inside of modules: At a
given node M of the using hierarchy, the set of
;::"“1 defined sorts is the union of those
hn;l‘ in Mk-.‘u. all those declared in nodes
in the using hierarchy (i.e., all those
related to M by the transitive extension of the
ising relation); similarly, the subsort relation
::'I:: M is the union of the subsort
M Th ions in M with those from modules below
sir us, the subsort graph of a lower level
ule is a subgraph of that of a higher level
module. (All this has already been implemented

in OBJ and has bee
belpfal) as been found very natural and

6 Generic Modules

?:‘“b“"y is 3 major goal of modern software
m‘m‘"ml. In order to achieve this goal, it is
% essary that software be broken into
Omponents that are as reusable as possible;
s eterization is a technique that can greatly
ance the reusability of components [Goguen
‘“F" example, bag-of and set-of, which
B caused considerable controversy in the
ab::’ Digest, can easily be defined as generic
s 3t data types, and then automatically
ted using rewrite rules. Generic
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quules also greatly ameliorate the otherwise
odious need for defining abstractions whenever
they are used.

Before giving details, we consider how to specify
a parameterized module’s interface, especially
the requirements that an actual parameter
should satisfy for the instantiation to make
sense, expressed in the form of a theory, that is,
a set of axioms, that the actual must satisfy.
Such a theory may include sort, subsort,
predicate and function declarations, saying what
the actual parameter must provide to the
parameterized module, as well as axioms saying
what properties must be satisfied. For example,
a generic sorting module might have the theory
of quasi-ordered sets as its requirement theory;
this means that an actual must provide a
designated sort and a binary relation on it that
is transitive and reflexive. In Eqlog, this theory
is given as follows:

theory QUOSET is
sorts elt
: elt,elt

vars A,B,C : elt

A =< C':-A=< B, B =< C.
endth QUOSET

Theories are not intended to be qud for
computation, but only for declaring the
properties of interfaces. The idea is that before
an instantiation of a generic can be *certified," it
must be shown that the actual parameter does in
fact have the properties required by the theory.
Because computations do not use the axioms
given in theories, there is no reason to restrict
the form of the axioms in theories, and in fact,
we allow arbitrary first order axioms. Difficulty
only arises when one has to prove that the
axioms hold of some particular module; tl{en. one
needs a first order theorem prover. Here is an
even simpler theory, the one that is actually
used for the generic SET example:

theory TRIV is
sorts elt

endth TRIV
nothing except that a

This theory requires 4
particular sort be designated. We now give a

eric BASICSET module, proyidin; only

:;:nmetric difference, ¥, and intersection; later
we will define the rest of the set functions from
these. After the name of the module comes a
left square bracket, indicating that_wha.t follows
is the formal parameter symbol, P in this case,
and after the :: comes the theory thatitis
required to satisfy; the formal parameter part is
then closed by 3 right square bracket.

sodule BASICSET[ELT :: TRIV] is
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sorts set
fns

©_ : set,set -> set (assoc comm id: @)
-ﬂ_ : set,set -> set (assoc comm idp

id: )
vars S,5,5" : set, elt,elt’ : elt
axions
Sws=49.
{elt }Nn{elt } =9 :- elt # el1t'.
Ssne=9

sn(s’ué") =(SUSHhysu .
endmod BASICSET

This way of defining finite sets follows [Hsiang
81]'s approach to the propositional calculus; 17 is
the “universal® set, i.e., the set of all things of
sort elt. The attribute id: should be taken as
an abbreviation for the identity equation. In
many cases, this definition will execute faster
than more conventional axiomatizations. [t
should be noted that the BASICSET module
provides not only all finite subsets of the set
given as actual parameter, but also all cofinite
sets (i.e., sets whose complement is finite). The
inequality in the axiom

{elt }N{elt!}) =9 :- o1t # elt!.
violates the purity of the language only in
appearance, since Section 7 shows how to reduce
the semantics of inequality to that of equality,

To instantiate a generic module, one must
provide an actual parameter A; but more than
this is needed. Since both modules and theories
can involve more than one sort, we need to say
just which sorts in the actyal correspond to
those declared in the requirement theory. T of
the generic; similarly, we need to say which
functions and predicates in an actual A
correspond to those required by the theory.
Following [Goguen 83| and ideas from Clear, this
correspondence is given by a view, which
consists of:

1. a function from the sorts of the theory T

to those of A;

2. a function from the functions of T to those
A; and

3. a function from the predicates of T to
those of A,

such that

® the subsort relation is preserved;

o the sorts of functions and predicates are
preserved; and

® the translations of the axioms in T to
axioms about A are in fact true of the

initial model of A7
In the language of [Goguen & Burstall 84} 1
view is a *theory morphism.*

n many cases, it is obvious how to coastruct 3
iicw ofyA as T; this is formalized by the otion
of a default view in [Goguen 83| hmﬂe
cases, there is only one appropriate 'ﬂ.l‘k
current environment, and of course that is
one to apply. In such cases, it is pot pecessary
to indicate what view is intended, one cas just
write the name of the actual. For exampl, ia
order to construct SET-0F-INT, we just say

make SET-OF-INT is SET[INT] endsake 3
since there is a default view of INT as 3 TRIV.
other cases, it may be necessary to include 3
view in the make statement. For example, .

make SORTING-OF-INT-DIV is SORTING[I
AS-DIV-QUOSET] endmake '
instantiates a generic SORTING Mlk;i'h‘: the
quoset of integers ordered by the divisit ‘!k
relation. When it is not necessary lO.t'"“i“
instantiated module a name, we can just writs,
e.g., SET[INT].

We now enrich the generic BASICSET E“‘*u*
given earlier (recall that it provided SY““P"
difference and intersection) to provide usios, ¢
difference and cardinality functions, plus some
the usual predicates.

Bodule SET[X :: TRIV] using NAT,
BASICSET([X] is

Ins
U_ : set set -> get
- ! set set -> get
#_ : set -> nat
preds
_€_: elt,set
empty : set
£ elt,set
Yars X : elt, 5,5,5" : set
axioms
SUS=(6NnSNysu s
S-8=5nGswy 9.
empty(S) :- s =¢.
NES:-{N)us-=s.
NES:-{(N})ns=¢
#0=o0.
#({X)US) = suce(® s) - XES
#{X)Ius) =25 :-x€S.
endmod SET

Although # does not yield the answer o for
infinite sets, it does work reasonably. For (a0
example in the case of SET[INT], # (2 is jus

ish 10
7ln practical large scale programming, one may ':.u
settle for less than a formal proof of this; for examp’®:

informal proof might be acceptable.




sgain, a reduced term rather than a non-
terminating computation. Also, 8({ 14 Y U )
evaluates to # [7 again.

We can also enrich a module without giving the
earichment an explicit name; this can be useful if
some constants are being defined for a single
query or example. Another feature illustrated by
the following ::'d;le is that when the

requirement L is TRIV, a view can be
determined just by giving a sort name (provided
that the sort only occurs in one module in the
current environment). If the sort name does not
occur m any module in the current environment,
then it serves to declare a new sort and apply

the generic to it; we shall call this a declaration
‘on the fly.*

Views also provide an elegant form of
declaration at the module level. In ordinary
sequential programming, *assertions® can be
inserted d’m a statement to indicate that the
Program’s state is supposed to satisfy some
z%! after the execution of that statement.
logic programming with modules, a view from
3 theory (o 3 module serves to indicate that the
module (ie., its sorts, functions and predicates)
tatisfies certain axioms. It should be noted that
08¢ can also compose generics. For example, one
can form BAG[SET [INT]).

Of course, there is nothing special about the
"’“ﬂl of the features and syntax described here
l:Eqb! modules and generics; what is special is
underlying semantic ideas. Unfortunately,
p % not room in this paper for a full
Id::mm of this semantics, which is based on
iaa from the Clear specification
guage [Burstall £ Goguen 80]. The ideas are
not really difficult, but they use some
Smparatively advanced mathematics. Some
Us5ion of the issues involved is given in
N‘S"""‘um'u The application of :bcu ideno Bojthe
) programming language is
described in [Goguen 83). oy g

7 Logical Foundations

"Ti. :‘“M discusses in more detail four issues
:u"“m the foundations of Eqlog: subsorts,
tions, narrowing, and inequality.

7.1 Subsorts and Institutions

::L““' examples use subsorts and subsort
hm""ﬂ- We now explain why this is not an
shorth feature, but rather an expressive
0d for a specification in standard Horn
*s logic with equality. We also describe
that insure valid use of the equality
 these conditions could be enforced
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syntactically. Although more permissive uses of
subsort predicates are possible and certainly
worth exploring, the one presented here is
already very general.

Whenever a subsort s < &' is declared, a
corresponding unary predicate s(_) of sort s’
also becomes available; intuitively, this predicate
is true of a term iff that term lies in the subsort.
Users can give axioms involving the subsort
predicate; but these should only assert that
certain functions restrict (and constants belong)
to the subsort. For example, the subsort pos <
Int of positive integers can be characterized as
containing 1 = succ(0) and being closed under
the successor function, by the two clauses

pos(1).

pos (succ(X)) :- pos(X).
Our reconstruction of subsorts within Horn
clause logic with equality involves giving
ordinary signatures L and /7, and a set C of
Horn clauses, such that the initial model Ty, ; ¢

is isomorphic to the model intended for the
subsort declarations and their corresponding
predicates. The first step is to introduce a new
ordinary sort for each subsort. We then force
that in all models, the new sort s is identified
with a subset of the sort s’ whenever s < ¢ by
introducing a new function symbol j: 8 -> s'
that is made to play the role of an inclusion by
satisfying the axiom

je0 = j(M =X=Y. :
Similarly, we can express the fact that certain
functions or constants restrict to a subsort by
introducing new function symbols for _these
functions and constants such that their yalue
sort is the subsort; equations are then given to
insure their relationship to the functions and

constants in the supersort.

The module, theory, view and ig:st:.mtiation
features of Eqlog support generic (i.e.,
puameurized) programming, a form of z
programming-in—the-large that seems to permit
an unusually high degree of reusability. All
these features can be defined for any logical
system satisfying some very s[mple and
reasonable axioms that make it an

institution [Goguen & Burstall 84). In
particular, it has been shown that the logic of
Horn clauses with equality is an institution, so
the general machinery can be applied directly to
this case, giving a semantics for the .
puamcterintion features in Eqlog. There is not
room here for the details of this apprqach, w{lngh
ry theoretic concepts like colimit.
It is worth remarking that the subsystem of
Horn clause logic with equality consisting of pure
equations plus Horn clauses whose heads are not
equations, is also an institution.
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7.2 Unification In an Equational Theory

An equational theory is given by a pair (£,T)
where ¥ is an S-sorted signature of function
symbols and T is a set of L-equations. The
rules of many-sorted equational

deduction [Goguen & Meseguer 81| define an
equivalence relation = between 2-terms with
variables, namely that of being provably equal
using the equations in T. If X denotes an S-
sorted set containing an infinite supply of
variables of each sort, and if T {X) stands for

the L-algebra of terms with variables in X, then
a substitutlon is an S-sorted function a: X—

T {X); such a function extends to a unique
omomorphism from T {X) to itself that we
also denote by . A substitution « is said to
have domaln Y={Y,} when Y, ={xeX |
a(x)=#x}; we then write Y=dom(a). The set of
variables Introduced by « is the S-sorted
int(a)=U{vars(a(x)) | x€dom(a), }, where
vars(t) denotes the set of variables occurring in a
term t. Given an S-sorted set of variables YCX
and substitutions a and 3, we write a=.5 [Y] ift
a(x)=qB(x) for each x in Y. Similarly, we write
a<,B Y] iff there is a substitution y such that

B=r70a [Y]. A T-unifier of two terms t and t’
is a substitution a such that a(t)=qpa(t’). Given

terms t and t' with Y=vars(t)Uvars(t'), a set L
of T-unifiers of ¢ and t/ is called a complete set
of T-uniflers of t and t' iff for each T-unifier
of t and t' there is an « in L with a<p7 Y]

(Thiq was called a most general complete
solution in Section 3.) Without loss of generality
Wwe may assume, for technical reasons, that
dom(a)CY and int(a)NY=9 for each o in L.

Given an equational theo T

T-un)ﬂcatlon algorlthl::y SOlch?smazlm
algorithm such that if started with any two
terms t and ', SOLN generates a complete set of
T—ugi'ﬁers for t and t'; SOLN is finite if, in
addlglon, it always terminates with a fin'ite set
Particular unification algorithms for theories T
of trequtel:t: use, such as associativity,
commutativity, etc., have been gi i
literature. For the general casl::sv:‘re: l"I.‘ ::::sisu
of a confluent and terminating set R of rewrite
rules, a unification algorithm using narrowing
has been given by [F_ay 79] and improyed in

form of the term ¢ obtained after i
0 L exhaustiv
Tewriting by applications of the rules R. s

The one step narrowing relation is defined 2
follows: Let t be a term; by mqnngol
variables (or some other cogvnml we can
always assume that the variables occurring int
do not occur in any of the rules. ldl.b;:
nonvariable subterm of t that uifp (in
ordinary sense) with the left band side t, of 3

rule t,=t, in R, with a the most geseral unifer

Let t' be the term obtained by replacing in oft)
the subterm afty)=a(t,) by afty) Then we &3y
that t' is a one step uno'h'?ll.‘li"'
write t=st’. The narrowing relation is the
reflexive and transitive closure of one step 4
narrowing, and contains the rewriting "Wm
a subset. The following algorithm then prov

a complete set of T-unifiers.

Theorem 2: [Fay 79, Hullot 80]. W_T’:j:
a confluent and terminating set of rewrite
Given a pair t,t’ of terms, introduce a new
function symbol® r and consider all the :
narrowing chains that begin with r(t.t). If s«
a chain ends with a term of the form ’1‘."'|)

such that t_ and t/_ are unifiable by 3

substitution a, then compose a 'i.“ the

substitutions obtained at the previous '_'.m':
steps in the chain, and add this “’"‘P"’“ml 3
the set of unifiers already generated. The & <

obtained is a complete set of T-unifiers for !

‘.0

This algorithm has been extended to bad ki:t?l"

more general situation when the cqn‘monsks

can be partitioned into a set of rewrite rn“ B

and a set of equations £ in such a "! ‘h\ e

terminating and confluent *modulo £*. } -

common examples fall into this ""”"'kir}hn"
general answer is given by [Jouannaud, K by

& Kirchner 83|, who generalize Theorem on

showing that if there is a finite [,“;ﬁc.llw

algorithm, then narrowing modulo fs.u"

provides a complete T-RUe'"ir?nw. e

algorithm. The idea, in this case, is t0 ba"

;:r the T-unification work done by 3 b:y"""
-unification algorithm, and the rest !
-narrowing. Both [Hullot 80| and .l"“‘"“d

Kirchner & Kirchner 83] give sufficient o

conditions for termination of their algorit

Now a simple example showing how 3 querY g
involving an equation is evaluated by ;:’::o‘
for illustrative purposes, this exaII!P"b. + rathet
use the built-in natural number type,

$The reader may find it helpfal to coastrue 1h3
symbol as a formal equality symbol.




provides its own, of sort natl, with successor
hhmm“ suce; also, notice there is no nil list

wodule LIST[ELT :: TRIV] is
sorts elt, list, natl
subsorts elt < list
fas
0 : natl
sice : natl -> natl
o listelt -> list
length : list -> natl
wars Eln : elt, Lst : list
wicas
length(Els) = succ(0).
length(Lst * Elm) = succ(length(Lst)).
wdaod LIST

The sort elt is 2 parameter, and is empty in the
| universe; however this causes no
:::bkg if a suitable modification of the rules of
uction is used (see [Goguen & Meseguer 81|
for the equational case). The query
leagth(Lst’) = succ(sucec(succ(0))).
evaluates to
leagth ((Els" » Eln’) o Eln) =
mc(ncc_ (succ(0)))
bj ucumulating the substitutions associated
;lll the narrowings from the root length (Lst")
the expression suce (succ (suce(0))).

lesgia (L)

e (mﬂTnﬂ)\ )
e (nce (loagea n-ﬁ”\::e (once(0))
I ¢ (ouce (oncc(0)))

Figure 11 Narrowing on the Length Funetion

( f
4 Equality and Inequality

The use of pegati
“Bie gation for arbitrary predicates
f'"".'?" to difficulties. However, perhaps
g ':" i :ﬁ:ot ? difficult to treat the
equality. For example, the BASICSET
ll:d:l;:g)s:‘:o. 6 contains the axiom
i elt/ } = § :- olt # olt/,
gh::m‘" to lie outside the realm of Horn
au with equality. However, this is only
w"m’f"mt. because the semantics of
'n,m’ €an be reduced to that of equality.
be s eppaional part of any Eqlog module should
Putable abstract data type. This is
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implicit in our requirement that the equations
form a confluent and terminating set of rewrite
rules (perhaps modulo some decidable equations
!uch as associativity, commutativity, etc.) since
is has been shown that any computable data
type can be presented that way. Equality and
inequality of ground terms is then built in, since
one can just compute the canonical forms of the
terms in question and see whether or not they
are equal. Moreover, as shown in [Meseguer &
Goguen 84], a data type is computable if and
only if its equality is finitely axiomatizable by
equations. This means that we can always
axiomatize equality for each sort s as a function
_=__ :u»8->bool, by means of a finite set of

equations. bool is a new sort having two
constants, true and false, such that for any
two ground terms t,t’ we have t=t' (in the data
type) iff (t=t')=true (in the equational equality
enrichment) and similarly, t=£t’ (in the data
type) iff (t=t')=false (in the equational
equality enrichment). In this way, inequality is
reduced to equality.

Given an inequality t = t/, the Eqlog system will
then:
1. compute it by rewriting if both t and t/ are
ground terms; and
2. otherwise, requiring the existence of an
equationally defined equality, =, for the
sort in question, translate the inequality
into the equation (t=t') = false, and
then solve this equation using narrowing.

8 The Missionaries and
Cannibals Problem

To illustrate the power of Eqlog, we show how
to use some standard gen?rics, plus aulbsort.s,
unctions and predicates, for a genera
;Wiuionaries agd Cannibals problem (hereafter,
MAC); once the parameters are instantiated,
Eqlog solves MAC by E-narrowing, for € a set of
equations including associativity and :
commutativity equations for the set operations.
We begin with a theory MACTH of the
preconditions for MAC: there are two disjoint
sets of persons, 0 of missionaries and ¢0 of
cannibals. Later we instantiate MACTH to the
usual case of three missionaries and three
cannibals. MACTH uses a generic SET m_odule to
get set difference, union, and carfilqzllt!. By
convention, 3 module with a *principal® sort has
the same name as that sort (unless explicitly
indicated otherwise); €.8., the sort of PSET is

pset.
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theory MACTH[PERSON :: TRIV] using SET,
PSET = SET[PERSON] is

Ins
20 : pset
c0 : pset
axioms
=0 N cO =@,
endth MACTH

The MAC module also uses a generic LIST module
that provides the empty list nil, the length
function #, and concatenation . The new sort
trlp is introduced "on the fly* (see Section 6) in
the submodule TRIPLIST. We now briefly
discuss the intuition behind this specification. A
solution is a list of trips having certain *good*
properties, where a trip is a boat containing a set
of persons; odd numbered trips go from the left
bank to the right, and even trips go from the
right to the left. Missionaries and cannibals are
persons. The predicate boatok indicates that a
boat has an ok number of persons; the predicate
good is true if a list of trips never allows there to
be more cannibals than missionaries on a bank;
the predicate solve indicates that a trip list is a
solution to the problem. The functions 1b and
rb give the sets of persons on the left and right
banks, respectively, and the functions mset and
cset extract the subsets of missionaries and
cannibals (respectively) from a set of persons.

module MAC[T :: MACTH] using NAT,
TRIPLIST = LIST[trlp] is
preds
boatok : trip
solve,good :
ns

boat : pset -> trip

1b,rb : triplist -> pset

mset,cset : pset -> pset

Yars PS : pset, L : triplist,
P : person, T : trip
axioms

boatok (boat (PS)) :- # PS

boatok (boat (PS)) :- # PS

1b(nil) = m0 Yeo.

mset(PS) = PS N no.

cset(PS) = PS N ¢0.

rb(nil) = ¢,

1b(L * boat (PS))
even # L.

rb(L = boat (PS))
even # L.

Tb(L * boat(Ps)) = rb(L) - pP§ :-
odd # L

triplist

"nn
[

1b(L) - Ps :-

tH(L) U Ps :-

Ib(L * boat (PS)) = 1b(L) U Ps :-
odd # L.

good(L  T) :~ # cset(1d(L # 1)) =
# moet(1b(L » 1)),
# coet(rd(L » 1)) =<
# aset(rd(L » 1)), good(l),

boatok(T) .

good(nil) .

solve(L) :- good(L), 1b(L) = .
endmsod MAC
Now the constants to instantiate MAC to the
usual case.
module EX1 using SET{ID] is

axioms

20 = { taylor, helen, willima }.

€0 = { umugu, nzvave, amoc }.
endsodule EX1

}

The notation {a, b, ¢} is shorthand for{a
uiblrudc) Wecnm.mulm“m
and ask Eqlog to solve the resulting problem
with
make MAC[EX1] endmake

solve(L.) "
using the default view of EX1 as NACTH, and B

bothering to give the resulting module 3 53*.
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UNFOLD(FOL@)TRANSFORMATION OF LOGIC PROGRAMS
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ABSTRACT

The unfold/fold transforma-
tion method is formulated for
logic programs in such a way that
the transformation always pre-
serves the equivalence of programs
as defined by the least model
semantics. A detailed proof for
the basic system is presented
first. Then some augmenting rules
are introduced and the conditions
of their safe application within
the unfold/fold system are clari-
fied. There are useful special
cases of those rules whose appli-
cation is always safe.

1 INTRODUCTION

The unfold/fold program
transformation method was devel-
oped by Burstall and Darlington
(Burstall & Darlington 1977) in
the context of their recursive
equation language. The idea was
generalized and applied to logic
program synthesis(Clark & Sickel
1977) (Hogger 1981), where the
authors naturally formulated the
unfold and fold transformations as
just special cases of logical
deduction. Thus each clause in
the synthesized program is a
theorem deduced from the specifi-
cation axioms. This ensures the
partial correctness of the synthe-
sized program because every result
of computation (atomic theorem
deduced from the program) is
derivable directly from the speci-
fication as well. Total correct-

Taisuke SATO
Electrotechnical Laboratory
Machine Inference Section
Umezono, Sakura-mura, 305
Japan

ness, however, is not guaranteed
in general and should be proved
separately(Clark 1979).

They applied this deductive
approach to logic program trans-
formation taking the initial pro-
gram, viewed as if-and-only-if
definitions, to be the specifi-
cation. But what is ensured in
general is again just partial
correctness: the relations
computed by the transformed pro-
gram are narrower or equal to
those computed by the original
one. In other words the least
Herbrand model(Van Emden &
Kowalski 1976) of the transformed
program is included in that of
the initial one. If we want
exact equivalence, the inverse
inclusion should be proved for
individual cases.

As an alternative to the
deductive approach, we have
formulated an unfold/fold trans-
formation system for logic pro-
grams(Tamaki & Sato 1983) in such
a way that the transformation
always preserves the equivalence
of programs as defined by the
least model semantics. Though we
have to sacrifice the generality
of the deductive approach, the
guaranteed equivalence should

worth the cost.

This paper augments the
pasic unfold/fold system with
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some other transformation rules.
Though the rules themselves are
obviously equivalence preserving,
their interaction with unfold/fold
transformation needs careful study.
The condition for the application
of the rules to be safe will be
clarified,

Section 2 describes the basic
unfold/fold system and proves
that it preserves the equivalence
of programs. The proof is simpler
than the one given in (Tamaki &
Sato 1983) and more suitable for
our purpose. Section 3 and 4
introduce and study augmenting
rules.

The readers are assumed to be
familiar with the standard notions
and notations of logic Programs
(Rowalski 1974). Note that our
target language is a pure one
rather than a practical implemen-
tation such as existing Prologs.
Thus a program is a get (not an
ordered list) of definite clauses,
A definite clause is a pair of a
goal(atomic formula), called a
head, and a multi-set (again not
an ordered list) of goals called a
body .

2 BASIC UNFOLD/FOLD SYSTEM

250 Description of the system

The transformation Process
proceeds as follows.

Transformation Process

begin Po = the initial Program;

Do = {}; /* the set of
definitions of

New predicates */
mark every clause in Po

for 7 =1 ¢o arbitrary y
apply any of the trans-
formation rules to ob-
tain Pi and Di from

-1
end

e

In this section we are only con-
cerned with the three bulg rules,
namely, definition, wnfolding and
Solding, each of which are
described in the sequel.

Example (initial program)

P . : Cl. subseq([],X)

s ([a]x],1a]¥])
c2. bse )
g q‘ subseq(X,Y)

c3. bseq(X, [A|Y])
.y aeq‘. subseq(X,Y)

We use this example to illus-
trate the process and rules of
transformation. The upper case
letters are variables, [] denotes
an empty list and [A|X] a list
with head A and tail X. Thus t:;
predicate subseq(X,Y) is intend
to mean that X is a subsequence
of Y.

Rule 1. definition

Let C be a clause of the
form p(z),...,x,)) « 4),..hp

where S
1. p is an arbitrary predicat
appearing in P, ,or D; 12

1-
2. L TR 5%, are distinct var

ables, and
3. Al-""-'A,,, are goals whose

Predicates all appear in 7
¢} and J;
Then let P; be P, , U { s
be Di—l U {c}.
Do not mark C 'foldable'.

The predicates introduced by the
definition rule are called n&¥ ’
Predicates while those in F 87
called old. Those variables o
occurring in Al"""m other C

Tyseen »%, are called internal

variables of (.
Example (continued)




We define C4, motivated by
some need for a common subsequence
relation.

C4. csub(X,Y,Z) + subseq(X,Y),
subseq(X,2)
Thea P, = {C1,C2,C3,C4}, D, ={C4}.

Underline indicates 'foldable'
clauses. We are going to optimize
this predicate 'csub'.

Rule 2, Unfolding

Let C be a clause in Pi-l’ A
a goal in its body and Cl,...,Cn
be all the clauses in Pi-l whose
beads are unifiable with A. Let
C;' (1<i<n) be the result of

resolving C with Ci upon 4.

Then let P, - :
f P, be (P, ,-{CHU{c,’',.

++sC,"} and D, be D, _,.

Mark each Ci' 'foldable' unless

it s already in Pi

Example (continued)

We unfold C4 at its first
goal to obtain PZ- {c1,c2,c3,C5,

£6,C7}, Dz-(Ck} where the clauses
€5,C6 and C7 are 1isted below.

1°

C5. csub([],Y,2) + subseq([],2)

C6. csub([A|X],[A]¥],2)
+subseq(X,Y),subseq([A]|X],2)

C7. csub(X,[AlY],2) « subseq(X,Y),
subseq(X,2)

Then C5 is unfolded into

C5'. csub([],Y,2)
and we get P3 = {c1,c2,c3,C5",C6,
C7} and D, ={c4}.

The folding rule in our
System is not just the inverse of
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the unfolding rule as it is in the
Burstall and Darlington's system.
To fold a goal set into a goal, we
allow only a clause in Di-l to be

used as the folder.

Rule 3. folding

Let C be a clause in Pi-l of
the form 4 + Al,...,An and C'l be a
clause in Di-l of the form B « Bl’
. ..,Bm. Suppose there is a subst-
itution 6 and a subset {Ai]_""
’Aim} of the body of C such that
the following conditions hold.
T Ai ,=Bj9 for j=1,...,m,

2. 6 substitutes distinct vari-
ables for the internal variables
of 6'1, and moreover those vari-

ables do not occur in A or {Al,...
,An} - {Ail_, e .’A‘ffm}’ and
3. ( is marked 'foldable' or
m<n.
Then let P, be (P;_, - {ch u{c'}

r
and Di be Di-l where C' is a
clause with head A and body ({Al,.

R {A“:l’ o "Ai,,,}) U {B6}.

Let C' inherit the mark of C.

Example (continued)
Folding the whole body of C7
by C4, we obtain P, = {c1,c2,C3,

c5',C6,C8} and D, = {c4} where C8
is
c8. csub(X,[A]Y],2) <« csub(X,Y,2).

To see the need for the con-
dition 2, suppose we fold the
clause p(X) +q(X,Y),r(Y) using a
definition s(U) «q(U,V) into the
clause p(X) +g(X),r(Y). Then the

equivalence is destroyed because
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the result clause would correspond
to a clause p(X) «q(X,Y1),r(Y) but
not to the original one.

The condition 3 prevents for
example immediate folding of a
definition by itself. Without the

condition we fold C4, in PO of our

example, by itself to end in Pl'
={c1,c2,¢3,C4'} where C4' is

csub(X,Y,2) « csub(X,Y,2).

To complete our example, we
need one more new Predicate.

Example (continued)

Motivated by the failure to
fold the body of C6, we introduce
an auxiliary predicate 'csubl' and
define

C9. csubl(A,X,Y,Z) « subse X)),
subseq([A[X],2)
to obtain P5={C1,C2,C3,CS',C6.CB,

e ey Dt ) S F

c9}, D5 ={c4,c9}.

By unfolding C9 at its second
goal, we get P6 ={Q,Q,Q,Q',%,
C8,C10,C11} and Dg =1c4,c9} where
Cl0 and Cl11 are

C10. csubl(A,X,Y,[a|z])
“ subseq(X,Y) ssubseq(X,z)

Cll. csubl(A,X,Y,[B|z])
* subseq(X,Y) »Subseq([A [X],2).

Folding C6, c10 and Cl1, we obtain
the final result P9 ={ 1,C2,c3,

—_—

c5',cs',cs,c10',c11'} and IJ9 = {c4,

C9}. Note that c5', .. >C11' list-
ed below define the new predicateg
independently from Po = {Cl,C2,C3} .

c5', csub([],Y,z)

ce6'. csub([AIX],[AIY],Z)
*csubl(A,X,Y,Z)

C8. csub(X, [A|Y],2) +csub(X,1,2)

C10'. csubl(A,X,Y,[A|2])
+csub(X,Y,2)

C11'. csubl(A,X,Y,[B|Z])
«csubl(A,X,Y,2)

When used for generating comson
subsequences of two given lists,
the final program is far more
deterministic than the original
one because a selection of an
element in the first list is
immediately checked against the
second one. (Of course we are
assuming here the fixed order
control under which the original
program behaves as a typical
generare-and-test progras.)

The point is that Py is

equivalent (in the least model
semantics) to Po U D9 and that

this is generally true for any
transformation sequence obeying
the rules. The rest of this 3
section is devoted to the proof
this fact.

2.2 Correctness of the Basic

System

First we characterize the 3
least model semantics by ‘““:d
Proof trees. We assume a fix -
Herbrand universe and a fixed S
of predicates so that the set ©
ground goals is fixed.

Definition. proof tree

Let S be a program.
T, whose nodes are labelled ‘df.h
8round goals, is called a prov)
tree, or simply a proof, in
the following conditions hold.

1. Let 4 be the root label of T
TyseeesT, (1>0) its immediate

1 o
subtrees and Asenesh their T
labels. Then 4 « Al""’A” is &

instance of some clause C in S-

A tree




2, Each immediate subtree 7. (1<7
<n) is a proof in 5. ke & :

We say that T is a proof of A in 5§
and that A is provable (by T) in
S, We also say that the clause C
is used at the root of the proof T
and that Tl""Tn are immediate

subproofs of 7.

In the following, we often
argue by induction on the struc-
ture of proofs and omit the base
case, which is usually subsumed by
the induction step as the special
::: n=0, as in the above defini-

The meaning, M(S), of the
Program 5 {s now defined as the
set of all ground goals provable
in 8. This M(S) is nothing but
the least Herbrand model of S
(Van Enden 76).

® D"C;r a transformation sequence
0“0 -'--v(P”,D”). we define

# sequence 5,...,5, called

virtuial transformation sequence,

by

5, =P, U(Dy-D,).

In particula -
r SO POU D” and

S =
°9*Fp In the following discus-

:i"“ ve will always deal with
ﬁ‘“l transformation sequences.
the dm“ to pretending that
Cotes tions of all new predi-
are given at the beginning.

The set of definitions D, will be

ihL:“ and referred to as D

& .:.“ghwt. Since the definition

trmfmum is an identity

mn.fomum in the virtual

k ormation sequence, it will
ignored,
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THEOREM
Let SO’ Sie'e .S” be the trans-
formation sequence. Then M(S”)
-M(So)-

To prove the theorem we need some
definitions.

pDefinition. rank of a ground goal

Let A be a goal in M(So) and

r'(A) be the size of the smallest
proof of 4 in So. Then r(4), the :

rank of A, is r'(4) if A has an

old predicate and r'(4)-1 if A has
a new predicate.

Definition. rank consistent proof

Let Si be a program in the

transformation sequence. Let T
be a proof in Si’ C the clause

used at its root, Tl""’Tn (n>0)

its immediate subproofs, and 4,
Al,...,An their root labels. Then

T is said to be rank-consistent
if
1. r(4) 3r(A1)+..+r(An) with

equality holding only when C is
not marked 'foldable', and
2o Tl""Tn are rank consistent.

Now the proof of the theorem
consists of showing that the
iants hold for each

following invar

i (0<i<M).

IL. M(Si) -M(So)

12. For each goal 4 in M(Si)’
there is a rank-consistent
proof of A in Si'

rivially

The first invariant I1 t
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holds for Z=0. As for 12, for
any goal 4 in M(So). the smallest

proof of A is obviously rank-con-

sistent. (Remember So = Po UD and

the clauses in Po are marked

'foldable' while those in D are
not.)

The preservation of the
invariants is proved in the three
lemmas below.

LEMMA 1
If I1 holds for Si, then
M(Si+l)c M(Si) .

Proof.

Let 4 be a ground goal in
M(Si+1) and T its proof in Si+1'

We construct a proof 7' of 4 in
Si by induction on the structure

of T,

Let C be the clause used at
the root of 7, and Tl""Tn (n>0)
the immediate subproofs of T, By
the induction hypothesis we can
construct proofs Tl""’T ' in

n
S‘i +1 With each TJ.' corresponding
to Tj' If C is in Si we can

immediately construct T’ from C
and the proofs Tl""’Tn" & ey

is the result of unfolding, w
> We can
construct 7' frop Tl',..,Tn' using

the two clauses in Si of which ¢
is the resolvent,

Now suppose C is the re
sul
of fqlding. Then for some ~ <
(123 <n), the root label 4. of 7

is an instance of the fol

ded
;.n the body of C. We assume go:}
ecause Al is provable in Si by i

Tl’, it is algo Provable ipn S0 by

the invariant Il. So there shoul
be a ground instance Al*Bl,..,Eﬁ

of some clause in D such that
81. 2 .Bm are provable in Po.
Again by I1, Bl""an are provable
in Si. Let C' be the clause inS,;
of which C is the folded result.
Owing to the condition 2 of fold-

ing, we can combine the proofs of
Bl’ &% .Bm and proofs rz',...r"

with C' to obtain T', the proof of
AinS,. ]

LEMMA 2

If the invariants Il and I§
hold for Si' then N(Si)c”(siﬂ .

Proof.

Let A be a ground goal in
M(S;). Then by the invarisat

there is a rank-consistent proof
T of A in Si' We construct 8

proof T’ of A in S, by indv

tion on the well-founded oﬂ)l;f::s
>> defined on M(So) (-'«Si

A > B iff
r(4) >r(B) or

(4) =r(5) and A has a oev &
B has an old predicate.

The base case where r(4) =1 ;"“
has an old predicate obviousbz .
holds because then A4 should
ground instance of some unit

clause in P, which should be i7

both Si and $i+1'

Let C be the clause in si ,
used at the top of 7, and Tpp**'r

£
(n>0) the immediate subproot® -
T. By the invariant 12, fof
root label 4. of T,, 4 > 4

holds. So by the induction hy-
pPothesis there are proofs




' '
I, of A1,.0A A0 S, .

1f C 1s in siﬂ the construction
of I' is immediate.

A Sgpp::csc is unfolded into

12l 141 and assume that

the root label Al of 1‘1 is the

m;ﬁ: of L:l:ergoal ;t which C is
» 1*T1p be the

imediate subproofs of Tl' and
All'”"lp their root labels.

Then again by I2 and the induction
hypc:thests, there are proofs
Tll ,..,Tlp' of All""‘lp in
S;41+ Combining the proofs

Tu':--,rlp', Tz',..,Tn' with some

€, (1<k<m) we get a proof T' of
A

in Si”‘,
Now suppose C is folded Into

¢! in Si+1' Assume that the root

labels 4,,..,4, of T,,..,T; (k<n)

are the instances of the folded
it!;:ls in C, Let B be a goal such
t B*Al....Ak is a ground

112“““ of the clause in D used
r(Athe folding. By definition,
1)"'"""'(‘;()3 r(B). By the

‘;W“lion 3 of folding, either C
5 marked 'foldable', which means
r(4) ’1‘(41)+...+r(4k), or k<n.
::either cases, r(A) >r(B) holds.
5 Teover, by the equivalence of

; to 50, B 1s provable in Si.

Therefore by the induction hy-
Pothesis, 5 has a proof Tj in

Siﬂ' Combining the proofs

Ty Tes1"s+-»T," with the clause
'
C', we obtain the proof T' of 4

fn
a1
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LEMMA 3

If the invariant Il and 12

holds f -
s for St, I2 holds for S£+1'

Proof.

We first note that in the
proof of lemma 2, T' is con-
structed in such a way that it is
rank-consistent. Thus every goal
in M(Si) has a rank-consistent

proof in Si 1" Because M(Si +1)
<= M(Si) by lemma 1, I2 holds
for 5,.,- []

This completes the proof of
the theorem.

3 GOAL REPLACEMENT

The unfold/fold system
becomes more powerful when com-
bined with goal replacement
rules.

3.1 General Principle

Let S be a program and
33:31&. .&Bn be an existentially

quantified conjunction of goals
without free variables. (By =
we represent a vector of vari-
ables.) We say the formula is
provable in S and write s|-
31:81&..&Bn if there is some

ground instantiation 8 of z such
that every aie (1<% <n) is prov-
able in 5.

Now let C be a clause in S
of the form

A*AyeshyByse 5By

and C' be a clause (not in S) of
the form

A+A1,..,Ak,81',..,Bn'

Let z[y] be variables occurring

in Bl,..,Bm [Bl',..,Bn'] and not
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in 4, Al,..,Ak and Bl"""Bn' [Bl.
"’Bm]‘

Suppose for every ground
instantiation 6 of 4, Al,..,Ak it

holds that

s-{c}|- Bz(al&..aam)e
iff s-{C} I-By(al'a..mn')e.

Then we can transform S into

s'=(s-{chH U {c’'}.

It is rather obvious that the
transformation itself preserves
the least model. But when we use
this rule within the unfold/fold
system, we must be careful so that
the second invariant I2 of the
transformation process is pre-
served. Consider the following
transformation sequence.

Py: q(s(X)) +q(X) (1)
a(0) (2)
r(s(X)) < x(x) (3)
r(0) (4)

Define.

PL(X,Y) +q(X),r(Y) (5)
P2(X,Y) ~q(X),r(y) (6)

Unfold q in (5).
p1(0,y) < xr(Y) €))
P1l(s (X),Y) +q(X),r(Y) (8)

Replace r(Y) by r(s(Y)).
PL(s(X),Y) +q(X),r(s(y)) 9)
Unfold r in (6).
P2(X,0) + q(X) (10)
P2(X,s(Y)) “q(X),r(Y) (11)
Replacg(q(x)( !):y a(s(X)).
P2(X,s(Y)) « X)),
ol 9(s(X)),r(Y) (12)
PLl(s(X),Y) «p2 X,
SRR P2(X,s(Y)) (13)

P2(X,s(Y)) TPL(s(X),Y) (14)

Though each step of goal replace-
ment is valid by itself, the
resulting Program containg infi-
nite recursion ang is not equiva-
lent to the original one. This
is because the goal replacement
Steps destroyed the invariant 2%

The general condition to
preserve the invariant I2 is that
for every ground instantiation @
of 4, Al, o "k'

r( 3.:(314. .48 )8)
> r(3y(s,'4..48 "0 ¢

holds, where by r(axﬁll..ﬂn) ve
represent the minimum of r(3,0)*
. .r(Bno) for every ground instan

tiation o of =.

Under this condition, 3
rank-consistent proof in 5 can be
converted into a rank-consistent
proof in S'. There are many
special cases where this con-
dition unconditionally holds.

S Special Cases
goal deletion

Let C be a clause of the

for every
form 4 +Bl,. 4 'Bn' If

ground instantiation 8 of tht)-!a
clause, S-{C} |- (81""311-1

implies S-{C} |- B8, then 5, **
be deleted.

Considering this as the replac®”

ment of B,..,B by ByssByy

the condition (*) is obviously
satisfied.

goal merging

We can merge identical g0sl¢
in a body into ome goal. Th:ed
condition (%) is also satisfied:

function merging
Suppose there are two S:‘ls'
P(tl,..,tn_l,z) and p(£y,-s%-1

¥) it the body of the clause- =
Assume further that a ground gque
P(8),..,8 ) in M(s-{C}) is u®

up to s (The relatio?

1...,8n_1.

< O G AR O LA




denoted by p is actually a func-
tion.) Then we can merge the two
goals applying the substitution
{¥/z) to the rest of the clause.
The condition (*) is satisfied.

goal addition

This is the inverse of goal
deletion. The following example
shows the utility of this seeming-
ly pessimising transformation.

Example (sorting by permutation
and order check)

Pyt pern((],(1)
pern([A[X],Y) « perm(x,2),
ins(A,2,Y)
ins(A,X, [A]X])
ins(A,[B|X],[B|Y]) « ins(A,X,Y)
ord([])
°NEIA1)
ord([A,B|X)) «A<B,
tmm‘.l |x)) «A <B,ord([B|X])
sort(X,Y) « perm(X,Y) ,ord(Y)
Unfold perm.
sort([],Y) «ord([])
sort([A]X],Y) «
perm(X,Z),ins(A,Z,Y) ,ord (Y)

Add ord(Z) in the body because for
any ground terms t10ty and t,

Fo l-1ns(2,,¢,,¢,) bord(¢,) implies
£ l-ord(e,).
sort([A|X],Y) + perm(X,2),
ord(2),ins(A, Z, V) ,ord(Y)
Fold the first two goals.
sort([A|X],Y) «
sort(X,Y),ins(A,Z,Y) ord(Y)
Thus this technique is a vital
Step from the O(n!) sorting pro-
gram to an 0(n3) insertion sort

Program. To obtain an O(nz) pro-

fram, however, we need the idea of

tontext (Wegbreit 76), which is
ond the scope of this paper.

1 Though goal insertion clear-
¥ violates condition (*), the
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above transformation sequence does
preserve equivalence. A technique
to get around the difficulty will
be presented in section 3.3.

laws of primitives

There are various laws for
primitive predicates, such as
associativity of the predicate
'append' defined by

P _: append([],X,X)
append ([A|X],Y, [A,Z])
+ append(X,Y,2).

We can prove by induction that
=
Pap |- X append(tl,tz,x) &
append(x,ta,t4)
3
iff Pap |-=y append(tl,Y,t4) &
append (%, ,t, Y)
2535

for any ground terms tl””tl.' So

we can apply the associativity of
append in any program incorpo-
rating Pa »

The condition (*) holds if
we use the associativity in one
direction (the left hand side of
iff to the right hand side), but
does not hold in the other direc-

tion.

3.3 Weakening the Condition

We have seen that in man{

s the goal replacement rule
gz:ebe useg with the unfold/fold
transformation unconditionally.
But we have also seen interesting
cases where the condition (*)
does not hold. For such cases we
can weaken the condition (*) into
the following, (though at the
cost of additional bookkeeping of
folding conditions.)

For every such 8 as in (*),’
there is a partition of {Bl A

ch part
’Bn'} such that for each p
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{31",--,5j"} of the partition,

r(az(Bl&. . asm)e) >r(3y (Bl At e
&BJ '7)8) holds.

In the sorting example, we
replaced the goals {ins(A,Z,Y),
ord(Y)} by {ord(Z),ins(A,Z.Y),
ord(Y)}. This is now justified
because r(ord(tz)) <r(ins(t1.t2,

t3)) +r(ord(t3)) for any ground
terms tl" tz and t3 for which the

goals are provable. But we have
to put labels on the introduced
goals as

sort([A|X],Y) - perm(X,z),

ord(2) »ins(A,Z,Y) »ord(Y)

151 1.2 1.2

Inheriting these labels through
transformation and Prohibiting
folding of goals of label 1.1 and
of label 1.2 together, we can make
the induction in the proof of
lemma 2 valid.

To prove the correctness of
this technique, the condition 1
in the definition of rank-con-
sistency should be changed:

1'. »(4) 3r(4i1)+. .+r(Aim) for

any subset {Ail,..,Aim} of {4

1: oy
An} such that no two goals in the

subset have imcompatible labels,

with equality holding only when
C is marked 'foldable',

The detail of the modified pr
is omitted. g

Note that the folding of th
first two goals in the abgve d
clause does not violate the label
constraint, so that the whole

also be handled in this manner.

4 CLAUSE ADDITION/DELETION
clause addition

Let C be a clause not in S.
If for every ground instance
A+A,..,A of C, § |- Ad. 4

implies S |- A, we can add C to 5.

clause deletion

Let C be a clause in §. If
for every ground instance A"Al,-

sA, of C, 5-1{C) |- Ah .84

implies S~ {C} |- 4, we can
delete C from 5.

The correctness of these
transformations themselves is
again obvious. When combined
with the unfold/fold transforma-
tion, clause addition causes n:
problem. Clause deletion can 1‘2‘
general destroy the invariant
of the transformation process.
As in the case of goal replace-
ment, there are important specid
cases.

Let C and C' be clauses in
S of the forms Avhy,. ok and
B"Bl,--,Bm such that 4 is an

instance B0 of B. Let z[y] be
the sequence of variables min
Ala--oﬂn [81,..,Bm] but not

A[B]. 1If for every ground -
instantiation 8 of 4, s-(C} -
3-"5(41&. -&4 )8 implies 5- {¢

E’y(Bla..asm)ce, then C can be
deleted. In this special ct:‘ﬂ
of goal deletion, the conditi®
r(az(Ald..M")B) >
(3z(5,4..48 )o8) for every ?
guarantees the preservation of

the invariant 12. 1In pat;it;d"’
if fBlo,..,Bmo} c{Al,,., "

P S R R T L T e |



vhich means syntactic subsumption,
;l;:dconditlon is trivially satis-

Finally, it should be remark-
ed that clause addition/deletion,
unlike goal replacement, are
often used apart from the unfold/
fold system. In such cases we
::d not worry about the invar-

t,

5 CONCLUDING REMARKS

We have proved the correct-
ness of the basic unfold/fold
System and then examined the
interaction of the augmenting
transformation rules with the
correctness property. We have
Stated a sufficient condition for
their application to be safe. To
ensure the equivalence of the
result of some transformation
Sequence with the initial program,
¥e need only to check the con-
dition for each application of
those rules. As we have seen, in
zﬂy useful special cases this
ChZolvea only a simple syntactic
thecfinz. In other cases, proving
[“{ond!uon can be a difficult
e « However, we can still claim

advantage over the usual
Separate equivalence proof ap-
:;oach because we have the choice
threlther keeping the conditions
e ough transformation sequence
al!pmvi.na separately the equiv-

ace of the result with the
original program.

% Though one might expect that
a unfold/fold system preserves
tioBeT properties like comple-
% or finite failure(Clark 1978)
m‘tg Van Emden 1982), this is
case for these properties.
Te are easy counter examples.

The practical f
power of the
:ey.tn depends on the heuristics
,uql"” we have a large
Tch space generated by the
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choice of applicable transforma-
tion rules. We are currently
investigating this strategic
aspect with some experimental
implementations.
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ABSTRACT

The paper deals with the control
of search in logic programming
(Born clause inference) by the ad-
dition of restrictive predicates
to.xules S0 as to cut off all
bhnd-alleys without loosing pos-
sible results. Criteria are pro-
poseq to ensure that additional
Preaises in clauses allow to es-
::luh results without trials-
nei;}e‘rron. rhc_.-se critegia require
i er the u_itroductxon of spe-
s velljox_'dennqs nor the induc-
ion gt limits of predicates. They
me.mto account structural pro-
::;:xea of bounqefl-lenqth composi-
. s of the original clauses, and

Nsequently are only sufficient.

1 INTRODUCTION

ib:lhlusuve.ucrch, or backtrack-
ltu;bl' remains a fundamental
pon ing-block on the way to
inf':ﬂlc use ot'proqtus based on
cuoxence techniques, such as
ite ;;:‘1 Post productions, defin-
= 5 n clauses, elementary for-
- 'Yﬁtm (Smullyan 1961), or
e 13:'Iurden two-level gram-
to"-u“o overcome that obstacle,
ploced s of vork_have been ex-
Fiuu' and _continue to be so.
co-mZL various non-von-Neumann
designed § architectures are
Shiais in ogder to permit high
Ploutienq in the parallel ex-
tiog on of alternative computa-

Paths. Secondly, refined

&va " ”
luation regimes are introduced

so as to abandon unsuccessful
paths earlier, thanks to an
analysis of previous failures;

typical techniques are the alpha-
beta heuristics and the intelli-
gent backtracking (Bruynooghe
1978). Thirdly, lower-level state-
ments are made available for the
explicit programming of more effi-
cient control-flow and data-flow;
simple illustrations are the
sequentialization of clauses and
the cut-operator in Prolog.
Fourthly, inference programs can
be specialized by adding in
clauses selective premises which
eliminate blind alleys; this is
known as the “logic control by
logic" (Pereira 1982) and can be
seen as an instance of efficiency
improvement by program transforma-
tions; successful and important
examples of this approach in other
formal systems are the generation
of parsers for context-free
languages and the Knuth-Bendix

technique.
The work reported here focuses

on the derivation of deterministic
from nondeterministic

programs
specifications by bounded-depth
transformations. Thus it follows
the fourth, transformational

A major problem proves to
of elementary means
he adequacy of addi-
tional, selective premises. On the
one hand, these should remove all
deadends. On the other hand, they

method.
pe the lack
for ensuring t
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should not remove too much, wviz.
they should preserve the possibil-
ity of deriving each result com-
putable by the original program.
As a rule, in order to deduce
selective premises correctly, or
simply to validate these, termina-
tion functions are introduced.
But then the problem is to discov-
er appropriate orderings; this is
typically the case for methods
based on the Knuth-Bendix comple-
tion procedure (Dershowitz 1982).
The present work explores an al-
ternative technique, namely the
use of straightforward criteria
for ensuring the adequacy of
selective premises; whenever these
criteria are verified and yield
deterministic programs, it is
guaranteed that all blind-alleys
are cut off and that no possible
result is lost. These criteria
directly use structural properties
of the original inference clauses,
including their commutativity,
equivalence, or idempotence. They
do not require the introduction of
intelligent orderings, the perspi-
cacious induction of exact limits
of iterations on Predicates, or
the construction of insightful
proofs in logic. However, these
criteria are only sufficient, not
necessary: they take into account
bounded-length compositions of
inference steps. For this reason,
they are called "bounded-horizon* .

The first part of the paper ijin-
trgduces “inference Programs*
which are Horn clauses (van Emden
al:xd Kowalski 1976) organized
hlerarchically and expressed in a

C Auxiliary con-
cepts are introduced, a.o. the

Program and the inclusion relation
t . The

criteria are then develg;:dpos::

tegna of linear Iecursive clauses:

this simplifies the technicai

developments and Corresponds +to

the way the Criteria havye been

found out. The generalization to
non-linear inference prograss 1s
introduced afterwards.

Only the validity of tbe pro-
posedycritetia is proved in deu;l
since they constitute the saun
contribution. The other, subser-
vient results should be clexr
enough, and are merely presented.
References (Shoenfield 1967, van
Emden and Kowalski 1976, Dijkstrd
1976) provide a useful background
for predicate calculus, 3°F‘_’
clauses, and weakest precondl
tions, respectively.

Notations:

A <-B1,...,Bn : Horn clause
v, &, :'>. - : or, and, then, “:t
?A : a thesis predica

T.i stands for T3 when i=}
$i:T.i stands for T1 + T2 + ...

2. INFERENCE PROGRAMS

An inference program T cuprisg:
a basic clause TO al_ld l,”t.ﬂ .
inductive clauses T.i SI)O)'ecur'
identifier Tr suggests ‘the I
sive part of T":

A)
T=T0+ Tr (2
Tr = $i:T.i

=T1+T2+ ...+T

The basis clause T0 has the for®
p(x) <- pO(x) (2.2

where p is the principal predicét
symbol, and p0 is the basié
Bredicate symbol. Each
clause T.i has the form

)
P(x) <- r.i(x,y), ply) (2.3

ion
where r.i denotes a known relati®
between the tuples x and ¥-

A top-down compytation consis®*




in an iterative application of
sodus tollens using the inductive
and basis clauses. A basis compu-
tation step is

7p(z) p(x) <- pO(x)

An inductive computation step is

?p(z)

p(x) ¢ r.i(x,y), ply)
....................... (2.5)

Jw: r.i(z,w) & 7p(w)

The preipage of a predicate Q(x)
through an inductive clause T.i is

T.1(Q) (2.6)
= Jy: r.i(x,y) & Q(y)

For Tr=($i:T.i), the preimage is
Tr(Q) = T1(Q) v...v Tn(Q) (2.7)

The *success domain® or relation
Rel(T) defined by an inductive
Enzuna T=T0+ Tr is the set of
tuples which can be proved to ver-
ify p by using (2.4-5):

Rel(T) = least solution (2.8)
of [X = pO0 v Txr(X)]

t“’“ﬂl. this least solution can
computed iteratively:

Rel(T) = In: H.n (n20)

where HO = pO (2.9)
H.(n#1) = pO v Tr(H.n)
= H.n v Tr(H.n)

2: forsulae (2.8-9) are valid be-
¢  Tr is continuous, hence
*onotonic; indeed,

7‘(39:9.11)

: 31:1?: [r.i(x,y) & 3n:Q.n(y)]
In:3i:3y: r.i(x,y) & Q.n(y)

* Jn: Tr(Q.n)

In particular,
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Tr(Q1 v Q2)

= Tr(Q1) v Tr(Q2) (2.10)
Note that, in general, we only
have

Tr(Q1 & Q2)

=) Tr(Q1) & Tr(Q2) (2.11)
Tpe reverse implication holds pro-
vided each r.i(x,y) is functional
w.r.t. x. In this case,

T1(Q1) & T1(Q2)
= Jy,z: ri(x,y) & Q1(y)
& ri(x,z) & Q2(z)
=) Jy: ri(x,y) & Q1(y) & Q2(y)
=) T1(Q1 & Q2)

The relation r.i(x,y) in an in-
ductive clause (2.3) may embody
syntactical as well as semantical
constraints, corresponding to un-
jifications and to auxiliary prem-
ises respectively. A thesis takes

the form
Ix=(x',x"): (x'=e) & ?p(x)

where the expression e is known;
this means that x' and x" are the
known and unknown parts of the tu-
ple x, respectively. A top-down
computation "succeeds" if it
rewrites the thesis into a predi-
cate which does not contain the
principal predicate symbol p
anymore and which yields true
thanks to successful proofs of all
the subtheses depending on auxili-
ary predicates pO and r.i. Given a
successful computation, the con-
junction of the definitions of the
successive new variables such as w
in (2.5), corresponds to an
*answer substitution® or a "recur-
sion stack". Top-down computa-
tions as defined here reduce con-
junctions of positive atoms to
true; this is isomorphic to the
reduction to false of disjunctions
of negative atoms, as is customary
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with the resolution principle.

Example of inference program:

An append program can be written
as follows; x and y are triples,
and app((x1, x2, x3)) stands for
"to append x1 to x2 yields x3*:

TO: app(x) <- pO(x)
T1: app(x) <- ri(x,y), app(y)

The auxiliary predicates pO and r1
are defined by

pO((x1, nil, x1)) <- true

ri((x1, a.x2, a.x3), (x1, x2, x3))
{- true

Consider then the thesis

3x: (x1=1.nil) & (x2=2.nil)
& ?app(x)

By (2.5), this is rewritten as

3x: (x1=1.nil) & (x2=2.nil)
& [Fw: r1(x,w) & ?app(w)]

which can be simplified to

Ix,w: (x3=2.w3)
& ?app((1.nil, nil, w3))

By (2.4), the latter becomes

3x3,w3: (x3=2.w3)
& ?p0((1.nil, nil, w3))

The last atom is true for
w3=1.nil. Thus we proved

3x: (x1=1.nil1) & (X2=2.ni1)
5 & (x3=2.1.nil) & app(x)
viz.

app((1.nil, 2.nj1, 2.1.nil)).

a.xnmmmuszzmmg

To restrict an in
amounts to  adq

predicate C.i is such that
VQ: S.i(Q) = C.i & T.i(Q) (3.1)

Namely,
T.i: p(x) <~ r.i(x,y), ply)
S.i: p(x) <~ r'.ilx,y), p(¥)
for r'.i(x,y) = C.i(x) & r.i(x,¥).

The restriction S of an inference
program T by predicates C.i's is
the result of restricting each in-
ductive clause T.i by C.i, accord-
ing to (3.1). Clearly,

VQ: Sr(Q) => Tr(Q) (3.2
where Sr = ($i:5.1).

Hence, by (2.9), Rel(S) => Rel(T).
Accordingly, the restricted pro-
gram S does not permit the suc
cessful computation of a thesis
for which no computation by T
succeeds.

The restriction of T into S 1§
success-complete if Rel(S) equalé
Rel(T): no tuple valid for T 18
lost by S.

The restri rogram S ‘“

> ? ul“eff Ptho: ,elect.we

pPremises C.i are mutually €%

clusive and depend only on known
values in all computation steps:

C.i & C.j = false, for ifd
and, for all i,

C.i & po = false

C.i(x', x*) = ¢'.i(x")

where x' and x* respectivelf
represent the known and unkno¥!
parts of the tuple x. Thus, ?
any computation step, at most °'1'f
clause can be applied successfu
ly, and the choice of that clause
can be made using the availabl®
infomtion, without delay.

If the restricted program S ::
deterministic and success-comple 3
W.r.t. T, then the top-down s
tations by S from all the thes®

T e P DT e .




cuputable by T do succeed neces-
sarily, without trials-and-errors.
Indeed, because of completeness,
for each thesis acceptable by T
there must exist a  successful
top-down computation by S: the
property

Va',a*: [(a',a") € Rel(T)
; =) (a',a") € Rel(S)]
entails

Va':[ [Ja*: (a',a") € Rel(T)]
=) [Ja*: (a',a") € Rel(S)]]

lloreover,. determinism prevents
backtracking: since there must ex-
ist a successful path for each ac-
Ctmb}e thesis, and since there
ly exist at most one path, no
tlind-alley may be entered.

tOComequeatly, it is most useful
“n:muton an 19terence program
co.plz t: detgmnutic.‘ success-
sils equivalent. This is pos-
i undex'the following assump-
htte;hov using the Y notations
ey e: for all \_uhd input x°',
- uenxut: a unique output x*
kel(1) o: e
o t herwise, we should weak-
lucce"?no" the definition _of
e F:lpleteness: for each in-
(x x')' 1f Rel(T) contains some
X0, ?hen Rel(S) must contain

(x,x'*"); alternatively, we

chd [elu "
kterninisy the constraint of

::: 'ﬂlindgx of the paper
'gl sufficient criteria for

Teste] Cess-completeness of given
tictive premises.

! Incusion geaTioNn

Ve .
ling PIopose a simple way of tel-
: clauses are "included

d

in*
uu; T ones. A couple of auxi-
fuceq p;:li*ttxes are first intro-
e i
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T.i(x=z) = Jy: r.i(x,y) & (y=2)
= r.i(x,z) (4.1)

By (4.1), definitions (2.6) and
(2.7) entail

T.i(Q)= Jy: T.i(x=y) & Q(y)
Tr(Q) = Jy: Tr(x=y) & Q(y) (4.2)

Similarly, in general,

Tr(Sx(Q)) = (4.3)
Jy: Tr(Sr(x=y)) & Q(y)

The inclusion relation between two
inductive clauses T1 and T2 is de-
fined by

vQ: T1(Q) => T2(Q) (4.4b)
This is entailed by
Vy: T1(x=y) => T2 (x=y) (4.4a)

Indeed, by (4.2,4.4a),

T1(Q)
= Jy: Ti(x=y) & Q(y)

=) 3y: T2(x=y) & Q(y)
=) T2(Q)

Thanks to (4.4a), the inclusion
relation between clauses can be
checked without considering all

possible predicates Q.

This can be generalized as fgl—
lows; Tr is a set of indt.xct.l.ve
clauses; T.3, T.i, T.k are induc-
tive clauses; the range of k 1s

left understood:

1IF  Vy:[ T.3(T.i(x=y)) (4.5a)
=y (x=y) v Tr(x=y)

v 3k: T.k(Tr(x=y)) ]

THEN vQ:[ T.5(T.1(Q)) (4.5b)
=) Q v Tr(Q)
v 3k: T.k(Tr(Q)) ]

Indeed, by (4.3,4.5a,4.2),

7.5 (T.1(Q))
iy T itxey)) & Q)



144

=> 3y: [(x=y) v Tr(x=y)
v 3k:T.k(Tr(x=y))] & Q(y)
=>Q v Tr(Q) v 3k: T.k(Tr(Q))

3. BOUNDED-HORIZON CRITERIA

Given (2.9), Rel(T) = Rel(S) is
implied by the following, for n)0:

Vn: H.n = K.n (5.1)
where H1 = Tr(p0) (5.2)
K1 = Sr(p0)
H.(n+1) = H.n v Tr(H.n)

K.(n+1) K.n v Sr(K.n)

We look for simple criteria which
merely ensure the existence of a
proof of (5.1), without requiring
to construct such a proof actual-
ly. The idea is to compile the
induction, that is to abstract
useful structural Properties from
families of actual proofs by in-
duction, and to use these stryc-
tural properties as criteria. To
start with, we consider the set of
Proofs by induction with depth
two: it is a typical case, neither
too trivial por too elaborateqd.
The corresponding Criteria are
called 'bounded-horizon Criteria
of rank two", ang are noted BH[2].
Program s jg 5 restriction (3.1)
of T; p0 is the basis Predicate

(252); mr bids the index set of the
inductive clauses (2. 3):.
Bounded-horjzon criteria BH[2].
Tr(p0) =)» Sr(p0) (5.3)
Tr(Sr(p0)) 4)

(5.
=> Tr(po) v Sr(Tr(p0))
VJicI: 3jeg. vier.

[[T.j(c.i)
=> Tr(p0) vy Tr(Tr(p0))
v }jeg. C:5
v Vy:[ T.j(r.i(x=y)) :
=) (x=y) v Tr(x=y)
v 3ker\J. T.k('rr(x=y))]]

(5.5)

The criteria (5.3) and (5.4) en-
sure the two basis steps, and
(5.5) gquarantees the' induction
step, for an induction of depth
two.

the inference pro-
ﬂlﬁng. beutthe restriction gt H
program T by ulec_tive' preaises
C.1's, If the criteria (5.3-5)
are verified, then S is success-
complete w.r.t. T.

Proof. Let us show that the cri-
teria (5.3-5) do ensure tbat:
proof of (5.1) by induction on
exists.

Base n=1: (5.3) expresses HiI=)XI,
and (3.2) entails K1=)H1.

Base n=2: Given H1=K1, we ':{
rewrite (5.4) as H1 v Tr(H1) S)KZ'
v Sr(K1). This expresses H2=)KI;
(3.2) entails K2=)H2.

Induction step n)>1: the induction
hypotheses are

H.(n-1) = K. (n-1) (5.6)
H.n = K.n

The induction thesis is
H.(n+1) = K. (n+1)

By (5.2,5.6,3.2), this induction
thesis is reduced to

Tr(K.n) =) H2 v H.n v Sr(i.n)
We unfold K.n and H.n by (5.2):
Tr(K.(n-1)) v Tr(St(K.(n'”:))

=> H2 v H.(n-1) v Tr(H.(n- 21)))

V Sr(H.(n-1)) v Sr(Tr(8.(n

=)

We observe Sr(H.(n-1)) 4
Tr(H.(n-1)) because of (3.2), e
use (5.6) again; the inducti
thesis becomes

Tr(Sr(H. (n-1)) (5.7

g et L AR N L . il e




=) 2 v H.(n-1) v Tr(H.(n-1))
v Sr(Tr(H.(n-1)))

On the other hand, (5.2) and (5.6)
imply the following property:

B.(n-1) v Tr(H.(n-1)) (5.8)
= H.(n-1) v Sr(H.(n-1))

¥e thus have to show the existence
of a proof of (5.7) on the basis
of (5.8), viz. a proof of (5.8) |-
(5.7). We do it for a version ob-
;uned by. abstracting from
i.(n-1), viz. by substituting an
;n?:to‘:;*lxute predicate Q for

W:Q0vTr(Q) =Qvs
|- Tr(sr(Q)) g~ ix
= H2v Qv Tr(Q) v sr(Tr(Q))

;:’.xeums to prove (5.9) on the
m;: n:! the criterion (5.5). We
i “itis . dovern)
2 r =

;:th(Q)) for any k ranging
Ben sSome gubset of I, say I\J.
€, applying (2.10) and adding

Hiﬁ:d(o) on both sides, we may

Q) v 3k:T.k(Tr(Q))
=Tr(Q) v 3k:T.X%(Sr(Q))

(5.10)

Let us recall the identity

(Jier: 0.4) = J9gx: (vjed: D.3)
& (Vker\J: “D.k)
£.9.(01vD2) = (D1&°D2) v (D2&"D1)
v (D1&D2)

'! 2 s

m'sl:: this identity for the term

i Q) = [jier: Ti(Sr(Q))]. The
€quent of (5.9) then becomes

(B9c1:  (vjes: p.3)
o,k (VEEI\J: "D.K)]
VQv Tr(Q) v Sr(Tr(Q))

vhe

,‘h:;” each D.h stands for

e g”~ We move the quantif-

inpl; to the front of the whole
Cation and the one on X
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within the conclusion, and we use
(5.10) for weakening Sr into Tr
within the k-terms:
VJgI: [VieJ: T.3i(sr(Q)) (5.11)
=) H2 v Q v Tr(Q)

v Sr(Tr(Q))

v 3k€I\J: T.k(Tr(Q))]

We may write Sr(Tr(Q)) as

Sr(Tr(Q))
= }jeJ: C.j & T.3(Tr(Q))
v JkeI\J: C.k & T.k(Tr(Q))

Each j-term in Sr(Tr(Q)) can be
simplified to C.j because the an-
tecedent of (5.11) contains each
T.j(Sr(Q)), and because sr(Q) =>
Tr(Q) by (3.2). Each k-term in
sr(Tr(Q)) can be removed altogeth-
er since it is included in the k-
terms already present in the con-
clusion of (5.11). Thus the
thesis (5.11) can be written as
follows, after moving the quantif-
jer on j to the front:

vJcI: }3i€J:
[ T.3(sx(Q)) .
= v Qv Tr(Q) v }jed:c.j
v Jker\J: T.k(Tr(Q)) 1

we unfold Sr(Q) into [}iel: C.i &
T.i(Q)] and use T.j(C.i & T.i(Q))
=) T.j(C.i) & T.j(T.i(Q)), given
(21105 14 thesis A=>C can be re-
placed by a thesis B=>C when A=)B.
We move the quantifier on i to the
front and apply the identity (A&B
=) CvD) <= (A=>C) Vv (B=>D); hence

the new thesis:

vJicl: }i€d: Vie€el: g !5.12)
fri3(c.1) = H2 v }j€J:C.3l

v [T.3(T.i(Q))
=)QvVv Tr(Q)

v 3keI\J: T.k(Tr(Q))]

Now, by assumption, the criterion
(5.5) is verified; pecause of

(4.5), it entails
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VJcI: 3}j€J: Viel: (?.13)
[ [T.3(C.i) => H2 v }j€J: C.3j]
v ¥Q: [T.3(T.i(Q))
=> Q v Tr(Q)
v 3k€I\J: T.k(Tx(Q))]1]

Formula (5.13) does imply (5.12),
because [A v VQ:B] => VQ:[A v B]
and }jvQ:2 => VQ3j:Z. QED

Example of use of the criteria:

The greatest common
f(x1,x2) can be defined by

divisor

f(x1,x1) = x1, £(x1,x2) = £(x2,x1)
£(x1,x14x2) = f(x1,x2)

The relation gecd((x1,x2,x3)) <=>
(£(x1,x2)=x3) can thus be defined
by

TO: gecd(x) <- pO(x)

T1: ged(x) <- ri(x,y), ged(y)

T2: ged(x) <- r2(x,y), gcd(y)

plus the auxiliary clauses

PO((x1,x1,x1)) {- true
x1((x1,x2,x3),(x2,x1,x3))
{- true

r2((x1,x2,x3), (x1 +¥2,x3))
(= (x2=x1+y2)

The program TO,T1,T2, permits in-
finite computation pPaths because
of the permutating clause 71, In
order to eliminate the unsuccess-
ful paths without loosing solu-
tionsf it is proposed (aha!) to
restrict T1 and T2 by using the
two selective premises
Cl = (x1>x2), 2 = (x2>x1)

The program thereby obtained jis
deterministic. To show it is
Success-complete w.r.t. T, we ap-
p}y. the criteria BH[2]. The ve-
rification of (5.3) and (5.4) ig

immediate. For (5.5
the central steps. )i we sketch

The case J={1}. i=1. holds be-

Lk e S T |

cause T1(Ti(x=y)) = (x_-y); ™ is
idempotent, and thus it is of mo
use to apply T1 twice. The case
J={1}, i=2, holds because n
transforms C2 into C1, viz. T1(C2)
=) C1: the domain from which Ti
establishes C2 is contained in Cl.

For J={2), i=1, we must check

[ T2(C1) => H2 v C2 ]
v Vy: [ T2(T1(x=y))
=) (x=y) v Tr(x=y)
v T1(Tr(x=y)) ]

where  Tr=T14T2.  The P“:
T2(C1)=>C2 amounts to (x1+x1)xl =
x2>x1), i.e. (x1¢(x2). The ":‘
T2(T1(x=y)) amounts to (x2-x1, ’2'
x3)=y which is false when x1 ) X
Hence we do have [x1(x2] vV
[T2(T1(x=y)) => ... ].

For J=(2), i=2, we verify 12(C?
=) C2 viz. (x2>x1+x1 =) xx1).

2
Finally, all the cases J={1.2!/
for any j and i, yield true !Sy
cause H2 v C1 v C2 is 1d_¢nn°;“‘
true: indeed, H2 contains X -
since p0 implies x1=x2 and T
changes x1 and x2.

This simple example i!lu’u;fes
how the proposed criteria (5. X
directly benefit from _SU“‘?“;;_
properties of the original in <
ence clauses: the more such ﬁss
perties are available, the e
constraints on the selective PF to
ises must be verified. This “th'
be contrasted with the mtlies
Bendix approach, where propert -
such as idempotence, Cﬂ“t‘ud;i-
ty, associativity, reql}““u,
tional work, wviz. special ¥
orderings.

§. GENERAL INFERENCE PROGRAMS

The adaptation of the P”?lw:
developments to the nol“l‘“:n
case is straightforward. We be?n.
with the quadratic case. The?!




ductive clause T.i (2.3) takes the
form

p(x) ¢~ r.i(x,y.¥'), (6.1)
ply), ply")

The inductive computation step
(2.5) becomes

The preimage of two predicates
and Q' is y* ?
T.1(0,Q0") (6.3)
=Jy,y': r.i(x,y,y')
& Q(y) & Q(y")

Accordingly, (2.7-9) respectively
become

TQ.0') = 3i: T.i(Q,0Q") (6.4)

Rel(T) = least solution (6.5)
of [X = p0 v Tr(X,X)]
= 3Jn: H.n (6.6)

where HO = pO
H.(n#1) = H.n v Tr(H.n, H.n)

The generalizations of (2.10) and
(2.11) are clear, viz.

Tr(Q1 v g2, @1' v @2*)
= Tr(Q1,01') v Tr(Q1,02')
v Tr(Q2,01') v Tr(Q2,02')

Sisilarly,

t.i([ag' x=z')
= Jv.y': r.i(x,y,y")

& (y=z) & (y'=z')
*r.i(x,z,z') (6.7)

“‘: Testriction (3.1) of an induc-
¢ clause is now defined using

t',i(:'y’?') (6.8)
=C.i(x) & r.i(x,y,¥")

x:.linclusion relation between
inear clauses has two forms.
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In the first case, the predicates
Q, Q' used as parameters are in-
dependent:

IF Vy,y': (6.9a)
T1(x=y,x=y') => T2(x=y,x=y')

THEN VQ,Q': (6.9b)
T1(Q,Q') => T2(Q,Q")

Indeed, by (6.7,6.9a,6.3),

T1(Q,Q")
= Jy,y': Ti(x=y, x=y°')
& Q(y) & Q'(y")
=) 3y,y': T2(x=y, x=y')
& Q(y) & Q' (y")
=) '!'2(0.0')

In the second case, the same
predicate Q is wused for both

parameters:
IF Vy,y': (6.10a)
T1(x=y, x=y')

=) T2(x=y ,x=y) v T2(x=y x=y"')
v T2(x=y',x=y) v T2(x=y',x=y")

THEN VQ (6.10b)

71(0,Q) => T2(Q,Q)
Indeed, by (6.7,6.10a, 6.3),

T1(Q.,9Q)

= }y,¥':
T1(x=y, x=y') & Q(y) & Q(y")

=) 3Y,Y',Z,Z': .
(z=y v z=y') & (z'=y V z'=y')
& T2(x=z, x=2') & o(y) & Q(y')

=) }z,2':
T2(x=z, x=2') & Q(z) & Q(z')

=) T2(Q,9)
(6.10) with identical

The case .
parameters 1S th: t:honfe useg

ter, because O e form o
hereaf ' ppoiviny <

the equations in ,
shall abbreviate (6.10a) into

v ‘s J2,2' S YY" :
VoY k=g, x=y') => T2(x=z, x=3')

The inclusion property (4.5) is

qeneralized similarly:
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IF Vy1...y4: (6.11a)
3z1...24 ¢ y1.,.y4:
[ T.3(T.i1(x=y1, x=y2),
T.i2(x=y3, x=y4))
=> (x=z1) v Tr(x=z1, x=z2)
v 3k: T.k(Tr(x=z1, x=z2),
Tr(x=z3, x=24)) ]
THEN VQ: (6.11b)

[T.3(T.i1(Q,0), T.i2(Q,Q))
=>Q v Tr(Q,Q)
v 3k: T.k(Tr(Q,Q),Tr(Q,Q)) )

The bounded-horizon criteria of
rank two for the quadratic case
have the same structure as
(5.3-5): one merely replaces the
linear compositions by their qua-
dratic generalizations. The proof
of the theorem of section 5 is ob-
tained similarly: one systemati-
cally replaces Tr(Y) by Tr(Y,Y)
and Sr(y) by Sr(Y,Y), for any Y
and as long as pPossible; for in-
stance, Sr(Tr(H.(n-1))) becomes

Sr('rr(ﬂ.(n-1), H.(n-1)),
Tr(H.(n-1), H.(n-1)))

One can check that the steps of
the transformed Proofs are valj-
dated by the use of (6.1) to
(6.11). In order to derive the
transformed version of (5.12), the
following fact is used in addi-
tion; for ANy 172,73, €1, c2,

T3(C1&T1(Q,Q), C2&T2(Q,0))
=> T3(c1,c2)

& T3(T1(Q,Q), T2(Q,9))

The difference between the

rogram is in ho.oqeneou.fon _of

:e::ee n if all its mduc;m
clauses have exactly n premises
which use the principal ptedx;::
symbol. Such an homogeneous fc
can always be obtained by adding
redundant presises in clauses.
For instance, p(y) is equivalent
to p(y) & p(y") & (y=v").

1. DISCUSSION

The research on methods f:f
transforming formal systeas e
the complete elimination of Nlu-
tracking without any loss of 50 t
tions, is as practically nportt;'ils
as technically hng!. Note e
only tackles a restricted pro =
in comparison to more .qene'on
methods for the forsal denvan.
of efficient inference prm;:;
these may demand “*genuinely e
theorems requiring utheut:;w‘
challenging proofs® (Hogger

Two major classes of U‘”tot::_
tion  methods for b‘d.u;ed.
elimination are well establis o3
The first one concerns the qenem
tion of deterministic parsers 5
context-free production ’Y’tm-
which correspond to a very nd
tricted form of inference ezond
grams. The methods in the § tens
class transform equational sys it-
into confluent systems of r:;;o);
ing rules (Knuth and Bendix g
since equational systems are e 0
parable in power and 8?‘““"’“19
inference programs, it is ”’saom
to use these letht_)dﬂoe;:;o
clauses also (Barbuti,
bevi 1982).  fhe fundasents]
difference between the Kn 57
Bendix approach and the leth°dtte,
Plored here is that the ~1§tion
does not depend on the defini 5
of ad-hoc well-orderings an acuc
ally benefits from properties 5 ir
as idempotence or collut:afll‘”"but
the original program clauses: the
this does not imply that in
Present method is any better

e e L e B e e e —— -




practice, especially in view of
:;;;eu such as REVE (Lescanne
).

The first results of the present
dpproach appeared in (Sintzoff
1976): ideas based on bounded-
context parsing methods were
?eveloped for computations Dby
transition* programs or by infer-
ence ones. Transition programs
are sets of condition-action
pairs, where boolean expressions
and substitutions respectively
stand for conditions and actions;
they correspond to restricted
‘Nu{led-comnd loops, without
nesting. The inference programs
vere expressed by two-level gram-
nars s*nlu to Horn clauses. The
criteria in (Sintzoff 1976) prove
?ﬂtg limited, and apply if the
initially given programs permit at
Bost one successful computation
path fog each input; this restric-
tion originates from the fact that
::::IW methods assume the
M ext-free grammars are not am-
Si::ou;' In (van Lamsweerde and
uelo 2.19?9). parallel programs
i studied in the form of transi-

0 programs, and specialization
dﬂMlo::e' are given to eliminate
fotat and starvation; thgse
dumqves demand the actual in-
Nint:u of greatest and least fix-
difﬁm’um thus are qeneul put
of bou t to use. A first version
o ndedjhon;on criteria is
truu':?d in (Sintzoff 1978), for
"lu:txog programs only; a weaker
1983) is studied in (Sintzoff
finitem prevent failures after
off § _Paths, but without cutting

infinite blind-alleys.

in:::t'i"“snt work pursues these
Tesult gations and applies the
Much 8 to inference programs.
Rl Bore work clearly is needed.

¥ constructive ways of using
develo S5l BE[2] must De
Crite Ped; to use bounded-horizon

Tia for proving or improving

B = vy - | T SRR LR
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programs, even mechanically, ap-
pears promising: any set of selec-
tive premises C.i's solving
(5.3-5) is acceptable, not just
extremal solutions. Generaliza-
tions and variants should be in-
vestigated, e.g. by allowing for
bounded horizons of rank greater
than two, by permitting nondeter-
ministic selective premises, by
not giving priority to shorter
compositions of computation steps
over longer ones, or by ensuring
specific data-flows in the
clauses. Last but not 1least, the
practical applicability of the
proposed technique must be ex-
plored.

To the cost of appearing foolish
and presumptuous, we venture some
personal views on the relationship
between the present work and ar-
tificial intelligence. See (Rich
1983) for a presentation of the
relevant technical concepts.

Instead of weak search implemen-
tations, we look for strong ones,
e.qg. transformations which yield
absolutely deadend-free production
systems. In particular, we want to
derive conditional and iterative
ans for parametrized goals and

pl .
by use of an homogeneous design
strategy.

Incompleteness is inescapable in
a bounded world. Here, it concerns
only the bounded-horizon transfor-
mation process: this one may we}l
fail but whenever it succeeds, %t
yields a program which 1s
guaranteed to be success-complete.
formation is weak whereas

The trans :
the result, if any, 1S st;onq. It
is at the program de51gn'1eye1
that the spirit of heuristics
reigns.

*bounded-horizon®
to the burning issue
ffect. We try to
blem "statically”,

The term
refers algo
of the horizon e
tackle this pro
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by analyzing specific composition
properties of rules, before
searching w.r.t. singular goal
states. To use bounded-horizon
criteria of rank two for “remote
horizons" may seem as nalve as ap-
proximating pi by 22/7, but could
prove as attractive as the LR[2]
parsing techniques for context-
free grammars; who knows?

Nalve systems, built on basic
knowledge and inference compila-
tion, must complement expert sys-
tems made of knowledge bases and
inference engines.
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ABSTRACT

~ We present an efficient algo-
ml?m for locating bugs in Prolog.
This algorithm is based on the method
of (Shapiro 1983), and can be applied
o any high level programming
lsnguage. The method is optimal to
w_1thin a constant factor for space,
time, and number of queries to the
user. This significantly improves the
performance of Shapiro’s method,
which is not optimal for space or time
and for which the number of queries
depends on the branching factor of
the computation. Since no current
programming environment uses this
method, it should be a significant aid
o programmers in debugging
software,

L INTRODUCTION

Probably millions of dollars of
computer time are spent each day by
Programmers tracing their programs
10 locate errors and understand their
Programs better. This often requires
repeated execution of parts of the pro-
gram in order to locate a bug. Typi-
¢ally the programmer will execute a

This research was su ed it by the Na-
pported in part by

Yomal Science Fousdation wader grasts MCS-81-00831

44 MCS-83-07755

top-level procedure to find which sub-
procedure returns incorrect values;
he or she will then execute the sub-
procedure to find which of its subpro-
cedures return incorrect values; and
this process continues until the error
is found. This process can be quite
time consuming for programs with
large execution times, so much so that
much of this tracing is probably not
done because of the excessive cost,
and other methods are used to debug

programs.

Ideally, programs should prob-
ably be written using some kind of
program transformation scheme or
program verifier to help insure their
correctness; however, in practice, pro-
gram testing and debugging is the
main programming methodology used.
Current programming environments
such as INTERLISP permit a pro-
grammer to examine the stack when a
run time error occurs. This is often
not sufficient because the error may
pnot be in a procedure invocation
currently on the stack. Another alter-
native is to insert trace statements in
the program. This is also not satisfac-
tory for long executioxES, since there
may be thousands of lines of output

to examine.

It would be a significant aid to




program debugging if a more eﬂicignt
method of searching computation
trees were available. This would save
not only programmer time and com-
puter time, but would also make prac-
tical certain kinds of tracing that are
currently prohibitive in cost. It turns
out that there is such an efficient
method for searching computation
trees; the basic idea is that the
results of selected subcomputations
are remembered so that those sub-
computations need not be repeated.
These subcomputations are carefully
chosen and the manner of examining
the tree is carefully structured so that
the increase in computation time to
search the tree can be made arbi-
trarily small. The method may be
viewed as a generalization of binary
search to trees.

Shapiro has given one method
(Shapiro 1983) of searching the com-
putation tree. Our method is similar
to his “divide and query” method but
has the following advantages: 1. The
number of queries does not depend on
the branching factor. This can be
significant if the branching factor is
large, say, a thousand, which is con-
ceivable in g Program with iterative
statements, if not jn Prolog(Clocksin
and Mellish 1981). 2. The storage
required is boundeq by a constant fac-
tor of that required by the original

ever, many Prolog implementations
save all intermediate results until the
gnd anyway, so this factor often is not
lmporfa.nt for Prolog Programs. 3,
The Increased executjon time for
searching the computation tree can be

made arbitrarily small in our method.
That is, if the original program exect-
tion took say an hour, then it will be
possible to find the bug in an extra §
minutes of computation time using
our method, with an appropriste
number of intermediate mults‘saved.
However, in Shapiro’s method, it msy
be necessary to run the whole pro-
gram again, to learn its exefutwu
time, and then run it a third time to
find the bug. The third execution
may take as long as the first, so the
total execution time can be increased
by a factor of 3. It is not difficult to
modify Shapiro's method to ehplnlle
the second execution to determine the
execution time, but even with such s
modification, there is still a factor of 2
in execution time required.

Our method may be used for
Prolog or for other high-level pro
gramming languages, but there 128:
be difficulties for languages ‘“;
pointers. Also, if there are arrays, the
storage requirement can be lsrg®
Shapiro also mentions a “top doﬂle
query strategy which requires l'"e
extra storage, but which may sqll'“"
the execution time. This “top down
method can be made more l};‘;'
efficient, at the expense of & possi {
large amount of storage. We do e
consider the problem of nontermlﬂb"
tion; this may be apprwhed, i
related methods, as Shapiro menm‘:o
(Shapiro 1983). Another approsch @
oracles is given in (Edman and Tﬂﬂi‘
lund 1983) where methods for sem
automating the construction of 3
oracle are given. They are COI!“‘“M
with the problem of guaranteeing ¢ Z
correctness of the oracle, and ’ho_
how a correct oracle may be cof
structed from program specifications-
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We may consider the program
execution as a tree, where a procedure
invocation P that calls subprocedures
Py, , P, corresponds to a node in
the tree labeled P with sons labeled
P, -+, P,. The object is to find a
procedure invocation such that the
procedure P returned a wrong result
but all subprocedures executed
correctly; this procedure then con-
tains a bug. To find this erroneous
invocation, queries are given to the
user asking if a procedure invocation
with specified input and output is
correet. If the program as a whole
contains a bug, one can show (Shapiro
1983) that there must be some pro-
tedure invocation that is erroneous in
lhe above sense. Our method is essen-
tially a fast method of examining com-
Putations of programs, with little
overhead in storage or time; it appears
that no current system (such as
INTERLISP) contains a comparable
method.

2-' REDUCING THE BRANCH-
ING FACTOR

We first give a method for
ransflorming the execution tree to
reduce the branching factor to two.
The branching factor is the maximum
tumber of sons of any node in the
tree; the method in (Shapiro 1983) is
Sesitive to the branching factor.
Suppose a procedure invocation P
tls procedures P, ---, P. We
tllow queries of the form, “If pro-
tedure P was called with such and
such inputs, then should it be possible
10 reach a state after P, returns in
Which the variables accessible to P
have sych and such values?” Thus we
¢4 determine if an error has occured
before the end of the j* procedure
¢all, using a single query.
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Note that if j=k then this is
equivalent to asking if P itself
returned with correct values. (For
languages having global variables,
these must also be included in the
values used and returned by P since P
may use and change them.) This has
the effect of transforming a subtree of
the form

to a subtree of the form

Lot
»* */ \*
by

* 2
»*
i sy

3. CHOOSING I/0 PAIRS

The method works as follows:
A program is run. During the run of
this program, certain proce.dure invo-
cations are chosen and the inputs and
outputs to these are s}:ored. If the
program terminates with a correct
answer then nothing neeq be dogle.
Suppose the program terminates with
a wrong answer. Then some of the
selected if/o pairs are used to query
the user about the correctness o( the
corresponding procedure invocations.
Based on the results of these queries,
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either the incorrect invocation is
found or else a smaller subcomputa-
tion is found which contains the bug;
the method is then applied recursively
to this subcomputation. Note that no
recomputation is necessary until all
relevant queries based on stored i/o
pairs have been made.

The i/o pairs are chosen as fol-
lows: A procedure invocation is called
a A cutoff if there exists an integer n
such that the procedure takes time
greater than or equal to nd, but no
called procedure takes time greater
than or equal to nd, where time is
measured by numbers of procedure
calls. One can show the following:

Proposition 8.1. For any 4,
the A cutoffs form an upper semi-
lattice. That is, if P and q are two
invocations which are 4 cutoffs, and s
is the minimal subtree containing p

and q, then the root of s is also a 4
cutoff.

) Proposition 3.2. For a tree of
size t, there are at most 2n-1 invoca-

tions which are 4 cutoffs, for a4=-L
n

Proposition 3.3, Suppose a
procedure invocation p takes t, time
units, and t=2a, and q=4. Then
there is an invocation q in the subtree
of p such that qis a A cutoff and q
takes time ¢, for ast,<2a. (We are

assuming the branching factor is two,
as above.)

whenev.er the Program stops, the
stored Invocations wi]] form a set of A

cutoffs for small enough 4. We show
how to do this in the next section.

3.1.  Storing i/o pairs

Suppose that at some time,a‘ﬂ
8 cutoffs have been stored, and 3 is

about l, where the execution time is
n

t. Then only the 28 cutoffs are s.aved,
and only 28 cutoffs are stored uqtd the
execution time is about 2t. This pro-
cess is then repeated (i. e. only the #
cutoffs are stored until time ;bout 4
until the execution ends. At any time,

{ i
4 cutoffs are stored for ‘;‘4‘2.'

This requires the storing of. at most
2n-1 i/o pairs, by proposition 32
During the execution, it is necessary
to keep a counter with each pl’ofed'",e
call telling the time at which I
occurred, so that when the prO_ced“'k'
returns we may know how long it W’.‘
and whether it is a 4 cutofl. MSO-'h
is necessary to save the inputs to es
procedure until it exits. In langusg®
such as Prolog, this is no Pf"b',":;
since the backtracking mef_"‘“B
requires that this information :
saved. In other languages, such Vﬂ"(‘
may need to be explicitly saved, ﬁbe
ing possibly some extra storage. 'lblﬁ
procedure changes global varis wv
their original values will also have
be saved.

4. QUERYING THE USER

Suppose all 4 cutoffs have be‘¢:
stored, for as-t This may red'"
. S d . o the ex*
storing 4n-1 i/o pairs during ol
cution of the program, by sbf)“by'
soning. Then the user is queried first
kind of “binary search”. The“he
query is some 4 cutoff p such th3

T e L e
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time ¢, taken by p is between é and

2 . Py
+ where t is the execution time of

the program. Such a cutoff p exists

by proposition 3.3. If p is correct,

then a subtree of size at least -é- is

known not to contain the bug; if p is
incorrect, a subtree of size at most %

i known to contain the bug. In either

case, at least % of the tree is elim-

insted from consideration by this
query.

Such queries are continued on
the _relevant subtree, possibly with
tertain of its subtrees known to be
torrect. In a constant times log(n)
queries, the user will have located a
cutoll q which is incorrect but such
that all cutoffs in the subtree rooted
i q are correct. In fact, by proposi-
'lon'3.l, there will be at most two
m{:lmnl cutoffls ¢, and ¢, below q
“hich are known to be correct.
Therefore this series of queries has
teduced the size of the region in which

the bug may occur to at most 2.
n

;r:le metbod_is then continued on this
*duced region, with ¢, and ¢, con-
:::"d to be eliminated from the sub-
. This is possible since their i/o
f"" have been stored, and any
““Omputations need not repeat the
“mputations below g, OF g,

5. ELIMIN
PAIRs NATING OLD 1/0

eostly Tbe above method can be
In storage, since the ¢, need to
dm’;“ed. and they can accumulate
ot o5 b pass of the method. To
muh"ound t'bxs problem, we give a

od that insures that the number
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of such old i/o pairs is never more
than two. The idea is to save extra
i/o pairs during the next pass of the
method, which when queried will nar-
row the search for the bug down to a
subtree in which at most one such old
i/o pair exists.

For example, if there are two
such old i/o pairs r, and r, let T be
the minimal tree containing both of
them. Then during the next pass of
the algorithm, we save the i/o pair for
the root of T, as well as the i/o pairs
for its two sons. Then we query the
user whether the root of T is correct.
If so, the entire subtree can be elim-
inated and we only have to store the
i/o pair for the root of T instead of
both r,. Suppose the root is incorrect.
Then we query for the sons. If both
are correct, then the bug has been
found; it is at the root of T. If one
son is incorrect, then attention may
be restricted to that subtree, which
contains only one old i/o pair.

6. COST OF THE METHOD

Each phase of the method
reduces the size of the computatic;n
3

tree from ¢ to -f-'i Therefore the e

part of the computation must be
repeated, and so on, leading to a com-
s o 2t , 4t
putation time of t+-n—+-n—2+

or JE-L For n large enough, the

n— -
extra computation time can be made

very small.

The number of i/o pairs that

must be stored is 4n-1, since extra
airs need to be stored to acc_ount.tor
the fact that the total execution time
of the program may not be !{nown in
advance. Also, possibly 3 i/o pairs
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may be needed for the extra queries to
eliminate the buildup of old i/o pairs,
and at most one old i/o pair needs to
be stored. Thus we may need 4n+3
i/o pairs. The number of queries to
the user will be O(logt). For the
method to work, n must be at least 3,
so 15 i/o pairs may be needed. Prob-
ably this can be reduced significantly;
if arrays need to be kept with each i/o
pair, even 15 pairs may be excessive.

7 BACKTRACKING

In the above discussion we have
assumed that no backtracking occurs.
If backtracking does occeur, the
method can be modified to deal with
it. A procedure call may fail, in which
case the calling procedure must try to
find an alternative procedure call or
sequence of calls, or else must itself
fail. Each state in the sequence of
calls may be considered a possible
query, of the form “If procedure P is
called with such and such input
values, is it possible to reach a state in
which pPi, *» Pj have returned
successfully and the values of the vari-
ables accessible to P are such and
such?” Note that calls which fail may

lead to bugs, since possibly they
should have succeeded.

8. VARIATIONS

If the desired i/o relation of a
procedure P jg given procedurally,
then. instead of querying the user, it js
possible to query some Program which
tests whether p returns correct

s i o e R R © s .+ e ey

is equivalent to a slow, simple pro-
gram, the slow program may be used
as an automatic query answerer for
the fast program, but it is best not to
query the slow program very often.
Shapiro has observed that answers to
previous queries can be remembered,
to further reduce the number of
queries,

Another  variation of the
method is to query the user during
the first execution of the program,
even before the user knows that it
contains a bug. That is, as each i/o
pair as in section 3.1 is stored, ".B
also used as a query to the user. It is
easy to show that the total number of
queries is increased at most by a con-
stant factor by this method. How-
ever, if the program is unreliable, then
it probably will give wrong rf—‘»"'“
early in the computation, and this can
be detected early. Also, if each /o
pair is used as a query as soon as it is
stored, then fewer i/o pairs need to be
stored. For example, suppose p and q
are i/o pairs which are stored, and qis
in the subtree of p (that is, q is a0
invocation of a procedure during the
computation of p). If p is correct,
then it is not necessary to save ¢
Thus fewer pairs need to be saved.
On the average this reduces the
number of i/o pairs stored at 3y
given time to be proportional to the
log of the number required otherwise.
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ABSTRACT

I a previous paper we introduced an
::::td model for OR-parallel logic program
o on, onented toward applicative

iectures. Central to this method is
Poeined  processing of streams  of
subqnuhon data objects. We now address
Mo implementation issues associated with
this approach:;

I.The efficient representation  of
substitution data objects, and

c? A parallel  unification  algorithm
Ompatible with this representation.

ccom approach to the first issue involves a
indexag vectorized representation permitting
e :ms of local variable bindings.
e the second issue exploit a

w"up: "-;""'Cat'on as a write once
p ale problem, which can be
Corrc;:: implemented by a particular
wereon of applicative and imperative
Chitectural features.
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on sabbatical leave from the
University of Utah 2

1. BACKGROUND
1.1 OR. vs. AND-Parallelism

Efforts to exploit parallelism in the execution
of logic programs may be categorized into
two domains (Conery and Kibler 1981):

OR-parallelism, where multiple clauses
unifiable with a goal literal are attempted

concurrently, and

AND-parallelism, where multiple literals
within a clause body are attempted

concurrently.

OR-parallelism is implementationally
simpler. since the alternative clauses under
consideration are logically independent
(Haridi and Ciepielewski 1983, Furukawa et al.
1982. Umeyama and Tamura 1982, Warren
1984). However, control of eagerness in OR-
parallelism is known to be a problem.

In contrast, the concurrent goals pursued
under AND:parallelism are not logically
independent, since they are generally
‘cooperatively’ seeking to bind one or more
shared variables. This cooperation provides a
basis for concurrency control, if read/write

disciplines are placed on the shared variable
within a clause. Some semantic

occurrences :
and implementational complexities are
incurred, but the net effect is a more familiar

‘process oriented’ view of the computation.
Two principal approaches to AND-parallelism
through shared variable control have
appeared (Clark and Gregory 1983, Shapiro

1983).
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We believe that a blend of OR- and AND-
parallelism will prove most effective in the
long run, but that the best such combination
will depend on the underlying architecture
employed. For this reason, we are
investigating parallel logic programming on a
particular applicative architecture named
Rediflow (Keller et al. 1984), with the strategy
of first understanding the implications of OR-
parallelism. AND-parallelism will be
subsequently introduced, when our
implementation understanding has grown and
(perhaps) a consensus has arisen at large on
what forms of AND parallelism are most
desirable.

1.2 Issues in Implementing OR-Parallelism

Given that we wish to develop an OR-
parallel logic programming implementation on
an applicative architecture, two general
issues arise:

1. Multiple environments: Under sequential
logic programming implementations, eg.
Warren's  Prolog compiler for the
DECSystem-10 (Warren 1977), there is only
one binding environment in existence at a
time. The others are ‘hidden'. and are
restored as necessary under backtracking.
For this reason, variable binding by
destructive writes into unique locations can
be utilized (assuming that references to the
changed variables are retained, e.g. on a
‘trail list', so that the bindings can be later
undone if necessary). The result is a
‘shallow binding’ effect. similar to that used
in interpretive Lisp systems, but with the
simplification that valyes to be restored are
uniformly the pseudo-valye unbound, which

we denote by the atom Q, representing the
lack of a binding.

In contrast, several instances of a given
goal can be concurrently active under OR-
parallelism. Hence multiple  logical
environments must exist logically, though

complete physical sSeparation is potentially
costly.

2. Parallel  unification: A unification

algorithm is needed which:

a)is compatible with the multiple
environment requirement (i.e. will bind
variables such that they are ‘shared’ within
a clause instance, but ‘non-shared’ among
OR:-siblings of that instance), and

b) exploits well the potential concurrency
in typical unification invocations.

In a previous paper (Lindstrom and
Panagaden 1984) we presented a model for
an OR-parallel execution method based on
compositions of substitution data objects.
Since that paper's completion, we have
refined the method to deal with the two
important problems just cited. We now
describe these refinements.

2. REVIEW OF BASIC APPROACH
2.1 Key Features

Our previously reported approach is based
on the following ideas:

1. a stream-based analog of the ‘standard
backtracking execution model (in particular,
left-to-right pursuit of goals within clause
bodies);

2. OR-parallelism, with a particular form of
induced AND-parallelism (eager passing of
subsolutions to AND-siblings);

3.an applicative formulation, except for
indeterminate stream merging (we Wil
weaken this a bit further);

4. concurrent processing of several 10p-
level goals, if desired, and

S.a ‘pure code’ utilization of program
clauses, with all instantiation done Vvid
composition of substitution records.

22&@.@&&%

Central t0 our method is the use Oof
substitution objects as the sole means
representing environments. For a detailed
treatment of the associated mechanics, the




::” is directed to the previous paper.
= , wé summarize here the essential
necessary 1o understand the issues
mmediate interest. ”
m will assume the substitutions are

symbolically (i.e. as sets of
mma on identifiers). The major
tperations on substitutions are the following:

l1.Goa! instantiation: Let ¥, be a
bl appearing in a clause C,, and ¥ e
shsiution on 1(C,). the set of varlables
mn C, (the ‘native’ name space of
; en 3 535&); J, denoles. the
nstance’). W, = ’ P
wad e lefm ¥, an instantiation
W‘Mﬂm’ . and stipulate that range(¥,) C
s‘h“e‘,). where domain(¥) (resp. range)
( of variables appearing on the left
;50 "ght) of assignments in a substitution
- Thus instantiation substitutions:

"mdetnamm:nngohmm
name space, and

:":;M the important effect of binding

ng, whereby chains of bindings are

&IWJ‘ Th.m (0-9: x‘.Z- f(a, Y), Y := g(Z, b),

ik possibility, as we shall see, is a
onsequence ol unification, where
can be incrementally refined.

';S;bz"u‘i unification: Now suppose we
S the me;'vl unification of ¥ ' with literal
resent e of a target clause C,. We
e sbsttyg success of this unification by
Lad ;’" pair [1,, 7,]. such that %' °
mmu;,on We term ¥, a unification

+ 7, 1s of course an instantiation

. playing the
M!'%'w’o same role for ¥,

Asa

mmmwwmoﬂ. we require that ¥,
N the namend variables in 7 ' into terms
Ugmenteq 1o space of C, (possibly
gt thay |, accomplish this). Thus we
% e [879€(3,) C domain(y,). There is

%an. of bindings in unification

161

uninstantiated literal

instances of ‘.Fo

gO
Py

90 6y.° !2 specializations of
/T\ ‘:}'0 ° ¥ by unification
‘Jo P Al 32 ° 33' solutions to
———— go o 31 ° '.'2
3 '

1

Fig. 1. Multiple environments under
substitution application.

3. Solution restatement: By our method,
each solution to ¥, © 13 will be represented
as a refinement ¥’ of T4 SO domain(f;) C
domain(!s'). (The domain of 5'3' may include
an expansion o accommodate new
unbound variables contained in the solution
of ¥, ° ¢.: this will be clarified later.)

Moreover, since range(J,) c domain(:fs), the
be restated in

solution conveyed by 33' may
terms of nco) by the composition 31'= .‘!1 °
L AR fs'. ¥ ' is then used to instantiate the

rizght AND:-sibling of %, or, if ¥, is the

rightmost literal in its clause, for solution
restatement in terms of the name space of
the parent goal of 90.

s presented in our
ide a mechanism for
stitution (i.e. ¥5) with

The data structure
previous account prov

matching a solution sub:
its associated goal instance, as remapped by

the associated unification substitution (i.e. *Efo'
o ¥.). Thisisdone by packaging instantiation
substitutions within chained ‘application
objects’, the details  of which are
inconsequential here.

e functional
its reliance
) ensures the
required

it is important to note that th
nature of this technique (i.e.
solely on substitution application
environment separation effects
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under OR-parallelism. Each substitution
application produces a distinct object, with
new bindings automatically separated from
any existing substitutions. Fig. 1 summarizes
how multiple environments arise under our
approach.

3. REPRESENTING SUBSTITUT IONS
3.1 Vectorized Substitutions

We now address the need for a ‘compiled’
substitution representation. The symbolic

representation we have used heretofore has
two significant drawbacks:

1.binding lookup is associative, i.e. by
identifier keys, and

2. awkward name conflict problems can
arise upon variable importation.

We adopt the following efficiency criteria for
our new representation:

1.direct access of bindings without
searching;

2. control of physical copying costs, and

3. compactness, whereby an instantiation
substitution ¥, should have a physical size
on the order of |domain(:f1)|.

Our solution is of course to use a vectorized
representation, with local variables compiled
into serial indices. We will denote such
indices as ‘V1', 'v2', meaning ‘the local
variable with index 1', *._ index 2', etc. Our
vectorized substitutions will include two
portions:

an initial portion, equal in length to the
number of local variables in the clause
involved, and

'an. extension, required to represent
bindings of variables ‘imported’ by
nstantiation.

Sample clause

p(X, Y) :- q(X, K(2)), (2. Y. c).
Compiled torm:;

p(V1, V2) :- q(V1, 1(V3)), r(V3, V2, ¢).

Sample instantiating substitution
(symbolic):

[X:=b,Y:=glaW),Z:=ZW:=W|

Sample instantiating substitution

(vectorized):

b g(a,v4) | Q B
Vi v2 v3 V4
> @ W)

Fig. 2. Vectorized substitution representation.

The variable importation effect is a specid
requirement of our technique for representing
environmerits by substitutions. We requir®
that every unbound variable appearing in 2
goal instance be mapped by unification onto 8
term in the target clause name space. This
may be seen in fig. 2, for example, where "‘°
variable W is introduced into the clauses
name space. Hence every variable as yel
unbound in a goal instantiation has a locd/
instance in the resulting substitution. This s
the essense of our technique for representing
environments by substitution data objects.

3.2 Applying Substitutions

We now indicate how substitutions =
efficiently be applied to literals using oV
selected representation. There are WO
occasions where such applications occur.

During unification: A unification 8“3"‘9:
involves an instantiated goal literal (¢.9- %
%)) and the uninstantiated head literal (€3
F,) of a target clause. If successful, this
Produces a substitution pair [%, %) %




FUCTION apply2|[s1, s2]|t =
IF {svar:t
THEN IF  eq:[tselect:[t, s1],
unbound]
THEN tselect:[t, s2]
ELSE apply2|[s1, s2]|
(tselect:[t, s1])
ELSE IF  atom:t
THEN t
ELSE apply2|[s1, s2] || t.

FNCTION restate:[s1, s2, s3] =
{s3b = bindsubst:s3,

FUNCTION f:4 =
IF  eq:[tselect:[1, s1],
unbound]
THEN tselect:[
tselect:[1, s2],
s3b]
ELSE tselect:[1, s1]],

RESULT meke:[ 'tuple,
tlength:s1, 7]},

FUNCTION bindsubst:s =
{3 = bindternm Il s,

FUNCTION bindterm:t =
:F fsvar:t
HEN tselect:[t, sb
ELSE IF  atom:t )
THEN t
ELSE bindterm || t.

RESULT sp)

Fig. 3. Subsyi
13y tution application functions
8r detects variable occurrences).
mp'_eviously. In section 4.1 we will
e are zu:nmua"y constructed prior to
50"Sed dunngd I 1o 90. so the image of
unificat .
n'“feor%entedby PRETA I
':mzuu. 2] || 10
)
7,82 = 7, 10 = 9, in tuple

’r—ﬁ
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During solution restatement: Here we wish
to compute :f,’ = )‘, ° 32 ° :fa'. This is
accomplished by

restate:[s1, s2, s3]
where s1 = ¥, 82 = ¥, 83 = §', and
restate is defined as shown in fig. 3.

I'he auxiliary function bindsubst is used
to decascade :fs'. i.e. apply .'fa' to itself
exhaustively. This is done in a particularly
efficient manner, exploiting a form of
definitional circularity discussed in (Keller
and Lindstrom 1981).

The functions in fig. 3 are expressed in the
Function Equation Language FEL (Keller
1882), which resembles ISWIM (Burge 1975)
in many ways. The following comments

should help clarify the notation:

Block expressions are denoted
{equations RESULT expression}
where the eguations define locally bound
names, generally used within the result
expression. Static scoping rules apply. In
addition,
1. Right associative function application is
denoted by an infix colon, ie. f:x:y =
f:(x:y)-

2."|" denotes left associative function
‘Currying,’ i.e. fixly (f:x):y When
used in a function heading. e.9.

apply2|[s1. s2]|t
a Curried or ‘multi-tiered" function .is
defined. Hence apply2 may be invoked in
expressions of the form

(applyZ:[sl. s2]):t,

orsimplyapp]yzl[si, s2]|t.

R | Bl L FEL denotes tupl?wife
Jlicati ‘apply-to-all’). ie. T|I[x1,

application ( d

s xkY = [f:x1, -0
e i-th component of a
4 tselect:[1, t]
for tselect:[1,
obtained by

4. Selection of th
tuple t is denote
head:t offersa synonym .
t]. The length of a tuple t 1S



5.In addition to direct creation by
‘displays’ of the form [vi, ..., vk],
tuples may be created indirectly by via the
utility function make:['tuple, k, f],
which yields the tuple [f:1, f:2, ...,
f:k]. Tuples of writeable cells may be
created viamakecells.

3.3 A Special Problem

There is a flaw in the restate function
given in fig. 3, in the case where solutions
contain unbound variables. An example is the
unit clause C:

contemporaries(fatherof(V1), motherof(V1))
unified with the goal instance

contemporaries(V1, V2)

under the instantiating substitution .‘!1 = [Q,
Q]. Unification produces [.‘!2. 1] =

[[v2, v3], [2, fatherof(v1), motherof(V1)]].
The resulting 33' = 33. and by the restate

function defined above we obtain the
malformed substitution

.‘f,' = [fatherof(9). motherof(£2)]

due to accesses of the unbound variable V1 in
:fa'. Under our vectorized approach, treating
this effect correctly requires relocating the
indexed representation for V1 and extending
:f" one component position. That is, we
should instead obtain

$,' = [fatherof(v3), motherof(V3), Q].

Since this difficulty is Comparable to the
variable  importation problem during
unification, we defer discussion of correcting
restate until section 45, after our
unification technique is presented.

4. PARALLEL UNIFICATION

We now consider the issue of efficient
unification within this framework. From our

standpoint, there are four important aspects
of the problem:

1. recognition of concurrency potential
within the task;

2. exploitation of that concurrency UVOUS"
straightforward use of  applicative
implementation techniques;

3. appropriate synchronization controls to
ensure consistent binding of shared
variables, and

4. compatibility with our vectorized
approach.

Unification has of course been intensely
studied as a sequential algorithm; the recent
algorithm of (Martelli and Montanari 1982) is
representative of the current state of the l"—
Indeed, recent results indicate that in certain
pathological cases, unification is inherently
sequential in nature (Dwork et al. 1963
However, it is clear that in typical unffubm
applications considerable potential for
parallelism can arise nevertheless. For
example, when variable occurrences. ae
unique within the terms to be unified,
concurrency on the order of the arity of the
terms is clearly possible.

Our approach will seek to exploit such
typically available concurrency, Wwhie
observing necessary synchronization contro's
when multiple bindings of a given variable
attempted. This will be achieved by:

viewing unification as a special ‘'writé
once’ database update problem, and by

& 2 X : i
utilizing a particular combination 1
applicative and imperative languag
features.

Note our objective here is the smooth
integration of unification into our overdl
evaluation method, in which concurrency
arises primarily through OR-parallelism. BY
exploiting whatever concurrency is availeblé
(albeit limited) within each unification attempt
two benefits result on an architecture such 2
Rediflow:

1. greater activity breadth (i.e. ~enab?d
instructions’)  within each processing
element (PE), thereby reducing the chance
of PE idleness due to memory latency, and




2 speedier  determination of  failing
unification attempts.

41Unification as a Database Problem

To begin, we simplity our unification
M 1o a more famikar form in which
bindings are collected in a single substitution,
rather than in "", |r,, !,] pair suggested
wove. We accomplish this by constructing !,
pior to actual commencement of the
unification algorithm, as follows. Suppose %'
= 9,* 1, 5 10 be unified with ¥, the head of
aciause C.. Let n be |1C ). Then for J, we
create a (nonwriteable) tuple with length(J,)
= length(1,), as follows:

K20 = 2, then £.[i] = V(n + UB(, 1,)),
where UB(, ) = |{k [k < iand fk] = Q).

Otherwise, the value of ¥,[i] is undefined,
and no accesses will be through it.

The result is a mapping of ¥’ by ¥, into the
fame space of C,, as exiended by the
importation of images of all unbound
Vaables in ,". Since ¥, simply serves a
vanable ‘relocation’ function, it can be fixed
@ unification set up time. Then all bindings
during the actual unification process are done
Via assignments 1o J,

Now. let us consider paralle! unification as a
Classical’ database update problem within an
applicative framework. e.g. as formulated in
(Keller and Lindstrom 1982). Here:

The ‘database’ is the vector ¥, initialized
1o uniformly Q values.

The database system consists of a stream
of transactions appled to a stream of
Galabase versions. Each transaction
involves an indivisible access and bind
Operation, which reads a variable's binding,
and, if equal 1o 2, binds it. The response
Generated for the transaction indicates
whether the binding was adopted, or, if not,
Wh«‘_it binding is already in effect for that
variable.
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The execution of each transaction yields
in addition an updated database version (.‘fa
vector), which is then fed back in a cyclic
fashion, to be paired with the next
transaction arriving. An overall transaction
serialization effect thereby results.

This approach is quite clean functionally,
relying on a single pseudo functional
operator, viz. the stream merge used to
collect transactions for application against
the database. However, from a pragmatic
viewpoint, this approach is suboptimal, for the
following reasons:

1. All accesses of the database are made
mutually  exclusively, when in fact
serialization on a per-variable basis is
sufficient.

2. Moreover, unsynchronized reads of the
database can be permitted, as follows. By
the special nature of the unification
algorithm, each variable is bound (‘written’)
at most once. That means:

a) Whenever a binding is read, if the
value returned is other than Q, that value is
necessarily correct and final.

b) However. if the variable is seen to be
unbound, any attempt to bind it must be
done through a serializer which performs
the required access and bind operation,
but with serialization on a per variable
basis.

¢) In short, the liberalized access policy
permitted by this special ‘write once'
property is ‘read freely. queue to bind'.

3 Finally, the recirculating database
version method can be criticized for

excessive tuple copying as lhg stream of
intermediate 33 representations IS produced.

4.2 A_Mgmj.mﬂa!ﬂmﬂﬁ

Suppose we seek to unify Fg ° T2 5, with
- 5 the head clause of a target clause C,- The
‘write once' idea described above can be

exploited as follows:




FUNCTION unify:[t1, t2, k2] =

{s3 = makecells:['tuple, k2,

FUNCTION

FUNCTION
IF
THEN
ELSE
IF
THEN
ELSE
IF
THEN

ELSE

FUNCTION
IF

THEN

{oldbind = ab:[var,

allub],
allub:1 = unbound,

termunify:[t1, t2] =

isvar:t1

trybind:[t1, t2]

(* t1 is a function *)

isvar:t2

trybind:[t2, t1]

(* two non variables *)

eq:[head: t1, head:t2)

argunify:[t1, t2, 2,
tlength:t1]

false,

trybind:[var, newbind] =

eq:[tselect:[var, s3],
unbound]

(* bid to bind var o

newbind],

RESULT
IF  eq:[oldbind, [1]
THEN (* binding OK *)

true

ELSE (* recur )

ELSE

termunify:[newbind,
oldbind]}
(* already bound -)

termunify:[tselect:

[var, s3],
newbind],

RESULT [termunify:[t1, t2], s3]}

Fig. 4. Unification functions.

We create !3 as a tuple of writeable cells,

equal in number to l‘i’(c,)l

+ UB(Iength(:ﬁ),

1,), i.e. the number of native variables in ¢
plus the number of variables imported intc;
this instantiation of C,. All entries in :fa are

initialized to Q.

The cells in !3 are read freely during
unification, and, when seen to be equalto 0,
attempts to bind them are made as required.

A serializer procedure (pseudo functional)
iIs created for each variable to service
access and bind requests in the sense
described above. Mutual exclusion within
serializers is achieved by the muter
resource control construct described in
(Jayaraman and Keller 1980).

Fig. 4 gives the basic functions involved in
our unification approach. Note:

1. Literals are represented as nested
tuples, with constants denoted as O-ary
functions. Hence the representation for the
compiled clause in fig. 2 would be:

[p. V1, V2] :- [q, V1, [1, v3]}, [r. V3, V2, [c]}

The top-level invocation is

unify:[t1, t2, k2]
where t1 = & o o 1, t2 =9, and k2is
the length of the desired ¥, substitution
tuple The result is [true, 7] if the
unification succeeds, and [faise, undel]
otherwise.

The internal function is termunify
performs most of the required case analysis
If t1 and t2 are nonatomic, the auxiliay
function argunify:[t1, t2, a. b] (not
ShOWn) altempts pairwise unification of
{tselect:[1, t1], tselect:[1, t2])
fori € {a, ..., b). This is done in parallel. o0
a 'divide and conquer' basis, with eagef
failure reporting. We assume unique arities
for each functor symbol.

2. trybind does unsynchronized reads o
variable occurrences. If a variable is found
o be already bound, or appears to b
unbound but fails a binding attempt
termunify is called on the value retrieved
and the rejected new binding.




s3m = make:['tuple, k2, allmut],
FUNCTION allmut:1 = gmutex:[],

FUNCTION ab:[var, newbind] =
(* access and bind serializer *)

ru1t:[tselect:[var. s3m],
IF  eq:[tselect:[var, s3],
unbound]
THEN (* free to bind now *)
seq:[treplace:[var, s3,
newbind],
(1]

ELSE (* too late *)
tselect:[var, s3]]

Fig. 5. Unification synchronizer (nested in
unify).

I p(X.a, U, Y)
%03, = p(X, a, K2). Y)
%= p(Z. X, Y. g(X)
! =

|Q fiva) | @ Q

i v2 v3 va
N v m @

b

2 =

i v2 v3 va
® w v @

f(ve) | @ g(ve) | @

e
i v2 v3 wv4a Vv Ve

A I T o R v e Tl

Fi ¢ 2
8. 6. Sample unification execution.
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4.3 Synchronization Control

The function trybind in fig. 4 relies on
ab:[var, newbind] (‘access and bind’) to
manage the writeable cells representing ¥,.
Applications of ab return a null tuple {] if the
requested binding was adopted; otherwise,
the existing binding is returned. Fig. 5
provides the code for ab.

The following comments will be helpful in
understanding fig. 5:

The tuple s3 is parallelled by a tuple s3m
of mutex data objects (each created by the
primitive gmutex:[]). The FEL construct
wait:[m, exp] ensures that at most one
exp within a wait on a mutex m will be
executed at a time. Hence a ‘critical
section’ type effect is obtained.

The operation treplace:[1, t, v]is
the write analog of tselect:[1, t].

The pseudofunction seq:[a, b] causes
the sequential evaluation of a and b,
generally for their side effects, and then

returns the value of b.

A sample application of unify is shown in
fig. 6.

4.4 Parallelism Obtained

We claim, without rigorous proof, that the
unification approach just outlined exploits as
much concurrency as is possible within a
straightforward ~ manner. Observe in

particular:

Argumentwise concurrency is attempted
whenever two nonatomic terms are to be
unified.

Since mutexes are implemented on
Rediflow with individual server processes,
no delays are experienced on wait
operations unless two involve the same
mutex (here, when two bindings of the same
variable are attempted simultangously).
These delays seem inherent in the
unification process.




168

4.5 Variable Exportation

We now return to the question of
exportation of unbound variables in solution
substitutions. The problem is comparable to
that of variable importation during unification
accomplished by :!2. and a similar relocation
technique suffices.

Suppose we are to compute 1 = I, o !2 °
:fa‘. Letn = UB(Iength(fa‘). !3'). the number
of variables left unbound in .‘!3'. fn =0, we
have no variable exportation problem.
Otherwise, we define a vector s3rel, where
s3relli] = V(Ienglh(.‘f') + UB(, :fs’)). and
extend 3‘1 to include n new variables, all
unbound. Then when references to unbound
variables are detected in bindterm, they are
relocated through s3rel.

4.6 Economic Issues

We now offer a brief economic analysis of
this technique for representing  binding
environments. Two questions naturally arise
when this method is considered for large
scale logic programming applications:

1. Will  variable importation cause
substitution vectors to become
unreasonably large, and

2. Will the repeated use of composition
functions eventually degrade the speed of
producing each subgoal solution?

We believe the answer to each question is
no, but do not as yet have conclusive
empirical evidence for support. However, we
offer the following informal arguments,

Question 1: The size of each substitution
vector is equal to the number of native
variables in its associated clause, plus the
number of unbound variables imported into
its environment. If an imported variable
does appear in a term bound to a native
variable, that variable importation g
necessary and useful under our technique
for management of multiple environments,
The wasteful case is when a variable is
imported, but is in fact unreachable, Note

IR e e TR 00
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such variables could be detected by
complete traversal of the goal terms
undergoing unification, but we judge this
test to be unacceptably slow in practice.

Instead, we offer the following simple
optimization. Each imported variable Vj in
an instantiation substitution 13 will be the
image of some Vi in the matching unification
substitution !2. If Vj is unreachable, it wil
surely be still unbound when restatement of
a solution 1.’ takes place. Hence Vj can be
mapped by s3rel back to Vi, rather than to 2
new Vj'. The net effect is that the number of
potentially unreachable imported variables
in a goal environment is proportional 1o the
path length from that goal to the root query
in the overall AND/OR tree (i.e. the number
of ‘parent goals). Thus unreachable
imported variables do not accumulate as we
move left to right in the AND/OR tree.

Question 2: In examining the code of fig. 3,
we see recursive traversal of terms i
apply2 and restate. While it is true thal
such traversals do cascade as we move 10
the right (and upward) in the AND/OR tree,
we also point out that

a)such traversals are done only 2
genuinely required, given Rediflows
underlying lazy evaluation method, and

b)once such a traversal is done, S
result is recorded in a substitution vecton,
thereby saving OR-siblings from the samé
effort.

5. CONCLUSIONS

We  have presented a vectorized
representation for substitution data objects 8
an efficient technique for environment
representation when doing OR-parallel logic
programming on applicative architectures-
Procedures for maintaining  thesé
representations were outlined in the WO
situations of most interest: concurrent
unification, and solution reporting.




This work has similar intent as do most
storage management techniques within OR-
paraliel logic programming implementations.
0'_ panicular relevance is the work in
(Cieplelewski and Haridi 1983a, Ciepielewski
and Haridi 1983b). However, our work
contrasts with theirs in the following respects:

1. Environment separation is
accomplished incrementally as a preface to
unification, rather than as bindings are
performed.

2 All variables pertinent to a goal are
coﬂected in a single vector, which we
bgheve will have locality advantages on
distributed architectures.

3. No 'directory’ or ‘context’ structures are
used; vectorized substitutions suffice for all
environment representations.

4.The method is integrated with a
concurrent unification algorithm.

.5..F|nally. solution reporting (to AND-
siblings or a parent goal) is done by a
Substitution composition technique which is
both efficient and purely applicative, thereby

facilitating additional concurrency in its
execution.
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A CLASS OF ARCHITECTURES
FOR A
PROLOG MACHINE
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ABSTRACT

This paper presents a view of the
tomputation of Prolog programs that
{sv suitable for exxressing parallelism.
Ve develop an idealized architecture
consistent with this view which allows
for exploiting most types of parallel-
sms. The architecture is based on an
eficient broadeast link. The idealised
architecture requires infinite resources,
and so we consider various ways of
',l'}fpplng It onto practical topologies.
ypes of parallelism that should be
(f?lamed while making this approxima-
10n are discussed, and a class of
architectures s developed  that
:PPfoxlmqtes the ideal. The parame-
i of this class are defined and ecri-
€ria for evaluating them are given.

L Introduetion.

Prolog is becoming widely
ac;epted as a powerful programming
tim;!‘"ise. Its non-procedural formula-
e (van Emden 19762 and clean

Mantics (of pure Prolog at least)
I € It an executable specification
tatig:age' A large number of Al appli-
livelns were programmed in a rela-
I Y short time in Prolog (Szeredi
e The increased availability and
i cost of hardware along with the

‘reased demand for computational
Power makes it jmportant to attempt

Speed :
hardware. up Prolog using parallel

mak Prolog has certain properties that
& le. It an attractive language for
of L lling parallelism. The expression
\1UIP?rallcl|sm is natural in Prolog.
al tiple clauses for a single predicate

oW for expressing OR-parallelism.

The body of a clause consists of a con-
junction of literals, and this allows for
AND-parallelism. Although most Pro-
log implementations impose a left-to-
right sequencing, for pure Prolog it
can be considered as an optimization,
implemented because in most cases
(when variables are shared between
literals), sequential execution is more
efficient than independent execution of
subgoals. Besides, in the absence of
parallel hardware, there is little
motivation for not imposing sequenc-
ing.

The criteria that we stipulate for
an implementation of parallel Prolog
are: (1) it should be realizable with
current or foreseeable hardware. (2) it
must be scalable, i.e., one should be
able to add extra processing power to
the system and get a gain in perfor-
mance without a significant redesign
of the system. Implementations based
on shared global memory are not
acceptable, because shared access to a
common memory will take more time
as the number of processors Increases.

Several attemptg have been made
wards this goal. The AND-OR process
:r(:odel of (C%nery and Kibler 1983,
Conery 1983) concentrates on how to
decompose a problem into its subprob-
lems when there are dependencies
across the subproblems. It is a
rocess-based model of computation:
questions of assigning processes to pro-
cessors and the structure of communi-
cation links between the processors are
postponed to a later stage. .
The EPILOG system of (Wise
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1082) deals mainly with the changes
that need to be made to the language

Prolog to make it a suitable candidate
for implementation on a data-flow
machine. Since Prolog as it stands
now has constructs that are useful
only in a sequential implementation,
making changes in the language is cer-
tainly an important issue. We believe
that the architectures for a Prolog
machine could be investigated con-
currently.  An architecture should
implement at least pure Prolog and
should be flexible enough to incor-
porate extensions as needed.

The PRISM system (Kasif, Kohli
and Minker, 1983) implements Prol
on a special architecture called ZMO
(Rieger, Bane and Trigg, 1980) They
have a set of problem-solving
machines and an additional set of pro-
cessors to store clauses. Thus each
unification * requires two messages.
The processors communicate via a sin-
gle ‘fast conveyer belt’. So the com-
munication delays increase linearly
with the number of processors, redue-
ing the scalability,

This paper develops an approach
that does not assume shared memory
and deals with issues starting from the
available hardware level through
architectures, execution methods and
control strategies. The next section
presents a general view of Prolog com-
putation that is suitable for paralle]
Interpretation. In Section 3, we
develop and optimize ap idealized
architecture for Prolog. We examine
its properties and the way it can be
used to execute Prolog programs in
parallel. It is idealized in the sense

2. A View of the Computation,

Traditionally, a Prolog com
tion has been viewed ag En AN!I))?&:

) R b i el |

tree (Bruynooghe 1982) with the AND
arcs corresponding to each literal of
the query and the OR arcs correspond-
ing to the possible clauses for each
literal. Although elegant in some
respects, this picture of computation
hides its complexity in the require
ment that all the substitutions must
be consistent across the tree. Ability
to view the subproblems indepen-
dently is crucial to developing models
that will execute them in parallel
Therefore we constrain our tree
models so that each node regresenls 3
completely described subproblem that
is solved without any reference to the
nodes in the tree above it. We make
the constraint more concrete by asso-
ciating a partial solution-set (PSS) with
each node in the tree. This set con-
sists of substitutions for variables that
make the subgoal represented by the
node true, and is to be computed
using only information from other
nodes in the tree below it.

The tree, then, should represent
the subproblem reduction process vis
the AND-ares and exploration of alter‘h
native solutions via the OR-ares. How-
ever, in a large number of cases, the
AND-OR tree does not represent the
subproblem reduction process faith-
fully. Consider an AND-node with .‘Ej
query: ‘p(X),q(X,Y)". In most practic
implementations (parallel or sequel-
tial), this problem would be solved by
solving one of the literals (say, P(‘\.']z
first, and solving the other literal wil
the values for X provided by the ﬁ"{;
Thus, if x,x, .. x, are the values for]
returned by p(X), the true subprob-
lems of the problem, i.e. those that
must be solved to solve the origins!
problem, are: ‘p(X), ‘q(x, Y)’, 'Q(!a?
- ‘q(x,,Y)". (assuming q(x,,y) was the
only q to succeed). This sub-division
cannot be represented in the AND-OR
tree: it has just one node for ‘.h:
literal q(X,Y). Given our constrain
that a problem must be solved using
only information from below it, the
AND-OR tree dictates that the two
Problems, p(X) and q(X,Y) should be
solved independently; the solution sets
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would then be ed to a con-
sistent solution. v .

We therefore introduce a some
what different picture of a Prolog
computation, e computation is
rpresented by a REDUCE-OR tree,
similar to an AND-OR tree. The root
corresponds to the quer{. and is a
REDUCE node. Except the root, each
REDUCE-node corresponds to one
clause of the program. The sub-nodes
of & REDUCE node are OR-nodes.

correspond to a set of subprob-
lems that ean help solve the problem
that the REDUCE node represents.
: may be multiple ways of reduc-
g a p to subproblems. How-
ever, the ares cof d to one par-
ticular way chosen by the control stra-
_‘;f! (CSQ Thus, for example, if
X)4XY)' is the query, a possible
structure for the root of the tree is as
shown in Figure 1.a. A dot on top of
& variable indicates that the literal
containing the dotted occurrence is
the gemerator of that variable. The
values of that variable used in the
subproblems for other literals are
those that satisfy the generator literal.
® generators are chosen by the CS.
The cs might have dictated the struc-
l;{! shown in Figure 1.b, or another
(Figure 1.c), where the parent node
computes the join.
. Each OR node corresponds to a
xnlk literal. The multiple ares from
‘hmpond to potential solutions to
i literal. To make the picture more
"?uﬂ'ﬂl. we will consider each clause
of the program as a potential way of

p(X),q(X,Y)

) -9
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solving any literal. (As opposed to
only those clauses that have the goal
predicate as their head literal). All
OR-nodes now have the same struc-
ture. Each has exactly N children,
where N is the number of clauses of
the program.

The computation can be viewed
as a process of developing this tree.
Starting with the main query as the
sole REDUCE node in the tree with an
empty PSS, one extends the tree in any
of the following ways:

(1) Corresponding to any literal of an
active REDUCE node R, one may add
an arc from R to a new OR node O
representing an instance of the literal,
provided the generator literals for
those variables that are not generated
by this literal have already been
attached to R. Then O is instantiated
with a consistent composition of the
substitutions, one from each of the PSS
of the generator literals.

(2) To any OR-node that is a leaf of
the tree, one may add N arcs to
REDUCE nodes, one corrwpondmg to
each clause of the program. Each
REDUCE node with a clause whose
head unifies with the literal of its
parent node is considered an aclive
node. The root is defined as an active
node. The instantiated body of the
clause becomes the goal of the new
REDUCE node (say R). If tl‘xe body is
empty (the clause is a ‘fact’), the PSS
associated with R becomes a singleton
set with the unifying substitution as

its only member.

S

(b)

Figure 1
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(3) Any entry from the PSS of a
REDUCE node can be added to the PSS
of its parent node. A substitution can
be added to the PSS of a REDUCE node
R (representing a composite goal G) if
it 1s a consistent composition of the
substitutions, one for each of the
literals of G, from the PSS's of the OR
nodes below R.

3. An Idealized Architecture.

We will develop an architecture
for implementing an execution scheme
based on the REDUCE-OR tree. Our
first approximation is isomorphic to
the tree itself, with a processor
corresponding to each node and a phy-
sical communication link correspond-
ing to each arc. In this section, we
optimize this architecture step by
step, and show how it can support
various kinds of parallelisms.

First, let us describe the execu-
tion method and its properties on this
architecture. The top level node gets
the query and decides on the grouping
and sequencing of the subproblems. It
then sends the appropriate subprob-
lems to the OR-nodes just below it, in
a sequence consistent with the control
strategy and the tree-development
rules stipulated above. Note that we
assume an arbitrarily large number of
OR-nodes available to each REDUCE
node. Each OR-node transmits the
literal it received to all the REDUCE
nodes that are its children. A REDUCE
node sends any answer that it con-
structs, either by matching a fact or
by combining solutions of subproblems
sent to it, to its pParent OR-node
which sends them to its parent
REDUCE-node. Since the only com-
munication needed is between a child
and its parent, and they have a physi-
cal link between them, no costly rout-
Ing of messages is necessary.,

The OR node has a literal to

solv
and needs to announce this goal to aSi
its children nodes. Instead of sending
an identical message on each of the

links, it would be more economical if
the message is broadcast to all the sue-
cessor nodes at once. So let us replace
the links from the OR node with a sin-
gle link to an efficient broadcast chan-
nel to all the subnodes. For brevity,
we will call such a channel a nel. An
ethernet (Metcalfl and Boggs 1076) is
an example of an efficient broadeast
link. As this link is used to pose the
problem to the net and to collect the
answers back from it, we will call it
the master link to the net. The inter
connection structure around an OR
node now looks as shown in Figure 2.

Reduce-Node

OR-Node

/— The Net

e

Figure 2

Let us now examine the work
that an OR-node needs to do). It gets (3
message corresponding to) a gO
literal from its pi(:ent node and broad-
c.sts that onto its net. It then
watches for any solutions appearing o0
the net and sends them back to the
parent. It really acts as a front-end to

Reduce-Node

Master-link —

Figure 3




the REDUCE node. We therefore elim-
inate the OR-nodes altogether. The
;nodnﬁed structure is shown in Figure

Now we have only one type of
todes in the tree. Eazh nodey as a
single clause. It receives a literal to be
solved from the net and tries to use its
clause to solve it. If the head of its
clawse unifies with the literal, it
becomes the manager of the (possibly
empty) sub-query consisting of the
night hand side of the instantiated
tlause. It then invokes the control
sirategy to decide the grouping and
Sthquepcmg of the subproblems. Using
tis, it communicates the subproblems
lvq appropriate order to different nets
tcl;a tl;ls master-links. For each solution
o e subproblem obtained from a
lll net, it either starts new subprob-
aems that were waiting for the value of
co‘u:ll;l'able provided by this solution, or
& rmm the answers of subproblems

bOl'm a solution to the original
P{)o lem. It sends each solution so
Obtained to its parent node.

generoll!r next optimization is really a
i ; ization to allow more flexibility
o e control strategy. It concerns
probrlnumcauon needs across the sub-
X {ms. _ Consider the query:
of B ).4(X).". Let p be the generator
e and q a filter of X. In our

ent version, the two problems will

be solved on different nets as shown in
Igure 4,

p(X,Y).4(X)
PX.Y)
N N2 |alx1)

d"ﬁ d:d:].

Figure 14

bethmsnder the communication
”een‘ nets N, and N, After the
St pair (x,y,) is found, a message
50;@ from N, to the parent node,
ich sends another message to N
ese two messages could be avoided
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if N, and N, were the same net and
were given the joint problem:
p(X,Y),q(X)'. An algorithm for exe-
cuting such problems on a single net is
described in (Warren et al. 1084) .
Note, however, that this groups
together the functions of all the N,’s,
thus potentially reducing the parallel-
ism between solutions of the q(x,)’s: all
the q(x,)'s have to be solved on the
same net now. As it is not always
beneficial to solve the composite query
on a single net, it should be the prero-
gative of the control strategy to pose
either a composite multi-literal prob-
lem or a single literal one to a net.

3.1. Opportunities for explolting paral-
lellsm.

We now examine how different
kinds of parallelisms can be exploited
on this architecture. The discussion
here will help our search for practical
implementations of the architecture in
the next section: they should try to
retain as much of this parallelism as
possible.

The AND parallelism involves
evaluating two or more literals of a
composite goal simultaneously. As a
node has master links to an arbitrarily
large number of nets, this parallelism
can be easily implemented on our
architecture. When the literals share
variables, it is not always efficient to
compute them in parallel. So it is left
to the control strategy (cs) to choose
whether to execute the literals in
parallel or not.

The OR parallelism at the literal
level involves exploring all the solu-
tions to a given literal simultaneously.
As the literal is broadcast on a net
and all the nodes start working on it
at once, this parallelism 18 inherent in
our architecture.

The OR parallelism at the query
level is the OR-parallelism across
literals which is exhibited by non-
deterministic predicates. Given two
literals with common, variables, 1t
involves starting execution, in parallel,
of each instance of the second literal
for every solution of the first. For
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example, if the query s
PX,Y),q(Y,Z) and P has multiple
solutions, then we can start exploring
each q(y,,Z) as soon as P returns a new
Y value (y,). Although in our idealized
architecture it is always beneficial to
do so, in practical models, where the
nets and the nodes need to be shared,
it may not be so. In such models, the
usefulness depends on features of the
problem (program and query) and the
specific topology of the are itecture,
which are gest handled by the cs. As
the solutions are always sent to the
parent node, (which can then decide
to start a new process for the next
literal), this parallelism is implement-
able on this architecture, although the
decisions to do so is left to the cs.

The Lookup parallelism involyes
looking up the clauses in the database
in parallel. There is a distinction
between this and the OR parallelism at
the literal level. There, one Jjust needs

(via a broadeast), the lookup s
automatically done in paralle].

4. Approximations and Practlcal Topo-
logles.

v The basic problem with the ideal-
ized _architecture s that it assumes

(1) an arbitrarily Jarge number of
nodes on each pet (one for each
clause);

(2) an arbitrarily large number of
master-links from every node to
the nets, one for each subproblem
that the node needs solved; and

(3) an arbitrarily large number of
nets (as the cOmputation tree
could be arbitrarily large).

Clearly, in Practical topologies, the

nodes, nets and the i
e e links have to be

ST R T e |

Firstly, we have to limit the
number of nodes on a net to s fixed
number. Thus, we must allow a single
node to have more than one clause.
Some of the advantages of parallel
lookup are reduced by doing this, but
with a careful distribution of clauses it
can (in most cases) be brought at the
same level as before. It has a fu!'t_her
advantage of effective resource utilizs-
tion: the idle time of a node is reduced
because a set of nodes will remain
unused in the original model if the
predicate that they represent does llzqt
figure in the computation. With multi
ple clauses at each node, the chances
are better that some clause on any
given node will be used in the compu-
tation.

Secondly, we limit the number of
master-links coming out of a node to
some fixed number. Now, more (bﬂ':
one subproblem may have to be S?Il:
via the same master-link onto tve
same net. The nets may have to solve
more than one goal concumntly.r'ﬂle
answers coming back on the net from
individual nodes have to be labeled so
that the master can recognize thﬂpn::
answers to a particular query. %
control strategy (cs) at each nhl
must take into account the fact t 8"
the nets it subcontracts may ah'leﬂ.
be working on some other prob en;{ss
Thus it must keep track of the ta:be
that it has assigned to each of e
sub-nets, and load-factors of the ne f
It could use this information to choO;
the link on which to send a new su
problem.

So far we have bounded te!:f
branching factor of the tree archxtt i
ture. The depth, and hence ins
number of resources, still a0
unbounded. To limit that, we ba‘ethe
allow multiple master-links to
bpus: With such links a net is resporst
ble not just for multiple Subpfoblem_
from the same master-node, but i
Ple subproblems from multiple mas
nodes. This allows for cyclic 5"“,"“‘3
in the topology, and thus sharing
nets for different goals. It also b_nng?
our architecture into the domain




the physically implementable. This is
the step in which we map the (infinite)
tree architecture onto a finite inter-
connection network. As we shall see
lster, this mapping can be done in a
variety of ways, leading to a variety of
architectures.

Before proceeding to discuss some
of the specific architectures with the
shove properties, let us examine the
essential features of this class of
models. The network consists of a
number of nets and processors. There
are two kinds of connections between
A processor and a net: master-link,
through which a node poses a problem
10 a net, and slave-link, through which
anode gets a literal to be solved. The
set of clauses on all the slaves of a net
are exactly the clauses of the program,
without any duplication. i.e. a net is a
tomplete problem-solver.

We can make further simplifying
sumptions and optimizations which
Will help us categorize the possible
networks. Firstly, we assume that
tach node has the same number of
slave_hnks. Secondly, the same physi-
cal hnlg may be used as both a
masller-lmk and a slave-link to a node.
m"r@"eh there is an important asym-

elry here. A node may have a
master-link to any net whereas it may
tm(e slave-links "to only those nets
an?)th do not have slavelinks to
i er node with the same clauses as
% 3. Thus, a slave-link can be used
uta master-link without any problem,
i 4 master-link, if used as a slave-
pori may cause duplication of clauses
mong the slaves. We henceforth

assume that every slave-link is also a
Master-link

added the master-links can be
° ed/removed without restriction,

ereas the slave-links are subject to
ab? above restriction, it seems reason-
Vle o categorize the possible topolo-
g'esd,.:“‘ofding to the slave-‘llinks ﬁrstii

gram of a topology depicts a

:’he Nodes, each labeﬁ::l with a number
enoting its set of clauses, all the nets
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and all the master and slave-links
between them. A skeleton is a
diagram without the master-links.
The skeleton shows how the problem
solvers (the nets) of a topology share
the resources (the processors). The
diagram shows how they can commun-
icate with each other.

4.1. Topology of the Slave-links: the
Skeleton.

We now examine the different
kinds of structures of skeletons possi-
ble. Each of them gives rise to a series
of topologies. The skeleton-structure
decides the scalability and strongly
affects the performance. By scalability
we mean the ease with which the net-
work can be expanded. Following
(Reed 1983), we will measure the sca-
lability in terms of the minimum
increment of processers needed to
move to the next bigger topology in
the series. For the purposes of this
section, we will ignore the effect of
control strategy (CS) on performance,
ie. we will compare the performance
of different skeletons assuming optimal
¢s on each one. Given a fixed number
of nets, the performance of an archi-
tecture which has a completely-
connected net-graph can be considered
optimal, because it can wuse its
resources effectively: no net need
remain idle while others are over-
loaded. We will use this ability to
spread work evenly among the nets as
tge criterion for comparing the perfor-
mance of two architectures. Architec-
tures on which the problems do not
have to wait for resources when
resources are available somewhere on
the network are superior to those on
which topological reasons force the
problems to wait. More accurate com-
parisons can be made by simulation
studies. (The performance is also
affected by the master-link structure.
However, as we are designing the
skeleton before the master-link struc-
ture, it is important to assess the
effect of the skeleton-structure on per-

formance).
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The reason that there is a multi-
plicity of possible skeletons is that a
node may be a slave of more than one
net. The simplest skeleton is the one
which allows exactly one slave-link
from each node. This leads to a collec-
tion of isolated nets. The nets com-
municate via the additional master-
links that connect the nodes of one
net to another net. This skeleton has
some important properties that the
others do not possess:

1. The distribution of clauses on each
net may be different.
2. Even the number of nodes on each
net may be different,
3. It is scalable without any restrie-
tions, as there are no dependencies
across the nets.

One need add one net and/or one
processor to extend it.

When we allow 2 or more slave-
links from a node, the situation is
much more complex. The reason that
we want to consider this option is that
it allows increased processor sharing
and thus tends to avoid processor
idling.

It is still possible to have different
distributions of clauses on different
nets. However, it is extremely difficult
to design a consistent system with
such distributions. Also, there are no
obvious advantages to doing so. Par-
ticular situations in which different
distributions are optimal may exist,
but it would be very difficult to take

Figure 6 n

advantage of these in a general pur
pose system. Therefore, we assume
that all the nets have identical distri-
bution of clauses,

In the following discussion, let ¢
be the number of slave connections
per node, n the number of nets, p the
total number of processors and & the
number of clause-groups (ie. the
number of slave processors) on each
net. Assume that & is ﬁx_ by other
considerations (discussed in the next
section). Notice that there are &
different types of processors in the sys
tem, in the sense that they bave &
different sets of clauses. We will hbe
each processor with a number
i1,0<i<k, corresponding to its ‘Yll?ﬁ
We will present a few series of topolo-
gies, ancr compare their performance
and scalability.

53670

Figure 5

A topology of the first series IS
depicted in Figure 5. Any SP“‘iii;
topology of this series can be easm-
extended by adding 2 nets and £ p :
cessors to it. The second series Bts
grid-like structure. Given n=2m nfng!
one constructs this topology by lay!
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out the m nets as in an isolated topol-
ogy, thus laying out all the process?:s.
The nets are numbered 0..m-1. One
;hen adds the remaining m nets one
y one, connecting the y'th new net to
;llae rth node from the (i+ j mod m)'th
d net. A few example nets of this
series are shqw_n in Figures 6,7 and 8.
Agdnm, the minimal increment is 2 nets
;n k processors. However, this series
Tﬁ a better erformance than series-1.
(‘he largest distance between two nets
¢ e number of nodes that have to be
o:shlled in order to go from one to the
: ‘erl)'m the first series is approxi-
: é ely nf2, !n the second series, for
it"m' the distance is 2. In general,
se;‘:PPl:oxlmat.ely n[(2#(k-1)). It thus
e dl at activation would tend to
soprq more evenly among the proces-
poi; tm a series-2 topology. To see this
o tmore clear!y, consider the graph
~ opology with the nets as nodes
o aanpt?:h from a net through a node
ther, 0 Ter’ net as an arc between
e his arc represents shortest
i chauon path between two
topdl igure 9 shows the graphs for a
X aog of each series. For the graph
et ries-2 topology, the minimal
that f g tree is much bushier than
brcnd or a series-1 topology (with the
ey number of nets). Thus, within a
(small) number of steps, one can

reach . . .
wi&l!.nore nets in series-2 than in

n=2;‘: series-2 topology (a grid) with
N y‘:elds a regular grid. An exam-
shown in Figure 6. Notice the

179

% %

Series-1 Series-2

Figure 9

labeling of node-types in the net. One
could obtain the labeling by labeling
all the nodes on one net arbitrarily
(say in the order 1 to k), and then
labeling the nodes in the adjacent
parallel net in the same order, but
shifted one position in one direction.
This labeling strategy is easily general-
ized to higher dimensions correspond-
ing to higher values of ¢. Thus
spanning-bus hypercube (sBH) archi-
tectures (Wittie 1981) are also
included in our class of architectures.

The dual-bus hypercube architec-
ture (DBH) (Wittie 1981) provides
another interesting series of topologies.
The processors are arranged as lattice

oints of a D-dimensional hypercube
with width k). The labeling is same
as in SBH. But it requires only two
connections per processor. Thus it is
cheaper than the SBH. There is a pre-
ferred dimension. Each node has a
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connection to a bus in the preferred
direction. The other connection from
each node is to a bus in a direction
that is uniform for all the nodes in the
hyperplane containing that node. The
worst-case path length between two
nets is (2«log.n - 1). Thus DBH seems
to have a potential for much even
spread of computation than the previ-
ous series. However, the scalability is
poor. The number of nodes is &2 and
so the minimum increment is at least
k°(k-1). Thus we see here a genuine
tradeoff between scalability and per-
formance.

5. Design Issues.

The brief analysis in the previous
section prepares us for tackling the
problem of designing a parallel execu-
tion system for Prolog. We now con-
sider the design choices involved.
Notice that we are not resenting
solutions to the design problems here.
Rather, we are attempting to list the
choices and the issues involved in
making those choices, so as to set a
framework for future research.

5.1. Choosing k, the Number of Nodes
per Net. The bandwidth of the net
puts an upper bound on how many
nodes can be put on a net. The tra-
deoff, within that limit, involves two
factors. If the number of nodes on 3
net is increased continuously, a point
may be reached when a large number
of processors on the net tend to
remain idle. Then, it would be more
cost effective to use fewer nodes and
use the extra nodes with new nets. Op
the other hand, too few rOCessors per
net mean reduction in t € amount of
parallelism possible, because now a
node has a larger number of clayses
and may have to dea] with more goals

suffice because with carefy] distriby-

tion of clauses, there s less chance of
overloading a node, Also, if the Sys-

tem is meant for data-base applics-
tions, there would tend to be a large
number of clauses for a single predi
cate. Then, a large number of nodes
helps retain the parallel look-up. Ina
system for executing typically deter-
ministic programs, there would be
fewer clauses per predicate and a very
few (typically one) of them would
succeed beyond the initial guard
literals of the clause. Then a small
number of nodes (e.g. 3 or 4) would
suffice unless more are needed because
the net tends to be engaged in solving
a large number of goals.

5.2. Choosing ¢, the Number of Slave
links per Node. A processor has to
analyze every message that is brosd-
cast on a net of which it is a slave s
opposed to only those addressed to it
from a net of which it is a mast;t
Depending on the bandwidth of the
net and the cycle time of the proces-
sor, one would get an upper bound on
¢, assuming continuous broadcasts on
all the nets. Loading of the p’°°'f°'
and cost of the links are the othel“ 3;
tors limiting the value of ¢ fro
above. The fundamental Chowel'
though, is between c=1 and ‘>.
(mainly 2 and 3). With c=1, we g:o
easy scalability and the ability .
redistribute clauses on individual Dem-

e can then consider each net ‘;er
abstract independent problem,.”:-n'

he cost, of course, is lesser “"h‘.l’ d'::v
of processors. This is a quali S
choice, and at this point, it is un¢
which one would be ‘better’.

With
5.3. Designing the Skeleton. :
c=1, the ':l?ele'ton is fixed. For h'g:::
values of ¢, the design should "'ty
into account the issue of d?““”"ﬂ_‘]t
of the topology mentioned in the fow
section. We have enumerated a ey
series of skeletons with c=2 “dﬁow_
have their analogues with ¢=3. ol
ever, alternative structures with be‘be
Properties might exist and need to
Investigated.




54, Selecting the Number of Master-
links per Node. We have already said
that each slave link should be used as
s master link. The question, then, is
should there be additional master
links. Distributed execution of recur-
sive predicates is not possible without
sdditional master links. A node that
has the recursive clause broadcasts the
recursive subproblem to one of the
nets of which it is a master. If it is
also a slave of that net, it will be the
only one with that clause, (because
uplication of clauses is not permit-
ted) and will have to solve the sub-
problem itsell. Therefore we expect
&:l additional master links will be
Meﬁglal. The number of additional
i S 15 again limited by the cost per
k and the cycle time of the proces-

!Oka pomt to note is that the master
: 15 much more lightly used than a
Siave link; only the unicast messages
t_ldrryln; the answers need be con-
;‘_ ered by the processor. Also, with
‘:St‘;t;m::mber dpft _Lnuter-li;!ks one
even distribution of activit

across the network. gt

;-‘- Designing  the Interconnection
d"pctm of the Master-links. The
e:’Slgn should provide for fast and
g :n spread of computation across the
fwork. In particular, a single net
ould not be overloaded (in com-
‘aslon to others) and thus cause a
= _'l!sneck in the computation. This
. dlls that all the nets should have
Ul the same number of masters.
etce) %“mbﬂ of paths (of length 1, 2
o elween two nets should also be
the Pkarable. As an example, consider
mas: eleton shown in Figure 6. If the
o er-links were added such that all
h"epmcasors on a horizontal net
s ;Ime master-lm.k to the next hor-
i net, the activity from one net
v tend to cluster onto the other.
me'()lmb connected master-links (or
um‘”y designed) may have more
(ot l:Jrrn connections among the nets.
- €r considerations, such as easy to
e 'llett topology may, force one to
Plement the first structure)

0 DRI [ o A RS |
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5.6. The Control Strategy. Once a
node receives a goal message from one
of its slave links, it must attempt to
unify it with the head of each relevant
clause. For each successful unification,
the control strategy (CS) has to
manage a new query consisting of the
body of the instantiated clause. It
must consider the load on each of the
nets of which it is a master and the
control information associated with
each clause that it manages. This con-
trol information may be provided by
the user and/or obtained at compile
time. It includes such factors as
whether the predicates involved in the
clause are deterministic and the func-
tional dependencies among the vari-
ables of the predicates etc.

Using this, it must decide (a) how
to subdivide the query corresponding
to the body of the clause into sub-
problems and (b) which net to use for
each subproblem. The former involves
deciding whether to divide it in literals
or in larger chunks and also deciding
what sequencing of the subproblems is
to be implemented.

The object of the CS is to optim-
ize the performance of the whole net-
work. As that may depend on the
topology of the network and the CS
has access to only the local informa-
tion, we are faced with two options.
Either we could have the topological
information built into the CS or we
could make it independent of the
topology (and hope that it works well
on most topologies). An option in
another dimension 18 either to have
the identical complete CS reside on
each node or to let .the control infor-
mation be compiled into the represen-
tation of the clause itself (leaving only
a simple executor at each node). The
latter course seems faster and requires
less storage on each node if there are
few clauses on each node. It does
require compile time analysis.
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Another important task of the cs
in any practical implementation would
be to deal with the priorities of the
subtasks that it manages. It could dic-
tate the priority of a new subquery
when it is broadcast and change it as
the computation progresses. For
example, it may reduce the priority of
a subproblem after it has returned an
answer.

8. Conclusion

We have considered only pure
Prolog in this paper. Ways of imple-
menting the impure features of Prolog
that are both required and useful need
investigation. In particular, failure
detection schemes are necessary for
implementing not and setof. The
semantics of side-effects (as in write
etc.) under OR-parallelism has to be
developed. Ways of updating the pro-
gram have to be implemented. Unique
resources (such as a printer), and
duplication of clauses on a net need to
be handled.

In conclusion, the basic bys-
architecture approach seems pPromis-
ing. We envisage huge search-type
problems being solved faster op a
machine based on the architectures
proposed here. The design chojces
described in the Previous section are
difficult ones. The criterion in making
them is optimality oper o range of
Prqlog . programs, ag opposed to
optimality over 5 specific program.
Thus, analysis alone will not he able
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ABSTRACT

toThe outline of an architecture
5 ?ﬂpport the parallel execution
- ::ic languages is presented.
; plementation of a particular
a::g“:se, Parlog, is considered;
cares ion is given to its "don't
ot non-determinism which allows
ek and- and or-parallelism and
urns only one solution.

theThe main features described are
e control structure and the
contmg environment. The proposed
thatr:' structure uses processes
o uild an and/or tree tailored
guarded clauses. For the
unifi-zstenviromnent we introduce a
& ation algorithm which solves
P problems of multiple
urences of an instance of a
Variable in guards.
1+ Introduction
areA besi!‘OVing number of languages
% ng developed for specifying
2w tmrallel execution of logic
8Tams. This paper outlines an

&Tchitecture
to support such
l“&“ﬂges s EP

areh:: parallel logic languages
& by sed on sequential Prolog,
deelarve the same or very similar
pm‘mdative reading but different
Might ural semantics. The left to
vithin evaluation of subgoals
Teplac a Prolog clause may be
e ed by solving them in paral-

i this 4is known as and-

arallelism. The sequential order
in which alternative clauses are
tried in Prolog may be replaced or
augmented by the ability to try
all alternatives in parallel; this

is or-parallelism.

It is possible to execute logic
programs using or-parallelism and
limited and-parallelism without
additional language control facil-
jties (Haridi and Ciepielewski
1983, Furukawa et al. 1982, and
Conery and Kibler 1981) However,
control facilities to specify some
ordering of clauses can improve
efficiency of or-parallelism by
pruning the search tree (Kasif et
al. 1983). The main problems
arise with and-parallelism when
two or more goals contain terms
which share an uninstantiated
variable, since only one of these
goals should be allowed to instan-
tjiate it. The languages that
allow limited parallelism usually
force goals which share variables
to be executed strictly sequen-
tially, but allow goals with no
shared variables to be executed in

parallel.

parlog (Clark and Gregory 1984)
is a successor to their earlier
relational language (Clark and
Gregory 1981). (Parlog has itself
undergone major changes  since
f£irst described (clark and Gregory
1983)). It solves the problems
created by and—parallelza'xln by
using "node declarations to
define which goal is the producer
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of a variable's value and which
goals are its consumers. Parlog
allows both and-parallelism and
or-parallelism to solve relations,
in which only one solution is
returned; it uses sequential-and
with either or-parallelism in
"eager" mode or sequential-or
(i.e. like Prolog) in "lazy" mode
to solve BSet-expressions, in which
some or all alternative solutions
are found. A comprehensive
description of the language can bpe
found in Clark ang Gregory (1984).

In this raper we shall concen-
trate on relations, leaving con-
sideration of set-expressions to a
subsequent paper.

Our aim is +to design a nmyl-
tiprocessor architecture abple to
support efficient implementation
of all of the features of Parlog
and also sufficiently flexible to
be able to support other languages
such as Concurrent Prolog (Shapiro
1983) and, perhaps, "normal"
sequential Prolog.

Two of the main design features
which we describe are the control
structure and the bindins environ-
ment that is used.

2. Basic Underlxig Machine

The basic components of the
abstract machine are a finite get
of processors each with access to
a shared global memory and alse
(optionally) to some local memory.

Global memory is divided into
three sections: static memory con-

tains the compiled code of the

process memory contains i.nfoma:
tion for each Process createq dur-
ing execution.

A program is executed by Creat-
ing processes to execute goals,
These are allocated to a finite
number of Drocessors by a

scheduler, running on a dedicated
processor.

The architecture is control
driven (Treleaven et al. 1982).
Parlog offers flexibility in the
ways in which goals can be exe-
cuted (e.g. mixing sequential and
parallel calls and clauses) and
this is easily catered for with a
control architecture.

3. Control Structure

The control structure is &
hierarchy of processes represent-
ing the and/or tree which
Trepresents the search tree for
satisfying a goal.

There are two types of node in
this tree corresponding to two
types of process: and-processes

and or-processes.

An and-processes terminates
with failure if any of its child

Processes fails. All of its chil-
dren must succeed for it to ;10 3:
An or-process terminates with suc-
cess if any of its childres
Ssucceeds. Thus all of its chil-
dren must fail for it to do ::;
(A chila process of some proc
is one which has the given process
@8 parent. The child is fre-
quently created by the parent, but
may be ‘'adopted', as described
below).

The execution of a Parlog pro-
8Tam begins with an and-process
which executes the top level
query. A child process is crested
for each goal specified in the
query. These child goal calls &re
or-processes.

There may be a number Of
clauses composing the relation for
each goal. A goal call will tr¥
each alternative clause by creat
ing an and-process for each one.

Each of these and-processes

will first of al) attempt to 11
the arguments in the goal c2

R TR




:;:h the arguments in the head of
clause, There are three pos-
sible outcomes:

I Unification fail

5 8, causing the
gn‘clm to terminate with failure.
2 Unification suspends (an
:::::pt vas made to bind an unin-
m-':;:: input variable to a
i le term); the process
e ;a input-suspended.

;;un fication succeeds; the pro-
toa'tt:ontim\en execution by trying

isfy the guard clauses.

m::’n o:!; and-process has created
ith sga calls for its guard, it
s pend until they have ter-
ek hivith success. If any of

children fails so will this

brocess  (asin
ibtas): ce 3t 48 an and-

ltt::;: reactivated, it will
this clato commit the goal call to
Outco..a;““' This can have two*
1. 0

Eat;&tl fails: some other candi-
N t:i:uﬂe committed first.
failure, process terminates with
2. 0

< lommit succeeds: the process

then ¢
on
etine ;{.nues, executing the

In
Mucedu: 2, the goal call is
body o the execution of the
1 Dtoc:. This is reflected in
W'Pi’ocegu tree structure: the
for the 8 creates or-processes
il goals in the body which
1 same parent as the cal-
M. goal or-process (see figure

On
Creat:: ththeae body calls are
Vith sy e and-process terminates
by cess, and hence its parent
Process also terminates.

¥ e
umded buffers” that can

caus,
® commit to suspend (Clark and

Gregor
Pﬁ!’logf. 1983) are no longer in

A 1= 61,62 | BY, B2 (1)
Al :- G3, G4 | B3, B4 (2)
T : A1, A2 .
(a) ;{.}<

at(1)  a1(2)

Gl G2 G3 G4

(v) : B1, B2, A2

B1 B2 A2

Figure 1: State of control tree
(a) before a clause commits and
(b) after the clause terminates.

_3_._1_. Process Information

Each process created must carry
sufficient jnformation to execute
some part of the program and to
communicate its outcome to its
parent. This information makes up
the process control block.
Included in tnis block are the

following fields:

Process type: (AND or OR).
Code pointer: pointer to currently
executed jnstruction.
Process pointer: pointer to this
process.
%592229_1_&*_12-. Nk
hild pointer:
created child process.
Sibling pointer: sibling process
previously created.
Process status.

recently
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A null child/sibling pointer

indicates that this process
currently has no active
children/siblings.

The process status can signal
one of three possible suspended
states or two possible runnable
states:

1. Sus nded on Wait: the process
" has executed a 'wait' instruc-
tion. When all children have ter-
minated (assuming none have ter-
minated this process) the parent
will continue execution from the
instruction following the 'wait'.
2. Suspended on End: the process
has executed an 'eng' instruc-
tion; it finished execution and is
waiting for its children to com-
plete before sending a signal to
its parent and terminating.
- Suspended on Input Variable;
" the process will be woken when
the appropriate variable becomes
instantiated ang will continge
executing the same (unification)
instruction +that caused it 4o
suspend.
4. Runnable, Queued; the Dprocess
is runnable but has not yet
been allocated a processor. It ig
held in g queue of runnagble
processes.
3. Runnable, Executing; the pro-
cess is actually executing on
a processor.

3.2. Control Primitives

Here ye describe brimitive
actions for handling Processes,
These actions require write access

Create Creates g Process block
containing g new process. The
fields described above are inj-
tialised. Onee created the Dro-
cess becomes "Runnable, Queued",

ngl terminates this Dbrocess, kil-
ling any Temaining chilg Drocesses

b s . - ki

*

that may atill exist. Bither of
the following conditions will
result in the parent Dbeiy
'failed’:

1. The parent process is an and-
proceas.

2. The parent is an or-process in
"Suspended on BEnd" state and
this process is the last
remaining child.

If the parent is an or-process x::
"Suspended on Wait" state and @Af
is the last remaining child the
the parent process is woken up.

Succeed terminates this process,
killing any remaining cl.nxd
processes that may still 93}“'
One of the following °°°dzn?nf
will result in the parent being
'succeeded’:

: i
1. The parent process is an 0
process.

2. The parent is an and-process :8
"Suspended on End" ““te.a::
this process is the 1a
remaining child.

If the parent is an and-px'ocessmil:l
"Suspended on Wait" state and S
is the last remaining child
the parent process is woken up-

1
Kill children kills all desce
dants of this process.

Notice that the action of t::
child process upon success =
failure depends not on 1ts prO;hu
type but on its parent's. of
and-processes can be led_”nw
and-processes, a feature which o
be useful for optinisa'cwnvf 3
described below. The type © i
brocess is determined Dby %o
instruction that was used
Create it,

The above primitives are ”se:;
Hally built in to the contrd
instructions described in the 0
lowing section.




3.3, Control instructions

The instruction set developed
for the abstract machine is based
oo Warren's PLM instructions for
Prolog (Warren 1977).

A clause of the form
=G | B

vll be translated to code of the
form:

-

|
imification instructions

+

neck instruction

guard calls

-

commit instruction

T
e

(PR G/ —

-

- G oies P s P unan'lp eves g it &

mc“"d and body calls are exe-
d using the same instruction:

call caddr, paddr
{arguments)>
paddr:

::i‘ is interpreted as "create a
exew:"'m'ocena which will begin
'old* ion at address caddr The
¥ process will continue at
%- Following the call
h ween the call and paddr) are
® call arguments.

- The commit instruction
g“ma the guard calls from the
J calls in the clause. (If no

g::g is specified then it is exe-

. after the neck instruction).

the is interpreted as "wait for

( guard's calls to complete

.§u°°°'3fﬂlly) (i.e. go into

the“apended on Wait" state) and
% sttempt to commit the parent

s to this clause; if this

eds then continue to the next

: truction, otherwise the process

® % terminate”.

B
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The commit dnstruction will
also set an ‘'ancestor' field in
the process control block so that
the subsequent call instructions
will attach created processes to
the grandparent of this process.

The end instruction is the last
instruction in the clause. Since
the body goals do not get linked
to this process, there are no
children to wait for so the end
instruction will cause the process
to terminate (successfully) at
once.

A process created by a call
instruction will execute instruc-
tions to create and-processes to
try each alternative clause for a
goal. The format of  these
instructions is:

start: try c1

try c2
try Cn
end

The try instruction at "start:" is
interpreted as "create a new and-
process that will start execution
at €1 (the start of clause
jnstructions  for  the  first
clause)". The new Dprocess is
always the child of the 'old' , pro-
cess in this case. The old'
(parent) process continues at the
next instruction after the try.

The end instruction will put
the process into "Suspended on
End" state and wait for its chil-
dren. If there are no children to
wait for it will cause immediate

termination (failure).

The call and try inmstructions
are suitable for executing goals
and clauses in parallel. However,
Parlog allows goals to be executed
sequentially and clauses to ‘?e
tried aequentially. ; This _is
achieved by the wait instruction.
The sequence:

call D
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wait
call q

will call goal P, then wait for it
(and al1 its descendants) to ter-
minate (with success) then call
goal g. (This atill allows
subgoals of p to be executed in
parallel). The conjunction
"31 y 82 » 83 & gs , 85" will com-
pile to:

call gl
call 82
call &3
wait

call &4
call 85
end

This will execute 8, g2 and &
in parallel and wait for them all
to complete and then execute g4
and g5 in parallel,

The wait instruction can be
used similarly when selecting
alternative clauses:

ClLE35C2 L= try C1
wait
try c2

The five instructions call,
2y, commit, wait ang end are the
basic control instructions. For
convenience ang efficiency they
can be combineg to give the fol-

lowing instructions:

sequential call:

call 11,12 + wait => soal) 15T
Sequential try.

try C1 + wait =) stry c1
last goal call:

call 11,12 + end =) lastcall 1%
last clause to try:

try C1 * end =) lasttry ¢

Two  other instructions are
introduceqd for the Special cagges
when only one clause exists for 4
goal ang when only one body goal
exists for g clause,

onlycall ¢

will, instead of creating an or-
Proceas, change itself into an
Or-process and execute the code at
C1.

onlytry Ot

will, instead of creating an and-
process, change itself into an
and-process and execute the clause
at C1.

3.4. Processes suspended on vari-
ables

When a process attempts ?o
unify uninstantiated input veri-
ables to a non-variable term it
¥ill become input suspended, and
must then wait for some other goal
(the producer) to instantiate that
variable.

This can be implemented by set-
ting the status field of the P’:
cess control block to Suapersdw
on Input Variable", and by h‘v:":
& channel field in the block whic
contains the address of Fb:
(dereferenced) variable on whic
the clause suspended.

When a process unifies ‘h’:
variable with a term any !{’°°e:e
sleeping on this variable will 4
Teactivated. This involves chec .
ing for suspended processes 'he?ts
clause commits (and thus makes i
instantiations public).

To minimise the overhead. ;;
this checking the channel flein
could be stored separately, (or
appropriately indexed tables an
hash tables); a1 temtivelyed
associative memory could be used.

4. Envi ronments
=" —_ZIOnments

of

An  environment consists

= : bindings
frames which contain the

r
of the variables of a clause f0
its current call.

In sequential Prolog, only o%®
environment is gecessible at-a:y
given  time during executict,
because of the sequentid

SRR - L e |




execution, Thus only one
occurrence of an instance of a
verizble can exist at one time.

Vken or-parallelism 4is intro-
dw more than one occurrence of
an' instance of a variable may
érist at the same time - if a goal
18 called which dinvokes three
clauses to be tried, then there
vill te three different instances
of the goal argument variables.

In gemeral, for each clause
invoked in parallel a new environ-
tent is required. Each of these
fvironments will be an (exact)
W of the environment of the
::ll call together with a local
'l:il:blfor the value cells of the
€8 in the clause.

mg:\!i:uualy. not all the vari-
i ancestor frames will be
e by the results of unifi-
o h:t goal arguments and
% ad arguments. It could
recg):sible for those frames unaf-
Sirid by unification to be
£ dau-“ Once the call commits to
St the calling clause will
= the new environment to
Place its 0ld one.

pm:’;d'mrallelian poses another
ny :l in that a number of goals
4 i;:" the same call frame at
fids e. In particular, dif-
m_ublGOala may update different
that :B in the same frame 8O
ok Other (parallel) goals can
Theres the  resulting  binding.
- entoire' rather than replacing
xite Te frame when a goal com-
"ru'b;nly the values of affected
i €8 are copied back into the
call frame.

pn&:“v & clause must hold

t u; copies of variables which

further T8 in unification. As a

complication, guard goals

Sethei!' descendants must access

Tather trivate copies of variables
than the public ones.

T T TR e e
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With the conventional unifica-
tion algorithm wused for Prolog
(Warren 1977, Bruynooghe 1981) and
unification of two uninstantiated
variables results in the more
recent (i.e. the clause variable)
being assigned a reference to the
older one. Subsequently, a vari-
able in the call arguments of a
goal may dereference to a variable
in any ancestor goal in the
environment.

This is unsuitable for a paral-
lel system. Thus we have developed
a unificiation algorithm that con-
strains call arguments to derefer-
ence only to variables in either
the call frame or the local frame,
with the exception of input (read
only) variables. This restriction
even applies to complex terms.

4.1. Unification
Unification has three stages:

1. Unification of call arguments

with clause head arguments.
The values of the variables used
in the call are copied from the
call frame to a (local) frame
called the output frame. These
may contain undef, ‘terms, or
references to other variables in
the call frame which must also be
copied. The output frame is used
in the unification of call argu-
ments with the arguments in the
clause head . The unification

rules are given below.

2. On commit, those variables in
the output frame that were
assigned values during unification
must be copied back to the call
frame. The local frame will also
Because of the

become public.
constraint in Parlog that only one
can produce the

rallel) goal
\(rﬁ.iue of a shared variable in the

i to
calling frame it is unnecessary
check gon copy pack whether any
variable has been instantiated Dby
some other goal since a copy of it

was made.
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3. When the clause body calls and

their descendants have com-
pleted, the 1local frame can be
compacted by retaining only those
variables in the local frame
accessible in the rest of the
environment. Because of the unif-
ication algorithm only those local
variables referenced by the call
frame are accessible to the rest
of the environment. This stage is
optional but considered a vital
optimisation as long chains of
references can be shortened. A
garbage collector brocess could do
this in oparallel with the main
execution.

4.2. Unification Rules

ences are in the way variables are
assigned values. The following
rules apply (all variables are
dereferenced):

1. Unifyi & simple term to an
uninstantiated variable; in

this case the term is simply

variable,

2. Unifyi two uninstantated
variables: the least recent

18 an input argument then a
pvointer can be assigned to +tpe
variable in the call frame.

3 Unifxi:t_xg & complex ternm to a
call variable: this came Tits
naturally into this scheme; ygj
structure sharing, the variable ig
assigned g <skeleton,frame> pair
where the skeleton pointer boints
to the structure in the code area
(static memory) and tpe frame
pointer is the 10cay frame, where
the values of any variables in the

e C——_——

term are kept.

4. Unif 2 complex term to z
local variable: this involves
extra copying to ensure the con-
straint that variables can only
dereference to varis